Science.gov

Sample records for activity body temperature

  1. Limits to sustained energy intake. XVI. Body temperature and physical activity of female mice during pregnancy.

    PubMed

    Gamo, Yuko; Bernard, Amelie; Mitchell, Sharon E; Hambly, Catherine; Al Jothery, Aqeel; Vaanholt, Lobke M; Król, Elzbieta; Speakman, John R

    2013-06-15

    Lactation is the most energy-demanding phase of mammalian reproduction, and lactation performance may be affected by events during pregnancy. For example, food intake may be limited in late pregnancy by competition for space in the abdomen between the alimentary tract and fetuses. Hence, females may need to compensate their energy budgets during pregnancy by reducing activity and lowering body temperature. We explored the relationships between energy intake, body mass, body temperature and physical activity throughout pregnancy in the MF1 mouse. Food intake and body mass of 26 females were recorded daily throughout pregnancy. Body temperature and physical activity were monitored every minute for 23 h a day by implanted transmitters. Body temperature and physical activity declined as pregnancy advanced, while energy intake and body mass increased. Compared with a pre-mating baseline period, mice increased energy intake by 56% in late pregnancy. Although body temperature declined as pregnancy progressed, this served mostly to reverse an increase between baseline and early pregnancy. Reduced physical activity may compensate the energy budget of pregnant mice but body temperature changes do not. Over the last 3 days of pregnancy, food intake declined. Individual variation in energy intake in the last phase of pregnancy was positively related to litter size at birth. As there was no association between the increase in body mass and the decline in intake, we suggest the decline was not caused by competition for abdominal space. These data suggest overall reproductive performance is probably not constrained by events during pregnancy. PMID:23720802

  2. Risperidone alters food intake, core body temperature, and locomotor activity in mice

    PubMed Central

    Cope, Mark B.; Li, Xingsheng; Jumbo-Lucioni, Patricia; DiCostanzo, Catherine A.; Jamison, Wendi G.; Kesterson, Robert A.; Allison, David B.; Nagy, Tim R.

    2009-01-01

    Risperidone induces significant weight gain in female mice; however, the underlying mechanisms related to this effect are unknown. We investigated the effects of risperidone on locomotor activity, core body temperature, and uncoupling protein (UCP) and hypothalamic orexin mRNA expression. Female C57BL/6J mice were acclimated to individual housing and randomly assigned to either risperidone (4 mg/kg BW*day) or placebo (PLA). Activity and body temperature were measured over 48-hour periods twice a week for 3 weeks. Food intake and body weights were measured weekly. UCP1 (BAT), UCP3 (gastrocnemius), and orexin (hypothalamus) mRNA expressions were measured using RT-PCR. Risperidone-treated mice consumed more food (p=0.050) and gained more weight (p=0.0001) than PLA-treated mice after 3 weeks. During the initial 2-days of treatment, there was an acute effect of treatment on activity (p=0.046), but not body temperature (p=0.290). During 3 weeks of treatment, average core body temperatures were higher in risperidone-treated mice compared to controls during the light phase (p=0.0001), and tended to be higher during the dark phase (p=0.057). Risperidone-treated mice exhibited lower activity levels than controls during the dark phase (p=0.006); there were no differences in activity during the light phase (p=0.47). UCP1 (p<0.01) and UCP3 (p<0.05) mRNA expressions were greater in risperidone-treated mice compared to controls, whereas, orexin mRNA expression was lower in risperidone-treated mice (p<0.01). These results suggest that risperidone-induced weight gain in mice is a consequence of increased energy intake and reduced activity, while the elevation in body temperature may be a result of thermogenic effect of food intake and elevated UCP1, UCP3, and a reduced hypothalamic orexin expression. PMID:19084548

  3. Sepsis-induced morbidity in mice: effects on body temperature, body weight, cage activity, social behavior and cytokines in brain

    PubMed Central

    Granger, Jill I.; Ratti, Pietro-Luca; Datta, Subhash C.; Raymond, Richard M.; Opp, Mark R.

    2012-01-01

    Infection negatively impacts mental health, as evidenced by the lethargy, malaise, and cognitive deficits experienced during illness. These changes in central nervous system processes, collectively termed sickness behavior, have been shown in animal models to be mediated primarily by the actions of cytokines in brain. Most studies of sickness behavior to date have used bolus injection of bacterial lipopolysaccharide (LPS) or selective administration of the proinflammatory cytokines interleukin-1β (IL-1β) or IL-6 as the immune challenge. Such models, although useful for determining mechanisms responsible for acute changes in physiology and behavior, do not adequately represent the more complex effects on central nervous system (CNS) processes of a true infection with replicating pathogens. In the present study, we used the cecal ligation and puncture (CLP) model to quantify sepsis-induced alterations in several facets of physiology and behavior of mice. We determined the impact of sepsis on cage activity, body temperature, food and water consumption and body weights of mice. Because cytokines are critical mediators of changes in behavior and temperature regulation during immune challenge, we also quantified sepsis-induced alterations in cytokine mRNA and protein in brain during the acute period of sepsis onset. We now report that cage activity and temperature regulation in mice that survive are altered for up to 23 days after sepsis induction. Food and water consumption are transiently reduced, and body weight is lost during sepsis. Furthermore, sepsis decreases social interactions for 24 – 48 hours. Finally, mRNA and protein for IL-1β, IL-6, and tumor necrosis factor-α (TNFα) are upregulated in the hypothalamus, hippocampus, and brain stem during sepsis onset, from 6–72 hour post sepsis induction. Collectively, these data indicate that sepsis not only acutely alters physiology, behavior and cytokine profiles in brain, but that some brain functions are

  4. Summer declines in activity and body temperature offer polar bears limited energy savings

    USGS Publications Warehouse

    Whiteman, J.P.; Harlow, H.J.; Durner, George M.; Anderson-Sprecher, R.; Albeke, Shannon E.; Regehr, Eric V.; Amstrup, Steven C.; Ben-David, M.

    2015-01-01

    Polar bears (Ursus maritimus) summer on the sea ice or, where it melts, on shore. Although the physiology of “ice” bears in summer is unknown, “shore” bears purportedly minimize energy losses by entering a hibernation-like state when deprived of food. Such a strategy could partially compensate for the loss of on-ice foraging opportunities caused by climate change. However, here we report gradual, moderate declines in activity and body temperature of both shore and ice bears in summer, resembling energy expenditures typical of fasting, nonhibernating mammals. Also, we found that to avoid unsustainable heat loss while swimming, bears employed unusual heterothermy of the body core. Thus, although well adapted to seasonal ice melt, polar bears appear susceptible to deleterious declines in body condition during the lengthening period of summer food deprivation.

  5. Animal physiology. Summer declines in activity and body temperature offer polar bears limited energy savings.

    PubMed

    Whiteman, J P; Harlow, H J; Durner, G M; Anderson-Sprecher, R; Albeke, S E; Regehr, E V; Amstrup, S C; Ben-David, M

    2015-07-17

    Polar bears (Ursus maritimus) summer on the sea ice or, where it melts, on shore. Although the physiology of "ice" bears in summer is unknown, "shore" bears purportedly minimize energy losses by entering a hibernation-like state when deprived of food. Such a strategy could partially compensate for the loss of on-ice foraging opportunities caused by climate change. However, here we report gradual, moderate declines in activity and body temperature of both shore and ice bears in summer, resembling energy expenditures typical of fasting, nonhibernating mammals. Also, we found that to avoid unsustainable heat loss while swimming, bears employed unusual heterothermy of the body core. Thus, although well adapted to seasonal ice melt, polar bears appear susceptible to deleterious declines in body condition during the lengthening period of summer food deprivation. PMID:26185248

  6. Anaphylaxis Imaging: Non-Invasive Measurement of Surface Body Temperature and Physical Activity in Small Animals

    PubMed Central

    Manzano-Szalai, Krisztina; Pali-Schöll, Isabella; Krishnamurthy, Durga; Stremnitzer, Caroline; Flaschberger, Ingo; Jensen-Jarolim, Erika

    2016-01-01

    In highly sensitized patients, the encounter with a specific allergen from food, insect stings or medications may rapidly induce systemic anaphylaxis with potentially lethal symptoms. Countless animal models of anaphylaxis, most often in BALB/c mice, were established to understand the pathophysiology and to prove the safety of different treatments. The most common symptoms during anaphylactic shock are drop of body temperature and reduced physical activity. To refine, improve and objectify the currently applied manual monitoring methods, we developed an imaging method for the automated, non-invasive measurement of the whole-body surface temperature and, at the same time, of the horizontal and vertical movement activity of small animals. We tested the anaphylaxis imaging in three in vivo allergy mouse models for i) milk allergy, ii) peanut allergy and iii) egg allergy. These proof-of-principle experiments suggest that the imaging technology represents a reliable non-invasive method for the objective monitoring of small animals during anaphylaxis over time. We propose that the method will be useful for monitoring diseases associated with both, changes in body temperature and in physical behaviour. PMID:26963393

  7. Central control of body temperature

    PubMed Central

    Morrison, Shaun F.

    2016-01-01

    Central neural circuits orchestrate the behavioral and autonomic repertoire that maintains body temperature during environmental temperature challenges and alters body temperature during the inflammatory response and behavioral states and in response to declining energy homeostasis. This review summarizes the central nervous system circuit mechanisms controlling the principal thermoeffectors for body temperature regulation: cutaneous vasoconstriction regulating heat loss and shivering and brown adipose tissue for thermogenesis. The activation of these thermoeffectors is regulated by parallel but distinct efferent pathways within the central nervous system that share a common peripheral thermal sensory input. The model for the neural circuit mechanism underlying central thermoregulatory control provides a useful platform for further understanding of the functional organization of central thermoregulation, for elucidating the hypothalamic circuitry and neurotransmitters involved in body temperature regulation, and for the discovery of novel therapeutic approaches to modulating body temperature and energy homeostasis. PMID:27239289

  8. Central control of body temperature.

    PubMed

    Morrison, Shaun F

    2016-01-01

    Central neural circuits orchestrate the behavioral and autonomic repertoire that maintains body temperature during environmental temperature challenges and alters body temperature during the inflammatory response and behavioral states and in response to declining energy homeostasis. This review summarizes the central nervous system circuit mechanisms controlling the principal thermoeffectors for body temperature regulation: cutaneous vasoconstriction regulating heat loss and shivering and brown adipose tissue for thermogenesis. The activation of these thermoeffectors is regulated by parallel but distinct efferent pathways within the central nervous system that share a common peripheral thermal sensory input. The model for the neural circuit mechanism underlying central thermoregulatory control provides a useful platform for further understanding of the functional organization of central thermoregulation, for elucidating the hypothalamic circuitry and neurotransmitters involved in body temperature regulation, and for the discovery of novel therapeutic approaches to modulating body temperature and energy homeostasis. PMID:27239289

  9. The time of day differently influences fatigue and locomotor activity: is body temperature a key factor?

    PubMed

    Machado, Frederico Sander Mansur; Rodovalho, Gisele Vieira; Coimbra, Cândido Celso

    2015-03-01

    The aim of this study was to verify the possible interactions between exercise capacity and spontaneous locomotor activity (SLA) during the oscillation of core body temperature (Tb) that occurs during the light/dark cycle. Wistar rats (n=11) were kept at an animal facility under a light/dark cycle of 14/10h at an ambient temperature of 23°C and water and food ad libitum. Initially, in order to characterize the daily oscillation in SLA and Tb of the rats, these parameters were continuously recorded for 24h using an implantable telemetric sensor (G2 E-Mitter). The animals were randomly assigned to two progressive exercise test protocols until fatigue during the beginning of light and dark-phases. Fatigue was defined as the moment rats could not keep pace with the treadmill. We assessed the time to fatigue, workload and Tb changes induced by exercise. Each test was separated by 3days. Our results showed that exercise capacity and heat storage were higher during the light-phase (p<0.05). In contrast, we observed that both SLA and Tb were higher during the dark-phase (p<0.01). Notably, the correlation analysis between the amount of SLA and the running capacity observed at each phase of the daily cycle revealed that, regardless of the time of the day, both types of locomotor physical activity have an important inherent component (r=0.864 and r=0.784, respectively, p<0.01) without a direct relationship between them. This finding provides further support for the existence of specific control mechanisms for each type of physical activity. In conclusion, our data indicate that the relationship between the body temperature and different types of physical activity might be affected by the light/dark cycle. These results mean that, although exercise performance and spontaneous locomotor activity are not directly associated, both are strongly influenced by daily cycles of light and dark. PMID:25479573

  10. Kv4.2 Mediates Histamine Modulation of Preoptic Neuron Activity and Body Temperature

    PubMed Central

    Sethi, Jasmine; Sanchez-Alavez, Manuel; Tabarean, Iustin V.

    2011-01-01

    Histamine regulates arousal, circadian rhythms, and thermoregulation. Activation of H3 histamine receptors expressed by preoptic GABAergic neurons results in a decrease of their firing rate and hyperthermia. Here we report that an increase in the A-type K+ current in preoptic GABAergic neurons in response to activation of H3 histamine receptors results in decreased firing rate and hyperthermia in mice. The Kv4.2 subunit is required for these actions in spite of the fact that Kv4.2−/− preoptic GABAergic neurons display A-type currents and firing characteristics similar to those of wild-type neurons. This electrical remodeling is achieved by robust upregulation of the expression of the Kv4.1 subunit and of a delayed rectifier current. Dynamic clamp experiments indicate that enhancement of the A-type current by a similar amount to that induced by histamine is sufficient to mimic its robust effect on firing rates. These data indicate a central role played by the Kv4.2 subunit in histamine regulation of body temperature and its interaction with pERK1/2 downstream of the H3 receptor. We also reveal that this pathway provides a mechanism for selective modulation of body temperature at the beginning of the active phase of the circadian cycle. PMID:22220205

  11. Kv4.2 mediates histamine modulation of preoptic neuron activity and body temperature.

    PubMed

    Sethi, Jasmine; Sanchez-Alavez, Manuel; Tabarean, Iustin V

    2011-01-01

    Histamine regulates arousal, circadian rhythms, and thermoregulation. Activation of H3 histamine receptors expressed by preoptic GABAergic neurons results in a decrease of their firing rate and hyperthermia. Here we report that an increase in the A-type K⁺ current in preoptic GABAergic neurons in response to activation of H3 histamine receptors results in decreased firing rate and hyperthermia in mice. The Kv4.2 subunit is required for these actions in spite of the fact that Kv4.2⁻/⁻ preoptic GABAergic neurons display A-type currents and firing characteristics similar to those of wild-type neurons. This electrical remodeling is achieved by robust upregulation of the expression of the Kv4.1 subunit and of a delayed rectifier current. Dynamic clamp experiments indicate that enhancement of the A-type current by a similar amount to that induced by histamine is sufficient to mimic its robust effect on firing rates. These data indicate a central role played by the Kv4.2 subunit in histamine regulation of body temperature and its interaction with pERK1/2 downstream of the H3 receptor. We also reveal that this pathway provides a mechanism for selective modulation of body temperature at the beginning of the active phase of the circadian cycle. PMID:22220205

  12. To use or not to use torpor? Activity and body temperature as predictors

    NASA Astrophysics Data System (ADS)

    Christian, Nereda; Geiser, Fritz

    2007-06-01

    When food is limited and/or environmental conditions are unfavourable, many mammals reduce activity and use torpor to save energy. Nevertheless, reliable predictors for torpor occurrence, especially in the wild, are currently not available. Interrelations between torpor use and other energy conserving strategies are also poorly understood. We tested the hypothesis that reductions in normothermic body temperature ( T b) and the period of activity before torpor events could be used as predictors for torpor occurrence in sugar gliders, Petaurus breviceps (body mass, ˜125 g), known to display daily torpor in the wild. Occurrence of torpor was preceded by significant (˜10-25%) reductions of the duration of the activity phase. Moreover, the normothermic resting T b fell by an average of 1.2°C over 3 days before a torpor event, relative to individuals that did not display torpor. Our new findings suggest that before entering torpor, sugar gliders, which appear to use torpor as an emergency measure rather than a routine energy saving strategy, systematically reduce activity times and normothermic resting T bs to lower energy expenditure and perhaps to avoid employing torpor. Thus, reduced activity and normothermic T b may provide a predictive tool for the occurrence of daily torpor in the wild.

  13. Loss of circadian rhythmicity in body temperature and locomotor activity following suprachiasmatic lesions in the rat

    NASA Technical Reports Server (NTRS)

    Saleh, M. A.; Haro, P. J.; Winget, C. M.

    1977-01-01

    In experiments on male and female ambulatory rats, the effect of bilateral suprachiasmatic lesions on deep body temperature and locomotor activity circadian rhythms was investigated. A L/D:12/12 cycle and 23 C ambient temperature were maintained. One-half of the rats received radiofrequency lesions in the suprachiasmic nucleus (SCN) while the second group were sham operated by lowering the radiofrequency electrode to the SCN without producing electrolytic lesions. Four weeks were allowed for recuperation. Autopsies were conducted to make sure that the lesions were restricted to SCN. The results show the complete disappearance of circadian rhythm in the SCN lesioned rats and only a slight diminution for the sham operated rats.

  14. Locatable-body temperature monitoring based on semi-active UHF RFID tags.

    PubMed

    Liu, Guangwei; Mao, Luhong; Chen, Liying; Xie, Sheng

    2014-01-01

    This paper presents the use of radio-frequency identification (RFID) technology for the real-time remote monitoring of body temperature, while an associated program can determine the location of the body carrying the respective sensor. The RFID chip's internal integrated temperature sensor is used for both the human-body temperature detection and as a measurement device, while using radio-frequency communication to broadcast the temperature information. The adopted RFID location technology makes use of reference tags together with a nearest neighbor localization algorithm and a multiple-antenna time-division multiplexing location system. A graphical user interface (GUI) was developed for collecting temperature and location data for the data fusion by using RFID protocols. With a puppy as test object, temperature detection and localization experiments were carried out. The measured results show that the applied method, when using a mercury thermometer for comparison in terms of measuring the temperature of the dog, has a good consistency, with an average temperature error of 0.283 °C. When using the associated program over the area of 12.25 m2, the average location error is of 0.461 m, which verifies the feasibility of the sensor-carrier location by using the proposed program. PMID:24675759

  15. Locatable-Body Temperature Monitoring Based on Semi-Active UHF RFID Tags

    PubMed Central

    Liu, Guangwei; Mao, Luhong; Chen, Liying; Xie, Sheng

    2014-01-01

    This paper presents the use of radio-frequency identification (RFID) technology for the real-time remote monitoring of body temperature, while an associated program can determine the location of the body carrying the respective sensor. The RFID chip's internal integrated temperature sensor is used for both the human-body temperature detection and as a measurement device, while using radio-frequency communication to broadcast the temperature information. The adopted RFID location technology makes use of reference tags together with a nearest neighbor localization algorithm and a multiple-antenna time-division multiplexing location system. A graphical user interface (GUI) was developed for collecting temperature and location data for the data fusion by using RFID protocols. With a puppy as test object, temperature detection and localization experiments were carried out. The measured results show that the applied method, when using a mercury thermometer for comparison in terms of measuring the temperature of the dog, has a good consistency, with an average temperature error of 0.283 °C. When using the associated program over the area of 12.25 m2, the average location error is of 0.461 m, which verifies the feasibility of the sensor-carrier location by using the proposed program. PMID:24675759

  16. Effects of Resveratrol on Daily Rhythms of Locomotor Activity and Body Temperature in Young and Aged Grey Mouse Lemurs

    PubMed Central

    Dal-Pan, Alexandre; Languille, Solène; Aujard, Fabienne

    2013-01-01

    In several species, resveratrol, a polyphenolic compound, activates sirtuin proteins implicated in the regulation of energy balance and biological clock processes. To demonstrate the effect of resveratrol on clock function in an aged primate, young and aged mouse lemurs (Microcebus murinus) were studied over a 4-week dietary supplementation with resveratrol. Spontaneous locomotor activity and daily variations in body temperature were continuously recorded. Reduction in locomotor activity onset and changes in body temperature rhythm in resveratrol-supplemented aged animals suggest an improved synchronisation on the light-dark cycle. Resveratrol could be a good candidate to restore the circadian rhythms in the elderly. PMID:23983895

  17. Seasonal changes in the body size of two rotifer species living in activated sludge follow the Temperature-Size Rule

    PubMed Central

    Kiełbasa, Anna; Walczyńska, Aleksandra; Fiałkowska, Edyta; Pajdak-Stós, Agnieszka; Kozłowski, Jan

    2014-01-01

    Temperature-Size Rule (TSR) is a phenotypic body size response of ectotherms to changing temperature. It is known from the laboratory studies, but seasonal patterns in the field were not studied so far. We examined the body size changes in time of rotifers inhabiting activated sludge. We hypothesize that temperature is the most influencing parameter in sludge environment, leading sludge rotifers to seasonally change their body size according to TSR, and that oxygen content also induces the size response. The presence of TSR in Lecane inermis rotifer was tested in a laboratory study with two temperature and two food-type treatments. The effect of interaction between temperature and food was significant; L. inermis followed TSR in one food type only. The seasonal variability in the body sizes of the rotifers L. inermis and Cephalodella gracilis was estimated by monthly sampling and analyzed by multiple regression, in relation to the sludge parameters selected as the most influential by multivariate analysis, and predicted to alter rotifer body size (temperature and oxygen). L. inermis varied significantly in size throughout the year, and this variability is explained by temperature as predicted by the TSR, but not by oxygen availability. C. gracilis also varied in size, though this variability was explained by both temperature and oxygen. We suggest that sludge age acts as a mortality factor in activated sludge. It may have a seasonal effect on the body size of L. inermis and modify a possible effect of oxygen. Activated sludge habitat is driven by both biological processes and human regulation, yet its resident organisms follow general evolutionary rule as they do in other biological systems. The interspecific response patterns differ, revealing the importance of taking species-specific properties into account. Our findings are applicable to sludge properties enhancement through optimizing the conditions for its biological component. PMID:25558362

  18. Seasonal changes in the body size of two rotifer species living in activated sludge follow the Temperature-Size Rule.

    PubMed

    Kiełbasa, Anna; Walczyńska, Aleksandra; Fiałkowska, Edyta; Pajdak-Stós, Agnieszka; Kozłowski, Jan

    2014-12-01

    Temperature-Size Rule (TSR) is a phenotypic body size response of ectotherms to changing temperature. It is known from the laboratory studies, but seasonal patterns in the field were not studied so far. We examined the body size changes in time of rotifers inhabiting activated sludge. We hypothesize that temperature is the most influencing parameter in sludge environment, leading sludge rotifers to seasonally change their body size according to TSR, and that oxygen content also induces the size response. The presence of TSR in Lecane inermis rotifer was tested in a laboratory study with two temperature and two food-type treatments. The effect of interaction between temperature and food was significant; L. inermis followed TSR in one food type only. The seasonal variability in the body sizes of the rotifers L. inermis and Cephalodella gracilis was estimated by monthly sampling and analyzed by multiple regression, in relation to the sludge parameters selected as the most influential by multivariate analysis, and predicted to alter rotifer body size (temperature and oxygen). L. inermis varied significantly in size throughout the year, and this variability is explained by temperature as predicted by the TSR, but not by oxygen availability. C. gracilis also varied in size, though this variability was explained by both temperature and oxygen. We suggest that sludge age acts as a mortality factor in activated sludge. It may have a seasonal effect on the body size of L. inermis and modify a possible effect of oxygen. Activated sludge habitat is driven by both biological processes and human regulation, yet its resident organisms follow general evolutionary rule as they do in other biological systems. The interspecific response patterns differ, revealing the importance of taking species-specific properties into account. Our findings are applicable to sludge properties enhancement through optimizing the conditions for its biological component. PMID:25558362

  19. Body temperature and physical activity correlates of the menstrual cycle in Chacma Baboons (Papio hamadryas ursinus).

    PubMed

    Nyakudya, Trevor T; Fuller, Andrea; Meyer, Leith C R; Maloney, Shane K; Mitchell, Duncan

    2012-12-01

    We investigated the temporal relationship between abdominal temperature, physical activity, perineal swelling, and urinary progesterone and estradiol concentrations over the menstrual cycle in unrestrained captive baboons. Using a miniature temperature-sensitive data logger surgically implanted in the abdominal cavity and an activity data logger implanted subcutaneously on the trunk, we measured, continuously over 6 months at 10-min intervals, abdominal temperature and physical activity patterns in four female adult baboons Papio hamadryas ursinus (12.9-19.9 kg), in cages in an indoor animal facility (22-25°C). We monitored menstrual bleeding and perineal swelling changes, and measured urinary progesterone and estradiol concentrations, daily for up to 6 months, to ascertain the stage and length of the menstrual cycle. The menstrual cycle was 36 ± 2 days (mean ± SD) long and the baboons exhibited cyclic changes in perineal swellings, abdominal temperature, physical activity, urinary progesterone, and estradiol concentrations over the cycle. Mean 24-hr abdominal temperature during the luteal phase was significantly higher than during the periovulatory phase (ANOVA, F((2, 9)) = 4.7; P = 0.04), but not different to that during the proliferative phase. Physical activity followed a similar pattern, with mean 24-hr physical activity almost twice as high in the luteal than in the periovulatory phase (ANOVA, P = 0.58; F((2, 12)) = 5.8). We have characterized correlates of the menstrual cycle in baboons and shown, for the first time, a rhythm of physical activity and abdominal temperature over the menstrual cycle, with a nadir of temperature and activity at ovulation. PMID:22930453

  20. A Proposed Methodology to Control Body Temperature in Patients at Risk of Hypothermia by means of Active Rewarming Systems

    PubMed Central

    Costanzo, Silvia; Cusumano, Alessia; Giaconia, Carlo; Mazzacane, Sante

    2014-01-01

    Hypothermia is a common complication in patients undergoing surgery under general anesthesia. It has been noted that, during the first hour of surgery, the patient's internal temperature (Tcore) decreases by 0.5–1.5°C due to the vasodilatory effect of anesthetic gases, which affect the body's thermoregulatory system by inhibiting vasoconstriction. Thus a continuous check on patient temperature must be carried out. The currently most used methods to avoid hypothermia are based on passive systems (such as blankets reducing body heat loss) and on active ones (thermal blankets, electric or hot-water mattresses, forced hot air, warming lamps, etc.). Within a broader research upon the environmental conditions, pollution, heat stress, and hypothermia risk in operating theatres, the authors set up an experimental investigation by using a warming blanket chosen from several types on sale. Their aim was to identify times and ways the human body reacts to the heat flowing from the blanket and the blanket's effect on the average temperature Tskin and, as a consequence, on Tcore temperature of the patient. The here proposed methodology could allow surgeons to fix in advance the thermal power to supply through a warming blanket for reaching, in a prescribed time, the desired body temperature starting from a given state of hypothermia. PMID:25485278

  1. Dinosaur Fossils Predict Body Temperatures

    PubMed Central

    Allen, Andrew P; Charnov, Eric L

    2006-01-01

    Perhaps the greatest mystery surrounding dinosaurs concerns whether they were endotherms, ectotherms, or some unique intermediate form. Here we present a model that yields estimates of dinosaur body temperature based on ontogenetic growth trajectories obtained from fossil bones. The model predicts that dinosaur body temperatures increased with body mass from approximately 25 °C at 12 kg to approximately 41 °C at 13,000 kg. The model also successfully predicts observed increases in body temperature with body mass for extant crocodiles. These results provide direct evidence that dinosaurs were reptiles that exhibited inertial homeothermy. PMID:16817695

  2. Cathinone increases body temperature, enhances locomotor activity, and induces striatal c-fos expression in the Siberian hamster.

    PubMed

    Jones, S; Fileccia, E L; Murphy, M; Fowler, M J; King, M V; Shortall, S E; Wigmore, P M; Green, A R; Fone, K C F; Ebling, F J P

    2014-01-24

    Cathinone is a β-keto alkaloid that is the major active constituent of khat, the leaf of the Catha edulis plant that is chewed recreationally in East Africa and the Middle East. Related compounds, such as methcathinone and mephedrone have been increasing in popularity as recreational drugs, resulting in the recent proposal to classify khat as a Class C drug in the UK. There is still limited knowledge of the pharmacological effects of cathinone. This study examined the acute effects of cathinone on core body temperature, locomotor and other behaviors, and neuronal activity in Siberian hamsters. Adult male hamsters, previously implanted with radio telemetry devices, were treated with cathinone (2 or 5mg/kg i.p.), the behavioral profile scored and core body temperature and locomotor activity recorded by radio telemetry. At the end of the study, hamsters received vehicle or cathinone (5mg/kg) and neuronal activation in the brain was determined using immunohistochemical evaluation of c-fos expression. Cathinone dose-dependently induced significant (p<0.0001) increases in both temperature and locomotor activity lasting 60-90min. Cathinone (2mg/kg) increased rearing (p<0.02), and 5mg/kg increased both rearing (p<0.001) and lateral head twitches (p<0.02). Both cathinone doses decreased the time spent at rest (p<0.001). The number of c-fos immunopositive cells were significantly increased in the striatum (p<0.0001) and suprachiasmatic nucleus (p<0.05) following cathinone, indicating increased neuronal activity. There was no effect of cathinone on food intake or body weight. It is concluded that systemic administration of cathinone induces significant behavioral changes and CNS activation in the hamster. PMID:24287379

  3. Application of two-colour pyrometry for measuring the surface temperature of a body activated by laser pulses

    SciTech Connect

    Kirillov, V M; Skvortsov, L A

    2006-08-31

    The features of contactless measurements of the surface temperature of bodies by the method of two-colour pyrometry of samples activated by periodic laser pulses are considered. The requirements imposed on the parameters of laser radiation and a measuring circuit are formulated. It is shown experimentally that surface temperatures close to room temperature can be measured with an error not exceeding 3% after elimination of the superfluous static component of the excess temperature. The sensitivity of the method is estimated. Advantages of laser photothermal radiometry with repetitively pulsed excitation of surfaces over the case when samples are subjected to harmonic amplitude-modulated laser radiation are discussed. (laser applications and other topics in quantum electronics)

  4. Interacting effects of water temperature and swimming activity on body composition and mortality of fasted juvenile rainbow trout

    USGS Publications Warehouse

    Simpkins, D.G.; Hubert, W.A.; Martinez Del Rio, C.; Rule, D.C.

    2003-01-01

    Abstract: We assessed changes in proximate body composition, wet mass, and the occurrence of mortality among sedentary and actively swimming (15 cm/s) juvenile rainbow trout (Oncorhynchus mykiss) (120-142 mm total length) that were held at 4.0, 7.5, or 15.0 ??C and fasted for 140 days. Warmer water temperatures and swimming activity accentuated declines in lipid mass, but they did not similarly affect lean mass and wet mass. Swimming fish conserved lean mass independent of water temperature. Because lean mass exceeded lipid mass, wet mass was not affected substantially by decreases in lipid mass. Consequently, wet mass did not accurately reflect the effects that water temperature and swimming activity had on mortality of fasted rainbow trout. Rather, lipid mass was more accurate in predicting death from starvation. Juvenile rainbow trout survived long periods without food, and fish that died of starvation appeared to have similar body composition. It appears that the ability of fish to endure periods without food depends on the degree to which lipid mass and lean mass can be utilized as energy sources.

  5. Regional and total body active heating and cooling of a resting diver in water of varied temperatures

    NASA Astrophysics Data System (ADS)

    Bardy, Erik; Mollendorf, Joseph; Pendergast, David

    2008-02-01

    Passive insulations alone are not sufficient for maintaining underwater divers in thermal balance or comfort. The purpose of this study was to experimentally determine the active heating and cooling requirements to keep a diver at rest in thermal balance and comfort in water temperatures between 10 and 40 °C. A diver wearing a prototype tubesuit and a wetsuit (3 or 6.5 mm foam neoprene) was fully submersed (0.6 m) in water at a specified temperature (10, 20, 30 and 40 °C). During immersion, the tubesuit was perfused with 30 °C water at a flow rate of 0.5 L min-1 to six individual body regions. An attempt was made to keep skin temperatures below 42 °C in hot water (>30 °C) and elevated but below 32 °C in cold water (<20 °C). A skin temperature of 32 °C is the threshold for maximal body thermal resistance due to vasoconstriction. Skin temperatures and core temperature were monitored during immersion to ensure they remained within set thermal limits. In addition skin heat flux, oxygen consumption and the thermal exchange of the tubesuit were measured. In both wetsuit thicknesses there was a linear correlation between the thermal exchange of the tubesuit and ambient water temperature. In the 6.5 mm wetsuit -214 W to 242 W of heating (-) and cooling (+) was necessary in 10 °C to 40 °C water, respectively. In the 3 mm wetsuit -462 to 342 W was necessary in 10 °C to 40 °C water, respectively. It was therefore concluded that a diver at rest can be kept in thermal balance in 10-40 °C water with active heating and cooling.

  6. Mechanism of H2 histamine receptor dependent modulation of body temperature and neuronal activity in the medial preoptic nucleus

    PubMed Central

    Tabarean, Iustin V.; Sanchez-Alavez, Manuel; Sethi, Jasmine

    2012-01-01

    Histamine is involved in the central control of arousal, circadian rhythms and metabolism. The preoptic area, a region that contains thermoregulatory neurons is the main locus of histamine modulation of body temperature. Here we report that in mice histamine activates H2 subtype receptors in the medial preoptic nucleus (MPON) and induces hyperthermia. We also found that a population of glutamatergic MPON neurons express H2 receptors and are excited by histamine or H2 specific agonists. The agonists decreased the input resistance of the neuron and increased the depolarizing “sag” observed during hyperpolarizing current injections. Furthermore, at −60 mV holding potential activation of H2 receptors induced an inward current that was blocked by ZD7288, a specific blocker of the hyperpolarization activated cationic current (Ih). Indeed, activation of H2 receptors resulted in increased Ih amplitude in response to hyperpolarizing voltage steps and a depolarizing shift in its voltage-dependent activation. The neurons excited by H2 specific agonism expressed the HCN1 and HCN2 channel subunits. Our data indicate that at the level of the MPON histamine influences thermoregulation by increasing the firing rate of glutamatergic neurons that express H2 receptors. PMID:22366077

  7. Mechanism of H₂ histamine receptor dependent modulation of body temperature and neuronal activity in the medial preoptic nucleus.

    PubMed

    Tabarean, Iustin V; Sanchez-Alavez, Manuel; Sethi, Jasmine

    2012-08-01

    Histamine is involved in the central control of arousal, circadian rhythms and metabolism. The preoptic area, a region that contains thermoregulatory neurons is the main locus of histamine modulation of body temperature. Here we report that in mice, histamine activates H(2) subtype receptors in the medial preoptic nucleus (MPON) and induces hyperthermia. We also found that a population of glutamatergic MPON neurons express H(2) receptors and are excited by histamine or H(2) specific agonists. The agonists decreased the input resistance of the neuron and increased the depolarizing "sag" observed during hyperpolarizing current injections. Furthermore, at -60 mV holding potential, activation of H(2) receptors induced an inward current that was blocked by ZD7288, a specific blocker of the hyperpolarization activated cationic current (I(h)). Indeed, activation of H(2) receptors resulted in increased I(h) amplitude in response to hyperpolarizing voltage steps and a depolarizing shift in its voltage-dependent activation. The neurons excited by H(2) specific agonism expressed the HCN1 and HCN2 channel subunits. Our data indicate that at the level of the MPON histamine influences thermoregulation by increasing the firing rate of glutamatergic neurons that express H(2) receptors. PMID:22366077

  8. The effect of β-adrenoceptor blockade on body temperature and plasma renin activity in heat-exposed man

    PubMed Central

    Berlyne, G. M.; Finberg, J. P. M.; Yoran, C.

    1974-01-01

    1 The effect of propranolol (5 mg i.v.) on rectal and skin temperatures, heart rate, blood pressure, plasma renin activity (PRA) and plasma renin substrate concentration (PRS) was investigated in twelve men exercising in the heat. The effect of practolol (10 mg i.v.) on PRA was investigated in five men. 2 Body temperatures were insignificantly affected by propranolol, while heart rate elevation in response to exercise in the heat was 21% lower than in the same subjects receiving saline. Diastolic blood pressure during exercise was elevated by propranolol. 3 The normal increase in PRA seen in heat exposure was suppressed by propranolol to levels seen when the same exercise was carried out at 25°C. Practolol did not affect the renin response to heat exposure. 4 PRS was not altered significantly by exercise or heat. 5 The results indicate that the increase in PRA seen in the heat is largely a result of increased sympathetic activity. PMID:22454884

  9. Body temperature regulation in diabetes.

    PubMed

    Kenny, Glen P; Sigal, Ronald J; McGinn, Ryan

    2016-01-01

    The effects of type 1 and type 2 diabetes on the body's physiological response to thermal stress is a relatively new topic in research. Diabetes tends to place individuals at greater risk for heat-related illness during heat waves and physical activity due to an impaired capacity to dissipate heat. Specifically, individuals with diabetes have been reported to have lower skin blood flow and sweating responses during heat exposure and this can have important consequences on cardiovascular regulation and glycemic control. Those who are particularly vulnerable include individuals with poor glycemic control and who are affected by diabetes-related complications. On the other hand, good glycemic control and maintenance of aerobic fitness can often delay the diabetes-related complications and possibly the impairments in heat loss. Despite this, it is alarming to note the lack of information regarding diabetes and heat stress given the vulnerability of this population. In contrast, few studies have examined the effects of cold exposure on individuals with diabetes with the exception of its therapeutic potential, particularly for type 2 diabetes. This review summarizes the current state of knowledge regarding the impact of diabetes on heat and cold exposure with respect to the core temperature regulation, cardiovascular adjustments and glycemic control while also considering the beneficial effects of maintaining aerobic fitness. PMID:27227101

  10. Body temperature regulation in diabetes

    PubMed Central

    Kenny, Glen P.; Sigal, Ronald J.; McGinn, Ryan

    2016-01-01

    ABSTRACT The effects of type 1 and type 2 diabetes on the body's physiological response to thermal stress is a relatively new topic in research. Diabetes tends to place individuals at greater risk for heat-related illness during heat waves and physical activity due to an impaired capacity to dissipate heat. Specifically, individuals with diabetes have been reported to have lower skin blood flow and sweating responses during heat exposure and this can have important consequences on cardiovascular regulation and glycemic control. Those who are particularly vulnerable include individuals with poor glycemic control and who are affected by diabetes-related complications. On the other hand, good glycemic control and maintenance of aerobic fitness can often delay the diabetes-related complications and possibly the impairments in heat loss. Despite this, it is alarming to note the lack of information regarding diabetes and heat stress given the vulnerability of this population. In contrast, few studies have examined the effects of cold exposure on individuals with diabetes with the exception of its therapeutic potential, particularly for type 2 diabetes. This review summarizes the current state of knowledge regarding the impact of diabetes on heat and cold exposure with respect to the core temperature regulation, cardiovascular adjustments and glycemic control while also considering the beneficial effects of maintaining aerobic fitness. PMID:27227101

  11. Circadian rhythms of body temperature and locomotor activity in aging BALB/c mice: early and late life span predictors.

    PubMed

    Basso, Andrea; Del Bello, Giovanna; Piacenza, Francesco; Giacconi, Robertina; Costarelli, Laura; Malavolta, Marco

    2016-08-01

    Impairment of one or more parameters of circadian rhythms (CR) of body temperature (BT) and locomotor activity (LMA) are considered among the hallmarks of mammalian aging. These alterations are frequently used as markers for imminent death in laboratory mice. However, there are still contradictory data for particular strains and it is also uncertain which changes might predict senescence changes later in life, including the force of mortality. In the present paper we use telemetry to study LMA and CR of BT during aging of BALB/c mice. At our knowledge this is the first time that CR of BT and LMA are investigated in this strain in a range of age covering the whole lifespan, from young adult up to very old age. CR of BT was analyzed with a cosine model using a cross sectional approach and follow-up measurements. The results show that BT, LMA, amplitude, goodness-of-fit (GoF) to circadian cycle of temperature decrease with different shapes during chronological age. Moreover, we found that the % change of amplitude and BT in early life (5-19 months) can predict the remaining lifespan of the mice. Later in life (22-32 months), best predictors are single measurements of LMA and GoF. The results of this study also offer potential measures to rapidly identifying freely unrestrained mice with the worst longitudinal outcome and against which existing or novel biomarkers and treatments may be assessed. PMID:26820297

  12. Rhythmic 24 h Variation of Core Body Temperature and Locomotor Activity in a Subterranean Rodent (Ctenomys aff. knighti), the Tuco-Tuco

    PubMed Central

    Tachinardi, Patricia; Bicudo, José Eduardo Wilken; Oda, Gisele Akemi; Valentinuzzi, Verónica Sandra

    2014-01-01

    The tuco-tuco Ctenomys aff. knighti is a subterranean rodent which inhabits a semi-arid area in Northwestern Argentina. Although they live in underground burrows where environmental cycles are attenuated, they display robust, 24 h locomotor activity rhythms that are synchronized by light/dark cycles, both in laboratory and field conditions. The underground environment also poses energetic challenges (e.g. high-energy demands of digging, hypoxia, high humidity, low food availability) that have motivated thermoregulation studies in several subterranean rodent species. By using chronobiological protocols, the present work aims to contribute towards these studies by exploring day-night variations of thermoregulatory functions in tuco-tucos, starting with body temperature and its temporal relationship to locomotor activity. Animals showed daily, 24 h body temperature rhythms that persisted even in constant darkness and temperature, synchronizing to a daily light/dark cycle, with highest values occurring during darkness hours. The range of oscillation of body temperature was slightly lower than those reported for similar-sized and dark-active rodents. Most rhythmic parameters, such as period and phase, did not change upon removal of the running wheel. Body temperature and locomotor activity rhythms were robustly associated in time. The former persisted even after removal of the acute effects of intense activity on body temperature by a statistical method. Finally, regression gradients between body temperature and activity were higher in the beginning of the night, suggesting day-night variation in thermal conductance and heat production. Consideration of these day-night variations in thermoregulatory processes is beneficial for further studies on thermoregulation and energetics of subterranean rodents. PMID:24454916

  13. Rhythmic 24 h variation of core body temperature and locomotor activity in a subterranean rodent (Ctenomys aff. knighti), the tuco-tuco.

    PubMed

    Tachinardi, Patricia; Bicudo, José Eduardo Wilken; Oda, Gisele Akemi; Valentinuzzi, Verónica Sandra

    2014-01-01

    The tuco-tuco Ctenomys aff. knighti is a subterranean rodent which inhabits a semi-arid area in Northwestern Argentina. Although they live in underground burrows where environmental cycles are attenuated, they display robust, 24 h locomotor activity rhythms that are synchronized by light/dark cycles, both in laboratory and field conditions. The underground environment also poses energetic challenges (e.g. high-energy demands of digging, hypoxia, high humidity, low food availability) that have motivated thermoregulation studies in several subterranean rodent species. By using chronobiological protocols, the present work aims to contribute towards these studies by exploring day-night variations of thermoregulatory functions in tuco-tucos, starting with body temperature and its temporal relationship to locomotor activity. Animals showed daily, 24 h body temperature rhythms that persisted even in constant darkness and temperature, synchronizing to a daily light/dark cycle, with highest values occurring during darkness hours. The range of oscillation of body temperature was slightly lower than those reported for similar-sized and dark-active rodents. Most rhythmic parameters, such as period and phase, did not change upon removal of the running wheel. Body temperature and locomotor activity rhythms were robustly associated in time. The former persisted even after removal of the acute effects of intense activity on body temperature by a statistical method. Finally, regression gradients between body temperature and activity were higher in the beginning of the night, suggesting day-night variation in thermal conductance and heat production. Consideration of these day-night variations in thermoregulatory processes is beneficial for further studies on thermoregulation and energetics of subterranean rodents. PMID:24454916

  14. Estimation Method of Body Temperature from Upper Arm Temperature

    NASA Astrophysics Data System (ADS)

    Suzuki, Arata; Ryu, Kazuteru; Kanai, Nobuyuki

    This paper proposes a method for estimation of a body temperature by using a relation between the upper arm temperature and the atmospheric temperature. Conventional method has measured by armpit or oral, because the body temperature from the body surface is influenced by the atmospheric temperature. However, there is a correlation between the body surface temperature and the atmospheric temperature. By using this correlation, the body temperature can estimated from the body surface temperature. Proposed method enables to measure body temperature by the temperature sensor that is embedded in the blood pressure monitor cuff. Therefore, simultaneous measurement of blood pressure and body temperature can be realized. The effectiveness of the proposed method is verified through the actual body temperature experiment. The proposed method might contribute to reduce the medical staff's workloads in the home medical care, and more.

  15. Intermittent exposure to social defeat and open-field test in rats: acute and long-term effects on ECG, body temperature and physical activity.

    PubMed

    Sgoifo, Andrea; Pozzato, Chiara; Meerlo, Peter; Costoli, Tania; Manghi, Massimo; Stilli, Donatella; Olivetti, Giorgio; Musso, Ezio

    2002-02-01

    This study investigated the effects of exposure to an intermittent homotypic stressor on: (i) habituation of acute autonomic responsivity (i.e. cardiac sympathovagal balance and susceptibility to arrhythmias), and (ii) circadian rhythmicity of heart rate, body temperature, and physical activity. After implantation of a transmitter for the radiotelemetric recording of electrocardiogram (ECG), body temperature and physical activity, adult male rats (Rattus norvegicus, Wild Type Groningen strain) were repeatedly exposed (10 consecutive times, on alternate days) to either a social stressor (defeat by a con-specific, n = 15) or an open-field, control challenge (transfer to a new cage; n = 8). ECGs, body temperature and physical activity were continuously recorded in baseline, test and recovery periods (each lasting 15 min), at the 1st and 10th episodes of both defeat and open-field challenge. The circadian rhythms of heart rate, body temperature and physical activity were monitored before (5 days), during (16 days) and after (21 days) the intermittent stress protocol. This study indicates that there is no clear habituation of either acute cardiac autonomic responsivity (as estimated by means of time-domain indexes of heart rate variability) or arrhythmia occurrence to a brief, intermittent, homotypic challenge, regardless of the nature of the stressor (social or non-social). On the other hand, rats exposed to social challenge also failed to show adaptation of acute temperature and activity stress responsiveness, whereas rats facing open-field challenge developed habituation of activity and sensitization of temperature responses. Repeated social challenge produced remarkable reductions of the heart rate circadian rhythm amplitude (this effect being significantly greater than that produced by intermittent open-field), but only minor changes in the daily rhythms of body temperature and physical activity. PMID:12171764

  16. Factors Affecting Date of Implantation, Parturition, and Den Entry Estimated from Activity and Body Temperature in Free-Ranging Brown Bears

    PubMed Central

    Friebe, Andrea; Evans, Alina L.; Arnemo, Jon M.; Blanc, Stéphane; Brunberg, Sven; Fleissner, Günther; Swenson, Jon E.; Zedrosser, Andreas

    2014-01-01

    Knowledge of factors influencing the timing of reproduction is important for animal conservation and management. Brown bears (Ursus arctos) are able to vary the birth date of their cubs in response to their fat stores, but little information is available about the timing of implantation and parturition in free-ranging brown bears. Body temperature and activity of pregnant brown bears is higher during the gestation period than during the rest of hibernation and drops at parturition. We compared mean daily body temperature and activity levels of pregnant and nonpregnant females during preimplantation, gestation, and lactation. Additionally we tested whether age, litter size, primiparity, environmental conditions, and the start of hibernation influence the timing of parturition. The mean date of implantation was 1 December (SD = 12), the mean date of parturition was 26 January (SD = 12), and the mean duration of the gestation period was 56 days (SD = 2). The body temperature of pregnant females was higher during the gestation and lactation periods than that of nonpregnant bears. The body temperature of pregnant females decreased during the gestation period. Activity recordings were also used to determine the date of parturition. The parturition dates calculated with activity and body temperature data did not differ significantly and were the same in 50% of the females. Older females started hibernation earlier. The start of hibernation was earlier during years with favorable environmental conditions. Dates of parturition were later during years with good environmental conditions which was unexpected. We suggest that free-ranging pregnant brown bears in areas with high levels of human activities at the beginning of the denning period, as in our study area, might prioritize investing energy in early denning than in early parturition during years with favorable environmental conditions, as a strategy to prevent disturbances caused by human. PMID:24988486

  17. Factors affecting date of implantation, parturition, and den entry estimated from activity and body temperature in free-ranging brown bears.

    PubMed

    Friebe, Andrea; Evans, Alina L; Arnemo, Jon M; Blanc, Stéphane; Brunberg, Sven; Fleissner, Günther; Swenson, Jon E; Zedrosser, Andreas

    2014-01-01

    Knowledge of factors influencing the timing of reproduction is important for animal conservation and management. Brown bears (Ursus arctos) are able to vary the birth date of their cubs in response to their fat stores, but little information is available about the timing of implantation and parturition in free-ranging brown bears. Body temperature and activity of pregnant brown bears is higher during the gestation period than during the rest of hibernation and drops at parturition. We compared mean daily body temperature and activity levels of pregnant and nonpregnant females during preimplantation, gestation, and lactation. Additionally we tested whether age, litter size, primiparity, environmental conditions, and the start of hibernation influence the timing of parturition. The mean date of implantation was 1 December (SD = 12), the mean date of parturition was 26 January (SD = 12), and the mean duration of the gestation period was 56 days (SD = 2). The body temperature of pregnant females was higher during the gestation and lactation periods than that of nonpregnant bears. The body temperature of pregnant females decreased during the gestation period. Activity recordings were also used to determine the date of parturition. The parturition dates calculated with activity and body temperature data did not differ significantly and were the same in 50% of the females. Older females started hibernation earlier. The start of hibernation was earlier during years with favorable environmental conditions. Dates of parturition were later during years with good environmental conditions which was unexpected. We suggest that free-ranging pregnant brown bears in areas with high levels of human activities at the beginning of the denning period, as in our study area, might prioritize investing energy in early denning than in early parturition during years with favorable environmental conditions, as a strategy to prevent disturbances caused by human. PMID:24988486

  18. The effect of temperature and body size on metabolic scope of activity in juvenile Atlantic cod Gadus morhua L.

    PubMed

    Tirsgaard, Bjørn; Behrens, Jane W; Steffensen, John F

    2015-01-01

    Changes in ambient temperature affect the physiology and metabolism and thus the distribution of fish. In this study we used intermittent flow respirometry to determine the effect of temperature (2, 5, 10, 15 and 20°C) and wet body mass (BM) (~30-460g) on standard metabolic rate (SMR, mgO2h(-1)), maximum metabolic rate (MMR, mgO2h(-1)) and metabolic scope (MS, mgO2h(-1)) of juvenile Atlantic cod. SMR increased with BM irrespectively of temperature, resulting in an average scaling exponent of 0.87 (0.82-0.92). Q10 values were 1.8-2.1 at temperatures between 5 and 15°C but higher (2.6-4.3) between 2 and 5°C and lower (1.6-1.4) between 15 and 20°C in 200 and 450g cod. MMR increased with temperature in the smallest cod (50g) but in the larger cod MMR plateaued between 10, 15 and 20°C. This resulted in a negative correlation between the optimal temperature for MS (Topt) and BM, Topt being respectively 14.5, 11.8 and 10.9°C in a 50, 200 and 450g cod. Irrespective of BM cold water temperatures resulted in a reduction (30-35%) of MS whereas the reduction of MS at warm temperatures was only evident for larger fish (200 and 450g), caused by plateauing of MMR at 10°C and above. Warm temperatures thus seem favourable for smaller (50g) juvenile cod, but not for larger conspecifics (200 and 450g). PMID:25281351

  19. Age-related changes in core body temperature and activity in triple-transgenic Alzheimer’s disease (3xTgAD) mice

    PubMed Central

    Knight, Elysse M.; Brown, Timothy M.; Gümüsgöz, Sarah; Smith, Jennifer C. M.; Waters, Elizabeth J.; Allan, Stuart M.; Lawrence, Catherine B.

    2013-01-01

    SUMMARY Alzheimer’s disease (AD) is characterised, not only by cognitive deficits and neuropathological changes, but also by several non-cognitive behavioural symptoms that can lead to a poorer quality of life. Circadian disturbances in core body temperature and physical activity are reported in AD patients, although the cause and consequences of these changes are unknown. We therefore characterised circadian patterns of body temperature and activity in male triple transgenic AD mice (3xTgAD) and non-transgenic (Non-Tg) control mice by remote radiotelemetry. At 4 months of age, daily temperature rhythms were phase advanced and by 6 months of age an increase in mean core body temperature and amplitude of temperature rhythms were observed in 3xTgAD mice. No differences in daily activity rhythms were seen in 4- to 9-month-old 3xTgAD mice, but by 10 months of age an increase in mean daily activity and the amplitude of activity profiles for 3xTgAD mice were detected. At all ages (4–10 months), 3xTgAD mice exhibited greater food intake compared with Non-Tg mice. The changes in temperature did not appear to be solely due to increased food intake and were not cyclooxygenase dependent because the temperature rise was not abolished by chronic ibuprofen treatment. No β-amyloid (Aβ) plaques or neurofibrillary tangles were noted in the hypothalamus of 3xTgAD mice, a key area involved in temperature regulation, although these pathological features were observed in the hippocampus and amygdala of 3xTgAD mice from 10 months of age. These data demonstrate age-dependent changes in core body temperature and activity in 3xTgAD mice that are present before significant AD-related neuropathology and are analogous to those observed in AD patients. The 3xTgAD mouse might therefore be an appropriate model for studying the underlying mechanisms involved in non-cognitive behavioural changes in AD. PMID:22864021

  20. Body Temperature Regulation in Hot Environments.

    PubMed

    Nilsson, Jan-Åke; Molokwu, Mary Ngozi; Olsson, Ola

    2016-01-01

    Organisms in hot environments will not be able to passively dissipate metabolically generated heat. Instead, they have to revert to evaporative cooling, a process that is energetically expensive and promotes excessive water loss. To alleviate these costs, birds in captivity let their body temperature increase, thereby entering a state of hyperthermia. Here we explore the use of hyperthermia in wild birds captured during the hot and dry season in central Nigeria. We found pronounced hyperthermia in several species with the highest body temperatures close to predicted lethal levels. Furthermore, birds let their body temperature increase in direct relation to ambient temperatures, increasing body temperature by 0.22°C for each degree of increased ambient temperature. Thus to offset the costs of thermoregulation in ambient temperatures above the upper critical temperature, birds are willing to let their body temperatures increase by up to 5°C above normal temperatures. This flexibility in body temperature may be an important mechanism for birds to adjust to predicted increasing ambient temperatures in the future. PMID:27548758

  1. Body Temperature Regulation in Hot Environments

    PubMed Central

    Nilsson, Jan-Åke; Molokwu, Mary Ngozi; Olsson, Ola

    2016-01-01

    Organisms in hot environments will not be able to passively dissipate metabolically generated heat. Instead, they have to revert to evaporative cooling, a process that is energetically expensive and promotes excessive water loss. To alleviate these costs, birds in captivity let their body temperature increase, thereby entering a state of hyperthermia. Here we explore the use of hyperthermia in wild birds captured during the hot and dry season in central Nigeria. We found pronounced hyperthermia in several species with the highest body temperatures close to predicted lethal levels. Furthermore, birds let their body temperature increase in direct relation to ambient temperatures, increasing body temperature by 0.22°C for each degree of increased ambient temperature. Thus to offset the costs of thermoregulation in ambient temperatures above the upper critical temperature, birds are willing to let their body temperatures increase by up to 5°C above normal temperatures. This flexibility in body temperature may be an important mechanism for birds to adjust to predicted increasing ambient temperatures in the future. PMID:27548758

  2. Assessment of body temperature measurement options.

    PubMed

    Sund-Levander, Märtha; Grodzinsky, Ewa

    Assessment of body temperature is important for decisions in nursing care, medical diagnosis, treatment and the need of laboratory tests. The definition of normal body temperature as 37°C was established in the middle of the 19th century. Since then the technical design and the accuracy of thermometers has been much improved. Knowledge of physical influence on the individual body temperature, such as thermoregulation and hormones, are still not taken into consideration in body temperature assessment. It is time for a change; the unadjusted mode should be used, without adjusting to another site and the same site of measurement should be used as far as possible. Peripheral sites, such as the axillary and the forehead site, are not recommended as an assessment of core body temperature in adults. Frail elderly individuals might have a low normal body temperature and therefore be at risk of being assessed as non-febrile. As the ear site is close to the hypothalamus and quickly responds to changes in the set point temperature, it is a preferable and recommendable site for measurement of body temperature. PMID:24037397

  3. Astronaut James Lovell checks body temperature with oral temperature probe

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Gemini 7 pilot Astronaut James A. Lovell Jr. has temperature check with oral temperature probe attached to his space suit during final preflight preparations for the Gemini 7 space mission. The temperature probe allows doctors to monitor astronauts body temperature at any time during the mission.

  4. Effects of CH-19 Sweet, a non-pungent cultivar of red pepper, on sympathetic nervous activity, body temperature, heart rate, and blood pressure in humans.

    PubMed

    Hachiya, Sachiko; Kawabata, Fuminori; Ohnuki, Koichiro; Inoue, Naohiko; Yoneda, Hirotsugu; Yazawa, Susumu; Fushiki, Tohru

    2007-03-01

    We investigated the changes in autonomic nervous activity, body temperature, blood pressure (BP), and heart rate (HR) after intake of the non-pungent pepper CH-19 Sweet and of hot red pepper in humans to elucidate the mechanisms of diet-induced thermogenesis (DIT) due to CH-19 Sweet. We found that CH-19 Sweet activates the sympathetic nervous system (SNS) and enhances thermogenesis as effectively as hot red pepper, ant that the heat loss effect due to CH-19 Sweet is weaker than that due to hot red pepper. Furthermore, we found that intake of CH-19 Sweet does not affect systolic BP or HR, while hot red pepper transiently elevates them. These results indicate that DIT due to CH-19 Sweet can be induced via the activation of SNS as well as hot red pepper, but that the changes in BP, HR, and heat loss effect are different between these peppers. PMID:17341828

  5. Active thermal isolation for temperature responsive sensors

    NASA Technical Reports Server (NTRS)

    Martinson, Scott D. (Inventor); Gray, David L. (Inventor); Carraway, Debra L. (Inventor); Reda, Daniel C. (Inventor)

    1994-01-01

    A temperature responsive sensor is located in the airflow over the specified surface of a body and is maintained at a constant temperature. An active thermal isolator is located between this temperature responsive sensor and the specified surface of the body. The temperature of this isolator is controlled to reduce conductive heat flow from the temperature responsive sensor to the body. This temperature control includes: (1) operating the isolator at the same temperature as the constant temperature of the sensor and (2) establishing a fixed boundary temperature which is either less than or equal to or slightly greater than the sensor constant temperature.

  6. Body temperature and behavior of tree shrews and flying squirrels in a thermal gradient.

    PubMed

    Refinetti, R

    1998-02-15

    The daily rhythms of body temperature, temperature selection, and locomotor activity of tree shrews and flying squirrels were studied in a thermal gradient. In accordance with previous observations in other mammalian species, the rhythm of temperature selection was found to be 180 degrees out of phase with the body temperature rhythm in both species. Comparison of the amplitude of the body temperature rhythm in the presence and absence of the ambient temperature gradient indicated that behavioral temperature selection reduces the amplitude of the body temperature rhythm. This provides support for the hypothesis that the homeostatic control of body temperature opposes-rather than facilitates-the circadian oscillation in body temperature. PMID:9523893

  7. Restricted feeding-induced sleep, activity, and body temperature changes in normal and preproghrelin-deficient mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Behavioral and physiological rhythms can be entrained by daily restricted feeding (RF), indicating the existence of a food-entrainable oscillator (FEO). One manifestation of the presence of FEO is anticipatory activity to regularly scheduled feeding. In the present study, we tested if intact ghrelin...

  8. Hypercoagulability in response to elevated body temperature and central hypovolemia

    PubMed Central

    Meyer, Martin A.S.; Ostrowski, Sisse R.; Overgaard, Anders; Ganio, Matthew S.; Secher, Niels H.; Crandall, Craig G.; Johansson, Pär I.

    2016-01-01

    Background Coagulation abnormalities contribute to poor outcomes in critically ill patients. In trauma patients exposed to a hot environment, a systemic inflammatory response syndrome, elevated body temperature, and reduced central blood volume occur in parallel with changes in hemostasis and endothelial damage. The objective of this study was to evaluate whether experimentally elevated body temperature and reduced central blood volume (CBV) per se affects hemostasis and endothelial activation. Methods Eleven healthy volunteers were subjected to heat stress, sufficient to elevate core temperature, and progressive reductions in CBV by lower body negative pressure (LBNP). Changes in hemostasis were evaluated by whole blood haemostatic assays, standard hematologic tests and by plasma biomarkers of coagulation and endothelial activation/disruption. Results Elevated body temperature and decreased CBV resulted in coagulation activation evidenced by shortened activated partial tromboplastin time (−9% [IQR −7; −4]), thrombelastography: reduced reaction time (−15% [−24; −4]) and increased maximum amplitude (+4% (2; 6)), all P < 0.05. Increased fibrinolysis was documented by elevation of D-dimer (+53% (12; 59), P = 0.016). Plasma adrenaline and noradrenaline increased 198% (83; 346) and 234% (174; 363) respectively (P = 0.006 and P = 0.003). Conclusions This experiment revealed emerging hypercoagulability in response to elevated body temperature and decreased CBV, whereas no effect on the endothelium was observed. We hypothesize that elevated body temperature and reduced CBV contributes to hypercoagulability, possibly due to moderate sympathetic activation, in critically ill patients and speculate that normalization of body temperature and CBV may attenuate this hypercoagulable response. PMID:23856126

  9. Human body temperature - Its measurement and regulation

    SciTech Connect

    Houdas, Y.; Ring, E.F.J.

    1982-01-01

    The terminology used in thermal physiology is examined, and principles of heat transfer are discussed, taking into account heat quantity, heat flux, temperature, pressure, quantities used in physiology, a number of common definitions, the equivalence between different forms of energy, the release of potential energy in living tissues, heat transfer without change of state, and heat transfer with change of state. Temperature and humidity measurement are considered along with man and his environment, the temperature distribution in the systems and tracts of the human body, physiological changes affecting the temperature distribution, problems of temperature regulation, questions of heat loss and conservation, acclimatization to heat and cold, and disorders of thermoregulation. Attention is given to possible thermal imaging applications, causes of temperature irregularities in the head and neck, common causes of increased temperatures of upper limbs, and thermography in disease. 193 references.

  10. Does size matter? Comparison of body temperature and activity of free-living Arabian oryx (Oryx leucoryx) and the smaller Arabian sand gazelle (Gazella subgutturosa marica) in the Saudi desert.

    PubMed

    Hetem, Robyn Sheila; Strauss, Willem Maartin; Fick, Linda Gayle; Maloney, Shane Kevin; Meyer, Leith Carl Rodney; Shobrak, Mohammed; Fuller, Andrea; Mitchell, Duncan

    2012-04-01

    Heterothermy, a variability in body temperature beyond the normal limits of homeothermy, is widely viewed as a key adaptation of arid-adapted ungulates. However, desert ungulates with a small body mass, i.e. a relatively large surface area-to-volume ratio and a small thermal inertia, are theoretically less likely to employ adaptive heterothermy than are larger ungulates. We measured body temperature and activity patterns, using implanted data loggers, in free-ranging Arabian oryx (Oryx leucoryx, ±70 kg) and the smaller Arabian sand gazelle (Gazella subgutturosa marica, ±15 kg) inhabiting the same Arabian desert environment, at the same time. Compared to oryx, sand gazelle had higher mean daily body temperatures (F(1,6) = 47.3, P = 0.0005), higher minimum daily body temperatures (F(1,6) = 42.6, P = 0.0006) and higher maximum daily body temperatures (F(1,6) = 11.0, P = 0.02). Despite these differences, both species responded similarly to changes in environmental conditions. As predicted for adaptive heterothermy, maximum daily body temperature increased (F(1,6) = 84.0, P < 0.0001), minimum daily body temperature decreased (F(1,6) = 92.2, P < 0.0001), and daily body temperature amplitude increased (F(1,6) = 97.6, P < 0.0001) as conditions got progressively hotter and drier. There were no species differences in activity levels, however, both gazelle and oryx showed a biphasic or crepuscular rhythm during the warm wet season but shifted to a more nocturnal rhythm during the hot dry season. Activity was attenuated during the heat of the day at times when both species selected cool microclimates. These two species of Arabian ungulates employ heterothermy, cathemerality and shade seeking very similarly to survive the extreme, arid conditions of Arabian deserts, despite their size difference. PMID:22001971

  11. Adiposity and human regional body temperature123

    PubMed Central

    Savastano, David M; Gorbach, Alexander M; Eden, Henry S; Brady, Sheila M; Reynolds, James C

    2009-01-01

    Background: Human obesity is associated with increased heat production; however, subcutaneous adipose tissue provides an insulating layer that impedes heat loss. To maintain normothermia, therefore, obese individuals must increase their heat dissipation. Objective: The objective was to test the hypothesis that temperature in a heat-dissipating region of the hand is elevated in obese adults. Design: Obese [body mass index (in kg/m2) ≥ 30] and normal-weight (NW; body mass index = 18–25) adults were studied under thermoneutral conditions at rest. Core body temperature was measured by using ingested telemetric capsules. The temperatures of the third fingernail bed of the right hand and of abdominal skin from an area 1.5 cm inferior to the umbilicus were determined by using infrared thermography. Abdominal skin temperatures were also measured via adhesive thermistors that were placed over a prominent skin-surface blood vessel and over an adjacent nonvessel location. The groups were compared by analysis of covariance with age, sex, race, and room temperature as covariates. Results: Core temperature did not differ significantly between the 23 obese and 13 NW participants (P = 0.74). However, infrared thermography–measured fingernail-bed temperature was significantly higher in obese subjects than in NW subjects (33.9 ± 0.7°C compared with 28.6 ± 0.9°C; P < 0.001). Conversely, infrared thermography–measured abdominal skin temperature was significantly lower in obese subjects than in NW subjects (31.8 ± 0.2°C compared with 32.8 ± 0.3°C; P = 0.02). Nonvessel abdominal skin temperatures measured by thermistors were also lower in obese subjects (P = 0.04). Conclusions: Greater subcutaneous abdominal adipose tissue in obese adults may provide a significant insulating layer that blunts abdominal heat transfer. Augmented heat release from the hands may offset heat retention in areas of the body with greater adiposity, thereby helping to maintain normothermia in

  12. Low temperature alteration processes affecting ultramafic bodies

    USGS Publications Warehouse

    Nesbitt, H.W.; Bricker, O.P.

    1978-01-01

    At low temperatures, in the presence of an aqueous solution, olivine and orthopyroxene are not stable relative to the hydrous phases brucite, serpentine and talc. Alteration of dunite and peridotite to serpentine or steatite bodies must therefore proceed via non-equilibrium processes. The compositions of natural solutions emanating from dunites and peridotites demonstrate that the dissolution of forsterite and/or enstatite is rapid compared with the precipitation of the hydrous phases; consequently, dissolution of anhydrous minerals controls the chemistry of such solutions. In the presence of an aqueous phase, precipitation of hydrous minerals is the rate-controlling step. Brucite-bearing and -deficient serpentinites alter at low temperature by non-equilibrium processes, as evidenced by the composition of natural solutions from these bodies. The solutions approach equilibrium with the least stable hydrous phase and, as a consequence, are supersaturated with other hydrous phases. Dissolution of the least stable phase is rapid compared to precipitation of other phases, so that the dissolving mineral controls the solution chemistry. Non-equilibrium alteration of anhydrous ultramafic bodies continues until at least one anhydrous phase equilibrates with brucite, chrysotile or talc. The lowest temperature (at a given pressure) at which this happens is defined by the reaction: 3H2O + 2Mg2SiO4 ??? Mg3Si2O5(OH)4 + Mg(OH)2 (Johannes, 1968, Contrib. Mineral. Petrol. 19, 309-315) so that non-equilibrium alteration may occur well into greenschist facies metamorphic conditions. ?? 1978.

  13. Effects of MDMA on body temperature in humans

    PubMed Central

    Liechti, Matthias E

    2014-01-01

    Hyperthermia is a severe complication associated with the recreational use of 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy). In this review, the clinical laboratory studies that tested the effects of MDMA on body temperature are summarized. The mechanisms that underlie the hyperthermic effects of MDMA in humans and treatment of severe hyperthermia are presented. The data show that MDMA produces an acute and dose-dependent rise in core body temperature in healthy subjects. The increase in body temperature is in the range of 0.2-0.8°C and does not result in hyperpyrexia (>40°C) in a controlled laboratory setting. However, moderately hyperthermic body temperatures >38.0°C occur frequently at higher doses, even in the absence of physical activity and at room temperature. MDMA primarily releases serotonin and norepinephrine. Mechanistic clinical studies indicate that the MDMA-induced elevations in body temperature in humans partially depend on the MDMA-induced release of norepinephrine and involve enhanced metabolic heat generation and cutaneous vasoconstriction, resulting in impaired heat dissipation. The mediating role of serotonin is unclear. The management of sympathomimetic toxicity and associated hyperthermia mainly includes sedation with benzodiazepines and intravenous fluid replacement. Severe hyperthermia should primarily be treated with additional cooling and mechanical ventilation.

  14. Body temperature in early postpartum dairy cows.

    PubMed

    Burfeind, O; Suthar, V S; Voigtsberger, R; Bonk, S; Heuwieser, W

    2014-07-01

    A strategy widely adopted in the modern dairy industry is the introduction of postpartum health monitoring programs by trained farm personnel. Within these fresh cow protocols, various parameters (e.g., rectal temperature, attitude, milk production, uterine discharge, ketones) are evaluated during the first 5 to 14 days in milk (DIMs) to diagnose relevant diseases. It is well documented that 14% to 66% of healthy cows exhibit at least one temperature of 39.5 °C or greater within the first 10 DIM. Although widely adopted, data on diagnostic performance of body temperature (BT) measurement to diagnose infectious diseases (e.g., metritis, mastitis) are lacking. Therefore, the objective of this study was to identify possible factors associated with BT in postpartum dairy cows. A study was conducted on a commercial dairy farm including 251 cows. In a total of 217 cows, a vaginal temperature logger was inserted from DIM 2 to 10, whereas 34 cows did not receive a temperature logger as control. Temperature loggers measured vaginal temperature every 10 minutes. Rectal temperature was measured twice daily in all cows. On DIM 2, 5, and 10, cows underwent a clinical examination. Body temperature was influenced by various parameters. Primiparous cows had 0.2 °C higher BT than multiparous cows. Multiparous cows that calved during June and July had higher BT than those that calved in May. In primiparous cows, this effect was only evident from DIM 7 to 10. Furthermore, abnormal calving conditions (i.e., assisted calving, dead calf, retained placenta, twins) affected BT in cows. This effect was more pronounced in multiparous cows. Abnormal vaginal discharge did increase BT in primiparous and multiparous cows. Primiparous cows suffering from hyperketonemia (beta-hydroxybutyrat ≥ 1.4 mmol/L) had higher BT than those not affected. In multiparous cows, there was no association between hyperketonemia and BT. The results of this study clearly demonstrate that BT is influenced

  15. RELATIONSHIP BETWEEN SERUM CHOLINESTERASE ACTIVITY AND THE CHANGE IN BODY TEMPERATURE AND MOTOR ACTIVITY IN THE RAT: A DOSE RESPONSE STUDY OF DIISOPROPYL FLUOROPHATE (DFP)

    EPA Science Inventory

    Risk assessment of the neurotoxicology of organophosphate (OP) pesticides calls for a thorough understanding of the relationship between tissue cholinesterase (ChE) activity and changes in behavioral and autonomic responses to OP treatment. To address this issue, motor activity, ...

  16. Body temperature regulation and thermoneutrality in rats.

    PubMed

    Poole, S; Stephenson, J D

    1977-04-01

    Various concepts of thermoneutrality were considered for a proposed study of the role of hypothalamic amines in temperature regulation of rats. The classic definition, the ambient temperature over which metabolic rate is minimum and constant, gave a range of approximately 28 to 32 degrees C. However, within this temperature range rats were inactive, the inactivity apparently representing a behavioural response to heat stress and itself responsible for the reduced metabolic rate; certain thermoregulatory effectors were also activated to increase heat loss. Therefore an alternative range, 18.0 +/- 1.9 (mean +/- S.D.) to 28.1 +/- 1.0 degrees C, was defined in which rats displayed normal activity, behavioural thermoregulations being absent. PMID:585477

  17. The relationship between body temperature, heart rate, breathing rate, and rate of oxygen consumption, in the tegu lizard (Tupinambis merianae) at various levels of activity.

    PubMed

    Piercy, Joanna; Rogers, Kip; Reichert, Michelle; Andrade, Denis V; Abe, Augusto S; Tattersall, Glenn J; Milsom, William K

    2015-12-01

    The present study determined whether EEG and/or EMG recordings could be used to reliably define activity states in the Brazilian black and white tegu lizard (Tupinambis merianae) and then examined the interactive effects of temperature and activity states on strategies for matching O2 supply and demand. In a first series of experiments, the rate of oxygen consumption (VO2), breathing frequency (fR), heart rate (fH), and EEG and EMG (neck muscle) activity were measured in different sleep/wake states (sleeping, awake but quiet, alert, or moving). In general, metabolic and cardio-respiratory changes were better indictors of the transition from sleep to wake than were changes in the EEG and EMG. In a second series of experiments, the interactive effects of temperature (17, 27 and 37 °C) and activity states on fR, tidal volume (VT), the fraction of oxygen extracted from the lung per breath (FIO2-FEO2), fH, and the cardiac O2 pulse were quantified to determine the relative roles of each of these variables in accommodating changes in VO2. The increases in oxygen supply to meet temperature- and activity-induced increases in oxygen demand were produced almost exclusively by increases in fH and fR. Regression analysis showed that the effects of temperature and activity state on the relationships between fH, fR and VO2 was to extend a common relationship along a single curve, rather than separate relationships for each metabolic state. For these lizards, the predictive powers of fR and fH were maximized when the effects of changes in temperature, digestive state and activity were pooled. However, the best r(2) values obtained were 0.63 and 0.74 using fR and fH as predictors of metabolic rate, respectively. PMID:26285591

  18. The effect of anesthesia on body temperature control.

    PubMed

    Lenhardt, Rainer

    2010-01-01

    The human thermoregulatory system usually maintains core body temperature near 37 degrees C. This homeostasis is accomplished by thermoregulatory defense mechanisms such as vasoconstriction and shivering or sweating and vasodilatation. Thermoregulation is impaired during general anesthesia. Suppression of thermoregulatory defense mechanisms during general anesthesia is dose dependant and mostly results in perioperative hypothermia. Several adverse effects of hypothermia have been identified, including an increase in postoperative wound infection, perioperative coagulopathy and an increase of postoperative morbid cardiac events. Perioperative hypothermia can be avoided by warming patients actively during general anesthesia. Fever is a controlled increase of core body temperature. Various causes of perioperative fever are given. Fever is usually attenuated by general anesthesia. Typically, patients develop a fever of greater magnitude in the postoperative phase. Postoperative fever is fairly common. The incidence of fever varies with type and duration of surgery, patient's age, surgical site and preoperative inflammation. PMID:20515846

  19. Relationship between alertness, performance, and body temperature in humans

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth P Jr; Hull, Joseph T.; Czeisler, Charles A.

    2002-01-01

    Body temperature has been reported to influence human performance. Performance is reported to be better when body temperature is high/near its circadian peak and worse when body temperature is low/near its circadian minimum. We assessed whether this relationship between performance and body temperature reflects the regulation of both the internal biological timekeeping system and/or the influence of body temperature on performance independent of circadian phase. Fourteen subjects participated in a forced desynchrony protocol allowing assessment of the relationship between body temperature and performance while controlling for circadian phase and hours awake. Most neurobehavioral measures varied as a function of internal biological time and duration of wakefulness. A number of performance measures were better when body temperature was elevated, including working memory, subjective alertness, visual attention, and the slowest 10% of reaction times. These findings demonstrate that an increased body temperature, associated with and independent of internal biological time, is correlated with improved performance and alertness. These results support the hypothesis that body temperature modulates neurobehavioral function in humans.

  20. Influence of exposure to a prolonged hyperdynamic field on body temperature in the squirrel monkey

    NASA Technical Reports Server (NTRS)

    Fuller, C. A.

    1985-01-01

    The effect of gravitational loading on the regulation of body temperature is examined. Five adult male squirrel monkeys were exposed to a 2-G environment twice for 48 hours, once beginning in the middle of their light cycle and the second time in the middle of their dark cycle. It is observed that a reduction in body temperature occurs during the light cycle phase and at night there is an insignificant change in body temperature. The rhythmic characteristics of the light and dark cycles are analyzed. The data reveal that the body temperature in animals at 2 G is influenced more during the active phase of the animals 24-hour cycle.

  1. Involvement of GABA in environmental temperature-induced change in body temperature.

    PubMed

    Biswas, S; Poddar, M K

    1988-12-01

    Acute exposure of adult male albino rats (110-120 g) to higher environmental temperature (40 +/- 1 degrees C) increased body temperature (BT). This increase of BT was also dependent on the duration of exposure. Treatment with muscimol (1 mg/kg, i.p.), a GABA agonist, produced hypothermia at room temperature (28 +/- 1 degree C) and resistance to increase the body temperature when exposed to higher temperature (40 +/- 1 degree C). Administration of bicuculline (1 mg/kg, i.p.), a GABA antagonist, on the other hand, enhanced BT more than that observed in control (normal) rat exposed to higher temperature (40 +/- 1 degree C), although at room temperature bicuculline treatment did not show any effect on BT. Pretreatment with ethanolamine-O-sulfate (EOS) (2 g/kg, s.c.), a GABA transaminase inhibitor, to rats exposed to higher temperature increased BT as in control (normal) rat. Inhibition of central GAD activity with mercaptopropionic acid (MPA) (70 mg/kg, i.p.) produced resistance to increase BT during its period of action when rats were exposed to higher environmental temperature (28 +/- 1 degree C). These results thus suggest that central inhibitory neuron, GABA, plays a regulatory role in thermoregulation. PMID:3236943

  2. Regulation of body temperature and brown adipose tissue thermogenesis by bombesin receptor subtype-3

    PubMed Central

    Lateef, Dalya M.; Abreu-Vieira, Gustavo; Xiao, Cuiying

    2014-01-01

    Bombesin receptor subtype-3 (BRS-3) regulates energy homeostasis, with Brs3 knockout (Brs3−/y) mice being hypometabolic, hypothermic, and hyperphagic and developing obesity. We now report that the reduced body temperature is more readily detected if body temperature is analyzed as a function of physical activity level and light/dark phase. Physical activity level correlated best with body temperature 4 min later. The Brs3−/y metabolic phenotype is not due to intrinsically impaired brown adipose tissue function or in the communication of sympathetic signals from the brain to brown adipose tissue, since Brs3−/y mice have intact thermogenic responses to stress, acute cold exposure, and β3-adrenergic activation, and Brs3−/y mice prefer a cooler environment. Treatment with the BRS-3 agonist MK-5046 increased brown adipose tissue temperature and body temperature in wild-type but not Brs3−/y mice. Intrahypothalamic infusion of MK-5046 increased body temperature. These data indicate that the BRS-3 regulation of body temperature is via a central mechanism, upstream of sympathetic efferents. The reduced body temperature in Brs3−/y mice is due to altered regulation of energy homeostasis affecting higher center regulation of body temperature, rather than an intrinsic defect in brown adipose tissue. PMID:24452453

  3. Effect of physical activity on body composition

    SciTech Connect

    Zanzi, I; Ellis, K J; Aloia, J; Cohn, S H

    1980-01-01

    It has been noted that the deleterious effects on bone calcium of prolonged periods of inactivity, such as bed rest, are halted following resumption of activity. It would seem possible in light of the observations that have been made, that exercise may stimulate bone formation and perhaps counter, to some extent, bone loss as observed in the osteoporosis of aging. The present study was designed to determine the relation between total body calcium, total body potassium and bone mineral content of the radius to the degree of physical activity in a population of normal subjects. Measurement of the calcium was made by in-vivo total body neutron activation analysis. Bone mineral content of the radius and total body potassium, (an index of lean body mass) were measured by photon absorptiometry and the whole body counter, respectively.

  4. Miniature ingestible telemeter devices to measure deep-body temperature

    NASA Technical Reports Server (NTRS)

    Pope, J. M.; Fryer, T. B. (Inventor)

    1976-01-01

    A telemetry device comprised of a pill-size ingestible transmitter developed to obtain deep body temperature measurements of a human is described. The device has particular utility in the medical field where deep body temperatures provide an indication of general health.

  5. Body/bone-marrow differential-temperature sensor

    NASA Technical Reports Server (NTRS)

    Anselmo, V. J.; Berdahl, C. M.

    1978-01-01

    Differential-temperature sensor developed to compare bone-marrow and body temperature in leukemia patients uses single stable amplifier to monitor temperature difference recorded by thermocouples. Errors are reduced by referencing temperatures to each other, not to separate calibration points.

  6. Implanted telemeter for electrocardiogram and body temperature

    NASA Technical Reports Server (NTRS)

    Barrows, W. F.

    1972-01-01

    Measuring system requiring one blocking oscillator to generate modulated pulse repetition rate is implantable in the bodies of small animals. Device has life of two years and transmission range of about three feet. EKG sensing unit also is used to sense electromyogram or electrooculogram of laboratory animals.

  7. Active thermal isolation for temperature responsive sensors

    NASA Technical Reports Server (NTRS)

    Martinson, Scott D. (Inventor); Gray, David L. (Inventor); Carraway, Debra L. (Inventor); Reda, Daniel C. (Inventor)

    1994-01-01

    The detection of flow transition between laminar and turbulent flow and of shear stress or skin friction of airfoils is important in basic research for validation of airfoil theory and design. These values are conventionally measured using hot film nickel sensors deposited on a polyimide substrate. The substrate electrically insulates the sensor and underlying airfoil but is prevented from thermally isolating the sensor by thickness constraints necessary to avoid flow contamination. Proposed heating of the model surface is difficult to control, requires significant energy expenditures, and may alter the basic flow state of the airfoil. A temperature responsive sensor is located in the airflow over the specified surface of a body and is maintained at a constant temperature. An active thermal isolator is located between this temperature responsive sensor and the specific surface of the body. The total thickness of the isolator and sensor avoid any contamination of the flow. The temperature of this isolator is controlled to reduce conductive heat flow from the temperature responsive sensor to the body. This temperature control includes (1) operating the isolator at the same temperature as the constant temperature of the sensor; and (2) establishing a fixed boundary temperature which is either less than or equal to, or slightly greater than the sensor constant temperature. The present invention accordingly thermally isolates a temperature responsive sensor in an energy efficient, controllable manner while avoiding any contamination of the flow.

  8. Integration of body temperature into the analysis of energy expenditure in the mouse

    PubMed Central

    Abreu-Vieira, Gustavo; Xiao, Cuiying; Gavrilova, Oksana; Reitman, Marc L.

    2015-01-01

    Objectives We quantified the effect of environmental temperature on mouse energy homeostasis and body temperature. Methods The effect of environmental temperature (4–33 °C) on body temperature, energy expenditure, physical activity, and food intake in various mice (chow diet, high-fat diet, Brs3-/y, lipodystrophic) was measured using continuous monitoring. Results Body temperature depended most on circadian phase and physical activity, but also on environmental temperature. The amounts of energy expenditure due to basal metabolic rate (calculated via a novel method), thermic effect of food, physical activity, and cold-induced thermogenesis were determined as a function of environmental temperature. The measured resting defended body temperature matched that calculated from the energy expenditure using Fourier's law of heat conduction. Mice defended a higher body temperature during physical activity. The cost of the warmer body temperature during the active phase is 4–16% of total daily energy expenditure. Parameters measured in diet-induced obese and Brs3-/y mice were similar to controls. The high post-mortem heat conductance demonstrates that most insulation in mice is via physiological mechanisms. Conclusions At 22 °C, cold-induced thermogenesis is ∼120% of basal metabolic rate. The higher body temperature during physical activity is due to a higher set point, not simply increased heat generation during exercise. Most insulation in mice is via physiological mechanisms, with little from fur or fat. Our analysis suggests that the definition of the upper limit of the thermoneutral zone should be re-considered. Measuring body temperature informs interpretation of energy expenditure data and improves the predictiveness and utility of the mouse to model human energy homeostasis. PMID:26042200

  9. Body temperature stability achieved by the large body mass of sea turtles.

    PubMed

    Sato, Katsufumi

    2014-10-15

    To investigate the thermal characteristics of large reptiles living in water, temperature data were continuously recorded from 16 free-ranging loggerhead turtles, Caretta caretta, during internesting periods using data loggers. Core body temperatures were 0.7-1.7°C higher than ambient water temperatures and were kept relatively constant. Unsteady numerical simulations using a spherical thermodynamic model provided mechanistic explanations for these phenomena, and the body temperature responses to fluctuating water temperature can be simply explained by a large body mass with a constant thermal diffusivity and a heat production rate rather than physiological thermoregulation. By contrast, body temperatures increased 2.6-5.1°C in 107-152 min during their emergences to nest on land. The estimated heat production rates on land were 7.4-10.5 times the calculated values in the sea. The theoretical prediction that temperature difference between body and water temperatures would increase according to the body size was confirmed by empirical data recorded from several species of sea turtles. Comparing previously reported data, the internesting intervals of leatherback, green and loggerhead turtles were shorter when the body temperatures were higher. Sea turtles seem to benefit from a passive thermoregulatory strategy, which depends primarily on the physical attributes of their large body masses. PMID:25147244

  10. Cholera toxin effects on body temperature changes induced by morphine.

    PubMed

    Basilico, L; Parenti, M; Fumagalli, A; Parolaro, D; Giagnoni, G

    1997-03-01

    The present study evaluates the influence of cholera toxin and its B-subunit on thermic responses to morphine in the rats. The holotoxin (1 microg/rat) and the B-subunit (5 microg) were administered ICV and three days later rats were challenged ICV with morphine and tested for changes of body temperature. Cholera toxin, but not its B-subunit, modified the time course of the hyperthermic response induced by a low dose of morphine (2.5 microg), converted the hypothermia due to a higher dose of morphine (18 microg) to a consistent hyperthermia and only partially reduced the greater hypothermia induced by 36 microg of morphine. Cholera toxin-induced modifications of thermic responses to morphine were paralleled with a decreased Gs(alpha) immunoreactivity and a reduced ability for the toxin to catalyse the "in vitro" ADP-ribosylation of Gs(alpha) in hypothalamic membranes. In contrast, at the same time when morphine-induced effects on body temperature were assessed, no changes in pertussis toxin-mediated ADP-ribosylation of Gi(alpha)/Go(alpha), or basal adenylate cyclase activity, or binding of mu-opioid receptor selective ligand [3H]-DAMGO were observed in hypothalamic areas from rats treated with cholera toxin. These findings suggest that adaptative events secondary to prolonged activation of Gs(alpha) play a role in the modifications of thermic responses to morphine induced by CTX. PMID:9077589

  11. Effects of acute microinjections of thyroid hormone to the preoptic region of hypothyroid adult male rats on sleep, motor activity and body temperature.

    PubMed

    Moffett, Steven X; Giannopoulos, Phillip F; James, Thomas D; Martin, Joseph V

    2013-06-21

    Thyroid hormones induce short-latency nongenomic effects in adult brain tissue, suggesting that their acute administration would affect brain activity in intact animals. The influence on EEG-defined sleep of acute restoration of l-3,3'5-triiodothyronine (T3) to a sleep-regulatory brain region, the preoptic region, was examined in hypothyroid rats. Sleep parameters were monitored for 48 h weekly: for 24 h immediately following a control microinjection and for an additional 24h after a second microinjection including a T3 dose to the preoptic region or lateral ventricle. Male albino rats were implanted with EEG and EMG electrodes, abdominal temperature/activity transponders and unilateral lateral ventricle cannulae or bilateral preoptic region cannulae, and were given 0.02% n-propythiouracil (PTU) in their drinking water for 4 weeks. For histologically-confirmed bilateral preoptic region cannula placements (N=7), effects of T3 (especially a 3 μg dose) were apparent within 10h of injection as decreases in REM, NREM and total sleep and increases in waking and activity. Minimal effects of lateral ventricle T3 microinjection were demonstrated (N=5). Significant effects due to the time of day on the experimental measures were seen in both lateral ventricle and preoptic region groups, but these effects did not interact with the effect of administered hormone dose. These effects of T3 microinjection to the preoptic region were demonstrated after acute injections and within hours of injection rather than after chronic administration over days. PMID:23603414

  12. Being cool: how body temperature influences ageing and longevity.

    PubMed

    Keil, Gerald; Cummings, Elizabeth; de Magalhães, João Pedro

    2015-08-01

    Temperature is a basic and essential property of any physical system, including living systems. Even modest variations in temperature can have profound effects on organisms, and it has long been thought that as metabolism increases at higher temperatures so should rates of ageing. Here, we review the literature on how temperature affects longevity, ageing and life history traits. From poikilotherms to homeotherms, there is a clear trend for lower temperature being associated with longer lifespans both in wild populations and in laboratory conditions. Many life-extending manipulations in rodents, such as caloric restriction, also decrease core body temperature. Nonetheless, an inverse relationship between temperature and lifespan can be obscured or reversed, especially when the range of body temperatures is small as in homeotherms. An example is observed in humans: women appear to have a slightly higher body temperature and yet live longer than men. The mechanisms involved in the relationship between temperature and longevity also appear to be less direct than once thought with neuroendocrine processes possibly mediating complex physiological responses to temperature changes. Lastly, we discuss species differences in longevity in mammals and how this relates to body temperature and argue that the low temperature of the long-lived naked mole-rat possibly contributes to its exceptional longevity. PMID:25832892

  13. Efficacy comparison of Korean ginseng and American ginseng on body temperature and metabolic parameters.

    PubMed

    Park, Eun-Young; Kim, Mi-Hwi; Kim, Eung-Hwi; Lee, Eun-Kyu; Park, In-Sun; Yang, Duck-Choon; Jun, Hee-Sook

    2014-01-01

    Ginseng has beneficial effects in cancer, diabetes and aging. There are two main varieties of ginseng: Panax ginseng (Korean ginseng) and Panax quinquefolius (American ginseng). There are anecdotal reports that American ginseng helps reduce body temperature, whereas Korean ginseng improves blood circulation and increases body temperature; however, their respective effects on body temperature and metabolic parameters have not been studied. We investigated body temperature and metabolic parameters in mice using a metabolic cage. After administering ginseng extracts acutely (single dose of 1000 mg/kg) or chronically (200 mg/kg/day for four weeks), core body temperature, food intake, oxygen consumption and activity were measured, as well as serum levels of pyrogen-related factors and mRNA expression of metabolic genes. Acute treatment with American ginseng reduced body temperature compared with PBS-treated mice during the night; however, there was no significant effect of ginseng treatment on body temperature after four weeks of treatment. VO 2, VCO 2, food intake, activity and energy expenditure were unchanged after both acute and chronic ginseng treatment compared with PBS treatment. In acutely treated mice, serum thyroxin levels were reduced by red and American ginseng, and the serum prostaglandin E2 level was reduced by American ginseng. In chronically treated mice, red and white ginseng reduced thyroxin levels. We conclude that Korean ginseng does not stimulate metabolism in mice, whereas a high dose of American ginseng may reduce night-time body temperature and pyrogen-related factors. PMID:24467543

  14. Procedure of rectal temperature measurement affects brain, muscle, skin and body temperatures and modulates the effects of intravenous cocaine

    PubMed Central

    Bae, David D.; Brown, P. Leon; Kiyatkin, Eugene A.

    2007-01-01

    Rectal probe thermometry is commonly used to measure body core temperature in rodents because of its ease of use. Although previous studies suggest that rectal measurement is stressful and results in long-lasting elevations in body temperatures, we evaluated how this procedure affects brain, muscle, skin and core temperatures measured with chronically implanted thermocouple electrodes in rats. Our data suggest that the procedure of rectal measurement results in powerful locomotor activation, rapid and strong increases in brain, muscle, and deep body temperatures, as well as a biphasic, down-up fluctuation in skin temperature, matching the response pattern observed during tail-pinch, a representative stressful procedure. This response, moreover, did not habituate after repeated day-to-day testing. Repeated rectal probe insertions also modified temperature responses induced by intravenous cocaine. Under quiet resting conditions, cocaine moderately increased brain, muscle and deep body temperatures. However, during repeated rectal measurements, which increased temperatures, cocaine induced both hyperthermic and hypothermic responses. Direct comparisons revealed that body temperatures measured by a rectal probe are typically lower (∼0.6°C) and more variable than body temperatures recorded by chronically implanted electrodes; the difference is smaller at low and greater at high basal temperatures. Because of this difference and temperature increases induced by the rectal probe per se, cocaine had no significant effect on rectal temperatures compared to control animals exposed to repeated rectal probes. Therefore, although rectal temperature measurements provide a decent correlation with directly measured deep body temperatures, the arousing influence of this procedure may drastically modulate the effects of other arousing stimuli and drugs. PMID:17466279

  15. Tympanic thermometry for recording basal body temperatures.

    PubMed

    Wolf, G C; Baker, C A

    1993-11-01

    Evaluation of 12 menstrual cycles using oral, rectal, and TM temperature measuring devices (over 2,000 individual readings) confirmed the ovulatory thermal shift was equally detected with TM thermometry compared with the traditional methods. Although a single TM reading was satisfactory, an average of three successive readings provided a smoother graph (decreased variance). The device appears acceptable, and even preferred, for recording BBT charts, primarily because of its nearly instantaneous readings. PMID:8224281

  16. Relationship between mean body temperature calculated by two- or three-compartment models and active cutaneous vasodilation in humans: a comparison between cool and warm environments during leg exercise

    NASA Astrophysics Data System (ADS)

    Demachi, Koichi; Yoshida, Tetsuya; Tsuneoka, Hideyuki

    2012-03-01

    The aim of this study was to assess whether the three-compartment model of mean body temperature (Tb3) calculated from the esophageal temperature (Tes), temperature in deep tissue of exercising muscle (Tdt), and mean skin temperature (Tsk) has the potential to provide a better match with the thermoregulatory responses than the two-component model of mean body temperature (Tb2) calculated from Tes and Tsk. Seven male subjects performed 40 min of a prolonged cycling exercise at 30% maximal oxygen uptake at 21°C or 31°C (50% relative humidity). Throughout the experiment, Tsk, Tb2, Tb3, and Tdt were significantly ( P < 0.01) lower at 21°C than at 31°C temperature conditions, while Tes was similar under both conditions. During exercise, an increase in cutaneous vascular conductance (skin blood flow / mean arterial pressure) over the chest (%CVCc) was observed at both 21°C and 31°C, while no increase was observed at the forearm at 21°C. Furthermore, the Tb3 and Tdt threshold for the onset of the increase in %CVCc was similar, but the Tes and Tb2 threshold differed significantly ( P < 0.05) between the conditions tested. These results suggest that active cutaneous vasodilation at the chest is related more closely to Tb3 or Tdt than that measured by Tes or Tb2 calculated by Tes and Tsk during exercise at both 21°C and 31°C.

  17. Universal temperature and body-mass scaling of feeding rates

    PubMed Central

    Rall, Björn C.; Brose, Ulrich; Hartvig, Martin; Kalinkat, Gregor; Schwarzmüller, Florian; Vucic-Pestic, Olivera; Petchey, Owen L.

    2012-01-01

    Knowledge of feeding rates is the basis to understand interaction strength and subsequently the stability of ecosystems and biodiversity. Feeding rates, as all biological rates, depend on consumer and resource body masses and environmental temperature. Despite five decades of research on functional responses as quantitative models of feeding rates, a unifying framework of how they scale with body masses and temperature is still lacking. This is perplexing, considering that the strength of functional responses (i.e. interaction strengths) is crucially important for the stability of simple consumer–resource systems and the persistence, sustainability and biodiversity of complex communities. Here, we present the largest currently available database on functional response parameters and their scaling with body mass and temperature. Moreover, these data are integrated across ecosystems and metabolic types of species. Surprisingly, we found general temperature dependencies that differed from the Arrhenius terms predicted by metabolic models. Additionally, the body-mass-scaling relationships were more complex than expected and differed across ecosystems and metabolic types. At local scales (taxonomically narrow groups of consumer–resource pairs), we found hump-shaped deviations from the temperature and body-mass-scaling relationships. Despite the complexity of our results, these body-mass- and temperature-scaling models remain useful as a mechanistic basis for predicting the consequences of warming for interaction strengths, population dynamics and network stability across communities differing in their size structure. PMID:23007080

  18. Body temperatures and behavior of American alligators during cold winter weather

    SciTech Connect

    Brisbin, I.L., Jr.; Standora, E.A.; Vargo, M.J.

    1982-04-01

    Data from two large (188 and 135 kg) male alligators (Alligator mississippiensis) indicated that 4-5 C seemed to be the lowest body temperatures that they could endure with subsequent recovery. Although one animal in shallow water managed to keep a breathing hole open for several days, in ice that was 1.5 cm thick, it later died following a decrease of its body temperature to 4.0 C. The second alligator which was located in a deeper portion of the reservoir used both terrestrial and aquatic basking behavior to raise its body temperature and level of activity. Except in the case of basking events, there was not clear evidence of significant evaluations of the body temperatures of either the live or dead alligators above those of their adjacent water. When located side-by-side, diurnal cycles of deep body temperatures exceeding adjacent water temperatures to a maximum extent near dawn and usually falling below water temperatures during the afternoon and early evening hours. The physical properties and thermal inertia of the bodies of such large alligators, when placed in appropriate microclimates, may be sufficient in themselves to explain the general patterns and levels of body temperature changes observed at these low temperatures.

  19. Voluntary Running Aids to Maintain High Body Temperature in Rats Bred for High Aerobic Capacity

    PubMed Central

    Karvinen, Sira M.; Silvennoinen, Mika; Ma, Hongqiang; Törmäkangas, Timo; Rantalainen, Timo; Rinnankoski-Tuikka, Rita; Lensu, Sanna; Koch, Lauren G.; Britton, Steven L.; Kainulainen, Heikki

    2016-01-01

    The production of heat, i.e., thermogenesis, is a significant component of the metabolic rate, which in turn affects weight gain and health. Thermogenesis is linked to physical activity (PA) level. However, it is not known whether intrinsic exercise capacity, aging, and long-term voluntary running affect core body temperature. Here we use rat models selectively bred to differ in maximal treadmill endurance running capacity (Low capacity runners, LCR and High capacity Runners, HCR), that as adults are divergent for aerobic exercise capacity, aging, and metabolic disease risk to study the connection between PA and body temperature. Ten high capacity runner (HCR) and ten low capacity runner (LCR) female rats were studied between 9 and 21 months of age. Rectal body temperature of HCR and LCR rats was measured before and after 1-year voluntary running/control intervention to explore the effects of aging and PA. Also, we determined whether injected glucose and spontaneous activity affect the body temperature differently between LCR and HCR rats at 9 vs. 21 months of age. HCRs had on average 1.3°C higher body temperature than LCRs (p < 0.001). Aging decreased the body temperature level of HCRs to similar levels with LCRs. The opportunity to run voluntarily had a significant impact on the body temperature of HCRs (p < 0.001) allowing them to maintain body temperature at a similar level as when at younger age. Compared to LCRs, HCRs were spontaneously more active, had higher relative gastrocnemius muscle mass and higher UCP2, PGC-1α, cyt c, and OXPHOS levels in the skeletal muscle (p < 0.050). These results suggest that higher PA level together with greater relative muscle mass and higher mitochondrial content/function contribute to the accumulation of heat in the HCRs. Interestingly, neither aging nor voluntary training had a significant impact on core body temperature of LCRs. However, glucose injection resulted in a lowering of the body temperature of LCRs (p < 0

  20. Voluntary Running Aids to Maintain High Body Temperature in Rats Bred for High Aerobic Capacity.

    PubMed

    Karvinen, Sira M; Silvennoinen, Mika; Ma, Hongqiang; Törmäkangas, Timo; Rantalainen, Timo; Rinnankoski-Tuikka, Rita; Lensu, Sanna; Koch, Lauren G; Britton, Steven L; Kainulainen, Heikki

    2016-01-01

    The production of heat, i.e., thermogenesis, is a significant component of the metabolic rate, which in turn affects weight gain and health. Thermogenesis is linked to physical activity (PA) level. However, it is not known whether intrinsic exercise capacity, aging, and long-term voluntary running affect core body temperature. Here we use rat models selectively bred to differ in maximal treadmill endurance running capacity (Low capacity runners, LCR and High capacity Runners, HCR), that as adults are divergent for aerobic exercise capacity, aging, and metabolic disease risk to study the connection between PA and body temperature. Ten high capacity runner (HCR) and ten low capacity runner (LCR) female rats were studied between 9 and 21 months of age. Rectal body temperature of HCR and LCR rats was measured before and after 1-year voluntary running/control intervention to explore the effects of aging and PA. Also, we determined whether injected glucose and spontaneous activity affect the body temperature differently between LCR and HCR rats at 9 vs. 21 months of age. HCRs had on average 1.3°C higher body temperature than LCRs (p < 0.001). Aging decreased the body temperature level of HCRs to similar levels with LCRs. The opportunity to run voluntarily had a significant impact on the body temperature of HCRs (p < 0.001) allowing them to maintain body temperature at a similar level as when at younger age. Compared to LCRs, HCRs were spontaneously more active, had higher relative gastrocnemius muscle mass and higher UCP2, PGC-1α, cyt c, and OXPHOS levels in the skeletal muscle (p < 0.050). These results suggest that higher PA level together with greater relative muscle mass and higher mitochondrial content/function contribute to the accumulation of heat in the HCRs. Interestingly, neither aging nor voluntary training had a significant impact on core body temperature of LCRs. However, glucose injection resulted in a lowering of the body temperature of LCRs (p < 0

  1. Is there an association between body temperature and serum lactate levels in hip fracture patients?

    PubMed

    Murtuza, F; Farrier, A J; Venkatesan, M; Smith, R; Khan, A; Uzoigwe, C E; Chami, G

    2015-10-01

    attempts initially to maintain euthermia, incurring an oxygen debt. This would explain the difference in lactate level between the low body temperature and euthermic cohorts. The fact that there is no correlation with the degree of temperature depression and lactate levels indicates that the body does not fuel thermohomeostasis indefinitely with oxygen. Instead, in part, it abandons thermoregulatory mechanisms. Consequently, in this population, active rewarming may be indicated rather than depending on patients' own thermogenic ability. PMID:26274739

  2. Wall temperature control of low-speed body drag

    NASA Technical Reports Server (NTRS)

    Lin, J. C.; Ash, R. L.

    1986-01-01

    The use of thermal means to control drag under turbulent boundary layer conditions is examined. Numerical calculations are presented for both skin friction and (unseparated) pressure drag for turbulent boundary-layer flows over a fuselage-like body with wall heat transfer. In addition, thermal control of separation on a bluff body is investigated. It is shown that a total drag reduction of up to 20 percent can be achieved for wall heating with a wall-to-total-freestream temperature ratio of 2. For streamlined slender bodies, partial wall heating of the forebody can produce almost the same order of total drag reduction as the full body heating case. For bluff bodies, the separation delay from partial wall cooling of the afterbody is approximately the same as for the fully cooled body.

  3. Effects of gestational and postnatal age on body temperature, oxygen consumption, and activity during early skin-to-skin contact between preterm infants of 25-30-week gestation and their mothers.

    PubMed

    Bauer, K; Pyper, A; Sperling, P; Uhrig, C; Versmold, H

    1998-08-01

    Temporary skin-to-skin contact between preterm infant and the mother is increasingly used in neonatal medicine to promote bonding. It is not known at which gestational age (GA) and postnatal age skin-to-skin contact outside the incubator is a sufficiently warm environment and is tolerated by preterm infants without a decrease in body temperature, oxygen consumption (VO2) increase, or unrest. We conducted a prospective clinical study of 27 spontaneously breathing preterm infants of 25-30-wk GA. Rectal temperature (Trecta), VO2 (indirect calorimetry), and activity were continuously measured in the incubator (60 min), during skin-to-skin contact (60 min), and back in the incubator (60 min) in wk 1 and 2 of life. In wk 1 the change in Trectal during skin-to-skin contact was related to GA (r=0.585, p=0.0027): infants of 25-27-wk GA lost heat during skin-to-skin contact, whereas infants of 28-30 wk gained heat and their mean Trectal during skin-to-skin contact was 0.3 degrees C higher than before (p < 0.01). No significant changes of VO2 or activity occurred. In wk 2 the infants' VO2 was higher than in wk 1, but VO2 during skin-to-skin contact was the same as in the incubator. Only small fluctuations in Trectal occurred. In wk 2 all infants slept more during skin-to-skin contact than in the incubator (p < 0.02). We conclude that, for preterm infants of 28-30-wk GA, skin-to-skin contact was a sufficiently warm environment as early as postnatal wk 1. For infants of 25-27-wk GA skin-to-skin contact should be postponed until wk 2 of life, when their body temperature remains stable and they are more quiet during skin-to-skin contact than in the incubator. PMID:9702922

  4. Thermal equilibrium and temperature differences among body regions in European plethodontid salamanders.

    PubMed

    Lunghi, Enrico; Manenti, Raoul; Canciani, Giancarlo; Scarì, Giorgio; Pennati, Roberta; Ficetola, Gentile Francesco

    2016-08-01

    Information on species thermal physiology is extremely important to understand species responses to environmental heterogeneity and changes. Thermography is an emerging technology that allows high resolution and accurate measurement of body temperature, but until now it has not been used to study thermal physiology of amphibians in the wild. Hydromantes terrestrial salamanders are strongly depending on ambient temperature for their activity and gas exchanges, but information on their body temperature is extremely limited. In this study we tested if Hydromantes salamanders are thermoconform, we assessed whether there are temperature differences among body regions, and evaluated the time required to reach the thermal equilibrium. During summers of 2014 and 2015 we analysed 56 salamanders (Hydromantes ambrosii and Hydromantes italicus) using infrared thermocamera. We photographed salamanders at the moment in which we found them and 1, 2, 3, 4, 5 and 15min after having kept them in the hands. Body temperature was equal to air temperature; salamanders attained the equilibrium with air temperature in about 8min, the time required to reach equilibrium was longer in individuals with large body size. We detected small temperature differences between body parts, the head being slightly warmer than the body and the tail (mean difference: 0.05°C). These salamanders quickly reach the equilibrium with the environment, thus microhabitat measurement allows obtaining accurate information on their tolerance limits. PMID:27503719

  5. Measurement of temperature and emissivity of specularly reflecting glowing bodies

    NASA Technical Reports Server (NTRS)

    Hansen, G. P.; Hauge, R. H.; Margrave, J. L.; Krishnan, S.

    1988-01-01

    A new method of measuring the thermodynamic temperature of an object as well as the surface emissivity based on laser reflectivity has been developed. By using rotator analyzer ellipsometry, the light reflected from the sample at a specific angle of incidence can be analyzed for its ellipticity. The normal incidence reflectivity and emissivity are then extracted using standard relations. The thermodynamic temperature of the body is obtained simultaneously by measuring the intensity of emitted light at the same angle of incidence. Room temperature measurements are carried out on selected metals to test the system. Elevated temperature measurements on platinum foils show that this technique is reliable and accurate for monitoring and measuring the temperature and emissivity of specularly reflecting, glowing bodies.

  6. Total body nitrogen analysis. [neutron activation analysis

    NASA Technical Reports Server (NTRS)

    Palmer, H. E.

    1975-01-01

    Studies of two potential in vivo neutron activation methods for determining total and partial body nitrogen in animals and humans are described. A method using the CO-11 in the expired air as a measure of nitrogen content was found to be adequate for small animals such as rats, but inadequate for human measurements due to a slow excretion rate. Studies on the method of measuring the induced N-13 in the body show that with further development, this method should be adequate for measuring muscle mass changes occurring in animals or humans during space flight.

  7. Our Bodies, Our Cells: Children's Activities in Body Systems. Children's Activity Series.

    ERIC Educational Resources Information Center

    Cahn, Marilyn

    The supplemental teaching resources provided in this book offer a variety of concrete, visual activities designed to help classroom and daycare center teachers introduce children to the human body and the way it is organized. An analogy comparing human body parts to house parts is used throughout the book to make lessons clear and age-appropriate.…

  8. Environmental stressors during space flight: potential effects on body temperature

    NASA Technical Reports Server (NTRS)

    Jauchem, J. R.

    1988-01-01

    1. Organisms may be affected by many environmental factors during space flight, e.g., acceleration, weightlessness, decreased pressure, changes in oxygen tension, radiofrequency radiation and vibration. 2. Previous studies of change in body temperature--one response to these environmental factors--are reviewed. 3. Conditions leading to heat stress and hypothermia are discussed.

  9. Core body temperature control by total liquid ventilation using a virtual lung temperature sensor.

    PubMed

    Nadeau, Mathieu; Micheau, Philippe; Robert, Raymond; Avoine, Olivier; Tissier, Renaud; Germim, Pamela Samanta; Vandamme, Jonathan; Praud, Jean-Paul; Walti, Herve

    2014-12-01

    In total liquid ventilation (TLV), the lungs are filled with a breathable liquid perfluorocarbon (PFC) while a liquid ventilator ensures proper gas exchange by renewal of a tidal volume of oxygenated and temperature-controlled PFC. Given the rapid changes in core body temperature generated by TLV using the lung has a heat exchanger, it is crucial to have accurate and reliable core body temperature monitoring and control. This study presents the design of a virtual lung temperature sensor to control core temperature. In the first step, the virtual sensor, using expired PFC to estimate lung temperature noninvasively, was validated both in vitro and in vivo. The virtual lung temperature was then used to rapidly and automatically control core temperature. Experimentations were performed using the Inolivent-5.0 liquid ventilator with a feedback controller to modulate inspired PFC temperature thereby controlling lung temperature. The in vivo experimental protocol was conducted on seven newborn lambs instrumented with temperature sensors at the femoral artery, pulmonary artery, oesophagus, right ear drum, and rectum. After stabilization in conventional mechanical ventilation, TLV was initiated with fast hypothermia induction, followed by slow posthypothermic rewarming for 1 h, then by fast rewarming to normothermia and finally a second fast hypothermia induction phase. Results showed that the virtual lung temperature was able to provide an accurate estimation of systemic arterial temperature. Results also demonstrate that TLV can precisely control core body temperature and can be favorably compared to extracorporeal circulation in terms of speed. PMID:24960422

  10. cAMP signalling in mushroom bodies modulates temperature preference behaviour in Drosophila.

    PubMed

    Hong, Sung-Tae; Bang, Sunhoe; Hyun, Seogang; Kang, Jongkyun; Jeong, Kyunghwa; Paik, Donggi; Chung, Jongkyeong; Kim, Jaeseob

    2008-08-01

    Homoiotherms, for example mammals, regulate their body temperature with physiological responses such as a change of metabolic rate and sweating. In contrast, the body temperature of poikilotherms, for example Drosophila, is the result of heat exchange with the surrounding environment as a result of the large ratio of surface area to volume of their bodies. Accordingly, these animals must instinctively move to places with an environmental temperature as close as possible to their genetically determined desired temperature. The temperature that Drosophila instinctively prefers has a function equivalent to the 'set point' temperature in mammals. Although various temperature-gated TRP channels have been discovered, molecular and cellular components in Drosophila brain responsible for determining the desired temperature remain unknown. We identified these components by performing a large-scale genetic screen of temperature preference behaviour (TPB) in Drosophila. In parallel, we mapped areas of the Drosophila brain controlling TPB by targeted inactivation of neurons with tetanus toxin and a potassium channel (Kir2.1) driven with various brain-specific GAL4s. Here we show that mushroom bodies (MBs) and the cyclic AMP-cAMP-dependent protein kinase A (cAMP-PKA) pathway are essential for controlling TPB. Furthermore, targeted expression of cAMP-PKA pathway components in only the MB was sufficient to rescue abnormal TPB of the corresponding mutants. Preferred temperatures were affected by the level of cAMP and PKA activity in the MBs in various PKA pathway mutants. PMID:18594510

  11. Impact of nesting material on mouse body temperature and physiology.

    PubMed

    Gaskill, Brianna N; Gordon, Christopher J; Pajor, Edmond A; Lucas, Jeffrey R; Davis, Jerry K; Garner, Joseph P

    2013-02-17

    In laboratories, mice are housed at 20-24 °C, which is below their lower critical temperature (≈30 °C). Thus, mice are potentially cold stressed, which can alter metabolism, immune function, and reproduction. These physiological changes reflect impaired wellbeing, and affect scientific outcomes. We hypothesized that nesting material would allow mice to alleviate cold stress by controlling their thermal microenvironment, thus insulating them, reducing heat loss and thermogenic processes. Naïve C57BL/6, CD-1, and BALB/c mice (24 male and 24 female/strain in groups of 3) were housed in standard cages at 20 °C either with or without 8 g nesting material for 4 weeks. Core body temperature was followed using intraperitoneal radio telemetry. The thermal properties of the nests were assessed using a thermal imaging camera, and related to nest quality. Higher scoring nests were negatively correlated with the mean radiated temperature and were thus more insulating. No effects of nesting material on body temperature were found. CD-1 mice with nesting material had higher end body weights than controls. No effect was seen in the other two strains. Mice with the telemetry implant had larger spleens than controls, possibly indicating an immune response to the implant or low level infection from the surgery. BALB/c mice express less mRNA for the UCP1 protein than mice without nesting material. This indicates that BALB/c's with nesting material do not utilize their brown fat to create heat as readily as controls. Nests can alleviate thermal discomfort by decreasing the amount of radiated heat and reduce the need for non-shivering thermogenesis. However, different strains appear to use different behavioral (through different primary modes of behavioral thermoregulation) and physiological strategies (utilizing thermogenesis to different degrees) to maintain a constant body temperature under cool standard laboratory ambient temperatures. PMID:23313562

  12. Warm Body Temperature Facilitates Energy Efficient Cortical Action Potentials

    PubMed Central

    Yu, Yuguo; Hill, Adam P.; McCormick, David A.

    2012-01-01

    The energy efficiency of neural signal transmission is important not only as a limiting factor in brain architecture, but it also influences the interpretation of functional brain imaging signals. Action potential generation in mammalian, versus invertebrate, axons is remarkably energy efficient. Here we demonstrate that this increase in energy efficiency is due largely to a warmer body temperature. Increases in temperature result in an exponential increase in energy efficiency for single action potentials by increasing the rate of Na+ channel inactivation, resulting in a marked reduction in overlap of the inward Na+, and outward K+, currents and a shortening of action potential duration. This increase in single spike efficiency is, however, counterbalanced by a temperature-dependent decrease in the amplitude and duration of the spike afterhyperpolarization, resulting in a nonlinear increase in the spike firing rate, particularly at temperatures above approximately 35°C. Interestingly, the total energy cost, as measured by the multiplication of total Na+ entry per spike and average firing rate in response to a constant input, reaches a global minimum between 37–42°C. Our results indicate that increases in temperature result in an unexpected increase in energy efficiency, especially near normal body temperature, thus allowing the brain to utilize an energy efficient neural code. PMID:22511855

  13. A Microwave Radiometer for Internal Body Temperature Measurement

    NASA Astrophysics Data System (ADS)

    Scheeler, Robert Patterson

    This thesis presents the analysis and design of a microwave radiometer for internal body temperature measurements. There is currently no available method for non-invasive temperature measurement inside the human body. However, knowledge of both relative and absolute temperature variations over time is important to a number of medical applications. The research presented in this thesis details a proof-of-concept near-field microwave radiometer demonstrating relative thermometry of a multi-layer phantom. There are a number of technical challenges addressed in this thesis for radiometric determination of sub-degree temperature variations in the human body. A theoretical approach is developed for determining sensing depth from known complex layered tissues, which is defined as a figure of merit, and is shown to be dependent on frequency, electrical properties of the tissues, and the near-field probe. In order to obtain depth resolution, multiple frequency operation can be used, so multi-frequency probes are designed and demonstrated in this work. The choice of frequencies is determined not only by the tissue material properties, but also by the ever increasing radio interference in the environment. In this work, quiet bands allocated to radio astronomy are investigated. The radiometer and probe need to be compact to be wearable, and several advancements are made towards a fully wearable device: multi-frequency low-profile probes are designed and fabricated on a flexible substrate and the process of on-chip integration is demonstrated by a GaAs MMIC cold noise source for radiometer calibration. The implemented proof-of-concept device consists of two radiometers at 1.4 GHz and 2.7 GHz, designed with commercial inexpensive devices that can enable sufficient sensitivity. The device is tested on a phantom with two water layers whose temperatures are varied in a controlled manner, and focused on the human body temperature range. Measured results are discussed qualitatively

  14. Evaluating pen-day interactions in body temperature bilogistic mixed model for handling of feedlot heifers during heat stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Daily activities consume the energy of heifers, subsequently causing an elevation of body temperature, depending on the ambient conditions. A better understanding of the dynamics of body temperature (Tb) would be helpful when deciding how to process and handle heifers. It would also lead to specific...

  15. A simple method to predict body temperature of small reptiles from environmental temperature.

    PubMed

    Vickers, Mathew; Schwarzkopf, Lin

    2016-05-01

    To study behavioral thermoregulation, it is useful to use thermal sensors and physical models to collect environmental temperatures that are used to predict organism body temperature. Many techniques involve expensive or numerous types of sensors (cast copper models, or temperature, humidity, radiation, and wind speed sensors) to collect the microhabitat data necessary to predict body temperatures. Expense and diversity of requisite sensors can limit sampling resolution and accessibility of these methods. We compare body temperature predictions of small lizards from iButtons, DS18B20 sensors, and simple copper models, in both laboratory and natural conditions. Our aim was to develop an inexpensive yet accurate method for body temperature prediction. Either method was applicable given appropriate parameterization of the heat transfer equation used. The simplest and cheapest method was DS18B20 sensors attached to a small recording computer. There was little if any deficit in precision or accuracy compared to other published methods. We show how the heat transfer equation can be parameterized, and it can also be used to predict body temperature from historically collected data, allowing strong comparisons between current and previous environmental temperatures using the most modern techniques. Our simple method uses very cheap sensors and loggers to extensively sample habitat temperature, improving our understanding of microhabitat structure and thermal variability with respect to small ectotherms. While our method was quite precise, we feel any potential loss in accuracy is offset by the increase in sample resolution, important as it is increasingly apparent that, particularly for small ectotherms, habitat thermal heterogeneity is the strongest influence on transient body temperature. PMID:27252829

  16. Body Temperatures in Dinosaurs: What Can Growth Curves Tell Us?

    PubMed Central

    Griebeler, Eva Maria

    2013-01-01

    To estimate the body temperature (BT) of seven dinosaurs Gillooly, Alleen, and Charnov (2006) used an equation that predicts BT from the body mass and maximum growth rate (MGR) with the latter preserved in ontogenetic growth trajectories (BT-equation). The results of these authors evidence inertial homeothermy in Dinosauria and suggest that, due to overheating, the maximum body size in Dinosauria was ultimately limited by BT. In this paper, I revisit this hypothesis of Gillooly, Alleen, and Charnov (2006). I first studied whether BTs derived from the BT-equation of today’s crocodiles, birds and mammals are consistent with core temperatures of animals. Second, I applied the BT-equation to a larger number of dinosaurs than Gillooly, Alleen, and Charnov (2006) did. In particular, I estimated BT of Archaeopteryx (from two MGRs), ornithischians (two), theropods (three), prosauropods (three), and sauropods (nine). For extant species, the BT value estimated from the BT-equation was a poor estimate of an animal’s core temperature. For birds, BT was always strongly overestimated and for crocodiles underestimated; for mammals the accuracy of BT was moderate. I argue that taxon-specific differences in the scaling of MGR (intercept and exponent of the regression line, log-log-transformed) and in the parameterization of the Arrhenius model both used in the BT-equation as well as ecological and evolutionary adaptations of species cause these inaccuracies. Irrespective of the found inaccuracy of BTs estimated from the BT-equation and contrary to the results of Gillooly, Alleen, and Charnov (2006) I found no increase in BT with increasing body mass across all dinosaurs (Sauropodomorpha, Sauropoda) studied. This observation questions that, due to overheating, the maximum size in Dinosauria was ultimately limited by BT. However, the general high inaccuracy of dinosaurian BTs derived from the BT-equation makes a reliable test of whether body size in dinosaurs was ultimately

  17. Temperature control of thermal radiation from composite bodies

    NASA Astrophysics Data System (ADS)

    Jin, Weiliang; Polimeridis, Athanasios G.; Rodriguez, Alejandro W.

    2016-03-01

    We demonstrate that recent advances in nanoscale thermal transport and temperature manipulation can be brought to bear on the problem of tailoring thermal radiation from wavelength-scale composite bodies. We show that such objects—complicated arrangements of phase-change chalcogenide (Ge2Sb2Te5 ) glasses and metals or semiconductors—can be designed to exhibit strong resonances and large temperature gradients, which in turn lead to large and highly directional emission at midinfrared wavelengths. We find that partial directivity depends sensitively on a complicated interplay between shape, material dispersion, and temperature localization within the objects, requiring simultaneous design of the electromagnetic scattering and thermal properties of these structures. Our calculations exploit a recently developed fluctuating-volume current formulation of electromagnetic fluctuations that rigorously captures radiation phenomena in structures with strong temperature and dielectric inhomogeneities, such as those studied here.

  18. Diamond stabilization of ice multilayers at human body temperature

    NASA Astrophysics Data System (ADS)

    Wissner-Gross, Alexander D.; Kaxiras, Efthimios

    2007-08-01

    Diamond is a promising material for wear-resistant medical coatings. Here we report a remarkable increase in the melting point of ice resting on a diamond (111) surface modified with a submonolayer of Na+ . Our molecular dynamics simulations show that the interfacial ice bilayer melts at a temperature 130K higher than in free ice, and relatively thick ice films ( 2.6nm at 298K and 2.2nm at 310K ) are stabilized by dipole interactions with the substrate. This unique physical effect may enable biocompatibility-enhancing ice overcoatings for diamond at human body temperature.

  19. Primate body temperature and sleep responses to lower body positive pressure

    NASA Technical Reports Server (NTRS)

    Edgar, D. M.; Fuller, C. A.

    1984-01-01

    Cephalic fluid shifts, induced by lower body positive pressure (LBPP) are known to influence various physiological systems (i.e., cardiovascular and renal). In earlier experiments, an apparent change in the arousal state of primates in such LBPP conditions was observed. This study was designed to examine the effects of LBPP on arousal state and body temperature level which is normally correlated with sleep. Chair-restrained male squirrel monkeys were exposed to 40 mmHg LBPP for 90-100 minutes between the daytime hours of 13:00-15:00. Each monkey was placed in a specially modified restraint chair to which they were highly trained. Deep body temperature (DBT) was collected from 10 animals. Sleep parameters were obtained from six animals chronically implanted for sleep recording. A video camera was used to observe each animal's apparent state of arousal. LBPP resulted in an approximate 0.9 C decrease in DBT. During video observation, some animals appeared drowsy during LBPP; however, sleep recording revealed no significant changes in the state of arousal. Thus, LBPP is capable of inducing a mild hyperthermia. Further, the mechanisms underlying the observed lowering of body temperature appear to be independent of arousal state.

  20. Heart Rates in Hospitalized Children by Age and Body Temperature

    PubMed Central

    Bonafide, Christopher P.; Brady, Patrick W.

    2015-01-01

    BACKGROUND AND OBJECTIVES: Heart rate (HR) is frequently used by clinicians in the hospital to assess a patient’s severity of illness and make treatment decisions. We sought to develop percentiles that characterize the relationship of expected HR by age and body temperature in hospitalized children and to compare these percentiles with published references in both primary care and emergency department (ED) settings. METHODS: Vital sign data were extracted from electronic health records of inpatients <18 years of age at 2 large freestanding children’s hospitals from July 2011 to June 2012. We selected up to 10 HR-temperature measurement pairs from each admission. Measurements from 60% of patients were used to derive the percentile curves, with the remainder used for validation. We compared our upper percentiles with published references in primary care and ED settings. RESULTS: We used 60 863 observations to derive the percentiles. Overall, an increase in body temperature of 1°C was associated with an increase of ∼10 beats per minute in HR, although there were variations across age and temperature ranges. For infants and young children, our upper percentiles were lower than in primary care and ED settings. For school-age children, our upper percentiles were higher. CONCLUSIONS: We characterized expected HR by age and body temperature in hospitalized children. These percentiles differed from references in primary care and ED settings. Additional research is needed to evaluate the performance of these percentiles for the identification of children who would benefit from further evaluation or intervention for tachycardia. PMID:25917984

  1. Effect of irrigation fluid temperature on body temperature during arthroscopic elbow surgery in dogs

    PubMed Central

    Thompson, K.R.; MacFarlane, P.D.

    2013-01-01

    This prospective randomised clinical trial evaluated the effect of warmed irrigation fluid on body temperature in anaesthetised dogs undergoing arthroscopic elbow surgery. Nineteen dogs undergoing elbow arthroscopy were included in the study and were randomly allocated to one of two groups. Group RT received irrigation fluid at room temperature (RT) while dogs in group W received warmed (W) irrigation fluid (36°C). A standardised patient management and anaesthetic protocol was used and body temperature was measured at four time points; (T1) pre-anaesthetic examination, (T2) arrival into theatre, (T3) end of surgery and (T4) arrival into recovery. There was no significant difference in body temperature at any time point between the groups. The mean overall decrease in body temperature between pre-anaesthetic examination (T1) and return to the recovery suite (T4) was significant in both groups, with a fall of 1.06±0.58°C (p<0.001) in group RT and 1.53±0.76°C (p<0.001) group W. There was no significant difference between the groups. At the end of surgery (T3) 4/19 (21.1%) of dogs were hypothermic (<37°C). The addition of warmed irrigation fluids to a temperature management protocol in dogs undergoing elbow arthroscopy during general anaesthesia did not lead to decreased temperature losses. PMID:26623323

  2. Human body contour data based activity recognition.

    PubMed

    Myagmarbayar, Nergui; Yuki, Yoshida; Imamoglu, Nevrez; Gonzalez, Jose; Otake, Mihoko; Yu, Wenwei

    2013-01-01

    This research work is aimed to develop autonomous bio-monitoring mobile robots, which are capable of tracking and measuring patients' motions, recognizing the patients' behavior based on observation data, and providing calling for medical personnel in emergency situations in home environment. The robots to be developed will bring about cost-effective, safe and easier at-home rehabilitation to most motor-function impaired patients (MIPs). In our previous research, a full framework was established towards this research goal. In this research, we aimed at improving the human activity recognition by using contour data of the tracked human subject extracted from the depth images as the signal source, instead of the lower limb joint angle data used in the previous research, which are more likely to be affected by the motion of the robot and human subjects. Several geometric parameters, such as, the ratio of height to weight of the tracked human subject, and distance (pixels) between centroid points of upper and lower parts of human body, were calculated from the contour data, and used as the features for the activity recognition. A Hidden Markov Model (HMM) is employed to classify different human activities from the features. Experimental results showed that the human activity recognition could be achieved with a high correct rate. PMID:24111015

  3. Kangen-karyu raises surface body temperature through oxidative stress modification

    PubMed Central

    Hirayama, Aki; Okamoto, Takuya; Kimura, Satomi; Nagano, Yumiko; Matsui, Hirofumi; Tomita, Tsutomu; Oowada, Shigeru; Aoyagi, Kazumasa

    2016-01-01

    Kangen-karyu, a prescription containing six herbs, has been shown to achieve its pharmacological effect through oxidative stress-dependent pathways in animal models. The aim of this study is to investigate the relationship between the antioxidative effect and pharmacological mechanisms of Kangen-karyu, specifically its body temperature elevating effect in humans. Healthy human volunteers, age 35 ± 15 years old, were enrolled in this study. Surface body temperature, serum nitrite, reactive oxygen species (ROS) scavenging activities, and inflammatory cytokines were investigated before and 120 min after Kangen-karyu oral intake. Kangen-karyu significantly increased the surface-body temperature of the entire body; this effect was more remarkable in the upper body and continued for more than 120 min. Accompanying this therapeutic effect, serum nitrite levels were increased 120 min after oral administration. Serum ROS scavenging activities were enhanced against singlet oxygen and were concomitantly decreased against the alkoxyl radical. Serum nitrite levels and superoxide scavenging activities were positively correlated, suggesting that Kangen-karyu affects the O2•−-NO balance in vivo. Kangen-karyu had no effect on IL-6, TNF-α and adiponectin levels. These results indicate that the therapeutic effect of Kangen-karyu is achieved through NO- and ROS-dependent mechanisms. Further, this mechanism is not limited to ROS production, but includes ROS-ROS or ROS-NO interactions. PMID:27257340

  4. WHOLE BODY COUNTING AND NEUTRON ACTIVATION ANALYSIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The composition of the human body can be described using a number of different models. The most basic is the atomic model. This chapter describes several nuclear-based techniques that have been used to obtain direct in vivo chemical assays of the whole body of humans. In particular, the body's co...

  5. Systems Modeling for Crew Core Body Temperature Prediction Postlanding

    NASA Technical Reports Server (NTRS)

    Cross, Cynthia; Ochoa, Dustin

    2010-01-01

    The Orion Crew Exploration Vehicle, NASA s latest crewed spacecraft project, presents many challenges to its designers including ensuring crew survivability during nominal and off nominal landing conditions. With a nominal water landing planned off the coast of San Clemente, California, off nominal water landings could range from the far North Atlantic Ocean to the middle of the equatorial Pacific Ocean. For all of these conditions, the vehicle must provide sufficient life support resources to ensure that the crew member s core body temperatures are maintained at a safe level prior to crew rescue. This paper will examine the natural environments, environments created inside the cabin and constraints associated with post landing operations that affect the temperature of the crew member. Models of the capsule and the crew members are examined and analysis results are compared to the requirement for safe human exposure. Further, recommendations for updated modeling techniques and operational limits are included.

  6. Temperature regulation and metabolism in rats exposed perinatally to dioxin: permanent change in regulated body temperature?

    PubMed

    Gordon, C J; Gray, L E; Monteiro-Riviere, N A; Miller, D B

    1995-07-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) has been shown to lower thyroxine levels and cause hypothermia in the adult rat; however, there is little known regarding the perinatal effects of TCDD on metabolism and temperature regulation of the offspring. To address this issue, thermoregulatory responses were assessed in adult male rat offspring exposed perinatally to 1.0 micrograms TCDD/kg body wt by gavage on Gestational Day 15. Individual castrated offspring were placed in a gradient-layer calorimeter for 5 hr during their nocturnal period while ambient temperature (Ta) was maintained at 10, 16, 24, or 28 degrees C. Metabolic rate (M), as measured from the total heat loss in the calorimeter, was determined along with evaporative heat loss (EHL), dry thermal conductance, and body core temperature (Tc). Animals exposed to TCDD had a significantly lower body temperature at TaS of 10, 16, and 24 degrees C and a higher thermal conductance. M was unaffected by TCDD, indicating that TCDD did not impair the effector to regulate Tc during cold exposure. EHL was also unaffected by TCDD. Skin blood flow of the interscapular area was measured in anesthetized rats with laser Doppler velocimetry and found to be the same in control and TCDD groups. The reduction in body temperature over a wide range of TaS concomitant with normal thermoregulatory effector function suggests that perinatal exposure to TCDD results in a reduction in the regulated body temperature (i.e., decrease in set-point). PMID:7597705

  7. Body core temperature of rats subjected to daily exercise limited to a fixed time

    NASA Astrophysics Data System (ADS)

    Shido, O.; Sugimoto, Naotoshi; Sakurada, Sotaro; Kaneko, Yoshiko; Nagasaka, Tetsuo

    Several timed daily environmental cues alter the pattern of nycthemeral variations in body core temperature in rodents. The present study investigated the effect of timed exercise on variations of daily body core temperature. Male rats were housed in cages with a running wheel at an ambient temperature of 24° C with a 12:12 h light/dark cycle. Timed daily exercise rats (TEX) were allowed access to the wheel for 6 h in the last half of the dark phase, freely exercising rats (FEX) could run at any time, and sedentary rats (NEX) were not allowed to run. After a 3-week exercise period, all animals were denied access to the wheel. The intraabdominal temperatures (Tab) and spontaneous activities of rats were measured for 6 days after the exercise period. The Tab values of the TEX rats were significantly higher than those of the other two groups only in the last half of the dark phase, while Tab in the FEX and NEX rats showed no significant difference. The specific Tab changes in the TEX rats lasted for 2 days after the exercise period. Spontaneous activity levels were higher in the TEX rats than the FEX and NEX rats in the last half of the dark phase for 1 day after the exercise period. The results suggest that daily exercise limited to a fixed time per day modifies nycthemeral variations of body core temperature in rats so that the temperature increases during the period when the animals had previously exercised. Such a rise in body core temperature is partly attributed to an increase in the spontaneous activity level.

  8. Body temperature changes during simulated bacterial infection in a songbird: fever at night and hypothermia during the day.

    PubMed

    Sköld-Chiriac, Sandra; Nord, Andreas; Tobler, Michael; Nilsson, Jan-Åke; Hasselquist, Dennis

    2015-09-01

    Although fever (a closely regulated increase in body temperature in response to infection) typically is beneficial, it is energetically costly and may induce detrimentally high body temperatures. This can increase the susceptibility to energetic bottlenecks and risks of overheating in some organisms. Accordingly, it could be particularly interesting to study fever in small birds, which have comparatively high metabolic rates and high, variable body temperatures. We therefore investigated two aspects of fever and other sickness behaviours (circadian variation, dose dependence) in a small songbird, the zebra finch. We injected lipopolysaccharide (LPS) at the beginning of either the day or the night, and subsequently monitored body temperature, body mass change and food intake for the duration of the response. We found pronounced circadian variation in the body temperature response to LPS injection, manifested by (dose-dependent) hypothermia during the day but fever at night. This resulted in body temperature during the peak response being relatively similar during the day and night. Day-to-night differences might be explained in the context of circadian variation in body temperature: songbirds have a high daytime body temperature that is augmented by substantial heat production peaks during activity. This might require a trade-off between the benefit of fever and the risk of overheating. In contrast, at night, when body temperature is typically lower and less variable, fever can be used to mitigate infection. We suggest that the change in body temperature during infection in small songbirds is context dependent and regulated to promote survival according to individual demands at the time of infection. PMID:26232416

  9. Beef cattle body temperature during climatic stress: a genome-wide association study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cattle are sold for use in multiple environments that differ greatly in multiple climactic parameters, making the ability to regulate body temperature across multiple environments essential. Collecting phenotypic body temperature measurements is difficult and expensive, thus a genomics approach is ...

  10. Sex, season, and time of day interact to affect body temperatures of the Giant Gartersnake

    USGS Publications Warehouse

    Wylie, G.D.; Casazza, M.L.; Halstead, B.J.; Gregory, C.J.

    2009-01-01

    1.We examined multiple hypotheses regarding differences in body temperatures of the Giant Gartersnake using temperature-sensitive radio telemetry and an information-theoretic analytical approach.2.Giant Gartersnakes selected body temperatures near 30 ??C, and males and females had similar body temperatures most of the year, except during the midsummer gestation period.3.Seasonal differences in the body temperatures of males and females may relate to both the costs associated with thermoregulatory behavior, such as predation, and the benefits associated with maintaining optimal body temperatures, such as successful incubation.

  11. The effect of body temperature on the hunting response of the middle finger skin temperature.

    PubMed

    Daanen, H A; Van de Linde, F J; Romet, T T; Ducharme, M B

    1997-01-01

    The relationship between body temperature and the hunting response (intermittent supply of warm blood to cold exposed extremities) was quantified for nine subjects by immersing one hand in 8 degree C water while their body was either warm, cool or comfortable. Core and skin temperatures were manipulated by exposing the subjects to different ambient temperatures (30, 22, or 15 degrees C), by adjusting their clothing insulation (moderate, light, or none), and by drinking beverages at different temperatures (43, 37 and 0 degrees C). The middle finger temperature (Tfi) response was recorded, together with ear canal (Tear), rectal (Tre), and mean skin temperature (Tsk). The induced mean Tear changes were -0.34 (0.08) and +0.29 (0.03) degrees C following consumption of the cold and hot beverage, respectively. Tsk ranged from 26.7 to 34.5 degrees C during the tests. In the warm environment after a hot drink, the initial finger temperature (T(fi,base)) was 35.3 (0.4) degrees C, the minimum finger temperature during immersion (T(fi,min)) was 11.3 (0.5) degrees C, and 2.6 (0.4) hunting waves occurred in the 30-min immersion period. In the neutral condition (thermoneutral room and beverage) T(fi,base) was 32.1 (1.0) degrees C, T(fi,min) was 9.6 (0.3) degrees C, and 1.6 (0.2) waves occurred. In the cold environment after a cold drink, these values were 19.3 (0.9) degrees C, 8.7 (0.2) degrees C, and 0.8 (0.2) waves, respectively. A colder body induced a decrease in the magnitude and frequency of the hunting response. The total heat transferred from the hand to the water, as estimated by the area under the middle finger temperature curve, was also dependent upon the induced increase or decrease in Tear and Tsk. We conclude that the characteristics of the hunting temperature response curve of the finger are in part determined by core temperature and Tsk. Both T(fi,min) and the maximal finger temperature during immersion were higher when the core temperature was elevated; Tsk

  12. Ways to measure body temperature in the field.

    PubMed

    Langer, Franz; Fietz, Joanna

    2014-05-01

    Body temperature (Tb) represents one of the key parameters in ecophysiological studies with focus on energy saving strategies. In this study we therefore comparatively evaluated the usefulness of two types of temperature-sensitive passive transponders (LifeChips and IPTT-300) and one data logger (iButton, DS1922L) mounted onto a collar to measure Tb in the field. First we tested the accuracy of all three devices in a water bath with water temperature ranging from 0 to 40°C. Second, we evaluated the usefulness of the LifeChips and the modified iButtons for measuring Tb of small heterothermic mammals under field conditions. For this work we subcutaneously implanted 14 male edible dormice (Glis glis) with transponders, and equipped another 14 males with data loggers to simultaneously record Tb and oxygen consumption with a portable oxygen analyzer (Oxbox). In one individual we recorded Tb with both devices and analyzed recorded Tb patterns. LifeChips are able to measure temperature within the smallest range from 25 to 40°C with an accuracy of 0.07±0.12°C. IPTT-300 transponders measured temperature between 10 and 40°C, but accuracy decreased considerably at values below 30°C, with maximal deviations of nearly 7°C. An individual calibration of each transponder is therefore needed, before using it at low Tbs. The accuracy of the data logger was comparatively good (0.12±0.25°C) and stable over the whole temperature range tested (0-40°C). In all three devices, the repeatability of measurements was high. LifeChip transponders as well as modified iButtons measured Tb reliably under field conditions. Simultaneous Tb-recordings in one edible dormouse with an implanted LifeChip and a collar-mounted iButton revealed that values of both measurements were closely correlated. Taken together, we conclude that implanted temperature-sensitive transponders represent an appropriate and largely non-invasive method to measure Tb also under field conditions. PMID:24802148

  13. Human body temperature and new approaches to constructing temperature-sensitive bacterial vaccines

    PubMed Central

    White, Matthew D.; Bosio, Catharine M.; Duplantis, Barry N.

    2012-01-01

    Many of the live human and animal vaccines that are currently in use are attenuated by virtue of their temperature-sensitive (TS) replication. These vaccines are able to function because they can take advantage of sites in mammalian bodies that are cooler than the core temperature, where TS vaccines fail to replicate. In this article, we discuss the distribution of temperature in the human body, and relate how the temperature differential can be exploited for designing and using TS vaccines. We also examine how one of the coolest organs of the body, the skin, contains antigen-processing cells that can be targeted to provoke the desired immune response from a TS vaccine. We describe traditional approaches to making TS vaccines, and highlight new information and technologies that are being used to create a new generation of engineered TS vaccines. We pay particular attention to the recently described technology of substituting essential genes from Arctic bacteria for their homologues in mammalian pathogens as a way of creating TS vaccines. PMID:21626408

  14. Catalytic Growth of Macroscopic Carbon Nanofibers Bodies with Activated Carbon

    SciTech Connect

    Abdullah, N.; Muhammad, I. S.; Hamid, S. B. Abd.; Rinaldi, A.; Su, D. S.; Schlogl, R.

    2009-06-01

    Carbon-carbon composite of activated carbon and carbon nanofibers have been synthesized by growing Carbon nanofiber (CNF) on Palm shell-based Activated carbon (AC) with Ni catalyst. The composites are in an agglomerated shape due to the entanglement of the defective CNF between the AC particles forming a macroscopic body. The macroscopic size will allow the composite to be used as a stabile catalyst support and liquid adsorbent. The preparation of CNT/AC nanocarbon was initiated by pre-treating the activated carbon with nitric acid, followed by impregnation of 1 wt% loading of nickel (II) nitrate solutions in acetone. The catalyst precursor was calcined and reduced at 300 deg. C for an hour in each step. The catalytic growth of nanocarbon in C{sub 2}H{sub 4}/H{sub 2} was carried out at temperature of 550 deg. C for 2 hrs with different rotating angle in the fluidization system. SEM and N{sub 2} isotherms show the level of agglomeration which is a function of growth density and fluidization of the system. The effect of fluidization by rotating the reactor during growth with different speed give a significant impact on the agglomeration of the final CNF/AC composite and thus the amount of CNFs produced. The macrostructure body produced in this work of CNF/AC composite will have advantages in the adsorbent and catalyst support application, due to the mechanical and chemical properties of the material.

  15. Placement of temperature probe in bovine vagina for continuous measurement of core-body temperature

    NASA Astrophysics Data System (ADS)

    Lee, C. N.; Gebremedhin, K. G.; Parkhurst, A.; Hillman, P. E.

    2015-09-01

    There has been increasing interest to measure core-body temperature in cattle using internal probes. This study examined the placement of HOBO water temperature probe with an anchor, referred to as the "sensor pack" (Hillman et al. Appl Eng Agric ASAE 25(2):291-296, 2009) in the vagina of multiparous Holstein cows under grazing conditions. Two types of anchors were used: (a) long "fingers" (4.5-6 cm), and (b) short "fingers" (3.5 cm). The long-finger anchors stayed in one position while the short-finger anchors were not stable in one position (rotate) within the vagina canal and in some cases came out. Vaginal temperatures were recorded every minute and the data collected were then analyzed using exponential mixed model regression for non-linear data. The results showed that the core-body temperatures for the short-finger anchors were lower than the long-finger anchors. This implied that the placement of the temperature sensor within the vagina cavity may affect the data collected.

  16. Time for a change to assess and evaluate body temperature in clinical practice.

    PubMed

    Sund-Levander, Märtha; Grodzinsky, Ewa

    2009-08-01

    The definition of normal body temperature as 37 degrees C still is considered the norm worldwide, but in practice there is a widespread confusion of the evaluation of body temperature, especially in elderly individuals. In this paper, we discuss the relevance of normal body temperature as 37 degrees C and consequences in clinical practice. Our conclusion is that body temperature should be evaluated in relation to the individual variability and that the best approach is to use the same site, and an unadjusted mode without adjustments to other sites. If the baseline value is not known, it is important to notice that frail elderly individuals are at risk of a low body temperature. In addition, what should be regarded as fever is closely related to what is considered as normal body temperature. That is, as normal body temperature shows individual variations, it is reasonable that the same should hold true for the febrile range. PMID:19703039

  17. COMMUNICATION: The effects of elevated body temperature on the complexity of the diaphragm EMG signals during maturation

    NASA Astrophysics Data System (ADS)

    Akkurt, David; Akay, Yasemin M.; Akay, Metin

    2009-04-01

    suggest that during maturation, the output of the central pattern generator becomes less complex probably because the elevated body temperature reduces the neural activity and alters the behavior of the central respiratory controller, making it more susceptible to sudden infant death syndrome (SIDS).

  18. Critical body temperature profile as indicator of heat stress vulnerability.

    PubMed

    Nag, P K; Dutta, Priya; Nag, Anjali

    2013-01-01

    Extreme climatic heat is a major health concern among workers in different occupational pursuits. People in the regions of western India confront frequent heat emergencies, with great risk of mortality and morbidity. Taking account of informal occupational groups (foundry and sheet metal, FSM, N=587; ceramic and pottery, CP, N=426; stone quarry, SQ, N=934) in different seasons, the study examined the body temperature profiling as indicator of vulnerability to environmental warmth. About 3/4th of 1947 workers had habitual exposure at 30.1-35.5°C WBGT and ~10% of them were exposed to 38.2-41.6°C WBGT. The responses of FSM, CP and SQ workers indicated prevailing high heat load during summer and post-monsoon months. Local skin temperatures (T(sk)) varied significantly in different seasons, with consistently high level in summer, followed by post-monsoon and winter months. The mean difference of T(cr) and T(sk) was ~5.2°C up to 26.7°C WBGT, and ~2.5°C beyond 30°C WBGT. Nearly 90% of the workers had T(cr) within 38°C, suggesting their self-adjustment strategy in pacing work and regulating T(cr). In extreme heat, the limit of peripheral adjustability (35-36°C T(sk)) and the narrowing down of the difference between T(cr) and T(sk) might indicate the limit of one's ability to withstand heat exposure. PMID:23411761

  19. Critical roles of nardilysin in the maintenance of body temperature homoeostasis

    PubMed Central

    Hiraoka, Yoshinori; Matsuoka, Tatsuhiko; Ohno, Mikiko; Nakamura, Kazuhiro; Saijo, Sayaka; Matsumura, Shigenobu; Nishi, Kiyoto; Sakamoto, Jiro; Chen, Po-Min; Inoue, Kazuo; Fushiki, Tohru; Kita, Toru; Kimura, Takeshi; Nishi, Eiichiro

    2014-01-01

    Body temperature homoeostasis in mammals is governed centrally through the regulation of shivering and non-shivering thermogenesis and cutaneous vasomotion. Non-shivering thermogenesis in brown adipose tissue (BAT) is mediated by sympathetic activation, followed by PGC-1α induction, which drives UCP1. Here we identify nardilysin (Nrd1 and NRDc) as a critical regulator of body temperature homoeostasis. Nrd1−/− mice show increased energy expenditure owing to enhanced BAT thermogenesis and hyperactivity. Despite these findings, Nrd1−/− mice show hypothermia and cold intolerance that are attributed to the lowered set point of body temperature, poor insulation and impaired cold-induced thermogenesis. Induction of β3-adrenergic receptor, PGC-1α and UCP1 in response to cold is severely impaired in the absence of NRDc. At the molecular level, NRDc and PGC-1α interact and co-localize at the UCP1 enhancer, where NRDc represses PGC-1α activity. These findings reveal a novel nuclear function of NRDc and provide important insights into the mechanism of thermoregulation. PMID:24492630

  20. Critical roles of nardilysin in the maintenance of body temperature homoeostasis.

    PubMed

    Hiraoka, Yoshinori; Matsuoka, Tatsuhiko; Ohno, Mikiko; Nakamura, Kazuhiro; Saijo, Sayaka; Matsumura, Shigenobu; Nishi, Kiyoto; Sakamoto, Jiro; Chen, Po-Min; Inoue, Kazuo; Fushiki, Tohru; Kita, Toru; Kimura, Takeshi; Nishi, Eiichiro

    2014-01-01

    Body temperature homoeostasis in mammals is governed centrally through the regulation of shivering and non-shivering thermogenesis and cutaneous vasomotion. Non-shivering thermogenesis in brown adipose tissue (BAT) is mediated by sympathetic activation, followed by PGC-1α induction, which drives UCP1. Here we identify nardilysin (Nrd1 and NRDc) as a critical regulator of body temperature homoeostasis. Nrd1(-/-) mice show increased energy expenditure owing to enhanced BAT thermogenesis and hyperactivity. Despite these findings, Nrd1(-/-) mice show hypothermia and cold intolerance that are attributed to the lowered set point of body temperature, poor insulation and impaired cold-induced thermogenesis. Induction of β3-adrenergic receptor, PGC-1α and UCP1 in response to cold is severely impaired in the absence of NRDc. At the molecular level, NRDc and PGC-1α interact and co-localize at the UCP1 enhancer, where NRDc represses PGC-1α activity. These findings reveal a novel nuclear function of NRDc and provide important insights into the mechanism of thermoregulation. PMID:24492630

  1. Changes in basal body temperature and simple reaction times during the menstrual cycle.

    PubMed

    Simić, Nataša; Ravlić, Arijana

    2013-01-01

    Previous studies have shown cyclic changes in the activation levels and performance of different tasks throughout the menstrual cycle. The aim of this study was to examine if changes in the reaction time to both light and sound stimuli may be associated with basal body temperature changes and subjective assessments of General and High Activation during the different phases of a menstrual cycle characterized by high (preovulatory and midluteal phase) and low (menstrual and early follicular phase) levels of oestrogen and progesterone. The study included measurements of basal body temperature, simple reaction times to light and sound and self-assessment of General and High Activation during the menstrual, early follicular, late follicular and luteal phase. The sample consisted of 19 female subjects with regular menstrual cycles. The results obtained in this study indicate lower basal body temperature values during phases with low sex hormone levels, while the activation assessments suggest stable levels of both General and High Activation throughout the menstrual cycle. Similar patterns of change have been shown for reaction times in visual and auditory sensory modalities. Reaction times were shorter during phases characterized by high sex hormone levels, while phases with low hormone levels were associated with longer reaction times. From the modified text on correlations in the data analysis section, it is evident that they were calculated from averaged data from all phases of the menstrual cycle. Therefore, they do not reflect intraindividual but rather interindividual variations between the observed variables, and are not related to the hypotheses of this paper. PMID:23585200

  2. Article comprising a garment or other textile structure for use in controlling body temperature

    DOEpatents

    Butzer, Melissa J.

    2000-01-01

    There is disclosed an article for use in cooling body temperature which comprises a garment having a coat and pant, with each having a body section adapted to receive a portion of the torso of the wearer and extensions from the body section to receive the wearer's limbs. The garment includes a system for circulating temperature controlling fluid from a suitable source through patches removably received in pockets in each of body section and extensions.

  3. Microsatellite frequencies vary with body mass and body temperature in mammals, suggesting correlated variation in mutation rate

    PubMed Central

    Filipe, Laura N.S.

    2014-01-01

    Substitution rate is often found to correlate with life history traits such as body mass, a predictor of population size and longevity, and body temperature. The underlying mechanism is unclear but most models invoke either natural selection or factors such as generation length that change the number of mutation opportunities per unit time. Here we use published genome sequences from 69 mammals to ask whether life history traits impact another form of genetic mutation, the high rates of predominantly neutral slippage in microsatellites. We find that the length-frequency distributions of three common dinucleotide motifs differ greatly between even closely related species. These frequency differences correlate with body mass and body temperature and can be used to predict the phenotype of an unknown species. Importantly, different length microsatellites show complicated patterns of excess and deficit that cannot be explained by a simple model where species with short generation lengths have experienced more mutations. Instead, the patterns probably require changes in mutation rate that impact alleles of different length to different extents. Body temperature plausibly influences mutation rate by modulating the propensity for slippage. Existing hypotheses struggle to account for a link between body mass and mutation rate. However, body mass correlates inversely with population size, which in turn predicts heterozygosity. We suggest that heterozygote instability, HI, the idea that heterozygous sites show increased mutability, could provide a plausible link between body mass and mutation rate. PMID:25392761

  4. Microsatellite frequencies vary with body mass and body temperature in mammals, suggesting correlated variation in mutation rate.

    PubMed

    Amos, William; Filipe, Laura N S

    2014-01-01

    Substitution rate is often found to correlate with life history traits such as body mass, a predictor of population size and longevity, and body temperature. The underlying mechanism is unclear but most models invoke either natural selection or factors such as generation length that change the number of mutation opportunities per unit time. Here we use published genome sequences from 69 mammals to ask whether life history traits impact another form of genetic mutation, the high rates of predominantly neutral slippage in microsatellites. We find that the length-frequency distributions of three common dinucleotide motifs differ greatly between even closely related species. These frequency differences correlate with body mass and body temperature and can be used to predict the phenotype of an unknown species. Importantly, different length microsatellites show complicated patterns of excess and deficit that cannot be explained by a simple model where species with short generation lengths have experienced more mutations. Instead, the patterns probably require changes in mutation rate that impact alleles of different length to different extents. Body temperature plausibly influences mutation rate by modulating the propensity for slippage. Existing hypotheses struggle to account for a link between body mass and mutation rate. However, body mass correlates inversely with population size, which in turn predicts heterozygosity. We suggest that heterozygote instability, HI, the idea that heterozygous sites show increased mutability, could provide a plausible link between body mass and mutation rate. PMID:25392761

  5. Effects of repeated surgical stress on daily changes of body core temperature in mice.

    PubMed

    Kanizsai, P; Vámos, Z; Solymár, M; Garami, A; Szelényi, Z

    2010-06-01

    Daily body core temperature rhythm has been known to become blunted for several days following intra-abdominal implantation of biotelemetry transmitters in small rodents and about a week is required for re-establishment of stable body core temperature oscillation. In the present study carried out on mice it was found that a repetition of the same minor surgical intervention (laparotomy) several days apart could speed up the stabilization of body temperature oscillations. Melatonin supplied with the drinking water continuously was found to speed up the return of stable daily body temperature rhythm further on consecutive laparotomies, while daily injections of methylprednisolone resulted in some delay in the development of stable body core temperature oscillations. It is concluded that in C57BL/6 mice possessing low plasma levels of melatonin exhibit an adaptive response to repeated stresses influencing the dynamics of daily body temperature rhythm. PMID:20511129

  6. FDTD analysis of body-core temperature elevation in children and adults for whole-body exposure

    NASA Astrophysics Data System (ADS)

    Hirata, Akimasa; Asano, Takayuki; Fujiwara, Osamu

    2008-09-01

    The temperature elevations in anatomically based human phantoms of an adult and a 3-year-old child were calculated for radio-frequency whole-body exposure. Thermoregulation in children, however, has not yet been clarified. In the present study, we developed a computational thermal model of a child that is reasonable for simulating body-core temperature elevation. Comparison of measured and simulated temperatures revealed thermoregulation in children to be similar to that of adults. Based on this finding, we calculated the body-core temperature elevation in a 3-year-old child and an adult for plane-wave exposure at the basic restriction in the international guidelines. The body-core temperature elevation in the 3-year-old child phantom was 0.03 °C at a whole-body-averaged specific absorption rate of 0.08 W kg-1, which was 35% smaller than in the adult female. This difference is attributed to the child's higher body surface area-to-mass ratio.

  7. Estimation of the temperature of a radiating body by measuring the stationary temperatures of a thermometer placed at different distances

    NASA Astrophysics Data System (ADS)

    Barragán, V. M.; Villaluenga, J. P. G.; Izquierdo-Gil, M. A.; Pérez-Cordón, R.

    2016-07-01

    This paper presents a novel method for determining the temperature of a radiating body. The experimental method requires only very common instrumentation. It is based on the measurement of the stationary temperature of an object placed at different distances from the body and on the application of the energy balance equation in a stationary state. The method allows one to obtain the temperature of an inaccessible radiating body when radiation measurements are not available. The method has been applied to the determination of the filament temperature of incandescent lamps of different powers.

  8. The Relationship between Physical Activity Level, Body Mass Index, and Body Fat Percentages in Urban and Rural Elementary School Students

    ERIC Educational Resources Information Center

    Orhan, Özlem

    2015-01-01

    The purpose of this study is to compare the physical activity levels, physical activity types, Body Mass Index (BMI) and body fat percentage (BF%) values of elementary school students living in rural and urban. Body height (BH), body weight (BW), BF% and BMI data were measured. Physical activity questionnaire was conducted to determine the…

  9. Physical Activity and Body Mass Index

    PubMed Central

    Nelson, Candace C.; Wagner, Gregory R.; Caban-Martinez, Alberto J.; Buxton, Orfeu M.; Kenwood, Christopher T.; Sabbath, Erika L.; Hashimoto, Dean M.; Hopcia, Karen; Allen, Jennifer; Sorensen, Glorian

    2014-01-01

    Background The workplace is an important domain for adults, and many effective interventions targeting physical activity and weight reduction have been implemented in the workplace. However, the U.S. workforce is aging and few studies have examined the relationship of BMI, physical activity, and age as they relate to workplace characteristics. Purpose This paper reports on the distribution of physical activity and BMI by age in a population of hospital-based healthcare workers and investigates the relationships among workplace characteristics, physical activity, and BMI. Methods Data from a survey of patient care workers in two large academic hospitals in the Boston area were collected in late 2009 and analyzed in early 2013. Results In multivariate models, workers reporting greater decision latitude (OR=1.02; 95% CI=1.01, 1.03) and job flexibility (OR=1.05; 95% CI=1.01, 1.10) reported greater physical activity. Overweight and obesity increased with age (p<0.01), even after adjusting for workplace characteristics. Sleep deficiency (OR=1.56; 95% CI=1.15, 2.12) and workplace harassment (OR= 1.62; 95% CI=1.20, 2.18) were also associated with obesity. Conclusions These findings underscore the persistent impact of the work environment for workers of all ages. Based on these results, programs or policies aimed at improving the work environment, especially decision latitude, job flexibility and workplace harassment should be included in the design of worksite-based health promotion interventions targeting physical activity or obesity. PMID:24512930

  10. Disrupting Vestibular Activity Disrupts Body Ownership.

    PubMed

    Hoover, Adria E N; Harris, Laurence R

    2015-01-01

    People are more sensitive at detecting asynchrony between a self-generated movement and visual feedback concerning that movement when the movement is viewed from a first-person perspective. We call this the 'self-advantage' and interpret it as an objective measure of self. Here we ask if disruption of the vestibular system in healthy individuals affects the self-advantage. Participants performed finger movements while viewing their hand in a first-person ('self') or third-person ('other') perspective and indicated which of two periods (one with minimum delay and the other with an added delay of 33-264 ms) was delayed. Their sensitivity to the delay was calculated from the psychometric functions obtained. During the testing, disruptive galvanic vestibular stimulation (GVS) was applied in five-minute blocks interleaved with five minutes of no stimulation for a total of 40 min. We confirmed the self-advantage under no stimulation (31 ms). In the presence of disruptive GVS this advantage disappeared and there was no longer a difference in performance between perspectives. The threshold delay for the 'other' perspective was not affected by the GVS. These results suggest that an intact vestibular signal is required to distinguish 'self' from 'other' and to maintain a sense of body ownership. PMID:26595957

  11. Temperature and Structure of Active Eruptions from a Handheld Camcorder

    NASA Astrophysics Data System (ADS)

    Radebaugh, Jani; Carling, Greg T.; Saito, Takeshi; Dangerfield, Anne; Tingey, David G.; Lorenz, Ralph D.; Lopes, Rosaly M.; Howell, Robert R.; Diniega, Serina; Turtle, Elizabeth P.

    2014-11-01

    A commercial handheld digital camcorder can operate as a high-resolution, short-wavelength, low-cost thermal imaging system for monitoring active volcanoes, when calibrated against a laboratory heated rock of similar composition to the given eruptive material. We utilize this system to find full pixel brightness temperatures on centimeter scales at close but safe proximity to active lava flows. With it, observed temperatures of a Kilauea tube flow exposed in a skylight reached 1200 C, compared with pyrometer measurements of the same flow of 1165 C, both similar to reported eruption temperatures at that volcano. The lava lake at Erta Ale, Ethiopia had crack and fountain temperatures of 1175 C compared with previous pyrometer measurements of 1165 C. Temperature calibration of the vigorously active Marum lava lake in Vanuatu is underway, challenges being excessive levels of gas and distance from the eruption (300 m). Other aspects of the fine-scale structure of the eruptions are visible in the high-resolution temperature maps, such as flow banding within tubes, the thermal gradient away from cracks in lake surfaces, heat pathways through pahoehoe crust and temperature zoning in spatter and fountains. High-resolution measurements such as these reveal details of temperature, structure, and change over time at the rapidly evolving settings of active lava flows. These measurement capabilities are desirable for future instruments exploring bodies with active eruptions like Io, Enceladus and possibly Venus.

  12. [The temperature and temperature gradient distribution in the thermophysical model of the rabbit body subjected internal and external changes of temperature].

    PubMed

    Rumiantsev, G V

    2002-03-01

    In a laboratory heat-physical model of the rabbit reflecting basic heat-physical parameters of animal body (weight, heat absorption and heat production, size of a relative surface, capacity heat-production etc.), the changes of radial distribution of temperature and size of a cross superficial temperature gradient of the body were investigated with various parities (ratio) of environmental temperature and size of capacity heat production imitated by an electrical heater. Superficial layer of the body dependent from capacity heat production and environmental temperature can serve for definition of general heat content changes in the body for maintaining its thermal balance within the environment. PMID:12013736

  13. Temperature distribution in the human body under various conditions of induced hyperthermia

    NASA Technical Reports Server (NTRS)

    Korobko, O. V.; Perelman, T. L.; Fradkin, S. Z.

    1977-01-01

    A mathematical model based on heat balance equations was developed for studying temperature distribution in the human body under deep hyperthermia which is often induced in the treatment of malignant tumors. The model yields results which are in satisfactory agreement with experimental data. The distribution of temperature under various conditions of induced hyperthermia, i.e. as a function of water temperature and supply rate, is examined on the basis of temperature distribution curves in various body zones.

  14. Low-temperature softening in body-centered cubic alloys

    NASA Technical Reports Server (NTRS)

    Pink, E.; Arsenault, R. J.

    1979-01-01

    In the low-temperature range, bcc alloys exhibit a lower stress-temperature dependence than the pure base metals. This effect often leads to a phenomenon that is called 'alloy softening': at low temperatures, the yield stress of an alloy may be lower than that of the base metal. Various theories are reviewed; the most promising are based either on extrinsic or intrinsic models of low-temperature deformation. Some other aspects of alloy softening are discussed, among them the effects on the ductile-brittle transition temperature.

  15. Body size change in various nematodes depending on bacterial food, sex and growth temperature.

    PubMed

    So, Shuhei; Garan, Yohei; Miyahara, Kohji; Ohshima, Yasumi

    2012-04-01

    We previously reported significant body size change in the nematode Caenorhabditis elegans, depending on the food strain of E. coli. Here, we examined this body size change in 11 other nematode species as well, and found that it is common to most of these nematodes. Furthermore, this food-dependent body size change is influenced by sex and growth temperature. PMID:24058830

  16. Body size change in various nematodes depending on bacterial food, sex and growth temperature

    PubMed Central

    So, Shuhei; Garan, Yohei; Miyahara, Kohji; Ohshima, Yasumi

    2012-01-01

    We previously reported significant body size change in the nematode Caenorhabditis elegans, depending on the food strain of E. coli. Here, we examined this body size change in 11 other nematode species as well, and found that it is common to most of these nematodes. Furthermore, this food-dependent body size change is influenced by sex and growth temperature. PMID:24058830

  17. Observation of temperature trace, induced by changing of temperature inside the human body, on the human body skin using commercially available IR camera

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.

    2015-05-01

    As it is well-known, application of the passive THz camera for the security problems is very promising way. It allows seeing concealed object without contact with a person and this camera is non-dangerous for a person. In previous papers, we demonstrate new possibility of the passive THz camera using for a temperature difference observing on the human skin if this difference is caused by different temperatures inside the body. For proof of validity of our statement we make the similar physical experiment using the IR camera. We show a possibility of temperature trace on human body skin, caused by changing of temperature inside the human body due to water drinking. We use as a computer code that is available for treatment of images captured by commercially available IR camera, manufactured by Flir Corp., as well as our developed computer code for computer processing of these images. Using both codes we demonstrate clearly changing of human body skin temperature induced by water drinking. Shown phenomena are very important for the detection of forbidden samples and substances concealed inside the human body using non-destructive control without X-rays using. Early we have demonstrated such possibility using THz radiation. Carried out experiments can be used for counter-terrorism problem solving. We developed original filters for computer processing of images captured by IR cameras. Their applications for computer processing of images results in a temperature resolution enhancing of cameras.

  18. Ambient temperature influences core body temperature response in rat lines bred for differences in sensitivity to 8-hydroxy-dipropylaminotetralin.

    PubMed

    Nicholas, Andrea C; Seiden, Lewis S

    2003-04-01

    Agonist-induced decrease in core body temperature has commonly been used as a measure of serotonin1A (5-HT(1A)) receptor sensitivity in mood disorder. The thermoregulatory basis for 5-HT(1A) receptor agonist-induced temperature responses in humans and rats remains unclear. Therefore, the influence of ambient temperature on 5-HT(1A) receptor-mediated decreases in core body temperature were measured in rat lines bred for high (HDS) or low (LDS) sensitivity to the selective 5-HT(1A) receptor agonist 8-hydroxy-dipropylaminotetralin (8-OH-DPAT). HDS and LDS rats were injected with either saline, 0.25 or 0.50 mg/kg 8-OH-DPAT at ambient temperatures of 10.5, 24, 30, or 37.5 degrees C, and core temperature was measured by radiotelemetry. For both lines, the thermic response to acute 8-OH-DPAT was greatest at 10.5 degrees C and decreased in magnitude as ambient temperature increased to 30 degrees C, consistent with hypothermia. HDS rats displayed a greater hypothermic response than LDS rats at 10.5, 24, and 30 degrees C. At 37.5 degrees C, LDS rats showed a lethal elevation of temperature in response to 0.50 mg/kg 8-OH-DPAT. All thermic responses to 8-OH-DPAT, including the lethality, were effectively blocked by pretreatment with the 5-HT(1A) receptor antagonist WAY100635, suggesting line differences in thermoregulatory circuits that are influenced by 5-HT(1A) receptor activation. Following repeated injection of 8-OH-DPAT, the magnitude of the hypothermic response decreased in both lines at 10.5 degrees C, but increased in HDS rats treated with 0.50 mg/kg 8-OH-DPAT at 30 and 37.5 degrees C. This pattern was reversed in HDS rats following 8-OH-DPAT challenge at 24 degrees C, suggesting that a compensatory thermoregulatory response accounts for changes in the hypothermic response to chronic 8-OH-DPAT. PMID:12649391

  19. Isotopic ordering in eggshells reflects body temperatures and suggests differing thermophysiology in two Cretaceous dinosaurs

    NASA Astrophysics Data System (ADS)

    Eagle, Robert A.; Enriquez, Marcus; Grellet-Tinner, Gerald; Pérez-Huerta, Alberto; Hu, David; Tütken, Thomas; Montanari, Shaena; Loyd, Sean J.; Ramirez, Pedro; Tripati, Aradhna K.; Kohn, Matthew J.; Cerling, Thure E.; Chiappe, Luis M.; Eiler, John M.

    2015-10-01

    Our understanding of the evolutionary transitions leading to the modern endothermic state of birds and mammals is incomplete, partly because tools available to study the thermophysiology of extinct vertebrates are limited. Here we show that clumped isotope analysis of eggshells can be used to determine body temperatures of females during periods of ovulation. Late Cretaceous titanosaurid eggshells yield temperatures similar to large modern endotherms. In contrast, oviraptorid eggshells yield temperatures lower than most modern endotherms but ~6 °C higher than co-occurring abiogenic carbonates, implying that this taxon did not have thermoregulation comparable to modern birds, but was able to elevate its body temperature above environmental temperatures. Therefore, we observe no strong evidence for end-member ectothermy or endothermy in the species examined. Body temperatures for these two species indicate that variable thermoregulation likely existed among the non-avian dinosaurs and that not all dinosaurs had body temperatures in the range of that seen in modern birds.

  20. The effect of myostatin genotype on body temperature during extreme temperature events.

    PubMed

    Howard, J T; Kachman, S D; Nielsen, M K; Mader, T L; Spangler, M L

    2013-07-01

    Extreme heat and cold events can create deleterious physiological changes in cattle as they attempt to cope. The genetic background of animals can influence their response to these events. The objective of the current study was to determine the impact of myostatin genotype (MG) on body temperature during periods of heat and cold stress. Two groups of crossbred steers and heifers of unknown pedigree and breed fraction with varying percentages of Angus, Simmental, and Piedmontese were placed in a feedlot over 2 summers and 2 winters. Before arrival, animals were genotyped for the Piedmontese-derived myostatin mutation (C313Y) to determine their MG as either homozygous normal (0 copy; n = 84), heterozygous (1 copy; n = 96), or homozygous for inactive myostatin (2 copy; n = 59). Hourly tympanic and vaginal temperature measurements were collected for steers and heifers, respectively, for 5 d during times of anticipated heat and cold stress. Mean (±SD) ambient temperature for summer and winter stress events were 24.4 (±4.64) and -1.80 (±11.71), respectively. A trigonometric function (sine + cosine) with periods of 12 and 24 h was used to describe the diurnal cyclical pattern. Hourly body temperature was analyzed within a season, and fixed effects included MG, group, trigonometric functions nested within group, and interaction of MG with trigonometric functions nested within group; random effects were animal and residual (Model [I]). A combined analysis of season and group was also investigated with the inclusion of season as a main effect and the nesting of effects within both group and season (Model [C]). In both models, the residual was fitted using an autoregressive covariance structure. A 3-way interaction of MG, season, and trigonometric function periodicities of 24 h (P < 0.001) and 12 h (P < 0.02) for Model [C] indicate that a genotype × environment interaction exists for MG. For MG during summer stress events the additive estimate was 0.10°C (P < 0.01) and

  1. Elliptically Bent X-ray Mirrors with Active Temperature Stabilization

    SciTech Connect

    Yuan, Sheng; Church, Matthew; Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Celestre, Rich; McKinney, Wayne R.; Kirschman, Jonathan; Morrison, Greg; Noll, Tino; Warwick, Tony; Padmore, Howard A.

    2010-01-31

    We present details of design of elliptically bent Kirkpatrick-Baez mirrors developed and successfully used at the Advanced Light Source for submicron focusing. A distinctive feature of the mirror design is an active temperature stabilization based on a Peltier element attached directly to the mirror body. The design and materials have been carefully optimized to provide high heat conductance between the mirror body and substrate. We describe the experimental procedures used when assembling and precisely shaping the mirrors, with special attention paid to laboratory testing of the mirror-temperature stabilization. For this purpose, the temperature dependence of the surface slope profile of a specially fabricated test mirror placed inside a temperature-controlled container was measured. We demonstrate that with active mirror-temperature stabilization, a change of the surrounding temperature by more than 3K does not noticeably affect the mirror figure. Without temperature stabilization, the surface slope changes by approximately 1.5 ?mu rad rms (primarily defocus) under the same conditions.

  2. Light masking of circadian rhythms of heat production, heat loss, and body temperature in squirrel monkeys

    NASA Technical Reports Server (NTRS)

    Robinson, E. L.; Fuller, C. A.

    1999-01-01

    Whole body heat production (HP) and heat loss (HL) were examined to determine their relative contributions to light masking of the circadian rhythm in body temperature (Tb). Squirrel monkey metabolism (n = 6) was monitored by both indirect and direct calorimetry, with telemetered measurement of body temperature and activity. Feeding was also measured. Responses to an entraining light-dark (LD) cycle (LD 12:12) and a masking LD cycle (LD 2:2) were compared. HP and HL contributed to both the daily rhythm and the masking changes in Tb. All variables showed phase-dependent masking responses. Masking transients at L or D transitions were generally greater during subjective day; however, L masking resulted in sustained elevation of Tb, HP, and HL during subjective night. Parallel, apparently compensatory, changes of HL and HP suggest action by both the circadian timing system and light masking on Tb set point. Furthermore, transient HL increases during subjective night suggest that gain change may supplement set point regulation of Tb.

  3. Thermo-Sensitive Receptor Protein: Role of TRPVs in Control of Body Temperature under Heat Radiation

    NASA Astrophysics Data System (ADS)

    Mochizuki-Oda, Noriko; Kusuno, Tomoyuki; Hanada, Tsunehisa; Tominaga, Makoto; Tominaga, Tomoko; Suzuki, Makoto; Yamada, Hisao; Yamada, Hironari

    2007-03-01

    In vertebrate peripheral nervous system, skin heating and cooling are detected by thermo-sensitive neurons tuned to respond over distinct temperature ranges. TRP-family is thermo-sensitive receptor protein which is Ca2+-permeable ion channels expressing in cellular membrane. TRPV1 is activated by noxious heat above 42 °C, whereas TRPV3 and TRPV4 are sensitive to moderate temperatures (<34 °C). Although the amino acid sequence and the channel properties have been characterized, the molecular mechanism of temperature sensation remains poorly understood. In environment, mid and far infrared radiation act as physical stimuli. Here we examined the role of TRPV1 and TRPV4 in regulation of body temperature (BT) by using infrared laser as mild heat stimuli. In wild type mouse, the laser irradiation which caused the increase in skin temperature up to 55 °C did not induce the change in BT without any treatment of TRPVs. However, desensitization of TRPV1 with capsaicin resulted in the increase in BT by laser irradiation. On the other hand, in TRPV4-knockout mouse, moderate thermal stimulus (skin surface temperature <43 °C) caused the increase in the BT. These results suggest that the processing of noxious and moderate thermal radiation stimuli may depend on the TRPV1 and TRPV4, respectively.

  4. Spectral-based inferential measurement of grey-body's temperature

    NASA Astrophysics Data System (ADS)

    Zheng, Feng; Liu, Liying; Zhu, Lingxi; Huan, Kewei; Li, Ye; Shi, Xiaoguang

    2015-11-01

    Aiming at the problems of temperature measurement and the defects of radiance thermometry theory, one method of spectral-based inferential measurement is proposed, which adopts the Empirical Risk Minimization (ERM) functional model as the temperature measurement model. Then, the radiance thermometry theory and inferential measurement technology are discussed comparatively. Temperatures of some targets, such and tungsten lamp and solar surface, are measured by spectral-based inferential measurement.

  5. Influence of the Environment on Body Temperature of Racing Greyhounds

    PubMed Central

    McNicholl, Jane; Howarth, Gordon S.; Hazel, Susan J.

    2016-01-01

    Heat strain is a potential risk factor for racing greyhounds in hot climates. However, there have been limited studies into the incidence of heat strain (when excess heat causes physiological or pathological effects) in racing greyhounds. The aim of this study was to determine if heat strain occurs in racing greyhounds, and, if so, whether environmental factors (e.g., ambient temperature and relative humidity) or dog-related factors (e.g., sex, bodyweight, color) are associated with the risk of heat strain. A total of 229 greyhounds were included in over 46 race meetings and seven different race venues in South Australia, Australia. Rectal temperatures of dogs were measured pre- and postrace and urine samples collected for analysis of myoglobinuria. Ambient temperature at race times ranged between 11.0 and 40.8°C and relative humidity ranged from 17 to 92%. There was a mean increase in greyhound rectal temperature of 2.1°C (range 1.1–3.1°C). A small but significant association was present between ambient temperature and increase in rectal temperature (r2 = 0.033, P = 0.007). The mean ambient temperature at race time, of dogs with postrace rectal temperature of or exceeding 41.5°C, was significantly greater than at race time of dogs with a postrace rectal temperature ≤41.5°C (31.2 vs. 27.3°C, respectively, P = 0.004). When the ambient temperature reached 38oC, over one-third (39%) of dogs had a rectal temperature >41.5°C. Over half of postrace urine samples were positive by Dipstick reading for hemoglobin/myoglobin, and of 77 urine samples positive for Dipstick readings, 95% were positive for myoglobin. However, urinary myoglobin levels were not associated with ambient temperature or postrace rectal temperatures. The mean increase in rectal temperature was greater in dark (black, blue, brindle) than light (fawn and white) colored greyhounds. The results suggest heat strain occurs in racing greyhounds, evidenced by postrace rectal temperatures

  6. Influence of the Environment on Body Temperature of Racing Greyhounds.

    PubMed

    McNicholl, Jane; Howarth, Gordon S; Hazel, Susan J

    2016-01-01

    Heat strain is a potential risk factor for racing greyhounds in hot climates. However, there have been limited studies into the incidence of heat strain (when excess heat causes physiological or pathological effects) in racing greyhounds. The aim of this study was to determine if heat strain occurs in racing greyhounds, and, if so, whether environmental factors (e.g., ambient temperature and relative humidity) or dog-related factors (e.g., sex, bodyweight, color) are associated with the risk of heat strain. A total of 229 greyhounds were included in over 46 race meetings and seven different race venues in South Australia, Australia. Rectal temperatures of dogs were measured pre- and postrace and urine samples collected for analysis of myoglobinuria. Ambient temperature at race times ranged between 11.0 and 40.8°C and relative humidity ranged from 17 to 92%. There was a mean increase in greyhound rectal temperature of 2.1°C (range 1.1-3.1°C). A small but significant association was present between ambient temperature and increase in rectal temperature (r (2) = 0.033, P = 0.007). The mean ambient temperature at race time, of dogs with postrace rectal temperature of or exceeding 41.5°C, was significantly greater than at race time of dogs with a postrace rectal temperature ≤41.5°C (31.2 vs. 27.3°C, respectively, P = 0.004). When the ambient temperature reached 38(o)C, over one-third (39%) of dogs had a rectal temperature >41.5°C. Over half of postrace urine samples were positive by Dipstick reading for hemoglobin/myoglobin, and of 77 urine samples positive for Dipstick readings, 95% were positive for myoglobin. However, urinary myoglobin levels were not associated with ambient temperature or postrace rectal temperatures. The mean increase in rectal temperature was greater in dark (black, blue, brindle) than light (fawn and white) colored greyhounds. The results suggest heat strain occurs in racing greyhounds, evidenced by postrace rectal

  7. Larger Mammalian Body Size Leads to Lower Retroviral Activity

    PubMed Central

    Katzourakis, Aris; Magiorkinis, Gkikas; Lim, Aaron G.; Gupta, Sunetra; Belshaw, Robert; Gifford, Robert

    2014-01-01

    Retroviruses have been infecting mammals for at least 100 million years, leaving descendants in host genomes known as endogenous retroviruses (ERVs). The abundance of ERVs is partly determined by their mode of replication, but it has also been suggested that host life history traits could enhance or suppress their activity. We show that larger bodied species have lower levels of ERV activity by reconstructing the rate of ERV integration across 38 mammalian species. Body size explains 37% of the variance in ERV integration rate over the last 10 million years, controlling for the effect of confounding due to other life history traits. Furthermore, 68% of the variance in the mean age of ERVs per genome can also be explained by body size. These results indicate that body size limits the number of recently replicating ERVs due to their detrimental effects on their host. To comprehend the possible mechanistic links between body size and ERV integration we built a mathematical model, which shows that ERV abundance is favored by lower body size and higher horizontal transmission rates. We argue that because retroviral integration is tumorigenic, the negative correlation between body size and ERV numbers results from the necessity to reduce the risk of cancer, under the assumption that this risk scales positively with body size. Our model also fits the empirical observation that the lifetime risk of cancer is relatively invariant among mammals regardless of their body size, known as Peto's paradox, and indicates that larger bodied mammals may have evolved mechanisms to limit ERV activity. PMID:25033295

  8. Juvenile stress impairs body temperature regulation and augments anticipatory stress-induced hyperthermia responses in rats.

    PubMed

    Yee, Nicole; Plassmann, Kerstin; Fuchs, Eberhard

    2011-09-01

    Clinical studies have implicated adolescence as an important and vulnerable period during which traumatic experiences can predispose individuals to anxiety and mood disorders. As such, a stress model in juvenile rats (age 27-29 d) was previously developed to investigate the long-term effects of stress exposure during adolescence on behavior and physiology. This paradigm involves exposing rats to different stressors on consecutive days over a 3-day period. Here, we studied the effects of juvenile stress on long-term core body temperature regulation and acute stress-induced hyperthermia (SIH) responses using telemetry. We found no differences between control and juvenile stress rats in anxiety-related behavior on the elevated plus maze, which we attribute to stress associated with surgical implantation of telemetry devices. This highlights the severe impact of surgical stress on the results of subsequent behavioral measurements. Nonetheless, juvenile stress disrupted the circadian rhythmicity of body temperature and decreased circadian amplitude. It also induced chronic hypothermia during the dark phase of the day, when rats are most active. When subjected to acute social defeat stress as adults, juvenile stress had no impact on the SIH response relative to controls. However, 24 h later, juvenile stress rats displayed an elevated SIH response in anticipation of social defeat when re-exposed to the social defeat environment. Taken together, our findings indicate that juvenile stress can induce long-term alterations in body temperature regulation and heighten the increase in temperature associated with anticipation of social defeat. The outcomes of behavioral measurements in these experiments, however, are severely affected by surgical stress. PMID:21557956

  9. Sedentary Activity and Body Composition of Middle School Girls: The Trial of Activity for Adolescent Girls

    ERIC Educational Resources Information Center

    Pratt, Charlotte; Webber, Larry S.; Baggett, Chris D.; Ward, Dianne; Pate, Russell R.; Murray, David; Lohman, Timothy; Lytle, Leslie; Elder, John P.

    2008-01-01

    This study describes the relationships between sedentary activity and body composition in 1,458 sixth-grade girls from 36 middle schools across the United States. Multivariate associations between sedentary activity and body composition were examined with regression analyses using general linear mixed models. Mean age, body mass index, and…

  10. Relationships among Fitness, Body Composition, and Physical Activity

    PubMed Central

    LOHMAN, TIMOTHY G.; RING, KIMBERLY; PFEIFFER, KARIN; CAMHI, SARAH; ARREDONDO, ELVA; PRATT, CHARLOTTE; PATE, RUSS; WEBBER, LARRY S.

    2008-01-01

    Purpose This study was designed to examine the associations of physical activity and body composition with cardiorespiratory fitness in eighth grade girls. Methods A random sample of 1440 eighth grade girls at 36 schools participated in this cross-sectional investigation, which represented an ethnically and geographically diverse group. Cardiorespiratory fitness was assessed using a modified physical work capacity test on a cycle ergometer that predicted workload at a heart rate of 170 beats·min−1. Physical activity was assessed over 6 d in each girl using an accelerometer and body composition was estimated from body mass index and triceps skinfolds using a previously validated equation. Pearson correlations and multiple regression analyses were used to determine the relationships among fitness, physical activity, and body composition. Results Significant linear relationships among cardiorespiratory fitness, body composition, and physical activity were found. The combination of fat and fat-free mass along with racial group and a race by fat-free-mass interaction accounted for 18% (R2) of the variation in physical fitness. Adding moderate-to-vigorous physical activity to the regression model increased the R2 to 22%. Black girls had somewhat lower fitness levels (P < 0.05) especially at higher levels of fat and fat-free mass than other racial/ethnic groups. Conclusions Physical activity, fat-free mass, and the interaction between fat-free mass and racial group are significantly associated with cardiorespiratory fitness in adolescent girls. PMID:18460987

  11. Extracellular hyperosmolality and body temperature during physical exercise in dogs

    NASA Technical Reports Server (NTRS)

    Kozlowski, S.; Greenleaf, J. E.; Turlejska, E.; Nazar, K.

    1980-01-01

    The purpose of this study was to test the hypothesis that thermoregulation during exercise can be affected by extracellular fluid hyperosmolality without changing the plasma Na(+) concentration. The effects of preexercise venous infusions of hypertonic mannitol and NaCl solutions on rectal temperature responses were compared in dogs running at moderate intensity for 60 min on a treadmill. Plasma Na(+) concentration was increased by 12 meq after NaCl infusion, and decreased by 9 meq after mannitol infusion. Both infusions increased plasma by 15 mosmol/kg. After both infusions, rectal temperature was essentially constant during 60 min rest. However, compared with the noninfusion exercise increase in osmolality of 1.3 C, rectal temperature increased by 1.9 C after both postinfusion exercise experiments. It was concluded that inducing extracellular hyperosmolality, without elevating plasma, can induce excessive increases in rectal temperature during exericse but not at rest.

  12. Low Temperature and Polyploidy Result in Larger Cell and Body Size in an Ectothermic Vertebrate.

    PubMed

    Hermaniuk, Adam; Rybacki, Mariusz; Taylor, Jan R E

    2016-01-01

    Previous studies reported that low temperatures result in increases in both cell size and body size in ectotherms that may explain patterns of geographic variation of their body size across latitudinal ranges. Also, polyploidy showed the same effect on body size in invertebrates. In vertebrates, despite their having larger cells, no clear effect of polyploidy on body size has been found. This article presents the relationship between temperature, cell size, growth rate, and body size in diploid and polyploid hybridogenetic frog Pelophylax esculentus reared as tadpoles at 19° and 24°C. The size of cells was larger in both diploid and triploid tadpoles at 19°C, and triploids had larger cells at both temperatures. In diploid and triploid froglets, the temperature in which they developed as tadpoles did not affect the size of their cells, but triploids still had larger cells. Triploid tadpoles grew faster than diploids at 19°C and had larger body mass; there was no clear difference between ploidies in growth rate at 24°C. This indicates better adaptation of triploid tadpoles to cold environment. This is the first report on the increase of body mass of a polyploid vertebrate caused by low temperature, and we showed relationship between increase in cell size and increased body mass. The large body mass of triploids may provide a selective advantage, especially in colder environments, and this may explain the prevalence of triploids in the northern parts of the geographic range of P. esculentus. PMID:27082722

  13. The effect of stress on core and peripheral body temperature in humans.

    PubMed

    Vinkers, Christiaan H; Penning, Renske; Hellhammer, Juliane; Verster, Joris C; Klaessens, John H G M; Olivier, Berend; Kalkman, Cor J

    2013-09-01

    Even though there are indications that stress influences body temperature in humans, no study has systematically investigated the effects of stress on core and peripheral body temperature. The present study therefore aimed to investigate the effects of acute psychosocial stress on body temperature using different readout measurements. In two independent studies, male and female participants were exposed to a standardized laboratory stress task (the Trier Social Stress Test, TSST) or a non-stressful control task. Core temperature (intestinal and temporal artery) and peripheral temperature (facial and body skin temperature) were measured. Compared to the control condition, stress exposure decreased intestinal temperature but did not affect temporal artery temperature. Stress exposure resulted in changes in skin temperature that followed a gradient-like pattern, with decreases at distal skin locations such as the fingertip and finger base and unchanged skin temperature at proximal regions such as the infra-clavicular area. Stress-induced effects on facial temperature displayed a sex-specific pattern, with decreased nasal skin temperature in females and increased cheek temperature in males. In conclusion, the amplitude and direction of stress-induced temperature changes depend on the site of temperature measurement in humans. This precludes a direct translation of the preclinical stress-induced hyperthermia paradigm, in which core temperature uniformly rises in response to stress to the human situation. Nevertheless, the effects of stress result in consistent temperature changes. Therefore, the present study supports the inclusion of body temperature as a physiological readout parameter of stress in future studies. PMID:23790072

  14. Inclusion bodies and purification of proteins in biologically active forms.

    PubMed

    Mukhopadhyay, A

    1997-01-01

    Even though recombinant DNA technology has made possible the production of valuable therapeutic proteins, its accumulation in the host cell as inclusion body poses serious problems in the recovery of functionally active proteins. In the last twenty years, alternative techniques have been evolved to purify biologically active proteins from inclusion bodies. Most of these remain only as inventions and very few are commercially exploited. This review summarizes the developments in isolation, refolding and purification of proteins from inclusion bodies that could be used for vaccine and non-vaccine applications. The second section involves a discussion on inclusion bodies, how they are formed, and their physicochemical properties. In vivo protein folding in Escherichia coli and kinetics of in vitro protein folding are the subjects of the third and fourth sections respectively. The next section covers the recovery of bioactive protein from inclusion bodies: it includes isolation of inclusion body from host cell debris, purification in denatured state alternate refolding techniques, and final purification of active molecules. Since purity and safety are two important issues in therapeutic grade proteins, the following three sections are devoted to immunological and biological characterization of biomolecules, nature, and type of impurities normally encountered, and their detection. Lastly, two case studies are discussed to demonstrate the sequence of process steps involved. PMID:8939059

  15. Puna Dacite: Likely Temperature, Viscosity, Origin, Size, and Parent Body Nature

    NASA Astrophysics Data System (ADS)

    Marsh, B.; Teplow, W.; Reagan, M.; Sims, K.

    2008-12-01

    This is very likely the first accidental encounter of an in situ live magma within Earth. The importance of this occurrence to the possible ongoing interrogation of an active, docile magma cannot be overemphasized. Here we report on inferences on the nature of the magma and its relation to a parent basaltic body. The Glass: In oil the glass is colorless with 5-8 % euhedral, nonquench crystals of plagioclase, Fe-Ti oxide, orthopyroxene, and apatite. There is no vesiculation and the glass is unstructured except for patches of perhaps incipient spherulite and swirls, which may reflect drilling shear and quenching. Temperature: The temperature is inferred first using the bulk glass composition and matching the visually estimated crystallinity to that computed by MELTS, giving a temperature of 1050 C. Second, from a likely basaltic parent composition (1955 basalt) and matching the glass composition to the residual melt from protracted crystallization in MELTS, also gives a temperature of 1050 C. Comparing the dacite to the observed compositions of interstitial melts from the lava lakes, suggests a slightly higher temperature of 1065 C, reflecting the different parent basalt. One atm melting experiments confirm the former T. Magma Viscosity: The flow up the drill hole (25.88 cm diameter) can be used to estimate viscosity by calculating the time necessary for melt of a given viscosity to flow under a given pressure gradient a given distance up the drill hole. The melt flowed upward approximately 5.5.m in a few minutes. The most elusive part of the calculation involves estimating the pressure gradient driving the flow. The lithostatic load based on the depth (~2.54 km) is about 0.65 kb, which is assumed to act over a characteristic distance of about 2 m (lens size) to give a characteristic pressure gradient. Pipe flow yields a characteristic viscosity of 3.8 x 107 p. An independent calculation from MELTS using only melt composition, temperature, water content (zero), and

  16. Elevational variation in body-temperature response to immune challenge in a lizard.

    PubMed

    Zamora-Camacho, Francisco Javier; Reguera, Senda; Moreno-Rueda, Gregorio

    2016-01-01

    Immunocompetence benefits animal fitness by combating pathogens, but also entails some costs. One of its main components is fever, which in ectotherms involves two main types of costs: energy expenditure and predation risk. Whenever those costs of fever outweigh its benefits, ectotherms are expected not to develop fever, or even to show hypothermia, reducing costs of thermoregulation and diverting the energy saved to other components of the immune system. Environmental thermal quality, and therefore the thermoregulation cost/benefit balance, varies geographically. Hence, we hypothesize that, in alpine habitats, immune-challenged ectotherms should show no thermal response, given that (1) hypothermia would be very costly, as the temporal window for reproduction is extremely small, and (2) fever would have a prohibitive cost, as heat acquisition is limited in such habitat. However, in temperate habitats, immune-challenged ectotherms might show a febrile response, due to lower cost/benefit balance as a consequence of a more suitable thermal environment. We tested this hypothesis in Psammodromus algirus lizards from Sierra Nevada (SE Spain), by testing body temperature preferred by alpine and non-alpine lizards, before and after activating their immune system with a typical innocuous pyrogen. Surprisingly, non-alpine lizards responded to immune challenge by decreasing preferential body-temperature, presumably allowing them to save energy and reduce exposure to predators. On the contrary, as predicted, immune-challenged alpine lizards maintained their body-temperature preferences. These results match with increased costs of no thermoregulation with elevation, due to the reduced window of time for reproduction in alpine environment. PMID:27168981

  17. Elevational variation in body-temperature response to immune challenge in a lizard

    PubMed Central

    Reguera, Senda; Moreno-Rueda, Gregorio

    2016-01-01

    Immunocompetence benefits animal fitness by combating pathogens, but also entails some costs. One of its main components is fever, which in ectotherms involves two main types of costs: energy expenditure and predation risk. Whenever those costs of fever outweigh its benefits, ectotherms are expected not to develop fever, or even to show hypothermia, reducing costs of thermoregulation and diverting the energy saved to other components of the immune system. Environmental thermal quality, and therefore the thermoregulation cost/benefit balance, varies geographically. Hence, we hypothesize that, in alpine habitats, immune-challenged ectotherms should show no thermal response, given that (1) hypothermia would be very costly, as the temporal window for reproduction is extremely small, and (2) fever would have a prohibitive cost, as heat acquisition is limited in such habitat. However, in temperate habitats, immune-challenged ectotherms might show a febrile response, due to lower cost/benefit balance as a consequence of a more suitable thermal environment. We tested this hypothesis in Psammodromus algirus lizards from Sierra Nevada (SE Spain), by testing body temperature preferred by alpine and non-alpine lizards, before and after activating their immune system with a typical innocuous pyrogen. Surprisingly, non-alpine lizards responded to immune challenge by decreasing preferential body-temperature, presumably allowing them to save energy and reduce exposure to predators. On the contrary, as predicted, immune-challenged alpine lizards maintained their body-temperature preferences. These results match with increased costs of no thermoregulation with elevation, due to the reduced window of time for reproduction in alpine environment. PMID:27168981

  18. Effects of GABA agonists on body temperature regulation in GABAB(1)−/− mice

    PubMed Central

    Quéva, Christophe; Bremner-Danielsen, Marianne; Edlund, Anders; Jonas Ekstrand, A; Elg, Susanne; Erickson, Sven; Johansson, Thore; Lehmann, Anders; Mattsson, Jan P

    2003-01-01

    Activation of GABAB receptors evokes hypothermia in wildtype (GABAB(1)+/+) but not in GABAB receptor knockout (GABAB(1)−/−) mice. The aim of the present study was to determine the hypothermic and behavioural effects of the putative GABAB receptor agonist γ-hydroxybutyrate (GHB), and of the GABAA receptor agonist muscimol. In addition, basal body temperature was determined in GABAB(1)+/+, GABAB(1)+/− and GABAB(1)−/− mice. GABAB(1)−/− mice were generated by homologous recombination in embryonic stem cells. Correct gene targeting was assessed by Southern blotting, PCR and Western blotting. GABAB receptor-binding sites were quantified with radioligand binding. Measurement of body temperature was done using subcutaneous temperature-sensitive chips, and behavioural changes after drug administration were scored according to a semiquantitative scale. GABAB(1)−/− mice had a short lifespan, probably caused by generalised seizure activity. No histopathological or blood chemistry changes were seen, but the expression of GABAB(2) receptor protein was below the detection limit in brains from GABAB(1)−/− mice, in the absence of changes in mRNA levels. GABAB receptor-binding sites were absent in brain membranes from GABAB(1)−/− mice. GABAB(1)−/− mice were hypothermic by approximately 1°C compared to GABAB(1)+/+ and GABAB(1)+/− mice. Injection of baclofen (9.6 mg kg−1) produced a large reduction in body temperature and behavioural effects in GABAB(1)+/+ and in GABAB(1)+/− mice, but GABAB(1)−/− mice were unaffected. The same pattern was seen after administration of GHB (400 mg kg−1). The GABAA receptor agonist muscimol (2 mg kg−1), on the other hand, produced a more pronounced hypothermia in GABAB(1)−/−mice. In GABAB(1)+/+ and GABAB(1)+/− mice, muscimol induced sedation and reduced locomotor activity. However, when given to GABAB(1)−/− mice, muscimol triggered periods of intense jumping and wild running. It is concluded that

  19. Changes in Body Temperature in Incomplete Spinal Cord Injury by Digital Infrared Thermographic Imaging

    PubMed Central

    Song, Yun-Gyu; Won, Yu Hui; Park, Sung-Hee; Ko, Myoung-Hwan

    2015-01-01

    Objective To investigate changes in the core temperature and body surface temperature in patients with incomplete spinal cord injuries (SCI). In incomplete SCI, the temperature change is difficult to see compared with complete spinal cord injuries. The goal of this study was to better understand thermal regulation in patients with incomplete SCI. Methods Fifty-six SCI patients were enrolled, and the control group consisted of 20 healthy persons. The spinal cord injuries were classified according to International Standards for Neurological Classification of Spinal Cord Injury. The patients were classified into two groups: upper (neurological injury level T6 or above) and lower (neurological injury level T7 or below) SCIs. Body core temperature was measured using an oral thermometer, and body surface temperature was measured using digital infrared thermographic imaging. Results Twenty-nine patients had upper spinal cord injuries, 27 patients had lower SCIs, and 20 persons served as the normal healthy persons. Comparing the skin temperatures of the three groups, the temperatures at the lower abdomen, anterior thigh and anterior tibia in the patients with upper SCIs were lower than those of the normal healthy persons and the patients with lower SCIs. No significant temperature differences were observed between the normal healthy persons and the patients with lower SCIs. Conclusion In our study, we found thermal dysregulation in patients with incomplete SCI. In particular, body surface temperature regulation was worse in upper SCIs than in lower injuries. Moreover, cord injury severity affected body surface temperature regulation in SCI patients. PMID:26605167

  20. [The temperature and temperature gradients distribution in the rabbit body thermophysical model with evaporation of moisture from its surface].

    PubMed

    Rumiantsev, G V

    2004-04-01

    On created in laboratory heat-physical model of a rabbit body reflecting basic heat-physical parameters of the body such as: weight, size of a relative surface, heat absorption and heat conduction, heat capacity etc., a change of radial distribution of temperature and size was found across a superficial layer of evaporation of water from its surface, that simulates sweating, with various ratio of environmental temperature and capacity of electrical heater simulating heat production in animal. The experiments have shown that with evaporation of moisture from a surface of model in all investigated cases, there is an increase of superficial layer of body of a temperature gradient and simultaneous decrease of temperature of a model inside and on the surface. It seems that, with evaporation of a moisture from a surface of a body, the size of a temperature gradient in a thin superficial layer dependent in our experiments on capacity for heat production and environmental temperature, is increased and can be used in a live organism for definition of change in general heat content of the body with the purpose of maintenance of its thermal balance with environment. PMID:15296069

  1. Prediction of human core body temperature using non-invasive measurement methods

    NASA Astrophysics Data System (ADS)

    Niedermann, Reto; Wyss, Eva; Annaheim, Simon; Psikuta, Agnes; Davey, Sarah; Rossi, René Michel

    2014-01-01

    The measurement of core body temperature is an efficient method for monitoring heat stress amongst workers in hot conditions. However, invasive measurement of core body temperature (e.g. rectal, intestinal, oesophageal temperature) is impractical for such applications. Therefore, the aim of this study was to define relevant non-invasive measures to predict core body temperature under various conditions. We conducted two human subject studies with different experimental protocols, different environmental temperatures (10 °C, 30 °C) and different subjects. In both studies the same non-invasive measurement methods (skin temperature, skin heat flux, heart rate) were applied. A principle component analysis was conducted to extract independent factors, which were then used in a linear regression model. We identified six parameters (three skin temperatures, two skin heat fluxes and heart rate), which were included for the calculation of two factors. The predictive value of these factors for core body temperature was evaluated by a multiple regression analysis. The calculated root mean square deviation (rmsd) was in the range from 0.28 °C to 0.34 °C for all environmental conditions. These errors are similar to previous models using non-invasive measures to predict core body temperature. The results from this study illustrate that multiple physiological parameters (e.g. skin temperature and skin heat fluxes) are needed to predict core body temperature. In addition, the physiological measurements chosen in this study and the algorithm defined in this work are potentially applicable as real-time core body temperature monitoring to assess health risk in broad range of working conditions.

  2. Changes in body core temperatures and heat balance after an abrupt release of lower body negative pressure in humans

    NASA Astrophysics Data System (ADS)

    Tanabe, Minoru; Shido, Osamu

    1994-03-01

    Changes in body core temperature ( T cor) and heat balance after an abrupt release of lower body negative pressure (LBNP) were investigated in 5 volunteers under the following conditions: (1) an ambient temperature ( T a) of 20 °C or (2) 35 °C, and (3) T a of 25 °C with a leg skin temperature of 30°C or (4) 35°C. The leg skin temperature was controlled with water perfusion devices wound around the legs. Rectal ( T re), tympanic ( T ty) and esophageal ( T es) temperatures, skin temperatures (7 sites) and oxygen consumption were measured. The intensity of LBNP was adjusted so that the amount of blood pooled in the legs was the same under all conditions. When a thermal balance was attained during LBNP, application of LBNP was suddenly halted. The skin temperatures increased significantly after the release of LBNP under all conditions, while oxygen consumption hardly changed. The release of LBNP caused significant falls in T cor s under conditions (1) and (3), but lowered T cor s very slightly under conditions (2) and (4). The changes in T es were always more rapid and greater than those of T ty and T re. The falls in T ty and T re appeared to be explained by changes in heat balance, whereas the sharp drop of T es could not be explained especially during the first 8 min after the release of LBNP. The results suggest that a fall in T cor after a release of LBNP is attributed to an increase in heat loss due to reflexive skin vasodilation and is dependent on the temperature of venous blood returning from the lower body. It is presumed that T es may not be an appropriate indicator for T cor when venous return changes rapidly.

  3. REVIEW OF TERMS FOR REGULATED VERSUS FORCED, NEUROCHEMICAL-INDUCED CHANGES IN BODY TEMPERATURE

    EPA Science Inventory

    Deviations of the body temperature of homeothermic animals may be regulated or forced. A regulated change in core temperature is caused by a natural or synthetic compound that displaces the set-point temperature. A forced shift occurs when an excessive environmental or endogenous...

  4. Effect of heat stress on body temperature in healthy early postpartum dairy cows.

    PubMed

    Burfeind, O; Suthar, V S; Heuwieser, W

    2012-12-01

    Measurement of body temperature is the most common method for an early diagnosis of sick cows in fresh cow protocols currently used on dairy farms. Thresholds for fever range from 39.4 °C to 39.7 °C. Several studies attempted to describe normal temperature ranges for healthy dairy cows in the early puerperium. However, the definition of a healthy cow is variable within these studies. It is challenging to determine normal temperature ranges for healthy cows because body temperature is usually included in the definition. Therefore, the objectives of this study were to identify factors that influence body temperature in healthy dairy cows early postpartum and to determine normal temperature ranges for healthy cows that calved in a moderate (temperature humidity index: 59.8 ± 3.8) and a hot period (temperature humidity index: 74.1 ± 4.4), respectively, excluding body temperature from the definition of the health status. Furthermore, the prevalence of fever was calculated for both periods separately. A subset of 17 (moderate period) and 15 cows (hot period) were used for analysis. To ensure their uterine health only cows with a serum haptoglobin concentration ≤ 1.1 g/L were included in the analysis. Therefore, body temperature could be excluded from the definition. A vaginal temperature logger that measured vaginal temperature every 10 min was inserted from Day 2 to 10 after parturition. Additionally rectal temperature was measured twice daily. Day in milk (2 to 10), period (moderate and hot), and time of day had an effect on rectal and vaginal temperature. The prevalence of fever (≥ 39.5 °C) was 7.4% and 28.1% for rectal temperature in the moderate and hot period, respectively. For vaginal temperature (07.00 to 11.00 h) it was 10% and 33%, respectively, considering the same threshold and period. This study demonstrates that body temperature in the early puerperium is influenced by several factors (day in milk, climate, time of day). Therefore, these factors

  5. Emperor penguin body surfaces cool below air temperature.

    PubMed

    McCafferty, D J; Gilbert, C; Thierry, A-M; Currie, J; Le Maho, Y; Ancel, A

    2013-06-23

    Emperor penguins Aptenodytes forsteri are able to survive the harsh Antarctic climate because of specialized anatomical, physiological and behavioural adaptations for minimizing heat loss. Heat transfer theory predicts that metabolic heat loss in this species will mostly depend on radiative and convective cooling. To examine this, thermal imaging of emperor penguins was undertaken at the breeding colony of Pointe Géologie in Terre Adélie (66°40' S 140° 01' E), Antarctica in June 2008. During clear sky conditions, most outer surfaces of the body were colder than surrounding sub-zero air owing to radiative cooling. In these conditions, the feather surface will paradoxically gain heat by convection from surrounding air. However, owing to the low thermal conductivity of plumage any heat transfer to the skin surface will be negligible. Future thermal imaging studies are likely to yield further insights into the adaptations of this species to the Antarctic climate. PMID:23466479

  6. Emperor penguin body surfaces cool below air temperature

    PubMed Central

    McCafferty, D. J.; Gilbert, C.; Thierry, A.-M.; Currie, J.; Le Maho, Y.; Ancel, A.

    2013-01-01

    Emperor penguins Aptenodytes forsteri are able to survive the harsh Antarctic climate because of specialized anatomical, physiological and behavioural adaptations for minimizing heat loss. Heat transfer theory predicts that metabolic heat loss in this species will mostly depend on radiative and convective cooling. To examine this, thermal imaging of emperor penguins was undertaken at the breeding colony of Pointe Géologie in Terre Adélie (66°40′ S 140° 01′ E), Antarctica in June 2008. During clear sky conditions, most outer surfaces of the body were colder than surrounding sub-zero air owing to radiative cooling. In these conditions, the feather surface will paradoxically gain heat by convection from surrounding air. However, owing to the low thermal conductivity of plumage any heat transfer to the skin surface will be negligible. Future thermal imaging studies are likely to yield further insights into the adaptations of this species to the Antarctic climate. PMID:23466479

  7. Microchip transponder thermometry for monitoring core body temperature of antelope during capture.

    PubMed

    Rey, Benjamin; Fuller, Andrea; Hetem, Robyn S; Lease, Hilary M; Mitchell, Duncan; Meyer, Leith C R

    2016-01-01

    Hyperthermia is described as the major cause of morbidity and mortality associated with capture, immobilization and restraint of wild animals. Therefore, accurately determining the core body temperature of wild animals during capture is crucial for monitoring hyperthermia and the efficacy of cooling procedures. We investigated if microchip thermometry can accurately reflect core body temperature changes during capture and cooling interventions in the springbok (Antidorcas marsupialis), a medium-sized antelope. Subcutaneous temperature measured with a temperature-sensitive microchip was a weak predictor of core body temperature measured by temperature-sensitive data loggers in the abdominal cavity (R(2)=0.32, bias >2 °C). Temperature-sensitive microchips in the gluteus muscle, however, provided an accurate estimate of core body temperature (R(2)=0.76, bias=0.012 °C). Microchips inserted into muscle therefore provide a convenient and accurate method to measure body temperature continuously in captured antelope, allowing detection of hyperthermia and the efficacy of cooling procedures. PMID:26724197

  8. Skin sites to predict deep-body temperature while wearing firefighters' personal protective equipment during periodical changes in air temperature.

    PubMed

    Kim, Siyeon; Lee, Joo-Young

    2016-04-01

    The aim of this study was to investigate stable and valid measurement sites of skin temperatures as a non-invasive variable to predict deep-body temperature while wearing firefighters' personal protective equipment (PPE) during air temperature changes. Eight male firefighters participated in an experiment which consisted of 60-min exercise and 10-min recovery while wearing PPE without self-contained breathing apparatus (7.75 kg in total PPE mass). Air temperature was periodically fluctuated from 29.5 to 35.5 °C with an amplitude of 6 °C. Rectal temperature was chosen as a deep-body temperature, and 12 skin temperatures were recorded. The results showed that the forehead and chest were identified as the most valid sites to predict rectal temperature (R(2) = 0.826 and 0.824, respectively) in an environment with periodically fluctuated air temperatures. This study suggests that particular skin temperatures are valid as a non-invasive variable when predicting rectal temperature of an individual wearing PPE in changing ambient temperatures. Practitioner Summary: This study should offer assistance for developing a more reliable indirect indicating system of individual heat strain for firefighters in real time, which can be used practically as a precaution of firefighters' heat-related illness and utilised along with physiological monitoring. PMID:26214379

  9. A review of terms for regulated vs. forced, neurochemical-induced changes in body temperature.

    PubMed

    Gordon, C J

    1983-03-21

    Deviations of the body temperature of homeothermic animals may be regulated or forced. A regulated change in core temperature is caused by a natural or synthetic compound that displaces the set-point temperature. A forced shift occurs when an excessive environmental or endogenous heat load, or heat sink, exceeds the body's capacity to thermoregulate but does not affect set-point. A fever is the paradigm of a regulated increase in body temperature, but the term fever has acquired a strict pathological definition over the past two decades. Consequently, other forms of nonpathological, regulated elevations in body temperature have generally been classified as hyperthermia; and decreases in core temperature--either forced or regulated--have generally been classified as hypothermia. Since the terms hyperthermia and hypothermia fail to distinguish a regulated vs. a forced temperature change, a confusion of terms has been created in the literature. It would appear that "resisted or unregulated hyperthermia" and "hypothermia," respectively, are appropriate terms for describing a forced increase and decrease in core temperature. A nonpathological but regulated elevation in temperature may be defined as unresisted or regulated hyperthermia, whereas a regulated decrease in temperature may be termed unresisted or regulated hypothermia. This simple scheme appears to be the most practical means for distinguishing between forced and regulated changes in core temperature. PMID:6339853

  10. Prostaglandins, endotoxin and lipid A on body temperature in rats.

    PubMed Central

    Feldberg, W; Saxena, P N

    1975-01-01

    1. In unanaesthetized restrained rats kept at an ambient temperature of 21-23degrees C, rectal temperature was continuously monitored and the temperature effects of injections of prostaglandins, endotoxin from Salmonella abortus equi, lipid A, and antipyretics were examined. 2. Fever occurred when prostaglandin E1, E2, F1alpha or F2alpha (PGE1, PGE2, PGF1alpha, PGF2alpha) was injected into the cerebral ventricles in doses of 200 ng and 2 mug. PGE2 was the most potent prostaglandin followed in descending order by PGE1, PGF2alpha, and PGF1alpha. The fever produced by 2 mug of PGE1 and PGE2 was short and followed by a fall in temperature to below the pre-injection level. 3. I.V. injections of endotoxin and lipid A in doses of 3 or 10 mug usually caused a long lasting fall in temperature, but when injected into the cerebral ventricles in doses of 400 ng or 1 mug, they produced long lasting fevers. 4. Injected I.V. or I.P., indomethacin and paracetamol had a hypothermic action of their own. Indomethacin was more potent than paracetamol and both were more potent than injected I.P. 5. I.V. and I.P. injections of indomethacin and paracetamol did not reverse the hypothermia in response to I.V. endotoxin or lipid A, but the fever responses to their injection into the cerebral ventricles were prevented and abolished by the antipyretics. 6. It is concluded that in rats endotoxin and lipid A, or the endogenous pyrogens produced by them, do not readily pass through the blood-brain barrier into the brain tissue. If they do reach brain tissue, as when injected into the cerebral ventricles, they stimulate synthesis and release of prostaglandin in rats as they do in other species, and thereby produce fever. The hypothermia in response to I.V. endotoxin or lipid A, on the other hand, is thought to be independent of prostaglandin synthesis and to result from a direct toxic action on the skin vessels. PMID:1177107

  11. Standard energy metabolism of a desert harvester ant, Pogonomyrmex rugosus: Effects of temperature, body mass, group size, and humidity

    SciTech Connect

    Lighton, J.R.B.; Bartholomew, G.A. )

    1988-07-01

    Pogonomyrmex rugosus is an important seed predator in the Mojave Desert of the southwestern United States. Its standard rate of O{sub 2} consumption (Vo{sub 2}) varied significantly with temperature. The ratio of the Vo{sub 2} values at 10{degree}C increments in body temperature, Q{sub 10}, also varied with temperature; methods of calculating Vo{sub 2} from temperature with a shifting Q{sub 10} are described. Vo{sub 2} also varied with body mass. Vo{sub 2} was inversely related to relative humidity and was independent of group size. The rise in Vo{sub 2} at low relative humidities was caused by increased activity and resulted in higher rates of net water loss. The primary metabolic adaptation to xeric conditions in P. rugosus appears to be a lower-than-predicted metabolic rate.

  12. Active and passive stabilization of body pitch in insect flight

    PubMed Central

    Ristroph, Leif; Ristroph, Gunnar; Morozova, Svetlana; Bergou, Attila J.; Chang, Song; Guckenheimer, John; Wang, Z. Jane; Cohen, Itai

    2013-01-01

    Flying insects have evolved sophisticated sensory–motor systems, and here we argue that such systems are used to keep upright against intrinsic flight instabilities. We describe a theory that predicts the instability growth rate in body pitch from flapping-wing aerodynamics and reveals two ways of achieving balanced flight: active control with sufficiently rapid reactions and passive stabilization with high body drag. By glueing magnets to fruit flies and perturbing their flight using magnetic impulses, we show that these insects employ active control that is indeed fast relative to the instability. Moreover, we find that fruit flies with their control sensors disabled can keep upright if high-drag fibres are also attached to their bodies, an observation consistent with our prediction for the passive stability condition. Finally, we extend this framework to unify the control strategies used by hovering animals and also furnish criteria for achieving pitch stability in flapping-wing robots. PMID:23697713

  13. Effects of room temperature on physiological and subjective responses during whole-body bathing, half-body bathing and showering.

    PubMed

    Hashiguchi, Nobuko; Ni, Furong; Tochihara, Yutaka

    2002-11-01

    The effects of bathroom thermal conditions on physiological and subjective responses were evaluated before, during, and after whole-body bath (W-bath), half-body bath (H-bath) and showering. The air temperature of the dressing room and bathroom was controlled at 10 degrees C, 17.5 degrees C, and 25 degrees C. Eight healthy males bathed for 10 min under nine conditions on separate days. The water temperature of the bathtub and shower was controlled at 40 degrees C and 41 degrees C, respectively. Rectal temperature (Tre), mean skin temperature (Tsk), blood pressure (BP), heart rate (HR), body weight loss and blood characteristics (hematocrit: Hct, hemoglobin: Hb) were evaluated. Also, thermal sensation (TS), thermal comfort (TC) and thermal acceptability (TA) were recorded. BP decreased rapidly during W-bath and H-bath compared to showering. HR during W-bath was significantly higher than for H-bath and showering (p < 0.01). The double products due to W-bath during bathing were also greater than for H-bath and showering (p < 0.05). There were no distinct differences in Hct and Hb among the nine conditions. However, significant differences in body weight loss were observed among the bathing methods: W-bath > H-bath > showering (p < 0.001). W-bath showed the largest increase in Tre and Tsk, followed by H-bath, and showering. Significant differences in Tre after bathing among the room temperatures were found only at H-bath. The changes in Tre after bathing for H-bath at 25 degrees C were similar to those for W-bath at 17.5 degrees C and 10 degrees C. TS and TC after bathing significantly differed for the three bathing methods at 17.5 degrees C and 10 degrees C (TS: p < 0.01 TC: p < 0.001). Especially, for showering, the largest number of subjects felt "cold" and "uncomfortable". Even though all of the subjects could accept the 10 degrees C condition after W-bath, such conditions were intolerable to half of them after showering. These results suggested that the

  14. 77 FR 39259 - Agency Information Collection Activities; Proposed Collection; Comments Requested: Body Armor in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-02

    ... Information Collection Activities; Proposed Collection; Comments Requested: Body Armor in Correctional...: Body Armor in Correctional Institutions Survey. The collections include the forms Body Armor Administrative Agency-Level Survey and Body Armor Individual-level Correctional Officer Survey. (3) Agency...

  15. Comparison of remotely acquired deep-body and subdermal temperature measurements for detecting fever in cattle

    SciTech Connect

    Seawright, G.L.; Brown, R.R.; Campbell, K.; Levings, R.L.; Araki, C.T.

    1983-01-01

    Results of two studies in which deep-body and subdermal temperatures were compared with fevers that were experimentally induced with viruses are given. In the first study, test animals were held indoors where ambient temperatures were stable; in the second study, animals were held outdoors during the winter months when temperatures were highly variable. A computerized temperature telemetry system used for the studies is described for the first time. (PSB)

  16. Glucose Infusion into Exercising Dogs after Confinement: Rectal and Active Muscle Temperatures

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Kruk, B.; Nazar, K.; Falecka-Wieczorek, I.; Kaciuba-Uscilko, H.

    1995-01-01

    Intravenous glucose infusion into ambulatory dogs results in attenuation of exercise-induced increase of both rectal and thigh muscle temperatures. That glucose (Glu) infusion attenuates excessive increase in body temperature from restricted activity during confinement deconditioning. Intravenous glucose infusion attenuates the rise in exercise core temperature in deconditioned dogs by a yet undefined mechanism.

  17. Thermal Imaging of Body Surface Temperature Distribution in Women with Anorexia Nervosa.

    PubMed

    Chudecka, Monika; Lubkowska, Anna

    2016-01-01

    The drastic reduction in body weight observed in anorexia nervosa (AN) leads to various endocrine changes and consequently to disturbance in thermoregulation mechanisms and body temperature. Thermography allows for a noninvasive diagnosis of the distribution of skin surface temperatures, which is especially important for difficult patients such as women with AN, who are often very sensitive and difficult to treat. The main aim of this study was to measure the mean temperatures (Tmean ) of selected body areas in young women diagnosed with AN and identify those areas where the temperature differences were particularly significant between healthy women and them. Additionally, we determined the relationships between body mass index, body composition (especially subcutaneous and VFM) and the value of mean surface temperature (Tmean ) in AN woman. In the subjects with AN, Tmean of the abdomen, lower back and thighs were significantly higher than in the reference group, while Tmean of the hands were significantly lower. Among other things, analysis showed a significant negative correlation between Tmean of the abdomen, lower back and thighs, and the mass of subcutaneous and visceral fat. The lower Tmean of the hand was directly proportional to the reduced anthropomorphic parameters. The direct evaluation of body surface temperature distribution could provide clinical implications for the treatment of anorexic patients, including the potential use of thermotherapy in stimulating the circulatory system, especially in hypothermia, bradycardia and hypotension. PMID:26234441

  18. Body temperature-related structural transitions of monotremal and human hemoglobin.

    PubMed

    Digel, I; Maggakis-Kelemen, Ch; Zerlin, K F; Linder, Pt; Kasischke, N; Kayser, P; Porst, D; Temiz Artmann, A; Artmann, G M

    2006-10-15

    In this study, temperature-related structural changes were investigated in human, duck-billed platypus (Ornithorhynchus anatinus, body temperature T(b) = 31-33 degrees C), and echidna (Tachyglossus aculeatus, body temperature T(b) = 32-33 degrees C) hemoglobin using circular dichroism spectroscopy and dynamic light scattering. The average hydrodynamic radius (R(h)) and fractional (normalized) change in the ellipticity (F(obs)) at 222 +/- 2 nm of hemoglobin were measured. The temperature was varied stepwise from 25 degrees C to 45 degrees C. The existence of a structural transition of human hemoglobin at the critical temperature T(c) between 36-37 degrees C was previously shown by micropipette aspiration experiments, viscosimetry, and circular dichroism spectroscopy. Based on light-scattering measurements, this study proves the onset of molecular aggregation at T(c). In two different monotremal hemoglobins (echidna and platypus), the critical transition temperatures were found between 32-33 degrees C, which are close to the species' body temperature T(b). The data suggest that the correlation of the structural transition's critical temperature T(c) and the species' body temperature T(b) is not mere coincidence but, instead, is a more widespread structural phenomenon possibly including many other proteins. PMID:16844747

  19. Considerations for the measurement of core, skin and mean body temperatures.

    PubMed

    Taylor, Nigel A S; Tipton, Michael J; Kenny, Glen P

    2014-12-01

    Despite previous reviews and commentaries, significant misconceptions remain concerning deep-body (core) and skin temperature measurement in humans. Therefore, the authors have assembled the pertinent Laws of Thermodynamics and other first principles that govern physical and physiological heat exchanges. The resulting review is aimed at providing theoretical and empirical justifications for collecting and interpreting these data. The primary emphasis is upon deep-body temperatures, with discussions of intramuscular, subcutaneous, transcutaneous and skin temperatures included. These are all turnover indices resulting from variations in local metabolism, tissue conduction and blood flow. Consequently, inter-site differences and similarities may have no mechanistic relationship unless those sites have similar metabolic rates, are in close proximity and are perfused by the same blood vessels. Therefore, it is proposed that a gold standard deep-body temperature does not exist. Instead, the validity of each measurement must be evaluated relative to one's research objectives, whilst satisfying equilibration and positioning requirements. When using thermometric computations of heat storage, the establishment of steady-state conditions is essential, but for clinically relevant states, targeted temperature monitoring becomes paramount. However, when investigating temperature regulation, the response characteristics of each temperature measurement must match the forcing function applied during experimentation. Thus, during dynamic phases, deep-body temperatures must be measured from sites that track temperature changes in the central blood volume. PMID:25455943

  20. A comparison of rectal and subcutaneous body temperature measurement in the common marmoset.

    PubMed

    Cilia, J; Piper, D C; Upton, N; Hagan, J J

    1998-07-01

    Two methods of measuring body temperature were compared in common marmosets. Subcutaneous temperatures were measured remotely via previously implanted subcutaneous microchips (Plexx BV, IPTT-100) prior to measurement of rectal temperature using a conventional rectal probe. Marmosets were treated with saline or the brain penetrant, 5-HT1A/B/D receptor agonist SKF-99101H (3-(2-dimethylaminoethyl)-4-chloro-5-propoxyindole hemifumarate) (0.3-3 mg/kg SC), which has previously been shown to induce hypothermia in guinea pigs. Body temperature was sampled immediately before drug administration and at 30-min intervals thereafter for a period of 2.5 h. SKF-99101H dose-dependently induced hypothermia in the common marmoset and there was close agreement between rectal and subcutaneous body temperatures, with an average difference in absolute body temperature of 0.26+/-0.02 degrees C. The data show that subcutaneously implanted microchips provide a simple, reliable measure of body temperature in common marmosets which is sensitive to pharmacological intervention, minimizes handling induced stress, and is minimally invasive. PMID:9920530

  1. Circadian rhythm of body temperature during prolonged undersea voyages.

    PubMed

    Colquhoun, W P; Paine, M W; Fort, A

    1978-05-01

    Circadian rhythms of oral temperature were assessed in 12 watchkeepers during a prolonged submarine voyage and compared with a "standard" rhythm obtained from nonwatchkeepers ashore. Initially, the parameters of the rhythms were similar to those of the standard; however, among eight ratings working 4-h watches in a rapidly rotating cycle, considerable changes in the rhythms occurred as the voyage progressed, and concurrent alterations in sleep patterning were observed. The most characteristic change in the rhythm was a marked decline in its amplitude. In most subjects, the rhythm also tended to depart from its original circadian pattern; in at least one case, it effectively disintegrated. One subject's rhythm appeared to "free-run" with a period greater than 24 h. A strong circadian rhythm was maintained in only one of these eight subjects. In four officers whose watch times were at fixed hours, adaptation of the rhythm to unusual times of sleep occurred in 2 of 3 cases where the schedule demanded it. The results are discussed in relation to the design of optimal watchkeeping systems for submariners. PMID:655989

  2. Dynamic recruitment of active proteasomes into polyglutamine initiated inclusion bodies.

    PubMed

    Schipper-Krom, Sabine; Juenemann, Katrin; Jansen, Anne H; Wiemhoefer, Anne; van den Nieuwendijk, Rianne; Smith, Donna L; Hink, Mark A; Bates, Gillian P; Overkleeft, Hermen; Ovaa, Huib; Reits, Eric

    2014-01-01

    Neurodegenerative disorders such as Huntington's disease are hallmarked by neuronal intracellular inclusion body formation. Whether proteasomes are irreversibly recruited into inclusion bodies in these protein misfolding disorders is a controversial subject. In addition, it has been proposed that the proteasomes may become clogged by the aggregated protein fragments, leading to impairment of the ubiquitin-proteasome system. Here, we show by fluorescence pulse-chase experiments in living cells that proteasomes are dynamically and reversibly recruited into inclusion bodies. As these recruited proteasomes remain catalytically active and accessible to substrates, our results challenge the concept of proteasome sequestration and impairment in Huntington's disease, and support the reported absence of proteasome impairment in mouse models of Huntington's disease. PMID:24291262

  3. Effects of reproductive status and high ambient temperatures on the body temperature of a free-ranging basoendotherm.

    PubMed

    Levesque, Danielle L; Lobban, Kerileigh D; Lovegrove, Barry G

    2014-12-01

    Tenrecs (Order Afrosoricida) exhibit some of the lowest body temperatures (T b) of any eutherian mammal. They also have a high level of variability in both active and resting T bs and, at least in cool temperatures in captivity, frequently employ both short- and long-term torpor. The use of heterothermy by captive animals is, however, generally reduced during gestation and lactation. We present data long-term T b recordings collected from free-ranging S. setosus over the course of two reproductive seasons. In general, reproductive females had slightly higher (~32 °C) and less variable T b, whereas non-reproductive females and males showed both a higher propensity for torpor as well as lower (~30.5 °C) and more variable rest-phase T bs. Torpor expression defined using traditional means (using a threshold or cut-off T b) was much lower than predicted based on the high degree of heterothermy in captive tenrecs. However, torpor defined in this manner is likely to be underestimated in habitats where ambient temperature is close to T b. Our results caution against inferring metabolic states from T b alone and lend support to the recent call to define torpor in free-ranging animals based on mechanistic and not descriptive variables. In addition, lower variability in T b observed during gestation and lactation confirms that homeothermy is essential for reproduction in this species and probably for basoendothermic mammals in general. The relatively low costs of maintaining homeothermy in a sub-tropical environment might help shed light on how homeothermy could have evolved incrementally from an ancestral heterothermic condition. PMID:25155185

  4. A study on the measurement of the core body temperature change after radiofrequency ablation (RFA) through MR temperature mapping

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Bok; Dong, Kyung-Rae; Yu, Young; Chung, Woon-Kwan; Cho, Jae-Hwan; Joo, Kyu-Ji

    2013-09-01

    This study examined the change in the heat generated during radiofrequency ablation (RFA) using a self-manufactured phantom and used magnetic resonance imaging (MRI) to analyze the change in the temperature of the core body and the tissues surrounding the phantom. In this experiment, the image and the phase image were obtained simultaneously from a gradient echo-based sequence using 1.5-Tesla MRI equipment and a 12-channel head coil. The temperature mapping technique was used to calculate the change in temperature. The regions of interest (ROIs) (ROI 1 - ROI 6) were set with a focus on the area where the RFA was performed, according to the temperature distribution, before monitoring the temperature change for one hour in time intervals of five minutes. The results showed that the temperature change in the ROI with time was largest in the ROI 1 and smallest in the ROI 5. In addition, after the RFA procedure, the temperature decreased from the initial value to 0 °C in one hour. The temperature changes in the core body and the surrounding tissues were confirmed by MRI temperature mapping, which is a noninvasive method.

  5. Temperature, Pulse, and Respiration. Learning Activity Package.

    ERIC Educational Resources Information Center

    Runge, Lillian

    This learning activity package on temperature, pulse, and respiration is one of a series of 12 titles developed for use in health occupations education programs. Materials in the package include objectives, a list of materials needed, information sheets, reviews (self evaluations) of portions of the content, and answers to reviews. These topics…

  6. Vertebrate blood cell volume increases with temperature: implications for aerobic activity

    PubMed Central

    Zenil-Ferguson, Rosana

    2014-01-01

    Aerobic activity levels increase with body temperature across vertebrates. Differences in these levels, from highly active to sedentary, are reflected in their ecology and behavior. Yet, the changes in the cardiovascular system that allow for greater oxygen supply at higher temperatures, and thus greater aerobic activity, remain unclear. Here we show that the total volume of red blood cells in the body increases exponentially with temperature across vertebrates, after controlling for effects of body size and taxonomy. These changes are accompanied by increases in relative heart mass, an indicator of aerobic activity. The results point to one way vertebrates may increase oxygen supply to meet the demands of greater activity at higher temperatures. PMID:24765580

  7. Improvements in X-band transmitter phase stability through Klystron body temperature regulation

    NASA Technical Reports Server (NTRS)

    Perez, R. M.

    1992-01-01

    This article describes the techniques used and experimental results obtained in improving transmitter stability by control of the klystron body temperature. Related work in the measurement of klystron phase control parameters (pushing factors) is also discussed. The contribution of wave guide temperature excursions to uplink phase stability is presented. Suggestions are made as to the direction of future work in this area.

  8. Improvements in X-band transmitter phase stability through klystron body temperature regulation

    NASA Technical Reports Server (NTRS)

    Perez, R. M.

    1992-01-01

    This article describes the techniques used and experimental results obtained in improving transmitter stability by control of the klystron body temperature. Related work in the measurement of klystron phase control parameters (pushing factors) is also discussed. The contribution of waveguide temperature excursions to uplink phase stability is presented. Suggestions are made as to the direction of future work in this area.

  9. In utero heat stress increases postnatal core body temperature in pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In utero heat stress (IUHS) negatively impacts postnatal development, but how it alters future body temperature parameters and energetic metabolism is not well-understood. Objectives were to characterize future temperature indices and bioenergetic markers in pigs originating from differing in utero...

  10. Pharmacology of modality-specific transient receptor potential vanilloid-1 antagonists that do not alter body temperature.

    PubMed

    Reilly, Regina M; McDonald, Heath A; Puttfarcken, Pamela S; Joshi, Shailen K; Lewis, LaGeisha; Pai, Madhavi; Franklin, Pamela H; Segreti, Jason A; Neelands, Torben R; Han, Ping; Chen, Jun; Mantyh, Patrick W; Ghilardi, Joseph R; Turner, Teresa M; Voight, Eric A; Daanen, Jerome F; Schmidt, Robert G; Gomtsyan, Arthur; Kort, Michael E; Faltynek, Connie R; Kym, Philip R

    2012-08-01

    The transient receptor potential vanilloid-1 (TRPV1) channel is involved in the development and maintenance of pain and participates in the regulation of temperature. The channel is activated by diverse agents, including capsaicin, noxious heat (≥ 43°C), acidic pH (< 6), and endogenous lipids including N-arachidonoyl dopamine (NADA). Antagonists that block all modes of TRPV1 activation elicit hyperthermia. To identify efficacious TRPV1 antagonists that do not affect temperature antagonists representing multiple TRPV1 pharmacophores were evaluated at recombinant rat and human TRPV1 channels with Ca(2+) flux assays, and two classes of antagonists were identified based on their differential ability to inhibit acid activation. Although both classes of antagonists completely blocked capsaicin- and NADA-induced activation of TRPV1, select compounds only partially inhibited activation of the channel by protons. Electrophysiology and calcitonin gene-related peptide release studies confirmed the differential pharmacology of these antagonists at native TRPV1 channels in the rat. Comparison of the in vitro pharmacological properties of these TRPV1 antagonists with their in vivo effects on core body temperature confirms and expands earlier observations that acid-sparing TRPV1 antagonists do not significantly increase core body temperature. Although both classes of compounds elicit equivalent analgesia in a rat model of knee joint pain, the acid-sparing antagonist tested is not effective in a mouse model of bone cancer pain. PMID:22570364

  11. Mushroom bodies enhance initial motor activity in Drosophila.

    PubMed

    Serway, Christine N; Kaufman, Rebecca R; Strauss, Roland; de Belle, J Steven

    2009-01-01

    The central body (or central complex, CCX) and the mushroom bodies (MBs) are brain structures in most insect phyla that have been shown to influence aspects of locomotion. The CCX regulates motor coordination and enhances activity while MBs have, thus far, been shown to suppress motor activity levels measured over time intervals ranging from hours to weeks. In this report, we investigate MB involvement in motor behavior during the initial stages (15 minutes) of walking in Buridan's paradigm. We measured aspects of walking in flies that had MB lesions induced by mutations in six different genes and by chemical ablation. All tested flies were later examined histologically to assess MB neuroanatomy. Mutant strains with MB structural defects were generally less active in walking than wild-type flies. Most mutants in which MBs were also ablated with hydroxyurea (HU) showed additional activity decrements. Variation in measures of velocity and orientation to landmarks among wild-type and mutant flies was attributed to pleiotropy, rather than to MB lesions. We conclude that MBs upregulate activity during the initial stages of walking, but suppress activity thereafter. An MB influence on decision making has been shown in a wide range of complex behaviors. We suggest that MBs provide appropriate contextual information to motor output systems in the brain, indirectly fine tuning walking by modifying the quantity (i.e., activity) of behavior. PMID:19145515

  12. Deferoxamine improves antioxidative protection in the brain of neonatal rats: The role of anoxia and body temperature.

    PubMed

    Kletkiewicz, Hanna; Nowakowska, Anna; Siejka, Agnieszka; Mila-Kierzenkowska, Celestyna; Woźniak, Alina; Caputa, Michał; Rogalska, Justyna

    2016-08-15

    After hypoxic-ischemic insult iron deposited in the brain catalyzes formation of reactive oxygen species. Newborn rats, showing reduced physiological body temperature and their hyperthermic counterparts injected with deferoxamine (DF), a chelator of iron, are protected both against iron-mediated neurotoxicity and against depletion of low-molecular antioxidants after perinatal asphyxia. Therefore, we decided to study the effects of DF on activity of antioxidant enzymes (superoxide dismutase-SOD, glutathione peroxidase-GPx and catalase-CAT) in the brain of rats exposed neonatally to a critical anoxia at body temperatures elevated to 39°C. Perinatal anoxia under hyperthermic conditions intensified oxidative stress and depleted the pool of antioxidant enzymes. Both the depletion of antioxidants and lipid peroxidation were prevented by post-anoxic DF injection. The present paper evidenced that deferoxamine may act by recovering of SOD, GPx and CAT activity to reduce anoxia-induced oxidative stress. PMID:27297770

  13. Body temperature changes induced by huddling in breeding male emperor penguins.

    PubMed

    Gilbert, Caroline; Maho, Yvon Le; Perret, Martine; Ancel, André

    2007-01-01

    Huddling is the key energy-saving mechanism for emperor penguins to endure their 4-mo incubation fast during the Antarctic winter, but the underlying physiological mechanisms of this energy saving have remained elusive. The question is whether their deep body (core) temperature may drop in association with energy sparing, taking into account that successful egg incubation requires a temperature of about 36 degrees C and that ambient temperatures of up to 37.5 degrees C may be reached within tight huddles. Using data loggers implanted into five unrestrained breeding males, we present here the first data on body temperature changes throughout the breeding cycle of emperor penguins, with particular emphasis on huddling bouts. During the pairing period, core temperature decreased progressively from 37.5 +/- 0.4 degrees C to 36.5 +/- 0.3 degrees C, associated with a significant temperature drop of 0.5 +/- 0.3 degrees C during huddling. In case of egg loss, body temperature continued to decrease to 35.5 +/- 0.4 degrees C, with a further 0.9 degrees C decrease during huddling. By contrast, a constant core temperature of 36.9 +/- 0.2 degrees C was maintained during successful incubation, even during huddling, suggesting a trade-off between the demands for successful egg incubation and energy saving. However, such a limited drop in body temperature cannot explain the observed energy savings of breeding emperor penguins. Furthermore, we never observed any signs of hyperthermia in huddling birds that were exposed to ambient temperatures as high as above 35 degrees C. We suggest that the energy savings of huddling birds is due to a metabolic depression, the extent of which depends on a reduction of body surface areas exposed to cold. PMID:16959865

  14. ΔN-TRPV1: A Molecular Co-detector of Body Temperature and Osmotic Stress.

    PubMed

    Zaelzer, Cristian; Hua, Pierce; Prager-Khoutorsky, Masha; Ciura, Sorana; Voisin, Daniel L; Liedtke, Wolfgang; Bourque, Charles W

    2015-10-01

    Thirst and antidiuretic hormone secretion occur during hyperthermia or hypertonicity to preserve body hydration. These vital responses are triggered when hypothalamic osmoregulatory neurons become depolarized by ion channels encoded by an unknown product of the transient receptor potential vanilloid-1 gene (Trpv1). Here, we show that rodent osmoregulatory neurons express a transcript of Trpv1 that mediates the selective translation of a TRPV1 variant that lacks a significant portion of the channel's amino terminus (ΔN-TRPV1). The mRNA transcript encoding this variant (Trpv1dn) is widely expressed in the brains of osmoregulating vertebrates, including the human hypothalamus. Transfection of Trpv1dn into heterologous cells induced the expression of ion channels that could be activated by either hypertonicity or by heating in the physiological range. Moreover, expression of Trpv1dn rescued the osmosensory and thermosensory responses of single hypothalamic neurons obtained from Trpv1 knockout mice. ΔN-TRPV1 is therefore a co-detector of core body temperature and fluid tonicity. PMID:26387947

  15. Influence of winter temperature and simulated climate change on body mass and fat body depletion during diapause in adults of the solitary bee, Osmia rufa (Hymenoptera: Megachilidae).

    PubMed

    Fliszkiewicz, Monika; Giejdasz, Karol; Wasielewski, Oskar; Krishnan, Natraj

    2012-12-01

    The influence of simulated climate change on body weight and depletion of fat body reserves was studied during diapause in the European solitary bee Osmia rufa L. (Hymenoptera: Megachilidae). Insects (females) were reared and collected from outdoor nests from September to March. One cohort of females was weighed and dissected immediately for analyses, whereas another cohort was subjected to simulated warmer temperature (15°C for 7 d) before analyses. A gradual decline in body mass and fat body content was recorded with declining temperatures from September to January in female bees from natural conditions. Temperature increased gradually from January to March with a further decline in body mass and fat body content. The fat body development index dropped from five in September-October (≈ 89% individuals) to four for the period from November to February (≈ 84% individuals) and further to three in March (95% individuals) before emergence. Simulated warmer winter temperature also resulted in a similar decline in body weight and fat body content; however, body weight and fat body content declined faster. The fat body development index dropped to three in December in the majority of individuals and continued at this level until March just before emergence. Taken together, our data indicate an earlier depletion of fat body reserves under simulated climate change conditions that may impact ovarian development and reproductive fitness in O. rufa. PMID:23321111

  16. Saturday night fever in ecstasy/MDMA dance clubbers: Heightened body temperature and associated psychobiological changes

    PubMed Central

    Parrott, Andrew C; Young, Lucy

    2014-01-01

    Aims and rationale: to investigate body temperature and thermal self-ratings of Ecstasy/MDMA users at a Saturday night dance club. Methods: 68 dance clubbers (mean age 21.6 years, 30 females and 38 males), were assessed at a Saturday night dance club, then 2–3 d later. Three subgroups were compared: 32 current Ecstasy users who had taken Ecstasy/MDMA that evening, 10 abstinent Ecstasy/MDMA users on other psychoactive drugs, and 26 non-user controls (predominantly alcohol drinkers). In a comparatively quiet area of the dance club, each unpaid volunteer had their ear temperature recorded, and completed a questionnaire on thermal feelings and mood states. A similar questionnaire was repeated 2–3 d later by mobile telephone. Results: Ecstasy/MDMA users had a mean body temperature 1.2°C higher than non-user controls (P < 0.001), and felt significantly hotter and thirstier. The abstinent Ecstasy/MDMA polydrug user group had a mean body temperature intermediate between the other 2 groups, significantly higher than controls, and significantly lower than current Ecstasy/MDMA users. After 2–3 d of recovery, the Ecstasy/MDMA users remained significantly ‘thirstier’. Higher body temperature while clubbing was associated with greater Ecstasy/MDMA usage at the club, and younger age of first use. Higher temperature also correlated with lower elation and poor memory 2–3 d later. It also correlated positively with nicotine, and negatively with cannabis. Conclusions: Ecstasy/MDMA using dance clubbers had significantly higher body temperature than non-user controls. This heightened body temperature was associated with a number of adverse psychobiological consequences, including poor memory.

  17. Temperature, activity, and lizard life histories

    SciTech Connect

    Adolph, S.C.; Porter, W.P. )

    1993-08-01

    Lizard life-history characteristics vary widely among species and populations. Most authors seek adaptive or phylogenetic explanations for life-history patterns, which are usually presumed to reflect genetic differences. However, lizard life histories are often phenotypically plastic, varying in response to temperature, food availability, and other environmental factors. Despite the importance of temperature to lizard ecology and physiology, its effects on life histories have received relatively little attention. The authors present a theoretical model predicting the proximate consequences of the thermal environment for lizard life histories. Temperature, by affecting activity times, can cause variation in annual survival rate and fecundity, leading to a negative correlation between survival rate and fecundity among populations in different thermal environments. Thus, physiological and evolutionary models predict the same qualitative pattern of life-history variation in lizards. They tested their model with published life-history data from field studies of the lizard Sceloporus undulatus, using climate and geographical data to reconstruct estimated annual activity seasons. Among populations, annual activity times were negatively correlated with annual survival rate and positively correlated with annual fecundity. Proximate effects of temperature may confound comparative analyses of lizard life-history variation and should be included in future evolutionary models. 125 refs., 6 figs., 1 tab.

  18. Curvaceous female bodies activate neural reward centers in men

    PubMed Central

    Spicer, Kristen Rae

    2010-01-01

    Facial symmetry, masculinity and shoulder-to-hip ratios in men convey information to mates about reproductive/genetic quality, the so-called “good genes” hypothesis. On the other hand waist-to-hip ratio conveys important reproductive information about women to men. Here using fMRI, men showed activation in neural reward centers when they viewed and rated the attractiveness of surgically optimally configured female bodies. PMID:20714414

  19. Effect of menstrual cycle phase on the ventilatory response to rising body temperature during exercise.

    PubMed

    Hayashi, Keiji; Kawashima, Takayo; Suzuki, Yuichi

    2012-07-01

    To examine the effect of menstrual cycle on the ventilatory sensitivity to rising body temperature, ten healthy women exercised for ~60 min on a cycle ergometer at 50% of peak oxygen uptake during the follicular and luteal phases of their cycle. Esophageal temperature, mean skin temperature, mean body temperature, minute ventilation, and tidal volume were all significantly higher at baseline and during exercise in the luteal phase than the follicular phase. On the other hand, end-tidal partial pressure of carbon dioxide was significantly lower during exercise in the luteal phase than the follicular phase. Plotting ventilatory parameters against esophageal temperature revealed there to be no significant menstrual cycle-related differences in the slopes or intercepts of the regression lines, although minute ventilation and tidal volume did significantly differ during exercise with mild hyperthermia. To evaluate the cutaneous vasodilatory response, relative laser-Doppler flowmetry values were plotted against mean body temperature, which revealed that the mean body temperature threshold for cutaneous vasodilation was significantly higher in the luteal phase than the follicular phase, but there were no significant differences in the sensitivity or peak values. These results suggest that the menstrual cycle phase influences the cutaneous vasodilatory response during exercise and the ventilatory response at rest and during exercise with mild hyperthermia, but it does not influence ventilatory responses during exercise with moderate hyperthermia. PMID:22604882

  20. Isotopic ordering in eggshells reflects body temperatures and suggests differing thermophysiology in two Cretaceous dinosaurs.

    PubMed

    Eagle, Robert A; Enriquez, Marcus; Grellet-Tinner, Gerald; Pérez-Huerta, Alberto; Hu, David; Tütken, Thomas; Montanari, Shaena; Loyd, Sean J; Ramirez, Pedro; Tripati, Aradhna K; Kohn, Matthew J; Cerling, Thure E; Chiappe, Luis M; Eiler, John M

    2015-01-01

    Our understanding of the evolutionary transitions leading to the modern endothermic state of birds and mammals is incomplete, partly because tools available to study the thermophysiology of extinct vertebrates are limited. Here we show that clumped isotope analysis of eggshells can be used to determine body temperatures of females during periods of ovulation. Late Cretaceous titanosaurid eggshells yield temperatures similar to large modern endotherms. In contrast, oviraptorid eggshells yield temperatures lower than most modern endotherms but ∼ 6 °C higher than co-occurring abiogenic carbonates, implying that this taxon did not have thermoregulation comparable to modern birds, but was able to elevate its body temperature above environmental temperatures. Therefore, we observe no strong evidence for end-member ectothermy or endothermy in the species examined. Body temperatures for these two species indicate that variable thermoregulation likely existed among the non-avian dinosaurs and that not all dinosaurs had body temperatures in the range of that seen in modern birds. PMID:26462135

  1. Theoretical study on the inverse modeling of deep body temperature measurement.

    PubMed

    Huang, Ming; Chen, Wenxi

    2012-03-01

    We evaluated the theoretical aspects of monitoring the deep body temperature distribution with the inverse modeling method. A two-dimensional model was built based on anatomical structure to simulate the human abdomen. By integrating biophysical and physiological information, the deep body temperature distribution was estimated from cutaneous surface temperature measurements using an inverse quasilinear method. Simulations were conducted with and without the heat effect of blood perfusion in the muscle and skin layers. The results of the simulations showed consistently that the noise characteristics and arrangement of the temperature sensors were the major factors affecting the accuracy of the inverse solution. With temperature sensors of 0.05 °C systematic error and an optimized 16-sensor arrangement, the inverse method could estimate the deep body temperature distribution with an average absolute error of less than 0.20 °C. The results of this theoretical study suggest that it is possible to reconstruct the deep body temperature distribution with the inverse method and that this approach merits further investigation. PMID:22370094

  2. Parasympathetic activity and blood catecholamine responses following a single partial-body cryostimulation and a whole-body cryostimulation.

    PubMed

    Hausswirth, Christophe; Schaal, Karine; Le Meur, Yann; Bieuzen, François; Filliard, Jean-Robert; Volondat, Marielle; Louis, Julien

    2013-01-01

    The aim of this study was to compare the effects of a single whole-body cryostimulation (WBC) and a partial-body cryostimulation (PBC) (i.e., not exposing the head to cold) on indices of parasympathetic activity and blood catecholamines. Two groups of 15 participants were assigned either to a 3-min WBC or PBC session, while 10 participants constituted a control group (CON) not receiving any cryostimulation. Changes in thermal, physiological and subjective variables were recorded before and during the 20-min after each cryostimulation. According to a qualitative statistical analysis, an almost certain decrease in skin temperature was reported for all body regions immediately after the WBC (mean decrease±90% CL, -13.7±0.7°C) and PBC (-8.3±0.3°C), which persisted up to 20-min after the session. The tympanic temperature almost certainly decreased only after the WBC session (-0.32±0.04°C). Systolic and diastolic blood pressures were very likely increased after the WBC session, whereas these changes were trivial in the other groups. In addition, heart rate almost certainly decreased after PBC (-10.9%) and WBC (-15.2%) sessions, in a likely greater proportion for WBC compared to PBC. Resting vagal-related heart rate variability indices (the root-mean square difference of successive normal R-R intervals, RMSSD, and high frequency band, HF) were very likely increased after PBC (RMSSD: +54.4%, HF: +138%) and WBC (RMSSD: +85.2%, HF: +632%) sessions without any marked difference between groups. Plasma norepinephrine concentrations were likely to very likely increased after PBC (+57.4%) and WBC (+76.2%), respectively. Finally, cold and comfort sensations were almost certainly altered after WBC and PBC, sensation of discomfort being likely more pronounced after WBC than PBC. Both acute cryostimulation techniques effectively stimulated the autonomic nervous system (ANS), with a predominance of parasympathetic tone activation. The results of this study also suggest that a

  3. Parasympathetic Activity and Blood Catecholamine Responses Following a Single Partial-Body Cryostimulation and a Whole-Body Cryostimulation

    PubMed Central

    Hausswirth, Christophe; Schaal, Karine; Le Meur, Yann; Bieuzen, François; Filliard, Jean-Robert; Volondat, Marielle; Louis, Julien

    2013-01-01

    The aim of this study was to compare the effects of a single whole-body cryostimulation (WBC) and a partial-body cryostimulation (PBC) (i.e., not exposing the head to cold) on indices of parasympathetic activity and blood catecholamines. Two groups of 15 participants were assigned either to a 3-min WBC or PBC session, while 10 participants constituted a control group (CON) not receiving any cryostimulation. Changes in thermal, physiological and subjective variables were recorded before and during the 20-min after each cryostimulation. According to a qualitative statistical analysis, an almost certain decrease in skin temperature was reported for all body regions immediately after the WBC (mean decrease±90% CL, -13.7±0.7°C) and PBC (-8.3±0.3°C), which persisted up to 20-min after the session. The tympanic temperature almost certainly decreased only after the WBC session (-0.32±0.04°C). Systolic and diastolic blood pressures were very likely increased after the WBC session, whereas these changes were trivial in the other groups. In addition, heart rate almost certainly decreased after PBC (-10.9%) and WBC (-15.2%) sessions, in a likely greater proportion for WBC compared to PBC. Resting vagal-related heart rate variability indices (the root-mean square difference of successive normal R-R intervals, RMSSD, and high frequency band, HF) were very likely increased after PBC (RMSSD: +54.4%, HF: +138%) and WBC (RMSSD: +85.2%, HF: +632%) sessions without any marked difference between groups. Plasma norepinephrine concentrations were likely to very likely increased after PBC (+57.4%) and WBC (+76.2%), respectively. Finally, cold and comfort sensations were almost certainly altered after WBC and PBC, sensation of discomfort being likely more pronounced after WBC than PBC. Both acute cryostimulation techniques effectively stimulated the autonomic nervous system (ANS), with a predominance of parasympathetic tone activation. The results of this study also suggest that a

  4. Recurrent epimutations activate gene body promoters in primary glioblastoma.

    PubMed

    Nagarajan, Raman P; Zhang, Bo; Bell, Robert J A; Johnson, Brett E; Olshen, Adam B; Sundaram, Vasavi; Li, Daofeng; Graham, Ashley E; Diaz, Aaron; Fouse, Shaun D; Smirnov, Ivan; Song, Jun; Paris, Pamela L; Wang, Ting; Costello, Joseph F

    2014-05-01

    Aberrant DNA hypomethylation may play an important role in the growth rate of glioblastoma (GBM), but the functional impact on transcription remains poorly understood. We assayed the GBM methylome with MeDIP-seq and MRE-seq, adjusting for copy number differences, in a small set of non-glioma CpG island methylator phenotype (non-G-CIMP) primary tumors. Recurrent hypomethylated loci were enriched within a region of chromosome 5p15 that is specified as a cancer amplicon and also encompasses TERT, encoding telomerase reverse transcriptase, which plays a critical role in tumorigenesis. Overall, 76 gene body promoters were recurrently hypomethylated, including TERT and the oncogenes GLI3 and TP73. Recurring hypomethylation also affected previously unannotated alternative promoters, and luciferase reporter assays for three of four of these promoters confirmed strong promoter activity in GBM cells. Histone H3 lysine 4 trimethylation (H3K4me3) ChIP-seq on tissue from the GBMs uncovered peaks that coincide precisely with tumor-specific decrease of DNA methylation at 200 loci, 133 of which are in gene bodies. Detailed investigation of TP73 and TERT gene body hypomethylation demonstrated increased expression of corresponding alternate transcripts, which in TP73 encodes a truncated p73 protein with oncogenic function and in TERT encodes a putative reverse transcriptase-null protein. Our findings suggest that recurring gene body promoter hypomethylation events, along with histone H3K4 trimethylation, alter the transcriptional landscape of GBM through the activation of a limited number of normally silenced promoters within gene bodies, in at least one case leading to expression of an oncogenic protein. PMID:24709822

  5. Characterization of abandoned rocket body families for active removal

    NASA Astrophysics Data System (ADS)

    Pardini, Carmen; Anselmo, Luciano

    2016-09-01

    A new ranking index was developed and applied to a wide set of rocket body families, characterized by stage dry masses greater than 500 kg and by the presence of at least 5 stages abandoned in LEO. The upper stages selected accounted for more than 80% of the unclassified rocket bodies in LEO and nearly 95% of the associated dry mass. The detailed results obtained for 657 objects clearly identified the most critical altitude-inclination bands and stage models, to be targeted first if and when a debris remediation strategy including the active removal of intact abandoned objects were deemed necessary. Apart from the evaluation of the criticality regarding the long-term evolution of the debris environment, resulting in a priority listing for optimal active removal, the application of the new ranking index is not limited to debris remediation. In fact, if applied before launch to spacecraft and rocket bodies to be disposed in orbit, at the end of mission, it would provide an additional debris mitigation analysis tool for evaluating competing disposal options. Concerning the rocket bodies abandoned in LEO, 274 resulted to have a criticality equal or larger than the average intact object abandoned in an 800 km sun-synchronous orbit. Among them, 243 belonged to the Russian Federation and Ukraine, 25 to China, 5 to Europe and 1 to Japan. In addition to being concentrated in relatively few and narrow altitude-inclinations bands, the most numerous rocket body families often present a quite uniform distribution in right ascension of the ascending node, which is especially convenient for multiple target removal missions.

  6. Body temperature of the parasitic wasp Pimpla turionellae (Hymenoptera) during host location by vibrational sounding.

    PubMed

    Kroder, Stefan; Samietz, Jörg; Stabentheiner, Anton; Dorn, Silvia

    2008-03-01

    The pupal parasitoid Pimpla turionellae (L.) uses self-produced vibrations transmitted on the plant substrate, so-called vibrational sounding, to locate immobile concealed pupal hosts. The wasps are able to use vibrational sounding reliably over a broad range of ambient temperatures and even show an increased signal frequency and intensity at low temperatures. The present study investigates how control of body temperature in the wasps by endothermic mechanisms may facilitate host location under changing thermal environments. Insect body temperature is measured with real-time IR thermography on plant-stem models at temperature treatments of 10, 18, 26 and 30 °C, whereas behaviour is recorded with respect to vibrational host location. The results reveal a low-level endothermy that likely interferes with vibrational sound production because it occurs only in nonsearching females. At the lowest temperature of 10 °C, the thoracic temperature is 1.15 °C warmer than the ambient surface temperature whereas, at the high temperatures of 26 and 30 ° C, the wasps cool down their thorax by 0.29 and 0.47 °C, respectively, and their head by 0.45 and 0.61 °C below ambient surface temperature. By contrast, regardless of ambient temperature, searching females always have a slightly elevated body temperature of at most 0.30 °C above the ambient surface temperature. Behavioural observations indicate that searching females interrupt host location more frequently at suboptimal temperatures, presumably due to the requirements of thermoregulation. It is assumed that both mechanisms, producing vibrations for host location and low-level endothermy, are located in the thorax. Endothermy by thoracic muscle work probably disturbs signal structure of vibrational sounding, so the processes cannot be used at the same time. PMID:22140295

  7. The effects of cyclic adenosine 3',5'-monophosphate and other adenine nucleotides on body temperature.

    PubMed Central

    Dascombe, M J; Milton, A S

    1975-01-01

    1. Adenosine 3',5'-monophosphate (cAMP), its dibutyryl derivative (Db-cAMP) and other adenine nucleotides have been micro-injected into the hypothalamic region of the unanaesthetized cat and the effects on body temperature, and on behavioural and autonomic thermoregulatory activities observed. 2. Db-cAMP and cAMP both produced hypothermia when applied to the pre-optic anterior hypothalamus. With Db-cAMP the hypothermia was shown to be dose dependent between 50 and 500 mug (0-096-0-96 mumole). 3. AMP, ADP and ATP also produced hypothermia when injected into the pre-optic anterior hypothalamus. 4. The order of relative potencies of the adenine nucleotides with respect both to the hypothermia produced and to the autonomic thermoregulatory effects observed were similar. Db-cAMP was most potent and cAMP least. 5. Micro-injection into the pre-optic anterior hypothalamus of many substances including saline produced in most cats a non-specific rise in body temperature apparently the result of tissue damage. Intraperitoneal injection of 4-acetamidophenol (paracetamol 50 mg/kg) reduced or abolished this febrile response. 6. The hypothermic effect of the adenine nucleotides has been compared with the effects produced in these same cats by micro-injections of noradrenaline, 5-hydroxytryptamine, a mixture of acetylcholine and physostigmine (1:1), EDTA and excess Ca2+ ions. 7. It is concluded that as Db-cAMP and cAMP both produce hypothermia, it is unlikely that endogenous cAMP in the pre-optic anterior hypothalamus mediates the hyperthermic responses to pyrogens and prostaglandins. PMID:170396

  8. The effects of cyclic adenosine 3',5'-monophosphate and other adenine nucleotides on body temperature.

    PubMed

    Dascombe, M J; Milton, A S

    1975-08-01

    1. Adenosine 3',5'-monophosphate (cAMP), its dibutyryl derivative (Db-cAMP) and other adenine nucleotides have been micro-injected into the hypothalamic region of the unanaesthetized cat and the effects on body temperature, and on behavioural and autonomic thermoregulatory activities observed. 2. Db-cAMP and cAMP both produced hypothermia when applied to the pre-optic anterior hypothalamus. With Db-cAMP the hypothermia was shown to be dose dependent between 50 and 500 mug (0-096-0-96 mumole). 3. AMP, ADP and ATP also produced hypothermia when injected into the pre-optic anterior hypothalamus. 4. The order of relative potencies of the adenine nucleotides with respect both to the hypothermia produced and to the autonomic thermoregulatory effects observed were similar. Db-cAMP was most potent and cAMP least. 5. Micro-injection into the pre-optic anterior hypothalamus of many substances including saline produced in most cats a non-specific rise in body temperature apparently the result of tissue damage. Intraperitoneal injection of 4-acetamidophenol (paracetamol 50 mg/kg) reduced or abolished this febrile response. 6. The hypothermic effect of the adenine nucleotides has been compared with the effects produced in these same cats by micro-injections of noradrenaline, 5-hydroxytryptamine, a mixture of acetylcholine and physostigmine (1:1), EDTA and excess Ca2+ ions. 7. It is concluded that as Db-cAMP and cAMP both produce hypothermia, it is unlikely that endogenous cAMP in the pre-optic anterior hypothalamus mediates the hyperthermic responses to pyrogens and prostaglandins. PMID:170396

  9. The effects of temperature, desiccation, and body mass on the locomotion of the terrestrial isopod, Porcellio laevis.

    PubMed

    Dailey, Tara M; Claussen, Dennis L; Ladd, Gregory B; Buckner, Shizuka T

    2009-06-01

    Locomotion in terrestrial isopods is strongly influenced by body size and by abiotic factors. We determined the speeds of isopods of differing masses within a linear racetrack at temperatures ranging from 15 to 35 degrees C. We also predicted maximum speeds based on the Froude number concept as originally applied to vertebrates. In addition we used a circular thermal gradient to examine the temperature preferences of isopods, and we measured the effects of desiccation on locomotion. Measured speeds of the isopods progressively increased with temperature with an overall Q(10) of 1.64 and scaling exponents ranging from 0.38 to 0.63. The predicted maximum speeds were remarkably close to the measured speeds at the highest test temperature although the scaling exponents were closer to 0.15. The isopods did not exhibit a strong thermal preference within the gradient; however, they did generally avoid temperatures above 25 degrees C. Moderate desiccation had no apparent effect on locomotor performance, but there was a progressive decrease in speed once animals had lost more than 10% of their initial body mass. Though largely restricted to moist habitats, P. laevis can easily withstand short exposures to desiccating conditions, and they are capable of effective locomotion over a wide range of temperatures. Since they are nonconglobating, active escape appears to be their primary defense when threatened under exposed conditions. Although their maximum speeds may be limited both by temperature and by their inability to change gait, these speeds are clearly adequate for survival. PMID:19535030

  10. The temperature of unheated bodies in a high-speed gas stream

    NASA Technical Reports Server (NTRS)

    Eckert, E; Weise, W

    1941-01-01

    The present report deals with temperature measurements on cylinders of 0.2 to 3 millimeters diameter in longitudinal and transverse air flow at speeds of 100 to 300 meters per second. Within the explored test range, that is, the probable laminar boundary layer region, the temperature of the cylinders in axial flow is practically independent of the speed and in good agreement with Pohlhausen's theoretical values; Whereas, in transverse flow, cylinders of certain diameter manifest a close relationship with speed, the ratio of the temperature above the air of the body to the adiabatic stagnation temperature decreases with rising speed and then rises again from a Mach number of 0.6. The importance of this "specific temperature" of the body for heat-transfer studies at high speed is discussed.

  11. Temperature (de)activated patchy colloidal particles

    NASA Astrophysics Data System (ADS)

    de las Heras, Daniel; Telo da Gama, Margarida M.

    2016-06-01

    We present a new model of patchy particles in which the interaction sites can be activated or deactivated by varying the temperature of the system. We study the thermodynamics of the system by means of Wertheim’s first order perturbation theory, and use Flory–Stockmayer theory of polymerization to analyse the percolation threshold. We find a very rich phase behaviour including lower critical points and reentrant percolation.

  12. Temperature (de)activated patchy colloidal particles.

    PubMed

    de Las Heras, Daniel; da Gama, Margarida M Telo

    2016-06-22

    We present a new model of patchy particles in which the interaction sites can be activated or deactivated by varying the temperature of the system. We study the thermodynamics of the system by means of Wertheim's first order perturbation theory, and use Flory-Stockmayer theory of polymerization to analyse the percolation threshold. We find a very rich phase behaviour including lower critical points and reentrant percolation. PMID:27115118

  13. Effect of temperature change on anammox activity.

    PubMed

    Lotti, T; Kleerebezem, R; van Loosdrecht, M C M

    2015-01-01

    Autotrophic nitrogen removal appears as a prerequisite for the implementation of energy autarchic municipal wastewater treatment plants. Whilst the application of anammox-related technologies in the side-stream is at present state of the art, the feasibility of this energy-efficient process in main-stream conditions is still under investigation. Lower operating temperatures and ammonium concentrations, together with a demand for high and stable nitrogen removal efficiency, represent the main challenges to overcome for this appealing new frontier of the wastewater treatment field. In this study, we report the short-term effect of temperature on the maximum biomass specific activity of anaerobic ammonium oxidizing (anammox) bacteria as evaluated by means of batch tests. The experiments were performed on anammox biomass sampled from two full-scale reactors and two lab-scale reactors, all characterized by different reactor configurations and operating conditions. The results indicate that for the anammox conversion, the temperature dependency cannot be accurately modeled by one single Arrhenius coefficient (i.e., θ) as typically applied for other biological processes. The temperature effect is increasing at lower temperatures. Adaptation of anammox bacteria after long-term cultivation at 20 and 10°C was observed. Implications for modeling and process design are finally discussed. PMID:25042674

  14. Solar activity and the mean global temperature

    NASA Astrophysics Data System (ADS)

    Erlykin, A. D.; Sloan, T.; Wolfendale, A. W.

    2009-01-01

    The variation with time from 1956 to 2002 of the globally averaged rate of ionization produced by cosmic rays in the atmosphere is deduced and shown to have a cyclic component of period roughly twice the 11 year solar cycle period. Long term variations in the global average surface temperature as a function of time since 1956 are found to have a similar cyclic component. The cyclic variations are also observed in the solar irradiance and in the mean daily sun spot number. The cyclic variation in the cosmic ray rate is observed to be delayed by 2-4 years relative to the temperature, the solar irradiance and daily sun spot variations suggesting that the origin of the correlation is more likely to be direct solar activity than cosmic rays. Assuming that the correlation is caused by such solar activity, we deduce that the maximum recent increase in the mean surface temperature of the Earth which can be ascribed to this activity is {\\lesssim }14% of the observed global warming.

  15. Jerk analysis of active body-weight-transfer.

    PubMed

    Baldinotti, Ivan; Timmann, Dagmar; Kolb, Florian P; Kutz, Dieter F

    2010-10-01

    Recent studies have shown that whole-body vibration improves posture and gait control in stroke patients. Patients with degenerative cerebellar disease suffer from ataxic gait also which is characterised by the variation of gait pattern. Our interest is to test whole-body vibration as a method for rehabilitation treatment in cerebellar patients and to assess the success of the treatment using dynamic tests. The aim of this study was to introduce a method for quantifying movement dynamics during an active voluntary sidestep that results in a body-weight-transfer. Subjects had to perform a step from a feet-apart-position to a feet-together-position and back again. The algorithms presented in this study allow automatic identification of the timing of the dynamic phases by analysing the centre of pressure trajectory. For this study the time flow of averaged speed, acceleration, and jerk was calculated for the active movement only. This study demonstrates that jerk provides a sensitive measure for the improvement in gait in rehabilitation and during training. PMID:20940098

  16. Circadian variation of EEG power spectra in NREM and REM sleep in humans: dissociation from body temperature

    NASA Technical Reports Server (NTRS)

    Dijk, D. J.

    1999-01-01

    In humans, EEG power spectra in REM and NREM sleep, as well as characteristics of sleep spindles such as their duration, amplitude, frequency and incidence, vary with circadian phase. Recently it has been hypothesized that circadian variations in EEG spectra in humans are caused by variations in brain or body temperature and may not represent phenomena relevant to sleep regulatory processes. To test this directly, a further analysis of EEG power spectra - collected in a forced desynchrony protocol in which sleep episodes were scheduled to a 28-h period while the rhythms of body temperature and plasma melatonin were oscillating at their near 24-h period - was carried out. EEG power spectra were computed for NREM and REM sleep occurring between 90-120 and 270-300 degrees of the circadian melatonin rhythm, i.e. just after the clearance of melatonin from plasma in the 'morning' and just after the 'evening' increase in melatonin secretion. Average body temperatures during scheduled sleep at these two circadian phases were identical (36.72 degrees C). Despite identical body temperatures, the power spectra in NREM sleep were very different at these two circadian phases. EEG activity in the low frequency spindle range was significantly and markedly enhanced after the evening increase in plasma melatonin as compared to the morning phase. For REM sleep, significant differences in power spectra during these two circadian phases, in particular in the alpha range, were also observed. The results confirm that EEG power spectra in NREM and REM sleep vary with circadian phase, suggesting that the direct contribution of temperature to the circadian variation in EEG power spectra is absent or only minor, and are at variance with the hypothesis that circadian variations in EEG power spectra are caused by variations in temperature.

  17. Classification of physical activities based on body-segments coordination.

    PubMed

    Fradet, Laetitia; Marin, Frederic

    2016-09-01

    Numerous innovations based on connected objects and physical activity (PA) monitoring have been proposed. However, recognition of PAs requires robust algorithm and methodology. The current study presents an innovative approach for PA recognition. It is based on the heuristic definition of postures and the use of body-segments coordination obtained through external sensors. The first part of this study presents the methodology required to define the set of accelerations which is the most appropriate to represent the particular body-segments coordination involved in the chosen PAs (here walking, running, and cycling). For that purpose, subjects of different ages and heterogeneous physical conditions walked, ran, cycled, and performed daily activities at different paces. From the 3D motion capture, vertical and horizontal accelerations of 8 anatomical landmarks representative of the body were computed. Then, the 680 combinations from up to 3 accelerations were compared to identify the most appropriate set of acceleration to discriminate the PAs in terms of body segment coordinations. The discrimination was based on the maximal Hausdorff Distance obtained between the different set of accelerations. The vertical accelerations of both knees demonstrated the best PAs discrimination. The second step was the proof of concept, implementing the proposed algorithm to classify PAs of new group of subjects. The originality of the proposed algorithm is the possibility to use the subject's specific measures as reference data. With the proposed algorithm, 94% of the trials were correctly classified. In conclusion, our study proposed a flexible and extendable methodology. At the current stage, the algorithm has been shown to be valid for heterogeneous subjects, which suggests that it could be deployed in clinical or health-related applications regardless of the subjects' physical abilities or characteristics. PMID:27441831

  18. Oxidative stress, activity behaviour and body mass in captive parrots.

    PubMed

    Larcombe, S D; Tregaskes, C A; Coffey, J; Stevenson, A E; Alexander, L G; Arnold, K E

    2015-01-01

    Many parrot species are kept in captivity for conservation, but often show poor reproduction, health and survival. These traits are known to be influenced by oxidative stress, the imbalance between the production of reactive oxygen species (ROS) and ability of antioxidant defences to ameliorate ROS damage. In humans, oxidative stress is linked with obesity, lack of exercise and poor nutrition, all of which are common in captive animals. Here, we tested whether small parrots (budgerigars, Melopsittacus undulatus) maintained in typical pet cages and on ad libitum food varied in oxidative profile, behaviour and body mass. Importantly, as with many birds held in captivity, they did not have enough space to engage in extensive free flight. Four types of oxidative damage, single-stranded DNA breaks (low-pH comet assay), alkali-labile sites in DNA (high-pH comet assay), sensitivity of DNA to ROS (H2O2-treated comet assay) and malondialdehyde (a byproduct of lipid peroxidation), were uncorrelated with each other and with plasma concentrations of dietary antioxidants. Without strenuous exercise over 28 days in a relatively small cage, more naturally 'active' individuals had more single-stranded DNA breaks than sedentary birds. High body mass at the start or end of the experiment, coupled with substantial mass gain, were all associated with raised sensitivity of DNA to ROS. Thus, high body mass in these captive birds was associated with oxidative damage. These birds were not lacking dietary antioxidants, because final body mass was positively related to plasma levels of retinol, zeaxanthin and α-tocopherol. Individuals varied widely in activity levels, feeding behaviour, mass gain and oxidative profile despite standardized living conditions. DNA damage is often associated with poor immunocompetence, low fertility and faster ageing. Thus, we have candidate mechanisms for the limited lifespan and fecundity common to many birds kept for conservation purposes. PMID:27293729

  19. Axillary and thoracic skin temperatures poorly comparable to core body temperature circadian rhythm: results from 2 adult populations.

    PubMed

    Thomas, Karen A; Burr, Robert; Wang, Shu-Yuann; Lentz, Martha J; Shaver, Joan

    2004-01-01

    Data from 2 separate studies were used to examine the relationships of axillary or thoracic skin temperature to rectal temperature and to determine the phase relationships of the circadian rhythms of these temperatures. In study 1, axillary skin and rectal temperatures were recorded in 19 healthy women, 21 to 36 years of age. In study 2, thoracic skin and rectal temperatures were recorded in 74 healthy women, 39 to 59 years of age. In both studies, temperatures were recorded continuously for 24 h while subjects carried out normal activities. Axillary and thoracic probes were insulated purposely to prevent ambient effects. Cosinor analysis was employed to estimate circadian rhythm mesor, amplitude, and acrophase. In addition, correlations between temperatures at various measurement sites were calculated and agreement determined. The circadian timing of axillary and skin temperature did not closely approximate that of rectal temperature: the mean acrophase (clock time) for study 1 was 18:57 h for axillary temperature and 16:12 h for rectal; for study 2, it was 03:05 h for thoracic and 15:05 h for rectal. Across individual subjects, the correlations of axillary or thoracic temperatures with rectal temperatures were variable. Results do not support the use of either axillary or skin temperature as a substitute for rectal temperature in circadian rhythm research related to adult women. PMID:14737919

  20. Deep-body temperature changes in rats exposed to chronic centrifugation.

    NASA Technical Reports Server (NTRS)

    Oyama, J.; Platt, W. T.; Holland, V. B.

    1971-01-01

    Deep-body temperature was monitored continuously by implant biotelemetry in unrestrained rats before, during, and after exposure to prolonged and almost continuous centrifugation. Rats subjected to centrifugation for the first time at various G loads ranging up to 2.5 G show a rapid and significant fall in temperature which is sustained below normal levels for periods as long as 3 days. The magnitude of the temperature fall and the recovery time were generally proportional to the G load imposed. The initial fall and recovery of body temperature closely parallels the decrease in food consumption and to a lesser degree the decrease in body mass experienced by centrifuged rats. After exposure to 2 weeks of centrifugation, rats show either no change or only a small transient increase in temperature when decelerated to a lower G level or when returned to normal gravity. Rats repeatedly exposed to centrifugation consistently showed a smaller temperature response compared to the initial exposure. Implant temperature biotelemetry has been found to be a sensitive, reliable, and extremely useful technique for assessing the initial stress of centrifugation and in monitoring the time course of recovery and acclimation of rats to increase as well as*decrease G.

  1. Speed over efficiency: locusts select body temperatures that favour growth rate over efficient nutrient utilization.

    PubMed

    Miller, Gabriel A; Clissold, Fiona J; Mayntz, David; Simpson, Stephen J

    2009-10-22

    Ectotherms have evolved preferences for particular body temperatures, but the nutritional and life-history consequences of such temperature preferences are not well understood. We measured thermal preferences in Locusta migratoria (migratory locusts) and used a multi-factorial experimental design to investigate relationships between growth/development and macronutrient utilization (conversion of ingesta to body mass) as a function of temperature. A range of macronutrient intake values for insects at 26, 32 and 38 degrees C was achieved by offering individuals high-protein diets, high-carbohydrate diets or a choice between both. Locusts placed in a thermal gradient selected temperatures near 38 degrees C, maximizing rates of weight gain; however, this enhanced growth rate came at the cost of poor protein and carbohydrate utilization. Protein and carbohydrate were equally digested across temperature treatments, but once digested both macronutrients were converted to growth most efficiently at the intermediate temperature (32 degrees C). Body temperature preference thus yielded maximal growth rates at the expense of efficient nutrient utilization. PMID:19625322

  2. Calculation of temperatures in microwave-heated two-dimensional ceramic bodies

    SciTech Connect

    Evans, J.W. . Dept. of Materials Science and Mineral Engineering Lawrence Berkeley Lab., CA )

    1993-08-01

    Temperatures are calculated in a ceramic material exposed to microwaves. The method entails calculation of electromagnetic fields by integral formulation and subsequent solution of the heat conduction equation for temperatures in a ceramic piece. The solution of the equations is numerical and the parameters used are estimates for properties of SiC. The results include a case where the complex dielectric constant is varied with temperature. The computed results demonstrate that SiC can be heated to high temperatures (1,000-1,500 K) and that both the temperature and the temperature gradient can be controlled by varying the power density of the microwaves and the external cooling. The results also exhibit high sensitivity of temperatures to the dimensions of the material and the orientation in which microwaves impinge on the ceramic body.

  3. Energy intake and the circadian rhythm of core body temperature in sheep

    PubMed Central

    Maloney, Shane K; Meyer, Leith C R; Blache, D; Fuller, A

    2013-01-01

    We tested the hypothesis that different levels of energy intake would alter the circadian rhythm of core body temperature (Tc) in ovariectomized sheep. We measured arterial blood temperature every 5 min while ten sheep were offered a maintenance diet, 70% of maintenance requirements, or 150% of maintenance requirements, for 12 days, and later fasted for 2 days. The rhythmicity of Tc was analyzed for its dominant period and then a least-squares cosine wave was fitted to the data that generated a mesor, amplitude, and acrophase for the rhythm. When energy intake was less than maintenance requirements we observed a significant decrease in the mesor and minimum, and a significant increase in the amplitude and goodness of fit, of the body temperature rhythm. Fasting also resulted in a decrease in the maximum of the body temperature rhythm. Feeding the sheep to excess did not affect the mesor or maximum of the rhythm, but did result in a decrease in the goodness of fit of the rhythm in those sheep that consumed more energy than when they were on the maintenance diet, indicating that circadian rhythmicity was decreased when energy intake increased. Our data indicate that modulation of the circadian rhythm of body temperature, characterized by inactive-phase hypothermia, occurs when energy intake is reduced. The response may be an adaptation to energy imbalance in large mammals. PMID:24303185

  4. A Pilot Study to Examine Maturation of Body Temperature Control in Preterm Infants

    PubMed Central

    Knobel, Robin B.; Levy, Janet; Katz, Laurence; Guenther, Bob; Holditch-Davis, Diane

    2013-01-01

    Objective To test instrumentation and develop analytic models to use in a larger study to examine developmental trajectories of body temperature and peripheral perfusion from birth in extremely low birth weight (EBLW) infants. Design A case study design. Setting The study took place in a level four neonatal intensive care unit (NICU) in North Carolina. Participants Four ELBW infants, less than 29 weeks gestational age at birth. Methods Physiologic data were measured every minute for the first 5 days of life: peripheral perfusion using perfusion index by Masimo and body temperature using thermistors. Body temperature was also measured using infrared thermal imaging. Stimulation and care events were recorded over the first 5 days using video which was coded with Noldus Observer software. Novel analytical models using the state space approach to time series analysis were developed to explore maturation of neural control over central and peripheral body temperature. Results/Conclusion Results from this pilot study confirmed the feasibility of using multiple instruments to measure temperature and perfusion in ELBW infants. This approach added rich data to our case study design and set a clinical context with which to interpret longitudinal physiological data. PMID:24004312

  5. Chronic functional ethanol tolerance in mice influenced by body temperature during acquisition

    SciTech Connect

    Alkana, R.L.; Bejanian, M.; Syapin, P.J.; Finn, D.A.

    1987-07-27

    Previous studies have found that body temperature during intoxication influences brain sensitivity to ethanol with the sensitivity being less at cool than at warm body temperatures. If this effect of temperature reflects alterations in the acute membrane perturbing action of ethanol, as suggested by in vitro studies, then body temperature reduction during tolerance acquisition should reduce the effectiveness of a given ethanol concentration and, in turn, should reduce the development of chronic functional ethanol tolerance. To test this hypothesis, adult drug-naive C57BL/6J mice were injected i.p. once daily for five days with 3.6 g/kg ethanol and were exposed to 34C or 25C for five hours following injection. On day 6, both ethanol acquisition groups and naive mice were injected i.p. with 4.0 g/kg ethanol and exposed to 25C. During acquisition, the group exposed to 34C had significantly higher body temperatures than the mice exposed to 25C, and there were no statistically significant differences in blood ethanol concentrations between treatment conditions. The extent of tolerance on day 6 was significantly greater in the 34C acquisition group than in the 25C acquisition group. 31 references, 1 figure, 2 tables.

  6. Biphasic Effect of Melanocortin Agonists on Metabolic Rate and Body Temperature

    PubMed Central

    Lute, Beth; Jou, William; Lateef, Dalya M.; Goldgof, Margalit; Xiao, Cuiying; Piñol, Ramón A.; Kravitz, Alexxai V.; Miller, Nicole R.; Huang, Yuning George; Girardet, Clemence; Butler, Andrew A.; Gavrilova, Oksana; Reitman, Marc L.

    2014-01-01

    Summary The melanocortin system regulates metabolic homeostasis and inflammation. Melanocortin agonists have contradictorily been reported to both increase and decrease metabolic rate and body temperature. We find two distinct physiologic responses occurring at similar doses. Intraperitoneal administration of the nonselective melanocortin agonist MTII causes a melanocortin-4 receptor (Mc4r) mediated hypermetabolism/hyperthermia. This is preceded by a profound, transient hypometabolism/hypothermia that is preserved in mice lacking any one of Mc1r, Mc3r, Mc4r, or Mc5r. Three other melanocortin agonists also caused hypothermia, which is actively achieved via seeking a cool environment, vasodilation, and inhibition of brown adipose tissue thermogenesis. These results suggest that the hypometabolic/hypothermic effect of MTII is not due to a failure of thermoregulation. The hypometabolism/hypothermia was prevented by dopamine antagonists and MTII selectively activated arcuate nucleus dopaminergic neurons; these neurons may contribute to the hypometabolism/hypothermia. We propose that the hypometabolism/hypothermia is a regulated response, potentially beneficial during extreme physiologic stress. PMID:24981835

  7. Complexity analysis of the temperature curve: new information from body temperature.

    PubMed

    Varela, Manuel; Jimenez, Leticia; Fariña, Rosa

    2003-05-01

    An attempt was made to develop a truly quantitative approach to temperature, based on models derived from nonlinear dynamics and chaos theory. Three different procedures for measuring the degree of complexity of the temperature curve were compared, and the possible correlations between these measurements and certain physiopathologically relevant parameters in healthy subjects were examined. Twenty-three healthy subjects (10 males, 13 females) between 18 and 85 years of age had their temperature measured every 10 min for at least 30 h. These time series were used to determine the approximate entropy (ApEn), a detrended fluctuation analysis (DFA), and the fractal dimension by the compass method (FD(c)). There was good correlation between the different methods of measuring the complexity of the curve [ r=-0.603 for ApEn vs. DFA ( p=0.002), r=0.438 for ApEn vs. FDc ( p=0.04) and r=-0.647 for DFA vs. FDc ( p=0.0008)]. Both the fractal dimension and the approximate entropy were inversely correlated with age [ r=-0.637 ( p=0.001) and r=-0.417 ( p=0.03), respectively], while the DFA increased with age ( r=0.413, p=0.04). The results thus suggest that complexity of the temperature curve decreases with age. The complexity of the temperature curve can be quantified in a consistent fashion. Age is associated with lower complexity of the temperature curve. PMID:12736830

  8. Thermal regime and temperature stresses in bodies during thermoradiational heating. [application of perturbation method

    NASA Technical Reports Server (NTRS)

    Chistopyanova, N. V.; Chumakov, V. L.

    1974-01-01

    An approach is developed to the application of the perturbation method for the solution of problems with essential external nonlinearities, based on identification in the boundary condition of a small nonlinear complex which is considered a perturbing function. The solutions obtained in the first approximation with error of 1 to 2% in calculating the unsteady temperature fields are then used to determine the temperature stresses and deformations in solid bodies of classical form.

  9. Mechanically Enhanced Liquid Interfaces at Human Body Temperature Using Thermosensitive Methylated Nanocrystalline Cellulose.

    PubMed

    Scheuble, N; Geue, T; Kuster, S; Adamcik, J; Mezzenga, R; Windhab, E J; Fischer, P

    2016-02-01

    The mechanical performance of materials at oil/water interfaces after consumption is a key factor affecting hydrophobic drug release. In this study, we methylated the surface of nanocrystalline cellulose (NCC) by mercerization and dimethyl sulfate exposure to produce thermosensitive biopolymers. These methylated NCC (metNCC) were used to investigate interfacial thermogelation at air/water and medium-chain triglyceride (MCT)/water interfaces at body temperature. In contrast to bulk fluid dynamics, elastic layers were formed at room temperature, and elasticity increased significantly at body temperature, which was measured by interfacial shear and dilatational rheology in situ. This unique phenomenon depends on solvent quality, temperature, and polymer concentration at interfaces. Thus, by adjusting the degree of hydrophobicity of metNCC, the interfacial elasticity and thermogelation of the interfaces could be varied. In general, these new materials (metNCC) formed more brittle interfacial layers compared to commercial methylcellulose (MC A15). Thermogelation of methylcellulose promotes attractive intermolecular forces, which were reflected in a change in self-assembly of metNCC at the interface. As a consequence, layer thickness and density increased as a function of temperature. These effects were measured by atomic force microscopy (AFM) images of the displaced interface and confirmed by neutron reflection. The substantial structural and mechanical change of methylcellulose interfaces at body temperature represents a controllable encapsulation parameter allowing optimization of lipid-based drug formulations. PMID:26779953

  10. Oxidative stress, activity behaviour and body mass in captive parrots

    PubMed Central

    Larcombe, S. D.; Tregaskes, C. A.; Coffey, J.; Stevenson, A. E.; Alexander, L. G.; Arnold, K. E.

    2015-01-01

    Many parrot species are kept in captivity for conservation, but often show poor reproduction, health and survival. These traits are known to be influenced by oxidative stress, the imbalance between the production of reactive oxygen species (ROS) and ability of antioxidant defences to ameliorate ROS damage. In humans, oxidative stress is linked with obesity, lack of exercise and poor nutrition, all of which are common in captive animals. Here, we tested whether small parrots (budgerigars, Melopsittacus undulatus) maintained in typical pet cages and on ad libitum food varied in oxidative profile, behaviour and body mass. Importantly, as with many birds held in captivity, they did not have enough space to engage in extensive free flight. Four types of oxidative damage, single-stranded DNA breaks (low-pH comet assay), alkali-labile sites in DNA (high-pH comet assay), sensitivity of DNA to ROS (H2O2-treated comet assay) and malondialdehyde (a byproduct of lipid peroxidation), were uncorrelated with each other and with plasma concentrations of dietary antioxidants. Without strenuous exercise over 28 days in a relatively small cage, more naturally ‘active’ individuals had more single-stranded DNA breaks than sedentary birds. High body mass at the start or end of the experiment, coupled with substantial mass gain, were all associated with raised sensitivity of DNA to ROS. Thus, high body mass in these captive birds was associated with oxidative damage. These birds were not lacking dietary antioxidants, because final body mass was positively related to plasma levels of retinol, zeaxanthin and α-tocopherol. Individuals varied widely in activity levels, feeding behaviour, mass gain and oxidative profile despite standardized living conditions. DNA damage is often associated with poor immunocompetence, low fertility and faster ageing. Thus, we have candidate mechanisms for the limited lifespan and fecundity common to many birds kept for conservation purposes. PMID

  11. High temperature solid oxide fuel development activities

    SciTech Connect

    Ray, E.R.

    1993-11-01

    This paper presents an overview of the Westinghouse tubular SOFC development activities and current program status. Goal is to develop a cell that can operate for 50,000 to 100,000 h. Test results are presented for multiple single cell tests which have now successfully exceeded 40,000 hours of continuous power operation at temperature. Two 25-kW SOFC customer tests units were delivered in 1992; a 20-kW SOFC system is bein manufactured and will be operated by Southern California Edison in 1995. Megawatt class generators are being developed.

  12. Individual and demographic consequences of reduced body condition following repeated exposure to high temperatures.

    PubMed

    Gardner, Janet L; Amano, Tatsuya; Sutherland, William J; Clayton, Mark; Peters, Anne

    2016-03-01

    Although the lethal consequences of extreme heat are increasingly reported in the literature, the fitness costs of exposure to sublethal high air temperatures, typically identified in the 30-40 degrees C range, are poorly understood. We examine the effect of high (> or = 35 degrees C) daily maxima on body condition of a semiarid population of White-plumed Honeyeaters, Ptilotula penicillatus, monitored between 1986 and 2012. During this 26-yr period, temperature has risen, on average, by 0.06 degrees C each year at the site, the frequency of days with thermal maxima > or = 35 degrees C has increased and rainfall has declined. Exposure to high temperatures affected body condition of White-plumed Honeyeaters, but only in low-rainfall conditions. There was no effect of a single day of exposure to temperatures > or = 35 degrees C but repeated exposure was associated with reduced body condition: 3.0% reduction in body mass per day of exposure. Rainfall in the previous 30 d ameliorated these effects, with reduced condition evident only in dry conditions. Heat-exposed males with reduced body condition were less likely to be recaptured at the start of the following spring; they presumably died. Heat-exposed females, regardless of body condition, showed lower survival than exposed males, possibly due to their smaller body mass. The higher mortality of females and smaller males exposed to temperatures > or = 35 degrees C may have contributed to the increase in mean body size of this population over 23 years. Annual survival declined across time concomitant with increasing frequency of days > or = 35 degrees C and decreasing rainfall. Our study is one of few to identify a proximate cause of climate change related mortality, and associated long-term demographic consequence. Our results have broad implications for avian communities living in arid and semiarid regions of Australia, and other mid-latitudes regions where daily maximum temperatures already approach physiological

  13. Self sterilization of bodies during outer planet entry. [atmospheric temperature effects

    NASA Technical Reports Server (NTRS)

    Hoffman, A. R.; Jaworski, W.; Taylor, D. M.

    1975-01-01

    As a body encounters the atmosphere of an outer planet, whether accidentally or by plan, it will be subjected to heat loads which could result in high temperature conditions that render terrestrial organisms on or within the body non-viable. To determine whether an irregularly shaped entering body, consisting of several different materials, would be sterilized during inadvertent entry at high velocity, the thermal response of a typical outer planet spacecraft instrument was studied. The results indicate that the Teflon-insulated cable and electronic circuit boards may not experience sterilizing temperatures during a Jupiter, Saturn, or Titan entry. Another conclusion of the study is that small plastic particles entering Saturn from outer space have wider survival corridors than do those at Jupiter.

  14. Central actions of calcitonin on body temperature and intestinal motility in rats: evidence for different mediations.

    PubMed

    Fargeas, M J; Fioramonti, J; Buéno, L

    1985-06-01

    The effects of intracerebroventricular (i.c.v.) administration of calcitonin and PGE2 on intestinal motility and body temperature were examined in conscious rats chronically fitted with intraparietal electrodes in the small intestine, a cannula in a cerebral lateral ventricle and a subcutaneous thermistor probe. Both calcitonin and PGE2 restored the fasted pattern of intestinal motility in fed rats and induced an increase in body temperature. Indomethacin, an inhibitor of the cyclooxygenase with calcium antagonistic properties, and TMB-8, an intracellular calcium antagonist, blocked the effects of calcitonin on intestinal motility and body temperature. Piroxicam, an inhibitor of the cyclooxygenase which does not affect calcium uptake blocked the thermic but not the intestinal effects of calcitonin. TMB-8 but not indomethacin or piroxicam partially blocked the effects of PGE2 on both intestinal motility and body temperature. It is concluded that the central hyperthermic effect of calcitonin is mediated through the formation and the release of prostaglandins whereas the central action of calcitonin on digestive motility results from intracerebral effects on calcium fluxes. PMID:3875880

  15. Evaluation of body composition and nitrogen content of renal patients on chronic dialysis as determined by total body neutron activation

    SciTech Connect

    Cohn, S.H.; Brennan, B.L.; Yasumura, S.; Vartsky, D.; Vaswani, A.N.; Ellis, K.J.

    1983-07-01

    Total body protein (nitrogen), body cell mass (potassium), fat, and water were measured in 15 renal patients on maintenance hemodialysis (MHD). Total body nitrogen was measured by means of prompt ..gamma.. neutron activation analysis; total body water was determined with tritium labeled water; total body potassium was measured by whole body counting. The extracellular water was determined by a technique utilizing the measurement of total body chloride and plasma chloride. When compared with corresponding values of a control group of the same age, sex, and height, the protein content, body cell mass, and total body fat of the MHD patients were within the normal range. The only significant change was an increase in the extracellular water/body cell mass ratio in the male MHD patients compared to the control. The lack of significant difference of the nitrogen values of the MHD patients compared to matched controls suggests that dialysis minimizes any residual effects of uremic toxicity or protein-calorie malnutrition. These findings further suggest that there is a need to reevaluate the traditional anthropometric and biochemical standards of nutritional status for MHD patients. It was concluded that it is particularly important to measure protein stores of MHD patients with low protein intake to ascertain nutritional status. Finally, in vivo measurement of total body nitrogen and potassium for determination of body composition provides a simple, direct, and accurate assessment of the nutritional status of MHD patients.

  16. Self-objectification, body self-consciousness during sexual activities, and sexual satisfaction in college women.

    PubMed

    Claudat, Kim; Warren, Cortney S

    2014-09-01

    Few studies examine the mechanisms that link body image to sexual satisfaction in women. Using the tenets of objectification theory, this study investigated the relationships between body surveillance, body shame, body self-consciousness during sexual activities, and sexual satisfaction in an ethnically diverse sample of American female college students (N=368), while controlling for relationship status and body mass index. Results based on self-report measures of these constructs suggested that body shame and body self-consciousness during sexual activity were negatively correlated with sexual satisfaction. Additionally, path analysis indicated that body surveillance predicted increased body self-consciousness during sexual activity, partially mediated by body shame. Body self-consciousness, in turn, predicted decreased sexual satisfaction. Overall, study findings highlight the negative consequences of body image concerns for women's sexual satisfaction. PMID:25173667

  17. Comparison of estimated core body temperature measured with the BioHarness and rectal temperature under several heat stress conditions.

    PubMed

    Seo, Yongsuk; DiLeo, Travis; Powell, Jeffrey B; Kim, Jung-Hyun; Roberge, Raymond J; Coca, Aitor

    2016-08-01

    Monitoring and measuring core body temperature is important to prevent or minimize physiological strain and cognitive dysfunction for workers such as first responders (e.g., firefighters) and military personnel. The purpose of this study is to compare estimated core body temperature (Tco-est), determined by heart rate (HR) data from a wearable chest strap physiology monitor, to standard rectal thermometry (Tre) under different conditions.  Tco-est and Tre measurements were obtained in thermoneutral and heat stress conditions (high temperature and relative humidity) during four different experiments including treadmill exercise, cycling exercise, passive heat stress, and treadmill exercise while wearing personal protective equipment (PPE).  Overall, the mean Tco-est did not differ significantly from Tre across the four conditions. During exercise at low-moderate work rates under heat stress conditions, Tco-est was consistently higher than Tre at all-time points. Tco-est underestimated temperature compared to Tre at rest in heat stress conditions and at a low work rate under heat stress while wearing PPE. The mean differences between the two measurements ranged from -0.1 ± 0.4 to 0.3 ± 0.4°C and Tco-est correlated well with HR (r = 0.795 - 0.849) and mean body temperature (r = 0.637 - 0.861).  These results indicate that, the comparison of Tco-est to Tre may result in over- or underestimation which could possibly lead to heat-related illness during monitoring in certain conditions. Modifications to the current algorithm should be considered to address such issues. PMID:26954265

  18. Thermal conditions influence changes in body temperature induced by intragastric administration of capsaicin in mice.

    PubMed

    Mori, Noriyuki; Urata, Tomomi; Fukuwatari, Tsutomu

    2016-08-01

    Capsaicin has been reported to have unique thermoregulatory actions. However, changes in core temperature after the administration of capsaicin are a controversial point. Therefore, we investigated the effects of environmental thermal conditions on changes in body temperature caused by capsaicin in mice. We showed that intragastric administration of 10 and 15 mg/kg capsaicin increased tail temperature and decreased colonic temperatures in the core temperature (CT)-constant and CT-decreasing conditions. In the CT-increasing condition, 15 mg/kg capsaicin increased tail temperature and decreased colonic temperature. However, 10 mg/kg capsaicin increased colonic temperature. Furthermore, the amount of increase in tail temperature was greater in the CT-decreasing condition and lower in the CT-increasing condition, compared with that of the CT-constant condition. These findings suggest that the changes in core temperature were affected by the environmental thermal conditions and that preliminary thermoregulation state might be more important than the constancy of temperature to evaluate the effects of heat diffusion and thermogensis. PMID:27068136

  19. Effects of Heat Wave on Body Temperature and Blood Pressure in the Poor and Elderly

    PubMed Central

    Kim, Soyeon; Cheong, Hae-Kwan; Ahn, Byungok; Choi, Kyusik

    2012-01-01

    Objectives We aimed to investigate the acute effects of heat stress on body temperature and blood pressure of elderly individuals living in poor housing conditions. Methods Repeated measurements of the indoor temperature, relative humidity, body temperature, and blood pressure were conducted for 20 elderly individuals living in low-cost dosshouses in Seoul during hot summer days in 2010. Changes in the body temperature, systolic blood pressure (SBP) and diastolic blood pressure (DBP) according to variations in the indoor and outdoor temperature and humidity were analyzed using a repeated-measures ANOVA controlling for age, sex, alcohol, and smoking. Results Average indoor and outdoor temperatures were 31.47℃ (standard deviation [SD], 0.97℃) and 28.15℃ (SD, 2.03℃), respectively. Body temperature increased by 0.21℃ (95% confidence interval [CI], 0.16 to 0.26℃) and 0.07℃ (95% CI, 0.04 to 0.10℃) with an increase in the indoor and outdoor temperature of 1℃. DBP decreased by 2.05 mmHg (95% CI, 0.05 to 4.05 mmHg), showing a statistical significance, as the indoor temperature increased by 1℃, while it increased by 0.20 mmHg (95% CI, -0.83 to 1.22 mmHg) as outdoor temperature increased by 1℃. SBP decreased by 1.75 mmHg (95% CI, -1.11 to 4.61 mmHg) and 0.35 mmHg (95% CI, -1.04 to 1.73 mmHg), as the indoor and outdoor temperature increased by 1℃, respectively. The effects of relative humidity on SBP and DBP were not statistically significant for both indoor and outdoor. Conclusions The poor and elderly are directly exposed to heat waves, while their vital signs respond sensitively to increase in temperature. Careful adaptation strategies to climate change considering socioeconomic status are therefore necessary. PMID:22888472

  20. Influence of body temperature on the development of fatigue during prolonged exercise in the heat.

    PubMed

    González-Alonso, J; Teller, C; Andersen, S L; Jensen, F B; Hyldig, T; Nielsen, B

    1999-03-01

    We investigated whether fatigue during prolonged exercise in uncompensable hot environments occurred at the same critical level of hyperthermia when the initial value and the rate of increase in body temperature are altered. To examine the effect of initial body temperature [esophageal temperature (Tes) = 35.9 +/- 0.2, 37.4 +/- 0. 1, or 38.2 +/- 0.1 (SE) degrees C induced by 30 min of water immersion], seven cyclists (maximal O2 uptake = 5.1 +/- 0.1 l/min) performed three randomly assigned bouts of cycle ergometer exercise (60% maximal O2 uptake) in the heat (40 degrees C) until volitional exhaustion. To determine the influence of rate of heat storage (0.10 vs. 0.05 degrees C/min induced by a water-perfused jacket), four cyclists performed two additional exercise bouts, starting with Tes of 37.0 degrees C. Despite different initial temperatures, all subjects fatigued at an identical level of hyperthermia (Tes = 40. 1-40.2 degrees C, muscle temperature = 40.7-40.9 degrees C, skin temperature = 37.0-37.2 degrees C) and cardiovascular strain (heart rate = 196-198 beats/min, cardiac output = 19.9-20.8 l/min). Time to exhaustion was inversely related to the initial body temperature: 63 +/- 3, 46 +/- 3, and 28 +/- 2 min with initial Tes of approximately 36, 37, and 38 degrees C, respectively (all P < 0.05). Similarly, with different rates of heat storage, all subjects reached exhaustion at similar Tes and muscle temperature (40.1-40.3 and 40. 7-40.9 degrees C, respectively), but with significantly different skin temperature (38.4 +/- 0.4 vs. 35.6 +/- 0.2 degrees C during high vs. low rate of heat storage, respectively, P < 0.05). Time to exhaustion was significantly shorter at the high than at the lower rate of heat storage (31 +/- 4 vs. 56 +/- 11 min, respectively, P < 0.05). Increases in heart rate and reductions in stroke volume paralleled the rise in core temperature (36-40 degrees C), with skin blood flow plateauing at Tes of approximately 38 degrees C. These

  1. Using pairs of physiological models to estimate temporal variation in amphibian body temperature.

    PubMed

    Roznik, Elizabeth A; Alford, Ross A

    2014-10-01

    Physical models are often used to estimate ectotherm body temperatures, but designing accurate models for amphibians is difficult because they can vary in cutaneous resistance to evaporative water loss. To account for this variability, a recently published technique requires a pair of agar models that mimic amphibians with 0% and 100% resistance to evaporative water loss; the temperatures of these models define the lower and upper boundaries of possible amphibian body temperatures for the location in which they are placed. The goal of our study was to develop a method for using these pairs of models to estimate parameters describing the distributions of body temperatures of frogs under field conditions. We radiotracked green-eyed treefrogs (Litoria serrata) and collected semi-continuous thermal data using both temperature-sensitive radiotransmitters with an automated datalogging receiver, and pairs of agar models placed in frog locations, and we collected discrete thermal data using a non-contact infrared thermometer when frogs were located. We first examined the accuracy of temperature-sensitive transmitters in estimating frog body temperatures by comparing transmitter data with direct temperature measurements taken simultaneously for the same individuals. We then compared parameters (mean, minimum, maximum, standard deviation) characterizing the distributions of temperatures of individual frogs estimated from data collected using each of the three methods. We found strong relationships between thermal parameters estimated from data collected using automated radiotelemetry and both types of thermal models. These relationships were stronger for data collected using automated radiotelemetry and impermeable thermal models, suggesting that in the field, L. serrata has a relatively high resistance to evaporative water loss. Our results demonstrate that placing pairs of thermal models in frog locations can provide accurate estimates of the distributions of temperatures

  2. Influence of ambient temperature on whole body and segmental bioimpedance spectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Medrano, G.; Bausch, R.; Ismail, A. H.; Cordes, A.; Pikkemaat, R.; Leonhardt, S.

    2010-04-01

    Bioimpedance spectroscopy (BIS) measurements are easy to implement and could be used for continuous monitoring. However, several factors (e.g. environment temperature) influence the measurements limiting the accuracy of the technology. Changes in skin temperature produced by changes in ambient temperature are related with changes in skin blood flow and skin impedance. It is assumed that skin impedance change is responsible for the error observed in whole body and segmental measurements. Measurements including body parts more distant from the torso seem to be more affected. In the present article skin and segment impedance have been performed on healthy subjects under extreme changes in environment temperature (13-39 °C). A commercial BIS device with a range between 5 kHz and 1 MHz has been used for the measurements. The results indicate that not only skin impedance, but also impedance of deeper tissue (e.g. muscle) may be responsible for the influence of environment temperature on BIS measurements. Segmental (knee-to-knee) BIS measurements show a relative change of only 2 %, while forearm and whole body impedance changed 14 % and 8 % respectively.

  3. Ultra Low Power Full Digital Body Temperature Sensor Operating in Sub-Threshold Regime

    NASA Astrophysics Data System (ADS)

    Wu, Yuping; Zhang, Xuelian; Chen, Lan

    2015-11-01

    In this paper, we presented a full digital human body temperature sensor with high yield, which was designed in 40 nm CMOS technology. As part of the green BAN, it can measure the body temperature with ultra-low-power in high accuracy by operating in deep sub-threshold regime. The power dissipation is 1.2 nW with a power supply voltage of 0.12 V at 27 °C. The accuracy is 0.047 °C in the temperature range from 25 to 45 °C, and the sensor can operate with the power supply range from 0.12 to 0.40 V and takes ultra-low-power consumption.

  4. Computational model for calculating body-core temperature elevation in rabbits due to whole-body exposure at 2.45 GHz

    NASA Astrophysics Data System (ADS)

    Hirata, Akimasa; Sugiyama, Hironori; Kojima, Masami; Kawai, Hiroki; Yamashiro, Yoko; Fujiwara, Osamu; Watanabe, Soichi; Sasaki, Kazuyuki

    2008-06-01

    In the current international guidelines and standards with regard to human exposure to electromagnetic waves, the basic restriction is defined in terms of the whole-body average-specific absorption rate. The rationale for the guidelines is that the characteristic pattern of thermoregulatory response is observed for the whole-body average SAR above a certain level. However, the relationship between energy absorption and temperature elevation was not well quantified. In this study, we improved our thermal computation model for rabbits, which was developed for localized exposure on eye, in order to investigate the body-core temperature elevation due to whole-body exposure at 2.45 GHz. The effect of anesthesia on the body-core temperature elevation was also discussed in comparison with measured results. For the whole-body average SAR of 3.0 W kg-1, the body-core temperature in rabbits elevates with time, without becoming saturated. The administration of anesthesia suppressed body-core temperature elevation, which is attributed to the reduced basal metabolic rate.

  5. The sympathetic nervous system is controlled by transient receptor potential vanilloid 1 in the regulation of body temperature.

    PubMed

    Alawi, Khadija M; Aubdool, Aisah A; Liang, Lihuan; Wilde, Elena; Vepa, Abhinav; Psefteli, Maria-Paraskevi; Brain, Susan D; Keeble, Julie E

    2015-10-01

    Transient receptor potential vanilloid 1 (TRPV1) is involved in sensory nerve nociceptive signaling. Recently, it has been discovered that TRPV1 receptors also regulate basal body temperature in multiple species from mice to humans. In the present study, we investigated whether TRPV1 modulates basal sympathetic nervous system (SNS) activity. C57BL6/J wild-type (WT) mice and TRPV1 knockout (KO) mice were implanted with radiotelemetry probes for measurement of core body temperature. AMG9810 (50 mg/kg) or vehicle (2% DMSO/5% Tween 80/10 ml/kg saline) was injected intraperitoneally. Adrenoceptor antagonists or vehicle (5 ml/kg saline) was injected subcutaneously. In WT mice, the TRPV1 antagonist, AMG9810, caused significant hyperthermia, associated with increased noradrenaline concentrations in brown adipose tissue. The hyperthermia was significantly attenuated by the β-adrenoceptor antagonist propranolol, the mixed α-/β-adrenoceptor antagonist labetalol, and the α1-adrenoceptor antagonist prazosin. TRPV1 KO mice have a normal basal body temperature, indicative of developmental compensation. d-Amphetamine (potent sympathomimetic) caused hyperthermia in WT mice, which was reduced in TRPV1 KO mice, suggesting a decreased sympathetic drive in KOs. This study provides new evidence that TRPV1 controls thermoregulation upstream of the SNS, providing a potential therapeutic target for sympathetic hyperactivity thermoregulatory disorders. PMID:26136480

  6. Post-warmup strategies to maintain body temperature and physical performance in professional rugby union players.

    PubMed

    West, Daniel J; Russell, Mark; Bracken, Richard M; Cook, Christian J; Giroud, Tibault; Kilduff, Liam P

    2016-01-01

    We compared the effects of using passive-heat maintenance, explosive activity or a combination of both strategies during the post-warmup recovery time on physical performance. After a standardised warmup, 16 professional rugby union players, in a randomised design, completed a counter-movement jump (peak power output) before resting for 20 min and wearing normal-training attire (CON), wearing a passive heat maintenance (PHM) jacket, wearing normal attire and performing 3 × 5 CMJ (with a 20% body mass load) after 12 min of recovery (neuromuscular function, NMF), or combining PHM and NMF (COMB). After 20 min, participants completed further counter-movement jump and a repeated sprint protocol. Core temperature (Tcore) was measured at baseline, post-warmup and post-20 min. After 20 min of recovery, Tcore was significantly lower under CON and NMF, when compared with both PHM and COMB (P < 0.05); PHM and COMB were similar. Peak power output had declined from post-warmup under all conditions (P < 0.001); however, the drop was less in COMB versus all other conditions (P < 0.05). Repeated sprint performance was significantly better under COMB when compared to all other conditions. Combining PHM with NMF priming attenuates the post-warmup decline in Tcore and can positively influence physical performance in professional rugby union players. PMID:25925751

  7. The effects of sodium oxybate on core body and skin temperature regulation in narcolepsy.

    PubMed

    van der Heide, Astrid; Donjacour, Claire E H M; Pijl, Hanno; Reijntjes, Robert H A M; Overeem, Sebastiaan; Lammers, Gert J; Van Someren, Eus J W; Fronczek, Rolf

    2015-10-01

    Patients suffering from narcolepsy type 1 show altered skin temperatures, resembling the profile that is related to sleep onset in healthy controls. The aim of the present study is to investigate the effects of sodium oxybate, a widely used drug to treat narcolepsy, on the 24-h profiles of temperature and sleep-wakefulness in patients with narcolepsy and controls. Eight hypocretin-deficient male narcolepsy type 1 patients and eight healthy matched controls underwent temperature measurement of core body and proximal and distal skin twice, and the sleep-wake state for 24 h. After the baseline assessment, 2 × 3 g of sodium oxybate was administered for 5 nights, immediately followed by the second assessment. At baseline, daytime core body temperature and proximal skin temperature were significantly lower in patients with narcolepsy (core: 36.8 ± 0.05 °C versus 37.0 ± 0.05 °C, F = 8.31, P = 0.01; proximal: 33.4 ± 0.26 °C versus 34.3 ± 0.26 °C, F = 5.66, P = 0.03). In patients, sodium oxybate administration increased proximal skin temperature during the day (F = 6.46, P = 0.04) to a level similar as in controls, but did not affect core body temperature, distal temperature or distal-proximal temperature gradient. Sodium oxybate administration normalised the predictive value of distal skin temperature and distal-proximal temperature gradient for the onset of daytime naps (P < 0.01). In conclusion, sodium oxybate administration resulted in a partial normalisation of the skin temperature profile, by increasing daytime proximal skin temperature, and by strengthening the known relationship between skin temperature and daytime sleep propensity. These changes seem to be related to the clinical improvement induced by sodium oxybate treatment. A causal relationship is not proven. PMID:25913575

  8. Changes in body core and body surface temperatures during prolonged swimming in water of 10°C—a case report

    PubMed Central

    2012-01-01

    Background This case report describes an experienced open-water ultra-endurance athlete swimming in water of 9.9°C for 6 h and 2 min. Methods Before the swim, anthropometric characteristics such as body mass, body height, skinfold thicknesses, and body fat were determined. During and after the swim, body core (rectum) and body surface (forearm and calf) temperatures were continuously recorded. Results The swimmer (53 years old, 110.5 kg body mass, 1.76 m body height, 34.9% body fat, and a body mass index of 35.7 kg/m2) achieved a total distance of 15 km while swimming at a mean speed of 2.48 km/h, equal to 0.69 m/s, in water of 9.9°C. Body core temperature was at 37.8°C before the swim, increased to a maximum of 38.1°C after approximately 20 min of swimming, and then decreased continuously to 36.3°C upon finishing the swim. The lowest body core temperature was 36.0°C between 35 and 60 min after finishing the swim. Sixty minutes after the swim, the body core temperature continuously rose to 36.5°C where it remained. At the forearm, the temperature dropped to 19.6°C after approximately 36 min of swimming and decreased to 19.4°C by the end of the swim. The lowest temperature at the forearm was 17.6°C measured at approximately 47 min before the athlete stopped swimming. At the calf, the temperature dropped to 13.0°C after approximately 24 min of swimming and decreased to 11.9°C at the end of the swim. The lowest temperature measured at the calf was 11.1°C approximately 108 min after the start. In both the forearm and the calf, the skin temperature continuously increased after the swim. Conclusions This case report shows that (1) it is possible to swim for 6 h in water of 9.9°C and that (2) the athlete did not suffer from hypothermia under these circumstances. The high body mass index, high body fat, previous experience, and specific preparation of the swimmer are the most probable explanations for these findings. PMID:23849461

  9. Deferoxamine prevents cerebral glutathione and vitamin E depletions in asphyxiated neonatal rats: role of body temperature.

    PubMed

    Kletkiewicz, Hanna; Nowakowska, Anna; Siejka, Agnieszka; Mila-Kierzenkowska, Celestyna; Woźniak, Alina; Caputa, Michał; Rogalska, Justyna

    2016-01-01

    Hypoxic-ischaemic brain injury involves increased oxidative stress. In asphyxiated newborns iron deposited in the brain catalyses formation of reactive oxygen species. Glutathione (GSH) and vitamin E are key factors protecting cells against such agents. Our previous investigation has demonstrated that newborn rats, showing physiological low body temperature as well as their hyperthermic counterparts injected with deferoxamine (DF) are protected against iron-mediated, delayed neurotoxicity of perinatal asphyxia. Therefore, we decided to study the effects of body temperature and DF on the antioxidant status of the brain in rats exposed neonatally to critical anoxia. Two-day-old newborn rats were exposed to anoxia in 100% nitrogen atmosphere for 10 min. Rectal temperature was kept at 33 °C (physiological to rat neonates), or elevated to the level typical of healthy adult rats (37 °C), or of febrile adult rats (39 °C). Half of the rats exposed to anoxia under extremely hyperthermic conditions (39 °C) were injected with DF. Cerebral concentrations of malondialdehyde (MDA, lipid peroxidation marker) and the levels of GSH and vitamin E were determined post-mortem, (1) immediately after anoxia, (2) 3 days, (3) 7 days, and (4) 2 weeks after anoxia. There were no post-anoxic changes in MDA, GSH and vitamin E concentrations in newborn rats kept at body temperature of 33 °C. In contrast, perinatal anoxia at elevated body temperatures intensified oxidative stress and depleted the antioxidant pool in a temperature-dependent manner. Both the depletion of antioxidants and lipid peroxidation were prevented by post-anoxic DF injection. The data support the idea that hyperthermia may extend perinatal anoxia-induced brain lesions. PMID:26794834

  10. On the average temperature of airless spherical bodies and the magnitude of Earth's atmospheric thermal effect.

    PubMed

    Volokin, Den; ReLlez, Lark

    2014-01-01

    The presence of atmosphere can appreciably warm a planet's surface above the temperature of an airless environment. Known as a natural Greenhouse Effect (GE), this near-surface Atmospheric Thermal Enhancement (ATE) as named herein is presently entirely attributed to the absorption of up-welling long-wave radiation by greenhouse gases. Often quoted as 33 K for Earth, GE is estimated as a difference between planet's observed mean surface temperature and an effective radiating temperature calculated from the globally averaged absorbed solar flux using the Stefan-Boltzmann (SB) radiation law. This approach equates a planet's average temperature in the absence of greenhouse gases or atmosphere to an effective emission temperature assuming ATE ≡ GE. The SB law is also routinely employed to estimating the mean temperatures of airless bodies. We demonstrate that this formula as applied to spherical objects is mathematically incorrect owing to Hölder's inequality between integrals and leads to biased results such as a significant underestimation of Earth's ATE. We derive a new expression for the mean physical temperature of airless bodies based on an analytic integration of the SB law over a sphere that accounts for effects of regolith heat storage and cosmic background radiation on nighttime temperatures. Upon verifying our model against Moon surface temperature data provided by the NASA Diviner Lunar Radiometer Experiment, we propose it as a new analytic standard for evaluating the thermal environment of airless bodies. Physical evidence is presented that Earth's ATE should be assessed against the temperature of an equivalent airless body such as the Moon rather than a hypothetical atmosphere devoid of greenhouse gases. Employing the new temperature formula we show that Earth's total ATE is ~90 K, not 33 K, and that ATE = GE + TE, where GE is the thermal effect of greenhouse gases, while TE > 15 K is a thermodynamic enhancement independent of the

  11. Seasonal Patterns of Body Temperature Daily Rhythms in Group-Living Cape Ground Squirrels Xerus inauris

    PubMed Central

    Scantlebury, Michael; Danek-Gontard, Marine; Bateman, Philip W.; Bennett, Nigel C.; Manjerovic, Mary-Beth; Joubert, Kenneth E.; Waterman, Jane M.

    2012-01-01

    Organisms respond to cyclical environmental conditions by entraining their endogenous biological rhythms. Such physiological responses are expected to be substantial for species inhabiting arid environments which incur large variations in daily and seasonal ambient temperature (Ta). We measured core body temperature (Tb) daily rhythms of Cape ground squirrels Xerus inauris inhabiting an area of Kalahari grassland for six months from the Austral winter through to the summer. Squirrels inhabited two different areas: an exposed flood plain and a nearby wooded, shady area, and occurred in different social group sizes, defined by the number of individuals that shared a sleeping burrow. Of a suite of environmental variables measured, maximal daily Ta provided the greatest explanatory power for mean Tb whereas sunrise had greatest power for Tb acrophase. There were significant changes in mean Tb and Tb acrophase over time with mean Tb increasing and Tb acrophase becoming earlier as the season progressed. Squirrels also emerged from their burrows earlier and returned to them later over the measurement period. Greater increases in Tb, sometimes in excess of 5°C, were noted during the first hour post emergence, after which Tb remained relatively constant. This is consistent with observations that squirrels entered their burrows during the day to ‘offload’ heat. In addition, greater Tb amplitude values were noted in individuals inhabiting the flood plain compared with the woodland suggesting that squirrels dealt with increased environmental variability by attempting to reduce their Ta-Tb gradient. Finally, there were significant effects of age and group size on Tb with a lower and less variable Tb in younger individuals and those from larger group sizes. These data indicate that Cape ground squirrels have a labile Tb which is sensitive to a number of abiotic and biotic factors and which enables them to be active in a harsh and variable environment. PMID:22558324

  12. Seasonal shifts in body temperature and use of microhabitats by Galapagos land iguanas (Conolophus pallidus)

    SciTech Connect

    Christian, K.; Tracy, C.R.; Porter, W.P.

    1983-06-01

    Seasonal differences in the body temperatures (T/sub b/) of free-ranging Galapagos land iguanas (Conolophus pallidus) were detected by temperature sensitive telemetry transmitters. Midday T/sub b/'s of iguanas average 4.4/sup 0/C lower in the Garua (cool) season than in the Hot season. Measured T/sub b/'s and those predicted from biophysical models permitted the following conclusions: (1) lower T/sub b/'s during the Garua season represent an active shift in thermoregulation by the iguanas rather than a passive result of a cooler season; (2) the average midday T/sub b/ selected by the iguanas in either season is the T/sub b/ that allows maintenance of a constant T/sub b/ for the longest possible portion of the day; (3) by exploiting the warmer microclimate created by a cliff face, the iguanas are able to maintain a constant T/sub b/ for a full hour longer than they could elsewhere in their home range. Census data demonstrated that the iguanas exploited the warmer microclimate created by the cliff extensively during the Garua season, and the cliff face was visited by the iguanas relatively infrequently during the Hot season. Thus, the exploitation of the microclimate created by the cliff results in seasonal differences in the pattern of space utilization within the home ranges of the iguanas. Within the Garua season the iguanas moved away from the cliff more often on sunny days than during cloudy days. It is concluded that the physical environment is an important determinant of patterns of space utilization both within and between seasons.

  13. The sympathetic nervous system is controlled by transient receptor potential vanilloid 1 in the regulation of body temperature

    PubMed Central

    Alawi, Khadija M.; Aubdool, Aisah A.; Liang, Lihuan; Wilde, Elena; Vepa, Abhinav; Psefteli, Maria-Paraskevi; Brain, Susan D.; Keeble, Julie E.

    2015-01-01

    Transient receptor potential vanilloid 1 (TRPV1) is involved in sensory nerve nociceptive signaling. Recently, it has been discovered that TRPV1 receptors also regulate basal body temperature in multiple species from mice to humans. In the present study, we investigated whether TRPV1 modulates basal sympathetic nervous system (SNS) activity. C57BL6/J wild-type (WT) mice and TRPV1 knockout (KO) mice were implanted with radiotelemetry probes for measurement of core body temperature. AMG9810 (50 mg/kg) or vehicle (2% DMSO/5% Tween 80/10 ml/kg saline) was injected intraperitoneally. Adrenoceptor antagonists or vehicle (5 ml/kg saline) was injected subcutaneously. In WT mice, the TRPV1 antagonist, AMG9810, caused significant hyperthermia, associated with increased noradrenaline concentrations in brown adipose tissue. The hyperthermia was significantly attenuated by the β-adrenoceptor antagonist propranolol, the mixed α-/β-adrenoceptor antagonist labetalol, and the α1-adrenoceptor antagonist prazosin. TRPV1 KO mice have a normal basal body temperature, indicative of developmental compensation. d-Amphetamine (potent sympathomimetic) caused hyperthermia in WT mice, which was reduced in TRPV1 KO mice, suggesting a decreased sympathetic drive in KOs. This study provides new evidence that TRPV1 controls thermoregulation upstream of the SNS, providing a potential therapeutic target for sympathetic hyperactivity thermoregulatory disorders.—Alawi, K. M., Aubdool, A. A., Liang, L., Wilde, E., Vepa, A., Psefteli, M.-P., Brain, S. D., Keeble, J. E. The sympathetic nervous system is controlled by transient receptor potential vanilloid 1 in the regulation of body temperature. PMID:26136480

  14. Effect of acute low body temperature on predatory behavior and prey-capture efficiency in a plethodontid salamander.

    PubMed

    Marvin, Glenn A; Davis, Kayla; Dawson, Jacob

    2016-05-01

    The low-temperature limit for feeding in some salamander species (Desmognathus, Plethodontidae) has been inferred from field studies of seasonal variation in salamander activity and gut contents, which could not determine whether feeding is more dependent on environmental conditions influencing salamander foraging behavior or prey availability and movement. We performed two controlled laboratory experiments to examine the effect of short-term (acute) low body temperature on predatory behavior and prey-capture efficiency in a semiaquatic plethodontid salamander (Desmognathus conanti). In the first experiment, we quantified variation in the feeding responses of cold salamanders (at 1, 3, 5 and 7°C) to a video recording of a walking, warm (15°C) cricket to determine the lower thermal limit for predatory behavior, independent of any temperature effect on movement of prey. Experimental-group salamanders exhibited vigorous feeding responses at 5 and 7°C, large variation in feeding responses both among and within individuals (over time) at 3°C, and little to no feeding response at 1°C. Feeding responses at both 1 and 3°C were significantly less than at each higher temperature, whereas responses of control-group individuals at 15°C did not vary over time. In the second experiment, we quantified feeding by cold salamanders (at 3, 5, 7 and 11°C) on live, warm crickets to examine thermal effects on prey-capture ability. The mean feeding response to live crickets was significantly less at 3°C than at higher temperatures; however, 50% of salamanders captured and ingested prey with high efficiency at this temperature. We conclude that many individuals stalk and capture prey at very low temperatures (down to 3°C). Our results support a growing body of data that indicate many plethodontid salamanders feed at temperatures only a few degrees above freezing. PMID:26939728

  15. Experimental Measurements of Temperature and Heat Flux in a High Temperature Black Body Cavity

    NASA Technical Reports Server (NTRS)

    Abdelmessih, Amanie N.

    1998-01-01

    During hypersonic flight, high temperatures and high heat fluxes are generated. The Flight Loads Laboratory (FLL) at Dryden Flight Research Center (DFRC) is equipped to calibrate high heat fluxes up to 1100 kW/sq m. There are numerous uncertainties associated with these heat flux calibrations, as the process is transient, there are expected to be interactions between transient conduction, natural and forced convection, radiation, and possibly an insignificant degree of oxidation of the graphite cavity. Better understanding, of these mechanisms during the calibration process, will provide more reliable heat transfer data during either ground testing or flight testing of hypersonic vehicles.

  16. Acclimatization in a hot, humid environment: energy exchange, body temperature, and sweating.

    PubMed

    Mitchell, D; Senay, L C; Wyndham, C H; van Rensburg, A J; Rogers, G G; Strydom, N B

    1976-05-01

    Four trained young men, worked for 4 h/day at 43-50% of their maximum aerobic capacity for 3 days at 25 degrees C db, 18 degrees C wb and then for 10 consecutive days at 45 degrees C db, 32 degrees C wb. Their thermal status was assessed using direct calorimetry. As a group, the men showed classical acclimization responses, but there were marked individual differences. The calorimetric analysis revealed that reductions in strain were associated with minor changes in heat balance confined to the first and last hours of exposure. Events occurring within the first 4 days appeared to have little effect on body temperatures. Significant decreases in body temperature took place only when sweat and evaporation rate increased. A 10% increase in evaporation rate was accompanied by a 30% increase in sweat rate and a 200% increase in unevaporated sweat; thus, there is a wasteful overproduction of sweat. By the 10th day skin temperature was confined to the level necessary to evaporate sufficient sweat to achieve thermal balance with a fully wet body surface. The efficiency of heat transport within the body did not change with acclimatization. PMID:931905

  17. Isolation of biologically active nanomaterial (inclusion bodies) from bacterial cells

    PubMed Central

    2010-01-01

    Background In recent years bacterial inclusion bodies (IBs) were recognised as highly pure deposits of active proteins inside bacterial cells. Such active nanoparticles are very interesting for further downstream protein isolation, as well as for many other applications in nanomedicine, cosmetic, chemical and pharmaceutical industry. To prepare large quantities of a high quality product, the whole bioprocess has to be optimised. This includes not only the cultivation of the bacterial culture, but also the isolation step itself, which can be of critical importance for the production process. To determine the most appropriate method for the isolation of biologically active nanoparticles, three methods for bacterial cell disruption were analyzed. Results In this study, enzymatic lysis and two mechanical methods, high-pressure homogenization and sonication, were compared. During enzymatic lysis the enzyme lysozyme was found to attach to the surface of IBs, and it could not be removed by simple washing. As this represents an additional impurity in the engineered nanoparticles, we concluded that enzymatic lysis is not the most suitable method for IBs isolation. During sonication proteins are released (lost) from the surface of IBs and thus the surface of IBs appears more porous when compared to the other two methods. We also found that the acoustic output power needed to isolate the IBs from bacterial cells actually damages proteins structures, thereby causing a reduction in biological activity. High-pressure homogenization also caused some damage to IBs, however the protein loss from the IBs was negligible. Furthermore, homogenization had no side-effects on protein biological activity. Conclusions The study shows that among the three methods tested, homogenization is the most appropriate method for the isolation of active nanoparticles from bacterial cells. PMID:20831775

  18. Extreme negative temperatures and body mass loss in the Siberian salamander (Salamandrella keyserlingii, amphibia, hynobiidae).

    PubMed

    Berman, D I; Meshcheryakova, E N; Bulakhova, N A

    2016-05-01

    Frozen Siberian salamander safely tolerates long (45 days) stay at-35°C. Short-term (3 days) cooling down to-50°C was tolerable for 40% of adult individuals; down to-55°C, for 80% of the underyearlings. Generally, the salamanders lose about 28% of the body mass during the pre-hibernating period (before winter, at temperatures as low as 0°C) and during the process of freezing (as low as-5°C). The body weight remained constant upon further cooling (to-35°C). The frozen salamanders have no physiological mechanisms protecting from sublimation. PMID:27411827

  19. Physical Activity, Body Composition and Metabolic Syndrome in Young Adults

    PubMed Central

    Salonen, Minna K.; Wasenius, Niko; Kajantie, Eero; Lano, Aulikki; Lahti, Jari; Heinonen, Kati; Räikkönen, Katri; Eriksson, Johan G.

    2015-01-01

    Objective Low physical activity (PA) is a major risk factor for cardiovascular and metabolic disorders in all age groups. We measured intensity and volume of PA and examined the associations between PA and the metabolic syndrome (MS), its components and body composition among young Finnish adults. Research Design and Methods The study comprises 991 men and women born 1985-86, who participated in a clinical study during the years 2009-11 which included assessments of metabolism, body composition and PA. Objectively measured (SenseWear Armband) five-day PA data was available from 737 participants and was expressed in metabolic equivalents of task (MET). Results The prevalence of MS ranged between 8-10%. Higher total mean volume (MET-hours) or intensity (MET) were negatively associated with the risk of MS and separate components of MS, while the time spent at sedentary level of PA was positively associated with MS. Conclusions MS was prevalent in approximately every tenth of the young adults at the age of 24 years. Higher total mean intensity and volume rates as well as longer duration spent at moderate and vigorous PA level had a beneficial impact on the risk of MS. Longer time spent at the sedentary level of PA increased the risk of MS. PMID:25992848

  20. Effect of Physical Activity on BMI and Percent Body Fat of Chinese Girls.

    ERIC Educational Resources Information Center

    Fu, Frank H.; And Others

    1995-01-01

    This study investigated the effect of regular physical activity on body mass index (BMI) and percent body fat of Chinese girls grouped by age and physical activity patterns. Measurements of skinfold, height, and weight, and BMI calculations, found differences in BMI and percent body fat between active and inactive girls. (SM)

  1. Body temperatures of modern and extinct vertebrates from 13C-18O bond abundances in bioapatite

    PubMed Central

    Eagle, Robert A.; Schauble, Edwin A.; Tripati, Aradhna K.; Tütken, Thomas; Hulbert, Richard C.; Eiler, John M.

    2010-01-01

    The stable isotope compositions of biologically precipitated apatite in bone, teeth, and scales are widely used to obtain information on the diet, behavior, and physiology of extinct organisms and to reconstruct past climate. Here we report the application of a new type of geochemical measurement to bioapatite, a “clumped-isotope” paleothermometer, based on the thermodynamically driven preference for 13C and 18O to bond with each other within carbonate ions in the bioapatite crystal lattice. This effect is dependent on temperature but, unlike conventional stable isotope paleothermometers, is independent from the isotopic composition of water from which the mineral formed. We show that the abundance of 13C-18O bonds in the carbonate component of tooth bioapatite from modern specimens decreases with increasing body temperature of the animal, following a relationship between isotope “clumping” and temperature that is statistically indistinguishable from inorganic calcite. This result is in agreement with a theoretical model of isotopic ordering in carbonate ion groups in apatite and calcite. This thermometer constrains body temperatures of bioapatite-producing organisms with an accuracy of 1–2 °C. Analyses of fossilized tooth enamel of both Pleistocene and Miocene age yielded temperatures within error of those derived from similar modern taxa. Clumped-isotope analysis of bioapatite represents a new approach in the study of the thermophysiology of extinct species, allowing the first direct measurement of their body temperatures. It will also open new avenues in the study of paleoclimate, as the measurement of clumped isotopes in phosphorites and fossils has the potential to reconstruct environmental temperatures. PMID:20498092

  2. Implicit theories of the body among college women: implications for physical activity.

    PubMed

    Lyons, Claire; Kaufman, Annette R; Rima, Brandi

    2015-09-01

    This study explored the relationship between implicit theories of the body (ITB) and self-reported physical activity. ITB are beliefs about the malleability of the body. Individuals may hold entity ITB (that body appearance is fixed) or incremental ITB (that body appearance can be changed). Female undergraduate students (N = 313) completed an online survey assessing ITB, physical activity, and discrepancy between actual and ideal body weight. Participants endorsing incremental ITB reported more physical activity. A significant ITB by weight discrepancy interaction emerged. Developing interventions targeting implicit theories of the body may be one way to increase physical activity. PMID:24271689

  3. [Perioperative assessment of body temperature in elderly patients during thoracic surgery].

    PubMed

    Szłyk-Augustyn, Maria; Wujtewicz, Maria; Steffek, Mariusz; Suchorzewska, Janina; Tomaszewski, Dariusz; Kurowski, Krzysktof

    2002-01-01

    Within the last years there is observed the increase in number of elder patients operated in planned terms. Perioperative disorders of thermoregulation are strongly expressed in the group of patients, and the number of complications rises significantly during inadvertent perioperative hypothermia. The aim of this study was estimation of body temperature in patients subjected to thoracosurgical operations. The study was performed in 23 patients older than 65 years, which were divided into 2 groups. In the group I (12 persons) we used usual methods of heat loss prevention. In group II there were used: passive methods of protection against heat loss as well as Hotline blood and fluids warmer with the possibility of intravenous fluids warming. The body temperature was estimated every 30 minutes. The temperature detectors were located on plantar surface of hallux and in nasopharynx. We observed statistically significant decrease in body temperature values in group I. We conclude that there is the necessarity of the using of accessory methods of heat loss prevention in elder patients subjected to thoracosurgery. PMID:12183979

  4. Validity and Reliability of Devices That Assess Body Temperature During Indoor Exercise in the Heat

    PubMed Central

    Ganio, Matthew S; Brown, Christopher M; Casa, Douglas J; Becker, Shannon M; Yeargin, Susan W; McDermott, Brendon P; Boots, Lindsay M; Boyd, Paul W; Armstrong, Lawrence E; Maresh, Carl M

    2009-01-01

    Context: When assessing exercise hyperthermia outdoors, the validity of certain commonly used body temperature measuring devices has been questioned. A controlled laboratory environment is generally less influenced by environmental factors (eg, ambient temperature, solar radiation, wind) than an outdoor setting. The validity of these temperature measuring devices in a controlled environment may be more acceptable. Objective: To assess the validity and reliability of commonly used temperature devices compared with rectal temperature in individuals exercising in a controlled, high environmental temperature indoor setting and then resting in a cool environment. Design: Time series study. Setting: Laboratory environmental chamber (temperature  =  36.4 ± 1.2°C [97.5 ± 2.16°F], relative humidity  =  52%) and cool laboratory (temperature  =  approximately 23.3°C [74.0°F], relative humidity  =  40%). Patients or Other Participants: Fifteen males and 10 females. Intervention(s): Rectal, gastrointestinal, forehead, oral, aural, temporal, and axillary temperatures were measured with commonly used temperature devices. Temperature was measured before and 20 minutes after entering the environmental chamber, every 30 minutes during a 90-minute treadmill walk in the heat, and every 20 minutes during a 60-minute rest in mild conditions. Device validity and reliability were assessed with various statistical measures to compare the measurements using each device with rectal temperature. A device was considered invalid if the mean bias (average difference between rectal and device temperatures) was more than ±0.27°C (±0.50°F). Main Outcome Measure(s): Measured temperature from each device (mean and across time). Results: The following devices provided invalid estimates of rectal temperature: forehead sticker (0.29°C [0.52°F]), oral temperature using an inexpensive device (−1.13°C [−2.03°F]), temporal temperature measured according to the instruction

  5. Concentration and temperature effects on ovostatin activity

    NASA Technical Reports Server (NTRS)

    Moriarity, Debra M.

    1994-01-01

    Light scattering experiments performed at Mississippi State University using MSFC ovostatin preparations indicated that at low ovostatin concentrations, below 0.2 mg/ml, the protein was dissociating from a tetramer into dimers. Since the proposed mechanism of action involved the tetrameric form of the protein, we hypothesized that perhaps under the conditions of our assays at various O/T ratios the ovostatin was becoming dissociated into an inactive dimer. To examine this possibility we assayed the ovostatin activity as a function of ovostatin concentration and of temperature of the assay. Data are presented that show the results of these assays at 23 C, 30 C, 37 C and 42 C respectively. The data are highly suggestive that there is a decrease in ovostatin activity as the concentration of the protein falls below 0.06 mg/ml. This may not be of any physiological importance, however, since the concentration of ovostatin in the egg is about 0.5 mg/ml. Curiously, the dissociation of the tetramer into dimers does not show a significant temperature dependence as would be expected for an equilibrium reaction. Whether this is in fact the case, or whether the differences are so small as to not be discerned from the current data remains to be seen. Another aspect to consider is that in the egg the primary role of the ovostatin may or may not be as a protease inhibitor. Although the inhibition of collagenase by ovostatin may be an important aspect of embryogenesis, it is also possible that it functions as a binding protein for some substance. In this regard, all ovostatin preparations from MSFC have shown an approximately 88,000 MW protein associated with the ovostatin. The identity of this protein is not currently known and may be the subject of future studies.

  6. Temperature Profile and Outcomes of Neonates Undergoing Whole Body Hypothermia for Neonatal Hypoxic-Ischemic Encephalopathy

    PubMed Central

    Shankaran, Seetha; Laptook, Abbot R.; McDonald, Scott A.; Higgins, Rosemary D.; Tyson, Jon E.; Ehrenkranz, Richard A.; Das, Abhik; Sant’Anna, Guilherme; Goldberg, Ronald N.; Bara, Rebecca; Walsh, Michele C.

    2011-01-01

    BACKGROUND Decreases below target temperature were noted among neonates undergoing cooling in the NICHD Neonatal Research Network Trial of whole body hypothermia for neonatal hypoxic-ischemic encephalopathy. OBJECTIVE To examine the temperature profile and impact on outcome among ≥ 36 week gestation neonates randomized at ≤ 6 hours of age targeting esophageal temperature of 33.5°C for 72 hours. DESIGN/SETTING/PATIENTS Infants with intermittent temperatures recorded < 32.0°C during induction and maintenance of cooling were compared to all other cooled infants and relationship with outcome at 18 months was evaluated. RESULTS There were no differences in stage of encephalopathy, acidosis, or 10 minute Apgar scores between infants with temperatures < 32.0°C during induction (n=33) or maintenance (n=10) and all other infants who were cooled (n=58); however birth weight was lower and need for blood pressure support higher among infants with temperatures < 32.0 °C compared to all other cooled infants. No increase in acute adverse events were noted among infants with temperatures < 32.0 °C and hours spent < 32°C were not associated with the primary outcome of death or moderate/severe disability or the Bayley II Mental Developmental Index at 18 months. CONCLUSION Term infants with a lower birth weight are at risk for decreasing temperatures < 32.0°C while undergoing body cooling using a servo controlled system. This information suggests extra caution during the application of hypothermia as these lower birth weight infants are at risk for overcooling. Our findings may assist in planning additional trials of lower target temperature for neonatal hypoxic-ischemic encephalopathy. PMID:21499182

  7. Intraspecific scaling in frog calls: the interplay of temperature, body size and metabolic condition.

    PubMed

    Ziegler, Lucia; Arim, Matías; Bozinovic, Francisco

    2016-07-01

    Understanding physiological and environmental determinants of strategies of reproductive allocation is a pivotal aim in biology. Because of their high metabolic cost, properties of sexual acoustic signals may correlate with body size, temperature, and an individual's energetic state. A quantitative theory of acoustic communication, based on the metabolic scaling with temperature and mass, was recently proposed, adding to the well-reported empirical patterns. It provides quantitative predictions for frequencies, call rate, and durations. Here, we analysed the mass, temperature, and body condition scaling of spectral and temporal attributes of the advertisement call of the treefrog Hypsiboas pulchellus. Mass dependence of call frequency followed metabolic expectations (f~M (-0.25), where f is frequency and M is mass) although non-metabolic allometry could also account for the observed pattern. Temporal variables scaled inversely with mass contradicting metabolic expectations (d~M (0.25), where d is duration), supporting instead empirical patterns reported to date. Temperature was positively associated with call rate and negatively with temporal variables, which is congruent with metabolic predictions. We found no significant association between temperature and frequencies, adding to the bulk of empirical evidence. Finally, a result of particular relevance was that body condition consistently determined call characteristics, in interaction with temperature or mass. Our intraspecific study highlights that even if proximate determinants of call variability are rather well understood, the mechanisms through which they operate are proving to be more complex than previously thought. The determinants of call characteristics emerge as a key topic of research in behavioural and physiological biology, with several clear points under debate which need to be analysed on theoretical and empirical grounds. PMID:26552381

  8. From Space to the Rocky Intertidal: Measuring the Body Temperature of the Intertidal Mussel Species, Mytilus californianus using NASA MODIS Surface Temperatures

    NASA Astrophysics Data System (ADS)

    Price, J.; Lakshmi, V.; Menge, B. A.

    2014-12-01

    The California mussel, Mytilus californianus, is an ecologically important species in the rocky intertidal ecosystems of the U.S. Pacific coast. During low tides, times of emersion, Mytilus californianus is exposed to aerial conditions and its body temperature can vary drastically depending on the amount of solar radiation they experience. Thermal stress from high temperatures during emersion sometimes can lead to mortality of individuals. Conversely, during high tides, times of submersion, body temperatures depend on the temperature of the water that surrounds them. This study used remotely sensed surface temperature observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the NASA Earth Observing System (EOS) Aqua and Terra to predict the body temperatures of Mytilus californianus. Mussel body temperatures were provided by the Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO) and de-tided. This technique divided the mussel body temperatures into times of emersion and times of submersion. During times of emersion, mussel body temperatures were compared to remotely sensed land surface temperatures (LST) and in-situ air temperatures. During times of submersion, mussel body temperatures were compared to remotely sensed sea surface temperatures (SST) and in-situ water temperatures. To identify spatial variation in temperatures, eight different study sites ranging in latitude along the coast of Oregon were analyzed. Additionally, to better understand the temporal variation in temperatures, fourteen years (2000-2013) were analyzed for each study site. Sea surface temperature collected during the Aqua overpass and Terra overpass were strongly correlated with mussel body temperatures but varied by study site. Our results show that remotely sensed temperature could predict average daily mussel temperature within 1°C on average during times of submersion. Being able to use remotely sensed surface temperatures to predict the body

  9. H2/O2 three-body rates at high temperatures

    NASA Technical Reports Server (NTRS)

    Marinelli, William J.; Kessler, William J.; Piper, Lawrence G.; Rawlins, W. Terry

    1990-01-01

    The extraction of thrust from air breathing hypersonic propulsion systems is critically dependent on the degree to which chemical equilibrium is reached in the combustion process. In the combustion of H2/Air mixtures, slow three-body chemical reactions involving H-atoms, O-atoms, and the OH radical play an important role in energy extraction. A first-generation high temperature and pressure flash-photolysis/laser-induced fluorescence reactor was designed and constructed to measure these important three-body rates. The system employs a high power excimer laser to produce these radicals via the photolysis of stable precursors. A novel two-photon laser-induced fluorescence technique is employed to detect H-atoms without optical thickness or O2 absorption problems. To demonstrate the feasibility of the technique the apparatus in the program is designed to perform preliminary measurements on the H + O2 + M reaction at temperatures from 300 to 835 K.

  10. Effect of Dosage of Cloprostenol on Induction of Farrowing and Body Temperature of Sows

    PubMed Central

    Fraser, D.; Connor, M. L.

    1984-01-01

    In an experiment involving 161 farrowings, cloprostenol was injected on day 112 or 113 of gestation at the recommended dosage (175 μg) or a lower dosage (125 μg). Cloprostenol treatment did not result in abnormally high body temperatures of sows at parturition. Farrowing began within 29 hours of injection in 94% and 88% of the sows treated with 175 μg and 125 μg cloprostenol respectively, as compared to 15% of saline-injected controls. The duration of farrowing and number stillborn were not affected by treatment. Sows farrowing within 19 hours of treatment tended to have a large number of piglets and a higher body temperature postpartum. PMID:17422475

  11. Grain-scale thermoelastic stresses and spatiotemporal temperature gradients on airless bodies, implications for rock breakdown

    NASA Astrophysics Data System (ADS)

    Molaro, Jamie L.; Byrne, Shane; Langer, Stephen A.

    2015-02-01

    Thermomechanical processes such as fatigue and shock have been suggested to cause and contribute to rock breakdown on Earth, and on other planetary bodies, particularly airless bodies in the inner solar system. In this study, we modeled grain-scale stresses induced by diurnal temperature variations on simple microstructures made of pyroxene and plagioclase on various solar system bodies. We found that a heterogeneous microstructure on the Moon experiences peak tensile stresses on the order of 100 MPa. The stresses induced are controlled by the coefficient of thermal expansion and Young's modulus of the mineral constituents, and the average stress within the microstructure is determined by relative volume of each mineral. Amplification of stresses occurs at surface-parallel boundaries between adjacent mineral grains and at the tips of pore spaces. We also found that microscopic spatial and temporal surface temperature gradients do not correlate with high stresses, making them inappropriate proxies for investigating microcrack propagation. Although these results provide very strong evidence for the significance of thermomechanical processes on airless bodies, more work is needed to quantify crack propagation and rock breakdown rates.

  12. The Effects of Increased Body Temperature on Motor Control during Golf Putting

    PubMed Central

    Mathers, John F.; Grealy, Madeleine A.

    2016-01-01

    This study investigated the effect of increased core temperature on the performance outcome and movement kinematics of elite golfers during a golf putting task. The study aimed to examine individual differences in the extent to which increased temperature influenced the rate of putting success, whether increased temperature speeded up the timing of the putting downswing and whether elite golfers changed their movement kinematics during times of thermal stress. Six participants performed 20 putts to each of four putt distances (1, 2, 3, and 4 m) under normal temperature conditions and when core body temperature was increased. There was no significant difference in the number of successful putts between the two temperature conditions, but there was an increase in putterhead velocity at ball impact on successful putts to distances of 1 and 4 m when temperature was elevated. This reflected an increase in swing amplitude rather than a reduction in swing duration as hypothesized. There were individual differences in the motor control response to thermal stress as three of the golfers changed the kinematic parameters used to scale their putting movements to achieve putts of different distances at elevated temperatures. Theoretical implications for these findings and the practical implications for elite golfers and future research are discussed.

  13. Histamine influences body temperature by acting at H1 and H3 receptors on distinct populations of preoptic neurons

    PubMed Central

    Lundius, Ebba Gregorsson; Sanchez-Alavez, Manuel; Ghochani, Yasmin; Klaus, Joseph; Tabarean, Iustin V.

    2010-01-01

    The preoptic area/anterior hypothalamus (PO/AH), a region that contains neurons that control thermoregulation, is the main locus at which histamine affects body temperature. Here we report that histamine reduced the spontaneous firing rate of GABAergic preoptic neurons by activating H3 subtype histamine receptors. This effect involved a decrease in the level of phosphorylation of the extracellular signal-regulated kinase (ERK) and was not dependent on synaptic activity. Furthermore, a population of nonGABAergic neurons was depolarized and their firing rate was enhanced by histamine acting at H1 subtype receptors. In our experiments, activation of the H1R receptors was linked to the PLC pathway and Ca2+ release from intracellular stores. This depolarization persisted in TTX or when fast synaptic potentials were blocked indicating that it represents a postsynaptic effect. Single-cell reverse transcription –PCR analysis revealed expression of H3 receptors in a population of GABAergic neurons while H1 receptors were expressed in nonGABAergic cells. Histamine applied in the median preoptic nucleus induced a robust, long lasting hyperthermia effect that was mimicked by either H1 or H3 histamine receptor subtype specific agonists. Our data indicate that histamine modulates the core body temperature by acting at two distinct populations of preoptic neurons which express H1 and H3 receptor subtypes, respectively. PMID:20335473

  14. Histamine influences body temperature by acting at H1 and H3 receptors on distinct populations of preoptic neurons.

    PubMed

    Lundius, Ebba Gregorsson; Sanchez-Alavez, Manuel; Ghochani, Yasmin; Klaus, Joseph; Tabarean, Iustin V

    2010-03-24

    The preoptic area/anterior hypothalamus, a region that contains neurons that control thermoregulation, is the main locus at which histamine affects body temperature. Here we report that histamine reduced the spontaneous firing rate of GABAergic preoptic neurons by activating H3 subtype histamine receptors. This effect involved a decrease in the level of phosphorylation of the extracellular signal-regulated kinase and was not dependent on synaptic activity. Furthermore, a population of non-GABAergic neurons was depolarized, and their firing rate was enhanced by histamine acting at H1 subtype receptors. In our experiments, activation of the H1R receptors was linked to the PLC pathway and Ca(2+) release from intracellular stores. This depolarization persisted in TTX or when fast synaptic potentials were blocked, indicating that it represents a postsynaptic effect. Single-cell reverse transcription-PCR analysis revealed expression of H3 receptors in a population of GABAergic neurons, while H1 receptors were expressed in non-GABAergic cells. Histamine applied in the median preoptic nucleus induced a robust, long-lasting hyperthermia effect that was mimicked by either H1 or H3 histamine receptor subtype-specific agonists. Our data indicate that histamine modulates the core body temperature by acting at two distinct populations of preoptic neurons that express H1 and H3 receptor subtypes, respectively. PMID:20335473

  15. Responses of sweating and body temperature to sinusoidal exercise in physically trained men.

    PubMed

    Yamazaki, F; Fujii, N; Sone, R; Ikegami, H

    1996-02-01

    The effect of physical training on the dynamic responses of sweating to transient exercise is still controversial. We determined the phase response and amplitude response (delta) of sweating rate and body temperature to sinusoidal exercise in physically trained and untrained subjects. Eight trained and seven untrained male subjects exercised on a cycle ergometer with a constant load for 30 min; for the next 28 min, they exercised with a sinusoidal load. The sinusoidal load variation ranged from approximately 10 to 60% of peak O2 uptake with a 4-min period. The ambient temperature and the relative humidity during exercise were 25 degrees C and 35%, respectively. There was no difference between the groups in the phase lags of esophageal temperature (Tes) and mean skin temperature (Tsk), whereas the phase lags of sweating rates for the chest and forearm were significantly shorter in the trained group (P < 0.05). The delta of Tes and Tsk per 1 W of exercise load in the trained group was significantly smaller than that in the untrained group (both, P < 0.05), whereas there was no difference between the groups in the delta of sweating rate for the chest and forearm. We conclude that subjects who have undergone long-term physical training show prompter dynamic characteristics of sweating response compared with untrained subjects and have a higher capacity to maintain constant body temperature during exercise at transient load. PMID:8929589

  16. 77 FR 22345 - Agency Information Collection Activities: Proposed Collection; Comments Requested; Body Armor in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-13

    ... Information Collection Activities: Proposed Collection; Comments Requested; Body Armor in Correctional... approval of collection. (2) Title of Form/Collection: Body Armor in Correctional Institutions Survey. The collections include the forms Body Armor Administrative Agency-Level Survey and Body Armor...

  17. Measurement of the body surface temperature by the method of laser photothermal radiometry

    SciTech Connect

    Skvortsov, L A; Kirillov, V M

    2003-12-31

    The specific features of contactless measurements of the body surface temperature by the method of repetitively pulsed laser photothermal radiometry are considered and the requirements to the parameters of the laser and measurement scheme are formulated. The sensitivity of the method is estimated. The advantages of laser photothermal radiometry over the conventional passive radiometric method are discussed. (laser applications and other topics in quantum electronics)

  18. Parent body depth-pressure-temperature relationships and the style of the ureilite anatexis

    NASA Astrophysics Data System (ADS)

    Warren, Paul H.

    2012-02-01

    New analyses of mafic silicates from 14 ureilite meteorites further constrain a strong correlation (Singletary and Grove 2003) between olivine-core Fo ratio and the temperature of equilibration (TE) recorded by the composition of pigeonite. This correlation may be compared with relationships implied by various postulated combinations of Fo and pressure P in models for ureilite genesis by a putative process of anatectic (depth-linked, P-controlled) smelting. In such models, any combination of Fo and P together fixes the temperature of smelting. Agreement between the observed correlation and these models is poor. The anatectic smelting model also carries implausible implications for the depth range at which ureilites of a given composition (Fo) form. Actual ureilites (and polymict ureilite clasts: Downes et al. 2008) show a distribution strongly skewed toward the low-Fo end of the compositional range, with approximately 58% in the range Fo76-81. In contrast, the P-controlled smelting model implies that the Fo76-81 region is a small fraction of the volume of the parent body: not more than 3.2%, in a model consistent with the Fo-TE observations; and even ignoring the Fo-TE evidence not more than 11% (percentages cited require optimal assumptions concerning the size of the parent body). This region also must occur deep within the body, where no straightforward model would imply a strong bias in the impact-driven sampling process. The ureilites did not derive preponderantly from one atypical “largest offspring” disruption survivor, because cooling history evidence shows that after the disruption (whose efficiency was increased by gas jetting), all of the known ureilites cooled in bodies that were tiny (mass of order 10-9) in comparison with the precursor body. The Ca/Al ratio of the ureilite starting matter cannot be 2.5 times chondritic, as has been suggested, unless the part of the body from which ureilites come is at most 50% of the whole body. Published variants

  19. Ischemia/reperfusion injury resistance in hibernators is more than an effect of reduced body temperature or winter season

    PubMed Central

    Bogren, Lori K; Drew, Kelly L

    2014-01-01

    Hibernating mammals are resistant to injury following cardiac arrest. The basis of this protection has been proposed to be due to their ability to lower body temperature or metabolic rate in a seasonally-dependent manner. However, recent studies have shown that neither reduced body temperature nor hibernation season are components this protection.

  20. Measurement of whole body cellular and collagen nitrogen, potassium, and other elements by neutron activation and whole body counting

    SciTech Connect

    James, H.M.; Fabricius, P.J.; Dykes, P.W.

    1987-09-01

    Whole body nitrogen can be measured by neutron activation analysis with an acceptable radiation dose; it is an index of body protein which, in normal subjects, is 65% cellular protein and 35% extracellular connective collagen. Whole body potassium can be measured by whole body counting without irradiating the subject; it is an index of body cell mass. We measured whole body nitrogen, potassium, extracellular water, intracellular water, and fat-folds. The differences between 37 malnourished patients and five normal subjects suggested that the patients had 9 kg less cell mass than normal, but no difference in extracellular mass. Measurements were made on eight patients before and after 14 days of total parenteral nutrition; balance of nitrogen intake and excretion also was measured. The changes were consistent with mean increases of 3 kg of cellular mass and 3 kg of fat with no change of extracellular mass. The accuracy and sensitivity of the whole body measurements need further confirmation for use in patients with changing body composition. Where tissue wasting is largely from the cellular compartment, potassium could be a more sensitive index of wasting than nitrogen. Multielement analysis of nitrogen, potassium, chlorine, and carbon will probably be valuable in elucidating body composition in malnutrition.

  1. In utero heat stress increases postnatal core body temperature in pigs.

    PubMed

    Johnson, J S; Sanz Fernandez, M V; Seibert, J T; Ross, J W; Lucy, M C; Safranski, T J; Elsasser, T H; Kahl, S; Rhoads, R P; Baumgard, L H

    2015-09-01

    In utero heat stress (IUHS) negatively impacts postnatal development, but how it alters future body temperature parameters and energetic metabolism is not well understood. Future body temperature indices and bioenergetic markers were characterized in pigs from differing in utero thermal environments during postnatal thermoneutral (TN) and cyclical heat stress (HS) exposure. First-parity pregnant gilts ( = 13) were exposed to 1 of 4 ambient temperature (T) treatments (HS [cyclic 28°C to 34°C] or TN [cyclic 18°C to 22°C]) applied for the entire gestation (HSHS, TNTN), HS for the first half of gestation (HSTN), or HS for the second half of gestation (TNHS). Twenty-four offspring (23.1 ± 1.2 kg BW; = 6 HSHS, = 6 TNTN, = 6 HSTN, = 6 TNHS) were housed in TN (21.7°C ± 0.7°C) conditions and then exposed to 2 separate but similar HS periods (HS1 = 6 d; HS2 = 6 d; cycling 28°C to 36°C). Core body temperature (T) was assessed every 15 min with implanted temperature recorders. Regardless of in utero treatment, T increased during both HS periods ( = 0.01; 0.58°C). During TN, HS1, and HS2, all IUHS pigs combined had increased T ( = 0.01; 0.36°C, 0.20°C, and 0.16°C, respectively) compared to TNTN controls. Although unaffected by in utero environment, the total plasma thyroxine to triiodothyronine ratio was reduced ( = 0.01) during HS1 and HS2 (39% and 29%, respectively) compared with TN. In summary, pigs from IUHS maintained an increased T compared with TNTN controls regardless of external T, and this thermal differential may have practical implications to developmental biology and animal bioenergetics. PMID:26440331

  2. Body mass index, physical activity, and risk of multiple myeloma

    PubMed Central

    Birmann, Brenda M.; Giovannucci, Edward; Rosner, Bernard; Anderson, Kenneth C.; Colditz, Graham A.

    2013-01-01

    Several studies have reported a positive relation of baseline body mass index (BMI) with multiple myeloma, but data on other correlates of energy balance are limited. We undertook the present analyses to further examine the role of energy balance in multiple myeloma etiology in two large prospective cohorts with biennially updated exposure data. We followed members of the Nurses’ Health Study and Health Professionals Follow-up Study cohorts from baseline until multiple myeloma diagnosis, death, or 2002. Adult height and current weight were reported at enrollment, and weight every 2 years thereafter. Physical activity was queried at baseline and updated every 2-4 years. We computed age-adjusted relative risks (RR) of multiple myeloma for categories of BMI and physical activity using Cox proportional hazards regression. We conducted analyses on each cohort separately and on both cohorts combined. We confirmed 215 incident cases of multiple myeloma in the combined cohort of 136,623 individuals (>2.1 million person-years at risk). BMI was positively associated with multiple myeloma in all analyses. The association was strongest in men with BMI ≥30 kg/m2 (v. BMI <22.0 kg/m2; RR=2.4, 95% confidence interval (CI)=1.0-6.0) and modest in overweight (BMI 25-29.9 kg/m2) and obese (BMI ≥30 kg/m2) women (v. BMI <22.0 kg/m2; RR (95% CI)=1.6 (1.0-2.7) and 1.2 (0.7-2.2), respectively). Physical activity was not significantly related to multiple myeloma risk, although an inverse association was suggested in women. In conclusion, obesity appears to have an etiologic role in multiple myeloma, but the role of other correlates of energy balance remains uncertain. PMID:17627013

  3. Historic Variations in Winter Indoor Domestic Temperatures and Potential Implications for Body Weight Gain

    PubMed Central

    Johnson, F.; Ucci, M.; Marmot, A.; Wardle, J.; Oreszczyn, T.; Summerfield, A.

    2013-01-01

    It has been argued that the amount of time spent by humans in thermoneutral environments has increased in recent decades. This paper examines evidence of historic changes in winter domestic temperatures in industrialised countries. Future trajectories for indoor thermal comfort are also explored. Whilst methodological differences across studies make it difficult to compare data and accurately estimate the absolute size of historic changes in indoor domestic temperatures, data analysis does suggest an upward trend, particularly in bedrooms. The variations in indoor winter residential temperatures might have been further exacerbated in some countries by a temporary drop in demand temperatures due to the 1970s energy crisis, as well as by recent changes in the building stock. In the United Kingdom, for example, spot measurement data indicate that an increase of up to 1.3°C per decade in mean dwelling winter indoor temperatures may have occurred from 1978 to 1996. The findings of this review paper are also discussed in the context of their significance for human health and well-being. In particular, historic indoor domestic temperature trends are discussed in conjunction with evidence on the links between low ambient temperatures, body energy expenditure and weight gain. PMID:26321874

  4. Theoretical and Experimental Studies of Epidermal Heat Flux Sensors for Measurements of Core Body Temperature.

    PubMed

    Zhang, Yihui; Webb, Richard Chad; Luo, Hongying; Xue, Yeguang; Kurniawan, Jonas; Cho, Nam Heon; Krishnan, Siddharth; Li, Yuhang; Huang, Yonggang; Rogers, John A

    2016-01-01

    Long-term, continuous measurement of core body temperature is of high interest, due to the widespread use of this parameter as a key biomedical signal for clinical judgment and patient management. Traditional approaches rely on devices or instruments in rigid and planar forms, not readily amenable to intimate or conformable integration with soft, curvilinear, time-dynamic, surfaces of the skin. Here, materials and mechanics designs for differential temperature sensors are presented which can attach softly and reversibly onto the skin surface, and also sustain high levels of deformation (e.g., bending, twisting, and stretching). A theoretical approach, together with a modeling algorithm, yields core body temperature from multiple differential measurements from temperature sensors separated by different effective distances from the skin. The sensitivity, accuracy, and response time are analyzed by finite element analyses (FEA) to provide guidelines for relationships between sensor design and performance. Four sets of experiments on multiple devices with different dimensions and under different convection conditions illustrate the key features of the technology and the analysis approach. Finally, results indicate that thermally insulating materials with cellular structures offer advantages in reducing the response time and increasing the accuracy, while improving the mechanics and breathability. PMID:25953120

  5. Genetically determined differences in ethanol sensitivity influenced by body temperature during intoxication

    SciTech Connect

    Alkana, R.L.; Finn, D.A.; Bejanian, M.; Crabbe, J.C.

    1988-01-01

    The present study investigated the importance of body temperature during intoxication in mediating differences between five inbred strains of mice (C57BL/6J; BALB/cJ; DBA/2J; A/HeJ; 129/J) in their acute sensitivity to the hypnotic effects of ethanol. Mice exposed to 22/degrees/C after ethanol injection became hypothermic and exhibited statistically significant differences between strains in rectal temperatures at the return of the righting reflex (RORR), duration of loss of the righting reflex (LORR), and blood and brain ethanol concentrations at RORR. Exposure to 34/degrees/C after injection offset ethanol-hypothermia and markedly reduced strain-related differences in rectal temperatures and blood and brain ethanol concentrations at RORR. Brain ethanol concentrations at RORR were significantly lower in C57, BALB, DBA and A/He mice exposed to 34/degrees/C compared to mice exposed to 22/degrees/C during intoxication suggesting that offsetting hypothermia increased ethanol sensitivity in these strains. Taken with previous in vitro studies, these results suggest that genetically determined differences in acute sensitivity to the behavioral effects of ethanol reflect differences in body temperature during intoxication as well as differences in sensitivity to the initial actions of ethanol at the cellular level.

  6. Effects of tracheostomy breathing on brain and body temperatures in hyperthermic sheep.

    PubMed Central

    Laburn, H P; Mitchell, D; Mitchell, G; Saffy, K

    1988-01-01

    1. We measured rectal and hypothalamic temperature in sheep breathing nasally and via a tracheostomy, during hyperthermia resulting from exposure to a hot environment, exercise and fever. 2. In normothermic and hyperthermic sheep hypothalamic temperature was up to 1.0 degree C lower than rectal temperature when the sheep breathed nasally. Tracheostomy breathing abolished the rectal-hypothalamic temperature difference. 3. In sheep breathing via the tracheostomy and exposed to a dry-bulb temperature of 45-50 degrees C for 2 h, hypothalamic temperature exceeded rectal temperature by about 0.4 degrees C, and was significantly higher than that in sheep breathing nasally in the same environment. 4. During exercise on a treadmill and in the post-exercise period, the difference between hypothalamic and rectal temperature was abolished in the sheep while breathing through the tracheostomy, and rectal temperature rose to higher levels compared to those evident in the same activity while breathing nasally. 5. After an I.V. injection of 0.4 micrograms/kg lipopolysaccharide (LPS), the difference between hypothalamic and rectal temperature again was abolished in the sheep when breathing through the tracheostomy, but rectal temperature rose significantly less compared to when breathing nasally. 6. Our results indicate that selective brain cooling depends on upper respiratory tract cooling in normo- and hyperthermic states in sheep. PMID:3254414

  7. Effect of strain and temperature on the threshold displacement energy in body-centered cubic iron

    NASA Astrophysics Data System (ADS)

    Beeler, Benjamin; Asta, Mark; Hosemann, Peter; Grønbech-Jensen, Niels

    2016-06-01

    The threshold displacement energy (TDE) is the minimum amount of kinetic energy required to displace an atom from its lattice site. The magnitude of the TDE displays significant variance as a function of the crystallographic direction, system temperature and applied strain, among a variety of other factors. It is critically important to determine an accurate value of the TDE in order to calculate the total number of displacements due to a given irradiation condition, and thus to understand the materials response to irradiation. In this study, molecular dynamics simulations have been performed to calculate the threshold displacement energy in body-centered cubic iron as a function of strain and temperature. With applied strain, a decrease of the TDE of up to approximately 14 eV was observed. A temperature increase from 300 K to 500 K can result in an increase of the TDE of up to approximately 9 eV.

  8. An Investigation of Summertime Inland Water Body Temperatures in California and Nevada (USA): Recent Trends and Future Projections

    NASA Astrophysics Data System (ADS)

    Healey, Nathan; Hook, Simon; Piccolroaz, Sebastiano; Toffolon, Marco; Radocinski, Robert

    2016-04-01

    Inland water body temperature has been identified as an ideal indicator of potential climate change. Understanding inland water body temperature trends is important for forecasting impacts to limnological, biological, and hydrological resources. Many inland water bodies are situated in remote locations with incomplete data records of in-situ monitoring or lack in-situ observations altogether. Thus, the utilization of satellite data is essential for understanding the behavior of global inland water body temperatures. Part of this research provides an analysis of summertime (July-September) temperature trends in the largest California/Nevada (USA) inland water bodies between 1991 and 2015. We examine satellite temperature retrievals from ATSR (ATSR-1, ATSR-2, AATSR), MODIS (Terra and Aqua), and VIIRS sensors. Our findings indicate that inland water body temperatures in the western United States were rapidly warming between 1991 and 2009, but since then trends have been decreasing. This research also includes implementation of a model called air2water to predict future inland water body surface temperature through the sole input of air temperature. Using projections from CMIP5-CCSM4 output, our model indicates that Lake Tahoe (USA) is expected to experience an increase of roughly 3 °C by 2100.

  9. Organizational influence of the postnatal testosterone surge on the circadian rhythm of core body temperature of adult male rats.

    PubMed

    Zuloaga, Damian G; McGivern, Robert F; Handa, Robert J

    2009-05-01

    The suprachiasmatic nucleus (SCN) of the hypothalamus coordinates physiological and behavioral circadian rhythms such as activity, body temperature, and hormone secretion. Circadian rhythms coordinated by the SCN often show sex differences arising from both organizational and activational effects of gonadal hormones. In males, little is known about the organizational role of testosterone on the circadian regulation of core body temperature (CBT) in adulthood. To explore this, we castrated or sham-operated male rats on the day of birth, and at 4 months of age, implanted them with transmitters that measured CBT rhythms under a 12:12 light/dark cycle. This study revealed a significantly earlier rise in CBT during the light phase in neonatally castrated males. Subsequently, we found that treating neonatally castrated males with testosterone propionate (TP) in adulthood did not reverse the effect of neonatal castration, thus indicating an organizational role for testosterone. In contrast, a single injection of TP at the time of neonatal surgery, to mimic the postnatal surge of testosterone, coupled with TP treatment in adulthood, normalized the circadian rise in CBT. In a final study we examined CBT circadian rhythms in intact adult male and female rats and detected no differences in the rise of CBT during the light phase, although there was a greater overall elevation in female CBT. Together, results of these studies reveal an early organizational role of testosterone in males on the timing of the circadian rise of CBT, a difference that does not appear to reflect "defeminization". PMID:19272357

  10. Improved models for determination of body fat by in vivo neutron activation

    SciTech Connect

    Cohn, S.; Vaswani, A.; Yasumura, S.; Yuen, K.; Ellis, K.

    1984-08-01

    In the present study, two different models of body composition, based on data obtained by nuclear techniques are used. Total body nitrogen, calcium, and chlorine were obtained by total body neutron activation. Total body chlorine was used to estimate extracellular water, and total body calcium to determine bone mineral and extracellular solids. Total body potassium was measured by whole body counting to obtain the body cell mass. In addition, total body water was measured by the tritium dilution technique. It was found that either model can be used equally well to measure total body fat in normal subjects. Estimation of body fat as the difference between body weight and the sum of total body nitrogen (protein), total body water, and bone ash (model 1) appears to have an advantage over model 2, which uses body cell mass, extracellular water, and extracellular solids, particularly for patients with metabolic disorders. This advantage is partly due to the fact that the parameter protein (total body nitrogen) is less affected in metabolic disorders than the more labile total body potassium. The closely correlated results obtained with the two models based on nuclear measurements support the conclusion that these techniques provide reliable measurements of total body fat.

  11. In situ filtering rates of Cladocera: Effect of body length, temperature, and food concentration

    SciTech Connect

    Mourelatos, S.; Lacroix, G. )

    1990-07-01

    The individual filtering rates of the cladocerans in Creteil Lake were measured in the daytime with {sup 14}C-labeled Chlorella during a seasonal survey. This mesotrophic, shallow, polymictic lake is characterized by small algae (< 25 {mu}m) and cladocerans (< 1.3 mm). Multiple regression models were established for each genus and for all the cladocerans. Body length alone explained from 44 to 57% of the total variance in the filtering rates of Daphnia spp., Ceriodaphnia spp., and Diaphanosoma brachyurum. An additional 23-34% of the variance was attributable to temperature. The inclusion of the Chl {alpha} concentration finally yielded r{sup 2} values ranging between 0.79 and 0.84. On the other hand, body length and temperature explained only 16% of the total variance in filtering rate of Bosmina longirostris. By taking into account the effect of factors other than length of the animal, the fit of the model established for all cladocerans improved considerably (from r{sup 2} = 0.47 to r{sup 2} = 0.83). Species-specific responses and thermal effects in the lake show the difficulty of applying models based solely on body length to obtain sufficiently accurate estimates of cladoceran filtering rates.

  12. Practical engineering: control of active systems using the stagnation temperature

    SciTech Connect

    Lunde, P.J.

    1982-04-01

    Solar active systems with flat plate collectors are discussed with reference to the temperature at which the system should be activated. It is concluded that the system should be activated when the stagnation temperature (temperature under the absorber plate when no fluid is circulating) equals the temperature of the fluid in storage. A thermistor Wheatstone bridge control system is described which will eliminate pump relay chatter and the permissible control differential is calculated from the collector efficiency curve. To avoid dedication of an entire collector to house the control system, a method is described for determining the stagnation temperature using a portion of an active collector. For an active solar hot water system, a calculation is carried out to show that a 2/sup 0/F temperature differential (stagnation temperature-storage temperature) is satisfactory. (MJJ)

  13. Early aqueous activity on the ordinary and carbonaceous chondrite parent bodies recorded by fayalite

    DOE PAGESBeta

    Doyle, Patricia M.; Jogo, Kaori; Nagashima, Kazuhide; Krot, Alexander N.; Wakita, Shigeru; Ciesla, Fred J.; Hutcheon, Ian D.

    2015-06-23

    Here, chronology of aqueous activity on chondrite parent bodies constrains their accretion times and thermal histories. Radiometric 53Mn–53Cr dating has been successfully applied to aqueously formed carbonates in CM carbonaceous chondrites. Owing to the absence of carbonates in ordinary (H, L and LL), and CV and CO carbonaceous chondrites, and the lack of proper standards, there are no reliable ages of aqueous activity on their parent bodies. Here we report the first 53Mn–53Cr ages of aqueously formed fayalite in the L3 chondrite Elephant Moraine 90161 as 2.4 +1.8-1.3 Myr after calcium–aluminium-rich inclusions (CAIs), the oldest Solar System solids. In addition,more » measurements using our synthesized fayalite standard show that fayalite in the CV3 chondrite Asuka 881317 and CO3-like chondrite MacAlpine Hills 88107 formed and 4.2+0.8-0.7 Myr after CAIs, respectively. Thermal modelling, combined with the inferred conditions (temperature and water/rock ratio) and 53Mn–53Cr ages of aqueous alteration, suggests accretion of the L, CV and CO parent bodies ~1.8–2.5 Myr after CAIs.« less

  14. Early aqueous activity on the ordinary and carbonaceous chondrite parent bodies recorded by fayalite

    SciTech Connect

    Doyle, Patricia M.; Jogo, Kaori; Nagashima, Kazuhide; Krot, Alexander N.; Wakita, Shigeru; Ciesla, Fred J.; Hutcheon, Ian D.

    2015-06-23

    Here, chronology of aqueous activity on chondrite parent bodies constrains their accretion times and thermal histories. Radiometric 53Mn–53Cr dating has been successfully applied to aqueously formed carbonates in CM carbonaceous chondrites. Owing to the absence of carbonates in ordinary (H, L and LL), and CV and CO carbonaceous chondrites, and the lack of proper standards, there are no reliable ages of aqueous activity on their parent bodies. Here we report the first 53Mn–53Cr ages of aqueously formed fayalite in the L3 chondrite Elephant Moraine 90161 as 2.4 +1.8-1.3 Myr after calcium–aluminium-rich inclusions (CAIs), the oldest Solar System solids. In addition, measurements using our synthesized fayalite standard show that fayalite in the CV3 chondrite Asuka 881317 and CO3-like chondrite MacAlpine Hills 88107 formed and 4.2+0.8-0.7 Myr after CAIs, respectively. Thermal modelling, combined with the inferred conditions (temperature and water/rock ratio) and 53Mn–53Cr ages of aqueous alteration, suggests accretion of the L, CV and CO parent bodies ~1.8–2.5 Myr after CAIs.

  15. Early aqueous activity on the ordinary and carbonaceous chondrite parent bodies recorded by fayalite

    NASA Astrophysics Data System (ADS)

    Doyle, Patricia M.; Jogo, Kaori; Nagashima, Kazuhide; Krot, Alexander N.; Wakita, Shigeru; Ciesla, Fred J.; Hutcheon, Ian D.

    2015-06-01

    Chronology of aqueous activity on chondrite parent bodies constrains their accretion times and thermal histories. Radiometric 53Mn-53Cr dating has been successfully applied to aqueously formed carbonates in CM carbonaceous chondrites. Owing to the absence of carbonates in ordinary (H, L and LL), and CV and CO carbonaceous chondrites, and the lack of proper standards, there are no reliable ages of aqueous activity on their parent bodies. Here we report the first 53Mn-53Cr ages of aqueously formed fayalite in the L3 chondrite Elephant Moraine 90161 as Myr after calcium-aluminium-rich inclusions (CAIs), the oldest Solar System solids. In addition, measurements using our synthesized fayalite standard show that fayalite in the CV3 chondrite Asuka 881317 and CO3-like chondrite MacAlpine Hills 88107 formed and Myr after CAIs, respectively. Thermal modelling, combined with the inferred conditions (temperature and water/rock ratio) and 53Mn-53Cr ages of aqueous alteration, suggests accretion of the L, CV and CO parent bodies ~1.8-2.5 Myr after CAIs.

  16. Early aqueous activity on the ordinary and carbonaceous chondrite parent bodies recorded by fayalite.

    PubMed

    Doyle, Patricia M; Jogo, Kaori; Nagashima, Kazuhide; Krot, Alexander N; Wakita, Shigeru; Ciesla, Fred J; Hutcheon, Ian D

    2015-01-01

    Chronology of aqueous activity on chondrite parent bodies constrains their accretion times and thermal histories. Radiometric (53)Mn-(53)Cr dating has been successfully applied to aqueously formed carbonates in CM carbonaceous chondrites. Owing to the absence of carbonates in ordinary (H, L and LL), and CV and CO carbonaceous chondrites, and the lack of proper standards, there are no reliable ages of aqueous activity on their parent bodies. Here we report the first (53)Mn-(53)Cr ages of aqueously formed fayalite in the L3 chondrite Elephant Moraine 90161 as Myr after calcium-aluminium-rich inclusions (CAIs), the oldest Solar System solids. In addition, measurements using our synthesized fayalite standard show that fayalite in the CV3 chondrite Asuka 881317 and CO3-like chondrite MacAlpine Hills 88107 formed and Myr after CAIs, respectively. Thermal modelling, combined with the inferred conditions (temperature and water/rock ratio) and (53)Mn-(53)Cr ages of aqueous alteration, suggests accretion of the L, CV and CO parent bodies ∼1.8-2.5 Myr after CAIs. PMID:26100451

  17. Role for kisspeptin/neurokinin B/dynorphin (KNDy) neurons in cutaneous vasodilatation and the estrogen modulation of body temperature

    PubMed Central

    Mittelman-Smith, Melinda A.; Williams, Hemalini; Krajewski-Hall, Sally J.; McMullen, Nathaniel T.; Rance, Naomi E.

    2012-01-01

    Estrogen withdrawal in menopausal women leads to hot flushes, a syndrome characterized by the episodic activation of heat dissipation effectors. Despite the extraordinary number of individuals affected, the etiology of flushes remains an enigma. Because menopause is accompanied by marked alterations in hypothalamic kisspeptin/neurokinin B/dynorphin (KNDy) neurons, we hypothesized that these neurons could contribute to the generation of flushes. To determine if KNDy neurons participate in the regulation of body temperature, we evaluated the thermoregulatory effects of ablating KNDy neurons by injecting a selective toxin for neurokinin-3 expressing neurons [NK3-saporin (SAP)] into the rat arcuate nucleus. Remarkably, KNDy neuron ablation consistently reduced tail-skin temperature (TSKIN), indicating that KNDy neurons facilitate cutaneous vasodilatation, an important heat dissipation effector. Moreover, KNDy ablation blocked the reduction of TSKIN by 17β-estradiol (E2), which occurred in the environmental chamber during the light phase, but did not affect the E2 suppression of TSKIN during the dark phase. At the high ambient temperature of 33 °C, the average core temperature (TCORE) of ovariectomized (OVX) control rats was significantly elevated, and this value was reduced by E2 replacement. In contrast, the average TCORE of OVX, KNDy-ablated rats was lower than OVX control rats at 33 °C, and not altered by E2 replacement. These data provide unique evidence that KNDy neurons promote cutaneous vasodilatation and participate in the E2 modulation of body temperature. Because cutaneous vasodilatation is a cardinal sign of a hot flush, these results support the hypothesis that KNDy neurons could play a role in the generation of flushes. PMID:23150555

  18. Assessment of body mapping sportswear using a manikin operated in constant temperature mode and thermoregulatory model control mode.

    PubMed

    Wang, Faming; Del Ferraro, Simona; Molinaro, Vincenzo; Morrissey, Matthew; Rossi, René

    2014-09-01

    Regional sweating patterns and body surface temperature differences exist between genders. Traditional sportswear made from one material and/or one fabric structure has a limited ability to provide athletes sufficient local wear comfort. Body mapping sportswear consists of one piece of multiple knit structure fabric or of different fabric pieces that may provide athletes better wear comfort. In this study, the 'modular' body mapping sportswear was designed and subsequently assessed on a 'Newton' type sweating manikin that operated in both constant temperature mode and thermophysiological model control mode. The performance of the modular body mapping sportswear kit and commercial products were also compared. The results demonstrated that such a modular body mapping sportswear kit can meet multiple wear/thermal comfort requirements in various environmental conditions. All body mapping clothing (BMC) presented limited global thermophysiological benefits for the wearers. Nevertheless, BMC showed evident improvements in adjusting local body heat exchanges and local thermal sensations. PMID:24357489

  19. Assessment of body mapping sportswear using a manikin operated in constant temperature mode and thermoregulatory model control mode

    NASA Astrophysics Data System (ADS)

    Wang, Faming; Del Ferraro, Simona; Molinaro, Vincenzo; Morrissey, Matthew; Rossi, René

    2014-09-01

    Regional sweating patterns and body surface temperature differences exist between genders. Traditional sportswear made from one material and/or one fabric structure has a limited ability to provide athletes sufficient local wear comfort. Body mapping sportswear consists of one piece of multiple knit structure fabric or of different fabric pieces that may provide athletes better wear comfort. In this study, the `modular' body mapping sportswear was designed and subsequently assessed on a `Newton' type sweating manikin that operated in both constant temperature mode and thermophysiological model control mode. The performance of the modular body mapping sportswear kit and commercial products were also compared. The results demonstrated that such a modular body mapping sportswear kit can meet multiple wear/thermal comfort requirements in various environmental conditions. All body mapping clothing (BMC) presented limited global thermophysiological benefits for the wearers. Nevertheless, BMC showed evident improvements in adjusting local body heat exchanges and local thermal sensations.

  20. Active Shape Discrimination with Compliant Bodies as Reservoir Computers.

    PubMed

    Johnson, Chris; Philippides, Andrew; Husbands, Philip

    2016-01-01

    Compliant bodies with complex dynamics can be used both to simplify control problems and to lead to adaptive reflexive behavior when engaged with the environment in the sensorimotor loop. By revisiting an experiment introduced by Beer and replacing the continuous-time recurrent neural network therein with reservoir computing networks abstracted from compliant bodies, we demonstrate that adaptive behavior can be produced by an agent in which the body is the main computational locus. We show that bodies with complex dynamics are capable of integrating, storing, and processing information in meaningful and useful ways, and furthermore that with the addition of the simplest of nervous systems such bodies can generate behavior that could equally be described as reflexive or minimally cognitive. PMID:26934092

  1. Temperature effects on superfluid phase transition in Bose-Hubbard model with three-body interaction

    NASA Astrophysics Data System (ADS)

    Kopeć, T. K.; Szymański, M. W.

    2014-10-01

    We theoretically investigate the effect of the three-body on-site interactions on the Mott-insulator-superfluid transition for ultracold bosonic atoms in the framework of the Bose-Hubbard model. In particular, we explore the combined effects of three-body interaction and finite temperature on the phase diagram in detail. In order to handle system with strong local interactions a resolvent expansion technique based on the contour integral representation of the partition function has been devised. Subsequently, we derive the Landau-type expansion for the free energy in terms of the superfluid order parameter and find the phase diagrams depicting the relationships between various physical quantities of interest.

  2. Transient temperature distributions in simple conducting bodies steadily heated through a laminar boundary layer

    NASA Technical Reports Server (NTRS)

    Parker, Hermon M

    1953-01-01

    An analysis is made of the transient heat-conduction effects in three simple semi-infinite bodies: the flat insulated plate, the conical shell, and the slender solid cone. The bodies are assumed to have constant initial temperatures and, at zero time, to begin to move at a constant speed and zero angle of attack through a homogeneous atmosphere. The heat input is taken as that through a laminar boundary layer. Radiation heat transfer and transverse temperature gradients are assumed to be zero. The appropriate heat-conduction equations are solved by an iteration method, the zeroeth-order terms describing the situation in the limit of small time. The method is presented and the solutions are calculated to three orders which are sufficient to give reasonably accurate results when the forward edge has attained one-half the total temperature rise (nose half-rise time). Flight Mach number and air properties occur as parameters in the result. Approximate expressions for the extent of the conduction region and nose half-rise times as functions of the parameters of the problem are presented. (author)

  3. [Massive transfusion with the Rapid Infusion System. Its effect on core body temperature].

    PubMed

    Booke, M; Sielenkämper, A

    2001-12-01

    Extensive blood loss requires adequate volume replacement. However the infused volume cannot be adequately warmed especially when high infusion rates are necessary. Subsequently, hypothermia develops and results in hemodynamic instability and coagulopathy. The Rapid Infusion System (RIS) allows high infusion rates (up to 1.5 l/min) while at the same time guaranteeing sufficient warming. The efficacy of the RIS was investigated in 43 consecutive patients who required a massive transfusion. The average volume transfused in these patients was 31.7 +/- 4.5 l (minimum: 7.8 l; maximum: 165.3 l) which is equal to an average exchange of 6.4 times the circulating blood volume (maximum: 39.4 blood volumes). The replacement of such high blood volumes has not yet been published in a series of patients. Despite these high transfusion rates, the body core temperature was maintained at 35.85 +/- 0.1 degrees C. Only five patients had a body core temperature below 34 degrees C, all were trauma patients and four of these five patients already had a preoperative temperature below 34 degrees C. The mortality in this study was 28%, which is markedly reduced in comparison to previous publications although they all considered at patients with significantly less blood loss. Maintaining normothermia and normovolemia by the use of the RIS may explain the improved outcome. PMID:11824076

  4. Transcriptome analysis of Pseudomonas aeruginosa PAO1 grown at both body and elevated temperatures.

    PubMed

    Chan, Kok-Gan; Priya, Kumutha; Chang, Chien-Yi; Abdul Rahman, Ahmad Yamin; Tee, Kok Keng; Yin, Wai-Fong

    2016-01-01

    Functional genomics research can give us valuable insights into bacterial gene function. RNA Sequencing (RNA-seq) can generate information on transcript abundance in bacteria following abiotic stress treatments. In this study, we used the RNA-seq technique to study the transcriptomes of the opportunistic nosocomial pathogen Pseudomonas aeruginosa PAO1 following heat shock. Samples were grown at both the human body temperature (37 °C) and an arbitrarily-selected temperature of 46 °C. In this work using RNA-seq, we identified 133 genes that are differentially expressed at 46 °C compared to the human body temperature. Our work identifies some key P. aeruginosa PAO1 genes whose products have importance in both environmental adaptation as well as in vivo infection in febrile hosts. More importantly, our transcriptomic results show that many genes are only expressed when subjected to heat shock. Because the RNA-seq can generate high throughput gene expression profiles, our work reveals many unanticipated genes with further work to be done exploring such genes products. PMID:27547539

  5. Transcriptome analysis of Pseudomonas aeruginosa PAO1 grown at both body and elevated temperatures

    PubMed Central

    Priya, Kumutha; Chang, Chien-Yi; Abdul Rahman, Ahmad Yamin; Tee, Kok Keng; Yin, Wai-Fong

    2016-01-01

    Functional genomics research can give us valuable insights into bacterial gene function. RNA Sequencing (RNA-seq) can generate information on transcript abundance in bacteria following abiotic stress treatments. In this study, we used the RNA-seq technique to study the transcriptomes of the opportunistic nosocomial pathogen Pseudomonas aeruginosa PAO1 following heat shock. Samples were grown at both the human body temperature (37 °C) and an arbitrarily-selected temperature of 46 °C. In this work using RNA-seq, we identified 133 genes that are differentially expressed at 46 °C compared to the human body temperature. Our work identifies some key P. aeruginosa PAO1 genes whose products have importance in both environmental adaptation as well as in vivo infection in febrile hosts. More importantly, our transcriptomic results show that many genes are only expressed when subjected to heat shock. Because the RNA-seq can generate high throughput gene expression profiles, our work reveals many unanticipated genes with further work to be done exploring such genes products. PMID:27547539

  6. Climate change effects on macrofaunal litter decomposition: the interplay of temperature, body masses and stoichiometry.

    PubMed

    Ott, David; Rall, Björn C; Brose, Ulrich

    2012-11-01

    Macrofauna invertebrates of forest floors provide important functions in the decomposition process of soil organic matter, which is affected by the nutrient stoichiometry of the leaf litter. Climate change effects on forest ecosystems include warming and decreasing litter quality (e.g. higher C : nutrient ratios) induced by higher atmospheric CO(2) concentrations. While litter-bag experiments unravelled separate effects, a mechanistic understanding of how interactions between temperature and litter stoichiometry are driving decomposition rates is lacking. In a laboratory experiment, we filled this void by quantifying decomposer consumption rates analogous to predator-prey functional responses that include the mechanistic parameters handling time and attack rate. Systematically, we varied the body masses of isopods, the environmental temperature and the resource between poor (hornbeam) and good quality (ash). We found that attack rates increased and handling times decreased (i) with body masses and (ii) temperature. Interestingly, these relationships interacted with litter quality: small isopods possibly avoided the poorer resource, whereas large isopods exhibited increased, compensatory feeding of the poorer resource, which may be explained by their higher metabolic demands. The combination of metabolic theory and ecological stoichiometry provided critically important mechanistic insights into how warming and varying litter quality may modify macrofaunal decomposition rates. PMID:23007091

  7. Ultrasonic vocalization and body temperature maintenance in infant voles of three species (Rodentia: Arvicolidae).

    PubMed

    Blake, B H

    1992-12-01

    Infant voles thermoregulate poorly and produce ultrasonic vocalizations when cooled. Vocalizing and the ability to maintain body temperature in isolated pups cold-challenged at 5 degrees C or 22 degrees C were studied in nestling Clethrionomys glareolus, Microtus agrestis, and Arvicola terrestris. The tendency to vocalize varied with age, since pups vocalized more in their 2nd week than in their 1st or 3rd weeks. Rate of vocalizing was correlated with sound pressure level of vocalizations. Their was no apparent relation between vocalizing rate and deep body temperature. M. agrestis pups vocalized most and A. terrestris pups least, and all three species vocalized more at the lower temperature. Maximal vocalizing occurred in mid aged M. agrestis (at 5 degrees C) with mean of 1291 vocalizations/20 min and mean SPL of 80 dB (decibels re: 20 microN/m2). It is suggested that the vocalizing response is an adaptation related to risk from hypothermia in infant voles. PMID:1487083

  8. Mitochondrial Impairment in Cerebrovascular Endothelial Cells is Involved in the Correlation between Body Temperature and Stroke Severity

    PubMed Central

    Hu, Heng; Doll, Danielle N.; Sun, Jiahong; Lewis, Sara E.; Wimsatt, Jeffrey H.; Kessler, Matthew J.; Simpkins, James W.; Ren, Xuefang

    2016-01-01

    Stroke is the second leading cause of death worldwide. The prognostic influence of body temperature on acute stroke in patients has been recently reported; however, hypothermia has confounded experimental results in animal stroke models. This work aimed to investigate how body temperature could prognose stroke severity as well as reveal a possible mitochondrial mechanism in the association of body temperature and stroke severity. Lipopolysaccharide (LPS) compromises mitochondrial oxidative phosphorylation in cerebrovascular endothelial cells (CVECs) and worsens murine experimental stroke. In this study, we report that LPS (0.1 mg/kg) exacerbates stroke infarction and neurological deficits, in the mean time LPS causes temporary hypothermia in the hyperacute stage during 6 hours post-stroke. Lower body temperature is associated with worse infarction and higher neurological deficit score in the LPS-stroke study. However, warming of the LPS-stroke mice compromises animal survival. Furthermore, a high dose of LPS (2 mg/kg) worsens neurological deficits, but causes persistent severe hypothermia that conceals the LPS exacerbation of stroke infarction. Mitochondrial respiratory chain complex I inhibitor, rotenone, replicates the data profile of the LPS-stroke study. Moreover, we have confirmed that rotenone compromises mitochondrial oxidative phosphorylation in CVECs. Lastly, the pooled data analyses of a large sample size (n=353) demonstrate that stroke mice have lower body temperature compared to sham mice within 6 hours post-surgery; the body temperature is significantly correlated with stroke outcomes; linear regression shows that lower body temperature is significantly associated with higher neurological scores and larger infarct volume. We conclude that post-stroke body temperature predicts stroke severity and mitochondrial impairment in CVECs plays a pivotal role in this hypothermic response. These novel findings suggest that body temperature is prognostic for

  9. Whole-body vibration increases upper and lower body muscle activity in older adults: potential use of vibration accessories.

    PubMed

    Marín, Pedro J; Santos-Lozano, Alejandro; Santin-Medeiros, Fernanda; Vicente-Rodriguez, German; Casajús, Jose A; Hazell, Tom J; Garatachea, Nuria

    2012-06-01

    The current study examined the effects of whole-body vibration (WBV) on upper and lower body muscle activity during static muscle contractions (squat and bicep curls). The use of WBV accessories such as hand straps attached to the platform and a soft surface mat were also evaluated. Surface electromyography (sEMG) was measured for the medial gastrocnemius (MG), vastus lateralis (VL), and biceps brachii (BB) muscles in fourteen healthy older adults (74.8±4.5 years; mean±SD) with a WBV stimulus at an acceleration of 40 m s(-2) (30 Hz High, 2.5 mm or 46 Hz Low, 1.1 mm). WBV increased lower body (VL and MG) sEMG vs baseline (no WBV) though this was decreased with the use of the soft mat. The addition of the bicep curl with hand straps had no effect on lower body sEMG. WBV also increased BB sEMG vs baseline which was further increased when using the hand straps. There was no upper body effect of the soft mat. This study demonstrates WBV increases both lower and upper body muscle activity in healthy older adults. Moreover, WBV accessories such as hand straps attached to the platform or a soft surface mat may be used to alter exercise intensity. PMID:22406015

  10. Energy metabolism and body temperature of barn owls fasting in the cold.

    PubMed

    Thouzeau, C; Duchamp, C; Handrich, Y

    1999-01-01

    Energetic adaptation to fasting in the cold has been investigated in a nocturnal raptor, the barn owl (Tyto alba), during winter. Metabolic rate and body temperature (Tb) were monitored in captive birds, (1) after acute exposure to different ambient temperatures (Ta), and (2) during a prolonged fast in the cold (4 degrees C), to take into account the three characteristic phases of body fuel utilization that occur during a long-term but reversible fast. In postabsorptive birds, metabolic rate in the thermoneutral zone was 4. 1+/-0.1 W kg-1 and increased linearly below a lower critical temperature of 23 degrees C. Metabolic rate was 70% above basal at +4 degrees C Ta. Wet thermal conductance was 0.22 W kg-1 degrees C-1. During fasting in the cold, the mass-specific resting metabolic rate decreased by 16% during the first day (phase I) and remained constant thereafter. The amplitude of the daily rhythm in Tb was only moderately increased during phase II, with a slight lowering (0. 6 degrees C) in minimal diurnal Tb, but rose markedly in phase III with a larger drop (1.4 degrees C) in minimal diurnal Tb. Refeeding the birds ended phase III and reversed the observed changes. These results indicate that diurnal hypothermia may be used in long-term fasting barn owls and could be triggered by a threshold of body lipid depletion, according to the shift from lipid to protein fuel metabolism occurring at the phase II/phase III transition. The high cost of regulatory thermogenesis and the limited use of hypothermia during fasting may contribute to the high mortality of barn owls during winter. PMID:10068620

  11. Early Adolescence: Whole Body Learning.

    ERIC Educational Resources Information Center

    Cannon, Roger K., Jr.; Padilla, Michael J.

    1982-01-01

    "Whole body" denotes using the entire body to sense and experience a concept or idea. Typical whole body learning activities involve use of several senses: muscle sense, temperature, pain, pressure, and sense of equilibrium. Four whole body science activities are described, including identifying trees by touch. (Author/JN)

  12. Does small-bodied salmon spawning activity enhance streambed mobility?

    NASA Astrophysics Data System (ADS)

    Hassan, Marwan A.; Tonina, Daniele; Buxton, Todd H.

    2015-09-01

    Female salmonids bury and lay their eggs in streambeds by digging a pit, which is then covered with sediment from a second pit that is dug immediately upstream. The spawning process alters streambed topography, winnows fine sediment, and mixes sediment in the active layer. The resulting egg nests (redds) contain coarser and looser sediments than those of unspawned streambed areas, and display a dune-like shape with an amplitude and length that vary with fish size, substrate conditions, and flow conditions. Redds increase local bed surface roughness (<10-1 channel width, W), but may reduce the size of macro bedforms by eroding reach-scale topography (100-101W). Research has suggested that spawning may increase flow resistance due to redd form drag, resulting in lower grain shear stress and less particle mobility. Spawning, also prevents streambed armoring by mixing surface and subsurface material, potentially increasing particle mobility. Here we use two-dimensional hydraulic modeling with detailed prespawning and postspawning bathymetries and field observations to test the effect of spawning by small-bodied salmonids on sediment transport. Our results show that topographical roughness from small salmon redds has negligible effects on shear stress at the reach-unit scale, and limited effects at the local scale. Conversely, results indicate sediment mixing reduces armoring and enhances sediment mobility, which increases potential bed load transport by subsequent floods. River restoration in fish-bearing streams should take into consideration the effects of redd excavation on channel stability. This is particularly important for streams that historically supported salmonids and are the focus of habitat restoration actions.

  13. Evaluation of the relationship between motion sickness symptomatology and blood pressure, heart rate, and body temperature

    NASA Technical Reports Server (NTRS)

    Graybiel, A.; Lackner, J. R.

    1980-01-01

    This study investigated the relationship between the development of symptoms of motion sickness and changes in blood pressure, heart rate, and body temperature. Twelve subjects were each evaluated four times using the vestibular-visual interaction test (Graybiel and Lackner, 1980). The results were analyzed both within and across individual subjects. Neither a systematic group nor consistent individual relationship was found between the physiological parameters and the appearance of symptoms of motion sickness. These findings suggest that biofeedback control of the physiological variables studied is not likely to prevent the expression of motion sickness symptomatology.

  14. The effect of direct heating and cooling of heat regulation centers on body temperature

    NASA Technical Reports Server (NTRS)

    Barbour, H. G.

    1978-01-01

    Experiments were done on 28 rabbits in which puncture instruments were left in the brain for 1-2 days until the calori-puncture hyperthermia had passed and the body temperature was again normal. The instrument remaining in the brain was then used as a galvanic electrode and a second fever was produced, this time due to the electrical stimulus. It was concluded that heat is a centrally acting antipyretic and that cold is a centrally acting stimulus which produces hyperpyrexia cold-induced fever.

  15. Measurements of the Influence of Acceleration and Temperature of Bodies on their Weight

    SciTech Connect

    Dmitriev, Alexander L.

    2008-01-21

    A brief review of experimental research of the influence of acceleration and temperatures of test mass upon gravitation force, executed between the 1990s and the beginning of 2000 at the St.-Petersburg State University of Information Technologies, Mechanics and Optics in cooperation with D. I. Mendeleev's Institute of Metrology is provided. According to a phenomenological notion, the acceleration of a test mass caused by external action, for example electromagnetic forces, results in changes of the gravitational properties of this mass. Consequences are a dependence upon gravity on the size and sign of test mass acceleration, and also on its absolute temperature. Results of weighing a rotor of a mechanical gyroscope with a horizontal axis, an anisotropic crystal with the big difference of the speed of longitudinal acoustic waves, measurements of temperature dependence of weight of metal bars of nonmagnetic materials, and also measurement of restitution coefficients at quasi-elastic impact of a steel ball about a massive plate are given. In particular, a reduction of apparent mass of a horizontal rotor with relative size 3.10{sup -6} at a speed of rotation of 18.6 thousand rev/min was observed. A negative temperature dependence of the weight of a brass core with relative size near 5.10{sup -4} K{sup -1} at room temperature was measured; this temperature factor was found to be a maximum for light and elastic metals. All observably experimental effects, have probably a general physical reason connected with the weight change dependent upon acceleration of a body or at thermal movement of its microparticles. The reduction of mass at high temperatures is of particular interest for propulsion applications.

  16. Measurements of the Influence of Acceleration and Temperature of Bodies on their Weight

    NASA Astrophysics Data System (ADS)

    Dmitriev, Alexander L.

    2008-01-01

    A brief review of experimental research of the influence of acceleration and temperatures of test mass upon gravitation force, executed between the 1990s and the beginning of 2000 at the St.-Petersburg State University of Information Technologies, Mechanics and Optics in cooperation with D. I. Mendeleev's Institute of Metrology is provided. According to a phenomenological notion, the acceleration of a test mass caused by external action, for example electromagnetic forces, results in changes of the gravitational properties of this mass. Consequences are a dependence upon gravity on the size and sign of test mass acceleration, and also on its absolute temperature. Results of weighing a rotor of a mechanical gyroscope with a horizontal axis, an anisotropic crystal with the big difference of the speed of longitudinal acoustic waves, measurements of temperature dependence of weight of metal bars of nonmagnetic materials, and also measurement of restitution coefficients at quasi-elastic impact of a steel ball about a massive plate are given. In particular, a reduction of apparent mass of a horizontal rotor with relative size 3.10-6 at a speed of rotation of 18.6 thousand rev/min was observed. A negative temperature dependence of the weight of a brass core with relative size near 5.10-4 K-1 at room temperature was measured; this temperature factor was found to be a maximum for light and elastic metals. All observably experimental effects, have probably a general physical reason connected with the weight change dependent upon acceleration of a body or at thermal movement of its microparticles. The reduction of mass at high temperatures is of particular interest for propulsion applications.

  17. Body-ownership for actively operated non-corporeal objects.

    PubMed

    Ma, Ke; Hommel, Bernhard

    2015-11-01

    Rubber-hand and virtual-hand illusions show that people can perceive body ownership for objects under suitable conditions. Bottom-up approaches assume that perceived ownership emerges from multisensory matching (e.g., between seen object and felt hand movements), whereas top-down approaches claim that novel body parts are integrated only if they resemble some part of a permanent internal body representation. We demonstrate that healthy adults perceive body ownership for a virtual balloon changing in size, and a virtual square changing in size or color, in synchrony with movements of their real hand. This finding is inconsistent with top-down approaches and amounts to an existence proof that non-corporeal events can be perceived as body parts if their changes are systematically related to one's actions. It also implies that previous studies with passive-stimulation techniques might have underestimated the plasticity of body representations and put too much emphasis on the resemblance between viewed object and real hand. PMID:26094223

  18. Geometrical Scaling of an Ablative Bluff Body under Different Outer Flow Velocity and Temperature Configurations

    NASA Astrophysics Data System (ADS)

    Allard, Michael; White, Christopher M.; Dubief, Yves

    2015-11-01

    Experimental results investigating the geometrical scaling and local properties of an eroding low temperature ablator (para-dichlorobenzene) are presented. The bluff body is placed in a heated open-circuit wind tunnel and the effects of incoming outer flow velocity (uniform and spatially varying) and temperature on the ablation process are investigated. Image sequencing of the projected area in the streamwise-spanwise and streamwise-wall normal flow direction are used to quantify the time evolution of the geometrical shape and compute local recession rates and curvature. The geometrical self-similarity and local recession rates are evaluated and compared to Moore et al. and Huang et al. who investigated erosion under the action of fluid shear force and dissolution, respectively. This work is supported by the NSF (CBET-0967224).

  19. Impaired Respiratory and Body Temperature Control Upon Acute Serotonergic Neuron Inhibition

    PubMed Central

    Ray, Russell; Corcoran, Andrea; Brust, Rachael; Kim, Jun Chul; Richerson, George B.; Nattie, Eugene; Dymecki, Susan M.

    2013-01-01

    Physiological homeostasis is essential for organism survival. Highly responsive neuronal networks are involved but constituent neurons are just beginning to be resolved. To query brain serotonergic neurons in homeostasis, we used a synthetic GPCR (Di)-based neuronal silencing tool, mouse RC∷FPDi, designed for cell type-specific, ligand (clozapine-N-oxide, CNO)-inducible and reversible suppression of action potential firing. In mice harboring Di-expressing serotonergic neurons, CNO administration by systemic injection attenuated the chemoreflex that normally increases respiration in response to tissue CO2 elevation and acidosis. At the cellular level, CNO suppressed firing rate increases evoked by CO2/acidosis. Body thermoregulation at room temperature was also disrupted following CNO triggering of Di; core temperatures plummeted, then recovered. This work establishes that serotonergic neurons regulate life-sustaining respiratory and thermoregulatory networks, and demonstrates a noninvasive tool for mapping neuron function. PMID:21798952

  20. Acute effects of ozone on heart rate and body temperature in the unanesthetized, unrestrained rat maintained at different ambient temperatures

    SciTech Connect

    Watkinson, W.P.; Aileru, A.A.; Dowd, S.M.; Doerfler, D.L.; Tepper, J.S.

    1993-01-01

    The present studies were conducted to investigate the concentration-response characteristics of acute ozone (O3) exposure on the cardiovascular and thermoregulatory function of the unanesthetized, unrestrained rat, and to examine the modulating effects produced by changes in ambient temperature (T[sub a]) on the induced toxic response. For all studies, groups of male Fischer 344 rats (n=4-6/group) were implanted with radiotelemetry transmitters and allowed to recover overnight. The transmitters permitted continuous monitoring of electrocardiogram (ECG) and body core temperature (T[sub co]); heart rate (HR) was derived from the ECG signal. Frequency of breathing (f) was obtained in selected experiments by means of a Fenn box. All animals were monitored according to the following protocol: control (filtered air; 0.25 h); exposure (O3; 2 h); recovery (filtered air; 3-18 h). For the concentration-response experiments, O3 concentration was varied from 0.25-1.0 ppm and all exposures were conducted at an T[sub a] of 18-20 C. Significant decreases in HR and T[sub co] were demonstrated at O3 concentrations as low as 0.37 ppm.

  1. Pediculus humanus capitis (head lice) and Pediculus humanus humanus (body lice): response to laboratory temperature and humidity and susceptibility to monoterpenoids.

    PubMed

    Gallardo, A; Mougabure Cueto, G; Picollo, M I

    2009-07-01

    Human pediculosis is produced by Pediculus humanus humanus (Linnaeus 1758) and Pediculus humanus capitis (De Geer 1767). Laboratory-reared body lice, susceptible to insecticides, were used as reference in toxicological studies on head lice. In this work, we evaluated the survival of both subspecies at different temperatures and relative humidities and we propose the optimal conditions for comparative bioassays. Moreover, we used these conditions to test the activity of three monoterpenoids against both lice. The results showed differential response to changes in temperature and humidity between both organisms. The survival of body lice ranged between 83% and 100% and was not affected for the tested conditions. The survival of head lice depended on temperature, humidity, and exposure time. The optimal conditions for head lice were 18 masculineC and 97% relative humidity at 18 h of exposition. The insecticidal activity of three monoterpenoids (pulegone, linalool, and 1,8-cineole), evaluated according the selected conditions by topical application, showed no significant differences between males of body and head lice. To conclude, as head lice required more special laboratory conditions than body lice, the optimal head lice conditions should be used in both organisms in comparative bioassays. Body louse is an appropriate organism for testing products against of head louse. PMID:19242723

  2. Effects of head cooling on cardiovascular and body temperature responses during submaximal exercise.

    PubMed

    Watanuki, S

    1993-11-01

    Cardiovascular and body temperature responses during submaximal exercise (25% and 50% VO2max) were investigated using female subjects (n = 6) in two separate experiments; one with head cooling and heating and the other with torso heating with and without head cooling. To supply the heat load, a liquid conditioned cap and vest were used. In the first experiment, a significant decrease in heart rate, oxygen intake (VO2) and cardiac output (Q) at relative work intensity of 50% VO2max was observed by head cooling. These results show that head cooling is very effective to reduce the physiological strain. In the second experiment, Q as a function of VO2 during torso heating was decreased by head cooling. However, the tympanic membrane temperature during head cooling at 15 degrees C was significantly higher than that at 20 degrees C and it was almost the same level with torso heating without head cooling. The results suggest that excess head cooling is not beneficial in terms of improving the body heat dissipation. PMID:8123182

  3. Effects of body mass and water temperature on routine metabolism of American paddlefish Polyodon spathula.

    PubMed

    Patterson, J T; Mims, S D; Wright, R A

    2013-04-01

    This study quantified the effects of temperature and fish mass on routine metabolism of the American paddlefish Polyodon spathula. Thermal sensitivity, as measured by Q(10) value, was low in P. spathula. Mean Q(10) was 1·78 while poikilotherms are generally expected to have Q(10) values in the 2·00-2·50 range. Mass-specific metabolism did not decrease with increased fish size to the extent that this phenomenon is observed in teleosts, as evidenced by a mass exponent (β) value of 0·92 for P. spathula compared with 0·79 in a review of teleost species. Other Acipenseriformes have exhibited relatively high β values for mass-specific respiration. Overall P. spathula metabolism appears to be more dependent on body mass and less dependent on temperature than for many other fishes. An equation utilizing temperature and fish mass to estimate gross respiration for P. spathula was derived and this equation was applied to respiratory data from other Acipenseriformes to assess inter-species variation. Polyodon spathula respiration rates across water temperature and fish mass appear most similar to those of Atlantic sturgeon Acipenser naccarii and white sturgeon Acipenser transmontanus. PMID:23557305

  4. Nestling activity levels during begging behaviour predicts activity level and body mass in adulthood

    PubMed Central

    Griffith, Simon C.

    2014-01-01

    Across a range of species including humans, personality traits, or differences in behaviour between individuals that are consistent over time, have been demonstrated. However, few studies have measured whether these consistent differences are evident in very young animals, and whether they persist over an individual’s entire lifespan. Here we investigated the begging behaviour of very young cross-fostered zebra finch nestlings and the relationship between that and adult activity levels. We found a link between the nestling activity behaviour head movements during begging, measured at just five and seven days after hatching, and adult activity levels, measured when individuals were between three and three and a half years old. Moreover, body mass was found to be negatively correlated with both nestling and adult activity levels, suggesting that individuals which carry less body fat as adults are less active both as adults and during begging as nestlings. Our work suggests that the personality traits identified here in both very young nestlings and adults may be linked to physiological factors such as metabolism or environmental sources of variation. Moreover, our work suggests it may be possible to predict an individual’s future adult personality at a very young age, opening up new avenues for future work to explore the relationship between personality and a number of aspects of individual life history and survival. PMID:25279258

  5. Nestling activity levels during begging behaviour predicts activity level and body mass in adulthood.

    PubMed

    McCowan, Luke S C; Griffith, Simon C

    2014-01-01

    Across a range of species including humans, personality traits, or differences in behaviour between individuals that are consistent over time, have been demonstrated. However, few studies have measured whether these consistent differences are evident in very young animals, and whether they persist over an individual's entire lifespan. Here we investigated the begging behaviour of very young cross-fostered zebra finch nestlings and the relationship between that and adult activity levels. We found a link between the nestling activity behaviour head movements during begging, measured at just five and seven days after hatching, and adult activity levels, measured when individuals were between three and three and a half years old. Moreover, body mass was found to be negatively correlated with both nestling and adult activity levels, suggesting that individuals which carry less body fat as adults are less active both as adults and during begging as nestlings. Our work suggests that the personality traits identified here in both very young nestlings and adults may be linked to physiological factors such as metabolism or environmental sources of variation. Moreover, our work suggests it may be possible to predict an individual's future adult personality at a very young age, opening up new avenues for future work to explore the relationship between personality and a number of aspects of individual life history and survival. PMID:25279258

  6. Thermosensitive TRP channel pore turret is part of the temperature activation pathway

    PubMed Central

    Yang, Fan; Cui, Yuanyuan; Wang, KeWei; Zheng, Jie

    2010-01-01

    Temperature sensing is crucial for homeotherms, including human beings, to maintain a stable body core temperature and respond to the ambient environment. A group of exquisitely temperature-sensitive transient receptor potential channels, termed thermoTRPs, serve as cellular temperature sensors. How thermoTRPs convert thermal energy (heat) into protein conformational changes leading to channel opening remains unknown. Here we demonstrate that the pathway for temperature-dependent activation is distinct from those for ligand- and voltage-dependent activation and involves the pore turret. We found that mutant channels with an artificial pore turret sequence lose temperature sensitivity but maintain normal ligand responses. Using site-directed fluorescence recordings we observed that temperature change induces a significant rearrangement of TRPV1 pore turret that is coupled to channel opening. This movement is specifically associated to temperature-dependent activation and is not observed during ligand- and voltage-dependent channel activation. These observations suggest that the turret is part of the temperature-sensing apparatus in thermoTRP channels, and its conformational change may give rise to the large entropy that defines high temperature sensitivity. PMID:20351268

  7. Many body effects in the temperature dependence of threshold in a vertical-cavity surface-emitting laser

    SciTech Connect

    Chow, W.W.; Corzine, S.W.; Young, D.B.; Coldren, L.A.

    1995-05-08

    The temperature dependence of the threshold in a vertical-cavity surface-emitting laser is investigated. Comparison of theory with experiment indicates that many-body Coulomb interactions play an important role.

  8. Combined lower body endurance and upper body resistance training improves performance and health parameters in healthy active elderly.

    PubMed

    Verney, Julien; Kadi, Fawzi; Saafi, Mohamed A; Piehl-Aulin, Karin; Denis, Christian

    2006-06-01

    We investigated the effects of combined lower body (LB) endurance and upper body (UB) resistance training on endurance, strength, blood lipid profile and body composition in active older men. Ten healthy still active men (73+/-4 years, V(O2) peak: 36 (31-41) ml min-1 kg-1) were tested before and after 14 weeks of combined training (3 times week-1). Training consisted of 3x12 min of high intensity interval training on a bicycle for endurance interspersed by 3x12 min of UB resistance exercises. V(O2) peak during leg cycling and arm cranking, isokinetic torque of knee extensor and shoulder abductor and the cross-sectional area (CSA) of several muscles from UB and LB were measured. Sagittal abdominal diameter (SAD) and abdominal fat area were measured on MRI scans. Total body composition was assessed by hydrostatic weighing (HW) and dual-energy X-ray absorptiometry (DEXA). Blood lipid profile was assessed before and after training. By the end of the training period, V(O2) peak (l min-1) increased significantly by 9 and 16% in leg cycling and arm cranking tests, respectively. Maximal isokinetic torque increased both for the knee extensor and shoulder abductor muscle groups. CSA increased significantly in deltoid muscle. Percentage of body fat decreased by 1.3% (P<0.05) and abdominal fat and SAD decreased by 12 and 6%, respectively (P<0.01). There was also a significant decrease in total cholesterol and low-density lipoprotein. Thus, combined LB endurance and UB resistance training can improve endurance, strength, body composition and blood lipid profile even in healthy active elderly. PMID:16770464

  9. The influence of vibration type, frequency, body position and additional load on the neuromuscular activity during whole body vibration.

    PubMed

    Ritzmann, Ramona; Gollhofer, Albert; Kramer, Andreas

    2013-01-01

    This study aimed to assess the influence of different whole body vibration (WBV) determinants on the electromyographic (EMG) activity during WBV in order to identify those training conditions that cause highest neuromuscular responses and therefore provide optimal training conditions. In a randomized cross-over study, the EMG activity of six leg muscles was analyzed in 18 subjects with respect to the following determinants: (1) vibration type (side-alternating vibration (SV) vs. synchronous vibration (SyV), (2) frequency (5-10-15-20-25-30 Hz), (3) knee flexion angle (10°-30°-60°), (4) stance condition (forefoot vs. normal stance) and (5) load variation (no extra load vs. additional load equal to one-third of the body weight). The results are: (1) neuromuscular activity during SV was enhanced compared to SyV (P < 0.05); (2) a progressive increase in frequency caused a progressive increase in EMG activity (P < 0.05); (3) the EMG activity was highest for the knee extensors when the knee joint was 60° flexed (P < 0.05); (4) for the plantar flexors in the forefoot stance condition (P < 0.05); and (5) additional load caused an increase in neuromuscular activation (P < 0.05). In conclusion, large variations of the EMG activation could be observed across conditions. However, with an appropriate adjustment of specific WBV determinants, high EMG activations and therefore high activation intensities could be achieved in the selected muscles. The combination of high vibration frequencies with additional load on an SV platform led to highest EMG activities. Regarding the body position, a knee flexion of 60° and forefoot stance appear to be beneficial for the knee extensors and the plantar flexors, respectively. PMID:22538279

  10. Body Temperatures During Exercise in Deconditioned Dogs: Effect of NACL and Glucose Infusion

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Kruk, B.; Nazar, K.; Kaciuba-Usciko, H.

    2000-01-01

    Infusion of glucose (Glu) into normal exercising dogs attenuates the rise in rectal temperature (Delta-Tre) when compared with delta-Tre during FFA infusion or no infusion. Rates of rise and delta-=Tre levels are higher during exercise after confinement. Therefore, the purpose of this study was to determine if Glu infusion would attenuate the exercise-induced excess hyperthermia after deconditioning. Rectal and quadricep femoris muscle temperatures (Tmu) were measured in 7 male, mongrel dogs dogs (19.6 +/- SD 3.0 kg) during 90 minutes of treadmill exercise (3.1 +/-SD 0.2 W/kg) with infusion (30ml/min/kg) of 40% Glu or 0.9% NaCL before BC) and after confinement (AC) in cages (40 x 110 x 80 cm) for 8 wk. Mean (+/-SE body wt. were 19.6 +/- 1.1 kg BC and 19.5 +/- 1.1kg AC, exercise VO2 were not different (40.0 - 42.0 mi/min/kg-1). With NaCl AC, NaCl BC, GluAC, and GluBC: Delta-Tre were, 1.8, 1.4, 1.3 and 0.9C respectively; and Delta-Tmu were 2.3, 1.9, 1.6, and 1.4C. respectively (P<0.05 from GluBC). Compared with NaCl infusion, attenuated both Delta-Tre and Delta-Tmu BC and AC, respectively. Compared with GluBC, GluAC attenuated Delta-Tmu but not Delta-Tre. Thus. with similar heat production, the mechanism for attenuation at bad body temperature with Glu infusion must affect avenues of heat dissipation.

  11. Zero-Heat-Flux Thermometry for Non-Invasive Measurement of Core Body Temperature in Pigs

    PubMed Central

    Yan, Xiaowei; Herff, Holger; Annecke, Thorsten; Sterner-Kock, Anja; Böttiger, Bernd W.; Schroeder, Daniel C.

    2016-01-01

    Hypothermia is a severe, unpleasant side effect during general anesthesia. Thus, temperature surveillance is a prerequisite in general anesthesia settings during experimental surgeries. The gold standard to measure the core body temperature (Tcore) is placement of a Swan-Ganz catheter in the pulmonary artery, which is a highly invasive procedure. Therefore, Tcore is commonly examined in the urine bladder and rectum. However, these procedures are known for their inaccuracy and delayed record of temperatures. Zero-heat-flux (ZHF) thermometry is an alternative, non-invasive method quantifying Tcore in human patients by applying a thermosensoric patch to the lateral forehead. Since the porcine cranial anatomy is different to the human’s, the optimal location of the patch remains unclear to date. The aim was to compare three different patch locations of ZHF thermometry in a porcine hypothermia model. Hypothermia (33.0°C Tcore) was conducted in 11 anesthetized female pigs (26-30kg). Tcore was measured continuously by an invasive Swan-Ganz catheter in the pulmonary artery (Tpulm). A ZHF thermometry device was mounted on three different defined locations. The smallest average difference between Tpulm and TZHF during stable temperatures was 0.21 ± 0.16°C at location A, where the patch was placed directly behind the eye. Also during rapidly changing temperatures location A showed the smallest bias with 0.48 ± 0.29°C. Location A provided the most reliable data for Tcore. Therefore, the ZHF thermometry patch should be placed directly behind the left temporal corner of the eye to provide a non-invasive method for accurate measurement of Tcore in pigs. PMID:26938613

  12. Body Temperature Monitoring Using Subcutaneously Implanted Thermo-loggers from Holstein Steers

    PubMed Central

    Lee, Y.; Bok, J. D.; Lee, H. J.; Lee, H. G.; Kim, D.; Lee, I.; Kang, S. K.; Choi, Y. J.

    2016-01-01

    Body temperature (BT) monitoring in cattle could be used to early detect fever from infectious disease or physiological events. Various ways to measure BT have been applied at different locations on cattle including rectum, reticulum, milk, subcutis and ear canal. In other to evaluate the temperature stability and reliability of subcutaneous temperature (ST) in highly fluctuating field conditions for continuous BT monitoring, long term ST profiles were collected and analyzed from cattle in autumn/winter and summer season by surgically implanted thermo-logger devices. Purposes of this study were to assess ST in the field condition as a reference BT and to determine any location effect of implantation on ST profile. In results, ST profile in cattle showed a clear circadian rhythm with daily lowest at 05:00 to 07:00 AM and highest around midnight and rather stable temperature readings (mean±standard deviation [SD], 37.1°C to 37.36°C±0.91°C to 1.02°C). STs are 1.39°C to 1.65°C lower than the rectal temperature and sometimes showed an irregular temperature drop below the normal physiologic one: 19.4% or 36.4% of 54,192 readings were below 36.5°C or 37°C, respectively. Thus, for BT monitoring purposes in a fever-alarming-system, a correction algorithm is necessary to remove the influences of ambient temperature and animal resting behavior especially in winter time. One way to do this is simply discard outlier readings below 36.5°C or 37°C resulting in a much improved mean±SD of 37.6°C±0.64°C or 37.8°C±0.55°C, respectively. For location the upper scapula region seems the most reliable and convenient site for implantation of a thermo-sensor tag in terms of relatively low influence by ambient temperature and easy insertion compared to lower scapula or lateral neck. PMID:26732455

  13. Body Temperature Monitoring Using Subcutaneously Implanted Thermo-loggers from Holstein Steers.

    PubMed

    Lee, Y; Bok, J D; Lee, H J; Lee, H G; Kim, D; Lee, I; Kang, S K; Choi, Y J

    2016-02-01

    Body temperature (BT) monitoring in cattle could be used to early detect fever from infectious disease or physiological events. Various ways to measure BT have been applied at different locations on cattle including rectum, reticulum, milk, subcutis and ear canal. In other to evaluate the temperature stability and reliability of subcutaneous temperature (ST) in highly fluctuating field conditions for continuous BT monitoring, long term ST profiles were collected and analyzed from cattle in autumn/winter and summer season by surgically implanted thermo-logger devices. Purposes of this study were to assess ST in the field condition as a reference BT and to determine any location effect of implantation on ST profile. In results, ST profile in cattle showed a clear circadian rhythm with daily lowest at 05:00 to 07:00 AM and highest around midnight and rather stable temperature readings (mean±standard deviation [SD], 37.1°C to 37.36°C±0.91°C to 1.02°C). STs are 1.39°C to 1.65°C lower than the rectal temperature and sometimes showed an irregular temperature drop below the normal physiologic one: 19.4% or 36.4% of 54,192 readings were below 36.5°C or 37°C, respectively. Thus, for BT monitoring purposes in a fever-alarming-system, a correction algorithm is necessary to remove the influences of ambient temperature and animal resting behavior especially in winter time. One way to do this is simply discard outlier readings below 36.5°C or 37°C resulting in a much improved mean±SD of 37.6°C±0.64°C or 37.8°C±0.55°C, respectively. For location the upper scapula region seems the most reliable and convenient site for implantation of a thermo-sensor tag in terms of relatively low influence by ambient temperature and easy insertion compared to lower scapula or lateral neck. PMID:26732455

  14. Physical activity and body composition in outpatients recovering from anorexia nervosa and healthy controls.

    PubMed

    Hechler, Tanja; Rieger, Elizabeth; Touyz, Stephen; Beumont, Pierre; Plasqui, Guy; Westerterp, Klaas

    2008-04-01

    The study aimed to compare differences in physical activity, the relationship between physical activity and body composition, and seasonal variation in physical activity in outpatients with anorexia nervosa (AN) and healthy controls. Physical activity (CM-AMT) and time spent in different intensities of 10 female individuals with AN and 15 female controls was assessed across three seasons along with the percentage body fat. The two groups did not differ in their physical activity and both demonstrated seasonal variation. The percentage body fat of individuals with AN, but not that of the controls, was negatively related to CM-AMT and time spent in low-moderate intensity activity (LMI). Seasonal variation in physical activity emerged with increases in engagement in LMI during the summer period for both groups. Possible interpretations of the finding that decreased physical activity was related to a normalization of percentage body fat in the individuals with AN are discussed and implications for treatment are highlighted. PMID:18493090

  15. The study of many body physics in high temperature superconductors using angle resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Kaminski, Adam

    Angle Resolved Photoemission Spectroscopy (ARPES) is an experimental technique that has greatly contributed to our understanding of the electronic structure of the High Temperature Superconductors (HTSC). Over the last few years, it has provided vital information about the electronic structure, the Fermi Surface, gap anisotropy and it's temperature dependence, and a new phenomena known as the pseudogap. In this thesis we apply Angle Resolved Photoemission Spectroscopy to the study of electronic interactions in High Temperature Superconductors. The experimental portion of this thesis comprises three main areas, (i) participation in the construction of a new undulator beamline at the Synchrotron Radiation Center-Madison, Wisconsin, (ii) construction of a new ARPES system and (iii) collection and analysis of the data. The experimental results include precise determination of the Fermi Surface in BISCO 2212 and 2201, first observation of intrinsic ARPES lineshape at the nodal point of the Fermi Surface in BISCO 2212, detailed quantitative study of many body interactions along the nodal direction in normal and superconductive state, precise doping dependence analysis of the lineshape at the antinode.

  16. Body temperature in the mouse, hamster, and rat exposed to radiofrequency radiation: an interspecies comparison

    SciTech Connect

    Gordon, C.J.; Long, M.D.; Fehlner, K.S.; Stead, A.G.

    1986-01-01

    Colonic temperatures of BALB/c and CBA/J mice, golden hamsters, and Sprague-Dawley rats were taken immediately after exposure for 90 min to radiofrequency (RF) radiation. Exposures were made in 2450 MHz (mouse and hamster) or 600-MHz (rat) waveguide exposure systems while the dose rate, to specific adsorption rate (SAR), was continuously recorded. Experiments were performed on naive, unrestrained animals at ambient temperatures (Ta) of 20 and 30 C. Body mass and Ta were found to be significant factors in influencing the threshold SAR for the elevation of colonic temperature. The threshold SARs at Ta's of 20 and 30 C were, respectively: 27.5 and 12.1 W/kg for the BALB/c mouse; 40.7 and 8.5 W/kg for the CBA/J mouse; 8.7 and 0.61 W/kg for the golden hamster; and 1.58 and 0.4 W/kg for the Sprague-Dawley rat.

  17. Touch-free measurement of body temperature using close-up thermography of the ocular surface.

    PubMed

    Vogel, Benjamin; Wagner, Heike; Gmoser, Johanna; Wörner, Anja; Löschberger, Anna; Peters, Laura; Frey, Anna; Hofmann, Ulrich; Frantz, Stefan

    2016-01-01

    In experimental animal research body temperature (BT) is measured for the objective determination of an animals' physiological condition. Invasive, probe-based measurements are stressful and can influence experimental outcome. Alternatively BT can be determined touch-free from the emitted heat of the organism at a single spot using infrared thermometers [1]. To get visual confirmation and find more appropriate surfaces for measurement a hand-held thermal imager was equipped with a self-made, cheap, 3D-printable close-up lens system that reproducibly creates eight-time magnified thermal images and improves sensitivity. This setup was used to establish ocular surface temperature (OST), representing the temperature of the brain-heart axis, as a touch-free alternative for measurement of BT in mice, rats, rabbits and humans.OST measurement after isoflurane exposure and myocardial infarction (MI) experiments in mice revealed high physiological relevance and sensitivity, the possibility to discriminate between MI and sham operations in one hour and even long-term outcome-predictive capabilities of OST after MI. Summarized here we present: •Self-made close-up lens for thermal imaging cameras for eight-time magnification•Establishment of OST for touch-free determination of BT in rodents and humans•Short- and long-term predictive capabilities of OST in experimental MI in mice. PMID:27284532

  18. H2/O2 three-body rates at high temperatures

    NASA Technical Reports Server (NTRS)

    Marinelli, William J.; Kessler, William J.; Carleton, Karen L.

    1991-01-01

    Hydrogen atoms are produced in the presence of excess O2, and the first-order decay are studied as a function of temperature and pressure in order to obtain the rate coefficient for the three-body reaction between H-atoms and O2. Attention is focused on the kinetic scheme employed as well as the reaction cell and photolysis and probe laser system. A two-photon laser-induced fluorescence technique is employed to detect H-atoms without optical-thickness or O2-absorption problems. Results confirm measurements reported previously for the H + O2 + N2 reaction at 300 K and extend these measurements to higher temperatures. Preliminary data indicate non-Arrehenius-type behavior of this reaction rate coefficient as a function of temperature. Measurements of the rate coefficient for H + O2 + Ar reaction at 300 K give a rate coefficient of 2.1 +/- 0.1 x 10 to the -32nd cm exp 6/molecule sec.

  19. Change in Diet, Physical Activity, and Body Weight in Female College Freshman

    ERIC Educational Resources Information Center

    Butler, Scott M.; Black, David R.; Blue, Carolyn L.; Gretebeck, Randall J.

    2004-01-01

    Objective: To examine diet, physical activity, and body-weight changes associated with relocation from home to university. Methods: Diet, fitness/physical activity, body-weight parameters and self-efficacy were assessed among 54 freshman women upon college entry and 5 months later. Results: Although caloric intake significantly decreased, a…

  20. Guided Saccades Modulate Face- and Body-Sensitive Activation in the Occipitotemporal Cortex during Social Perception

    ERIC Educational Resources Information Center

    Morris, James P.; Green, Steven R.; Marion, Brian; McCarthy, Gregory

    2008-01-01

    Functional magnetic resonance imaging (fMRI) has identified distinct brain regions in ventral occipitotemporal cortex (VOTC) and lateral occipitotemporal cortex (LOTC) that are differentially activated by pictures of faces and bodies. Recent work from our laboratory has shown that the strong LOTC activation evoked by bodies in which the face is…

  1. Body composition of active persons with spinal cord injury and with poliomyelitis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study sought to evaluate the body composition of subjects with active spinal cord injuries and polio. Two groups of males and females, active, free-living, of similar ages and body mass index (BMI), were distributed according to the source of deficiency: SCI – low spinal cord injury (T5-T12) an...

  2. Evaluation of the effect of signalment and body conformation on activity monitoring in companion dogs

    PubMed Central

    Brown, Dorothy Cimino; Michel, Kathryn E.; Love, Molly; Dow, Caitlin

    2015-01-01

    Objective To evaluate the effect of signalment and body conformation on activity monitoring in companion dogs. Animals 104 companion dogs. Procedures While wearing an activity monitor, each dog was led through a series of standard activities: lying down, walking laps, trotting laps, and trotting up and down stairs. Linear regression analysis was used to determine which signalment and body conformation factors were associated with activity counts. Results There was no significant effect of signalment or body conformation on activity counts when dogs were lying down, walking laps, and trotting laps. However, when dogs were trotting up and down stairs, there was a significant effect of age and body weight such that, for every 1-kg increase in body weight, there was a 1.7% (95% confidence interval, 1.1% to 2.4%) decrease in activity counts and for every 1-year increase in age, there was a 4.2% (95% confidence interval, 1.4% to 6.9%) decrease in activity counts. Conclusions and Clinical Relevance When activity was well controlled, there was no significant effect of signalment or body conformation on activity counts recorded by the activity monitor. However, when activity was less controlled, older dogs and larger dogs had lower activity counts than younger and smaller dogs. The wide range in body conformation (eg, limb or body length) among dogs did not appear to significantly impact the activity counts recorded by the monitor, but age and body weight did and must be considered in analysis of data collected from the monitors. PMID:20187834

  3. The effect of active video gaming on children's physical activity, behavior preferences and body composition.

    PubMed

    Graves, Lee E F; Ridgers, Nicola D; Atkinson, Greg; Stratton, Gareth

    2010-11-01

    Active video game interventions typically provide children a single game that may become unappealing. A peripheral device (jOG) encourages step-powered gaming on multiple games. This trial evaluated the effect of jOG on children's objectively measured PA, body fat and self-reported behaviors. 42 of 58 eligible children (8-10 y) randomly assigned to an intervention (jOG) or control (CON) completed the trial. Intervention children received two jOG devices for home use. Analyses of covariance compared the intervention effect at 6 and 12 weeks from baseline. No differences were found between groups for counts per minute (CPM; primary outcome) at 6 and 12 weeks (p > .05). Active video gaming increased (adjusted change 0.95 (95% CI 0.25, 1.65) h·d⁻¹, p <.01) and sedentary video gaming decreased (-0.34 (-1.24, 0.56) h·d⁻¹, p > .05) at 6 weeks relative to CON. No body fat changes were observed between groups. Targeted changes in video game use did not positively affect PA. Larger trials are needed to verify the impact of active video games on children's PA and health. PMID:21242603

  4. Ostracod body size trends do not follow either Bergmann's rule or Cope's rule during periods of constant temperature increase

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Seshadri, P.; Amin, V.; Heim, N. A.; Payne, J.

    2013-12-01

    Over time, organisms have adapted to changing environments by evolving to be larger or smaller. Scientists have described body-size trends using two generalized theories. Bergmann's rule states that body size is inversely related to temperature, and Cope's rule establishes an increase over time. Cope's rule has been hypothesized as a temporal manifestation of Bergmann's rule, as the temperature of the Earth has consistently decreased over time and mean body size has increased. However, during times of constant temperature increase, Bergmann's rule and Cope's rule predict opposite effects on body size. Our goal was to clarify this relationship using both accessible proxies of historic temperature - atmospheric CO2 levels and paleo-latitude. We measured ostracod lengths throughout the Paleozoic and Mesozoic eras (using the Catalogue of Ostracoda) and utilized ostracod latitudinal information from the Paleobiology Database. By closely studying body-size trends during four time periods of constant CO2 increase across spectrums of time and latitude, we were able to compare the effects of Cope's and Bergmann's rule. The correlation, p-values, and slopes of each of our graphs showed that there is no clear relationship between body size and each of these rules in times of temperature increase, both latitudinally and temporally. Therefore, both Cope's and Bergmann's rule act on marine ostracods and no rule is dominant, though our results more strongly disprove the latitudinal variation in ostracod size.

  5. Impact of shallow water bodies on the permafrost temperature and estimation of risk of thermokarst development at the Barrow Environmental Observatory area.

    NASA Astrophysics Data System (ADS)

    Kholodov, A. L.; Liljedahl, A. K.; Chamberlain, A. J.; Romanovsky, V. E.; Cable, W.

    2015-12-01

    Extension of the thermokarst features such as lakes and ponds had been noticed in many regions of the Arctic affected by the modern climate warming. Thermokarst is a process of permafrost thawing under the water bodies with depths larger than maximal thickness of seasonal ice in the area, i.e. with permanent positive temperature at the bottom. This process is most probable in the areas where massive ice bodies (wedges, lenses, layers etc) or ice rich deposits exist close to ground surface and even insignificant increasing of thaw depth can lead to its melting and surface subsidence. Local depressions such as low-centered polygonal ponds or interpolygonal troughs can potentially become triggers of thermokarst development. Current research was aimed on determination of warming impact of small water bodies on the permafrost temperature and seasonal thawing and estimation of risk of thermokarst development at Barrow Environmental Observatory area. Comparison of temperature measurements under shallow (10 - 40 cm deep) with relatively dry spots and active layer thickness survey show that warming impact of small water bodies (mean annual temperature at the permafrost table here is up to 2oC higher then under "dry" geomorphological features) is not realized in increasing of the thawing depth. Active layer thickness does not exceed values of 45 cm under polygonal ponds and 35 cm under troughs that is less then thickness of protective layer above ice wedges in the area. For estimation of risk of thermokarst development we used analytical equations developed by V.Kudryavtsev (1974). Results of calculations show that in this area crucial depth of water bodies required for mean annual temperature at the bottom of the pond became higher then freezing point consists of 0.95 cm. Current research was supported by US DOE as a part of research project Next Generation of Ecosystem Experiment (NGEE).

  6. Baseline body temperatures, heart rates, and respiratory rates of moose in Alaska.

    PubMed

    Franzmann, A W; Schwartz, C C; Johnson, D C

    1984-10-01

    Baseline body temperatures (BT), heart rates (HR) and respiratory rates (RR) were obtained from Alaskan moose (Alces alces gigas Miller) at the Moose Research Center (MRC), Alaska. Excitability, seasons and drugs influenced the values to varying degrees. Excitability was the most influential factor. Safe expected ranges were: BT 38.4 to 38.9 C, HR 70 to 91 beats/min (b/min), and RR 13 to 40 respirations/min (r/min). These ranges incorporated all seasons, a central nervous system depressant drug and a paralyzing drug. Values which may be considered critical and an indication that corrective action should be taken include: BT 40.2 C, HR 102 b/min, and RR 40 r/min. It is recommended that persons trained in monitoring vital signs be on hand during moose capture and immobilization procedures. PMID:6530720

  7. Analysis of body calcium (regional changes in body calcium by in vivo neutron activation analysis)

    NASA Technical Reports Server (NTRS)

    Suki, W.; Johnson, P. C.; Leblanc, A.; Evans, H. J.

    1981-01-01

    The effect of space flight on urine and fecal calcium loss was documented during the three long-term Skylab flights. Neutron activation analysis was used to determine regional calcium loss. Various designs for regional analysis were investigated.

  8. Cohort Removal Induces Changes in Body Temperature, Pain Sensitivity, and Anxiety-Like Behavior

    PubMed Central

    Takao, Keizo; Shoji, Hirotaka; Hattori, Satoko; Miyakawa, Tsuyoshi

    2016-01-01

    Mouse behavior is analyzed to elucidate the effects of various experimental manipulations, including gene mutation and drug administration. When the effect of a factor of interest is assessed, other factors, such as age, sex, temperature, apparatus, and housing, are controlled in experiments by matching, counterbalancing, and/or randomizing. One such factor that has not attracted much attention is the effect of sequential removal of animals from a common cage (cohort removal). Here we evaluated the effects of cohort removal on rectal temperature, pain sensitivity, and anxiety-like behavior by analyzing the combined data of a large number of C57BL/6J mice that we collected using a comprehensive behavioral test battery. Rectal temperature increased in a stepwise manner according to the position of sequential removal from the cage, consistent with previous reports. In the hot plate test, the mice that were removed first from the cage had a significantly longer latency to show the first paw response than the mice removed later. In the elevated plus maze, the mice removed first spent significantly less time on the open arms compared to the mice removed later. The results of the present study demonstrated that cohort removal induces changes in body temperature, pain sensitivity, and anxiety-like behavior in mice. Cohort removal also increased the plasma corticosterone concentration in mice. Thus, the ordinal position in the sequence of removal from the cage should be carefully counterbalanced between groups when the effect of experimental manipulations, including gene manipulation and drug administration, are examined using behavioral tests. PMID:27375443

  9. Cohort Removal Induces Changes in Body Temperature, Pain Sensitivity, and Anxiety-Like Behavior.

    PubMed

    Takao, Keizo; Shoji, Hirotaka; Hattori, Satoko; Miyakawa, Tsuyoshi

    2016-01-01

    Mouse behavior is analyzed to elucidate the effects of various experimental manipulations, including gene mutation and drug administration. When the effect of a factor of interest is assessed, other factors, such as age, sex, temperature, apparatus, and housing, are controlled in experiments by matching, counterbalancing, and/or randomizing. One such factor that has not attracted much attention is the effect of sequential removal of animals from a common cage (cohort removal). Here we evaluated the effects of cohort removal on rectal temperature, pain sensitivity, and anxiety-like behavior by analyzing the combined data of a large number of C57BL/6J mice that we collected using a comprehensive behavioral test battery. Rectal temperature increased in a stepwise manner according to the position of sequential removal from the cage, consistent with previous reports. In the hot plate test, the mice that were removed first from the cage had a significantly longer latency to show the first paw response than the mice removed later. In the elevated plus maze, the mice removed first spent significantly less time on the open arms compared to the mice removed later. The results of the present study demonstrated that cohort removal induces changes in body temperature, pain sensitivity, and anxiety-like behavior in mice. Cohort removal also increased the plasma corticosterone concentration in mice. Thus, the ordinal position in the sequence of removal from the cage should be carefully counterbalanced between groups when the effect of experimental manipulations, including gene manipulation and drug administration, are examined using behavioral tests. PMID:27375443

  10. [Peripuberal development of genetic obesity in beta rats. Daily changes in food intake, body weight, deep body temperature, triglyceridemia and glycemia].

    PubMed

    Calderari, S; Gayol, M C; Elliff, M I; Labourdette, V; Troiano, M F; Romano, G

    1990-01-01

    The moderate quality of beta obesity and its relatively slow evolution make it potentially useful for defining the sequence of events that lead to the overt syndrome. Estimates of food intake, live body weight, deep body temperature, triglyceridemia and glycemia were obtained at several times during the day in beta genetically obese and alpha (alpha) control male rats at peripuberal age, in order to characterize the dynamic phase of this obesity and to attempt the definition of some previous proceedings that eventually produce the full obesity syndrome. Beta higher food intake in the light cycle preceded its whole day hyperphagia. Both genotypes showed the normal pattern of predominantly nocturnal feeding. A lower light phase's weight loss in beta preceded the overweight. Thus, beta rats were not significantly heavier than alpha until the end of the last period studied, when they were 75 days old. A defect in adaptive thermogenesis in beta genotype is suggested, as values on deep body temperature in relation to alpha were significantly lower at all times of day tested. Correlation coefficient value between daily net weight gain versus deep body temperature was: r = -0.601 (p less than 0.01), suggesting a diminished lipolytic stimulation in beta brown adipose tissue. A sustained hypertriglyceridemia in beta at every time of the day studied suggested its endogenous source. Differences in glycemia values were not statistically significant between genotypes, though apparently wider variations in beta could reflect a certain glycemic regulation lability in the obese genotype. PMID:2101545

  11. Body temperature and evolutionary genomics of vertebrates: a lesson from the genomes of Takifugu rubripes and Tetraodon nigroviridis.

    PubMed

    Jabbari, Kamel; Bernardi, Giorgio

    2004-05-26

    In this paper, we provide evidence for the body temperature effect on the formation of GC-rich isochores, by analysing genomic sequences from two puffer fishes living at different temperatures. The higher body temperature of Tetraodon nigroviridis compared to Takifugu rubripes (DeltaT approximately 15 degrees C) appears to be the cause of a higher compositional heterogeneity of the former due to the formation of GC-rich regions. Such an effect does not only concern large DNA segments but also coding sequences. PMID:15177693

  12. Physical Activity: An Important Adaptative Mechanism for Body-Weight Control

    PubMed Central

    Finelli, Carmine; Gioia, Saverio; La Sala, Nicolina

    2012-01-01

    We review the current concepts about energy expenditure and evaluate the physical activity (PhA) in the context of this knowledge and the available literature. Regular PhA is correlated with low body weight and low body fat mass. The negative fat balance is probably secondary to this negative energy balance. Nonexercise activity thermogenesis (NEAT) and physical activity, that is crucial for weight control, may be important in the physiology of weight change. An intriguing doubt that remains unresolved is whether changes in nutrient intake or body composition secondarily affect the spontaneous physical activity. PMID:24533208

  13. Physical activity: an important adaptative mechanism for body-weight control.

    PubMed

    Finelli, Carmine; Gioia, Saverio; La Sala, Nicolina

    2012-01-01

    We review the current concepts about energy expenditure and evaluate the physical activity (PhA) in the context of this knowledge and the available literature. Regular PhA is correlated with low body weight and low body fat mass. The negative fat balance is probably secondary to this negative energy balance. Nonexercise activity thermogenesis (NEAT) and physical activity, that is crucial for weight control, may be important in the physiology of weight change. An intriguing doubt that remains unresolved is whether changes in nutrient intake or body composition secondarily affect the spontaneous physical activity. PMID:24533208

  14. Production, characterization, and application of an organic solvent-tolerant lipase present in active inclusion bodies.

    PubMed

    Li, Suxia; Lin, Kang; Pang, Huaiyu; Wu, Yixin; Xu, Jianhe

    2013-01-01

    An organic solvent-tolerant lipase from Serratia marcescens ECU1010 (rSML) was overproduced in Escherichia coli in an insoluble form. High concentrations of both biomass (50 g cell wet weight/L culture broth) and inclusion bodies (10.5 g/L) were obtained by applying a high-cell-density cultivation procedure. Activity assays indicated that the enzymatic activity of rSML reached 600 U/L. After treatment with isopropyl ether for 12 h, the maximum lipase activity reached 6,000 U/L. Scanning electron microscopy and Fourier transform infrared microspectroscopy revealed the activation mechanism of rSML in the presence of organic solvents. rSML was stable in broad ranges of temperatures and pH values, as well as in a series of organic solvents. Besides, rSML showed the best enantioselectivity for the kinetic resolution of (±)-trans-3-(4-methoxyphenyl)glycidic acid methyl ester. These features render the S. marcescens ECU1010 lipase attractive for biotechnological applications in the field of organic synthesis and pharmaceutical industry. PMID:23269633

  15. Isolation and characterization of polysaccharides with the antitumor activity from Tuber fruiting bodies and fermentation system.

    PubMed

    Zhao, Wei; Wang, Xiao-Hua; Li, Hong-Mei; Wang, Shi-Hua; Chen, Tao; Yuan, Zhan-Peng; Tang, Ya-Jie

    2014-03-01

    Fifty-two polysaccharides were isolated from the fermentation systems of Tuber melanosporum, Tuber indicum, Tuber sinense, Tuber aestivum and the fruiting bodies of Tuber indicum, Tuber himalayense, Tuber sinense by elution with an activated carbon column. Polysaccharides from Tuber fermentation system exhibited relatively higher in vitro antitumor activity against HepG2, A549, HCT-116, SK-BR-3, and HL-60 cells than those from Tuber fruiting bodies. All polysaccharides were mainly composed of D-mannose, D-glucose, and D-galactose, which suggested that the polysaccharides from Tuber fruiting bodies and fermentation system have identical chemical compositions. The results of antitumor activity and structural identification indicated that the polysaccharide fractions could promote antitumor activity. Tuber polysaccharides from Tuber fermentation system exhibited relatively higher than that from Tuber fruiting bodies. These results confirm the potential of Tuber fermentation mycelia for use as an alternative resource for its fruiting bodies. PMID:24272369

  16. Relationship between skin temperature and muscle activation during incremental cycle exercise.

    PubMed

    Priego Quesada, Jose I; Carpes, Felipe P; Bini, Rodrigo R; Salvador Palmer, Rosario; Pérez-Soriano, Pedro; Cibrián Ortiz de Anda, Rosa M

    2015-02-01

    While different studies showed that better fitness level adds to the efficiency of the thermoregulatory system, the relationship between muscular effort and skin temperature is still unknown. Therefore, the present study assessed the relationship between neuromuscular activation and skin temperature during cycle exercise. Ten physically active participants performed an incremental workload cycling test to exhaustion while neuromuscular activations were recorded (via surface electromyography - EMG) from rectus femoris, vastus lateralis, biceps femoris and gastrocnemius medialis. Thermographic images were recorded before, immediately after and 10 min after finishing the cycling test, at four body regions of interest corresponding to the muscles where neuromuscular activations were monitored. Frequency band analysis was conducted to assess spectral properties of EMG signals in order to infer on priority in recruitment of motor units. Significant inverse relationship between changes in skin temperature and changes in overall neuromuscular activation for vastus lateralis was observed (r<-0.5 and p<0.04). Significant positive relationship was observed between skin temperature and low frequency components of neuromuscular activation from vastus lateralis (r>0.7 and p<0.01). Participants with larger overall activation and reduced low frequency component for vastus lateralis activation presented a better adaptive response of their thermoregulatory system by showing fewer changes in skin temperature after incremental cycling test. PMID:25660627

  17. Daily regulation of body temperature rhythm in the camel (Camelus dromedarius) exposed to experimental desert conditions

    PubMed Central

    Bouâouda, Hanan; Achâaban, Mohamed R.; Ouassat, Mohammed; Oukassou, Mohammed; Piro, Mohamed; Challet, Etienne; El Allali, Khalid; Pévet, Paul

    2014-01-01

    Abstract In the present work, we have studied daily rhythmicity of body temperature (Tb) in Arabian camels challenged with daily heat, combined or not with dehydration. We confirm that Arabian camels use heterothermy to reduce heat gain coupled with evaporative heat loss during the day. Here, we also demonstrate that this mechanism is more complex than previously reported, because it is characterized by a daily alternation (probably of circadian origin) of two periods of poikilothermy and homeothermy. We also show that dehydration induced a decrease in food intake plays a role in this process. Together, these findings highlight that adaptive heterothermy in the Arabian camel varies across the diurnal light–dark cycle and is modulated by timing of daily heat and degrees of water restriction and associated reduction of food intake. The changed phase relationship between the light–dark cycle and the Tb rhythm observed during the dehydration process points to a possible mechanism of internal desynchronization during the process of adaptation to desert environment. During these experimental conditions mimicking the desert environment, it will be possible in the future to determine if induced high‐amplitude ambient temperature (Ta) rhythms are able to compete with the zeitgeber effect of the light–dark cycle. PMID:25263204

  18. Carotid body chemoreceptors, sympathetic neural activation, and cardiometabolic disease.

    PubMed

    Iturriaga, Rodrigo; Del Rio, Rodrigo; Idiaquez, Juan; Somers, Virend K

    2016-01-01

    The carotid body (CB) is the main peripheral chemoreceptor that senses the arterial PO2, PCO2 and pH. In response to hypoxemia, hypercapnia and acidosis, carotid chemosensory discharge elicits reflex respiratory, autonomic and cardiovascular adjustments. The classical construct considers the CB as the main peripheral oxygen sensor, triggering reflex physiological responses to acute hypoxemia and facilitating the ventilatory acclimation to chronic hypoxemia at high altitude. However, a growing body of experimental evidence supports the novel concept that an abnormally enhanced CB chemosensory input to the brainstem contributes to overactivation of the sympathetic nervous system, and consequent pathology. Indeed, the CB has been implicated in several diseases associated with increases in central sympathetic outflow. These include hypertension, heart failure, sleep apnea, chronic obstructive pulmonary disease and metabolic syndrome. Indeed, ablation of the CB has been proposed for the treatment of severe and resistant hypertension in humans. In this review, we will analyze and discuss new evidence supporting an important role for the CB chemoreceptor in the progression of autonomic and cardiorespiratory alterations induced by heart failure, obstructive sleep apnea, chronic obstructive pulmonary disease and metabolic syndrome. PMID:26920146

  19. Mechanisms of temperature-dependent swimming: the importance of physics, physiology and body size in determining protist swimming speed.

    PubMed

    Beveridge, Oliver S; Petchey, Owen L; Humphries, Stuart

    2010-12-15

    Body temperatures and thus physiological rates of poikilothermic organisms are determined by environmental temperature. The power an organism has available for swimming is largely dependent on physiological rates and thus body temperature. However, retarding forces such as drag are contingent on the temperature-dependent physical properties of water and on an organism's size. Consequently, the swimming ability of poikilotherms is highly temperature dependent. The importance of the temperature-dependent physical properties of water (e.g. viscosity) in determining swimming speed is poorly understood. Here we propose a semi-mechanistic model to describe how biological rates, size and the physics of the environment contribute to the temperature dependency of microbial swimming speed. Data on the swimming speed and size of a predatory protist and its protist prey were collected and used to test our model. Data were collected by manipulating both the temperature and the viscosity (independently of temperature) of the organism's environment. Protists were either cultured in their test environment (for several generations) or rapidly exposed to their test environment to assess their ability to adapt or acclimate to treatments. Both biological rates and the physics of the environment were predicted to and observed to contribute to the swimming speed of protists. Body size was not temperature dependent, and protists expressed some ability to acclimate to changes in either temperature or viscosity. Overall, using our parameter estimates and novel model, we are able to suggest that 30 to 40% (depending on species) of the response in swimming speed associated with a reduction in temperature from 20 to 5°C is due to viscosity. Because encounter rates between protist predators and their prey are determined by swimming speed, temperature- and viscosity-dependent swimming speeds are likely to result in temperature- and viscosity-dependent trophic interactions. PMID:21113003

  20. [EFFECTS OF WHOLE-BODY VIBRATION TRAINING ON BODY COMPOSITION AND PHYSICAL FITNESS IN RECREATIONALLY ACTIVE YOUNG ADULTS].

    PubMed

    Martínez-Pardo, Esmeraldo; Martínez-Ruiz, Enrique; Alcaraz, Pedro E; Rubio-Arias, Jacobo A

    2015-01-01

    In the last decade, it has been suggested that whole- body vibration training (WBV) may increase neuromuscular performance and consequently affect the muscular improvement as either acute response to vibration or chronic adaptation training. Vibrating platforms generate frequencies from 5-45 Hz and vertical oscillations of 1-11 mm peak to peak, affecting more or less intensity acceleration changing by combining frequency and amplitude. Vibration training, in a session as various offers different results in regard to changes in body composition and in increasing the vertical jump, sprint, and the different manifestations of force development. These promising results await further research to establish parameters (duration, frequency and amplitude) with vibration stimulation in young active subjects. This literature review provides an update on the scientific evidence on the body vibrations in order to answer the question whether WBV, meaning the exercise by increasing the gravitational load collection, is a treatment option if the aim is to improve neuromuscular function, flexibility, balance, agility, coordination and body composition. PMID:26545648

  1. Synthesis of Thermoresponsive Amphiphilic Polyurethane Gel as a New Cell Printing Material near Body Temperature.

    PubMed

    Tsai, Yi-Chun; Li, Suming; Hu, Shiaw-Guang; Chang, Wen-Chi; Jeng, U-Ser; Hsu, Shan-hui

    2015-12-23

    Waterborne polyurethane (PU) based on poly(ε-caprolactone) (PCL) diol and a second oligodiol containing amphiphilic blocks was synthesized in this study. The microstructure was characterized by dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), and rheological measurement of the PU dispersion. The surface hydrophilicity measurement, infrared spectroscopy, wide-angle X-ray diffraction, mechanical and thermal analyses were conducted in solid state. It was observed that the presence of a small amount of amphiphilic blocks in the soft segment resulted in significant changes in microstructure. When 90 mol % PCL diol and 10 mol % amphiphilic blocks of poly(l-lactide)-poly(ethylene oxide) (PLLA-PEO) diol were used as the soft segment, the synthesized PU had a water contact angle of ∼24° and degree of crystallinity of ∼14%. The dispersion had a low viscosity below room temperature. As the temperature was raised to body temperature (37 °C), the dispersion rapidly (∼170 s) underwent sol-gel transition with excellent gel modulus (G' ≈ 6.5 kPa) in 20 min. PU dispersions with a solid content of 25-30% could be easily mixed with cells in sol state, extruded by a 3D printer, and deposited layer by layer as a gel. Cells remained alive and proliferating in the printed hydrogel scaffold. We expect that the development of novel thermoresponsive PU system can be used as smart injectable hydrogel and applied as a new type of bio-3D printing ink. PMID:26651013

  2. Nonlinear mixed effects modelling for the analysis of longitudinal body core temperature data in healthy volunteers.

    PubMed

    Seng, Kok-Yong; Chen, Ying; Wang, Ting; Ming Chai, Adam Kian; Yuen Fun, David Chiok; Teo, Ya Shi; Sze Tan, Pearl Min; Ang, Wee Hon; Wei Lee, Jason Kai

    2016-04-01

    Many longitudinal studies have collected serial body core temperature (T c) data to understand thermal work strain of workers under various environmental and operational heat stress environments. This provides the opportunity for the development of mathematical models to analyse and forecast temporal T c changes across populations of subjects. Such models can reduce the need for invasive methods that continuously measure T c. This current work sought to develop a nonlinear mixed effects modelling framework to delineate the dynamic changes of T c and its association with a set of covariates of interest (e.g. heart rate, chest skin temperature), and the structure of the variability of T c in various longitudinal studies. Data to train and evaluate the model were derived from two laboratory investigations involving male soldiers who participated in either a 12 (N  =  18) or 15 km (N  =  16) foot march with varied clothing, load and heat acclimatisation status. Model qualification was conducted using nonparametric bootstrap and cross validation procedures. For cross validation, the trajectory of a new subject's T c was simulated via Bayesian maximum a posteriori estimation when using only the baseline T c or using the baseline T c as well as measured T c at the end of every work (march) phase. The final model described T c versus time profiles using a parametric function with its main parameters modelled as a sigmoid hyperbolic function of the load and/or chest skin temperature. Overall, T c predictions corresponded well with the measured data (root mean square deviation: 0.16 °C), and compared favourably with those provided by two recently published Kalman filter models. PMID:26963194

  3. Calorie restriction lowers body temperature in rhesus monkeys, consistent with a postulated anti-aging mechanism in rodents.

    PubMed Central

    Lane, M A; Baer, D J; Rumpler, W V; Weindruch, R; Ingram, D K; Tilmont, E M; Cutler, R G; Roth, G S

    1996-01-01

    Many studies of caloric restriction (CR) in rodents and lower animals indicate that this nutritional manipulation retards aging processes, as evidenced by increased longevity, reduced pathology, and maintenance of physiological function in a more youthful state. The anti-aging effects of CR are believed to relate, at least in part, to changes in energy metabolism. We are attempting to determine whether similar effects occur in response to CR in nonhuman primates. Core (rectal) body temperature decreased progressively with age from 2 to 30 years in rhesus monkeys fed ad lib (controls) and is reduced by approximately 0.5 degrees C in age-matched monkeys subjected to 6 years of a 30% reduction in caloric intake. A short-term (1 month) 30% restriction of 2.5-year-old monkeys lowered subcutaneous body temperature by 1.0 degrees C. Indirect calorimetry showed that 24-hr energy expenditure was reduced by approximately 24% during short-term CR. The temporal association between reduced body temperature and energy expenditure suggests that reductions in body temperature relate to the induction of an energy conservation mechanism during CR. These reductions in body temperature and energy expenditure are consistent with findings in rodent studies in which aging rate was retarded by CR, now strengthening the possibility that CR may exert beneficial effects in primates analogous to those observed in rodents. PMID:8633033

  4. Body temperature regulation during acclimation to cold and hypoxia in rats.

    PubMed

    Cadena, V; Tattersall, G J

    2014-12-01

    Extreme environmental conditions present challenges for thermoregulation in homoeothermic organisms such as mammals. Such challenges are exacerbated when two stressors are experienced simultaneously and each stimulus evokes opposing physiological responses. This is the case of cold, which induces an increase in thermogenesis, and hypoxia, which suppresses metabolism conserving oxygen and preventing hypoxaemia. As an initial approach to understanding the thermoregulatory responses to cold and hypoxia in a small mammal, we explored the effects of acclimation to these two stressors on the body temperature (Tb) and the daily and ultradian Tb variations of Sprague-Dawley rats. As Tb is influenced by sleep-wake cycles, these Tb variations reflect underlying adjustments in set-point and thermosensitivity. The Tb of rats decreased precipitously during initial hypoxic exposure which was more pronounced in cold (Tb=33.4 ± 0.13) than in room temperature (Tb=35.74 ± 0.17) conditions. This decline was followed by an increase in Tb stabilising at a new level ~0.5°C and ~1.4°C below normoxic values at room and cold temperatures, respectively. Daily Tb variations were blunted during hypoxia with a greater effect in the cold. Ultradian Tb variations exhibited daily rhythmicity that disappeared under hypoxia, independent of ambient temperature. The adjustments in Tb during hypoxia and/or cold are in agreement with the hypothesis that an initial decrease in the Tb set-point is followed by its partial re-establishment with chronic hypoxia. This rebound of the Tb set-point might reflect cellular adjustments that would allow animals to better deal with low oxygen conditions, diminishing the drive for a lower Tb set-point. Cold and hypoxia are characteristic of high altitude environments. Understanding how mammals cope with changes in oxygen and temperature will shed light into their ability to colonize new environments along altitudinal clines and increase our understanding of how

  5. Strategies for the recovery of active proteins through refolding of bacterial inclusion body proteins

    PubMed Central

    Vallejo, Luis Felipe; Rinas, Ursula

    2004-01-01

    Recent advances in generating active proteins through refolding of bacterial inclusion body proteins are summarized in conjunction with a short overview on inclusion body isolation and solubilization procedures. In particular, the pros and cons of well-established robust refolding techniques such as direct dilution as well as less common ones such as diafiltration or chromatographic processes including size exclusion chromatography, matrix- or affinity-based techniques and hydrophobic interaction chromatography are discussed. Moreover, the effect of physical variables (temperature and pressure) as well as the presence of buffer additives on the refolding process is elucidated. In particular, the impact of protein stabilizing or destabilizing low- and high-molecular weight additives as well as micellar and liposomal systems on protein refolding is illustrated. Also, techniques mimicking the principles encountered during in vivo folding such as processes based on natural and artificial chaperones and propeptide-assisted protein refolding are presented. Moreover, the special requirements for the generation of disulfide bonded proteins and the specific problems and solutions, which arise during process integration are discussed. Finally, the different strategies are examined regarding their applicability for large-scale production processes or high-throughput screening procedures. PMID:15345063

  6. Core Body Temperature as Adjunct to Endpoint Determination in Murine Median Lethal Dose Testing of Rattlesnake Venom

    PubMed Central

    Cates, Charles C; McCabe, James G; Lawson, Gregory W; Couto, Marcelo A

    2014-01-01

    Median lethal dose (LD50) testing in mice is the ‘gold standard’ for evaluating the lethality of snake venoms and the effectiveness of interventions. As part of a study to determine the murine LD50 of the venom of 3 species of rattlesnake, temperature data were collected in an attempt to more precisely define humane endpoints. We used an ‘up-and-down’ methodology of estimating the LD50 that involved serial intraperitoneal injection of predetermined concentrations of venom. By using a rectal thermistor probe, body temperature was taken once before administration and at various times after venom exposure. All but one mouse showed a marked, immediate, dose-dependent drop in temperature of approximately 2 to 6 °C at 15 to 45 min after administration. The lowest temperature sustained by any surviving mouse was 33.2 °C. Surviving mice generally returned to near-baseline temperatures within 2 h after venom administration, whereas mice that did not survive continued to show a gradual decline in temperature until death or euthanasia. Logistic regression modeling controlling for the effects of baseline core body temperature and venom type showed that core body temperature was a significant predictor of survival. Linear regression of the interaction of time and survival was used to estimate temperatures predictive of death at the earliest time point and demonstrated that venom type had a significant influence on temperature values. Overall, our data suggest that core body temperature is a useful adjunct to monitoring for endpoints in LD50 studies and may be a valuable predictor of survival in venom studies. PMID:25527024

  7. Recognizing Complex Upper Extremity Activities Using Body Worn Sensors

    PubMed Central

    Lemmens, Ryanne J. M.; Janssen-Potten, Yvonne J. M.; Timmermans, Annick A. A.; Smeets, Rob J. E. M.; Seelen, Henk A. M.

    2015-01-01

    To evaluate arm-hand therapies for neurological patients it is important to be able to assess actual arm-hand performance objectively. Because instruments that measure the actual quality and quantity of specific activities in daily life are lacking, a new measure needs to be developed. The aims of this study are to a) elucidate the techniques used to identify upper extremity activities, b) provide a proof-of-principle of this method using a set of activities tested in a healthy adult and in a stroke patient, and c) provide an example of the method’s applicability in daily life based on readings taken from a healthy adult. Multiple devices, each of which contains a tri-axial accelerometer, a tri-axial gyroscope and a tri-axial magnetometer were attached to the dominant hand, wrist, upper arm and chest of 30 healthy participants and one stroke patient, who all performed the tasks ‘drinking’, ‘eating’ and ‘brushing hair’ in a standardized environment. To establish proof-of-principle, a prolonged daily life recording of 1 participant was used to identify the task ‘drinking’. The activities were identified using multi-array signal feature extraction and pattern recognition algorithms and 2D-convolution. The activities ‘drinking’, ‘eating’ and ‘brushing hair’ were unambiguously recognized in a sequence of recordings of multiple standardized daily activities in a healthy participant and in a stroke patient. It was also possible to identify a specific activity in a daily life recording. The long term aim is to use this method to a) identify arm-hand activities that someone performs during daily life, b) determine the quantity of activity execution, i.e. amount of use, and c) determine the quality of arm-hand skill performance. PMID:25734641

  8. Seasonal variation in metabolic rate, flight activity and body size of Anopheles gambiae in the Sahel

    PubMed Central

    Huestis, Diana L.; Yaro, Alpha S.; Traoré, Adama I.; Dieter, Kathryne L.; Nwagbara, Juliette I.; Bowie, Aleah C.; Adamou, Abdoulaye; Kassogué, Yaya; Diallo, Moussa; Timbiné, Seydou; Dao, Adama; Lehmann, Tovi

    2012-01-01

    SUMMARY Malaria in Africa is vectored primarily by the Anopheles gambiae complex. Although the mechanisms of population persistence during the dry season are not yet known, targeting dry season mosquitoes could provide opportunities for vector control. In the Sahel, it appears likely that M-form A. gambiae survive by aestivation (entering a dormant state). To assess the role of eco-physiological changes associated with dry season survival, we measured body size, flight activity and metabolic rate of wild-caught mosquitoes throughout 1 year in a Sahelian locality, far from permanent water sources, and at a riparian location adjacent to the Niger River. We found significant seasonal variation in body size at both the Sahelian and riparian sites, although the magnitude of the variation was greater in the Sahel. For flight activity, significant seasonality was only observed in the Sahel, with increased flight activity in the wet season when compared with that just prior to and throughout the dry season. Whole-organism metabolic rate was affected by numerous biotic and abiotic factors, and a significant seasonal component was found at both locations. However, assay temperature accounted completely for seasonality at the riparian location, while significant seasonal variation remained after accounting for all measured variables in the Sahel. Interestingly, we did not find that mean metabolic rate was lowest during the dry season at either location, contrary to our expectation that mosquitoes would conserve energy and increase longevity by reducing metabolism during this time. These results indicate that mosquitoes may use mechanisms besides reduced metabolic rate to enable survival during the Sahelian dry season. PMID:22623189

  9. Decreases in body temperature and body mass constitute pre-hibernation remodelling in the Syrian golden hamster, a facultative mammalian hibernator

    PubMed Central

    Chayama, Yuichi; Ando, Lisa; Tamura, Yutaka; Miura, Masayuki

    2016-01-01

    Hibernation is an adaptive strategy for surviving during periods with little or no food availability, by profoundly reducing the metabolic rate and the core body temperature (Tb). Obligate hibernators (e.g. bears, ground squirrels, etc.) hibernate every winter under the strict regulation of endogenous circannual rhythms, and they are assumed to undergo adaptive remodelling in autumn, the pre-hibernation period, prior to hibernation. However, little is known about the nature of pre-hibernation remodelling. Syrian hamsters (Mesocricetus auratus) are facultative hibernators that can hibernate irrespective of seasons when exposed to prolonged short photoperiod and cold ambient temperature (SD-Cold) conditions. Their Tb set point reduced by the first deep torpor (DT) and then increased gradually after repeated cycles of DT and periodic arousal (PA), and finally recovered to the level observed before the prolonged SD-Cold in the post-hibernation period. We also found that, before the initiation of hibernation, the body mass of animals decreased below a threshold, indicating that hibernation in this species depends on body condition. These observations suggest that Syrian hamsters undergo pre-hibernation remodelling and that Tb and body mass can be useful physiological markers to monitor the remodelling process during the pre-hibernation period. PMID:27152216

  10. Decreases in body temperature and body mass constitute pre-hibernation remodelling in the Syrian golden hamster, a facultative mammalian hibernator.

    PubMed

    Chayama, Yuichi; Ando, Lisa; Tamura, Yutaka; Miura, Masayuki; Yamaguchi, Yoshifumi

    2016-04-01

    Hibernation is an adaptive strategy for surviving during periods with little or no food availability, by profoundly reducing the metabolic rate and the core body temperature (T b). Obligate hibernators (e.g. bears, ground squirrels, etc.) hibernate every winter under the strict regulation of endogenous circannual rhythms, and they are assumed to undergo adaptive remodelling in autumn, the pre-hibernation period, prior to hibernation. However, little is known about the nature of pre-hibernation remodelling. Syrian hamsters (Mesocricetus auratus) are facultative hibernators that can hibernate irrespective of seasons when exposed to prolonged short photoperiod and cold ambient temperature (SD-Cold) conditions. Their T b set point reduced by the first deep torpor (DT) and then increased gradually after repeated cycles of DT and periodic arousal (PA), and finally recovered to the level observed before the prolonged SD-Cold in the post-hibernation period. We also found that, before the initiation of hibernation, the body mass of animals decreased below a threshold, indicating that hibernation in this species depends on body condition. These observations suggest that Syrian hamsters undergo pre-hibernation remodelling and that T b and body mass can be useful physiological markers to monitor the remodelling process during the pre-hibernation period. PMID:27152216

  11. Measuring the mechanical efficiency of a working cardiac muscle sample at body temperature using a flow-through calorimeter.

    PubMed

    Taberner, Andrew J; Johnston, Callum M; Pham, Toan; June-Chiew Han; Ruddy, Bryan P; Loiselle, Denis S; Nielsen, Poul M F

    2015-08-01

    We have developed a new `work-loop calorimeter' that is capable of measuring, simultaneously, the work-done and heat production of isolated cardiac muscle samples at body temperature. Through the innovative use of thermoelectric modules as temperature sensors, the development of a low-noise fluid-flow system, and implementation of precise temperature control, the heat resolution of this device is 10 nW, an improvement by a factor of ten over previous designs. These advances have allowed us to conduct the first flow-through measurements of work output and heat dissipation from cardiac tissue at body temperature. The mechanical efficiency is found to vary with peak stress, and reaches a peak value of approximately 15 %, a figure similar to that observed in cardiac muscle at lower temperatures. PMID:26738140

  12. Physical activity and body composition analysis of female baccalaureate nursing students.

    PubMed

    Pawloski, Lisa R; Davidson, Michele R

    2003-09-01

    Although nursing students are educated about the importance of healthy diets and the benefits of exercise, many do not engage in health promotion behaviors. This study longitudinally examined specific indicators of obesity among a group of female nursing students who incorporated an exercise program into their normal weekly routine. Indicators for obesity were identified using anthropometric data that included weight, body mass index (BMI), and percentage of body fat. Blood pressure, pulse data, and a physical activity level assessment were performed at the beginning and at the conclusion of the study period. Results indicated improvement in overall body composition, including a reduction in percent body fat and BMI. Students also showed improved physical activity levels. Since nurses need to counsel clients on primary prevention issues such as physical activity and maintaining ideal body weight and lean mass, the importance of positive health behaviors for nursing students and nurses cannot be stressed enough. PMID:19038116

  13. Using body temperature, food and water consumption as biomarkers of disease progression in mice with Eμ-myc lymphoma

    PubMed Central

    Hunter, J E; Butterworth, J; Perkins, N D; Bateson, M; Richardson, C A

    2014-01-01

    Background: Non-invasive biomarkers of disease progression in mice with cancer are lacking making it challenging to implement appropriate humane end points. We investigated whether body temperature, food and water consumption could be used to predict tumour burden. Methods: Thirty-six male, wild-type C57Bl/6 mice were implanted with subcutaneous RFID temperature sensors and inoculated with Eμ-myc tumours that infiltrate lymphoid tissue. Results: Decrease in body temperature over the course of the study positively predicted post-mortem lymph node tumour burden (R2=0.68, F(1,22)=44.8, P<0.001). At experimental and humane end points, all mice that had a mean decrease in body temperature of 0.7 °C or greater had lymph nodes heavier than 0.5 g (100% sensitivity), whereas a mean decrease in body temperature <0.7 °C always predicted lymph nodes lighter than 0.5 g (100% specificity). The mean decrease in food consumption in each cage also predicted mean post-mortem lymph node tumour burden at 3 weeks (R2=0.89, F(1,3)=23.2, P=0.017). Conclusion: Temperature, food and water consumption were useful biomarkers of disease progression in mice with lymphoma and could potentially be used more widely to monitor mice with other forms of cancer. PMID:24407190

  14. Temperature- and parasite-induced changes in toxicity and lethal body burdens of pentachlorophenol in the freshwater clam Pisidium amnicum.

    PubMed

    Heinonen, J; Kukkonen, J V; Holopainen, I J

    2001-12-01

    Seasonal variation in abiotic and biotic environments may modify the toxicity of organic chemicals for aquatic organisms. In present study, survival of the freshwater clam Pisidium amnicum was studied in laboratory exposures to pentachlorophenol (PCP) in April (at 5 degress C) and July (at 19 degress C). Behavioral responses, mean survival times (MSTs), and the lethal body burdens (LBBs) of PCP for uninfected clams and for clams infected by digenean trematodes were determined separately in two PCP concentrations, 100 and 300 microgram/L. Analysis of data revealed reduced behavioral activity of the clams in the PCP exposure compared to that in the control. The time needed for toxic responses was greatly affected by temperature; MSTs were 5 to 15 times longer in winter than at summer temperatures. Unexpectedly, the infected clams in summer were more tolerant to PCP than the uninfected clams. Despite the differences in survival times, the LBBs between the seasons were constant. However, in summer, the infected clams had significantly higher LBBs than the uninfected clams. The differences in survival and LBBs between the infected and uninfected clams are suggested to be caused by the high lipid contents found in parasites, which may change the internal distribution of PCP. PMID:11764161

  15. Activation energies and temperature effects from electrical spectra of soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Apparent permittivity often has soil-specific temperature responses as well as soil water responses. These variations affect dielectric sensors, often requiring site-specific calibrations. Variations of permittivity as a function of frequency and temperature can be used to calculate activation energ...

  16. Ambient temperature and activation of implantable cardioverter defibrillators

    NASA Astrophysics Data System (ADS)

    McGuinn, L.; Hajat, S.; Wilkinson, P.; Armstrong, B.; Anderson, H. R.; Monk, V.; Harrison, R.

    2013-09-01

    The degree to which weather influences the occurrence of serious cardiac arrhythmias is not fully understood. To investigate, we studied the timing of activation of implanted cardiac defibrillators (ICDs) in relation to daily outdoor temperatures using a fixed stratum case-crossover approach. All patients attending ICD clinics in London between 1995 and 2003 were recruited onto the study. Temperature exposure for each ICD patient was determined by linking each patient's postcode of residence to their nearest temperature monitoring station in London and the South of England. There were 5,038 activations during the study period. Graphical inspection of ICD activation against temperature suggested increased risk at lower but not higher temperatures. For every 1 °C decrease in ambient temperature, risk of ventricular arrhythmias up to 7 days later increased by 1.2 % (95 % CI -0.6 %, 2.9 %). In threshold models, risk of ventricular arrhythmias increased by 11.2 % (0.5 %, 23.1 %) for every 1° decrease in temperature below 2 °C. Patients over the age of 65 exhibited the highest risk. This large study suggests an inverse relationship between ambient outdoor temperature and risk of ventricular arrhythmias. The highest risk was found for patients over the age of 65. This provides evidence about a mechanism for some cases of low-temperature cardiac death, and suggests a possible strategy for reducing risk among selected cardiac patients by encouraging behaviour modification to minimise cold exposure.

  17. The Elastic Body Model: A Pedagogical Approach Integrating Real Time Measurements and Modelling Activities

    ERIC Educational Resources Information Center

    Fazio, C.; Guastella, I.; Tarantino, G.

    2007-01-01

    In this paper, we describe a pedagogical approach to elastic body movement based on measurements of the contact times between a metallic rod and small bodies colliding with it and on modelling of the experimental results by using a microcomputer-based laboratory and simulation tools. The experiments and modelling activities have been built in the…

  18. Microenvironment temperature prediction between body and seat interface using autoregressive data-driven model.

    PubMed

    Liu, Zhuofu; Wang, Lin; Luo, Zhongming; Heusch, Andrew I; Cascioli, Vincenzo; McCarthy, Peter W

    2015-11-01

    There is a need to develop a greater understanding of temperature at the skin-seat interface during prolonged seating from the perspectives of both industrial design (comfort/discomfort) and medical care (skin ulcer formation). Here we test the concept of predicting temperature at the seat surface and skin interface during prolonged sitting (such as required from wheelchair users). As caregivers are usually busy, such a method would give them warning ahead of a problem. This paper describes a data-driven model capable of predicting thermal changes and thus having the potential to provide an early warning (15- to 25-min ahead prediction) of an impending temperature that may increase the risk for potential skin damages for those subject to enforced sitting and who have little or no sensory feedback from this area. Initially, the oscillations of the original signal are suppressed using the reconstruction strategy of empirical mode decomposition (EMD). Consequentially, the autoregressive data-driven model can be used to predict future thermal trends based on a shorter period of acquisition, which reduces the possibility of introducing human errors and artefacts associated with longer duration "enforced" sitting by volunteers. In this study, the method had a maximum predictive error of <0.4 °C when used to predict the temperature at the seat and skin interface 15 min ahead, but required 45 min data prior to give this accuracy. Although the 45 min front loading of data appears large (in proportion to the 15 min prediction), a relative strength derives from the fact that the same algorithm could be used on the other 4 sitting datasets created by the same individual, suggesting that the period of 45 min required to train the algorithm is transferable to other data from the same individual. This approach might be developed (along with incorporation of other measures such as movement and humidity) into a system that can give caregivers prior warning to help avoid

  19. Calculating activation energies for temperature compensation in circadian rhythms

    NASA Astrophysics Data System (ADS)

    Bodenstein, C.; Heiland, I.; Schuster, S.

    2011-10-01

    Many biological species possess a circadian clock, which helps them anticipate daily variations in the environment. In the absence of external stimuli, the rhythm persists autonomously with a period of approximately 24 h. However, single pulses of light, nutrients, chemicals or temperature can shift the clock phase. In the case of light- and temperature-cycles, this allows entrainment of the clock to cycles of exactly 24 h. Circadian clocks have the remarkable property of temperature compensation, that is, the period of the circadian rhythm remains relatively constant within a physiological range of temperatures. For several organisms, temperature-regulated processes within the circadian clock have been identified in recent years. However, how these processes contribute to temperature compensation is not fully understood. Here, we theoretically investigate temperature compensation in general oscillatory systems. It is known that every oscillator can be locally temperature compensated around a reference temperature, if reactions are appropriately balanced. A balancing is always possible if the control coefficient with respect to the oscillation period of at least one reaction in the oscillator network is positive. However, for global temperature compensation, the whole physiological temperature range is relevant. Here, we use an approach which leads to an optimization problem subject to the local balancing principle. We use this approach to analyse different circadian clock models proposed in the literature and calculate activation energies that lead to temperature compensation.

  20. Study of an Active Control System for a Spinning Body

    NASA Technical Reports Server (NTRS)

    Adams, J. J.

    1961-01-01

    The mission requirements for some satellites require that they spin continuously and at the same time maintain a precise direction of the spin axis. An analog-computer study has been made of an attitude control system which is suitable for such a satellite. The control system provides the necessary attitude control through the use of a spinning wheel, which will provide precession torques, commanded by an automatic closed-loop servomechanism system. The sensors used in the control loop are rate gyroscopes for damping of any wobble motion and a sun seeker for attitude control. The results of the study show that the controller can eliminate the wobble motion of the satellite resulting from a rectangular pulse moment disturbance and then return the spin axis to the reference space axis. The motion is damped to half amplitude in less than one cycle of the wobble motion. The controller can also reduce the motion resulting from a step change in product of inertia both by causing the new principal axis to be steadily alined with the spin vector and by reducing the cone angle generated by the reference body axis. These methods will reduce the motion whether the satellite is a disk, sphere, or rod configuration.

  1. Multiband fiber optic radiometry for measuring the temperature and emissivity of gray bodies of low or high emissivity.

    PubMed

    Sade, Sharon; Katzir, Abraham

    2004-03-20

    Infrared fiber optic radiometry was used for noncontact thermometry of gray bodies whose temperature was close to room temperature (40-70 degrees C). We selected three gray bodies, one with high emissivity (epsilon = 0.97), one with medium emissivity (epsilon = 0.71), and one with low emissivity (epsilon = 0.025). We carried out optimization calculations and measurements for a multiband fiber optic radiometer that consisted of a silver halide (AgClBr) infrared-transmitting fiber, a dual-band cooled infrared detector, and a set of 18 narrowband infrared filters that covered the 2-14-microm spectral range. We determined the optimal spectral range, the optimal number of filters to be used, and the optimal chopping scheme. Using these optimal conditions, we performed measurements of the three gray bodies and obtained an accuracy of better than 1 degrees C for body temperature and for room temperature. An accuracy of 0.03 was obtained for body emissivity. PMID:15065708

  2. Body temperature and respiratory dynamics in un-shaded beef cattle

    NASA Astrophysics Data System (ADS)

    Gaughan, J. B.; Mader, T. L.

    2014-09-01

    In this study body temperature (BT, °C) and panting score (PS, 0-4.5; where 0 = no panting/no stress and 4.5 = catastrophic stress) data were obtained from 30 Angus steers housed outside over 120 days Steers were implanted with a BT transmitter on day -31, BT was recorded at 30-min intervals to a data logger and downloaded each day to a database. The cattle were housed in ten outdoor un-shaded pens with an earthen floor, eight of which had a pen floor area of 144 m2 (three transmitter steers plus five non-transmitter steers; 18 m2/steer) and two had an area of 168 m2 (three transmitter steers and six non-transmitter steers; 18.7 m2/steer). Only data from the transmitter steers were used in this study. The PS of the steers was obtained daily (± 15 min) at 0600 hours (AM), 1200 hours (MD) and 1600 hours (PM). At the same times climate variables (ambient temperature, black globe temperature, solar radiation, relative humidity, wind speed and rainfall) were obtained from an on-site weather station. PS observations were made from outside the pens so as not to influence cattle responses. The two closest BT values to the time when PS was obtained were downloaded retrospectively from a logger and averaged. A total of 8,352 observations were used to generate second order polynomial response curves: (AM) y = 39.08 + 0.009 x + 0.137 x 2 ( R 2 = 0.94; P < 0.001) (MD) y = 39.09 + 0.914 x - 0.080 x 2 ( R 2 = 0.89; P < 0.001) and (PM) y = 39.52 + 0.790 x - 0.068 x 2 ( R 2 = 0.83; P < 0.001) where y = BT (°C) and x PS. These data suggest that PS is a good indicator of body temperature. The BT at MD corresponded to slightly lower PS compared with PM, e.g., for PS 1; BT at MD = 39.1 ± 0.05 °C whereas BT at PM = 39.5 ± 0.05 °C. However during AM, BT was lower ( P < 0.05) at PS 1, 2 and 2.5 compared with MD and PM. For example, when PS was 2.5 the BT at AM was 40.2 ± 0.04 °C, at MD it was 40.9 ± 0.04 °C and at PM BT was 41.1 ± 0.04 °C. When PS was 0 the BT at AM and MD

  3. Body temperature and respiratory dynamics in un-shaded beef cattle.

    PubMed

    Gaughan, J B; Mader, T L

    2014-09-01

    In this study body temperature (BT, °C) and panting score (PS, 0-4.5; where 0 = no panting/no stress and 4.5 = catastrophic stress) data were obtained from 30 Angus steers housed outside over 120 days Steers were implanted with a BT transmitter on day -31, BT was recorded at 30-min intervals to a data logger and downloaded each day to a database. The cattle were housed in ten outdoor un-shaded pens with an earthen floor, eight of which had a pen floor area of 144 m2 (three transmitter steers plus five non-transmitter steers; 18 m2/steer) and two had an area of 168 m2 (three transmitter steers and six non-transmitter steers; 18.7 m2/steer). Only data from the transmitter steers were used in this study. The PS of the steers was obtained daily (± 15 min) at 0600 hours (AM), 1200 hours (MD) and 1600 hours (PM). At the same times climate variables (ambient temperature, black globe temperature, solar radiation, relative humidity, wind speed and rainfall) were obtained from an on-site weather station. PS observations were made from outside the pens so as not to influence cattle responses. The two closest BT values to the time when PS was obtained were downloaded retrospectively from a logger and averaged. A total of 8,352 observations were used to generate second order polynomial response curves: (AM) y = 39.08 + 0.009 x + 0.137x2 (R2 = 0.94; P < 0.001) (MD) y = 39.09 + 0.914x − 0.080x2 (R2 = 0.89; P < 0.001) and (PM) y = 39.52 + 0.790x − 0.068x2 (R2 = 0.83; P < 0.001) where y = BT (°C) and  x PS. These data suggest that PS is a good indicator of body temperature. The BT at MD corresponded to slightly lower PS compared with PM, e.g., for PS 1; BT at MD = 39.1 ± 0.05 °C whereas BT at PM = 39.5 ± 0.05 °C. However during AM, BT was lower (P < 0.05) at PS 1, 2 and 2.5 compared with MD and PM. For example, when PS was 2.5 the BT at AM was 40.2 ± 0.04 °C, at MD it was 40.9

  4. Change in Reasoning about the Body through Psychological Distancing Activities

    ERIC Educational Resources Information Center

    Dillon, James J.; Sagarin, Johanna; Bibace, Roger

    2008-01-01

    This paper focuses on the role of Sigel's (1993) [Sigel, I.E. (1993). The centrality of a distancing model for the development of representational competence. In Cocking, R. & Renninger, A. (Eds.), The development and meaning of psychological distance (pp. 141-158). Hillsdale, NJ: Erlbaum.] psychological distancing activities (PDA) in the process…

  5. Role of preoptic opioid receptors in the body temperature reduction during hypoxia.

    PubMed

    Scarpellini, Carolina da Silveira; Gargaglioni, Luciane H; Branco, Luis G S; Bícego, Kênia C

    2009-08-25

    Evidence indicates that endogenous opioids play a role in body temperature (Tb) regulation in mammals but no data exist about the involvement of the specific opioid receptors, mu, kappa and delta, in the reduction of Tb induced by hypoxia. Thus, we investigated the participation of these opioid receptors in the anteroventral preoptic region (AVPO) in hypoxic decrease of Tb. To this end, Tb of unanesthetized Wistar rats was monitored by temperature data loggers before and after intra-AVPO microinjection of the selective kappa-opioid receptor antagonist nor-binaltorphimine dihydrochloride (nor-BNI; 0.1 and 1.0 microg/100 nL/animal), the selective mu-opioid receptor antagonist D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 cyclic (CTAP; 0.1 and 1.0 microg/100 nL/animal), and the selective delta-opioid receptor antagonist Naltrindole (0.06 and 0.6 microg/100 nL/animal) or saline (vehicle, 100 nL/animal), during normoxia and hypoxia (7% inspired O2). Under normoxia, no effect of opioid antagonists on Tb was observed. Hypoxia induced Tb to reduce in vehicle group, a response that was inhibited by the microinjection intra-AVPO of nor-BNI. In contrast, CTAP and Naltrindole did not change Tb during hypoxia but caused a longer latency for the return of Tb to the normoxic values just after low O2 exposure. Our results indicate the kappa-opioid receptor in the AVPO is important for the reduction of Tb during hypoxia while the mu and delta receptors are involved in the increase of Tb during normoxia post-hypoxia. PMID:19545549

  6. Effect of ozone on body temperature and heart rate in the unanesthetized, unrestrained rats

    SciTech Connect

    Watkinson, W.P.; Aileru, A.A.; Dowd, S.M.; Tepper, J.T.; Gordon, C.J. )

    1990-02-26

    Previous studies from this laboratory have demonstrated the importance of changes in body core temperature (T{sub co}) as both an index and modulator of toxicity. This study examined the effects of ambient temperature (T{sub a}) on the toxicant-induced changes in T{sub co}, heart rate (HR), and other toxicological endpoints following exposure to 1 ppm ozone (O{sub 3}). Two groups of male Fischer 334 rats (n = 6/group) were implanted with radiotelemetry transmitters and allowed to recover overnight. The transmitters permitted monitoring of T{sub co} and electrocardiogram (ECG); HR was derived from the ECG signal. All animals were continually monitored according to the following protocol: control (filtered air; .25 hours); exposure (1 ppm O{sub 3}; 2 hours); recovery (filtered air; 18 hours). The first group of rats, maintained at an T{sub a} of 18-20 C, exhibited a 4-5 C drop in T{sub co} accompanied by an average 250 bpm decrease in HR. The decrease and subsequent recovery of HR appeared to precede the T{sub co} response. The second group of rats was subjected to the same experimental protocol but maintained at an T{sub a} of 30-32 C. These rats also showed decreases in T{sub co} and HR; however, these decreases only averaged {approximately}1 C and 100 bpm, respectively. These experiments demonstrate the profound impact of T{sub a} on T{sub co} and the subsequent toxic response in the conscious rat and may have important implications for the study of toxicology.

  7. Basking hamsters reduce resting metabolism, body temperature and energy costs during rewarming from torpor.

    PubMed

    Geiser, Fritz; Gasch, Kristina; Bieber, Claudia; Stalder, Gabrielle L; Gerritsmann, Hanno; Ruf, Thomas

    2016-07-15

    Basking can substantially reduce thermoregulatory energy expenditure of mammals. We tested the hypothesis that the largely white winter fur of hamsters (Phodopus sungorus), originating from Asian steppes, may be related to camouflage to permit sun basking on or near snow. Winter-acclimated hamsters in our study were largely white and had a high proclivity to bask when resting and torpid. Resting hamsters reduced metabolic rate (MR) significantly (>30%) when basking at ambient temperatures (Ta) of ∼15 and 0°C. Interestingly, body temperature (Tb) also was significantly reduced from 34.7±0.6°C (Ta 15°C, not basking) to 30.4±2.0°C (Ta 0°C, basking), which resulted in an extremely low (<50% of predicted) apparent thermal conductance. Induced torpor (food withheld) during respirometry at Ta 15°C occurred on 83.3±36.0% of days and the minimum torpor MR was 36% of basal MR at an average Tb of 22.0±2.6°C; movement to the basking lamp occurred at Tb<20.0°C. Energy expenditure for rewarming was significantly reduced (by >50%) during radiant heat-assisted rewarming; however, radiant heat per se without an endogenous contribution by animals did not strongly affect metabolism and Tb during torpor. Our data show that basking substantially modifies thermal energetics in hamsters, with a drop of resting Tb and MR not previously observed and a reduction of rewarming costs. The energy savings afforded by basking in hamsters suggest that this behaviour is of energetic significance not only for mammals living in deserts, where basking is common, but also for P. sungorus and probably other cold-climate mammals. PMID:27207637

  8. Antibody-producing cells correlated to body weight in juvenile chinook salmon (Oncorhynchus tshawytscha) acclimated to optimal and elevated temperatures

    USGS Publications Warehouse

    Harrahy, L.N.M.; Schreck, C.B.; Maule, A.G.

    2001-01-01

    The immune response of juvenile chinook salmon (Oncorhynchus tshawytscha) ranging in weight from approximately 10 to 55 g was compared when the fish were acclimated to either 13 or 21?? C. A haemolytic plaque assay was conducted to determine differences in the number of antibody-producing cells (APC) among fish of a similar age but different body weights. Regression analyses revealed significant increases in the number of APC with increasing body weight when fish were acclimated to either water temperature. These results emphasise the importance of standardising fish weight in immunological studies of salmonids before exploring the possible effects of acclimation temperatures. ?? 2001 Academic Press.

  9. Population-specific effects of developmental temperature on body condition and jumping performance of a widespread European frog.

    PubMed

    Drakulić, Sanja; Feldhaar, Heike; Lisičić, Duje; Mioč, Mia; Cizelj, Ivan; Seiler, Michael; Spatz, Theresa; Rödel, Mark-Oliver

    2016-05-01

    All physiological processes of ectotherms depend on environmental temperature. Thus, adaptation of physiological mechanisms to the thermal environments is important for achieving optimal performance and fitness. The European Common Frog, Rana temporaria, is widely distributed across different thermal habitats. This makes it an exceptional model for studying the adaptations to different thermal conditions. We raised tadpoles from Germany and Croatia at two constant temperature treatments (15°C, 20°C), and under natural temperature fluctuations (in outdoor treatments), and tested how different developmental temperatures affected developmental traits, that is, length of larval development, morphometrics, and body condition, as well as jumping performance of metamorphs. Our results revealed population-specific differences in developmental time, body condition, and jumping performance. Croatian frogs developed faster in all treatments, were heavier, in better body condition, and had longer hind limbs and better jumping abilities than German metamorphs. The populations further differed in thermal sensitivity of jumping performance. While metamorphs from Croatia increased their jumping performance with higher temperatures, German metamorphs reached their performance maximum at lower temperatures. These population-specific differences in common environments indicate local genetic adaptation, with southern populations being better adapted to higher temperatures than those from north of the Alps. PMID:27092238

  10. Brown adipose tissue (BAT) thermogenesis heats brain and body as part of the brain-coordinated ultradian basic rest-activity cycle (BRAC)

    PubMed Central

    Ootsuka, Youichirou; de Menezes, Rodrigo C.; Alimoradian, Abbas; Zaretsky, Dmitry V.; Hunt, Joseph; Stefanidis, Aneta; Oldfield, Brian J.; Blessing, William W.

    2009-01-01

    Brown adipose tissue (BAT), body and brain temperatures, as well as behavioral activity, arterial pressure and heart rate, increase episodically during the waking (dark) phase of the circadian cycle in rats. Phase-linking of combinations of these ultradian (<24 hour) events has previously been noted, but no synthesis of their overall interrelationships has emerged. We hypothesized that they are coordinated by brain central command, and that BAT thermogenesis, itself controlled by the brain, contributes to increases in brain and body temperature. We used chronically implanted instruments to measure combinations of BAT, brain and body temperatures, behavioral activity, tail artery blood flow, and arterial pressure and heart rate, in conscious freely moving Sprague-Dawley rats during the 12 hour dark active period. Ambient temperature was kept constant for any particular 24 hour day, varying between 22°C and 27°C on different days. Increases in BAT temperature (≥0.5°C) occurred in an irregular episodic manner every 94±43 min (mean±SD). Varying the temperature over a wider range (18–30°C) on different days did not change the periodicity, and neither body nor brain temperature fell before BAT temperature episodic increases. These increases are thus unlikely to reflect thermoregulatory homeostasis. Episodic BAT thermogenesis still occurred in food-deprived rats. Behavioral activity, arterial pressure (18±5 mmHg every 98±49 min) and heart rate (86±31 beats/min) increased approximately 3 min before each increase in BAT temperature. Increases in BAT temperature (1.1±0.4°C) were larger than corresponding increases in brain (0.8±0.4°C) and body (0.6±0.3°C) temperature and the BAT episodes commenced 2–3 min before body and brain episodes, suggesting that BAT thermogenesis warms body and brain. Hippocampal 5–8 Hz theta rhythm, indicating active engagement with the environment, increased before the behavioral and autonomic events, suggesting coordination

  11. Methyl jasmonate affects morphology, number and activity of endoplasmic reticulum bodies in Raphanus sativus root cells.

    PubMed

    Gotté, Maxime; Ghosh, Rajgourab; Bernard, Sophie; Nguema-Ona, Eric; Vicré-Gibouin, Maïté; Hara-Nishimura, Ikuko; Driouich, Azeddine

    2015-01-01

    The endoplasmic reticulum (ER) bodies are ER-derived structures that are found in Brassicaceae species and thought to play a role in defense. Here, we have investigated the occurrence, distribution and function of ER bodies in root cells of Raphanus sativus using a combination of microscopic and biochemical methods. We have also assessed the response of ER bodies to methyl jasmonate (MeJA), a phytohormone that mediates plant defense against wounding and pathogens. Our results show that (i) ER bodies do occur in different root cell types from the root cap region to the differentiation zone; (ii) they do accumulate a PYK10-like protein similar to the major marker protein of ER bodies that is involved in defense in Arabidopsis thaliana; and (iii) treatment of root cells with MeJA causes a significant increase in the number of ER bodies and the activity of β-glucosidases. More importantly, MeJA was found to induce the formation of very long ER bodies that results from the fusion of small ones, a phenomenon that has not been reported in any other study so far. These findings demonstrate that MeJA impacts the number and morphology of functional ER bodies and stimulates ER body enzyme activities, probably to participate in defense responses of radish root. They also suggest that these structures may provide a defensive system specific to root cells. PMID:25305245

  12. Possibility of passive THz camera using for a temperature difference observing of objects placed inside the human body

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.; Kuchik, Igor E.

    2014-06-01

    As it is well-known, application of the passive THz camera for the security problems is very promising way. It allows seeing concealed object without contact with a person and this camera is non-dangerous for a person. We demonstrate new possibility of the passive THz camera using for a temperature difference observing on the human skin if this difference is caused by different temperatures inside the body. We discuss some physical experiments, in which a person drinks hot, and warm, and cold water and he eats. After computer processing of images captured by passive THz camera TS4 we may see the pronounced temperature trace on skin of the human body. For proof of validity of our statement we make the similar physical experiment using the IR camera. Our investigation allows to increase field of the passive THz camera using for the detection of objects concealed in the human body because the difference in temperature between object and parts of human body will be reflected on the human skin. However, modern passive THz cameras have not enough resolution in a temperature to see this difference. That is why, we use computer processing to enhance the camera resolution for this application. We consider images produced by THz passive cameras manufactured by Microsemi Corp., and ThruVision Corp.

  13. Beef cattle body temperature during climatic stress: a genome-wide association study

    NASA Astrophysics Data System (ADS)

    Howard, Jeremy T.; Kachman, Stephen D.; Snelling, Warren M.; Pollak, E. John; Ciobanu, Daniel C.; Kuehn, Larry A.; Spangler, Matthew L.

    2014-09-01

    Cattle are reared in diverse environments and collecting phenotypic body temperature (BT) measurements to characterize BT variation across diverse environments is difficult and expensive. To better understand the genetic basis of BT regulation, a genome-wide association study was conducted utilizing crossbred steers and heifers totaling 239 animals of unknown pedigree and breed fraction. During predicted extreme heat and cold stress events, hourly tympanic and vaginal BT devices were placed in steers and heifers, respectively. Individuals were genotyped with the BovineSNP50K_v2 assay and data analyzed using Bayesian models for area under the curve (AUC), a measure of BT over time, using hourly BT observations summed across 5-days (AUC summer 5-day (AUCS5D) and AUC winter 5-day (AUCW5D)). Posterior heritability estimates were moderate to high and were estimated to be 0.68 and 0.21 for AUCS5D and AUCW5D, respectively. Moderately positive correlations between direct genomic values for AUCS5D and AUCW5D (0.40) were found, although a small percentage of the top 5 % 1-Mb windows were in common. Different sets of genes were associated with BT during winter and summer, thus simultaneous selection for animals tolerant to both heat and cold appears possible.

  14. Injectable and porous PLGA microspheres that form highly porous scaffolds at body temperature

    PubMed Central

    Qutachi, Omar; Vetsch, Jolanda R.; Gill, Daniel; Cox, Helen; Scurr, David J.; Hofmann, Sandra; Müller, Ralph; Quirk, Robin A.; Shakesheff, Kevin M.; Rahman, Cheryl V.

    2014-01-01

    Injectable scaffolds are of interest in the field of regenerative medicine because of their minimally invasive mode of delivery. For tissue repair applications, it is essential that such scaffolds have the mechanical properties, porosity and pore diameter to support the formation of new tissue. In the current study, porous poly(dl-lactic acid-co-glycolic acid) (PLGA) microspheres were fabricated with an average size of 84 ± 24 μm for use as injectable cell carriers. Treatment with ethanolic sodium hydroxide for 2 min was observed to increase surface porosity without causing the microsphere structure to disintegrate. This surface treatment also enabled the microspheres to fuse together at 37 °C to form scaffold structures. The average compressive strength of the scaffolds after 24 h at 37 °C was 0.9 ± 0.1 MPa, and the average Young’s modulus was 9.4 ± 1.2 MPa. Scaffold porosity levels were 81.6% on average, with a mean pore diameter of 54 ± 38 μm. This study demonstrates a method for fabricating porous PLGA microspheres that form solid porous scaffolds at body temperature, creating an injectable system capable of supporting NIH-3T3 cell attachment and proliferation in vitro. PMID:25152354

  15. Psychogenic fever: how psychological stress affects body temperature in the clinical population

    PubMed Central

    Oka, Takakazu

    2015-01-01

    Psychogenic fever is a stress-related, psychosomatic disease especially seen in young women. Some patients develop extremely high core body temperature (Tc) (up to 41°C) when they are exposed to emotional events, whereas others show persistent low-grade high Tc (37–38°C) during situations of chronic stress. The mechanism for psychogenic fever is not yet fully understood. However, clinical case reports demonstrate that psychogenic fever is not attenuated by antipyretic drugs, but by psychotropic drugs that display anxiolytic and sedative properties, or by resolving patients' difficulties via natural means or psychotherapy. Animal studies have demonstrated that psychological stress increases Tc via mechanisms distinct from infectious fever (which requires proinflammatory mediators) and that the sympathetic nervous system, particularly β3-adrenoceptor-mediated non-shivering thermogenesis in brown adipose tissue, plays an important role in the development of psychological stress-induced hyperthermia. Acute psychological stress induces a transient, monophasic increase in Tc. In contrast, repeated stress induces anticipatory hyperthermia, reduces diurnal changes in Tc, or slightly increases Tc throughout the day. Chronically stressed animals also display an enhanced hyperthermic response to a novel stress, while past fearful experiences induce conditioned hyperthermia to the fear context. The high Tc that psychogenic fever patients develop may be a complex of these diverse kinds of hyperthermic responses. PMID:27227051

  16. Injectable and porous PLGA microspheres that form highly porous scaffolds at body temperature.

    PubMed

    Qutachi, Omar; Vetsch, Jolanda R; Gill, Daniel; Cox, Helen; Scurr, David J; Hofmann, Sandra; Müller, Ralph; Quirk, Robin A; Shakesheff, Kevin M; Rahman, Cheryl V

    2014-12-01

    Injectable scaffolds are of interest in the field of regenerative medicine because of their minimally invasive mode of delivery. For tissue repair applications, it is essential that such scaffolds have the mechanical properties, porosity and pore diameter to support the formation of new tissue. In the current study, porous poly(dl-lactic acid-co-glycolic acid) (PLGA) microspheres were fabricated with an average size of 84±24μm for use as injectable cell carriers. Treatment with ethanolic sodium hydroxide for 2min was observed to increase surface porosity without causing the microsphere structure to disintegrate. This surface treatment also enabled the microspheres to fuse together at 37°C to form scaffold structures. The average compressive strength of the scaffolds after 24h at 37°C was 0.9±0.1MPa, and the average Young's modulus was 9.4±1.2MPa. Scaffold porosity levels were 81.6% on average, with a mean pore diameter of 54±38μm. This study demonstrates a method for fabricating porous PLGA microspheres that form solid porous scaffolds at body temperature, creating an injectable system capable of supporting NIH-3T3 cell attachment and proliferation in vitro. PMID:25152354

  17. Psychogenic fever: how psychological stress affects body temperature in the clinical population.

    PubMed

    Oka, Takakazu

    2015-01-01

    Psychogenic fever is a stress-related, psychosomatic disease especially seen in young women. Some patients develop extremely high core body temperature (Tc) (up to 41°C) when they are exposed to emotional events, whereas others show persistent low-grade high Tc (37-38°C) during situations of chronic stress. The mechanism for psychogenic fever is not yet fully understood. However, clinical case reports demonstrate that psychogenic fever is not attenuated by antipyretic drugs, but by psychotropic drugs that display anxiolytic and sedative properties, or by resolving patients' difficulties via natural means or psychotherapy. Animal studies have demonstrated that psychological stress increases Tc via mechanisms distinct from infectious fever (which requires proinflammatory mediators) and that the sympathetic nervous system, particularly β3-adrenoceptor-mediated non-shivering thermogenesis in brown adipose tissue, plays an important role in the development of psychological stress-induced hyperthermia. Acute psychological stress induces a transient, monophasic increase in Tc. In contrast, repeated stress induces anticipatory hyperthermia, reduces diurnal changes in Tc, or slightly increases Tc throughout the day. Chronically stressed animals also display an enhanced hyperthermic response to a novel stress, while past fearful experiences induce conditioned hyperthermia to the fear context. The high Tc that psychogenic fever patients develop may be a complex of these diverse kinds of hyperthermic responses. PMID:27227051

  18. Beef cattle body temperature during climatic stress: a genome-wide association study.

    PubMed

    Howard, Jeremy T; Kachman, Stephen D; Snelling, Warren M; Pollak, E John; Ciobanu, Daniel C; Kuehn, Larry A; Spangler, Matthew L

    2014-09-01

    Cattle are reared in diverse environments and collecting phenotypic body temperature (BT) measurements to characterize BT variation across diverse environments is difficult and expensive. To better understand the genetic basis of BT regulation, a genome-wide association study was conducted utilizing crossbred steers and heifers totaling 239 animals of unknown pedigree and breed fraction. During predicted extreme heat and cold stress events, hourly tympanic and vaginal BT devices were placed in steers and heifers, respectively. Individuals were genotyped with the BovineSNP50K_v2 assay and data analyzed using Bayesian models for area under the curve (AUC), a measure of BT over time, using hourly BT observations summed across 5-days (AUC summer 5-day (AUCS5D) and AUC winter 5-day (AUCW5D)). Posterior heritability estimates were moderate to high and were estimated to be 0.68 and 0.21 for AUCS5D and AUCW5D, respectively. Moderately positive correlations between direct genomic values for AUCS5D and AUCW5D (0.40) were found, although a small percentage of the top 5% 1-Mb windows were in common. Different sets of genes were associated with BT during winter and summer, thus simultaneous selection for animals tolerant to both heat and cold appears possible. PMID:24362770

  19. 24-hour control of body temperature in rats. I. Integration of behavioral and autonomic effectors.

    PubMed

    Gordon, C J

    1994-07-01

    Some studies suggest that the nocturnal elevation in core temperature (Tc) of the rat is mediated by an elevation in the set point. The role of set point can be assessed if behavioral effectors are measured simultaneously with other thermoregulatory effectors and Tc over a 24-h period. Selected ambient temperature (STa) and motor activity (MA) were measured in rats housed in a temperature gradient system with a 12:12-h photoperiod (lights on 0600 h). Tc and heart rate (HR) were monitored by telemetry. During the light phase, STa, Tc, HR, and MA were relatively stable with values 29.0 degrees C, 37.1 degrees C, 310 beats/min, and 1-2 m/h, respectively. During the light-to-dark transition there were abrupt elevations in Tc, HR, and MA but no change in STa. STa decreased during the dark phase and reached a nadir of 23 degrees C at 0500 h. All variables recovered to basal levels within 3-4 h after the onset of the light phase. Overall, autonomic effectors control the elevation in Tc during the onset of the dark phase while behavioral effectors have little if any role. Behavioral thermoregulation is important in two ways: 1) the selection of cooler Ta values at night to prevent an excess elevation in Tc and 2) a preference for cooler Ta values before the light phase to facilitate the recovery of Tc. PMID:8048648

  20. Age, Physical Activity, Physical Fitness, Body Composition, and Incidence of Orthopedic Problems.

    ERIC Educational Resources Information Center

    Research Quarterly for Exercise and Sport, 1989

    1989-01-01

    Effects of age, physical activity, physical fitness, and body mass index (BMI) on the occurrence of orthopedic problems were examined. For men, physical fitness, BMI, and physical activity were associated with orthopedic problems; for women, physical activity was the main predictor. Age was not a factor for either gender. (JD)

  1. Temperature systematically modifies neural activity for sweet taste

    PubMed Central

    Wilson, David M.

    2014-01-01

    Temperature can modify neural and behavioral responses to taste stimuli that elicit “sweetness,” a perception linked to intake of calorie-laden foods. However, the role of temperature in the neural representation of sweet taste is poorly understood. Here we made electrophysiological recordings from gustatory neurons in the medulla of inbred mice to study how adjustments in taste solution temperature to cool (18°C), ambient (22°C), and warm (30°C and 37°C) values changed the magnitude and latency of gustatory activity to sucrose (0, 0.05, 0.1, 0.17, 0.31, and 0.56 M). Analysis of 22 sucrose-best neurons revealed that temperature markedly influenced responses to sucrose, which, across concentrations, were largest when solutions were warmed to 30°C. However, reducing solution temperature from warm to ambient to cool progressively steepened the slope of the sucrose concentration-response function computed across cells (P < 0.05), indicating that mean activity to sucrose increased more rapidly with concentration steps under cooling than with warming. Thus the slope of the sucrose concentration-response function shows an inverse relation with temperature. Temperature also influenced latency to the first spike of the sucrose response. Across neurons, latencies were shorter when sucrose solutions were warmed and longer, by hundreds of milliseconds, when solutions were cooled (P < 0.05), indicating that temperature is also a temporal parameter of sucrose activity. Our findings reveal that temperature systematically modifies the timing of gustatory activity to sucrose in the mammalian brain and how this activity changes with concentration. Results further highlight how oral somatosensory cues function as physiological modulators of gustatory processing. PMID:24966301

  2. Mapping water bodies over tropical bassins from SMOS L-band brightness temperature

    NASA Astrophysics Data System (ADS)

    Parrens, Marie; Al-Bitar, Ahmad; Kerr, Yann; Cote, Rémi; Richaume, Philippe; Crétaux, Jean-François; Cherchali, Selma; Wigneron, Jean-Pierre

    2015-04-01

    Wetlands and land surface waters play a crucial role in the global water and biogeochimal cycles. Since the 80's, remote sensing techniques provide quantitative estimates of open water surfaces over land. They appear to be a valuable tool to monitor natural and anthropogenic evolution of this variable over the globe. A large array of frequencies has been used to retrieve surface water over land: visible, infrared, radar and passive microwave. In this work, the passive microwave L-band acquisitions from Soil Moisture and Ocean Salinity (SMOS) mission are used to retrieve the water fraction. At this frequency, the signal is highly sensitive to surface waters. At L-band, the signal is expected to penetrate deeper in vegetation than signal in other frequency, such as visible and infrared and to some extent C-Band microwave. This asset permits to L-band signal to be more sensitive to open water under dense vegetation. In this study, authors focus on the Amazon and Congo basins. It is shown from a preliminary analysis of multi-angular, full polarized brightness temperature data that the dynamics observed over these study areas are related to the changing water bodies than the change in physical temperature. Based on this conclusion, a simple model had been built to obtain open water maps over the Amazon and Congo basin from SMOS brightness temperature at a coarse spatial resolution (25 km x 25 km) and high temporal frequency (2-days). These maps reveal the potential of L-band to monitor the evolution of open water and inundation over land. This new SMOS product is validated with visible data LandSAT. It is also compared to altimeter data (Jason-2) over the Rio Negro river. It was found that the water fraction estimated by SMOS was highly correlated with water levels measured by Jason-2 (R > 0.98). These maps exhibit also a phase shift of three months in the precipitation regime between the South and the North of the Amazon basin.

  3. The Effects of Temperature and Body Mass on Jump Performance of the Locust Locusta migratoria

    PubMed Central

    Snelling, Edward P.; Becker, Christie L.; Seymour, Roger S.

    2013-01-01

    Locusts jump by rapidly releasing energy from cuticular springs built into the hind femur that deform when the femur muscle contracts. This study is the first to examine the effect of temperature on jump energy at each life stage of any orthopteran. Ballistics and high-speed cinematography were used to quantify the energy, distance, and take-off angle of the jump at 15, 25, and 35°C in the locust Locusta migratoria. Allometric analysis across the five juvenile stages at 35°C reveals that jump distance (D; m) scales with body mass (M; g) according to the power equation D = 0.35M0.17±0.08 (95% CI), jump take-off angle (A; degrees) scales as A = 52.5M0.00±0.06, and jump energy (E; mJ per jump) scales as E = 1.91M1.14±0.09. Temperature has no significant effect on the exponent of these relationships, and only a modest effect on the elevation, with an overall Q10 of 1.08 for jump distance and 1.09 for jump energy. On average, adults jump 87% farther and with 74% more energy than predicted based on juvenile scaling data. The positive allometric scaling of jump distance and jump energy across the juvenile life stages is likely facilitated by the concomitant relative increase in the total length (Lf+t; mm) of the femur and tibia of the hind leg, Lf+t = 34.9M0.37±0.02. The weak temperature-dependence of jump performance can be traced to the maximum tension of the hind femur muscle and the energy storage capacity of the femur's cuticular springs. The disproportionately greater jump energy and jump distance of adults is associated with relatively longer (12%) legs and a relatively larger (11%) femur muscle cross-sectional area, which could allow more strain loading into the femur's cuticular springs. Augmented jump performance in volant adult locusts achieves the take-off velocity required to initiate flight. PMID:23967304

  4. The effects of temperature and body mass on jump performance of the locust Locusta migratoria.

    PubMed

    Snelling, Edward P; Becker, Christie L; Seymour, Roger S

    2013-01-01

    Locusts jump by rapidly releasing energy from cuticular springs built into the hind femur that deform when the femur muscle contracts. This study is the first to examine the effect of temperature on jump energy at each life stage of any orthopteran. Ballistics and high-speed cinematography were used to quantify the energy, distance, and take-off angle of the jump at 15, 25, and 35°C in the locust Locusta migratoria. Allometric analysis across the five juvenile stages at 35°C reveals that jump distance (D; m) scales with body mass (M; g) according to the power equation D = 0.35M (0.17±0.08 (95% CI)), jump take-off angle (A; degrees) scales as A = 52.5M (0.00±0.06), and jump energy (E; mJ per jump) scales as E = 1.91M (1.14±0.09). Temperature has no significant effect on the exponent of these relationships, and only a modest effect on the elevation, with an overall Q10 of 1.08 for jump distance and 1.09 for jump energy. On average, adults jump 87% farther and with 74% more energy than predicted based on juvenile scaling data. The positive allometric scaling of jump distance and jump energy across the juvenile life stages is likely facilitated by the concomitant relative increase in the total length (L f+t; mm) of the femur and tibia of the hind leg, L f+t = 34.9M (0.37±0.02). The weak temperature-dependence of jump performance can be traced to the maximum tension of the hind femur muscle and the energy storage capacity of the femur's cuticular springs. The disproportionately greater jump energy and jump distance of adults is associated with relatively longer (12%) legs and a relatively larger (11%) femur muscle cross-sectional area, which could allow more strain loading into the femur's cuticular springs. Augmented jump performance in volant adult locusts achieves the take-off velocity required to initiate flight. PMID:23967304

  5. Active Layer Thermal Response to Stream Water Temperatures

    NASA Astrophysics Data System (ADS)

    Cozzetto, K.; McKnight, D.

    2004-12-01

    The hyporheic zone is comprised of sediments below and adjacent to a stream through which stream water flows in and out. In polar regions, the shape, dimensions, physical and chemical characteristics of this zone are affected by the seasonal freezing and thawing of the active layer. One factor that may influence the active layer temperature regime is stream water temperature, both its absolute value and cyclic variations in its value. Many of the glacial meltwater streams in Taylor Valley in the McMurdo Dry Valleys of Antarctica, exhibit daily temperature patterns with lows of 0 or 1° C and highs of 10 or, on occasion, 15° C. Because the viscosity of water decreases significantly with increasing temperature, these daily maxima may increase infiltration and the exchange of water and heat between the stream and the hyporheic zone. To investigate the influence of stream water temperature and flow paths on the active layer temperature regime and vice versa, two conservative tracer injection experiments were conducted. Both took place in the same 200-meter reach, which was instrumented with temperature and conductivity probes. Both also took place at the same time of day during which the stream reaches its temperature maximum. However, in one experiment snow from a nearby patch was added to the stream to suppress the temperature maximum by 3° C from 10 to 7° C. The temperature data show that the snow addition slowed the rate of hyporheic zone warming and suppressed temperature increases in the hyporheic zone by 1-3° C when compared with the non-perturbation experiment. The electrical conductivity data indicate that during the snow addition experiment, the stream neither gained nor lost water while during the non-perturbation experiment, the stream lost water. These results suggest that the stream water cooling decreased infiltration and heat transfer into the hyporheic zone.

  6. Does reading keep you thin? Leisure activities, cultural tastes, and body weight in comparative perspective

    PubMed Central

    Pampel, Fred C.

    2011-01-01

    While sedentary leisure-time activities such as reading, going to movies, attending cultural events, attending sporting events, watching TV, listening to music, and socializing with friends would seem to contribute to excess weight, a perspective focusing on SES differences in cultural tastes suggests the opposite, that some sedentary activities are associated with lower rather than higher body weight. This study aims to test theories of cultural distinction by examining relationships between leisure-time activities and body weight. Using 2007 data on 17 nations from the International Social Survey Program, the analysis estimates relationships between the body mass index and varied leisure-time activities while controlling for SES, physical activities, and sociodemographic variables. Net of controls for SES and physical activities, participation time in cultural activities is associated with lower rather than higher body weight, particularly in high-income nations. The results suggest that both cultural activities and body weight reflect forms of distinction that separate SES-based lifestyles. PMID:21707664

  7. Genotype effects on body temperature in dairy cows under grazing conditions in a hot climate including evidence for heterosis

    NASA Astrophysics Data System (ADS)

    Dikmen, S.; Martins, L.; Pontes, E.; Hansen, P. J.

    2009-07-01

    We compared diurnal patterns of vaginal temperature in lactating cows under grazing conditions to evaluate genotype effects on body temperature regulation. Genotypes evaluated were Holstein, Jersey, Jersey × Holstein and Swedish Red × Holstein. The comparison of Holstein and Jersey versus Jersey × Holstein provided a test of whether heterosis effects body temperature regulation. Cows were fitted with intravaginal temperature recording devices that measured vaginal temperature every 15 min for 7 days. Vaginal temperature was affected by time of day ( P < 0.0001) and genotype × time ( P < 0.0001) regardless of whether days in milk and milk yield were used as covariates. Additional analyses indicated that the Swedish Red × Holstein had a different pattern of vaginal temperatures than the other three genotypes (Swedish Red × Holstein vs others × time; P < 0.0001) and that Holstein and Jersey had a different pattern than Jersey × Holstein [(Holstein + Jersey vs Jersey × Holstein) × time, P < 0.0001]. However, Holstein had a similar pattern to Jersey [(Holstein vs Jersey) × time, P > 0.10]. These genotype × time interactions reflect two effects. First, Swedish Red × Holstein had higher vaginal temperatures than the other genotypes in the late morning and afternoon but not after the evening milking. Secondly, Jersey × Holstein had lower vaginal temperatures than other genotypes in the late morning and afternoon and again in the late night and early morning. Results point out that there are effects of specific genotypes and evidence for heterosis on regulation of body temperature of lactating cows maintained under grazing conditions and suggest that genetic improvement for thermotolerance through breed choice or genetic selection is possible.

  8. Geomagnetic activity and polar surface air temperature variability

    NASA Astrophysics Data System (ADS)

    Seppälä, A.; Randall, C. E.; Clilverd, M. A.; Rozanov, E.; Rodger, C. J.

    2009-10-01

    Here we use the ERA-40 and ECMWF operational surface level air temperature data sets from 1957 to 2006 to examine polar temperature variations during years with different levels of geomagnetic activity, as defined by the A p index. Previous modeling work has suggested that NO x produced at high latitudes by energetic particle precipitation can eventually lead to detectable changes in surface air temperatures (SATs). We find that during winter months, polar SATs in years with high A p index are different than in years with low A p index; the differences are statistically significant at the 2-sigma level and range up to about ±4.5 K, depending on location. The temperature differences are larger when years with wintertime Sudden Stratospheric Warmings (SSWs) are excluded. We take into account solar irradiance variations, unlike previous analyses of geomagnetic effects in ERA-40 and operational data. Although we cannot conclusively show that the polar SAT patterns are physically linked by geomagnetic activity, we conclude that geomagnetic activity likely plays a role in modulating wintertime surface air temperatures. We tested our SAT results against variation in the Quasi Biennial Oscillation, the El Niño Southern Oscillation and the Southern Annular Mode. The results suggested that these were not driving the observed polar SAT variability. However, significant uncertainty is introduced by the Northern Annular Mode, and we cannot robustly exclude a chance linkage between sea surface temperature variability and geomagnetic activity.

  9. BODY TEMPERATURE-DEPENDENT AND INDEPENDENT ACTIONS OF CHLORDIMEFORM ON VISUAL EVOKED POTENTIALS AND AXONAL TRANSPORT IN OPTIC SYSTEM OF RAT

    EPA Science Inventory

    Pattern reversal evoked potentials (PREPs), flash evoked potentials (FEPs), optic nerve axonal transport, and body temperature were measured in hooded rats treated with either saline or the formamidine insecticide/acaricide, chlordimeform (CDM). Rats receiving CDM had low body te...

  10. Body-related self-conscious emotions relate to physical activity motivation and behavior in men.

    PubMed

    Castonguay, Andree L; Pila, Eva; Wrosch, Carsten; Sabiston, Catherine M

    2015-05-01

    The aim of this study was to examine the associations between the body-related self-conscious emotions of shame, guilt, and pride and physical activity motivation and behavior among adult males. Specifically, motivation regulations (external, introjected, indentified, intrinsic) were examined as possible mediators between each of the body-related self-conscious emotions and physical activity behavior. A cross-sectional study was conducted with adult men (N = 152; Mage = 23.72, SD = 10.92 years). Participants completed a questionnaire assessing body-related shame, guilt, authentic pride, hubristic pride, motivational regulations, and leisure-time physical activity. In separate multiple mediation models, body-related shame was positively associated with external and introjected regulations and negatively correlated with intrinsic regulation. Guilt was positively linked to external, introjected, and identified regulations. Authentic pride was negatively related to external regulation and positively correlated with both identified and intrinsic regulations and directly associated with physical activity behavior. Hubristic pride was positively associated with intrinsic regulation. Overall, there were both direct and indirect effects via motivation regulations between body-related self-conscious emotions and physical activity (R(2) shame = .15, guilt = .16, authentic pride = .18, hubristic pride = .16). These findings highlight the importance of targeting and understanding self-conscious emotions contextualized to the body and links to motivation and positive health behavior among men. PMID:24899517

  11. An Examination of Body Temperature for the Rocky Intertidal Mussel species, Mytilus californianus, Using Remotely Sensed Satellite Observations

    NASA Astrophysics Data System (ADS)

    Price, J.; Liff, H.; Lakshmi, V.

    2012-12-01

    Temperature is considered to be one of the most important physical factors in determining organismal distribution and physiological performance of species in rocky intertidal ecosystems, especially the growth and survival of mussels. However, little is known about the spatial and temporal patterns of temperature in intertidal ecosystems or how those patterns affect intertidal mussel species because of limitations in data collection. We collected in situ temperature at Strawberry Hill, Oregon USA using mussel loggers embedded among the intertidal mussel species, Mytilus californianus. Remotely sensed surface temperatures were used in conjunction with in situ weather and ocean data to determine if remotely sensed surface temperatures can be used as a predictor for changes in the body temperature of a rocky intertidal mussel species. The data used in this study was collected between January 2003 and December 2010. The mussel logger temperatures were compared to in situ weather data collected from a local weather station, ocean data collected from a NOAA buoy, and remotely sensed surface temperatures collected from NASA's sun-synchronous Moderate Resolution Imaging Spectroradiometer aboard the Earth Observing System Aqua and EOS Terra satellites. Daily surface temperatures were collected from four pixel locations which included two sea surface temperature (SST) locations and two land surface temperature (LST) locations. One of the land pixels was chosen to represent the intertidal surface temperature (IST) because it was located within the intertidal zone. As expected, all surface temperatures collected via satellite were significantly correlated to each other and the associated in situ temperatures. Examination of temperatures from the off-shore NOAA buoy and the weather station provide evidence that remotely sensed temperatures were similar to in situ temperature data and explain more variability in mussel logger temperatures than the in situ temperatures. Our

  12. Synthesis of low-temperature, fast, single-firing body for porcelain stoneware tiles with coal gangue.

    PubMed

    Qiangwei Wei; Wenyuan Gao; Xinguo Sui

    2010-10-01

    Coal gangue is a major industrial solid waste in China, causing great environment pollution. According to phase diagram theory, a low-temperature, fast, single-firing body mix for porcelain stoneware tiles was designed in the quaternary system CaO--MgO--Al₂O₃--SiO₂, using coal gangue as the main raw material. The coal gangue was from Baishan city, Jilin province and mainly composed of kaolinite and quartz. Mineralogical compositions and microstructures of some selected samples sintered at different temperatures were identified with X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results indicated that the optimal body mix was the one containing 34 wt% coal gangue sintered at 1170°C for about 1 h, with rupture strength of 43 MPa and water absorption of 0.22%. The main crystalline phases of the sintered body were quartz, anorthite and mullite. PMID:19942651

  13. Relating subsurface temperature changes to microbial activity at a crude oil-contaminated site.

    PubMed

    Warren, Ean; Bekins, Barbara A

    2015-11-01

    Crude oil at a spill site near Bemidji, Minnesota has been undergoing aerobic and anaerobic biodegradation for over 30 years, creating a 150-200 m plume of primary and secondary contaminants. Microbial degradation generates heat that should be measurable under the right conditions. To measure this heat, thermistors were installed in wells in the saturated zone and in water-filled monitoring tubes in the unsaturated zone. In the saturated zone, a thermal groundwater plume originates near the residual oil body with temperatures ranging from 2.9°C above background near the oil to 1.2°C down gradient. Temperatures in the unsaturated zone above the oil body were up to 2.7°C more than background temperatures. Previous work at this site has shown that methane produced from biodegradation of the oil migrates upward and is oxidized in a methanotrophic zone midway between the water table and the surface. Enthalpy calculations and observations demonstrate that the temperature increases primarily result from aerobic methane oxidation in the unsaturated zone above the oil. Methane oxidation rates at the site independently estimated from surface CO2 efflux data are comparable to rates estimated from the observed temperature increases. The results indicate that temperature may be useful as a low-cost measure of activity but care is required to account for the correct heat-generating reactions, other heat sources and the effects of focused recharge. PMID:26409188

  14. Relating subsurface temperature changes to microbial activity at a crude oil-contaminated site

    NASA Astrophysics Data System (ADS)

    Warren, Ean; Bekins, Barbara A.

    2015-11-01

    Crude oil at a spill site near Bemidji, Minnesota has been undergoing aerobic and anaerobic biodegradation for over 30 years, creating a 150-200 m plume of primary and secondary contaminants. Microbial degradation generates heat that should be measurable under the right conditions. To measure this heat, thermistors were installed in wells in the saturated zone and in water-filled monitoring tubes in the unsaturated zone. In the saturated zone, a thermal groundwater plume originates near the residual oil body with temperatures ranging from 2.9 °C above background near the oil to 1.2 °C down gradient. Temperatures in the unsaturated zone above the oil body were up to 2.7 °C more than background temperatures. Previous work at this site has shown that methane produced from biodegradation of the oil migrates upward and is oxidized in a methanotrophic zone midway between the water table and the surface. Enthalpy calculations and observations demonstrate that the temperature increases primarily result from aerobic methane oxidation in the unsaturated zone above the oil. Methane oxidation rates at the site independently estimated from surface CO2 efflux data are comparable to rates estimated from the observed temperature increases. The results indicate that temperature may be useful as a low-cost measure of activity but care is required to account for the correct heat-generating reactions, other heat sources and the effects of focused recharge.

  15. Effects of shade and feeding zilpaterol hydrochloride to finishing steers on performance, carcass quality, mobility, and body temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crossbred steers (n=480) were utilized to study the effects of shade and feeding zilpaterol hydrochloride (ZH) on performance, carcass quality, mobility, and body temperature (BT). A randomized block design with a 2×2 factorial arrangement of treatments was conducted with four replicates per treatme...

  16. Effects of shade and feeding zilpaterol hydrochloride to finishing steers on performance, carcass quality, heat stress, mobility, and body temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Steers (n = 480) were used to study the effects of shade and feeding zilpaterol hydrochloride (ZH) on performance, carcass quality, heat stress, mobility, and body temperature (BT). A randomized block design with a 2 × 2 factorial arrangement of treatments was used with 4 replicates per treatment. F...

  17. Comparison of physical characteristics, body temperature and resting metabolic rate at 30‡C between subtropical and temperate natives

    NASA Astrophysics Data System (ADS)

    Hori, S.; Ihzuka, H.

    1986-06-01

    Anthropometric measurements, measurements of skin temperatures, rectal temperature, heart rate and metabolic rate at 30‡C were made on 25 young male residents of Okinawa who were born and raised in Okinawa (group O) and 25 young male residents of Okinawa who were born and raised on the Japan mainland but moved to Okinawa less than 2 years before the test (group M) in summer. Group O showed significantly shorter height, lighter body weight, and slender body shape than group M. Group O showed thinner skinfold thickness and smaller percentage of body fat content than group M. Skin temperatures for group O were higher than those for group M, and rectal temperature for group O was slightly lower than that for group M. Group O showed, less metabolic rate per body surface area and slower heart rate than group M. It is concluded that physical characteristics of subtropical natives is favorable for heat dissipation, and subtropical natives have superior capacity for non-evaporative heat dissipation than migrants of temperate natives to a subtropical zone.

  18. A high-resolution thermoelectric module-based calorimeter for measuring the energetics of isolated ventricular trabeculae at body temperature.

    PubMed

    Johnston, Callum M; Han, June-Chiew; Ruddy, Bryan P; Nielsen, Poul M F; Taberner, Andrew J

    2015-07-15

    Isolated ventricular trabeculae are the most common experimental preparations used in the study of cardiac energetics. However, the experiments have been conducted at subphysiological temperatures. We have overcome this limitation by designing and constructing a novel calorimeter with sufficiently high thermal resolution for simultaneously measuring the heat output and force production of isolated, contracting, ventricular trabeculae at body temperature. This development was largely motivated by the need to better understand cardiac energetics by performing such measurements at body temperature to relate tissue performance to whole heart behavior in vivo. Our approach uses solid-state thermoelectric modules, tailored for both temperature sensing and temperature control. The thermoelectric modules have high sensitivity and low noise, which, when coupled with a multilevel temperature control system, enable an exceptionally high temperature resolution with a noise-equivalent power an order of magnitude greater than those of other existing muscle calorimeters. Our system allows us to rapidly and easily change the experimental temperature without disturbing the state of the muscle. Our calorimeter is useful in many experiments that explore the energetics of normal physiology as well as pathophysiology of cardiac muscle. PMID:26001412

  19. The interaction between early-life body size and physical activity on risk of breast cancer

    PubMed Central

    Oh, Hannah; Boeke, Caroline E.; Tamimi, Rulla M.; Smith-Warner, Stephanie A.; Wang, Molin; Willett, Walter C.; Eliassen, A. Heather

    2014-01-01

    While early-life body leanness is associated with increased breast cancer risk, early-life physical activity may protect against breast cancer. We examined whether the excess risk among lean girls is modified by their levels of prior, concurrent, or future physical activity. We conducted an analysis among 74,723 women in the Nurses’ Health Study II (follow-up 1997–2011). Participants recalled their body size at ages 5, 10, and 20 years in 1989 using a 9-level pictogram (level 1: most lean). In 1997, they reported adolescent levels of physical activity (ages 12–13 and 14–17 years). Cox proportional hazards models estimated the overall association of body size with breast cancer risk and assessed interactions of adolescent physical activity with body size at three different age periods (5–10, 10–20, and 20 years), adjusting for early-life and adult risk factors for breast cancer. Regardless of levels of adolescent physical activity, early-life body leanness (level 1–2 vs. 4.5+) was significantly associated with higher breast cancer risk. The association was slightly attenuated among those who were active (60+ MET-hr/wk) during adolescence compared to those who were inactive (<30 MET-hr/wk) (body size at ages 5–10 years: hazard ratio=1.37, 95% confidence interval=1.04–1.81 vs. 1.66, 1.29–2.12), but the interaction was not significant (p=0.72). The results were similar for body size at three different age periods. Being lean during early life is a risk factor for breast cancer among both inactive and active girls. Adolescent physical activity did not significantly modify the association, although some interaction cannot be excluded. PMID:25335465

  20. The interaction between early-life body size and physical activity on risk of breast cancer.

    PubMed

    Oh, Hannah; Boeke, Caroline E; Tamimi, Rulla M; Smith-Warner, Stephanie A; Wang, Molin; Willett, Walter C; Eliassen, A Heather

    2015-08-01

    While early-life body leanness is associated with increased breast cancer risk, early-life physical activity may protect against breast cancer. We examined whether the excess risk among lean girls is modified by their levels of prior, concurrent, or future physical activity. We conducted an analysis among 74,723 women in the Nurses' Health Study II (follow-up 1997-2011). Participants recalled their body size at ages 5, 10 and 20 years in 1989 using a 9-level pictogram (Level 1 most lean). In 1997, they reported adolescent levels of physical activity (ages 12-13 and 14-17 years). Cox proportional hazards models estimated the overall association of body size with breast cancer risk and assessed interactions of adolescent physical activity with body size at three different age periods (5-10, 10-20 and 20 years), adjusting for early-life and adult risk factors for breast cancer. Regardless of levels of adolescent physical activity, early-life body leanness (level 1-2 vs. 4.5+) was significantly associated with higher breast cancer risk. The association was slightly attenuated among those who were active (60+ MET-hr/wk) during adolescence compared to those who were inactive (<30 MET-hr/wk) (body size at ages 5-10 years: hazard ratio = 1.37, 95% confidence interval = 1.04-1.81 vs. 1.66, 1.29-2.12), but the interaction was not significant (p = 0.72). The results were similar for body size at three different age periods. Being lean during early life is a risk factor for breast cancer among both inactive and active girls. Adolescent physical activity did not significantly modify the association, although some interaction cannot be excluded. PMID:25335465

  1. Protein kinase A activation enhances β-catenin transcriptional activity through nuclear localization to PML bodies.

    PubMed

    Zhang, Mei; Mahoney, Emilia; Zuo, Tao; Manchanda, Parmeet K; Davuluri, Ramana V; Kirschner, Lawrence S

    2014-01-01

    The Protein Kinase A (PKA) and Wnt signaling cascades are fundamental pathways involved in cellular development and maintenance. In the osteoblast lineage, these pathways have been demonstrated functionally to be essential for the production of mineralized bone. Evidence for PKA-Wnt crosstalk has been reported both during tumorigenesis and during organogenesis, and the nature of the interaction is thought to rely on tissue and cell context. In this manuscript, we analyzed bone tumors arising from mice with activated PKA caused by mutation of the PKA regulatory subunit Prkar1a. In primary cells from these tumors, we observed relocalization of β-catenin to intranuclear punctuate structures, which were identified as PML bodies. Cellular redistribution of β-catenin could be recapitulated by pharmacologic activation of PKA. Using 3T3-E1 pre-osteoblasts as a model system, we found that PKA phosphorylation sites on β-catenin were required for nuclear re-localization. Further, β-catenin's transport to the nucleus was accompanied by an increase in canonical Wnt-dependent transcription, which also required the PKA sites. PKA-Wnt crosstalk in the cells was bi-directional, including enhanced interactions between β-catenin and the cAMP-responsive element binding protein (CREB) and transcriptional crosstalk between the Wnt and PKA signaling pathways. Increases in canonical Wnt/β-catenin signaling were associated with a decrease in the activity of the non-canonical Wnt/Ror2 pathway, which has been shown to antagonize canonical Wnt signaling. Taken together, this study provides a new understanding of the complex regulation of the subcellular distribution of β-catenin and its differential protein-protein interaction that can be modulated by PKA signaling. PMID:25299576

  2. Relationship between alcohol intake, body fat, and physical activity – a population-based study

    PubMed Central

    Liangpunsakul, Suthat; Crabb, David W.; Qi, Rong

    2010-01-01

    Objectives Aside from fat, ethanol is the macronutrient with the highest energy density. Whether the energy derived from ethanol affects the body composition and fat mass is debatable. We investigated the relationship between alcohol intake, body composition, and physical activity in the US population using the third National Health and Nutrition Examination Survey (NHANES III). Methods Ten thousand five hundred and fifty subjects met eligible criteria and constituted our study cohort. Estimated percent body fat and resting metabolic rate were calculated based on the sum of the skinfolds. Multivariate regression analyses were performed accounting for the study sampling weight. Results In both genders, moderate and hazardous alcohol drinkers were younger (p<0.05), had significantly lower BMI (P<0.01) and body weight (p<0.01) than controls, non drinkers. Those with hazardous alcohol consumption had significantly less physical activity compared to those with no alcohol use and moderate drinkers in both genders. Female had significantly higher percent body fat than males. In the multivariate linear regression analyses, the levels of alcohol consumption were found to be an independent predictor associated with lower percent body fat only in male subjects. Conclusions Our results showed that alcoholics are habitually less active and that alcohol drinking is an independent predictor of lower percent body fat especially in male alcoholics. PMID:20696406

  3. Homeostatic versus circadian effects of melatonin on core body temperature in humans.

    PubMed

    Cagnacci, A; Kräuchi, K; Wirz-Justice, A; Volpe, A

    1997-12-01

    Evidence obtained in animals has suggested a link of the pineal gland and its hormone melatonin with the regulation of core body temperature (CBT). Depending on the species considered, melatonin intervenes in generating seasonal rhythms of daily torpor and hibernation, in heat stress tolerance, and in setting the CBT set point. In humans, the circadian rhythms of melatonin is strictly associated with that of CBT, the nocturnal decline of CBT being inversely related to the rise of melatonin. Whereas there is inconsistent evidence for the suggestion that the decline of CBT may prompt the release of melatonin, conversely, stringent data indicate that melatonin decreases CBT. Administration of melatonin during the day, when it is not normally secreted, decreases CBT by about 0.3 to 0.4 degree C, and suppression of melatonin at night enhances CBT by about the same magnitude. Accordingly, the nocturnal rise of melatonin contributes to the circadian amplitude of CBT. The mechanisms through which melatonin decreases CBT are unclear. It is known that melatonin enhances heat loss, but a reduction of heat production cannot be excluded. Besides actions on peripheral vessels aimed to favor heat loss, it is likely that the effect of melatonin to reduce CBT is exerted mainly in the hypothalamus, where thermoregulatory centers are located. Recent observations have shown that the acute thermoregulatory effects induced by melatonin and bright light are independent of their circadian phase-shifting effects. The effect of melatonin ultimately brings a saving of energy and is reduced in at least two physiological situations: aging and the luteal menstrual phase. In both conditions, melatonin does not exert its CBT-lowering effects. Whereas in older women this effect may represent an age-related alteration, in the luteal phase this modification may represent a mechanism of keeping CBT higher at night to promote a better embryo implantation and survival. PMID:9406024

  4. Prenatal Ethanol Exposure Alters Core Body Temperature and Corticosterone Rhythms in Adult Male Rats

    PubMed Central

    Handa, Robert J.; Zuloaga, Damian G.; McGivern, Robert F.

    2008-01-01

    Ethanol’s effects on the developing brain include alterations in morphological and biochemistry of the hypothalamus. In order to examine the potential functional consequences of ethanol’s interference with hypothalamic differentiation, we studied the long-term effects of prenatal ethanol exposure on basal circadian rhythms of core body temperature (CBT) and heart rate (HR). We also examined the late afternoon surge in corticosterone (CORT). CBT and HR rhythms were studied in separate groups of animals at 4 months, 8 months and 20 months of age. The normal late-afternoon rise in plasma corticosterone was examined in freely-moving male rats at 6 months of age via an indwelling right-atrial cannula. Results showed that the CBT circadian rhythm exhibited an earlier rise following the nadir of the rhythm in fetal alcohol exposed (FAE) males at all ages compared to controls. At 8 months of age, the amplitude of the CBT circadian rhythm in FAE males was significantly reduced to the level observed in controls at 20 months. No significant effects of prenatal ethanol exposure were observed on basal HR rhythm at any age. The diurnal rise in corticosterone secretion was blunted and prolonged in 6-month-old FAE males compared to controls. Both control groups exhibited a robust surge in corticosterone secretion around the onset of the dark phase of the light cycle, which peaked at 1930 hours. Instead, FAE males exhibited a linear rise beginning in mid afternoon, which peaked at 2130 hours. These results indicate that exposure to ethanol during the period of hypothalamic development can alter the long-term regulation of circadian rhythms in specific physiological systems. PMID:18047910

  5. Sensitivity of central chemoreceptors controlling blood glucose and body temperature during glucose deprivation.

    PubMed Central

    Fiorentini, A; Müller, E E

    1975-01-01

    1. The rise in blood glucose and the fall in body temperature which follows the injection of a glucose analogue, 2-deoxy-D-glucose (2-DG) into the lateral cerebral ventricle (I.C.V) of unanaesthetized rats were studied and found to be dose-dependent. These 2-DG induced responses are elicited by the impairment of glucose metabolism within central "glucoreceptors'. 2. 2DG induced hyperglycaemia and hypothermia were completely prevented and even the converse effects occurred when fivefold equimolar amounts of D-fructose were simultaneously injected I.C.V.; fructose, at equimolar doses, did not modify the effects of 2-DG. 3. D-xylose and D-ribose, even at high doses, did not influence 2-DG hyperglycaemia, but increased slightly the 2-DG induced hypothermia. This suggests that the pentose phosphate pathway is unable to support the metabolism within the glucoreceptors. 4. Pyruvate suppressed the 2-DG induced hyperglycaemia with a marked delay, while acetate (as ethyl ester) and a mixture of malate plus oxaloacetate did not prevent 2-DG induced effects. These results may be accounted for by the low dosage used. 5. Acetoacetate and 3-hydroxybutyrate did not prevent 2-DG hypothermia and hyperglycaemia. 6. An effective prevention of the 2-DG induced hyperglycaemia and hypothermia was achieved with fumarate and glutamate, indicating that the stimulation of the Krebs cycle within "glucoreceptors' removes the glucoprivic effects. 7. The results indicate that prevention of 2-DG induced effects occurred only with alternate source of metabolic fuel which can support high respiratory rates in brain tissue. It is concluded that central chemoreceptors are not specifically responsive to glucose, or hexoses, but to the rate of oxidative metabolism. PMID:1151783

  6. Effects of personality on body temperature and mental efficiency following transmeridian flight.

    PubMed

    Colquhoun, W P

    1984-06-01

    Examination of the oral temperature rhythms in a group of young men after an eastward jet-flight across eight time-zones revealed a specific disruption in the rhythm that gradually disappeared over a period of some 10 d. In the first 2 d, the magnitude of the disruption in individual subjects was significantly correlated with the extent of mean postflight loss of speed in performing an arithmetic calculations test, given four times per day in local daytime hours. Within the group, neurotic introverts exhibited the greatest, and neurotic extroverts the least initial rhythm disruption; these two personality groups also showed opposing time-of-day trends in postflight changes in the performance measure. The results are discussed in relation to flight scheduling and to other studies of shifts in activity schedule; they are tentatively accounted for in terms of a postulated dimension of circadian rhythm lability that could be primarily related to extraversion. PMID:6466243

  7. Nicotine and elevated body temperature reduce the complexity of the genioglossus and diaphragm EMG signals in rats during early maturation

    NASA Astrophysics Data System (ADS)

    Akkurt, David; Akay, Yasemin M.; Akay, Metin

    2009-10-01

    In this paper, we examined the effect of nicotine exposure and increased body temperature on the complexity (dynamics) of the genioglossus muscle (EMGg) and the diaphragm muscle (EMGdia) to explore the effects of nicotine and hyperthermia. Nonlinear dynamical analysis of the EMGdia and EMGg signals was performed using the approximate entropy method on 15 (7 saline- and 8 nicotine-treated) juvenile rats (P25-P35) and 19 (11 saline- and 8 nicotine-treated) young adult rats (P36-P44). The mean complexity values were calculated over the ten consecutive breaths using the approximate entropy method during mild elevated body temperature (38 °C) and severe elevated body temperature (39-40 °C) in two groups. In the first (nicotine) group, rats were treated with single injections of nicotine enough to produce brain levels of nicotine similar to those achieved in human smokers (2.5 (mg kg-1)/day) until the recording day. In the second (control) group, rats were treated with injections of saline, beginning at postnatal 5 days until the recording day. Our results show that warming the rat by 2-3 °C and nicotine exposure significantly decreased the complexity of the EMGdia and EMGg for the juvenile age group. This reduction in the complexity of the EMGdia and EMGg for the nicotine group was much greater than the normal during elevated body temperatures. We speculate that the generalized depressive effects of nicotine exposure and elevated body temperature on the respiratory neural firing rate and the behavior of the central respiratory network could be responsible for the drastic decrease in the complexity of the EMGdia and EMGg signals, the outputs of the respiratory neural network during early maturation.

  8. Analysis of the energetic metabolism in cyclic Bedouin goats (Capra hircus): Nychthemeral and seasonal variations of some haematochemical parameters in relation with body and ambient temperatures.

    PubMed

    Malek, Mouna; Amirat, Zaina; Khammar, Farida; Khaldoun, Mounira

    2016-08-01

    Several studies have examined changes in some haematochemical parameters as a function of the different physiological status (cyclic, pregnant and lactating) of goats, but no relevant literature has exhaustively investigated these variations from anestrous to estrous stages in cyclic goats. In this paper, we report nychthemeral and seasonal variations in ambient and body temperatures, and in some haematochemical parameters (glycemia, cholesterolemia, triglyceridemia, creatininemia and uremia) measured during summer, winter and spring, in seven (7) experimental cyclic female Bedouin goats (Capra hircus) living in the Béni-Abbès region (Algerian Sahara desert). Cosinor rhythmometry procedure was used to determine the rhythmic parameters of ambient temperature and haematochemical parameters. To determine the effect of time of day on the rhythmicity of the studied parameters, as well as their seasonality, repeated measure analysis of variance (ANOVA) was applied. The results showed that in spite of the nychthemeral profile presented by the ambient temperature for each season, the body temperature remained in a narrow range, thus indicating a successful thermoregulation. The rhythmometry analysis showed a circadian rhythmicity of ambient temperature and haematochemical parameters with diurnal acrophases. A statistically significant effect of the time of day was shown on all studied haematochemical parameters, except on creatininemia. It was also found that only uremia, cholesterolemia and triglyceridemia followed the seasonal sexual activity of the studied ruminant. This study demonstrated the good physiological adaptation developed by this breed in response to the harsh climatic conditions of its natural environment. PMID:27503720

  9. Effect of a phase I Coxiella burnetii inactivated vaccine on body temperature and milk yield in dairy cows.

    PubMed

    Schulze, L S-Ch; Borchardt, S; Ouellet, V; Heuwieser, W

    2016-01-01

    Q fever is a zoonotic disease caused by Coxiella burnetii. The pathogen is prevalent in ruminants (goats, sheep, cows), which are the main sources of human infection. In the cattle industry around the world, animal (15 to 20%) and herd (38 to 72%) level prevalences of C. burnetii are high. Vaccination of ruminants against Q fever is considered important to prevent spreading of the disease and risk of infection in humans. However, published information on side effects of the Q fever vaccination under field conditions is limited for cows. The objective of this study was to investigate the effect of the phase I C. burnetii inactivated vaccine Coxevac on body temperature and milk yield in dairy cows. In 2 experiments, a total of 508 cows were randomly divided into 2 groups to determine the effect of first vaccination on body temperature and milk yield. The C. burnetii serostatus of all cows was tested before vaccination with an indirect ELISA. The first experiment took place in the teaching and research barn of the Clinic of Animal Reproduction at the Freie Universität Berlin. Temperature was measured vaginally in 10 cows in a crossover design. The second experiment was conducted on a commercial dairy farm. Milk yield of 498 cows was measured 1 wk before and 1 wk after vaccination. In a subset of 41 cows, temperature was measured rectally. In both experiments, body temperature increased significantly after vaccination (1.0 ± 0.9°C and 0.7 ± 0.8°C). A significant difference was also found in body temperature between vaccinated and control cows. Thirty percent of the vaccinated animals in experiment 1 showed reversible swelling at the injection site as a reaction to the vaccination. The results indicate that vaccination against Q fever causes a transient increase of body temperature that peaks in the first 12 to 24h and declines after that. In experiment 2, vaccinated cows (26.8 ± 0.39 kg/d) produced significantly less milk than did control cows (28.2 ± 0.44 kg

  10. INTRAPULPAL TEMPERATURE VARIATION DURING BLEACHING WITH VARIOUS ACTIVATION MECHANISMS

    PubMed Central

    Michida, Sílvia Masae de Araujo; Passos, Sheila Pestana; Marimoto, Ângela Regina Kimie; Garakis, Márcia Carneiro Valera; de Araújo, Maria Amélia Máximo

    2009-01-01

    Objectives: The aim of this study was to evaluate the intrapulpal temperature variation after bleaching treatment with 35% hydrogen peroxide using different sources of activation. Material and Methods: Twenty-four human teeth were sectioned in the mesiodistal direction providing 48 specimens, and were divided into 4 groups (n=12): (G1) Control - Bleaching gel without light activation, (G2) Bleaching gel + halogen light, (G3) Bleaching gel + LED, (G4) Bleaching gel + Nd:YAG Laser. The temperatures were recorded using a digital thermometer at 4 time points: before bleaching gel application, 1 min after bleaching gel application, during activation of the bleaching gel, and after the bleaching agent turned from a dark-red into a clear gel. Data were analyzed statistically by the Dunnet's test, ANOVA and Tukey's test (α=0.05). Results: The mean intrapulpal temperature values (°C) in the groups were: G1: 0.617 ± 0.41; G2: 1.800 ± 0.68; G3: 0.975 ± 0.51; and G4: 4.325 ± 1.09. The mean maximum temperature variation (MTV) values were: 1.5°C (G1), 2.9°C (G2), 1.7°C (G3) and 6.9°C (G4). When comparing the experimental groups to the control group, G3 was not statistically different from G1 (p>0.05), but G2 and G4 presented significantly higher (p<0.05) intrapulpal temperatures and MTV. The three experimental groups differed significantly (p<0.05) from each other. Conclusions: The Nd:YAG laser was the activation method that presented the highest values of intrapulpal temperature variation when compared with LED and halogen light. The group activated by LED light presented the lowest values of temperature variation, which were similar to that of the control group. PMID:19936522

  11. Fish Swimming: Patternsin the Mechanical Energy Generation, Transmission and Dissipation from Muscle Activation to Body Movement

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Yu, Y. L.; Tong, B. G.

    2011-09-01

    The power consumption of the undulatory fish swimming is produced by active muscles. The mechanical energy generated by stimulated muscles is dissipated partly by the passive tissues of fish while it is being transmitted to the fluid medium. Furthermore, the effective energy, propelling fish movement, is a part of that delivered by the fish body. The process depends on the interactions of the active muscles, the passive tissues, and the water surrounding the fish body. In the previous works, the body-fluid interactions have been investigated widely, but it is rarely considered how the mechanical energy generates, transmits and dissipates in fish swimming. This paper addresses the regular patterns of energy transfer process from muscle activation to body movement for a cruising lamprey (LAMPREY), a kind of anguilliform swimmer. It is necessary to propose a global modelling of the kinematic chain, which is composed of active muscle force-moment model, fish-body dynamic model and hydrodynamic model in order. The present results show that there are traveling energy waves along the fish body from anterior to posterior, accompanied with energy storing and dissipating due to the viscoelastic property of internal tissues. This study is a preliminary research on the framework of kinematic chain coordination performance in fish swimming.

  12. Body Size, Rather Than Male Eye Allometry, Explains Chrysomya megacephala (Diptera: Calliphoridae) Activity in Low Light

    PubMed Central

    Smith, J. L.; Palermo, N. A.; Theobald, J. C.; Wells, J. D.

    2015-01-01

    Male Chrysomya megacephala (F.) blow fly compound eyes contain an unusual area of enlarged dorsal facets believed to allow for increased light capture. This region is absent in females and has been hypothesized to aid in mate tracking in low light conditions or at greater distances. Many traits used in the attraction and capture of mates are allometric, growing at different rates relative to body size. Previous reports concerning C. megacephala eye properties did not include measurements of body size, making the relationship between the specialized eye region and body size unclear. We examined different morphological features of the eye among individuals of varying sizes. We found total eye size scaled proportionately to body size, but the number of enlarged dorsal facets increased as body size increased. This demonstrated that larger males have an eye that is morphologically different than smaller males. On the basis of external morphology, we hypothesized that since larger males have larger and a greater number of dorsally enlarged facets, and these facets are believed to allow for increased light capture, larger males would be active in lower light levels than smaller males and females of equal size. In a laboratory setting, larger males were observed to become active earlier in the morning than smaller males, although they did not remain active later in the evening. However, females followed the same pattern at similar light levels suggesting that overall body size rather than specialized male eye morphology is responsible for increased activity under low light conditions. PMID:26411786

  13. Body painting to promote self-active learning of hand anatomy for preclinical medical students

    PubMed Central

    Jariyapong, Pitchanee; Punsawad, Chuchard; Bunratsami, Suchirat; Kongthong, Paranyu

    2016-01-01

    Background The purpose of this study was to use the body painting method to teach hand anatomy to a group of preclinical medical students. Methods Students reviewed hand anatomy using the traditional method and body painting exercise. Feedback and retention of the anatomy-related information were examined by a questionnaire and multiple-choice questions, respectively, immediately and 1 month after the painting exercise. Results Students agreed that the exercise was advantageous and helped facilitate self-active learning after in-class anatomy lessons. While there was no significant difference in knowledge retention between the control and experimental groups, the students appreciated the exercise in which they applied body paint to the human body to learn anatomy. Conclusion The body painting was an efficient tool for aiding the interactive learning of medical students and increasing the understanding of gross anatomy. PMID:26945229

  14. Limits to sustained energy intake XXIV: impact of suckling behaviour on the body temperatures of lactating female mice

    PubMed Central

    Gamo, Y.; Bernard, A.; Troup, C.; Munro, F.; Derrer, K.; Jeannesson, N.; Campbell, A.; Gray, H.; Miller, J.; Dixon, J.; Mitchell, S. E.; Hambly, C.; Vaanholt, L. M.; Speakman, J. R.

    2016-01-01

    The objective of this study was to investigate the potential causes of high body temperature (Tb) during lactation in mice as a putative limit on energy intake. In particular we explored whether or not offspring contributed to heat retention in mothers while suckling. Tb and physical activity were monitored in 26 female MF1 mice using intraperitoneally implanted transmitters. In addition, maternal behaviour was scored each minute for 8 h d−1 throughout lactation. Mothers that raised larger litters tended to have higher Tb while nursing inside nests (P < 0.05), suggesting that nursing offspring may have influenced heat retention. However, Tb during nursing was not higher than that recorded during other behaviours. In addition, the highest Tb during the observation period was not measured during nursing behaviour. Finally, there was no indication that mothers discontinued suckling because of a progressive rise in their Tb while suckling. Tb throughout lactation was correlated with daily increases in energy intake. Chronic hyperthermia during lactation was not caused by increased heat retention due to surrounding offspring. Other factors, like metabolic heat produced as a by-product of milk production or energy intake may be more important factors. Heat dissipation limits are probably not a phenomenon restricted to lactation. PMID:27157478

  15. Limits to sustained energy intake XXIV: impact of suckling behaviour on the body temperatures of lactating female mice.

    PubMed

    Gamo, Y; Bernard, A; Troup, C; Munro, F; Derrer, K; Jeannesson, N; Campbell, A; Gray, H; Miller, J; Dixon, J; Mitchell, S E; Hambly, C; Vaanholt, L M; Speakman, J R

    2016-01-01

    The objective of this study was to investigate the potential causes of high body temperature (Tb) during lactation in mice as a putative limit on energy intake. In particular we explored whether or not offspring contributed to heat retention in mothers while suckling. Tb and physical activity were monitored in 26 female MF1 mice using intraperitoneally implanted transmitters. In addition, maternal behaviour was scored each minute for 8 h d(-1) throughout lactation. Mothers that raised larger litters tended to have higher Tb while nursing inside nests (P < 0.05), suggesting that nursing offspring may have influenced heat retention. However, Tb during nursing was not higher than that recorded during other behaviours. In addition, the highest Tb during the observation period was not measured during nursing behaviour. Finally, there was no indication that mothers discontinued suckling because of a progressive rise in their Tb while suckling. Tb throughout lactation was correlated with daily increases in energy intake. Chronic hyperthermia during lactation was not caused by increased heat retention due to surrounding offspring. Other factors, like metabolic heat produced as a by-product of milk production or energy intake may be more important factors. Heat dissipation limits are probably not a phenomenon restricted to lactation. PMID:27157478

  16. Relationship of lactate dehydrogenase activity to body measurements of Angus x Charolais cows and calves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objectives were to examine 1) relationships between lactate dehydrogenase (LDH) activity and body measurements of grazing beef cows, and 2) the association between maternal LDH activity in late gestation and subsequent calf birth weight (BRW), hip height (HH) at weaning, and adjusted weaning weight ...

  17. Relationship of lactate dehydrogenase activity with body measeurements of Angus x Charolais cows and calves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Angus x Charolais cows (n = 87) and their Angus-sired, spring-born calves (n = 86) were utilized to examine relationships between lactate dehydrogenase (LDH) activity and body measurements of beef cows; and the relationship between maternal LDH activity in late gestation and subsequent calf birth we...

  18. Walking Activity, Body Composition and Blood Pressure in Adults with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Stanish, Heidi I.; Draheim, Christopher C.

    2007-01-01

    Background: Individuals with intellectual disabilities engage in limited physical activity which places their health at risk. This study examined the walking activity, body composition and blood pressure of adults with intellectual disabilities. Methods: A group of male and female adults (n = 103) wore a pedometer for 7 days and were categorized…

  19. University Students Meeting the Recommended Standards of Physical Activity and Body Mass Index

    ERIC Educational Resources Information Center

    Deng, Xiaofen; Castelli, Darla; Castro-Pinero, Jose; Guan, Hongwei

    2011-01-01

    This study investigated student physical activity (PA) and body mass index (BMI) in relation to the "Healthy Campus 2010" objectives set by the American College Health Association in 2002. Students (N = 1125) at a U.S. southern state university participated in the study. The percentages of students who were physically active and whose BMI were…

  20. A study of the association with blood pressure difference causing body temperature ≥37·5°C and hypertension in department of primary care.

    PubMed

    Shinji, Maeda

    2013-11-01

    Previous studies reported the relationship between significant blood pressure difference (ΔBP) and early atherosclerotic markers. Although it is known that body temperature is associated with BP and blood flow, as measured on Korotkoff sound graph (KSG), as well as heart rate and sympathetic nerve activity, it remains unclear whether moderate fever (≥37·5°C) can be caused by significant ΔBP. ΔBP was calculated by subtracting the BP of the left arm from that of the right arm. The aim of our study was to investigate whether an association exists among ΔBP, body temperature, hypertension and KSG area ratio in 1802 new outpatients examined in a seated position in routine clinical practice. Our study documented that absolute systolic blood pressure difference (|ΔSBP|) ≥ 10 mmHg (observed in 14·6% of the patients) was associated with a significantly higher heart rate, moderate fever, tachycardia and hypertension. In multivariate analysis, the odds ratios (ORs) of |ΔSBP| ≥ 10 mmHg showed significant associated markers of body temperature and hypertension, while the ORs of KSG area ratio ≥ 170% showed significant associated markers of sex, age, body temperature, hypertension, diabetes mellitus, prior vascular event and smoking. In conclusion, our study of new outpatients in the department of primary care demonstrated that |ΔSBP| ≥ 10 mmHg and KSG area ratio ≥ 170% were associated with moderate fever and hypertension. Furthermore, our study suggests that the association of moderate fever with |ΔSBP| ≥ 10 mmHg and KSG area ratio ≥ 170% is physiologic as well as pathologic. PMID:23711334

  1. Comparison of variations between percentage of body fat, body mass index and daily physical activity among young Japanese and Thai female students

    PubMed Central

    2012-01-01

    Background In our series of investigations concerning the causes of seasonal change in fat accumulation in young university students, we could not find any contribution of seasonal variation in the ratio of carbohydrate and fat metabolism to that of body fat percentage in Japanese and Thai participants. After our previous study, we examined the effect of daily physical activity on body fat percentage to look for the major causes of seasonal change in fat accumulation in young university students. Findings In this study, we measured participants’ (young Japanese and Thai university students) daily physical activity by a uniaxial accelerometer in addition to the measurements of body fat percentage and body mass index by a bioelectrical impedance meter. We found that there was significant and moderate negative correlation between body fat percentage and daily step counts among Japanese but not Thai participants. We observed significant, moderate and positive correlations between the percentage of body fat and body mass index among Japanese and Thai participants. Conclusions Daily physical activity plays an important role in the seasonal variation of body fat percentage of Japanese female students. Our present study also confirmed the importance of daily physical activity for controlling body mass index and for the prevention of obesity. PMID:22894563

  2. Transition temperature range of thermally activated nickel-titanium archwires

    PubMed Central

    SPINI, Tatiana Sobottka; VALARELLI, Fabrício Pinelli; CANÇADO, Rodrigo Hermont; de FREITAS, Karina Maria Salvatore; VILLARINHO, Denis Jardim

    2014-01-01

    Objectives The shape memory resulting from the superelasticity and thermoelastic effect is the main characteristic of thermally activated NiTi archwires and is closely related to the transition temperature range (TTR). The aim of this study was to evaluate the TTR of thermally activated NiTi archwires commercially available. Material and Methods Seven different brands of 0.019"x0.025" thermally activated nickel-titanium archwires were tested as received by differential scanning calorimetry (DSC) over the temperature range from -100°C to 150°C at 10°C/min. Results All thermally activated NiTi archwires analyzed presented stage transformation during thermal scanning with final austenitic temperature (Af) ranging from 20.39°C to 45.42°C. Three brands of NiTi archwires presented Af close to the room temperature and, this way, do not present properties of shape memory and pseudoelasticity that are desirable in clinical applications. Conclusions The thermally activated NiTi archwires present great variability in the TTR and the elastic parameters of each NiTi archwire should be provided by the manufacturers, to allow achievement of the best clinical performance possible. PMID:24676581

  3. Activation of the Unfolded Protein Response in Sporadic Inclusion Body Myositis But Not in Hereditary GNE Inclusion Body Myopathy

    PubMed Central

    Nogalska, Anna; D’Agostino, Carla; Engel, W. King; Cacciottolo, Mafalda; Asada, Shinichi; Mori, Kazutoshi; Askanas, Valerie

    2015-01-01

    Muscle fibers in patients with sporadic inclusion-body myositis (s-IBM), the most common age-associated myopathy, are characterized by autophagic vacuoles and accumulation of ubiquitinated and congophilic multiprotein aggregates that contain amyloid-β and phosphorylated tau. Muscle fibers of autosomal-recessive hereditary inclusion-body myopathy due to the GNE mutation (GNE-h-IBM) display similar pathologic features, except with less pronounced congophilia. Accumulation of unfolded/misfolded proteins inside the ER lumen leads to ER stress, which elicits the unfolded protein response (UPR) as a protective mechanism. Here we demonstrate for the first time that UPR is activated in s-IBM muscle biopsies, since there was a) increased ATF4 protein and increased mRNA of its target CHOP, b) cleavage of the ATF6 and increased mRNA of its target GRP78, and c) an increase of the spliced form of XBP-1 and increased mRNA of EDEM, target of heterodimer of cleaved ATF6 and spliced XBP-1. In contrast, we did not find similar evidence of the UPR induction in GNE-h-IBM patient muscle, suggesting that different intracellular mechanisms might lead to the similar pathological phenotypes. Interestingly, cultured GNE-h-IBM muscle fibers had a robust UPR response to experimental ER stress stimuli, suggesting that the GNE mutation per se is not responsible for the lack of UPR in GNE-h-IBM biopsied muscle. PMID:25978849

  4. TRIM5{alpha} association with cytoplasmic bodies is not required for antiretroviral activity

    SciTech Connect

    Song, Byeongwoon; Diaz-Griffero, Felipe; Park, Do Hyun; Rogers, Thomas; Stremlau, Matthew; Sodroski, Joseph . E-mail: joseph_sodroski@dfci.harvard.edu

    2005-12-20

    The tripartite motif (TRIM) protein, TRIM5{alpha}, restricts infection by particular retroviruses. Many TRIM proteins form cytoplasmic bodies of unknown function. We investigated the relationship between cytoplasmic body formation and the structure and antiretroviral activity of TRIM5{alpha}. In addition to diffuse cytoplasmic staining, the TRIM5{alpha} proteins from several primate species were located in cytoplasmic bodies of different sizes; by contrast, TRIM5{alpha} from spider monkeys did not form cytoplasmic bodies. Despite these differences, all of the TRIM5{alpha} proteins exhibited the ability to restrict infection by particular retroviruses. Treatment of cells with geldanamycin, an Hsp90 inhibitor, resulted in disappearance or reduction of the TRIM5{alpha}-associated cytoplasmic bodies, yet exerted little effect on the restriction of retroviral infection. Studies of green fluorescent protein-TRIM5{alpha} fusion proteins indicated that no TRIM5{alpha} domain is specifically required for association with cytoplasmic bodies. Apparently, the formation of cytoplasmic bodies is not required for the antiretroviral activity of TRIM5{alpha}.

  5. Interferon gamma regulates accumulation of the proteasome activator PA28 and immunoproteasomes at nuclear PML bodies.

    PubMed

    Fabunmi, R P; Wigley, W C; Thomas, P J; DeMartino, G N

    2001-01-01

    PA28 is an interferon (gamma) (IFN(gamma)) inducible proteasome activator required for presentation of certain major histocompatibility (MHC) class I antigens. Under basal conditions in HeLa and Hep2 cells, a portion of nuclear PA28 is concentrated at promyelocytic leukemia oncoprotein (PML)-containing bodies also commonly known as PODs or ND10. IFN(gamma) treatment greatly increased the number and size of the PA28- and PML-containing bodies, and the effect was further enhanced in serum-deprived cells. PML bodies are disrupted in response to certain viral infections and in diseases such as acute promyelocytic leukemia (APL). Like PML, PA28 was delocalized from PML bodies by expression of the cytomegalovirus protein, IE1, and in NB4 cells, an APL model line. Moreover, retinoic acid treatment, which causes remission of APL in patients and reformation of PML-containing bodies in NB4 cells, relocalized PA28 to this site. In contrast, the proteasome, the functional target of PA28, was not detected at PML bodies under basal conditions in HeLa and Hep2 cells, but IFN(gamma) promoted accumulation of 'immunoproteasomes' at this site. These results establish PA28 as a novel component of nuclear PML bodies, and suggest that PA28 may assemble or activate immunoproteasomes at this site as part of its role in proteasome-dependent MHC class I antigen presentation. PMID:11112687

  6. AMR (Active Magnetic Regenerative) refrigeration for low temperature

    NASA Astrophysics Data System (ADS)

    Jeong, Sangkwon

    2014-07-01

    This paper reviews AMR (Active Magnetic Regenerative) refrigeration technology for low temperature applications that is a novel cooling method to expand the temperature span of magnetic refrigerator. The key component of the AMR system is a porous magnetic regenerator which allows a heat transfer medium (typically helium gas) to flow through it and therefore obviate intermittently operating an external heat switch. The AMR system alternatingly heats and cools the heat transfer medium by convection when the magneto-caloric effect is created under varying magnetic field. AMR may extend the temperature span for wider range than ADR (Adiabatic Demagnetization Refrigerator) at higher temperatures above 10 K because magneto-caloric effects are typically concentrated in a small temperature range in usual magnetic refrigerants. The regenerative concept theoretically enables each magnetic refrigerant to experience a pseudo-Carnot magnetic refrigeration cycle in a wide temperature span if it is properly designed, although adequate thermodynamic matching of strongly temperature-dependent MCE (magneto-caloric effect) of the regenerator material and the heat capacity of fluid flow is often tricky due to inherent characteristics of magnetic materials. This paper covers historical developments, fundamental concepts, key components, applications, and recent research trends of AMR refrigerators for liquid helium or liquid hydrogen temperatures.

  7. Influence of the circadian rhythm of body temperature on the physiological response to microwaves: Day versus night exposure

    SciTech Connect

    Lotz, W.G.

    1981-10-01

    The results of this study demonstrate an influence of the circadian rhythm on the effects of microwave exposure on plasma cortisol and rectal temperature. The lower rectal temperature during night exposures was presumably due to the lower sham-condition temperature at night, since the temperature increase over sham levels was similar for either day or night exposures. The absence of a cortisol response during night exposures may be simply related to the absolute body temperature reached, although more complex circadian influences cannot be eliminated by these data. Although the results were insufficient to provide a clear understanding of the mechanisms involved, it was shown conclusively that the responses studied depended not only on the independent variables of microwave exposure selected, but also on the baseline levels of the normal physiological state that existed at the time of exposure.

  8. Strength Training Improves Body Image and Physical Activity Behaviors Among Midlife and Older Rural Women

    PubMed Central

    Seguin, Rebecca A.; Eldridge, Galen; Lynch, Wesley; Paul, Lynn C.

    2015-01-01

    The effect of strength training on body image is understudied. The Strong Women Program, a 10-week, twice weekly strength-training program, was provided by Extension agents to 341 older rural women (62±12 years); changes in body image and other psychosocial variables were evaluated. Paired-sample t-test analyses were conducted to assess mean differences pre- to post-program. Strength training was associated with significant improvements in several dimensions of body image, health-related quality of life, and physical activity behaviors, satisfaction, and comfort among rural aging women—an often underserved population that stands to benefit considerably from similar programs. PMID:25767297

  9. Impact of maternal physical activity on fetal breathing and body movement--A review.

    PubMed

    Sussman, Dafna; Lye, Stephen J; Wells, Greg D

    2016-03-01

    Fetal movements, which include body and breathing movement, are important indicators of fetal well-being and nervous system development. These have been shown to be affected by intrauterine conditions. While maternal physical activity does induce a change in intrauterine conditions and physiology, its impact on fetal movements is still unclear. This paper will provide a brief review of the literature and outline the current knowledge with regards to the effects of maternal exercise on fetal body and breathing movements. PMID:26811196

  10. Camouflage through an active choice of a resting spot and body orientation in moths.

    PubMed

    Kang, C-K; Moon, J-Y; Lee, S-I; Jablonski, P G

    2012-09-01

    Cryptic colour patterns in prey are classical examples of adaptations to avoid predation, but we still know little about behaviours that reinforce the match between animal body and the background. For example, moths avoid predators by matching their colour patterns with the background. Active choice of a species-specific body orientation has been suggested as an important function of body positioning behaviour performed by moths after landing on the bark. However, the contribution of this behaviour to moths' crypticity has not been directly measured. From observations of geometrid moths, Hypomecis roboraria and Jankowskia fuscaria, we determined that the positioning behaviour, which consists of walking and turning the body while repeatedly lifting and lowering the wings, resulted in new resting spots and body orientations in J. fuscaria and in new resting spots in H. roboraria. The body positioning behaviour of the two species significantly decreased the probability of visual detection by humans, who viewed photographs of the moths taken before and after the positioning behaviour. This implies that body positioning significantly increases the camouflage effect provided by moth's cryptic colour pattern regardless of whether the behaviour involves a new body orientation or not. Our study demonstrates that the evolution of morphological adaptations, such as colour pattern of moths, cannot be fully understood without taking into account a behavioural phenotype that coevolved with the morphology for increasing the adaptive value of the morphological trait. PMID:22775528

  11. Linking geomagnetic activity and polar surface air temperature variability

    NASA Astrophysics Data System (ADS)

    Seppala, Annika

    ERA-40 and ECMWF operational surface level air temperature (SAT) data sets from 1957 to 2006 were used to examine polar temperature variations during years with different levels of geomagnetic activity, as defined by the Ap index. Previous modelling work has suggested that NOx produced at high latitudes by energetic particle precipitation can eventually lead to detectable changes in polar SATs. We find that during winter months, ERA-40 and ECMWF polar SATs in years with high Ap index are different than in years with low Ap index; the differences are statistically significant at the 2-sigma level and range up to about ±4.5 K, de-pending on location. The temperature differences are larger when years with wintertime Sudden Stratospheric Warmings are excluded. Solar irradiance variations were taken into account in the analysis. Although using the re-analysis and operational data sets it was not possible to conclusively show that the polar SAT patterns are physically linked by geomagnetic activity, we conclude that geomagnetic activity likely plays a role in modulating polar wintertime surface air temperature patterns. The SAT results were tested against variation in the Quasi Biennial Oscillation (QBO), the El Niño Southern Oscillation (ENSO) and the Southern Annular Mode n (SAM). The results suggested that these were not driving the observed polar SAT variability. However, significant uncertainty is introduced by the Northern Annular Mode (NAM) and we could not robustly exclude a chance linkage between sea surface temperature (SST) variability and geomagnetic activity. Examining the physical link between geomagnetic activity and polar surface temperature variability patterns using atmospheric models is an ongoing task.

  12. Forearm blood flow during body temperature transients produced by leg exercise

    NASA Technical Reports Server (NTRS)

    Wenger, C. B.; Roberts, M. F.; Stolwijk, J. A. J.; Nadel, E. R.

    1975-01-01

    Subjects exercised for 30 min on a bicycle ergometer at 30, 50, and 70% of maximal aerobic power in ambient temperatures of 15, 25, and 35 C and vapor pressures of less than 18 torr. Exercise was used to vary internal temperature during an experiment, and different ambient temperatures were used to vary skin temperatures independently of internal temperature. Forearm skin temperature was fixed at about 36.5 C. Esophageal temperature was measured with a thermocouple at the level of the left atrium, and mean skin temperature was calculated from a weighted mean of thermocouple temperatures at eight skin sites. Forearm blood flow was measured by electrocapacitance plethysmography. Data are well accounted for by a linear equation independent of exercise intensity, although some subjects showed an equivocal vasodilator effect of exercise.

  13. Tooth Whitening And Temperature Rise With Two Bleaching Activation Methods

    SciTech Connect

    Abu-ElMagd, D. M.; El-Sayad, I. I.; Abd El-Gawad, L. M.

    2009-09-27

    To measure the tooth whitening and the surface and Intrapulpal temperature increase in vitro on freshly extracted upper human central incisors after chemical, Zoom AP light and diode laser activated bleaching. Thirty caries-free upper human incisors were selected. Teeth were divided into three equal groups according to the methods of activation of the bleaching agent (n = 10). A whitening gel containing hydrogen peroxide was applied to the buccal surface of all teeth. Group I was bleached using chemically activated hydrogen peroxide gel, for three applications of 15 min each. Group II was bleached with high intensity advanced power Zoom activation light (Zoom AP), for three applications of 15 min each. Group III was bleached with diode laser activation technique, where the teeth were irradiated with 2 Watt diode laser for three applications of 30 sec each. The whitening degree was assessed using an image analysis system, while temperature rise was recorded using a thermocouple on the external tooth surface and Intrapulpal. The degree of whitening increased significantly in all groups. However, the percentage of whitening was not statistically significantly different between the three groups. In addition, group II showed statistically significant higher mean rise in both surface and pulp temperatures than group I and group III. Chemical bleaching produces the same whitening effect as Zoom AP light and laser, with no surface or pulpal temperature rise. Laser application is faster and produces less surface and pulp temperature increase than Zoom AP light. Diode laser used to activate bleaching gels is not considered dangerous to the vitality of dental pulp using power settings of 2 W.

  14. Tooth whitening and temperature rise with two bleaching activation methods

    NASA Astrophysics Data System (ADS)

    Abu-ElMagd, D. M.; El-Sayad, I. I.; Abd El-Gawad, L. M.

    2009-02-01

    Objectives: To measure the tooth whitening and the surface and intra-pulpal temperature increase in vitro on extracted upper human incisors after chemical, zoom light and diode laser activated bleaching. Materials and Methods: Thirty caries-free upper human incisors were selected. Teeth were divided into three equal groups according to the methods of activation of the bleaching agent (n=10). A whitening gel containing hydrogen peroxide was applied to the buccal surface of all teeth. Group I was bleached using chemically activated hydrogen peroxide gel. Group II was bleached with high intensity advanced power zoom activation light, for three applications of 15 min each. Group III was bleached with diode laser activation technique, where the teeth were irradiated with 2 watt diode laser for three applications of 30 sec each. Degree of whitening was assessed using an image analysis system, while temperature rise was recorded using a thermocouple on the external tooth surface and intrapulpal. Results: The degree of whitening increased significantly in all groups. However, the percentage of whitening was not statistically significantly different between the three groups. In addition, group II showed statistically significant higher mean rise in both surface and pulp temperatures than group I and group III. Conclusions: Chemical bleaching produces the same whitening effect as zoom AP light and laser, with no surface or pulpal temperature rise. Laser application is faster and produces less surface and pulp temperature increase than zoom AP light. Diode lasers used to activate bleaching gels are not considered dangerous to the vitality of dental pulps using power settings of 2W.

  15. Tooth Whitening And Temperature Rise With Two Bleaching Activation Methods

    NASA Astrophysics Data System (ADS)

    Abu-ElMagd, D. M.; El-Sayad, I. I.; Abd El-Gawad, L. M.

    2009-09-01

    To measure the tooth whitening and the surface and Intrapulpal temperature increase in vitro on freshly extracted upper human central incisors after chemical, Zoom AP light and diode laser activated bleaching. Thirty caries-free upper human incisors were selected. Teeth were divided into three equal groups according to the methods of activation of the bleaching agent (n = 10). A whitening gel containing hydrogen peroxide was applied to the buccal surface of all teeth. Group I was bleached using chemically activated hydrogen peroxide gel, for three applications of 15 min each. Group II was bleached with high intensity advanced power Zoom activation light (Zoom AP), for three applications of 15 min each. Group III was bleached with diode laser activation technique, where the teeth were irradiated with 2 Watt diode laser for three applications of 30 sec each. The whitening degree was assessed using an image analysis system, while temperature rise was recorded using a thermocouple on the external tooth surface and Intrapulpal. The degree of whitening increased significantly in all groups. However, the percentage of whitening was not statistically significantly different between the three groups. In addition, group II showed statistically significant higher mean rise in both surface and pulp temperatures than group I and group III. Chemical bleaching produces the same whitening effect as Zoom AP light and laser, with no surface or pulpal temperature rise. Laser application is faster and produces less surface and pulp temperature increase than Zoom AP light. Diode laser used to activate bleaching gels is not considered dangerous to the vitality of dental pulp using power settings of 2 W.

  16. Body stability and muscle and motor cortex activity during walking with wide stance.

    PubMed

    Farrell, Brad J; Bulgakova, Margarita A; Beloozerova, Irina N; Sirota, Mikhail G; Prilutsky, Boris I

    2014-08-01

    Biomechanical and neural mechanisms of balance control during walking are still poorly understood. In this study, we examined the body dynamic stability, activity of limb muscles, and activity of motor cortex neurons [primarily pyramidal tract neurons (PTNs)] in the cat during unconstrained walking and walking with a wide base of support (wide-stance walking). By recording three-dimensional full-body kinematics we found for the first time that during unconstrained walking the cat is dynamically unstable in the forward direction during stride phases when only two diagonal limbs support the body. In contrast to standing, an increased lateral between-paw distance during walking dramatically decreased the cat's body dynamic stability in double-support phases and prompted the cat to spend more time in three-legged support phases. Muscles contributing to abduction-adduction actions had higher activity during stance, while flexor muscles had higher activity during swing of wide-stance walking. The overwhelming majority of neurons in layer V of the motor cortex, 82% and 83% in the forelimb and hindlimb representation areas, respectively, were active differently during wide-stance walking compared with unconstrained condition, most often by having a different depth of stride-related frequency modulation along with a different mean discharge rate and/or preferred activity phase. Upon transition from unconstrained to wide-stance walking, proximal limb-related neuronal groups subtly but statistically significantly shifted their activity toward the swing phase, the stride phase where most of body instability occurs during this task. The data suggest that the motor cortex participates in maintenance of body dynamic stability during locomotion. PMID:24790167

  17. Body stability and muscle and motor cortex activity during walking with wide stance

    PubMed Central

    Farrell, Brad J.; Bulgakova, Margarita A.; Beloozerova, Irina N.; Sirota, Mikhail G.

    2014-01-01

    Biomechanical and neural mechanisms of balance control during walking are still poorly understood. In this study, we examined the body dynamic stability, activity of limb muscles, and activity of motor cortex neurons [primarily pyramidal tract neurons (PTNs)] in the cat during unconstrained walking and walking with a wide base of support (wide-stance walking). By recording three-dimensional full-body kinematics we found for the first time that during unconstrained walking the cat is dynamically unstable in the forward direction during stride phases when only two diagonal limbs support the body. In contrast to standing, an increased lateral between-paw distance during walking dramatically decreased the cat's body dynamic stability in double-support phases and prompted the cat to spend more time in three-legged support phases. Muscles contributing to abduction-adduction actions had higher activity during stance, while flexor muscles had higher activity during swing of wide-stance walking. The overwhelming majority of neurons in layer V of the motor cortex, 82% and 83% in the forelimb and hindlimb representation areas, respectively, were active differently during wide-stance walking compared with unconstrained condition, most often by having a different depth of stride-related frequency modulation along with a different mean discharge rate and/or preferred activity phase. Upon transition from unconstrained to wide-stance walking, proximal limb-related neuronal groups subtly but statistically significantly shifted their activity toward the swing phase, the stride phase where most of body instability occurs during this task. The data suggest that the motor cortex participates in maintenance of body dynamic stability during locomotion. PMID:24790167

  18. Body image emotions, perceptions, and cognitions distinguish physically active and inactive smokers

    PubMed Central

    Contreras, Gisèle A.; Sabiston, Catherine M.; O'Loughlin, Erin K.; Bélanger, Mathieu; O'Loughlin, Jennifer

    2015-01-01

    Objectives To determine if body image emotions (body-related shame and guilt, weight-related stress), perceptions (self-perceived overweight), or cognitions (trying to change weight) differ between adolescents characterized by smoking and physical activity (PA) behavior. Methods Data for this cross-sectional analysis were collected in 2010–11 and were available for 1017 participants (mean (SD) age = 16.8 (0.5) years). Participants were categorized according to smoking and PA status into four groups: inactive smokers, inactive non-smokers, active smokers and active non-smokers. Associations between body image emotions, perceptions and cognitions, and group membership were estimated in multinomial logistic regression. Results Participants who reported body-related shame were less likely (OR (95% CI) = 0.52 (0.29–0.94)) to be in the active smoker group than the inactive smoker group; those who reported body-related guilt and those trying to gain weight were more likely (2.14 (1.32–3.48) and 2.49 (1.22–5.08), respectively) to be in the active smoker group than the inactive smoker group; those who were stressed about weight and those perceiving themselves as overweight were less likely to be in the active non-smoker group than the inactive smoker group (0.79 (0.64–0.97) and 0.41 (0.19–0.89), respectively). Conclusion Body image emotions and cognitions differentiated the active smoker group from the other three groups. PMID:26844062

  19. Body Temperature at the Emergency Department as a Predictor of Mortality in Patients With Bacterial Infection

    PubMed Central

    Yamamoto, Shungo; Yamazaki, Shin; Shimizu, Tsunehiro; Takeshima, Taro; Fukuma, Shingo; Yamamoto, Yosuke; Tochitani, Kentaro; Tsuchido, Yasuhiro; Shinohara, Koh; Fukuhara, Shunichi

    2016-01-01

    Abstract Hypothermia is a risk factor for death in intensive care unit (ICU) patients with severe sepsis and septic shock. In the present study, we investigated the association between body temperature (BT) on arrival at the emergency department (ED) and mortality in patients with bacterial infection. We conducted a retrospective cohort study in consecutive ED patients over 15 years of age with bacterial infection who were admitted to an urban teaching hospital in Japan between 2010 and 2012. The main outcome measure was 30-day in-hospital mortality. Each patient was assigned to 1 of 6 categories based on BT at ED admission. We conducted multivariable logistic regression analysis to adjust for predictors of death. A total of 913 patients were enrolled in the study. The BT categories were <36, 36 to 36.9, 37 to 37.9, 38 to 38.9, 39 to 39.9, and ≥40 °C, with respective mortalities of 32.5%, 14.1%, 8.7%, 8.2%, 5.7%, and 5.3%. Multivariable analysis showed that the risk of death was significantly low in patients with BT 37 to 37.9 °C (adjusted odds ratio [AOR]: 0.2; 95% confidence interval [CI] 0.1–0.6, P = 0.003), 38–38.9 °C (AOR: 0.2; 95% CI 0.1–0.6, P = 0.002), 39–39.9 °C (AOR: 0.2; 95% CI 0.1–0.5, P = 0.001), and ≥40 °C (AOR: 0.1; 95% CI 0.02–0.4, P = 0.001), compared with hypothermic patients (BT <36 °C). The higher BT on arrival at ED, the better the outcomes observed in patients with bacterial infection were. PMID:27227924

  20. Elevated temperature creep properties for selected active metal braze alloys

    SciTech Connect

    Stephens, J.J.

    1997-02-01

    Active metal braze alloys reduce the number of processes required for the joining of metal to ceramic components by eliminating the need for metallization and/or Ni plating of the ceramic surfaces. Titanium (Ti), V, and Zr are examples of active element additions which have been used successfully in such braze alloys. Since the braze alloy is expected to accommodate thermal expansion mismatch strains between the metal and ceramic materials, a knowledge of its elevated temperature mechanical properties is important. In particular, the issue of whether or not the creep strength of an active metal braze alloy is increased or decreased relative to its non-activated counterpart is important when designing new brazing processes and alloy systems. This paper presents a survey of high temperature mechanical properties for two pairs of conventional braze alloys and their active metal counterparts: (a) the conventional 72Ag-28Cu (Cusil) alloy, and the active braze alloy 62.2Ag- 36.2Cu-1.6Ti (Cusil ABA), and (b) the 82Au-18Ni (Nioro) alloy and the active braze alloy Mu-15.5M-0.75Mo-1.75V (Nioro ABA). For the case of the Cusil/Cusil ABA pair, the active metal addition contributes to solid solution strengthening of the braze alloy, resulting in a higher creep strength as compared to the non-active alloy. In the case of the Nioro/Nioro ABA pair, the Mo and V additions cause the active braze alloy to have a two-phase microstructure, which results in a reduced creep strength than the conventional braze alloy. The Garofalo sinh equation has been used to quantitatively describe the stress and temperature dependence of the deformation behavior. It will be observed that the effective stress exponent in the Garofalo sinh equation is a function of the instantaneous value of the stress argument.