Science.gov

Sample records for activity catalase activity

  1. CATALASE ACTIVITY IN LEPTOSPIRA

    PubMed Central

    Rao, P. J.; Larson, A. D.; Cox, C. D.

    1964-01-01

    Rao, P. J. (University of Illinois, Urbana), A. D. Larson, and C. D. Cox. Catalase activity in Leptospira. J. Bacteriol. 88:1045–1048. 1964.—A number of serotypes of Leptospira were found to possess catalase activity, although considerable variation in activity existed among various serotypes. Catalase activity of L. pomona was reduced by inhibitors commonly employed for arresting catalase activity in other biological systems. Catalase activity was increased three to five times by growing cultures under conditions of oxygen availability; however, aeration had no beneficial effect on total viable cell crop. The relationship of oxygen to metabolism and future studies on virulence of the leptospirae is discussed. PMID:14219017

  2. The three catalases in Deinococcus radiodurans: Only two show catalase activity.

    PubMed

    Jeong, Sun-Wook; Jung, Jong-Hyun; Kim, Min-Kyu; Seo, Ho Seong; Lim, Heon-Man; Lim, Sangyong

    2016-01-15

    Deinococcus radiodurans, which is extremely resistant to ionizing radiation and oxidative stress, is known to have three catalases (DR1998, DRA0146, and DRA0259). In this study, to investigate the role of each catalase, we constructed catalase mutants (Δdr1998, ΔdrA0146, and ΔdrA0259) of D. radiodurans. Of the three mutants, Δdr1998 exhibited the greatest decrease in hydrogen peroxide (H2O2) resistance and the highest increase in intracellular reactive oxygen species (ROS) levels following H2O2 treatments, whereas ΔdrA0146 showed no change in its H2O2 resistance or ROS level. Catalase activity was not attenuated in ΔdrA0146, and none of the three bands detected in an in-gel catalase activity assay disappeared in ΔdrA0146. The purified His-tagged recombinant DRA0146 did not show catalase activity. In addition, the phylogenetic analysis of the deinococcal catalases revealed that the DR1998-type catalase is common in the genus Deinococcus, but the DRA0146-type catalase was found in only 4 of 23 Deinococcus species. Taken together, these results indicate that DR1998 plays a critical role in the anti-oxidative system of D. radiodurans by detoxifying H2O2, but DRA0146 does not have catalase activity and is not involved in the resistance to H2O2 stress. PMID:26692481

  3. The catalase activity of diiron adenine deaminase.

    PubMed

    Kamat, Siddhesh S; Holmes-Hampton, Gregory P; Bagaria, Ashima; Kumaran, Desigan; Tichy, Shane E; Gheyi, Tarun; Zheng, Xiaojing; Bain, Kevin; Groshong, Chris; Emtage, Spencer; Sauder, J Michael; Burley, Stephen K; Swaminathan, Subramanyam; Lindahl, Paul A; Raushel, Frank M

    2011-12-01

    Adenine deaminase (ADE) from the amidohydrolase superfamily (AHS) of enzymes catalyzes the conversion of adenine to hypoxanthine and ammonia. Enzyme isolated from Escherichia coli was largely inactive toward the deamination of adenine. Molecular weight determinations by mass spectrometry provided evidence that multiple histidine and methionine residues were oxygenated. When iron was sequestered with a metal chelator and the growth medium supplemented with Mn(2+) before induction, the post-translational modifications disappeared. Enzyme expressed and purified under these conditions was substantially more active for adenine deamination. Apo-enzyme was prepared and reconstituted with two equivalents of FeSO(4). Inductively coupled plasma mass spectrometry and Mössbauer spectroscopy demonstrated that this protein contained two high-spin ferrous ions per monomer of ADE. In addition to the adenine deaminase activity, [Fe(II) /Fe(II) ]-ADE catalyzed the conversion of H(2)O(2) to O(2) and H(2)O. The values of k(cat) and k(cat)/K(m) for the catalase activity are 200 s(-1) and 2.4 × 10(4) M(-1) s(-1), respectively. [Fe(II)/Fe(II)]-ADE underwent more than 100 turnovers with H(2)O(2) before the enzyme was inactivated due to oxygenation of histidine residues critical for metal binding. The iron in the inactive enzyme was high-spin ferric with g(ave) = 4.3 EPR signal and no evidence of anti-ferromagnetic spin-coupling. A model is proposed for the disproportionation of H(2)O(2) by [Fe(II)/Fe(II)]-ADE that involves the cycling of the binuclear metal center between the di-ferric and di-ferrous oxidation states. Oxygenation of active site residues occurs via release of hydroxyl radicals. These findings represent the first report of redox reaction catalysis by any member of the AHS. PMID:21998098

  4. Development of a new biosensor for determination of catalase activity.

    PubMed

    Teke, Mustafa

    2014-01-01

    Catalase is one of the major antioxidant enzymes that catalyzes the hydrolysis of H2O2. The aim of this study was to suggest a new method for the assay of catalase activity. For this purpose, an amperometric biosensor based on glucose oxidase for determination of catalase activity was developed. Immobilization of glucose oxidase was made by a cross-linking method with glutaraldehyde on a Clark-type electrode (dissolved oxygen probe). Optimization and characterization properties of the biosensor were studied and determination of catalase activity in defined conditions was investigated in artificial serum solution. The results were compared with a reference method. PMID:24499365

  5. The catalase activity of diiron adenine deaminase

    SciTech Connect

    Kamat S. S.; Swaminathan S.; Holmes-Hampton, G. P.; Bagaria, A.; Kumaran, D.; Tichy, S. E.; Gheyi, T.; Zheng, X.; Bain, K.; Groshong, C.; Emtage, S.; Sauder, J. M.; Burley, S. K.; Lindahl, P. A.; Raushel, F. M.

    2011-12-01

    Adenine deaminase (ADE) from the amidohydrolase superfamily (AHS) of enzymes catalyzes the conversion of adenine to hypoxanthine and ammonia. Enzyme isolated from Escherichia coli was largely inactive toward the deamination of adenine. Molecular weight determinations by mass spectrometry provided evidence that multiple histidine and methionine residues were oxygenated. When iron was sequestered with a metal chelator and the growth medium supplemented with Mn{sup 2+} before induction, the post-translational modifications disappeared. Enzyme expressed and purified under these conditions was substantially more active for adenine deamination. Apo-enzyme was prepared and reconstituted with two equivalents of FeSO{sub 4}. Inductively coupled plasma mass spectrometry and Moessbauer spectroscopy demonstrated that this protein contained two high-spin ferrous ions per monomer of ADE. In addition to the adenine deaminase activity, [Fe{sup II}/Fe{sup II}]-ADE catalyzed the conversion of H{sub 2}O{sub 2} to O{sub 2} and H{sub 2}O. The values of k{sub cat} and k{sub cat}/K{sub m} for the catalase activity are 200 s{sup -1} and 2.4 x 10{sup 4} M{sup -1} s{sup -1}, respectively. [Fe{sup II}/Fe{sup II}]-ADE underwent more than 100 turnovers with H{sub 2}O{sub 2} before the enzyme was inactivated due to oxygenation of histidine residues critical for metal binding. The iron in the inactive enzyme was high-spin ferric with g{sub ave} = 4.3 EPR signal and no evidence of anti-ferromagnetic spin-coupling. A model is proposed for the disproportionation of H{sub 2}O{sub 2} by [Fe{sup II}/Fe{sup II}]-ADE that involves the cycling of the binuclear metal center between the di-ferric and di-ferrous oxidation states. Oxygenation of active site residues occurs via release of hydroxyl radicals. These findings represent the first report of redox reaction catalysis by any member of the AHS.

  6. IS CATALASE ACTIVITY ASSOCIATED WITH MAIZE RESISTANCE TO ASPERGILLUS FLAVUS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Catalase activity was measured in various cob tissues during maize ear development because of its role in maintaining reactive oxygen homeostasis during biotic and abiotic stress. Catalase activity was determined in immature and mature embryos, pericarp, and rachis tissues of maize lines that are re...

  7. Inhibition of catalase activity in vitro by diesel exhaust particles

    SciTech Connect

    Mori, Yoki; Murakami, Sumika; Sagae, Toshiyuki

    1996-02-09

    The effect of diesel exhaust particles (DEP) on the activity of catalase, an intracellular anti-oxidant, was investigated because H{sub 2}O{sub 2} is a cytotoxic oxidant, and catalase released from alveolar cells is an important antioxidant in the epithelial lining fluid in the lung. DEP inhibited the activity of bovine liver catalase dose-dependently, to 25-30% of its original value. The inhibition of catalase by DEP was observed only in the presence of anions such as Cl{sup {minus}}, Br{sup {minus}}, or thiocyanate. Other anions, such as CH{sub 3}COO{sup {minus}} or SO{sub 4}{sup {minus}}, and cations such as K{sup +}, Na{sup +}, Mg{sup 2+}, or Fe{sup 2+}, did not affect the activity of catalase, even in the presence of DEP extract. Catalase from guinea pig alveolar cells and catalase from red blood cells were also inhibited by DEP extracts, as was catalase from bovine liver. These results suggest that DEP taken up in the lung and located on alveolar spaces might cause cell injury by inhibiting the activity of catalase in epithelial lining fluid, enhancing the toxicity of H{sub 2}O{sub 2} generated from cells in addition to that of O{sub 2}{sup {minus}} generated by the chemical reaction of DEP with oxygen. 10 refs., 6 figs.

  8. Genes Important for Catalase Activity in Enterococcus faecalis

    PubMed Central

    Baureder, Michael; Hederstedt, Lars

    2012-01-01

    Little in general is known about how heme proteins are assembled from their constituents in cells. The Gram-positive bacterium Enterococcus faecalis cannot synthesize heme and does not depend on it for growth. However, when supplied with heme in the growth medium the cells can synthesize two heme proteins; catalase (KatA) and cytochrome bd (CydAB). To identify novel factors important for catalase biogenesis libraries of E. faecalis gene insertion mutants were generated using two different types of transposons. The libraries of mutants were screened for clones deficient in catalase activity using a colony zymogram staining procedure. Analysis of obtained clones identified, in addition to katA (encoding the catalase enzyme protein), nine genes distributed over five different chromosomal loci. No factors with a dedicated essential role in catalase biogenesis or heme trafficking were revealed, but the results indicate the RNA degradosome (srmB, rnjA), an ABC-type oligopeptide transporter (oppBC), a two-component signal transducer (etaR), and NADH peroxidase (npr) as being important for expression of catalase activity in E. faecalis. It is demonstrated that catalase biogenesis in E. faecalis is independent of the CydABCD proteins and that a conserved proline residue in the N-terminal region of KatA is important for catalase assembly. PMID:22590595

  9. Growth-Dependent Catalase Localization in Exiguobacterium oxidotolerans T-2-2T Reflected by Catalase Activity of Cells

    PubMed Central

    Hanaoka, Yoshiko; Takebe, Fumihiko; Nodasaka, Yoshinobu; Hara, Isao; Matsuyama, Hidetoshi; Yumoto, Isao

    2013-01-01

    A psychrotolerant and H2O2-resistant bacterium, Exiguobacterium oxidotolerans T-2-2T, exhibits extraordinary H2O2 resistance and produces catalase not only intracellularly but also extracellularly. The intracellular and extracellular catalases exhibited the same enzymatic characteristics, that is, they exhibited the temperature-dependent activity characteristic of a cold-adapted enzyme, their heat stabilities were similar to those of mesophilic enzymes and very high catalytic intensity. In addition, catalase gene analysis indicated that the bacterium possessed the sole clade 1 catalase gene corresponding to intracellular catalase. Hence, intracellular catalase is secreted into the extracellular space. In addition to intracellular and extracellular catalases, the inner circumference of the cells showed the localization of catalase in the mid-stationary growth phase, which was observed by immunoelectron microscopy using an antibody against the intracellular catalase of the strain. The cells demonstrated higher catalase activity in the mid-stationary growth phase than in the exponential growth phase. The catalase localized in the inner circumference can be dissociated by treatment with Tween 60. Thus, the localized catalase is not tightly bound to the inner circumference of the cells and may play a role in the oxidative defense of the cells under low metabolic state. PMID:24204687

  10. Catalase-peroxidases (KatG) exhibit NADH oxidase activity.

    PubMed

    Singh, Rahul; Wiseman, Ben; Deemagarn, Taweewat; Donald, Lynda J; Duckworth, Harry W; Carpena, Xavi; Fita, Ignacio; Loewen, Peter C

    2004-10-01

    Catalase-peroxidases (KatG) produced by Burkholderia pseudomallei, Escherichia coli, and Mycobacterium tuberculosis catalyze the oxidation of NADH to form NAD+ and either H2O2 or superoxide radical depending on pH. The NADH oxidase reaction requires molecular oxygen, does not require hydrogen peroxide, is not inhibited by superoxide dismutase or catalase, and has a pH optimum of 8.75, clearly differentiating it from the peroxidase and catalase reactions with pH optima of 5.5 and 6.5, respectively, and from the NADH peroxidase-oxidase reaction of horseradish peroxidase. B. pseudomallei KatG has a relatively high affinity for NADH (Km=12 microm), but the oxidase reaction is slow (kcat=0.54 min(-1)) compared with the peroxidase and catalase reactions. The catalase-peroxidases also catalyze the hydrazinolysis of isonicotinic acid hydrazide (INH) in an oxygen- and H2O2-independent reaction, and KatG-dependent radical generation from a mixture of NADH and INH is two to three times faster than the combined rates of separate reactions with NADH and INH alone. The major products from the coupled reaction, identified by high pressure liquid chromatography fractionation and mass spectrometry, are NAD+ and isonicotinoyl-NAD, the activated form of isoniazid that inhibits mycolic acid synthesis in M. tuberculosis. Isonicotinoyl-NAD synthesis from a mixture of NAD+ and INH is KatG-dependent and is activated by manganese ion. M. tuberculosis KatG catalyzes isonicotinoyl-NAD formation from NAD+ and INH more efficiently than B. pseudomallei KatG. PMID:15280362

  11. Identification of catalase-like activity from Mycobacterium leprae and the relationship between catalase and isonicotinic acid hydrazide (INH).

    PubMed

    Kang, T J; You, J C; Chae, G T

    2001-08-01

    As Mycobacterium leprae proliferate inside macrophages, it has been speculated that catalase encoded by katG may protect the bacilli from deleterious effects of peroxide generated from the macrophage and may also play a crucial role in the survival of M. leprae in vivo. However, unlike that of M. tuberculosis, the katG of M. leprae has been reported to be a pseudogene, implicating that isoniazid, which is activated to a potent tuberculocidal agent by catalase, is unlikely to be of therapeutic benefit to leprosy patients. These results raise a question as to how M. leprae avoids H202-mediated killing inside macrophages. To understand the survival of M. leprae in macrophages, the present study attempted to detect catalase-like activity in M. leprae. Catalase-like activity was found in M. leprae cell lysate by the diaminobenzidine (DAB) staining method with non-denaturing polyacrylamide gel electrophoresis. An ammonium sulphate precipitation study revealed that the catalase-like activity was precipitable with 80% ammonium sulphate. The effect of isoniazid (INH) on M. leprae growth was also tested by RT-PCR and radiorespirometric assay to examine catalase-like activity in M. leprae, because INH was activated by catalase. It was found that the viability of M. leprae was decreased at a concentration of 20 microg/ml by radiorespirometric assay and it was inhibited at higher concentrations as determined by RT-PCR. These data suggest that a catalase-like activity other than that encoded by katG is present in M. leprae. PMID:11478670

  12. A Chaperone Function of NO CATALASE ACTIVITY1 Is Required to Maintain Catalase Activity and for Multiple Stress Responses in Arabidopsis

    PubMed Central

    Li, Jing; Liu, Juntao; Wang, Guoqiang; Cha, Joon-Yung; Li, Guannan; Chen, She; Li, Zhen; Guo, Jinghua; Zhang, Caiguo; Yang, Yongqing; Kim, Woe-Yeon; Yun, Dae-Jin; Schumaker, Karen S.; Chen, Zhongzhou; Guo, Yan

    2015-01-01

    Catalases are key regulators of reactive oxygen species homeostasis in plant cells. However, the regulation of catalase activity is not well understood. In this study, we isolated an Arabidopsis thaliana mutant, no catalase activity1-3 (nca1-3) that is hypersensitive to many abiotic stress treatments. The mutated gene was identified by map-based cloning as NCA1, which encodes a protein containing an N-terminal RING-finger domain and a C-terminal tetratricopeptide repeat-like helical domain. NCA1 interacts with and increases catalase activity maximally in a 240-kD complex in planta. In vitro, NCA1 interacts with CATALASE2 (CAT2) in a 1:1 molar ratio, and the NCA1 C terminus is essential for this interaction. CAT2 activity increased 10-fold in the presence of NCA1, and zinc ion binding of the NCA1 N terminus is required for this increase. NCA1 has chaperone protein activity that may maintain the folding of catalase in a functional state. NCA1 is a cytosol-located protein. Expression of NCA1 in the mitochondrion of the nca1-3 mutant does not rescue the abiotic stress phenotypes of the mutant, while expression in the cytosol or peroxisome does. Our results suggest that NCA1 is essential for catalase activity. PMID:25700484

  13. Catalase-only nanoparticles prepared by shear alone: Characteristics, activity and stability evaluation.

    PubMed

    Huang, Xiao-Nan; Du, Xin-Ying; Xing, Jin-Feng; Ge, Zhi-Qiang

    2016-09-01

    Catalase is a promising therapeutic enzyme; however, it carries risks of inactivation and rapid degradation when it is used in practical bioprocess, such as delivery in vivo. To overcome the issue, we made catalase-only nanoparticles using shear stress alone at a moderate shear rate of 217s(-1) in a coaxial cylinder flow cell. Properties of nanoparticles, including particle size, polydispersity index and zeta potential, were characterized. The conformational changes of pre- and post-sheared catalase were determined using spectroscopy techniques. The results indicated that the conformational changes of catalase and reduction in α-helical content caused by shear alone were less significant than that by desolvation method. Catalase-only nanoparticles prepared by single shear retained over 90% of its initial activity when compared with the native catalase. Catalase nanoparticles lost only 20% of the activity when stored in phosphate buffer solution for 72h at 4°C, whereas native catalase lost 53% under the same condition. Especially, the activity of nanogranulated catalase was decreased only slightly in the simulated intestinal fluid containing α-chymotrypsin during 4h incubation at 37°C, implying that the catalase nanoparticle was more resistant to the degradation of proteases than native catalase molecules. Overall, catalase-only nanoparticles offered a great potential to stabilize enzymes for various pharmaceutical applications. PMID:26318217

  14. Catalase activity of different Candida species after exposition to specific antiserum

    PubMed Central

    Miyasaka, Natália R.S.; Unterkircher, Carmelinda S.; Shimizu, Mario T.

    2008-01-01

    Antisera were developed in rabbits after challenge with intracellular antigens of Candida albicans, C. tropicalis and C. parapsilosis. Microorganism catalase has been correlated with virulence, resistance to drugs and immunogenicity. The intracellular catalase is consistently present in strains of Candida and in this paper, the enzyme activity was analysed by PAGE after exposition to antisera. The catalases of C. albicans, C. parapsilosis and C. tropicalis were immunogenic and differed in their binding to specific antibodies raised in rabbits. Tests of cross-reactivity between different Candida species showed that when antiserum from C. albicans immunized rabbit was incubated with intracellular extracts of these three Candida species, the catalases activities were abolished. However, the antisera from C. parapsilosis or C. tropicalis immunized rabbits did not affect the catalase activity of C. albicans; the enzyme of C. albicans was inactivated only by the antiserum to the catalase of own C. albicans. The antiserum to the catalase of C. tropicalis was species-specific and did not cross-react with catalases of C. albicans and C. parapsilosis. The activities of Aspergillus niger and bovine catalases were not affected by the antiserum from any Candida immunized rabbits. This report is a preliminary study of specific antisera that react against intracellular catalase of Candida sp. and neutralize the enzymatic activity. Further study is necessary to develop species-specific antibody once differences in the susceptibility of the Candida species to commonly used antifungal drugs make identification to the species level important. PMID:24031174

  15. Activity and stability of catalase in nonionic micellar and reverse micellar systems.

    PubMed

    Gebicka, Lidia; Jurgas-Grudzinska, Monika

    2004-01-01

    Catalase activity and stability in the presence of simple micelles of Brij 35 and entrapped in reverse micelles of Brij 30 have been studied. The enzyme retains full activity in aqueous micellar solution of Brij 35. Catalase exhibits "superactivity" in reverse micelles composed of 0.1 M Brij 30 in dodecane, n-heptane or isooctane, and significantly lowers the activity in decaline. The incorporation of catalase into Brij 30 reverse micelles enhances its stability at 50 degrees C. However, the stability of catalase incubated at 37 degrees C in micellar and reverse micellar solutions is lower than that in homogeneous aqueous solution. PMID:15666551

  16. Catalase Activity of Psychrophilic Bacteria Grown at 2 and 30 C1

    PubMed Central

    Frank, Hilmer A.; Ishibashi, Sandra T.; Reid, Ann; Ito, June S.

    1963-01-01

    Catalase activity was measured in resting-cell suspensions of psychrophilic bacteria grown at 2 and at 30 C. Enzyme activity decreased in both cell-suspension types as harvest age increased. At comparable physiological age, cells grown at 2 C had more catalase than cells grown at 30 C. PMID:13959237

  17. Regulation of catalase activity in leaves of Nicotiana sylvestris by high CO sub 2

    SciTech Connect

    Havir, E.A.; McHale, N.A. )

    1989-03-01

    The effect of high CO{sub 2} (1% CO{sub 2}/21% O{sub 2}) on the activity of specific forms of catalase (CAT-1, -2, and -3) in seedling leaves of tobacco (Nicotiana sylvestris, Nicotiana tabacum) was examined. In high CO{sub 2} total catalase activity decreased by 50% in the first 2 days, followed by a more gradual decline in the next 4 days. The loss of total activity resulted primarily from a decrease in CAT-1 catalase. In contrast, the activity of CAT-3 catalase, a form with enhanced peroxidatic activity, increased 3-fold in high CO{sub 2} relative to air controls after 4 days. Short-term exposure to high CO{sub 2} indicated that the 50% loss of total activity occurs in the firs 12 hours. Catalase levels increased to normal within 12 hours after seedlings were returned to air. When seedlings were transferred to air after prolonged exposure to high CO{sub 2} (13 days), the levels of CAT-1 catalase were partially restored while CAT-3 remained at its elevated level. Levels of superoxide dismutase activity and those of several peroxisomal enzymes were not affected by high CO{sub 2}. Total catalase levels did not decline when seedlings were exposed to atmospheres of 0.04% CO{sub 2}/5% O{sub 2} or 0.04% CO{sub 2}/1% O{sub 2}, indicating that regulation of catalase in high CO{sub 2} is not related directly to suppression of photorespiration. Antibodies prepared against CAT-1 catalase from N. tabacum reacted strongly against CAT-1 catalase from both N. sylvestris and N. tabacum but not against CAT-3 catalase from either species.

  18. CHARACTERIZATION OF CATALASE ACTIVITIES IN A ROOT-CLEANING ISOLATE OF PSEUDOMONAS PUTIDA

    EPA Science Inventory

    Psuedomonas putida, a saprophytic root-colonizing bacterium, produces multiple forms of catalase Catalase A which increases in specific activity during growth phase and after treatment with H2O2, is located in the and is inhibited by 3-amino-1,2-4-triazole, EDTA, and cyanide, but...

  19. Activation of Peroxisome Proliferator-Activated Receptor Alpha Improves Aged and UV-Irradiated Skin by Catalase Induction.

    PubMed

    Shin, Mi Hee; Lee, Se-Rah; Kim, Min-Kyoung; Shin, Chang-Yup; Lee, Dong Hun; Chung, Jin Ho

    2016-01-01

    Peroxisome proliferator-activated receptor alpha (PPARα) is a nuclear hormone receptor involved in the transcriptional regulation of lipid metabolism, fatty acid oxidation, and glucose homeostasis. Its activation stimulates antioxidant enzymes such as catalase, whose expression is decreased in aged human skin. Here we investigated the expression of PPARα in aged and ultraviolet (UV)-irradiated skin, and whether PPARα activation can modulate expressions of matrix metalloproteinase (MMP)-1 and procollagen through catalase regulation. We found that PPARα mRNA level was significantly decreased in intrinsically aged and photoaged human skin as well as in UV-irradiated skin. A PPARα activator, Wy14643, inhibited UV-induced increase of MMP-1 and decrease of procollagen expression and caused marked increase in catalase expression. Furthermore, production of reactive oxygen species (ROS) was suppressed by Wy14643 in UV-irradiated and aged dermal fibroblasts, suggesting that the PPARα activation-induced upregulation of catalase leads to scavenging of ROS produced due to UV irradiation or aging. PPARα knockdown decreased catalase expression and abolished the beneficial effects of Wy14643. Topical application of Wy14643 on hairless mice restored catalase activity and prevented MMP-13 and inflammatory responses in skin. Our findings indicate that PPARα activation triggers catalase expression and ROS scavenging, thereby protecting skin from UV-induced damage and intrinsic aging. PMID:27611371

  20. Differential activation of catalase expression and activity by PPAR agonists: Implications for astrocyte protection in anti-glioma therapy☆

    PubMed Central

    Khoo, Nicholas K.H.; Hebbar, Sachin; Zhao, Weiling; Moore, Steven A.; Domann, Frederick E.; Robbins, Mike E.

    2013-01-01

    Glioma survival is dismal, in part, due to an imbalance in antioxidant expression and activity. Peroxisome proliferator-activated receptor (PPAR) agonists have antineoplastic properties which present new redox-dependent targets for glioma anticancer therapies. Herein, we demonstrate that treatment of primary cultures of normal rat astrocytes with PPAR agonists increased the expression of catalase mRNA protein, and enzymatic activity. In contrast, these same agonists had no effect on catalase expression and activity in malignant rat glioma cells. The increase in steady-state catalase mRNA observed in normal rat astrocytes was due, in part, to de novo mRNA synthesis as opposed to increased catalase mRNA stability. Moreover, pioglitazone-mediated induction of catalase activity in normal rat astrocytes was completely blocked by transfection with a PPARγ-dominant negative plasmid. These data suggest that defects in PPAR-mediated signaling and gene expression may represent a block to normal catalase expression and induction in malignant glioma. The ability of PPAR agonists to differentially increase catalase expression and activity in normal astrocytes but not glioma cells suggests that these compounds might represent novel adjuvant therapeutic agents for the treatment of gliomas. PMID:24024139

  1. Association of CAT polymorphisms with catalase activity and exposure to environmental oxidative stimuli

    PubMed Central

    Nadif, Rachel; Mintz, Margaret; Jedlicka, Anne; Bertrand, Jean-Pierre; Kleeberger, Steven R.; Kauffmann, Francine

    2005-01-01

    We tested the hypotheses that catalase activity is modified by CAT single nucleotide polymorphisms (SNPs) (–262;–844), and by their interactions with oxidant exposures (coal dusts, smoking), lymphotoxin alpha (LTA, NcoI) and tumor necrosis factor (TNF, -308) in 196 miners. Erythrocyte catalase, superoxide dismutase, and glutathione peroxidase activities were measured. The CAT –262 SNP was related to lower catalase activity (104, 87 and 72 k/g hemoglobin for CC, CT and TT respectively, p<0.0001). Regardless of CAT SNPs, the LTA NcoI but not the TNF –308 SNP was associated with catalase activity (p=0.04 and p=0.8). CAT –262 T carriers were less frequent in highly exposed miners (OR=0.39 [0.20 – 0.78], p=0.007). In CAT –262 T carriers only, catalase activity decreased with high dust exposure (p=0.01). Haplotype analyses (combined CAT SNPs) confirm these results. Results show that CAT –262 and LTA NcoI SNPs, and interaction with coal dust exposure, influenced catalase activity. PMID:16298864

  2. The Molecular Mechanism of the Catalase-like Activity in Horseradish Peroxidase.

    PubMed

    Campomanes, Pablo; Rothlisberger, Ursula; Alfonso-Prieto, Mercedes; Rovira, Carme

    2015-09-01

    Horseradish peroxidase (HRP) is one of the most relevant peroxidase enzymes, used extensively in immunochemistry and biocatalysis applications. Unlike the closely related catalase enzymes, it exhibits a low activity to disproportionate hydrogen peroxide (H2O2). The origin of this disparity remains unknown due to the lack of atomistic information on the catalase-like reaction in HRP. Using QM(DFT)/MM metadynamics simulations, we uncover the mechanism for reduction of the HRP Compound I intermediate by H2O2 at atomic detail. The reaction begins with a hydrogen atom transfer, forming a peroxyl radical and a Compound II-like species. Reorientation of the peroxyl radical in the active site, concomitant with the transfer of the second hydrogen atom, is the rate-limiting step, with a computed free energy barrier (18.7 kcal/mol, ∼ 6 kcal/mol higher than the one obtained for catalase) in good agreement with experiments. Our simulations reveal the crucial role played by the distal pocket residues in accommodating H2O2, enabling formation of a Compound II-like intermediate, similar to catalases. However, out of the two pathways for Compound II reduction found in catalases, only one is operative in HRP. Moreover, the hydrogen bond network in the distal side of HRP compensates less efficiently than in catalases for the energetic cost required to reorient the peroxyl radical at the rate-determining step. The distal Arg and a water molecule in the "wet" active site of HRP have a substantial impact on the reaction barrier, compared to the "dry" active site in catalase. Therefore, the lower catalase-like efficiency of heme peroxidases compared to catalases can be directly attributed to the different distal pocket architecture, providing hints to engineer peroxidases with a higher rate of H2O2 disproportionation. PMID:26274391

  3. A molecular dynamics examination on mutation-induced catalase activity in coral allene oxide synthase.

    PubMed

    De Luna, Phil; Bushnell, Eric A C; Gauld, James W

    2013-11-27

    Coral allene oxide synthase (cAOS) catalyzes the formation of allene oxides from fatty acid hydroperoxides. Interestingly, its active site differs from that of catalase by only a single residue yet is incapable of catalase activity. That is, it is unable to catalyze the decomposition of hydrogen peroxide to molecular oxygen and water. However, the single active-site mutation T66V allows cAOS to exhibit catalase activity. We have performed a series of molecular dynamics (MD) simulations in order to gain insights into the differences in substrate (8R-hydroperoxyeicosatetraenoic) and H2O2 active site binding between wild-type cAOS and the T66V mutant cAOS. It is observed that in wild-type cAOS the active site Thr66 residue consistently forms a strong hydrogen-bonding interaction with H2O2 (catalase substrate) and, importantly, with the aid of His67 helps to pull H2O2 away from the heme Fe center. In contrast, in the T66V-cAOS mutant the H2O2 is much closer to the heme's Fe center and now forms a consistent Fe···O2H2 interaction. In addition, the His67···H2O2 distance shortens considerably, increasing the likelihood of a Cpd I intermediate and hence exhibiting catalase activity. PMID:24164352

  4. Effects of autogamy in Paramecium tetraurelia on catalase activity and on radiosensitivity to natural ionizing radiations

    SciTech Connect

    Croute, F.; Dupouy, D.; Charley, J.P.; Soleilhavoup, J.P.; Planel, H.

    1980-02-01

    Catalase activity of Paramecium tetraurelia decreased during autogamy and recovered to normal 5 days later. Autogamy also caused changes in the ciliate's sensitivity sensitivity to natural ionizing radiations - the decrease in cell growth rate previously described in shielded cultures did not occur when autogamous cells were used. Maximum effect of shielding was observed in 11-day-old postautogamous cells. The role of the catalase in the mechanism of natural irradiation effect is discussed.

  5. Enhanced antioxidant defense due to extracellular catalase activity in Syrian hamster during arousal from hibernation.

    PubMed

    Ohta, Hitomi; Okamoto, Iwao; Hanaya, Toshiharu; Arai, Shigeyuki; Ohta, Tsunetaka; Fukuda, Shigeharu

    2006-08-01

    Mammalian hibernators are considered a natural model for resistance to ischemia-reperfusion injuries, and protective mechanisms against oxidative stress evoked by repeated hibernation-arousal cycles in these animals are increasingly the focus of experimental investigation. Here we show that extracellular catalase activity provides protection against oxidative stress during arousal from hibernation in Syrian hamster. To examine the serum antioxidant defense system, we first assessed the hibernation-arousal state-dependent change in serum attenuation of cytotoxicity induced by hydrogen peroxide. Serum obtained from hamsters during arousal from hibernation at a rectal temperature of 32 degrees C, concomitant with the period of increased oxidative stress, attenuated the cytotoxicity four-fold more effectively than serum from cenothermic control hamsters. Serum catalase activity significantly increased during arousal, whereas glutathione peroxidase activity decreased by 50%, compared with cenothermic controls. The cytoprotective effect of purified catalase at the concentration found in serum was also confirmed in a hydrogen peroxide-induced cytotoxicity model. Moreover, inhibition of catalase by aminotriazole led to an 80% loss of serum hydrogen peroxide scavenging activity. These results suggest that extracellular catalase is effective for protecting hibernators from oxidative stress evoked by arousal from hibernation. PMID:16807122

  6. Characterization of a Facultatively Psychrophilic Bacterium, Vibrio rumoiensis sp. nov., That Exhibits High Catalase Activity

    PubMed Central

    Yumoto, Isao; Iwata, Hideaki; Sawabe, Tomoo; Ueno, Keisuke; Ichise, Nobutoshi; Matsuyama, Hidetoshi; Okuyama, Hidetoshi; Kawasaki, Kosei

    1999-01-01

    A novel facultatively psychrophilic bacterium, strain S-1, which exhibits extraordinarily high catalase activity was isolated from the drain pool of a fish product processing plant that uses H2O2 as a bleaching and microbicidal agent. The catalase activity of the isolate was 1 or 2 orders of magnitude higher than those of Corynebacterium glutamicum, Staphylococcus aureus, Pseudomonas fluorescens, and five other species tested in this study. The strain seemed to possess only one kind of catalase, according to the results of polyacrylamide gel electrophoresis of the cell extract. The optimum temperature for catalase activity was about 30°C, which was about 20°C lower than that for bovine catalase activity. Electron microscopic observation revealed that the surface of the microorganism was covered by blebs. Although the isolate was nonflagellated, its taxonomic position on the basis of physiological and biochemical characteristics and analysis of 16S rRNA sequence and DNA-DNA relatedness data indicated that strain S-1 is a new species belonging to the genus Vibrio. Accordingly, we propose the name Vibrio rumoiensis. The type strain is S-1 (FERM P-14531). PMID:9872761

  7. Catalase and superoxide dismutase activities as biomarkers of oxidative stress in workers exposed to mercury vapors

    SciTech Connect

    Perrin-Nadif, R.; Dusch, M.; Mur, J.M.; Koch, C.; Schmitt, P.

    1996-06-07

    We investigated the role of three blood antioxidant enzyme activities and total antioxidant status (TAS) as biological markers of oxidative stress in workers exposed to mercury (Hg{degrees}) vapors. Twenty-two female workers took part in the study. Blood and urine sampling for biological analyses was performed. The workers were classified into three subgroups according to their creatinine-corrected Hg concentration in urine. Blood antioxidant enzyme activities and TAS were compared between groups with nonparametric distribution-free methods. A significant difference existed in catalase activity and a slight, but not significant, difference existed in Cu{sup 2+}/Zn{sup 2+} superoxide dismutase (Cu{sup 2+}/Zn{sup 2+} SOD) activity between the three groups. No differences were observed in either the glutathione peroxidase activity or the TAS between these groups. Catalase and Cu{sup 2+}/Zn{sup 2+} SOD activities were increased in the groups of workers with higher creatinine-corrected urinary Hg concentrations when compared with the group of lower creatinine-corrected urinary Hg concentrations. Catalase activity was positively correlated with the creatinine-corrected concentration of Hg in urine, and Cu{sup 2+}/Zn{sup 2+} SOD activity was slightly correlated with the creatinine-corrected concentration of Hg in urine. The role of erythrocyte catalase and Cu{sup 2}/Zn{sup 2+} SOD activities we have measured is in agreement with the hypothesis of the involvement of reactive oxygen species production as an important event in chronic exposure to Hg{degrees} vapors in humans. In spite of the small sample size, results indicate that erythrocyte catalase and Cu{sup 2+}/Zn{sup 2+} SOD activities could be considered as markers of biological effect in workers exposed to Hg{degrees} vapors. 24 refs., 3 figs., 2 tabs.

  8. Arrhenius activation energy of damage to catalase during spray-drying.

    PubMed

    Schaefer, Joachim; Lee, Geoffrey

    2015-07-15

    The inactivation of catalase during spray-drying over a range of outlet gas temperatures could be closely represented by the Arrhenius equation. From this an activation energy for damage to the catalase could be calculated. The close fit to Arrhenius suggests that the thermally-induced part of inactivation of the catalase during the complex drying and particle-formation processes takes place at constant temperature. These processes are rapid compared with the residence time of the powder in the collecting vessel of the cyclone where dried catalase is exposed to a constant temperature equal to approximately the drying gas outlet temperature. A lower activation energy after spray drying with the ultrasonic nozzle was found than with the 2-fluid nozzle under otherwise identical spray drying conditions. It is feasible that the ultrasonic nozzle when mounted in the lid of the spray dryer heats up toward the drying gas inlet temperature much more that the air-cooled 2-fluid nozzle. Calculation of the Arrhenius activation energy also showed how the stabilizing efficacy of trehalose and mannitol on the catalase varies in strength across the range of drying gas inlet and outlet temperatures examined. PMID:25940040

  9. Direct evidence for catalase activity of [Ru(V)(edta)(O)](-).

    PubMed

    Chatterjee, Debabrata; Jaiswal, Namita; Franke, Alicja; van Eldik, Rudi

    2014-12-01

    Reported is the first example of a ruthenium(III) complex, Ru(III)(edta) (edta(4-) = ethylenediaminetetraacetate), that catalyzes the disproportion of H2O2 to O2 and water in resemblance to catalase activity, and shedding light on the possible mechanism of action of the [Ru(V)(edta)(O)](-) formed in the reacting system. PMID:25307989

  10. Computational study concerning the effect of some pesticides on the Proteus Mirabilis catalase activity

    NASA Astrophysics Data System (ADS)

    Isvoran, Adriana

    2016-03-01

    Assessment of the effects of the herbicides nicosulfuron and chlorsulfuron and the fungicides difenoconazole and drazoxlone upon catalase produced by soil microorganism Proteus mirabilis is performed using the molecular docking technique. The interactions of pesticides with the enzymes are predicted using SwissDock and PatchDock docking tools. There are correlations for predicted binding energy values for enzyme-pesticide complexes obtained using the two docking tools, all the considered pesticides revealing favorable binding to the enzyme, but only the herbicides bind to the catalytic site. These results suggest the inhibitory potential of chlorsulfuron and nicosulfuron on the catalase activity in soil.

  11. ENVIRONMENTAL EFFECTS ON SUPEROXIDE DISMUTASE AND CATALASE ACTIVITY AND EXPRESSION IN HONEY BEE.

    PubMed

    Nikolić, Tatjana V; Purać, Jelena; Orčić, Snežana; Kojić, Danijela; Vujanović, Dragana; Stanimirović, Zoran; Gržetić, Ivan; Ilijević, Konstantin; Šikoparija, Branko; Blagojević, Duško P

    2015-12-01

    Understanding the cellular stress response in honey bees will significantly contribute to their conservation. The aim of this study was to analyze the response of the antioxidative enzymes superoxide dismutase and catalase in honey bees related to the presence of toxic metals in different habitats. Three locations were selected: (i) Tunovo on the mountain Golija, as control area, without industry and large human impact, (ii) Belgrade as urban area, and (iii) Zajača, as mining and industrial zone. Our results showed that the concentrations of lead (Pb) in whole body of bees vary according to habitat, but there was very significant increase of Pb in bees from investigated industrial area. Bees from urban and industrial area had increased expression of both Sod1 and Cat genes, suggesting adaptation to increased oxidative stress. However, in spite increased gene expression, the enzyme activity of catalase was lower in bees from industrial area suggesting inhibitory effect of Pb on catalase. PMID:26314562

  12. Relationship between uptake of mercury vapor by mushrooms and its catalase activity

    SciTech Connect

    Ogata, M.; Kenmotsu, K.; Hirota, N.; Naito, M.

    1981-12-01

    The uptake of mercury vapor by mushrooms (Shiitake) artifically grown on an oak tree and the uptake in vitro by catalase extracts prepared from mushroom Hay Bacillus and spinach are reported. Mushrooms were exposed to 1.4 mg/Hg/cu m for 11 days. Measurement of total mercury was as previously described (Ogata et al. 1978, 1979). Levels in mushrooms ranged from 0.4 +/- 0.1 ..mu..g/g at 0.5 days to 4.6 +/- 0.2 ..mu..g/g at 10.5 days and steady-state thereafter. In in vitro studies Hy uptake by mushroom catalase extract was estimated by the perborate method. Uptake was found to parallel catalase activity and was inhibited by potassium cyanide, sodium azide, and 3-amino-1,2,4-triazole. Similar results were obtained with Hay Bacillus and spinach catalase extracts. Results suggest that the level of mercury in the mushroom can be used as an indicator of mercury pollution in the environment. It is also suggested that catalase has an important role in uptake of mercury vapor in the plant. 2 tables (JMT)

  13. Development of a new catalase activity assay for biological samples using optical CUPRAC sensor

    NASA Astrophysics Data System (ADS)

    Bekdeşer, Burcu; Özyürek, Mustafa; Güçlü, Kubilay; Alkan, Fulya Üstün; Apak, Reşat

    2014-11-01

    A novel catalase activity assay was developed for biological samples (liver and kidney tissue homogenates) using a rapid and low-cost optical sensor-based ‘cupric reducing antioxidant capacity' (CUPRAC) method. The reagent, copper(II)-neocuproine (Cu(II)-Nc) complex, was immobilized onto a cation-exchanger film of Nafion, and the absorbance changes associated with the formation of the highly-colored Cu(I)-Nc chelate as a result of reaction with hydrogen peroxide (H2O2) was measured at 450 nm. When catalase was absent, H2O2 produced the CUPRAC chromophore, whereas catalase, being an effective H2O2 scavenger, completely annihilated the CUPRAC signal due to H2O2. Thus, the CUPRAC absorbance due to H2O2 oxidation concomitant with Cu(I)-Nc formation decreased proportionally with catalase. The developed sensor gave a linear response over a wide concentration range of H2O2 (0.68-78.6 μM). This optical sensor-based method applicable to tissue homogenates proved to be efficient for low hydrogen peroxide concentrations (physiological and nontoxic levels) to which the widely used UV method is not accurately responsive. Thus, conventional problems of the UV method arising from relatively low sensitivity and selectivity, and absorbance disturbance due to gaseous oxygen evolution were overcome. The catalase findings of the proposed method for tissue homogenates were statistically alike with those of HPLC.

  14. Cytochrome bd oxidase from Escherichia coli displays high catalase activity: an additional defense against oxidative stress.

    PubMed

    Borisov, Vitaliy B; Forte, Elena; Davletshin, Albert; Mastronicola, Daniela; Sarti, Paolo; Giuffrè, Alessandro

    2013-07-11

    Cytochrome bd oxygen reductase from Escherichia coli has three hemes, b558, b595 and d. We found that the enzyme, as-prepared or in turnover with O2, rapidly decomposes H2O2 with formation of approximately half a mole of O2 per mole of H2O2. Such catalase activity vanishes upon cytochrome bd reduction, does not compete with the oxygen-reductase activity, is insensitive to NO, CO, antimycin-A and N-ethylmaleimide (NEM), but is inhibited by cyanide (Ki ~2.5μM) and azide. The activity, possibly associated with heme-b595, was also observed in catalase-deficient E. coli cells following cytochrome bd over-expression suggesting a protective role against oxidative stress in vivo. PMID:23727202

  15. Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin

    NASA Technical Reports Server (NTRS)

    Yang, T.; Poovaiah, B. W.

    2002-01-01

    Environmental stimuli such as UV, pathogen attack, and gravity can induce rapid changes in hydrogen peroxide (H(2)O(2)) levels, leading to a variety of physiological responses in plants. Catalase, which is involved in the degradation of H(2)O(2) into water and oxygen, is the major H(2)O(2)-scavenging enzyme in all aerobic organisms. A close interaction exists between intracellular H(2)O(2) and cytosolic calcium in response to biotic and abiotic stresses. Studies indicate that an increase in cytosolic calcium boosts the generation of H(2)O(2). Here we report that calmodulin (CaM), a ubiquitous calcium-binding protein, binds to and activates some plant catalases in the presence of calcium, but calcium/CaM does not have any effect on bacterial, fungal, bovine, or human catalase. These results document that calcium/CaM can down-regulate H(2)O(2) levels in plants by stimulating the catalytic activity of plant catalase. Furthermore, these results provide evidence indicating that calcium has dual functions in regulating H(2)O(2) homeostasis, which in turn influences redox signaling in response to environmental signals in plants.

  16. Catalase-like activity of horseradish peroxidase: relationship to enzyme inactivation by H2O2.

    PubMed Central

    Hernández-Ruiz, J; Arnao, M B; Hiner, A N; García-Cánovas, F; Acosta, M

    2001-01-01

    H2O2 is the usual oxidizing substrate of horseradish peroxidase C (HRP-C). In the absence in the reaction medium of a one-electron donor substrate, H2O2 is able to act as both oxidizing and reducing substrate. However, under these conditions the enzyme also undergoes a progressive loss of activity. There are several pathways that maintain the activity of the enzyme by recovering the ferric form, one of which is the decomposition of H2O2 to molecular oxygen in a similar way to the action of catalase. This production of oxygen has been kinetically characterized with a Clark-type electrode coupled to an oxygraph. HRP-C exhibits a weak catalase-like activity, the initial reaction rate of which is hyperbolically dependent on the H2O2 concentration, with values for K(2) (affinity of the first intermediate, compound I, for H2O2) and k(3) (apparent rate constant controlling catalase activity) of 4.0 +/- 0.6 mM and 1.78 +/- 0.12 s(-1) respectively. Oxygen production by HRP-C is favoured at pH values greater than approx. 6.5; under similar conditions HRP-C is also much less sensitive to inactivation during incubations with H2O2. We therefore suggest that this pathway is a major protective mechanism of HRP-C against such inactivation. PMID:11171085

  17. Role of phosphate on stability and catalase mimetic activity of cerium oxide nanoparticles.

    PubMed

    Singh, Ragini; Singh, Sanjay

    2015-08-01

    Cerium oxide nanoparticles (CeNPs) have been recently shown to scavenge reactive oxygen and nitrogen species (ROS and RNS) in different experimental model systems. CeNPs (3+) and CeNPs (4+) have been shown to exhibit superoxide dismutase (SOD) and catalase mimetic activity, respectively. Due to their nanoscale dimension, CeNPs are expected to interact with the components of biologically relevant buffers and medium, which could alter their catalytic properties. We have demonstrated earlier that CeNPs (3+) interact with phosphate and lose the SOD activity. However, very little is known about the interaction of CeNPs (4+) with the phosphate and other anions, predominantly present in biological buffers and their effects on the catalase mimetic-activity of these nanoparticles. In this study, we report that catalase mimetic-activity of CeNPs (4+) is resistant to the phosphate anions, pH changes and composition of cell culture media. Given the abundance of phosphate anions in the biological system, it is likely that internalized CeNPs would be influenced by cytoplasmic and nucleoplasmic concentration of phosphate. PMID:26011425

  18. A novel analytical method to evaluate directly catalase activity of microorganisms and mammalian cells by ESR oximetry.

    PubMed

    Nakamura, Keisuke; Kanno, Taro; Mokudai, Takayuki; Iwasawa, Atsuo; Niwano, Yoshimi; Kohno, Masahiro

    2010-09-01

    Electron spin resonance (ESR) oximetry technique was applied for analysis of catalase activity in the present study. Catalase activity was evaluated by measuring oxygen from the reaction between hydrogen peroxide (H(2)O(2)) and catalase-positive cells. It was demonstrated that the ESR spectra of spin-label probes, 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPOL), 4-oxo-2,2,6,6-tetramethyl-1-piperidinyloxy (4-oxo-TEMPO) and 4-maleimido-2,2,6,6-tetramethyl-1-piperidinyloxy (4-maleimido-TEMPO) in the presence of H(2)O(2) were broadened with the concentrations of catalase. It was possible to make a calibration curve for catalase activity by peak widths of the spectra of each spin-label probe, which are broadened dependently on catalase concentrations. The broadened ESR spectra were also observed when the catalase-positive micro-organisms or the mammalian cells originally from circulating monocytes/macrophages were mixed with TEMPOL and H(2)O(2). Meanwhile, catalase-negative micro-organisms caused no broadening change of ESR spectra. The present study indicates that it is possible to evaluate directly the catalase activity of various micro-organisms and mammalian cells by using an ESR oximetry technique. PMID:20815766

  19. Catalase and superoxide dismutase activities in a Stenotrophomonas maltophilia WZ2 resistant to herbicide pollution.

    PubMed

    Lü, Zhenmei; Sang, Liya; Li, Zimu; Min, Hang

    2009-01-01

    Quinclorac bensulfuron-methyl is a mixed herbicide widely used on paddy rice field to effectively control barnyard grass and most broad-leaved grasses and sedges. We analyzed superoxide dismutase (SOD) and catalase activities in the quinclorac-highly degrading strain Stenotrophomonas maltophilia WZ2 and Gram-negative standard strain Escherichia coli K12 in an attempt to understand antioxidant enzymes in bacteria are produced in response to quinclorac or bensulfuron-methyl, which increases the virulence of the bacteria. MnSOD and two additional catalase isozymes were induced by quinclorac or bensulfuron-methyl in S. maltophilia WZ2, but not in E. coli K12. Quinclorac turned out to be a more sensitive inducer of SOD, whereas bensulfuron-methyl is a more sensitive one of catalase. A mixture of both has effects similar to quinclorac. Results indicate that catalase has a much weakly role in the defense against quinclorac or bensulfuron-methyl induced oxidative stress, whereas SOD could be critical. PMID:18304632

  20. Optimization of permeabilization process of yeast cells for catalase activity using response surface methodology

    PubMed Central

    Trawczyńska, Ilona; Wójcik, Marek

    2015-01-01

    Biotransformation processes accompanied by whole yeast cells as biocatalyst are a promising area of food industry. Among the chemical sanitizers currently used in food technology, hydrogen peroxide is a very effective microbicidal and bleaching agent. In this paper, permeabilization has been applied to Saccharomyces cerevisiae yeast cells aiming at increased intracellular catalase activity for decomposed H2O2. Ethanol, which is non-toxic, biodegradable and easily available, has been used as permeabilization factor. Response surface methodology (RSM) has been applied in determining the influence of different parameters on permeabilization process. The aim of the study was to find such values of the process parameters that would yield maximum activity of catalase during decomposition of hydrogen peroxide. The optimum operating conditions for permeabilization process obtained by RSM were as follows: 53% (v/v) of ethanol concentration, temperature of 14.8 °C and treatment time of 40 min. After permeabilization, the activity of catalase increased ca. 40 times and its maximum value equalled to 4711 U/g. PMID:26019618

  1. Superoxide dismutase and catalase conjugated to polyethylene glycol increases endothelial enzyme activity and oxidant resistance

    SciTech Connect

    Beckman, J.S.; Minor, R.L. Jr.; White, C.W.; Repine, J.E.; Rosen, G.M.; Freeman, B.A.

    1988-05-15

    Covalent conjugation of superoxide dismutase and catalase with polyethylene glycol (PEG) increases the circulatory half-lives of these enzymes from <10 min to 40 h, reduced immunogenicity, and decreases sensitivity to proteolysis. Because PEG has surface active properties and can induce cell fusion, the authors hypothesized that PEG conjugation could enhance cell binding and association of normally membrane-impermeable enzymes. Incubation of cultured porcine aortic endothelial cells with /sup 125/I-PEG-catalase or /sup 125/I-PEG-superoxide dismutase produced a linear, concentration-dependent increase in cellular enzyme activity and radioactivity. Fluorescently labeled PEG-superoxide dismutase incubated with endothelial cells showed a vesicular localization. Mechanical injury to cell monolayers, which is known to stimulate endocytosis, further increased the uptake of fluorescent PEG-superoxide dismutase. Addition of PEG and PEG-conjugated enzymes perturbed the spin-label binding environment, indicative of producing an increase in plasma membrane fluidity. Thus, PEG conjugation to superoxide dismutase and catalase enhances cell association of these enzymes in a manner which increases cellular enzyme activities and provides prolonged protection from partially reduced oxygen species.

  2. Cysteine-independent Catalase-like Activity of Vertebrate Peroxiredoxin 1 (Prx1).

    PubMed

    Sun, Cen-Cen; Dong, Wei-Ren; Zhao, Jing; Nie, Li; Xiang, Li-Xin; Zhu, Guan; Shao, Jian-Zhong

    2015-08-01

    Peroxiredoxins (Prxs) are a ubiquitous family of antioxidant proteins that are known as thioredoxin peroxidases. Here we report that Prx1 proteins from Tetraodon nigroviridis and humans also possess a previously unknown catalase-like activity that is independent of Cys residues and reductants but dependent on iron. We identified that the GVL motif was essential to the catalase (CAT)-like activity of Prx1 but not to the Cys-dependent thioredoxin peroxidase (POX) activity, and we generated mutants lacking POX and/or CAT activities for individually delineating their functional features. We discovered that the TnPrx1 POX and CAT activities possessed different kinetic features in reducing H2O2. The overexpression of wild-type TnPrx1 and mutants differentially regulated the intracellular levels of reactive oxygen species and p38 phosphorylation in HEK-293T cells treated with H2O2. These observations suggest that the dual antioxidant activities of Prx1 may be crucial for organisms to mediate intracellular redox homeostasis. PMID:26088136

  3. Murine and human b locus pigmentation genes encode a glycoprotein (gp75) with catalase activity

    SciTech Connect

    Halaban, R.; Moellmann, G. )

    1990-06-01

    Melanogenesis is regulated in large part by tyrosinase, and defective tyrosinase leads to albinism. The mechanisms for other pigmentation determinants (e.g., those operative in tyrosinase-positive albinism and in murine coat-color mutants) are not yet known. One murine pigmentation gene, the brown (b) locus, when mutated leads to a brown (b/b) or hypopigmentated (B{sup lt}/B{sup lt}) coat versus the wild-type black (B/B). The authors show that the b locus codes for a glycoprotein with the activity of a catalase (catalase B). Only the c locus protein is a tyrosinase. Because peroxides may be by-products of melanogenic activity and hydrogen peroxide in particular is known to destroy melanin precursors and melanin, they conclude that pigmentation is controlled not only by tyrosinase but also by a hydroperoxidase. The studies indicate that catalase B is identical with gp75, a known human melanosomal glycoprotein; that the b mutation is in a heme-associated domain; and that the B{sup lt} mutation renders the protein susceptible to rapid proteolytic degradation.

  4. A Laboratory Experiment Investigating Different Aspects of Catalase Activity in an Inquiry - Based Approach

    NASA Astrophysics Data System (ADS)

    Kimbrough, Doris R.; Magoun, Mary Ann; Langfur, Meg

    1997-02-01

    The action of the enzyme catalase on aqueous hydrogen peroxide to generate oxygen gas is a well-established demonstration (1-3). Catalase is typically obtained by aqueous extraction of a potato, and the potato extract is mixed together with 3% hydrogen peroxide. The oxygen that is produced can be collected over water. Variations on the procedure can demonstrate the dependence of catalytic activity on temperature or the presence of inhibitors (1, 2). The University of Colorado at Denver has used a version of this procedure as a laboratory in its second-semester course for nonmajors. Recently, students have been allowed to expand upon the procedures prescribed in the laboratory handout in an open-ended project format. We explored some of these variations in detail, and the results provided here offer ideas, centered around this laboratory, for open-ended projects that can be used in an inquiry-based approach.

  5. Dynamics of erythrocyte count, hemoglobin, and catalase activity in rat blood in hypokinesia, muscular activity and restoration

    NASA Technical Reports Server (NTRS)

    Taneyeva, G. V.; Potapovich, G. M.; Voloshko, N. A.; Uteshev, A. B.

    1980-01-01

    Tests were conducted to prove that muscular exertion (in this instance swimming) of different duration and intensity, as well as hypodynamia, result in an increase of hemoglobin and number of red blood cells in peripheral blood rats. Catalase activity increased with an increase in the duration of swimming, but only up to 6 hr; with 7-9 hr of swimming as well as in hypodynamia, catalase activity decreased. It was also observed that under hypodynamia as well as in 3, 5 and 6 hr exertion (swimming) the color index of blood decreased. Pressure chamber treatment (for 8 min each day for one week), alternating a 2 min negative pressure up to 35 mm Hg with 1 min positive pressure, increased the erythrocyte count and hemoglobin content.

  6. Cytotoxicity of lawsone and cytoprotective activity of antioxidants in catalase mutant Escherichia coli.

    PubMed

    Sauriasari, Rani; Wang, Da-Hong; Takemura, Yoko; Tsutsui, Ken; Masuoka, Noriyoshi; Sano, Kuniaki; Horita, Masako; Wang, Bing-Ling; Ogino, Keiki

    2007-06-01

    Lawsone is an active naphthoquinone derivative isolated from henna (Lawsonia inermis L.), a widely used hair dye. Previous study on the toxicity of lawsone remains unclear since the involvement of oxidative stress and the kind of ROS (reactive oxygen species) involved have not been fully resolved yet. This present study reports the cytotoxic effects of lawsone and henna. We carried out CAT assay (a zone of inhibition test of bacterial growth and colony-forming efficiency test of transformant Escherichia coli strains that express mammalian catalase gene derived from normal catalase mice (Cs(a)) and catalase-deficient mutant mice (Cs(b))), Ames mutagenicity assay and H(2)O(2) generation assay. Lawsone generated H(2)O(2) slightly in phosphate buffer system and was not mutagenic in Ames assay using TA 98, TA 100 and TA 102, both in the absence and presence of metabolic activation. Lawsone exposure inhibited the growth of both Cs(a) and Cs(b) strains in a dose-dependent manner. Mean zone diameter for Cs(a) was 9.75+/-0.96 mm and 12.75+/-1.5 mm for Cs(b). Natural henna leaves did not show toxic effects, whereas two out of four samples of marketed henna products were shown toxicity effects. Catalase abolished zone of inhibition (ZOI) of marketed henna products, eliminated ZOI of lawsone in a dose-dependent manner and low concentration of exogenous MnSOD and Cu/ZnSOD eliminated the toxicity. Histidine and DTPA, the metal chelator; BHA and low concentration of capsaicin, the inducer of NADH-quinone reductase, effectively protected Cs(a) and Cs(b) against lawsone in this study. We suggest that lawsone cytotoxicity is probably mediated, at least in part, by the release of O(2)(-), H(2)O(2) and OH(-). PMID:17442476

  7. Catalase and superoxide dismutase activities after heat injury of listeria monocytogenes

    SciTech Connect

    Dallmier, A.W.; Martin, S.E.

    1988-02-01

    Four strains of Listeria monocytogenes were examined for catalase (CA) and superoxide dismutase (SOD) activities. The two strains having the highest CA activities (LCDC and Scott A) also possessed the highest SOD activities. The CA activity of heated cell extracts of all four strains examined decreased sharply between 55 and 60/sup 0/C. SOD was more heat labile than CA. Two L. monocytogenes strains demonstrated a decline in SOD activity after heat treatment at 45/sup 0/C, whereas the other two strains demonstrated a decline at 50/sup 0/C. Sublethal heating of the cells at 55/sup 0/C resulted in increased sensitivity to 5.5% NaCl. Exogenous hydrogen peroxide was added to suspensions of L. monocytogenes; strains producing the highest CA levels showed the greatest H/sub 2/O/sub 2/ resistance.

  8. Catalase-like activity studies of the manganese(II) adsorbed zeolites

    NASA Astrophysics Data System (ADS)

    Ćiçek, Ekrem; Dede, Bülent

    2013-12-01

    Preparation of manganese(II) adsorbed on zeolite 3A, 4A, 5A. AW-300, ammonium Y zeolite, organophilic, molecular sieve and catalase-like enzyme activity of manganese(II) adsorbed zeolites are reported herein. Firstly zeolites are activated at 873 K for two hours before contact manganese(II) ions. In order to observe amount of adsorption, filtration process applied for the solution. The pure zeolites and manganese(II) adsorbed zeolites were analysed by FT-IR. As a result according to the FT-IR spectra, the incorporation of manganese(II) cation into the zeolite structure causes changes in the spectra. These changes are expected particularly in the pseudolattice bands connected with the presence of alumino and silicooxygen tetrahedral rings in the zeolite structure. Furthermore, the catalytic activities of the Mn(II) adsorbed zeolites for the disproportionation of hydrogen peroxide were investigated in the presence of imidazole. The Mn(II) adsorbed zeolites display efficiency in the disproportion reactions of hydrogen peroxide, producing water and dioxygen in catalase-like activity.

  9. Highly Active and Stable Large Catalase Isolated from a Hydrocarbon Degrading Aspergillus terreus MTCC 6324

    PubMed Central

    Vatsyayan, Preety; Goswami, Pranab

    2016-01-01

    A hydrocarbon degrading Aspergillus terreus MTCC 6324 produces a high level of extremely active and stable cellular large catalase (CAT) during growth on n-hexadecane to combat the oxidative stress caused by the hydrocarbon degrading metabolic machinery inside the cell. A 160-fold purification with specific activity of around 66 × 105 U mg−1 protein was achieved. The native protein molecular mass was 368 ± 5 kDa with subunit molecular mass of nearly 90 kDa, which indicates that the native CAT protein is a homotetramer. The isoelectric pH (pI) of the purified CAT was 4.2. BLAST aligned peptide mass fragments of CAT protein showed its highest similarity with the catalase B protein from other fungal sources. CAT was active in a broad range of pH 4 to 12 and temperature 25°C to 90°C. The catalytic efficiency (Kcat/Km) of 4.7 × 108 M−1 s−1 within the studied substrate range and alkaline pH stability (half-life, t1/2 at pH 12~15 months) of CAT are considerably higher than most of the extensively studied catalases from different sources. The storage stability (t1/2) of CAT at physiological pH 7.5 and 4°C was nearly 30 months. The haem was identified as haem b by electrospray ionization tandem mass spectroscopy (ESI-MS/MS). PMID:27057351

  10. Highly Active and Stable Large Catalase Isolated from a Hydrocarbon Degrading Aspergillus terreus MTCC 6324.

    PubMed

    Vatsyayan, Preety; Goswami, Pranab

    2016-01-01

    A hydrocarbon degrading Aspergillus terreus MTCC 6324 produces a high level of extremely active and stable cellular large catalase (CAT) during growth on n-hexadecane to combat the oxidative stress caused by the hydrocarbon degrading metabolic machinery inside the cell. A 160-fold purification with specific activity of around 66 × 10(5) U mg(-1) protein was achieved. The native protein molecular mass was 368 ± 5 kDa with subunit molecular mass of nearly 90 kDa, which indicates that the native CAT protein is a homotetramer. The isoelectric pH (pI) of the purified CAT was 4.2. BLAST aligned peptide mass fragments of CAT protein showed its highest similarity with the catalase B protein from other fungal sources. CAT was active in a broad range of pH 4 to 12 and temperature 25°C to 90°C. The catalytic efficiency (K cat/K m ) of 4.7 × 10(8) M(-1) s(-1) within the studied substrate range and alkaline pH stability (half-life, t 1/2 at pH 12~15 months) of CAT are considerably higher than most of the extensively studied catalases from different sources. The storage stability (t 1/2) of CAT at physiological pH 7.5 and 4°C was nearly 30 months. The haem was identified as haem b by electrospray ionization tandem mass spectroscopy (ESI-MS/MS). PMID:27057351

  11. Isozymes of Ipomoea batatas catechol oxidase differ in catalase-like activity.

    PubMed

    Gerdemann, C; Eicken, C; Magrini, A; Meyer, H E; Rompel, A; Spener, F; Krebs, B

    2001-07-01

    The amino acid sequences of two isozymes of catechol oxidase from sweet potatoes (Ipomoea batatas) were determined by Edman degradation of BrCN cleavage fragments of the native protein and by sequencing of amplified cDNA fragments. Sequence alignment and phylogenetic analysis of plant catechol oxidases revealed about 80% equidistance between the two I. batatas catechol oxidases and approximately 40--60% to catechol oxidases of other plants. When H(2)O(2) was applied as substrate the 39 kDa isozyme, but not the 40 kDa isozyme, showed catalase-like activity. The structure of the 40 kDa isozyme was modeled on the basis of the published crystal structure of the 39 kDa isozyme [T. Klabunde et al., Nat. Struct. Biol. 5 (1998) 1084]. The active site model closely resembled that of the 39 kDa isozyme determined by crystallography, except for a mutation of Thr243 (40 kDa isozyme) to Ile241 (39 kDa isozyme) close to the dimetal center. This residue difference affects the orientation of the Glu238/236 residue, which is thought to be responsible for the catalase-like activity of the 39 kDa isozyme for which a catalytic mechanism is proposed. PMID:11451442

  12. Piper betle shows antioxidant activities, inhibits MCF-7 cell proliferation and increases activities of catalase and superoxide dismutase

    PubMed Central

    2012-01-01

    Background Breast cancer is the most common form of cancer and the focus on finding chemotherapeutic agents have recently shifted to natural products. Piper betle is a medicinal plant with various biological activities. However, not much data is available on the anti-cancer effects of P. betle on breast cancer. Due to the current interest in the potential effects of antioxidants from natural products in breast cancer treatment, we investigated the antioxidant activities of the leaves of P. betle and its inhibitory effect on the proliferation of the breast cancer cell line, MCF-7. Methods The leaves of P. betle were extracted with solvents of varying polarities (water, methanol, ethyl acetate and hexane) and their phenolic and flavonoid content were determined using colorimetric assays. Phenolic composition was characterized using HPLC. Antioxidant activities were measured using FRAP, DPPH, superoxide anion, nitric oxide and hyroxyl radical scavenging assays. Biological activities of the extracts were analysed using MTT assay and antioxidant enzyme (catalase, superoxide dismutase, glutathione peroxidase) assays in MCF-7 cells. Results Overall, the ethyl acetate extract showed the highest ferric reducing activity and radical scavenging activities against DPPH, superoxide anion and nitric oxide radicals. This extract also contained the highest phenolic content implying the potential contribution of phenolics towards the antioxidant activities. HPLC analyses revealed the presence of catechin, morin and quercetin in the leaves. The ethyl acetate extract also showed the highest inhibitory effect against the proliferation of MCF-7 cells (IC50=65 μg/ml). Treatment of MCF-7 cells with the plant extract increased activities of catalase and superoxide dismutase. Conclusions Ethyl acetate is the optimal solvent for the extraction of compounds with antioxidant and anti-proliferative activities. The increased activities of catalase and superoxide dismutase in the treated cells

  13. Delivery of bioactive macromolecules from microporous polymer matrices: Release and activity profiles of lysozyme, collagenase and catalase.

    PubMed

    Wang, Yiwei; Chang, Hsin-I; Li, Xiongwei; Alpar, Oyar; Coombes, Allan G A

    2009-06-28

    Microporous polycaprolactone (PCL) matrices containing lysozyme, collagenase and catalase respectively with molecular weight covering a wide range from 14.3 to 240kDa were produced by a novel method involving rapid cooling of particle suspensions in dry ice. The enzyme loading efficiency (lysozyme (50%), collagenase (75%) and catalase (90%)) depended on the enzyme molecular weight and the non-solvent used to extract acetone from the hardened matrices. Sustained enzyme release occurred from the PCL matrices over 11 days with retained activity dependent on the particular enzyme used (collagenase 100% activity at 11 days, lysozyme 75-80% at 11 days, catalase 10-20% at 5 days). The present findings confirm the potential of microporous PCL matrices for delivering bioactive macromolecules from implantable/insertable depot-type formulations and tissue engineering scaffolds and recommend catalase as a challenging model protein for evaluating such devices. PMID:19491030

  14. A simple method to measure effective catalase activities: optimization, validation, and application in green coffee.

    PubMed

    Montavon, Philippe; Kukic, Koraljka Rade; Bortlik, Karlheinz

    2007-01-15

    Oxidative metabolism in coffee cherries during maturation appears to be regulated by the timely expression of redox enzymes such as catalase (CAT), peroxidase (POD), and polyphenoloxidase (PPO). Among these enzymes, CAT is suspected to contribute significantly in setting the redox status of the healthy cherry and the processed bean. The initial redox status of the green bean might further control the nature and dynamics of reactions induced by roasting and eventually quality aspects of the end product. In this respect, Arabica (Coffea arabica) and Robusta (Coffea canephora) typically differ by their cup coffee flavor profiles. We developed an assay that allowed us to screen numerous green coffee samples for effective CAT activities. The proposed assay, which monitors CAT activities by online oxygen sensing in green coffee crude suspensions incubated with H2O2, seeks to integrate potential effects of endogenous inhibitors and activators. After optimization and validation of the assay, 23 Arabicas, 23 Robustas, and 8 Arabustas were analyzed. Nearly all Arabicas (22 of 23) harbored high CAT activity levels, whereas all Robustas harbored low ones. Arabustas performed like Arabicas of the lower CAT activity range. The traditional spectrophotometric assay did not reveal these specificities. Because of its simplicity, our assay might be valuable for assessing effective CAT activities in various plant tissues. PMID:17141173

  15. Flow injection catalase activity measurement based on gold nanoparticles/carbon nanotubes modified glassy carbon electrode.

    PubMed

    El Nashar, Rasha Mohamed

    2012-07-15

    Amperometric flow injection method of hydrogen peroxide analysis was developed based on catalase enzyme (CAT) immobilization on a glassy carbon electrode (GC) modified with electrochemically deposited gold nanoparticles on a multiwalled carbon nanotubes/chitosan film. The resulting biosensor was applied to detect hydrogen peroxide with a linear response range 1.0×10(-7)-2.5×10(-3)M with a correlation coefficient 0.998 and response time less than 10s. The optimum conditions of film deposition such as potential applied, deposition time and pH were tested and the flow injection conditions were optimized to be: flow rate of 3ml/min, sample volume 75μl and saline phosphate buffer of pH 6.89. Catalase enzyme activity was successfully determined in liver homogenate samples of rats, raised under controlled dietary plan, using a flow injection analysis system involving the developed biosensor simultaneously with spectrophotometric detection, which is the common method of enzymatic assay. PMID:22817944

  16. A bifunctional enzyme from Rhodococcus erythropolis exhibiting secondary alcohol dehydrogenase-catalase activities.

    PubMed

    Martinez-Rojas, Enriqueta; Kurt, Tutku; Schmidt, Udo; Meyer, Vera; Garbe, Leif-Alexander

    2014-11-01

    Alcohol dehydrogenases have long been recognized as potential biocatalyst for production of chiral fine and bulk chemicals. They are relevant for industry in enantiospecific production of chiral compounds. In this study, we identified and purified a nicotinamide adenine dinucleotide (NAD)-dependent secondary alcohol dehydrogenase (SdcA) from Rhodococcus erythropolis oxidizing γ-lactols into γ-lactones. SdcA showed broad substrate specificity on γ-lactols; secondary aliphatic alcohols with 8 and 10 carbon atoms were also substrates and oxidized with (2S)-stereospecificity. The enzyme exhibited moderate stability with a half-life of 5 h at 40 °C and 20 days at 4 °C. Mass spectrometric identification revealed high sequence coverage of SdcA amino acid sequence to a highly conserved catalase from R. erythropolis. The corresponding encoding gene was isolated from genomic DNA and subsequently overexpressed in Escherichia coli BL21 DE3 cells. In addition, the recombinant SdcA was purified and characterized in order to confirm that the secondary alcohol dehydrogenase and catalase activity correspond to the same enzyme. PMID:24846734

  17. Melanocortin 1 receptor agonist protects podocytes through catalase and RhoA activation.

    PubMed

    Elvin, Johannes; Buvall, Lisa; Lindskog Jonsson, Annika; Granqvist, Anna; Lassén, Emelie; Bergwall, Lovisa; Nyström, Jenny; Haraldsson, Börje

    2016-05-01

    Drugs containing adrenocorticotropic hormone have been used as therapy for patients with nephrotic syndrome. We have previously shown that adrenocorticotropic hormone and a selective agonist for the melanocortin 1 receptor (MC1R) exert beneficial actions in experimental membranous nephropathy with reduced proteinuria, reduced oxidative stress, and improved glomerular morphology and function. Our hypothesis is that MC1R activation in podocytes elicits beneficial effects by promoting stress fibers and maintaining podocyte viability. To test the hypothesis, we cultured podocytes and used highly specific agonists for MC1R. Podocytes were subjected to the nephrotic-inducing agent puromycin aminonucleoside, and downstream effects of MC1R activation on podocyte survival, antioxidant defense, and cytoskeleton dynamics were studied. To increase the response and enhance intracellular signals, podocytes were transduced to overexpress MC1R. We showed that puromycin promotes MC1R expression in podocytes and that activation of MC1R promotes an increase of catalase activity and reduces oxidative stress, which results in the dephosphorylation of p190RhoGAP and formation of stress fibers through RhoA. In addition, MC1R agonists protect against apoptosis. Together, these mechanisms protect the podocyte against puromycin. Our findings strongly support the hypothesis that selective MC1R-activating agonists protect podocytes and may therefore be useful to treat patients with nephrotic syndromes commonly considered as podocytopathies. PMID:26887829

  18. Effects of sodium nitroprusside on mouse erythrocyte catalase activity and malondialdehyde status.

    PubMed

    Sani, Mamane; Sebai, Hichem; Refinetti, Roberto; Mondal, Mohan; Ghanem-Boughanmi, Néziha; Boughattas, Naceur A; Ben-Attia, Mossadok

    2016-07-01

    There is controversy about the anti- or pro-oxidative effects of the nitric oxide (NO)-donor sodium nitroprusside (SNP). Hence, the activity of the antioxidant enzyme catalase (CAT) and the status of malondialdehyde (MDA) were investigated after a 2.5 mg/kg dose of SNP had been i.p. administered to different and comparable groups of mice (n =  48). The drug was administered at two different circadian times (1 and 13 h after light onset [HALO]). There were, irrespectively of sampling time, no significant differences in the means of CAT activity and MDA status between control and SNP-treated groups, no matter the treatment time. However, CAT activity was significantly (Student's t-test, p < 0.001) increased 1 h following SNP administration at 1 HALO, whereas the significant (p < 0.001) increase in the enzyme activity was found only 3 h after injection at 13 HALO. The drug dosing either at 1 or 13 HALO resulted in no significant differences of MDA status between control and treated groups regardless to the sampling time. Two-way analysis of variance (ANOVA) detected a significant (F0.05(7,88)= 5.3; p < 0.0006) interaction between sampling time and treatment in mice injected at 1 HALO, suggesting the influence of treatment on sampling-time-related changes in CAT activity. However, ANOVA validated no interaction between the two factors in mice treated at 13 HALO, illustrating that the sampling-time differences in enzyme activity were greater. Furthermore, two-way ANOVA revealed no interaction in the variation of MDA status in animals treated either at 1 or 13 HALO. This study indicates that SNP significantly affected the anti-oxidant system. PMID:26738972

  19. Effects of humic acid-metal complexes on hepatic carnitine palmitoyltransferase, carnitine acetyltransferase and catalase activities

    SciTech Connect

    Fungjou Lu; Youngshin Chen . Dept. of Biochemistry); Tienshang Huang . Dept. of Medicine)

    1994-03-01

    A significant increase in activities of hepatic carnitine palmitoyltransferase and carnitine acetyltransferase was observed in male Balb/c mice intraperitoneally injected for 40 d with 0.125 mg/0.1 ml/d humic acid-metal complexes. Among these complexes, the humic acid-As complex was relatively effective, whereas humic acid-25 metal complex was more effective, and humic acid-26 metal complex was most effective. However, humic acid or metal mixtures, or metal such as As alone, was not effective. Humic acid-metal complexes also significantly decreased hepatic catalase activity. A marked decrease of 60-kDa polypeptide in liver cytoplasm was also observed on SDS-polyacrylamide gel electrophoresis after the mice had been injected with the complexes. Morphological analysis of a histopathological biopsy of such treated mice revealed several changes in hepatocytes, including focal necrosis and cell infiltration, mild fatty changes, reactive nuclei, and hypertrophy. Humic acid-metal complexes affect activities of metabolic enzymes of fatty acids, and this results in accumulation of hydrogen peroxide and increase of the lipid peroxidation. The products of lipid peroxidation may be responsible for liver damage and possible carcinogenesis. Previous studies in this laboratory had shown that humic acid-metal complex altered the coagulation system and that humic acid, per se, caused vasculopathy. Therefore, humic acid-metal complexes may be main causal factors of not only so-called blackfoot disease, but also the liver cancer prevailing on the southwestern coast of Taiwan.

  20. Catalase-peroxidase (Mycobacterium tuberculosis KatG) catalysis and isoniazid activation.

    PubMed

    Chouchane, S; Lippai, I; Magliozzo, R S

    2000-08-15

    Resonance Raman spectra of native, overexpressed M. tuberculosis catalase-peroxidase (KatG), the enzyme responsible for activation of the antituberculosis antibiotic isoniazid (isonicotinic acid hydrazide), have confirmed that the heme iron in the resting (ferric) enzyme is high-spin five-coordinate. Difference Raman spectra did not reveal a change in coordination number upon binding of isoniazid to KatG. Stopped-flow spectrophotometric studies of the reaction of KatG with stoichiometric equivalents or small excesses of hydrogen peroxide revealed only the optical spectrum of the ferric enzyme with no hypervalent iron intermediates detected. Large excesses of hydrogen peroxide generated oxyferrous KatG, which was unstable and rapidly decayed to the ferric enzyme. Formation of a pseudo-stable intermediate sharing optical characteristics with the porphyrin pi-cation radical-ferryl iron species (Compound I) of horseradish peroxidase was observed upon reaction of KatG with excess 3-chloroperoxybenzoic acid, peroxyacetic acid, or tert-butylhydroperoxide (apparent second-order rate constants of 3.1 x 10(4), 1.2 x 10(4), and 25 M(-1) s(-1), respectively). Identification of the intermediate as KatG Compound I was confirmed using low-temperature electron paramagnetic resonance spectroscopy. Isoniazid, as well as ascorbate and potassium ferrocyanide, reduced KatG Compound I to the ferric enzyme without detectable formation of Compound II in stopped-flow measurements. This result differed from the reaction of horseradish peroxidase Compound I with isoniazid, during which Compound II was stably generated. These results demonstrate important mechanistic differences between a bacterial catalase-peroxidase and the homologous plant peroxidases and yeast cytochrome c peroxidase, in its reactions with peroxides as well as substrates. PMID:10933818

  1. Combined effects of water temperature and copper ion concentration on catalase activity in Crassostrea ariakensis

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Yang, Hongshuai; Liu, Jiahui; Li, Yanhong; Liu, Zhigang

    2015-07-01

    A central composite experimental design and response surface method were used to investigate the combined effects of water temperature (18-34°C) and copper ion concentration (0.1-1.5 mg/L) on the catalase (CAT) activity in the digestive gland of Crassostrea ariakensis. The results showed that the linear effects of temperature were significant ( P<0.01), the quadratic effects of temperature were significant ( P<0.05), the linear effects of copper ion concentration were not significant ( P>0.05), and the quadratic effects of copper ion concentration were significant ( P<0.05). Additionally, the synergistic effects of temperature and copper ion concentration were not significant ( P>0.05), and the effect of temperature was greater than that of copper ion concentration. A model equation of CAT enzyme activity in the digestive gland of C. ariakensis toward the two factors of interest was established, with R 2, Adj. R 2 and Pred. R 2 values as high as 0.943 7, 0.887 3 and 0.838 5, respectively. These findings suggested that the goodness of fit to experimental data and predictive capability of the model were satisfactory, and could be practically applied for prediction under the conditions of the study. Overall, the results suggest that the simultaneous variation of temperature and copper ion concentration alters the activity of the antioxidant enzyme CAT by modulating active oxygen species metabolism, which may be utilized as a biomarker to detect the effects of copper pollution.

  2. Magnetization studies of the active and fluoride-inhibited derivatives of the reduced catalase of Lactobacillus plantarum: toward a general picture of the anion-inhibited and active forms of the reduced dimanganese catalases.

    PubMed

    Le Pape, Laurent; Perret, Emmanuel; Michaud-Soret, Isabelle; Latour, Jean-Marc

    2002-04-01

    The magnetic properties of the reduced catalase from Lactobacillus plantarum have been studied for the active enzyme and its fluoride complex through variable field/variable temperature magnetization measurements. The magnetic exchange interaction deduced from these experiments [fluoride complex: - J=1.3(1) cm(-1); active enzyme: - J=5.6(5) cm(-1); H=-2 J S(1) S(2)] are similar to those presently obtained in a re-analysis of the data for the corresponding forms of the Thermus thermophilus enzyme (previously published in 1997, Angew Chem Int Ed Engl 36:1626-1628): phosphate complex: - J=2.1(2) cm(-1); active enzyme - J=5.0(3) cm(-1). These results concur to a unified picture for the two enzymes, consistent with the presence of a hydroxide bridge in the reduced active catalases and its replacement by an aqua bridge in the anion-inhibited enzymes as the main mediators of the magnetic exchange. PMID:11941502

  3. Effect of periplasmic expression of recombinant mouse interleukin-4 on hydrogen peroxide concentration and catalase activity in Escherichia coli.

    PubMed

    Mehdizadeh Aghdam, Elnaz; Mahmoudi Azar, Lena; Barzegari, Abolfazl; Karimi, Farrokh; Mesbahfar, Majid; Samadi, Naser; Hejazi, Mohammad Saeid

    2012-12-15

    Oxidative stress occurs as a result of imbalance between generation and detoxification of reactive oxygen species (ROS). This kind of stress was rarely discussed in connection with foreign protein production in Escherichia coli. Relation between cytoplasmic recombinant protein expression with H(2)O(2) concentration and catalase activity variation was already reported. The periplasmic space of E. coli has different oxidative environment in relative to cytoplasm and there are some benefits in periplasmic expression of recombinant proteins. In this study, hydrogen peroxide concentration and catalase activity following periplasmic expression of mouse IL-4 were measured in E. coli. After construction of pET2mIL4 plasmid, the expression of recombinant mouse interleukin-4 (mIL-4) was confirmed. Then, the H(2)O(2) concentration and catalase activity variation in the cells were studied in exponential and stationary phases at various ODs and were compared to those of wild type cells and empty vector transformed cells. It was revealed that empty vector introduction and periplasmic recombinant protein expression increased significantly the H(2)O(2) concentration of the cells. However, the H(2)O(2) concentration in mIL-4 expressing cells was significantly higher than its concentration in empty vector transformed cells, demonstrating more effects of recombinant mIL-4 expression on H(2)O(2) elevation. Likewise, although catalase activity was reduced in foreign DNA introduced cells, it was more lowered following expression of recombinant proteins. Correlation between H(2)O(2) concentration elevation and catalase activity reduction with cell growth depletion is also demonstrated. It was also found that recombinant protein expression results in cell size increase. PMID:23000065

  4. The structure and peroxidase activity of a 33-kDa catalase-related protein from Mycobacterium avium ssp. paratuberculosis

    PubMed Central

    Pakhomova, Svetlana; Gao, Benlian; Boeglin, William E; Brash, Alan R; Newcomer, Marcia E

    2009-01-01

    True catalases are tyrosine-liganded, usually tetrameric, hemoproteins with subunit sizes of ∼55–84 kDa. Recently characterized hemoproteins with a catalase-related structure, yet lacking in catalatic activity, include the 40–43 kDa allene oxide synthases of marine invertebrates and cyanobacteria. Herein, we describe the 1.8 Å X-ray crystal structure of a 33 kDa subunit hemoprotein from Mycobacterium avium ssp. paratuberculosis (annotated as MAP-2744c), that retains the core elements of the catalase fold and exhibits an organic peroxide-dependent peroxidase activity. MAP-2744c exhibits negligible catalatic activity, weak peroxidatic activity using hydrogen peroxide (20/s) and strong peroxidase activity (∼300/s) using organic hydroperoxides as co-substrate. Key amino acid differences significantly impact prosthetic group conformation and placement and confer a distinct activity to this prototypical member of a group of conserved bacterial “minicatalases”. Its structural features and the result of the enzyme assays support a role for MAP-2744c and its close homologues in mitigating challenge by a variety of reactive oxygen species. PMID:19827095

  5. A note concerning acetate activation of peroxidative activity of catalases using 2,2'-azino-bis(3-ethylbenzthiazoline)-6-sulfonic acid as a substrate.

    PubMed

    Baker, Warren L; Key, Christopher; Lonergan, Greg T

    2005-01-01

    Beef liver catalases showed peroxidative activity using 2,2'-azino-bis-(3-ethylbenzthiazoline)-6-sulfonic acid as the electron donor and hydrogen peroxide as the acceptor at a pH of 5. This activity was not observed at pH 7. The reaction depended on acetate concentration, although succinate and propionate could partly replace the acetate as a catalyst. Other haem proteins also catalyzed a peroxidative effect. The reaction using syringaldazine or the coupling between dimethylaminobenzoic acid and 3-methyl-2-benzothiazolinone hydrazone was less effective and less sensitive. Evidence is presented that the reaction is associated with a conformational change of the catalase. PMID:15932252

  6. Erythrocyte Catalase Activity in More Frequent Microcytic Hypochromic Anemia: Beta-Thalassemia Trait and Iron Deficiency Anemia

    PubMed Central

    Lazarte, Sandra Stella; Mónaco, María Eugenia; Jimenez, Cecilia Laura; Ledesma Achem, Miryam Emilse; Terán, Magdalena María; Issé, Blanca Alicia

    2015-01-01

    Most common microcytic hypochromic anemias are iron deficiency anemia (IDA) and β-thalassemia trait (BTT), in which oxidative stress (OxS) has an essential role. Catalase causes detoxification of H2O2 in cells, and it is an indispensable antioxidant enzyme. The study was designed to measure erythrocyte catalase activity (ECAT) in patients with IDA (10) or BTT (21), to relate it with thalassemia mutation type (β0 or β+) and to compare it with normal subjects (67). Ninety-eight individuals were analyzed since September 2013 to June 2014 in Tucumán, Argentina. Total blood count, hemoglobin electrophoresis at alkaline pH, HbA2, catalase, and iron status were performed. β-thalassemic mutations were determined by real-time PCR. Normal range for ECAT was 70,0–130,0 MU/L. ECAT was increased in 14% (3/21) of BTT subjects and decreased in 40% (4/10) of those with IDA. No significant difference (p = 0,245) was shown between normal and BTT groups, while between IDA and normal groups the difference was proved to be significant (p = 0,000). In β0 and β+ groups, no significant difference (p = 0,359) was observed. An altered ECAT was detected in IDA and BTT. These results will help to clarify how the catalase activity works in these anemia types. PMID:26527217

  7. Further studies on O sub 2 -resistant photosynthesis and photorespiration in a tobacco mutant with enhanced catalase activity

    SciTech Connect

    Zelitch, I. )

    1990-02-01

    The increase in net photosynthesis in M{sub 4} progeny of an O{sub 2}-resistant tobacco (Nicotiana tabacum) mutant relative to wild-type plants at 21 and 42% O{sub 2} has been confirmed and further investigated. Self-pollination of an M{sub 3} mutant produced M{sub 4} progeny segregating high catalase phenotypes (average 40% greater than wild type) at a frequency of about 60%. The high catalase phenotype cosegregated precisely with O{sub 2}-resistant photosynthesis. About 25% of the F{sub 1} progeny of reciprocal crosses between the same M{sub 3} mutant and wild type had high catalase activity, whether the mutant was used as the maternal or paternal parent, indicating nuclear inheritance. In high-catalase mutants the activity of NADH-hydroxypyruvate reductase, another peroxisomal enzyme, was the same as wild type. The mutants released 15% less photorespiratory CO{sub 2} as a percent of net photosynthesis in CO{sub 2}-free 21% O{sub 2} and 36% less in CO{sub 2}-free 42% O{sub 2} compared with wild type. The mutant leaf tissue also released less {sup 14}CO{sub 2} per (1-{sup 14}C)glycolate metabolized than wild type in normal air, consistent with less photorespiration in the mutant. The O{sub 2}-resistant photosynthesis appears to be caused by a decrease in photorespiration especially under conditions of high O{sub 2} where the stoichiometry of CO{sub 2} release per glycolate metabolized is expected to be enhanced. The higher catalase activity in the mutant may decrease the nonenzymatic peroxidation of keto-acids such as hydroxypyruvate and glyoxylate by photorespiratory H{sub 2}O{sub 2}.

  8. Isoniazid-resistance conferring mutations in Mycobacterium tuberculosis KatG: Catalase, peroxidase, and INH-NADH adduct formation activities

    PubMed Central

    Cade, Christine E; Dlouhy, Adrienne C; Medzihradszky, Katalin F; Salas-Castillo, Saida Patricia; Ghiladi, Reza A

    2010-01-01

    Mycobacterium tuberculosis catalase-peroxidase (KatG) is a bifunctional hemoprotein that has been shown to activate isoniazid (INH), a pro-drug that is integral to frontline antituberculosis treatments. The activated species, presumed to be an isonicotinoyl radical, couples to NAD+/NADH forming an isoniazid-NADH adduct that ultimately confers anti-tubercular activity. To better understand the mechanisms of isoniazid activation as well as the origins of KatG-derived INH-resistance, we have compared the catalytic properties (including the ability to form the INH-NADH adduct) of the wild-type enzyme to 23 KatG mutants which have been associated with isoniazid resistance in clinical M. tuberculosis isolates. Neither catalase nor peroxidase activities, the two inherent enzymatic functions of KatG, were found to correlate with isoniazid resistance. Furthermore, catalase function was lost in mutants which lacked the Met-Tyr-Trp crosslink, the biogenic cofactor in KatG which has been previously shown to be integral to this activity. The presence or absence of the crosslink itself, however, was also found to not correlate with INH resistance. The KatG resistance-conferring mutants were then assayed for their ability to generate the INH-NADH adduct in the presence of peroxide (t-BuOOH and H2O2), superoxide, and no exogenous oxidant (air-only background control). The results demonstrate that residue location plays a critical role in determining INH-resistance mechanisms associated with INH activation; however, different mutations at the same location can produce vastly different reactivities that are oxidant-specific. Furthermore, the data can be interpreted to suggest the presence of a second mechanism of INH-resistance that is not correlated with the formation of the INH-NADH adduct. PMID:20054829

  9. Rapid activation of catalase followed by citrate efflux effectively improves aluminum tolerance in the roots of chick pea (Cicer arietinum).

    PubMed

    Sharma, Manorma; Sharma, Vinay; Tripathi, Bhumi Nath

    2016-05-01

    The present study demonstrates the comparative response of two contrasting genotypes (aluminum (Al) tolerant and Al sensitive) of chick pea (Cicer arietinum) against Al stress. The Al-tolerant genotype (RSG 974) showed lesser inhibition of root growth as well as lower oxidative damages, measured in terms of the accumulation of H2O2 and lipid peroxidation compared to the Al-sensitive genotype (RSG 945). The accumulation of Al by roots of both genotypes was almost equal at 96 and 144 h after Al treatment; however, it was higher in Al-tolerant than Al-sensitive genotype at 48 h after Al treatment. Further, the Al-mediated induction of superoxide dismutase (SOD) activity was significantly higher in Al-tolerant than Al-sensitive genotype. Ascorbate peroxidase (APX) activity was almost similar in both genotypes. Al treatment promptly activated catalase activity in Al-tolerant genotype, and it was remarkably higher than that of Al-sensitive genotype. As another important Al detoxification mechanism, citrate efflux was almost equal in both genotypes except at 1000 μM Al treatment for 96 and 144 h. Further, citrate carrier and anion channel inhibitor experiment confirmed the contribution of citrate efflux in conferring Al tolerance in Al-tolerant genotype. Based on the available data, the present study concludes that rapid activation of catalase (also SOD) activity followed by citrate efflux effectively improves Al tolerance in chick pea. PMID:26615604

  10. Oxidative DNA damage levels and catalase activity in the clam Ruditapes decussatus as pollution biomarkers of Tunisian marine environment.

    PubMed

    Jebali, Jamel; Banni, Mohamed; de Almeida, Eduardo Alves; Boussetta, Hamadi

    2007-01-01

    Levels of the oxidative DNA damage 7, 8-dihydro-8-oxo-2'-deoxyguanosine (8-oxodG) and catalase (CAT) activity were measured in the digestive gland and gills of clams Ruditapes decussatus, related to the presence of pollutants along Tunisian marine environment. Increased levels of CAT were observed in tissues of clams from all the sites studied, compared to control values, and elevated 8-oxodG levels were observed at specific sites. Results obtained in this work indicate that the measurement of 8-oxodG levels and CAT activity in tissues of R. decussatus is promising in pollution monitoring studies of the Tunisian marine environment. PMID:16897518

  11. Effect of compatible and noncompatible osmolytes on the enzymatic activity and thermal stability of bovine liver catalase.

    PubMed

    Sepasi Tehrani, H; Moosavi-Movahedi, A A; Ghourchian, H; Ahmad, F; Kiany, A; Atri, M S; Ariaeenejad, Sh; Kavousi, K; Saboury, A A

    2013-12-01

    Catalase is an important antioxidant enzyme that catalyzes the disproportionation of H2O2 into harmless water and molecular oxygen. Due to various applications of the enzyme in different sectors of industry as well as medicine, the enhancement of stability of the enzyme is important. Effect of various classes of compatible as well as noncompatible osmolytes on the enzymatic activity, disaggregation, and thermal stability of bovine liver catalase have been investigated. Compatible osmolytes, proline, xylitol, and valine destabilize the denatured form of the enzyme and, therefore, increase its disaggregation and thermal stability. The increase in the thermal stability is accompanied with a slight increase of activity in comparison to the native enzyme at 25 °C. On the other hand, histidine, a noncompatible osmolyte stabilizes the denatured form of the protein and hence causes an overall decrease in the thermal stability and enzymatic activity of the enzyme. Chemometric results have confirmed the experimental results and have provided insight into the distribution and number of mole fraction components for the intermediates. The increase in melting temperature (Tm) and enzymatic rate could be further amplified by the intrinsic effect of temperature enhancement on the enzymatic activity for the industrial purposes. PMID:23249140

  12. Catalase and glutathione peroxidase are equally active in detoxification of hydrogen peroxide in human erythrocytes

    SciTech Connect

    Gaetani, G.F.; Galiano, S.; Canepa, L.; Ferraris, A.M.; Kirkman, H.N.

    1989-01-01

    Genetic deficiencies of glucose-6-phosphate dehydrogenase (G6PD) and NADPH predispose affected erythrocytes to destruction from peroxides. Conversely, genetic deficiencies of catalase do not predispose affected erythrocytes to peroxide-induced destruction. These observations have served to strengthen the assumption that the NADPH/glutathione/glutathione peroxidase pathway is the principal means for disposal of H/sub 2/O/sub 2/ in human erythrocytes. Recently, however, mammalian catalase was found to have tightly bound NADPH and to require NADPH for the prevention and reversal of inactivation by its toxic substrate (H/sub 2/O/sub 2/). Since both catalase and the glutathione pathway are dependent on NADPH for function, this finding raises the possibility that both mechanisms destroy H/sub 2/O/sub 2/ in human erythrocytes. A comparison of normal and acatalasemic erythrocytes in the present study indicated that catalase accounts for more than half of the destruction of H/sub 2/O/sub 2/ when H/sub 2/O/sub 2/ is generated at a rate comparable to that which leads to hemolysis in G6PD- deficient erythrocytes.

  13. Do Superoxide Dismutase (SOD) and Catalase (CAT) protect Cells from DNA Damage Induced by Active Arsenicals?

    EPA Science Inventory

    Superoxide dismutase (SOD) catalyzes the conversion of superoxide to hydrogen peroxide, which can be converted to water and oxygen through the action of catalase. Heterozygous mice of strain B6: 129S7-SodltmlLeb/J were obtained from Jackson Laboratories and bred to produce offspr...

  14. Oversynthesis of riboflavin in the yeast Pichia guilliermondii is accompanied by reduced catalase and superoxide dismutases activities.

    PubMed

    Prokopiv, Tetyana M; Fedorovych, Dariya V; Boretsky, Yuriy R; Sibirny, Andriy A

    2013-01-01

    Iron deficiency causes oversynthesis of riboflavin in several yeast species, known as flavinogenic yeasts. Under iron deprivation conditions, Pichia guilliermondii cells increase production of riboflavin and malondialdehyde and the formation of protein carbonyl groups, which reflect increased intracellular content of reactive oxygen species. In this study, we found that P. guilliermondii iron deprived cells showed dramatically decreased catalase and superoxide dismutase activities. Previously reported mutations rib80, rib81, and hit1, which affect repression of riboflavin synthesis and iron accumulation by iron ions, caused similar drops in activities of the mentioned enzymes. These findings could explain the previously described development of oxidative stress in iron deprived or mutated P. guilliermondii cells that overproduce riboflavin. Similar decrease in superoxide dismutase activities was observed in iron deprived cells in the non-flavinogenic yeast Saccharomyces cerevisiae. PMID:23053489

  15. Activity of Superoxide Dismutase and Catalase in Fenugreek (Trigonella foenum-graecum) in Response to Carbendazim.

    PubMed

    Sangeetha, R

    2010-01-01

    Fenugreek (Trigonella foenum-graecum) is an annual herb, used as a spice and traditionally as medicine. Fenugreek finds its uses in treating hyperglycemia, hyperlipidemia and disorders of gastro-intestinal and cardiovascular systems. Fenugreek cultivation in India is affected by fungal diseases like root-rot and damping-off and fungicides like carbendazim are used to overcome these infections. Fungicides play both positive and negative role in plants; fungicides protect plants from diseases and also exert oxidative stress simultaneously. This report is on the response of antioxidants, superoxide dismutase and catalase in fenugreek seeds and plants treated to different concentrations of carbendazim. PMID:20582202

  16. Francisella tularensis Catalase Restricts Immune Function by Impairing TRPM2 Channel Activity.

    PubMed

    Shakerley, Nicole L; Chandrasekaran, Akshaya; Trebak, Mohamed; Miller, Barbara A; Melendez, J Andrés

    2016-02-19

    As an innate defense mechanism, macrophages produce reactive oxygen species that weaken pathogens and serve as secondary messengers involved in immune function. The Gram-negative bacterium Francisella tularensis utilizes its antioxidant armature to limit the host immune response, but the mechanism behind this suppression is not defined. Here we establish that F. tularensis limits Ca(2+) entry in macrophages, thereby limiting actin reorganization and IL-6 production in a redox-dependent fashion. Wild type (live vaccine strain) or catalase-deficient F. tularensis (ΔkatG) show distinct profiles in their H2O2 scavenging rates, 1 and 0.015 pm/s, respectively. Murine alveolar macrophages infected with ΔkatG display abnormally high basal intracellular Ca(2+) concentration that did not increase further in response to H2O2. Additionally, ΔkatG-infected macrophages displayed limited Ca(2+) influx in response to ionomycin, as a result of ionophore H2O2 sensitivity. Exogenously added H2O2 or H2O2 generated by ΔkatG likely oxidizes ionomycin and alters its ability to transport Ca(2+). Basal increases in cytosolic Ca(2+) and insensitivity to H2O2-mediated Ca(2+) entry in ΔkatG-infected cells are reversed by the Ca(2+) channel inhibitors 2-aminoethyl diphenylborinate and SKF-96365. 2-Aminoethyl diphenylborinate but not SKF-96365 abrogated ΔkatG-dependent increases in macrophage actin remodeling and IL-6 secretion, suggesting a role for H2O2-mediated Ca(2+) entry through the transient receptor potential melastatin 2 (TRPM2) channel in macrophages. Indeed, increases in basal Ca(2+), actin polymerization, and IL-6 production are reversed in TRPM2-null macrophages infected with ΔkatG. Together, our findings provide compelling evidence that F. tularensis catalase restricts reactive oxygen species to temper macrophage TRPM2-mediated Ca(2+) signaling and limit host immune function. PMID:26679996

  17. Evaluation of the serum catalase and myeloperoxidase activities in chronic arsenic-exposed individuals and concomitant cytogenetic damage

    SciTech Connect

    Banerjee, Mayukh; Banerjee, Nilanjana; Ghosh, Pritha; Das, Jayanta K.; Basu, Santanu; Sarkar, Ajoy K.; States, J. Christopher; Giri, Ashok K.

    2010-11-15

    Chronic arsenic exposure through contaminated drinking water is a major environmental health issue. Chronic arsenic exposure is known to exert its toxic effects by a variety of mechanisms, of which generation of reactive oxygen species (ROS) is one of the most important. A high level of ROS, in turn, leads to DNA damage that might ultimately culminate in cancer. In order to keep the level of ROS in balance, an array of enzymes is present, of which catalase (CAT) and myeloperoxidase (MPO) are important members. Hence, in this study, we determined the activities of these two enzymes in the sera and chromosomal aberrations (CA) in peripheral blood lymphocytes in individuals exposed and unexposed to arsenic in drinking water. Arsenic in drinking water and in urine was used as a measure of exposure. Our results show that individuals chronically exposed to arsenic have significantly higher CAT and MPO activities and higher incidence of CA. We found moderate positive correlations between CAT and MPO activities, induction of CA and arsenic in urine and water. These results indicate that chronic arsenic exposure causes higher CAT and MPO activities in serum that correlates with induction of genetic damage. We conclude that the serum levels of these enzymes might be used as biomarkers of early arsenic exposure induced disease much before the classical dermatological symptoms of arsenicosis begin to appear.

  18. The induction of two biosynthetic enzymes helps Escherichia coli sustain heme synthesis and activate catalase during hydrogen peroxide stress

    PubMed Central

    Mancini, Stefano; Imlay, James A.

    2015-01-01

    Summary Hydrogen peroxide pervades many natural environments, including the phagosomes that mediate cell-based immunity. Transcriptomic analysis showed that during protracted low-grade H2O2 stress, Escherichia coli responds by activating both the OxyR defensive regulon and the Fur iron-starvation response. OxyR induced synthesis of two members of the nine-step heme biosynthetic pathway: ferrochelatase (HemH) and an isozyme of coproporphyrinogen III oxidase (HemF). Mutations that blocked either adaptation caused the accumulation of porphyrin intermediates, inadequate activation of heme enzymes, low catalase activity, defective clearance of H2O2, and a failure to grow. Genetic analysis indicated that HemH induction is needed to compensate for iron sequestration by the mini-ferritin Dps. Dps activity protects DNA and proteins by limiting Fenton chemistry, but it interferes with the ability of HemH to acquire the iron that it needs to complete heme synthesis. HemF is a manganoprotein that displaces HemN, an iron-sulfur enzyme whose synthesis and/or stability is apparently problematic during H2O2 stress. Thus the primary responses to H2O2, including the sequestration of iron, require compensatory adjustments in the mechanisms of iron-cofactor synthesis. The results support the growing evidence that oxidative stress is primarily an iron pathology. PMID:25664592

  19. Peroxide-inducible catalase in Aeromonas salmonicida subsp. salmonicida protects against exogenous hydrogen peroxide and killing by activated rainbow trout, Oncorhynchus mykiss L., macrophages.

    PubMed

    Barnes, A C; Bowden, T J; Horne, M T; Ellis, A E

    1999-03-01

    Aeromonas salmonicida subsp. salmonicida expresses a single cytoplasmically located catalase which was found to be inducible by exposure to 20 microM hydrogen peroxide in mid-exponential phase resulting in a 4 fold increase in activity. Subsequent exposure to 2 mM peroxide in late-exponential/early-stationary phase resulted in further induction of catalase activity which increased to 20 fold higher levels than those found in uninduced cultures. Exponentially induced cultures were protected against subsequent exposure to 10 mM peroxide which was lethal to non-induced cultures. Bacteria subjected to induction in mid-exponential and early-stationary phase were resistant to 100 mM peroxide, although viability was greatly reduced. Growth of the bacterium under iron-restricted conditions had no effect on the peroxide induction of catalase. As current evidence indicates, the latter is an iron-co-factored heme catalase, this result suggests that catalase induction has a high priority in the metabolism of iron. Furthermore, exposure to peroxide also induces expression of periplasmic MnSOD. A. salmonicida MT423 was resistant to normal rainbow trout macrophages, but was susceptible to killing by activated macrophages. However, if catalase was induced by prior exposure to 20 microM peroxide during mid-exponential phase, A. salmonicida was resistant to killing by activated macrophages. The ability of A. salmonicida to upregulate periplasmic MnSOD and cytoplasmic catalase production under iron restricted conditions and low level peroxide (conditions expected to exist during the early stages of an infection) may be vital for its ability to withstand attack by phagocytic cells in vivo. PMID:10089155

  20. A natural xanthone increases catalase activity but decreases NF-kappa B and lipid peroxidation in U-937 and HepG2 cell lines.

    PubMed

    Sahoo, Binay K; Zaidi, Adeel H; Gupta, Pankaj; Mokhamatam, Raveendra B; Raviprakash, Nune; Mahali, Sidhartha K; Manna, Sunil K

    2015-10-01

    Mangiferin, a C-glycosyl xanthone, has shown anti-inflammatory, antioxidant, and anti-tumorigenic activities. In the present study, we investigated the molecular mechanism for the antioxidant property of mangiferin. Considering the role of nuclear transcription factor kappa B (NF-κB) in inflammation and tumorigenesis, we hypothesized that modulating its activity will be a viable therapeutic target in regulating the redox-sensitive ailments. Our results show that mangiferin blocks several inducers, such as tumor necrosis factor (TNF), lypopolysaccharide (LPS), phorbol-12-myristate-13-acetate (PMA) or hydrogen peroxide (H2O2) mediated NF-κB activation via inhibition of reactive oxygen species generation. In silico docking studies predicted strong binding energy of mangiferin to the active site of catalase (-9.13 kcal/mol), but not with other oxidases such as myeloperoxidase, glutathione peroxidase, or inducible nitric oxide synthase. Mangiferin increased activity of catalase by 44%, but had no effect on myeloperoxidase activity in vitro. Fluorescence spectroscopy further revealed the binding of mangiferin to catalase at the single site with binding constant and binding affinity of 3.1×10(-7) M(-1) and 1.046 respectively. Mangiferin also inhibits TNF-induced lipid peroxidation and thereby protects apoptosis. Hence, mangiferin with its ability to inhibit NF-κB and increase the catalase activity may prove to be a potent therapeutic. PMID:26209362

  1. Engineering of a novel tri-functional enzyme with MnSOD, catalase and cell-permeable activities.

    PubMed

    Luangwattananun, Piriya; Yainoy, Sakda; Eiamphungporn, Warawan; Songtawee, Napat; Bülow, Leif; Ayudhya, Chartchalerm Isarankura Na; Prachayasittikul, Virapong

    2016-04-01

    Cooperative function of superoxide dismutase (SOD) and catalase (CAT), in protection against oxidative stress, is known to be more effective than the action of either single enzyme. Chemical conjugation of the two enzymes resulted in molecules with higher antioxidant activity and therapeutic efficacy. However, chemical methods holds several drawbacks; e.g., loss of enzymatic activity, low homogeneity, time-consuming, and the need of chemical residues removal. Yet, the conjugated enzymes have never been proven to internalize into target cells. In this study, by employing genetic and protein engineering technologies, we reported designing and production of a bi-functional protein with SOD and CAT activities for the first time. To enable cellular internalization, cell penetrating peptide from HIV-1 Tat (TAT) was incorporated. Co-expression of CAT-MnSOD and MnSOD-TAT fusion genes allowed simultaneous self-assembly of the protein sequences into a large protein complex, which is expected to contained one tetrameric structure of CAT, four tetrameric structures of MnSOD and twelve units of TAT. The protein showed cellular internalization and superior protection against paraquat-induced cell death as compared to either complex bi-functional protein without TAT or to native enzymes fused with TAT. This study not only provided an alternative strategy to produce multifunctional protein complex, but also gained an insight into the development of therapeutic agent against oxidative stress-related conditions. PMID:26778154

  2. Effects of total dissolved gas supersaturated water on lethality and catalase activity of Chinese sucker (Myxocyprinus asiaticus Bleeker)*

    PubMed Central

    Chen, Shi-chao; Liu, Xiao-qing; Jiang, Wen; Li, Ke-feng; Du, Jun; Shen, Dan-zhou; Gong, Quan

    2012-01-01

    Total dissolved gas (TDG) supersaturation caused by dam sluicing can result in gas bubble trauma (GBT) in fish and threaten their survival. In the present study, Chinese suckers (Myxocyprinus asiaticus Bleeker) were exposed to TDG supersaturated water at levels ranging from 120% to 145% for 48 h. The median lethal concentration (LC50) and the median lethal time (LT50) were determined to evaluate acute lethal effects on Chinese suckers. The results showed that the LC50 values of 4, 6, 8, and 10 h were 142%, 137%, 135%, and 130%, respectively. The LT50 values were 3.2, 4.7, 7.8, 9.2, and 43.4 h, respectively, when TDG supersaturated levels were 145%, 140%, 135%, 130%, and 125%. Furthermore, the biological responses in Chinese suckers were studied by assaying the catalase (CAT) activities in gills and muscles at the supersaturation level of 140% within LT50. The CAT activities in the gills and muscle tissues exhibited a regularity of a decrease after an increase. CAT activities in the muscles were increased significantly at 3/5LT50 (P<0.05) and then came back to the normal level. However, there were no significant differences between the treatment group (TDG level of 140%) and the control group (TDG level of 100%) on CAT activities in the gills before 3/5LT50 (P>0.05), but the activities were significantly lower than the normal level at 4/5LT50 and LT50 (P<0.05). PMID:23024046

  3. Effects of total dissolved gas supersaturated water on lethality and catalase activity of Chinese sucker (Myxocyprinus asiaticus Bleeker).

    PubMed

    Chen, Shi-chao; Liu, Xiao-qing; Jiang, Wen; Li, Ke-feng; Du, Jun; Shen, Dan-zhou; Gong, Quan

    2012-10-01

    Total dissolved gas (TDG) supersaturation caused by dam sluicing can result in gas bubble trauma (GBT) in fish and threaten their survival. In the present study, Chinese suckers (Myxocyprinus asiaticus Bleeker) were exposed to TDG supersaturated water at levels ranging from 120% to 145% for 48 h. The median lethal concentration (LC(50)) and the median lethal time (LT(50)) were determined to evaluate acute lethal effects on Chinese suckers. The results showed that the LC(50) values of 4, 6, 8, and 10 h were 142%, 137%, 135%, and 130%, respectively. The LT(50) values were 3.2, 4.7, 7.8, 9.2, and 43.4 h, respectively, when TDG supersaturated levels were 145%, 140%, 135%, 130%, and 125%. Furthermore, the biological responses in Chinese suckers were studied by assaying the catalase (CAT) activities in gills and muscles at the supersaturation level of 140% within LT(50). The CAT activities in the gills and muscle tissues exhibited a regularity of a decrease after an increase. CAT activities in the muscles were increased significantly at 3/5LT(50) (P<0.05) and then came back to the normal level. However, there were no significant differences between the treatment group (TDG level of 140%) and the control group (TDG level of 100%) on CAT activities in the gills before 3/5LT(50) (P>0.05), but the activities were significantly lower than the normal level at 4/5LT(50) and LT(50) (P<0.05). PMID:23024046

  4. Shear stress stimulates nitric oxide signaling in pulmonary arterial endothelial cells via a reduction in catalase activity: role of protein kinase Cδ

    PubMed Central

    Kumar, Sanjiv; Sud, Neetu; Fonseca, Fabio V.; Hou, Yali

    2010-01-01

    Previous studies have indicated that acute increases in shear stress can stimulate endothelial nitric oxide synthase (eNOS) activity through increased PI3 kinase/Akt signaling and phosphorylation of Ser1177. However, the mechanism by which shear stress activates this pathway has not been adequately resolved nor has the potential role of reactive oxygen species (ROS) been evaluated. Thus, the purpose of this study was to determine if shear-mediated increases in ROS play a role in stimulating Ser1177 phosphorylation and NO signaling in pulmonary arterial endothelial cells (PAEC) exposed to acute increases in shear stress. Our initial studies demonstrated that although shear stress did not increase superoxide levels in PAEC, there was an increase in H2O2 levels. The increases in H2O2 were associated with a decrease in catalase activity but not protein levels. In addition, we found that acute shear stress caused an increase in eNOS phosphorylation at Ser1177 phosphorylation and a decrease in phosphorylation at Thr495. We also found that the overexpression of catalase significantly attenuated the shear-mediated increases in H2O2, phospho-Ser1177 eNOS, and NO generation. Further investigation identified a decrease in PKCδ activity in response to shear stress, and the overexpression of PKCδ attenuated the shear-mediated decrease in Thr495 phosphorylation and the increase in NO generation, and this led to increased eNOS uncoupling. PKCδ overexpression also attenuated Ser1177 phosphorylation through a posttranslational increase in catalase activity, mediated via a serine phosphorylation event, reducing shear-mediated increases in H2O2. Together, our data indicate that shear stress decreases PKCδ activity, altering the phosphorylation pattern catalase, leading to decreased catalase activity and increased H2O2 signaling, and this in turn leads to increases in phosphorylation of eNOS at Ser1177 and NO generation. PMID:19897742

  5. Access channel residues Ser315 and Asp137 in Mycobacterium tuberculosis catalase-peroxidase (KatG) control peroxidatic activation of the pro-drug isoniazid

    PubMed Central

    Zhao, Xiangbo; Hersleth, Hans-Petter; Zhu, Janan; Andersson, K. Kristoffer; Magliozzo, Richard S.

    2013-01-01

    Peroxidatic activation of the anti-tuberculosis pro-drug isoniazid by Mycobacterium tuberculosis catalase-peroxidase (KatG) is regulated by gating residues of a heme access channel. The steric restriction at the bottleneck of this channel is alleviated by replacement of residue Asp137 with Ser, according to crystallographic and kinetic studies. PMID:24185282

  6. Coexpressed Catalase Protects Chimeric Antigen Receptor–Redirected T Cells as well as Bystander Cells from Oxidative Stress–Induced Loss of Antitumor Activity

    PubMed Central

    Ligtenberg, Maarten A.; Mougiakakos, Dimitrios; Mukhopadhyay, Madhura; Witt, Kristina; Lladser, Alvaro; Chmielewski, Markus; Riet, Tobias; Abken, Hinrich

    2016-01-01

    Treatment of cancer patients by adoptive T cell therapy has yielded promising results. In solid tumors, however, T cells encounter a hostile environment, in particular with increased inflammatory activity as a hallmark of the tumor milieu that goes along with abundant reactive oxygen species (ROS) that substantially impair antitumor activity. We present a strategy to render antitumor T cells more resilient toward ROS by coexpressing catalase along with a tumor specific chimeric Ag receptor (CAR) to increase their antioxidative capacity by metabolizing H2O2. In fact, T cells engineered with a bicistronic vector that concurrently expresses catalase, along with the CAR coexpressing catalase (CAR-CAT), performed superior over CAR T cells as they showed increased levels of intracellular catalase and had a reduced oxidative state with less ROS accumulation in both the basal state and upon activation while maintaining their antitumor activity despite high H2O2 levels. Moreover, CAR-CAT T cells exerted a substantial bystander protection of nontransfected immune effector cells as measured by CD3ζ chain expression in bystander T cells even in the presence of high H2O2 concentrations. Bystander NK cells, otherwise ROS sensitive, efficiently eliminate their K562 target cells under H2O2-induced oxidative stress when admixed with CAR-CAT T cells. This approach represents a novel means for protecting tumor-infiltrating cells from tumor-associated oxidative stress–mediated repression. PMID:26673145

  7. Kinetin increases chromium absorption, modulates its distribution, and changes the activity of catalase and ascorbate peroxidase in Mexican Palo Verde

    PubMed Central

    Zhao, Yong; Peralta-Videa, Jose R.; Lopez-Moreno, Martha L.; Ren, Minghua; Saupe, Geoffrey; Gardea-Torresdey, Jorge L

    2015-01-01

    This report shows, for the first time, the effectiveness of the phytohormone kinetin (KN) in increasing Cr translocation from roots to stems in Mexican Palo Verde. Fifteen-day-old seedlings, germinated in soil spiked with Cr(III) and (VI) at 60 and 10 mg kg−1, respectively, were watered every other day for 30 days with a KN solution at 250 μM. Samples were analyzed for catalase (CAT) and ascorbate peroxidase (APOX) activities, Cr concentration, and Cr distribution in tissues. Results showed that KN reduced CAT but increased APOX in the roots of Cr(VI)-treated plants. In the leaves, KN reduced both CAT and APOX in Cr(III) but not in Cr(VI)-treated plants. However, KN increased total Cr concentration in roots, stems, and leaves by 45%, 103%, and 72%, respectively, compared to Cr(III) alone. For Cr(VI), KN increased Cr concentrations in roots, stems, and leaves, respectively, by 53%, 129%, and 168%, compared to Cr(VI) alone. The electron probe microanalyzer results showed that Cr was mainly located at the cortex section in the root, and Cr distribution was essentially homogenous in stems. However, proven through X-ray images, Cr(VI)-treated roots and stems had more Cr accumulation than Cr(III) counterparts. KN increased the Cr translocation from roots to stems. PMID:21174467

  8. Ascorbate Peroxidase and Catalase Activities and Their Genetic Regulation in Plants Subjected to Drought and Salinity Stresses

    PubMed Central

    Sofo, Adriano; Scopa, Antonio; Nuzzaci, Maria; Vitti, Antonella

    2015-01-01

    Hydrogen peroxide (H2O2), an important relatively stable non-radical reactive oxygen species (ROS) is produced by normal aerobic metabolism in plants. At low concentrations, H2O2 acts as a signal molecule involved in the regulation of specific biological/physiological processes (photosynthetic functions, cell cycle, growth and development, plant responses to biotic and abiotic stresses). Oxidative stress and eventual cell death in plants can be caused by excess H2O2 accumulation. Since stress factors provoke enhanced production of H2O2 in plants, severe damage to biomolecules can be possible due to elevated and non-metabolized cellular H2O2. Plants are endowed with H2O2-metabolizing enzymes such as catalases (CAT), ascorbate peroxidases (APX), some peroxiredoxins, glutathione/thioredoxin peroxidases, and glutathione sulfo-transferases. However, the most notably distinguished enzymes are CAT and APX since the former mainly occurs in peroxisomes and does not require a reductant for catalyzing a dismutation reaction. In particular, APX has a higher affinity for H2O2 and reduces it to H2O in chloroplasts, cytosol, mitochondria and peroxisomes, as well as in the apoplastic space, utilizing ascorbate as specific electron donor. Based on recent reports, this review highlights the role of H2O2 in plants experiencing water deficit and salinity and synthesizes major outcomes of studies on CAT and APX activity and genetic regulation in drought- and salt-stressed plants. PMID:26075872

  9. Manganese(II) induces cell division and increases in superoxide dismutase and catalase activities in an aging deinococcal culture

    SciTech Connect

    Chou, F.I.; Tan, S.T. )

    1990-04-01

    Addition of Mn(II) at 2.5 microM or higher to stationary-phase cultures of Deinococcus radiodurans IR was found to trigger at least three rounds of cell division. This Mn(II)-induced cell division (Mn-CD) did not occur when the culture was in the exponential or death phase. The Mn-CD effect produced daughter cells proportionally reduced in size, pigmentation, and radioresistance but proportionally increased in activity and amount of the oxygen toxicity defense enzymes superoxide dismutase and catalase. In addition, the concentration of an Mn-CD-induced protein was found to remain high throughout the entire Mn-CD phase. It was also found that an untreated culture exhibited a growth curve characterized by a very rapid exponential-stationary transition and that cells which had just reached the early stationary phase were synchronous. Our results suggest the presence of an Mn(II)-sensitive mechanism for controlling cell division. The Mn-CD effect appears to be specific to the cation Mn(II) and the radioresistant bacteria, deinococci.

  10. The role played by acid and basic centers in the activity of biomimetic catalysts of the catalase, peroxidase, and monooxidase reactions

    NASA Astrophysics Data System (ADS)

    Magerramov, A. M.; Nagieva, I. T.

    2010-11-01

    The acid-basic centers of heterogeneous carriers of catalase, peroxidase, and monooxigenase biomimetics, in particular, iron protoporphyrin deposited on active or neutral aluminum magnesium silicate, were studied. The catalytic activity of biomimetics was stabilized, which allowed us not only to synthesize fairly effective biomimetics but also to clarify certain details of the mechanism of their action and perform a comparative analysis of the functioning of biomimetics and the corresponding enzymes.

  11. Association between ETFA genotype and activity of superoxide dismutase, catalase and glutathione peroxidase in cryopreserved sperm of Holstein-Friesian bulls.

    PubMed

    Hering, D M; Lecewicz, M; Kordan, W; Kamiński, S

    2015-02-01

    The aim of this study was to determine whether C/T missense mutation within the ETFA gene is associated with sperm antioxidant enzymatic activity. One hundred and twenty Holstein-Friesian bulls were genotyped by the PCR-RFLP technique (MwoI). Commercial straws of frozen-thawed semen were used to evaluate the activity of three antioxidant enzymes: superoxide dismutase, catalase and glutathione peroxidase. Among all bulls investigated, genotype CT was the most frequent (44.2%), in comparison with CC (42.5%) and TT (13.3%). Significant differences in glutathione peroxidase activity were observed between homozygous individuals (CC vs TT) with heterozygous CT having intermediate values. Dismutase activity was significantly associated with ETFA genotype, although only bulls with the CT genotype were significantly different from bulls carrying the CC genotype. The activity of catalase showed a similar trend (but was not statistically significant). In conclusion, we found that bulls with the ETFA TT genotype produce sperm with the highest glutathione peroxidase activity and can therefore be more efficiently protected from reactive oxygen. The mechanism of this interaction needs to be elucidated in future research. PMID:25472694

  12. The peroxidase/catalase-like activities of MFe₂O₄ (M=Mg, Ni, Cu) MNPs and their application in colorimetric biosensing of glucose.

    PubMed

    Su, Li; Qin, Wenjie; Zhang, Huige; Rahman, Zia Ur; Ren, Cuiling; Ma, Sudai; Chen, Xingguo

    2015-01-15

    MFe2O4 (M=Mg, Ni, Cu) magnetic nanoparticles (MNPs) were found to have catalytic activities similar to those of biological enzymes such as catalase and peroxidase. These nanomaterials, as bifunctional catalase/peroxidases (KatGs), not only could catalyze H2O2 to produce hydroxyl radicals, which oxidized peroxidase substrate to produce color, but also could catalyze the decomposition reaction of H2O2 into water and oxygen directly in the same condition through the catalase-like activity. And it was also found that the amount of generated hydroxyl radicals and oxygen was related to the concentration of MFe2O4 (M=Mg, Ni, Cu) MNPs. The peroxidase-like catalytic behavior of MFe2O4 MNPs was analyzed in detail. Under the optimized conditions, NiFe2O4 MNPs were used as a colorimetric biosensor for the detection of 9.4×10(-7)-2.5×10(-5) mol L(-1) glucose with a limit of detection (LOD) of 4.5×10(-7) mol L(-1). The sensor was successfully applied to glucose detection in urine sample. PMID:25127473

  13. Expression of a highly active catalase VktA in the cyanobacterium Synechococcus elongatus PCC 7942 alleviates the photoinhibition of photosystem II.

    PubMed

    Jimbo, Haruhiko; Noda, Akiko; Hayashi, Hidenori; Nagano, Takanori; Yumoto, Isao; Orikasa, Yoshitake; Okuyama, Hidetoshi; Nishiyama, Yoshitaka

    2013-11-01

    The repair of photosystem II (PSII) after photodamage is particularly sensitive to reactive oxygen species-such as H2O2, which is abundantly produced during the photoinhibition of PSII. In the present study, we generated a transformant of the cyanobacterium Synechococcus elongatus PCC 7942 that expressed a highly active catalase, VktA, which is derived from a facultatively psychrophilic bacterium Vibrio rumoiensis, and examined the effect of expression of VktA on the photoinhibition of PSII. The activity of PSII in transformed cells declined much more slowly than in wild-type cells when cells were exposed to strong light in the presence of H2O2. However, the rate of photodamage to PSII, as monitored in the presence of chloramphenicol, was the same in the two lines of cells, suggesting that the repair of PSII was protected by the expression of VktA. The de novo synthesis of the D1 protein, which is required for the repair of PSII, was activated in transformed cells under the same stress conditions. Similar protection of the repair of PSII in transformed cells was also observed under strong light at a relatively low temperature. Thus, the expression of the highly active catalase mitigates photoinhibition of PSII by protecting protein synthesis against damage by H2O2 with subsequent enhancement of the repair of PSII. PMID:23456267

  14. Iron, copper, and manganese complexes with in vitro superoxide dismutase and/or catalase activities that keep Saccharomyces cerevisiae cells alive under severe oxidative stress.

    PubMed

    Ribeiro, Thales P; Fernandes, Christiane; Melo, Karen V; Ferreira, Sarah S; Lessa, Josane A; Franco, Roberto W A; Schenk, Gerhard; Pereira, Marcos D; Horn, Adolfo

    2015-03-01

    Due to their aerobic lifestyle, eukaryotic organisms have evolved different strategies to overcome oxidative stress. The recruitment of some specific metalloenzymes such as superoxide dismutases (SODs) and catalases (CATs) is of great importance for eliminating harmful reactive oxygen species (hydrogen peroxide and superoxide anion). Using the ligand HPClNOL {1-[bis(pyridin-2-ylmethyl)amino]-3-chloropropan-2-ol}, we have synthesized three coordination compounds containing iron(III), copper(II), and manganese(II) ions, which are also present in the active site of the above-noted metalloenzymes. These compounds were evaluated as SOD and CAT mimetics. The manganese and iron compounds showed both SOD and CAT activities, while copper showed only SOD activity. The copper and manganese in vitro SOD activities are very similar (IC50~0.4 μmol dm(-3)) and about 70-fold higher than those of iron. The manganese compound showed CAT activity higher than that of the iron species. Analyzing their capacity to protect Saccharomyces cerevisiae cells against oxidative stress (H2O2 and the O2(•-) radical), we observed that all compounds act as antioxidants, increasing the resistance of yeast cells mainly due to a reduction of lipid oxidation. Especially for the iron compound, the data indicate complete protection when wild-type cells were exposed to H2O2 or O2(•-) species. Interestingly, these compounds also compensate for both superoxide dismutase and catalase deficiencies; their antioxidant activity is metal ion dependent, in the order iron(III)>copper(II)>manganese(II). The protection mechanism employed by the complexes proved to be independent of the activation of transcription factors (such as Yap1, Hsf1, Msn2/Msn4) and protein synthesis. There is no direct relation between the in vitro and the in vivo antioxidant activities. PMID:25511255

  15. Effect of lead (Pb) exposure on the activity of superoxide dismutase and catalase in battery manufacturing workers (BMW) of Western Maharashtra (India) with reference to heme biosynthesis.

    PubMed

    Patil, Arun J; Bhagwat, Vinod R; Patil, Jyotsna A; Dongre, Nilima N; Ambekar, Jeevan G; Jailkhani, Rama; Das, Kusal K

    2006-12-01

    The aim of this study was to estimate the activity of superoxide dismutase (SOD) and catalase in erythrocytes and malondialdehyde (MDA) in plasma of battery manufacturing workers (BMW) of Western Maharashtra (India) who were occupationally exposed to lead (Pb) over a long period of time (about 15 years). This study was also aimed to determine the Pb intoxication resulted in a disturbance of heme biosynthesis in BMW group. The blood Pb level of BMW group (n = 28) was found to be in the range of 25.8 - 78.0 microg/dL (mean + SD, 53.63 + 16.98) whereas in Pb unexposed control group (n = 35) the range was 2.8 - 22.0 microg/dL (mean + SD, 12.52 + 4.08). The blood level (Pb-B) and urinary lead level (Pb-U) were significantly increased in BMW group as compared to unexposed control. Though activated d- aminolevulinic acid dehydratase (ALAD) activities in BMW group did not show any significant change when compared to control group but activated / non activated erythrocyte - ALAD activities in BMW group showed a significant increase. Erythrocyte- zinc protoporphyrin (ZPP), urinary daminolevulinic acid (ALA-U) and porphobilinogen (PBG-U) of BMW groups elevated significantly as compared to control. A positive correlation (r = 0.66, p < 0.001) between Pb-B and ALA-U were found in BMW group but no such significant correlation (r = 0.02, p> 1.0) were observed in control group. Hematological study revealed a significant decrease of hemoglobin concentration, packed cell volume (%) and other blood indices and a significant increase of total leucocytes count in BMW group in comparison to control group. The serum MDA content was significantly increased (p < 0.001) and the activities of antioxidant enzymes such as erythrocyte- SOD (p < 0.001) and erythrocytecatalase (p < 0.001) were significantly reduced in BMW group as compared to control group. A positive correlation (r = 0.45, p < 0.02) between Pb-B and serum MDA level was observed in BMW group (Pb-B range 25.8 - 78.0 microg / d

  16. Exposure to low UVA doses increases KatA and KatB catalase activities, and confers cross-protection against subsequent oxidative injuries in Pseudomonas aeruginosa.

    PubMed

    Pezzoni, Magdalena; Tribelli, Paula M; Pizarro, Ramón A; López, Nancy I; Costa, Cristina S

    2016-05-01

    Solar UVA radiation is one of the main environmental stress factors for Pseudomonas aeruginosa. Exposure to high UVA doses produces lethal effects by the action of the reactive oxygen species (ROS) it generates. P. aeruginosa has several enzymes, including KatA and KatB catalases, which provide detoxification of ROS. We have previously demonstrated that KatA is essential in defending P. aeruginosa against high UVA doses. In order to analyse the mechanisms involved in the adaptation of this micro-organism to UVA, we investigated the effect of exposure to low UVA doses on KatA and KatB activities, and the physiological consequences. Exposure to UVA induced total catalase activity; assays with non-denaturing polyacrylamide gels showed that both KatA and KatB activities were increased by radiation. This regulation occurred at the transcriptional level and depended, at least partly, on the increase in H2O2 levels. We demonstrated that exposure to low UVA produced a protective effect against subsequent lethal doses of UVA, sodium hypochlorite and H2O2. Protection against lethal UVA depends on katA, whilst protection against sodium hypochlorite depends on katB, demonstrating that different mechanisms are involved in the defence against these oxidative agents, although both genes can be involved in the global cellular response. Conversely, protection against lethal doses of H2O2 could depend on induction of both genes and/or (an)other defensive factor(s). A better understanding of the adaptive response of P. aeruginosa to UVA is relevant from an ecological standpoint and for improving disinfection strategies that employ UVA or solar irradiation. PMID:26940049

  17. Catalase-like activity of bovine met-hemoglobin: interaction with the pseudo-catalytic peroxidation of anthracene traces in aqueous medium.

    PubMed

    Paco, Laveille; Galarneau, Anne; Drone, Jullien; Fajula, François; Bailly, Carole; Pulvin, Sylviane; Thomas, Daniel

    2009-10-01

    Hemoglobin is a member of the hemoprotein superfamily whose main role is to transport O(2) in vertebrate organisms. It has two known promiscuous enzymatic activities, peroxidase and oxygenase. Here we show for the first time that bovine hemoglobin also presents a catalase-like activity characterized by a V(max )of 344 microM/min, a K(M )of 24 mM and a k(cat) equal to 115/min. For high anthracene and hemoglobin concentrations and low hydrogen peroxide concentrations, this activity inhibits the expected oxidation of anthracene, which occurs through a peroxidase-like mechanism. Anthracene belongs to the polycyclic aromatic hydrocarbon (PAH) family whose members are carcinogenic and persistent pollutants found in industrial waste waters. Our results show that anthracene oxidation by hemoglobin and hydrogen peroxide follows a typical bi-bi ping-pong mechanism with a V(max) equal to 0.250 microM/min, K(M(H2O2) )of 80 microM, K(M(ANT)) of 1.1 microM and k(cat) of 0.17/min. The oxidation of anthracene is shown to be pseudo-catalytic because an excess of hemoglobin and hydrogen peroxide is required to make PAH completely disappear. Thus, bovine hemoglobin presents, in different degrees, all the catalytic activities of the hemoprotein group, which makes it a very interesting protein for biotechnological processes and one with which structure-activity relationships can be studied. PMID:19606432

  18. Peroxidase and catalase activities are involved in direct adventitious shoot formation induced by thidiazuron in eastern white pine (Pinus strobus L.) zygotic embryos.

    PubMed

    Tang, Wei; Newton, Ronald J

    2005-08-01

    We reported establishment of an efficient plant regeneration procedure through direct adventitious shoot (DAS) formation from cotyledons and hypocotyls of eastern white pine (Pinus strobus L.) mature embryos in this investigation. Multiple DASs were initiated from cotyledons of embryos on PS medium containing N6-benzyladenine (BA), thidiazuron (TDZ), or kinetin (KIN). Among different concentrations of casein enzymatic hydrosylate (CH) and glutamine used in this study, 500 mg l(-1) CH or 600 mg l(-1) glutamine induced the highest frequency of DAS formation. Rooting of regenerated shoots was obtained on PS medium supplemented with 0.01-0.1 microM indole-3-acetic acid (IAA) with the highest frequency on medium containing 0.01 muM IAA. No DASs were obtained on medium without TDZ. Measurement of peroxidase (POD) and catalase (CAT) activity during direct shoot induction and differentiation demonstrated that the lowest POD activity appeared in the 5-6th week of culture and lowest CAT activity occurred in the 7-8th week of culture on medium with TDZ. No such a change in POD and CAT activities was observed on medium without TDZ. These results demonstrated that POD and CAT activities were involved in DAS formation induced by TDZ in eastern white pine. PMID:16129608

  19. Synthesis, characterization, and catalytic activity in Suzuki coupling and catalase-like reactions of new chitosan supported Pd catalyst.

    PubMed

    Baran, Talat; Inanan, Tülden; Menteş, Ayfer

    2016-07-10

    The aim of this study is to analyze the synthesis of a new chitosan supported Pd catalyst and examination of its catalytic activity in: Pd catalyst was synthesized using chitosan as a biomaterial and characterized with FTIR, TG/DTG, XRD, (1)H NMR, (13)C NMR, SEM-EDAX, ICP-OES, Uv-vis spectroscopies, and magnetic moment, along with molar conductivity analysis. Biomaterial supported Pd catalyst indicated high activity and long life time as well as excellent turnover number (TON) and turnover frequency (TOF) values in Suzuki reaction. Biomaterial supported Pd catalyst catalyzed H2O2 decomposition reaction with considerable high activity using comparatively small loading catalyst (10mg). Redox potential of biomaterial supported Pd catalyst was still high without negligible loss (13% decrease) after 10 cycles in reusability tests. As a consequence, eco-friendly biomaterial supported Pd catalyst has superior properties such as high thermal stability, long life time, easy removal from reaction mixture and durability to air, moisture and high temperature. PMID:27106147

  20. Formation of chloroplast protrusions and catalase activity in alpine Ranunculus glacialis under elevated temperature and different CO2/O2 ratios.

    PubMed

    Buchner, Othmar; Moser, Tim; Karadar, Matthias; Roach, Thomas; Kranner, Ilse; Holzinger, Andreas

    2015-11-01

    Chloroplast protrusions (CPs) have frequently been observed in plants, but their significance to plant metabolism remains largely unknown. We investigated in the alpine plant Ranunculus glacialis L. treated under various CO2 concentrations if CP formation is related to photorespiration, specifically focusing on hydrogen peroxide (H2O2) metabolism. Immediately after exposure to different CO2 concentrations, the formation of CPs in leaf mesophyll cells was assessed and correlated to catalase (CAT) and ascorbate peroxidase (APX) activities. Under natural irradiation, the relative proportion of chloroplasts with protrusions (rCP) was highest (58.7 %) after exposure to low CO2 (38 ppm) and was lowest (3.0 %) at high CO2 (10,000 ppm). The same relationship was found for CAT activity, which decreased from 34.7 nkat mg(-1) DW under low CO2 to 18.4 nkat mg(-1) DW under high CO2, while APX activity did not change significantly. When exposed to natural CO2 concentration (380 ppm) in darkness, CP formation was significantly lower (18.2 %) compared to natural solar irradiation (41.3 %). In summary, CP formation and CAT activity are significantly increased under conditions that favour photorespiration, while in darkness or at high CO2 concentration under light, CP formation is significantly lower, providing evidence for an association between CPs and photorespiration. PMID:25701381

  1. Modulation of the Activities of Catalase, Cu-Zn, Mn Superoxide Dismutase, and Glutathione Peroxidase in Adipocyte from Ovariectomised Female Rats with Metabolic Syndrome

    PubMed Central

    Guerra, Rebeca Cambray; Zuñiga-Muñoz, Alejandra; Guarner Lans, Verónica; Díaz-Díaz, Eulises; Tena Betancourt, Carlos Alberto; Pérez-Torres, Israel

    2014-01-01

    The aim of this study was to evaluate the association between estrogen removal, antioxidant enzymes, and oxidative stress generated by obesity in a MS female rat model. Thirty two female Wistar rats were divided into 4 groups: Control (C), MS, MS ovariectomized (Ovx), and MS Ovx plus estradiol (E2). MS was induced by administering 30% sucrose to drinking water for 24 weeks. After sacrifice, intra-abdominal fat was dissected; adipocytes were isolated and lipid peroxidation, non-enzymatic antioxidant capacity, and the activities of Cu-Zn and Mn superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were determined. There were no significant differences in the activities of Cu-Zn, Mn SOD, CAT, and GPx between the C and MS groups, but in the MS Ovx group there was a statistically significant decrease in the activities of these enzymes when compared to MS and MS Ovx+E2. The increased lipid peroxidation and nonenzymatic antioxidant capacity found in MS Ovx was significantly decreased when compared to MS and MS Ovx+E2. In conclusion, the removal of E2 by ovariectomy decreases the activity of the antioxidant enzymes in the intra-abdominal tissue of MS female rats; this is reflected by increased lipid peroxidation and decreased nonenzymatic antioxidant capacity. PMID:24987414

  2. Caribbean yellow band disease compromises the activity of catalase and glutathione S-transferase in the reef-building coral Orbicella faveolata exposed to anthracene.

    PubMed

    Montilla, Luis Miguel; Ramos, Ruth; García, Elia; Cróquer, Aldo

    2016-05-01

    Healthy and diseased corals are threatened by different anthropogenic sources, such as pollution, a problem expected to become more severe in the near future. Despite the fact that coastal pollution and coral diseases might represent a serious threat to coral reef health, there is a paucity of controlled experiments showing whether the response of diseased and healthy corals to xenobiotics differs. In this study, we exposed healthy and Caribbean yellow band disease (CYBD)-affected Orbicella faveolata colonies to 3 sublethal concentrations of anthracene to test if enzymatic responses to this hydrocarbon were compromised in CYBD-affected tissues. For this, a 2-factorial fully orthogonal design was used in a controlled laboratory bioassay, using tissue condition (2 levels: apparently healthy and diseased) and pollutant concentration (4 levels: experimental control, 10, 30 and 100 ppb concentration) as fixed factors. A permutation-based ANOVA (PERMANOVA) was used to test the effects of condition and concentration on the specific activity of 3 enzymatic biomarkers: catalase, glutathione S-transferase, and glutathione peroxidase. We found a significant interaction between the concentration of anthracene and the colony condition for catalase (Pseudo-F = 3.84, df = 3, p < 0.05) and glutathione S-transferase (Pseudo-F = 3.29, df = 3, p < 0.05). Moreover, our results indicated that the enzymatic response to anthracene in CYBD-affected tissues was compromised, as the activity of these enzymes decreased 3- to 4-fold compared to healthy tissues. These results suggest that under a potential scenario of increasing hydrocarbon coastal pollution, colonies of O. faveolata affected with CYBD might become more vulnerable to the deleterious effects of chemical pollution. PMID:27137073

  3. OxyR-regulated catalase activity is critical for oxidative stress resistance, nodulation and nitrogen fixation in Azorhizobium caulinodans.

    PubMed

    Zhao, Yue; Nickels, Logan M; Wang, Hui; Ling, Jun; Zhong, Zengtao; Zhu, Jun

    2016-07-01

    The legume-rhizobial interaction results in the formation of symbiotic nodules in which rhizobia fix nitrogen. During the process of symbiosis, reactive oxygen species (ROS) are generated. Thus, the response of rhizobia to ROS is important for successful nodulation and nitrogen fixation. In this study, we investigated how Azorhizobium caulinodans, a rhizobium that forms both root and stem nodules on its host plant, regulates ROS resistance. We found that in-frame deletions of a gene encoding the putative catalase-peroxidase katG or a gene encoding a LysR-family regulatory protein, oxyR, exhibited increased sensitivity to H2O2 We then showed that OxyR positively regulated katG expression in an H2O2-independent fashion. Furthermore, we found that deletion of katG or oxyR led to significant reduction in the number of stem nodules and decrease of nitrogen fixation capacities in symbiosis. Our results revealed that KatG and OxyR are not only critical for antioxidant defense in vitro, but also important for nodule formation and nitrogen fixation during interaction with plant hosts. PMID:27190162

  4. Cu(II)-disulfide complexes with superoxide dismutase- and catalase-like activities protect mitochondria and whole cells against oxidative stress.

    PubMed

    Aliaga, Margarita E; Sandoval-Acuña, Cristián; López-Alarcón, Camilo; Fuentes, Jocelyn; Speisky, Hernan

    2014-10-01

    Mitochondria are a major subcellular site of superoxide (O2(-)) formation. Conditions leading to an uncontrolled production, accumulation and/or conversion of O2(-) into hydrogen peroxide result in an increment in the intramitochondrial oxidative tone which, ultimately leads to the loss of cell viability. Recently, we reported on the ability of a series of Cu(II)-disulfide complexes to act simultaneously as SOD- and catalase-like molecules. In the present study, we addressed the potential of such compounds to protect mitochondria and cells against the oxidative stress and the cytolytic damage induced by diclofenac. Exposure of Caco-2 cells to diclofenac (250µM, 20min) led to a near 80% inhibition of mitochondrial complex I activity and almost doubled the rate of mitochondrial O2(-) production (assessed by Mitosox). A comparable increment was seen in whole cells when the oxidative tone was assessed through the largely hydrogen peroxide-dependent dichlorofluorescein (DCFH) oxidation. The increment in mitochondrial O2(-) production was totally and concentration-dependently prevented by the addition of the complexes formed between Cu(II) and the disulfides of glutathione, homocysteine, or a-dehydro-lipoic acid (20µM each); comparatively, the Cu(II)-cystine complex exerted a weaker protection. A comparable protection pattern was seen at the whole cell level, as these complexes were also effective in preventing the increment in DCFH oxidation. The mitochondrial and whole cell antioxidant protection also translated into a full protection against the cytolytic effects of diclofenac (45min). Results from the present study indicate that the here-tested Cu(II)-disulfides complexes are able to effectively protect cells against the oxidative and the lytic effects of O2(-)-overproducing mitochondria, suggesting a potential for these type of compounds to act as SOD- and catalase-like molecules under oxidative-stress conditions. Supported by FONDECYT #1110018. PMID:26461399

  5. Catalase and superoxide dismutase activities and the total protein content of protocorm-like bodies of Dendrobium sonia-28 subjected to vitrification.

    PubMed

    Poobathy, Ranjetta; Sinniah, Uma Rani; Xavier, Rathinam; Subramaniam, Sreeramanan

    2013-07-01

    Dendrobium sonia-28 is an important ornamental orchid in the Malaysian flower industry. However, the genus faces both low germination rates and the risk of producing heterozygous progenies. Cryopreservation is currently the favoured long-term storage method for orchids with propagation problems. Vitrification, a frequently used cryopreservation technique, involves the application of pretreatments and cryoprotectants to protect and recover explants during and after storage in liquid nitrogen. However, cryopreservation may cause osmotic injuries and toxicity to cryopreserved explants from the use of highly concentrated additives, and cellular injuries from thawing, devitrification and ice formation. Reactive oxygen species (ROS), occurring during dehydration and cryopreservation, may also cause membrane damage. Plants possess efficient antioxidant systems such as the superoxide dismutase (SOD) and catalase (CAT) enzymes to scavenge ROS during low temperature stress. In this study, protocorm-like bodies (PLBs) of Dendrobium sonia-28 were assayed for the total protein content, and both SOD and CAT activities, at each stage of a vitrification exercise to observe for deleterious stages in the protocol. The results indicated that cryopreserved PLBs of Dendrobium sonia-28 underwent excessive post-thawing oxidative stress due to decreased levels of the CAT enzyme at the post-thawing recovery stage, which contributed to the poor survival rates of the cryopreserved PLBs. PMID:23640259

  6. Fusing catalase to an alkane-producing enzyme maintains enzymatic activity by converting the inhibitory byproduct H2O2 to the cosubstrate O2

    PubMed Central

    Andre, Carl; Kim, Sung Won; Yu, Xiao-Hong; Shanklin, John

    2013-01-01

    Biologically produced alkanes represent potential renewable alternatives to petroleum-derived chemicals. A cyanobacterial pathway consisting of acyl–Acyl Carrier Protein reductase and an aldehyde-deformylating oxygenase (ADO) converts acyl–Acyl Carrier Proteins into corresponding n-1 alkanes via aldehyde intermediates in an oxygen-dependent manner (Km for O2, 84 ± 9 µM). In vitro, ADO turned over only three times, but addition of more ADO to exhausted assays resulted in additional product formation. While evaluating the peroxide shunt to drive ADO catalysis, we discovered that ADO is inhibited by hydrogen peroxide (H2O2) with an apparent Ki of 16 ± 6 µM and that H2O2 inhibition is of mixed-type with respect to O2. Supplementing exhausted assays with catalase (CAT) restored ADO activity, demonstrating that inhibition was reversible and dependent on H2O2, which originated from poor coupling of reductant consumption with alkane formation. Kinetic analysis showed that long-chain (C14–C18) substrates follow Michaelis–Menten kinetics, whereas short and medium chains (C8–C12) exhibit substrate inhibition. A bifunctional protein comprising an N-terminal CAT coupled to a C-terminal ADO (CAT–ADO) prevents H2O2 inhibition by converting it to the cosubstrate O2. Indeed, alkane production by the fusion protein is observed upon addition of H2O2 to an anaerobic reaction mix. In assays, CAT–ADO turns over 225 times versus three times for the native ADO, and its expression in Escherichia coli increases catalytic turnovers per active site by fivefold relative to the expression of native ADO. We propose the term “protection via inhibitor metabolism” for fusion proteins designed to metabolize inhibitors into noninhibitory compounds. PMID:23391732

  7. The Green Tea Component (-)-Epigallocatechin-3-Gallate Sensitizes Primary Endothelial Cells to Arsenite-Induced Apoptosis by Decreasing c-Jun N-Terminal Kinase-Mediated Catalase Activity.

    PubMed

    Kim, Jee-Youn; Choi, Ji-Young; Lee, Hyeon-Ju; Byun, Catherine Jeonghae; Park, Jung-Hyun; Park, Jae Hoon; Cho, Ho-Seong; Cho, Sung-Jin; Jo, Sangmee Ahn; Jo, Inho

    2015-01-01

    The green tea component (-)-epigallocatechin-3-gallate (EGCG) has been shown to sensitize many different types of cancer cells to anticancer drug-induced apoptosis, although it protects against non-cancerous primary cells against toxicity from certain conditions such as exposure to arsenic (As) or ultraviolet irradiation. Here, we found that EGCG promotes As-induced toxicity of primary-cultured bovine aortic endothelial cells (BAEC) at doses in which treatment with each chemical alone had no such effect. Increased cell toxicity was accompanied by an increased condensed chromatin pattern and fragmented nuclei, cleaved poly(ADP-ribose) polymerase (PARP), activity of the pro-apoptotic enzymes caspases 3, 8 and 9, and Bax translocation into mitochondria, suggesting the involvement of an apoptotic signaling pathway. Fluorescence activated cell sorting analysis revealed that compared with EGCG or As alone, combined EGCG and As (EGCG/As) treatment significantly induced production of reactive oxygen species (ROS), which was accompanied by decreased catalase activity and increased lipid peroxidation. Pretreatment with N-acetyl-L-cysteine or catalase reversed EGCG/As-induced caspase activation and EC toxicity. EGCG/As also increased the phosphorylation of c-Jun N-terminal kinase (JNK), which was not reversed by catalase. However, pretreatment with the JNK inhibitor SP600125 reversed all of the observed effects of EGCG/As, suggesting that JNK may be the most upstream protein examined in this study. Finally, we also found that all the observed effects by EGCG/As are true for other types of EC tested. In conclusion, this is firstly to show that EGCG sensitizes non-cancerous EC to As-induced toxicity through ROS-mediated apoptosis, which was attributed at least in part to a JNK-activated decrease in catalase activity. PMID:26375285

  8. The Green Tea Component (-)-Epigallocatechin-3-Gallate Sensitizes Primary Endothelial Cells to Arsenite-Induced Apoptosis by Decreasing c-Jun N-Terminal Kinase-Mediated Catalase Activity

    PubMed Central

    Lee, Hyeon-Ju; Byun, Catherine Jeonghae; Park, Jung-Hyun; Park, Jae Hoon; Cho, Ho-Seong; Cho, Sung-Jin; Jo, Sangmee Ahn; Jo, Inho

    2015-01-01

    The green tea component (-)-epigallocatechin-3-gallate (EGCG) has been shown to sensitize many different types of cancer cells to anticancer drug-induced apoptosis, although it protects against non-cancerous primary cells against toxicity from certain conditions such as exposure to arsenic (As) or ultraviolet irradiation. Here, we found that EGCG promotes As-induced toxicity of primary-cultured bovine aortic endothelial cells (BAEC) at doses in which treatment with each chemical alone had no such effect. Increased cell toxicity was accompanied by an increased condensed chromatin pattern and fragmented nuclei, cleaved poly(ADP-ribose) polymerase (PARP), activity of the pro-apoptotic enzymes caspases 3, 8 and 9, and Bax translocation into mitochondria, suggesting the involvement of an apoptotic signaling pathway. Fluorescence activated cell sorting analysis revealed that compared with EGCG or As alone, combined EGCG and As (EGCG/As) treatment significantly induced production of reactive oxygen species (ROS), which was accompanied by decreased catalase activity and increased lipid peroxidation. Pretreatment with N-acetyl-L-cysteine or catalase reversed EGCG/As-induced caspase activation and EC toxicity. EGCG/As also increased the phosphorylation of c-Jun N-terminal kinase (JNK), which was not reversed by catalase. However, pretreatment with the JNK inhibitor SP600125 reversed all of the observed effects of EGCG/As, suggesting that JNK may be the most upstream protein examined in this study. Finally, we also found that all the observed effects by EGCG/As are true for other types of EC tested. In conclusion, this is firstly to show that EGCG sensitizes non-cancerous EC to As-induced toxicity through ROS-mediated apoptosis, which was attributed at least in part to a JNK-activated decrease in catalase activity. PMID:26375285

  9. Activity.

    ERIC Educational Resources Information Center

    Clearing: Nature and Learning in the Pacific Northwest, 1984

    1984-01-01

    Presents three activities: (1) investigating succession in a schoolground; (2) investigating oak galls; and (3) making sun prints (photographs made without camera or darkroom). Each activity includes a list of materials needed and procedures used. (JN)

  10. Activities.

    ERIC Educational Resources Information Center

    Moody, Mally

    1992-01-01

    A series of four activities are presented to enhance students' abilities to appreciate and use trigonometry as a tool in problem solving. Activities cover problems applying the law of sines, the law of cosines, and matching equivalent trigonometric expressions. A teacher's guide, worksheets, and answers are provided. (MDH)

  11. Activities.

    ERIC Educational Resources Information Center

    Kincaid, Charlene; And Others

    1993-01-01

    Presents an activity in which students collect and organize data from a real-world simulation of the scientific concept of half life. Students collect data using a marble sifter, analyze the data using a graphing calculator, and determine an appropriate mathematical model. Includes reproducible worksheets. (MDH)

  12. Synthesis and Characterization of Cobalt(III), Nickel(II) and Copper(II) Mononuclear Complexes with the Ligand 1,3-bis[(2-aminoethyl)amino]-2-propanol and Their Catalase-Like Activity

    PubMed Central

    Silva, Daniel M.; Visentin, Lorenzo C.; Rodrigues, Bernardo L.

    2015-01-01

    In this work, we present the synthesis and characterization of two new mononuclear complexes with the ligand 1,3-bis[(2-aminoethyl)amino]-2-propanol (HL), [Co(L)(H2O)](ClO4)2 (1), [Ni(HL)](ClO4)2 (2), as well as the known complex [Cu(HL)](ClO4)2 (3) for comparison. Their abilities to catalyze the dismutation of H2O2 and the oxidation of cyclohexane were investigated. The complexes were characterized by X-ray diffraction, elemental analysis, electronic and infrared spectroscopy, cyclic voltammetry, electrospray ionization mass spectrometry (ESI-MS) and conductivity measurements. The X-ray structures showed that the nickel (2) and copper (3) complexes are tetracoordinated, with the metal ion bound to the nitrogen atoms of the ligand. On the other hand, the cobalt complex (1) is hexacoordinated, possessing additional bonds to the alkoxo group of the ligand and to a water molecule. Neither of the complexes was able to catalyze the oxidation of cyclohexane, but all of them exhibited catalase-like activity, following Michaelis-Menten kinetics, which suggest resemblance with the catalase natural enzymes. The catalytic activity followed the order: [Ni(HL)](ClO4)2 (2) > [Cu(HL)](ClO4)2 (3) > [Co(L)(H2O)](ClO4)2 (1). As far as we know, this is the first description of a nickel complex presenting a significant catalase-like activity. PMID:26379038

  13. An Ancient Relative of Cyclooxygenase in Cyanobacteria Is a Linoleate 10S-Dioxygenase That Works in Tandem with a Catalase-related Protein with Specific 10S-Hydroperoxide Lyase Activity*

    PubMed Central

    Brash, Alan R.; Niraula, Narayan P.; Boeglin, William E.; Mashhadi, Zahra

    2014-01-01

    In the course of exploring the scope of catalase-related hemoprotein reactivity toward fatty acid hydroperoxides, we detected a novel candidate in the cyanobacterium Nostoc punctiforme PCC 73102. The immediate neighboring upstream gene, annotated as “cyclooxygenase-2,” appeared to be a potential fatty acid heme dioxygenase. We cloned both genes and expressed the cDNAs in Escherichia coli, confirming their hemoprotein character. Oxygen electrode recordings demonstrated a rapid (>100 turnovers/s) reaction of the heme dioxygenase with oleic and linoleic acids. HPLC, including chiral column analysis, UV, and GC-MS of the oxygenated products, identified a novel 10S-dioxygenase activity. The catalase-related hemoprotein reacted rapidly and specifically with linoleate 10S-hydroperoxide (>2,500 turnovers/s) with a hydroperoxide lyase activity specific for the 10S-hydroperoxy enantiomer. The products were identified by NMR as (8E)10-oxo-decenoic acid and the C8 fragments, 1-octen-3-ol and 2Z-octen-1-ol, in ∼3:1 ratio. Chiral HPLC analysis established strict enzymatic control in formation of the 3R alcohol configuration (99% enantiomeric excess) and contrasted with racemic 1-octen-3-ol formed in reaction of linoleate 10S-hydroperoxide with hematin or ferrous ions. The Nostoc linoleate 10S-dioxygenase, the sequence of which contains the signature catalytic sequence of cyclooxygenases and fungal linoleate dioxygenases (YRWH), appears to be a heme dioxygenase ancestor. The novel activity of the lyase expands the known reactions of catalase-related proteins and functions in Nostoc in specific transformation of the 10S-hydroperoxylinoleate. PMID:24659780

  14. An ancient relative of cyclooxygenase in cyanobacteria is a linoleate 10S-dioxygenase that works in tandem with a catalase-related protein with specific 10S-hydroperoxide lyase activity.

    PubMed

    Brash, Alan R; Niraula, Narayan P; Boeglin, William E; Mashhadi, Zahra

    2014-05-01

    In the course of exploring the scope of catalase-related hemoprotein reactivity toward fatty acid hydroperoxides, we detected a novel candidate in the cyanobacterium Nostoc punctiforme PCC 73102. The immediate neighboring upstream gene, annotated as "cyclooxygenase-2," appeared to be a potential fatty acid heme dioxygenase. We cloned both genes and expressed the cDNAs in Escherichia coli, confirming their hemoprotein character. Oxygen electrode recordings demonstrated a rapid (>100 turnovers/s) reaction of the heme dioxygenase with oleic and linoleic acids. HPLC, including chiral column analysis, UV, and GC-MS of the oxygenated products, identified a novel 10S-dioxygenase activity. The catalase-related hemoprotein reacted rapidly and specifically with linoleate 10S-hydroperoxide (>2,500 turnovers/s) with a hydroperoxide lyase activity specific for the 10S-hydroperoxy enantiomer. The products were identified by NMR as (8E)10-oxo-decenoic acid and the C8 fragments, 1-octen-3-ol and 2Z-octen-1-ol, in ∼3:1 ratio. Chiral HPLC analysis established strict enzymatic control in formation of the 3R alcohol configuration (99% enantiomeric excess) and contrasted with racemic 1-octen-3-ol formed in reaction of linoleate 10S-hydroperoxide with hematin or ferrous ions. The Nostoc linoleate 10S-dioxygenase, the sequence of which contains the signature catalytic sequence of cyclooxygenases and fungal linoleate dioxygenases (YRWH), appears to be a heme dioxygenase ancestor. The novel activity of the lyase expands the known reactions of catalase-related proteins and functions in Nostoc in specific transformation of the 10S-hydroperoxylinoleate. PMID:24659780

  15. Synthesis and Characterization of Cobalt(III), Nickel(II) and Copper(II) Mononuclear Complexes with the Ligand 1,3-bis[(2-aminoethyl)amino]-2-propanol and Their Catalase-Like Activity.

    PubMed

    Pires, Bianca M; Silva, Daniel M; Visentin, Lorenzo C; Rodrigues, Bernardo L; Carvalho, Nakédia M F; Faria, Roberto B

    2015-01-01

    In this work, we present the synthesis and characterization of two new mononuclear complexes with the ligand 1,3-bis[(2-aminoethyl)amino]-2-propanol (HL), [Co(L)(H2O)](ClO4)2 (1), [Ni(HL)](ClO4)2 (2), as well as the known complex [Cu(HL)](ClO4)2 (3) for comparison. Their abilities to catalyze the dismutation of H2O2 and the oxidation of cyclohexane were investigated. The complexes were characterized by X-ray diffraction, elemental analysis, electronic and infrared spectroscopy, cyclic voltammetry, electrospray ionization mass spectrometry (ESI-MS) and conductivity measurements. The X-ray structures showed that the nickel (2) and copper (3) complexes are tetracoordinated, with the metal ion bound to the nitrogen atoms of the ligand. On the other hand, the cobalt complex (1) is hexacoordinated, possessing additional bonds to the alkoxo group of the ligand and to a water molecule. Neither of the complexes was able to catalyze the oxidation of cyclohexane, but all of them exhibited catalase-like activity, following Michaelis-Menten kinetics, which suggest resemblance with the catalase natural enzymes. The catalytic activity followed the order: [Ni(HL)](ClO4)2 (2) > [Cu(HL)](ClO4)2 (3) > [Co(L)(H2O)](ClO4)2 (1). As far as we know, this is the first description of a nickel complex presenting a significant catalase-like activity. PMID:26379038

  16. Biochemical effects of glyphosate based herbicide, Excel Mera 71 on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content on teleostean fishes.

    PubMed

    Samanta, Palas; Pal, Sandipan; Mukherjee, Aloke Kumar; Ghosh, Apurba Ratan

    2014-09-01

    Effects of glyphosate based herbicide, Excel Mera 71 at a dose of 17.20mg/l on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content were measured in different tissues of two Indian air-breathing teleosts, Anabas testudineus (Bloch) and Heteropneustes fossilis (Bloch) during an exposure period of 30 days under laboratory condition. AChE activity was significantly increased in all the investigated tissues of both fish species and maximum elevation was observed in brain of H. fossilis, while spinal cord of A. testudineus showed minimum increment. Fishes showed significant increase LPO levels in all the tissues; highest was observed in gill of A. testudineus but lowest LPO level was observed in muscle of H. fossilis. CAT was also enhanced in both the fishes, while GST activity in liver diminished substantially and minimum was observed in liver of A. testudineus. Total protein content showed decreased value in all the tissues, maximum reduction was observed in liver and minimum in brain of A. testudineus and H. fossilis respectively. The results indicated that Excel Mera 71 caused serious alterations in the enzyme activities resulting into severe deterioration of fish health; so, AChE, LPO, CAT and GST can be used as suitable indicators of herbicidal toxicity. PMID:24927388

  17. Effects of Dietary Pb and Cd and Their Combination on Glutathion-S-Transferase and Catalase Enzyme Activities in Digestive Gland and Foot of the Green Garden Snail, Cantareus apertus (Born, 1778).

    PubMed

    Mleiki, Anwar; Marigómez, Ionan; El Menif, Najoua Trigui

    2015-06-01

    The present study was focused on the assessment of glutathion-S-transferase (GST) and catalase (CAT) activities in the digestive gland and foot of the land snail, Cantareus apertus (Born, 1778), exposed to different nominal dietary concentrations of Pb (25 and 2500 mg Pb/Kg), Cd (5 and 100 mg Cd/Kg) and their combination (25 mg Pb + 5 mg Cd/Kg and 2500 mg Pb + 100 mg Cd/Kg) for 7 and 60 days. GST activity was significantly increased after 7 and 60 days exposure to the highest concentration of Pb, Cd and their combination. The levels of CAT activity were different in the two studied organs but in both cases it resulted increased after 7 and 60 days of exposure, which varied significantly between metals and dietary concentrations. Therefore, it can be concluded that GST and CAT enzymes in digestive gland and foot of C. apertus are responsive to Cd, Pb and their combination, whereby they are suitable to be included in a battery of biomarkers for ecosystem health assessment in metal polluted soils using this species as sentinel. PMID:25899572

  18. Synthesis of the ketimine of chitosan and 4,6-diacetylresorcinol, and study of the catalase-like activity of its copper chelate.

    PubMed

    Demetgül, Cahit

    2012-06-20

    In this study, a new chitosan derivative (ketimine) was synthesized by condensation of chitosan with 4,6-diacetylresorcinol (DAR) at heterogeneous medium. The ketimine derivative of chitosan (DAR-chitosan) was characterized by elemental (C, H, N), spectral (DR-UV-vis and FT-IR spectroscopy), structural (powder XRD), and morphological (SEM) analyses. The degree of substitution (DS) of DAR-chitosan was evaluated by elemental analysis and (13)C CP-MAS NMR spectroscopy and found to be around 12%. The copper (II) metal complex of DAR-chitosan was prepared and characterized by FT-IR, DR-UV-vis and inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Thermal behaviors of the synthesized compounds were investigated by DSC and TG-DTG-DTA analysis. The catalytic activity of copper (II) complex of chitosan derivative (DAR-chitosan-Cu) was investigated on hydrogen peroxide decomposition. The copper chelate showed high efficiency (over 80%) towards the decomposition of hydrogen peroxide as heterogeneous catalyst. PMID:24750730

  19. Evaluation of malondialdehyde, superoxide dismutase and catalase activity and their diagnostic value in drug naïve, first episode, non-smoker major depression patients and healthy controls.

    PubMed

    Camkurt, Mehmet Akif; Fındıklı, Ebru; İzci, Filiz; Kurutaş, Ergül Belge; Tuman, Taha Can

    2016-04-30

    Major depression is a most frequent disorder, its diagnosis depends on patient interview, and yet we do not have a reliable biomarker for depression. Oxidative stress is defined as increase in oxidation or decrease is antioxidant defense mechanisms. Here, we aimed to investigate malondialdehyde (MDA), superoxide dismutase (SOD) and catalase (CAT) activity and their diagnostic performance in depressed patients and healthy controls. We collected blood samples from 50 patients and 50 controls. We found MDA levels were significantly higher in the patients than controls, with medians at 4.04nmol/mg and 1.64nmol/mg, respectively, p<0.001. SOD activity was significantly decreased in depressed patients than healthy controls, with means at 143.50U/mg and 298.12U/mg, respectively, p<0.001. CAT activity was similar in both groups, p=0.517. ROC analysis showed good diagnostic value for MDA and SOD, with the area under the curve at 1.0 for both. We found high correlation between SOD and Ham-D scores (r=0.747, p<0.0001) and between MDA and Ham-D scores (r=0.785, p<0.0001). Overall, these results demonstrate that oxidative stress is increased in depressed patients. MDA increase seem to be a common finding for major depression. We believe MDA could be a good biomarker candidate for major depression, but not SOD. Future studies should focus on the diagnostic value of MDA in larger samples. PMID:27086215

  20. The impact of catalase expression on the replicative lifespan of Saccharomyces cerevisiae.

    PubMed

    Van Zandycke, S M; Sohier, P J; Smart, K A

    2002-02-01

    The role of catalase on Saccharomyces cerevisiae replicative lifespan was investigated using a wild-type haploid laboratory yeast W303a, a catalase A mutant, a catalase T mutant and an acatalasaemic mutant. Lifespan analysis was performed in two different environmental conditions. Under repressing conditions, on glucose media, catalase T activity, but not catalase A activity was necessary to assure longevity. However, under derepressing conditions, on ethanol media, both catalases were required for longevity assurance. Although catalase activity and carbon source influence yeast lifespan, the relationship between oxidative defence and replicative senescence is complex. PMID:11744047

  1. Structural diversity in manganese, iron and cobalt complexes of the ditopic 1,2-bis(2,2'-bipyridyl-6-yl)ethyne ligand and observation of epoxidation and catalase activity of manganese compounds.

    PubMed

    Madhu, Vedichi; Ekambaram, Balaraman; Shimon, Linda J W; Diskin, Yael; Leitus, Gregory; Neumann, Ronny

    2010-08-21

    -carbon bond formation, rather the ligand is constrained in this position, as deduced by the observation that the bond lengths and angles of the ligand are essentially the same as those for the free ligand, L. Reaction of L with perchlorate or triflate salts of Fe(II), Mn(II) and Co(II) in dry acetonitrile yielded binuclear triple helicate structures (2:3 metal to L ratios) [Fe(2)L(3)](CF(3)SO(3))(4) x CH(3)CN (4), [Mn(2)L(3)](ClO(4))(4) x 1.7 CH(3)CN x 1.65 EtOEt (5) and [Co(2)L(3)](ClO(4))(4) x 2 CH(3)CN x 2 EtOEt (6) where each M(II) center with a slightly distorted octahedral geometry is bridged by three of the ditopic ligands. The M-M distances varied; 5.961 A (Mn), 6.233 A (Co) 6.331 A (Fe). Reaction of L with Co(ClO(4))(2) x 6 H(2)O in wet acetonitrile yielded a dicobalto(III) compound, [Co(2)L'(3)(O)(2)](ClO(4))(2) x H(2)O (7), with two types of L' fragments; one bridging between the two Co centers and two non-bridging ligands, each bonded to a Co atom via one bipyridyl group where the other is non-bonding. The octahedral coordination sphere around each Co atom is completed by the formation of a cobalt-carbon bond from the two carbon atoms of the ethene moiety of the bridging ligand and by a hydroxy moiety that is also bonded to the ethene group of the non-bridging ligand. Reaction of L with Co(ClO(4))(2) x 6 H(2)O in dry acetonitrile in the presence of Et(3)N yielded the tetracobalto(II) complex {[Co(2)L(4)(OH)(4)](ClO(4))(4)}(2) (8) with a unique twisted square configuration of cobalt ions with Co-Co distances of 3.938 to 4.131 A. In addition to the L bridging ligand the Co atoms are linked by hydroxy moieties. Some preliminary catalytic studies showed that the Mn compounds 1 and 2 were active (high yield within 3 min) for alkene epoxidation with peracetic acid and hydrogen peroxide dismutation (catalase activity). PMID:20582360

  2. Thirty years of heme catalases structural biology.

    PubMed

    Díaz, Adelaida; Loewen, Peter C; Fita, Ignacio; Carpena, Xavi

    2012-09-15

    About thirty years ago the crystal structures of the heme catalases from Penicillium vitale (PVC) and, a few months later, from bovine liver (BLC) were published. Both enzymes were compact tetrameric molecules with subunits that, despite their size differences and the large phylogenetic separation between the two organisms, presented a striking structural similarity for about 460 residues. The high conservation, confirmed in all the subsequent structures determined, suggested a strong pressure to preserve a functional catalase fold, which is almost exclusively found in these mono-functional heme catalases. However, even in the absence of the catalase fold an efficient catalase activity is also found in the heme containing catalase-peroxidase proteins. The structure of these broad substrate range enzymes, reported for the first time less than ten years ago from the halophilic archaebacterium Haloarcula marismortui (HmCPx) and from the bacterium Burkholderia pseudomallei (BpKatG), showed a heme pocket closely related to that of plant peroxidases, though with a number of unique modifications that enable the catalase reaction. Despite the wealth of structural information already available, for both monofunctional catalases and catalase-peroxidases, a number of unanswered major questions require continuing structural research with truly innovative approaches. PMID:22209752

  3. Role of oxyradicals in the inactivation of catalase by ozone

    SciTech Connect

    Whiteside, C.; Hassan, H.M. )

    1988-01-01

    The antioxidant enzymes, catalase and superoxide dismutase, are inactivated upon exposure to ozone. In this study, the mechanism of this inactivation was examined using catalase as a model system. The data show that the inactivation of catalase is dependent on ozone concentration, time of exposure, and pH. Loss of catalase activity is accompanied with loss of the heme spectra. Tiron, desferal-Mn, trolox-c, and pyruvate protect the enzyme against ozone inactivation. SOD is less effective due to its inactivation by ozone. On the other hand, alcohols do not provide significant protection. The data suggest the possible involvement of superoxide radicals in the inactivation of catalase by ozone.

  4. Immobilization of bovine catalase onto magnetic nanoparticles.

    PubMed

    Doğaç, Yasemin İspirli; Teke, Mustafa

    2013-01-01

    The scope of this study is to achieve carrier-bound immobilization of catalase onto magnetic particles (Fe₃O₄ and Fe₂O₃NiO₂ · H₂O) to specify the optimum conditions of immobilization. Removal of H2O2 and the properties of immobilized sets were also investigated. To that end, adsorption and then cross-linking methods onto magnetic particles were performed. The optimum immobilization conditions were found for catalase: immobilization time (15 min for Fe₃O₄; 10 min for Fe2O₃NiO₂ · H₂O), the initial enzyme concentration (1 mg/mL), amount of magnetic particles (25 mg), and glutaraldehyde concentration (3%). The activity reaction conditions (optimum temperature, optimum pH, pH stability, thermal stability, operational stability, and reusability) were characterized. Also kinetic parameters were calculated by Lineweaver-Burk plots. The optimum pH values were found to be 7.0, 7.0, and 8.0 for free enzyme, Fe₃O₄-immobilized catalases, and Fe₂O₃NiO₂ · H₂O-immobilized catalases, respectively. All immobilized catalase systems displayed the optimum temperature between 25 and 35°C. Reusability studies showed that Fe₃O₄-immobilized catalase can be used 11 times with 50% loss in original activity, while Fe2O₃NiO₂ · H₂O-immobilized catalase lost 67% of activity after the same number of uses. Furthermore, immobilized catalase systems exhibited improved thermal and pH stability. The results transparently indicate that it is possible to have binding between enzyme and magnetic nanoparticles. PMID:23876136

  5. Fungal catalases: function, phylogenetic origin and structure.

    PubMed

    Hansberg, Wilhelm; Salas-Lizana, Rodolfo; Domínguez, Laura

    2012-09-15

    Most fungi have several monofunctional heme-catalases. Filamentous ascomycetes (Pezizomycotina) have two types of large-size subunit catalases (L1 and L2). L2-type are usually induced by different stressors and are extracellular enzymes; those from the L1-type are not inducible and accumulate in asexual spores. L2 catalases are important for growth and the start of cell differentiation, while L1 are required for spore germination. In addition, pezizomycetes have one to four small-size subunit catalases. Yeasts (Saccharomycotina) do not have large-subunit catalases and generally have one peroxisomal and one cytosolic small-subunit catalase. Small-subunit catalases are inhibited by substrate while large-subunit catalases are activated by H(2)O(2). Some small-subunit catalases bind NADPH preventing inhibition by substrate. We present a phylogenetic analysis revealing one or two events of horizontal gene transfers from Actinobacteria to a fungal ancestor before fungal diversification, as the origin of large-size subunit catalases. Other possible horizontal transfers of small- and large-subunit catalases genes were detected and one from bacteria to the fungus Malassezia globosa was analyzed in detail. All L2-type catalases analyzed presented a secretion signal peptide. Mucorales preserved only L2-type catalases, with one containing a secretion signal if two or more are present. Basidiomycetes have only L1-type catalases, all lacking signal peptide. Fungal small-size catalases are related to animal catalases and probably evolved from a common ancestor. However, there are several groups of small-size catalases. In particular, a conserved group of fungal sequences resemble plant catalases, whose phylogenetic origin was traced to a group of bacteria. This group probably has the heme orientation of plant catalases and could in principle bind NADPH. From almost a hundred small-subunit catalases only one fourth has a peroxisomal localization signal and in fact many fungi lack

  6. Inhibition of host cell catalase by Mycoplasma pneumoniae: a possible mechanism for cell injury.

    PubMed Central

    Almagor, M; Yatziv, S; Kahane, I

    1983-01-01

    This study demonstrates that viable Mycoplasma pneumoniae cells inhibit catalase activity in several types of intact human cells as well as in solution. Human erythrocyte catalase was inhibited up to 72%, and the inhibition of catalase in human cultured skin fibroblasts, lung carcinoma epithelial cells, and ciliated epithelial cells from human nasal polyps ranged between 75 and 80%. UV light-killed mycoplasmas failed to inhibit catalase activity both in intact cells and in vitro. After M. pneumoniae infection of human cultured skin fibroblasts, the level of malonyldialdehyde, an indicator for membrane lipid peroxidation, was 3.5 times higher than in control fibroblasts. Virulent M. pneumoniae completely inhibited catalase activity in solution, whereas the nonvirulent strains had a lesser ability to inhibit catalase activity. These findings suggest that as a result of host cell catalase inhibition by M. pneumoniae, the toxicity of the hydrogen peroxide generated by the microorganism and the affected cell is enhanced, thereby inducing host cell damage. PMID:6407999

  7. Molecular Characterization of a Catalase from Hydra vulgaris

    PubMed Central

    Dash, Bhagirathi; Phillips, Timothy D.

    2012-01-01

    Catalase, an antioxidant and hydroperoxidase enzyme protects the cellular environment from harmful effects of hydrogen peroxide by facilitating its degradation to oxygen and water. Molecular information on a cnidarian catalase and/or peroxidase is, however, limited. In this work an apparent full length cDNA sequence coding for a catalase (HvCatalase) was isolated from Hydra vulgaris using 3’- and 5’- (RLM) RACE approaches. The 1859 bp HvCatalase cDNA included an open reading frame of 1518 bp encoding a putative protein of 505 amino acids with a predicted molecular mass of 57.44 kDa. The deduced amino acid sequence of HvCatalase contained several highly conserved motifs including the heme-ligand signature sequence RLFSYGDTH and the active site signature FXRERIPERVVHAKGXGA. A comparative analysis showed the presence of conserved catalytic amino acids [His(71), Asn(145), and Tyr(354)] in HvCatalase as well. Homology modeling indicated the presence of the conserved features of mammalian catalase fold. Hydrae exposed to thermal, starvation, metal and oxidative stress responded by regulating its catalase mRNA transcription. These results indicated that the HvCatalase gene is involved in the cellular stress response and (anti)oxidative processes triggered by stressor and contaminant exposure. PMID:22521743

  8. High catalase production by Rhizobium radiobacter strain 2-1.

    PubMed

    Nakayama, Mami; Nakajima-Kambe, Toshiaki; Katayama, Hideki; Higuchi, Kazuhiko; Kawasaki, Yoshio; Fuji, Ryujiro

    2008-12-01

    To promote the application of catalase for treating wastewater containing hydrogen peroxide, bacteria exhibiting high catalase activity were screened. A bacterium, designated strain 2-1, with high catalase activity was isolated from the wastewater of a beverage factory that uses hydrogen peroxide. Strain 2-1 was identified as Rhizobium radiobacter (formerly known as Agrobacterium tumefaciens) on the basis of both phenotypic and genotypic characterizations. Although some strains of R. radiobacter are known plant pathogens, polymerase chain reaction (PCR) analysis showed that strain 2-1 has no phytopathogenic factor. Compared with a type strain of R. radiobacter, the specific catalase activity of strain 2-1 was approximately 1000-fold. Moreover, Strain 2-1 grew faster and exhibited considerably higher catalase activity than other microorganisms that have been used for industrial catalase production. Strain 2-1 is harmless to humans and the environment and produces catalase efficiently, suggesting that strain 2-1 is a good resource for the mass production of catalase for the treatment of hydrogen peroxide-containing wastewater. PMID:19134550

  9. Catalase and enumeration of stressed Staphylococcus aureus cells.

    PubMed Central

    Flowers, R S; Martin, S E; Brewer, D G; Ordal, Z J

    1977-01-01

    The effects of catalase on the enumeration of stressed (heated, reduced water activity, or freeze-dried) Staphylococcus aureus cells on several selective media were examined. The addition of catalase greatly increased the enumeration of stressed cells. The beneficial effects of catalase were most pronounced on those media least efficient in enumeration of stressed staphylococci, showing increases in enumeration of up to 1,100-fold. The effects of catalase appear to be due to the reduced ability of stressed cells to repair and form colonies in the absence of an exogenous decomposer of H2O2. Thermally stressed cells were more sensitive to H2O2 than unstressed cells. During recovery, stressed cells overcame the requirement for catalase. These findings implicate H2O2 as a factor in the failure of certain selective media to adequately enumerate stressed cells and demonstrate that the addition of catalase to these media markedly increases their productivity. PMID:879771

  10. Antioxidant activity of banana flavonoids.

    PubMed

    Vijayakumar, S; Presannakumar, G; Vijayalakshmi, N R

    2008-06-01

    The antioxidant activity of flavonoids from banana (Musa paradisiaca) was studied in rats fed normal as well as high fat diets. Concentrations of peroxidation products namely malondialdehyde, hydroperoxides and conjugated diens were significantly decreased whereas the activities of catalase and superoxide dismutase were enhanced significantly. Concentrations of glutathione were also elevated in the treated animals. PMID:18329185

  11. Evolution of Catalases from Bacteria to Humans

    PubMed Central

    Zamocky, Marcel; Furtmüller, Paul G.; Obinger, Christian

    2010-01-01

    Excessive hydrogen peroxide is harmful for almost all cell components, so its rapid and efficient removal is of essential importance for aerobically living organisms. Conversely, hydrogen peroxide acts as a second messenger in signal-transduction pathways. H2O2 is degraded by peroxidases and catalases, the latter being able both to reduce H2O2 to water and to oxidize it to molecular oxygen. Nature has evolved three protein families that are able to catalyze this dismutation at reasonable rates. Two of the protein families are heme enzymes: typical catalases and catalase–peroxidases. Typical catalases comprise the most abundant group found in Eubacteria, Archaeabacteria, Protista, Fungi, Plantae, and Animalia, whereas catalase–peroxidases are not found in plants and animals and exhibit both catalatic and peroxidatic activities. The third group is a minor bacterial protein family with a dimanganese active site called manganese catalases. Although catalyzing the same reaction (2 H2O2 → 2 H2O + O2), the three groups differ significantly in their overall and active-site architecture and the mechanism of reaction. Here, we present an overview of the distribution, phylogeny, structure, and function of these enzymes. Additionally, we report about their physiologic role, response to oxidative stress, and about diseases related to catalase deficiency in humans. PMID:18498226

  12. Cloning, Expression, and Characterization of a Novel Thermophilic Monofunctional Catalase from Geobacillus sp. CHB1.

    PubMed

    Jia, Xianbo; Chen, Jichen; Lin, Chenqiang; Lin, Xinjian

    2016-01-01

    Catalases are widely used in many scientific areas. A catalase gene (Kat) from Geobacillus sp. CHB1 encoding a monofunctional catalase was cloned and recombinant expressed in Escherichia coli (E. coli), which was the first time to clone and express this type of catalase of genus Geobacillus strains as far as we know. This Kat gene was 1,467 bp in length and encoded a catalase with 488 amino acid residuals, which is only 81% similar to the previously studied Bacillus sp. catalase in terms of amino acid sequence. Recombinant catalase was highly soluble in E. coli and made up 30% of the total E. coli protein. Fermentation broth of the recombinant E. coli showed a high catalase activity level up to 35,831 U/mL which was only lower than recombinant Bacillus sp. WSHDZ-01 among the reported catalase production strains. The purified recombinant catalase had a specific activity of 40,526 U/mg and K m of 51.1 mM. The optimal reaction temperature of this recombinant enzyme was 60°C to 70°C, and it exhibited high activity over a wide range of reaction temperatures, ranging from 10°C to 90°C. The enzyme retained 94.7% of its residual activity after incubation at 60°C for 1 hour. High yield and excellent thermophilic properties are valuable features for this catalase in industrial applications. PMID:27579320

  13. Cloning, Expression, and Characterization of a Novel Thermophilic Monofunctional Catalase from Geobacillus sp. CHB1

    PubMed Central

    2016-01-01

    Catalases are widely used in many scientific areas. A catalase gene (Kat) from Geobacillus sp. CHB1 encoding a monofunctional catalase was cloned and recombinant expressed in Escherichia coli (E. coli), which was the first time to clone and express this type of catalase of genus Geobacillus strains as far as we know. This Kat gene was 1,467 bp in length and encoded a catalase with 488 amino acid residuals, which is only 81% similar to the previously studied Bacillus sp. catalase in terms of amino acid sequence. Recombinant catalase was highly soluble in E. coli and made up 30% of the total E. coli protein. Fermentation broth of the recombinant E. coli showed a high catalase activity level up to 35,831 U/mL which was only lower than recombinant Bacillus sp. WSHDZ-01 among the reported catalase production strains. The purified recombinant catalase had a specific activity of 40,526 U/mg and Km of 51.1 mM. The optimal reaction temperature of this recombinant enzyme was 60°C to 70°C, and it exhibited high activity over a wide range of reaction temperatures, ranging from 10°C to 90°C. The enzyme retained 94.7% of its residual activity after incubation at 60°C for 1 hour. High yield and excellent thermophilic properties are valuable features for this catalase in industrial applications. PMID:27579320

  14. Identification of a Catalase-Phenol Oxidase in Betalain Biosynthesis in Red Amaranth (Amaranthus cruentus).

    PubMed

    Teng, Xiao-Lu; Chen, Ning; Xiao, Xing-Guo

    2015-01-01

    Betalains are a group of nitrogen-containing pigments that color plants in most families of Caryophyllales. Their biosynthesis has long been proposed to begin with hydroxylation of L-tyrosine to L-DOPA through monophenolase activity of tyrosinase, but biochemical evidence in vivo remains lacking. Here we report that a Group 4 catalase, catalase-phenol oxidase (named as AcCATPO), was identified, purified and characterized from leaves of Amaranthus cruentus, a betalain plant. The purified enzyme appeared to be a homotrimeric protein composed of subunits of about 58 kDa, and demonstrated not only the catalase activity toward H2O2, but also the monophenolase activity toward L-tyrosine and diphenolase activity toward L-DOPA. Its catalase and phenol oxidase activities were inhibited by common classic catalase and tyrosinase inhibitors, respectively. All its peptide fragments identified by nano-LC-MS/MS were targeted to catalases, and matched with a cDNA-encoded polypeptide which contains both classic catalase and phenol oxidase active sites. These sites were also present in catalases of non-betalain plants analyzed. AcCATPO transcript abundance was positively correlated with the ratio of betaxanthin to betacyanin in both green and red leaf sectors of A. tricolor. These data shows that the fourth group catalase, catalase-phenol oxidase, is present in plant, and might be involved in betaxanthin biosynthesis. PMID:26779247

  15. Identification of a Catalase-Phenol Oxidase in Betalain Biosynthesis in Red Amaranth (Amaranthus cruentus)

    PubMed Central

    Teng, Xiao-Lu; Chen, Ning; Xiao, Xing-Guo

    2016-01-01

    Betalains are a group of nitrogen-containing pigments that color plants in most families of Caryophyllales. Their biosynthesis has long been proposed to begin with hydroxylation of L-tyrosine to L-DOPA through monophenolase activity of tyrosinase, but biochemical evidence in vivo remains lacking. Here we report that a Group 4 catalase, catalase-phenol oxidase (named as AcCATPO), was identified, purified and characterized from leaves of Amaranthus cruentus, a betalain plant. The purified enzyme appeared to be a homotrimeric protein composed of subunits of about 58 kDa, and demonstrated not only the catalase activity toward H2O2, but also the monophenolase activity toward L-tyrosine and diphenolase activity toward L-DOPA. Its catalase and phenol oxidase activities were inhibited by common classic catalase and tyrosinase inhibitors, respectively. All its peptide fragments identified by nano-LC-MS/MS were targeted to catalases, and matched with a cDNA-encoded polypeptide which contains both classic catalase and phenol oxidase active sites. These sites were also present in catalases of non-betalain plants analyzed. AcCATPO transcript abundance was positively correlated with the ratio of betaxanthin to betacyanin in both green and red leaf sectors of A. tricolor. These data shows that the fourth group catalase, catalase-phenol oxidase, is present in plant, and might be involved in betaxanthin biosynthesis. PMID:26779247

  16. Catalases are NAD(P)H-dependent tellurite reductases.

    PubMed

    Calderón, Iván L; Arenas, Felipe A; Pérez, José Manuel; Fuentes, Derie E; Araya, Manuel A; Saavedra, Claudia P; Tantaleán, Juan C; Pichuantes, Sergio E; Youderian, Philip A; Vásquez, Claudio C

    2006-01-01

    Reactive oxygen species damage intracellular targets and are implicated in cancer, genetic disease, mutagenesis, and aging. Catalases are among the key enzymatic defenses against one of the most physiologically abundant reactive oxygen species, hydrogen peroxide. The well-studied, heme-dependent catalases accelerate the rate of the dismutation of peroxide to molecular oxygen and water with near kinetic perfection. Many catalases also bind the cofactors NADPH and NADH tenaciously, but, surprisingly, NAD(P)H is not required for their dismutase activity. Although NAD(P)H protects bovine catalase against oxidative damage by its peroxide substrate, the catalytic role of the nicotinamide cofactor in the function of this enzyme has remained a biochemical mystery to date. Anions formed by heavy metal oxides are among the most highly reactive, natural oxidizing agents. Here, we show that a natural isolate of Staphylococcus epidermidis resistant to tellurite detoxifies this anion thanks to a novel activity of its catalase, and that a subset of both bacterial and mammalian catalases carry out the NAD(P)H-dependent reduction of soluble tellurite ion (TeO(3)(2-)) to the less toxic, insoluble metal, tellurium (Te(o)), in vitro. An Escherichia coli mutant defective in the KatG catalase/peroxidase is sensitive to tellurite, and expression of the S. epidermidis catalase gene in a heterologous E. coli host confers increased resistance to tellurite as well as to hydrogen peroxide in vivo, arguing that S. epidermidis catalase provides a physiological line of defense against both of these strong oxidizing agents. Kinetic studies reveal that bovine catalase reduces tellurite with a low Michaelis-Menten constant, a result suggesting that tellurite is among the natural substrates of this enzyme. The reduction of tellurite by bovine catalase occurs at the expense of producing the highly reactive superoxide radical. PMID:17183702

  17. Protection of Bacillus pumilus spores by catalases.

    PubMed

    Checinska, Aleksandra; Burbank, Malcolm; Paszczynski, Andrzej J

    2012-09-01

    Bacillus pumilus SAFR-032, isolated at spacecraft assembly facilities of the National Aeronautics and Space Administration Jet Propulsion Laboratory, is difficult to kill by the sterilization method of choice, which uses liquid or vapor hydrogen peroxide. We identified two manganese catalases, YjqC and BPUM_1305, in spore protein extracts of several B. pumilus strains by using PAGE and mass spectrometric analyses. While the BPUM_1305 catalase was present in six of the B. pumilus strains tested, YjqC was not detected in ATCC 7061 and BG-B79. Furthermore, both catalases were localized in the spore coat layer along with laccase and superoxide dismutase. Although the initial catalase activity in ATCC 7061 spores was higher, it was less stable over time than the SAFR-032 enzyme. We propose that synergistic activity of YjqC and BPUM_1305, along with other coat oxidoreductases, contributes to the enhanced resistance of B. pumilus spores to hydrogen peroxide. We observed that the product of the catalase reaction, gaseous oxygen, forms expanding vesicles on the spore surface, affecting the mechanical integrity of the coat layer, resulting in aggregation of the spores. The accumulation of oxygen gas and aggregations may play a crucial role in limiting further exposure of Bacilli spore surfaces to hydrogen peroxide or other toxic chemicals when water is present. PMID:22752169

  18. A Simple and Accurate Method for Measuring Enzyme Activity.

    ERIC Educational Resources Information Center

    Yip, Din-Yan

    1997-01-01

    Presents methods commonly used for investigating enzyme activity using catalase and presents a new method for measuring catalase activity that is more reliable and accurate. Provides results that are readily reproduced and quantified. Can also be used for investigations of enzyme properties such as the effects of temperature, pH, inhibitors,…

  19. [Catalase and superoxide dismutase in the cells of strictly anaerobic microorganisms].

    PubMed

    Briukhanov, A L; Thauer, R K; Netrusov, A I

    2002-01-01

    Strictly anaerobic microorganisms relating to various physiological groups were screened for catalase and superoxide dismutase (SOD) activity. All of the investigated anaerobes possessed the SOD activity, necessary for protection against toxic products of oxygen reduction. High specific activities of SOD were found in Acetobacterium woodii and Acetobacterium wieringae. Most of the investigated clostridia and acetogens were catalase-negative. A significant activity of catalase was found in Thermohydrogenium kirishiense, in representatives of the genus Desulfotomaculum, and in several methanogens. Methanobrevibacter arboriphilus had an exceptionally high catalase activity after growth in medium supplemented with hemin. Hemin also produced a strong positive effect on the catalase activity in many other anaerobic microorganisms. In methanogens, the activities of the enzymes of antioxidant defense varied in wide ranges depending on the stage of growth and the energy source. PMID:12138753

  20. Classical catalase: ancient and modern.

    PubMed

    Nicholls, Peter

    2012-09-15

    This review describes the historical difficulties in devising a kinetically satisfactory mechanism for the classical catalase after its identification as a unique catalytic entity in 1902 and prior to the breakthrough 1947 analysis by Chance and co-workers which led to the identification of peroxide compounds I and II. The role of protons in the formation of these two ferryl complexes is discussed and current problems of inhibitory ligand and hydrogen donor binding at the active site are outlined, especially the multiple roles involving formate or formic acid. A previous mechanism of NADPH-dependent catalase protection against substrate inhibition is defended. A revised model linking the catalytic ('catalatic') action and the one-electron side reactions involving compound II is suggested. And it is concluded that, contrary to an idea proposed in 1963 that eukaryotic catalase might be a 'fossil enzyme', current thinking gives it a central role in the redox protective processes of long term importance for human and other eukaryotic and prokaryotic life. PMID:22326823

  1. Active-R filter

    DOEpatents

    Soderstrand, Michael A.

    1976-01-01

    An operational amplifier-type active filter in which the only capacitor in the circuit is the compensating capacitance of the operational amplifiers, the various feedback and coupling elements being essentially solely resistive.

  2. Protective effect of coadministered superoxide dismutase and catalase against stress-induced gastric mucosal lesions.

    PubMed

    Ohta, Yoshiji; Nishida, Keiji

    2003-08-01

    1. There are conflicting reports as to the protective effect of coadministered native superoxide dismutase (SOD) and catalase against gastric mucosal lesions in rats with water immersion restraint (WIR) stress. It is unclear how coadministered native SOD and catalase protect against WIR stress-induced gastric mucosal lesions. Therefore, in the present study, we re-examined the protective effect of coadministered native SOD and catalase against gastric mucosal lesions in rats with WIR stress. 2. Gastric mucosal lesions were induced in Wistar rats by 3 h WIR. Rats were injected subcutaneously with a mixture of purified bovine erythrocyte SOD and bovine liver catalase 1 h before the onset of WIR. Ulcer index, serum SOD, catalase and xanthine oxidase (XO), uric acid and gastric mucosal SOD, catalase, XO, myeloperoxidase (MPO; an index of tissue neutrophil infiltration), non-protein sulfhydryl (NP-SH) and thiobarbituric acid-reactive substances (TBARS; an index of lipid peroxidation) were assayed in all rats used. 3. Rats with 3 h WIR showed gastric mucosal lesions. Pre-administration of SOD plus catalase to rats with WIR prevented lesion formation. In the serum of rats with WIR alone, XO activity and uric acid concentration increased, whereas SOD and catalase activities did not change. Pre-administration of SOD plus catalase to rats with WIR did not affect increased serum XO activity and uric acid concentration, but did increase serum SOD and catalase activities. In the gastric mucosa of rats with WIR alone, increases in MPO activity and TBARS concentration and a decrease in NP-SH concentration occurred, whereas XO, SOD and catalase activities did not change. Pre-administration of SOD plus catalase to rats with WIR attenuated the changes in gastric mucosal MPO activity and TBARS and NP-SH concentrations, but did not affect gastric mucosal XO, SOD and catalase activities. Pre-administration of SOD plus catalase (in an inactivated form) to rats with WIR had no effect on

  3. Increased myocardial catalase in rats fed ethanol.

    PubMed Central

    Fahimi, H. D.; Kino, M.; Hicks, L.; Thorp, K. A.; Abelman, W. H.

    1979-01-01

    The effects of chronic intake of dietary ethanol upon catalase, an enzyme capable of metabolizing ethanol, as well as upon myocardial morphology and hemodynamics, were studied in the rat. Ethanol, comprising 36% of dietary calories, administered to rats for 5 weeks, was associated with increased myocardial catalase of 45.9 +/- 3.7 IU/mg protein, compared to 21.0 +/- 1.8 IU/mg protein in pair-fed controls. The enzyme activity remained significantly elevated after 18 weeks of ethanol. Hepatic catalase did not differ in these groups. Parallel cytochemical studies confirmed the increase in myocardial catalase by demonstrating an increase in peroxisomes. Gross and light-microscopic examinations revealed no abnormalities at either 5 or 18 weeks. Remarkably few ultrastructural abnormalities were seen in this material fixed by vascular perfusion. Hemodynamic studies after 5 weeks of ethanol revealed decreased left ventricle systolic pressure and decreased mean arterial pressure but no change in ventricular filling pressure. The possibility of catalase playing a metabolic and potentially protective role in rat myocardium chronically exposed to ethanol is discussed. Images Figure 3 Figure 4-6 Figures 1 and 2 Figures 7 and 8 p[389]-a PMID:474705

  4. CATALASE AND SUPEROXIDE DISMUTASE OF ROOT-COLONIZING SAPROPHYTIC FLUORESCENT PSEUDOMONADS

    EPA Science Inventory

    Root-colonizing, saprophytic fluorescent pseudomonads of the Pseudomonas putida-P. fluorescens group express similar levels of catalase and superoxide dismutase activities during growth on a sucrose- and amino acid-rich medium. ncreased specific activities of catalase but not sup...

  5. Cloning, characterization, and expression in Escherichia coli of a gene encoding Listeria seeligeri catalase, a bacterial enzyme highly homologous to mammalian catalases.

    PubMed Central

    Haas, A; Brehm, K; Kreft, J; Goebel, W

    1991-01-01

    A gene coding for catalase (hydrogen-peroxide:hydrogen-peroxide oxidoreductase; EC 1.11.1.6) of the gram-positive bacterium Listeria seeligeri was cloned from a plasmid library of EcoRI-digested chromosomal DNA, with Escherichia coli DH5 alpha as a host. The recombinant catalase was expressed in E. coli to an enzymatic activity approximately 50 times that of the combined E. coli catalases. The nucleotide sequence was determined, and the deduced amino acid sequence revealed 43.2% amino acid sequence identity between bovine liver catalase and L. seeligeri catalase. Most of the amino acid residues which are involved in catalytic activity, the formation of the active center accession channel, and heme binding in bovine liver catalase were also present in L. seeligeri catalase at the corresponding positions. The recombinant protein contained 488 amino acid residues and had a calculated molecular weight of 55,869. The predicted isoelectric point was 5.0. Enzymatic and genetic analyses showed that there is most probably a single catalase of this type in L. seeligeri. A perfect 21-bp inverted repeat, which was highly homologous to previously reported binding sequences of the Fur (ferric uptake regulon) protein of E. coli, was detected next to the putative promoter region of the L. seeligeri catalase gene. Images PMID:1860824

  6. Extracellular localization of catalase is associated with the transformed state of malignant cells.

    PubMed

    Böhm, Britta; Heinzelmann, Sonja; Motz, Manfred; Bauer, Georg

    2015-12-01

    Oncogenic transformation is dependent on activated membrane-associated NADPH oxidase (NOX). However, the resultant extracellular superoxide anions are also driving the NO/peroxynitrite and the HOCl pathway, which eliminates NOX-expressing transformed cells through selective apoptosis induction. Tumor progression is dependent on dominant interference with intercellular apoptosis-inducing ROS signaling through membrane-associated catalase, which decomposes H2O2 and peroxynitrite and oxidizes NO. Particularly, the decomposition of extracellular peroxynitrite strictly requires membrane-associated catalase. We utilized small interfering RNA (siRNA)-mediated knockdown of catalase and neutralizing antibodies directed against the enzyme in combination with challenging H2O2 or peroxynitrite to determine activity and localization of catalase in cells from three distinct steps of multistage oncogenesis. Nontransformed cells did not generate extracellular superoxide anions and only showed intracellular catalase activity. Transformed cells showed superoxide anion-dependent intercellular apoptosis-inducing ROS signaling in the presence of suboptimal catalase activity in their membrane. Tumor cells exhibited tight control of intercellular apoptosis-inducing ROS signaling through a high local concentration of membrane-associated catalase. These data demonstrate that translocation of catalase to the outside of the cell membrane is already associated with the transformation step. A strong local increase in the concentration of membrane-associated catalase is achieved during tumor progression and is controlled by tumor cell-derived H2O2 and by transglutaminase. PMID:26140730

  7. Overexpression, purification and characterization of a recombinant secretary catalase from Bacillus subtilis.

    PubMed

    Shi, Xunlong; Feng, Meiqing; Zhao, Yujie; Guo, Xin; Zhou, Pei

    2008-01-01

    A recombinant Bacillus subtilis strain (KN25) was generated for the large-scale preparation of catalase. The B. subtilis katA gene encoding for catalase was cloned into the shuttle vector PRB374, downstream of the constitutively active vegII promoter, followed by transformation of the B. subtilis strain WB600 with the plasmid. The transformant strain, KN25 secretes high levels (3,500 U/ml) of catalase, which facilitates its purification. Three simple purification steps yielded nearly homogeneous catalase, with approximately 70% recovery. The purified recombinant catalase has a specific activity of 34,600 U/mg under optimal conditions, and is more resistant to acidic conditions than bovine liver catalase. PMID:17876537

  8. Inhibition of adhesion and proliferation of peritoneally disseminated tumor cells by pegylated catalase.

    PubMed

    Hyoudou, Kenji; Nishikawa, Makiya; Kobayashi, Yuki; Kuramoto, Yukari; Yamashita, Fumiyoshi; Hashida, Mitsuru

    2006-01-01

    Hydrogen peroxide may aggravate the peritoneal dissemination of tumor cells by activating the expression of a variety of genes. In this study, we used pegylated catalase (PEG-catalase) to examine whether prolonged retention of catalase activity within the peritoneal cavity is effective in inhibiting peritoneal dissemination in mouse models. Murine B16-BL6 cells or colon 26 cells labeled with firefly luciferase gene were inoculated intraperitoneally into syngeneic mice. Compared with unmodified catalase, PEG-catalase was retained in the peritoneal cavity for a long period after intraperitoneal injection. A single injection of PEG-catalase just before tumor inoculation significantly reduced the number of the tumor cells at 1 and 7 days. The changes in the expression of molecules involved in the metastasis were evaluated by real time quantitative PCR analysis. Inoculation of the tumor cells increased the expression of intercellular adhesion molecule (ICAM)-1 in the greater omentum, which was inhibited by PEG-catalase. An injection of PEG-catalase at 3 days after tumor inoculation also reduced the number of the tumor cells, suggesting that processes other than the adhesion of tumor cells to peritoneal organs are also inhibited. Daily doses of PEG-catalase significantly prolonged the survival time of tumor-bearing mice. These results indicate that intraperitoneal injection of PEG-catalase inhibits the multiple processes of peritoneal dissemination of tumor cells by scavenging hydrogen peroxide in the peritoneal cavity. PMID:17086358

  9. Purification and characterization of catalase from marine bacterium Acinetobacter sp. YS0810.

    PubMed

    Fu, Xinhua; Wang, Wei; Hao, Jianhua; Zhu, Xianglin; Sun, Mi

    2014-01-01

    The catalase from marine bacterium Acinetobacter sp. YS0810 (YS0810CAT) was purified and characterized. Consecutive steps were used to achieve the purified enzyme as follows: ethanol precipitation, DEAE Sepharose ion exchange, Superdex 200 gel filtration, and Resource Q ion exchange. The active enzyme consisted of four identical subunits of 57.256 kDa. It showed a Soret peak at 405 nm, indicating the presence of iron protoporphyrin IX. The catalase was not apparently reduced by sodium dithionite but was inhibited by 3-amino-1,2,4-triazole, hydroxylamine hydrochloride, and sodium azide. Peroxidase-like activity was not found with the substrate o-phenylenediamine. So the catalase was determined to be a monofunctional catalase. N-terminal amino acid of the catalase analysis gave the sequence SQDPKKCPVTHLTTE, which showed high degree of homology with those of known catalases from bacteria. The analysis of amino acid sequence of the purified catalase by matrix-assisted laser desorption ionization time-of-flight mass spectrometry showed that it was a new catalase, in spite of its high homology with those of known catalases from other bacteria. The catalase showed high alkali stability and thermostability. PMID:25045672

  10. The localization of catalase in the pulmonary alveolar macrophage.

    PubMed

    Davies, P; Drath, D B; Engel, E E; Huber, G L

    1979-02-01

    A combined biochemical and cytochemical study of catalase was performed on alveolar macrophages lavaged from the lungs of adult male rats. Biochemically, catalase activity was present in both a high-speed granule fraction and in the supernatant. The granule-associated activity exhibited latency. Two methods of cell breakage, sonication and homogenization, yielded similar levels and distributions of catalase activity. Catalase activity in whole cells was identified cytochemically by the alkaline diaminobenzidine method and was localized within membrane-lined cytoplasmic granules similar in size to microperoxisomes and associated with cisternae of smooth endoplasmic reticulum. Localization of the reaction product was inhibited by 0.04 M aminotriazole, by cyanide, and by boiling prior to incubation. The cytochemical reaction continued in the absence of exogenous peroxide, but could be prevented by addition of catalase or pyruvate to the peroxide-free medium. Enzyme activity was also localized within a portion of the membrane-bound granules present in the cell fractions used for the biochemical assays. PMID:431040

  11. Regulation of catalase in Neisseria gonorrhoeae. Effects of oxidant stress and exposure to human neutrophils.

    PubMed

    Zheng, H Y; Hassett, D J; Bean, K; Cohen, M S

    1992-09-01

    We studied the effects of oxidant stress on the catalase activity and hydrogen peroxide sensitivity of Neisseria gonorrhoeae. N. gonorrhoeae is an obligate pathogen of man that evokes a remarkable but ineffective neutrophil response. Gonococci make no superoxide dismutase but express high catalase activity. Gonococcal catalase activity increased threefold when organisms were subjected to 1.0 mM hydrogen peroxide. This increase in catalase activity was marked by a parallel increase in protein concentration recognized by a rabbit polyclonal antibody raised against the purified gonococcal enzyme. Catalase was primarily localized to the gonococcal cytoplasm in the presence or absence of stress; only a single isoenzyme of catalase could be identified. Exposure of gonococci to neutrophil-derived oxidants was accomplished by stimulating neutrophils with phorbol myristate acetate or by using gonococcal Opa variants that interacted with neutrophils with different degrees of efficiency. Gonococci exposed to neutrophils demonstrated a twofold increase in catalase activity in spite of some reduction in viability. Exposure of gonococci to 1.0 mM hydrogen peroxide made the organisms significantly more resistant to higher concentrations of hydrogen peroxide and to neutrophils than control organisms. These results suggest that catalase is an important defense for N. gonorrhoeae during attack by human neutrophils. The rapid response of this enzyme to hydrogen peroxide should be taken into consideration in studies designed to evaluate the interaction between neutrophils and gonococci. PMID:1522209

  12. Physical activity

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/001941.htm Physical activity To use the sharing features on this page, please enable JavaScript. Physical activity -- which includes an active lifestyle and routine exercise -- ...

  13. Inhibition of peritoneal dissemination of tumor cells by cationized catalase in mice.

    PubMed

    Hyoudou, Kenji; Nishikawa, Makiya; Kobayashi, Yuki; Mukai, Sakiko; Ikemura, Mai; Kuramoto, Yukari; Yamashita, Fumiyoshi; Hashida, Mitsuru

    2007-05-14

    To inhibit peritoneal dissemination of tumor cells by destroying hydrogen peroxide, ethylenediamine-conjugated catalase (ED-catalase), a cationized derivative, was injected into the peritoneal cavity of mice. ED-catalase had about a 6-fold longer retention time within the cavity than unmodified catalase. Peritoneal dissemination was evaluated after intraperitoneal inoculation of B16-BL6/Luc, a melanoma clone stably expressing firefly luciferase, by measuring luciferase activity. An intraperitoneal injection of ED-catalase just before tumor inoculation significantly reduced the number of tumor cells in peritoneal organs. Catalase was less effective, confirming the importance of the retention of the enzyme within the cavity for the inhibition. ED-catalase injected 3 days after tumor inoculation was also effective in inhibiting tumor growth. A real-time quantitative PCR analysis revealed that ED-catalase significantly suppressed the expression of intercellular adhesion molecule-1. Daily dosing of ED-catalase for 7 days significantly prolonged the survival of tumor-bearing mice. These findings indicate that ED-catalase, which is retained for a long time within the peritoneal cavity, is highly effective in inhibiting the adhesion and proliferation of peritoneally disseminated tumor cells, and in increasing the survival of tumor-bearing mice. PMID:17382424

  14. Activation detector

    DOEpatents

    Bell, Zane William [Oak Ridge, TN; Boatner, Lynn Allen [Oak Ridge, TN

    2009-12-08

    A method of detecting an activator, the method including impinging with an activator a receptor material lacking a photoluminescent material and generating a by-product of a radioactive decay due to the activator impinging the reeptor material. The method further including, generating light from the by-product via the Cherenkov effect and identifying a characteristic of the activator based on the light.

  15. Comperative study of catalase immobilization on chitosan, magnetic chitosan and chitosan-clay composite beads.

    PubMed

    Başak, Esra; Aydemir, Tülin; Dinçer, Ayşe; Becerik, Seda Çınar

    2013-12-01

    Catalase was immobilized on chitosan and modified chitosan. Studies were carried out on free-immobilized catalase concerning the determination of optimum temperature, pH, thermal, storage stability, reusability, and kinetic parameters. Optimum temperature and pH for free catalase and catalase immobilized were found as 35°C and 7.0, respectively. After 100 times of repeated tests, the immobilized catalases on chitosan-clay and magnetic chitosan maintain over 50% and 60% of the original activity, respectively. The ease of catalase immobilization on low-cost matrices and good stability upon immobilization in the present study make it a suitable product for further use in the food industry. PMID:23687952

  16. Biochemical and genetic analyses of a catalase from the anaerobic bacterium Bacteroides fragilis.

    PubMed Central

    Rocha, E R; Smith, C J

    1995-01-01

    A single catalase enzyme was produced by the anaerobic bacterium Bacteroides fragilis when cultures at late log phase were shifted to aerobic conditions. In anaerobic conditions, catalase activity was detected in stationary-phase cultures, indicating that not only oxygen exposure but also starvation may affect the production of this antioxidant enzyme. The purified enzyme showed a peroxidatic activity when pyrogallol was used as an electron donor. It is a hemoprotein containing one heme molecule per holomer and has an estimated molecular weight of 124,000 to 130,000. The catalase gene was cloned by screening a B. fragilis library for complementation of catalase activity in an Escherichia coli catalase mutant (katE katG) strain. The cloned gene, designated katB, encoded a catalase enzyme with electrophoretic mobility identical to that of the purified protein from the B. fragilis parental strain. The nucleotide sequence of katB revealed a 1,461-bp open reading frame for a protein with 486 amino acids and a predicted molecular weight of 55,905. This result was very close to the 60,000 Da determined by denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified catalase and indicates that the native enzyme is composed of two identical subunits. The N-terminal amino acid sequence of the purified catalase obtained by Edman degradation confirmed that it is a product of katB. The amino acid sequence of KatB showed high similarity to Haemophilus influenzae HktE (71.6% identity, 66% nucleotide identity), as well as to gram-positive bacterial and mammalian catalases. No similarities to bacterial catalase-peroxidase-type enzymes were found. The active-site residues, proximal and distal hemebinding ligands, and NADPH-binding residues of the bovine liver catalase-type enzyme were highly conserved in B. fragilis KatB. PMID:7768808

  17. Purification, characterization, and identification of a novel bifunctional catalase-phenol oxidase from Scytalidium thermophilum.

    PubMed

    Sutay Kocabas, Didem; Bakir, Ufuk; Phillips, Simon E V; McPherson, Michael J; Ogel, Zumrut B

    2008-06-01

    A novel bifunctional catalase with an additional phenol oxidase activity was isolated from a thermophilic fungus, Scytalidium thermophilum. This extracellular enzyme was purified ca. 10-fold with 46% yield and was biochemically characterized. The enzyme contains heme and has a molecular weight of 320 kDa with four 80 kDa subunits and an isoelectric point of 5.0. Catalase and phenol oxidase activities were most stable at pH 7.0. The activation energies of catalase and phenol oxidase activities of the enzyme were found to be 2.7 +/- 0.2 and 10.1 +/- 0.4 kcal/mol, respectively. The pure enzyme can oxidize o-diphenols such as catechol, caffeic acid, and L-DOPA in the absence of hydrogen peroxide and the highest oxidase activity is observed against catechol. No activity is detected against tyrosine and common laccase substrates such as ABTS and syringaldazine with the exception of weak activity with p-hydroquinone. Common catechol oxidase inhibitors, salicylhydroxamic acid and p-coumaric acid, inhibit the oxidase activity. Catechol oxidation activity was also detected in three other catalases tested, from Aspergillus niger, human erythrocyte, and bovine liver, suggesting that this dual catalase-phenol oxidase activity may be a common feature of catalases. PMID:18369615

  18. Prevention of pulmonary metastasis from subcutaneous tumors by binary system-based sustained delivery of catalase.

    PubMed

    Hyoudou, Kenji; Nishikawa, Makiya; Ikemura, Mai; Kobayashi, Yuki; Mendelsohn, Adam; Miyazaki, Nobuhiko; Tabata, Yasuhiko; Yamashita, Fumiyoshi; Hashida, Mitsuru

    2009-07-20

    Catalase delivery can be effective in inhibiting reactive oxygen species (ROS)-mediated acceleration of tumor metastasis. Our previous studies have demonstrated that increasing the plasma half-life of catalase by pegylation (PEG-catalase) significantly increases its potency of inhibiting experimental pulmonary metastasis in mice. In the present study, a biodegradable gelatin hydrogel formulation was used to further increase the circulation time of PEG-catalase. Implantation of (111)In-PEG-catalase/hydrogel into subcutaneous tissues maintained the radioactivity in plasma for more than 14 days. Then, the effect of the PEG-catalase/hydrogel on spontaneous pulmonary metastasis of tumor cells was evaluated in mice with subcutaneous tumor of B16-BL6/Luc cells, a murine melanoma cell line stably expressing luciferase. Measuring luciferase activity in the lung revealed that the PEG-catalase/hydrogel significantly (P<0.05) inhibited the pulmonary metastasis compared with PEG-catalase solution. These findings indicate that sustaining catalase activity in the blood circulation achieved by the use of pegylation and gelatin hydrogel can reduce the incidence of tumor cell metastasis. PMID:19361547

  19. Active turbulence in active nematics

    NASA Astrophysics Data System (ADS)

    Thampi, S. P.; Yeomans, J. M.

    2016-07-01

    Dense, active systems show active turbulence, a state characterised by flow fields that are chaotic, with continually changing velocity jets and swirls. Here we review our current understanding of active turbulence. The development is primarily based on the theory and simulations of active liquid crystals, but with accompanying summaries of related literature.

  20. Physical activity

    MedlinePlus

    ... time they spend watching TV and using a computer and other electronic devices. All of these activities ... U.S. Department of Health and Human Services. Physical Activity Guidelines for Americans: Recommendation ... Page last updated: ...

  1. Activity Scale.

    ERIC Educational Resources Information Center

    Kerpelman, Larry C.; Weiner, Michael J.

    This twenty-four item scale assesses students' actual and desired political-social activism in terms of physical participation, communication activities, and information-gathering activities. About ten minutes are required to complete the instrument. The scale is divided into two subscales. The first twelve items (ACT-A) question respondents on…

  2. Catalase Inhibits Ionizing Radiation-Induced Apoptosis in Hematopoietic Stem and Progenitor Cells

    PubMed Central

    Xiao, Xia; Luo, Hongmei; Vanek, Kenneth N.; LaRue, Amanda C.; Schulte, Bradley A.

    2015-01-01

    Hematologic toxicity is a major cause of mortality in radiation emergency scenarios and a primary side effect concern in patients undergoing chemo-radiotherapy. Therefore, there is a critical need for the development of novel and more effective approaches to manage this side effect. Catalase is a potent antioxidant enzyme that coverts hydrogen peroxide into hydrogen and water. In this study, we evaluated the efficacy of catalase as a protectant against ionizing radiation (IR)-induced toxicity in hematopoietic stem and progenitor cells (HSPCs). The results revealed that catalase treatment markedly inhibits IR-induced apoptosis in murine hematopoietic stem cells and hematopoietic progenitor cells. Subsequent colony-forming cell and cobble-stone area-forming cell assays showed that catalase-treated HSPCs can not only survive irradiation-induced apoptosis but also have higher clonogenic capacity, compared with vehicle-treated cells. Moreover, transplantation of catalase-treated irradiated HSPCs results in high levels of multi-lineage and long-term engraftments, whereas vehicle-treated irradiated HSPCs exhibit very limited hematopoiesis reconstituting capacity. Mechanistically, catalase treatment attenuates IR-induced DNA double-strand breaks and inhibits reactive oxygen species. Unexpectedly, we found that the radioprotective effect of catalase is associated with activation of the signal transducer and activator of transcription 3 (STAT3) signaling pathway and pharmacological inhibition of STAT3 abolishes the protective activity of catalase, suggesting that catalase may protect HSPCs against IR-induced toxicity via promoting STAT3 activation. Collectively, these results demonstrate a previously unrecognized mechanism by which catalase inhibits IR-induced DNA damage and apoptosis in HSPCs. PMID:25603016

  3. Layer-by-layer self-assembly immobilization of catalases on wool fabrics.

    PubMed

    Liu, J; Wang, Q; Fan, X R; Sun, X J; Huang, P H

    2013-04-01

    A new immobilization strategy of catalases on natural fibers was reported in this paper. Catalase (CAT) from Bacillus subtilis was assembled into multiple layers together with poly(diallyldimethylammonium chloride) (PDDA) on wool fabrics via layer-by-layer (LBL) electrostatic self-assembly deposition. The mechanism and structural evaluation of LBL electrostatic self-assembly were studied in terms of scanning electron microscopy (SEM), surface zeta potential, and apparent color depth (K/S). The SEM pictures showed obvious deposits absorbed on the wool surfaces after LBL self-assembly. The surface zeta potential and dyeing depth of CAT/PDDA-assembled wool fabrics presented a regular layer-by-layer alternating trend along with the change of deposited materials, revealing the multilayer structure of the wool fiber immobilized catalases. The V(max) values were found to be 2,500±238 U/mg protein for the free catalase and 1,000±102 U/mg protein for the immobilized catalase. The K(m) value of free catalase (11.25±2.3 mM) was found to be lower than that of the immobilized catalase (222.2±36.5 mM). The immobilized catalase remained high enzymatic activity and showed a measureable amount of reusability, which proved that LBL electrostatic self-assembly deposition is a promising approach to immobilize catalases. PMID:23420488

  4. Soluble epoxide hydrolase contamination of specific catalase preparations inhibits epoxyeicosatrienoic acid vasodilation of rat renal arterioles.

    PubMed

    Gauthier, Kathryn M; Olson, Lauren; Harder, Adam; Isbell, Marilyn; Imig, John D; Gutterman, David D; Falck, J R; Campbell, William B

    2011-10-01

    Cytochrome P-450 metabolites of arachidonic acid, the epoxyeicosatrienoic acids (EETs) and hydrogen peroxide (H(2)O(2)), are important signaling molecules in the kidney. In renal arteries, EETs cause vasodilation whereas H(2)O(2) causes vasoconstriction. To determine the physiological contribution of H(2)O(2), catalase is used to inactivate H(2)O(2). However, the consequence of catalase action on EET vascular activity has not been determined. In rat renal afferent arterioles, 14,15-EET caused concentration-related dilations that were inhibited by Sigma bovine liver (SBL) catalase (1,000 U/ml) but not Calbiochem bovine liver (CBL) catalase (1,000 U/ml). SBL catalase inhibition was reversed by the soluble epoxide hydrolase (sEH) inhibitor tAUCB (1 μM). In 14,15-EET incubations, SBL catalase caused a concentration-related increase in a polar metabolite. Using mass spectrometry, the metabolite was identified as 14,15-dihydroxyeicosatrienoic acid (14,15-DHET), the inactive sEH metabolite. 14,15-EET hydrolysis was not altered by the catalase inhibitor 3-amino-1,2,4-triazole (3-ATZ; 10-50 mM), but was abolished by the sEH inhibitor BIRD-0826 (1-10 μM). SBL catalase EET hydrolysis showed a regioisomer preference with greatest hydrolysis of 14,15-EET followed by 11,12-, 8,9- and 5,6-EET (V(max) = 0.54 ± 0.07, 0.23 ± 0.06, 0.18 ± 0.01 and 0.08 ± 0.02 ng DHET·U catalase(-1)·min(-1), respectively). Of five different catalase preparations assayed, EET hydrolysis was observed with two Sigma liver catalases. These preparations had low specific catalase activity and positive sEH expression. Mass spectrometric analysis of the SBL catalase identified peptide fragments matching bovine sEH. Collectively, these data indicate that catalase does not affect EET-mediated dilation of renal arterioles. However, some commercial catalase preparations are contaminated with sEH, and these contaminated preparations diminish the biological activity of H(2)O(2) and EETs. PMID:21753077

  5. Inherited catalase deficiency: is it benign or a factor in various age related disorders?

    PubMed

    Góth, László; Nagy, Teréz

    2013-01-01

    Hydrogen peroxide was - and is still - considered toxic for a wide range of living organisms. Oxidative stress occurs when there is an excess of pro-oxidants over antioxidants and it has been implicated in several diseases. Catalase is involved in hydrogen peroxide catabolism and is important in defense against oxidative stress. Acatalasemia means the inherited near-total deficiency of catalase activity, usually in reference to red cell catalase. Acatalasemia was thought at first to be an asymptotic disorder. In the absence of catalase, neither the Japanese, or Hungarian acatalasemics nor acatalasemic mice had significantly increased blood glutathione peroxidase activity. In animal models, catalase deficient tissues show much slower rates of removal of extracellular hydrogen peroxide. In catalase knock-out mice, a decreased hydrogen peroxide removing capacity and increased reactive oxygen species formation were reported. Hydrogen peroxide may cause methemoglobinemia in patients with catalase deficiency. During anesthesia for a Japanese acatalasemic patient the disinfection with hydrogen peroxide solution caused severe methemoglobinemia. Patients with inherited catalase deficiency, who are treated with uric acid oxidase (rasburicase) may experience very high concentrations of hydrogen peroxide and may suffer from methemoglobinemia and hemolysis. The high (18.5%) prevalence of diabetes mellitus in inherited catalase deficient individuals and the earlier (10 years) manifestation of the disease may be attributed to the oxidative damage of oxidant sensitive, insulin producing pancreatic beta-cells. Ninety-seven of 114 acatalasemics had diseases related to oxidative stress and aging. The oxidative stress due to catalase deficiency could contribute to the manifestation of diabetes while for the other diseases it may be one of the factors in their causations. In summary, inherited catalase deficiency is associated with clinical features, pathologic laboratory test results

  6. Occurrence of High Catalase-containing Acinetobacter in Spacecraft Assembly Facilities

    NASA Astrophysics Data System (ADS)

    McCoy, K. B.; Derecho, I.; La Duc, M. T.; Vaishampayan, P.; Venkateswaran, K. J.; Mogul, R.

    2010-04-01

    In summary, the measurement of high catalase specific activity values for spacecraft-associated Acinetobacter strains is potentially the result of adaptation towards the harsh conditions of the clean rooms and assembly process.

  7. Covalent Immobilization of Catalase onto Regenerated Silk Fibroins via Tyrosinase-Catalyzed Cross-Linking.

    PubMed

    Wang, Ping; Qi, Chenglong; Yu, Yuanyuan; Yuan, Jiugang; Cui, Li; Tang, Gengtie; Wang, Qiang; Fan, Xuerong

    2015-09-01

    Regenerated silk fibroins could be used as medical scaffolds and carrier materials for enzyme immobilization. In the present work, tyrosinase enzyme was used for enzymatic oxidation of silk fibroins, followed by immobilization of catalase onto the fibroin surfaces through physical adsorption and covalent cross-linking as well. Spectrophotometry, SDS-PAGE, and Fourier transform infrared spectroscopy (FTIR) were used to examine the efficiency of enzymatic oxidation and catalase immobilization, respectively. The results indicate that tyrosine residues in silk fibroins could be oxidized and converted to the active o-quinones. Incubating silk fibroins with catalase and tyrosinase led to a noticeable change of molecular weight distribution, indicating the occurrence of the cross-links between silk fibroins and catalase molecules. Two different pathways were proposed for the catalase immobilizations, and the method based on grafting of catalase onto the freeze-dried fibroin membrane is more acceptable. The residual enzyme activity for the immobilized catalase exhibited higher than that of the control after repeated washing cycles. Meanwhile, the thermal stability and alkali resistance were also slightly improved as compared to free catalase. The mechanisms of enzymatic immobilization are also concerned. PMID:26189105

  8. Identification of two catalases in Azotobacter vinelandii: a KatG homologue and a novel bacterial cytochrome c catalase, CCCAv.

    PubMed

    Sandercock, James R; Page, William J

    2008-02-01

    Azotobacter vinelandii produces two detectable catalases during growth on minimal medium. The heat-labile catalase expressed during exponential growth phase was identified as a KatG homologue by liquid chromatography-tandem mass spectrometry (LC-MS/MS) using a mixed protein sample. The second catalase was heat resistant and had substantial residual activity after treatment at 90 degrees C. This enzyme was purified by anion-exchange and size exclusion chromatography and was found to exhibit strong absorption at 407 nm, which is often indicative of associated heme moieties. The purified protein was fragmented by proteinase K and identified by LC-MS/MS. Some identity was shared with the MauG/bacterial cytochrome c peroxidase (BCCP) protein family, but the enzyme exhibited a strong catalase activity never before observed in this family. Because two putative c-type heme sites (CXXCH) were predicted in the peptide sequence and were demonstrated experimentally, the enzyme was designated a cytochrome c catalase (CCC(Av)). However, the local organization of the CCC(Av) heme motifs differed significantly from that of the BCCPs as the sites were confined to the C-terminal half of the catalase. A possible Ca2+ binding motif, previously described in the BCCPs, is also present in the CCC(Av) peptide sequence. Some instability in the presence of EGTA was observed. Expression of the catalase was abolished in cccA mutants, resulting in a nearly 8,700-fold reduction in peroxide resistance in stationary phase. PMID:18055590

  9. Active ratchets

    NASA Astrophysics Data System (ADS)

    Angelani, L.; Costanzo, A.; Di Leonardo, R.

    2011-12-01

    We analyze self-propelling organisms, or active particles, in a periodic asymmetric potential. Unlike standard ratchet effect for Brownian particles requiring external forcing, in the case of active particles asymmetric potential alone produces a net drift speed (active ratchet effect). By using theoretical models and numerical simulations we demonstrate the emergence of the rectification process in the presence of an asymmetric piecewise periodic potential. The broken spatial symmetry (external potential) and time symmetry (active particles) are sufficient ingredients to sustain unidirectional transport. Our findings open the way to new mechanisms to move in directional manner motile organisms by using external periodic static fields.

  10. A Eukaryote without Catalase-Containing Microbodies: Neurospora crassa Exhibits a Unique Cellular Distribution of Its Four Catalases†

    PubMed Central

    Schliebs, Wolfgang; Würtz, Christian; Kunau, Wolf-Hubert; Veenhuis, Marten; Rottensteiner, Hanspeter

    2006-01-01

    Microbodies usually house catalase to decompose hydrogen peroxide generated within the organelle by the action of various oxidases. Here we have analyzed whether peroxisomes (i.e., catalase-containing microbodies) exist in Neurospora crassa. Three distinct catalase isoforms were identified by native catalase activity gels under various peroxisome-inducing conditions. Subcellular fractionation by density gradient centrifugation revealed that most of the spectrophotometrically measured activity was present in the light upper fractions, with an additional small peak coinciding with the peak fractions of HEX-1, the marker protein for Woronin bodies, a compartment related to the microbody family. However, neither in-gel assays nor monospecific antibodies generated against the three purified catalases detected the enzymes in any dense organellar fraction. Furthermore, staining of an N. crassa wild-type strain with 3,3′-diaminobenzidine and H2O2 did not lead to catalase-dependent reaction products within microbodies. Nonetheless, N. crassa does possess a gene (cat-4) whose product is most similar to the peroxisomal type of monofunctional catalases. This novel protein indeed exhibited catalase activity, but was not localized to microbodies either. We conclude that N. crassa lacks catalase-containing peroxisomes, a characteristic that is probably restricted to a few filamentous fungi that produce little hydrogen peroxide within microbodies. PMID:16963632

  11. 21 CFR 184.1034 - Catalase (bovine liver).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are available from the National Academy Press, 2101... liver) (CAS Reg. No. 81457-95-6) is an enzyme preparation obtained from extracts of bovine liver. It is a partially purified liquid or powder. Its characterizing enzyme activity is catalase (EC...

  12. 21 CFR 184.1034 - Catalase (bovine liver).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are available from the National Academy Press, 2101... liver) (CAS Reg. No. 81457-95-6) is an enzyme preparation obtained from extracts of bovine liver. It is a partially purified liquid or powder. Its characterizing enzyme activity is catalase (EC...

  13. 21 CFR 184.1034 - Catalase (bovine liver).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are available from the National Academy Press, 2101... liver) (CAS Reg. No. 81457-95-6) is an enzyme preparation obtained from extracts of bovine liver. It is a partially purified liquid or powder. Its characterizing enzyme activity is catalase (EC...

  14. 21 CFR 184.1034 - Catalase (bovine liver).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... 110, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies... enzyme preparation obtained from extracts of bovine liver. It is a partially purified liquid or powder. Its characterizing enzyme activity is catalase (EC 1.11.1.6). (b) The ingredient meets the...

  15. Faculty Activism

    ERIC Educational Resources Information Center

    Academe, 2005

    2005-01-01

    Blending scholarship and activism, whether domestic or international, takes some real work. Two scholar-activists reflect on why and how activism can be more than academic labor in this feature of the "Academe" journal. This feature includes the following brief reflections on political work, both local and global that demonstrates how on campus…

  16. Indoor Activities

    MedlinePlus

    ... so you can do some lifting while you watch TV. Walk around the house when you talk on the phone. Make an extra trip up and down the stairs when you do the laundry. Download the Tip Sheet Indoor Activities (PDF, 739.53 KB) You Might Also Like Sun Safety Have Fun. Be Active with Your Dog! ...

  17. Catalyst activator

    DOEpatents

    McAdon, Mark H.; Nickias, Peter N.; Marks, Tobin J.; Schwartz, David J.

    2001-01-01

    A catalyst activator particularly adapted for use in the activation of metal complexes of metals of Group 3-10 for polymerization of ethylenically unsaturated polymerizable monomers, especially olefins, comprising two Group 13 metal or metalloid atoms and a ligand structure including at least one bridging group connecting ligands on the two Group 13 metal or metalloid atoms.

  18. Outdoor Activities.

    ERIC Educational Resources Information Center

    Minneapolis Independent School District 275, Minn.

    Twenty-four activities suitable for outdoor use by elementary school children are outlined. Activities designed to make children aware of their environment include soil painting, burr collecting, insect and pond water collecting, studies of insect galls and field mice, succession studies, and a model of natural selection using dyed toothpicks. A…

  19. Astronomy Activities.

    ERIC Educational Resources Information Center

    Greenstone, Sid

    This document consists of activities and references for teaching astronomy. The activities (which include objectives, list of materials needed, and procedures) focus on: observing the Big Dipper and locating the North Star; examining the Big Dipper's stars; making and using an astrolabe; examining retograde motion of Mars; measuring the Sun's…

  20. Activated Charcoal

    MedlinePlus

    ... ACTIVATED CHARCOAL are as follows:Trapping chemicals to stop some types of poisoning when used as a ... Charbon Végétal, Charbon Végétal Activé, Charcoal, Gas Black, Lamp Black, Medicinal Charcoal, Noir de Gaz, Noir de ...

  1. Forchlorfenuron detection based on its inhibitory effect towards catalase immobilized on boron nitride substrate.

    PubMed

    Xu, Qin; Cai, Lijuan; Zhao, Huijie; Tang, Jiaqian; Shen, Yuanyuan; Hu, Xiaoya; Zeng, Haibo

    2015-01-15

    An enzymatic procedure based on a catalase biosensor for the detection of forchlorfenuron (CPPU) has been reported in this work. Catalase was immobilized on boron nitride (BN) sheets dispersed in chitosan by adsorption. The immobilized catalase exhibited direct electron transfer character and excellent electrocatalytic activity towards H2O2 reduction. After introducing CPPU into the H2O2 containing phosphate buffer solution, the catalase-catalyzed H2O2 reduction current decreased. By measuring the current decrease, CPPU can be determined in the range of 0.5-10.0 µM with the detection limit of 0.07 μM. The non-competitive inhibition behavior of CPPU towards catalase was verified by the Lineweaver-Burk plots. Long stability character has been ascribed to this biosensor. Possible use of this biosensor in flow systems is illustrated. The proposed biosensor has been successfully applied to CPPU determination in fruits samples with satisfactory results. PMID:25108110

  2. Immobilization of catalase on chitosan and amino acid- modified chitosan beads.

    PubMed

    Başak, Esra; Aydemir, Tülin

    2013-08-01

    Bovine liver catalase was covalently immobilized onto amino acid-modified chitosan beads. The beads were characterized with SEM, FTIR, TGA and the effects of immobilization on optimum pH and temperature, thermostability, reusability were evaluated. Immobilized catalase showed the maximal enzyme activity at pH 7.0 at 30°C. The kinetic parameters, Km and Vmax, for immobilized catalase on alanine-chitosan beads and lysine-chitosan beads were estimated to be 25.67 mM, 27 mM and 201.39 μmol H2O2/min, 197.50 μmol H2O2/min, respectively. The activity of the immobilized catalase on Ala-CB and Lys-CB retained 40% of its high initial activity after 100 times of reuse. PMID:23316810

  3. Study of catalase adsorption on two mixed-mode ligands and the mechanism involved therein.

    PubMed

    Shiva Ranjini, S; Vijayalakshmi, M A

    2012-11-01

    Mixed-mode chromatography sorbents n-hexylamine HyperCel™ (HEA) and phenylpropylamine HyperCel™ (PPA) were evaluated for the study of adsorption of catalase from two different sources. Various parameters such as buffer composition, ionic strength and pH were investigated to study the mechanism of interaction of commercially available pre-purified catalase from Bovine liver, purified catalase from black gram (Vigna mungo) and crude extract of black gram containing catalase with these mixed-mode ligands. A simple and economical screening protocol for identifying optimal buffer conditions for adsorption and desorption of catalase was established with micro volumes of the sorbent in batch mode. With HEA HyperCel, it was observed that pre-purified catalase from both bovine liver and black gram was completely retained at pH 7.0, irrespective of the presence or absence of NaCl in the adsorption buffer, whereas the catalase from crude extract of black gram was completely retained only in the presence of 0.2 M salt in the adsorption buffer. The elution of catalase from both the sources was accomplished by lowering the pH to 4.5 in absence of salt. In case of PPA HyperCel, catalase from both the sources was very strongly adsorbed under different buffer conditions studied, and elution did not yield a significant catalase activity. From the screening experiments, it could be concluded that the interaction of catalase with HEA HyperCel could be dominated by hydrophobic forces with minor contributions from ionic interaction and with PPA HyperCel, it could be a combination of different non-covalent interactions acting on different loci on the surface of the protein. PMID:23108613

  4. Inhibitory effects of a novel Val to Thr mutation on the distal heme of human catalase

    PubMed Central

    Mashhadi, Zahra; Boeglin, William E.; Brash, Alan R.

    2014-01-01

    True catalases efficiently breakdown hydrogen peroxide, whereas the catalase-related enzyme allene oxide synthase (cAOS) is completely unreactive and instead metabolizes a fatty acid hydroperoxide. In cAOS a Thr residue adjacent to the distal His restrains reaction with H2O2 (Tosha et al (2006) J. Biol. Chem. 281:12610; De Luna et al (2013) J. Phys. Chem. B 117: 14635) and its mutation to the consensus Val of true catalases permits the interaction. Here we investigated the effects of the reciprocal experiment in which the Val74 of human catalase is mutated to Thr, Ser, Met, Pro, or Ala. The Val74Thr substitution decreased catalatic activity by 3.5-fold and peroxidatic activity by 3-fold. Substitution with Ser had similar negative effects (5- and 3-fold decreases). Met decreased catalatic activity 2-fold and eliminated peroxidatic activity altogether, whereas the Val74Ala substitution was well tolerated. (The Val74Pro protein lacked heme). We conclude that the conserved Val74 of true catalases helps optimize catalysis. There are rare substitutions of Val74 with Ala, Met, or Pro, but not with Ser of Thr, possibly due their hydrogen bonding affecting the conformation of His75, the essential distal heme residue for activity in catalases. PMID:25086217

  5. Inhibitory effects of a novel Val to Thr mutation on the distal heme of human catalase.

    PubMed

    Mashhadi, Zahra; Boeglin, William E; Brash, Alan R

    2014-11-01

    True catalases efficiently breakdown hydrogen peroxide, whereas the catalase-related enzyme allene oxide synthase (cAOS) is completely unreactive and instead metabolizes a fatty acid hydroperoxide. In cAOS a Thr residue adjacent to the distal His restrains reaction with H2O2 (Tosha et al. (2006) J. Biol. Chem. 281:12610; De Luna et al. (2013) J. Phys. Chem. B 117: 14635) and its mutation to the consensus Val of true catalases permits the interaction. Here we investigated the effects of the reciprocal experiment in which the Val74 of human catalase is mutated to Thr, Ser, Met, Pro, or Ala. The Val74Thr substitution decreased catalatic activity by 3.5-fold and peroxidatic activity by 3-fold. Substitution with Ser had similar negative effects (5- and 3-fold decreases). Met decreased catalatic activity 2-fold and eliminated peroxidatic activity altogether, whereas the Val74Ala substitution was well tolerated. (The Val74Pro protein lacked heme). We conclude that the conserved Val74 of true catalases helps optimize catalysis. There are rare substitutions of Val74 with Ala, Met, or Pro, but not with Ser of Thr, possibly due their hydrogen bonding affecting the conformation of His75, the essential distal heme residue for activity in catalases. PMID:25086217

  6. Kinetics of hydrogen peroxide decomposition by catalase: hydroxylic solvent effects.

    PubMed

    Raducan, Adina; Cantemir, Anca Ruxandra; Puiu, Mihaela; Oancea, Dumitru

    2012-11-01

    The effect of water-alcohol (methanol, ethanol, propan-1-ol, propan-2-ol, ethane-1,2-diol and propane-1,2,3-triol) binary mixtures on the kinetics of hydrogen peroxide decomposition in the presence of bovine liver catalase is investigated. In all solvents, the activity of catalase is smaller than in water. The results are discussed on the basis of a simple kinetic model. The kinetic constants for product formation through enzyme-substrate complex decomposition and for inactivation of catalase are estimated. The organic solvents are characterized by several physical properties: dielectric constant (D), hydrophobicity (log P), concentration of hydroxyl groups ([OH]), polarizability (α), Kamlet-Taft parameter (β) and Kosower parameter (Z). The relationships between the initial rate, kinetic constants and medium properties are analyzed by linear and multiple linear regression. PMID:22565543

  7. Embryonic catalase protects against ethanol embryopathies in acatalasemic mice and transgenic human catalase-expressing mice in embryo culture

    SciTech Connect

    Miller-Pinsler, Lutfiya; Wells, Peter G.

    2015-09-15

    Reactive oxygen species (ROS) have been implicated in the mechanism of ethanol (EtOH) teratogenicity, but the protective role of the embryonic antioxidative enzyme catalase is unclear, as embryonic activity is only about 5% of maternal levels. We addressed this question in a whole embryo culture model. C57BL/6 mouse embryos expressing human catalase (hCat) or their wild-type (C57BL/6 WT) controls, and C3Ga.Cg-Cat{sup b}/J catalase-deficient, acatalasemic (aCat) mouse embryos or their wild-type C3HeB/FeJ (C3H WT) controls, were explanted on gestational day (GD) 9 (plug = GD 1), exposed for 24 h to 2 or 4 mg/mL EtOH or vehicle, and evaluated for functional and morphological changes. hCat and C57BL/6 WT vehicle-exposed embryos developed normally, while EtOH was embryopathic in C57BL/6 WT embryos, evidenced by decreases in anterior neuropore closure, somites developed, turning and head length, whereas hCat embryos were protected (p < 0.001). Maternal pretreatment of C57BL/6 WT dams with 50 kU/kg PEG-catalase (PEG-cat) 8 h prior to embryo culture, which increases embryonic catalase activity, blocked all EtOH embryopathies (p < 0.001). Vehicle-exposed aCat mouse embryos had lower yolk sac diameters compared to WT controls, suggesting that endogenous ROS are embryopathic. EtOH was more embryopathic in aCat embryos than WT controls, evidenced by reduced head length and somite development (p < 0.01), and trends for reduced anterior neuropore closure, turning and crown–rump length. Maternal pretreatment of aCat dams with PEG-Cat blocked all EtOH embryopathies (p < 0.05). These data suggest that embryonic catalase is a determinant of risk for EtOH embryopathies. - Highlights: • Ethanol (EtOH) exposure causes structural embryopathies in embryo culture. • Genetically enhanced catalase (hCat) protects against EtOH embryopathies. • Genetically deficient catalase (aCat) exacerbates EtOH embryopathies. • Embryonic catalase is developmentally important. • Et

  8. Activated Charcoal

    MedlinePlus

    ... is used to treat poisonings, reduce intestinal gas (flatulence), lower cholesterol levels, prevent hangover, and treat bile ... lower cholesterol levels in the blood. Decreasing gas (flatulence). Some studies show that activated charcoal is effective ...

  9. Activation analysis

    SciTech Connect

    Alfassi, Z.B. . Dept. of Nuclear Engineering)

    1990-01-01

    This volume contains 16 chapters on the application of activation analysis in the fields of life sciences, biological materials, coal and its effluents, environmental samples, archaeology, material science, and forensics. Each chapter is processed separately for the data base.

  10. Get Active

    MedlinePlus

    ... section Health Conditions 4 of 10 sections Take Action! Take Action: How Active Are You? First, think about your ... section Learn More 5 of 10 sections Take Action: Get Started I’m just getting started. Start ...

  11. Production, characterization, cloning and sequence analysis of a monofunctional catalase from Serratia marcescens SYBC08.

    PubMed

    Zeng, Hua-Wei; Cai, Yu-Jie; Liao, Xiang-Ru; Zhang, Feng; Zhang, Da-Bing

    2011-04-01

    A monofunctional catalase from Serratia marcescens SYBC08 produced by liquid state fermentation in 7 liter fermenter was isolated and purified by ammonium sulfate precipitation (ASP), ion exchange chromatography (IEC), and gel filtration (GF) and characterized. Its sequence was analyzed by LC-MS/MS technique and gene cloning. The highest catalase production (20,289 U · ml(-1)) was achieved after incubation for 40 h. The purified catalase had an estimated molecular mass of 230 kDa, consisting of four identical subunits of 58 kDa. High specific activity of the catalase (199,584 U · mg(-1) protein) was 3.44 times higher than that of Halomonas sp. Sk1 catalase (57,900 U · mg(-1) protein). The enzyme without peroxidase activity was found to be an atypical electronic spectrum of monofunctional catalase. The apparent K(m) and V(max) were 78 mM and 188, 212 per µM H(2) O(2) µM heme(-1) s(-1), respectivly. The enzyme displayed a broad pH activity range (pH 5.0-11.0), with optimal pH range of 7.0-9.0: It was most active at 20 °C and had 78% activity at 0 °C. Its thermo stability was slightly higher compared to that of commercial catalase from bovine liver. LC-MS/MS analysis confirmed that the deduced amino acid sequence of cloning gene was the catalase sequence from Serratia marcescens SYBC08. The sequence was compared with that of 23 related catalases. Although most of active site residues, NADPH-binding residues, proximal residues of the heme, distal residues of the heme and residues interacting with a water molecule in the enzyme were well conserved in 23 related catalases, weakly conserved residues were found. Its sequence was closely related with that of catalases from pathogenic bacterium in the family Enterobacteriaceae. This result imply that the enzyme with high specific activity plays a significant role in preventing those microorganisms of the family Enterobacteriaceae against hydrogen peroxide resulted in cellular damage. Calalase yield by Serratia

  12. Relationship between the size of the bottleneck 15 A from iron in the main channel and the reactivity of catalase corresponding to the molecular size of substrates.

    PubMed

    Hara, Isao; Ichise, Nobutoshi; Kojima, Kiyoshi; Kondo, Hidemasa; Ohgiya, Satoru; Matsuyama, Hidetoshi; Yumoto, Isao

    2007-01-01

    A catalase that exhibits a high level of activity and a rapid reaction with organic peroxides has been purified from Exiguobacterium oxidotolerans T-2-2T (EKTA catalase). The amino acid sequence of EKTA catalase revealed that it is a novel clade 1 catalase. Amino acid residues in the active site around the protoheme are conserved in the primary structure of EKTA catalase. Although the general interactions of molecules larger than hydrogen peroxide with catalases are strongly inhibited because of the selection role of long and narrow channels in the substrate reaching the active site, the formation rate of reactive intermediates (compound I) in the reaction of EKTA catalase with peracetic acid is 77 times higher than that of bovine liver catalase (BLC) and 1200 times higher than that of Micrococcus luteus catalase (MLC). The crystal structure of EKTA catalase has been determined and refined to 2.4 A resolution. The main channel structure of EKTA catalase is different from those of BLC and MLC. The rate constant of compound I formation in catalases decreased with an increase in the molecular size of the substrate. For EKTA catalase with a larger bottleneck 15 A from the iron (entrance of narrow channel) in the main channel, a lower rate of reduction in compound I formation rate with an increase in the molecular size of substrates was found. The increase in the rate constant of compound I formation in these catalases was directly proportional to the increase in the size of the bottleneck in the main channel when molecules of substrates larger than H2O2, such as organic peroxides, are used in the reaction. The results indicate that the size of the bottleneck in the main channel in catalase is an important factor in defining the rate of compound I formation corresponding to the molecular size of the substrates, and this was demonstrated. The Leu149-Ile180 and Asp109-Met167 combinations at the entrance of the narrow channel in EKTA catalase determine the size of the

  13. Engineering the proximal heme cavity of catalase-peroxidase.

    PubMed

    Jakopitsch, Christa; Regelsberger, Günther; Furtmüller, Paul Georg; Rüker, Florian; Peschek, Günter A; Obinger, Christian

    2002-07-25

    Catalase-peroxidases (KatGs) are prokaryotic heme peroxidases with homology to yeast cytochrome c peroxidase (CCP) and plant ascorbate peroxidases (APXs). KatGs, CCP and APXs contain identical amino acid triads in the heme pocket (distal Arg/Trp/His and proximal His/Trp/Asp), but differ dramatically in their reactivities towards hydrogen peroxide and various one-electron donors. Only KatGs have high catalase activity in addition to a peroxidase activity of broad specificity. Here, we investigated the effect of mutating the conserved proximal triad on KatG catalysis. With the exception of W341F, all variants (H290Q, W341A, D402N, D402E) exhibited a catalase activity <1% of wild-type KatG and spectral properties indicating alterations in heme coordination and spin states. Generally, the peroxidase activity was much less effected by these mutations. Compared with wild-type KatG the W341F variant had a catalase and halogenation activity of about 40% and an even increased overall peroxidase activity. This variant, for the first time, allowed to monitor the hydrogen peroxide mediated transitions of ferric KatG to compound I and back to the resting enzyme. Compound I reduction by aromatic one-electron donors (o-dianisidine, pyrogallol, aniline) was not influenced by exchanging Trp by Phe. The findings are discussed in comparison with the data known from CCP and APX and a reaction mechanism for the multifunctional activity of the W341F variant is suggested. PMID:12121764

  14. Integrin activation

    PubMed Central

    Ginsberg, Mark H.

    2014-01-01

    Integrin-mediated cell adhesion is important for development, immune responses, hemostasis and wound healing. Integrins also function as signal transducing receptors that can control intracellular pathways that regulate cell survival, proliferation, and cell fate. Conversely, cells can modulate the affinity of integrins for their ligands a process operationally defined as integrin activation. Analysis of activation of integrins has now provided a detailed molecular understanding of this unique form of “inside-out” signal transduction and revealed new paradigms of how transmembrane domains (TMD) can transmit long range allosteric changes in transmembrane proteins. Here, we will review how talin and mediates integrin activation and how the integrin TMD can transmit these inside out signals. [BMB Reports 2014; 47(12): 655-659] PMID:25388208

  15. Transglutaminase-catalyzed site-specific glycosidation of catalase with aminated dextran.

    PubMed

    Valdivia, Aymara; Villalonga, Reynaldo; Di Pierro, Prospero; Pérez, Yunel; Mariniello, Loredana; Gómez, Leissy; Porta, Raffaele

    2006-04-10

    An enzymatic approach, based on a transglutaminase-catalyzed coupling reaction, was investigated to modify bovine liver catalase with an end-group aminated dextran derivative. We demonstrated that catalase activity increased after enzymatic glycosidation and that the conjugate was 3.8-fold more stable to thermal inactivation at 55 degrees C and 2-fold more resistant to proteolytic degradation by trypsin. Moreover, the transglutaminase-mediated modification also improved the pharmacokinetics behavior of catalase, increasing 2.5-fold its plasma half-life time and reducing 3-fold the total clearance after its i.v. administration in rats. PMID:16446004

  16. Active Cytokinins

    PubMed Central

    Mornet, René; Theiler, Jane B.; Leonard, Nelson J.; Schmitz, Ruth Y.; Moore, F. Hardy; Skoog, Folke

    1979-01-01

    Four series of azidopurines have been synthesized and tested for cytokinin activity in the tobacco callus bioassay: 2- and 8-azido-N6-benzyladenines, -N6-(Δ2-isopentenyl)adenines, and -zeatins, and N6-(2- and 4-azidobenzyl)adenines. The compounds having 2-azido substitution on the adenine ring are as active as the corresponding parent compounds, while those with 8-azido substitution are about 10 or more times as active. The 8-azidozeatin, which is the most active cytokinin observed, exhibited higher than minimal detectable activity at 1.2 × 10−5 micromolar, the lowest concentration tested. The shape of the growth curve indicates that even a concentration as low as 5 × 10−6 micromolar would probably be effective. By comparison, the lowest active concentration ever reported for zeatin has been 5 × 10−5 micromolar, representing a sensitivity rarely attained. All of the azido compounds have been submitted to photolysis in aqueous ethanol, and the photoproducts have been detected and identified by low and high resolution mass spectrometry. They are rationalized as products of abstraction and insertion reactions of the intermediate nitrenes. The potential of the major released products as cytokinins was also assessed by bioassay. 2-Azido-N6-(Δ2-isopentenyl)adenine competed with [14C]kinetin for the cytokinin-binding protein isolated from wheat germ. When the azido compound was photolysed in the presence of this protein, its attachment effectively blocked the binding of [14C]kinetin. PMID:16661017

  17. Effects of Peroxisomal Catalase Inhibition on Mitochondrial Function

    PubMed Central

    Walton, Paul A.; Pizzitelli, Michael

    2012-01-01

    Peroxisomes produce hydrogen peroxide as a metabolic by-product of their many oxidase enzymes, but contain catalase that breaks down hydrogen peroxide in order to maintain the organelle’s oxidative balance. It has been previously demonstrated that, as cells age, catalase is increasingly absent from the peroxisome, and resides instead as an unimported tetrameric molecule in the cell cytosol; an alteration that is coincident with increased cellular hydrogen peroxide levels. As this process begins in middle-passage cells, we sought to determine whether peroxisomal hydrogen peroxide could contribute to the oxidative damage observed in mitochondria in late-passage cells. Early-passage human fibroblasts (Hs27) treated with aminotriazole (3-AT), an irreversible catalase inhibitor, demonstrated decreased catalase activity, increased levels of cellular hydrogen peroxide, protein carbonyls, and peroxisomal numbers. This treatment increased mitochondrial reactive oxygen species levels, and decreased the mitochondrial aconitase activity by ∼85% within 24 h. In addition, mitochondria from 3-AT treated cells show a decrease in inner membrane potential. These results demonstrate that peroxisome-derived oxidative imbalance may rapidly impair mitochondrial function, and considering that peroxisomal oxidative imbalance begins to occur in middle-passage cells, supports the hypothesis that peroxisomal oxidant release occurs upstream of, and contributes to, the mitochondrial damage observed in aging cells. PMID:22536190

  18. Heterogeneity of Catalase in Maturing and Germinated Cotton Seeds 1

    PubMed Central

    Kunce, Christine M.; Trelease, Richard N.

    1986-01-01

    To investigate possible charge and size heterogeneity of catalase (EC 1.11.1.6) in cotton (Gossypium hirsutum L. cv Deltapine 62), extracts of cotyledons from different developmental ages were subjected to nondenaturing polyacrylamide gel electrophoresis and isoelectric focusing. Special precautions (e.g. fresh homogenates, reducing media) were necessary to prevent artefacts due to enzyme modification during extraction and storage. When the gels were stained for enzyme activity, two distinct electrophoretic forms of catalase were resolved in extracts of maturing and mature cotton seeds. In germinated seeds, three additional cathodic forms were detected revealing a total of five electrophoretic variants. In green cotyledons, the two anodic forms characteristic of ungerminated seeds were less active; whereas, the most cathodic form was predominant. All forms of catalase were found in isolated glyoxysomes. Corresponding electrophoretic patterns were found on Western blots probed with anticatalase serum; no immunoreactive, catalytically inactive forms were detected. Western blots of sodium dodecyl sulfate-polyacrylamide gels revealed only one immunoreactive (55 kilodaltons) polypeptide in cotton extracts of all developmental ages. Results from isoelectric focusing and Ferguson plots indicate that the electrophoretic variants of catalase are charge isomers with a molecular weight of approximately 230,000. Images Fig. 1 Fig. 2 Fig. 3 Fig. 6 Fig. 7 PMID:16664956

  19. Get Active

    MedlinePlus

    ... Lifting small weights – you can even use bottled water or cans of food as weights Watch these videos for muscle strengthening exercises to do at home or at the gym. If you do muscle-strengthening activities with weights, check out the do’s and don’ ...

  20. Learning Activities.

    ERIC Educational Resources Information Center

    Tipton, Tom, Ed.

    1983-01-01

    Presents a flow chart for naming inorganic compounds. Although it is not necessary for students to memorize rules, preliminary skills needed before using the chart are outlined. Also presents an activity in which the mass of an imaginary atom is determined using lead shot, Petri dishes, and a platform balance. (JN)

  1. Activated Sludge.

    ERIC Educational Resources Information Center

    Saunders, F. Michael

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. This review covers: (1) activated sludge process; (2) process control; (3) oxygen uptake and transfer; (4) phosphorus removal; (5) nitrification; (6) industrial wastewater; and (7) aerobic digestion. A list of 136 references is also presented. (HM)

  2. Activity report

    SciTech Connect

    Yu, S W

    2008-08-11

    This report is aimed to show the author's activities to support the LDRD. The title is 'Investigation of the Double-C Behavior in the Pu-Ga Time-Temperature-Transformation Diagram' The sections are: (1) Sample Holder Test; (2) Calculation of x-ray diffraction patterns; (3) Literature search and preparing publications; (4) Tasks Required for APS Experiments; and (5) Communications.

  3. Effects of pergolide mesylate on transduction efficiency of PEP-1-catalase protein

    SciTech Connect

    Sohn, Eun Jeong; Kim, Dae Won; Kim, Young Nam; Kim, So Mi; Lim, Soon Sung; Kang, Tae-Cheon; Kwon, Hyeok Yil; Kim, Duk-Soo; Cho, Sung-Woo; Han, Kyu Hyung; Park, Jinseu; Eum, Won Sik; Hwang, Hyun Sook; Choi, Soo Young

    2011-03-18

    Research highlights: {yields} We studied effects of pergolide mesylate (PM) on in vitro and in vivo transduction of PEP-1-catalase. {yields} PEP-1-catatase inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation. {yields} PM enhanced the transduction of PEP-1-catalase into HaCaT cells and skin tissue. {yields} PM increased anti-inflammatory activity of PEP-1-catalase. {yields} PM stimulated therapeutic action of anti-oxidant enzyme catalase in oxidative-related diseases. -- Abstract: The low transduction efficiency of various proteins is an obstacle to their therapeutic application. However, protein transduction domains (PTDs) are well-known for a highly effective tool for exogenous protein delivery to cells. We examined the effects of pergolide mesylate (PM) on the transduction of PEP-1-catalase into HaCaT human keratinocytes and mice skin and on the anti-inflammatory activity of PEP-1-catatase against 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation using Western blot and histological analysis. PM enhanced the time- and dose-dependent transduction of PEP-1-catalase into HaCaT cells without affecting the cellular toxicity. In a mouse edema model, PEP-1-catalase inhibited the increased expressions of inflammatory mediators and cytokines such as cyclooxygenase-2, inducible nitric oxide synthase, interleukin-6 and -1{beta}, and tumor necrosis factor-{alpha} induced by TPA. On the other hand, PM alone failed to exert any significant anti-inflammatory effects. However, the anti-inflammatory effect of co-treatment with PEP-1-catalase and PM was more potent than that of PEP-1-catalase alone. Our results indicate that PM may enhance the delivery of PTDs fusion therapeutic proteins to target cells and tissues and has potential to increase their therapeutic effects of such drugs against various diseases.

  4. Laboratory Activities

    SciTech Connect

    Brown, Christopher F.; Serne, R. Jeffrey

    2008-01-17

    This chapter summarizes the laboratory activities performed by PNNL’s Vadose Zone Characterization Project in support of the Tank Farm Vadose Zone Program, led by CH2M HILL Hanford Group, Inc. The results of these studies are contained in numerous reports (Lindenmeier et al. 2002; Serne et al. 2002a, 2002b, 2002c, 2002d, 2002e; Lindenmeier et al. 2003; Serne et al. 2004a, 2004b; Brown et al. 2005, 2006a, 2007; Serne et al. 2007) and have generated much of the data reported in Chapter 22 (Geochemistry-Contaminant Movement), Appendix G (Geochemistry-Contaminant Movement), and Cantrell et al. (2007, SST WMA Geochemistry Data Package – in preparation). Sediment samples and characterization results from PNNL’s Vadose Zone Characterization Project are also shared with other science and technology (S&T) research projects, such as those summarized in Chapter 12 (Associated Science Activities).

  5. Hepatoprotective Activity.

    PubMed

    2016-01-01

    The liver performs a vital role in metabolism, secretion, storage, and detoxification of endogenous and exogenous substances. Oxidative stress and free radicals enhance the severity of hepatic damage, which can be overcome by the antioxidant mechanism. Plant extracts can be the best source of such antioxidants and mediate hepatoprotective activity. In this chapter, high-dose paracetamol-induced hepatotoxicity in rat model is discussed with explanations of biochemical and histopathological studies. PMID:26939279

  6. Mitochondrial targeting of a catalase transgene product by plasmid liposomes increases radioresistance in vitro and in vivo.

    PubMed

    Epperly, Michael W; Melendez, J A; Zhang, Xichen; Nie, Suhua; Pearce, Linda; Peterson, James; Franicola, Darcy; Dixon, Tracy; Greenberger, Benjamin A; Komanduri, Paavani; Wang, Hong; Greenberger, Joel S

    2009-05-01

    To determine whether increased mitochondrially localized catalase was radioprotective, a human catalase transgene was cloned into a small pSVZeo plasmid and localized to the mitochondria of 32D cl 3 cells by adding the mitochondrial localization sequence of MnSOD (mt-catalase). The cell lines 32D-Cat and 32D-mt-Cat had increased catalase biochemical activity as confirmed by Western blot analysis compared to the 32D cl 3 parent cells. The MnSOD-overexpressing 32D cl 3 cell line, 2C6, had decreased baseline catalase activity that was increased in 2C6-Cat and 2C6-mt-Cat subclonal cell lines. 32D-mt-Cat cells were more radioresistant than 32D-Cat cells, but both were radioresistant relative to 32D cl 3 cells. 2C6-mt-Cat cells but not 2C6-Cat cells were radioresistant compared to 2C6 cells. Intratracheal injection of the mt-catalase-plasmid liposome complex (mt-Cat-PL) but not the catalase-plasmid liposome complex (Cat-PL) increased the resistance of C57BL/6NHsd female mice to 20 Gy thoracic irradiation compared to MnSOD-plasmid liposomes. Thus mitochondrially targeted overexpression of the catalase transgene is radioprotective in vitro and in vivo. PMID:19580494

  7. Synthesis of water-soluble dinuclear mn-porphyrin with multiple antioxidative activities.

    PubMed

    Kubota, Riku; Imamura, Shinya; Shimizu, Takahiko; Asayama, Shoichiro; Kawakami, Hiroyoshi

    2014-06-12

    Superoxide dismutase (SOD) and catalase activities of a drug are of great importance for its effective protection against reactive oxygen species (ROS)-induced injury. Achievement of catalase activity of a synthetic compound remains a challenge. Water-soluble Mn-porphyrins have high SOD and peroxynitrite (ONOO(-)) reducing activities, but not catalase-like activity. Herein, we are able to retain the fair SOD-like activity of a mononuclear Mn-5-(N-methylpyridinium-4-yl)-10,15,20-triphenyl porphyrin (MnM4PyP3P), while gaining in catalase-like activity with its dinuclear complex, 1,3-di[5-(N-methylene-pyridinium-4-yl)-10,15,20-triphenyl porphynato manganese] benzene tetrachloride (MnPD). Mechanistic study indicates that catalase-like activity of MnPD is due to synergism of two Mn active sites, where hydroxo-Mn(IV) complex is formed as an intermediate. The in vivo experiments demonstrate that MnPD significantly restores the treadmill-running ability of SOD-deficient mouse and thus indicates the therapeutic potential of MnPD. Furthermore, MnPD may serve as a mechanistic tool and indicate the new directions in the synthesis of catalase-like mimics. PMID:24944735

  8. Do pH and flavonoids influence hypochlorous acid-induced catalase inhibition and heme modification?

    PubMed

    Krych-Madej, Justyna; Gebicka, Lidia

    2015-09-01

    Hypochlorous acid (HOCl), highly reactive oxidizing and chlorinating species, is formed in the immune response to invading pathogens by the reaction of hydrogen peroxide with chloride catalyzed by the enzyme myeloperoxidase. Catalase, an important antioxidant enzyme, catalyzing decomposition of hydrogen peroxide to water and molecular oxygen, hampers in vitro HOCl formation, but is also one of the main targets for HOCl. In this work we have investigated HOCl-induced catalase inhibition at different pH, and the influence of flavonoids (catechin, epigallocatechin gallate and quercetin) on this process. It has been shown that HOCl-induced catalase inhibition is independent on pH in the range 6.0-7.4. Preincubation of catalase with epigallocatechin gallate and quercetin before HOCl treatment enhances the degree of catalase inhibition, whereas catechin does not affect this process. Our rapid kinetic measurements of absorption changes around the heme group have revealed that heme modification by HOCl is mainly due to secondary, intramolecular processes. The presence of flavonoids, which reduce active catalase intermediate, Compound I to inactive Compound II have not influenced the kinetics of HOCl-induced heme modification. Possible mechanisms of the reaction of hypochlorous acid with catalase are proposed and the biological consequences are discussed. PMID:26116387

  9. Two divergent catalase genes are differentially regulated during Aspergillus nidulans development and oxidative stress.

    PubMed Central

    Kawasaki, L; Wysong, D; Diamond, R; Aguirre, J

    1997-01-01

    Catalases are ubiquitous hydrogen peroxide-detoxifying enzymes that are central to the cellular antioxidant response. Of two catalase activities detected in the fungus Aspergillus nidulans, the catA gene encodes the spore-specific catalase A (CatA). Here we characterize a second catalase gene, identified after probing a genomic library with catA, and demonstrate that it encodes catalase B. This gene, designated catB, predicts a 721-amino-acid polypeptide (CatB) showing 78% identity to an Aspergillus fumigatus catalase and 61% identity to Aspergillus niger CatR. Notably, similar levels of identity are found when comparing CatB to Escherichia coli catalase HPII (43%), A. nidulans CatA (40%), and the predicted peptide of a presumed catA homolog from A. fumigatus (38%). In contrast, the last two peptides share a 79% identity. The catalase B activity was barely detectable in asexual spores (conidia), disappeared after germination, and started to accumulate 10 h after spore inoculation, throughout growth and conidiation. The catB mRNA was absent from conidia, and its accumulation correlated with catalase activity, suggesting that catB expression is regulated at the transcription level. In contrast, the high CatA activity found in spores was lost gradually during germination and growth. In addition to its developmental regulation, CatB was induced by H2O2, heat shock, paraquat, or uric acid catabolism but not by osmotic stress. This pattern of regulation and the protective role against H2O2 offered by CatA and CatB, at different stages of the A. nidulans life cycle, suggest that catalase gene redundancy performs the function of satisfying catalase demand at the two different stages of metabolic and genetic regulation represented by growing hyphae versus spores. Alternative H2O2 detoxification pathways in A. nidulans were indicated by the fact that catA/catB double mutants were able to grow in substrates whose catabolism generates H2O2. PMID:9150225

  10. ICAM-1 targeted catalase encapsulated PLGA-b-PEG nanoparticles against vascular oxidative stress.

    PubMed

    Sari, Ece; Tunc-Sarisozen, Yeliz; Mutlu, Hulya; Shahbazi, Reza; Ucar, Gulberk; Ulubayram, Kezban

    2015-01-01

    Targeted delivery of therapeutics is the favourable idea, whereas it is possible to distribute the therapeutically active drug molecule only to the site of action. For this purpose, in this study, catalase encapsulated poly(D,L-lactide-co-glycolide)-block-poly(ethylene glycol) (PLGA-b-PEG) nanoparticles were developed and an endothelial target molecule (anti-ICAM-1) was conjugated to this carrier system in order to decrease the oxidative stress level in the target site. According to the enzymatic activity results, initial catalase activity of nanoparticles was increased from 27.39 U/mg to up to 45.66 U/mg by adding 5 mg/mL bovine serum albumin (BSA). After 4 h, initial catalase activity was preserved up to 46.98% while free catalase retained less than 4% of its activity in proteolytic environment. Furthermore, FITC labelled anti-ICAM-1 targeted catalase encapsulated nanoparticles (anti-ICAM-1/CatNPs) were rapidly taken up by cultured endothelial cells and concomitantly endothelial cells were resistant to H2O2 induced oxidative impairment. PMID:26471402

  11. Analgesic Activity.

    PubMed

    2016-01-01

    Analgesics are agents which selectively relieve pain by acting in the CNS and peripheral pain mediators without changing consciousness. Analgesics may be narcotic or non-narcotic. The study of pain in animals raises ethical, philosophical, and technical problems. Both peripheral and central pain models are included to make the test more evident for the analgesic property of the plant. This chapter highlights methods such as hot plate and formalin and acetic acid-induced pain models to check the analgesic activity of medicinal plants. PMID:26939272

  12. Active Sonar

    NASA Astrophysics Data System (ADS)

    Sullivan, Edmund J.

    An active sonar system is one in which pulses of acoustic energy are launched into the water for the purpose of producing echoes. By examining the echoes of transmitted pulses, it affords the capability of both detecting the presence of and estimating the range, and in certain cases, the bearing, of an underwater target. In its most common arrangement, the transmitter (or projector) and the receiver are colocated. This is known as the monostatic configuration and is depicted in Figure 1. When this is not so, it is known as a bistatic or multistatic configuration.

  13. Active packaging with antifungal activities.

    PubMed

    Nguyen Van Long, N; Joly, Catherine; Dantigny, Philippe

    2016-03-01

    There have been many reviews concerned with antimicrobial food packaging, and with the use of antifungal compounds, but none provided an exhaustive picture of the applications of active packaging to control fungal spoilage. Very recently, many studies have been done in these fields, therefore it is timely to review this topic. This article examines the effects of essential oils, preservatives, natural products, chemical fungicides, nanoparticles coated to different films, and chitosan in vitro on the growth of moulds, but also in vivo on the mould free shelf-life of bread, cheese, and fresh fruits and vegetables. A short section is also dedicated to yeasts. All the applications are described from a microbiological point of view, and these were sorted depending on the name of the species. Methods and results obtained are discussed. Essential oils and preservatives were ranked by increased efficacy on mould growth. For all the tested molecules, Penicillium species were shown more sensitive than Aspergillus species. However, comparison between the results was difficult because it appeared that the efficiency of active packaging depended greatly on the environmental factors of food such as water activity, pH, temperature, NaCl concentration, the nature, the size, and the mode of application of the films, in addition to the fact that the amount of released antifungal compounds was not constant with time. PMID:26803804

  14. Active tectonics

    SciTech Connect

    Not Available

    1986-01-01

    This study is part of a series of Studies in Geophysics that have been undertaken for the Geophysics Research Forum by the Geophysics Study Committee. One purpose of each study is to provide assessments from the scientific community to aid policymakers in decisions on societal problems that involve geophysics. An important part of such assessments is an evaluation of the adequacy of current geophysical knowledge and the appropriateness of current research programs as a source of information required for those decisions. The study addresses our current scientific understanding of active tectonics --- particularly the patterns and rates of ongoing tectonic processes. Many of these processes cannot be described reasonably using the limited instrumental or historical records; however, most can be described adequately for practical purposes using the geologic record of the past 500,000 years. A program of fundamental research focusing especially on Quaternary tectonic geology and geomorphology, paleoseismology, neotectonics, and geodesy is recommended to better understand ongoing, active tectonic processes. This volume contains 16 papers. Individual papers are indexed separately on the Energy Database.

  15. Altered methanol embryopathies in embryo culture with mutant catalase-deficient mice and transgenic mice expressing human catalase

    SciTech Connect

    Miller, Lutfiya; Wells, Peter G.

    2011-04-01

    The mechanisms underlying the teratogenicity of methanol (MeOH) in rodents, unlike its acute toxicity in humans, are unclear, but may involve reactive oxygen species (ROS). Embryonic catalase, although expressed at about 5% of maternal activity, may protect the embryo by detoxifying ROS. This hypothesis was investigated in whole embryo culture to remove confounding maternal factors, including metabolism of MeOH by maternal catalase. C57BL/6 (C57) mouse embryos expressing human catalase (hCat) or their wild-type (C57 WT) controls, and C3Ga.Cg-Catb/J acatalasemic (aCat) mouse embryos or their wild-type C3HeB/FeJ (C3H WT) controls, were explanted on gestational day (GD) 9 (plug = GD 1), exposed for 24 h to 4 mg/ml MeOH or vehicle, and evaluated for functional and morphological changes. hCat and C57 WT vehicle-exposed embryos developed normally. MeOH was embryopathic in C57 WT embryos, evidenced by decreases in anterior neuropore closure, somites developed and turning, whereas hCat embryos were protected. Vehicle-exposed aCat mouse embryos had lower yolk sac diameters compared to C3H WT controls, suggesting that endogenous ROS are embryopathic. MeOH was more embryopathic in aCat embryos than WT controls, with reduced anterior neuropore closure and head length only in catalase-deficient embryos. These data suggest that ROS may be involved in the embryopathic mechanism of methanol, and that embryonic catalase activity may be a determinant of teratological risk.

  16. ASBESTOS-INDUCED ACTIVATION OF CELL SIGNALING PATHWAYS IN HUMAN BRONCHIAL EPITHELIAL CELLS

    EPA Science Inventory

    Using respiratory epithelial cells transfected with either superoxide dismutase (SOD) or catalase, the authors tested the hypothesis that the activation of the epidermal growth factor (EGF) receptor signal pathway after asbestos exposure involves an oxidative stress. Western blot...

  17. Catalase is inhibited by flavonoids.

    PubMed

    Krych, Justyna; Gebicka, Lidia

    2013-07-01

    Catalases, heme enzymes, which catalyze decomposition of hydrogen peroxide to water and molecular oxygen, belong to the antioxidant defense system of the cell. In this work we have shown that catalase from bovine liver is inhibited by flavonoids. The inhibition is, at least partially, due to the formation of hydrogen bonds between catalase and flavonoids. In the presence of some flavonoids the formation of unreactive catalase compound II has been detected. The most potent catalase inhibitors among the tested flavonoids have appeared myricetin, epicatechin gallate and epigallocatechin gallate. The relationship between the degree of enzyme inhibition and molecular structure of flavonoids has been analyzed. PMID:23567286

  18. Reversible adsorption of catalase onto Fe(3+) chelated poly(AAm-GMA)-IDA cryogels.

    PubMed

    Aktaş Uygun, Deniz; Uygun, Murat; Akgöl, Sinan; Denizli, Adil

    2015-05-01

    In this presented study, poly(acrylamide-glycidyl methacrylate) [poly(AAm-GMA)] cryogels were synthesized by cryopolymerization technique at sub-zero temperature. Prepared cryogels were then functionalized with iminodiacetic acid (IDA) and chelated with Fe(3+) ions in order produce the metal chelate affinity matrix. Synthesized cryogels were characterized with FTIR, ESEM and EDX analysis, and it was found that the cryogel had sponge like structure with interconnected pores and their pore diameter was about 200 μm. Fe(3+) chelated poly(AAm-GMA)-IDA cryogels were used for the adsorption of catalase and optimum adsorption conditions were determined by varying the medium pH, initial catalase concentration, temperature and ionic strength. Maximum catalase adsorption onto Fe(3+) chelated poly(AAm-GMA)-IDA cryogel was found to be 12.99 mg/g cryogel at 25 °C, by using pH 5.0 acetate buffer. Adsorbed catalase was removed from the cryogel by using 1.0M of NaCl solution and desorption yield was found to be 96%. Additionally, reusability profile of the Fe(3+) chelated poly(AAm-GMA)-IDA cryogel was also investigated and it was found that, adsorption capacity of the cryogels didn't decrease significantly at the end of the 40 reuses. Catalase activity studies were also tested and it was demonstrated that desorbed catalase retained 70% of its initial activity. PMID:25746283

  19. The critical role of catalase in prooxidant and antioxidant function of p53

    PubMed Central

    Kang, M Y; Kim, H-B; Piao, C; Lee, K H; Hyun, J W; Chang, I-Y; You, H J

    2013-01-01

    The tumor suppressor p53 is an important regulator of intracellular reactive oxygen species (ROS) levels, although downstream mediators of p53 remain to be elucidated. Here, we show that p53 and its downstream targets, p53-inducible ribonucleotide reductase (p53R2) and p53-inducible gene 3 (PIG3), physically and functionally interact with catalase for efficient regulation of intracellular ROS, depending on stress intensity. Under physiological conditions, the antioxidant functions of p53 are mediated by p53R2, which maintains increased catalase activity and thereby protects against endogenous ROS. After genotoxic stress, high levels of p53 and PIG3 cooperate to inhibit catalase activity, leading to a shift in the oxidant/antioxidant balance toward an oxidative status, which could augment apoptotic cell death. These results highlight the essential role of catalase in p53-mediated ROS regulation and suggest that the p53/p53R2–catalase and p53/PIG3–catalase pathways are critically involved in intracellular ROS regulation under physiological conditions and during the response to DNA damage, respectively. PMID:22918438

  20. Novel nonsense mutation in the katA gene of a catalase-negative Staphylococcus aureus strain☆

    PubMed Central

    Lagos, Jaime; Alarcón, Pedro; Benadof, Dona; Ulloa, Soledad; Fasce, Rodrigo; Tognarelli, Javier; Aguayo, Carolina; Araya, Pamela; Parra, Bárbara; Olivares, Berta; Hormazábal, Juan Carlos; Fernández, Jorge

    2016-01-01

    We report the first description of a rare catalase-negative strain of Staphylococcus aureus in Chile. This new variant was isolated from blood and synovial tissue samples of a pediatric patient. Sequencing analysis revealed that this catalase-negative strain is related to ST10 strain, which has earlier been described in relation to S. aureus carriers. Interestingly, sequence analysis of the catalase gene katA revealed presence of a novel nonsense mutation that causes premature translational truncation of the C-terminus of the enzyme leading to a loss of 222 amino acids. Our study suggests that loss of catalase activity in this rare catalase-negative Chilean strain is due to this novel nonsense mutation in the katA gene, which truncates the enzyme to just 283 amino acids. PMID:26887242

  1. Novel Role of Endogenous Catalase in Macrophage Polarization in Adipose Tissue.

    PubMed

    Park, Ye Seul; Uddin, Md Jamal; Piao, Lingjuan; Hwang, Inah; Lee, Jung Hwa; Ha, Hunjoo

    2016-01-01

    Macrophages are important components of adipose tissue inflammation, which results in metabolic diseases such as insulin resistance. Notably, obesity induces a proinflammatory phenotypic switch in adipose tissue macrophages, and oxidative stress facilitates this switch. Thus, we examined the role of endogenous catalase, a key regulator of oxidative stress, in the activity of adipose tissue macrophages in obese mice. Catalase knockout (CKO) exacerbated insulin resistance, amplified oxidative stress, and accelerated macrophage infiltration into epididymal white adipose tissue in mice on normal or high-fat diet. Interestingly, catalase deficiency also enhanced classical macrophage activation (M1) and inflammation but suppressed alternative activation (M2) regardless of diet. Similarly, pharmacological inhibition of catalase activity using 3-aminotriazole induced the same phenotypic switch and inflammatory response in RAW264.7 macrophages. Finally, the same phenotypic switch and inflammatory responses were observed in primary bone marrow-derived macrophages from CKO mice. Taken together, the data indicate that endogenous catalase regulates the polarization of adipose tissue macrophages and thereby inhibits inflammation and insulin resistance. PMID:27597806

  2. Novel Role of Endogenous Catalase in Macrophage Polarization in Adipose Tissue

    PubMed Central

    2016-01-01

    Macrophages are important components of adipose tissue inflammation, which results in metabolic diseases such as insulin resistance. Notably, obesity induces a proinflammatory phenotypic switch in adipose tissue macrophages, and oxidative stress facilitates this switch. Thus, we examined the role of endogenous catalase, a key regulator of oxidative stress, in the activity of adipose tissue macrophages in obese mice. Catalase knockout (CKO) exacerbated insulin resistance, amplified oxidative stress, and accelerated macrophage infiltration into epididymal white adipose tissue in mice on normal or high-fat diet. Interestingly, catalase deficiency also enhanced classical macrophage activation (M1) and inflammation but suppressed alternative activation (M2) regardless of diet. Similarly, pharmacological inhibition of catalase activity using 3-aminotriazole induced the same phenotypic switch and inflammatory response in RAW264.7 macrophages. Finally, the same phenotypic switch and inflammatory responses were observed in primary bone marrow-derived macrophages from CKO mice. Taken together, the data indicate that endogenous catalase regulates the polarization of adipose tissue macrophages and thereby inhibits inflammation and insulin resistance. PMID:27597806

  3. Catalase from the silkworm, Bombyx mori: gene sequence, distribution, and overexpression.

    PubMed

    Yamamoto, Kohji; Banno, Yutaka; Fujii, Hiroshi; Miake, Fumio; Kashige, Nobuhiro; Aso, Yoichi

    2005-04-01

    Living organisms require mechanisms regulating reactive oxygen species (ROS) such as hydrogen peroxide and superoxide anion. Catalase is one of the regulatory enzymes and facilitates the degradation of hydrogen peroxide to oxygen and water. Biochemical information on an insect catalase is, however, insufficient. Using mRNA from fat body of the silkworm, Bombyx mori, a cDNA encoding a putative catalase was amplified by reverse transcriptase-polymerase chain reaction and sequenced. The deduced amino acid sequence comprised 507 residues with more than seventy residues forming a scaffold for a heme cofactor conserved. The sequence showed 71% and 66% identities to those of the Drosophila melanogaster and Apis mellifera catalases, respectively; the catalase from B. mori was estimated to be phylogenetically close to that from A. mellifera. The transcripts of the gene and the catalase activity were distributed in diverse tissues of B. mori, suggesting its ubiquitous nature. Using the gene, a recombinant catalase (rCAT) was functionally overexpressed in a soluble form using Escherichia coli, purified to homogeneity, and characterized. The pH-optimum of rCAT was broad around pH 8.0. More than 80% of the original rCAT activity was retained after incubation in the following conditions: at pH 8-11 and 4 degrees C for 24 h; at pH 7 and temperatures below 50 degrees C for 30 min. The Michaelis constant for hydrogen peroxide was evaluated to be 28 mM at pH 6.5 and 30 degrees C. rCAT was suggested to be a member of the typical catalase family. PMID:15763464

  4. In Vivo Antioxidant Activity of Deacetylasperulosidic Acid in Noni

    PubMed Central

    Ma, De-Lu; Chen, Mai; Su, Chen X.; West, Brett J.

    2013-01-01

    Deacetylasperulosidic acid (DAA) is a major phytochemical constituent of Morinda citrifolia (noni) fruit. Noni juice has demonstrated antioxidant activity in vivo and in human trials. To evaluate the role of DAA in this antioxidant activity, Wistar rats were fed 0 (control group), 15, 30, or 60 mg/kg body weight per day for 7 days. Afterwards, serum malondialdehyde concentration and superoxide dismutase and glutathione peroxidase activities were measured and compared among groups. A dose-dependent reduction in malondialdehyde was evident as well as a dose-dependent increase in superoxide dismutase activity. DAA ingestion did not influence serum glutathione peroxidase activity. These results suggest that DAA contributes to the antioxidant activity of noni juice by increasing superoxide dismutase activity. The fact that malondialdehyde concentrations declined with increased DAA dose, despite the lack of glutathione peroxidase-inducing activity, suggests that DAA may also increase catalase activity. It has been previously reported that noni juice increases catalase activity in vivo but additional research is required to confirm the effect of DAA on catalase. Even so, the current findings do explain a possible mechanism of action for the antioxidant properties of noni juice that have been observed in human clinical trials. PMID:24371540

  5. In vivo antioxidant activity of deacetylasperulosidic Acid in noni.

    PubMed

    Ma, De-Lu; Chen, Mai; Su, Chen X; West, Brett J

    2013-01-01

    Deacetylasperulosidic acid (DAA) is a major phytochemical constituent of Morinda citrifolia (noni) fruit. Noni juice has demonstrated antioxidant activity in vivo and in human trials. To evaluate the role of DAA in this antioxidant activity, Wistar rats were fed 0 (control group), 15, 30, or 60 mg/kg body weight per day for 7 days. Afterwards, serum malondialdehyde concentration and superoxide dismutase and glutathione peroxidase activities were measured and compared among groups. A dose-dependent reduction in malondialdehyde was evident as well as a dose-dependent increase in superoxide dismutase activity. DAA ingestion did not influence serum glutathione peroxidase activity. These results suggest that DAA contributes to the antioxidant activity of noni juice by increasing superoxide dismutase activity. The fact that malondialdehyde concentrations declined with increased DAA dose, despite the lack of glutathione peroxidase-inducing activity, suggests that DAA may also increase catalase activity. It has been previously reported that noni juice increases catalase activity in vivo but additional research is required to confirm the effect of DAA on catalase. Even so, the current findings do explain a possible mechanism of action for the antioxidant properties of noni juice that have been observed in human clinical trials. PMID:24371540

  6. Purification, crystallization and preliminary crystallographic analysis of KatB, a manganese catalase from Anabaena PCC 7120.

    PubMed

    Bihani, Subhash Chandra; Chakravarty, Dhiman; Ballal, Anand

    2013-11-01

    Catalases are enzymes that play an important role in the detoxification of hydrogen peroxide (H2O2) in aerobic organisms. Among catalases, haem-containing catalases are ubiquitously distributed and their enzymatic mechanism is very well understood. On the other hand, manganese catalases that contain a bimanganese core in the active site have been less well characterized and their mode of action is not fully understood. The genome of Anabaena PCC 7120 does not show the presence of a haem catalase-like gene; instead, two ORFs encoding manganese catalases (Mn-catalases) are present. Here, the crystallization and preliminary X-ray crystallographic analysis of KatB, one of the two Mn-catalases from Anabaena, are reported. KatB was crystallized using the hanging-drop vapour-diffusion method with PEG 400 as a precipitant and calcium acetate as an additive. Diffraction data were collected in-house on an Agilent SuperNova system using a microfocus sealed-tube X-ray source. The crystal diffracted to 2.2 Å resolution at 100 K. The tetragonal crystal belonged to space group P4(1)2(1)2 (or enantiomer), with unit-cell parameters a = b = 101.87, c = 138.86 Å. Preliminary X-ray diffraction analysis using the Matthews coefficient and self-rotation function suggests the presence of a trimer in the asymmetric unit. PMID:24192374

  7. Purification and Characterization of a Novel Thermo-Alkali-Stable Catalase from Thermus brockianus

    SciTech Connect

    Thompson, Vicki Sue; Schaller, Kastli Dianne; Apel, William Arnold

    2003-10-01

    A novel thermo-alkali-stable catalase from Thermus brockianus was purified and characterized. The protein was purified from a T. brockianus cell extract in a three-step procedure that resulted in 65-fold purification to a specific activity of 5300 U/mg. The enzyme consisted of four identical subunits of 42.5 kDa as determined by SDS-PAGE and a total molecular mass measured by gel filtration of 178 kDa. The catalase was active over a temperature range from 30 to 94 C and a pH range from 6 to 10, with optimum activity occurring at 90 C and pH 8. At pH 8, the enzyme was extremely stable at elevated temperatures with half-lives of 330 h at 80 C and 3 h at 90 C. The enzyme also demonstrated excellent stability at 70 C and alkaline pH with measured half-lives of 510 h and 360 h at pHs of 9 and 10, respectively. The enzyme had an unusual pyridine hemochrome spectrum and appears to utilize eight molecules of heme c per tetramer rather than protoheme IX present in the majority of catalases studied to date. The absorption spectrum suggested that the heme iron of the catalase was in a 6-coordinate low spin state rather than the typical 5-coordinate high spin state. A Km of 35.5 mM and a Vmax of 20.3 mM/min·mg protein for hydrogen peroxide was measured, and the enzyme was not inhibited by hydrogen peroxide at concentrations up to 450 mM. The enzyme was strongly inhibited by cyanide and the traditional catalase inhibitor 3-amino-1,2,4-triazole. The enzyme also showed no peroxidase activity to peroxidase substrates o-dianisidine and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), a trait of typical monofunctional catalases. However, unlike traditional monofunctional catalases, the T. brockianus catalase was easily reduced by dithionite, a characteristic of catalase-peroxidases. The above properties indicate that this catalase has potential for applications in industrial bleaching processes to remove residual hydrogen peroxide from process streams.

  8. DAVIC activities

    NASA Astrophysics Data System (ADS)

    Fujiwara, Hiroshi

    1995-12-01

    DAVIC (Digital Audio Visual Council) is the defacto standardization organization established in Mar. 1994, based on international consensus for digital audio visual services. After completion of MPEG2 standardization, the broadcasting industry, the communication industry, the computer industry, and consumer electronics industry have started development of concrete services and products. Especially the interactive digital audio visual services, such as Video On Demand (VOD) or Near Video On Demand (NVOD), have become hot topics all over the world. Such interactive digital audio visual services are combined technologies of multi-media coding, digital transmission and computer networking. Therefore more than 150 organizations from all industry sectors have participated in DAVIC and are contributing from their own industrial contexts. DAVIC's basic policy is to use the available technologies specified by the other standards bodies as much as possible. So DAVIC's standardization activities have close relationship with ISO IEC/JTC1/SC29, ITU-T SG 9, ATM-Forum, IETF, IMA, DVB, etc. DAVIC is trying to specify Applications, Reference Models, Security, Usage Information Control, and the interfaces and protocols among the Content Provider, the Server, the core network, the access network, and the Set Top Unit. DAVIC's first goal is to specify DAVIC1.0 based on CFP1 (Call for Proposal) and CFP2 by Dec. 1995, and the next direction is under preparation for further progress based on CFP3 and CFP4.

  9. Activities update

    NASA Astrophysics Data System (ADS)

    Smith, Gerald A.

    1994-07-01

    The present report is an update on activities for the second year of funding. Research leading to a detailed characterization of antiproton annihilation in nuclei has resulted in a published analysis of fast deuteron production from carbon and uranium targets. This follows previously reported work and publications by our group on gamma-ray, neutral and charged pion, proton, and neutron production. The deuteron measurements are important to our SHIVA Star antiproton- catalyzed microfission experiment at the Phillips Laboratory, Kirtland AFB, in that they help constrain theoretical models of light nuclei production and subsequent energy deposition in the target. Work continues at SHIVA Star on working fluid formation and target compression for the microfission experiment. Excellent progress has been made, both theoretically and experimentally, on these important aspects of the experiment. The Penn State group, working in collaboration with Los Alamos National Laboratory physicists, trapped and held up to 721,000 antiprotons per beam injection pulse from the LEAR accelerator during July, 1993. This was a crucial step to the ultimate goal of transferring large numbers of antiprotons to the Phillips Laboratory for the antiproton-catalyzed microfission experiment.

  10. Active Segmentation

    PubMed Central

    Mishra, Ajay; Aloimonos, Yiannis

    2009-01-01

    The human visual system observes and understands a scene/image by making a series of fixations. Every fixation point lies inside a particular region of arbitrary shape and size in the scene which can either be an object or just a part of it. We define as a basic segmentation problem the task of segmenting that region containing the fixation point. Segmenting the region containing the fixation is equivalent to finding the enclosing contour- a connected set of boundary edge fragments in the edge map of the scene - around the fixation. This enclosing contour should be a depth boundary. We present here a novel algorithm that finds this bounding contour and achieves the segmentation of one object, given the fixation. The proposed segmentation framework combines monocular cues (color/intensity/texture) with stereo and/or motion, in a cue independent manner. The semantic robots of the immediate future will be able to use this algorithm to automatically find objects in any environment. The capability of automatically segmenting objects in their visual field can bring the visual processing to the next level. Our approach is different from current approaches. While existing work attempts to segment the whole scene at once into many areas, we segment only one image region, specifically the one containing the fixation point. Experiments with real imagery collected by our active robot and from the known databases 1 demonstrate the promise of the approach. PMID:20686671

  11. Effect of catalase inactivation on levels of inorganic peroxides, superoxide dismutase, glutathione, oxygen consumption and life span in adult houseflies (Musca domestica).

    PubMed Central

    Allen, R G; Farmer, K J; Sohal, R S

    1983-01-01

    The effects of total inhibition of catalase, induced by 3-amino-1,2,4-triazole, on the adult housefly (Musca domestica) were examined. The lack of catalase activity had no effect on the longevity of the houseflies. Inorganic-peroxide concentration was elevated at younger ages, but declined in older flies. The rate of oxygen consumption by the flies was greatly decreased and the levels of oxidized as well as reduced glutathione were augmented. Superoxide dismutase activity showed a slight increase. This study suggests that loss of catalase activity does not affect survival of houseflies due to adaptive responses. PMID:6661212

  12. IASS Activity

    NASA Astrophysics Data System (ADS)

    Hojaev, Alisher S.; Ibragimova, Elvira M.

    2015-08-01

    It’s well known, astronomy in Uzbekistan has ancient roots and traditions (e.g., Mirzo Ulugh Beg, Abū al-Rayhān al-Bīrūnī, Abū ‘Abdallāh al-Khwārizmī) and astronomical heritage carefully preserved. Nowadays uzbek astronomers play a key role in scientific research but also in OAD and Decadal Plan activity in the Central Asia region. International Aerospace School (IASS) is an amazing and wonderful event held annually about 30 years. IASS is unique project in the region, and at the beginning we spent the Summer and Winter Schools. At present in the summer camp we gather about 50 teenage and undergraduate students over the country and abroad (France, Malaysia, Turkey, Azerbaijan, Pakistan, Russia, etc.). They are selected on the basis of tests of astronomy and space issues. During two weeks of IASS camp the invited scientists, cosmonauts and astronauts as well as other specialists give lectures and engage in practical exercises with IASS students in astronomy, including daily observations of the Sun and night sky observations with meniscus telescope, space research and exploration, aerospace modelling, preparation and presentation of original projects. This is important that IASS gives not theoretical grounds only but also practically train the students and the hands-on training is the major aims of IASS. Lectures and practice in the field of astronomy carried out with the direct involvement and generous assistance of Uranoscope Association (Paris, France). The current 26-th IASS is planned to held in July 2015.

  13. Reduction of hydrogen peroxide accumulation and toxicity by a catalase from Mycoplasma iowae.

    PubMed

    Pritchard, Rachel E; Prassinos, Alexandre J; Osborne, John D; Raviv, Ziv; Balish, Mitchell F

    2014-01-01

    Mycoplasma iowae is a well-established avian pathogen that can infect and damage many sites throughout the body. One potential mediator of cellular damage by mycoplasmas is the production of H2O2 via a glycerol catabolic pathway whose genes are widespread amongst many mycoplasma species. Previous sequencing of M. iowae serovar I strain 695 revealed the presence of not only genes for H2O2 production through glycerol catabolism but also the first documented mycoplasma gene for catalase, which degrades H2O2. To test the activity of M. iowae catalase in degrading H2O2, we studied catalase activity and H2O2 accumulation by both M. iowae serovar K strain DK-CPA, whose genome we sequenced, and strains of the H2O2-producing species Mycoplasma gallisepticum engineered to produce M. iowae catalase by transformation with the M. iowae putative catalase gene, katE. H2O2-mediated virulence by M. iowae serovar K and catalase-producing M. gallisepticum transformants were also analyzed using a Caenorhabditis elegans toxicity assay, which has never previously been used in conjunction with mycoplasmas. We found that M. iowae katE encodes an active catalase that, when expressed in M. gallisepticum, reduces both the amount of H2O2 produced and the amount of damage to C. elegans in the presence of glycerol. Therefore, the correlation between the presence of glycerol catabolism genes and the use of H2O2 as a virulence factor by mycoplasmas might not be absolute. PMID:25127127

  14. Characterization of monofunctional catalase KatA from radioresistant bacterium Deinococcus radiodurans.

    PubMed

    Kobayashi, Issei; Tamura, Takashi; Sghaier, Haitham; Narumi, Issay; Yamaguchi, Shotaro; Umeda, Koichi; Inagaki, Kenji

    2006-04-01

    Catalase plays a key role in protecting cells against toxic reactive oxygen species. Here we report on the cloning, purification and characterization of a catalase (KatA, DR1998) from the extremely radioresistant bacterium Deinococcus radiodurans. The size of purified D. radiodurans KatA monomer was 65 kDa while gel filtration revealed that the size of the enzyme was 240 kDa, suggesting that KatA formed a homotetramer in solution. Purified KatA displayed a final specific activity of 68,800 U/mg of protein. The catalase activity of KatA was inhibited by sodium azide, sodium cyanide and 3-amino-1,2,4-triazole. The absorption spectrum of KatA exhibited a Soret band at 408 nm. The position of the spectral peak remained unchanged following reduction of KatA with dithionite. No peroxidase activity was found for KatA. These results demonstrate that D. radiodurans KatA is a typical monofunctional heme-containing catalase. The stability of KatA with respect to H2O2 stress was superior to that of commercially available Aspergillus niger and bovine liver catalases. The relative abundance of KatA in cells in addition to the H2O2 resistance property may play a role in the survival strategy of D. radiodurans against oxidative damage. PMID:16716939

  15. Protective Role of Catalase in Pseudomonas aeruginosa Biofilm Resistance to Hydrogen Peroxide

    PubMed Central

    Elkins, James G.; Hassett, Daniel J.; Stewart, Philip S.; Schweizer, Herbert P.; McDermott, Timothy R.

    1999-01-01

    The role of the two known catalases in Pseudomonas aeruginosa in protecting planktonic and biofilm cells against hydrogen peroxide (H2O2) was investigated. Planktonic cultures and biofilms formed by the wild-type strain PAO1 and the katA and katB catalase mutants were compared for their susceptibility to H2O2. Over the course of 1 h, wild-type cell viability decreased steadily in planktonic cells exposed to a single dose of 50 mM H2O2, whereas biofilm cell viability remained at approximately 90% when cells were exposed to a flowing stream of 50 mM H2O2. The katB mutant, lacking the H2O2-inducible catalase KatB, was similar to the wild-type strain with respect to H2O2 resistance. The katA mutant possessed undetectable catalase activity. Planktonic katA mutant cultures were hypersusceptible to a single dose of 50 mM H2O2, while biofilms displayed a 10-fold reduction in the number of culturable cells after a 1-h exposure to 50 mM H2O2. Catalase activity assays, activity stains in nondenaturing polyacrylamide gels, and lacZ reporter genes were used to characterize the oxidative stress responses of planktonic cultures and biofilms. Enzyme assays and catalase activity bands in nondenaturing polyacrylamide gels showed significant KatB catalase induction occurred in biofilms after a 20-min exposure to H2O2, suggesting that biofilms were capable of a rapid adaptive response to the oxidant. Reporter gene data obtained with a katB::lacZ transcriptional reporter strain confirmed katB induction and that the increase in total cellular catalase activity was attributable to KatB. Biofilms upregulated the reporter in the constant presence of 50 mM H2O2, while planktonic cells were overwhelmed by a single 50 mM dose and were unable to make detectable levels of β-galactosidase. The results of this study demonstrated the following: the constitutively expressed KatA catalase is important for resistance of planktonic and biofilm P. aeruginosa to H2O2, particularly at high H2O2

  16. Activation Energy

    NASA Technical Reports Server (NTRS)

    Gadeken, Owen

    2002-01-01

    Teaming is so common in today's project management environment that most of us assume it comes naturally. We further assume that when presented with meaningful and challenging work, project teams will naturally engage in productive activity to complete their tasks. This assumption is expressed in the simple (but false) equation: Team + Work = Teamwork. Although this equation appears simple and straightforward, it is far from true for most project organizations whose reality is a complex web of institutional norms based on individual achievement and rewards. This is illustrated by the very first successful team experience from my early Air Force career. As a young lieutenant, I was sent to Squadron Officer School, which was the first in the series of Air Force professional military education courses I was required to complete during my career. We were immediately formed into teams of twelve officers. Much of the course featured competition between these teams. As the most junior member of my team, I quickly observed the tremendous pressure to show individual leadership capability. At one point early in the course, almost everyone in our group was vying to become the team leader. This conflict was so intense that it caused us to fail miserably in our first outdoor team building exercise. We spent so much time fighting over leadership that we were unable to complete any of the events on the outdoor obstacle course. This complete lack of success was so disheartening to me that I gave our team little hope for future success. What followed was a very intense period of bickering, conflict, and even shouting matches as our dysfunctional team tried to cope with our early failures and find some way to succeed. British physician and researcher Wilfred Bion (Experiences in Groups, 1961) discovered that there are powerful psychological forces inherent in all groups that divert from accomplishing their primary tasks. To overcome these restraining forces and use the potential

  17. Uncaria tomentosa extracts protect human erythrocyte catalase against damage induced by 2,4-D-Na and its metabolites.

    PubMed

    Bukowska, Bożena; Bors, Milena; Gulewicz, Krzysztof; Koter-Michalak, Maria

    2012-06-01

    The effect of ethanolic and aqueous extracts from leaves and bark of Uncaria tomentosa was studied, with particular attention to catalase activity (CAT - EC. 1.11.1.6). We observed that all tested extracts, at a concentration of 250 μg/mL were not toxic to erythrocyte catalase because they did not decreased its activity. Additionally, we investigated the protective effect of extracts on changes in CAT activity in the erythrocytes incubated with sodium salt of 2,4-dichlorophenoxyacetic acid (2,4-D-Na) and its metabolites i.e., 2,4-dichlorophenol (2,4-DCP) and catechol. Previous investigations showed that these chemicals decreased activity of erythrocyte catalase (Bukowska et al., 2000; Bukowska and Kowalska, 2004). The erythrocytes were divided into two portions. The first portion was incubated for 1 and 5h at 37°C with 2,4-D-Na, 2,4-DCP and catechol, and second portion was preincubated with extracts for 10 min and then incubated with xenobiotics for 1 and 5h. CAT activity was measured in the first and second portion of the erythrocytes. We found a protective effect of the extracts from U. tomentosa on the activity of catalase incubated with xenobiotics studied. Probably, phenolic compounds contained in U. tomentosa scavenged free radicals, and therefore protected active center (containing -SH groups) of catalase. PMID:22426356

  18. Progeric effects of catalase inactivation in human cells

    SciTech Connect

    Koepke, Jay I.; Wood, Christopher S.; Terlecky, Laura J.; Walton, Paul A.; Terlecky, Stanley R.

    2008-10-01

    Peroxisomes generate hydrogen peroxide, a reactive oxygen species, as part of their normal metabolism. A number of pathological situations exist in which the organelle's capacity to degrade the potentially toxic oxidant is compromised. It is the peroxidase, catalase, which largely determines the functional antioxidant capacity of the organelle, and it is this enzyme that is affected in aging, in certain diseases, and in response to exposure to specific chemical agents. To more tightly control the enzymatic activity of peroxisomal catalase and carefully document the effects of its impaired action on human cells, we employed the inhibitor 3-amino-1,2,4-triazole. We show that by chronically reducing catalase activity to approximately 38% of normal, cells respond in a dramatic manner, displaying a cascade of accelerated aging reactions. Hydrogen peroxide and related reactive oxygen species are produced, protein and DNA are oxidatively damaged, import into peroxisomes and organelle biogenesis is corrupted, and matrix metalloproteinases are hyper-secreted from cells. In addition, mitochondria are functionally impaired, losing their ability to maintain a membrane potential and synthesize reactive oxygen species themselves. These latter results suggest an important redox-regulated connection between the two organelle systems, a topic of considerable interest for future study.

  19. Fluorescence Spectrometry of the Interaction of Multi-Walled Carbon Nanotubes with Catalase

    NASA Astrophysics Data System (ADS)

    Fan, Y.; Li, Y.; Cai, H.; Li, J.; Miao, J.; Fu, D.; Yang, Q.

    2014-11-01

    The interaction of multi-walled carbon nanotubes (MWCNTs) with catalase is investigated using fluorescence and circular dichroism spectroscopic techniques. The results of the fluorescence experiments suggest that MWCNTs quench the intrinsic fluorescence of catalase via a static quenching mechanism. The circular dichroism spectral results reveal the unfolding of catalase with a significant decrease in the α-helix content in the presence of MWCNTs, which indicates that the conformation of catalase is changed in the binding process, thereby remarkably decreasing its activity. The binding constants and the number of binding sites of the MWCNT to the catalase are calculated at different temperatures. The thermodynamic parameters, such as the changes in free energy (ΔG), enthalpy (ΔH), and entropy (ΔS), are calculated using thermodynamic equations. The fact that all negative values of ΔG, ΔH, and ΔS are obtained suggests that the interaction of the MWCNTs with catalase is spontaneous, and that hydrogen bonding and van der Waals interactions play an important role in the binding process.

  20. Specific Function of the Met-Tyr-Trp Adduct Radical and Residues Arg-418 and Asp-137 in the Atypical Catalase Reaction of Catalase-Peroxidase KatG*

    PubMed Central

    Zhao, Xiangbo; Khajo, Abdelahad; Jarrett, Sanchez; Suarez, Javier; Levitsky, Yan; Burger, Richard M.; Jarzecki, Andrzej A.; Magliozzo, Richard S.

    2012-01-01

    Catalase activity of the dual-function heme enzyme catalase-peroxidase (KatG) depends on several structural elements, including a unique adduct formed from covalently linked side chains of three conserved amino acids (Met-255, Tyr-229, and Trp-107, Mycobacterium tuberculosis KatG numbering) (MYW). Mutagenesis, electron paramagnetic resonance, and optical stopped-flow experiments, along with calculations using density functional theory (DFT) methods revealed the basis of the requirement for a radical on the MYW-adduct, for oxyferrous heme, and for conserved residues Arg-418 and Asp-137 in the rapid catalase reaction. The participation of an oxyferrous heme intermediate (dioxyheme) throughout the pH range of catalase activity is suggested from our finding that carbon monoxide inhibits the activity at both acidic and alkaline pH. In the presence of H2O2, the MYW-adduct radical is formed normally in KatG[D137S] but this mutant is defective in forming dioxyheme and lacks catalase activity. KatG[R418L] is also catalase deficient but exhibits normal formation of the adduct radical and dioxyheme. Both mutants exhibit a coincidence between MYW-adduct radical persistence and H2O2 consumption as a function of time, and enhanced subunit oligomerization during turnover, suggesting that the two mutations disrupting catalase turnover allow increased migration of the MYW-adduct radical to protein surface residues. DFT calculations showed that an interaction between the side chain of residue Arg-418 and Tyr-229 in the MYW-adduct radical favors reaction of the radical with the adjacent dioxyheme intermediate present throughout turnover in WT KatG. Release of molecular oxygen and regeneration of resting enzyme are thereby catalyzed in the last step of a proposed catalase reaction. PMID:22918833

  1. Purification, cloning, expression, and biochemical characterization of a monofunctional catalase, KatP, from Pigmentiphaga sp. DL-8.

    PubMed

    Dong, Weiliang; Hou, Ying; Li, Shuhuan; Wang, Fei; Zhou, Jie; Li, Zhoukun; Wang, Yicheng; Huang, Fei; Fu, Lei; Huang, Yan; Cui, Zhongli

    2015-04-01

    Catalases are essential components of the cellular equipment used to cope with oxidative stress. The monofunctional catalase KatP was purified from Pigmentiphaga sp. using ammonium sulfate precipitation (ASP), diethylaminoethyl ion exchange chromatography (IEC), and hydrophobic interaction chromatography (HIC). The purified catalase formed polymer with an estimated monomer molecular mass of 54kDa, which were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and zymogram analysis. KatP exhibited a specific catalytic activity of 73,000U/mg, which was higher than that of catalase-1 of Comamonas terrigena N3H (55,900U/mg). Seven short tryptic fragments of this catalase were obtained by electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Q-TOF MS/MS), and the gene, katP, was cloned by PCR amplification and overexpressed in Escherichia coli BL21 (DE3). Based on the complete amino acid sequence, KatP was identified as a clade 3 monofunctional catalase. The specific activities of recombinant KatP for hydrogen peroxide (690,000U/mg) increased 9-fold over that of the parent strain. The Km and Vmax of recombinant KatP were 9.48mM and 81.2mol/minmg, respectively. The optimal pH and temperature for KatP were 7.0 and 37°C, respectively, and the enzyme displayed abroad pH-stable range of 4.0-11.0. The enzyme was inhibited by Zn(2+), Cu(2+), Cr(2+), and Mn(2+), whereas Fe(3+) and Mg(2+) stimulated KatP enzymatic activity. Interestingly, the catalase activity of recombinant KatP displayed high stability under different temperature and pH conditions, suggesting that KatP is a potential candidate for the production of catalase. PMID:25665507

  2. Evidence for separate substrate binding sites for hydrogen peroxide and cumene hydroperoxide (CHP) in the oxidation of ethanol by catalase

    SciTech Connect

    DeMaster, E.G.; Nagasawa,ss H.T.

    1986-03-01

    The oxidation of ethanol by purified bovine liver catalase (Sigma, C-40) can be supported by H/sub 2/O/sub 2/ or by CHP. The time course of the H/sub 2/O/sub 2/ supported reaction (using glucose/glucose oxidase as the H/sub 2/O/sub 2/ source) was linear for at least one hr, whereas the rate of acetaldehyde formation in the CHP (4.2 mM) supported reaction decreased with time. When catalase was exposed o CHP for 5 min before the addition of ethanol, the rate of CHP supported ethanol oxidation was reduced by more than 90% compared to incubations where the addition of ethanol preceded that of CHP. In the CHP inhibited state, the peroxidative activity of catalase was not restored by further addition of CHP or ethanol; however, addition of fresh catalase yielded its expected activity. Significantly, the CHP inhibited enzyme was equally effective as the untreated enzyme in catalyzing (a) the oxidation of ethanol in the presence H/sub 2/O/sub 2/ supported peroxidative activity as well as catalytic activity by CHP inhibited catalase points to separate binding sites for H/sub 2/O/sub 2/ and CHP in this reaction. Alternatively, CHP may bind adjacent to a common peroxide active site, thereby sterically impeding the binding of CHP - but not of H/sub 2/O/sub 2/ - to this active site.

  3. Role of the lateral channel in catalase HPII of Escherichia coli.

    PubMed Central

    Sevinc, M. S.; Maté, M. J.; Switala, J.; Fita, I.; Loewen, P. C.

    1999-01-01

    The heme-containing catalase HPII of Escherichia coli consists of a homotetramer in which each subunit contains a core region with the highly conserved catalase tertiary structure, to which are appended N- and C-terminal extensions making it the largest known catalase. HPII does not bind NADPH, a cofactor often found in catalases. In HPII, residues 585-590 of the C-terminal extension protrude into the pocket corresponding to the NADPH binding site in the bovine liver catalase. Despite this difference, residues that define the NADPH pocket in the bovine enzyme appear to be well preserved in HPII. Only two residues that interact ionically with NADPH in the bovine enzyme (Asp212 and His304) differ in HPII (Glu270 and Glu362), but their mutation to the bovine sequence did not promote nucleotide binding. The active-site heme groups are deeply buried inside the molecular structure requiring the movement of substrate and products through long channels. One potential channel is about 30 A in length, approaches the heme active site laterally, and is structurally related to the branched channel associated with the NADPH binding pocket in catalases that bind the dinucleotide. In HPII, the upper branch of this channel is interrupted by the presence of Arg260 ionically bound to Glu270. When Arg260 is replaced by alanine, there is a threefold increase in the catalytic activity of the enzyme. Inhibitors of HPII, including azide, cyanide, various sulfhydryl reagents, and alkylhydroxylamine derivatives, are effective at lower concentration on the Ala260 mutant enzyme compared to the wild-type enzyme. The crystal structure of the Ala260 mutant variant of HPII, determined at 2.3 A resolution, revealed a number of local structural changes resulting in the opening of a second branch in the lateral channel, which appears to be used by inhibitors for access to the active site, either as an inlet channel for substrate or an exhaust channel for reaction products. PMID:10091651

  4. Structure–Function Relationships in Fungal Large-Subunit Catalases

    SciTech Connect

    Diaz, A.; Valdez, V; Rudino-Pinera, E; Horjales, E; Hansberg, W

    2009-01-01

    Neurospora crassa has two large-subunit catalases, CAT-1 and CAT-3. CAT-1 is associated with non-growing cells and accumulates particularly in asexual spores; CAT-3 is associated with growing cells and is induced under different stress conditions. It is our interest to elucidate the structure-function relationships in large-subunit catalases. Here we have determined the CAT-3 crystal structure and compared it with the previously determined CAT-1 structure. Similar to CAT-1, CAT-3 hydrogen peroxide (H{sub 2}O{sub 2}) saturation kinetics exhibited two components, consistent with the existence of two active sites: one saturated in the millimolar range and the other in the molar range. In the CAT-1 structure, we found three interesting features related to its unusual kinetics: (a) a constriction in the channel that conveys H{sub 2}O{sub 2} to the active site; (b) a covalent bond between the tyrosine, which forms the fifth coordination bound to the iron of the heme, and a vicinal cysteine; (c) oxidation of the pyrrole ring III to form a cis-hydroxyl group in C5 and a cis-{gamma}-spirolactone in C6. The site of heme oxidation marks the starts of the central channel that communicates to the central cavity and the shortest way products can exit the active site. CAT-3 has a similar constriction in its major channel, which could function as a gating system regulated by the H{sub 2}O{sub 2} concentration before the gate. CAT-3 functional tyrosine is not covalently bonded, but has instead the electron relay mechanism described for the human catalase to divert electrons from it. Pyrrole ring III in CAT-3 is not oxidized as it is in other large-subunit catalases whose structure has been determined. Different in CAT-3 from these enzymes is an occupied central cavity. Results presented here indicate that CAT-3 and CAT-1 enzymes represent a functional group of catalases with distinctive structural characteristics that determine similar kinetics.

  5. Structure-function relationships in fungal large-subunit catalases.

    PubMed

    Díaz, Adelaida; Valdés, Víctor-Julián; Rudiño-Piñera, Enrique; Horjales, Eduardo; Hansberg, Wilhelm

    2009-02-13

    Neurospora crassa has two large-subunit catalases, CAT-1 and CAT-3. CAT-1 is associated with non-growing cells and accumulates particularly in asexual spores; CAT-3 is associated with growing cells and is induced under different stress conditions. It is our interest to elucidate the structure-function relationships in large-subunit catalases. Here we have determined the CAT-3 crystal structure and compared it with the previously determined CAT-1 structure. Similar to CAT-1, CAT-3 hydrogen peroxide (H(2)O(2)) saturation kinetics exhibited two components, consistent with the existence of two active sites: one saturated in the millimolar range and the other in the molar range. In the CAT-1 structure, we found three interesting features related to its unusual kinetics: (a) a constriction in the channel that conveys H(2)O(2) to the active site; (b) a covalent bond between the tyrosine, which forms the fifth coordination bound to the iron of the heme, and a vicinal cysteine; (c) oxidation of the pyrrole ring III to form a cis-hydroxyl group in C5 and a cis-gamma-spirolactone in C6. The site of heme oxidation marks the starts of the central channel that communicates to the central cavity and the shortest way products can exit the active site. CAT-3 has a similar constriction in its major channel, which could function as a gating system regulated by the H(2)O(2) concentration before the gate. CAT-3 functional tyrosine is not covalently bonded, but has instead the electron relay mechanism described for the human catalase to divert electrons from it. Pyrrole ring III in CAT-3 is not oxidized as it is in other large-subunit catalases whose structure has been determined. Different in CAT-3 from these enzymes is an occupied central cavity. Results presented here indicate that CAT-3 and CAT-1 enzymes represent a functional group of catalases with distinctive structural characteristics that determine similar kinetics. PMID:19109972

  6. Purification and characterization of oxygen-inducible haem catalase from oxygen-tolerant Bifidobacterium asteroides.

    PubMed

    Hayashi, Kyohei; Maekawa, Itaru; Tanaka, Kunifusa; Ijyuin, Susumu; Shiwa, Yu; Suzuki, Ippei; Niimura, Youichi; Kawasaki, Shinji

    2013-01-01

    Bifidobacterium asteroides, originally isolated from honeybee intestine, was found to grow under 20% O(2) conditions in liquid shaking culture using MRS broth. Catalase activity was detected only in cells that were exposed to O(2) and grown in medium containing a haem source, and these cells showed higher viability on exposure to H(2)O(2). Passage through multiple column chromatography steps enabled purification of the active protein, which was identified as a homologue of haem catalase on the basis of its N-terminal sequence. The enzyme is a homodimer composed of a subunit with a molecular mass of 55 kDa, and the absorption spectrum shows the typical profile of bacterial haem catalase. A gene encoding haem catalase, which has an amino acid sequence coinciding with the N-terminal amino acid sequence of the purified protein, was found in the draft genome sequence data of B. asteroides. Expression of the katA gene was induced in response to O(2) exposure. The haem catalase from B. asteroides shows about 70-80% identity with those from lactobacilli and other lactic acid bacteria, and no homologues were found in other bifidobacterial genomes. PMID:23154971

  7. Inhibition of experimental hepatic metastasis by targeted delivery of catalase in mice.

    PubMed

    Nishikawa, Makiya; Tamada, Ayumi; Hyoudou, Kenji; Umeyama, Yukari; Takahashi, Yuki; Kobayashi, Yuki; Kumai, Hitomi; Ishida, Emi; Staud, Frantisek; Yabe, Yoshiyuki; Takakura, Yoshinobu; Yamashita, Fumiyoshi; Hashida, Mitsuru

    2004-01-01

    Bovine liver catalase derivatives possessing diverse tissue distribution properties were synthesized, and their effects on hepatic metastasis of colon carcinoma cells were examined in mice. An intraportal injection of 1 x 10(5) colon 26 cells resulted in the formation of more than 50 metastatic colonies on the surface of the liver at 14 days after injection. An intravenous injection of catalase (CAT; 35000 units/kg of body weight) significantly (P < 0.001) reduced the number of the colonies in the liver. Galactosylated (Gal-), mannosylated (Man-) and succinylated (Suc-) CAT were also tested in the same system. Of these derivatives, Gal-CAT showed the greatest inhibitory effect on hepatic metastasis, and the number of colonies was significantly (P < 0.001) smaller than following treatment with catalase. High activities of matrix metalloproteinases (MMPs), especially MMP-9, were detected in the liver of mice bearing metastatic tumor tissues, which was significantly (P < 0.05) reduced by Gal-CAT. These results, combined with our previous finding that Gal-CAT can be efficiently delivered to hepatocytes, indicate that the targeted delivery of catalase to the liver by galactosylation is a promising approach to suppress hepatic metastasis. Decreased MMP activity by catalase delivery seems to be involved in its anti-metastatic effect. PMID:15387371

  8. Physical Activity (Exercise)

    MedlinePlus

    ... fitness. Your fitness routine should include aerobic and strength-training activities, and may also include stretching activities. Aerobic ... Examples include walking, jogging, bicycling, swimming, and tennis. Strength-training activities These activities increase the strength and endurance ...

  9. Heterologous expression and characterization of a new heme-catalase in Bacillus subtilis 168.

    PubMed

    Philibert, Tuyishime; Rao, Zhiming; Yang, Taowei; Zhou, Junping; Huang, Genshu; Irene, Komera; Samuel, Niyomukiza

    2016-06-01

    Reactive oxygen species (ROS) is an inherent consequence to all aerobically living organisms that might lead to the cells being lethal and susceptible to oxidative stress. Bacillus pumilus is characterized by high-resistance oxidative stress that stimulated our interest to investigate the heterologous expression and characterization of heme-catalase as potential biocatalyst. Results indicated that recombinant enzyme significantly exhibited the high catalytic activity of 55,784 U/mg expressed in Bacillus subtilis 168 and 98.097 µmol/min/mg peroxidatic activity, the apparent K m of catalytic activity was 59.6 ± 13 mM with higher turnover rate (K cat = 322.651 × 10(3) s(-1)). The pH dependence of catalatic and peroxidatic activity was pH 7.0 and pH 4.5 respectively with temperature dependence of 40 °C and the recombinant heme-catalase exhibited a strong Fe(2+) preference. It was further revealed that catalase KatX2 improved the resistance oxidative stress of B. subtilis. These findings suggest that this B. pumilus heme-catalase can be considered among the industrially relevant biocatalysts due to its exceptional catalytic rate and high stability and it can be a potential candidate for the improvement of oxidative resistance of industrially produced strains. PMID:27016935

  10. Direct electrochemistry of Penicillium chrysogenum catalase adsorbed on spectroscopic graphite.

    PubMed

    Dimcheva, Nina; Horozova, Elena

    2013-04-01

    The voltammetric studies of Penicillium chrysogenum catalase (PcCAT) adsorbed on spectroscopic graphite, showed direct electron transfer (DET) between its active site and the electrode surface. Analogous tests performed with the commercially available bovine catalase revealed that mammalian enzyme is much less efficient in the DET process. Both catalases were found capable to catalyse the electrooxidation of phenol, but differed in the specifics of catalytic action. At an applied potential of 0.45V the non-linear regression showed the kinetics of the bioelectrochemical oxidation catalysed by the PcCAT obeyed the Hill equation with a binding constant K=0.034±0.002 M(2) (Hill's coefficient n=2.097±0.083, R(2)=0.997), whilst the catalytic action of the bovine catalase was described by the Michaelis-Menten kinetic model with the following parameters: V(max,app)=7.780±0.509 μA, and K(M,app)=0.068±0.070 mol L(-1). The performance of the electrode reaction was affected by the electrode potential, the pH, and temperature. Based on the effect of pH and temperature on the electrode response in presence of phenol a tentative reaction pathway of its bioelectrocatalytic oxidation has been hypothesised. The possible application of these findings in biosensing phenol up to concentration 30 mM at pHs below 7 and in absence of oxidising agents (oxygen or H(2)O(2)) was considered. PMID:23103554

  11. Dual targeting of yeast catalase A to peroxisomes and mitochondria.

    PubMed

    Petrova, Ventsislava Y; Drescher, Diane; Kujumdzieva, Anna V; Schmitt, Manfred J

    2004-06-01

    Yeast catalase A (Cta1p) contains two peroxisomal targeting signals (SSNSKF) localized at its C-terminus and within the N-terminal third of the protein, which both can target foreign proteins to peroxisomes. In the present study we demonstrated that Cta1p can also enter mitochondria, although the enzyme lacks a classical mitochondrial import sequence. Cta1p co-targeting was studied in a catalase A null mutant after growth on different carbon sources, and expression of a Cta1p-GFP (green fluorescent protein)-fusion protein or a Cta1p derivative containing either a c-Myc epitope (Cta1p(myc)) or a SKF-extended tag (Cta1p(myc-SKF)). Peroxisomal and mitochondrial co-import of catalase A were tested qualitatively by fluorescence microscopy and functional complementation of a Delta cta1 null mutation, and quantitatively by subcellular fractionation followed by Western blot analysis and enzyme activity assays. Efficient Cta1p import into peroxisomes was observed when cells were cultivated under peroxisome-inducing conditions (i.e. growth on oleate), whereas significant co-import of Cta1p-GFP into mitochondria occurred when cells were grown under respiratory conditions that favour oxygen stress and ROS (reactive oxygen species) accumulation within this organelle. In particular, when cells were grown on the non-fermentable carbon source raffinose, respiration is maximally enhanced, and catalase A was efficiently targeted to the mitochondrial matrix where it presumably functions as scavenger of H2O2 and mitochondrial-derived ROS. PMID:14998369

  12. Dual targeting of yeast catalase A to peroxisomes and mitochondria.

    PubMed Central

    Petrova, Ventsislava Y; Drescher, Diane; Kujumdzieva, Anna V; Schmitt, Manfred J

    2004-01-01

    Yeast catalase A (Cta1p) contains two peroxisomal targeting signals (SSNSKF) localized at its C-terminus and within the N-terminal third of the protein, which both can target foreign proteins to peroxisomes. In the present study we demonstrated that Cta1p can also enter mitochondria, although the enzyme lacks a classical mitochondrial import sequence. Cta1p co-targeting was studied in a catalase A null mutant after growth on different carbon sources, and expression of a Cta1p-GFP (green fluorescent protein)-fusion protein or a Cta1p derivative containing either a c-Myc epitope (Cta1p(myc)) or a SKF-extended tag (Cta1p(myc-SKF)). Peroxisomal and mitochondrial co-import of catalase A were tested qualitatively by fluorescence microscopy and functional complementation of a Delta cta1 null mutation, and quantitatively by subcellular fractionation followed by Western blot analysis and enzyme activity assays. Efficient Cta1p import into peroxisomes was observed when cells were cultivated under peroxisome-inducing conditions (i.e. growth on oleate), whereas significant co-import of Cta1p-GFP into mitochondria occurred when cells were grown under respiratory conditions that favour oxygen stress and ROS (reactive oxygen species) accumulation within this organelle. In particular, when cells were grown on the non-fermentable carbon source raffinose, respiration is maximally enhanced, and catalase A was efficiently targeted to the mitochondrial matrix where it presumably functions as scavenger of H2O2 and mitochondrial-derived ROS. PMID:14998369

  13. Cloning, sequence, and phenotypic expression of katA, which encodes the catalase of Lactobacillus sake LTH677.

    PubMed Central

    Knauf, H J; Vogel, R F; Hammes, W P

    1992-01-01

    Lactobacillus sake LTH677 is a strain, isolated from fermented sausage, which forms a heme-dependent catalase. This rare property is highly desirable in sausage fermentation, as it prevents rancidity and discoloration caused by hydrogen peroxide. A gene bank containing MboI fragments of chromosomal DNA from Lactobacillus sake LTH677 in Escherichia coli plasmid pBR328 was constructed. The catalase gene was cloned by heterologous complementation of the Kat- phenotype of E. coli UM2. The catalase structural gene, designated katA, was assigned to a 2.3-kb region by deletion analysis of the originally cloned fragment in plasmid pHK1000. The original chromosomal arrangement was determined by Southern hybridization. Protein analysis revealed that the catalase subunit has a molecular size of 65,000 Da and that the active catalase possesses a hexameric structure. The molecular size of the subunit deduced from the nucleotide sequence was determined to 54,504 Da. The N-terminal amino acid sequence of the 65,000-Da protein corresponded to the one deduced from the DNA sequence. After recloning of katA in the E. coli-Lactococcus shuttle vector pGKV210, the gene was successfully transferred and phenotypically expressed in Lactobacillus casei, which is naturally deficient in catalase activity. Images PMID:1575485

  14. Layer-by-layer immobilized catalase on electrospun nanofibrous mats protects against oxidative stress induced by hydrogen peroxide.

    PubMed

    Huang, Rong; Deng, Hongbing; Cai, Tongjian; Zhan, Yingfei; Wang, Xiankai; Chen, Xuanxuan; Ji, Ailing; Lil, Xueyong

    2014-07-01

    Catalase, a kind of redox enzyme and generally recognized as an efficient agent for protecting cells against hydrogen peroxide (H2O2)-induced cytotoxicity. The immobilization of catalase was accomplished by depositing the positively charged chitosan and the negatively charged catalase on electrospun cellulose nanofibrous mats through electrospining and layer-by-layer (LBL) techniques. The morphology obtained from Field emission scanning electron microscopy (FE-SEM) indicated that more orderly arranged three-dimension (3D) structure and roughness formed with increasing the number of coating bilayers. Besides, the enzyme-immobilized nanofibrous mats were found with high enzyme loading and activity, moreover, X-ray photoelectron spectroscopy (XPS) results further demonstrated the successful immobilization of chitosan and catalase on cellulose nanofibers support. Furthermore, we evaluated the cytotoxicity induced by hydrogen peroxide in the Human umbilical vascular endothelial cells with or without pretreatment of nanofibrous mats by MTT assay, LDH activity and Flow cytometric evaluation, and confirmed the pronounced hydrogen peroxide-induced toxicity, but pretreatment of immobilized catalase reduced the cytotoxicity and protected cells against hydrogen peroxide-induced cytotoxic effects which were further demonstrated by scanning electron microscopy (SEM) and Transmission Electron Microscopy (TEM) images. The data pointed toward a role of catalase-immobilized nanofibrous mats in protecting cells against hydrogen peroxide-induced cellular damage and their potential application in biomedical field. PMID:24804555

  15. [Adapting physical activities for an active retirement].

    PubMed

    Renaudie, François

    2016-01-01

    The benefits of doing adapted physical exercise for elderly people have been proven. For more than thirty years, the French Federation for an Active Retirement has been striving to help people age well by proposing multiple activities to remain in good health after the age of 50. Doctors, activity leaders and federal instructors are attentive to each individual's capacities. PMID:27449307

  16. Adeno-Associated Viral-Mediated Catalase Expression Suppresses Optic Neuritis in Experimental Allergic Encephalomyelitis

    NASA Astrophysics Data System (ADS)

    Guy, John; Qi, Xiaoping; Hauswirth, William W.

    1998-11-01

    Suppression of oxidative injury by viral-mediated transfer of the human catalase gene was tested in the optic nerves of animals with experimental allergic encephalomyelitis (EAE). EAE is an inflammatory autoimmune disorder of primary central nervous system demyelination that has been frequently used as an animal model for the human disease multiple sclerosis (MS). The optic nerve is a frequent site of involvement common to both EAE and MS. Recombinant adeno-associated virus containing the human gene for catalase was injected over the right optic nerve heads of SJL/J mice that were simultaneously sensitized for EAE. After 1 month, cell-specific catalase activity, evaluated by quantitation of catalase immunogold, was increased approximately 2-fold each in endothelia, oligodendroglia, astrocytes, and axons of the optic nerve. Effects of catalase on the histologic lesions of EAE were measured by computerized analysis of the myelin sheath area (for demyelination), optic disc area (for optic nerve head swelling), extent of the cellular infiltrate, extravasated serum albumin labeled by immunogold (for blood-brain barrier disruption), and in vivo H2O2 reaction product. Relative to control, contralateral optic nerves injected with the recombinant virus without a therapeutic gene, catalase gene inoculation reduced demyelination by 38%, optic nerve head swelling by 29%, cellular infiltration by 34%, disruption of the blood-brain barrier by 64%, and in vivo levels of H2O2 by 61%. Because the efficacy of potential treatments for MS are usually initially tested in the EAE animal model, this study suggests that catalase gene delivery by using viral vectors may be a therapeutic strategy for suppression of MS.

  17. Learning as Activity.

    ERIC Educational Resources Information Center

    Jonassen, David H.

    2002-01-01

    Integrates contemporary theories of learning into a theory of learning as activity. Explains ecological psychology, changes in understanding of learning, activity systems and activity theory (including the integration of consciousness and activity), and activity structure; and discusses learning as a cognitive and social process. (LRW)

  18. Layer-by-layer assembled multilayers using catalase-encapsulated gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Kim, Sungwoo; Park, Jeongju; Cho, Jinhan

    2010-09-01

    We introduce a novel and versatile approach for the preparation of multilayers, based on catalase-encapsulated gold nanoparticles (CAT-AuNP), allowing electrostatic charge reversal and structural transformation through pH adjustment. CAT-AuNP, which are synthesized directly from CAT stabilizer, can be electrostatically assembled with anionic and cationic PEs as a result of the charge reversal of the catalase stabilizers through pH control. In particular, at pH 5.2, near the pI of catalase, dispersed CAT-AuNP are structurally transformed into colloidal or network CAT-AuNP nanocomposites. Furthermore, we demonstrate that the layer-by-layer assembled multilayers composed of PEs and CAT-AuNP induce an effective electron transfer between CAT and the electrode as well as a high loading of CAT and AuNP, and resultantly exhibit a highly catalytic activity toward H2O2.

  19. Coagulant Activity of Leukocytes. TISSUE FACTOR ACTIVITY

    PubMed Central

    Niemetz, J.

    1972-01-01

    Peritoneal leukocytes harvested from rabbits which have received two spaced doses of endotoxin have significantly greater (10-fold) coagulant activity than leukocytes from control rabbits. The coagulant activity accelerates the clotting of normal plasma and activates factor X in the presence of factor VII and calcium and is therefore regarded as tissue factor. A total of 40-80 mg tissue factor activity was obtained from the peritoneal cavity of single endotoxin-treated rabbits. In leukocyte subcellular fractions, separated by centrifugation, the specific tissue factor activity sedimented mainly at 14,500 g and above. The procoagulant activity was destroyed after heating for 10 min at 65°C but was preserved at lower temperatures. Polymyxin B, when given with the first dose of endotoxin, reduced both the number of peritoneal leukocytes and their tissue factor activity by two-thirds. When given immediately before the second dose of endotoxin, polymyxin B had no inhibitory effect. PMID:4333021

  20. MEASUREMENT OF SUPEROXIDE DISMUTASE, CATALASE, AND GLUTATHIONE PEROXIDASE IN CULTURED CELLS AND TISSUE

    PubMed Central

    Weydert, Christine J.; Cullen, Joseph J.

    2010-01-01

    Cells contain a large number of antioxidants to prevent or repair the damage caused by ROS, as well as to regulate redox-sensitive signaling pathways General protocols are described to measure the antioxidant enzyme activity of superoxide dismutase (SOD), catalase, and glutathione peroxidase. The SODs convert superoxide radical into hydrogen peroxide and molecular oxygen, while the catalase and peroxidases convert hydrogen peroxide into water. In this way, two toxic species, superoxide radical and hydrogen peroxide, are converted to the harmless product water. Western blots, activity gels and activity assays are various methods used to determine protein and activity in both cells and tissue depending on the amount of protein needed for each assay. Other techniques including immunohistochemistry and immunogold can further evaluate the levels of the various antioxidant enzymes in tissue and cells. In general, these assays require 24 to 48 hours to complete. PMID:20057381

  1. Production of catalases by Aspergillus niger isolates as a response to pollutant stress by heavy metals

    SciTech Connect

    Buckova, M.; Godocikova, J.; Simonovicova, A.; Polek, B.

    2005-04-15

    Isolates of Aspergillus niger, selected from the coal dust of a mine containing arsenic (As; 400 mg/kg) and from the river sediment of mine surroundings (As, 1651 mg/kg, Sb, 362 mg/kg), growing in minimal nitrate medium in the phase of hyphal development and spore formation, exhibited much higher levels of total catalase activity than the same species from the culture collection or a culture adapted to soil contaminated with As (5 mg/L). Electrophoretic resolution of catalases in cell-free extracts revealed three isozymes of catalases and production of individual isozymes was not significantly affected by stress environments. Exogenously added stressors (As{sup 5+}, Cd{sup 2+}, Cu{sup 2+}) at final concentrations of 25 and 50 mg/L and H{sub 2}O{sub 2} (20 or 40 m(M)) mostly stimulated production of catalases only in isolates from mines surroundings, and H{sub 2}O{sub 2} and Hg{sup 2+} caused the disappearance of the smallest catalase I. Isolates exhibited a higher tolerance of the toxic effects of heavy metals and H{sub 2}O{sub 2}, as monitored by growth, than did the strain from the culture collection.

  2. Understanding the Adsorption Interface of Polyelectrolyte Coating on Redox Active Nanoparticles Using Soft Particle Electrokinetics and Its Biological Activity

    PubMed Central

    2015-01-01

    The application of cerium oxide nanoparticles (CNPs) for therapeutic purposes requires a stable dispersion of nanoparticles in a biological environment. The objective of this study is to tailor the properties of polyelectrolyte coated CNPs as a function of molecular weight to achieve a stable and catalytic active dispersion. The coating of CNPs with polyacrylic acid (PAA) has increased the dispersion stability of CNPs and enhanced the catalytic ability. The stability of PAA coating was analyzed using the change in the Gibbs free energy computed by the Langmuir adsorption model. The adsorption isotherms were determined using soft particle electrokinetics which overcomes the challenges presented by other techniques. The change in Gibbs free energy was highest for CNPs coated with PAA of 250 kg/mol indicating the most stable coating. The change in free energy for PAA of 100 kg/mol coated CNPs was 85% lower than the PAA of 250 kg/mol coated CNPs. This significant difference is caused by the strong adsorption of PAA of 100 kg/mol on CNPs. Catalytic activity of PAA-CNPs is assessed by the catalase enzymatic mimetic activity of nanoparticles. The catalase activity was higher for PAA coated CNPs as compared to bare CNPs which indicated preferential adsorption of hydrogen peroxide induced by coating. This indicates that the catalase activity is also affected by the structure of the coating layer. PMID:24673655

  3. Facts about Physical Activity

    MedlinePlus

    ... Physical Activity Overweight & Obesity Healthy Weight Breastfeeding Micronutrient Malnutrition State and Local Programs Facts about Physical Activity ... Physical Activity Overweight & Obesity Healthy Weight Breastfeeding Micronutrient Malnutrition State and Local Programs File Formats Help: How ...

  4. Physical Activity Assessment

    Cancer.gov

    Current evidence convincingly indicates that physical activity reduces the risk of colon and breast cancer. Physical activity may also reduce risk of prostate cancer. Scientists are also evaluating potential relationships between physical activity and other cancers.

  5. 7 CFR 58.432 - Catalase.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Catalase. 58.432 Section 58.432 Agriculture... Material § 58.432 Catalase. The catalase preparation shall be a stable, buffered solution, neutral in pH, having a potency of not less than 100 Keil units per milliliter. The source of the catalase,...

  6. 7 CFR 58.432 - Catalase.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Catalase. 58.432 Section 58.432 Agriculture... Material § 58.432 Catalase. The catalase preparation shall be a stable, buffered solution, neutral in pH, having a potency of not less than 100 Keil units per milliliter. The source of the catalase,...

  7. 7 CFR 58.432 - Catalase.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Catalase. 58.432 Section 58.432 Agriculture... Material § 58.432 Catalase. The catalase preparation shall be a stable, buffered solution, neutral in pH, having a potency of not less than 100 Keil units per milliliter. The source of the catalase,...

  8. The Stringent Response Controls Catalases in Pseudomonas aeruginosa and Is Required for Hydrogen Peroxide and Antibiotic Tolerance

    PubMed Central

    Khakimova, Malika; Ahlgren, Heather G.; Harrison, Joe J.; English, Ann M.

    2013-01-01

    Pseudomonas aeruginosa, a human opportunistic pathogen, possesses a number of antioxidant defense enzymes under the control of multiple regulatory systems. We recently reported that inactivation of the P. aeruginosa stringent response (SR), a starvation stress response controlled by the alarmone (p)ppGpp, caused impaired antioxidant defenses and antibiotic tolerance. Since catalases are key antioxidant enzymes in P. aeruginosa, we compared the levels of H2O2 susceptibility and catalase activity in P. aeruginosa wild-type and ΔrelA ΔspoT (ΔSR) mutant cells. We found that the SR was required for optimal catalase activity and mediated H2O2 tolerance during both planktonic and biofilm growth. Upon amino acid starvation, induction of the SR upregulated catalase activity. Full expression of katA and katB also required the SR, and this regulation occurred through both RpoS-independent and RpoS-dependent mechanisms. Furthermore, overexpression of katA was sufficient to restore H2O2 tolerance and to partially rescue the antibiotic tolerance of ΔSR cells. All together, these results suggest that the SR regulates catalases and that this is an important mechanism in protecting nutrient-starved and biofilm bacteria from H2O2- and antibiotic-mediated killing. PMID:23457248

  9. Free radicals and activated oxygen.

    PubMed

    Famaey, J P

    1982-01-01

    Superoxide anion (0(-2)), hydrogen peroxide (H2O2) and hydroxyl radical (OH.) are products of the biological reduction of 0(2). They are very reactive and poorly tolerated within living systems and enzymes that catalytically scavenge these products have been evolved as defense mechanisms. These include superoxide dismutases (SOD), catalase and peroxidases. Large amounts of O-2 are produced by different enzymatic and non enzymatic biological processes. Large amounts of activated oxygens are produced by phagocytosing cells such as macrophages and polymorphonuclear cells. This production is associated with the bactericidal actions of these cells but it also largely contributes to exacerbate and sustain the inflammation where these cells congregate. The arachidonic acid pathway triggered by the inflammatory stimuli is also a source for these oxidizing radicals. The production of activated oxygens has been associated with the normal aging process but also with various toxic reactions (e.g. the toxicity of the herbicide paraquat, of the ionizing radiations, of certain antibiotics such as streptonigrin, etc. . . .). O-2 induces the depolymerization of hyaluronic acid which lends viscosity and lubricating properties to synovial fluids. SOD possess antiinflammatory properties and a bovine SOD, orgotein, has now been largely investigated by intramuscular and intraarticular injections in the treatment of rheumatic diseases. Various antiinflammatory compounds (e.g. the salicylates) are able either to inhibit the production of these oxygen radicals or to scavenge them which seems of importance for their antiinflammatory properties. Singlet oxygen, another activated oxygen, might also play a role in the inflammatory process. PMID:6295769

  10. Sirt1 protects against oxidative stress-induced renal tubular cell apoptosis by the bidirectional regulation of catalase expression

    SciTech Connect

    Hasegawa, Kazuhiro; Wakino, Shu Yoshioka, Kyoko; Tatematsu, Satoru; Hara, Yoshikazu; Minakuchi, Hitoshi; Washida, Naoki; Tokuyama, Hirobumi; Hayashi, Koichi; Itoh, Hiroshi

    2008-07-18

    NAD{sup +}-dependent protein deacetylase Sirt1 regulates cellular apoptosis. We examined the role of Sirt1 in renal tubular cell apoptosis by using HK-2 cells, proximal tubular cell lines with or without reactive oxygen species (ROS), H{sub 2}O{sub 2}. Without any ROS, Sirt1 inhibitors enhanced apoptosis and the expression of ROS scavenger, catalase, and Sirt1 overexpression downregulated catalase. When apoptosis was induced with H{sub 2}O{sub 2}, Sirt1 was upregulated with the concomitant increase in catalase expression. Sirt1 overexpression rescued H{sub 2}O{sub 2}-induced apoptosis through the upregulation of catalase. H{sub 2}O{sub 2} induced the nuclear accumulation of forkhead transcription factor, FoxO3a and the gene silencing of FoxO3a enhanced H{sub 2}O{sub 2}-induced apoptosis. In conclusion, endogenous Sirt1 maintains cell survival by regulating catalase expression and by preventing the depletion of ROS required for cell survival. In contrast, excess ROS upregulates Sirt1, which activates FoxO3a and catalase leading to rescuing apoptosis. Thus, Sirt1 constitutes a determinant of renal tubular cell apoptosis by regulating cellular ROS levels.

  11. NADPH binding and control of catalase compound II formation: comparison of bovine, yeast, and Escherichia coli enzymes.

    PubMed Central

    Hillar, A; Nicholls, P; Switala, J; Loewen, P C

    1994-01-01

    1. NADPH binds to bovine catalase and to yeast catalases A and T, but not to Escherichia coli catalase HPII. The association was demonstrated using chromatography and fluorimetry. Bound NADPH fluoresces in a similar way to NADPH in solution. 2. Bound NADPH protects bovine and yeast catalases against forming inactive peroxide compound II either via endogenous reductant action or by ferrocyanide reduction during catalytic activity in the presence of slowly generated peroxide. 3. Bound NADPH reduces neither compound I nor compound II of catalase. It apparently reacts with an intermediate formed during the decay of compound I to compound II; this postulated intermediate is an immediate precursor of stable compound II either when the latter is formed by endogenous reductants or when ferrocyanide is used. It represents therefore a new type of hydrogen donor that is not included in the original classification of Keilin and Nicholls [Keilin, D. and Nicholls, P. (1958) Biochim. Biophys. Acta 29, 302-307] 4. A model for NADPH action is presented in which concerted reduction of the ferryl iron and of a neighbouring protein free radical is responsible for the observed NADPH effects. The roles of migrant radical species in mammalian and yeast catalases are compared with similar events in metmyoglobin and cytochrome c peroxidase reactions with peroxides. Images Figure 1 PMID:8002960

  12. The catalase–hydrogen peroxide system. Role of sub-units in the thermal deactivation of bacterial catalase in the absence of substrate

    PubMed Central

    Jones, Peter; Suggett, A.

    1968-01-01

    1. Kinetic studies of the thermal deactivation of bacterial catalase in the absence of substrate suggest that the reaction involves a protonation-induced reversible dissociation of catalase into catalatically inactive sub-units, followed by an irreversible transformation of the sub-units into deactivated products. It is possible that the sub-units are mono-haem species. The rate of deactivation decreases with increasing pressure in accordance with the predictions of the proposed model. 2. The results also imply that the addition of hydrogen peroxide substrate induces the re-formation of active catalase. Under appropriate conditions the activity of catalase is found to increase with time in a manner that is quantitatively consistent with the results of deactivation studies. PMID:5673527

  13. Active commuting to school

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Declines in physical activity levels have coincided with increasing rates of obesity in children. This is problematic because physical activity has been shown to attenuate weight gain in children. Active commuting to school is one way of increasing children's physical activity. However, given the hi...

  14. Civil Law: 12 Activities.

    ERIC Educational Resources Information Center

    Dresbach, Debra

    These learning activities on civil law are intended to supplement the secondary level Scholastic materials "Living Law." Case studies, simulations, and role-play activities are included. Information provided for each activity includes a brief overview, background information, teacher instructions and a description of each activity. Activities…

  15. Increasing Youth Physical Activity with Activity Calendars

    ERIC Educational Resources Information Center

    Eckler, Seth

    2016-01-01

    Physical educators often struggle with ways to get their students to be active beyond the school day. One strategy to accomplish this is the use of physical activity calendars (PACs). The purpose of this article is to support the use of PACs and give practical advice for creating effective PACs.

  16. Persistent active longitudes in sunspot activity

    NASA Astrophysics Data System (ADS)

    Berdyugina, S.; Usoskin, I.

    It has been recently shown that spot activity of cool stars including solar analogues, is grouped in two clearly distinguished active longitudes which are persistent within at least one starspot cycle. Solar data including positional information of individual sunspots / groups extends back for about 130 years covering 12 solar cycles. Here we present the results of our research of longitudinal distribution of sunspot activity using an analysis similar to that applied to the stars. First, we synthesized, from the actual sunspot data, the sun's light curve as if it was defined only by spots. Then solar images were calculated from this light curve, giving a natural smoothing of the spot pattern. For each Carrington rotation, longitudinal position of these smoothed spot regions was calculated. The analysis reveals the following main features: - Sunspot activity is grouped in two active longitudes (with the differential rotation taken into account) 180o apart from each other which are persistent through the entire studied period of 12 cycles, similarly to stars. - The longitude migration is determined by changing the mean latitude of sunspot activity (the Maunder butterfly) and differential rotation. - The two longitudes periodically alternate the dominant activity with about 3.7 year period implying for the existence of the Sflip-flopT phenomenon known in - starspot activity.

  17. Binding of chrysoidine to catalase: spectroscopy, isothermal titration calorimetry and molecular docking studies.

    PubMed

    Yang, Bingjun; Hao, Fang; Li, Jiarong; Chen, Dongliang; Liu, Rutao

    2013-11-01

    Chrysoidine is an industrial azo dye and the presence of chrysoidine in water and food has become an environmental concern due to its negative effects on human beings. In this work, the interactions between chrysoidine and bovine liver catalase (BLC) were explored. Obvious loss in catalytic activity was observed after incubation of BLC with chrysoidine, and the inhibition effect of BLC was found to be of the non-competitive type. No profound conformational change of BLC occurs in the presence of chrysoidine as revealed by UV-vis absorption, circular dichroism and fluorescence spectroscopy studies. Isothermal titration calorimetry results indicate that catalase has two sets of binding sites for chrysoidine. Further, molecular docking simulations show that chrysoidine is located within the bottleneck in the main channel of the substrate to the active site of BLC, which explain the activity inhibition of BLC by chrysoidine. PMID:24001681

  18. Effect of organic solvents on the conformation and interaction of catalase and anticatalase antibodies.

    PubMed

    Rehan, Mohd; Younus, Hina

    2006-05-30

    Effect of six organic solvents-methanol, ethanol, propanol, dimethyl sulphoxide (DMSO), N,N-dimethyl formamide (DMF), and glycerol on the conformation and interaction of catalase and anticatalase antibodies were studied with the aim of identifying the solvents in which antigen-antibody interactions are strong. The antigen binding activity of the antibodies in the various organic solvents increased in the following order: ethanolCatalase activity was inhibited in DMSO. However, the enzyme was activated in DMF upto about 50% of its concentration. PMID:16677702

  19. Catalase protects HepG2 cells from apoptosis induced by DNA-damaging agents by accelerating the degradation of p53.

    PubMed

    Bai, Jingxiang; Cederbaum, Arthur I

    2003-02-14

    Oxidants such as H(2)O(2) play a role in the toxicity of certain DNA-damaging agents, a process that often involves the tumor suppressor p53. H(2)O(2) is rapidly degraded by catalase, which protects cells against oxidant injury. To study the effect of catalase on apoptosis induced by DNA-damaging agents, HepG2 cells were infected with adenovirus containing the cDNA of catalase (Ad-Cat). Forty-eight hours after infection, catalase protein and activity was increased 7-10-fold compared with control cells infected with Ad-LacZ. After treatment with Vp16 or mitomycin C, control cells underwent apoptosis in a p53-dependent manner; however, overexpression of catalase inhibited this apoptosis. Basal levels as well as Vp16- or mitomycin C-stimulated levels of p53 and p21 protein were decreased in the catalase-overexpressing cells as compared with control cells; however, p53 mRNA levels were not decreased by catalase. There was no difference in p53 protein synthesis between catalase-overexpressing cells and control cells. However, pulse-chase experiments indicated that p53 protein degradation was enhanced in the catalase-overexpressing cells. Proteasome inhibitors but not calpeptin prevented the catalase-mediated decrease of p53 content. Whereas Vp16 increased, catalase overexpression decreased the phosphorylation of p53. The protein phosphatase inhibitor okadaic acid did not prevent the catalase-mediated down-regulation of p53 or phosphorylated p53. These results demonstrate that catalase protects HepG2 cells from apoptosis induced by DNA-damaging agents in association with decreasing p53 phosphorylation; the latter may lead to an acceleration in the degradation of p53 protein by the proteasome complex. This suggests that the level of catalase may play a critical role in cell-induced resistance to the effects of anti-cancer drugs which up-regulate p53. PMID:12468545

  20. Protective role of extracellular catalase (KatA) against UVA radiation in Pseudomonas aeruginosa biofilms.

    PubMed

    Pezzoni, Magdalena; Pizarro, Ramón A; Costa, Cristina S

    2014-02-01

    One of the more stressful factors that Pseudomonas aeruginosa must face in nature is solar UVA radiation. In this study, the protective role of KatA catalase in both planktonic cells and biofilms of P. aeruginosa against UVA radiation was determined by using the wild-type (PAO1) and an isogenic catalase deficient strain (katA). The katA strain was more sensitive than the wild-type, especially in the case of biofilms. Moreover, the wild-type biofilm was more resistant than its planktonic counterpart, but this was not observed in the katA strain. Striking KatA activity was detected in the matrix of katA(+) strains, and to our knowledge, this is the first report of this activity in the matrix of P. aeruginosa biofilms. Provision of bovine catalase or KatA to the matrix of a katA biofilm significantly increased its UVA tolerance, demonstrating that extracellular KatA is essential to optimal defense against UVA in P. aeruginosa biofilms. Efficiency of photocatalytic treatments using TiO2 and UVA was lower in biofilms than in planktonic cells, but KatA and KatB catalases seem not to be responsible for the higher resistance of the sessile cells to this treatment. PMID:24491420

  1. Methanol and acriflavine resistance in Dictyostelium are caused by loss of catalase.

    PubMed

    Garcia, Ma Xenia U; Roberts, Catherine; Alexander, Hannah; Stewart, A Michael; Harwood, Adrian; Alexander, Stephen; Insall, Robert H

    2002-01-01

    Various chemicals with harmful effects are not themselves toxic, but are metabolized in vivo to produce toxic products. One example is methanol in Dictyostelium, which is lethal to cells containing the acrA gene, but relatively harmless to acrA mutants. This makes methanol resistance one of the tightest genetic selections in DICTYOSTELIUM: Loss of acrA also confers cross-resistance to unrelated compounds such as acriflavine and thiabendazole. We have used insertional mutagenesis to demonstrate that the acrA locus encodes the peroxisomal catalase A enzyme. Disruption of the catA gene results in parallel resistance to acriflavine. Molecular and biochemical studies of several previously characterized methanol-resistant strains reveal that each lacks catalase activity. One allele, acrA2, contains a 13 bp deletion which introduces a frameshift in the middle of the gene. The involvement of catalase in methanol resistance in Dictyostelium compares with its role in methanol metabolism in yeast and rodents. However, this is the first study to show that catalase is required for the toxicity of acriflavine. Our results imply that acriflavine and thiabendazole are precursors which must be oxidized to generate biologically active species. The catA/acrA gene is also a potentially invaluable negative selectable marker for Dictyostelium molecular genetics. PMID:11782526

  2. Antioxidant catalase rescues against high fat diet-induced cardiac dysfunction via an IKKβ-AMPK-dependent regulation of autophagy.

    PubMed

    Liang, Lei; Shou, Xi-Ling; Zhao, Hai-Kang; Ren, Gu-Qun; Wang, Jian-Bang; Wang, Xi-Hui; Ai, Wen-Ting; Maris, Jackie R; Hueckstaedt, Lindsay K; Ma, Ai-Qun; Zhang, Yingmei

    2015-02-01

    Autophagy, a conservative degradation process for long-lived and damaged proteins, participates in a variety of biological processes including obesity. However, the precise mechanism of action behind obesity-induced changes in autophagy still remains elusive. This study was designed to examine the role of the antioxidant catalase in high fat diet-induced changes in cardiac geometry and function as well as the underlying mechanism of action involved with a focus on autophagy. Wild-type (WT) and transgenic mice with cardiac overexpression of catalase were fed low or high fat diet for 20 weeks prior to assessment of myocardial geometry and function. High fat diet intake triggered obesity, hyperinsulinemia, and hypertriglyceridemia, the effects of which were unaffected by catalase transgene. Myocardial geometry and function were compromised with fat diet intake as manifested by cardiac hypertrophy, enlarged left ventricular end systolic and diastolic diameters, fractional shortening, cardiomyocyte contractile capacity and intracellular Ca²⁺ mishandling, the effects of which were ameliorated by catalase. High fat diet intake promoted reactive oxygen species production and suppressed autophagy in the heart, the effects of which were attenuated by catalase. High fat diet intake dampened phosphorylation of inhibitor kappa B kinase β(IKKβ), AMP-activated protein kinase (AMPK) and tuberous sclerosis 2 (TSC2) while promoting phosphorylation of mTOR, the effects of which were ablated by catalase. In vitro study revealed that palmitic acid compromised cardiomyocyte autophagy and contractile function in a manner reminiscent of fat diet intake, the effect of which was significantly alleviated by inhibition of IKKβ, activation of AMPK and induction of autophagy. Taken together, our data revealed that the antioxidant catalase counteracts against high fat diet-induced cardiac geometric and functional anomalies possibly via an IKKβ-AMPK-dependent restoration of myocardial

  3. Immobilized catalase on CoFoam hydrophilic polyurethane composite.

    PubMed

    Vasudevan, Palligarnai T; Como, Karin

    2006-02-01

    Catalase from bovine liver was covalently immobilized on hydrophilic polyurethane composite (CoFoam). The activity of the enzyme was assayed in the decomposition of H2O2 at pH 7.0 and 25 degrees C. The effects of water-to-prepolymer ratio, the addition of a crosslinking agent, and the utilization of a spacer on enzyme activity were examined. The results of immobilization of the enzyme in a large-scale unit are reported. The advantage of the CoFoam composite lies in the low drop in pressure in a packed-bed reactor at fairly large flow rates. For example, at flow rates of 10-12 L/min, the drop in pressure is typically 3 kPa. Enzymes immobilized on CoFoam represent a novel use as catalysts in packed-bed reactors owing to the low drop in pressure. PMID:16484719

  4. Roles of catalase and glutathione peroxidase in the tolerance of a pulmonate gastropod to anoxia and reoxygenation.

    PubMed

    Welker, Alexis F; Moreira, Daniel C; Hermes-Lima, Marcelo

    2016-07-01

    Humans and most mammals suffer severe damage when exposed to ischemia and reperfusion episodes due to an overproduction of reactive oxygen species (ROS). In contrast, several hypoxia/anoxia-tolerant animals survive very similar situations. We evaluated herein the redox metabolism in the anoxia-tolerant land snail Helix aspersa after catalase inhibition by 3-amino-1,2,4-triazole (ATZ) injection during a cycle of wide and abrupt change in oxygen availability. The exposure to anoxia for 5 h caused a change of only one of several parameters related to free radical metabolism: a rise in selenium-dependent glutathione peroxidase (Se-GPX) activity in muscle of both saline- and ATZ-injected animals (by 1.9- and 1.8-fold, respectively). Catalase suppression had no effect in animals under normoxia or anoxia. However, during reoxygenation catalase suppression kept high levels of muscle Se-GPX activity (twofold higher than in saline-injected snails up to 30 min reoxygenation) and induced the increase in hepatopancreas SOD activity (by 22 %), indicating higher levels of ROS in both organs than in saline-injected animals. Additionally, catalase-suppressed snails showed 12 % higher levels of carbonyl protein-a sign of mild oxidative stress-in muscle during reoxygenation than those animals with intact catalase. No changes were observed in glutathione parameters (GSH, GSSG and GSSG:GSH ratio), TBARS, and GST activity in any of the experimental groups, in both organs. These results indicate that catalase inhibition inflicts changes in the free radical metabolism during reoxygenation, prompting a stress-response that is a reorganization in other enzymatic antioxidant defenses to minimize alterations in the redox homeostasis in land snails. PMID:27062029

  5. Using DNA devices to track anticancer drug activity.

    PubMed

    Kahanda, Dimithree; Chakrabarti, Gaurab; Mcwilliams, Marc A; Boothman, David A; Slinker, Jason D

    2016-06-15

    It is beneficial to develop systems that reproduce complex reactions of biological systems while maintaining control over specific factors involved in such processes. We demonstrated a DNA device for following the repair of DNA damage produced by a redox-cycling anticancer drug, beta-lapachone (β-lap). These chips supported ß-lap-induced biological redox cycle and tracked subsequent DNA damage repair activity with redox-modified DNA monolayers on gold. We observed drug-specific changes in square wave voltammetry from these chips at therapeutic ß-lap concentrations of high statistical significance over drug-free control. We also demonstrated a high correlation of this change with the specific ß-lap-induced redox cycle using rational controls. The concentration dependence of ß-lap revealed significant signal changes at levels of high clinical significance as well as sensitivity to sub-lethal levels of ß-lap. Catalase, an enzyme decomposing peroxide, was found to suppress DNA damage at a NQO1/catalase ratio found in healthy cells, but was clearly overcome at a higher NQO1/catalase ratio consistent with cancer cells. We found that it was necessary to reproduce key features of the cellular environment to observe this activity. Thus, this chip-based platform enabled tracking of ß-lap-induced DNA damage repair when biological criteria were met, providing a unique synthetic platform for uncovering activity normally confined to inside cells. PMID:26901461

  6. Antifeedant activity of quassinoids.

    PubMed

    Leskinen, V; Polonsky, J; Bhatnagar, S

    1984-10-01

    The antifeedant activity of 13 quassinoids of different structural types has been studied against the Mexican bean beetle (Epilachna varivestis Mulsant) 4th instar larvae and the southern armyworm (Spodoptera eridania Crawer) 5th instar larvae. All quassinoids tested displayed significant activity against the Mexican bean beetle and, thus, do not reveal a simple structure-activity relationship. Five quassinoids were active against the southern armyworm. Interestingly, four of these-bruceantin (I), glaucarubinone (VI), isobruceine A (VIII), and simalikalactone D (XI)-possess the required structural features for antineoplastic activity. The noncytotoxic quassin (X) is an exception; it is active against both pests. PMID:24318349

  7. Enteromorpha compressa Exhibits Potent Antioxidant Activity

    PubMed Central

    Shanab, Sanaa M. M.; Shalaby, Emad A.; El-Fayoumy, Eman A.

    2011-01-01

    The green macroalgae, Enteromorpha compressa (Linnaeus) Nees, Ulva lactuca, and E. linza, were seasonally collected from Abu Qir bay at Alexandria (Mediterranean Sea) This work aimed to investigate the seasonal environmental conditions, controlling the green algal growth, predominance, or disappearance and determining antioxidant activity. The freshly collected selected alga (E. compressa) was subjected to pigment analysis (chlorophyll and carotenoids) essential oil and antioxidant enzyme determination (ascorbate oxidase and catalase). The air-dried ground alga was extracted with ethanol (crude extract) then sequentially fractionated by organic solvents of increasing polarity (petroleum ether, chloroform, ethyl acetate, and water). Antioxidant activity of all extracts was assayed using different methods (total antioxidant, DPPH [2, 2 diphenyl-1-picrylhydrazyl], ABTS [2, 2 azino-bis ethylbenzthiazoline-6-sulfonic acid], and reducing power, and β-carotene linoleic acid bleaching methods). The results indicated that the antioxidant activity was concentration and time dependent. Ethyl acetate fraction demonstrated higher antioxidant activity against DPPH method (82.80%) compared to the synthetic standard butylated hydroxyl toluene (BHT, 88.5%). However, the crude ethanolic extract, pet ether, chloroform fractions recorded lower to moderate antioxidant activities (49.0, 66.0, and 78.0%, resp.). Using chromatographic and spectroscopic analyses, an active compound was separated and identified from the promising ethyl acetate fraction. PMID:21869863

  8. Exposure of cardiomyocytes to angiotensin II induces over-activation of monoamine oxidase type A: implications in heart failure.

    PubMed

    Manni, Maria Elena; Zazzeri, Marina; Musilli, Claudia; Bigagli, Elisabetta; Lodovici, Maura; Raimondi, Laura

    2013-10-15

    Several evidences indicate that increased cardiac mitochondrial monoamine oxidase type A (MAO-A) activity associates with a failing phenotype. Till now, the mechanism underlying such relation is largely unknown. We explored the hypothesis that exposure of cardiomyocytes to AT-II caused activation of MAO-A and also of catalase and aldehyde dehydrogenase activities, enzymes involved in degrading MAO's end products. Left ventricular cardiomyocytes were isolated from normoglycemic (N) and streptozotocin-injected (50 mg/kg) rats (D) treated or not treated with losartan (20 mg/kg/day in drinking water; DLos and NLos, respectively), a type 1 receptor (AT1) antagonist, for 3 weeks. In each group of cells, MAO, catalase and aldehyde dehydrogenase activities were measured radiochemically and spectrophotometrically. The same enzymes were also measured in HL-1 immortalized cardiomyocytes not exposed and exposed to AT-II (100 nM for 18 h) in the absence and in the presence of irbesartan (1 μM), an AT1 antagonist. MAO-A catalase and aldehyde dehydrogenase activities were found significantly higher in D, than in N cells. MAO-A positively correlated with catalase activity in D cells. MAO-A and aldehyde dehydrogenase but not catalase over-activation, were prevented in DLos cells. Similarly, MAO-A activity, but not catalase and aldehyde dehydrogenase increased significantly in HL-1 cells acutely exposed to AT-II and this increase was prevented when irbesartan, an AT1 antagonist was present. Over-activation of cardiomyocyte MAO-A activity is among acute (18 h) and short-term (2-weeks of diabetes) cardiac effects of AT-II and a novel target of AT1 antagonists, first line treatments of diabetic cardiomyopathy. PMID:24012905

  9. Salicylic acid and salicylic acid sensitive and insensitive catalases in different genotypes of chickpea against Fusarium oxysporum f. sp. ciceri.

    PubMed

    Gayatridevi, S; Jayalakshmi, S K; Mulimani, V H; Sreeramulu, K

    2013-10-01

    Differential expression of catalase isozymes in different genotypes of chickpea resistant genotypes- A1, JG-315, JG-11, WR-315, R1-315, Vijaya, ICCV-15017, GBS-964, GBM-10, and susceptible genotypes- JG-62, MNK, ICCV-08321, ICCV-08311, KW-104, ICCV-08123, ICC-4951, ICC-11322, ICC-08116 for wilt disease caused by Fusarium oxysporum. f. sp. ciceri (Foc) was analyzed. Salicylic acid (SA) and H2O2 concentrations were determined in control as well as in plants infected with F. ciceri and found that the high and low levels of salicylic acid and H2O2 in resistant and susceptible genotypes of chickpea respectively. Catalase isozyme activities were detected in the gel and found that no induction of new catalases was observed in all the resistant genotypes and their some of the native catalase isozymes were inhibited; whereas, induction of multiple catalase isozymes was observed in all the screened susceptible genotypes and their activities were not inhibited upon Foc or SA treatments. The above results support the possible role of these isozymes as a marker to identify which genotype of chickpea is expressing systemic acquired resistance. PMID:24431522

  10. Important role of catalase in the cellular response of the budding yeast Saccharomyces cerevisiae exposed to ionizing radiation.

    PubMed

    Nishimoto, Takuto; Furuta, Masakazu; Kataoka, Michihiko; Kishida, Masao

    2015-03-01

    Ionizing radiation indirectly causes oxidative stress in cells via reactive oxygen species (ROS), such as hydroxyl radicals (OH(-)) generated by the radiolysis of water. We investigated how the catalase function was affected by ionizing radiation and analyzed the phenotype of mutants with a disrupted catalase gene in Saccharomyces cerevisiae exposed to radiation. The wild-type yeast strain and isogenic mutants with disrupted catalase genes were exposed to various doses of (60)Co gamma-rays. There was no difference between the wild-type strain and the cta1 disruption mutant following exposure to gamma-ray irradiation. In contrast, there was a significant decrease in the ctt1 disruption mutant, suggesting that this strain exhibited decreased survival on gamma-ray exposure compared with other strains. In all three strains, stationary phase cells were more tolerant to the exposure of gamma-rays than exponential phase cells, whereas the catalase activity in the wild-type strain and cta1 disruption mutant was higher in the stationary phase than in the exponential phase. These data suggest a correlation between catalase activity and survival following gamma-ray exposure. However, this correlation was not clear in the ctt1 disruption mutant, suggesting that other factors are involved in the tolerance to ROS induced by irradiation. PMID:25416226

  11. 7 CFR 58.432 - Catalase.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Quality Specifications for Raw Material § 58.432 Catalase. The catalase preparation shall be a stable, buffered solution, neutral in...

  12. 7 CFR 58.432 - Catalase.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Quality Specifications for Raw Material § 58.432 Catalase. The catalase preparation shall be a stable, buffered solution, neutral in...

  13. Vulnerability of the human airway epithelium to hyperoxia. Constitutive expression of the catalase gene in human bronchial epithelial cells despite oxidant stress.

    PubMed

    Yoo, J H; Erzurum, S C; Hay, J G; Lemarchand, P; Crystal, R G

    1994-01-01

    Although catalase is a major intracellular antioxidant, the expression of the human catalase gene appears to be limited in the airway epithelium, making these cells vulnerable to oxidant stress. The basis for this limited gene expression was examined by evaluation of the expression of the endogenous gene in human bronchial epithelial cells in response to hyperoxia. Hyperoxia failed to upregulate endogenous catalase gene expression, in contrast to a marked increase in expression of the heat shock protein gene. Sequence analysis of 1.7 kb of the 5'-flanking region of the human catalase gene showed features of a "house-keeping" gene (no TATA box, high GC content, multiple CCAAT boxes, and transcription start sites). Transfection of human bronchial epithelial cells with fusion genes composed of various lengths of the catalase 5'-flanking region and luciferase as a reporter gene showed low level constitutive promoter activity that did not change after exposure to hyperoxia. Importantly, using a replication-deficient recombinant adenoviral vector containing the human catalase cDNA, levels of catalase were significantly increased in human airway epithelial cells and this was associated with increased survival of the cells when exposed to hyperoxia. These observations provide a basis for understanding the sensitivity of the human airway epithelium to oxidant stress and a strategy for protecting the epithelium from such injury. PMID:8282800

  14. Active Fire Mapping Program

    MedlinePlus

    ... Incidents (Home) New Large Incidents Fire Detection Maps MODIS Satellite Imagery VIIRS Satellite Imagery Fire Detection GIS ... Data Web Services Latest Detected Fire Activity Other MODIS Products Frequently Asked Questions About Active Fire Maps ...

  15. Preschoolers’ Physical Activity Behaviours

    PubMed Central

    Irwin, Jennifer D.; He, Meizi; Bouck, L. Michelle Sangster; Tucker, Patricia; Pollett, Graham L.

    2016-01-01

    Objectives To understand parents’ perspectives of their preschoolers’ physical activity behaviours. Methods A maximum variation sample of 71 parents explored their preschoolers’ physical activity behaviours through 10 semi-structured focus group discussions. Results Parents perceived Canada’s Physical Activity Guidelines for Children as inadequate; that their preschoolers get and need more than 30–90 minutes of activity daily; and that physical activity habits must be established during the preschool years. Nine barriers against and facilitators toward adequate physical activity were proposed: child’s age, weather, daycare, siblings, finances, time, society and safety, parents’ impact, and child’s activity preferences. Discussion The need for education and interventions that address current barriers are essential for establishing physical activity as a lifestyle behaviour during early childhood and, consequently, helping to prevent both childhood and adulthood obesity. PMID:16625802

  16. Balance Food and Activity

    MedlinePlus

    ... For Health Professionals Tools and Resources Promotional Materials Programming Materials Weight Management Nutrition Physical Activity Reduce Screen ... Training For Health Professionals Tools & Resources Promotional ... Programming Materials Weight Management Nutrition Physical Activity Reduce Screen ...

  17. Active magnetic regenerator

    DOEpatents

    Barclay, John A.; Steyert, William A.

    1982-01-01

    The disclosure is directed to an active magnetic regenerator apparatus and method. Brayton, Stirling, Ericsson, and Carnot cycles and the like may be utilized in an active magnetic regenerator to provide efficient refrigeration over relatively large temperature ranges.

  18. Exercise and Physical Activity

    MedlinePlus

    Alzheimer ’s Caregiving Tips Exercise and Physical Activity Being active and getting exercise helps people with Alzheimer’s disease feel better. Exercise helps keep their muscles, joints, and heart in ...

  19. Antimicrobial activity of isopteropodine.

    PubMed

    García, Rubén; Cayunao, Cesia; Bocic, Ronny; Backhouse, Nadine; Delporte, Carle; Zaldivar, Mercedes; Erazo, Silvia

    2005-01-01

    Bioassay-directed fractionation for the determination of antimicrobial activity of Uncaria tomentosa, has led to the isolation of isopteropodine (0.3%), a known Uncaria pentacyclic oxindol alkaloid that exhibited antibacterial activity against Gram positive bacteria. PMID:16042336

  20. Population Education. Awareness Activities.

    ERIC Educational Resources Information Center

    Brouse, Deborah E.

    1990-01-01

    Described are awareness activities that deal with human population growth, resources, and the environment. Activities include simulations, mathematical exercises, and discussions of the topic. Specific examples of what individuals can do to help are listed. (KR)

  1. Major operations and activities

    SciTech Connect

    Black, D.G.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the major operations and activities on the site. These operations and activities include site management, waste management, environmental restoration and corrective actions, and research and technology development.

  2. Family Activities for Fitness

    ERIC Educational Resources Information Center

    Grosse, Susan J.

    2009-01-01

    This article discusses how families can increase family togetherness and improve physical fitness. The author provides easy ways to implement family friendly activities for improving and maintaining physical health. These activities include: walking, backyard games, and fitness challenges.

  3. Active at Any Size

    MedlinePlus

    ... beginners. Daily life activities Lifestyle activities, such as gardening or washing the car, are great ways to ... bags. Doing chores like lawn mowing, raking leaves, gardening, and housework also count. What questions should I ...

  4. WASTE ACTIVATED SLUDGE PROCESSING

    EPA Science Inventory

    A study was made at pilot scale of a variety of processes for dewatering and stabilization of waste activated sludge from a pure oxygen activated sludge system. Processes evaluated included gravity thickening, dissolved air flotation thickening, basket centrifugation, scroll cent...

  5. Triple-enzyme mimetic activity of nickel-palladium hollow nanoparticles and their application in colorimetric biosensing of glucose.

    PubMed

    Wang, Qingqing; Zhang, Lingling; Shang, Changshuai; Zhang, Zhiquan; Dong, Shaojun

    2016-04-01

    We demonstrate that nickel-palladium hollow nanoparticles (NiPd hNPs) exhibit triple-enzyme mimetic activity: oxidase-like activity, peroxidase-like activity and catalase-like activity. As peroxidase mimetics, the catalytic activity of NiPd hNPs was investigated in detail. On this basis, a simple glucose biosensor with a wide linear range and low detection limit was developed. PMID:27009927

  6. Green Schools Activity Booklet.

    ERIC Educational Resources Information Center

    Sacramento Tree Foundation, CA.

    This collection of interdisciplinary hands-on activities covers a variety of topics related to trees and conservation. Twenty-four activities integrate the subjects of social studies, fine arts, science, language arts, math, geography, and music. Although activity instructions are not consistent they usually contain details on objectives and…

  7. Technology Systems. Laboratory Activities.

    ERIC Educational Resources Information Center

    Brame, Ray; And Others

    This guide contains 43 modules of laboratory activities for technology education courses. Each module includes an instructor's resource sheet and the student laboratory activity. Instructor's resource sheets include some or all of the following elements: module number, course title, activity topic, estimated time, essential elements, objectives,…

  8. Climate Change: An Activity.

    ERIC Educational Resources Information Center

    Lewis, Garry

    1995-01-01

    Presents a segment of the Geoscience Education booklet, Climate Change, that contains information and activities that enable students to gain a better appreciation of the possible effects human activity has on the Earth's climate. Describes the Terrace Temperatures activity that leads students through an investigation using foraminifera data to…

  9. Bonus Activity Book.

    ERIC Educational Resources Information Center

    Learning, 1992

    1992-01-01

    Provides on-task activities to fill in unexpected extra moments in elementary classes. The activities require little preparation and take 5-15 minutes to complete. There are activities for math, language arts, social science, science, critical thinking, and computer. An outer space board game is also included. (SM)

  10. Activity Sheets. Draft Copy.

    ERIC Educational Resources Information Center

    Duke Power Company, Educational Services Dept., Charlotte, NC.

    This document consists of energy vocabulary activities, three games, worksheets, laboratory activities/exercises, and an introductory classroom exercise designed to introduce energy concepts to students. Vocabulary activities focus on coal and energy consumption. The three games (with instructions) focus on various aspects of energy and energy…

  11. Hepatitis and activity

    PubMed Central

    Krikler, Dennis M.

    1971-01-01

    The effects of physical activity during an attack of infectious hepatitis are discussed. There is no evidence that activity during convalescence produces any ill-effects. On the other hand, strenuous physical activity in the acute stage may be dangerous, possibly because hepatic blood-flow is reduced. PMID:5560143

  12. Measurement of Physical Activity.

    ERIC Educational Resources Information Center

    Dishman, Rod K.; Washburn, Richard A.; Schoeller, Dale A.

    2001-01-01

    Valid assessment of physical activity must be unobtrusive, practical to administer, and specific about physical activity type, frequency, duration, and intensity. Assessment methods can be categorized according to whether they provide direct or indirect (e.g., self-report) observation of physical activity, body motion, physiological response…

  13. Activity Theory and Ontology

    ERIC Educational Resources Information Center

    Peim, Nick

    2009-01-01

    This paper seeks to re-examine Yrio Engestrom's activity theory as a technology of knowledge designed to enable positive transformations of specific practices. The paper focuses on a key paper where Engestrom defines the nature and present state of activity theory. Beginning with a brief account of the relations between activity theory and…

  14. Technology Learning Activities I.

    ERIC Educational Resources Information Center

    International Technology Education Association, Reston, VA.

    This guide contains 30 technology learning activities. Activities may contain all or some of the following: an introduction, objectives, materials and equipment, challenges, limitations, notes and investigations, resources and references used, and evaluation ideas. Activity titles are: (1) Occupations in Construction Technology; (2) Designing a…

  15. Woodsy Owl Activity Guide.

    ERIC Educational Resources Information Center

    Forest Service (USDA), Washington, DC.

    This guide offers teachers and after-school group leaders 12 fun and engaging activities. Activities feature lessons on trees, water, wind, the earth, food, and waste. The activities are designed to help children aged 5-8 become more aware of the natural environment and fundamental conservation principles. Titles of children's books are embedded…

  16. FLES Games and Activities.

    ERIC Educational Resources Information Center

    Irujo, Suzanne, Ed.

    A number of activities for teaching foreign language in the elementary school (FLES) are presented. The activities were developed by participants in a FLES teacher training workshop, Project INTERACT, in the Boston area. The first section contains games, thematic units, and other activities specifically related to French language instruction,…

  17. FL Activities & Festivals.

    ERIC Educational Resources Information Center

    American Council on the Teaching of Foreign Languages, Hastings-on-Hudson, NY.

    A collection of student, class, and school foreign language activities suggests a variety of projects and describes three specific school efforts. The suggested activities include: (1) individual student efforts such as writing to pen-pals; (2) group activities such as a foreign language auction or sing-along; (3) group projects for the school…

  18. Highlights of 1981 activities

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The highlights of NASA's 1981 activities are presented, including the results of the two flights of the space shuttle Columbia and the Voyager 2 encounter with Saturn. Accomplishments in the areas of space transportation operations; space science; aeronautical, energy, and space research and development; as well as space tracking, international activities, and 1981 launch activities are discussed.

  19. The Antimicrobial Activity of Marinocine, Synthesized by Marinomonas mediterranea, Is Due to Hydrogen Peroxide Generated by Its Lysine Oxidase Activity

    PubMed Central

    Lucas-Elío, Patricia; Gómez, Daniel; Solano, Francisco; Sanchez-Amat, Antonio

    2006-01-01

    Marinocine is a broad-spectrum antibacterial protein synthesized by the melanogenic marine bacterium Marinomonas mediterranea. This work describes the basis for the antibacterial activity of marinocine and the identification of the gene coding for this protein. The antibacterial activity is inhibited under anaerobic conditions and by the presence of catalase under aerobic conditions. Marinocine is active only in culture media containing l-lysine. In the presence of this amino acid, marinocine generates hydrogen peroxide, which causes cell death as confirmed by the increased sensitivity to marinocine of Escherichia coli strains mutated in catalase activity. The gene coding for this novel enzyme was cloned using degenerate PCR with primers designed based on conserved regions in the antimicrobial protein AlpP, synthesized by Pseudoalteromonas tunicata, and some hypothetical proteins. The gene coding for marinocine has been named lodA, standing for lysine oxidase, and it seems to form part of an operon with a second gene, lodB, that codes for a putative dehydrogenase flavoprotein. The identity of marinocine as LodA has been demonstrated by N-terminal sequencing of purified marinocine and generation of lodA mutants that lose their antimicrobial activity. This is the first report on a bacterial lysine oxidase activity and the first time that a gene encoding this activity has been cloned. PMID:16547036

  20. Catalase-Modified Carbon Electrodes: Persuading Oxygen To Accept Four Electrons Rather Than Two.

    PubMed

    Sepunaru, Lior; Laborda, Eduardo; Compton, Richard G

    2016-04-18

    We successfully exploited the natural highly efficient activity of an enzyme (catalase) together with carbon electrodes to produce a hybrid electrode for oxygen reduction, very appropriate for energy transformation. Carbon electrodes, in principle, are cheap but poor oxygen reduction materials, because only two-electron reduction of oxygen occurs at low potentials, whereas four-electron reduction is key for energy-transformation technology. With the immobilization of catalase on the surface, the hydrogen peroxide produced electrochemically is decomposed back to oxygen by the enzyme; the enzyme natural activity on the surface regenerates oxygen, which is further reduced by the carbon electrode with no direct electron transfer between the enzyme and the electrode. Near full four-electron reduction of oxygen is realised on a carbon electrode, which is modified with ease by a commercially available enzyme. The value of such enzyme-modified electrode for energy-transformation devices is evident. PMID:26934203

  1. Anticancer activity of ferrocenylthiosemicarbazones.

    PubMed

    Sandra, Cortez-Maya; Elena, Klimova; Marcos, Flores-Alamo; Elena, Martínez-Klimova; Arturo, Ramírez-Ramírez; Teresa, Ramírez Apan; Marcos, Martínez-García

    2014-03-01

    Aliphatic and aromatic ferrocenylthiosemicarbazones were synthesized. The characterization of the new ferrocenylthiosemicarbazones was done by IR, (1)H-NMR and (13)C-NMR spectroscopy, elemental analysis and X-ray diffraction studies. The biological activity of the obtained compounds was assessed in terms of anticancer activity. Their activity against U251 (human glyoblastoma), PC-3 (human prostatic adenocarcinoma), K562 (human chronic myelogenous leukemia), HCT-15 (human colorectal adenocarcinoma), MCF-7 (human mammary adenocarcinoma) and SKLU-1 (human lung adenocarcinoma) cell lines was studied and compared with cisplatin. All tested compounds showed good activity and the aryl-chloro substituted ferrocenylthiosemicarbazones showed the best anticancer activity. PMID:24144199

  2. Improved membrane filtration method incorporating catalase and sodium pyruvate for detection of chlorine-stressed coliform bacteria.

    PubMed Central

    Calabrese, J P; Bissonnette, G K

    1990-01-01

    In vitro pure culture studies were conducted on three different strains of Escherichia coli (K-12, EPA 00244, and SWEI) to determine the effect of chlorination on catalase activity. In each case, stationary-phase cells exhibited significant (P less than 0.001) reductions in enzyme activity following exposure to chlorine. Mean differences in activity between control and chlorine-stressed cells ranged from 8.8 to 20.3 U/mg of protein for E. coli SWEI and EPA 00244, respectively. Following initial enzyme studies, resuscitation experiments utilizing the membrane filtration technique were conducted on chlorinated sewage effluent. Five different amendments, including catalase (1,000 U per plate), heat-inactivated catalase (1,000-U per plate), sodium pyruvate (0.05%), a catalase-sodium pyruvate combination (1,500 U/0.01%), and acetic acid (0.05%), were tested for the ability to enhance detection of chlorine-stressed cells on M-fecal coliform (M-FC), mT7, M-Endo, and tryptone-glucose-yeast extract (TGY) media. Significant (P less than 0.001) increases in recovery of fecal coliforms on M-FC, total coliforms on mT7 and M-Endo, and total heterotrophs on TGY were obtained on plates containing catalase, pyruvate, or the combination of these compounds. Supplementation with heat-inactivated catalase and acetic acid did not improve recovery of chlorine-stressed cells compared with recovery on nonamended media. Subsequent analysis of colonies from plates containing compounds which enhanced recovery indicated coliform verification percentages of greater than 80% on M-FC, greater than 90% on mT7, and greater than 94% on M-Endo media. These data suggest that the addition of peroxide-degrading compounds to various standard recovery media may improve detection of both coliform and heterotrophic bacteria in chlorinated waters. PMID:2268162

  3. Oxidant and enzymatic antioxidant status (gene expression and activity) in the brain of chickens with cold-induced pulmonary hypertension

    NASA Astrophysics Data System (ADS)

    Hassanpour, Hossein; Khalaji-Pirbalouty, Valiallah; Nasiri, Leila; Mohebbi, Abdonnaser; Bahadoran, Shahab

    2015-11-01

    To evaluate oxidant and antioxidant status of the brain (hindbrain, midbrain, and forebrain) in chickens with cold-induced pulmonary hypertension, the measurements of lipid peroxidation, protein oxidation, antioxidant capacity, enzymatic activity, and gene expression (for catalase, glutathione peroxidase, and superoxide dismutases) were done. There were high lipid peroxidation/protein oxidation and low antioxidant capacity in the hindbrain of cold-induced pulmonary hypertensive chickens compared to control ( P < 0.05). In the hypertensive chickens, superoxide dismutase activity was decreased (forebrain, midbrain, and hindbrain), while catalase activity was increased (forebrain and midbrain) ( P < 0.05). Glutathione peroxidase activity did not change. Relative gene expression of catalase and superoxide dismutases (1 and 2) was downregulated, while glutathione peroxidase was upregulated in the brain of the cold-induced pulmonary hypertensive chickens. Probably, these situations in the oxidant and antioxidant status of the brain especially hindbrain may change its function at cardiovascular center and sympathetic nervous system to exacerbate pulmonary hypertension.

  4. Transcriptional activators in yeast

    PubMed Central

    2006-01-01

    Eukaryotic transcription activation domains (ADs) are not well defined on the proteome scale. We systematicallly tested ∼6000 yeast proteins for transcriptional activity using a yeast one-hybrid system and identified 451 transcriptional activators. We then determined their transcription activation strength using fusions to the Gal4 DNA-binding domain and a His3 reporter gene which contained a promoter with a Gal4-binding site. Among the 132 strongest activators 32 are known transcription factors while another 35 have no known function. Although zinc fingers, helix–loop–helix domains and several other domains are highly overrepresented among the activators, only few contain characterized ADs. We also found some striking correlations: the stronger the activation activity, the more acidic, glutamine-rich, proline-rich or asparagine-rich the activators were. About 29% of the activators have been found previously to specifically interact with the transcription machinery, while 10% are known to be components of transcription regulatory complexes. Based on their transcriptional activity, localization and interaction patterns, at least six previously uncharacterized proteins are suggested to be bona fide transcriptional regulators (namely YFL049W, YJR070C, YDR520C, YGL066W/Sgf73, YKR064W and YCR082W/Ahc2). PMID:16464826

  5. Vestibular activation of sympathetic nerve activity

    NASA Technical Reports Server (NTRS)

    Ray, C. A.; Carter, J. R.

    2003-01-01

    AIM: The vestibulosympathetic reflex refers to sympathetic nerve activation by the vestibular system. Animal studies indicate that the vestibular system assists in blood pressure regulation during orthostasis. Although human studies clearly demonstrate activation of muscle sympathetic nerve activity (MSNA) during engagement of the otolith organs, the role of the vestibulosympathetic reflex in maintaining blood pressure during orthostasis is not well-established. Examination of the vestibulosympathetic reflex with other cardiovascular reflexes indicates that it is a powerful and independent reflex. Ageing, which is associated with an increased risk for orthostatic hypotension, attenuates the vestibulosympathetic reflex. The attenuated reflex is associated with a reduction in arterial pressure. CONCLUSION: These findings suggest that the vestibulosympathetic reflex assists in blood pressure regulation in humans, but future studies examining this reflex in other orthostatically intolerant populations are necessary to address this hypothesis.

  6. A study of the inhibition of catalase by dipotassium trioxohydroxytetrafluorotriborate K₂[B₃O₃F₄OH].

    PubMed

    Islamovic, Safija; Galic, Borivoj; Milos, Mladen

    2014-10-01

    In the development of boronic acid-based enzyme inhibitors as potential pharmaceutical drugs, dipotassium trioxohydroxytetrafluorotriborate K2[B3O3F4OH] was listed as a promising new therapeutic for treatment of these diseases. The catalase-mediated conversion of hydrogen peroxide, in the presence and absence of K2[B3O3F4OH] was studied. The kinetics conformed to the Michaelis-Menten model. Lineweaver-Burk plots were linear and plotted the family of straight lines intersected on the abscissa indicating non-competitive inhibition of the catalase. It appears that in the absence of inhibitor, catalase operates the best at conditions around pH 7.1 and in the presence of K2[B3O3F4OH] the optimum is around pH 6.2. The uncatalyzed reaction of hydrogen peroxide decomposition generally has a value of activation energy of 75 kJ mole(-1), whereas catalase, in the absence of inhibitor, lowers the value to 11.2 kJ mole(-1), while in the presence 69 mmoles L(-1) of K2[B3O3F4OH] it was 37.8 kJ mole(-1). PMID:24506205

  7. Immobilized glucose oxidase--catalase and their deactivation in a differential-bed loop reactor.

    PubMed

    Prenosil, J E

    1979-01-01

    Glucose oxidase containing catalase was immobilized with a copolymer of phenylenediamine and glutaraldehyde on pumice and titania carrier to study the enzymatic oxidation of glucose in a differential-bed loop reactor. The reaction rate was found to be first order with respect to the concentration of limiting oxygen substrate, suggesting a strong external mass-transfer resistance for all the flow rates used. The partial pressure of oxygen was varied from 21.3 up to 202.6 kPa. The use of a differential-bed loop reactor for the determination of the active enzyme concentration in the catalyst with negligible internal pore diffusion resistance is shown. Catalyst deactivation was studied, especially with respect to the presence of catalase. It is believed that the hydrogen peroxide formed in the oxidation reaction deactivates catalase first; if an excess of catalase is present, the deactivation of glucose oxidase remains small. The mathematical model subsequently developed adequately describes the experimental results. PMID:427262

  8. Characterization of glutathione reductase and catalase in the fronds of two Pteris ferns upon arsenic exposure.

    PubMed

    Kertulis-Tartar, Gina M; Rathinasabapathi, Bala; Ma, Lena Q

    2009-10-01

    To better understand the mechanisms of plant tolerance to high concentration of arsenic, we characterized two antioxidant enzymes, glutathione reductase (GR) and catalase (CAT), in the fronds of Pteris vittata, an arsenic-hyperaccumulating fern, and Pteris ensiformis, an arsenic-sensitive fern. The induction, activation and apparent kinetics of GR and CAT in the plants upon arsenic exposure were investigated. Under arsenic exposure (sodium arsenate), CAT activity in P. vittata was increased by 1.5-fold, but GR activity was unchanged. Further, GR was not inhibited or activated by the arsenic in assays. No significant differences in K(m) and V(max) values of GR or CAT were observed between the two ferns. However, CAT activity in P. vittata was activated by 200 microM arsenate up to 300% compared to the control. Similar but much smaller increases were observed for P. ensiformis and purified bovine liver catalase (133% and 120%, respectively). This research reports, for the first time, the activation of CAT by arsenic in P. vittata. The increased CAT activities may allow P. vittata to more efficiently mediate arsenic-induced stress by preparing the fern for the impeding production of reactive oxygen species resulting from arsenate reduction to arsenite in the fronds. PMID:19574057

  9. Respiration triggers heme transfer from cytochrome c peroxidase to catalase in yeast mitochondria.

    PubMed

    Kathiresan, Meena; Martins, Dorival; English, Ann M

    2014-12-01

    In exponentially growing yeast, the heme enzyme, cytochrome c peroxidase (Ccp1) is targeted to the mitochondrial intermembrane space. When the fermentable source (glucose) is depleted, cells switch to respiration and mitochondrial H2O2 levels rise. It has long been assumed that CCP activity detoxifies mitochondrial H2O2 because of the efficiency of this activity in vitro. However, we find that a large pool of Ccp1 exits the mitochondria of respiring cells. We detect no extramitochondrial CCP activity because Ccp1 crosses the outer mitochondrial membrane as the heme-free protein. In parallel with apoCcp1 export, cells exhibit increased activity of catalase A (Cta1), the mitochondrial and peroxisomal catalase isoform in yeast. This identifies Cta1 as a likely recipient of Ccp1 heme, which is supported by low Cta1 activity in ccp1Δ cells and the accumulation of holoCcp1 in cta1Δ mitochondria. We hypothesized that Ccp1's heme is labilized by hyperoxidation of the protein during the burst in H2O2 production as cells begin to respire. To test this hypothesis, recombinant Ccp1 was hyperoxidized with excess H2O2 in vitro, which accelerated heme transfer to apomyoglobin added as a surrogate heme acceptor. Furthermore, the proximal heme Fe ligand, His175, was found to be ∼ 85% oxidized to oxo-histidine in extramitochondrial Ccp1 isolated from 7-d cells, indicating that heme labilization results from oxidation of this ligand. We conclude that Ccp1 responds to respiration-derived H2O2 via a previously unidentified mechanism involving H2O2-activated heme transfer to apoCta1. Subsequently, the catalase activity of Cta1, not CCP activity, contributes to mitochondrial H2O2 detoxification. PMID:25422453

  10. Involvement of endogenous antioxidant systems in the protective activity of pituitary adenylate cyclase-activating polypeptide against hydrogen peroxide-induced oxidative damages in cultured rat astrocytes.

    PubMed

    Douiri, Salma; Bahdoudi, Seyma; Hamdi, Yosra; Cubì, Roger; Basille, Magali; Fournier, Alain; Vaudry, Hubert; Tonon, Marie-Christine; Amri, Mohamed; Vaudry, David; Masmoudi-Kouki, Olfa

    2016-06-01

    Astroglial cells possess an array of cellular defense mechanisms, including superoxide dismutase (SOD) and catalase antioxidant enzymes, to prevent damages caused by oxidative stress. Nevertheless, astroglial cell viability and functionality can be affected by significant oxidative stress. We have previously shown that pituitary adenylate cyclase-activating polypeptide (PACAP) is a potent glioprotective agent that prevents hydrogen peroxide (H2 O2 )-induced apoptosis in cultured astrocytes. The purpose of this study was to investigate the potential protective effect of PACAP against oxidative-generated alteration of astrocytic antioxidant systems. Incubation of cells with subnanomolar concentrations of PACAP inhibited H2 O2 -evoked reactive oxygen species accumulation, mitochondrial respiratory burst, and caspase-3 mRNA level increase. PACAP also stimulated SOD and catalase activities in a concentration-dependent manner, and counteracted the inhibitory effect of H2 O2 on the activity of these two antioxidant enzymes. The protective action of PACAP against H2 O2 -evoked inhibition of antioxidant systems in astrocytes was protein kinase A, PKC, and MAP-kinase dependent. In the presence of H2 O2 , the SOD blocker NaCN and the catalase inhibitor 3-aminotriazole, both suppressed the protective effects of PACAP on SOD and catalase activities, mitochondrial function, and cell survival. Taken together, these results indicate that the anti-apoptotic effect of PACAP on astroglial cells can account for the activation of endogenous antioxidant enzymes and reduction in respiration rate, thus preserving mitochondrial integrity and preventing caspase-3 expression provoked by oxidative stress. Considering its powerful anti-apoptotic and anti-oxidative properties, the PACAPergic signaling system should thus be considered for the development of new therapeutical approaches to cure various pathologies involving oxidative neurodegeneration. We propose the following cascade for the

  11. Antioxidant enzyme activity in endemic Baikalean versus Palaearctic amphipods: tagma- and size-related changes.

    PubMed

    Timofeyev, M A

    2006-03-01

    The activities of key antioxidant enzymes in two endemic Baikalean amphipod species: Pallasea cancelloides (Gerstf), Eulimnogammarus verrucosus (Gerstf) and the widely distributed Palearctic species Gammarus lacustris (Sars) were studied. This work was done to prove or disprove the hypothesis that Baikalean endemics have specifics in antioxidants system different from Palearctic species. The activities of antioxidant enzymes peroxidase, catalase and glutathione-S-transferase were measured in different sections (tagmata) of the amphipods' bodies as well as in different size groups. Well expressed tagma-related differences in peroxidase activity as well as smaller differences in catalase activity were shown in all studied species. There were no measured differences in glutathione-S-transferase activity among body sections. The existence of size-related changes in some antioxidant enzymes and the difference in such changes between Baikalean and Palearctic amphipods were noted. A significant increase in peroxidase activity with the size was found in both Baikalean species while a significant decrease in peroxidase activity was observed in the Palearctic G. lacustris. In Baikalean P. cancelloides, a significant decrease of catalase activity with the increase in age of crustaceans was noted, while in E. verrucosus no such relationship was found. In the Palearctic G. lacustris, a significant increase in catalase activity with the increase in size was noted. All species are shown to have no size-related differences in glutathione-S-transferase activity. The differences between species as well as between both different tagmata and size-classes within a particular species were estimated. It was assumed that the estimated differences in enzymes activity most likely depend on interspecific variation, rather than on conditional specifics in Lake Baikal. PMID:16460977

  12. Activated carbon from biomass

    NASA Astrophysics Data System (ADS)

    Manocha, S.; Manocha, L. M.; Joshi, Parth; Patel, Bhavesh; Dangi, Gaurav; Verma, Narendra

    2013-06-01

    Activated carbon are unique and versatile adsorbents having extended surface area, micro porous structure, universal adsorption effect, high adsorption capacity and high degree of surface reactivity. Activated carbons are synthesized from variety of materials. Most commonly used on a commercial scale are cellulosic based precursors such as peat, coal, lignite wood and coconut shell. Variation occurs in precursors in terms of structure and carbon content. Coir having very low bulk density and porous structure is found to be one of the valuable raw materials for the production of highly porous activated carbon and other important factor is its high carbon content. Exploration of good low cost and non conventional adsorbent may contribute to the sustainability of the environment and offer promising benefits for the commercial purpose in future. Carbonization of biomass was carried out in a horizontal muffle furnace. Both carbonization and activation were performed in inert nitrogen atmosphere in one step to enhance the surface area and to develop interconnecting porosity. The types of biomass as well as the activation conditions determine the properties and the yield of activated carbon. Activated carbon produced from biomass is cost effective as it is easily available as a waste biomass. Activated carbon produced by combination of chemical and physical activation has higher surface area of 2442 m2/gm compared to that produced by physical activation (1365 m2/gm).

  13. Marine Biology Activities. Ocean Related Curriculum Activities.

    ERIC Educational Resources Information Center

    Pauls, John

    The ocean affects all of our lives. Therefore, awareness of and information about the interconnections between humans and oceans are prerequisites to making sound decisions for the future. Project ORCA (Ocean Related Curriculum Activities) has developed interdisciplinary curriculum materials designed to meet the needs of students and teachers…

  14. katGI and katGII encode two different catalases-peroxidases in Mycobacterium fortuitum.

    PubMed

    Menéndez, M C; Ainsa, J A; Martín, C; García, M J

    1997-11-01

    It has been suggested that catalase-peroxidase plays an important role in several aspects of mycobacterial metabolism and is a virulence factor in the main pathogenic mycobacteria. In this investigation, we studied genes encoding for this protein in the fast-growing opportunistic pathogen Mycobacterium fortuitum. Nucleotide sequences of two different catalase-peroxidase genes (katGI and katGII) of M. fortuitum are described. They show only 64% homology at the nucleotide level and 55% identity at the amino acid level, and they are more similar to catalases-peroxidases from different bacteria, including mycobacteria, than to each other. Both proteins were found to be expressed in actively growing M. fortuitum, and both could also be expressed when transformed into Escherichia coli and M. aurum. We detected the presence of a copy of IS6100 in the neighboring region of a katG gene in the M. fortuitum strain in which this element was identified (strain FC1). The influence of each katG gene on isoniazid (isonicotinic acid hydrazide; INH) susceptibility of mycobacteria was checked by using the INH-sensitive M. aurum as the host. Resistance to INH was induced when katGI was transformed into INH-sensitive M. aurum, suggesting that this enzyme contributes to the natural resistance of M. fortuitum to the drug. This is the first report showing two different genes encoding same enzyme activity which are actively expressed within the same mycobacterial strain. PMID:9371430

  15. Purification and characterization of recombinant catalase-peroxidase, which confers isoniazid sensitivity in Mycobacterium tuberculosis.

    PubMed

    Nagy, J M; Cass, A E; Brown, K A

    1997-12-12

    The Mycobacterium tuberculosis katG gene encodes a dual-function enzyme called catalase-peroxidase, which confers sensitivity in M. tuberculosis to isonicotinic acid hydrazide. We have constructed a system for the high level expression of a recombinant form of this enzyme by amplifying the katG gene from the pYZ56 construct (1) and subcloning into a vector suitable for expression in Escherichia coli. The resulting plasmid, pTBCP, produced the catalase-peroxidase in large quantities, corresponding to 30% of total cell protein. The enzyme has been purified to homogeneity and appears to be a dimer in the native form. Using either hydrogen peroxide or t-butyl hydroperoxide and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) as substrates, kcat and Km values have been obtained for both catalatic and peroxidatic activities, respectively. The availability of significant quantities of an active, folded, recombinant form of M. tuberculosis catalase-peroxidase should thus facilitate future studies of its role in drug activation and antibiotic resistance. PMID:9395452

  16. Aspergillus nidulans catalase-peroxidase gene (cpeA) is transcriptionally induced during sexual development through the transcription factor StuA.

    PubMed

    Scherer, Mario; Wei, Huijun; Liese, Ralf; Fischer, Reinhard

    2002-10-01

    Catalases, peroxidases, and catalase-peroxidases are important enzymes to cope with reactive oxygen species in pro- and eukaryotic cells. In the filamentous fungus Aspergillus nidulans three monofunctional catalases have been described, and a fourth catalase activity was observed in native polyacrylamide gels. The latter activity is probably due to the bifunctional enzyme catalase-peroxidase, which we characterized here. The gene, named cpeA, encodes an 81-kDa polypeptide with a conserved motif for heme coordination. The enzyme comprises of two similar domains, suggesting gene duplication and fusion during evolution. The first 439 amino acids share 22% identical residues with the C terminus. Homologous proteins are found in several prokaryotes, such as Escherichia coli and Mycobacterium tuberculosis (both with 61% identity). In fungi the enzyme has been noted in Penicillium simplicissimum, Septoria tritici, and Neurospora crassa (69% identical amino acids) but is absent from Saccharomyces cerevisiae. Expression analysis in A. nidulans revealed that the gene is transcriptionally induced upon carbon starvation and during sexual development, but starvation is not sufficient to reach high levels of the transcript during development. Besides transcriptional activation, we present evidence for posttranscriptional regulation. A green fluorescent protein fusion protein localized to the cytoplasm of Hülle cells. The Hülle cell-specific expression was dependent on the developmental regulator StuA, suggesting an activating function of this helix-loop-helix transcription factor. PMID:12455692

  17. Patterns in Active Nematics

    NASA Astrophysics Data System (ADS)

    Yeomans, Julia M.

    Active systems, from bacterial suspensions to cellular monolayers, are continuously driven out of equilibrium by local injection of energy from their constituent elements and exhibit turbulent-like, chaotic patterns. We describe how active systems can be stabilised by tuning a physical feature of the system, friction. We demonstrate how the crossover between wet active systems, whose behaviour is dominated by hydrodynamics, and dry active matter where any flow is screened, can be achieved by using friction as a control parameter and demonstrate vortex ordering at the wet-dry crossover. We show that the self organisation of vortices into lattices is accompanied by the spatial ordering of topological defects leading to active crystal-like structures. The emergence of vortex lattices which leads to the positional ordering of topological defects may be a useful step towards the design and control of active materials.

  18. The use of glucose oxidase and catalase for the enzymatic reduction of the potential ethanol content in wine.

    PubMed

    Röcker, Jessica; Schmitt, Matthias; Pasch, Ludwig; Ebert, Kristin; Grossmann, Manfred

    2016-11-01

    Due to the increase of sugar levels in wine grapes as one of the impacts of climate change, alcohol reduction in wines becomes a major focus of interest. This study combines the use of glucose oxidase and catalase activities with the aim of rapid conversion of glucose into non-fermentable gluconic acid. The H2O2 hydrolysing activity of purified catalase is necessary in order to stabilize glucose oxidase activity. After establishing the adequate enzyme ratio, the procedure was applied in large-scale trials (16L- and 220L-scale) of which one was conducted in a winery under industrial wine making conditions. Both enzyme activity and wine flavour were clearly influenced by the obligatory aeration in the different trials. With the enzyme treatment an alcohol reduction of 2%vol. was achieved after 30h of aeration. However the enzyme treated wines were significantly more acidic and less typical. PMID:27211694

  19. Toward "stable-on-the-table" enzymes: improving key properties of catalase by covalent conjugation with poly(acrylic acid).

    PubMed

    Riccardi, Caterina M; Cole, Kyle S; Benson, Kyle R; Ward, Jessamyn R; Bassett, Kayla M; Zhang, Yiren; Zore, Omkar V; Stromer, Bobbi; Kasi, Rajeswari M; Kumar, Challa V

    2014-08-20

    Several key properties of catalase such as thermal stability, resistance to protease degradation, and resistance to ascorbate inhibition were improved, while retaining its structure and activity, by conjugation to poly(acrylic acid) (PAA, Mw 8000) via carbodiimide chemistry where the amine groups on the protein are appended to the carboxyl groups of the polymer. Catalase conjugation was examined at three different pH values (pH 5.0, 6.0, and 7.0) and at three distinct mole ratios (1:100, 1:500, and 1:1000) of catalase to PAA at each reaction pH. The corresponding products are labeled as Cat-PAA(x)-y, where x is the protein to polymer mole ratio and y is the pH used for the synthesis. The coupling reaction consumed about 60-70% of the primary amines on the catalase; all samples were completely water-soluble and formed nanogels, as evidenced by gel electrophoresis and electron microscopy. The UV circular dichroism (CD) spectra indicated substantial retention of protein secondary structure for all samples, which increased to 100% with increasing pH of the synthesis and polymer mole fraction. Soret CD bands of all samples indicated loss of ∼50% of band intensities, independent of the reaction pH. Catalytic activities of the conjugates increased with increasing synthesis pH, where 55-80% and 90-100% activity was retained for all samples synthesized at pH 5.0 and pH 7.0, respectively, and the Km or Vmax values of Cat-PAA(100)-7 did not differ significantly from those of the free enzyme. All conjugates synthesized at pH 7.0 were thermally stable even when heated to ∼85-90 °C, while native catalase denatured between 55 and 65 °C. All conjugates retained 40-90% of their original activities even after storing for 10 weeks at 8 °C, while unmodified catalase lost all of its activity within 2 weeks, under similar storage conditions. Interestingly, PAA surrounding catalase limited access to the enzyme from large molecules like proteases and significantly increased

  20. Catalase and glutathione peroxidase mimics

    PubMed Central

    Day, Brian J.

    2009-01-01

    Overproduction of the reactive oxygen species (ROS) superoxide (O2−) and hydrogen peroxide (H2O2) are increasingly implicated in human disease and aging. ROS are also being explored as important modulating agents in a number of cell signaling pathways. Earlier work has focused on development of small catalytic scavengers of O2−, commonly referred to as superoxide dismutase (SOD) mimetics. Many of these compounds also have substantial abilities to catalytically scavenge H2O2 and peroxynitrite (ONOO−). Peroxides have been increasingly shown to disrupt cell signaling cascades associated with excessive inflammation associated with a wide variety of human diseases. Early studies with enzymatic scavengers like SOD frequently reported little or no beneficial effect in biologic models unless SOD was combined with catalase or a peroxidase. Increasing attention has been devoted to developing catalase or peroxidase mimetics as a way to treat overt inflammation associated with the pathophysiology of many human disorders. This review will focus on recent development of catalytic scavengers of peroxides and their potential use as therapeutic agents for pulmonary, cardiovascular, neurodegenerative and inflammatory disorders. PMID:18948086

  1. Thermally Activated Driver

    NASA Technical Reports Server (NTRS)

    Kinard, William H.; Murray, Robert C.; Walsh, Robert F.

    1987-01-01

    Space-qualified, precise, large-force, thermally activated driver (TAD) developed for use in space on astro-physics experiment to measure abundance of rare actinide-group elements in cosmic rays. Actinide cosmic rays detected using thermally activated driver as heart of event-thermometer (ET) system. Thermal expansion and contraction of silicone oil activates driver. Potential applications in fluid-control systems where precise valve controls are needed.

  2. Activity in distant comets

    NASA Technical Reports Server (NTRS)

    Luu, Jane X.

    1992-01-01

    Activity in distant comets remains a mystery in the sense that we still have no complete theory to explain the various types of activity exhibited by different comets at large distances. This paper explores the factors that should play a role in determining activity in a distant comet, especially in the cases of comet P/Tempel 2, comet Schwassmann-Wachmann 1, and 2060 Chiron.

  3. Activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, C.W.; Mangel, W.F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described. 29 figs.

  4. Activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, Carl W.; Mangel, Walter F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  5. Physical Activity and Cancer

    MedlinePlus

    ... of scientists, ranging from experts in basic biological science to those with expertise in community behavioral interventions to increase physical activity. This combination of scientists and expertise will ...

  6. NASA metrication activities

    NASA Technical Reports Server (NTRS)

    Vlannes, P. N.

    1978-01-01

    NASA's organization and policy for metrification, history from 1964, NASA participation in Federal agency activities, interaction with nongovernmental metrication organizations, and the proposed metrication assessment study are reviewed.

  7. Active material based active sealing technology: Part 1. Active seal requirements vs. active material actuator properties

    NASA Astrophysics Data System (ADS)

    Henry, Christopher P.; Carter, William; Herrera, Guillermo A.; McKnight, Geoffrey P.; Browne, Alan L.; Johnson, Nancy L.; Bazzi, Imad F.

    2010-04-01

    Current seals used for vehicle closures/swing panels are essentially flexible, frequently hollow structures whose designs are constrained by numerous requirements, many of them competing, including door closing effort (both air bind and seal compression), sound isolation, prevention of water leaks, and accommodation of variations in vehicle build. This paper documents the first portion of a collaborative research study/exploration of the feasibility of and approaches for using active materials with shape and stiffness changing attributes to produce active seal technologies, seals with improved performance. An important design advantage of an active material approach compared to previous active seal technologies is the distribution of active material regions throughout the seal length, which would enable continued active function even with localized failure. Included as a major focus of this study was the assessment of polymeric active materials because of their potential ease of integration into the current seal manufacturing process. In Part 1 of this study, which is documented in this paper, potential materials were evaluated in terms of their cost, activation mechanisms, and mechanical and actuation properties. Based on these properties, simple designs were proposed and utilized to help determine which materials are best suited for active seals. Shape memory alloys (SMA) and electroactive polymers (EAP) were judged to be the most promising.

  8. Active Flow Control Activities at NASA Langley

    NASA Technical Reports Server (NTRS)

    Anders, Scott G.; Sellers, William L., III; Washburn, Anthony E.

    2004-01-01

    NASA Langley continues to aggressively investigate the potential advantages of active flow control over more traditional aerodynamic techniques. This paper provides an update to a previous paper and describes both the progress in the various research areas and the significant changes in the NASA research programs. The goals of the topics presented are focused on advancing the state of knowledge and understanding of controllable fundamental mechanisms in fluids as well as to address engineering challenges. An organizational view of current research activities at NASA Langley in active flow control as supported by several projects is presented. On-center research as well as NASA Langley funded contracts and grants are discussed at a relatively high level. The products of this research are to be demonstrated either in bench-top experiments, wind-tunnel investigations, or in flight as part of the fundamental NASA R&D program and then transferred to more applied research programs within NASA, DOD, and U.S. industry.

  9. Activating Event Knowledge

    ERIC Educational Resources Information Center

    Hare, Mary; Jones, Michael; Thomson, Caroline; Kelly, Sarah; McRae, Ken

    2009-01-01

    An increasing number of results in sentence and discourse processing demonstrate that comprehension relies on rich pragmatic knowledge about real-world events, and that incoming words incrementally activate such knowledge. If so, then even outside of any larger context, nouns should activate knowledge of the generalized events that they denote or…

  10. Endonuclease activity in lipocalins.

    PubMed Central

    Yusifov, T N; Abduragimov, A R; Gasymov, O K; Glasgow, B J

    2000-01-01

    Several lipocalins contain conserved amino acid sequences similar to the phosphodiester bond cleavage domain of sugar non-specific magnesium-dependent nucleases of the Serratia marcescens type. His-89 and Glu-127 of the S. marcescens endonuclease are believed to have a role in the active catalytic site by the attack of a water molecule at the phosphorus atom of the bridging phosphate. Tear lipocalin contains both amino acids in analogous regions, and is active as a nuclease. Two forms of beta-lactoglobulin contain only Glu-134 (analogous to Glu-127 of the Serratia nuclease) yet retain nuclease activity equal to or greater than that of tear lipocalin. However, retinol-binding protein lacks both of these motifs and shows no detectable activity. DNA-nicking activity is decreased by 80% in the mutant of tear lipocalin that replaces Glu-128 but is unchanged by mutations of His-84. The endonuclease activity of tear lipocalin is dependent on the bivalent cations Mg(2+) or Mn(2+) but is decreased at high concentrations of NaCl. These findings indicate that some lipocalins have non-specific endonuclease activity similar in characteristics to the Mg(2+)-dependent nucleases and related to the conserved sequence LEDFXR (where 'X' denotes 'any other residue'), in which the glutamic residue seems to be important for activity. PMID:10769187

  11. Endonuclease activity in lipocalins.

    PubMed

    Yusifov, T N; Abduragimov, A R; Gasymov, O K; Glasgow, B J

    2000-05-01

    Several lipocalins contain conserved amino acid sequences similar to the phosphodiester bond cleavage domain of sugar non-specific magnesium-dependent nucleases of the Serratia marcescens type. His-89 and Glu-127 of the S. marcescens endonuclease are believed to have a role in the active catalytic site by the attack of a water molecule at the phosphorus atom of the bridging phosphate. Tear lipocalin contains both amino acids in analogous regions, and is active as a nuclease. Two forms of beta-lactoglobulin contain only Glu-134 (analogous to Glu-127 of the Serratia nuclease) yet retain nuclease activity equal to or greater than that of tear lipocalin. However, retinol-binding protein lacks both of these motifs and shows no detectable activity. DNA-nicking activity is decreased by 80% in the mutant of tear lipocalin that replaces Glu-128 but is unchanged by mutations of His-84. The endonuclease activity of tear lipocalin is dependent on the bivalent cations Mg(2+) or Mn(2+) but is decreased at high concentrations of NaCl. These findings indicate that some lipocalins have non-specific endonuclease activity similar in characteristics to the Mg(2+)-dependent nucleases and related to the conserved sequence LEDFXR (where 'X' denotes 'any other residue'), in which the glutamic residue seems to be important for activity. PMID:10769187

  12. Activity Book: Ocean Ecology.

    ERIC Educational Resources Information Center

    Learning, 1992

    1992-01-01

    Presents a collection of activities to help elementary students study ocean ecology. The activities have students investigate ocean inhabitants, analyze animal adaptations, examine how temperature and saltiness affect ocean creatures, and learn about safeguarding the sea. Student pages offer reproducible learning sheets. (SM)

  13. Activity Book. Celebrating Diversity.

    ERIC Educational Resources Information Center

    Angell, Pat; And Others

    1993-01-01

    This activity book presents elementary level multicultural books designed to foster self-esteem, understanding, and critical reading skills. It includes a resource list and general discussion boosters for analyzing characters and setting, class activities related to the books, and a student page on character study. (SM)

  14. Active Students in Webinars

    ERIC Educational Resources Information Center

    Kolås, Line; Nordseth, Hugo; Yri, Jørgen Sørlie

    2015-01-01

    To ensure student activity in webinars we have defined 10 learning tasks focusing on production and communication e.g. collaborative writing, discussion and polling, and investigated how the technology supports the learning activities. The three project partners in the VisPed-project use different video-conferencing systems, and we analyzed how it…

  15. PM ACTIVITY PATTERN RESEARCH

    EPA Science Inventory

    Human activity/uptake rate data are necessary to estimate potential human exposure and intake dose to environmental pollutants and to refine human exposure models. Personal exposure monitoring studies have demonstrated the critical role that activities play in explaining and pre...

  16. Activation of fly ash

    DOEpatents

    Corbin, David R.; Velenyi, Louis J.; Pepera, Marc A.; Dolhyj, Serge R.

    1986-01-01

    Fly ash is activated by heating a screened magnetic fraction of the ash in a steam atmosphere and then reducing, oxidizing and again reducing the hydrothermally treated fraction. The activated fly ash can be used as a carbon monoxide disproportionating catalyst useful in the production of hydrogen and methane.

  17. Laboratory Activities in Israel

    ERIC Educational Resources Information Center

    Mamlok-Naaman, Rachel; Barnea, Nitza

    2012-01-01

    Laboratory activities have long had a distinctive and central role in the science curriculum, and science educators have suggested that many benefits accrue from engaging students in science laboratory activities. Many research studies have been conducted to investigate the educational effectiveness of laboratory work in science education in…

  18. Active Healthy Summer

    ERIC Educational Resources Information Center

    Elliott, Eloise

    2005-01-01

    Summer break is almost here for most elementary teachers and students. Warmer weather and additional free time to make choices create more opportunities to be physically active, whether home alone or out with friends and family. This article describes ways by which physical education specialists can encourage students' physical activity by…

  19. Ecological Structure Activity Relationships

    EPA Science Inventory

    Ecological Structure Activity Relationships, v1.00a, February 2009
    ECOSAR (Ecological Structure Activity Relationships) is a personal computer software program that is used to estimate the toxicity of chemicals used in industry and discharged into water. The program predicts...

  20. The Activity of Trypsin

    ERIC Educational Resources Information Center

    Russo, Salvatore F.; Holzman, Tom

    1977-01-01

    Describes an experiment that illustrates the following points concerning the experimental determination of trypsin activity: (1) there is a difference in basing enzyme concentration on weight, absorbance, or active sites; and (2) the method of expressing enzyme concentration determines the value of specific, molecular, and catalytic center…

  1. Obesity, Physical Activity - Children.

    ERIC Educational Resources Information Center

    Gilliam, Thomas B.

    Childhood obesity starts at a very early age, and preventive measures taken early enough may retard the development of fat cells. It appears that physical activity plays an important role in reducing obesity. The activity program must start early, in preschool days. It is felt that screening children for obesity when they first enter school and…

  2. Warm-Up Activities.

    ERIC Educational Resources Information Center

    Mingguang, Yang

    1999-01-01

    Discusses how warm-up activities can help to make the English-as-a-foreign-language classroom a lively and interesting place. Warm-up activities are games carried out at the beginning of each class to motivate students to make good use of class time. (Author/VWL)

  3. Directory of Development Activities.

    ERIC Educational Resources Information Center

    Control Data Corp., Minneapolis, Minn.

    Assembled in a loose leaf notebook, this collection of independent on-the-job activities is designed to facilitate employee development and intended to help improve an organization's performance appraisal system. The on-the-job development activities described derive from job descriptions, performance appraisal forms, and discussions with job…

  4. Active and Healthy Schools

    ERIC Educational Resources Information Center

    Ball, Stephen; Kovarik, Jessica; Leidy, Heather

    2015-01-01

    The Active and Healthy School Program (AHS) can be used to alter the culture and environment of a school to help children make healthier choices. The purpose of this study was to determine the effectiveness of AHS to increase physical activity while decreasing total screen time, increase healthy food choices, and improve knowledge about physical…

  5. Chemical Activities. Teacher Edition.

    ERIC Educational Resources Information Center

    Borgford, Christie L.; Summerlin, Lee R.

    This sourcebook for chemical activities is designed to be used as a student laboratory book for both junior and senior high school students. The student's role as a knowledgeable consumer and informed citizen is stressed. Each activity includes a list of needed materials, procedures, reactions, questions, and notes for the teacher which include…

  6. Rainy Day Activities.

    ERIC Educational Resources Information Center

    Texas Child Care, 1997

    1997-01-01

    Experienced caregivers plan ahead for rainy days. This article describes specific rainy day activities for young children, such as books and crafts to learn about rain (rain in a jar, making a rainbow), simple cooking activities (taffy pull, cinnamon candy tea), and games (mummy wrap, hunt the thimble, rain lotto). (EV)

  7. Reflections on Activity Theory

    ERIC Educational Resources Information Center

    Bakhurst, David

    2009-01-01

    It is sometimes suggested that activity theory represents the most important legacy of Soviet philosophy and psychology. But what exactly "is" activity theory? The canonical account in the West is given by Engestrom, who identifies three stages in the theory's development: from Vygotsky's insights, through Leontiev's articulation of the…

  8. Emotionally Intense Science Activities

    ERIC Educational Resources Information Center

    King, Donna; Ritchie, Stephen; Sandhu, Maryam; Henderson, Senka

    2015-01-01

    Science activities that evoke positive emotional responses make a difference to students' emotional experience of science. In this study, we explored 8th Grade students' discrete emotions expressed during science activities in a unit on Energy. Multiple data sources including classroom videos, interviews and emotion diaries completed at the end of…

  9. Activities: More Calculator Capers.

    ERIC Educational Resources Information Center

    Schmalz, Rosemary

    1983-01-01

    Provided is an activity designed to give grades 7-12 students opportunities to discover numerical patterns and to derive general conclusions from observing data. The activity focuses attention on patterns in products such as 33x34, 333x334, and 3333x3334. Three worksheets and answers are included. (JN)

  10. Vegetable Soup Activities.

    ERIC Educational Resources Information Center

    Shepard, Mary; Shepard, Ray

    Vegetable Soup is a new children's television series whose purpose is to counter the negative and destructive effects of racial isolation. This manual gives detailed instructions for discussion of activities that are presented during the television series such as: crafts, games, recipes, language activities, and children's questions. A list of…

  11. ZOOMsci Activity Guide.

    ERIC Educational Resources Information Center

    Wade, Meredith

    This activity guide is based on the Public Broadcasting System's (PBS) program "ZOOM." It is designed for educators with activities that are categorized into three themes: (1) Things That Go, which includes "Air" which explores air pressure, "Rubber Bands" which discovers the potential energy of rubber bands, "Baking Soda and Vinegar" which…

  12. Science World Activities Book.

    ERIC Educational Resources Information Center

    Wisconsin Academy of Sciences, Arts and Letters, Madison.

    This document consists of three sections. Section I contains 19 activities developed by master teachers for the Science World '84 summer science program. These activities focus on studies involving airplane controls, trash bag kites, computers, meteorology, compass orienteering, soils, aquatic ecosystems, bogs, and others. Objectives, materials…

  13. HUMAN EXPOSURE ACTIVITY PATTERNS

    EPA Science Inventory

    Human activity/uptake rate data are necessary to estimate potential human exposure and intake dose to environmental pollutants and to refine human exposure models. Personal exposure monitoring studies have demonstrated the critical role that activities play in explaining and pre...

  14. Coordinating Shared Activities

    NASA Technical Reports Server (NTRS)

    Clement, Bradley

    2004-01-01

    Shared Activity Coordination (ShAC) is a computer program for planning and scheduling the activities of an autonomous team of interacting spacecraft and exploratory robots. ShAC could also be adapted to such terrestrial uses as helping multiple factory managers work toward competing goals while sharing such common resources as floor space, raw materials, and transports. ShAC iteratively invokes the Continuous Activity Scheduling Planning Execution and Replanning (CASPER) program to replan and propagate changes to other planning programs in an effort to resolve conflicts. A domain-expert specifies which activities and parameters thereof are shared and reports the expected conditions and effects of these activities on the environment. By specifying these conditions and effects differently for each planning program, the domain-expert subprogram defines roles that each spacecraft plays in a coordinated activity. The domain-expert subprogram also specifies which planning program has scheduling control over each shared activity. ShAC enables sharing of information, consensus over the scheduling of collaborative activities, and distributed conflict resolution. As the other planning programs incorporate new goals and alter their schedules in the changing environment, ShAC continually coordinates to respond to unexpected events.

  15. Elementary Environmental Activities.

    ERIC Educational Resources Information Center

    Larson, Robert J.

    This guide presents suggestions for field trips, out-of-doors activities, material for centers, and individualized activities in the teaching of elementary school science and particularly environmental education at the elementary level. The guide includes a section on preparation and procedures for conducting field trips, including sample…

  16. Ten Minute Writing Activities.

    ERIC Educational Resources Information Center

    Markus, Sharyn

    Designed with junior high school students in mind, the activities in this booklet are offered as ways to stimulate interest in writing using as little as ten minutes of class time. The activities are arranged in six sections: (1) developing observation skills and paying attention to details; (2) word play, descriptive words, and word collections…

  17. Activation of fly ash

    DOEpatents

    Corbin, D.R.; Velenyi, L.J.; Pepera, M.A.; Dolhyj, S.R.

    1986-08-19

    Fly ash is activated by heating a screened magnetic fraction of the ash in a steam atmosphere and then reducing, oxidizing and again reducing the hydrothermally treated fraction. The activated fly ash can be used as a carbon monoxide disproportionating catalyst useful in the production of hydrogen and methane.

  18. Peak Longevity Physical Activity

    Cancer.gov

    People who engage in three to five times the recommended minimum level of leisure-time physical activity derive the greatest benefit in terms of mortality reduction when compared with people who do not engage in leisure-time physical activity.

  19. Student Activities. Managing Liability.

    ERIC Educational Resources Information Center

    Bennett, Barbara; And Others

    This monograph suggests ways that college or university administrations can undertake a systematic and careful review of the risks posed by students' activities. Its purpose is to provide guidance in integrating the risk management process into a school's existing approaches to managing student organizations and activities. It is noted that no…

  20. Curriculum Activities on Aging.

    ERIC Educational Resources Information Center

    Schmall, Vicki L.; Benge, Nancy

    This paper contains learning activities on aging for use with elementary, high school, and university students in health, family relationships, social studies, and art courses. The activities are intended to help youth develop a more realistic understanding of the aging process and to become aware of both the problems and benefits associated with…

  1. Aging and Semantic Activation.

    ERIC Educational Resources Information Center

    Howard, Darlene V.

    Three studies tested the theory that long term memory consists of a semantically organized network of concept nodes interconnected by leveled associations or relations, and that when a stimulus is processed, the corresponding concept node is assumed to be temporarily activated and this activation spreads to nearby semantically related nodes. In…

  2. [Field Learning Activities].

    ERIC Educational Resources Information Center

    Nolde Forest Environmental Education Center, Reading, PA.

    Seventy field activities, pertinent to outdoor, environmental studies, are described in this compilation. Designed for elementary and junior high school students, the activities cover many discipline areas--science, social studies, language arts, health, history, mathematics, and art--and many are multidisciplinary in use. Topics range from soil…

  3. Active galactic nuclei

    PubMed Central

    Fabian, Andrew C.

    1999-01-01

    Active galactic nuclei are the most powerful, long-lived objects in the Universe. Recent data confirm the theoretical idea that the power source is accretion into a massive black hole. The common occurrence of obscuration and outflows probably means that the contribution of active galactic nuclei to the power density of the Universe has been generally underestimated. PMID:10220363

  4. Activity in F stars

    NASA Technical Reports Server (NTRS)

    Wolff, Sidney C.; Boesgaard, Ann Merchant; Simon, Theodore

    1986-01-01

    Measurements of He I 5876 A and IUE measurements of chromospheric and transition region lines in a large sample of F-type stars are presented. The data show that activity is detectable in nearly all early F-type stars and differs in several of its characteristics from that typically seen in cooler stars with slow rotation and fully developed convective zones. The onset of activity occurs near B-V = 0.28, which corresponds approximately to spectral type F0 and T(eff) = 7300 K. There is no correlation between the level of activity and the abundances of lithium and beryllium in F stars hotter than T(eff) = 6600 K. All but one of the stars in the 6600-7300 K temperature interval are active. The levels of activity in these stars are independent of Rossby number.

  5. Enzyme activities associated with oxidative stress in Metarhizium anisopliae during germination, mycelial growth, and conidiation and in response to near-UV irradiation.

    PubMed

    Miller, Charles D; Rangel, Drauzio; Braga, Gilberto U L; Flint, Stephan; Kwon, Sun-Il; Messias, Claudio L; Roberts, Donald W; Anderson, Anne J

    2004-01-01

    Metarhizium anisopliae isolates have a wide insect host range, but an impediment to their commercial use as a biocontrol agent of above-ground insects is the high susceptibility of spores to the near-UV present in solar irradiation. To understand stress responses in M. anisopliae, we initiated studies of enzymes that protect against oxidative stress in two strains selected because their spores differed in sensitivity to UV-B. Spores of the more near-UV resistant strain in M. anisopliae 324 displayed different isozyme profiles for catalase-peroxidase, glutathione reductase, and superoxide dismutase when compared with the less resistant strain 2575. A transient loss in activity of catalase-peroxidase and glutathione reductase was observed during germination of the spores, whereas the intensity of isozymes displaying superoxide dismutase did not change as the mycelium developed. Isozyme composition for catalase-peroxidases and glutathione reductase in germlings changed with growth phase. UV-B exposure from lamps reduced the activity of isozymes displaying catalase-peroxidase and glutathione reductase activities in 2575 more than in 324. The major effect of solar UV-A plus UV-B also was a reduction in catalase-peroxidases isozyme level, a finding confirmed by measurement of catalase specific activity. Impaired growth of M. anisopliae after near-UV exposure may be related to reduced abilities to handle oxidative stress. PMID:15052320

  6. Determinants of Physical Activity in Active and Low-Active, Sixth Grade African-American Youth.

    ERIC Educational Resources Information Center

    Trost, Stewart G.; Pate, Russell R.; Ward, Dianne S.; Saunders, Ruth; Riner, William

    1999-01-01

    Compared determinants of physical activity in active and low-active African-American sixth graders, surveying students and making objective assessments of physical activity over seven days. Results indicated that physical activity self-efficacy, beliefs about physical activity outcomes, involvement in community-based physical activity, perception…

  7. Spectroscopy, calorimetry and molecular simulation studies on the interaction of catalase with copper ion.

    PubMed

    Hao, Fang; Jing, Mingyang; Zhao, Xingchen; Liu, Rutao

    2015-02-01

    In this research, the binding mechanism of Cu(2+) to bovine liver catalase (BLC) was studied by fluorescence spectroscopy, ultraviolet-visible (UV-vis) absorption spectroscopy, circular dichroism (CD) spectroscopy, isothermal titration calorimetry (ITC) and molecular docking methods. The cellar experiment was firstly carried out to investigate the inhibition effect of catalase. During the fluorescence quenching study, after correcting the inner filter effect (IFE), the fluorescence of BLC was found to be quenched by Cu(2+). The quenching mechanism was determined by fluorescence lifetime measurement, and was confirmed to be the dynamic mode. The secondary structure content of BLC was changed by the addition of Cu(2+), as revealed by UV-vis absorption and CD spectra, which further induces the decrease in BLC activity. Molecular simulation study indicates that Cu(2+) is located between two β-sheets and two random coils of BLC near to the heme group, and interacts with His 74 and Ser 113 residues near a hydrophilic area. The decrease of α-helix and the binding of His 74 are considered to be the major reason for the inhibition of BLC activity caused by Cu(2+). The ITC results indicate that the binding stoichiometry of Cu(2+) to catalase is 11.4. Moreover, the binding of Cu(2+) to BLC destroyed H-bonds, which was confirmed by the CD result. PMID:25618814

  8. Active optical zoom system

    DOEpatents

    Wick, David V.

    2005-12-20

    An active optical zoom system changes the magnification (or effective focal length) of an optical imaging system by utilizing two or more active optics in a conventional optical system. The system can create relatively large changes in system magnification with very small changes in the focal lengths of individual active elements by leveraging the optical power of the conventional optical elements (e.g., passive lenses and mirrors) surrounding the active optics. The active optics serve primarily as variable focal-length lenses or mirrors, although adding other aberrations enables increased utility. The active optics can either be LC SLMs, used in a transmissive optical zoom system, or DMs, used in a reflective optical zoom system. By appropriately designing the optical system, the variable focal-length lenses or mirrors can provide the flexibility necessary to change the overall system focal length (i.e., effective focal length), and therefore magnification, that is normally accomplished with mechanical motion in conventional zoom lenses. The active optics can provide additional flexibility by allowing magnification to occur anywhere within the FOV of the system, not just on-axis as in a conventional system.

  9. Physical activity and cancer.

    PubMed

    Shephard, R J

    1990-12-01

    Evidence that physical activity may protect against various forms of cancer is examined in relation to occupational demands, leisure activities and participation in sport while at university. The variety of forms of neoplasm and equally varied physical activity histories militate against finding any simple relationship between the risk of malignancy and the individual's physical activity history. Nevertheless, five of seven major occupational studies suggest that a physically active occupation offers some protection against colon cancer, and an application of Bradford Hill's criteria generally supports the causal nature of the relationship between physical inactivity and an increased risk of intestinal neoplasia. However, existing reports are by no means conclusive; there thus remains a need for well-designed epidemiological studies of this issue. Data from one laboratory also suggest that in women a history of active leisure is associated with a reduced prevalence of breast and reproductive system cancers. Physical activity potentially encourages a healthy lifestyle, and it could have more direct effects on certain forms of carcinogenesis (for instance, by a speeding of gastro-intestinal transit, or a moderation of sex hormone levels). However, there are also potential negative effects from some types of exercise, particularly an excessive exposure to ultra-violet light in certain water sports. Since moderate exercise elevates mood and helps to conserve lean tissue, it may finally be a helpful component of treatment after a neoplasm has been diagnosed. PMID:2286478

  10. Active touch sensing

    PubMed Central

    Prescott, Tony J.; Diamond, Mathew E.; Wing, Alan M.

    2011-01-01

    Active sensing systems are purposive and information-seeking sensory systems. Active sensing usually entails sensor movement, but more fundamentally, it involves control of the sensor apparatus, in whatever manner best suits the task, so as to maximize information gain. In animals, active sensing is perhaps most evident in the modality of touch. In this theme issue, we look at active touch across a broad range of species from insects, terrestrial and marine mammals, through to humans. In addition to analysing natural touch, we also consider how engineering is beginning to exploit physical analogues of these biological systems so as to endow robots with rich tactile sensing capabilities. The different contributions show not only the varieties of active touch—antennae, whiskers and fingertips—but also their commonalities. They explore how active touch sensing has evolved in different animal lineages, how it serves to provide rapid and reliable cues for controlling ongoing behaviour, and even how it can disintegrate when our brains begin to fail. They demonstrate that research on active touch offers a means both to understand this essential and primary sensory modality, and to investigate how animals, including man, combine movement with sensing so as to make sense of, and act effectively in, the world. PMID:21969680

  11. Measuring Physical Activity Environments

    PubMed Central

    Sallis, James F.

    2010-01-01

    Physical activity is usually done in specific types of places, referred to as physical activity environments. These often include parks, trails, fitness centers, schools, and streets. In recent years, scientific interest has increased notably in measuring physical activity environments. The present paper provides an historical overview of the contributions of the health, planning, and leisure studies fields to the development of contemporary measures. The emphasis is on attributes of the built environment that can be affected by policies to contribute to the promotion of physical activity. Researchers from health fields assessed a wide variety of built environment variables expected to be related to recreational physical activity. Settings of interest were schools, workplaces, and recreation facilities, and most early measures used direct observation methods with demonstrated inter-observer reliability. Investigators from the city planning field evaluated aspects of community design expected to be related to people’s ability to walk from homes to destinations. GIS was used to assess walkability defined by the 3Ds of residential density, land-use diversity, and pedestrian-oriented designs. Evaluating measures for reliability or validity was rarely done in the planning-related fields. Researchers in the leisure studies and recreation fields studied mainly people’s use of leisure time rather than physical characteristics of parks and other recreation facilities. Although few measures of physical activity environments were developed, measures of aesthetic qualities are available. Each of these fields made unique contributions to the contemporary methods used to assess physical activity environments. PMID:19285214

  12. Emotionally Intense Science Activities

    NASA Astrophysics Data System (ADS)

    King, Donna; Ritchie, Stephen; Sandhu, Maryam; Henderson, Senka

    2015-08-01

    Science activities that evoke positive emotional responses make a difference to students' emotional experience of science. In this study, we explored 8th Grade students' discrete emotions expressed during science activities in a unit on Energy. Multiple data sources including classroom videos, interviews and emotion diaries completed at the end of each lesson were analysed to identify individual student's emotions. Results from two representative students are presented as case studies. Using a theoretical perspective drawn from theories of emotions founded in sociology, two assertions emerged. First, during the demonstration activity, students experienced the emotions of wonder and surprise; second, during a laboratory activity, students experienced the intense positive emotions of happiness/joy. Characteristics of these activities that contributed to students' positive experiences are highlighted. The study found that choosing activities that evoked strong positive emotional experiences, focused students' attention on the phenomenon they were learning, and the activities were recalled positively. Furthermore, such positive experiences may contribute to students' interest and engagement in science and longer term memorability. Finally, implications for science teachers and pre-service teacher education are suggested.

  13. THE ACTIVE CENTAURS

    SciTech Connect

    Jewitt, David

    2009-05-15

    The Centaurs are recent escapees from the Kuiper Belt that are destined either to meet fiery oblivion in the hot inner regions of the solar system or to be ejected to the interstellar medium by gravitational scattering from the giant planets. Dynamically evolved Centaurs, when captured by Jupiter and close enough to the Sun for near-surface water ice to sublimate, are conventionally labeled as 'short-period' (specifically, Jupiter-family) comets. Remarkably, some Centaurs show comet-like activity even when far beyond the orbit of Jupiter, suggesting mass loss driven by a process other than the sublimation of water ice. We observed a sample of 23 Centaurs and found nine to be active, with mass-loss rates measured from several kg s{sup -1} to several tonnes s{sup -1}. Considered as a group, we find that the 'active Centaurs' in our sample have perihelia smaller than the inactive Centaurs (median 5.9 AU versus 8.7 AU), and smaller than the median perihelion distance computed for all known Centaurs (12.4 AU). This suggests that their activity is thermally driven. We consider several possibilities for the origin of the mass loss from the active Centaurs. Most are too cold for activity at the observed levels to originate via the sublimation of crystalline water ice. Solid carbon monoxide and carbon dioxide have the opposite problem: they are so volatile that they should drive activity in Centaurs at much larger distances than observed. We consider the possibility that activity in the Centaurs is triggered by the conversion of amorphous ice into the crystalline form accompanied by the release of trapped gases, including carbon monoxide. By imposing the condition that crystallization should occur when the crystallization time is shorter than the orbital period we find a qualitative match to the perihelion distribution of the active Centaurs and conclude that the data are consistent with the hypothesis that the Centaurs contain amorphous ice.

  14. Protective role of endogenous catalase in baseline and phenytoin-enhanced neurodevelopmental and behavioral deficits initiated in utero and in aged mice.

    PubMed

    Abramov, Julia P; Tran, Audrey; Shapiro, Aaron M; Wells, Peter G

    2012-06-01

    We used mutant catalase-deficient mice (acatalasemic, aCat) and transgenic mice expressing human catalase (hCat) to determine the neuroprotective role of catalase in utero and in aged animals treated with vehicle or the reactive oxygen species (ROS)-initiating drug phenytoin. Phenytoin-initiated postnatal death was enhanced in aCat mice and reduced in hCat mice. Catalase deficiency reduced postnatal surface righting, negative geotaxis and rotarod performances independent of drug treatment, and enhanced phenytoin-initiated negative geotaxis and rotarod deficits in aCat females. Untreated aged female but not male aCat mice exhibited reduced motor coordination. Conversely, hCat offspring showed treatment-independent increased surface righting, negative geotaxis, air righting and, in females, improved phenytoin-impaired rotarod performance. Gender dependencies were consistent with higher brain catalase activities in male than female neonatal and aged animals. Endogenous catalase plays an important gender-dependent neuroprotective role in utero and in aged mice, and reduces neurodevelopmental effects of phenytoin. PMID:22342499

  15. Important role of catalase in the production of β-carotene by recombinant Saccharomyces cerevisiae under H2O2 stress.

    PubMed

    Yan, Guo-liang; Liang, Heng-yu; Wang, Zhi-qun; Yang, Xiao-fan; Liu, Dan; Liu, Jin-fu; Duan, Chang-qing

    2011-03-01

    The effect of H(2)O(2) supplement on cell growth and β-carotene productions in recombinant Saccharomyces cerevisiae CFW-01 and CFW-01 ctt1 deficiency in cytosolic catalase were investigated in shaking flasks. The results showed that supplement of H(2)O(2) (0.5 and 1.0 mM) can significantly stimulate the β-carotene production. However, β-carotene levels of CFW-01 ctt1Δ under 0.5 and 1 mM H(2)O(2) were 16.7 and 36.7% lower than those of CFW-01, respectively. Although lacking cytosolic catalase, no significant differences in cell growth were observed between CFW-01 ctt1Δ and CFW-01 under the same level of H(2)O(2) stress. These results suggest that β-carotene can act as an antioxidant to protect the recombinant yeast from H(2)O(2) oxidative damage in the absence of cytosolic catalase. However, catalase still plays an important role in the production of β-carotene under H(2)O(2) stress. If catalase can not timely decompose H(2)O(2), the free radicals such as OH· derived from H(2)O(2) can result in decrease of β-carotene concentration. Therefore, in the production of β-carotene by H(2)O(2) stress, not only the level of oxidative stress, but also the activities of catalase in cells should be considered. PMID:21120656

  16. Physics of solar activity

    NASA Technical Reports Server (NTRS)

    Sturrock, Peter A.

    1993-01-01

    The aim of the research activity was to increase our understanding of solar activity through data analysis, theoretical analysis, and computer modeling. Because the research subjects were diverse and many researchers were supported by this grant, a select few key areas of research are described in detail. Areas of research include: (1) energy storage and force-free magnetic field; (2) energy release and particle acceleration; (3) radiation by nonthermal electrons; (4) coronal loops; (5) flare classification; (6) longitude distributions of flares; (7) periodicities detected in the solar activity; (8) coronal heating and related problems; and (9) plasma processes.

  17. New insights into the heme cavity structure of catalase-peroxidase: a spectroscopic approach to the recombinant synechocystis enzyme and selected distal cavity mutants.

    PubMed

    Heering, Hendrik A; Indiani, Chiara; Regelsberger, Günther; Jakopitsch, Christa; Obinger, Christian; Smulevich, Giulietta

    2002-07-23

    Catalase-peroxidases (KatGs) are heme peroxidases with homology to yeast cytochrome cperoxidase (CCP) and plant ascorbate peroxidases (APXs). KatGs exhibit a peroxidase activity of broad specificity and a high catalase activity, which strongly depends on the presence of a distal Trp as part of the conserved amino acid triad Arg-Trp-His. By contrast, both CCP and APX do not have a substantial catalase activity despite the presence of the same triad. Thus, to elucidate structure-function relationships of catalase-peroxidases (for which no crystal structure is available at the moment), we performed UV-Vis and resonance Raman studies of recombinant wild-type KatG from the cyanobacterium SynechocystisPCC 6803 and the distal side variants (His123-->Gln, Glu; Arg119-->Ala, Asn; Trp122-->Phe, Ala). The distal cavity of KatG is very similar to that of the other class I peroxidases. A H-bond network involving water molecules and the distal Trp, Arg, and His is present, which connects the distal and proximal sides of the heme pocket. However, distal mutation not only affects the heme Fe coordination state and perturbs the proximal Fe-Im bond, as previously observed for other peroxidases, but also alters the stability of the heme architecture. The charge of the distal residues appears particularly important for maintaining the heme architecture. Moreover, the Trp plays a significant role in the distal H-bonding, much more pronounced than in CCP. The relevance of these findings for the catalase activity of KatG is discussed in light of the complete loss of catalase activity in the distal Trp mutants. PMID:12119039

  18. Antioxidant enzymes activities in obese Tunisian children

    PubMed Central

    2013-01-01

    Background The oxidant stress, expected to increase in obese adults, has an important role in the pathogenesis of many diseases. It results when free radical formation is greatly increased or protective antioxidant mechanisms are compromised. The main objective of this study is to evaluate the antioxidant response to obesity-related stress in healthy children. Methods A hundred and six healthy children (54 obese and 52 controls), aged 6–12 years old, participated in this study. The collected data included anthropometric measures, blood pressure, fasting glucose, total cholesterol, triglycerides and enzymatic antioxidants (Superoxide dismutase: SOD, Catalase: CAT and Glutathione peroxidase: GPx). Results The first step antioxidant response, estimated by the SOD activity, was significantly higher in obese children compared with normal-weight controls (p < 0.05). Mean activities of anti-radical GPx and CAT enzymes were not affected by the BMI increase. Although, total cholesterol levels were statistically higher in the obese group, there was no significant association with the SOD activity. Conclusions The obesity-related increase of the oxidant stress can be observed even in the childhood period. In addition to the complications of an increased BMI, obesity itself can be considered as an independent risk factor of free radical production resulting in an increased antioxidant response. PMID:23360568

  19. Cytochrome bd Displays Significant Quinol Peroxidase Activity

    PubMed Central

    Al-Attar, Sinan; Yu, Yuanjie; Pinkse, Martijn; Hoeser, Jo; Friedrich, Thorsten; Bald, Dirk; de Vries, Simon

    2016-01-01

    Cytochrome bd is a prokaryotic terminal oxidase that catalyses the electrogenic reduction of oxygen to water using ubiquinol as electron donor. Cytochrome bd is a tri-haem integral membrane enzyme carrying a low-spin haem b558, and two high-spin haems: b595 and d. Here we show that besides its oxidase activity, cytochrome bd from Escherichia coli is a genuine quinol peroxidase (QPO) that reduces hydrogen peroxide to water. The highly active and pure enzyme preparation used in this study did not display the catalase activity recently reported for E. coli cytochrome bd. To our knowledge, cytochrome bd is the first membrane-bound quinol peroxidase detected in E. coli. The observation that cytochrome bd is a quinol peroxidase, can provide a biochemical basis for its role in detoxification of hydrogen peroxide and may explain the frequent findings reported in the literature that indicate increased sensitivity to hydrogen peroxide and decreased virulence in mutants that lack the enzyme. PMID:27279363

  20. Solar simulated irradiation modulates gene expression and activity of antioxidant enzymes in cultured human dermal fibroblasts.

    PubMed

    Leccia, M T; Yaar, M; Allen, N; Gleason, M; Gilchrest, B A

    2001-08-01

    Exposure of skin to solar irradiation generates reactive oxygen species that damage DNA, membranes, mitochondria and proteins. To protect against such damage, skin cells have evolved antioxidant enzymes including glutathione peroxidase (GSH-Px), copper and zinc-dependent superoxide dismutase (SOD1), the mitochondrial manganese-dependent superoxide dismutase (SOD2), and catalase. This report examines the effect of a single low or moderate dose exposure to solar-simulating combined UVB and UVA irradiation on the gene expression and activities of these antioxidant enzymes in cultured normal human fibroblasts. We find that both doses initially decrease GSH-Px, SOD2 and catalase activities, but within 5 days after irradiation the activities of the enzymes return to pre-irradiation level (catalase) or are induced slightly (SOD1, GSH-Px) or substantially (SOD2) above the basal level. For SOD1, SOD2 and catalase, the higher dose also detectably modulates the mRNA level of these enzymes. Our results indicate that the effects of a single physiologic solar simulated irradiation dose persist for at least several days and suggest that skin cells prepare for subsequent exposure to damaging irradiation by upregulating this antioxidant defense system, in particular the mitochondrial SOD2. Our findings are consistent with the existence of a broad-based SOS-like response in irradiated human skin. PMID:11493316

  1. Activity of Redox Enzymes in the Thallus of Anthoceros natalensis.

    PubMed

    Chasov, A V; Beckett, R P; Minibayeva, F V

    2015-09-01

    Anthocerotophyta (hornworts) belong to a group of ancient nonvascular plants and originate from a common ancestor with contemporary vascular plants. Hornworts represent a unique model for investigating mechanisms of formation of stress resistance in higher plants due to their high tolerance to the action of adverse environmental factors. In this work, we demonstrate that the thallus of Anthoceros natalensis exhibits high redox activity changing under stress. Dehydration of the thallus is accompanied by the decrease in activities of intracellular peroxidases, DOPA-peroxidases, and tyrosinases, while catalase activity increases. Subsequent rehydration results in the increase in peroxidase and catalase activities. Kinetic features of peroxidases and tyrosinases were characterized as well as the peroxidase isoenzyme composition of different fractions of the hornwort cell wall proteins. It was shown that the hornwort peroxidases are functionally similar to peroxidases of higher vascular plants including their ability to form superoxide anion-radical. The biochemical mechanism was elucidated, supporting the possible participation of peroxidases in the formation of reactive oxygen species (ROS) via substrate-substrate interactions in the hornwort thallus. It has been suggested that the ROS formation by peroxidases is an evolutionarily ancient process that emerged as a protective mechanism for enhancing adaptive responses of higher land plants and their adaptation to changing environmental conditions and successful colonization of various ecological niches. PMID:26555468

  2. Diminishing of aggregation for bovine liver catalase through acidic residues modification.

    PubMed

    Hashemnia, S; Moosavi-Movahedi, A A; Ghourchian, H; Ahmad, F; Hakimelahi, G H; Saboury, A A

    2006-12-15

    The tendency of proteins to aggregate is an important problem in biotechnology and the pharmaceutical industry. Because proteins in the aggregated state generally do not have the same biological activity as proteins in the native state. In order to prevent aggregation, it is essential to know the effective parameters in anti-aggregation mechanism. Using a chemical protein modification approach, UV-vis and fluorescence spectroscopies and circular dichroism spectropolarimetry, this study investigates the parameters involved in anti-aggregation mechanism of bovine liver catalase. Our findings clearly indicate that the modified bovine liver catalase provides better protection than the native enzyme against thermal aggregation. It seems that a decrease in hydrophobicity resulting in chemical modification plays an important role in preventing aggregation. PMID:16828155

  3. Superoxide dismutase, catalase and cell dimorphism in Candida albicans cells exposed to methanol and different temperatures.

    PubMed

    Romandini, P; Bonotto, C; Bertoloni, G; Beltramini, M; Salvato, B

    1994-05-01

    The combined effects of methanol and different temperatures on Candida albicans were studied. Growth curve, cell morphology, superoxide dismutase (SOD) and catalase activity levels have been determined. Cell growth in each medium was comparable to 28 degrees C and 37 degrees C. The growth rate was not affected by methanol, in the presence of glucose, while it was much lower in the absence of sugar. Cell dimorphism appeared after thermic stress and it was also dependent on the medium composition. In all media, both SOD and catalase levels were much higher at 37 degrees C. The presence of methanol per se did not affect the enzymatic levels, while the absence of glucose gave higher SOD levels. PMID:8061958

  4. Analysis of the Relationship between Antioxidant Enzyme Gene Polymorphisms and Their Activity in Post-Traumatic Gonarthrosis.

    PubMed

    Vnukov, V V; Panina, S B; Milyutina, N P; Krolevets, I V; Zabrodin, M A

    2016-05-01

    Analysis of polymorphisms of genes encoding antioxidant enzymes SOD1 (G7958A), SOD2 (T58C), CAT (C-262T), and GSTP1 (Ile105Val) in 93 patients with post-traumatic gonarthrosis showed that GSTP1 Ile105Val polymorphism is often associated with heterozygous mutation in catalase gene CAT C-262T. In gonarthrosis, catalase activity in peripheral blood mononuclear cells in patients with CT genotype of the C-262T locus of CAT gene more than 2-fold surpassed that in CC genotype and more than 50% surpassed the normal. Changes in the balance of activity of antioxidant enzymes can affect viability of mononuclear cells. PMID:27270931

  5. Extraction and antioxidant activity of flavonoids of Morus nigra

    PubMed Central

    Feng, Rui-Zhang; Wang, Qin; Tong, Wen-Zhi; Xiong, Juan; Wei, Qin; Zhou, Wan-Hai; Yin, Zhong-Qiong; Yin, Xiao-Ya; Wang, Li-Ying; Chen, Ya-Qin; Lai, Yong-Hong; Huang, Hong-Yan; Luo, Qiao-Li; Wang, Lu; Jia, Ren-Yong; Song, Xu; Zou, Yuan-Feng; Li, Li-Xia

    2015-01-01

    Morus nigra has a long history of medicinal use in Chinese medicine, but the study on it is limited, the flavonoids are one of the main biological active substances. In this study, the Morus nigra flavonoids were extracted by ultrasonic and antioxidant activities both in vitro and in vivo were measured. The results showed that hydroxyl radicals clearance rate and superoxide radical anion clearance rate in vitro increased with the concentration of the total flavonoids in the range of 0-1.05 mg/mL and the maximum clearance rate was 80.33% and 87.69%, respectively. After mice were treated with flavonoids, the content of malonaldehyde (MDA) in serum and liver decreased; the activities of superoxide dismutase (SOD) in serum and liver, catalase (CAT) in liver and glutathione peroxidase (GSH-PX) in blood and liver increased; Langhans cells increased in spleen. These results revealed that the Morus nigra flavonoids possessed strong antioxidant activity. PMID:26885210

  6. Study of Stevia rebaudiana Bertoni antioxidant activities and cellular properties.

    PubMed

    Bender, Cecilia; Graziano, Sara; Zimmermann, Benno F

    2015-01-01

    The aim of our study was to determine the antioxidant activities, cytotoxicity and proliferative properties in Stevia rebaudiana leaves and stems. Leaves extracts exhibited a higher antioxidant activity than stems extract, through oxygen radical absorbance capacity (ORAC) and cellular antioxidant activity (CAA) assays. Stevioside and rebaudioside A, the main sweetening metabolites in stevia leaves, exhibited a low ORAC value in comparison with plant extracts, while did not elicit any CAA. Stevia rebaudiana did not exhibit toxicity against HepG2 (hepatocellular carcinoma) human cells. No proliferative nor catalase modulations were observed in cells treated with such extracts. Our findings support the promising role of stevia that, apart from its sweetness, can act as a source of antioxidants, even at the intracellular level. This activity makes S. rebaudiana crude extract an interesting resource of natural sweetness with antioxidant properties which may find numerous applications in foods and nutritional supplements industries. PMID:26008718

  7. [Influence of γ-Irradiated Seeds on the Enzyme Activity in Barley Seedlings].

    PubMed

    Volkova, P Yu; Churyukin, R S; Geras'kin, S A

    2016-01-01

    Influence of γ-irradiation of barley seeds (Nur variety) at the doses of 8-50 Gy on catalase, pyruvate kinase, glucose-6-phosphate dehydrogenase, and guaiacol peroxidase activities was studied in the seedlings on the 3, 5 and 7 days after germination. It has been shown that activities of the studied enzymes increase in the dose range that causes the growth stimulation in the seedlings (16-20 Gy). PMID:27534070

  8. Extravehicular activity technology discipline

    NASA Technical Reports Server (NTRS)

    Webbon, Bruce W.

    1990-01-01

    Viewgraphs on extravehicular activity technology discipline for Space Station Freedom are presented. Topics covered include: extravehicular mobility unit; airlock and EMU support equipment; tools, mobility aids, and workstations; and telerobotic work aids interfaces.

  9. Microglial Activation & Chronic Neurodegeneration

    PubMed Central

    Lull, Melinda E.; Block, Michelle L.

    2010-01-01

    Microglia, the resident innate immune cells in the brain, have long been implicated in the pathology of neurodegenerative diseases. Accumulating evidence points to activated microglia as a chronic source of multiple neurotoxic factors, including TNFα, NO, IL1-β, and reactive oxygen species (ROS), driving progressive neuron damage. Microglia can become chronically activated by either a single stimulus (ex. LPS or neuron damage) or multiple stimuli exposures to result in cumulative neuronal loss over time. While the mechanisms driving these phenomena are just beginning to be understood, reactive microgliosis (the microglial response to neuron damage) and ROS have been implicated as key mechanisms of chronic and neurotoxic microglial activation, particularly in the case of Parkinson’s Disease. Here, we review the mechanisms of neurotoxicity associated with chronic microglial activation and discuss the role of neuronal death and microglial ROS driving the chronic and toxic microglial phenotype. PMID:20880500

  10. Activities: Pick's Rule

    ERIC Educational Resources Information Center

    Hirsch, Christian R.

    1974-01-01

    A series of activities are presented on worksheets marked off with lattice points (like a geoboard). Students are led to discover and apply Pick's Theorem for finding the area of a polygon whose vertices are lattice points. (JP)

  11. Finding Activities You Enjoy

    MedlinePlus

    ... choose physical activities that match your interests! Love music? Take dancing lessons. Sign up for an aerobics ... a Safe Environment Feel Down? Get Up—Emotional Benefits of Exercise STAY INFORMED Follow us on Twitter ...

  12. Exercise and activity - children

    MedlinePlus

    ... other organized sports (such as soccer, swimming, and dancing) Younger children cannot stick with the same activity ... in a water sprinkler, or splashing in puddles. Dance to music. Skate, ice-skate, skate-board, or ...

  13. French space activities

    NASA Technical Reports Server (NTRS)

    Blanc, R.

    1982-01-01

    The four main points of research and development of space programs by France are explained. The National Center of Space Studies is discussed, listing the missions of the Center and describing the activities of the staff.

  14. Island Watershed Activity.

    ERIC Educational Resources Information Center

    Benson, Rod

    2003-01-01

    Describes a 90-minute "Island Watershed" activity to help earth science students understand the concept of the water cycle. Introduces a surface waters unit appropriate for students in grades 7-10. Includes watershed project guidelines. (Author/KHR)

  15. Algorithm-development activities

    NASA Technical Reports Server (NTRS)

    Carder, Kendall L.

    1994-01-01

    The task of algorithm-development activities at USF continues. The algorithm for determining chlorophyll alpha concentration, (Chl alpha) and gelbstoff absorption coefficient for SeaWiFS and MODIS-N radiance data is our current priority.

  16. A Big Gulp Activity.

    ERIC Educational Resources Information Center

    Kelly, Bruce

    1997-01-01

    Explains how to implement an activity in which students measure the volume of their oral cavities. Enables students to develop skills in estimation, measurement, connections, statistics, applying concepts and procedures, and communication. (DDR)

  17. Active terahertz metamaterials

    SciTech Connect

    Chen, Hou-tong

    2009-01-01

    We demonstrate planar terahertz metamaterial devices enabling actively controllable transmission amplitude, phase, or frequency at room temperature via carrier depletion or photoexcitation in the semiconductor substrate or in semiconductor materials incorporated into the metamaterial structure.

  18. PRESSURE ACTIVATED SEALANT TECHNOLOGY

    SciTech Connect

    Michael A. Romano

    2004-04-01

    The objective of this project is to develop new, efficient, cost effective methods of internally sealing natural gas pipeline leaks through the application of differential pressure activated sealants. In researching the current state of the art for gas pipeline sealing technologies we concluded that if the project was successful, it appeared that pressure activated sealant technology would provide a cost effective alternative to existing pipeline repair technology. From our analysis of current field data for a 13 year period from 1985 to 1997 we were able to identify 205 leaks that were candidates for pressure activated sealant technology, affirming that pressure activated sealant technology is a viable option to traditional external leak repairs. The data collected included types of defects, areas of defects, pipe sizes and materials, incident and operating pressures, ability of pipeline to be pigged and corrosion states. This data, and subsequent analysis, was utilized as a basis for constructing applicable sealant test modeling.

  19. Markers of oxidative stress and erythrocyte antioxidant enzyme activity in older men and women with differing physical activity.

    PubMed

    Rowiński, Rafał; Kozakiewicz, Mariusz; Kędziora-Kornatowska, Kornelia; Hübner-Woźniak, Elżbieta; Kędziora, Józef

    2013-11-01

    The aim of the present study was to examine the relationship between markers of oxidative stress and erythrocyte antioxidant enzyme activity and physical activity in older men and women. The present study included 481 participants (233 men and 248 women) in the age group 65-69 years (127 men and 125 women) and in the age group 90 years and over (106 men and 123 women). The classification of respondents by physical activity was based on answers to the question if, in the past 12 months, they engaged in any pastimes which require physical activity. The systemic oxidative stress status was assessed by measuring plasma iso-PGF2α and protein carbonyl concentration as well as erythrocyte antioxidant enzymes activity, i.e., superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR). The concentration of plasma iso-PGF2α and protein carbonyls (CP) was lower in groups of younger men and women compared to the respective older groups. In all examined groups, physical activity resulted in decrease of these oxidative stress markers and simultaneously caused adaptive increase in the erythrocyte SOD activity. Additionally, in active younger men CAT, GPx, and GR activities were higher than in sedentary ones. In conclusion, oxidative stress increase is age-related, but physical activity can reduce oxidative stress markers and induce adaptive increase in the erythrocyte antioxidant enzyme activity, especially SOD, even in old and very old men and women. PMID:23911531

  20. Intercreativity: Mapping Online Activism

    NASA Astrophysics Data System (ADS)

    Meikle, Graham

    How do activists use the Internet? This article maps a wide range of activist practice and research by applying and developing Tim Berners-Lee's concept of ‘intercreativity' (1999). It identifies four dimensions of Net activism: intercreative texts, tactics, strategies and networks. It develops these through examples of manifestations of Net activism around one cluster of issues: support campaigns for refugees and asylum seekers.

  1. Tinnitus activities treatment.

    PubMed

    Tyler, Richard S; Gogel, Stephanie A; Gehringer, Anne K

    2007-01-01

    Tinnitus Activities Treatment includes counseling of the whole person, and considers individual differences and needs. We consider four areas: thoughts and emotions, hearing and communication, sleep, and concentration. We typically use Partial Masking Sound Therapy, with a noise or music set to the lowest level that provides relief. A picture-based approach facilitates engagement of the patient, and provides thorough and structured counseling. We engage the patient by including homework and activities to demonstrate understanding and facilitate progress. PMID:17956807

  2. Low activation ferritic alloys

    DOEpatents

    Gelles, David S.; Ghoniem, Nasr M.; Powell, Roger W.

    1986-01-01

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  3. RMS active damping augmentation

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.; Scott, Michael A.; Demeo, Martha E.

    1992-01-01

    The topics are presented in viewgraph form and include: RMS active damping augmentation; potential space station assembly benefits to CSI; LaRC/JSC bridge program; control law design process; draper RMS simulator; MIMO acceleration control laws improve damping; potential load reduction benefit; DRS modified to model distributed accelerations; accelerometer location; Space Shuttle aft cockpit simulator; simulated shuttle video displays; SES test goals and objectives; and SES modifications to support RMS active damping augmentation.

  4. RAVEN Quality Assurance Activities

    SciTech Connect

    Cogliati, Joshua Joseph

    2015-09-01

    This report discusses the quality assurance activities needed to raise the Quality Level of Risk Analysis in a Virtual Environment (RAVEN) from Quality Level 3 to Quality Level 2. This report also describes the general RAVEN quality assurance activities. For improving the quality, reviews of code changes have been instituted, more parts of testing have been automated, and improved packaging has been created. For upgrading the quality level, requirements have been created and the workflow has been improved.

  5. Low activation ferritic alloys

    DOEpatents

    Gelles, D.S.; Ghoniem, N.M.; Powell, R.W.

    1985-02-07

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  6. Rheology of Active Gels

    NASA Astrophysics Data System (ADS)

    Chen, Daniel

    2015-03-01

    Active networks drive a diverse range of critical processes ranging from motility to division in living cells, yet a full picture of their rheological capabilities in non-cellular contexts is still emerging, e.g., How does the rheological response of a network capable of remodeling under internally-generated stresses differ from that of a passive biopolymer network? In order to address this and other basic questions, we have engineered an active gel composed of microtubules, bidirectional kinesin motors, and molecular depletant that self-organizes into a highly dynamic network of active bundles. The network continually remodels itself under ATP-tunable cycles of extension, buckling, fracturing, and self-healing. Using confocal rheometry we have simultaneously characterized the network's linear and non-linear rheological responses to shear deformation along with its dynamic morphology. We find several surprising and unique material properties for these active gels; most notably, rheological cloaking, the ability of the active gel to drive large-scale fluid mixing over several orders of flow magnitude while maintaining an invariant, solid-like rheological profile and spontaneous flow under confinement, the ability to exert micro-Newton forces to drive persistent directed motion of the rheometer tool. Taken together, these results and others to be discussed highlight the rich stress-structure-dynamics relationships in this class of biologically-derived active gels.

  7. ABB: active bandwidth broker

    NASA Astrophysics Data System (ADS)

    Wong, Kason; Law, Eddie

    2001-07-01

    In this paper, we shall discuss a novel design on the policy-based management for the Internet. This design deploys the concept of active networking. As opposed to the traditional network design, active network empowers network node with the ability to manipulate data and program code in packets, and configure the network properties according to the needs of different applications. The policy-based management can control network routers in order to realize end-to-end Quality of Service (QoS), such as differentiated and integrated services, across the Internet. For the moment, the Internet Engineering Task Force (IETF) has defined the framework of the policy-based management. It employs a simple client/server model that uses Common Open Policy Service (COPS) protocol to facilitate policy management and control. Our design of Active Bandwidth Broker (ABB) belongs to an active application. Our goals are to distribute centralized workload of the policy-based management over multiple active nodes in the active networks, introduce mobility of the bandwidth brokers, and allows load sharing to the policy-based management. This results a network-wide intelligent, highly available, and consistent QoS control that allows performance protection for voice, video and Internet business application while reducing costs for growing networks.

  8. Phytase activity in lichens.

    PubMed

    Higgins, Niall F; Crittenden, Peter D

    2015-10-01

    Phytase activity was investigated in 13 lichen species using a novel assay method. The work tested the hypothesis that phytase is a component of the suite of surface-bound lichen enzymes that hydrolyse simple organic forms of phosphorus (P) and nitrogen (N) deposited onto the thallus surface. Hydrolysis of inositol hexaphosphate (InsP6 , the substrate for phytase) and appearance of lower-order inositol phosphates (InsP5 -InsP1 ), the hydrolysis products, were measured by ion chromatography. Phytase activity in Evernia prunastri was compared among locations with contrasting rates of N deposition. Phytase activity was readily measurable in epiphytic lichens (e.g. 11.3 μmol InsP6 hydrolysed g(-1)  h(-1) in Bryoria fuscescens) but low in two terricolous species tested (Cladonia portentosa and Peltigera membranacea). Phytase and phosphomonoesterase activities were positively correlated amongst species. In E. prunastri both enzyme activities were promoted by N enrichment and phytase activity was readily released into thallus washings. InsP6 was not detected in tree canopy throughfall but was present in pollen leachate. Capacity to hydrolyse InsP6 appears widespread amongst lichens potentially promoting P capture from atmospheric deposits and plant leachates, and P cycling in forest canopies. The enzyme assay used here might find wider application in studies on plant root-fungal-soil systems. PMID:25963718

  9. Nitric oxide generated from isoniazid activation by KatG: source of nitric oxide and activity against Mycobacterium tuberculosis.

    PubMed

    Timmins, Graham S; Master, Sharon; Rusnak, Frank; Deretic, Vojo

    2004-08-01

    Isonicotinic acid hydrazide (INH) is a frontline antituberculosis agent. Once taken up by Mycobacterium tuberculosis, INH requires activation by the catalase-peroxidase KatG, converting INH from its prodrug form into a range of bactericidal reactive species. Here we used 15N-labeled INH together with electron paramagnetic resonance spin trapping techniques to demonstrate that nitric oxide (NO*) is generated from oxidation at the hydrazide nitrogens during the activation of INH by M. tuberculosis KatG. We also observed that a specific scavenger of NO* provided protection against the antimycobacterial activity of INH in bacterial culture. No significant increases in mycobacterial protein nitration were detected, suggesting that NOdot; and not peroxynitrite, a nitrating metabolite of NO*, is involved in antimycobacterial action. In conclusion, INH-derived NO* has biological activity, which directly contributes to the antimycobacterial action of INH. PMID:15273113

  10. Superoxide dismutase, catalase, and. alpha. -tocopherol content of stored potato tubers. [Solanum tuberosum L

    SciTech Connect

    Spychalla, J.P.; Desborough, S.L. )

    1990-11-01

    Activated oxygen or oxygen free radical mediated damage to plants has been established or implicated in many plant stress situations. The extent of activated oxygen damage to potato (Solanum tuberosum L.) tubers during low temperature storage and long-term storage is not known. Quantitation of oxygen free radical mediated damage in plant tissues is difficult. However, it is comparatively easy to quantitate endogenous antioxidants, which detoxify potentially damaging forms of activated oxygen. Three tuber antioxidants, superoxide dismutase, catalase, and {alpha}-tocopherol were assayed from four potato cultivars stored at 3{degree}C and 9{degree}C for 40 weeks. Tubers stored at 3{degree}C demonstrated increased superoxide dismutase activities (up to 72%) compared to tubers stored at 9{degree}C. Time dependent increases in the levels of superoxide dismutase, catalase, and {alpha}-tocopherol occurred during the course of the 40 week storage. The possible relationship between these increases in antioxidants and the rate of activated oxygen production in the tubers is discussed.

  11. Youth Physical Activity Resources Use and Activity Measured by Accelerometry

    PubMed Central

    Maslow, Andréa L.; Colabianchi, Natalie

    2014-01-01

    Objectives To examine whether utilization of physical activity resources (eg, parks) was associated with daily physical activity measured by accelerometry. Methods 111 adolescents completed a travel diary with concurrent accelerometry. The main exposure was self-reported utilization of a physical activity resource (none/1+ resources). The main outcomes were total minutes spent in daily 1) moderate-vigorous physical activity and 2) vigorous physical activity. Results Utilizing a physical activity resource was significantly associated with total minutes in moderate-vigorous physical activity. African-Americans and males had significantly greater moderate-vigorous physical activity. Conclusions Results from this study support the development and use of physical activity resources. PMID:21204684

  12. Abrogation of fibroblast activation protein enzymatic activity attenuates tumor growth.

    PubMed

    Cheng, Jonathan D; Valianou, Matthildi; Canutescu, Adrian A; Jaffe, Eileen K; Lee, Hyung-Ok; Wang, Hao; Lai, Jack H; Bachovchin, William W; Weiner, Louis M

    2005-03-01

    Tumor-associated fibroblasts are functionally and phenotypically distinct from normal fibroblasts that are not in the tumor microenvironment. Fibroblast activation protein is a 95 kDa cell surface glycoprotein expressed by tumor stromal fibroblasts, and has been shown to have dipeptidyl peptidase and collagenase activity. Site-directed mutagenesis at the catalytic site of fibroblast activation protein, Ser624 --> Ala624, resulted in an approximately 100,000-fold loss of fibroblast activation protein dipeptidyl peptidase (DPP) activity. HEK293 cells transfected with wild-type fibroblast activation protein, enzymatic mutant (S624A) fibroblast activation protein, or vector alone, were inoculated subcutaneously into immunodeficient mouse to assess the contribution of fibroblast activation protein enzymatic activity to tumor growth. Overexpression of wild-type fibroblast activation protein showed growth potentiation and enhanced tumorigenicity compared with both fibroblast activation protein S624A and vector-transfected HEK293 xenografts. HEK293 cells transfected with fibroblast activation protein S624A showed tumor growth rates and tumorigenicity potential similar only to vector-transfected HEK293. In vivo assessment of fibroblast activation protein DPP activity of these tumors showed enhanced enzymatic activity of wild-type fibroblast activation protein, with only baseline levels of fibroblast activation protein DPP activity in either fibroblast activation protein S624A or vector-only xenografts. These results indicate that the enzymatic activity of fibroblast activation protein is necessary for fibroblast activation protein-driven tumor growth in the HEK293 xenograft model system. This establishes the proof-of-principle that the enzymatic activity of fibroblast activation protein plays an important role in the promotion of tumor growth, and provides an attractive target for therapeutics designed to alter fibroblast activation protein-induced tumor growth by targeting

  13. Photon-activation therapy

    SciTech Connect

    Fairchild, R.G.; Bond, V.P.

    1982-01-01

    Photon Activation Therapy (PAT) is a technique in which radiation dose to tumor is enhanced via introduction of stable /sup 127/I in the form of iodinated deoxyuridine (IdUrd). Stimulation of cytotoxic effects from IdUrd is accomplished by activation with external (or implanted) radiation sources. Thus, accumulations of this nucleoside in actively competing cellpools do not preclude therapy in so far as such tissues can be excluded from the radiation field. Calculations show that 5% replacement of thymidine (Tyd) in tumor DNA should enhance the biological effectiveness of a given photon radiotherapy dose by a factor of approx. 3. Proportionally higher gains would result from higher replacements of Tyd and IdUrd. In addition, biological response is enhanced by chemical sensitization with IdUrd. The data indicate that damage from photon activation as well as chemical sensitization does not repair. Thus, at low dose rates, a further increase in therapeutic gain should accrue as normal tissues are allowed to repair and regenerate. A samarium-145 source has been developed for PAT, with activating x-ray energies of from 38 to 45 keV. Favorable clinical results can be expected through the use of IdUrd and protracted irradiations with low energy x-rays. In particular, PAT may provide unique advantages at selected sites such as brain, or head and neck tumors. (ERB)

  14. [Inflammasome: activation mechanisms].

    PubMed

    Suárez, Raibel; Buelvas, Neudo

    2015-03-01

    Inflammation is a rapid biologic response of the immune system in vascular tissues, directed to eliminate stimuli capable of causing damage and begin the process of repair. The macromolecular complexes known as "inflammasomes" are formed by a receptor, either NOD (NLR) or ALR, the receptor absent in melanoma 2 (AIM2). In addition, the inflammasome is formed by the speck-like protein associated to apoptosis (ASC) and procaspase-1, that may be activated by variations in the ionic and intracellular and extracellular ATP concentrations; and the loss of stabilization of the fagolisosomme by internalization of insoluble crystals and redox mechanisms. As a result, there is activation of the molecular platform and the processing of inflammatory prointerleukins to their active forms. There are two modalities of activation of the inflammasome: canonical and non-canonical, both capable of generating effector responses. Recent data associate NLRP 3, IL-1β and IL-18 in the pathogenesis of a variety of diseases, including atherosclerosis, type II diabetes, hyperhomocysteinemia, gout, malaria and hypertension. The inflammasome cascade is emerging as a new chemotherapeutic target in these diseases. In this review we shall discuss the mechanisms of activation and regulation of the inflammasome that stimulate, modulate and resolve inflammation. PMID:25920188

  15. Mechanochemically Active Soft Robots.

    PubMed

    Gossweiler, Gregory R; Brown, Cameron L; Hewage, Gihan B; Sapiro-Gheiler, Eitan; Trautman, William J; Welshofer, Garrett W; Craig, Stephen L

    2015-10-14

    The functions of soft robotics are intimately tied to their form-channels and voids defined by an elastomeric superstructure that reversibly stores and releases mechanical energy to change shape, grip objects, and achieve complex motions. Here, we demonstrate that covalent polymer mechanochemistry provides a viable mechanism to convert the same mechanical potential energy used for actuation in soft robots into a mechanochromic, covalent chemical response. A bis-alkene functionalized spiropyran (SP) mechanophore is cured into a molded poly(dimethylsiloxane) (PDMS) soft robot walker and gripper. The stresses and strains necessary for SP activation are compatible with soft robot function. The color change associated with actuation suggests opportunities for not only new color changing or camouflaging strategies, but also the possibility for simultaneous activation of latent chemistry (e.g., release of small molecules, change in mechanical properties, activation of catalysts, etc.) in soft robots. In addition, mechanochromic stress mapping in a functional robotic device might provide a useful design and optimization tool, revealing spatial and temporal force evolution within the robot in a way that might be coupled to autonomous feedback loops that allow the robot to regulate its own activity. The demonstration motivates the simultaneous development of new combinations of mechanophores, materials, and soft, active devices for enhanced functionality. PMID:26390078

  16. A comparative study of oxidant-antioxidant status in stable and active vitiligo patients.

    PubMed

    Ines, Dammak; Sonia, Boudaya; Riadh, Ben Mansour; Amel, El Gaied; Slaheddine, Marrekchi; Hamida, Turki; Hamadi, Attia; Basma, Hentati

    2006-09-01

    The pathogenetic mechanisms in vitiligo have not been completely clarified. One of the major hypotheses in the pathogenesis of vitiligo is the oxidative stress hypothesis. The active or stable phase of vitiligo is defined on the basis of the progression or appearance of new lesions in the last 3 months and the absence of new lesions or their progression in the last 6 months, respectively. Eighteen patients with active vitiligo, 18 patients with stable vitiligo, and 40 controls were included in this study. We examined serum levels of malondialdehyde, selenium, vitamin E and A, and the erythrocyte activities of glutathione peroxidase, superoxide dismutase, and catalase. Our results revealed a significantly higher level of serum malondialdehyde, selenium in patients with active disease compared with the controls. Significant higher increase in erythrocytes superoxide dismutase activities was observed in active vitiligo group, erythrocyte glutathione peroxidase activity was decreased significantly in active disease, whereas erythrocyte catalase activity and plasma vitamin E and A levels were not different in vitiligo patients as compared with controls. Our study shows that oxidative stress is involved in the pathophysiology of both active and stable vitiligo but increased imbalance of antioxidants was observed in the blood of active vitiligo patients. PMID:16897080

  17. Hydrogel microspheres for stabilization of an antioxidant enzyme: effect of emulsion cross-linking of a dual polysaccharide system on the protection of enzyme activity.

    PubMed

    Tang, Deh-Wei; Yu, Shu-Huei; Wu, Wen-Shin; Hsieh, Hao-Ying; Tsai, Yi-Chin; Mi, Fwu-Long

    2014-01-01

    Catalase is an antioxidant enzyme abundant in natural resources. However, the enzyme is usually inactivated by gastric acid and digestive enzymes after oral ingestion. In this study, carboxymethyl chitosan (CM-chitosan) and hyaluronic acid (HA) conjugate hydrogel microspheres have been prepared by an emulsion cross-linking technique to retain the activity of catalase in simulated gastrointestinal (GI) fluids. Cross-linking reduced the swelling capability and increased the resistance toward hyaluronidase digestion of prepared HA-CM-chitosan hydrogel microspheres. Catalase entrapped in the hydrogel microspheres exhibited superior stability over a wide pH range (pH 2.0 and 6.0-8.0) as compared to the native enzyme. The entrapped catalase was also protected against degradation by digestive enzymes. Following the treatments, the catalase-loaded microspheres, in contrast to native catalase, could effectively decrease the intracellular H2O2 level and protect HT-29 colonic epithelial cells against H2O2-induced oxidative damage to preserve cell viability. These results suggested that the HA-CM-chitosan hydrogel microspheres can be used for entrapment, protection and intestinal delivery of catalase for H2O2 scavenging. PMID:24055882

  18. Active imaging at DARPA

    NASA Astrophysics Data System (ADS)

    Ricklin, J. C.; Tomlinson, P. G.

    2005-08-01

    Active systems, because they provide their own illumination, are capable of operating 24 hours a day and are not dependent upon the angle of the sun. Unlike passive systems, they can provide three-dimensional imaging. DARPA is currently developing systems, technologies, and signal processing to pioneer new or improve existing capabilities that employ active imaging capabilities. These involve both radar and ladar, ranging from a few MHz for foliage penetration to near-visible IR to achieve ultra-high resolution at long range. These capabilities would improve Battlefield Awareness (BA) and provide persistent Intelligence, Surveillance, and Reconnaissance (ISR) to perform target detection, recognition, and identification. This paper discusses two different approaches to active optical imaging. One is a coherent approach that uses synthetic aperture techniques with infrared laser radar, and another approach uses only the intensity of the speckle pattern in the aperture plane. Both are capable of producing ultra-high resolution at long range.

  19. Prenucleosomes and Active Chromatin

    PubMed Central

    Khuong, Mai T.; Fei, Jia; Ishii, Haruhiko; Kadonaga, James T.

    2016-01-01

    Chromatin consists of nucleosomes as well as nonnucleosomal histone-containing particles. Here we describe the prenucleosome, which is a stable conformational isomer of the nucleosome that associates with ~80 bp DNA. Prenucleosomes are formed rapidly upon the deposition of histones onto DNA and can be converted into canonical nucleosomes by an ATP-driven chromatin assembly factor such as ACF. Different lines of evidence reveal that there are prenucleosome-sized DNA-containing particles with histones in the upstream region of active promoters. Moreover, p300 acetylates histone H3K56 in prenucleosomes but not in nucleosomes, and H3K56 acetylation is found at active promoters and enhancers. These findings therefore suggest that there may be prenucleosomes or prenucleosome-like particles in the upstream region of active promoters. More generally, we postulate that prenucleosomes or prenucleosome-like particles are present at dynamic chromatin, whereas canonical nucleosomes are at static chromatin. PMID:26767995

  20. Flare Activity on Stars

    NASA Astrophysics Data System (ADS)

    Oskanian, V. S.

    A review of the existing flare data analyses indicates that most probably the flare phenomenon should be considered as one of the manifestation forms of solar-type chromospheric activity on stars and therefore has to be investigated in common with other phenomena specifying this activity. In order to estimate the reliability of such an approach different types of observational data are discussed. It could be shown that most of the phenomena specifying the solar chromospheric activity (BY Dra syndrome, indicating the spottedness of the stellar surface, long-term cyclic variations of emission line intensities, variable local magnetic fields, flares, coronal phenomena, etc.) are observable on a constantly growing number of stars of almost all spectral types and luminosity classes. This fact indicates that the proposed approach could be the right way to solve the problem of the flare phenomenon.

  1. Activity Cycles in Stars

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    2009-01-01

    Starspots and stellar activity can be detected in other stars using high precision photometric and spectrometric measurements. These observations have provided some surprises (starspots at the poles - sunspots are rarely seen poleward of 40 degrees) but more importantly they reveal behaviors that constrain our models of solar-stellar magnetic dynamos. The observations reveal variations in cycle characteristics that depend upon the stellar structure, convection zone dynamics, and rotation rate. In general, the more rapidly rotating stars are more active. However, for stars like the Sun, some are found to be inactive while nearly identical stars are found to be very active indicating that periods like the Sun's Maunder Minimum (an inactive period from 1645 to 1715) are characteristic of Sun-like stars.

  2. Active oxide nanophotonics

    NASA Astrophysics Data System (ADS)

    Dicken, Matthew J.

    Materials that can be manipulated electrically or mechanically to induce a change in their intrinsic properties are highly relevant when suitably integrated with current technologies. These "active" materials, such as oxide-based ferroelectrics or materials with easily accessible changes of phase, find extensive use as mechanical resonators, solid-state memories, and optical modulators. Barium titanate, a tetragonal ferroelectric at room temperature, is a prime example of a material both mechanically and optically active. This thesis deals primarily with the deposition of active, oxide-based materials and their integration into device structures where either the mechanical or optical properties are exploited. The technologically interesting paradigms within which these active oxide materials have been investigated are microelectromechanical systems, plasmonics, and metamaterials. Microelectromechanical systems are devices that have been micromachined and rely on an applied voltage to induce a mechanical response. Mechanically active materials, such as piezoelectrics or ferroelectrics, can increase the response of these devices. Plasmonics deals with electromagnetic waves resonantly coupled into free electron oscillations at a metal-dielectric interface or metal nanoparticle. Coupling to these resonant modes allows surface plasmon polaritons to propagate along the metal with a nonlinear dispersion. Metamaterials are ordered, subwavelength, metal inclusions in a dielectric, which respond collectively to electromagnetic radiation. This response can yield a material permittivity or permeability not found in nature. The optical properties of metamaterials lead to effects such as negative index response and super lensing, and can be used to design optical cloaking structures. Here, devices utilizing these effects are investigated with an eye toward tuning or switching their resonant response using optically active oxide thin films. This manuscript follows the evolution

  3. Interaction with the Redox Cofactor MYW and Functional Role of a Mobile Arginine in Eukaryotic Catalase-Peroxidase.

    PubMed

    Gasselhuber, Bernhard; Graf, Michael M H; Jakopitsch, Christa; Zamocky, Marcel; Nicolussi, Andrea; Furtmüller, Paul G; Oostenbrink, Chris; Carpena, Xavi; Obinger, Christian

    2016-06-28

    Catalase-peroxidases (KatGs) are unique bifunctional heme peroxidases with an additional posttranslationally formed redox-active Met-Tyr-Trp cofactor that is essential for catalase activity. On the basis of studies of bacterial KatGs, controversial mechanisms of hydrogen peroxide oxidation were proposed. The recent discovery of eukaryotic KatGs with differing pH optima of catalase activity now allows us to scrutinize those postulated reaction mechanisms. In our study, secreted KatG from the fungus Magnaporthe grisea (MagKatG2) was used to analyze the role of a remote KatG-typical mobile arginine that was shown to interact with the Met-Tyr-Trp adduct in a pH-dependent manner in bacterial KatGs. Here we present crystal structures of MagKatG2 at pH 3.0, 5.5, and 7.0 and investigate the mobility of Arg461 by molecular dynamics simulation. Data suggest that at pH ≥4.5 Arg461 mostly interacts with the deprotonated adduct Tyr. Elimination of Arg461 by mutation to Ala slightly increases the thermal stability but does not alter the active site architecture or the kinetics of cyanide binding. However, the variant Arg461Ala lost the wild-type-typical optimum of catalase activity at pH 5.25 (kcat = 6450 s(-1)) but exhibits a broad plateau between pH 4.5 and 7.5 (kcat = 270 s(-1) at pH 5.5). Moreover, significant differences in the kinetics of interconversion of redox intermediates of wild-type and mutant protein mixed with either peroxyacetic acid or hydrogen peroxide are observed. These findings together with published data from bacterial KatGs allow us to propose a role of Arg461 in the H2O2 oxidation reaction of KatG. PMID:27293030

  4. Interaction with the Redox Cofactor MYW and Functional Role of a Mobile Arginine in Eukaryotic Catalase-Peroxidase

    PubMed Central

    2016-01-01

    Catalase-peroxidases (KatGs) are unique bifunctional heme peroxidases with an additional posttranslationally formed redox-active Met-Tyr-Trp cofactor that is essential for catalase activity. On the basis of studies of bacterial KatGs, controversial mechanisms of hydrogen peroxide oxidation were proposed. The recent discovery of eukaryotic KatGs with differing pH optima of catalase activity now allows us to scrutinize those postulated reaction mechanisms. In our study, secreted KatG from the fungus Magnaporthe grisea (MagKatG2) was used to analyze the role of a remote KatG-typical mobile arginine that was shown to interact with the Met-Tyr-Trp adduct in a pH-dependent manner in bacterial KatGs. Here we present crystal structures of MagKatG2 at pH 3.0, 5.5, and 7.0 and investigate the mobility of Arg461 by molecular dynamics simulation. Data suggest that at pH ≥4.5 Arg461 mostly interacts with the deprotonated adduct Tyr. Elimination of Arg461 by mutation to Ala slightly increases the thermal stability but does not alter the active site architecture or the kinetics of cyanide binding. However, the variant Arg461Ala lost the wild-type-typical optimum of catalase activity at pH 5.25 (kcat = 6450 s–1) but exhibits a broad plateau between pH 4.5 and 7.5 (kcat = 270 s–1 at pH 5.5). Moreover, significant differences in the kinetics of interconversion of redox intermediates of wild-type and mutant protein mixed with either peroxyacetic acid or hydrogen peroxide are observed. These findings together with published data from bacterial KatGs allow us to propose a role of Arg461 in the H2O2 oxidation reaction of KatG. PMID:27293030

  5. Benfotiamine upregulates antioxidative system in activated BV-2 microglia cells

    PubMed Central

    Bozic, Iva; Savic, Danijela; Stevanovic, Ivana; Pekovic, Sanja; Nedeljkovic, Nadezda; Lavrnja, Irena

    2015-01-01

    Chronic microglial activation and resulting sustained neuroinflammatory reaction are generally associated with neurodegeneration. Activated microglia acquires proinflammatory cellular profile that generates oxidative burst. Their persistent activation exacerbates inflammation, which damages healthy neurons via cytotoxic mediators, such as superoxide radical anion and nitric oxide. In our recent study, we have shown that benfotiamine (S-benzoylthiamine O-monophosphate) possesses anti-inflammatory effects. Here, the effects of benfotiamine on the pro-oxidative component of activity of LPS-stimulated BV-2 cells were investigated. The activation of microglia was accompanied by upregulation of intracellular antioxidative defense, which was further promoted in the presence of benfotiamine. Namely, activated microglia exposed to non-cytotoxic doses of benfotiamine showed increased levels and activities of hydrogen peroxide- and superoxide-removing enzymes—catalase and glutathione system, and superoxide dismutase. In addition, benfotiamine showed the capacity to directly scavenge superoxide radical anion. As a consequence, benfotiamine suppressed the activation of microglia and provoked a decrease in NO and ·O−2 production and lipid peroxidation. In conclusion, benfotiamine might silence pro-oxidative activity of microglia to alleviate/prevent oxidative damage of neighboring CNS cells. PMID:26388737

  6. Space construction activities

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Center for Space Construction at the University of Colorado at Boulder was established in 1988 as a University Space Engineering Research Center. The mission of the Center is to conduct interdisciplinary engineering research which is critical to the construction of future space structures and systems and to educate students who will have the vision and technical skills to successfully lead future space construction activities. The research activities are currently organized around two central projects: Orbital Construction and Lunar Construction. Summaries of the research projects are included.

  7. MCO Monitoring activity description

    SciTech Connect

    SEXTON, R.A.

    1998-11-09

    Spent Nuclear Fuel remaining from Hanford's N-Reactor operations in the 1970s has been stored under water in the K-Reactor Basins. This fuel will be repackaged, dried and stored in a new facility in the 200E Area. The safety basis for this process of retrieval, drying, and interim storage of the spent fuel has been established. The monitoring of MCOS in dry storage is a currently identified issue in the SNF Project. This plan outlines the key elements of the proposed monitoring activity. Other fuel stored in the K-Reactor Basins, including SPR fuel, will have other monitoring considerations and is not addressed by this activity description.

  8. Inflammasomes and Their Activation

    PubMed Central

    Khare, Sonal; Luc, Nancy; Dorfleutner, Andrea; Stehlik, Christian

    2011-01-01

    The innate immune system relies on the recognition of pathogens by pattern recognition receptors as a first line of defense and to initiate the adaptive immune response. Substantial progress has been made in defining the role of Nod (nucleotide-binding oligimerization domain)-like receptors and AIM2 (absent in melanoma 2) as pattern recognition receptors that activate inflammasomes in macrophages. Inflammasomes are protein platforms essential for the activation of inflammatory caspases and subsequent maturation of their pro-inflammatory cytokine substrates and induction of pyroptosis. This paper summarizes recent developments regarding the function of Nod-like receptors in immunity and disease. PMID:21083527

  9. Active cleaning technique device

    NASA Technical Reports Server (NTRS)

    Shannon, R. L.; Gillette, R. B.

    1973-01-01

    The objective of this program was to develop a laboratory demonstration model of an active cleaning technique (ACT) device. The principle of this device is based primarily on the technique for removing contaminants from optical surfaces. This active cleaning technique involves exposing contaminated surfaces to a plasma containing atomic oxygen or combinations of other reactive gases. The ACT device laboratory demonstration model incorporates, in addition to plasma cleaning, the means to operate the device as an ion source for sputtering experiments. The overall ACT device includes a plasma generation tube, an ion accelerator, a gas supply system, a RF power supply and a high voltage dc power supply.

  10. Activated carbon material

    DOEpatents

    Evans, A. Gary

    1978-01-01

    Activated carbon particles for use as iodine trapping material are impregnated with a mixture of selected iodine and potassium compounds to improve the iodine retention properties of the carbon. The I/K ratio is maintained at less than about 1 and the pH is maintained at above about 8.0. The iodine retention of activated carbon previously treated with or coimpregnated with triethylenediamine can also be improved by this technique. Suitable flame retardants can be added to raise the ignition temperature of the carbon to acceptable standards.

  11. Cryogenic activities at ESTEC

    NASA Astrophysics Data System (ADS)

    Jewell, C. I.

    1989-05-01

    Although the main present cryogenic activity in ESTEC revolves around the preparation of ISO for launch in 1993, many other activities such as Meteosat second generation, FIRST, GRASP, QUASAT, and X-ray detection using bolometers all require some form of cooling to 80 K or less. ESTEC, in an effort to overcome the major constraint of lifetime when using the solution of cryogens is currently involved in the study and development of two mechanical coolers for work in the temperature ranges of 80 and 4 K are based on a Stirling cycle. This paper gives an overview of ESTEC cryogenic interests with an emphasis on the above mechanical coolers.

  12. Solar cell activation system

    SciTech Connect

    Apelian, L.

    1983-07-05

    A system for activating solar cells involves the use of phosphorescent paint, the light from which is amplified by a thin magnifying lens and used to activate solar cells. In a typical system, a member painted with phosphorescent paint is mounted adjacent a thin magnifying lens which focuses the light on a predetermined array of sensitive cells such as selenium, cadmium or silicon, mounted on a plastic board. A one-sided mirror is mounted adjacent the cells to reflect the light back onto said cells for purposes of further intensification. The cells may be coupled to rechargeable batteries or used to directly power a small radio or watch.

  13. Active seismic experiment

    NASA Technical Reports Server (NTRS)

    Kovach, R. L.; Watkins, J. S.; Talwani, P.

    1972-01-01

    The Apollo 16 active seismic experiment (ASE) was designed to generate and monitor seismic waves for the study of the lunar near-surface structure. Several seismic energy sources are used: an astronaut-activated thumper device, a mortar package that contains rocket-launched grenades, and the impulse produced by the lunar module ascent. Analysis of some seismic signals recorded by the ASE has provided data concerning the near-surface structure at the Descartes landing site. Two compressional seismic velocities have so far been recognized in the seismic data. The deployment of the ASE is described, and the significant results obtained are discussed.

  14. Effect of cassava mill effluent on biological activity of soil microbial community.

    PubMed

    Igbinosa, Etinosa O

    2015-07-01

    This study assessed the effect of cassava effluent on soil microbiological characteristics and enzymatic activities were investigated in soil samples. Soil properties and heavy metal concentrations were evaluated using standard soil analytical and spectroscopic methods, respectively. The microbiological parameters measured include microbial biomass carbon, basal soil respiration, catalase, urease, dehydrogenase activities and number of culturable aerobic bacteria, fungi and actinomycetes. The pH and temperature regime vary significantly (p < 0.05) throughout the study period. All other physicochemical parameters studied were significantly different (p < 0.05) higher than the control site. Soil organic carbon content gave significant positive correlations with microbial biomass carbon, basal soil respiration, catalase activity and dehydrogenase activity (r = 0.450, 0.461, 0.574 and 0.591 at p < 0.01), respectively. The quantitative analysis of soil microbial density demonstrates a marked decrease in total culturable numbers of the different microbial groups of the polluted soil samples. Soil contamination decreased catalase, urease and dehydrogenase activities. The findings revealed that soil enzymes can be used as indices of soil contamination and bio-indicator of soil quality. PMID:26055654

  15. INTERACTION OF CATALASE WITH MONTMORILLONITE HOMOIONIC TO CATIONS WITH DIFFERENT HYDROPHOBICITY: EFFECT ON ENZYME ACTIVITY AND MICROBIAL UTILIZATION. (R826107)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  16. Isolation of a Novel Peroxisomal Catalase Gene from Sugarcane, Which Is Responsive to Biotic and Abiotic Stresses

    PubMed Central

    Ling, Hui; Chen, Shanshan; Wang, Shanshan; Xu, Liping; Allan, Andrew C.; Que, Youxiong

    2014-01-01

    Catalase is an iron porphyrin enzyme, which serves as an efficient scavenger of reactive oxygen species (ROS) to avoid oxidative damage. In sugarcane, the enzymatic activity of catalase in a variety (Yacheng05–179) resistant to the smut pathogen Sporisorium scitamineum was always higher than that of the susceptible variety (Liucheng03–182), suggesting that catalase activity may have a positive correlation with smut resistance in sugarcane. To understand the function of catalase at the molecular level, a cDNA sequence of ScCAT1 (GenBank Accession No. KF664183), was isolated from sugarcane infected by S. scitamineum. ScCAT1 was predicted to encode 492 amino acid residues, and its deduced amino acid sequence shared a high degree of homology with other plant catalases. Enhanced growth of ScCAT1 in recombinant Escherichia coli Rosetta cells under the stresses of CuCl2, CdCl2 and NaCl indicated its high tolerance. Q-PCR results showed that ScCAT1 was expressed at relatively high levels in the bud, whereas expression was moderate in stem epidermis and stem pith. Different kinds of stresses, including S. scitamineum challenge, plant hormones (SA, MeJA and ABA) treatments, oxidative (H2O2) stress, heavy metal (CuCl2) and hyper-osmotic (PEG and NaCl) stresses, triggered a significant induction of ScCAT1. The ScCAT1 protein appeared to localize in plasma membrane and cytoplasm. Furthermore, histochemical assays using DAB and trypan blue staining, as well as conductivity measurement, indicated that ScCAT1 may confer the sugarcane immunity. In conclusion, the positive response of ScCAT1 to biotic and abiotic stresses suggests that ScCAT1 is involved in protection of sugarcane against reactive oxidant-related environmental stimuli. PMID:24392135

  17. Green tea catechins upregulate superoxide dismutase and catalase in fruit flies.

    PubMed

    Li, Yuk Man; Chan, Ho Yin Edwin; Huang, Yu; Chen, Zhen Yu

    2007-05-01

    Chinese Longjing green tea is an excellent source of polyphenol antioxidants. HPLC analysis revealed that Longjing green tea catechin extract (GTC) contained 62% epigallocatechin gallate (EGCG), 19% epigallocatechin (EGC), 9% epicatechin gallate (ECG), and 7% epicatechin (EC). Investigating the effect of GTC on the lifespan of Drosophila melanogaster, we observed that a 10 mg GTC/mL diet could prolong its 50% survival time by 36% and mean lifespan by 16%. This was consistent with 17% reduction in total body lipid hydroperoxide (LPO) level in GTC-treated flies compared to the control group. Supplementation of 10 mg GTC/mL diet increased the survival time only in wild type Oregon-R-C (OR) but not in two mutant fly lines, SOD(n108)/TM3 (gene for superoxide dismutase (SOD) was knocked out) and Cat(n1)/TM3 (gene for catalase was knocked out), when the flies were challenged with paraquat or hydrogen peroxide. Accordingly, SOD and catalase activities in OR wild type increased by 40 and 19%, respectively. RT-PCR analysis indicated that the genes for copper-zinc containing SOD (CuZnSOD), manganese containing SOD (MnSOD), and catalase were upregulated. It was concluded that prolonging lifespan by GTC in D. melanogaster was influenced, among others, by upregulation of endogenous antioxidant enzymes. PMID:17440995

  18. Enhanced stability of catalase covalently immobilized on functionalized titania submicrospheres.

    PubMed

    Wu, Hong; Liang, Yanpeng; Shi, Jiafu; Wang, Xiaoli; Yang, Dong; Jiang, Zhongyi

    2013-04-01

    In this study, a novel approach combing the chelation and covalent binding was explored for facile and efficient enzyme immobilization. The unique capability of titania to chelate with catecholic derivatives at ambient conditions was utilized for titania surface functionalization. The functionalized titania was then used for enzyme immobilization. Titania submicrospheres (500-600 nm) were synthesized by a modified sol-gel method and functionalized with carboxylic acid groups through a facile chelation method by using 3-(3,4-dihydroxyphenyl) propionic acid as the chelating agent. Then, catalase (CAT) was covalently immobilized on these functionalized titania submicrospheres through 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) coupling reaction. The immobilized CAT retained 65% of its free form activity with a loading capacity of 100-150 mg/g titania. The pH stability, thermostability, recycling stability and storage stability of the immobilized CAT were evaluated. A remarkable enhancement in enzyme stability was achieved. The immobilized CAT retained 90% and 76% of its initial activity after 10 and 16 successive cycles of decomposition of hydrogen peroxide, respectively. Both the Km and the Vmax values of the immobilized CAT (27.4 mM, 13.36 mM/min) were close to those of the free CAT (25.7 mM, 13.46 mM/min). PMID:23827593

  19. Physical Activities for Preschool.

    ERIC Educational Resources Information Center

    Adkins, Dorothy C.; And Others

    The underlying premise of the University of Hawaii Physical Activities for Preschool curriculum is that important contributions to a positive self-concept are made by motor independence and a realistic body image. Program objectives include: (1) the development of strength, endurance, and flexibility in skills that involve the muscles,…

  20. The Puzzle Design Activity.

    ERIC Educational Resources Information Center

    Meyer, Marc E.

    1983-01-01

    A sampling of puzzles and games produced by students at North Rockland High School (New York) are presented as an example of a way student-designed activities can be used to cover a specific unit within the health education curriculum. Produced by 9th and 10th graders, the unit on alcohol consists of puzzles and word games using related vocabulary…

  1. [Problem Solving Activities.

    ERIC Educational Resources Information Center

    Wisconsin Univ. - Stout, Menomonie. Center for Vocational, Technical and Adult Education.

    The teacher directed problem solving activities package contains 17 units: Future Community Design, Let's Build an Elevator, Let's Construct a Catapult, Let's Design a Recreational Game, Let's Make a Hand Fishing Reel, Let's Make a Wall Hanging, Let's Make a Yo-Yo, Marooned in the Past, Metrication, Mousetrap Vehicles, The Multi System…

  2. Production Systems. Laboratory Activities.

    ERIC Educational Resources Information Center

    Gallaway, Ann, Ed.

    This production systems guide provides teachers with learning activities for secondary students. Introductory materials include an instructional planning outline and worksheet, an outline of essential elements, domains and objectives, a course description, and a content outline. The guide contains 30 modules on the following topics: production…

  3. Elastolytic activity among staphylococci.

    PubMed Central

    Janda, J M

    1986-01-01

    A total of 161 isolates of the genus Staphylococcus were evaluated for the ability to produce elastase. Elastase activity was detected only in S. epidermidis strains (sensu stricto), being absent in S. aureus isolates and other coagulase-negative staphylococci tested. The elastase elaborated by S. epidermidis isolates appeared to be an inducible enzyme whose synthesis was medium dependent. PMID:3640774

  4. Activities: Preparing for Pythagoras.

    ERIC Educational Resources Information Center

    Laing, Robert A.

    1989-01-01

    Three worksheets are provided to help secondary students explore relationships among the areas of a variety of similar figures constructed on the sides of right triangles. The activity is extended to include the relationship among the lengths of the sides of the right triangle. Included are several student worksheets. (DC)

  5. Active-bridge oscillator

    DOEpatents

    Wessendorf, Kurt O.

    2001-01-01

    An active bridge oscillator is formed from a differential amplifier where positive feedback is a function of the impedance of one of the gain elements and a relatively low value common emitter resistance. This use of the nonlinear transistor parameter h stabilizes the output and eliminates the need for ALC circuits common to other bridge oscillators.

  6. Regional Activities Division. Papers.

    ERIC Educational Resources Information Center

    International Federation of Library Associations, The Hague (Netherlands).

    Papers on library network activities in Canada, the Third World, Japan, Malaysia, Brazil, and Sweden which were presented at the 1982 International Federation of Library Associations (IFLA) conference include: (1) "Canada: A Voluntary and Flexible Network," a review by Guy Sylvestre of the political, social, and economic structures affecting…

  7. Facilitating Active Learner Participation.

    ERIC Educational Resources Information Center

    Rosenberg, Steven; And Others

    1992-01-01

    Project Participate has developed and implemented a model for making decisions about interventions that enhance the ability of a preschool child with severe motor disabilities to actively participate in educational programs. The effectiveness of the process in increasing child participation in play, communication, social interaction, and mobility…

  8. EPAct Transportation Regulatory Activities

    SciTech Connect

    2011-11-21

    The U.S. Department of Energy's (DOE) Vehicle Technologies Program manages several transportation regulatory activities established by the Energy Policy Act of 1992 (EPAct), as amended by the Energy Conservation Reauthorization Act of 1998, EPAct 2005, and the Energy Independence and Security Act of 2007 (EISA).

  9. Evaluating Guidance Activities.

    ERIC Educational Resources Information Center

    Sanborn, Marshall P.

    This report discusses one of the consistent problems in school counseling and guidance-that of furnishing concrete evidence concerning the effects of counseling and guidance activities on the development of children. The following causal factors are discussed: (1) the difficulty of pinning down abstractly stated goals in an operational manner at…

  10. Activity: Computer Talk.

    ERIC Educational Resources Information Center

    Clearing: Nature and Learning in the Pacific Northwest, 1985

    1985-01-01

    Presents an activity in which students create a computer program capable of recording and projecting paper use at school. Includes instructional strategies and background information such as requirements for pounds of paper/tree, energy needs, water consumption, and paper value at the recycling center. A sample program is included. (DH)

  11. Educating for Political Activity

    ERIC Educational Resources Information Center

    Chitty, Clyde

    2010-01-01

    The term "political activity" can be interpreted in a myriad of different ways, but in this paper, it is taken to mean involvement in a variety of campaigns around issues affecting the way we live and the sort of society we want to live in. At a time when support for the main political parties has never been weaker, it is essential that teachers…

  12. Conflict Activity Cards.

    ERIC Educational Resources Information Center

    Levy, Margo; Otero, George

    These action oriented activity cards dealing with conflict situations are for use with secondary students. The cards are intended to supplement any course dealing with conflict, including U.S. history, sociology, English, literature, economics, area studies, or political science. The cards are organized by color into certain broad categories which…

  13. Arsenic activation neutron detector

    DOEpatents

    Jacobs, Eddy L.

    1981-01-01

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5 Mev neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  14. Arsenic activation neutron detector

    DOEpatents

    Jacobs, E.L.

    1980-01-28

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5-MeV neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  15. Primary Guidance Activities.

    ERIC Educational Resources Information Center

    Hauck, Ruth, Comp.

    Designed for the primary grades, the guidance activities in this document cover thirty-three topical areas: capabilities, changes, cooperation, criticism, differences, family, feelings, free time, friends, following directions, handicaps, honesty, improving environment, kindness, patience, paying attention, problem solving, rejection,…

  16. Dissemination Activities Report

    ERIC Educational Resources Information Center

    Barclay, Hanna; Batatia, Hudj; Bauters, Merja; Ben Ami, Zvi; Drachman, Raul; Flouris, Giorgos; Jadin, Tanja; Jalonen, Satu; Karlgren, Klas; Karpati, Andrea; Kotzinos, Dimitris; Lakkala, Minna; Lallimo, Jiri; Moen, Anne; Nygard, Kathrine; Paavola, Sami; Padiglia, Sheila; Scapolla, Marina; Sins, Patrick; Vasileva, Tania

    2008-01-01

    In the first 24 months of the project, KP-Lab members were highly dedicated to dissemination and were engaged in various dissemination activities that contributed to the prime objective of the KP-Lab dissemination efforts which is "to make the project widely known to a variety of prospective users and, at a later stage, to promote the…

  17. Rubisco Activase Activity Assays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase functions as a mechano-chemical motor protein using the energy from ATP hydrolysis to contort the structure of its target protein, Rubisco. This action modulates the activation state of Rubisco by removing tightly-bound inhibitory s...

  18. Active Learning Methods

    ERIC Educational Resources Information Center

    Zayapragassarazan, Z.; Kumar, Santosh

    2012-01-01

    Present generation students are primarily active learners with varied learning experiences and lecture courses may not suit all their learning needs. Effective learning involves providing students with a sense of progress and control over their own learning. This requires creating a situation where learners have a chance to try out or test their…

  19. Geology: The Active Earth.

    ERIC Educational Resources Information Center

    Braus, Judy, Ed.

    1987-01-01

    Ranger Rick's NatureScope is a creative education series dedicated to inspiring in children an understanding and appreciation of the natural world while developing the skills they will need to make responsible decisions about the environment. The topic of this issue is "Geology: The Active Earth." Contents are organized into the following…

  20. Ocean Drilling Simulation Activity.

    ERIC Educational Resources Information Center

    Telese, James A.; Jordan, Kathy

    The Ocean Drilling Project brings together scientists and governments from 20 countries to explore the earth's structure and history as it is revealed beneath the oceans' basins. Scientific expeditions examine rock and sediment cores obtained from the ocean floor to learn about the earth's basic processes. The series of activities in this…

  1. E-Activities.

    ERIC Educational Resources Information Center

    Brewster, Joy

    2001-01-01

    Presents five technology-based activities to teach elementary students about the human body, including: creating a heartbeat graph; charting the benefits of exercise; playing a "sense"ational card game; reading online stories from three children living with various conditions or illnesses; and examining diagrams of the human body that have been…

  2. Highlights of 1976 activities

    NASA Technical Reports Server (NTRS)

    Fitzpatrick, M.

    1976-01-01

    Highlights of NASA's 1976 activities are summarized. Sixteen successful launches were made. Two landings of Viking spacecraft on Mars and rollout of the space shuttle orbiter are reviewed. Applications of aerospace science to education, health care, and community services are also discussed.

  3. Bonus Activity Book.

    ERIC Educational Resources Information Center

    Learning, 1993

    1993-01-01

    Elementary level activity book presents suggestions for teaching students about endangered and threatened species worldwide. Students learn about what is causing the rapid extinction rate and what needs to be done. They also discover the value of rainforests and why conservationists are fighting to save them. (SM)

  4. Communication Systems. Laboratory Activities.

    ERIC Educational Resources Information Center

    Sutherland, Barbara, Ed.

    This communication systems guide provides teachers with learning activities for secondary students. Introductory materials include an instructional planning outline and worksheet, an outline of essential elements, a list of objectives, a course description, and a content outline. The guide contains 32 modules on the following topics: story…

  5. Open Space Learning Activities

    ERIC Educational Resources Information Center

    Knapp, Clifford E.

    1976-01-01

    Describes a science activity in which students are given an opportunity to consider the values of open space. The program includes direct involvement as communicators of feelings and facts, leading students to a position of making wise decisions for land use in the future. (EB)

  6. Earthfest. Activity Book.

    ERIC Educational Resources Information Center

    Weilbacher, Mike

    1991-01-01

    An activity book to help elementary teachers and students explore the environment offers information and questions about spaceships; an ecology primer and poster with questions; information on animal adaptation with poster and questions; ecological and dramatic arts projects; a script for performance; and suggestions to make Earth Day celebrations…

  7. Forecasting geomagnetic activity indices

    NASA Astrophysics Data System (ADS)

    Schofield, J.; Wing, S.; Johnson, J. R.

    2007-12-01

    Magnetically active times, e.g., Kp > 5, are notoriously difficult to predict, precisely the times when such predictions are crucial to the space weather users. Taking advantage of the routinely available solar wind measurements at Langrangian point (L1) and nowcast Kps, Kp and Dst forecast models based on neural networks were developed with the focus on improving the forecast for active times. To satisfy different needs and operational constraints, three models were developed: (1) a model that inputs nowcast Kp and solar wind parameters and predicts Kp 1 hr ahead; (2) a model with the same input as model 1 and predicts Kp 4 hr ahead; and (3) a model that inputs only solar wind parameters and predicts Kp 1 hr ahead (the exact prediction lead time depends on the solar wind speed and the location of the solar wind monitor.) Extensive evaluations of these models and other major operational Kp forecast models show that, while the new models can predict Kps more accurately for all activities, the most dramatic improvements occur for moderate and active times. Similar Dst models were developed. Information dynamics analysis of Kp, suggests that geospace is more dominated by internal dynamics near solar minimum than near solar maximum, when it is more directly driven by external inputs, namely solar wind and interplanetary magnetic field (IMF).

  8. Holidays & Festivals: Activities.

    ERIC Educational Resources Information Center

    Smith, Debbie

    There are many times throughout the year when change is celebrated. This elementary level, interdisciplinary resource gives background information and activities related to cross-cultural celebrations of change. Topics covered include: (1) "Charting Changes"; (2) "Special People"; (3) "Celebrating Light"; (4) "Planting and Harvesting"; and (5)…

  9. Environmental Chemistry Activities.

    ERIC Educational Resources Information Center

    Jackland, Thomas; And Others

    The authors of this curriculum supplement believe in a laboratory approach to chemistry and express the feeling that environmental chemistry provides the students an opportunity to apply theoretical chemistry to important practical problems. There are eighteen activities presented, each accompanied with behavioral objectives, one or more suggested…

  10. Energy assessment: physical activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Physical activity is an important component of total energy expenditure, contributing to energy intake needs; it also provides certain health benefits. This review chapter provides state-of-the-art information to researchers and clinicians who are interested in developing research studies or interv...

  11. TI-73 Calculator Activities

    ERIC Educational Resources Information Center

    Phillips-Bey, Carol K.

    2004-01-01

    This article describes TI-73 calculator activities appropriate for middle school students. It was found that the use of the calculator allowed for higher-level thinking and a richer exploration of mathematical ideas by students. [Included with this article are "Dice Roll Worksheet" and "Transforming Tree Worksheet".] (Contains 9 figures.)

  12. Creative Activity and Learning.

    ERIC Educational Resources Information Center

    Cunningham, Flora E.

    1979-01-01

    This article compares three theories of the creative process taken from aesthetic philosophy: aesthetic enjoyment (D. W. Gotshalk), aesthetic experience (John Dewey), and aesthetic knowledge (Susanne Langer). Each shows different versions of the learning that accrues from creative activity. From this, curriculum planning and teaching suggestions…

  13. Shark Tagging Activities.

    ERIC Educational Resources Information Center

    Current: The Journal of Marine Education, 1998

    1998-01-01

    In this group activity, children learn about the purpose of tagging and how scientists tag a shark. Using a cut-out of a shark, students identify, measure, record data, read coordinates, and tag a shark. Includes introductory information about the purpose of tagging and the procedure, a data sheet showing original tagging data from Tampa Bay, and…

  14. Active rejector filter

    SciTech Connect

    Kuchinskii, A.G.; Pirogov, S.G.; Savchenko, V.M.; Yakushev, A.K.

    1985-01-01

    This paper describes an active rejector filter for suppressing noise signals in the frequency range 50-100 Hz and for extracting a vlf information signal. The filter has the following characteristics: a high input impedance, a resonant frequency of 75 Hz, a Q of 1.25, and an attenuation factor of 53 dB at resonant frequency.

  15. 85 Engaging Movement Activities.

    ERIC Educational Resources Information Center

    Weikart, Phyllis S.; Carlton, Elizabeth B.

    This book presents activities to keep K-6 students moving in a variety of ways as they learn. The movement experiences are planned around key curriculum concepts in movement and music as well as in academic curriculum areas. The experiences develop students' basic timing, language abilities, vocabulary, concentration, planning skills, and…

  16. Highlights of 1978 activities

    NASA Technical Reports Server (NTRS)

    1978-01-01

    General highlights of NASA's activities for 1978 are presented. The highlights are categorized into topics such as space science, space transportation systems, space and terrestrial applications, environment, technology utilization, aeronautics, space research and technology, energy programs, and international. A list of the 1978 launches including: (1) launch date; (2) payload designation; (3) launch vehicle; (4) launch site and (5) mission remarks is also presented.

  17. Commission 10: Solar Activity

    NASA Astrophysics Data System (ADS)

    van Driel-Gesztelyi, Lidia; Schrijver, Carolus J.; Klimchuk, James A.; Charbonneau, Paul; Fletcher, Lyndsay; Hasan, S. Sirajul; Hudson, Hugh S.; Kusano, Kanya; Mandrini, Cristina H.; Peter, Hardi; Vršnak, Bojan; Yan, Yihua

    2012-04-01

    Commission 10 of the International Astronomical Union has more than 650 members who study a wide range of activity phenomena produced by our nearest star, the Sun. Solar activity is intrinsically related to solar magnetic fields and encompasses events from the smallest energy releases (nano- or even picoflares) to the largest eruptions in the Solar System, coronal mass ejections (CMEs), which propagate into the Heliosphere reaching the Earth and beyond. Solar activity is manifested in the appearance of sunspot groups or active regions, which are the principal sources of activity phenomena from the emergence of their magnetic flux through their dispersion and decay. The period 2008-2009 saw an unanticipated extended solar cycle minimum and unprecedentedly weak polar-cap and heliospheric field. Associated with that was the 2009 historical maximum in galactic cosmic rays flux since measurements begun in the middle of the 20th Century. Since then Cycle 24 has re-started solar activity producing some spectacular eruptions observed with a fleet of spacecraft and ground-based facilities. In the last triennium major advances in our knowledge and understanding of solar activity were due to continuing success of space missions as SOHO, Hinode, RHESSI and the twin STEREO spacecraft, further enriched by the breathtaking images of the solar atmosphere produced by the Solar Dynamic Observatory (SDO) launched on 11 February 2010 in the framework of NASA's Living with a Star program. In August 2012, at the time of the IAU General Assembly in Beijing when the mandate of this Commission ends, we will be in the unique position to have for the first time a full 3-D view of the Sun and solar activity phenomena provided by the twin STEREO missions about 120 degrees behind and ahead of Earth and other spacecraft around the Earth and ground-based observatories. These new observational insights are continuously posing new questions, inspiring and advancing theoretical analysis and

  18. Asteroseismic stellar activity relations

    NASA Astrophysics Data System (ADS)

    Bonanno, A.; Corsaro, E.; Karoff, C.

    2014-11-01

    Context. In asteroseismology an important diagnostic of the evolutionary status of a star is the small frequency separation which is sensitive to the gradient of the mean molecular weight in the stellar interior. It is thus interesting to discuss the classical age-activity relations in terms of this quantity. Moreover, as the photospheric magnetic field tends to suppress the amplitudes of acoustic oscillations, it is important to quantify the importance of this effect by considering various activity indicators. Aims: We propose a new class of age-activity relations that connects the Mt. Wilson S index and the average scatter in the light curve with the small frequency separation and the amplitude of the p-mode oscillations. Methods: We used a Bayesian inference to compute the posterior probability of various empirical laws for a sample of 19 solar-like active stars observed by the Kepler telescope. Results: We demonstrate the presence of a clear correlation between the Mt. Wilson S index and the relative age of the stars as indicated by the small frequency separation, as well as an anti-correlation between the S index and the oscillation amplitudes. We argue that the average activity level of the stars shows a stronger correlation with the small frequency separation than with the absolute age that is often considered in the literature. Conclusions: The phenomenological laws discovered in this paper have the potential to become new important diagnostics to link stellar evolution theory with the dynamics of global magnetic fields. In particular we argue that the relation between the Mt. Wilson S index and the oscillation amplitudes is in good agreement with the findings of direct numerical simulations of magneto-convection.

  19. Interdisciplinary Astronomy Activities

    NASA Astrophysics Data System (ADS)

    Nerantzis, Nikolaos; Mitrouda, Aikaterini; Reizopoulou, Ioanna; Sidiropoulou, Eirini; Hatzidimitriou, Antonios

    2016-04-01

    On November 9th, 2015, three didactical hours were dedicated to Interdisciplinary Astronomy Activities (http://wp.me/p6Hte2-1I). Our students and their teachers formed three groups and in rotation, were engaged with the following activities: (a) viewing unique images of the Cosmos in the mobile planetarium STARLAB (http://www.planitario.gr/tholos-starlab-classic-standard.html), (b) watching the following videos: Journey to the end of the universe (https://youtu.be/Ufl_Nwbl8xs), Rosetta update (https://youtu.be/nQ9ivd7wv30), The Solar System (https://youtu.be/d66dsagrTa0), Ambition the film (https://youtu.be/H08tGjXNHO4) in the school's library. Students and teachers were informed about our solar system, the Rosetta mission, the universe, etc. and (c) tactile activities such as Meet our home and Meet our neighbors (http://astroedu.iau.org, http://nuclio.org/astroneighbours/resources) and the creation of planets' 3D models (Geology-Geography A' Class Student's book, pg.15). With the activities above we had the pleasure to join the Cosmic Light Edu Kit / International Year of Light 2015 program. After our Interdisciplinary Astronomy Activities, we did a "small" research: our students had to fill an evaluation about their educational gains and the results can be found here http://wp.me/p6Hte2-2q. Moreover, we discussed about Big Ideas of Science (http://wp.me/p3oRiZ-dm) and through the "big" impact of the Rosetta mission & the infinity of our universe, we print posters with relevant topics and place them to the classrooms. We thank Rosa Doran (Nuclio - President of the Executive Council) for her continuous assistance and support on innovative science teaching proposals. She is an inspiration.

  20. [Primary prevention: physical activity].

    PubMed

    Schuler, G

    2004-01-01

    Traditional risk factors such as smoking, hypertension and being overweight have received considerable attention in recent years, whereas physical activity as a preventive strategy does not enjoy the same public attention. In recent years the level of physical activity has decreased dramatically in children and adolescents in favor of time spent on the internet and in front of the TV. If this trend is allowed to develop along the same direction, a sharp increase in cardiovascular disease can be anticipated. The protective action of physical activity on the cardiovascular system has been well documented in large numbers of patients, and the basic physiological mechanisms have been elucidated. Metabolic changes comprise loss of weight, reduction in triglyceride and LDL levels, as well as an increase in HDL. Insulin sensitivity is enhanced in all tissues postponing the manifestation of diabetes mellitus. Shear forces created by physical activity induce ecNOS within the endothelial lining of the arteries. This enzyme is responsible for controlling vasomotion through the elaboration of NO which causes vasodilation in the smooth muscle within the vessel wall. Utilization of preformed collateral vessels has been postulated repeatedly; so far, however, it only could be documented in animals, not in humans. Nearly all studies concerned with primary prevention have shown a significant negative correlation between energy expenditure during exercise and cardiovascular mortality, even light and moderate exercise will result in a lower incidence. In order to eliminate a sedentary life style in children and adolescents, adequate programs should be initiated in all schools; they should aim for 60 min of physical activity on a daily basis. PMID:15021990