Science.gov

Sample records for activity cell adhesion

  1. Focal Adhesion Kinase Modulates Cell Adhesion Strengthening via Integrin Activation

    PubMed Central

    Michael, Kristin E.; Dumbauld, David W.; Burns, Kellie L.; Hanks, Steven K.

    2009-01-01

    Focal adhesion kinase (FAK) is an essential nonreceptor tyrosine kinase regulating cell migration, adhesive signaling, and mechanosensing. Using FAK-null cells expressing FAK under an inducible promoter, we demonstrate that FAK regulates the time-dependent generation of adhesive forces. During the early stages of adhesion, FAK expression in FAK-null cells enhances integrin activation to promote integrin binding and, hence, the adhesion strengthening rate. Importantly, FAK expression regulated integrin activation, and talin was required for the FAK-dependent effects. A role for FAK in integrin activation was confirmed in human fibroblasts with knocked-down FAK expression. The FAK autophosphorylation Y397 site was required for the enhancements in adhesion strengthening and integrin-binding responses. This work demonstrates a novel role for FAK in integrin activation and the time-dependent generation of cell–ECM forces. PMID:19297531

  2. Epac Activation Regulates Human Mesenchymal Stem Cells Migration and Adhesion.

    PubMed

    Yu, Jiao-Le; Deng, Ruixia; Chung, Sookja K; Chan, Godfrey Chi-Fung

    2016-04-01

    How to enhance the homing of human mesenchymal stem cells (hMSCs) to the target tissues remains a clinical challenge nowadays. To overcome this barrier, the mechanism responsible for the hMSCs migration and engraftment has to be defined. Currently, the exact mechanism involved in migration and adhesion of hMSCs remains unknown. Exchange protein directly activated by cAMP (Epac), a novel protein discovered in cAMP signaling pathway, may have a potential role in regulating cells adhesion and migration by triggering the downstream Rap family signaling cascades. However, the exact role of Epac in cells homing is elusive. Our study evaluated the role of Epac in the homing of hMSCs. We confirmed that hMSCs expressed functional Epac and its activation enhanced the migration and adhesion of hMSCs significantly. The Epac activation was further found to be contributed directly to the chemotactic responses induced by stromal cell derived factor-1 (SDF-1) which is a known chemokine in regulating hMSCs homing. These findings suggested Epac is connected to the SDF-1 signaling cascades. In conclusion, our study revealed that Epac plays a role in hMSCs homing by promoting adhesion and migration. Appropriate manipulation of Epac may enhance the homing of hMSCs and facilitate their future clinical applications.

  3. Activation of the canonical Wnt/{beta}-catenin pathway enhances monocyte adhesion to endothelial cells

    SciTech Connect

    Lee, Dong Kun . E-mail: leedk@memorialhealthsource.com; Nathan Grantham, R.; Trachte, Aaron L.; Mannion, John D.; Wilson, Colleen L.

    2006-08-18

    Monocyte adhesion to vascular endothelium has been reported to be one of the early processes in the development of atherosclerosis. In an attempt to develop strategies to prevent or delay atherosclerosis progression, we analyzed effects of the Wnt/{beta}-catenin signaling pathway on monocyte adhesion to various human endothelial cells. Adhesion of fluorescein-labeled monocytes to various human endothelial cells was analyzed under a fluorescent microscope. Unlike sodium chloride, lithium chloride enhanced monocyte adhesion to endothelial cells in a dose-dependent manner. We further demonstrated that inhibitors for glycogen synthase kinase (GSK)-3{beta} or proteosome enhanced monocyte-endothelial cell adhesion. Results of semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) indicated that activation of Wnt/{beta}-catenin pathway did not change expression levels of mRNA for adhesion molecules. In conclusion, the canonical Wnt/{beta}-catenin pathway enhanced monocyte-endothelial cell adhesion without changing expression levels of adhesion molecules.

  4. Activated leukocyte cell adhesion molecule regulates the interaction between pancreatic cancer cells and stellate cells

    PubMed Central

    Zhang, Wei-Wei; Zhan, Shu-Hui; Geng, Chang-Xin; Sun, Xin; Erkan, Mert; Kleeff, Jörg; Xie, Xiang-Jun

    2016-01-01

    Activated leukocyte cell adhesion molecule (ALCAM/CD166) is a transmembrane glycoprotein that is involved in tumor progression and metastasis. In the present study, the expression and functional role of ALCAM in pancreatic cancer cells and pancreatic stellate cells (PSCs) was investigated. Tissue specimens were obtained from patients with pancreatic ductal adenocarcinoma (n=56) or chronic pancreatitis (CP; n=10), who underwent pancreatic resection, and from normal pancreatic tissue samples (n=10). Immunohistochemistry was used to analyze the localization and expression of ALCAM in pancreatic tissues. Subsequently, reverse transcription-quantitative polymerase chain reaction and immunoblotting were applied to assess the expression of ALCAM in pancreatic cancer Panc-1 and T3M4 cells, as well as in PSCs. An enzyme-linked immunosorbent assay was used to measure ALCAM levels in cell culture medium stimulated by hypoxia, tumor necrosis factor (TNF)-α and transforming growth factor-β. Silencing of ALCAM was performed using ALCAM small interfering (si)RNA and immunocytochemistry was used to analyze the inhibition efficiency. An invasion assay and a cell interaction assay were performed to assess the invasive ability and co-cultured adhesive potential of Panc-1 and T3M4 cells, as well as PSCs. Histologically, ALCAM expression was generally weak or absent in pancreatic cancer cells, but was markedly upregulated in PSCs in pancreatic cancer tissues. ALCAM was highly expressed in PSCs from CP tissues and PSCs surrounding pancreatic intraepithelial neoplasias, as well as in pancreatic cancer cells. ALCAM mRNA was highly expressed in PSCs, with a low to moderate expression in T3M4 and Panc-1 cells. Similar to the mRNA expression, immunoblotting demonstrated that ALCAM protein levels were high in PSCs and T3M4 cells, but low in Panc-1 cells. The expression of TNF-α increased, while hypoxia decreased the secretion of ALCAM in pancreatic cancer Panc-1 and T3M4 cells, and also in

  5. PI3K{gamma} activation by CXCL12 regulates tumor cell adhesion and invasion

    SciTech Connect

    Monterrubio, Maria; Mellado, Mario; Carrera, Ana C.

    2009-10-16

    Tumor dissemination is a complex process, in which certain steps resemble those in leukocyte homing. Specific chemokine/chemokine receptor pairs have important roles in both processes. CXCL12/CXCR4 is the most commonly expressed chemokine/chemokine receptor pair in human cancers, in which it regulates cell adhesion, extravasation, metastatic colonization, angiogenesis, and proliferation. All of these processes require activation of signaling pathways that include G proteins, phosphatidylinositol-3 kinase (PI3K), JAK kinases, Rho GTPases, and focal adhesion-associated proteins. We analyzed these pathways in a human melanoma cell line in response to CXCL12 stimulation, and found that PI3K{gamma} regulates tumor cell adhesion through mechanisms different from those involved in cell invasion. Our data indicate that, following CXCR4 activation after CXCL12 binding, the invasion and adhesion processes are regulated differently by distinct downstream events in these signaling cascades.

  6. Eosinophil adhesion under flow conditions activates mechanosensitive signaling pathways in human endothelial cells

    PubMed Central

    Cuvelier, Susan L.; Paul, Smitha; Shariat, Neda; Colarusso, Pina; Patel, Kamala D.

    2005-01-01

    Leukocyte transmigration can be affected by shear stress; however, the mechanisms by which shear stress modulates transmigration are unknown. We found that adhesion of eosinophils or an eosinophilic cell line to intereukin 4–stimulated endothelial cells led to a shear-dependent increase in endothelial cell intracellular calcium and increased phosphorylation of extracellular signal-regulated kinase (ERK) 2, but not c-Jun NH2-terminal kinase or p38 mitogen-activated protein kinase. Latex beads coated with antibodies were used to characterize the role of specific endothelial cell surface molecules in initiating signaling under shear conditions. We found that ligation of either vascular cell adhesion molecule–1 or E-selectin, but not major histocompatibility complex class I, induced a shear-dependent increase in ERK2 phosphorylation in cytokine-stimulated endothelial cells. Disassembly of the actin cytoskeleton with latrunculin A prevented ERK2 phosphorylation after adhesion under flow conditions, supporting a role for the cytoskeleton in mechanosensing. Rapid phosphorylation of focal adhesion kinase and paxillin occurred under identical conditions, suggesting that focal adhesions were also involved in mechanotransduction. Finally, we found that Rho-associated protein kinase and calpain were both critical in the subsequent transendothelial migration of eosinophils under flow conditions. These data suggest that ligation of leukocyte adhesion molecules under flow conditions leads to mechanotransduction in endothelial cells, which can regulate subsequent leukocyte trafficking. PMID:16172263

  7. Eosinophil adhesion under flow conditions activates mechanosensitive signaling pathways in human endothelial cells.

    PubMed

    Cuvelier, Susan L; Paul, Smitha; Shariat, Neda; Colarusso, Pina; Patel, Kamala D

    2005-09-19

    Leukocyte transmigration can be affected by shear stress; however, the mechanisms by which shear stress modulates transmigration are unknown. We found that adhesion of eosinophils or an eosinophilic cell line to intereukin 4-stimulated endothelial cells led to a shear-dependent increase in endothelial cell intracellular calcium and increased phosphorylation of extracellular signal-regulated kinase (ERK) 2, but not c-Jun NH2-terminal kinase or p38 mitogen-activated protein kinase. Latex beads coated with antibodies were used to characterize the role of specific endothelial cell surface molecules in initiating signaling under shear conditions. We found that ligation of either vascular cell adhesion molecule-1 or E-selectin, but not major histocompatibility complex class I, induced a shear-dependent increase in ERK2 phosphorylation in cytokine-stimulated endothelial cells. Disassembly of the actin cytoskeleton with latrunculin A prevented ERK2 phosphorylation after adhesion under flow conditions, supporting a role for the cytoskeleton in mechano-sensing. Rapid phosphorylation of focal adhesion kinase and paxillin occurred under identical conditions, suggesting that focal adhesions were also involved in mechanotransduction. Finally, we found that Rho-associated protein kinase and calpain were both critical in the subsequent transendothelial migration of eosinophils under flow conditions. These data suggest that ligation of leukocyte adhesion molecules under flow conditions leads to mechanotransduction in endothelial cells, which can regulate subsequent leukocyte trafficking.

  8. Quantal concept of T-cell activation: adhesion domains as immunological synapses

    NASA Astrophysics Data System (ADS)

    Sackmann, Erich

    2011-06-01

    Adhesion micro-domains (ADs) formed during encounters of lymphocytes with antigen-presenting cells (APC) mediate the genetic expression of quanta of cytokines interleukin-2 (IL-2). The IL-2-induced activation of IL-2 receptors promotes the stepwise progression of the T-cells through the cell cycle, hence their name, immunological synapses. The ADs form short-lived reaction centres controlling the recruitment of activators of the biochemical pathway (the kinases Lck and ZAP) while preventing the access of inhibitors (phosphatase CD45) through steric repulsion forces. CD45 acts as the generator of adhesion domains and, through its role as a spacer protein, also as the promoter of the reaction. In a second phase of T-cell-APC encounters, long-lived global reaction spaces (called supramolecular activation complexes (SMAC)) form by talin-mediated binding of the T-cell integrin (LFA-1) to the counter-receptor ICAM-1, resulting in the formation of ring-like tight adhesion zones (peripheral SMAC). The ADs move to the centre of the intercellular adhesion zone forming the central SMAC, which serve in the recycling of the AD. We propose that cell stimulation is triggered by integrating the effect evoked by the short-lived adhesion domains. Similar global reaction platforms are formed by killer cells to destruct APC. We present a testable mechanical model showing that global reaction spaces (SMAC or dome-like contacts between cytotoxic cells and APC) form by self-organization through delayed activation of the integrin-binding affinity and stabilization of the adhesion zones by F-actin recruitment. The mechanical stability and the polarization of the adhering T-cells are mediated by microtubule-actin cross-talk.

  9. Bio-active molecules modified surfaces enhanced mesenchymal stem cell adhesion and proliferation.

    PubMed

    Mobasseri, Rezvan; Tian, Lingling; Soleimani, Masoud; Ramakrishna, Seeram; Naderi-Manesh, Hossein

    2017-01-29

    Surface modification of the substrate as a component of in vitro cell culture and tissue engineering, using bio-active molecules including extracellular matrix (ECM) proteins or peptides derived ECM proteins can modulate the surface properties and thereby induce the desired signaling pathways in cells. The aim of this study was to evaluate the behavior of human bone marrow mesenchymal stem cells (hBM-MSCs) on glass substrates modified with fibronectin (Fn), collagen (Coll), RGD peptides (RGD) and designed peptide (R-pept) as bio-active molecules. The glass coverslips were coated with fibronectin, collagen, RGD peptide and R-peptide. Bone marrow mesenchymal stem cells were cultured on different substrates and the adhesion behavior in early incubation times was investigated using scanning electron microscopy (SEM) and confocal microscopy. The MTT assay was performed to evaluate the effect of different bio-active molecules on MSCs proliferation rate during 24 and 72 h. Formation of filopodia and focal adhesion (FA) complexes, two steps of cell adhesion process, were observed in MSCs cultured on bio-active molecules modified coverslips, specifically in Fn coated and R-pept coated groups. SEM image showed well adhesion pattern for MSCs cultured on Fn and R-pept after 2 h incubation, while the shape of cells cultured on Coll and RGD substrates indicated that they might experience stress condition in early hours of culture. Investigation of adhesion behavior, as well as proliferation pattern, suggests R-peptide as a promising bio-active molecule to be used for surface modification of substrate in supporting and inducing cell adhesion and proliferation.

  10. Co-immobilization of active antibiotics and cell adhesion peptides on calcium based biomaterials.

    PubMed

    Palchesko, Rachelle N; Buckholtz, Gavin A; Romeo, Jared D; Gawalt, Ellen S

    2014-07-01

    Two bioactive molecules with unrelated functions, vancomycin and a cell adhesion peptide, were immobilized on the surface of a potential bone scaffold material, calcium aluminum oxide. In order to accomplish immobilization and retain bioactivity three sequential surface functionalization strategies were compared: 1.) vancomycin was chemically immobilized before a cell adhesion peptide (KRSR), 2.) vancomycin was chemically immobilized after KRSR and 3.) vancomycin was adsorbed after binding the cell adhesion peptide. Both molecules remained on the surface and active using all three reaction sequences and after autoclave sterilization based on osteoblast attachment, bacterial turbidity and bacterial zone inhibition test results. However, the second strategy was superior at enhancing osteoblast attachment and significantly decreasing bacterial growth when compared to the other sequences.

  11. Active Site Formation, Not Bond Kinetics, Limits Adhesion Rate between Human Neutrophils and Immobilized Vascular Cell Adhesion Molecule 1

    PubMed Central

    Waugh, Richard E.; Lomakina, Elena B.

    2009-01-01

    Abstract The formation of receptor ligand bonds at the interface between different cells and between cells and substrates is a widespread phenomenon in biological systems. Physical measurements of bond formation rates between cells and substrates have been exploited to increase our understanding of the biophysical mechanisms that regulate bond formation at interfaces. Heretofore, these measurements have been interpreted in terms of simple bimolecular reaction kinetics. Discrepancies between this simple framework and the behavior of neutrophils adhering to surfaces expressing vascular cell adhesion molecule 1 (VCAM-1) motivated the development of a new kinetic framework in which the explicit formation of active bond formation sites (reaction zones) are a prerequisite for bond formation to occur. Measurements of cells interacting with surfaces having a wide range of VCAM-1 concentrations, and for different durations of contact, enabled the determination of novel kinetic rate constants for the formation of reaction zones and for the intrinsic bond kinetics. Comparison of these rates with rates determined previously for other receptor-ligand pairs points to a predominant role of extrinsic factors such as surface topography and accessibility of active molecules to regions of close contact in determining forward rates of bond formation at cell interfaces. PMID:19134479

  12. Ligand-induced adhesion to activated endothelium and to vascular cell adhesion molecule-1 in lymphocytes transfected with the N-formyl peptide receptor.

    PubMed

    Honda, S; Campbell, J J; Andrew, D P; Engelhardt, B; Butcher, B A; Warnock, R A; Ye, R D; Butcher, E C

    1994-04-15

    Binding of FMLP to the neutrophil N-formyl peptide receptor (FPR) transmits signals through pertussis toxin-sensitive G proteins triggering Ca2+ flux, superoxide production, granule exocytosis, and neutrophil aggregation and adhesion involving the beta 2 (CD18) integrins. Expression of the FPR in mouse fibroblasts or human kidney cells has been shown to confer an N-formyl peptide-inducible Ca2+ flux in transfectants. Here we demonstrate that the transfected receptor can also support ligand-induced alterations in cellular adhesion. We established stable transfectants of mouse L1-2 pre-B cells with cDNA for human FPR (L1-2 FPR cells). The transfectants bind N-formyl-Nle-Leu-Phe-Nle-Tyr-Lys-fluorescein with 1.4 x 10(5) sites per cell and a dissociation constant of 3.3 nM. Stimulation with FMLP induces a transient Ca2+ flux. FMLP also triggers adhesion of L1-2 FPR cells to TNF-alpha- or LPS-activated bEnd3 cells (mouse brain-derived endothelial cells) and to purified mouse VCAM-1. Binding is inhibited by Abs to VCAM-1 and to the alpha-chain of its lymphocyte receptor (the alpha 4 beta 1 integrin, VLA-4). Stimulation with FMLP does not induce a change in cell surface expression of alpha 4. Induced adhesion to VCAM-1 is rapid, detectable at the earliest times measurable (30 to 60 s after FMLP addition), and is inhibited by pertussis toxin. We conclude that FPR can mediate integrin activation not only in neutrophils but also in lymphocytes, and can trigger rapid adhesion via lymphocyte alpha 4 beta 1. The adhesion of lymphocytes is critical to their migration and targeting; our results suggest the possibility of manipulating adhesive responses through expression of chemoattractant receptors in lymphoid cells engineered for cellular therapy, allowing targeted adhesion and potentially migration in response to locally administered ligands.

  13. Decipher the dynamic coordination between enzymatic activity and structural modulation at focal adhesions in living cells

    NASA Astrophysics Data System (ADS)

    Lu, Shaoying; Seong, Jihye; Wang, Yi; Chang, Shiou-Chi; Eichorst, John Paul; Ouyang, Mingxing; Li, Julie Y.-S.; Chien, Shu; Wang, Yingxiao

    2014-07-01

    Focal adhesions (FAs) are dynamic subcellular structures crucial for cell adhesion, migration and differentiation. It remains an enigma how enzymatic activities in these local complexes regulate their structural remodeling in live cells. Utilizing biosensors based on fluorescence resonance energy transfer (FRET), we developed a correlative FRET imaging microscopy (CFIM) approach to quantitatively analyze the subcellular coordination between the enzymatic Src activation and the structural FA disassembly. CFIM reveals that the Src kinase activity only within the microdomain of lipid rafts at the plasma membrane is coupled with FA dynamics. FA disassembly at cell periphery was linearly dependent on this raft-localized Src activity, although cells displayed heterogeneous levels of response to stimulation. Within lipid rafts, the time delay between Src activation and FA disassembly was 1.2 min in cells seeded on low fibronectin concentration ([FN]) and 4.3 min in cells on high [FN]. CFIM further showed that the level of Src-FA coupling, as well as the time delay, was regulated by cell-matrix interactions, as a tight enzyme-structure coupling occurred in FA populations mediated by integrin αvβ3, but not in those by integrin α5β1. Therefore, different FA subpopulations have distinctive regulation mechanisms between their local kinase activity and structural FA dynamics.

  14. [Endothelial cell adhesion molecules].

    PubMed

    Ivanov, A N; Norkin, I A; Puchin'ian, D M; Shirokov, V Iu; Zhdanova, O Iu

    2014-01-01

    The review presents current data concerning the functional role of endothelial cell adhesion molecules belonging to different structural families: integrins, selectins, cadherins, and the immunoglobulin super-family. In this manuscript the regulatory mechanisms and factors of adhesion molecules expression and distribution on the surface of endothelial cells are discussed. The data presented reveal the importance of adhesion molecules in the regulation of structural and functional state of endothelial cells in normal conditions and in pathology. Particular attention is paid to the importance of these molecules in the processes of physiological and pathological angiogenesis, regulation of permeability of the endothelial barrier and cell transmigration.

  15. Activation of cyclic amp/protein kinase: a signaling pathway enhances osteoblast cell adhesion on biomaterials for regenerative engineering.

    PubMed

    Lo, Kevin W-H; Ashe, Keshia M; Kan, Ho Man; Lee, Duron A; Laurencin, Cato T

    2011-04-01

    Osteoblast cell adhesion on biomaterials is an important goal for implants to be useful in bone regeneration technologies. The adhesion of osteoblastic cells to biomaterials has been investigated in the field of bone regenerative engineering. Previous work from our group demonstrated that osteoblastic cells adhering to biodegradable biomaterials require the expression of integrins on the cell surface. However, the underlying molecular signaling mechanism is still not fully clear. We report here that cyclic adenosine monophosphate (cAMP), a small signaling molecule, regulates osteoblast cell adhesion to biomaterial surfaces. We used an in vitro cell adhesion assay to demonstrate that at 0.1 mM, 8-Br-cAMP, a cell-permeable cAMP analog, significantly enhances osteoblast-like cells' (MC3T3-E1) adherence to biomaterials. Moreover, we demonstrate that a commonly used cAMP-elevating agent, forskolin, promotes cell adhesion similar to that of the cell permeable cAMP analog. By using different target-specific cAMP analogs: 8-CPT-2Me-cAMP which specifically activates exchange protein activated by cAMP (Epac), and 6-Bnz-cAMP which specifically activates protein kinase A (PKA), we observed that the PKA signaling pathway plays a dominant role in this process. Thus, this report suggests a new method to enhance osteoblast cell adhesion on biodegradable biomaterials for bone regenerative engineering applications.

  16. PCTK3/CDK18 regulates cell migration and adhesion by negatively modulating FAK activity

    PubMed Central

    Matsuda, Shinya; Kawamoto, Kohei; Miyamoto, Kenji; Tsuji, Akihiko; Yuasa, Keizo

    2017-01-01

    PCTAIRE kinase 3 (PCTK3) is a member of the cyclin dependent kinase family, but its physiological function remains unknown. We previously reported that PCTK3-knockdown HEK293T cells showed actin accumulation at the leading edge, suggesting that PCTK3 is involved in the regulation of actin reorganization. In this study, we investigated the physiological function and downstream signal transduction molecules of PCTK3. PCTK3 knockdown in HEK293T cells increased cell motility and RhoA/Rho-associated kinase activity as compared with control cells. We also found that phosphorylation at residue Tyr-397 in focal adhesion kinase (FAK) was increased in PCTK3-knockdown cells. FAK phosphorylation at Tyr-397 was increased in response to fibronectin stimulation, whereas its phosphorylation was suppressed by PCTK3. In addition, excessive expression of PCTK3 led to the formation of filopodia during the early stages of cell adhesion in HeLa cells. These results indicate that PCTK3 controls actin cytoskeleton dynamics by negatively regulating the FAK/Rho signaling pathway. PMID:28361970

  17. Class A scavenger receptor-mediated cell adhesion requires the sequential activation of Lyn and PI3-kinase.

    PubMed

    Nikolic, Dejan M; Cholewa, Jill; Gass, Cecelia; Gong, Ming C; Post, Steven R

    2007-04-01

    Class A scavenger receptors (SR-A) participate in multiple macrophage functions including macrophage adhesion to modified proteins. SR-A-mediated adhesion may therefore contribute to chronic inflammation by promoting macrophage accumulation at sites of protein modification. The mechanisms that couple SR-A binding to modified proteins with increased cell adhesion have not been defined. In this study, SR-A expressing HEK cells and SR-A+/+ or SR-A-/- macrophages were used to delineate the signaling pathways required for SR-A-mediated adhesion to modified protein. Inhibiting G(i/o) activation, which decreases initial SR-A-mediated cell attachment, did not prevent the subsequent spreading of attached cells. In contrast, inhibition of Src kinases or PI3-kinase abolished SR-A-dependent cell spreading without affecting SR-A-mediated cell attachment. Consistent with these results, the Src kinase Lyn and PI3-kinase were sequentially activated during SR-A-mediated cell spreading. Furthermore, activation of both Lyn and PI3-kinase was required for enhancing paxillin phosphorylation. Activation of a Src kinase-PI3-kinase-Akt pathway was also observed in cells expressing a truncated SR-A protein that does not internalize indicating that SR-A-mediated activation of intracellular signaling cascades following adhesion to MDA-BSA is independent of receptor internalization. Thus SR-A binding to modified protein activates signaling cascades that have distinct roles in regulating initial cell attachment and subsequent cell spreading.

  18. Adhesion to fibronectin promotes the activation of the p125FAK/Zap‐70 complex in human T cells

    PubMed Central

    Bearz, A; Tell, G; Formisano, S; Merluzzi, S; Colombatti, A; Pucillo, C

    1999-01-01

    The β1 integrins are a family of heterodimeric adhesion receptors involved in cell‐to‐cell contacts and cell‐to‐extracellular matrix interactions. Through their adhesive role, integrins participate in transduction of outside/inside signals and contribute to trigger a multitude of cellular events such as differentiation, cell activation, and motility. The fibronectin integrin receptors, α4β1 and α5β1, can function as costimulatory molecules in T‐cell receptor (TCR)‐dependent T‐cell activation. In the current study the Jurkat T‐cell line was used as a model system to investigate the TCR‐independent role of cell adhesion to fibronectin in the activation of Zap‐70, a central molecule in the signalling events in T cells. Upon adhesion to plastic immobilized fibronectin but not to bovine serum albumin (BSA) the phosphorylation of p125FAK, a protein kinase that localizes to focal adhesion sites, was induced. Moreover, clustering of fibronectin receptors led to the detection of a p125FAK/Zap‐70 complex. Finally, while the complex between fak‐B, another protein kinase localized to focal adhesion sites, and Zap‐70 was detected in cells plated either on BSA or on fibronectin, the formation of the p125FAK/Zap‐70 complex appeared specifically induced following fibronectin‐mediated integrin clustering. These data suggest the existence of a high degree of specificity when the members of the β1 integrin family mediate signalling pathways in T cells. PMID:10594689

  19. Mechanics of Nascent Cell Adhesions

    NASA Astrophysics Data System (ADS)

    Mejean, Cecile O.; Schaefer, Andrew W.; Forscher, Paul; Dufresne, Eric R.

    2009-03-01

    Cells have the ability to sense and respond to mechanical and biochemical cues from their environment. In neurons, the binding and restraint of transmembrane cell adhesion molecules (CAMs) can trigger acute periods of axon growth. Preceding growth, the cell must create a stiff mechanical linkage between the CAM and the cytoskeleton. Using holographic optical tweezers, we manipulate CAM-coated beads on the membrane of the cell. We investigate the dynamics of the mechanical properties of this linkage as a function of time, applied force, and CAM density. We find that CAM-coated beads exhibit stochastic intermittent binding to the cytoskeleton. In time, we observed that the adhesions stiffen and their mechanical properties depend on the applied force. Treatment of cells with small molecules that alter cytoskeletal dynamics are used to probe the roles of actin filament assembly and myosin motor activity in adhesion formation.

  20. Focal adhesion kinase modulates activation of NF-κB by flow in endothelial cells

    PubMed Central

    Petzold, Tobias; Orr, A. Wayne; Hahn, Cornelia; Jhaveri, Krishna A.; Parsons, J. Thomas

    2009-01-01

    Atherogenesis involves activation of NF-κB in endothelial cells by fluid shear stress. Because this pathway involves integrins, we investigated the involvement of focal adhesion kinase (FAK). We found that FAK was not required for flow-stimulated translocation of the p65 NF-κB subunit to the nucleus but was essential for phosphorylation of p65 on serine 536 and induction of ICAM-1, an NF-κB-dependent gene. NF-κB activation by TNF-α or hydrogen peroxide was FAK independent. Events upstream of NF-κB, including integrin activation, Rac activation, reactive oxygen production, and degradation of IκB, were FAK independent. FAK therefore regulates NF-κB phosphorylation and transcriptional activity in response to flow by a novel mechanism. PMID:19587216

  1. cAMP-induced Epac-Rap activation inhibits epithelial cell migration by modulating focal adhesion and leading edge dynamics.

    PubMed

    Lyle, Karen S; Raaijmakers, Judith H; Bruinsma, Wytse; Bos, Johannes L; de Rooij, Johan

    2008-06-01

    Epithelial cell migration is a complex process crucial for embryonic development, wound healing and tumor metastasis. It depends on alterations in cell-cell adhesion and integrin-extracellular matrix interactions and on actomyosin-driven, polarized leading edge protrusion. The small GTPase Rap is a known regulator of integrins and cadherins that has also been implicated in the regulation of actin and myosin, but a direct role in cell migration has not been investigated. Here, we report that activation of endogenous Rap by cAMP results in an inhibition of HGF- and TGFbeta-induced epithelial cell migration in several model systems, irrespective of the presence of E-cadherin adhesion. We show that Rap activation slows the dynamics of focal adhesions and inhibits polarized membrane protrusion. Importantly, forced integrin activation by antibodies does not mimic these effects of Rap on cell motility, even though it does mimic Rap effects in short-term cell adhesion assays. From these results, we conclude that Rap inhibits epithelial cell migration, by modulating focal adhesion dynamics and leading edge activity. This extends beyond the effect of integrin affinity modulation and argues for an additional function of Rap in controlling the migration machinery of epithelial cells.

  2. Activated Leukocyte Cell Adhesion Molecule Expression and Shedding in Thyroid Tumors

    PubMed Central

    Miccichè, Francesca; Da Riva, Luca; Fabbi, Marina; Pilotti, Silvana; Mondellini, Piera; Ferrini, Silvano; Canevari, Silvana; Pierotti, Marco A.; Bongarzone, Italia

    2011-01-01

    Activated leukocyte cell adhesion molecule (ALCAM, CD166) is expressed in various tissues, cancers, and cancer-initiating cells. Alterations in expression of ALCAM have been reported in several human tumors, and cell adhesion functions have been proposed to explain its association with cancer. Here we documented high levels of ALCAM expression in human thyroid tumors and cell lines. Through proteomic characterization of ALCAM expression in the human papillary thyroid carcinoma cell line TPC-1, we identified the presence of a full-length membrane-associated isoform in cell lysate and of soluble ALCAM isoforms in conditioned medium. This finding is consistent with proteolytically shed ALCAM ectodomains. Nonspecific agents, such as phorbol myristate acetate (PMA) or ionomycin, provoked increased ectodomain shedding. Epidermal growth factor receptor stimulation also enhanced ALCAM secretion through an ADAM17/TACE-dependent pathway. ADAM17/TACE was expressed in the TPC-1 cell line, and ADAM17/TACE silencing by specific small interfering RNAs reduced ALCAM shedding. In addition, the CGS27023A inhibitor of ADAM17/TACE function reduced ALCAM release in a dose-dependent manner and inhibited cell migration in a wound-healing assay. We also provide evidence for the existence of novel O-glycosylated forms and of a novel 60-kDa soluble form of ALCAM, which is particularly abundant following cell stimulation by PMA. ALCAM expression in papillary and medullary thyroid cancer specimens and in the surrounding non-tumoral component was studied by western blot and immunohistochemistry, with results demonstrating that tumor cells overexpress ALCAM. These findings strongly suggest the possibility that ALCAM may have an important role in thyroid tumor biology. PMID:21364949

  3. Cysteine protease activity of feline Tritrichomonas foetus promotes adhesion-dependent cytotoxicity to intestinal epithelial cells.

    PubMed

    Tolbert, M K; Stauffer, S H; Brand, M D; Gookin, J L

    2014-07-01

    Trichomonads are obligate protozoan parasites most renowned as venereal pathogens of the reproductive tract of humans and cattle. Recently, a trichomonad highly similar to bovine venereal Tritrichomonas foetus but having a unique tropism for the intestinal tract was recognized as a significant cause of colitis in domestic cats. Despite a high prevalence, worldwide distribution, and lack of consistently effective drugs for treatment of the infection, the cellular mechanisms of T. foetus pathogenicity in the intestinal tract have not been examined. The aims of this study were to determine the pathogenic effect of feline T. foetus on porcine intestinal epithelial cells, the dependence of T. foetus pathogenicity on adhesion of T. foetus to the intestinal epithelium, and the identity of mediators responsible for these effects. Using an in vitro coculture approach to model feline T. foetus infection of the intestinal epithelium, these studies demonstrate that T. foetus promotes a direct contact-dependent activation of intestinal epithelial cell apoptosis signaling and progressive monolayer destruction. Moreover, these pathological effects were demonstrated to be largely dependent on T. foetus cell-associated cysteine protease activity. Finally, T. foetus cysteine proteases were identified as enabling cytopathic effects by promoting adhesion of T. foetus to the intestinal epithelium. The present studies are the first to examine the cellular mechanisms of pathogenicity of T. foetus toward the intestinal epithelium and support further investigation of the cysteine proteases as virulence factors in vivo and as potential therapeutic targets for ameliorating the pathological effects of intestinal trichomonosis.

  4. NK cells, displaying early activation, cytotoxicity and adhesion molecules, are associated with mild dengue disease.

    PubMed

    Azeredo, E L; De Oliveira-Pinto, L M; Zagne, S M; Cerqueira, D I S; Nogueira, R M R; Kubelka, C F

    2006-02-01

    During the innate immune response against infections, Natural Killer (NK) cells are as important effector cells as are Cytotoxic T lymphocytes (CTL) generated after antigenic stimulation in the adaptative response. NK cells increase in numbers, after viral infection or vaccination. We investigated the NK cell and CD8 T lymphocyte status in 55 dengue infected patients. The NK (CD56+CD3-) and CD56+ T cell (CD56+CD3+) rates rise during the acute phase of disease. The majority of NK cells from dengue patients display early markers for activation (CD69, HLA-DR, and CD38) and cell adhesion molecules (CD44, CD11a) during the acute phase of disease. The intracellular cytotoxic granule, TIA-1, is also up-regulated early in NK cells. Most of these markers appear also on CD8+ T lymphocytes but during the late acute phase. Circulating IL-15 is elevated in a significant number of patients during early acute infection and its values were statistically correlated with NK frequencies and cytotoxic markers on NKs. We have therefore shown that dengue virus infection is very likely stimulating a cytotoxic response that may be efficient in controlling the virus in synergism with CD8+ T lymphocytes. Interestingly, the heightened CD56+CD3-, CD56+CD3+, CD56+TIA-1+ and CD56+CD11a+ cell rates are associated with mild dengue clinical manifestations and might indicate a good prognosis of the disease.

  5. High-Frequency Mechanostimulation of Cell Adhesion.

    PubMed

    Kadem, Laith F; Suana, K Grace; Holz, Michelle; Wang, Wei; Westerhaus, Hannes; Herges, Rainer; Selhuber-Unkel, Christine

    2017-01-02

    Cell adhesion is regulated by molecularly defined protein interactions and by mechanical forces, which can activate a dynamic restructuring of adhesion sites. Previous attempts to explore the response of cell adhesion to forces have been limited to applying mechanical stimuli that involve the cytoskeleton. In contrast, we here apply a new, oscillatory type of stimulus through push-pull azobenzenes. Push-pull azobenzenes perform a high-frequency, molecular oscillation upon irradiation with visible light that has frequently been applied in polymer surface relief grating. We here use these oscillations to address single adhesion receptors. The effect of molecular oscillatory forces on cell adhesion has been analyzed using single-cell force spectroscopy and gene expression studies. Our experiments demonstrate a reinforcement of cell adhesion as well as upregulated expression levels of adhesion-associated genes as a result of the nanoscale "tickling" of integrins. This novel type of mechanical stimulus provides a previously unprecedented molecular control of cellular mechanosensing.

  6. Impact of simulated microgravity on the secretory and adhesive activity of cultured human vascular endothelial cells.

    NASA Astrophysics Data System (ADS)

    Rudimov, Evgeny; Buravkova, Ludmila; Pogodina, Margarita; Andrianova, Irina

    The layer of vascular endothelial cells (ECs) is a dynamic,disseminated organ that perform the function of an interface between the blood and vascular wall. The endothelial monolayer is able to quickly respond to changes in the microenvironment due to its synthesis of vasoactive substances, chemokines, adhesion molecules expression, etc. ECs are highly sensitive to gravitational changes and capable of short-term and long-term responses (Sangha et al., 2001; Buravkova et al., 2005; Infanger et al., 2006, 2007. However, the question remains how to reflect the impact of microgravity on endothelium under the inflammatory process. Therefore, the aim of this study was to investigate secretory and adhesive activity of human umbilical vein endothelial cells (HUVECs) during simulated microgravity and TNF-a activation. HUVECs were isolated according to Gimbrone et al. (1978) in modification A. Antonov (1981) and used for experiments at 2-4 passages. HUVECs were activated by low level of TNF-a (2 ng/ml). Microgravity was generated by Random Positioning Machine (RPM, Dutch Space, Leiden) placed into the thermostat at 37°C. After 24 hours of clinorotation we measured adhesion molecules expression on the cell surface (ICAM-1, VCAM-1, PECAM-1, E-selectin, CD144, endoglin (CD105)) and cell viability using a flow cytometry. To evaluate the level of target gene expression was used the real time RT-PCR. IL-6 and IL-8 concentration was measured in the conditioned medium of HUVECs by using the ELISA test. We found that simulated microgravity within 24 hours caused a decrease of ICAM-1, CD144, and E-selectin expression, at the same time not affect the cell viability, endoglin and PECAM-1 expression on the surface HUVEC. Furthermore, there were no changes of the level of IL-6 and IL-8 gene expression and their products in the culture medium. TNF-activated HUVECs showed an increase in gene expression of interleukins and molecules involved in the adhesion process, which also was confirmed

  7. Focal adhesion kinase activity is required for actomyosin contractility-based invasion of cells into dense 3D matrices

    PubMed Central

    Mierke, Claudia T.; Fischer, Tony; Puder, Stefanie; Kunschmann, Tom; Soetje, Birga; Ziegler, Wolfgang H.

    2017-01-01

    The focal adhesion kinase (FAK) regulates the dynamics of integrin-based cell adhesions important for motility. FAK’s activity regulation is involved in stress-sensing and focal-adhesion turnover. The effect of FAK on 3D migration and cellular mechanics is unclear. We analyzed FAK knock-out mouse embryonic fibroblasts and cells expressing a kinase-dead FAK mutant, R454-FAK, in comparison to FAK wild-type cells. FAK knock-out and FAKR454/R454 cells invade dense 3D matrices less efficiently. These results are supported by FAK knock-down in wild-type fibroblasts and MDA-MB-231 human breast cancer cells showing reduced invasiveness. Pharmacological interventions indicate that in 3D matrices, cells deficient in FAK or kinase-activity behave similarly to wild-type cells treated with inhibitors of Src-activity or actomyosin-contractility. Using magnetic tweezers experiments, FAKR454/R454 cells are shown to be softer and exhibit impaired adhesion to fibronectin and collagen, which is consistent with their reduced 3D invasiveness. In line with this, FAKR454/R454 cells cannot contract the matrix in contrast to FAK wild-type cells. Finally, our findings demonstrate that active FAK facilitates 3D matrix invasion through increased cellular stiffness and transmission of actomyosin-dependent contractile force in dense 3D extracellular matrices. PMID:28202937

  8. A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion.

    PubMed

    Labernadie, Anna; Kato, Takuya; Brugués, Agustí; Serra-Picamal, Xavier; Derzsi, Stefanie; Arwert, Esther; Weston, Anne; González-Tarragó, Victor; Elosegui-Artola, Alberto; Albertazzi, Lorenzo; Alcaraz, Jordi; Roca-Cusachs, Pere; Sahai, Erik; Trepat, Xavier

    2017-03-01

    Cancer-associated fibroblasts (CAFs) promote tumour invasion and metastasis. We show that CAFs exert a physical force on cancer cells that enables their collective invasion. Force transmission is mediated by a heterophilic adhesion involving N-cadherin at the CAF membrane and E-cadherin at the cancer cell membrane. This adhesion is mechanically active; when subjected to force it triggers β-catenin recruitment and adhesion reinforcement dependent on α-catenin/vinculin interaction. Impairment of E-cadherin/N-cadherin adhesion abrogates the ability of CAFs to guide collective cell migration and blocks cancer cell invasion. N-cadherin also mediates repolarization of the CAFs away from the cancer cells. In parallel, nectins and afadin are recruited to the cancer cell/CAF interface and CAF repolarization is afadin dependent. Heterotypic junctions between CAFs and cancer cells are observed in patient-derived material. Together, our findings show that a mechanically active heterophilic adhesion between CAFs and cancer cells enables cooperative tumour invasion.

  9. Neural cell adhesion molecule-mediated Fyn activation promotes GABAergic synapse maturation in postnatal mouse cortex.

    PubMed

    Chattopadhyaya, Bidisha; Baho, Elie; Huang, Z Josh; Schachner, Melitta; Di Cristo, Graziella

    2013-04-03

    GABAergic basket interneurons form perisomatic synapses, which are essential for regulating neural networks, and their alterations are linked to various cognitive dysfunction. Maturation of basket synapses in postnatal cortex is activity dependent. In particular, activity-dependent downregulation of polysialiac acid carried by the neural cell adhesion molecule (NCAM) regulates the timing of their maturation. Whether and how NCAM per se affects GABAergic synapse development is unknown. Using single-cell genetics to knock out NCAM in individual basket interneurons in mouse cortical slice cultures, at specific developmental time periods, we found that NCAM loss during perisomatic synapse formation impairs the process of basket cell axonal branching and bouton formation. However, loss of NCAM once the synapses are already formed did not show any effect. We further show that NCAM120 and NCAM140, but not the NCAM180 isoform, rescue the phenotype. Finally, we demonstrate that a dominant-negative form of Fyn kinase mimics, whereas a constitutively active form of Fyn kinase rescues, the effects of NCAM knockdown. Altogether, our data suggest that NCAM120/NCAM140-mediated Fyn activation promotes GABAergic synapse maturation in postnatal cortex.

  10. Tuberin, the tuberous sclerosis complex 2 tumor suppressor gene product, regulates Rho activation, cell adhesion and migration.

    PubMed

    Astrinidis, Aristotelis; Cash, Timothy P; Hunter, Deborah S; Walker, Cheryl L; Chernoff, Jonathan; Henske, Elizabeth P

    2002-12-05

    Tuberous sclerosis complex (TSC) is a tumor suppressor gene syndrome characterized by seizures, mental retardation, autism, and tumors of the brain, kidney, heart, retina, and skin. TSC is caused by mutations in either TSC1 or TSC2, both of which are tumor suppressor genes. Hamartin, the protein product of TSC1, was found to interact with the ezrin-radixin-moesin family of cytoskeletal proteins and to activate the small GTPase Rho. To determine whether tuberin, the TSC2 product, can also activate Rho, we stably expressed full-length human tuberin in two cell types: MDCK cells and ELT3 cells. ELT3 cells lack endogenous tuberin expression. We found that expression of human tuberin in both MDCK and ELT3 cells was associated with an increase in the amount of Rho-GTP, but not in Rac1-GTP or cdc42-GTP. Tuberin expression increased cell adhesion in both cell types, and decreased chemotactic cell migration in ELT3 cells. In MDCK cells, there was a decrease in the amount of total Focal Adhesion Kinase (FAK) and an increase in the fraction of phosphorylated FAK. These findings demonstrate for the first time that tuberin activates Rho and regulates cell adhesion and migration. Pathways involving Rho activation may have relevance to the clinical manifestations of TSC, including pulmonary lymphangioleiomyomatosis.

  11. Evaluation of adhesion capacity, cell surface traits and immunomodulatory activity of presumptive probiotic Lactobacillus strains.

    PubMed

    Kotzamanidis, Charalambos; Kourelis, Andreas; Litopoulou-Tzanetaki, Evanthia; Tzanetakis, Nikolaos; Yiangou, Minas

    2010-06-15

    Twelve lactobacilli previously isolated from newborn infants' gastrointestinal tract and Feta cheese were further characterized by pulse field gel eletrophoresis (PFGE). All strains exhibited distinct PFGE genotypic patterns with the exception of DC421 and DC423 strains possessing identical patterns. The strains DC421, 2035 and 2012 were found to posses certain cell surface traits such as hydrophobicity, autoaggregation and/or high adhesive capacity suggesting potential immunomodulatory activity. However, application of the dorsal mouse air pouch system revealed that only the DC421, DC429 and 2035 strains exhibited strong immunostimulatory activity such as increased chemotaxis of polymorphonuclear (PMN) cells in association with increased phagocytosis and cytokine production. The same strains also induced immunomodulatory activity in the gut associated lymphoid tissue in mice in the absence of any inflammatory response. All strains induced IgA production while reduced TNFalpha production by small intestine cells. The strains DC421 and DC429 exerted their effect on the intestine through Toll-like receptor TLR2/TLR4/TLR9 mediated signalling events leading to secretion of a certain profile of cytokines in which gamma interferon (IFN-gamma), interleukin (IL)-5, IL-6 and IL-10 are included. The strain 2035 induced similar cytokine profile through the synergy of TLR2/TLR4. This study further supports the eligibility of the air pouch model to discriminate presumptive probiotic Lactobacillus strains exhibiting immunostimulatory activity in the gut. Furthermore, evidence is provided that the cell surface traits examined may not be the only criteria but an alternative and important component of a complex mechanism that enables a microorganism to interact with the host gut to exert its immunoregulatory activity.

  12. Besnoitia besnoiti infections activate primary bovine endothelial cells and promote PMN adhesion and NET formation under physiological flow condition.

    PubMed

    Maksimov, P; Hermosilla, C; Kleinertz, S; Hirzmann, J; Taubert, A

    2016-05-01

    Besnoitia besnoiti is an obligate intracellular and emerging coccidian parasite of cattle that mainly infects host endothelial cells during acute infection. We here analyzed early innate immune reactions of B. besnoiti-infected primary bovine umbilical vein endothelial cells (BUVEC). B. besnoiti infections significantly activated BUVEC since the gene transcripts of several adhesion molecules (P-selectin, intercellular adhesion molecule 1(ICAM-1)), chemokines (CXCL1, CXCL8, CCL5), and of COX-2 were significantly upregulated during in vitro infection. Overall, the highest upregulation of most transcripts was observed at 24 or 48 h post infection (p.i.). Enhanced adhesion molecule expression in infected host cells was confirmed by PMN adhesion assays being performed under physiological flow conditions revealing a significantly increased PMN adhesion on B. besnoiti-infected BUVEC layers at 24 h p.i. Furthermore, we were able to illustrate neutrophil extracellular traps (NETs) being released by PMN under physiological flow conditions after adhesion to B. besnoiti-infected BUVEC layers. The present study shows that B. besnoiti infections of primary BUVEC induce a cascade of pro-inflammatory reactions and triggers early innate immune responses.

  13. Activation of the repulsive receptor Roundabout inhibits N-cadherin-mediated cell adhesion.

    PubMed

    Rhee, Jinseol; Mahfooz, Najmus S; Arregui, Carlos; Lilien, Jack; Balsamo, Janne; VanBerkum, Mark F A

    2002-10-01

    The formation of axon trajectories requires integration of local adhesive interactions with directional information from attractive and repulsive cues. Here, we show that these two types of information are functionally integrated; activation of the transmembrane receptor Roundabout (Robo) by its ligand, the secreted repulsive guidance cue Slit, inactivates N-cadherin-mediated adhesion. Loss of N-cadherin-mediated adhesion is accompanied by tyrosine phosphorylation of beta-catenin and its loss from the N-cadherin complex, concomitant with the formation of a supramolecular complex containing Robo, Abelson (Abl) kinase and N-cadherin. Local formation of such a receptor complex is an ideal mechanism to steer the growth cone while still allowing adhesion and growth in other directions.

  14. PROLACTIN-INDUCED TYROSINE PHOSPHORYLATION, ACTIVATION AND RECEPTOR ASSOCIATION OF FOCAL ADHESION KINASE (FAK) IN MAMMARY EPITHELIAL CELLS

    EPA Science Inventory

    Prolactin-Induced Tyrosine Phosphorylation, Activation and Receptor
    Association of Focal Adhesion Kinase (FAK) in Mammary Epithelial Cells.
    Suzanne E. Fenton1 and Lewis G. Sheffield2. 1U.S. Environmental Protection
    Agency, MD-72, Research Triangle Park, NC 27711, and

  15. Anthocyanins and their gut metabolites reduce the adhesion of monocyte to TNFα-activated endothelial cells at physiologically relevant concentrations.

    PubMed

    Krga, Irena; Monfoulet, Laurent-Emmanuel; Konic-Ristic, Aleksandra; Mercier, Sylvie; Glibetic, Maria; Morand, Christine; Milenkovic, Dragan

    2016-06-01

    An increasing number of evidence suggests a protective role of dietary anthocyanins against cardiovascular diseases. Anthocyanins' extensive metabolism indicates that their metabolites could be responsible for the protective effects associated with consumption of anthocyanin-rich foods. The aim of this work was to investigate the effect of plasma anthocyanins and their metabolites on the adhesion of monocytes to TNFα-activated endothelial cells and on the expression of genes encoding cell adhesion molecules. Human umbilical vein endothelial cells (HUVECs) were exposed to circulating anthocyanins: cyanidin-3-arabinoside, cyanidin-3-galactoside, cyanidin-3-glucoside, delphinidin-3-glucoside, peonidin-3-glucoside, anthocyanin degradation product: 4-hydroxybenzaldehyde, or to their gut metabolites: protocatechuic, vanillic, ferulic and hippuric acid, at physiologically-relevant concentrations (0.1-2 μM) and time of exposure. Both anthocyanins and gut metabolites decreased the adhesion of monocytes to HUVECs, with a magnitude ranging from 18.1% to 47%. The mixture of anthocyanins and that of gut metabolites also reduced monocyte adhesion. However, no significant effect on the expression of genes encoding E-selectin, ICAM1 and VCAM1 was observed, suggesting that other molecular targets are involved in the observed effect. In conclusion, this study showed the potency of anthocyanins and their gut metabolites to modulate the adhesion of monocytes to endothelial cells, the initial step in atherosclerosis development, under physiologically-relevant conditions.

  16. Both protein kinase A and exchange protein activated by cAMP coordinate adhesion of human vascular endothelial cells.

    PubMed

    Netherton, Stuart J; Sutton, Jayda A; Wilson, Lindsay S; Carter, Rhonda L; Maurice, Donald H

    2007-10-12

    cAMP regulates integrin-dependent adhesions of vascular endothelial cells (VECs) to extracellular matrix proteins, their vascular endothelial cadherin-dependent intercellular adhesions, and their proliferation and migration in response to growth and chemotactic factors. Previously, we reported that cAMP-elevating agents differentially inhibited migration of human VECs isolated from large vascular structures (macro-VECs, human aortic endothelial cells [HAECs]) or small vascular structures (micro-VECs, human microvascular endothelial cells [HMVECs]) and that cAMP hydrolysis by phosphodiesterase (PDE)3 and PDE4 enzymes was important in coordinating this difference. Here we report that 2 cAMP-effector enzymes, namely protein kinase (PK)A and exchange protein activated by cAMP (EPAC), each regulate extracellular matrix protein-based adhesions of both macro- and micro-VECs. Of interest and potential therapeutic importance, we report that although specific pharmacological activation of EPAC markedly stimulated adhesion of micro-VECs to extracellular matrix proteins when PKA was inhibited, this treatment only modestly promoted adhesion of macro-VECs. Consistent with an important role for cAMP PDEs in this difference, PDE3 or PDE4 inhibitors promoted EPAC-dependent adhesions in micro-VECs when PKA was inhibited but not in macro-VECs. At a molecular level, we identify multiple, nonoverlapping, PKA- or EPAC-based signaling protein complexes in both macro- and micro-VECs and demonstrate that each of these complexes contains either PDE3B or PDE4D but not both of these PDEs. Taken together, our data support the concept that adhesion of macro- and micro-VECs is differentially regulated by cAMP and that these differences are coordinated through selective actions of cAMP at multiple nonoverlapping signaling complexes that contain PKA or EPAC and distinct PDE variants.

  17. Suppression of complement regulatory protein C1 inhibitor in vascular endothelial activation by inhibiting vascular cell adhesion molecule-1 action

    SciTech Connect

    Zhang, Haimou; Qin, Gangjian; Liang, Gang; Li, Jinan; Chiu, Isaac; Barrington, Robert A.; Liu, Dongxu . E-mail: dxliu001@yahoo.com

    2007-07-13

    Increased expression of adhesion molecules by activated endothelium is a critical feature of vascular inflammation associated with the several diseases such as endotoxin shock and sepsis/septic shock. Our data demonstrated complement regulatory protein C1 inhibitor (C1INH) prevents endothelial cell injury. We hypothesized that C1INH has the ability of an anti-endothelial activation associated with suppression of expression of adhesion molecule(s). C1INH blocked leukocyte adhesion to endothelial cell monolayer in both static assay and flow conditions. In inflammatory condition, C1INH reduced vascular cell adhesion molecule (VCAM-1) expression associated with its cytoplasmic mRNA destabilization and nuclear transcription level. Studies exploring the underlying mechanism of C1INH-mediated suppression in VCAM-1 expression were related to reduction of NF-{kappa}B activation and nuclear translocation in an I{kappa}B{alpha}-dependent manner. The inhibitory effects were associated with reduction of inhibitor I{kappa}B kinase activity and stabilization of the NF-{kappa}B inhibitor I{kappa}B. These findings indicate a novel role for C1INH in inhibition of vascular endothelial activation. These observations could provide the basis for new therapeutic application of C1INH to target inflammatory processes in different pathologic situations.

  18. Src family kinase activity regulates adhesion, spreading and migration of pancreatic endocrine tumour cells.

    PubMed

    Di Florio, Alessia; Capurso, Gabriele; Milione, Massimo; Panzuto, Francesco; Geremia, Raffaele; Delle Fave, Gianfranco; Sette, Claudio

    2007-03-01

    Pancreatic endocrine tumours (PETs) are rare and 'indolent' neoplasms that usually develop metastatic lesions and exhibit poor response to standard medical treatments. Few studies have investigated pathways responsible for PET cell growth and invasion and no alternative therapeutic strategies have been proposed. In a recent microarray analysis for genes up-regulated in PETs, we have described the up-regulation of soluble Src family tyrosine kinases in this neoplasia, which may represent potentially promising candidates for therapy. Herein, we have investigated the expression and function of Src family kinases in PETS and PET cell lines. Western blot analysis indicated that Src is highly abundant in the PET cell lines CM and QGP-1. Immunohistochemistry and Western blot analyses showed that Src is up-regulated also in human PET lesions. Pharmacological inhibition of Src family kinases by the specific inhibitor PP2 strongly interfered with adhesion, spreading and migration of PET cell lines. Accordingly, the actin cytoskeleton was profoundly altered after inhibition of Src kinases, whereas even prolonged incubation with PP2 exerted no effect on cell cycle progression and/or apoptosis of PET cells. A transient increase in tyrosine phosphorylation of a subset of proteins was observed in QGP-1 cells adhering to the plate, with a peak at 75 min after seeding, when approximately 80% of cells were attached. Inhibition of Src kinases caused a dramatic reduction in the phosphorylation of proteins with different molecular weight that were isolated from the cell extracts by anti-phosphotyrosine immunoprecipitation or pull-down with the SH2 domain of Src. Among them, the docking protein p130Cas interacted with Src and is a major substrate of the Src kinases in QGP-1 cells undergoing adhesion. Our results suggest that Src kinases play a specific role during adhesion, spreading and migration of PET cells and may indicate therapeutical approaches directed to limiting the metastatic

  19. Olive oil phenolic compounds inhibit homocysteine-induced endothelial cell adhesion regardless of their different antioxidant activity.

    PubMed

    Manna, Caterina; Napoli, Daniela; Cacciapuoti, Giovanna; Porcelli, Marina; Zappia, Vincenzo

    2009-05-13

    In this study, we examine the effect of extra virgin olive oil phenolic compounds on homocysteine-induced endothelial dysfunction and whether the protective effects are related to their different scavenging activities. Structurally related compounds have been assayed for their ability to reduce homocysteine-induced monocyte adhesion as well as the cell surface expression of intercellular adhesion molecule-1 (ICAM-1) in EA.hy.926 cells. As well-known, among the selected phenolic compounds, hydroxytyrosol, homovanillyl alcohol, and the hydroxycinnamic acid derivatives caffeic and ferulic acid display high scavenging activities, while tyrosol and p-coumaric acid are poorly active. All of the tested compounds, approaching potential in vivo concentrations, significantly reduce homocysteine-induced cell adhesion and ICAM-1 expression. Interestingly, we report the first evidence that monophenols tyrosol and p-coumaric acid are selectively protective only in homocysteine-activated cells, while they are ineffective in reducing ICAM-1 expression induced by TNFalpha. Finally, we report the synergistic effect of o-diphenolic and monophenolic compounds.

  20. OmpA-like protein influences cell shape and adhesive activity of Tannerella forsythia.

    PubMed

    Abe, T; Murakami, Y; Nagano, K; Hasegawa, Y; Moriguchi, K; Ohno, N; Shimozato, K; Yoshimura, F

    2011-12-01

    Tannerella forsythia, a gram-negative fusiform rod, is implicated in several types of oral anaerobic infections. Most gram-negative bacteria have OmpA-like proteins that are homologous to the OmpA protein in Escherichia coli. We identified an OmpA-like protein in T. forsythia encoded by the tf1331 gene as one of the major proteins by mass spectrometric analysis. Two-dimensional, diagonal electrophoresis showed that the OmpA-like protein formed a dimeric or trimeric structure via intermolecular disulfide bonds. A biotin labeling experiment revealed that a portion of the protein was exposed on the cell surface, even though T. forsythia possesses an S-layer at the outermost cell surface. Using a tf1331-deletion mutant, we showed that the OmpA-like protein affected cell morphology. The length of the mutant cell was reduced almost by half. Cell swelling was observed in more than 40% of the mutant cells. Moreover, the mutant exhibited decreased adhesion to fibronectin, retarded autoaggregation, and reduced cell surface hydrophobicity. These results suggest that the OmpA-like protein in T. forsythia plays an important role in cellular integrity and adhesive function.

  1. Mapping cell surface adhesion by rotation tracking and adhesion footprinting

    NASA Astrophysics Data System (ADS)

    Li, Isaac T. S.; Ha, Taekjip; Chemla, Yann R.

    2017-03-01

    Rolling adhesion, in which cells passively roll along surfaces under shear flow, is a critical process involved in inflammatory responses and cancer metastasis. Surface adhesion properties regulated by adhesion receptors and membrane tethers are critical in understanding cell rolling behavior. Locally, adhesion molecules are distributed at the tips of membrane tethers. However, how functional adhesion properties are globally distributed on the individual cell’s surface is unknown. Here, we developed a label-free technique to determine the spatial distribution of adhesive properties on rolling cell surfaces. Using dark-field imaging and particle tracking, we extract the rotational motion of individual rolling cells. The rotational information allows us to construct an adhesion map along the contact circumference of a single cell. To complement this approach, we also developed a fluorescent adhesion footprint assay to record the molecular adhesion events from cell rolling. Applying the combination of the two methods on human promyelocytic leukemia cells, our results surprisingly reveal that adhesion is non-uniformly distributed in patches on the cell surfaces. Our label-free adhesion mapping methods are applicable to the variety of cell types that undergo rolling adhesion and provide a quantitative picture of cell surface adhesion at the functional and molecular level.

  2. Mapping cell surface adhesion by rotation tracking and adhesion footprinting

    PubMed Central

    Li, Isaac T. S.; Ha, Taekjip; Chemla, Yann R.

    2017-01-01

    Rolling adhesion, in which cells passively roll along surfaces under shear flow, is a critical process involved in inflammatory responses and cancer metastasis. Surface adhesion properties regulated by adhesion receptors and membrane tethers are critical in understanding cell rolling behavior. Locally, adhesion molecules are distributed at the tips of membrane tethers. However, how functional adhesion properties are globally distributed on the individual cell’s surface is unknown. Here, we developed a label-free technique to determine the spatial distribution of adhesive properties on rolling cell surfaces. Using dark-field imaging and particle tracking, we extract the rotational motion of individual rolling cells. The rotational information allows us to construct an adhesion map along the contact circumference of a single cell. To complement this approach, we also developed a fluorescent adhesion footprint assay to record the molecular adhesion events from cell rolling. Applying the combination of the two methods on human promyelocytic leukemia cells, our results surprisingly reveal that adhesion is non-uniformly distributed in patches on the cell surfaces. Our label-free adhesion mapping methods are applicable to the variety of cell types that undergo rolling adhesion and provide a quantitative picture of cell surface adhesion at the functional and molecular level. PMID:28290531

  3. JAM-L-mediated leukocyte adhesion to endothelial cells is regulated in cis by alpha4beta1 integrin activation.

    PubMed

    Luissint, Anny-Claude; Lutz, Pierre G; Calderwood, David A; Couraud, Pierre-Olivier; Bourdoulous, Sandrine

    2008-12-15

    Junctional adhesion molecules (JAMs) are endothelial and epithelial adhesion molecules involved in the recruitment of circulating leukocytes to inflammatory sites. We show here that JAM-L, a protein related to the JAM family, is restricted to leukocytes and promotes their adhesion to endothelial cells. Cis dimerization of JAM-L is required to engage in heterophilic interactions with its cognate counter-receptor CAR (coxsackie and adenovirus receptor). Interestingly, JAM-L expressed on neutrophils binds CAR independently of integrin activation. However, on resting monocytes and T lymphocytes, which express the integrin VLA-4, JAM-L molecules engage in complexes with VLA-4 and mainly accumulate in their monomeric form. Integrin activation is required for the dissociation of JAM-L-VLA-4 complexes and the accumulation of functional JAM-L dimers, which indicates that the leukocyte integrin VLA-4 controls JAM-L function in cis by controlling its dimerization state. This provides a mechanism through which VLA-4 and JAM-L functions are coordinately regulated, allowing JAM-L to strengthen integrin-dependent adhesion of leukocytes to endothelial cells.

  4. Quantitative in vitro assay to measure neutrophil adhesion to activated primary human microvascular endothelial cells under static conditions.

    PubMed

    Wilhelmsen, Kevin; Farrar, Katherine; Hellman, Judith

    2013-08-23

    The vascular endothelium plays an integral part in the inflammatory response. During the acute phase of inflammation, endothelial cells (ECs) are activated by host mediators or directly by conserved microbial components or host-derived danger molecules. Activated ECs express cytokines, chemokines and adhesion molecules that mobilize, activate and retain leukocytes at the site of infection or injury. Neutrophils are the first leukocytes to arrive, and adhere to the endothelium through a variety of adhesion molecules present on the surfaces of both cells. The main functions of neutrophils are to directly eliminate microbial threats, promote the recruitment of other leukocytes through the release of additional factors, and initiate wound repair. Therefore, their recruitment and attachment to the endothelium is a critical step in the initiation of the inflammatory response. In this report, we describe an in vitro neutrophil adhesion assay using calcein AM-labeled primary human neutrophils to quantitate the extent of microvascular endothelial cell activation under static conditions. This method has the additional advantage that the same samples quantitated by fluorescence spectrophotometry can also be visualized directly using fluorescence microscopy for a more qualitative assessment of neutrophil binding.

  5. Lowered Expression of Tumor Suppressor Candidate MYO1C Stimulates Cell Proliferation, Suppresses Cell Adhesion and Activates AKT

    PubMed Central

    Visuttijai, Kittichate; Pettersson, Jennifer; Mehrbani Azar, Yashar; van den Bout, Iman; Örndal, Charlotte; Marcickiewicz, Janusz; Nilsson, Staffan; Hörnquist, Michael; Olsson, Björn; Ejeskär, Katarina

    2016-01-01

    Myosin-1C (MYO1C) is a tumor suppressor candidate located in a region of recurrent losses distal to TP53. Myo1c can tightly and specifically bind to PIP2, the substrate of Phosphoinositide 3-kinase (PI3K), and to Rictor, suggesting a role for MYO1C in the PI3K pathway. This study was designed to examine MYO1C expression status in a panel of well-stratified endometrial carcinomas as well as to assess the biological significance of MYO1C as a tumor suppressor in vitro. We found a significant correlation between the tumor stage and lowered expression of MYO1C in endometrial carcinoma samples. In cell transfection experiments, we found a negative correlation between MYO1C expression and cell proliferation, and MYO1C silencing resulted in diminished cell migration and adhesion. Cells expressing excess of MYO1C had low basal level of phosphorylated protein kinase B (PKB, a.k.a. AKT) and cells with knocked down MYO1C expression showed a quicker phosphorylated AKT (pAKT) response in reaction to serum stimulation. Taken together the present study gives further evidence for tumor suppressor activity of MYO1C and suggests MYO1C mediates its tumor suppressor function through inhibition of PI3K pathway and its involvement in loss of contact inhibition. PMID:27716847

  6. LEWIS X ANTIGEN MEDIATES ADHESION OF HUMAN BREAST CARCINOMA CELLS TO ACTIVATED ENDOTHELIUM

    PubMed Central

    Elola, María Teresa; Capurro, Mariana Isabel; Barrio, María Marcela; Coombs, Peter J.; Taylor, Maureen E.; Drickamer, Kurt; Mordoh, José

    2008-01-01

    SUMMARY Lewis x (Lex, CD15), also known as SSEA-1 (stage specific embryonic antigen-1), is a trisaccharide with the structure Galβ(1-4)Fucα(1-3)GlcNAc, which is expressed on glycoconjugates in human polymorphonuclear granulocytes and various tumors such as colon and breast carcinoma. We have investigated the role of Lex in the adhesion of MCF-7 human breast cancer cells and PMN to human umbilical endothelial cells (HUVEC) and the effects of two different anti-Lex mAbs (FC-2.15 and MCS-1) on this adhesion. We also analyzed the cytolysis of Lex+-cells induced by anti-Lex mAbs and complement when cells were adhered to the endothelium, and the effect of these antibodies on HUVEC. The results indicate that MCF-7 cells can bind to HUVEC, and that MCS-1 but not FC-2.15 mAb inhibit this interaction. Both mAbs can efficiently lyse MCF-7 cells bound to HUVEC in the presence of complement without damaging endothelial cells. We also found a Lex-dependent PMN interaction with HUVEC. Although both anti-Lex mAbs lysed PMN in suspension and adhered to HUVEC, PMN aggregation was only induced by mAb FC-2.15. Blotting studies revealed that the endothelial scavenger receptor C-type lectin (SRCL), which binds Lex-trisaccharide, interacts with specific glycoproteins of Mr ∼ 28 kD and 10 kD from MCF-7 cells. The interaction between Lex+-cancer cells and vascular endothelium is a potential target for cancer treatment. PMID:16850248

  7. Notch-Mediated Cell Adhesion

    PubMed Central

    Murata, Akihiko; Hayashi, Shin-Ichi

    2016-01-01

    Notch family members are generally recognized as signaling molecules that control various cellular responses in metazoan organisms. Early fly studies and our mammalian studies demonstrated that Notch family members are also cell adhesion molecules; however, information on the physiological roles of this function and its origin is limited. In this review, we discuss the potential present and ancestral roles of Notch-mediated cell adhesion in order to explore its origin and the initial roles of Notch family members dating back to metazoan evolution. We hypothesize that Notch family members may have initially emerged as cell adhesion molecules in order to mediate multicellularity in the last common ancestor of metazoan organisms. PMID:26784245

  8. C1q/TNF-related protein-9 inhibits cytokine-induced vascular inflammation and leukocyte adhesiveness via AMP-activated protein kinase activation in endothelial cells.

    PubMed

    Jung, Chang Hee; Lee, Min Jung; Kang, Yu Mi; Lee, Yoo La; Seol, So Mi; Yoon, Hae Kyeong; Kang, Sang-Wook; Lee, Woo Je; Park, Joong-Yeol

    2016-01-05

    Although recent studies have reported cardioprotective effects of C1q/TNF-related protein 9 (CTRP9), the closet adiponectin paralog, its role on cytokine-induced endothelial inflammation is unknown. We investigated whether CTRP9 prevented inflammatory cytokine-induced nuclear factor-kappa B (NF-κB) activation and inhibited the expression of adhesion molecules and a chemokine in the vascular endothelial cell. We used human aortic endothelial cells (HAECs) to examine the effects of CTRP9 on NF-κB activation and the expression of NF-κB-mediated genes, including intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and monocyte chemoattractant protein-1 (MCP-1). Tumor necrosis factor alpha (TNFα) was used as a representative proinflammatory cytokine. In an adhesion assay using THP-1 cells, CTRP9 reduced TNFα-induced adhesion of monocytes to HAECs. Treatment with CTRP9 significantly decreased TNFα-induced activation of NF-κB, as well as the expression of ICAM-1, VCAM-1, and MCP-1. In addition, treatment with CTRP9 significantly increased the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC), the downstream target of AMPK. The inhibitory effect of CTRP9 on the expression of ICAM-1, VCAM-1, and MCP-1 and monocyte adhesion to HAECs was abolished after transfection with an AMPKα1-specific siRNA. Our study is the first to demonstrate that CTRP9 attenuates cytokine-induced vascular inflammation in endothelial cells mediated by AMPK activation.

  9. The Src homology 2 protein Shb promotes cell cycle progression in murine hematopoietic stem cells by regulation of focal adhesion kinase activity

    SciTech Connect

    Gustafsson, Karin; Heffner, Garrett; Wenzel, Pamela L.; Curran, Matthew; Grawé, Jan; McKinney-Freeman, Shannon L.; Daley, George Q.; Welsh, Michael

    2013-07-15

    The widely expressed adaptor protein Shb has previously been reported to contribute to T cell function due to its association with the T cell receptor and furthermore, several of Shb's known interaction partners are established regulators of blood cell development and function. In addition, Shb deficient embryonic stem cells displayed reduced blood cell colony formation upon differentiation in vitro. The aim of the current study was therefore to explore hematopoietic stem and progenitor cell function in the Shb knockout mouse. Shb deficient bone marrow contained reduced relative numbers of long-term hematopoietic stem cells (LT-HSCs) that exhibited lower proliferation rates. Despite this, Shb knockout LT-HSCs responded promptly by entering the cell cycle in response to genotoxic stress by 5-fluorouracil treatment. In competitive LT-HSC transplantations, Shb null cells initially engrafted as well as the wild-type cells but provided less myeloid expansion over time. Moreover, Shb knockout bone marrow cells exhibited elevated basal activities of focal adhesion kinase/Rac1/p21-activated kinase signaling and reduced responsiveness to Stem Cell Factor stimulation. Consequently, treatment with a focal adhesion kinase inhibitor increased Shb knockout LT-HSC proliferation. The altered signaling characteristics thus provide a plausible mechanistic explanation for the changes in LT-HSC proliferation since these signaling intermediates have all been shown to participate in LT-HSC cell cycle control. In summary, the loss of Shb dependent signaling in bone marrow cells, resulting in elevated focal adhesion kinase activity and reduced proliferative responses in LT-HSCs under steady state hematopoiesis, confers a disadvantage to the maintenance of LT-HSCs over time. -- Highlights: • Shb is an adaptor protein operating downstream of tyrosine kinase receptors. • Shb deficiency reduces hematopoietic stem cell proliferation. • The proliferative effect of Shb occurs via increased

  10. Cleavage of extracellular matrix in periodontitis: gingipains differentially affect cell adhesion activities of fibronectin and tenascin-C

    PubMed Central

    Ruggiero, Sabrina; Cosgarea, Raluca; Potempa, Jan; Potempa, Barbara; Eick, Sigrun; Chiquet, Matthias

    2014-01-01

    Gingipains are cysteine proteases that represent major virulence factors of the periodontopathogenic bacterium Porphyromonas gingivalis. Gingipains are reported to degrade extracellular matrix (ECM) of periodontal tissues, leading to tissue destruction and apoptosis. The exact mechanism is not known, however. Fibronectin and tenascin-C are pericellular ECM glycoproteins present in periodontal tissues. Whereas fibronectin mediates fibroblast adhesion, tenascin-C binds to fibronectin and inhibits its cell-spreading activity. Using purified proteins in vitro, we asked whether fibronectin and tenascin-C are cleaved by gingipains at clinically relevant concentrations, and how fragmentation by the bacterial proteases affects their biological activity in cell adhesion. Fibronectin was cleaved into distinct fragments by all three gingipains; however, only arginine-specific HRgpA and RgpB but not lysine-specific Kgp destroyed its cell-spreading activity. This result was confirmed with recombinant cell-binding domain of fibronectin. Of the two major tenascin-C splice variants, the large but not the small was a substrate for gingipains, indicating that cleavage occurred primarily in the alternatively spliced domain. Surprisingly, cleavage of large tenascin-C variant by all three gingipains generated fragments with increased anti-adhesive activity towards intact fibronectin. Fibronectin and tenascin-C fragments were detected in gingival crevicular fluid of a subset of periodontitis patients. We conclude that cleavage by gingipains directly affects the biological activity of both fibronectin and tenascin-C in a manner that might lead to increased cell detachment and loss during periodontal disease. PMID:23313574

  11. Bacterial genotoxins promote inside-out integrin β1 activation, formation of focal adhesion complexes and cell spreading.

    PubMed

    Levi, Laura; Toyooka, Tatsushi; Patarroyo, Manuel; Frisan, Teresa

    2015-01-01

    Integrins are membrane bound receptors that regulate several cellular processes, such as cell adhesion, migration, survival and proliferation, and may contribute to tumor initiation/progression in cells exposed to genotoxic stress. The extent of integrin activation and its role in cell survival upon intoxication with bacterial genotoxins are still poorly characterized. These toxins induce DNA strand breaks in the target cells and activate the DNA damage response (DDR), coordinated by the Ataxia Telangectasia Mutated (ATM) kinase. In the present study, we demonstrate that induction of DNA damage by two bacterial genotoxins promotes activation of integrin β1, leading to enhanced assembly of focal adhesions and cell spreading on fibronectin, but not on vitronectin. This phenotype is mediated by an ATM-dependent inside-out integrin signaling, and requires the actin cytoskeleton remodeler NET1. The toxin-mediated cell spreading and anchorage-independent survival further relies on ALIX and TSG101, two components of the endosomal sorting complex required for transport (ESCRT), known to regulate integrin intracellular trafficking. These data reveal a novel aspect of the cellular response to bacterial genotoxins, and provide new tools to understand the carcinogenic potential of these effectors in the context of chronic intoxication and infection.

  12. Activated peripheral lymphocytes with increased expression of cell adhesion molecules and cytotoxic markers are associated with dengue fever disease.

    PubMed

    Azeredo, Elzinandes L; Zagne, Sonia M O; Alvarenga, Allan R; Nogueira, Rita M R; Kubelka, Claire F; de Oliveira-Pinto, Luzia M

    2006-06-01

    The immune mechanisms involved in dengue fever and dengue hemorrhagic/dengue shock syndrome are not well understood. The ex vivo activation status of immune cells during the dengue disease in patients was examined. CD4 and CD8 T cells were reduced during the acute phase. Interestingly, CD8 T cells co-expressing activation marker HLA-DR, Q, P, and cytolytic granule protein-Tia-1 were significantly higher in dengue patients than in controls. Detection of adhesion molecules indicated that in dengue patients the majority of T cells (CD4 and CD8) express the activation/memory phenotype, characterized as CD44HIGH and lack the expression of the naïve cell marker, CD62L LOW. Also, the levels of T cells co-expressing ICAM-1 (CD54), VLA-4, and LFA-1 (CD11a) were significantly increased. CD8 T lymphocytes expressed predominantly low levels of anti-apoptotic molecule Bcl-2 in the acute phase, possibly leading to the exhibition of a phenotype of activated/effector cells. Circulating levels of IL-18, TGF-b1 and sICAM-1 were significantly elevated in dengue patients. Early activation events occur during acute dengue infection which might contribute to viral clearance. Differences in expression of adhesion molecules among CD4 and CD8 T cells might underlie the selective extravasation of these subsets from blood circulation into lymphoid organs and/or tissues. In addition, activated CD8 T cells would be more susceptible to apoptosis as shown by the alteration in Bcl-2 expression. Cytokines such as IL-18, TGF-b1, and sICAM-1 may be contributing by either stimulating or suppressing the adaptative immune response, during dengue infection, thereby perhaps establishing a relationship with disease severity.

  13. Hydroxycarbamide decreases sickle reticulocyte adhesion to resting endothelium by inhibiting endothelial lutheran/basal cell adhesion molecule (Lu/BCAM) through phosphodiesterase 4A activation.

    PubMed

    Chaar, Vicky; Laurance, Sandrine; Lapoumeroulie, Claudine; Cochet, Sylvie; De Grandis, Maria; Colin, Yves; Elion, Jacques; Le Van Kim, Caroline; El Nemer, Wassim

    2014-04-18

    Vaso-occlusive crises are the main acute complication in sickle cell disease. They are initiated by abnormal adhesion of circulating blood cells to vascular endothelium of the microcirculation. Several interactions involving an intricate network of adhesion molecules have been described between sickle red blood cells and the endothelial vascular wall. We have shown previously that young sickle reticulocytes adhere to resting endothelial cells through the interaction of α4β1 integrin with endothelial Lutheran/basal cell adhesion molecule (Lu/BCAM). In the present work, we investigated the functional impact of endothelial exposure to hydroxycarbamide (HC) on this interaction using transformed human bone marrow endothelial cells and primary human pulmonary microvascular endothelial cells. Adhesion of sickle reticulocytes to HC-treated endothelial cells was decreased despite the HC-derived increase of Lu/BCAM expression. This was associated with decreased phosphorylation of Lu/BCAM and up-regulation of the cAMP-specific phosphodiesterase 4A expression. Our study reveals a novel mechanism for HC in endothelial cells where it could modulate the function of membrane proteins through the regulation of phosphodiesterase expression and cAMP-dependent signaling pathways.

  14. ETHANOL INHIBITS L1 CELL ADHESION MOLECULE TYROSINE PHOSPHORYLATION AND DEPHOSPHORYLATION AND ACTIVATION OF PP60SRC

    PubMed Central

    Yeaney, Natalie K.; He, Min; Tang, Ningfeng; Malouf, Alfred T.; O’Riordan, Mary Ann; Lemmon, Vance; Bearer, Cynthia F.

    2009-01-01

    Fetal alcohol syndrome(Abel, 2000) is a leading cause of mental retardation. The neuropathology found in fetal alcohol syndrome is similar to the phenotypes expressed in diseases caused by mutations in the gene for L1 cell adhesion molecule. L1 has a crucial role in the developing nervous system, acting in cell-cell adhesion, neuronal guidance, and growth. We have previously shown that L1 mediated neurite outgrowth and L1 activation of ERK1/2 is exquisitely sensitive to ethanol (Tang, He, O'Riordan, Farkas, Buck, Lemmon, and Bearer, 2006). One possible mechanism for this effect is through disruption of a tyrosine based sorting signal, Y(1176)RSLE, on the cytoplasmic domain of L1. Our goal was to determine if ethanol inhibited the sorting signal or its phosphorylation state. Ethanol had no effect on L1 distribution to the growth cone or its ability to be expressed on the cell surface. Clustering of L1 resulted in increased dephosphorylation of Y(1176), increased L1 tyrosine phosphorylation, and an increase in the activation of pp60src, all of which were inhibited by 25 mM ethanol. Inhibition of pp60src inhibited increases in L1 tyrosine and ERK1/2 phosphorylation, and Y(1176) dephosphorylation. We conclude that ethanol disrupts L1 trafficking/signaling following its expression on the surface of the growth cone, and prior to its activation of pp60src. PMID:19457108

  15. The relative roles of collagen adhesive receptor DDR2 activation and matrix stiffness on the downregulation of focal adhesion kinase in vascular smooth muscle cells.

    PubMed

    Bhadriraju, Kiran; Chung, Koo-Hyun; Spurlin, Tighe A; Haynes, Ross J; Elliott, John T; Plant, Anne L

    2009-12-01

    Cells within tissues derive mechanical anchorage and specific molecular signals from the insoluble extracellular matrix (ECM) that surrounds them. Understanding the role of different cues that extracellular matrices provide cells is critical for controlling and predicting cell response to scaffolding materials. Using an engineered extracellular matrix of Type I collagen we examined how the stiffness, supramolecular structure, and glycosylation of collagen matrices influence the protein levels of cellular FAK and the activation of myosin II. Our results show that (1) cellular FAK is downregulated on collagen fibrils, but not on a non-fibrillar monolayer of collagen, (2) the downregulation of FAK is independent of the stiffness of the collagen fibrils, and (3) FAK levels are correlated with levels of tyrosine phosphorylation of the collagen adhesion receptor DDR2. Further, siRNA depletion of DDR2 blocks FAK downregulation. Our results suggest that the collagen receptor DDR2 is involved in the regulation of FAK levels in vSMC adhered to Type I collagen matrices, and that regulation of FAK levels in these cells appears to be independent of matrix stiffness.

  16. Nicotine stimulates adhesion molecular expression via calcium influx and mitogen-activated protein kinases in human endothelial cells.

    PubMed

    Wang, Yajing; Wang, Zhaoxia; Zhou, Ying; Liu, Liming; Zhao, Yangxing; Yao, Chenjiang; Wang, Lianyun; Qiao, Zhongdong

    2006-02-01

    To evaluate the effect of nicotine on endothelium dysfunction and development of vascular diseases, we investigated the influence on adhesion molecular expression mediated by nicotine and the mechanism of this effect in human umbilical vein endothelial cells (HUVECs). The result showed that nicotine could induce surface/soluble vascular cell adhesion molecule (VCAM-1) and endothelial selectin (E-selectin) expression in a time-response decline manner and the peak appeared at 15 min. This action could be mediated by mitogen-activated protein kinase/extracellular signal regulated kinase 1/2 (MAPK/ERK1/2) and MAPK/p38 because their activation could be distinctly blocked by MAPK inhibitors, PD098059 or SB203580. Mecamylamine (non-selective nicotinic receptor inhibitor), alpha-bungarotoxin (alpha7 nicotinic receptor inhibitor) could block Ca2+ accumulation, and then, prevented the phosphorylation on ERK1/2 and p38. They also inhibited the surface/soluble VCAM-1, E-selectin production of HUVECs modulated by nicotine. Therefore, we concluded that: (i) nicotine obviously up-regulates VCAM-1 and E-selectin expression at 15 min in HUVECs, (ii) nicotine activates HUVECs triggered by the ERK1/2 and p38 phosphorylation with an involvement of intracellular calcium mobilization chiefly mediated by alpha7 nicotinic receptor, (iii) intracellular Ca2+ activates a sequential pathway from alpha7 nicotinic receptor to the phosphorylation of ERK1/2, p38. These elucidate that nicotine activates HUVECs through fast signal transduction pathway and arguments their capacity of adhesion molecular production. Further more nicotine may contribute its influence to the progression of vascular disease such as atherosclerotic lesion.

  17. Weibel-Palade body size modulates the adhesive activity of its von Willebrand Factor cargo in cultured endothelial cells

    PubMed Central

    Ferraro, Francesco; Mafalda Lopes da, Silva; Grimes, William; Lee, Hwee Kuan; Ketteler, Robin; Kriston-Vizi, Janos; Cutler, Daniel F.

    2016-01-01

    Changes in the size of cellular organelles are often linked to modifications in their function. Endothelial cells store von Willebrand Factor (vWF), a glycoprotein essential to haemostasis in Weibel-Palade bodies (WPBs), cigar-shaped secretory granules that are generated in a wide range of sizes. We recently showed that forcing changes in the size of WPBs modifies the activity of this cargo. We now find that endothelial cells treated with statins produce shorter WPBs and that the vWF they release at exocytosis displays a reduced capability to recruit platelets to the endothelial cell surface. Investigating other functional consequences of size changes of WPBs, we also report that the endothelial surface-associated vWF formed at exocytosis recruits soluble plasma vWF and that this process is reduced by treatments that shorten WPBs, statins included. These results indicate that the post-exocytic adhesive activity of vWF towards platelets and plasma vWF at the endothelial surface reflects the size of their storage organelle. Our findings therefore show that changes in WPB size, by influencing the adhesive activity of its vWF cargo, may represent a novel mode of regulation of platelet aggregation at the vascular wall. PMID:27576551

  18. Weibel-Palade body size modulates the adhesive activity of its von Willebrand Factor cargo in cultured endothelial cells.

    PubMed

    Ferraro, Francesco; Mafalda Lopes da, Silva; Grimes, William; Lee, Hwee Kuan; Ketteler, Robin; Kriston-Vizi, Janos; Cutler, Daniel F

    2016-08-31

    Changes in the size of cellular organelles are often linked to modifications in their function. Endothelial cells store von Willebrand Factor (vWF), a glycoprotein essential to haemostasis in Weibel-Palade bodies (WPBs), cigar-shaped secretory granules that are generated in a wide range of sizes. We recently showed that forcing changes in the size of WPBs modifies the activity of this cargo. We now find that endothelial cells treated with statins produce shorter WPBs and that the vWF they release at exocytosis displays a reduced capability to recruit platelets to the endothelial cell surface. Investigating other functional consequences of size changes of WPBs, we also report that the endothelial surface-associated vWF formed at exocytosis recruits soluble plasma vWF and that this process is reduced by treatments that shorten WPBs, statins included. These results indicate that the post-exocytic adhesive activity of vWF towards platelets and plasma vWF at the endothelial surface reflects the size of their storage organelle. Our findings therefore show that changes in WPB size, by influencing the adhesive activity of its vWF cargo, may represent a novel mode of regulation of platelet aggregation at the vascular wall.

  19. RGD-independent cell adhesion to the carboxy-terminal heparin-binding fragment of fibronectin involves heparin-dependent and -independent activities

    PubMed Central

    1990-01-01

    Cell adhesion to extracellular matrix components such as fibronectin has a complex basis, involving multiple determinants on the molecule that react with discrete cell surface macromolecules. Our previous results have demonstrated that normal and transformed cells adhere and spread on a 33-kD heparin binding fragment that originates from the carboxy-terminal end of particular isoforms (A-chains) of human fibronectin. This fragment promotes melanoma adhesion and spreading in an arginyl-glycyl-aspartyl-serine (RGDS) independent manner, suggesting that cell adhesion to this region of fibronectin is independent of the typical RGD/integrin-mediated binding. Two synthetic peptides from this region of fibronectin were recently identified that bound [3H]heparin in a solid-phase assay and promoted the adhesion and spreading of melanoma cells (McCarthy, J. B., M. K. Chelberg, D. J. Mickelson, and L. T. Furcht. 1988. Biochemistry. 27:1380-1388). The current studies further define the cell adhesion and heparin binding properties of one of these synthetic peptides. This peptide, termed peptide I, has the sequence YEKPGSP-PREVVPRPRPGV and represents residues 1906-1924 of human plasma fibronectin. In addition to promoting RGD-independent melanoma adhesion and spreading in a concentration-dependent manner, this peptide significantly inhibited cell adhesion to the 33-kD fragment or intact fibronectin. Polyclonal antibodies generated against peptide I also significantly inhibited cell adhesion to the peptide, to the 33-kD fragment, but had minimal effect on melanoma adhesion to fibronectin. Anti-peptide I antibodies also partially inhibited [3H]heparin binding to fibronectin, suggesting that peptide I represents a major heparin binding domain on the intact molecule. The cell adhesion activity of another peptide from the 33-kD fragment, termed CS1 (Humphries, M. J., A. Komoriya, S. K. Akiyama, K. Olden, and K. M. Yamada. 1987. J. Biol. Chem., 262:6886-6892) was contrasted with

  20. Two sites on P-selectin (the lectin and epidermal growth factor-like domains) are involved in the adhesion of monocytes to thrombin-activated endothelial cells.

    PubMed Central

    Murphy, J F; McGregor, J L

    1994-01-01

    P-selectin, also known as GMP-140, PADGEM or CD62, is expressed on the surface of thrombin-activated platelets and endothelial cells (EC). It is a member of the selectin family of adhesion molecules that regulate leucocyte interactions with the blood vessel wall. In this study we have found that peptides derived from both the lectin (residues 19-34 and 51-61) and epidermal growth factor (EGF)-like (residues 127-139) domains inhibit the adhesion of peripheral blood mononuclear cells (PBMC), elutriated monocytes and a monocytic cell line (U937) to thrombin-activated EC. This inhibition occurred in a concentration-dependent manner and the peptide most active at the lowest concentrations was the one derived from the EGF-like motif (127-139). The scrambled forms of these peptides, identical in amino acid composition to the authentic peptides but with altered sequences, were not inhibitory. Thrombin-activated platelets supported adhesion of U937 cells and this adhesion was dramatically inhibited by the two peptides derived from the lectin-like domain (residues 19-34 and 51-61). All three peptides, when conjugated to BSA and coated on plastic plates, mediated U937 cell adhesion. This study shows, for the first time, that two sites on P-selectin, the lectin and EGF-like domains, are involved in the adhesion of monocytes to thrombin-activated EC. PMID:7526845

  1. Interplay between activator-inhibitor coupling and cell-matrix adhesion in a cellular automaton model for chondrogenic patterning.

    PubMed

    Kiskowski, Maria A; Alber, Mark S; Thomas, Gilberto L; Glazier, James A; Bronstein, Natalie B; Pu, Jiayu; Newman, Stuart A

    2004-07-15

    We present a stochastic cellular automaton model for the behavior of limb bud precartilage mesenchymal cells undergoing chondrogenic patterning. This "agent-oriented" model represents cells by points on a lattice that obey rules motivated by experimental findings. The "cells" follow these rules as autonomous agents, interacting with other cells and with the microenvironments cell activities produce. The rules include random cell motion, production and lateral deposition of a substrate adhesion molecule (SAM, corresponding to fibronectin), production and release of a diffusible growth factor ("activator," corresponding to TGF-beta) that stimulates production of the SAM, and another diffusible factor ("inhibitor") that suppresses the activity of the activator. We implemented the cellular automaton on a two-dimensional (2D) square lattice to emulate the quasi-2D micromass culture extensively used to study patterning in avian limb bud precartilage cells. We identified parameters that produce nodular patterns that resemble, in size and distribution, cell condensations in leg-cell cultures, thus establishing a correspondence between in vitro and in silico results. We then studied the in vitro and in silico micromass cultures experimentally. We altered the standard in vitro micromass culture by diluting the initial cell density, transiently exposing it to exogenous activator, suppressing the inhibitor, and constitutively activating fibronectin production. We altered the standard in silico micromass culture in each case by changing the corresponding parameter. In vitro and in silico experiments agreed well. We also used the model to test hypotheses for differences in the in vitro patterns of cells derived from chick embryo forelimb and hindlimb. We discuss the applicability of this model to limb development in vivo and to other organ development.

  2. Serum activated leukocyte cell adhesion molecule and intercellular adhesion molecule-1 in patients with gastric cancer: Can they be used as biomarkers?

    PubMed

    Erturk, Kayhan; Tastekin, Didem; Bilgin, Elif; Serilmez, Murat; Bozbey, Hamza Ugur; Sakar, Burak

    2016-02-01

    Cellular adhesion molecules might be used as markers in diagnosis and prognosis in some types of malignant tumors. The purpose of this study was to determine the clinical significance of the serum levels of activated leukocyte cell adhesion molecule-1 (ALCAM) and intercellular adhesion molecule-1 (ICAM-1) in gastric cancer (GC) patients. Fifty-eight GC patients and 20 age- and sex-matched healthy controls were enrolled into this study. Pretreatment serum markers were determined by the solid-phase sandwich enzyme-linked immunosorbent assay (ELISA). The median age at diagnosis was 59.5 years (range 32-82 years). Tumor localizations of the majority of the patients were antrum (n=42, 72.4%) and tumor histopathologies of the majority of the patients were diffuse (n=43, 74.1%). The majority of the patients had stage IV disease (n=41, 70.7%). Thirty six (62.1%) patients had lymph node involvement. The median follow-up time was 66 months (range 1-97.2 months). At the end of the observation period, 26 patients (44.8%) were dead. The median survival for all patients was 21.4±5 months (%95 CI, 11.5-31.3). The 1-year survival rates were 66.2%. The baseline serum ALCAM levels of the patients were significantly higher than those of the controls (p=0.001). There was no significant difference in the serum levels of ICAM-1 between the patients and controls (p=0.232). No significant correlation was detected between the levels of the serum markers and other clinical parameters (p>0.05). Tumor localization (p=0.03), histopathology (p=0.05), and response to chemotherapy (p=0.003) had prognostic factors on survival. Neither serum ALCAM levels nor serum ICAM-1 levels were identified to have a prognostic role on overall survival (ICAM-1 p=0.6, ALCAM p=0.25). In conclusion, serum levels of ALCAM were found to have diagnostic value in GC patients.

  3. Construction of multifunctional proteins for tissue engineering: epidermal growth factor with collagen binding and cell adhesive activities.

    PubMed

    Hannachi Imen, Elloumi; Nakamura, Makiko; Mie, Masayasu; Kobatake, Eiry

    2009-01-01

    The development of different techniques based on natural and polymeric scaffolds are useful for the design of different biomimetic materials. These approaches, however, require supplementary steps for the chemical or physical modification of the biomaterial. To avoid such steps, in the present study, we constructed a new multifunctional protein that can be easily immobilized onto hydrophobic surfaces, and at the same time helps enhance specific cell adhesion and proliferation onto collagen substrates. A collagen binding domain was fused to a previously constructed protein, which had an epidermal growth factor fused to a hydrophobic peptide that allows for cell adhesion. The new fusion protein, designated fnCBD-ERE-EGF is produced in Escherichia coli, and its abilities to bind to collagen and promote cell proliferation were investigated. fnCBD-ERE-EGF was shown to keep both collagen binding and cell growth-promoting activities comparable to those of the corresponding unfused proteins. The results obtained in this study also suggest the use of a fnCBD-ERE-EGF as an alternative for the design of multifunctional ECM-bound growth factor based materials.

  4. Arsenic alters vascular smooth muscle cell focal adhesion complexes leading to activation of FAK-src mediated pathways

    SciTech Connect

    Pysher, Michele D. Chen, Qin M.; Vaillancourt, Richard R.

    2008-09-01

    Chronic exposure to arsenic has been linked to tumorigenesis, cardiovascular disease, hypertension, atherosclerosis, and peripheral vascular disease; however, the molecular mechanisms underlying its pathological effects remain elusive. In this study, we investigated arsenic-induced alteration of focal adhesion protein complexes in normal, primary vascular smooth muscle cells. We demonstrate that exposure to environmentally relevant concentrations of arsenic (50 ppb As{sup 3+}) can alter focal adhesion protein co-association leading to activation of downstream pathways. Co-associated proteins were identified and quantitated via co-immunoprecipitation, SDS-PAGE, and Western blot analysis followed by scanning densitometry. Activation of MAPK pathways in total cell lysates was evaluated using phosphor-specific antibodies. In our model, arsenic treatment caused a sustained increase in FAK-src association and activation, and induced the formation of unique signaling complexes (beginning after 3-hour As{sup 3+} exposure and continuing throughout the 12-hour time course studied). The effects of these alterations were manifested as chronic stimulation of downstream PAK, ERK and JNK pathways. Past studies have demonstrated that these pathways are involved in cellular survival, growth, proliferation, and migration in VSMCs.

  5. Cell adhesion: integrating cytoskeletal dynamics and cellular tension

    PubMed Central

    Parsons, J. Thomas; Horwitz, Alan Rick; Schwartz, Martin A.

    2010-01-01

    Cell migration affects all morphogenetic processes and contributes to numerous diseases, including cancer and cardiovascular disease. For most cells in most environments, movement begins with protrusion of the cell membrane followed by the formation of new adhesions at the cell front that link the actin cytoskeleton to the substratum, generation of traction forces that move the cell forwards and disassembly of adhesions at the cell rear. Adhesion formation and disassembly drive the migration cycle by activating Rho GTPases, which in turn regulate actin polymerization and myosin II activity, and therefore adhesion dynamics. PMID:20729930

  6. Cell-Cell Adhesion and Breast Cancer.

    DTIC Science & Technology

    1998-01-01

    Staging of breast cancer. In: K.I. Bland and E.M. Copeland (eds.), The breast: Comprehensive management of benign and malignant diseases , pp. 313-330... desmosomes . The physical strength of adhesion between two cells is likely to be dependent upon a number of factors, including the number of adhesion

  7. Pattern formation in cell membrane adhesion

    NASA Astrophysics Data System (ADS)

    Discher, Dennis; Hategan, A.; Sengupta, K.; Sackmann, E.

    2004-03-01

    Strong adhesion of highly active cells often nucleates focal adhesions or related structures that are, over time, reinforced by cytoskeleton (actin, etc.). Red cells lack such complex adhesion systems, but they are shown here to also exhibit complex spatial patterns within an adhesive contact zone. While strong adhesion and spreading of the red cell to a dense poly-L-lysine surface appears complete in < 1 s by reflective interference microscopy, over longer times of 10-15 min or more distinct patterns in fluorescently labeled membrane components emerge. The fluorescent lipid Fl-PE (fluorescein phosphoethanolamine), in particular, is seen to diffuse and reorganize (eg. worm-like domains of <500 nm) within the contact zone, independent of whether the cell is intact or ruptured. Lipid patterns are accompanied by visible perturbations in band 3 distribution and weaker perturbations in membrane skeleton actin. Although fluorescent poly-L-lysine is shown to be uniform under cells, pressing down on the membrane quenches the lipid patterns and reveals the topographical basis for pattern formation. Regions of strong contact are thus separated by regions where the membrane is more distant from the surface.

  8. An epithelial cell adhesion molecule- and CD3-bispecific antibody plus activated T-cells can eradicate chemoresistant cancer stem-like pancreatic carcinoma cells in vitro.

    PubMed

    Umebayashi, Masayo; Kiyota, Akifumi; Koya, Norihiro; Tanaka, Hiroto; Onishi, Hideya; Katano, Mitsuo; Morisaki, Takashi

    2014-08-01

    Cancer stem-like properties of various types of cancer, including pancreatic cancer, one of the most aggressive types, correlate with metastasis, invasion, and therapeutic resistance. More importantly, chemoresistance in cancer stem-like cells (CSLCs) is a critical problem for eradication of pancreatic cancer. Several cell surface markers, such as CD44 and epithelial cell adhesion molecule (EpCAM), are molecular targets on CSLCs of pancreatic carcinoma. In this study, we investigated whether catumaxomab, a clinical-grade bi-specific antibody that binds to both EpCAM on tumor cells and CD3 on T-cells, combined with activated T-cells can eliminate chemoresistant pancreatic CSLCs in vitro. Firstly, we established a CSLC line (MU-PK1) from human pancreatic carcinoma cells derived from a patient with chemoresistant and disseminated pancreatic cancer. These CSLCs were almost completely resistant to gemcitabine-mediated cytotoxicity up to a concentration of 10 μg/ml. The cells expressed high levels of CSLC markers (CD44 and EpCAM) and had significantly higher capacities for sphere formation, invasion, and aldehyde dehydrogenase-1 expression, which are associated with cancer stemness properties. We found that pre-treatment with catumaxomab and subsequent addition of interleukin-2/OKT3 activated autologous T-cells eliminated CSLCs during a short incubation period. Moreover, when MU-PK1 cells were cultured under hypoxic conditions, the CSLCs became more aggressive. However, the combination of cytokine-activated killer T-cells with catumaxomab successfully lysed almost all these cells. In conclusion, catumaxomab combined with activated T-cells may be a potent therapeutic modality to eradicate chemoresistant pancreatic CSLCs.

  9. Surface grafting of a thermoplastic polyurethane with methacrylic acid by previous plasma surface activation and by ultraviolet irradiation to reduce cell adhesion.

    PubMed

    Alves, P; Pinto, S; Kaiser, Jean-Pierre; Bruinink, Arie; de Sousa, Hermínio C; Gil, M H

    2011-02-01

    The material performance, in a biological environment, is mainly mediated by its surface properties and by the combination of chemical, physical, biological, and mechanical properties required, for a specific application. In this study, the surface of a thermoplastic polyurethane (TPU) material (Elastollan(®)1180A50) was activated either by plasma or by ultra-violet (UV) irradiation. After surface activation, methacrylic acid (MAA) was linked to the surface of TPU in order to improve its reactivity and to reduce cell adhesion. Grafted surfaces were evaluated by X-ray photoelectron spectroscopy (XPS), by atomic force microscopy (AFM) and by contact angle measurements. Blood compatibility studies and cell adhesion tests with human bone marrow cells (HBMC) were also performed. If was found that UV grafting method led to better results than the plasma activation method, since cell adhesion was reduced when methacrylic acid was grafted to the TPU surface by UV.

  10. Inhibition of Adhesion Molecule Gene Expression and Cell Adhesion by the Metabolic Regulator PGC-1α.

    PubMed

    Minsky, Neri; Roeder, Robert G

    2016-01-01

    Cell adhesion plays an important role in determining cell shape and function in a variety of physiological and pathophysiological conditions. While links between metabolism and cell adhesion were previously suggested, the exact context and molecular details of such a cross-talk remain incompletely understood. Here we show that PGC-1α, a pivotal transcriptional co-activator of metabolic gene expression, acts to inhibit expression of cell adhesion genes. Using cell lines, primary cells and mice, we show that both endogenous and exogenous PGC-1α down-regulate expression of a variety of cell adhesion molecules. Furthermore, results obtained using mRNA stability measurements as well as intronic RNA expression are consistent with a transcriptional effect of PGC-1α on cell adhesion gene expression. Interestingly, the L2/L3 motifs of PGC-1α, necessary for nuclear hormone receptor activation, are only partly required for inhibition of several cell adhesion genes by PGC-1α. Finally, PGC-1α is able to modulate adhesion of primary fibroblasts and hepatic stellate cells to extracellular matrix proteins. Our results delineate a cross talk between a central pathway controlling metabolic regulation and cell adhesion, and identify PGC-1α as a molecular link between these two major cellular networks.

  11. Inhibition of Adhesion Molecule Gene Expression and Cell Adhesion by the Metabolic Regulator PGC-1α

    PubMed Central

    Minsky, Neri; Roeder, Robert G.

    2016-01-01

    Cell adhesion plays an important role in determining cell shape and function in a variety of physiological and pathophysiological conditions. While links between metabolism and cell adhesion were previously suggested, the exact context and molecular details of such a cross-talk remain incompletely understood. Here we show that PGC-1α, a pivotal transcriptional co-activator of metabolic gene expression, acts to inhibit expression of cell adhesion genes. Using cell lines, primary cells and mice, we show that both endogenous and exogenous PGC-1α down-regulate expression of a variety of cell adhesion molecules. Furthermore, results obtained using mRNA stability measurements as well as intronic RNA expression are consistent with a transcriptional effect of PGC-1α on cell adhesion gene expression. Interestingly, the L2/L3 motifs of PGC-1α, necessary for nuclear hormone receptor activation, are only partly required for inhibition of several cell adhesion genes by PGC-1α. Finally, PGC-1α is able to modulate adhesion of primary fibroblasts and hepatic stellate cells to extracellular matrix proteins. Our results delineate a cross talk between a central pathway controlling metabolic regulation and cell adhesion, and identify PGC-1α as a molecular link between these two major cellular networks. PMID:27984584

  12. Adhesion and metabolic activity of human corneal cells on PCL based nanofiber matrices.

    PubMed

    Stafiej, Piotr; Küng, Florian; Thieme, Daniel; Czugala, Marta; Kruse, Friedrich E; Schubert, Dirk W; Fuchsluger, Thomas A

    2017-02-01

    In this work, polycaprolactone (PCL) was used as a basic polymer for electrospinning of random and aligned nanofiber matrices. Our aim was to develop a biocompatible substrate for ophthalmological application to improve wound closure in defects of the cornea as replacement for human amniotic membrane. We investigated whether blending the hydrophobic PCL with poly (glycerol sebacate) (PGS) or chitosan (CHI) improves the biocompatibility of the matrices for cell expansion. Human corneal epithelial cells (HCEp) and human corneal keratocytes (HCK) were used for in vitro biocompatibility studies. After optimization of the electrospinning parameters for all blends, scanning electron microscopy (SEM), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and water contact angle were used to characterize the different matrices. Fluorescence staining of the F-actin cytoskeleton of the cells was performed to analyze the adherence of the cells to the different matrices. Metabolic activity of the cells was measured by cell counting kit-8 (CCK-8) for 20days to compare the biocompatibility of the materials. Our results show the feasibility of producing uniform nanofiber matrices with and without orientation for the used blends. All materials support adherence and proliferation of human corneal cell lines with oriented growth on aligned matrices. Although hydrophobicity of the materials was lowered by blending PCL, no increase in biocompatibility or proliferation, as was expected, could be measured. All tested matrices supported the expansion of human corneal cells, confirming their potential as substrates for biomedical applications.

  13. Cell-Substrate Adhesion by Amoeboid Cells

    NASA Astrophysics Data System (ADS)

    Flanders, Bret; Panta, Krishna

    Amoeboid migration is a rapid (10 μm min-1) mode of migration that some tumor cells exhibit. To permit such rapid movement, the adhesive contacts between the cell and the substrate must be relatively short-lived and weak. In this study, we investigate the basic adhesive character of amoeboid cells (D. discoideum) in contact with silanized glass substrates. We observe the initiation and spreading of the adhesive contacts that these cells establish as they settle under gravity onto the substrate and relax towards mechanical equilibrium. The use of interference reflection microscopy and cellular tethering measurements have allowed us to determine the basic adhesive properties of the cell: the membrane-medium interfacial energy; the bending modulus; the equilibrium contact angle; and the work of adhesion. We find the time scale on which settling occurs to be longer than expected. Implications of these results on adhesion and migration will be discussed. The authors are grateful for support from NSF (CBET-1451903) and NIH (1R21EY026392).

  14. Neutrophil adhesion and activation under flow

    PubMed Central

    Zarbock, Alexander; Ley, Klaus

    2009-01-01

    Neutrophil recruitment into inflamed tissue in response to injury or infection is tightly regulated. Reduced neutrophil recruitment can result in a reduced ability to fight invading microorganisms. During inflammation, neutrophils roll along the endothelial wall of postcapillary venules and integrate inflammatory signals. Neutrophil activation by selectins and chemokines regulates integrin adhesiveness. Binding of activated integrins to their counter-receptors on endothelial cells induces neutrophil arrest and firm adhesion. Adherent neutrophils can be further activated to undergo cytoskeletal rearrangement, crawling, transmigration, superoxide production and respiratory burst. Signaling through G-protein coupled receptors, selectin ligands, Fc receptors and outside-in signaling of integrins are all involved in neutrophil activation, but their interplay in the multistep process of recruitment are only beginning to emerge. This review provides an overview of signaling in rolling and adherent neutrophils. PMID:19037827

  15. Progesterone promotes focal adhesion formation and migration in breast cancer cells through induction of protease-activated receptor-1.

    PubMed

    Diaz, Jorge; Aranda, Evelyn; Henriquez, Soledad; Quezada, Marisol; Espinoza, Estefanía; Bravo, Maria Loreto; Oliva, Bárbara; Lange, Soledad; Villalon, Manuel; Jones, Marius; Brosens, Jan J; Kato, Sumie; Cuello, Mauricio A; Knutson, Todd P; Lange, Carol A; Leyton, Lisette; Owen, Gareth I

    2012-08-01

    Progesterone and progestins have been demonstrated to enhance breast cancer cell migration, although the mechanisms are still not fully understood. The protease-activated receptors (PARs) are a family of membrane receptors that are activated by serine proteases in the blood coagulation cascade. PAR1 (F2R) has been reported to be involved in cancer cell migration and overexpressed in breast cancer. We herein demonstrate that PAR1 mRNA and protein are upregulated by progesterone treatment of the breast cancer cell lines ZR-75 and T47D. This regulation is dependent on the progesterone receptor (PR) but does not require PR phosphorylation at serine 294 or the PR proline-rich region mPRO. The increase in PAR1 mRNA was transient, being present at 3  h and returning to basal levels at 18  h. The addition of a PAR1-activating peptide (aPAR1) to cells treated with progesterone resulted in an increase in focal adhesion (FA) formation as measured by the cellular levels of phosphorylated FA kinase. The combined but not individual treatment of progesterone and aPAR1 also markedly increased stress fiber formation and the migratory capacity of breast cancer cells. In agreement with in vitro findings, data mining from the Oncomine platform revealed that PAR1 expression was significantly upregulated in PR-positive breast tumors. Our observation that PAR1 expression and signal transduction are modulated by progesterone provides new insight into how the progestin component in hormone therapies increases the risk of breast cancer in postmenopausal women.

  16. Inhibitory effect of butein on tumor necrosis factor-α-induced expression of cell adhesion molecules in human lung epithelial cells via inhibition of reactive oxygen species generation, NF-κB activation and Akt phosphorylation.

    PubMed

    Jang, Ji Hoon; Yang, Eun Sun; Min, Kyoung-Jin; Kwon, Taeg Kyu

    2012-12-01

    Cell adhesion molecules play an important role in inflammatory response, angiogenesis and tumor progression. Butein (tetrahydroxychalcone) is a small molecule from natural sources, known to be a potential therapeutic drug with anti-inflammatory, anticancer and antioxidant activities. In the present study, we investigated the inhibitory effect of butein on tumor necrosis factor (TNF)-α-induced adhesion molecule expression and its molecular mechanism of action. Butein significantly decreased TNF-α-induced monocyte (U937) cell adhesion to lung epithelial cells in a dose-dependent manner. Butein also inhibited the protein and mRNA expression of intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in TNF-α-stimulated A549 human lung epithelial cells in a dose-dependent manner. Butein inhibited TNF-α-induced reactive oxygen species (ROS) generation and nuclear factor-κB (NF-κB) activation in A549 cells; it also inhibited the phosphorylation of MAPKs and Akt, suggesting that the MAPK/Akt signaling pathway may be involved in the butein-mediated inhibition of TNF-α-induced leukocyte adhesion to A549 cells. Collectively, our results suggest that butein affects cell adhesion through the inhibition of TNF-α-induced ICAM-1 and VCAM-1 expression by inhibiting the NF-κB/MAPK/Akt signaling pathway and ROS generation, thereby, elucidating the role of butein in the anti-inflammatory response.

  17. Desmoglein 2 Compensates for Desmoglein 3 but Does Not Control Cell Adhesion via Regulation of p38 Mitogen-activated Protein Kinase in Keratinocytes

    PubMed Central

    Hartlieb, Eva; Rötzer, Vera; Radeva, Mariya; Spindler, Volker; Waschke, Jens

    2014-01-01

    Desmosomal cadherins are transmembrane adhesion molecules that provide cell adhesion by interacting in the intercellular space of adjacent cells. In keratinocytes, several desmoglein (Dsg1–4) and desmocollin (Dsc1–3) isoforms are coexpressed. We have shown previously that Dsg2 is less important for keratinocyte cohesion compared with Dsg3 and that the latter forms a complex with p38 MAPK. In this study, we compared the involvement of Dsg2 and Dsg3 in the p38 MAPK-dependent regulation of keratinocyte cohesion. We show that loss of cell adhesion and keratin filament retraction induced by Dsg3 depletion is ameliorated by specific p38 MAPK inhibition. Furthermore, in contrast to depletion of Dsg2, siRNA-mediated silencing of Dsg3 induced p38 MAPK activation, which is in line with immunoprecipitation experiments demonstrating the interaction of activated p38 MAPK with Dsg3 but not with Dsg2. Cell fractionation into a cytoskeleton-unbound and a cytoskeleton-anchored desmosome-containing pool revealed that Dsg3, in contrast to Dsg2, is present in relevant amounts in the unbound pool in which activated p38 MAPK is predominantly detectable. Moreover, because loss of cell adhesion by Dsg3 depletion was partially rescued by p38 MAPK inhibition, we conclude that, besides its function as an adhesion molecule, Dsg3 is strengthening cell cohesion via modulation of p38 MAPK-dependent keratin filament reorganization. Nevertheless, because subsequent targeting of Dsg3 in Dsg2-depleted cells led to drastically enhanced keratinocyte dissociation and Dsg2 was enhanced at the membrane in Dsg3 knockout cells, we conclude that Dsg2 compensates for Dsg3 loss of function. PMID:24782306

  18. Plasma polymerization for cell adhesive/anti-adhesive implant coating

    NASA Astrophysics Data System (ADS)

    Meichsner, Juergen; Testrich, Holger; Rebl, Henrike; Nebe, Barbara

    2015-09-01

    Plasma polymerization of ethylenediamine (C2H8N2, EDA) and perfluoropropane (C3F8, PFP) with admixture of argon and hydrogen, respectively, was studied using an asymmetric 13.56 MHz CCP. The analysis of the plasma chemical gas phase processes for stable molecules revealed consecutive reactions: C2H8N2 consumption, intermediate product NH3, and main final product HCN. In C3F8- H2 plasma the precursor molecule C3F8 and molecular hydrogen are consumed and HF as well as CF4 and C2F6 are found as main gaseous reaction products. The deposited plasma polymer films on the powered electrode are strongly cross-linked due to ion bombardment. The stable plasma polymerized films from EDA are characterized by high content of nitrogen with N/C ratio of about 0.35. The plasma polymerized fluorocarbon film exhibit a reduced F/C ratio of about 1.2. Adhesion tests with human osteoblast cell line MG-63 on coated Ti6Al4V samples (polished) compared with uncoated reference sample yielded both, the enhanced cell adhesion for plasma polymerized EDA and significantly reduced cell adhesion for fluorocarbon coating, respectively. Aging of the plasma polymerized EDA film, in particular due to the reactions with oxygen from air, showed no significant change in the cell adhesion. The fluorocarbon coating with low cell adhesion is of interest for temporary implants. Funded by the Campus PlasmaMed.

  19. DNA copy number aberrations in small-cell lung cancer reveal activation of the focal adhesion pathway

    PubMed Central

    Ocak, S; Yamashita, H; Udyavar, AR; Miller, AN; Gonzalez, AL; Zou, Y; Jiang, A; Yi, Y; Shyr, Y; Estrada, L; Quaranta, V; Massion, PP

    2015-01-01

    Small-cell lung cancer (SCLC) is the most aggressive subtype of lung cancer in its clinical behavior, with a 5-year overall survival as low as 5%. Despite years of research in the field, molecular determinants of SCLC behavior are still poorly understood, and this deficiency has translated into an absence of specific diagnostics and targeted therapeutics. We hypothesized that tumor DNA copy number alterations would allow the identification of molecular pathways involved in SCLC progression. Array comparative genomic hybridization was performed on DNA extracted from 46 formalin-fixed paraffin-embedded SCLC tissue specimens. Genomic profiling of tumor and sex-matched control DNA allowed the identification of 70 regions of copy number gain and 55 regions of copy number loss. Using molecular pathway analysis, we found a strong enrichment in these regions of copy number alterations for 11 genes associated with the focal adhesion pathway. We verified these findings at the genomic, gene expression and protein level. Focal Adhesion Kinase (FAK), one of the central genes represented in this pathway, was commonly expressed in SCLC tumors and constitutively phosphorylated in SCLC cell lines. Those were poorly adherent to most substrates but not to laminin-322. Inhibition of FAK phosphorylation at Tyr397 by a small-molecule inhibitor, PF-573,228, induced a dose-dependent decrease of adhesion and an increase of spreading in SCLC cell lines on laminin-322. Cells that tended to spread also showed a decrease in focal adhesions, as demonstrated by a decreased vinculin expression. These results support the concept that pathway analysis of genes in regions of copy number alterations may uncover molecular mechanisms of disease progression and demonstrate a new role of FAK and associated adhesion pathways in SCLC. Further investigations of FAK at the functional level may lead to a better understanding of SCLC progression and may have therapeutic implications. PMID:20802517

  20. Cell Adhesion on Amyloid Fibrils Lacking Integrin Recognition Motif*

    PubMed Central

    Jacob, Reeba S.; George, Edna; Singh, Pradeep K.; Salot, Shimul; Anoop, Arunagiri; Jha, Narendra Nath; Sen, Shamik; Maji, Samir K.

    2016-01-01

    Amyloids are highly ordered, cross-β-sheet-rich protein/peptide aggregates associated with both human diseases and native functions. Given the well established ability of amyloids in interacting with cell membranes, we hypothesize that amyloids can serve as universal cell-adhesive substrates. Here, we show that, similar to the extracellular matrix protein collagen, amyloids of various proteins/peptides support attachment and spreading of cells via robust stimulation of integrin expression and formation of integrin-based focal adhesions. Additionally, amyloid fibrils are also capable of immobilizing non-adherent red blood cells through charge-based interactions. Together, our results indicate that both active and passive mechanisms contribute to adhesion on amyloid fibrils. The present data may delineate the functional aspect of cell adhesion on amyloids by various organisms and its involvement in human diseases. Our results also raise the exciting possibility that cell adhesivity might be a generic property of amyloids. PMID:26742841

  1. Fibronectin type III5 repeat contains a novel cell adhesion sequence, KLDAPT, which binds activated alpha4beta1 and alpha4beta7 integrins.

    PubMed

    Moyano, J V; Carnemolla, B; Domínguez-Jiménez, C; García-Gila, M; Albar, J P; Sánchez-Aparicio, P; Leprini, A; Querzé, G; Zardi, L; Garcia-Pardo, A

    1997-10-03

    The region of fibronectin encompassing type III repeats 4-6 contains a low affinity heparin binding domain, but its physiological significance is not clear. We have studied whether this domain is able to interact with cells as already shown for other heparin binding domains of fibronectin. A computer search based on homologies with known active sites in fibronectin revealed the sequence KLDAPT located in FN-III5. A synthetic peptide containing this sequence induced lymphoid cell adhesion upon treatment with the activating anti-beta1 monoclonal antibody (mAb) TS2/16 or with Mn2+, indicating that KLDAPT was binding to an integrin. A recombinant fragment containing repeat III5 (FN-III5) also mediated adhesion of TS2/16/Mn2+-treated cells while the FN-III6 fragment did not. Soluble KLDAPT peptide inhibited cell adhesion to FN-III5 as well as to a 38-kDa fibronectin fragment and VCAM-1, two previously known ligands for alpha4beta1 integrin. KLDAPT also competed with the binding of soluble alkaline phosphatase-coupled VCAM-Ig to Mn2+-treated alpha4beta1. Furthermore, mAbs anti-alpha4 and anti-alpha4beta7, but not mAbs to other integrins, inhibited cell adhesion to FN-III5 and KLDAPT. These results therefore establish a cell adhesive function for the FN-III5 repeat and show that KLDAPT is a novel fibronectin ligand for activated alpha4 integrins.

  2. Sargachromenol protects against vascular inflammation by preventing TNF-α-induced monocyte adhesion to primary endothelial cells via inhibition of NF-κB activation.

    PubMed

    Gwon, Wi-Gyeong; Joung, Eun-Ji; Kwon, Mi-Sung; Lim, Su-Jin; Utsuki, Tadanobu; Kim, Hyeung-Rak

    2017-01-01

    Vascular inflammation is a key factor in the pathogenesis of atherosclerosis. The purpose of this study was to investigate the protective effects of sargachromenol (SCM) against tumor necrosis factor (TNF)-α-induced vascular inflammation. SCM decreased the expression of cell adhesion molecules, including intracellular adhesion molecule-1 and vascular cell adhesion molecule-1, in TNF-α-stimulated human umbilical vein endothelial cells (HUVECs), resulted in reduced adhesion of monocytes to HUVECs. SCM also decreased the production of monocyte chemoattractant protein-1 and matrix metalloproteinase-9 in TNF-α-induced HUVECs. Additionally, SCM inhibited activation of nuclear factor kappa B (NF-κB) induced by TNF-α through preventing the degradation of inhibitor kappa B. Moreover, SCM reduced the production of reactive oxygen species in TNF-α-treated HUVECs. Overall, SCM alleviated vascular inflammation through the regulation of NF-κB activation and through its intrinsic antioxidant activity in TNF-α-induced HUVECs. These results indicate that SCM may have potential application as a therapeutic agent against vascular inflammation.

  3. Synaptic Cell Adhesion Molecules in Alzheimer's Disease

    PubMed Central

    Leshchyns'ka, Iryna

    2016-01-01

    Alzheimer's disease (AD) is a neurodegenerative brain disorder associated with the loss of synapses between neurons in the brain. Synaptic cell adhesion molecules are cell surface glycoproteins which are expressed at the synaptic plasma membranes of neurons. These proteins play key roles in formation and maintenance of synapses and regulation of synaptic plasticity. Genetic studies and biochemical analysis of the human brain tissue, cerebrospinal fluid, and sera from AD patients indicate that levels and function of synaptic cell adhesion molecules are affected in AD. Synaptic cell adhesion molecules interact with Aβ, a peptide accumulating in AD brains, which affects their expression and synaptic localization. Synaptic cell adhesion molecules also regulate the production of Aβ via interaction with the key enzymes involved in Aβ formation. Aβ-dependent changes in synaptic adhesion affect the function and integrity of synapses suggesting that alterations in synaptic adhesion play key roles in the disruption of neuronal networks in AD. PMID:27242933

  4. Focal Adhesion-Independent Cell Migration.

    PubMed

    Paluch, Ewa K; Aspalter, Irene M; Sixt, Michael

    2016-10-06

    Cell migration is central to a multitude of physiological processes, including embryonic development, immune surveillance, and wound healing, and deregulated migration is key to cancer dissemination. Decades of investigations have uncovered many of the molecular and physical mechanisms underlying cell migration. Together with protrusion extension and cell body retraction, adhesion to the substrate via specific focal adhesion points has long been considered an essential step in cell migration. Although this is true for cells moving on two-dimensional substrates, recent studies have demonstrated that focal adhesions are not required for cells moving in three dimensions, in which confinement is sufficient to maintain a cell in contact with its substrate. Here, we review the investigations that have led to challenging the requirement of specific adhesions for migration, discuss the physical mechanisms proposed for cell body translocation during focal adhesion-independent migration, and highlight the remaining open questions for the future.

  5. Gold nanoprobe-based method for sensing activated leukocyte cell adhesion molecule (ALCAM) gene expression, as a breast cancer biomarker.

    PubMed

    Eskandari, Leila; Akbarzadeh, Abolfazl; Zarghami, Nosratollah; Rahmati-Yamchi, Mohammad

    2017-03-01

    In breast cancer, a proper biomarker for the assessment of metastasis and poor prognosis is the RNA of activated leukocyte cell adhesion molecule (ALCAM) gene, which is expressed at high levels in breast tumor. We applied DNA-functionalized gold nanoparticles as the target-specific probes, for detecting specific sequences of DNA or RNA. At high MgCL2 concentrations, nanoprobes aggregate in the absence of the complementary DNA sequence and alteration in the solution color is detectable by evaluating the localized surface plasmon resonance (LSPR). But in the presence of complementary DNA, nanoprobes hybridize to the complementary sequence; therefore, no aggregation takes place, and no color change is observed. We designed a gold nanoprobe-based method that promptly detects the ALCAM gene expression in a low reaction volume with high sensitivity and specificity. This method is simple, fast, selective, and quantitative and can be done with small concentrations of the target (fmol/μL). Limit of detection of the method corresponded to 300 fmol/μL of synthetic ALCAM target.

  6. Myoferlin depletion elevates focal adhesion kinase and paxillin phosphorylation and enhances cell-matrix adhesion in breast cancer cells.

    PubMed

    Blackstone, B N; Li, R; Ackerman, W E; Ghadiali, S N; Powell, H M; Kniss, D A

    2015-04-15

    Breast cancer is the second leading cause of malignant death among women. A crucial feature of metastatic cancers is their propensity to lose adhesion to the underlying basement membrane as they transition to a motile phenotype and invade surrounding tissue. Attachment to the extracellular matrix is mediated by a complex of adhesion proteins, including integrins, signaling molecules, actin and actin-binding proteins, and scaffolding proteins. Focal adhesion kinase (FAK) is pivotal for the organization of focal contacts and maturation into focal adhesions, and disruption of this process is a hallmark of early cancer invasive potential. Our recent work has revealed that myoferlin (MYOF) mediates breast tumor cell motility and invasive phenotype. In this study we demonstrate that noninvasive breast cancer cell lines exhibit increased cell-substrate adhesion and that silencing of MYOF using RNAi in the highly invasive human breast cancer cell line MDA-MB-231 also enhances cell-substrate adhesion. In addition, we detected elevated tyrosine phosphorylation of FAK (FAK(Y397)) and paxillin (PAX(Y118)), markers of focal adhesion protein activation. Morphometric analysis of PAX expression revealed that RNAi-mediated depletion of MYOF resulted in larger, more elongated focal adhesions, in contrast to cells transduced with a control virus (MDA-231(LVC) cells), which exhibited smaller focal contacts. Finally, MYOF silencing in MDA-MB-231 cells exhibited a more elaborate ventral cytoskeletal structure near focal adhesions, typified by pronounced actin stress fibers. These data support the hypothesis that MYOF regulates cell adhesions and cell-substrate adhesion strength and may account for the high degree of motility in invasive breast cancer cells.

  7. Cell cycle- and cancer-associated gene networks activated by Dsg2: evidence of cystatin A deregulation and a potential role in cell-cell adhesion.

    PubMed

    Gupta, Abhilasha; Nitoiu, Daniela; Brennan-Crispi, Donna; Addya, Sankar; Riobo, Natalia A; Kelsell, David P; Mahoney, Mỹ G

    2015-01-01

    Cell-cell adhesion is paramount in providing and maintaining multicellular structure and signal transmission between cells. In the skin, disruption to desmosomal regulated intercellular connectivity may lead to disorders of keratinization and hyperproliferative disease including cancer. Recently we showed transgenic mice overexpressing desmoglein 2 (Dsg2) in the epidermis develop hyperplasia. Following microarray and gene network analysis, we demonstrate that Dsg2 caused a profound change in the transcriptome of keratinocytes in vivo and altered a number of genes important in epithelial dysplasia including: calcium-binding proteins (S100A8 and S100A9), members of the cyclin protein family, and the cysteine protease inhibitor cystatin A (CSTA). CSTA is deregulated in several skin cancers, including squamous cell carcinomas (SCC) and loss of function mutations lead to recessive skin fragility disorders. The microarray results were confirmed by qPCR, immunoblotting, and immunohistochemistry. CSTA was detected at high level throughout the newborn mouse epidermis but dramatically decreased with development and was detected predominantly in the differentiated layers. In human keratinocytes, knockdown of Dsg2 by siRNA or shRNA reduced CSTA expression. Furthermore, siRNA knockdown of CSTA resulted in cytoplasmic localization of Dsg2, perturbed cytokeratin 14 staining and reduced levels of desmoplakin in response to mechanical stretching. Both knockdown of either Dsg2 or CSTA induced loss of cell adhesion in a dispase-based assay and the effect was synergistic. Our findings here offer a novel pathway of CSTA regulation involving Dsg2 and a potential crosstalk between Dsg2 and CSTA that modulates cell adhesion. These results further support the recent human genetic findings that loss of function mutations in the CSTA gene result in skin fragility due to impaired cell-cell adhesion: autosomal-recessive exfoliative ichthyosis or acral peeling skin syndrome.

  8. Cell Cycle- and Cancer-Associated Gene Networks Activated by Dsg2: Evidence of Cystatin A Deregulation and a Potential Role in Cell-Cell Adhesion

    PubMed Central

    Gupta, Abhilasha; Nitoiu, Daniela; Brennan-Crispi, Donna; Addya, Sankar; Riobo, Natalia A.; Kelsell, David P.; Mahoney, Mỹ G.

    2015-01-01

    Cell-cell adhesion is paramount in providing and maintaining multicellular structure and signal transmission between cells. In the skin, disruption to desmosomal regulated intercellular connectivity may lead to disorders of keratinization and hyperproliferative disease including cancer. Recently we showed transgenic mice overexpressing desmoglein 2 (Dsg2) in the epidermis develop hyperplasia. Following microarray and gene network analysis, we demonstrate that Dsg2 caused a profound change in the transcriptome of keratinocytes in vivo and altered a number of genes important in epithelial dysplasia including: calcium-binding proteins (S100A8 and S100A9), members of the cyclin protein family, and the cysteine protease inhibitor cystatin A (CSTA). CSTA is deregulated in several skin cancers, including squamous cell carcinomas (SCC) and loss of function mutations lead to recessive skin fragility disorders. The microarray results were confirmed by qPCR, immunoblotting, and immunohistochemistry. CSTA was detected at high level throughout the newborn mouse epidermis but dramatically decreased with development and was detected predominantly in the differentiated layers. In human keratinocytes, knockdown of Dsg2 by siRNA or shRNA reduced CSTA expression. Furthermore, siRNA knockdown of CSTA resulted in cytoplasmic localization of Dsg2, perturbed cytokeratin 14 staining and reduced levels of desmoplakin in response to mechanical stretching. Both knockdown of either Dsg2 or CSTA induced loss of cell adhesion in a dispase-based assay and the effect was synergistic. Our findings here offer a novel pathway of CSTA regulation involving Dsg2 and a potential crosstalk between Dsg2 and CSTA that modulates cell adhesion. These results further support the recent human genetic findings that loss of function mutations in the CSTA gene result in skin fragility due to impaired cell-cell adhesion: autosomal-recessive exfoliative ichthyosis or acral peeling skin syndrome. PMID:25785582

  9. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond.

    PubMed

    Hersel, Ulrich; Dahmen, Claudia; Kessler, Horst

    2003-11-01

    Since RGD peptides (R: arginine; G: glycine; D: aspartic acid) have been found to promote cell adhesion in 1984 (Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule, Nature 309 (1984) 30), numerous materials have been RGD functionalized for academic studies or medical applications. This review gives an overview of RGD modified polymers, that have been used for cell adhesion, and provides information about technical aspects of RGD immobilization on polymers. The impacts of RGD peptide surface density, spatial arrangement as well as integrin affinity and selectivity on cell responses like adhesion and migration are discussed.

  10. Electrical activity of ferroelectric biomaterials and its effects on the adhesion, growth and enzymatic activity of human osteoblast-like cells

    NASA Astrophysics Data System (ADS)

    Vaněk, P.; Kolská, Z.; Luxbacher, T.; García, J. A. L.; Lehocký, M.; Vandrovcová, M.; Bačáková, L.; Petzelt, J.

    2016-05-01

    Ferroelectrics have been, among others, studied as electroactive implant materials. Previous investigations have indicated that such implants induce improved bone formation. If a ferroelectric is immersed in a liquid, an electric double layer and a diffusion layer are formed at the interface. This is decisive for protein adsorption and bioactive behaviour, particularly for the adhesion and growth of cells. The charge distribution can be characterized, in a simplified way, by the zeta potential. We measured the zeta potential in dependence on the surface polarity on poled ferroelectric single crystalline LiNbO3 plates. Both our results and recent results of colloidal probe microscopy indicate that the charge distribution at the surface can be influenced by the surface polarity of ferroelectrics under certain ‘ideal’ conditions (low ionic strength, non-contaminated surface, very low roughness). However, suggested ferroelectric coatings on the surface of implants are far from ideal: they are rough, polycrystalline, and the body fluid is complex and has high ionic strength. In real cases, it can therefore be expected that there is rather low influence of the sign of the surface polarity on the electric diffusion layer and thus on the specific adsorption of proteins. This is supported by our results from studies of the adhesion, growth and the activity of alkaline phosphatase of human osteoblast-like Saos-2 cells on ferroelectric LiNbO3 plates in vitro.

  11. Tumor necrosis factor-alpha enhances neutrophil adhesiveness: induction of vascular cell adhesion molecule-1 via activation of Akt and CaM kinase II and modifications of histone acetyltransferase and histone deacetylase 4 in human tracheal smooth muscle cells.

    PubMed

    Lee, Chiang-Wen; Lin, Chih-Chung; Luo, Shue-Fen; Lee, Hui-Chun; Lee, I-Ta; Aird, William C; Hwang, Tsong-Long; Yang, Chuen-Mao

    2008-05-01

    Up-regulation of vascular cell adhesion molecule-1 (VCAM-1) involves adhesions between both circulating and resident leukocytes and the human tracheal smooth muscle cells (HTSMCs) during airway inflammatory reaction. We have demonstrated previously that tumor necrosis factor (TNF)-alpha-induced VCAM-1 expression is regulated by mitogen-activated protein kinases, nuclear factor-kappaB, and p300 activation in HTSMCs. In addition to this pathway, phosphorylation of Akt and CaM kinase II has been implicated in histone acetyltransferase and histone deacetylase 4 (HDAC4) activation. Here, we investigated whether these different mechanisms participated in TNF-alpha-induced VCAM-1 expression and enhanced neutrophil adhesion. TNF-alpha significantly increased HTSMC-neutrophil adhesions, and this effect was associated with increased expression of VCAM-1 on the HTSMCs and was blocked by the selective inhibitors of Src [4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]-pyrimidine (PP1)], epidermal growth factor receptor [EGFR; 4-(3'-chloroanilino)-6,7-dimethoxy-quinazoline, (AG1478)], phosphatidylinositol 3-kinase (PI3K) [2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride(LY294002) and wortmannin],calcium[1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester; BAPTA-AM], phosphatidylinositol-phospholipase C (PLC) [1-[6-[[17beta-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U73122)], protein kinase C (PKC) [12-(2-cyanoethyl)-6,7,12, 13-tetrahydro-13-methyl-5-oxo-5H-indolo(2,3-a)pyrrolo(3,4-c)-carbazole (Gö6976), rottlerin, and 3-1-[3-(amidinothio)propyl-1H-indol-3-yl]-3-(1-methyl-1H-indol-3-yl) maleimide (bisindolylmaleimide IX) (Ro 31-8220)], CaM (calmidazolium chloride), CaM kinase II [(8R(*),9S(*),11S(*))-(-)-9-hydroxy-9-methoxycarbonyl-8-methyl-14-n-propoxy-2,3,9, 10-tetrahydro-8,11-epoxy, 1H,8H, 11H-2,7b,11a-triazadibenzo[a,g]cycloocta[cde]trinden-1-one (KT5926) and 1-[N,O-bis(5-isoquinolinesulfonyl

  12. Integrating focal adhesion dynamics, cytoskeleton remodeling, and actin motor activity for predicting cell migration on 3D curved surfaces of the extracellular matrix.

    PubMed

    Kim, Min-Cheol; Kim, Choong; Wood, Levi; Neal, Devin; Kamm, Roger D; Asada, H Harry

    2012-11-01

    An integrative cell migration model incorporating focal adhesion (FA) dynamics, cytoskeleton and nucleus remodeling and actin motor activity is developed for predicting cell migration behaviors on 3-dimensional curved surfaces, such as cylindrical lumens in the 3-D extracellular matrix (ECM). The work is motivated by 3-D microfluidic migration experiments suggesting that the migration speed and direction may vary depending on the cross sectional shape of the lumen along which the cell migrates. In this paper, the mechanical structure of the cell is modeled as double elastic membranes of cell and nucleus. The two elastic membranes are connected by stress fibers, which are extended from focal adhesions on the cell surface to the nuclear membrane. The cell deforms and gains traction as transmembrane integrins distributed over the outer cell membrane bind to ligands on the ECM, form focal adhesions, and activate stress fibers. Probabilities at which integrin ligand-receptor bonds are formed as well as ruptures are affected by the surface geometry, resulting in diverse migration behaviors that depend on the curvature of the surface. Monte Carlo simulations of the integrative model reveal that (a) the cell migration speed is dependent on the cross sectional area of the lumen with a maximum speed at a particular diameter or width, (b) as the lumen diameter increases, the cell tends to spread and migrate around the circumference of the lumen, while it moves in the longitudinal direction as the lumen diameter narrows, (c) once the cell moves in one direction, it tends to stay migrating in the same direction despite the stochastic nature of migration. The relationship between the cell migration speed and the lumen width agrees with microfluidic experimental data for cancer cell migration.

  13. MAP-kinase activity necessary for TGFbeta1-stimulated mesangial cell type I collagen expression requires adhesion-dependent phosphorylation of FAK tyrosine 397.

    PubMed

    Hayashida, Tomoko; Wu, Ming-Hua; Pierce, Amy; Poncelet, Anne-Christine; Varga, John; Schnaper, H William

    2007-12-01

    The signals mediating transforming growth factor beta (TGFbeta)-stimulated kidney fibrogenesis are poorly understood. We previously reported TGFbeta-stimulated, Smad-mediated collagen production by human kidney mesangial cells, and that ERK MAP kinase activity optimizes collagen expression and enhances phosphorylation of the Smad3 linker region. Furthermore, we showed that disrupting cytoskeletal integrity decreases type I collagen production. Focal adhesion kinase (FAK, PTK2) activity could integrate these findings. Adhesion-dependent FAK Y397 phosphorylation was detected basally, whereas FAK Y925 phosphorylation was TGFbeta1-dependent. By immunocytochemistry, TGFbeta1 stimulated the merging of phosphorylated FAK with the ends of thickening stress fibers. Cells cultured on poly-L-lysine (pLL) to promote integrin-independent attachment spread less than those on control substrate and failed to demonstrate focal adhesion (FA) engagement with F-actin. FAK Y397 phosphorylation and ERK activity were also decreased under these conditions. In cells with decreased FAK Y397 phosphorylation from either plating on pLL or overexpressing a FAK Y397F point mutant, serine phosphorylation of the Smad linker region, but not of the C-terminus, was reduced. Y397F and Y925F FAK point mutants inhibited TGFbeta-induced Elk-Gal activity, but only the Y397F mutant inhibited TGFbeta-stimulated collagen-promoter activity. The inhibition by the Y397F mutant or by culture on pLL was prevented by co-transfection of constitutively active ERK MAP kinase kinase (MEK), suggesting that FAK Y397 phosphorylation promotes collagen expression via ERK MAP kinase activity. Finally, Y397 FAK phosphorylation, and both C-terminal and linker-region Smad3 phosphorylation were detected in murine TGFbeta-dependent kidney fibrosis. Together, these data demonstrate adhesion-dependent FAK phosphorylation promoting TGFbeta-induced responses to regulate collagen production.

  14. Effect of Hyperketonemia (Acetoacetate) on Nuclear Factor-κB and p38 Mitogen-Activated Protein Kinase Activation Mediated Intercellular Adhesion Molecule 1 Upregulation in Endothelial Cells

    PubMed Central

    Rains, Justin L.

    2015-01-01

    Abstract Background: Hyperketonemia is a pathological condition observed in patients with type 1 diabetes and ketosis-prone diabetes (KPD), which results in increased blood levels of acetoacetate (AA) and β-hydroxybutyrate (BHB). Frequent episodes of hyperketonemia are associated with a higher incidence of vascular disease. We examined the hypothesis that hyperketonemia activates the nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways that regulate intercellular adhesion molecule 1 (ICAM-1) expression in endothelial cells. Methods: Human umbilical vein endothelial cells (HUVECs) were cultured with AA (0–8 mM) or BHB (0–10 mM) for 0–24 hr. Western blotting was used to determine NF-κB activation in whole-cell lysates. ICAM-1 expression was measured using flow cytometry. Results: Results show a 2.4-fold increase in NF-κB activation in cells treated with 8 mM AA compared to the control. BHB had little or no effect on NF-κB activation. Pretreatment with a reactive oxygen species (ROS) inhibitor [N-acetyl-l-cysteine (NAC)] reduced NF-κB to near-control levels. The expression of AA-induced ICAM-1 was significantly reduced when cells were pretreated with either NAC or p38 MAPK inhibitor. Conclusions: These results suggest that NF-κB and p38 MAPK mediate upregulation of ICAM-1 expression in endothelial cells exposed to elevated levels of AA, which may contribute to the development of vascular disease in diabetes. PMID:25489974

  15. Amygdalin influences bladder cancer cell adhesion and invasion in vitro.

    PubMed

    Makarević, Jasmina; Rutz, Jochen; Juengel, Eva; Kaulfuss, Silke; Tsaur, Igor; Nelson, Karen; Pfitzenmaier, Jesco; Haferkamp, Axel; Blaheta, Roman A

    2014-01-01

    The cyanogenic diglucoside amygdalin, derived from Rosaceae kernels, is employed by many patients as an alternative anti-cancer treatment. However, whether amygdalin indeed acts as an anti-tumor agent is not clear. Metastasis blocking properties of amygdalin on bladder cancer cell lines was, therefore, investigated. Amygdalin (10 mg/ml) was applied to UMUC-3, TCCSUP or RT112 bladder cancer cells for 24 h or for 2 weeks. Tumor cell adhesion to vascular endothelium or to immobilized collagen as well as tumor cell migration was examined. Effects of drug treatment on integrin α and β subtypes, on integrin-linked kinase (ILK) and total and activated focal adhesion kinase (FAK) were also determined. Integrin knock-down was carried out to evaluate integrin influence on migration and adhesion. A 24 h or 2 week amygdalin application distinctly reduced tumor cell adhesion and migration of UMUC-3 and RT112 cells. TCCSUP adhesion was also reduced, but migration was elevated under amygdalin. Integrin subtype expression was significantly and specifically altered by amygdalin depending on the cell line. ILK was moderately, and activated FAK strongly, lost in all tumor cell lines in the presence of amygdalin. Knock down of β1 integrin caused a significant decrease in both adhesion and migration of UMUC-3 cells, but a significant increase in TCCSUP adhesion. Knock down of β4 integrin caused a significant decrease in migration of RT112 cells. Since the different actions of amygdalin on the different cell lines was mirrored by β1 or β4 knock down, it is postulated that amygdalin influences adhesion and migratory properties of bladder cancer cells by modulating β1 or β4 integrin expression. The amygdalin induced increase in TCCSUP migratory behavior indicates that any anti-tumor benefits from amygdalin (seen with the other two cell lines) may depend upon the cancer cell type.

  16. Amygdalin Influences Bladder Cancer Cell Adhesion and Invasion In Vitro

    PubMed Central

    Makarević, Jasmina; Rutz, Jochen; Juengel, Eva; Kaulfuss, Silke; Tsaur, Igor; Nelson, Karen; Pfitzenmaier, Jesco

    2014-01-01

    The cyanogenic diglucoside amygdalin, derived from Rosaceae kernels, is employed by many patients as an alternative anti-cancer treatment. However, whether amygdalin indeed acts as an anti-tumor agent is not clear. Metastasis blocking properties of amygdalin on bladder cancer cell lines was, therefore, investigated. Amygdalin (10 mg/ml) was applied to UMUC-3, TCCSUP or RT112 bladder cancer cells for 24 h or for 2 weeks. Tumor cell adhesion to vascular endothelium or to immobilized collagen as well as tumor cell migration was examined. Effects of drug treatment on integrin α and β subtypes, on integrin-linked kinase (ILK) and total and activated focal adhesion kinase (FAK) were also determined. Integrin knock-down was carried out to evaluate integrin influence on migration and adhesion. A 24 h or 2 week amygdalin application distinctly reduced tumor cell adhesion and migration of UMUC-3 and RT112 cells. TCCSUP adhesion was also reduced, but migration was elevated under amygdalin. Integrin subtype expression was significantly and specifically altered by amygdalin depending on the cell line. ILK was moderately, and activated FAK strongly, lost in all tumor cell lines in the presence of amygdalin. Knock down of β1 integrin caused a significant decrease in both adhesion and migration of UMUC-3 cells, but a significant increase in TCCSUP adhesion. Knock down of β4 integrin caused a significant decrease in migration of RT112 cells. Since the different actions of amygdalin on the different cell lines was mirrored by β1 or β4 knock down, it is postulated that amygdalin influences adhesion and migratory properties of bladder cancer cells by modulating β1 or β4 integrin expression. The amygdalin induced increase in TCCSUP migratory behavior indicates that any anti-tumor benefits from amygdalin (seen with the other two cell lines) may depend upon the cancer cell type. PMID:25333694

  17. Modular glass chip system measuring the electric activity and adhesion of neuronal cells--application and drug testing with sodium valproic acid.

    PubMed

    Koester, Philipp Julian; Buehler, Sebastian Moritz; Stubbe, Marco; Tautorat, Carsten; Niendorf, Mathias; Baumann, Werner; Gimsa, Jan

    2010-06-21

    We developed a modular neurochip system by combining a small (16x16 mm2) glass neurochip (GNC) with a homemade head stage and commercial data acquisition hardware and software. The system is designed for the detection of the electric activity of cultivated nerve or muscle cells by a 52-microelectrode array (MEA). In parallel, cell adhesion can be registered from the electric impedance of an interdigitated electrode structure (IDES). The GNC was tested with various cell lines and primary cells. It is fully autoclavable and re-useable. Murine embryonic primary cells were used as a model system to correlate the electric activity and adhesion of neuronal networks in a drug test with sodium valproic acid. The test showed the advantage of the parallel IDES and MEA measurements, i.e. the parallel detection of cytotoxic and neurotoxic effects. Toxic exposure of the cells during neuronal network formation allows for the characterization of developmental neurotoxic effects even at drug concentrations below the EC50-value for acute neurotoxic effects. At high drug concentrations, the degree of cytotoxic damage can still be assessed from the IDES data in the event that no electric activity develops. The GNC provides optimal cell culture conditions for up to months in combination with full microscopic observability. The 4'' glass wafer technology allows for a high precision of the GNC structures and an economic production of our new system that can be applied in general and developmental toxicity tests as well as in the search for neuro-active compounds.

  18. The structure of cell-matrix adhesions: the new frontier.

    PubMed

    Hanein, Dorit; Horwitz, Alan Rick

    2012-02-01

    Adhesions between the cell and the extracellular matrix (ECM) are mechanosensitive multi-protein assemblies that transmit force across the cell membrane and regulate biochemical signals in response to the chemical and mechanical environment. These combined functions in force transduction, signaling and mechanosensing contribute to cellular phenotypes that span development, homeostasis and disease. These adhesions form, mature and disassemble in response to actin organization and physical forces that originate from endogenous myosin activity or external forces by the extracellular matrix. Despite advances in our understanding of the protein composition, interactions and regulation, our understanding of matrix adhesion structure and organization, how forces affect this organization, and how these changes dictate specific signaling events is limited. Insights across multiple structural levels are acutely needed to elucidate adhesion structure and ultimately the molecular basis of signaling and mechanotransduction. Here we describe the challenges and recent advances and prospects for unraveling the structure of cell-matrix adhesions and their response to force.

  19. Could both vitamin D and geomagnetic activity impact serum levels of soluble cell adhesion molecules in young men?

    NASA Astrophysics Data System (ADS)

    Bleizgys, Andrius; Šapoka, Virginijus

    2016-07-01

    Vitamin D might have a role in diminishing endothelial dysfunction (ED). The initial aim was to test the hypothesis of reciprocity between levels of 25-hydroxyvitamin D (25(OH)D) and levels of soluble endothelial cell adhesion molecules (CAMs) that could serve as biomarkers of ED. Randomly selected men of age 20-39 were examined at February or March (cold season) and reexamined at August or September (warm season). Some lifestyle and anthropometrical data were recorded. Laboratory measurements, including those for serum levels of soluble CAMs—sICAM-1, sVCAM-1, sE-selectin and sP-selectin—were also performed. As some of the results were rather unexpected, indices of geomagnetic activity (GMA), obtained from the online database, were included in further analysis as a confounder. In 2012-2013, 130 men were examined in cold season, and 125 of them were reexamined in warm season. 25(OH)D levels were found to be significantly negatively associated with sVCAM-1 levels ( β = -0.15, p = 0.043 in warm season; β = -0.19, p = 0.007 for changes). Levels of sVCAM-1 and sICAM-1 from the same seasons were notably different between years and have changed in an opposite manner. Soluble P-selectin levels were higher at warm season in both years. GMA was positively associated with sVCAM-1 ( β = 0.17, p = 0.039 in cold season; β = 0.22, p = 0.002 for changes) and negatively with sICAM-1 ( β = -0.30. p < 0.001 in cold season) levels. Vitamin D might play a role in diminishing sVCAM-1 levels. Levels of sVCAM-1 and sICAM-1 were associated with the GMA; this implies a need for further research.

  20. Nitric oxide/cGMP pathway signaling actively down-regulates α4β1-integrin affinity: an unexpected mechanism for inducing cell de-adhesion

    PubMed Central

    2011-01-01

    Background Integrin activation in response to inside-out signaling serves as the basis for rapid leukocyte arrest on endothelium, migration, and mobilization of immune cells. Integrin-dependent adhesion is controlled by the conformational state of the molecule, which is regulated by seven-transmembrane Guanine nucleotide binding Protein-Coupled Receptors (GPCRs). α4β1-integrin (CD49d/CD29, Very Late Antigen-4, VLA-4) is expressed on leukocytes, hematopoietic progenitors, stem cells, hematopoietic cancer cells, and others. VLA-4 conformation is rapidly up-regulated by inside-out signaling through Gαi-coupled GPCRs and down-regulated by Gαs-coupled GPCRs. However, other signaling pathways, which include nitric oxide-dependent signaling, have been implicated in the regulation of cell adhesion. The goal of the current report was to study the effect of nitric oxide/cGMP signaling pathway on VLA-4 conformational regulation. Results Using fluorescent ligand binding to evaluate the integrin activation state on live cells in real-time, we show that several small molecules, which specifically modulate nitric oxide/cGMP signaling pathway, as well as a cell permeable cGMP analog, can rapidly down-modulate binding of a VLA-4 specific ligand on cells pre-activated through three Gαi-coupled receptors: wild type CXCR4, CXCR2 (IL-8RB), and a non-desensitizing mutant of formyl peptide receptor (FPR ΔST). Upon signaling, we detected rapid changes in the ligand dissociation rate. The dissociation rate after inside-out integrin de-activation was similar to the rate for resting cells. In a VLA-4/VCAM-1-specific myeloid cell adhesion system, inhibition of the VLA-4 affinity change by nitric oxide had a statistically significant effect on real-time cell aggregation. Conclusions We conclude that nitric oxide/cGMP signaling pathway can rapidly down-modulate the affinity state of the VLA-4 binding pocket, especially under the condition of sustained Gαi-coupled GPCR signaling

  1. Estrogen and non-genomic upregulation of voltage-gated Na(+) channel activity in MDA-MB-231 human breast cancer cells: role in adhesion.

    PubMed

    Fraser, Scott P; Ozerlat-Gunduz, Iley; Onkal, Rustem; Diss, James K J; Latchman, David S; Djamgoz, Mustafa B A

    2010-08-01

    External (but not internal) application of beta-estradiol (E2) increased the current amplitude of voltage-gated Na(+) channels (VGSCs) in MDA-MB-231 human breast cancer (BCa) cells. The G-protein activator GTP-gamma-S, by itself, also increased the VGSC current whilst the G-protein inhibitor GDP-beta-S decreased the effect of E2. Expression of GPR30 (a G-protein-coupled estrogen receptor) in MDA-MB-231 cells was confirmed by PCR, Western blot and immunocytochemistry. Importantly, G-1, a specific agonist for GPR30, also increased the VGSC current amplitude in a dose-dependent manner. Transfection and siRNA-silencing of GPR30 expression resulted in corresponding changes in GPR30 protein expression but only internally, and the response to E2 was not affected. The protein kinase A inhibitor, PKI, abolished the effect of E2, whilst forskolin, an adenylate cyclase activator, by itself, increased VGSC activity. On the other hand, pre-incubation of the MDA-MB-231 cells with brefeldin A (a trans-Golgi protein trafficking inhibitor) had no effect on the E2-induced increase in VGSC amplitude, indicating that such trafficking ('externalisation') of VGSC was not involved. Finally, acute application of E2 decreased cell adhesion whilst the specific VGSC blocker tetrodotoxin increased it. Co-application of E2 and tetrodotoxin inhibited the effect of E2 on cell adhesion, suggesting that the effect of E2 was mainly through VGSC activity. Pre-treatment of the cells with PKI abolished the effect of E2 on adhesion, consistent with the proposed role of PKA. Potential implications of the E2-induced non-genomic upregulation of VGSC activity for BCa progression are discussed.

  2. Contractility Modulates Cell Adhesion Strengthening Through Focal Adhesion Kinase and Assembly of Vinculin-Containing Focal Adhesions

    PubMed Central

    Dumbauld, David W.; Shin, Heungsoo; Gallant, Nathan D.; Michael, Kristin E.; Radhakrishna, Harish; García, Andrés J.

    2010-01-01

    Actin-myosin contractility modulates focal adhesion assembly, stress fiber formation, and cell migration. We analyzed the contributions of contractility to fibroblast adhesion strengthening using a hydrodynamic adhesion assay and micropatterned substrates to control cell shape and adhesive area. Serum addition resulted in adhesion strengthening to levels 30–40% higher than serum-free cultures. Inhibition of myosin light chain kinase or Rho-kinase blocked phosphorylation of myosin light chain to similar extents and eliminated the serum-induced enhancements in strengthening. Blebbistatin-induced inhibition of myosin II reduced serum-induced adhesion strength to similar levels as those obtained by blocking myosin light chain phosphorylation. Reductions in adhesion strengthening by inhibitors of contractility correlated with loss of vinculin and talin from focal adhesions without changes in integrin binding. In vinculin-null cells, inhibition of contractility did not alter adhesive force, whereas controls displayed a 20% reduction in adhesion strength, indicating that the effects of contractility on adhesive force are vinculin-dependent. Furthermore, in cells expressing FAK, inhibitors of contractility reduced serum-induced adhesion strengthening as well as eliminated focal adhesion assembly. In contrast, in the absence of FAK, these inhibitors did not alter adhesion strength or focal adhesion assembly. These results indicate that contractility modulates adhesion strengthening via FAK-dependent, vinculin-containing focal adhesion assembly. PMID:20205236

  3. Dystrophin Dp71 in PC12 cell adhesion

    PubMed Central

    Enríquez-Aragón, Jose Arturo; Cerna-Cortés, Joel; Bermúdez de León, Mario; García-Sierra, Francisco; González, Everardo; Mornet, Dominique; Cisneros, Bulmaro

    2005-01-01

    Previously, we reported that PC12 cells with decreased Dp71 expression (antisense-Dp71 cells) display deficient nerve-growth-factor-induced neurite outgrowth. In this study, we show that disturbed neurite outgrowth of antisense-Dp71 cells is accompanied by decreased adhesion activity on laminin, collagen and fibronectin. In wild-type cells, the immunostaining of Dp71 and _1-integrin overlaps in the basal area contacting the substrate, but staining of both proteins decrease in the antisense-Dp71 cells. Morphology of antisense-Dp71 cells at the electron microscopic level is characterized by the lack of filopodia, cellular projections involved in adhesion. Our findings suggest that Dp71 is required for the efficient PC12 cell attachment to b1-integrin-dependent substrata and that decreased adhesion activity of the anti-sense-Dp71 cells could determine their deficiency to extend neurites. PMID:15706226

  4. van der Waals forces influencing adhesion of cells

    PubMed Central

    Kendall, K.; Roberts, A. D.

    2015-01-01

    Adhesion molecules, often thought to be acting by a ‘lock and key’ mechanism, have been thought to control the adhesion of cells. While there is no doubt that a coating of adhesion molecules such as fibronectin on a surface affects cell adhesion, this paper aims to show that such surface contamination is only one factor in the equation. Starting from the baseline idea that van der Waals force is a ubiquitous attraction between all molecules, and thereby must contribute to cell adhesion, it is clear that effects from geometry, elasticity and surface molecules must all add on to the basic cell attractive force. These effects of geometry, elasticity and surface molecules are analysed. The adhesion force measured between macroscopic polymer spheres was found to be strongest when the surfaces were absolutely smooth and clean, with no projecting protruberances. Values of the measured surface energy were then about 35 mJ m−2, as expected for van der Waals attractions between the non-polar molecules. Surface projections such as abrasion roughness or dust reduced the molecular adhesion substantially. Water cut the measured surface energy to 3.4 mJ m−2. Surface active molecules lowered the adhesion still further to less than 0.3 mJ m−2. These observations do not support the lock and key concept. PMID:25533101

  5. Eimeria bovis modulates adhesion molecule gene transcription in and PMN adhesion to infected bovine endothelial cells.

    PubMed

    Hermosilla, Carlos; Zahner, Horst; Taubert, Anja

    2006-04-01

    Eimeria bovis is an important coccidian parasite of cattle causing severe diarrhea in young animals. Its first schizogony takes place in endothelial cells of the ileum resulting in the formation of macroschizonts 14-18 days p.i. This longlasting development suggests a particular immune evasion strategy of the parasite. Here, we analyse early innate immune reactions to E. bovis by determining the adhesion of polymorphonuclear neutrophils (PMN) to infected endothelial cell layers under flow conditions and the transcription of adhesion molecule genes in infected host cells. Bovine umbilical vein endothelial cells (BUVEC) were infected with E. bovis sporozoites. Sporozoites invaded BUVEC within 1h and the first mature macroschizonts occurred 14 days p.i. PMN adhesion was enhanced in E. bovis-infected BUVEC layers as early as 8h p.i.; maximum adhesion occurred 48 h p.i. Increased adhesion rates persisted until the end of the observation period at 14 days p.i. PMN adhered to both infected and uninfected cells within monolayers, suggesting paracrine cell activation. E. bovis infection upregulated the transcription of genes encoding for P-selectin, E-selectin, vascular cellular adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1). Most marked effects concerned E-selectin followed by P-selectin, VCAM-1 and ICAM-1. Increased transcript levels were found beginning 30 min p.i. and maximum values occurred 1-2h p.i. (P-selectin) and 2-4h p.i. (E-selectin, VCAM-1, ICAM-1). By 12-24h p.i. levels had decreased to those of uninfected controls. Tumor necrosis factor alpha (TNFalpha)-induced PMN adhesion was significantly reduced in infected vs. uninfected BUVEC. Eimeria bovis also had suppressive effects on TNFalpha-mediated upregulation of adhesion molecule gene transcription. The data presented here suggest that infection of BUVEC with E. bovis on one hand induces proinflammatory reactions resulting in enhanced PMN adhesion mediated by upregulated adhesion

  6. Analytical cell adhesion chromatography reveals impaired persistence of metastatic cell rolling adhesion to P-selectin

    PubMed Central

    Oh, Jaeho; Edwards, Erin E.; McClatchey, P. Mason; Thomas, Susan N.

    2015-01-01

    ABSTRACT Selectins facilitate the recruitment of circulating cells from the bloodstream by mediating rolling adhesion, which initiates the cell–cell signaling that directs extravasation into surrounding tissues. To measure the relative efficiency of cell adhesion in shear flow for in vitro drug screening, we designed and implemented a microfluidic-based analytical cell adhesion chromatography system. The juxtaposition of instantaneous rolling velocities with elution times revealed that human metastatic cancer cells, but not human leukocytes, had a reduced capacity to sustain rolling adhesion with P-selectin. We define a new parameter, termed adhesion persistence, which is conceptually similar to migration persistence in the context of chemotaxis, but instead describes the capacity of cells to resist the influence of shear flow and sustain rolling interactions with an adhesive substrate that might modulate the probability of extravasation. Among cell types assayed, adhesion persistence to P-selectin was specifically reduced in metastatic but not leukocyte-like cells in response to a low dose of heparin. In conclusion, we demonstrate this as an effective methodology to identify selectin adhesion antagonist doses that modulate homing cell adhesion and engraftment in a cell-subtype-selective manner. PMID:26349809

  7. Extracellular matrix-specific focal adhesions in vascular smooth muscle produce mechanically active adhesion sites

    PubMed Central

    Sun, Zhe; Martinez-Lemus, Luis A.; Hill, Michael A.; Meininger, Gerald A.

    2008-01-01

    Integrin-mediated mechanotransduction in vascular smooth muscle cells (VSMCs) plays an important role in the physiological control of tissue blood flow and vascular resistance. To test whether force applied to specific extracellular matrix (ECM)-integrin interactions could induce myogenic-like mechanical activity at focal adhesion sites, we used atomic force microscopy (AFM) to apply controlled forces to specific ECM adhesion sites on arteriolar VSMCs. The tip of AFM probes were fused with a borosilicate bead (2∼5 μm) coated with fibronectin (FN), collagen type I (CNI), laminin (LN), or vitronectin (VN). ECM-coated beads induced clustering of α5- and β3-integrins and actin filaments at sites of bead-cell contact indicative of focal adhesion formation. Step increases of an upward (z-axis) pulling force (800∼1,600 pN) applied to the bead-cell contact site for FN-specific focal adhesions induced a myogenic-like, force-generating response from the VSMC, resulting in a counteracting downward pull by the cell. This micromechanical event was blocked by cytochalasin D but was enhanced by jasplakinolide. Function-blocking antibodies to α5β1- and αvβ3-integrins also blocked the micromechanical cell event in a concentration-dependent manner. Similar pulling experiments with CNI, VN, or LN failed to induce myogenic-like micromechanical events. Collectively, these results demonstrate that mechanical force applied to integrin-FN adhesion sites induces an actin-dependent, myogenic-like, micromechanical event. Focal adhesions formed by different ECM proteins exhibit different mechanical characteristics, and FN appears of particular relevance in its ability to strongly attach to VSMCs and to induce myogenic-like, force-generating reactions from sites of focal adhesion in response to externally applied forces. PMID:18495809

  8. Mast cell mediators and peritoneal adhesion formation in the rat.

    PubMed

    Langer, J C; Liebman, S M; Monk, P K; Pelletier, G J

    1995-09-01

    We have previously shown that mast cell stabilization attenuates peritoneal adhesion formation in the rat. The present study investigated the mechanism of this protection. Adhesions were created in weanling rats using cecal scraping and application of 95% ethanol. Rats received specific blockers for the mast cell products histamine, serotonin (5HT), leukotriene D4, and platelet activating factor intraperitoneally 30 min before laparotomy and at the time of abdominal closure. Control animals received saline. Adhesions were assessed blindly 1 week later using a standardized scale. Adhesion formation was not affected by histamine blockade using combined mepyramine and ranitidine, 5-HT1 blockade using methysergide, 5-HT3 blockade using ondansetron, leukotriene D4 blockade using MK-571, or platelet activating factor blockade using WEB-2086. However, blockade of the 5-HT2 receptor using ketanserin resulted in significant dose-dependent attenuation of adhesions compared to saline. These data suggest that mast cells mediate peritoneal adhesion formation in the rat through release of serotonin acting on 5HT2 receptors. Further understanding of this process may lead to new strategies for the prevention of postoperative adhesions.

  9. Bistability of cell adhesion in shear flow.

    PubMed

    Efremov, Artem; Cao, Jianshu

    2011-09-07

    Cell adhesion plays a central role in multicellular organisms helping to maintain their integrity and homeostasis. This complex process involves many different types of adhesion proteins, and synergetic behavior of these proteins during cell adhesion is frequently observed in experiments. A well-known example is the cooperation of rolling and stationary adhesion proteins during the leukocytes extravasation. Despite the fact that such cooperation is vital for proper functioning of the immune system, its origin is not fully understood. In this study we constructed a simple analytic model of the interaction between a leukocyte and the blood vessel wall in shear flow. The model predicts existence of cell adhesion bistability, which results from a tug-of-war between two kinetic processes taking place in the cell-wall contact area-bond formation and rupture. Based on the model results, we suggest an interpretation of several cytoadhesion experiments and propose a simple explanation of the existing synergy between rolling and stationary adhesion proteins, which is vital for effective cell adherence to the blood vessel walls in living organisms.

  10. Signaling during platelet adhesion and activation

    PubMed Central

    Li, Zhenyu; Delaney, M. Keegan; O’Brien, Kelly A.; Du, Xiaoping

    2011-01-01

    Upon vascular injury, platelets are activated by adhesion to adhesive proteins like von Willebrand factor and collagen, or by soluble platelet agonists like ADP, thrombin, and thromboxane A2. These adhesive proteins and soluble agonists induce signal transduction via their respective receptors. The various receptor-specific platelet activation signaling pathways converge into common signaling events, which stimulate platelet shape change, granule secretion, and ultimately induce the “inside-out” signaling process leading to activation of the ligand binding function of integrin αIIbβ3. Ligand binding to integrin αIIbβ3 mediates platelet adhesion and aggregation and triggers “outside-in” signaling, resulting in platelet spreading, additional granule secretion, stabilization of platelet adhesion and aggregation, and clot retraction. It has become increasingly evident that agonist-induced platelet activation signals also crosstalk with integrin “outside-in” signals to regulate platelet responses. Platelet activation involves a series of rapid positive feedback loops that greatly amplify initial activation signals, and enable robust platelet recruitment and thrombus stabilization. Recent studies have provided novel insight into the molecular mechanisms of these processes. PMID:21071698

  11. Connexin 43 expressed in endothelial cells modulates monocyte‑endothelial adhesion by regulating cell adhesion proteins.

    PubMed

    Yuan, Dongdong; Sun, Guoliang; Zhang, Rui; Luo, Chenfang; Ge, Mian; Luo, Gangjian; Hei, Ziqing

    2015-11-01

    Adhesion between circulating monocytes and vascular endothelial cells is a key initiator of atherosclerosis. In our previous studies, it was demonstrated that the expression of connexin (Cx)43 in monocytes modulates cell adhesion, however, the effects of the expression of Cx43 in endothelial cells remains to be elucidated. Therefore, the present study investigated the role of the expression of Cx43 in endothelial cells in the process of cell adhesion. A total of four different methods with distinct mechanisms were used to change the function and expression of Cx43 channels in human umbilical vein endothelial cells: Cx43 channel inhibitor (oleamide), enhancer (retinoic acid), overexpression of Cx43 by transfection with pcDNA‑Cx43 and knock‑down of the expression of Cx43 by small interfering RNA against Cx43. The results indicated that the upregulation of the expression of Cx43 enhanced monocyte‑endothelial adhesion and this was markedly decreased by downregulation of Cx43. This mechanism was associated with Cx43‑induced expression of vascular cell adhesion molecule‑1 and intercellular cell adhesion molecule‑1. The effects of Cx43 in endothelial cells was independent of Cx37 or Cx40. These experiments suggested that local regulation of endothelial Cx43 expression within the vasculature regulates monocyte‑endothelial adhesion, a critical event in the development of atherosclerosis and other inflammatory pathologies, with baseline adhesion set by the expression of Cx43. This balance may be crucial in controlling leukocyte involvement in inflammatory cascades.

  12. FTY720 and two novel butterfly derivatives exert a general anti-inflammatory potential by reducing immune cell adhesion to endothelial cells through activation of S1P(3) and phosphoinositide 3-kinase.

    PubMed

    Imeri, Faik; Blanchard, Olivier; Jenni, Aurelio; Schwalm, Stephanie; Wünsche, Christin; Zivkovic, Aleksandra; Stark, Holger; Pfeilschifter, Josef; Huwiler, Andrea

    2015-12-01

    Sphingosine-1-phosphate (S1P) is a key lipid regulator of a variety of cellular responses including cell proliferation and survival, cell migration, and inflammatory reactions. Here, we investigated the effect of S1P receptor activation on immune cell adhesion to endothelial cells under inflammatory conditions. We show that S1P reduces both tumor necrosis factor (TNF)-α- and lipopolysaccharide (LPS)-stimulated adhesion of Jurkat and U937 cells to an endothelial monolayer. The reducing effect of S1P was reversed by the S1P1+3 antagonist VPC23019 but not by the S1P1 antagonist W146. Additionally, knockdown of S1P3, but not S1P1, by short hairpin RNA (shRNA) abolished the reducing effect of S1P, suggesting the involvement of S1P3. A suppression of immune cell adhesion was also seen with the immunomodulatory drug FTY720 and two novel butterfly derivatives ST-968 and ST-1071. On the molecular level, S1P and all FTY720 derivatives reduced the mRNA expression of LPS- and TNF-α-induced adhesion molecules including ICAM-1, VCAM-1, E-selectin, and CD44 which was reversed by the PI3K inhibitor LY294002, but not by the MEK inhibitor U0126.In summary, our data demonstrate a novel molecular mechanism by which S1P, FTY720, and two novel butterfly derivatives acted anti-inflammatory that is by suppressing gene transcription of various endothelial adhesion molecules and thereby preventing adhesion of immune cells to endothelial cells and subsequent extravasation.

  13. Yielding Elastic Tethers Stabilize Robust Cell Adhesion

    PubMed Central

    Whitfield, Matt J.; Luo, Jonathon P.; Thomas, Wendy E.

    2014-01-01

    Many bacteria and eukaryotic cells express adhesive proteins at the end of tethers that elongate reversibly at constant or near constant force, which we refer to as yielding elasticity. Here we address the function of yielding elastic adhesive tethers with Escherichia coli bacteria as a model for cell adhesion, using a combination of experiments and simulations. The adhesive bond kinetics and tether elasticity was modeled in the simulations with realistic biophysical models that were fit to new and previously published single molecule force spectroscopy data. The simulations were validated by comparison to experiments measuring the adhesive behavior of E. coli in flowing fluid. Analysis of the simulations demonstrated that yielding elasticity is required for the bacteria to remain bound in high and variable flow conditions, because it allows the force to be distributed evenly between multiple bonds. In contrast, strain-hardening and linear elastic tethers concentrate force on the most vulnerable bonds, which leads to failure of the entire adhesive contact. Load distribution is especially important to noncovalent receptor-ligand bonds, because they become exponentially shorter lived at higher force above a critical force, even if they form catch bonds. The advantage of yielding is likely to extend to any blood cells or pathogens adhering in flow, or to any situation where bonds are stretched unequally due to surface roughness, unequal native bond lengths, or conditions that act to unzip the bonds. PMID:25473833

  14. The Sal-like 4 - integrin α6β1 network promotes cell migration for metastasis via activation of focal adhesion dynamics in basal-like breast cancer cells.

    PubMed

    Itou, Junji; Tanaka, Sunao; Li, Wenzhao; Iida, Atsuo; Sehara-Fujisawa, Atsuko; Sato, Fumiaki; Toi, Masakazu

    2017-01-01

    During metastasis, cancer cell migration is enhanced. However, the mechanisms underlying this process remain elusive. Here, we addressed this issue by functionally analyzing the transcription factor Sal-like 4 (SALL4) in basal-like breast cancer cells. Loss-of-function studies of SALL4 showed that this transcription factor is required for the spindle-shaped morphology and the enhanced migration of cancer cells. SALL4 also up-regulated integrin gene expression. The impaired cell migration observed in SALL4 knockdown cells was restored by overexpression of integrin α6 and β1. In addition, we clarified that integrin α6 and β1 formed a heterodimer. At the molecular level, loss of the SALL4 - integrin α6β1 network lost focal adhesion dynamics, which impairs cell migration. Over-activation of Rho is known to inhibit focal adhesion dynamics. We observed that SALL4 knockdown cells exhibited over-activation of Rho. Aberrant Rho activation was suppressed by integrin α6β1 expression, and pharmacological inhibition of Rho activity restored cell migration in SALL4 knockdown cells. These results indicated that the SALL4 - integrin α6β1 network promotes cell migration via modulation of Rho activity. Moreover, our zebrafish metastasis assays demonstrated that this gene network enhances cell migration in vivo. Our findings identify a potential new therapeutic target for the prevention of metastasis, and provide an improved understanding of cancer cell migration.

  15. Galphas-coupled receptor signaling actively down-regulates α4β1-integrin affinity: A possible mechanism for cell de-adhesion

    PubMed Central

    Chigaev, Alexandre; Waller, Anna; Amit, Or; Sklar, Larry A

    2008-01-01

    Background Activation of integrins in response to inside-out signaling serves as a basis for leukocyte arrest on endothelium, and migration of immune cells. Integrin-dependent adhesion is controlled by the conformational state of the molecule (i.e. change in the affinity for the ligand and molecular unbending (extension)), which is regulated by seven-transmembrane Guanine nucleotide binding Protein-Coupled Receptors (GPCRs). α4β1-integrin (CD49d/CD29, Very Late Antigen-4, VLA-4) is expressed on leukocytes, hematopoietic stem cells, hematopoietic cancer cells, and others. Affinity and extension of VLA-4 are both rapidly up-regulated by inside-out signaling through several Gαi-coupled GPCRs. The goal of the current report was to study the effect of Gαs-coupled GPCRs upon integrin activation. Results Using real-time fluorescent ligand binding to assess affinity and a FRET based assay to probe α4β1-integrin unbending, we show that two Gαs-coupled GPCRs (H2-histamine receptor and β2-adrenergic receptor) as well as several cAMP agonists can rapidly down modulate the affinity of VLA-4 activated through two Gαi-coupled receptors (CXCR4 and FPR) in U937 cells and primary human peripheral blood monocytes. This down-modulation can be blocked by receptor-specific antagonists. The Gαs-induced responses were not associated with changes in the expression level of the Gαi-coupled receptors. In contrast, the molecular unbending of VLA-4 was not significantly affected by Gαs-coupled GPCR signaling. In a VLA-4/VCAM-1-specific myeloid cell adhesion system, inhibition of the VLA-4 affinity change by Gαs-coupled GPCR had a statistically significant effect upon cell aggregation. Conclusion We conclude that Gαs-coupled GPCRs can rapidly down modulate the affinity state of VLA-4 binding pocket through a cAMP dependent pathway. This plays an essential role in the regulation of cell adhesion. We discuss several possible implications of this described phenomenon. PMID:18534032

  16. A Small Physiological Electric Field Mediated Responses of Extravillous Trophoblasts Derived from HTR8/SVneo Cells: Involvement of Activation of Focal Adhesion Kinase Signaling

    PubMed Central

    Zhang, Juan; Ren, Rongmei; Luo, Xuefeng; Fan, Ping; Liu, Xinghui; Liang, Shanshan; Ma, Lei; Yu, Ping; Bai, Huai

    2014-01-01

    Moderate invasion of trophoblast cells into endometrium is essential for the placental development and normal pregnancy. Electric field (EF)-induced effects on cellular behaviors have been observed in many cell types. This study was to investigate the effect of physiological direct current EF (dc EF) on cellular responses such as elongation, orientation and motility of trophoblast cells. Immortalized first trimester extravillous trophoblast cells (HTR-8/SVneo) were exposed to the dc EF at physiological magnitude. Cell images were recorded and analyzed by image analyzer. Cell lysates were used to detect protein expression by Western blot. Cultured in the dc EFs the cells showed elongation, orientation and enhanced migration rate compared with non-EF stimulated cells at field strengths of 100 mV/mm to 200 mV/mm. EF exposure increased focal adhesion kinase (FAK) phosphorylation in a time-dependent manner and increased expression levels of MMP-2. Pharmacological inhibition of FAK impaired the EF-induced responses including motility and abrogated the elevation of MMP-2 expression. However, the expression levels of integrins like integrin α1, α5, αV and β1 were not affected by EF stimulation. Our results demonstrate the importance of FAK activation in migration/motility of trophobalst cells driven by EFs. In addition, it raises the feasibility of using applied EFs to promote placentation through effects on trophoblast cells. PMID:24643246

  17. Interleukin-1β activates focal adhesion kinase and Src to induce matrix metalloproteinase-9 production and invasion of MCF-7 breast cancer cells

    PubMed Central

    Mon, Naing Naing; Senga, Takeshi; Ito, Satoko

    2017-01-01

    Interleukin-1β (IL-1b) is a pleiotropic cytokine that is important in tumor progression and invasion. Matrix metalloproteinase-9 (MMP-9), which is a secreted matrix-degrading enzyme, is one of the key regulators of tumor invasion and metastasis. The current report indicated that IL-1b promotes MMP-9 production and cell invasion in non-metastatic MCF-7 breast cancer cells. IL-1b activated focal adhesion kinase (FAK) and proto-oncogene tyrosine-protein kinase Src (Src). Moreover, inhibiting the Src/FAK pathway reduced the IL-1b-induced production of MMP-9 and cell invasion. To investigate the functional role of FAK in MMP-9 production cell lines expressing mutant FAK in FAK knock-out mouse fibroblasts were generated. In wild-type FAK-expressing cells, MMP-9 production was induced by IL-1b stimulation. By contrast, IL-1b-induced MMP-9 production was abrogated in FAK knock-out, FAK Y397F, FAK Y925F, and kinase dead mutant-expressing cells. Therefore the results of the current study indicate that FAK and Src kinases are activated by IL-1b and play a critical role in MMP-9 production and tumor cell invasion. PMID:28356984

  18. ADAMTS-10 and -6 differentially regulate cell-cell junctions and focal adhesions

    PubMed Central

    Cain, Stuart A.; Mularczyk, Ewa J.; Singh, Mukti; Massam-Wu, Teresa; Kielty, Cay M.

    2016-01-01

    ADAMTS10 and ADAMTS6 are homologous metalloproteinases with ill-defined roles. ADAMTS10 mutations cause Weill-Marchesani syndrome (WMS), implicating it in fibrillin microfibril biology since some fibrillin-1 mutations also cause WMS. However little is known about ADAMTS6 function. ADAMTS10 is resistant to furin cleavage, however we show that ADAMTS6 is effectively processed and active. Using siRNA, over-expression and mutagenesis, it was found ADAMTS6 inhibits and ADAMTS10 is required for focal adhesions, epithelial cell-cell junction formation, and microfibril deposition. Either knockdown of ADAMTS6, or disruption of its furin processing or catalytic sites restores focal adhesions, implicating its enzyme activity acts on targets in the focal adhesion complex. In ADAMTS10-depleted cultures, expression of syndecan-4 rescues focal adhesions and cell-cell junctions. Recombinant C-termini of ADAMTS10 and ADAMTS6, both of which induce focal adhesions, bind heparin and syndecan-4. However, cells overexpressing full-length ADAMTS6 lack heparan sulphate and focal adhesions, whilst depletion of ADAMTS6 induces a prominent glycocalyx. Thus ADAMTS10 and ADAMTS6 oppositely affect heparan sulphate-rich interfaces including focal adhesions. We previously showed that microfibril deposition requires fibronectin-induced focal adhesions, and cell-cell junctions in epithelial cultures. Here we reveal that ADAMTS6 causes a reduction in heparan sulphate-rich interfaces, and its expression is regulated by ADAMTS10. PMID:27779234

  19. Cytokine-mediated induction of endothelial adhesion molecule and histocompatibility leukocyte antigen expression by cytomegalovirus-activated T cells.

    PubMed Central

    Waldman, W. J.; Knight, D. A.

    1996-01-01

    Cytomegalovirus (CMV) has been associated with allograft rejection and transplantation-associated arteriosclerosis. CMV infects endothelium, the interface between allograft tissue and the host immune system; however, mechanisms by which such interaction might exacerbate the rejection process remain unresolved. Here we test the hypothesis that host immune activity, triggered by CMV-infected graft endothelial cells (ECs), can result in the production of cytokines capable of enhancing the alloimmunogenicity of nearby uninfected endothelia. To model these phenomena in vitro, confluent monolayers of ECs derived from human umbilical vein or adult gonadal vein were incubated 5 days beneath trans-well culture inserts containing CMV-seropositive or CMV-seronegative donor-derived CD3+ or CD4+ T cells alone or in combination with CMV-infected or uninfected allogeneic ECs. The extent of T cell proliferation was determined by [3H]thymidine labeling of trans-well contents after transfer to microtiter plates. Endothelial responses to soluble factors elaborated by CMV-activated T cells were determined by immunohistochemical staining and immunofluorescence flow cytometric analysis of underlying EC monolayers. Results of experiments with CMV-seropositive donor-derived CD4+ T cells demonstrated enhancement of ICAM-1 and histocompatibility leukocyte antigen class I, as well as induction of histocompatibility leukocyte antigen DR on ECs incubated beneath T cell/EC/CMV trans-well co-cultures. Total (CD3+) T cells co-cultured with EC/CMV induced VCAM-1 as well. Furthermore, [3H]thymidine incorporation by these T cells indicated a strong proliferative response. Endothelial responses to T cells alone or in combination with uninfected ECs were minimal, and T cells cultured under these conditions showed little proliferative activity. Similarly, little or no endothelial responses were apparent in monolayers beneath trans-wells containing T cells isolated from CMV-seronegative individuals

  20. Lymphocyte adhesion-dependent calcium signaling in human endothelial cells

    PubMed Central

    1995-01-01

    Vascular endothelial cells (ECs) can undergo dramatic phenotypic and functional alterations in response to humoral and cellular stimuli. These changes promote endothelial participation in the inflammatory response through active recruitment of immune effector cells, increased vascular permeability, and alteration in vascular tone. In an attempt to define early events in lymphocyte-mediated EC signaling, we investigated cytosolic-free calcium (Ca2+) changes in single, Fluo-3- labeled human umbilical vein ECs (HUVECs), using an ACAS interactive laser cytometer. Of all lymphocyte subsets tested, allogeneic CD3-, CD56+ natural killer (NK) cells uniquely elicited oscillatory EC Ca2+ signals in cytokine (interleukin [IL]-1- or tumor necrosis factor [TNF])-treated ECs. The induction of these signals required avid intercellular adhesion, consisted of both Ca2+ mobilization and extracellular influx, and was associated with EC inositol phosphate (IP) generation. Simultaneous recording of NK and EC Ca2+ signals using two-color fluorescence detection revealed that, upon adhesion, NK cells flux prior to EC. Lymphocyte Ca2+ buffering with 1,2-bis-5-methyl-amino- phenoxylethane-N,N,N'-tetra-acetoxymethyl acetate (MAPTAM) demonstrated that lymphocyte fluxes are, in fact, prerequisites for the adhesion- dependent EC signals. mAb studies indicate that the beta 2 integrin- intercellular adhesion molecule (ICAM)-1 adhesion pathway is critically involved. However, ICAM-1 antisense oligonucleotide inhibition of IL-1- mediated ICAM-1 hyperinduction had no effect on EC Ca2+ signaling in lymphocyte-EC conjugates, indicating that additional cytokine-induced EC alteration is required. These experiments combine features of lymphocyte-endothelial interactions, intercellular adhesion, EC cytokine activation and transmembrane signaling. The results implicate the IP/Ca2+ second messenger pathway in EC outside-in signaling induced by cytotoxic lymphocytes, and suggest that these signals may play a

  1. Architecture and adhesive activity of the Haemophilus influenzae Hsf adhesin.

    PubMed

    Cotter, Shane E; Yeo, Hye-Jeong; Juehne, Twyla; St Geme, Joseph W

    2005-07-01

    Haemophilus influenzae type b is an important cause of meningitis and other serious invasive diseases and initiates infection by colonizing the upper respiratory tract. Among the major adhesins in H. influenzae type b is a nonpilus protein called Hsf, a large protein that forms fiber-like structures on the bacterial surface and shares significant sequence similarity with the nontypeable H. influenzae Hia autotransporter. In the present study, we characterized the structure and adhesive activity of Hsf. Analysis of the predicted amino acid sequence of Hsf revealed three regions with high-level homology to the HiaBD1 and HiaBD2 binding domains in Hia. Based on examination of glutathione S-transferase fusion proteins corresponding to these regions, two of the three had adhesive activity and one was nonadhesive in assays with cultured epithelial cells. Structural modeling demonstrated that only the two regions with adhesive activity harbored an acidic binding pocket like the binding pocket identified in the crystal structure of HiaBD1. Consistent with these results, disruption of the acidic binding pockets in the adhesive regions eliminated adhesive activity. These studies advance our understanding of the architecture of Hsf and the family of trimeric autotransporters and provide insight into the structural determinants of H. influenzae type b adherence.

  2. Angiogenesis mediated by soluble forms of E-selectin and vascular cell adhesion molecule-1

    NASA Astrophysics Data System (ADS)

    Koch, Alisa E.; Halloran, Margaret M.; Haskell, Catherine J.; Shah, Manisha R.; Polverini, Peter J.

    1995-08-01

    ENDOTHELIAL adhesion molecules facilitate the entry of leukocytes into inflamed tissues. This in turn promotes neovascularization, a process central to the progression of rheumatoid arthritis, tumour growth and wound repair1. Here we test the hypothesis that soluble endothelial adhesion molecules promote angiogenesis2á¤-4. Human recombinant soluble E-selectin and soluble vascular cell adhesion molecule-1 induced chemotaxis of human endothelial cells in vitro and were angiogenic in rat cornea. Soluble E-selectin acted on endothelial cells in part through a sialyl Lewis-X-dependent mechanism, while soluble vascular cell adhesion molecule-1 acted on endothelial cells in part through a very late antigen (VLA)-4 dependent mechanism. The chemotactic activity of rheumatoid synovial fluid for endothelial cells, and also its angiogenic activity, were blocked by antibodies to either soluble E-selectin or soluble vascular cell adhesion molecule-1. These results suggest a novel function for soluble endothelial adhesion molecules as mediators of angiogenesis.

  3. Hybrid inverse opals for regulating cell adhesion and orientation

    NASA Astrophysics Data System (ADS)

    Lu, Jie; Zheng, Fuyin; Cheng, Yao; Ding, Haibo; Zhao, Yuanjin; Gu, Zhongze

    2014-08-01

    Cell adhesion and alignment are two important considerations in tissue engineering applications as they can regulate the subsequent cell proliferation activity and differentiation program. Although many effects have been applied to regulate the adhesion or alignment of cells by using physical and chemical methods, it is still a challenge to regulate these cell behaviors simultaneously. Here, we present novel substrates with tunable nanoscale patterned structures for regulating the adhesion and alignment of cells. The substrates with different degrees of pattern orientation were achieved by customizing the amount of stretching applied to polymer inverse opal films. Cells cultured on these substrates showed an adjustable morphology and alignment. Moreover, soft hydrogels, which have poor plasticity and are difficult to cast into patterned structures, were applied to infiltrate the inverse opal structure. We demonstrated that the adhesion ratio of cells could be regulated by these hybrid substrates, as well as adjusting the cell morphology and alignment. These features of functional inverse opal substrates make them suitable for important applications in tissue engineering.

  4. Hybrid inverse opals for regulating cell adhesion and orientation.

    PubMed

    Lu, Jie; Zheng, Fuyin; Cheng, Yao; Ding, Haibo; Zhao, Yuanjin; Gu, Zhongze

    2014-09-21

    Cell adhesion and alignment are two important considerations in tissue engineering applications as they can regulate the subsequent cell proliferation activity and differentiation program. Although many effects have been applied to regulate the adhesion or alignment of cells by using physical and chemical methods, it is still a challenge to regulate these cell behaviors simultaneously. Here, we present novel substrates with tunable nanoscale patterned structures for regulating the adhesion and alignment of cells. The substrates with different degrees of pattern orientation were achieved by customizing the amount of stretching applied to polymer inverse opal films. Cells cultured on these substrates showed an adjustable morphology and alignment. Moreover, soft hydrogels, which have poor plasticity and are difficult to cast into patterned structures, were applied to infiltrate the inverse opal structure. We demonstrated that the adhesion ratio of cells could be regulated by these hybrid substrates, as well as adjusting the cell morphology and alignment. These features of functional inverse opal substrates make them suitable for important applications in tissue engineering.

  5. Antiangiogenesis, loss of cell adhesion and apoptosis are involved in the antitumoral activity of Proteases from V. cundinamarcensis (C. candamarcensis) in murine melanoma B16F1.

    PubMed

    Dittz, Dalton; Figueiredo, Cinthia; Lemos, Fernanda O; Viana, Celso T R; Andrade, Silvia P; Souza-Fagundes, Elaine M; Fujiwara, Ricardo T; Salas, Carlos E; Lopes, Miriam T P

    2015-03-27

    The proteolytic enzymes from V. cundinamarcensis latex, (P1G10), display healing activity in animal models following various types of lesions. P1G10 or the purified isoforms act as mitogens on fibroblast and epithelial cells by stimulating angiogenesis and wound healing in gastric and cutaneous ulcers models. Based on evidence that plant proteinases act as antitumorals, we verified this effect on a murine melanoma model. The antitumoral effect analyzed mice survival and tumor development after subcutaneous administration of P1G10 into C57BL/6J mice bearing B16F1 low metastatic melanoma. Possible factors involved in the antitumoral action were assessed, i.e., cytotoxicity, cell adhesion and apoptosis in vitro, haemoglobin (Hb), vascular endothelial growth factor (VEGF), tumor growth factor-β (TGF-β), tumor necrosis factor-α (TNF-α) content and N-acetyl-glucosaminidase (NAG) activity. We observed that P1G10 inhibited angiogenesis measured by the decline of Hb and VEGF within the tumor, and TGF-β displayed a non-significant increase and TNF-α showed a minor non-significant reduction. On the other hand, there was an increase in NAG activity. In treated B16F1 cells, apoptosis was induced along with decreased cell binding to extracellular matrix components (ECM) and anchorage, without impairing viability.

  6. Antiangiogenesis, Loss of Cell Adhesion and Apoptosis Are Involved in the Antitumoral Activity of Proteases from V. cundinamarcensis (C. candamarcensis) in Murine Melanoma B16F1

    PubMed Central

    Dittz, Dalton; Figueiredo, Cinthia; Lemos, Fernanda O.; Viana, Celso T. R.; Andrade, Silvia P.; Souza-Fagundes, Elaine M.; Fujiwara, Ricardo T.; Salas, Carlos E.; Lopes, Miriam T. P.

    2015-01-01

    The proteolytic enzymes from V. cundinamarcensis latex, (P1G10), display healing activity in animal models following various types of lesions. P1G10 or the purified isoforms act as mitogens on fibroblast and epithelial cells by stimulating angiogenesis and wound healing in gastric and cutaneous ulcers models. Based on evidence that plant proteinases act as antitumorals, we verified this effect on a murine melanoma model. The antitumoral effect analyzed mice survival and tumor development after subcutaneous administration of P1G10 into C57BL/6J mice bearing B16F1 low metastatic melanoma. Possible factors involved in the antitumoral action were assessed, i.e., cytotoxicity, cell adhesion and apoptosis in vitro, haemoglobin (Hb), vascular endothelial growth factor (VEGF), tumor growth factor-β (TGF-β), tumor necrosis factor-α (TNF-α) content and N-acetyl-glucosaminidase (NAG) activity. We observed that P1G10 inhibited angiogenesis measured by the decline of Hb and VEGF within the tumor, and TGF-β displayed a non-significant increase and TNF-α showed a minor non-significant reduction. On the other hand, there was an increase in NAG activity. In treated B16F1 cells, apoptosis was induced along with decreased cell binding to extracellular matrix components (ECM) and anchorage, without impairing viability. PMID:25826531

  7. Multi-scale models for cell adhesion

    NASA Astrophysics Data System (ADS)

    Wu, Yinghao; Chen, Jiawen; Xie, Zhong-Ru

    2014-03-01

    The interactions of membrane receptors during cell adhesion play pivotal roles in tissue morphogenesis during development. Our lab focuses on developing multi-scale models to decompose the mechanical and chemical complexity in cell adhesion. Recent experimental evidences show that clustering is a generic process for cell adhesive receptors. However, the physical basis of such receptor clustering is not understood. We introduced the effect of molecular flexibility to evaluate the dynamics of receptors. By delivering new theory to quantify the changes of binding free energy in different cellular environments, we revealed that restriction of molecular flexibility upon binding of membrane receptors from apposing cell surfaces (trans) causes large entropy loss, which dramatically increases their lateral interactions (cis). This provides a new molecular mechanism to initialize receptor clustering on the cell-cell interface. By using the subcellular simulations, we further found that clustering is a cooperative process requiring both trans and cis interactions. The detailed binding constants during these processes are calculated and compared with experimental data from our collaborator's lab.

  8. Modeling keratinocyte wound healing dynamics: Cell-cell adhesion promotes sustained collective migration.

    PubMed

    Nardini, John T; Chapnick, Douglas A; Liu, Xuedong; Bortz, David M

    2016-07-07

    The in vitro migration of keratinocyte cell sheets displays behavioral and biochemical similarities to the in vivo wound healing response of keratinocytes in animal model systems. In both cases, ligand-dependent Epidermal Growth Factor Receptor (EGFR) activation is sufficient to elicit collective cell migration into the wound. Previous mathematical modeling studies of in vitro wound healing assays assume that physical connections between cells have a hindering effect on cell migration, but biological literature suggests a more complicated story. By combining mathematical modeling and experimental observations of collectively migrating sheets of keratinocytes, we investigate the role of cell-cell adhesion during in vitro keratinocyte wound healing assays. We develop and compare two nonlinear diffusion models of the wound healing process in which cell-cell adhesion either hinders or promotes migration. Both models can accurately fit the leading edge propagation of cell sheets during wound healing when using a time-dependent rate of cell-cell adhesion strength. The model that assumes a positive role of cell-cell adhesion on migration, however, is robust to changes in the leading edge definition and yields a qualitatively accurate density profile. Using RNAi for the critical adherens junction protein, α-catenin, we demonstrate that cell sheets with wild type cell-cell adhesion expression maintain migration into the wound longer than cell sheets with decreased cell-cell adhesion expression, which fails to exhibit collective migration. Our modeling and experimental data thus suggest that cell-cell adhesion promotes sustained migration as cells pull neighboring cells into the wound during wound healing.

  9. Study of the time effect on the strength of cell-cell adhesion force by a novel nano-picker

    SciTech Connect

    Shen, Yajing; Nakajima, Masahiro; Kojima, Seiji; Homma, Michio; Fukuda, Toshio

    2011-06-03

    Highlights: {yields} A nano-picker is developed for single cell adhesion force measurement. {yields} The adhesion of picker-cell has no influence to the cell-cell measurement result. {yields} Cell-cell adhesion force has a rise at the first few minutes and then becomes constant. -- Abstract: Cell's adhesion is important to cell's interaction and activates. In this paper, a novel method for cell-cell adhesion force measurement was proposed by using a nano-picker. The effect of the contact time on the cell-cell adhesion force was studied. The nano-picker was fabricated from an atomic force microscopy (AFM) cantilever by nano fabrication technique. The cell-cell adhesion force was measured based on the deflection of the nano-picker beam. The result suggests that the adhesion force between cells increased with the increasing of contact time at the first few minutes. After that, the force became constant. This measurement methodology was based on the nanorobotic manipulation system inside an environmental scanning electron microscope. It can realize both the observation and manipulation of a single cell at nanoscale. The quantitative and precise cell-cell adhesion force result can be obtained by this method. It would help us to understand the single cell interaction with time and would benefit the research in medical and biological fields potentially.

  10. L1 Cell Adhesion Molecule-Specific Chimeric Antigen Receptor-Redirected Human T Cells Exhibit Specific and Efficient Antitumor Activity against Human Ovarian Cancer in Mice

    PubMed Central

    Hong, Hao; Brown, Christine E.; Ostberg, Julie R.; Priceman, Saul J.; Chang, Wen-Chung; Weng, Lihong; Lin, Paul; Wakabayashi, Mark T.; Jensen, Michael C.; Forman, Stephen J.

    2016-01-01

    New therapeutic modalities are needed for ovarian cancer, the most lethal gynecologic malignancy. Recent clinical trials have demonstrated the impressive therapeutic potential of adoptive therapy using chimeric antigen receptor (CAR)-redirected T cells to target hematological cancers, and emerging studies suggest a similar impact may be achieved for solid cancers. We sought determine whether genetically-modified T cells targeting the CE7-epitope of L1-CAM, a cell adhesion molecule aberrantly expressed in several cancers, have promise as an immunotherapy for ovarian cancer, first demonstrating that L1-CAM was highly over-expressed on a panel of ovarian cancer cell lines, primary ovarian tumor tissue specimens, and ascites-derived primary cancer cells. Human central memory derived T cells (TCM) were then genetically modified to express an anti-L1-CAM CAR (CE7R), which directed effector function upon tumor antigen stimulation as assessed by in vitro cytokine secretion and cytotoxicity assays. We also found that CE7R+ T cells were able to target primary ovarian cancer cells. Intraperitoneal (i.p.) administration of CE7R+ TCM induced a significant regression of i.p. established SK-OV-3 xenograft tumors in mice, inhibited ascites formation, and conferred a significant survival advantage compared with control-treated animals. Taken together, these studies indicate that adoptive transfer of L1-CAM-specific CE7R+ T cells may offer a novel and effective immunotherapy strategy for advanced ovarian cancer. PMID:26761817

  11. L1 Cell Adhesion Molecule-Specific Chimeric Antigen Receptor-Redirected Human T Cells Exhibit Specific and Efficient Antitumor Activity against Human Ovarian Cancer in Mice.

    PubMed

    Hong, Hao; Brown, Christine E; Ostberg, Julie R; Priceman, Saul J; Chang, Wen-Chung; Weng, Lihong; Lin, Paul; Wakabayashi, Mark T; Jensen, Michael C; Forman, Stephen J

    2016-01-01

    New therapeutic modalities are needed for ovarian cancer, the most lethal gynecologic malignancy. Recent clinical trials have demonstrated the impressive therapeutic potential of adoptive therapy using chimeric antigen receptor (CAR)-redirected T cells to target hematological cancers, and emerging studies suggest a similar impact may be achieved for solid cancers. We sought determine whether genetically-modified T cells targeting the CE7-epitope of L1-CAM, a cell adhesion molecule aberrantly expressed in several cancers, have promise as an immunotherapy for ovarian cancer, first demonstrating that L1-CAM was highly over-expressed on a panel of ovarian cancer cell lines, primary ovarian tumor tissue specimens, and ascites-derived primary cancer cells. Human central memory derived T cells (TCM) were then genetically modified to express an anti-L1-CAM CAR (CE7R), which directed effector function upon tumor antigen stimulation as assessed by in vitro cytokine secretion and cytotoxicity assays. We also found that CE7R+ T cells were able to target primary ovarian cancer cells. Intraperitoneal (i.p.) administration of CE7R+ TCM induced a significant regression of i.p. established SK-OV-3 xenograft tumors in mice, inhibited ascites formation, and conferred a significant survival advantage compared with control-treated animals. Taken together, these studies indicate that adoptive transfer of L1-CAM-specific CE7R+ T cells may offer a novel and effective immunotherapy strategy for advanced ovarian cancer.

  12. Adhesion and internalization differences of COM nanocrystals on Vero cells before and after cell damage.

    PubMed

    Gan, Qiong-Zhi; Sun, Xin-Yuan; Ouyang, Jian-Ming

    2016-02-01

    The adhesion and internalization between African green monkey kidney epithelial (Vero) cells (before and after oxidative damage by hydrogen peroxide) and calcium oxalate monohydrate (COM) nanocrystals (97±35nm) were investigated so as to discuss the molecular and cellular mechanism of kidney stone formation. Scanning electron microscope (SEM) was used to observe the Vero-COM nanocrystal adhesion; the nanocrystal-cell adhesion was evaluated by measuring the content of malonaldehyde (MDA), the activity of superoxide dismutase (SOD), the expression level of cell surface osteopontin (OPN) and the change of Zeta potential. Confocal microscopy and flow cytometry were used for the observation and quantitative analysis of crystal internalization. In the process of adhesion, the cell viability and the SOD activity declined, the MDA content, Zeta potential, and the OPN expression level increased. The adhesive capacity of injured Vero was obviously stronger than normal cells; in addition the injured cells promoted the aggregation of COM nanocrystals. The capacity of normal cells to internalize crystals was obviously stronger than that of injured cells. Cell injury increased adhesive sites on cell surface, thereby facilitating the aggregation of COM nanocrystals and their attachment, which results in enhanced risk of calcium oxalate stone formation.

  13. Cell adhesion to fibronectin and tenascin: quantitative measurements of initial binding and subsequent strengthening response

    PubMed Central

    1989-01-01

    Cell-substratum adhesion strengths have been quantified using fibroblasts and glioma cells binding to two extracellular matrix proteins, fibronectin and tenascin. A centrifugal force-based adhesion assay was used for the adhesive strength measurements, and the corresponding morphology of the adhesions was visualized by interference reflection microscopy. The initial adhesions as measured at 4 degrees C were on the order of 10(-5)dynes/cell and did not involve the cytoskeleton. Adhesion to fibronectin after 15 min at 37 degrees C were more than an order of magnitude stronger; the strengthening response required cytoskeletal involvement. By contrast to the marked strengthening of adhesion to FN, adhesion to TN was unchanged or weakened after 15 min at 37 degrees C. The absolute strength of adhesion achieved varied according to protein and cell type. When a mixed substratum of fibronectin and tenascin was tested, the presence of tenascin was found to reduce the level of the strengthening of cell adhesion normally observed at 37 degrees C on a substratum of fibronectin alone. Parallel analysis of corresponding interference reflection micrographs showed that differences in the area of cell surface within 10-15 nm of the substratum correlated closely with each of the changes in adhesion observed: after incubation for 15 min on fibronectin at 37 degrees C, glioma cells increased their surface area within close contact to the substrate by integral to 125- fold. Cells on tenascin did not increase their surface area of contact. The increased surface area of contact and the inhibitory activity of cytochalasin b suggest that the adhesive "strengthening" in the 15 min after initial binding brings additional adhesion molecules into the adhesive site and couples the actin cytoskeleton to the adhesion complex. PMID:2477381

  14. How to let go: pectin and plant cell adhesion.

    PubMed

    Daher, Firas Bou; Braybrook, Siobhan A

    2015-01-01

    Plant cells do not, in general, migrate. They maintain a fixed position relative to their neighbors, intimately linked through growth and differentiation. The mediator of this connection, the pectin-rich middle lamella, is deposited during cell division and maintained throughout the cell's life to protect tissue integrity. The maintenance of adhesion requires cell wall modification and is dependent on the actin cytoskeleton. There are developmental processes that require cell separation, such as organ abscission, dehiscence, and ripening. In these instances, the pectin-rich middle lamella must be actively altered to allow cell separation, a process which also requires cell wall modification. In this review, we will focus on the role of pectin and its modification in cell adhesion and separation. Recent insights gained in pectin gel mechanics will be discussed in relation to existing knowledge of pectin chemistry as it relates to cell adhesion. As a whole, we hope to begin defining the physical mechanisms behind a cells' ability to hang on, and how it lets go.

  15. EGCG Inhibits Proliferation, Invasiveness and Tumor Growth by Up-Regulation of Adhesion Molecules, Suppression of Gelatinases Activity, and Induction of Apoptosis in Nasopharyngeal Carcinoma Cells

    PubMed Central

    Fang, Chih-Yeu; Wu, Chung-Chun; Hsu, Hui-Yu; Chuang, Hsin-Ying; Huang, Sheng-Yen; Tsai, Ching-Hwa; Chang, Yao; Tsao, George Sai-Wah; Chen, Chi-Long; Chen, Jen-Yang

    2015-01-01

    (−)-Epigallocatechin-3-gallate (EGCG), a major green tea polyphenol, has been shown to inhibit the proliferation of a variety of tumor cells. Epidemiological studies have shown that drinking green tea can reduce the incidence of nasopharyngeal carcinoma (NPC), yet the underlying mechanism is not well understood. In this study, the inhibitory effect of EGCG was tested on a set of Epstein Barr virus-negative and -positive NPC cell lines. Treatment with EGCG inhibited the proliferation of NPC cells but did not affect the growth of a non-malignant nasopharyngeal cell line, NP460hTert. Moreover, EGCG treated cells had reduced migration and invasive properties. The expression of the cell adhesion molecules E-cadherin and β-catenin was found to be up-regulated by EGCG treatment, while the down-regulation of matrix metalloproteinases (MMP)-2 and MMP-9 were found to be mediated by suppression of extracellular signal-regulated kinase (ERK) phosphorylation and AP-1 and Sp1 transactivation. Spheroid formation by NPC cells in suspension was significantly inhibited by EGCG. Oral administration of EGCG was capable of suppressing tumor growth in xenografted mice bearing NPC tumors. Treatment with EGCG was found to elevate the expression of p53 and p21, and eventually led to apoptosis of NPC cells via caspase 3 activation. The nuclear translocation of NF-κB and β-catenin was also suppressed by EGCG treatment. These results indicate that EGCG can inhibit the proliferation and invasiveness, and induce apoptosis, of NPC cells, making it a promising agent for chemoprevention or adjuvant therapy of NPC. PMID:25625511

  16. Cell surface alpha 2,6 sialylation affects adhesion of breast carcinoma cells.

    PubMed

    Lin, Shaoqiang; Kemmner, Wolfgang; Grigull, Sabine; Schlag, Peter M

    2002-05-15

    Tumor-associated alterations of cell surface glycosylation play a crucial role in the adhesion and metastasis of carcinoma cells. The aim of this study was to examine the effect of alpha 2,6-sialylation on the adhesion properties of breast carcinoma cells. To this end mammary carcinoma cells, MDA-MB-435, were sense-transfected with sialyltransferase ST6Gal-I cDNA or antisense-transfected with a part of the ST6Gal-I sequence. Sense transfectants showed an enhanced ST6Gal-I mRNA expression and enzyme activity and an increased binding of the lectin Sambucus nigra agglutinin (SNA), specific for alpha 2,6-linked sialic acid. Transfection with ST6Gal-I in the antisense direction resulted in less enzyme activity and SNA reactivity. A sense-transfected clone carrying increased amounts of alpha 2,6-linked sialic acid adhered preferentially to collagen IV and showed reduced cell-cell adhesion and enhanced invasion capacity. In contrast, antisense transfection led to less collagen IV adhesion but enhanced homotypic cell-cell adhesion. In another approach, inhibition of ST6Gal-I enzyme activity by application of soluble antisense-oligodeoxynucleotides was studied. Antisense treatment resulted in reduced ST6 mRNA expression and cell surface 2,6-sialylation and significantly decreased collagen IV adhesion. Our results suggest that cell surface alpha 2,6-sialylation contributes to cell-cell and cell-extracellular matrix adhesion of tumor cells. Inhibition of sialytransferase ST6Gal-I by antisense-oligodeoxynucleotides might be a way to reduce the metastatic capacity of carcinoma cells.

  17. The MRL proteins: adapting cell adhesion, migration and growth.

    PubMed

    Coló, Georgina P; Lafuente, Esther M; Teixidó, Joaquin

    2012-01-01

    MIG-10, RIAM and Lamellipodin (Lpd) are the founding members of the MRL family of multi-adaptor molecules. These proteins have common domain structures but display distinct functions in cell migration and adhesion, signaling, and in cell growth. The binding of RIAM with active Rap1 and with talin provides these MRL molecules with important regulatory roles on integrin-mediated cell adhesion and migration. Furthermore, RIAM and Lpd can regulate actin dynamics through their binding to actin regulatory Ena/VASP proteins. Recent data generated with the Drosophila MRL ortholog called Pico and with RIAM in melanoma cells indicate that these proteins can also regulate cell growth. As MRL proteins represent a relatively new family, many questions on their structure-function relationships remain unanswered, including regulation of their expression, post-translational modifications, new interactions, involvement in signaling and their knockout mice phenotype.

  18. Human T-Lymphotropic Virus Type 1-Induced Overexpression of Activated Leukocyte Cell Adhesion Molecule (ALCAM) Facilitates Trafficking of Infected Lymphocytes through the Blood-Brain Barrier

    PubMed Central

    Curis, Céline; Percher, Florent; Jeannin, Patricia; Montange, Thomas; Chevalier, Sébastien A.; Seilhean, Danielle; Cartier, Luis; Couraud, Pierre-Olivier; Gout, Olivier; Gessain, Antoine; Ceccaldi, Pierre-Emmanuel

    2016-01-01

    ABSTRACT Human T-lymphotropic virus type 1 (HTLV-1) is the etiological agent of a slowly progressive neurodegenerative disease, HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). This disease develops upon infiltration of HTLV-1-infected lymphocytes into the central nervous system, mostly the thoracic spinal cord. The central nervous system is normally protected by a physiological structure called the blood-brain barrier (BBB), which consists primarily of a continuous endothelium with tight junctions. In this study, we investigated the role of activated leukocyte cell adhesion molecule (ALCAM/CD166), a member of the immunoglobulin superfamily, in the crossing of the BBB by HTLV-1-infected lymphocytes. We demonstrated that ALCAM is overexpressed on the surface of HTLV-1-infected lymphocytes, both in chronically infected cell lines and in primary infected CD4+ T lymphocytes. ALCAM overexpression results from the activation of the canonical NF-κB pathway by the viral transactivator Tax. In contrast, staining of spinal cord sections of HAM/TSP patients showed that ALCAM expression is not altered on the BBB endothelium in the context of HTLV-1 infection. ALCAM blockade or downregulation of ALCAM levels significantly reduced the migration of HTLV-1-infected lymphocytes across a monolayer of human BBB endothelial cells. This study suggests a potential role for ALCAM in HAM/TSP pathogenesis. IMPORTANCE Human T-lymphotropic virus type 1 (HTLV-1) is the etiological agent of a slowly progressive neurodegenerative disease, HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). This disease is the consequence of the infiltration of HTLV-1-infected lymphocytes into the central nervous system (CNS), mostly the thoracic spinal cord. The CNS is normally protected by a physiological structure called the blood-brain barrier (BBB), which consists primarily of a continuous endothelium with tight junctions. The mechanism of migration of lymphocytes into

  19. Human fibronectin contains distinct adhesion- and motility-promoting domains for metastatic melanoma cells

    PubMed Central

    1986-01-01

    The active migration of tumor cells through extracellular matrices has been proposed to play a role in certain aspects of metastasis. Metastatic tumor cells migrate in vitro in response to substratum-bound adhesive glycoproteins such as fibronectin. The present studies use affinity-purified proteolytic fragments of fibronectin to determine the nature of adhesion- and/or motility-promoting domains within the protein. Two distinct fragments were identified with cell adhesion- promoting activities. By a number of criteria, the adhesive activity promoted by these two fragments was distinct. One fragment, a 75-kD tryptic fragment purified by monoclonal antibody chromatography, promoted the adhesion, spreading, and haptotactic motility of melanoma cells. Experiments using a synthetic cell attachment peptide in solution indicated that at least part of the attachment activity exhibited by the 75-kD fragment is mediated by the sequence arg-gly-asp- ser. It was not possible to demonstrate migration-stimulating activity using a small (11.5 kD) peptic fragment containing this sequence (Pierschbacher, M.D., E. G. Hayman, and E. Ruoslahti, 1981, Cell, 26:259-267) suggesting that another cell-binding activity within the 75 kD fragment distinct from arg-gly-asp-ser might be required for motility. The second fragment that stimulated melanoma adhesion was a 33-kD tryptic/catheptic carboxyl-terminal heparin-binding fragment, which is localized to the A chain of fibronectin. This fragment promotes adhesion and spreading but not the motility of these cells. Melanoma adhesion to this heparin-binding fragment was sensitive to the effects of cycloheximide, which contrasted adhesion to the haptotaxis- promoting fragment. Importantly, these studies illustrate that haptotaxis in response to fibronectin is not due to simple adhesion gradients of this protein. The results are discussed in light of a model for multiple distinct cell surface constituents mediating cell adhesion and motility on

  20. Force nanoscopy of cell mechanics and cell adhesion

    NASA Astrophysics Data System (ADS)

    Dufrêne, Yves F.; Pelling, Andrew E.

    2013-05-01

    Cells are constantly exposed to mechanical stimuli in their environment and have several evolved mechanisms to sense and respond to these cues. It is becoming increasingly recognized that many cell types, from bacteria to mammalian cells, possess a diverse set of proteins to translate mechanical cues into biochemical signalling and to mediate cell surface interactions such as cell adhesion. Moreover, the mechanical properties of cells are involved in regulating cell function as well as serving as indicators of disease states. Importantly, the recent development of biophysical tools and nanoscale methods has facilitated a deeper understanding of the role that physical forces play in modulating cell mechanics and cell adhesion. Here, we discuss how atomic force microscopy (AFM) has recently been used to investigate cell mechanics and cell adhesion at the single-cell and single-molecule levels. This knowledge is critical to our understanding of the molecular mechanisms that govern mechanosensing, mechanotransduction, and mechanoresponse in living cells. While pushing living cells with the AFM tip provides a means to quantify their mechanical properties and examine their response to nanoscale forces, pulling single surface proteins with a functionalized tip allows one to understand their role in sensing and adhesion. The combination of these nanoscale techniques with modern molecular biology approaches, genetic engineering and optical microscopies provides a powerful platform for understanding the sophisticated functions of the cell surface machinery, and its role in the onset and progression of complex diseases.

  1. Focal adhesion kinase maintains, but not increases the adhesion of dental pulp cells.

    PubMed

    Qian, Yuyan; Shao, Meiying; Zou, Wenlin; Wang, Linyan; Cheng, Ran; Hu, Tao

    2017-02-25

    Focal adhesion kinase (FAK) functions as a key enzyme in the integrin-mediated adhesion-signalling pathway. Here, we aimed to investigate the effects of FAK on adhesion of human dental pulp (HDP) cells. We transfected lentiviral vectors to silence or overexpress FAK in HDP cells ex vivo. Early cell adhesion, cell survival and focal contacts (FCs)-related proteins (FAK and paxillin) were examined. By using immunofluorescence, the formation of FCs and cytoskeleton was detected, respectively. We found that both adhesion and survival of HDP cells were suppressed by FAK inhibition. However, FAK overexpression slightly inhibited cell adhesion and exhibited no change in cell survival compared with the control. A thick rim of cytoskeleton accumulated and smaller dot-shaped FCs appeared in FAK knockdown cells. Phosphorylation of paxillin (p-paxillin) was inhibited in FAK knockdown cells, verifying that the adhesion was inhibited. Less cytoskeleton and elongated FCs were observed in FAK-overexpressed cells. However, p-paxillin had no significant difference compared with the control. In conclusion, the data suggest that FAK maintains cell adhesion, survival and cytoskeleton formation, but excessive FAK has no positive effects on these aspects.

  2. Cinnamaldehyde inhibits the tumor necrosis factor-alpha-induced expression of cell adhesion molecules in endothelial cells by suppressing NF-kappaB activation: effects upon IkappaB and Nrf2.

    PubMed

    Liao, Being-Chyuan; Hsieh, Chia-Wen; Liu, Yen-Chin; Tzeng, Tsai-Teng; Sun, Yung-Wei; Wung, Being-Sun

    2008-06-01

    The production of adhesion molecules and subsequent attachment of leukocytes to endothelial cells (ECs) are critical early events in atherogenesis. These adhesion molecules thus play an important role in the development of this disease. Recent studies have highlighted the chemoprotective and anti-inflammatory effects of cinnamaldehyde, a Cinnamomum cassia Presl-specific diterpene. In our current study, we have examined the effects of both cinnamaldehyde and extracts of C. cassia on cytokine-induced monocyte/human endothelial cell interactions. We find that these compounds inhibit the adhesion of TNFalpha-induced monocytes to endothelial cells and suppress the expression of the cell adhesion molecules, VCAM-1 and ICAM-1, at the transcriptional level. Moreover, in TNFalpha-treated ECs, the principal downstream signal of VCAM-1 and ICAM-1, NF-kappaB, was also found to be abolished in a time-dependent manner. Interestingly, cinnamaldehyde exerts its anti-inflammatory effects by blocking the degradation of the inhibitory protein IkappaB-alpha, but only in short term pretreatments, whereas it does so via the induction of Nrf2-related genes, including heme-oxygenase-1 (HO-1), over long term pretreatments. Treating ECs with zinc protoporphyrin, a HO-1 inhibitor, partially blocks the anti-inflammatory effects of cinnamaldehyde. Elevated HO-1 protein levels were associated with the inhibition of TNFalpha-induced ICAM-1 expression. In addition to HO-1, we also found that cinnamaldehyde can upregulate Nrf2 in nuclear extracts, and can increase ARE-luciferase activity and upregulate thioredoxin reductase-1, another Nrf2-related gene. Moreover, cinnamaldehyde exposure rapidly reduces the cellular GSH levels in ECs over short term treatments but increases these levels after 9 h exposure. Hence, our present findings indicate that cinnamaldehyde suppresses TNF-induced singling pathways via two distinct mechanisms that are activated by different pretreatment periods.

  3. Contributions of the Integrin β1 Tail to Cell Adhesive Forces

    PubMed Central

    Elloumi-Hannachi, Imen; García, José R.; Shekeran, Asha; García, Andrés J.

    2014-01-01

    Integrin receptors connect the extracellular matrix to the cell cytoskeleton to provide essential forces and signals. To examine the contributions of the β1 integrin cytoplasmic tail to adhesive forces, we generated cell lines expressing wild-type and tail mutant β1 integrins in β1-null fibroblasts. Deletion of β1 significantly reduced cell spreading, focal adhesion assembly, and adhesive forces, and expression of hβ1 integrin in these cells restored adhesive functions. Cells expressing a truncated tail mutant had impaired spreading, fewer and smaller focal adhesions, reduced integrin binding to fibronectin, and lower adhesion strength and traction forces compared to hβ1-expressing cells. All these metrics were equivalent to those for β1-null cells, demonstrating that the β1 tail is essential to these adhesive functions. Expression of the constitutively-active D759A hβ1 mutant restored many of these adhesive functions in β1-null cells, although with important differences when compared to wild-type β1. Even though there were no differences in integrin-fibronectin binding and adhesion strength between hβ1- and hβ1-D759A-expressing cells, hβ1-D759A-expressing cells assembled more but smaller adhesions than hβ1-expressing cells. Importantly, hβ1-D759A-expressing cells generated lower traction forces compared to hβ1-expressing cells. These differences between hβ1- and hβ1-D759A-expressing cells suggest that regulation of integrin activation is important for fine-tuning cell spreading, focal adhesion assembly, and traction force generation. PMID:25460334

  4. How to let go: pectin and plant cell adhesion

    PubMed Central

    Daher, Firas Bou; Braybrook, Siobhan A.

    2015-01-01

    Plant cells do not, in general, migrate. They maintain a fixed position relative to their neighbors, intimately linked through growth and differentiation. The mediator of this connection, the pectin-rich middle lamella, is deposited during cell division and maintained throughout the cell’s life to protect tissue integrity. The maintenance of adhesion requires cell wall modification and is dependent on the actin cytoskeleton. There are developmental processes that require cell separation, such as organ abscission, dehiscence, and ripening. In these instances, the pectin-rich middle lamella must be actively altered to allow cell separation, a process which also requires cell wall modification. In this review, we will focus on the role of pectin and its modification in cell adhesion and separation. Recent insights gained in pectin gel mechanics will be discussed in relation to existing knowledge of pectin chemistry as it relates to cell adhesion. As a whole, we hope to begin defining the physical mechanisms behind a cells’ ability to hang on, and how it lets go. PMID:26236321

  5. Single-cell force spectroscopy as a technique to quantify human red blood cell adhesion to subendothelial laminin.

    PubMed

    Maciaszek, Jamie L; Partola, Kostyantyn; Zhang, Jing; Andemariam, Biree; Lykotrafitis, George

    2014-12-18

    Single-cell force spectroscopy (SCFS), an atomic force microscopy (AFM)-based assay, enables quantitative study of cell adhesion while maintaining the native state of surface receptors in physiological conditions. Human healthy and pathological red blood cells (RBCs) express a large number of surface proteins which mediate cell-cell interactions, or cell adhesion to the extracellular matrix. In particular, RBCs adhere with high affinity to subendothelial matrix laminin via the basal cell adhesion molecule and Lutheran protein (BCAM/Lu). Here, we established SCFS as an in vitro technique to study human RBC adhesion at baseline and following biochemical treatment. Using blood obtained from healthy human subjects, we recorded adhesion forces from single RBCs attached to AFM cantilevers as the cell was pulled-off of substrates coated with laminin protein. We found that an increase in the overall cell adhesion measured via SCFS is correlated with an increase in the resultant total force measured on 1 µm(2) areas of the RBC membrane. Further, we showed that SCFS can detect significant changes in the adhesive response of RBCs to modulation of the cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) pathway. Lastly, we identified variability in the RBC adhesion force to laminin amongst the human subjects, suggesting that RBCs maintain diverse levels of active BCAM/Lu adhesion receptors. By using single-cell measurements, we established a powerful new method for the quantitative measurement of single RBC adhesion with specific receptor-mediated binding.

  6. Tuning cell adhesion by direct nanostructuring silicon into cell repulsive/adhesive patterns.

    PubMed

    Premnath, Priyatha; Tavangar, Amirhossein; Tan, Bo; Venkatakrishnan, Krishnan

    2015-09-10

    Developing platforms that allow tuning cell functionality through incorporating physical, chemical, or mechanical cues onto the material surfaces is one of the key challenges in research in the field of biomaterials. In this respect, various approaches have been proposed and numerous structures have been developed on a variety of materials. Most of these approaches, however, demand a multistep process or post-chemical treatment. Therefore, a simple approach would be desirable to develop bio-functionalized platforms for effectively modulating cell adhesion and consequently programming cell functionality without requiring any chemical or biological surface treatment. This study introduces a versatile yet simple laser approach to structure silicon (Si) chips into cytophobic/cytophilic patterns in order to modulate cell adhesion and proliferation. These patterns are fabricated on platforms through direct laser processing of Si substrates, which renders a desired computer-generated configuration into patterns. We investigate the morphology, chemistry, and wettability of the platform surfaces. Subsequently, we study the functionality of the fabricated platforms on modulating cervical cancer cells (HeLa) behaviour. The results from in vitro studies suggest that the nanostructures efficiently repel HeLa cells and drive them to migrate onto untreated sites. The study of the morphology of the cells reveals that cells evade the cytophobic area by bending and changing direction. Additionally, cell patterning, cell directionality, cell channelling, and cell trapping are achieved by developing different platforms with specific patterns. The flexibility and controllability of this approach to effectively structure Si substrates to cell-repulsive and cell-adhesive patterns offer perceptible outlook for developing bio-functionalized platforms for a variety of biomedical devices. Moreover, this approach could pave the way for developing anti-cancer platforms that selectively repel

  7. Retinoids induce integrin-independent lymphocyte adhesion through RAR-α nuclear receptor activity

    SciTech Connect

    Whelan, Jarrett T.; Wang, Lei; Chen, Jianming; Metts, Meagan E.; Nasser, Taj A.; McGoldrick, Liam J.; Bridges, Lance C.

    2014-11-28

    Highlights: • Transcription and translation are required for retinoid-induced lymphocyte adhesion. • RAR activation is sufficient to induced lymphocyte cell adhesion. • Vitamin D derivatives inhibit RAR-prompted lymphocyte adhesion. • Adhesion occurs through a novel binding site within ADAM disintegrin domains. • RARα is a key nuclear receptor for retinoid-dependent lymphocyte cell adhesion. - Abstract: Oxidative metabolites of vitamin A, in particular all-trans-retinoic acid (atRA), have emerged as key factors in immunity by specifying the localization of immune cells to the gut. Although it is appreciated that isomers of retinoic acid activate the retinoic acid receptor (RAR) and retinoid X receptor (RXR) family of nuclear receptors to elicit cellular changes, the molecular details of retinoic acid action remain poorly defined in immune processes. Here we employ a battery of agonists and antagonists to delineate the specific nuclear receptors utilized by retinoids to evoke lymphocyte cell adhesion to ADAM (adisintegrin and metalloprotease) protein family members. We report that RAR agonism is sufficient to promote immune cell adhesion in both immortal and primary immune cells. Interestingly, adhesion occurs independent of integrin function, and mutant studies demonstrate that atRA-induced adhesion to ADAM members required a distinct binding interface(s) as compared to integrin recognition. Anti-inflammatory corticosteroids as well as 1,25-(OH){sub 2}D{sub 3}, a vitamin D metabolite that prompts immune cell trafficking to the skin, potently inhibited the observed adhesion. Finally, our data establish that induced adhesion was specifically attributable to the RAR-α receptor isotype. The current study provides novel molecular resolution as to which nuclear receptors transduce retinoid exposure into immune cell adhesion.

  8. Endoglin regulates mural cell adhesion in the circulatory system.

    PubMed

    Rossi, Elisa; Smadja, David M; Boscolo, Elisa; Langa, Carmen; Arevalo, Miguel A; Pericacho, Miguel; Gamella-Pozuelo, Luis; Kauskot, Alexandre; Botella, Luisa M; Gaussem, Pascale; Bischoff, Joyce; Lopez-Novoa, José M; Bernabeu, Carmelo

    2016-04-01

    The circulatory system is walled off by different cell types, including vascular mural cells and podocytes. The interaction and interplay between endothelial cells (ECs) and mural cells, such as vascular smooth muscle cells or pericytes, play a pivotal role in vascular biology. Endoglin is an RGD-containing counter-receptor for β1 integrins and is highly expressed by ECs during angiogenesis. We find that the adhesion between vascular ECs and mural cells is enhanced by integrin activators and inhibited upon suppression of membrane endoglin or β1-integrin, as well as by addition of soluble endoglin (SolEng), anti-integrin α5β1 antibody or an RGD peptide. Analysis of different endoglin mutants, allowed the mapping of the endoglin RGD motif as involved in the adhesion process. In Eng (+/-) mice, a model for hereditary hemorrhagic telangectasia type 1, endoglin haploinsufficiency induces a pericyte-dependent increase in vascular permeability. Also, transgenic mice overexpressing SolEng, an animal model for preeclampsia, show podocyturia, suggesting that SolEng is responsible for podocytes detachment from glomerular capillaries. These results suggest a critical role for endoglin in integrin-mediated adhesion of mural cells and provide a better understanding on the mechanisms of vessel maturation in normal physiology as well as in pathologies such as preeclampsia or hereditary hemorrhagic telangiectasia.

  9. Changing gears from chemical adhesion of cells to flat substrata toward engulfment of micro-protrusions by active mechanisms.

    PubMed

    Hai, Aviad; Kamber, Dotan; Malkinson, Guy; Erez, Hadas; Mazurski, Noa; Shappir, Joseph; Spira, Micha E

    2009-12-01

    Microelectrode arrays increasingly serve to extracellularly record in parallel electrical activity from many excitable cells without inflicting damage to the cells by insertion of microelectrodes. Nevertheless, apart from rare cases they suffer from a low signal to noise ratio. The limiting factor for effective electrical coupling is the low seal resistance formed between the plasma membrane and the electronic device. Using transmission electron microscope analysis we recently reported that cultured Aplysia neurons engulf protruding micron size gold spines forming tight apposition which significantly improves the electrical coupling in comparison with flat electrodes (Hai et al 2009 Spine-shaped gold protrusions improve the adherence and electrical coupling of neurons with the surface of micro-electronic devices J. R. Soc. Interface 6 1153-65). However, the use of a transmission electron microscope to measure the extracellular cleft formed between the plasma membrane and the gold-spine surface may be inaccurate as chemical fixation may generate structural artifacts. Using live confocal microscope imaging we report here that cultured Aplysia neurons engulf protruding spine-shaped gold structures functionalized by an RGD-based peptide and to a significantly lesser extent by poly-l-lysine. The cytoskeletal elements actin and associated protein cortactin are shown to organize around the stalks of the engulfed gold spines in the form of rings. Neurons grown on the gold-spine matrix display varying growth patterns but maintain normal electrophysiological properties and form functioning synapses. It is concluded that the matrices of functionalized gold spines provide an improved substrate for the assembly of neuro-electronic hybrids.

  10. Cell adhesion defines the topology of endocytosis and signaling

    PubMed Central

    Grossier, Jean-Philippe; Xouri, Georgia; Goud, Bruno; Schauer, Kristine

    2014-01-01

    Preferred sites of endocytosis have been observed in various cell types, but whether they occur randomly or are linked to cellular cues is debated. Here, we quantified the sites of endocytosis of transferrin (Tfn) and epidermal growth factor (EGF) in cells whose adhesion geometry was defined by micropatterns. 3D probabilistic density maps revealed that Tfn was enriched in adhesive sites during uptake, whereas EGF endocytosis was restricted to the dorsal cellular surface. This spatial separation was not due to distributions of corresponding receptors but was regulated by uptake mechanisms. Asymmetric uptake of Tfn resulted from the enrichment of clathrin and adaptor protein 2 at adhesive areas. Asymmetry in EGF uptake was strongly dependent on the actin cytoskeleton and led to asymmetry in EGF receptor activation. Mild alteration of actin dynamics abolished asymmetry in EGF uptake and decreased EGF-induced downstream signaling, suggesting that cellular adhesion cues influence signal propagation. We propose that restriction of endocytosis at distinct sites allows cells to sense their environment in an “outside-in” mechanism. PMID:24366944

  11. Megakaryocytic cells synthesize and platelets secrete alpha5-laminins, and the endothelial laminin isoform laminin 10 (alpha5beta1gamma1) strongly promotes adhesion but not activation of platelets.

    PubMed

    Nigatu, Ayele; Sime, Wondossen; Gorfu, Gezahegn; Geberhiwot, Tarekegn; Andurén, Ingegerd; Ingerpuu, Sulev; Doi, Masayuki; Tryggvason, Karl; Hjemdahl, Paul; Patarroyo, Manuel

    2006-01-01

    Following vascular injury, basement membrane (BM) components of the blood vessels are exposed to circulating cells and may contribute to hemostasis and/or thrombosis. Laminins 8 (LN-8) (alpha4beta1gamma1) and 10 (LN-10) (alpha5beta1gamma1) are major laminin isoforms of the endothelial BM, and LN-8 is also secreted by activated platelets. In the present study, we demonstrate synthesis of alpha5-laminins LN-10 and LN-11 (alpha5beta2gamma1) by megakaryocytic cells, and intracellular expression of these laminin isoforms in blood platelets. In contrast to platelet LN alpha4 chain that had an apparent molecular weight of 180 kDa and associated mostly to LNbeta1 chain, platelet LNalpha5 consisted of 300/350 kDa polypeptides and associated mainly to LNbeta2. Both alpha4- and alpha5-laminins were secreted by platelets following stimulation. When compared to recombinant human (rh) LN-8, rhLN-10 was much more adhesive to platelets, though adhesion to both proteins was largely mediated via alpha6beta1 integrin. In spite of their adhesive properties, rhLN-8 and rhLN-10 induced neither P-selectin expression nor cell aggregation, two signs of platelet activation. This study demonstrates synthesis/expression of heterotrimeric alpha5-laminins in hematopoietic/blood cells, and provides evidence for the adhesive, but not activating, role of endothelial laminin isoforms in platelet biology.

  12. Interleukin-4 (IL-4) enhances homotypic adhesion of activated B-chronic lymphocytic leukaemia (B-CLL) cells via a selective up-regulation of CD54.

    PubMed

    Carlsson, M; Söderberg, O; Nilsson, K

    1993-04-01

    It is well established that cell-to-cell contact modifies cytokine signalling but little is known on the role of homotypic cell adhesion for proliferation and differentiation of B cells. Homotypic adhesion involves mainly the interaction between the adhesion molecules Leukocyte Function Antigen-1 (LFA-1) and its ligand CD54 (ICAM-1). A well-characterized B-chronic lymphocytic leukaemia (B-CLL) clone (I-83) was used as a source of monoclonal B cells inducible to DNA synthesis and differentiation by using 12-O-tetradecanoyl-phorbol-13-acetate (TPA) in combination with interleukin-4 (IL-4) and thioredoxin (Trx)-containing supernatant from a T-cell hybridoma (BSF-MP6). This paper shows that IL-4 alone was able to induce aggregation of B-CLL cells and to strongly enhance TPA+BSF-MP6-induced aggregation. The results from studying the expression of CD11a and CD18, the two subunits of LFA-1, and CD54 during stimulated DNA synthesis and differentiation suggest that IL-4-induced, or enhanced, aggregation was mainly mediated by a selective up-regulation of CD54. It was further demonstrated by antibody blockade to either CD11a, CD18 or CD54 that aggregation could be inhibited without affecting induced DNA synthesis or differentiation.

  13. Intercellular adhesion molecule-4 and CD36 are implicated in the abnormal adhesiveness of sickle cell SAD mouse erythrocytes to endothelium

    PubMed Central

    Trinh-Trang-Tan, Marie-Marcelle; Vilela-Lamego, Camilo; Picot, Julien; Wautier, Marie-Paule; Cartron, Jean-Pierre

    2010-01-01

    Background Abnormal adhesiveness of red blood cells to endothelium has been implicated in vaso-occlusive crisis of sickle cell disease. The present study examined whether the SAD mouse model exhibits the same abnormalities of red blood cell adhesion as those found in human sickle cell disease. Design and Methods The repertoire of adhesive molecules on murine erythrocytes and bEnd.3 microvascular endothelial cells was determined by flow cytometry using monoclonal antibodies or by western blotting. Adhesion was investigated in dynamic conditions and measured at different shear stresses. Results CD36, CD47 and intercellular adhesion molecular-4, but not Lutheran blood group antigen/basal cell adhesion molecule, are present on mouse mature erythrocytes. α4β1 are not expressed on SAD and wild type reticulocytes. Endothelial bEnd.3 cells express αVβ3, α4β1, CD47, vascular cell adhesion molecule-1, and Lutheran blood group antigen/basal cell adhesion molecule, but not CD36. Adhesion of SAD red cells is: (i) 2- to 3-fold higher than that of wild type red cells; (ii) further increased on platelet activating factor-activated endothelium; (iii) not stimulated by epinephrine; (iv) inhibited after treating the endothelium with a peptide reproducing one of the binding sequences of mouse intercellular adhesion molecular-4, or with mon-oclonal antibody against murine αv integrin; and (v) inhibited after pretreatment of red blood cells with anti-mouse CD36 monoclonal antibodies. The combination of treatments with intercellular adhesion molecular-4 peptide and anti-CD36 monoclonal antibodies eliminates excess adhesion of SAD red cells. The phosphorylation state of intercellular adhesion molecular-4 and CD36 is probably not involved in the over-adhesiveness of SAD erythrocytes. Conclusions Intercellular adhesion molecular-4/αvβ3 and CD36/thrombospondin interactions might contribute to the abnormally high adhesiveness of SAD red cells. The SAD mouse is a valuable animal model

  14. Regulation of epithelial cell organization by tuning cell-substrate adhesion.

    PubMed

    Ravasio, Andrea; Le, Anh Phuong; Saw, Thuan Beng; Tarle, Victoria; Ong, Hui Ting; Bertocchi, Cristina; Mège, René-Marc; Lim, Chwee Teck; Gov, Nir S; Ladoux, Benoit

    2015-10-01

    Collective migration of cells is of fundamental importance for a number of biological functions such as tissue development and regeneration, wound healing and cancer metastasis. The movement of cell groups consisting of multiple cells connected by cell-cell junctions depends on both extracellular and intercellular contacts. Epithelial cell assemblies are thus regulated by a cross-talk between cell-substrate and cell-cell interactions. Here, we investigated the onset of collective migration in groups of cells as they expand from a few cells into large colonies as a function of extracellular matrix (ECM) protein coating. By varying the amount of ECM presented to the cells, we observe that the mode of colony expansion, as well as their overall geometry, is strongly dependent on substrate adhesiveness. On high ECM protein coated surfaces, cells at the edges of the colonies are well spread exhibiting large outward-pointing protrusive activity, whereas cellular colonies display more circular and convex shapes on less adhesive surfaces. Actin structures at the edge of the colonies also show different organizations with the formation of lamellipodial structures on highly adhesive surfaces and a pluricellular actin cable on less adhesive ones. The analysis of traction forces and cell velocities within the cellular assemblies confirm these results. By increasing ECM protein density, cells exert higher traction forces together with a higher outward motility at the edges. Furthermore, tuning cell-cell adhesion of epithelial cells modified the mode of expansion of the colonies. Finally, we used a recently developed computational model to recapitulate the emergent experimental behaviors of expanding cell colonies and extract that the main effect of the different cell-substrate interactions is on the ability of edge cells to form outward lamellipodia-driven motility. Overall, our data suggest that switching behaviors of epithelial cell assemblies result in a tug-of-war between

  15. Cell substratum adhesion during early development of Dictyostelium discoideum.

    PubMed

    Tarantola, Marco; Bae, Albert; Fuller, Danny; Bodenschatz, Eberhard; Rappel, Wouter-Jan; Loomis, William F

    2014-01-01

    Vegetative and developed amoebae of Dictyostelium discoideum gain traction and move rapidly on a wide range of substrata without forming focal adhesions. We used two independent assays to quantify cell-substrate adhesion in mutants and in wild-type cells as a function of development. Using a microfluidic device that generates a range of hydrodynamic shear stress, we found that substratum adhesion decreases at least 10 fold during the first 6 hr of development of wild type cells. This result was confirmed using a single-cell assay in which cells were attached to the cantilever of an atomic force probe and allowed to adhere to untreated glass surfaces before being retracted. Both of these assays showed that the decrease in substratum adhesion was dependent on the cAMP receptor CAR1 which triggers development. Vegetative cells missing talin as the result of a mutation in talA exhibited slightly reduced adhesive properties compared to vegetative wild-type cells. In sharp contrast to wild-type cells, however, these talA mutant cells did not show further reduction of adhesion during development such that after 5 hr of development they were significantly more adhesive than developed wild type cells. In addition, both assays showed that substrate adhesion was reduced in 0 hr cells when the actin cytoskeleton was disrupted by latrunculin. Consistent with previous observations, substrate adhesion was also reduced in 0 hr cells lacking the membrane proteins SadA or SibA as the result of mutations in sadA or sibA. However, there was no difference in the adhesion properties between wild type AX3 cells and these mutant cells after 6 hr of development, suggesting that neither SibA nor SadA play an essential role in substratum adhesion during aggregation. Our results provide a quantitative framework for further studies of cell substratum adhesion in Dictyostelium.

  16. Tuning cell adhesion by direct nanostructuring silicon into cell repulsive/adhesive patterns

    SciTech Connect

    Premnath, Priyatha; Venkatakrishnan, Krishnan

    2015-09-10

    Developing platforms that allow tuning cell functionality through incorporating physical, chemical, or mechanical cues onto the material surfaces is one of the key challenges in research in the field of biomaterials. In this respect, various approaches have been proposed and numerous structures have been developed on a variety of materials. Most of these approaches, however, demand a multistep process or post-chemical treatment. Therefore, a simple approach would be desirable to develop bio-functionalized platforms for effectively modulating cell adhesion and consequently programming cell functionality without requiring any chemical or biological surface treatment. This study introduces a versatile yet simple laser approach to structure silicon (Si) chips into cytophobic/cytophilic patterns in order to modulate cell adhesion and proliferation. These patterns are fabricated on platforms through direct laser processing of Si substrates, which renders a desired computer-generated configuration into patterns. We investigate the morphology, chemistry, and wettability of the platform surfaces. Subsequently, we study the functionality of the fabricated platforms on modulating cervical cancer cells (HeLa) behaviour. The results from in vitro studies suggest that the nanostructures efficiently repel HeLa cells and drive them to migrate onto untreated sites. The study of the morphology of the cells reveals that cells evade the cytophobic area by bending and changing direction. Additionally, cell patterning, cell directionality, cell channelling, and cell trapping are achieved by developing different platforms with specific patterns. The flexibility and controllability of this approach to effectively structure Si substrates to cell-repulsive and cell-adhesive patterns offer perceptible outlook for developing bio-functionalized platforms for a variety of biomedical devices. Moreover, this approach could pave the way for developing anti-cancer platforms that selectively repel

  17. Decreased cell adhesion promotes angiogenesis in a Pyk2-dependent manner

    SciTech Connect

    Shen, Colette J.; Raghavan, Srivatsan; Xu, Zhe; Baranski, Jan D.; Yu, Xiang; Wozniak, Michele A.; Miller, Jordan S.; Gupta, Mudit; Buckbinder, Leonard; Chen, Christopher S.

    2011-08-01

    Angiogenesis is regulated by both soluble growth factors and cellular interactions with the extracellular matrix (ECM). While cell adhesion via integrins has been shown to be required for angiogenesis, the effects of quantitative changes in cell adhesion and spreading against the ECM remain less clear. Here, we show that angiogenic sprouting in natural and engineered three-dimensional matrices exhibited a biphasic response, with peak sprouting when adhesion to the matrix was limited to intermediate levels. Examining changes in global gene expression to determine a genetic basis for this response, we demonstrate a vascular endothelial growth factor (VEGF)-induced upregulation of genes associated with vascular invasion and remodeling when cell adhesion was limited, whereas cells on highly adhesive surfaces upregulated genes associated with proliferation. To explore a mechanistic basis for this effect, we turned to focal adhesion kinase (FAK), a central player in adhesion signaling previously implicated in angiogenesis, and its homologue, proline-rich tyrosine kinase 2 (Pyk2). While FAK signaling had some impact, our results suggested that Pyk2 can regulate both gene expression and endothelial sprouting through its enhanced activation by VEGF in limited adhesion contexts. We also demonstrate decreased sprouting of tissue explants from Pyk2-null mice as compared to wild type mice as further confirmation of the role of Pyk2 in angiogenic sprouting. These results suggest a surprising finding that limited cell adhesion can enhance endothelial responsiveness to VEGF and demonstrate a novel role for Pyk2 in the adhesive regulation of angiogenesis.

  18. The ubiquitin-proteasome system regulates focal adhesions at the leading edge of migrating cells

    PubMed Central

    Teckchandani, Anjali; Cooper, Jonathan A

    2016-01-01

    Cell migration requires the cyclical assembly and disassembly of focal adhesions. Adhesion induces phosphorylation of focal adhesion proteins, including Cas (Crk-associated substrate/p130Cas/BCAR1). However, Cas phosphorylation stimulates adhesion turnover. This raises the question of how adhesion assembly occurs against opposition from phospho-Cas. Here we show that suppressor of cytokine signaling 6 (SOCS6) and Cullin 5, two components of the CRL5SOCS6 ubiquitin ligase, inhibit Cas-dependent focal adhesion turnover at the front but not rear of migrating epithelial cells. The front focal adhesions contain phospho-Cas which recruits SOCS6. If SOCS6 cannot access focal adhesions, or if cullins or the proteasome are inhibited, adhesion disassembly is stimulated. This suggests that the localized targeting of phospho-Cas within adhesions by CRL5SOCS6 and concurrent cullin and proteasome activity provide a negative feedback loop, ensuring that adhesion assembly predominates over disassembly at the leading edge. By this mechanism, ubiquitination provides a new level of spatio-temporal control over cell migration. DOI: http://dx.doi.org/10.7554/eLife.17440.001 PMID:27656905

  19. Effects of wall shear stress and its gradient on tumor cell adhesion in curved microvessels.

    PubMed

    Yan, W W; Cai, B; Liu, Y; Fu, B M

    2012-05-01

    Tumor cell adhesion to vessel walls in the microcirculation is one critical step in cancer metastasis. In this paper, the hypothesis that tumor cells prefer to adhere at the microvessels with localized shear stresses and their gradients, such as in the curved microvessels, was examined both experimentally and computationally. Our in vivo experiments were performed on the microvessels (post-capillary venules, 30-50 μm diameter) of rat mesentery. A straight or curved microvessel was cannulated and perfused with tumor cells by a glass micropipette at a velocity of ~1mm/s. At less than 10 min after perfusion, there was a significant difference in cell adhesion to the straight and curved vessel walls. In 60 min, the averaged adhesion rate in the curved vessels (n = 14) was ~1.5-fold of that in the straight vessels (n = 19). In 51 curved segments, 45% of cell adhesion was initiated at the inner side, 25% at outer side, and 30% at both sides of the curved vessels. To investigate the mechanical mechanism by which tumor cells prefer adhering at curved sites, we performed a computational study, in which the fluid dynamics was carried out by the lattice Boltzmann method , and the tumor cell dynamics was governed by the Newton's law of translation and rotation. A modified adhesive dynamics model that included the influence of wall shear stress/gradient on the association/dissociation rates of tumor cell adhesion was proposed, in which the positive wall shear stress/gradient jump would enhance tumor cell adhesion while the negative wall shear stress/gradient jump would weaken tumor cell adhesion. It was found that the wall shear stress/gradient, over a threshold, had significant contribution to tumor cell adhesion by activating or inactivating cell adhesion molecules. Our results elucidated why the tumor cell adhesion prefers to occur at the positive curvature of curved microvessels with very low Reynolds number (in the order of 10(-2)) laminar flow.

  20. The coffee diterpene kahweol inhibits tumor necrosis factor-{alpha}-induced expression of cell adhesion molecules in human endothelial cells

    SciTech Connect

    Kim, Hyung Gyun; Kim, Ji Young; Hwang, Yong Pil; Lee, Kyung Jin; Lee, Kwang Youl; Kim, Dong Hee; Kim, Dong Hyun; Jeong, Hye Gwang . E-mail: hgjeong@chosun.ac.kr

    2006-12-15

    Endothelial cells produce adhesion molecules after being stimulated with various inflammatory cytokines. These adhesion molecules play an important role in the development of atherogenesis. Recent studies have highlighted the chemoprotective and anti-inflammatory effects of kahweol, a coffee-specific diterpene. This study examined the effects of kahweol on the cytokine-induced monocyte/human endothelial cell interaction, which is a crucial early event in atherogenesis. Kahweol inhibited the adhesion of TNF{alpha}-induced monocytes to endothelial cells and suppressed the TNF{alpha}-induced protein and mRNA expression of the cell adhesion molecules, VCAM-1 and ICAM-1. Furthermore, kahweol inhibited the TNF{alpha}-induced JAK2-PI3K/Akt-NF-{kappa}B activation pathway in these cells. Overall, kahweol has anti-inflammatory and anti-atherosclerotic activities, which occurs partly by down-regulating the pathway that affects the expression and interaction of the cell adhesion molecules on endothelial cells.

  1. Molecular markers of cell adhesion in ameloblastomas. An update

    PubMed Central

    González-González, Rogelio; Molina-Frechero, Nelly; Damian-Matsumura, Pablo

    2014-01-01

    Ameloblastoma is the most common odontogenic tumor of epithelial origin, and though it is of a benign nature, it frequently infiltrates the bone, has a high rate of recurrence and could potentially become malignant. Cellular adhesion potentially plays an important role in the manifestation of these characteristics and in the tumor biology of ameloblastomas. Losses of cell-cell and extracellular matrix adhesion and cohesion are among the first events that occur in the invasion and growth of tumors of epithelial origin. The present review includes a description of the molecules that are involved in cell adhesion as reported for various types of ameloblastomas and discusses the possible roles of these molecules in the biological behaviors of this odontogenic tumor. Knowledge of the complex mechanisms in which these molecules play a role is critical for the research and discovery of future therapeutic targets. Key words:Ameloblastoma, cellular adhesion, molecular markers, cell-cell adhesion, extracellular matrix-cell adhesion. PMID:23986011

  2. Microtubule-destabilizing agents induce focal adhesion structure disorganization and anoikis in cancer cells.

    PubMed

    Deschesnes, Réna G; Patenaude, Alexandre; Rousseau, Jean L C; Fortin, Jessica S; Ricard, Christine; Côté, Marie-France; Huot, Jacques; C-Gaudreault, René; Petitclerc, Eric

    2007-02-01

    Microtubule disruption provokes cytoskeleton and cell adhesion changes whose importance for apoptosis induction remains unclear. The present study focuses on the functional and the molecular adhesion kinetics that are induced by microtubule disruption-mediated apoptosis. We showed that antimicrotubules induce a biphasic sequence of adhesion response that precedes the onset of apoptosis and focal adhesion kinase hydrolysis. Antimicrotubules first induced an increase of the cellular adhesion paralleled by the raise of focal adhesion sites and actin contractility, which was followed by a sharp decrease of cell adhesion and disorganization of focal adhesion and actin stress fibers. The latter sequence of events ends by cell rounding, detachment from the extracellular matrix, and cell death. Microtubule-disrupting agents induced a sustained paxillin phosphorylation, before the activation of apoptosis, that requires the prior activation of extracellular signal-regulated kinase and p38 but not c-Jun NH(2)-terminal kinase. Interestingly, integrin-linked kinase overexpression rescued the antimicrotubule-mediated loss of cell viability. Altogether, these results propound that antimicrotubule agents induce anoikis through the loss of focal adhesion structure integrity.

  3. Role of the microtubule-targeting drug vinflunine on cell-cell adhesions in bladder epithelial tumour cells

    PubMed Central

    2014-01-01

    Background Vinflunine (VFL) is a microtubule-targeting drug that suppresses microtubule dynamics, showing anti-metastatic properties both in vitro and in living cancer cells. An increasing body of evidence underlines the influence of the microtubules dynamics on the cadherin-dependent cell-cell adhesions. E-cadherin is a marker of epithelial-to-mesenchymal transition (EMT) and a tumour suppressor; its reduced levels in carcinoma are associated with poor prognosis. In this report, we investigate the role of VFL on cell-cell adhesions in bladder epithelial tumour cells. Methods Human bladder epithelial tumour cell lines HT1376, 5637, SW780, T24 and UMUC3 were used to analyse cadherin-dependent cell-cell adhesions under VFL treatment. VFL effect on growth inhibition was measured by using a MTT colorimetric cell viability assay. Western blot, immunofluorescence and transmission electron microscopy analyses were performed to assess the roles of VFL effect on cell-cell adhesions, epithelial-to-mesenchymal markers and apoptosis. The role of the proteasome in controlling cell-cell adhesion was studied using the proteasome inhibitor MG132. Results We show that VFL induces cell death in bladder cancer cells and activates epithelial differentiation of the remaining living cells, leading to an increase of E-cadherin-dependent cell-cell adhesion and a reduction of mesenchymal markers, such as N-cadherin or vimentin. Moreover, while E-cadherin is increased, the levels of Hakai, an E3 ubiquitin-ligase for E-cadherin, were significantly reduced in presence of VFL. In 5637, this reduction on Hakai expression was blocked by MG132 proteasome inhibitor, indicating that the proteasome pathway could be one of the molecular mechanisms involved in its degradation. Conclusions Our findings underscore a critical function for VFL in cell-cell adhesions of epithelial bladder tumour cells, suggesting a novel molecular mechanism by which VFL may impact upon EMT and metastasis. PMID:25012153

  4. Fulvic Acid Attenuates Resistin-Induced Adhesion of HCT-116 Colorectal Cancer Cells to Endothelial Cells

    PubMed Central

    Huang, Wen-Shih; Yang, Jen-Tsung; Lu, Chien-Chang; Chang, Shun-Fu; Chen, Cheng-Nan; Su, Yu-Ping; Lee, Ko-Chao

    2015-01-01

    A high level of serum resistin has recently been found in patients with a number of cancers, including colorectal cancer (CRC). Hence, resistin may play a role in CRC development. Fulvic acid (FA), a class of humic substances, possesses pharmacological properties. However, the effect of FA on cancer pathophysiology remains unclear. The aim of this study was to investigate the effect of resistin on the endothelial adhesion of CRC and to determine whether FA elicits an antagonistic mechanism to neutralize this resistin effect. Human HCT-116 (p53-negative) and SW-48 (p53-positive) CRC cells and human umbilical vein endothelial cells (HUVECs) were used in the experiments. Treatment of both HCT-116 and SW-48 cells with resistin increases the adhesion of both cells to HUVECs. This result indicated that p53 may not regulate this resistin effect. A mechanistic study in HCT-116 cells further showed that this resistin effect occurs via the activation of NF-κB and the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). Co-treating cells with both FA and resistin revealed that FA significantly attenuated the resistin-increased NF-κB activation and ICAM-1/VCAM-1 expression and the consequent adhesion of HCT-116 cells to HUVECs. These results demonstrate the role of resistin in promoting HCT-116 cell adhesion to HUVECs and indicate that FA might be a potential candidate for the inhibition of the endothelial adhesion of CRC in response to resistin. PMID:26690142

  5. A standardized bamboo leaf extract inhibits monocyte adhesion to endothelial cells by modulating vascular cell adhesion protein-1

    PubMed Central

    Choi, Sunga; Park, Myoung Soo; Lee, Yu Ran; Lee, Young Chul; Kim, Tae Woo; Do, Seon-Gil; Kim, Dong Seon

    2013-01-01

    Bamboo leaves (Phyllostachys pubescens Mazel ex J. Houz (Poacea)) have a long history of food and medical applications in Asia, including Japan and Korea. They have been used as a traditional medicine for centuries. We investigated the mechanism of anti-inflammatory activity of a bamboo leaf extract (BLE) on tumor necrosis factor-alpha (TNF-α)-induced monocyte adhesion in human umbilical vein endothelial cells (HUVECs). Exposure of HUVECs to BLE did not inhibit cell viability or cause morphological changes at concentrations ranging from 1 µg/ml to 1 mg/ml. Treatment with 0.1 mg/ml BLE caused 63% inhibition of monocyte adhesion in TNF-α-activated HUVECs, which was associated with 38.4% suppression of vascular cell adhesion molecule-1 expression. Furthermore, TNF-α-induced reactive oxygen species generation was decreased to 47.9% in BLE treated TNF-α-activated HUVECs. BLE (0.05 mg/ml) also caused about 50% inhibition of interleukin-6 secretion from lipopolysaccharide-stimulated monocyte. The results indicate that BLE may be clinically useful as an anti-inflammatory or anti-oxidant for human cardiovascular disease including atherosclerosis. PMID:23422838

  6. Cell Adhesion in Epidermal Development and Barrier Formation

    PubMed Central

    Sumigray, Kaelyn D.; Lechler, Terry

    2015-01-01

    Cell–cell adhesions are necessary for structural integrity and barrier formation of the epidermis. Here, we discuss insights from genetic and cell biological studies into the roles of individual cell–cell junctions and their composite proteins in regulating epidermal development and function. In addition to individual adhesive functions, we will discuss emerging ideas on mechanosensation/transduction of junctions in the epidermis, noncanonical roles for adhesion proteins, and crosstalk/interdependencies between the junctional systems. These studies have revealed that cell adhesion proteins are connected to many aspects of tissue physiology including growth control, differentiation, and inflammation. PMID:25733147

  7. Thrombomodulin promotes focal adhesion kinase activation and contributes to angiogenesis by binding to fibronectin

    PubMed Central

    Hsu, Yun-Yan; Shi, Guey-Yueh; Wang, Kuan-Chieh; Ma, Chih-Yuan; Cheng, Tsung-Lin; Wu, Hua-Lin

    2016-01-01

    Angiogenesis promotes tumor growth and metastasis. Cell adhesion molecules interact with the extracellular matrix (ECM) and increase cell adhesion and migration during angiogenesis. Thrombomodulin (TM) is a cell surface transmembrane glycoprotein expressed in endothelial cells. However, the function and significance of TM in cell-matrix interactions and angiogenesis remain unclear. Here, we first demonstrated that recombinant lectin-like domain of TM interacts with an ECM protein, fibronectin, and identified the N-terminal 70-kDa domain of fibronectin as the TM-binding site. Exogenous expression of TM in TM-deficient A2058 melanoma cells enhanced cell adhesion and migration on fibronectin and invasion on Matrigel. In addition, TM increased focal adhesion kinase (FAK) phosphorylation and matrix metalloproteinase-9 production. In mice bearing subcutaneous B16F10 melanoma tumors, immunofluorescence analysis indicated that TM was highly expressed and co-localized with fibronectin on the tumor vasculature. The interaction between TM and fibronectin in tumor blood vessels was also validated by the proximity ligation assay. In human umbilical vein endothelial cells, up-regulation of TM by vascular endothelial growth factor (VEGF), a tumor angiogenic factor, promoted cell adhesion and tube formation, whereas TM knockdown by RNA interference attenuated VEGF-induced cell adhesion and tube formation. In summary, TM promotes angiogenesis by enhancing cell adhesion, migration, and FAK activation through interaction with fibronectin. TM may represent a novel target for inhibiting tumor angiogenesis. PMID:27602495

  8. Knockdown of fucosyltransferase III disrupts the adhesion of circulating cancer cells to E-selectin without affecting hematopoietic cell adhesion.

    PubMed

    Yin, Xiaoyan; Rana, Kuldeepsinh; Ponmudi, Varun; King, Michael R

    2010-11-02

    Adhesive interactions between selectins and their ligands play an essential role during cancer extravasation. Fucosylation of these proteins by fucosyltransferases, or FUTs, is critical for their functions. Using quantitative RT-PCR, we demonstrated that FUT4 and FUT7 are the predominant FUTs expressed in hematopoietic cell line, while FUT3 is heavily expressed by multiple cancer cell lines including the prostate cancer cell line MDA PCa2b. Knockdown of FUT3 expression in MDA PCa2b cells by small interference RNA (siRNA) significantly reduced FUT3 expression. Cell-surface sialyl Lewis antigens were largely abolished. Cell adhesion and cell rolling on the blood vessel wall were simulated by perfusing cancer cells through microtubes coated with recombinant human E-selectin. At physiological levels of wall shear stress, the number of flowing cancer cells recruited to the microtube surface was dramatically reduced by FUT3 knockdown. Higher rolling velocity was also observed, which is consistent with reduced E-selectin binding activity. Interestingly, FUT3 siRNA treatment also significantly reduced the cell growth rate. Combined with the novel siRNA delivery platform recently developed in our laboratory, FUT3 siRNA could be a promising conjunctive therapy aiming at reducing the metastatic virulence of circulating epithelial cancer cells.

  9. Inhibition of cell adhesion by xARVCF indicates a regulatory function at the plasma membrane.

    PubMed

    Reintsch, Wolfgang E; Mandato, Craig A; McCrea, Pierre D; Fagotto, François

    2008-09-01

    The cytoplasmic tail of cadherins is thought to regulate the strength and dynamics of cell-cell adhesion. Part of its regulatory activity has been attributed to a membrane-proximal region, the juxtamembrane domain (JMD), and its interaction with members of the p120 catenin subfamily. We show that titration of xARVCF, a member of this family, to the plasma membrane disrupts adhesion in the early embryo. Adhesion can be restored by coexpression of constitutively active Rac, suggesting that intracellular signaling is the primary cause in the loss of adhesion phenotype. Our observations suggest that the recruitment of p120 type catenins to the plasma membrane by the cadherin cytoplasmic tail may create protein complexes, which actively modulate the adhesion "status" of embryonic cells.

  10. Anandamide inhibits adhesion and migration of breast cancer cells

    SciTech Connect

    Grimaldi, Claudia; Pisanti, Simona; Laezza, Chiara; Malfitano, Anna Maria; Santoro, Antonietta; Vitale, Mario; Caruso, Maria Gabriella; Notarnicola, Maria; Iacuzzo, Irma; Portella, Giuseppe; Di Marzo, Vincenzo . E-mail: vdimarzo@icmib.na.cnr.it; Bifulco, Maurizio . E-mail: maubiful@unina.it

    2006-02-15

    The endocannabinoid system regulates cell proliferation in human breast cancer cells. We reasoned that stimulation of cannabinoid CB{sub 1} receptors could induce a non-invasive phenotype in breast mtastatic cells. In a model of metastatic spreading in vivo, the metabolically stable anandamide analogue, 2-methyl-2'-F-anandamide (Met-F-AEA), significantly reduced the number and dimension of metastatic nodes, this effect being antagonized by the selective CB{sub 1} antagonist SR141716A. In MDA-MB-231 cells, a highly invasive human breast cancer cell line, and in TSA-E1 cells, a murine breast cancer cell line, Met-F-AEA inhibited adhesion and migration on type IV collagen in vitro without modifying integrin expression: both these effects were antagonized by SR141716A. In order to understand the molecular mechanism involved in these processes, we analyzed the phosphorylation of FAK and Src, two tyrosine kinases involved in migration and adhesion. In Met-F-AEA-treated cells, we observed a decreased tyrosine phosphorylation of both FAK and Src, this effect being attenuated by SR141716A. We propose that CB{sub 1} receptor agonists inhibit tumor cell invasion and metastasis by modulating FAK phosphorylation, and that CB{sub 1} receptor activation might represent a novel therapeutic strategy to slow down the growth of breast carcinoma and to inhibit its metastatic diffusion in vivo.

  11. Increased adhesive and inflammatory properties in blood outgrowth endothelial cells from sickle cell anemia patients.

    PubMed

    Sakamoto, Tatiana Mary; Lanaro, Carolina; Ozelo, Margareth Castro; Garrido, Vanessa Tonin; Olalla-Saad, Sara Teresinha; Conran, Nicola; Costa, Fernando Ferreira

    2013-11-01

    The endothelium plays an important role in sickle cell anemia (SCA) pathophysiology, interacting with red cells, leukocytes and platelets during the vaso-occlusive process and undergoing activation and dysfunction as a result of intravascular hemolysis and chronic inflammation. Blood outgrowth endothelial cells (BOECs) can be isolated from adult peripheral blood and have been used in diverse studies, since they have a high proliferative capacity and a stable phenotype during in vitro culture. This study aimed to establish BOEC cultures for use as an in vitro study model for endothelial function in sickle cell anemia. Once established, BOECs from steady-state SCA individuals (SCA BOECs) were characterized for their adhesive and inflammatory properties, in comparison to BOECs from healthy control individuals (CON BOECs). Cell adhesion assays demonstrated that control individual red cells adhered significantly more to SCA BOEC than to CON BOEC. Despite these increased adhesive properties, SCA BOECs did not demonstrate significant differences in their expression of major endothelial adhesion molecules, compared to CON BOECs. SCA BOECs were also found to be pro-inflammatory, producing a significantly higher quantity of the cytokine, IL-8, than CON BOECs. From the results obtained, we suggest that BOEC may be a good model for the in vitro study of SCA. Data indicate that endothelial cells of sickle cell anemia patients may have abnormal inflammatory and adhesive properties even outside of the chronic inflammatory and vaso-occlusive environment of patients.

  12. RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocardial infarction

    PubMed Central

    Hulsmans, Maarten; Courties, Gabriel; Sun, Yuan; Heidt, Timo; Vinegoni, Claudio; Borodovsky, Anna; Fitzgerald, Kevin; Wojtkiewicz, Gregory R.; Iwamoto, Yoshiko; Tricot, Benoit; Khan, Omar F.; Kauffman, Kevin J.; Xing, Yiping; Shaw, Taylor E.; Libby, Peter; Langer, Robert; Weissleder, Ralph; Swirski, Filip K.

    2016-01-01

    Myocardial infarction (MI) leads to a systemic surge of vascular inflammation in mice and humans, resulting in secondary ischemic complications and high mortality. We show that, in ApoE−/− mice with coronary ligation, increased sympathetic tone up-regulates not only hematopoietic leukocyte production but also plaque endothelial expression of adhesion molecules. To counteract the resulting arterial leukocyte recruitment, we developed nanoparticle-based RNA interference (RNAi) that effectively silences five key adhesion molecules. Simultaneously encapsulating small interfering RNA (siRNA)–targeting intercellular cell adhesion molecules 1 and 2 (Icam1 and Icam2), vascular cell adhesion molecule 1 (Vcam1), and E- and P-selectins (Sele and Selp) into polymeric endothelial-avid nanoparticles reduced post-MI neutrophil and monocyte recruitment into atherosclerotic lesions and decreased matrix-degrading plaque protease activity. Five-gene combination RNAi also curtailed leukocyte recruitment to ischemic myocardium. Therefore, targeted multigene silencing may prevent complications after acute MI. PMID:27280687

  13. Cell adhesion molecules: detection with univalent second antibody

    PubMed Central

    1980-01-01

    Identification of cell surface molecules that play a role in cell-cell adhesion (here called cell adhesion molecules) has been achieved by demonstrating the inhibitory effect of univalent antibodies that bind these molecules in an in vitro assay of cell-cell adhesion. A more convenient reagent, intact (divalent) antibody, has been avoided because it might agglutinate the cells rather than blocking cell-cell adhesion. In this report, we show that intact rabbit immunoglobulin directed against certain cell surface molecules of Dictyostelium discoideum blocks cell-cell adhesion when the in vitro assay is performed in the presence of univalent goat anti-rabbit antibody. Under appropriate experimental conditions, the univalent second antibody blocks agglutination induced by the rabbit antibody without significantly interfering with its effect on cell-cell adhesion. This method promises to be useful for screening monoclonal antibodies raised against potential cell adhesion molecules because: (a) it allows for the screening of large numbers of antibody samples without preparation of univalent fragments; and (b) it requires much less antibody because of the greater affinity of divalent antibodies for antigens. PMID:6970200

  14. Effect of channel geometry on cell adhesion in microfluidic devices.

    PubMed

    Green, James V; Kniazeva, Tatiana; Abedi, Mehdi; Sokhey, Darshan S; Taslim, Mohammad E; Murthy, Shashi K

    2009-03-07

    Microfluidic channels coated with ligands are a versatile platform for the separation or enrichment of cells from small sample volumes. This adhesion-based mode of separation is mediated by ligand-receptor bonds between the cells and channel surface and also by fluid shear stress. This paper demonstrates how aspects of microchannel geometry can play an additional role in controlling cell adhesion. With a combination of computational fluid dynamics modeling and cell adhesion experiments, channels with sharp turns are shown to have regions with near-zero velocity at the turn regions where large numbers of cells adhere or become collected. The lack of uniform adhesion in the turn regions compared to other regions of these channels, together with the large variability in observed cell adhesion indicates that channels with sharp turns are not optimal for cell-capture applications where predictable cell adhesion is desired. Channels with curved turns, on the other hand are shown to provide more uniform and predictable cell adhesion provided the gap between parallel arms of the channels is sufficiently wide. The magnitude of cell adhesion in these curved channels is comparable to that in straight channels with no turns.

  15. Neutrophil elastase cleavage of the gC1q domain impairs the EMILIN1-α4β1 integrin interaction, cell adhesion and anti-proliferative activity

    PubMed Central

    Maiorani, Orlando; Pivetta, Eliana; Capuano, Alessandra; Modica, Teresa Maria Elisa; Wassermann, Bruna; Bucciotti, Francesco; Colombatti, Alfonso; Doliana, Roberto; Spessotto, Paola

    2017-01-01

    The extracellular matrix glycoprotein EMILIN1 exerts a wide range of functions mainly associated with its gC1q domain. Besides providing functional significance for adhesion and migration, the direct interaction between α4β1 integrin and EMILIN1-gC1q regulates cell proliferation, transducing net anti-proliferative effects. We have previously demonstrated that EMILIN1 degradation by neutrophil elastase (NE) is a specific mechanism leading to the loss of functions disabling its regulatory properties. In this study we further analysed the proteolytic activity of NE, MMP-3, MMP-9, and MT1-MMP on EMILIN1 and found that MMP-3 and MT1-MMP partially cleaved EMILIN1 but without affecting the functional properties associated with the gC1q domain, whereas NE was able to fully impair the interaction of gC1q with the α4β1 integrin by cleaving this domain outside of the E933 integrin binding site. By a site direct mutagenesis approach we mapped the bond between S913 and R914 residues and selected the NE-resistant R914W mutant still able to interact with the α4β1 integrin after NE treatment. Functional studies showed that NE impaired the EMILIN1-α4β1 integrin interaction by cleaving the gC1q domain in a region crucial for its proper structural conformation, paving the way to better understand NE effects on EMILIN1-cell interaction in pathological context. PMID:28074935

  16. Polymorphonuclear leukocyte adhesion triggers the disorganization of endothelial cell-to-cell adherens junctions

    PubMed Central

    1996-01-01

    Polymorphonuclear leukocytes (PMN) infiltration into tissues is frequently accompanied by increase in vascular permeability. This suggests that PMN adhesion and transmigration could trigger modifications in the architecture of endothelial cell-to-cell junctions. In the present paper, using indirect immunofluorescence, we found that PMN adhesion to tumor necrosis factor-activated endothelial cells (EC) induced the disappearance from endothelial cell-to-cell contacts of adherens junction (AJ) components: vascular endothelial (VE)-cadherin, alpha-catenin, beta-catenin, and plakoglobin. Immunoprecipitation and Western blot analysis of the VE- cadherin/catenin complex showed that the amount of beta-catenin and plakoglobin was markedly reduced from the complex and from total cell extracts. In contrast, VE-cadherin and alpha-catenin were only partially affected. Disorganization of endothelial AJ by PMN was not accompanied by EC retraction or injury and was specific for VE- cadherin/catenin complex, since platelet/endothelial cell adhesion molecule 1 (PECAM-1) distribution at cellular contacts was unchanged. PMN adhesion to EC seems to be a prerequisite for VE-cadherin/catenin complex disorganization. This phenomenon could be fully inhibited by blocking PMN adhesion with an anti-integrin beta 2 mAb, while it could be reproduced by any condition that induced increase of PMN adhesion, such as addition of PMA or an anti-beta 2-activating mAb. The effect on endothelial AJ was specific for PMN since adherent activated lymphocytes did not induce similar changes. High concentrations of protease inhibitors and oxygen metabolite scavengers were unable to prevent AJ disorganization mediated by PMN. PMN adhesion to EC was accompanied by increase in EC permeability in vitro. This effect was dependent on PMN adhesion, was not mediated by proteases and oxygen- reactive metabolites, and could be reproduced by EC treatment with EGTA. Finally, immunohistochemical analysis showed that VE

  17. Chronic Replication Problems Impact Cell Morphology and Adhesion of DNA Ligase I Defective Cells.

    PubMed

    Cremaschi, Paolo; Oliverio, Matteo; Leva, Valentina; Bione, Silvia; Carriero, Roberta; Mazzucco, Giulia; Palamidessi, Andrea; Scita, Giorgio; Biamonti, Giuseppe; Montecucco, Alessandra

    2015-01-01

    Moderate DNA damage resulting from metabolic activities or sub-lethal doses of exogenous insults may eventually lead to cancer onset. Human 46BR.1G1 cells bear a mutation in replicative DNA ligase I (LigI) which results in low levels of replication-dependent DNA damage. This replication stress elicits a constitutive phosphorylation of the ataxia telangiectasia mutated (ATM) checkpoint kinase that fails to arrest cell cycle progression or to activate apoptosis or cell senescence. Stable transfection of wild type LigI, as in 7A3 cells, prevents DNA damage and ATM activation. Here we show that parental 46BR.1G1 and 7A3 cells differ in important features such as cell morphology, adhesion and migration. Comparison of gene expression profiles in the two cell lines detects Bio-Functional categories consistent with the morphological and migration properties of LigI deficient cells. Interestingly, ATM inhibition makes 46BR.1G1 more similar to 7A3 cells for what concerns morphology, adhesion and expression of cell-cell adhesion receptors. These observations extend the influence of the DNA damage response checkpoint pathways and unveil a role for ATM kinase activity in modulating cell biology parameters relevant to cancer progression.

  18. Adhesion of Actinobacillus actinomycetemcomitans to a human oral cell line.

    PubMed Central

    Mintz, K P; Fives-Taylor, P M

    1994-01-01

    Two quantitative, rapid assays were developed to study the adhesion of Actinobacillus actinomycetemcomitans, an oral bacterium associated with periodontal disease, to human epithelial cells. The human oral carcinoma cell line KB was grown in microtiter plates, and adherent bacteria were detected by an enzyme-linked immunosorbent assay with purified anti-A. actinomycetemcomitans serum and horseradish peroxidase-conjugated secondary antibody or [3H]thymidine-labeled bacteria. Adhesion was found to be time dependent and increased linearly with increasing numbers of bacteria added. Variation in the level of adhesion was noted among strains of A. actinomycetemcomitans. Adhesion was not significantly altered by changes in pH (from pH 5 to 9) but was sensitive to sodium chloride concentrations greater than 0.15 M. Pooled human saliva was inhibitory for adhesion when bacteria were pretreated with saliva before being added to the cells. Pretreatment of the KB cells with saliva did not inhibit adhesion. Protease treatment of A. actinomycetemcomitans reduced adhesion of the bacteria to KB cells. The data are consistent with the hypothesis that a protein(s) is required for bacterial adhesion and that host components may play a role in modulating adhesion to epithelial cells. Images PMID:8063383

  19. Fer and Fps/Fes participate in a Lyn-dependent pathway from FcepsilonRI to platelet-endothelial cell adhesion molecule 1 to limit mast cell activation.

    PubMed

    Udell, Christian M; Samayawardhena, Lionel A; Kawakami, Yuko; Kawakami, Toshiaki; Craig, Andrew W B

    2006-07-28

    Mast cells express the high affinity IgE receptor FcepsilonRI, which upon aggregation by multivalent antigens elicits signals that cause rapid changes within the mast cell and in the surrounding tissue. We previously showed that FcepsilonRI aggregation caused a rapid increase in phosphorylation of both Fer and Fps/Fes kinases in bone marrow-derived mast cells. In this study, we report that FcepsilonRI aggregation leads to increased Fer/Fps kinase activities and that Fer phosphorylation downstream of FcepsilonRI is independent of Syk, Fyn, and Gab2 but requires Lyn. Activated Fer/Fps readily phosphorylate the C terminus of platelet-endothelial cell adhesion molecule 1 (Pecam-1) on immunoreceptor tyrosine-based inhibitory motifs (ITIMs) and a non-ITIM residue (Tyr(700)) in vitro and in transfected cells. Mast cells devoid of Fer/Fps kinase activities display a reduction in FcepsilonRI aggregation-induced tyrosine phosphorylation of Pecam-1, with no defects in recruitment of Shp1/Shp2 phosphatases observed. Lyn-deficient mast cells display a dramatic reduction in Pecam-1 phosphorylation at Tyr(685) and a complete loss of Shp2 recruitment, suggesting a role as an initiator kinase for Pecam-1. Consistent with previous studies of Pecam-1-deficient mast cells, we observe an exaggerated degranulation response in mast cells lacking Fer/Fps kinases at low antigen dosages. Thus, Lyn and Fer/Fps kinases cooperate to phosphorylate Pecam-1 and activate Shp1/Shp2 phosphatases that function in part to limit mast cell activation.

  20. Patterned Poly(dopamine) Films for Enhanced Cell Adhesion.

    PubMed

    Chen, Xi; Cortez-Jugo, Christina; Choi, Gwan H; Björnmalm, Mattias; Dai, Yunlu; Yoo, Pil J; Caruso, Frank

    2017-01-18

    Engineered materials that promote cell adhesion and cell growth are important in tissue engineering and regenerative medicine. In this work, we produced poly(dopamine) (PDA) films with engineered patterns for improved cell adhesion. The patterned films were synthesized via the polymerization of dopamine at the air-water interface of a floating bed of spherical particles. Subsequent dissolution of the particles yielded free-standing PDA films with tunable geometrical patterns. Our results show that these patterned PDA films significantly enhance the adhesion of both cancer cells and stem cells, thus showing promise as substrates for cell attachment for various biomedical applications.

  1. Short Peptides Enhance Single Cell Adhesion and Viability on Microarrays

    PubMed Central

    Veiseh, Mandana; Veiseh, Omid; Martin, Michael C.; Asphahani, Fareid; Zhang, Miqin

    2011-01-01

    Single cell patterning holds important implications for biology, biochemistry, biotechnology, medicine, and bioinformatics. The challenge for single cell patterning is to produce small islands hosting only single cells and retaining their viability for a prolonged period of time. This study demonstrated a surface engineering approach that uses a covalently-bound short peptide as a mediator to pattern cells with improved single cell adhesion and prolonged cellular viability on gold patterned SiO2 substrates. The underlying hypothesis is that cell adhesion is regulated by the type, availability and stability of effective cell adhesion peptides, and thus covalently bound short peptides would promote cell spreading and thus, single cell adhesion and viability. The effectiveness of this approach and the underlying mechanism for the increased probability of single cell adhesion and prolonged cell viability by short peptides were studied by comparing cellular behavior of human umbilical cord vein endothelial cells on three model surfaces whose gold electrodes were immobilized with fibronectin, physically adsorbed Arg-Glu-Asp-Val-Tyr, and covalently-bound Lys-Arg-Glu-Asp-Val-Tyr, respectively. The surface chemistry and binding properties were characterized by reflectance Fourier transform infrared spectroscopy. Both short peptides were superior to fibronectin in producing adhesion of only single cells, while the covalently bound peptide also reduced apoptosis and necrosis of adhered cells. Controlling cell spreading by peptide binding domains to regulate apoptosis and viability represents a fundamental mechanism in cell-materials interaction and provides an effective strategy in engineering arrays of single cells. PMID:17371055

  2. Directed actin polymerization is the driving force for epithelial cell-cell adhesion.

    PubMed

    Vasioukhin, V; Bauer, C; Yin, M; Fuchs, E

    2000-01-21

    We have found that epithelial cells engage in a process of cadherin-mediated intercellular adhesion that utilizes calcium and actin polymerization in unexpected ways. Calcium stimulates filopodia, which penetrate and embed into neighboring cells. E-cadherin complexes cluster at filopodia tips, generating a two-rowed zipper of embedded puncta. Opposing cell surfaces are clamped by desmosomes, while vinculin, zyxin, VASP, and Mena are recruited to adhesion zippers by a mechanism that requires alpha-catenin. Actin reorganizes and polymerizes to merge puncta into a single row and seal cell borders. In keratinocytes either null for alpha-catenin or blocked in VASP/Mena function, filopodia embed, but actin reorganization/polymerization is prevented, and membranes cannot seal. Taken together, a dynamic mechanism for intercellular adhesion is unveiled involving calcium-activated filopodia penetration and VASP/Mena-dependent actin reorganization/polymerization.

  3. Adhesions

    MedlinePlus

    Adhesions are bands of scar-like tissue. Normally, internal tissues and organs have slippery surfaces so they can shift easily as the body moves. Adhesions cause tissues and organs to stick together. They ...

  4. Adhesion

    MedlinePlus

    ... the intestines, adhesions can cause partial or complete bowel obstruction . Adhesions inside the uterine cavity, called Asherman syndrome , ... 1. Read More Appendicitis Asherman syndrome Glaucoma Infertility Intestinal obstruction Review Date 4/5/2016 Updated by: Irina ...

  5. Protein conformation as a regulator of cell-matrix adhesion.

    PubMed

    Hytönen, Vesa P; Wehrle-Haller, Bernhard

    2014-04-14

    The dynamic regulation of cell-matrix adhesion is essential for tissue homeostasis and architecture, and thus numerous pathologies are linked to altered cell-extracellular matrix (ECM) interaction and ECM scaffold. The molecular machinery involved in cell-matrix adhesion is complex and involves both sensory and matrix-remodelling functions. In this review, we focus on how protein conformation controls the organization and dynamics of cell-matrix adhesion. The conformational changes in various adhesion machinery components are described, including examples from ECM as well as cytoplasmic proteins. The discussed mechanisms involved in the regulation of protein conformation include mechanical stress, post-translational modifications and allosteric ligand-binding. We emphasize the potential role of intrinsically disordered protein regions in these processes and discuss the role of protein networks and co-operative protein interactions in the formation and consolidation of cell-matrix adhesion and extracellular scaffolds.

  6. Ultraweak sugar-sugar interactions for transient cell adhesion.

    PubMed Central

    Pincet, F; Le Bouar, T; Zhang, Y; Esnault, J; Mallet, J M; Perez, E; Sinaÿ, P

    2001-01-01

    Carbohydrate-carbohydrate interactions are rarely considered in biologically relevant situations such as cell recognition and adhesion. One Ca(2+)-mediated homotypic interaction between two Lewis(x) determinants (Le(x)) has been proposed to drive cell adhesion in murine embryogenesis. Here, we confirm the existence of this specific interaction by reporting the first direct quantitative measurements in an environment akin to that provided by membranes. The adhesion between giant vesicles functionalized with Le(x) was obtained by micropipette aspiration and contact angle measurements. This interaction is below the thermal energy, and cell-cell adhesion will require a large number of molecules, as illustrated by the Le(x) concentration peak observed at the cell membranes during the morula stage of the embryo. This adhesion is ultralow and therefore difficult to measure. Such small interactions explain why the concept of specific interactions between carbohydrates is often neglected. PMID:11222296

  7. Effects of curvature and cell-cell interaction on cell adhesion in microvessels.

    PubMed

    Yan, W W; Liu, Y; Fu, B M

    2010-10-01

    It has been found that both circulating blood cells and tumor cells are more easily adherent to curved microvessels than straight ones. This motivated us to investigate numerically the effect of the curvature of the curved vessel on cell adhesion. In this study, the fluid dynamics was carried out by the lattice Boltzmann method (LBM), and the cell dynamics was governed by the Newton's law of translation and rotation. The adhesive dynamics model involved the effect of receptor-ligand bonds between circulating cells and endothelial cells (ECs). It is found that the curved vessel would increase the simultaneous bond number, and the probability of cell adhesion is increased consequently. The interaction between traveling cells would also affect the cell adhesion significantly. For two-cell case, the simultaneous bond number of the rear cell is increased significantly, and the curvature of microvessel further enhances the probability of cell adhesion.

  8. Cleavage and Cell Adhesion Properties of Human Epithelial Cell Adhesion Molecule (HEPCAM)*

    PubMed Central

    Tsaktanis, Thanos; Kremling, Heidi; Pavšič, Miha; von Stackelberg, Ricarda; Mack, Brigitte; Fukumori, Akio; Steiner, Harald; Vielmuth, Franziska; Spindler, Volker; Huang, Zhe; Jakubowski, Jasmine; Stoecklein, Nikolas H.; Luxenburger, Elke; Lauber, Kirsten; Lenarčič, Brigita; Gires, Olivier

    2015-01-01

    Human epithelial cell adhesion molecule (HEPCAM) is a tumor-associated antigen frequently expressed in carcinomas, which promotes proliferation after regulated intramembrane proteolysis. Here, we describe extracellular shedding of HEPCAM at two α-sites through a disintegrin and metalloprotease (ADAM) and at one β-site through BACE1. Transmembrane cleavage by γ-secretase occurs at three γ-sites to generate extracellular Aβ-like fragments and at two ϵ-sites to release human EPCAM intracellular domain HEPICD, which is efficiently degraded by the proteasome. Mapping of cleavage sites onto three-dimensional structures of HEPEX cis-dimer predicted conditional availability of α- and β-sites. Endocytosis of HEPCAM warrants acidification in cytoplasmic vesicles to dissociate protein cis-dimers required for cleavage by BACE1 at low pH values. Intramembrane cleavage sites are accessible and not part of the structurally important transmembrane helix dimer crossing region. Surprisingly, neither chemical inhibition of cleavage nor cellular knock-out of HEPCAM using CRISPR-Cas9 technology impacted the adhesion of carcinoma cell lines. Hence, a direct function of HEPCAM as an adhesion molecule in carcinoma cells is not supported and appears to be questionable. PMID:26292218

  9. PAF mediates neutrophil adhesion to thrombin or TNF-stimulated endothelial cells under shear stress.

    PubMed

    Macconi, D; Foppolo, M; Paris, S; Noris, M; Aiello, S; Remuzzi, G; Remuzzi, A

    1995-07-01

    Platelet-activating factor (PAF) is known to modulate polymorphonuclear leukocyte (PMN) adhesion to endothelial cells cultured under static conditions and activated by thrombin. In contrast, there are no data on the role of PAF in PMN adhesion to cells exposed to flow conditions and activated by stimuli other than thrombin. Here we used the PAF receptor antagonist L-659,989 to evaluate PMN adhesion to human umbilical vein endothelial cells (HUVEC) in basal conditions or upon challenge with thrombin or tumor necrosis factor-alpha (TNF-alpha). Experiments were performed under dynamic flow using a parallel-plate flow chamber and a computer-based image analysis system. Rolling and adhesion of PMNs to endothelial cells significantly increased upon stimulation with thrombin. Thrombin-stimulated HUVEC also synthesized higher amounts of PAF than untreated cells. Pretreatment of PMNs with L-659,989 significantly reduced their rolling and adhesion to thrombin-activated HUVEC. Stimulation of HUVEC with TNF-alpha significantly increased the number of rolling and adherent PMNs as compared with untreated cells. Adhesion of PMNs to and migration across TNF-alpha-stimulated HUVEC were reduced by L-659,989, whereas cell rolling was unchanged. We conclude that PAF mediates leukocyte interaction under flow conditions with HUVEC activated by inflammatory stimuli.

  10. Cellular Adhesion Promotes Prostate Cancer Cells Escape from Dormancy

    PubMed Central

    Ruppender, Nazanin; Larson, Sandy; Lakely, Bryce; Kollath, Lori; Brown, Lisha; Coleman, Ilsa; Coleman, Roger; Nguyen, Holly; Nelson, Peter S.; Corey, Eva; Snyder, Linda A.; Vessella, Robert L.; Morrissey, Colm; Lam, Hung-Ming

    2015-01-01

    Dissemination of prostate cancer (PCa) cells to the bone marrow is an early event in the disease process. In some patients, disseminated tumor cells (DTC) proliferate to form active metastases after a prolonged period of undetectable disease known as tumor dormancy. Identifying mechanisms of PCa dormancy and reactivation remain a challenge partly due to the lack of in vitro models. Here, we characterized in vitro PCa dormancy-reactivation by inducing cells from three patient-derived xenograft (PDX) lines to proliferate through tumor cell contact with each other and with bone marrow stroma. Proliferating PCa cells demonstrated tumor cell-cell contact and integrin clustering by immunofluorescence. Global gene expression analyses on proliferating cells cultured on bone marrow stroma revealed a downregulation of TGFB2 in all of the three proliferating PCa PDX lines when compared to their non-proliferating counterparts. Furthermore, constitutive activation of myosin light chain kinase (MLCK), a downstream effector of integrin-beta1 and TGF-beta2, in non-proliferating cells promoted cell proliferation. This cell proliferation was associated with an upregulation of CDK6 and a downregulation of E2F4. Taken together, our data provide the first clinically relevant in vitro model to support cellular adhesion and downregulation of TGFB2 as a potential mechanism by which PCa cells may escape from dormancy. Targeting the TGF-beta2-associated mechanism could provide novel opportunities to prevent lethal PCa metastasis. PMID:26090669

  11. Cell adhesion to plasma-coated PVC.

    PubMed

    Rangel, Elidiane C; de Souza, Eduardo S; de Moraes, Francine S; Duek, Eliana A R; Lucchesi, Carolina; Schreiner, Wido H; Durrant, Steven F; Cruz, Nilson C

    2014-01-01

    To produce environments suitable for cell culture, thin polymer films were deposited onto commercial PVC plates from radiofrequency acetylene-argon plasmas. The proportion of argon in the plasmas, P(Ar), was varied from 5.3 to 65.8%. The adhesion and growth of Vero cells on the coated surfaces were examined for different incubation times. Cytotoxicity tests were performed using spectroscopic methods. Carbon, O, and N were detected in all the samples using XPS. Roughness remained almost unchanged in the samples prepared with 5.3 and 28.9% but tended to increase for the films deposited with P(Ar) between 28.9 and 55.3%. Surface free energy increased with increasing P(Ar), except for the sample prepared at 28.9% of Ar, which presented the least reactive surface. Cells proliferated on all the samples, including the bare PVC. Independently of the deposition condition there was no evidence of cytotoxicity, indicating the viability of such coatings for designing biocompatible devices.

  12. Cell Adhesion to Plasma-Coated PVC

    PubMed Central

    Rangel, Elidiane C.; de Souza, Eduardo S.; de Moraes, Francine S.; Duek, Eliana A. R.; Lucchesi, Carolina; Schreiner, Wido H.; Durrant, Steven F.; Cruz, Nilson C.

    2014-01-01

    To produce environments suitable for cell culture, thin polymer films were deposited onto commercial PVC plates from radiofrequency acetylene-argon plasmas. The proportion of argon in the plasmas, PAr, was varied from 5.3 to 65.8%. The adhesion and growth of Vero cells on the coated surfaces were examined for different incubation times. Cytotoxicity tests were performed using spectroscopic methods. Carbon, O, and N were detected in all the samples using XPS. Roughness remained almost unchanged in the samples prepared with 5.3 and 28.9% but tended to increase for the films deposited with PAr between 28.9 and 55.3%. Surface free energy increased with increasing PAr, except for the sample prepared at 28.9% of Ar, which presented the least reactive surface. Cells proliferated on all the samples, including the bare PVC. Independently of the deposition condition there was no evidence of cytotoxicity, indicating the viability of such coatings for designing biocompatible devices. PMID:25247202

  13. ZDHHC3 Tyrosine Phosphorylation Regulates Neural Cell Adhesion Molecule Palmitoylation

    PubMed Central

    Lievens, Patricia Marie-Jeanne; Kuznetsova, Tatiana; Kochlamazashvili, Gaga; Cesca, Fabrizia; Gorinski, Natalya; Galil, Dalia Abdel; Cherkas, Volodimir; Ronkina, Natalia; Lafera, Juri; Gaestel, Matthias

    2016-01-01

    The neural cell adhesion molecule (NCAM) mediates cell-cell and cell-matrix adhesion. It is broadly expressed in the nervous system and regulates neurite outgrowth, synaptogenesis, and synaptic plasticity. Previous in vitro studies revealed that palmitoylation of NCAM is required for fibroblast growth factor 2 (FGF2)-stimulated neurite outgrowth and identified the zinc finger DHHC (Asp-His-His-Cys)-containing proteins ZDHHC3 and ZDHHC7 as specific NCAM-palmitoylating enzymes. Here, we verified that FGF2 controlled NCAM palmitoylation in vivo and investigated molecular mechanisms regulating NCAM palmitoylation by ZDHHC3. Experiments with overexpression and pharmacological inhibition of FGF receptor (FGFR) and Src revealed that these kinases control tyrosine phosphorylation of ZDHHC3 and that ZDHHC3 is phosphorylated by endogenously expressed FGFR and Src proteins. By site-directed mutagenesis, we found that Tyr18 is an FGFR1-specific ZDHHC3 phosphorylation site, while Tyr295 and Tyr297 are specifically phosphorylated by Src kinase in cell-based and cell-free assays. Abrogation of tyrosine phosphorylation increased ZDHHC3 autopalmitoylation, enhanced interaction with NCAM, and upregulated NCAM palmitoylation. Expression of ZDHHC3 with tyrosine mutated in cultured hippocampal neurons promoted neurite outgrowth. Our findings for the first time highlight that FGFR- and Src-mediated tyrosine phosphorylation of ZDHHC3 modulates ZDHHC3 enzymatic activity and plays a role in neuronal morphogenesis. PMID:27247265

  14. Probing the mechanosensitivity in cell adhesion and migration: Experiments and modeling

    NASA Astrophysics Data System (ADS)

    Ji, Bao-Hua; Huo, Bo

    2013-08-01

    Cell adhesion and migration are basic physiological processes in living organisms. Cells can actively probe their mechanical micro-environment and respond to the external stimuli through cell adhesion. Cells need to move to the targeting place to perform function via cell migration. For adherent cells, cell migration is mediated by cell-matrix adhesion and cell-cell adhesion. Experimental approaches, especially at early stage of investigation, are indispensable to studies of cell mechanics when even qualitative behaviors of cell as well as fundamental factors in cell behaviors are unclear. Currently, there is increasingly accumulation of experimental data of measurement, thus a quantitative formulation of cell behaviors and the relationship among these fundamental factors are highly needed. This quantitative understanding should be crucial to tissue engineering and biomedical engineering when people want to accurately regulate or control cell behaviors from single cell level to tissue level. In this review, we will elaborate recent advances in the experimental and theoretical studies on cell adhesion and migration, with particular focuses laid on recent advances in experimental techniques and theoretical modeling, through which challenging problems in the cell mechanics are suggested.

  15. The soluble form of LR11 protein is a regulator of hypoxia-induced, urokinase-type plasminogen activator receptor (uPAR)-mediated adhesion of immature hematological cells.

    PubMed

    Nishii, Keigo; Nakaseko, Chiaki; Jiang, Meizi; Shimizu, Naomi; Takeuchi, Masahiro; Schneider, Wolfgang J; Bujo, Hideaki

    2013-04-26

    A key property of hematopoietic stem and progenitor cells (HSPCs) regarding differentiation from the self-renewing quiescent to the proliferating stage is their adhesion to the bone marrow (BM) niche. An important molecule involved in proliferation and pool size of HSPCs in the BM is the hypoxia-induced urokinase-type plasminogen activator receptor (uPAR). Here, we show that the soluble form (sLR11) of LR11 (also called SorLA or SORL1) modulates the uPAR-mediated attachment of HSPCs under hypoxic conditions. Immunohistochemical and mRNA expression analyses revealed that hypoxia increased LR11 expression in hematological c-Kit(+) Lin(-) cells. In U937 cells, hypoxia induced a transient rise in LR11 transcription, production of cellular protein, and release of sLR11. Attachment to stromal cells of c-Kit(+) Lin(-) cells of lr11(-/-) mice was reduced by hypoxia much more than of lr11(+/+) animals. sLR11 induced the adhesion of U937 and c-Kit(+) Lin(-) cells to stromal cells. Cell attachment was increased by sLR11 and reduced in the presence of anti-uPAR antibodies. Furthermore, the fraction of uPAR co-immunoprecipitated with LR11 in membrane extracts of U937 cells was increased by hypoxia. CoCl2, a chemical inducer of HIF-1α, enhanced the levels of LR11 and sLR11 in U937 cells. The decrease in hypoxia-induced attachment of HIF-1α-knockdown cells was largely prevented by exogenously added sLR11. Finally, hypoxia induced HIF-1α binding to a consensus binding site in the LR11 promoter. Thus, we conclude that sLR11 regulates the hypoxia-enhanced adhesion of HSPCs via an uPAR-mediated pathway that stabilizes the hematological pool size by controlling cell attachment to the BM niche.

  16. Self assembling bioactive materials for cell adhesion in tissue repair

    NASA Astrophysics Data System (ADS)

    Hwang, Julia J.

    This work involved the study of biodegradable and biocompatible materials that have the potential to modify tissue engineering scaffolds through self assembly, generating multiple layers that deliver bioactivity. Diblock biomaterials containing cholesteryl moieties and oligomers of lactic acid units were found to form single crystals when precipitated from hot ethanol and smectic liquid crystalline phases when cast as a film. Cell culture experiments on these films with 3T3 and 3T6 fibroblasts indicated that these ordered materials form surfaces with specific chemistries that favored cell adhesion, spreading, and proliferation suggesting the potential of mediating human tissue repair. The author believes the cholesteryl moieties found on the surface play a key role in determining cell behavior. Cholesteryl-(L-lactic acid) diblock molecules were then functionalized with moieties including vitamin Bx, cholesterol, and the anti-inflammatory drug indomethacin. An unstable activated ester between indomethacin and the diblock molecule resulted in the release of indomethacin into the culture medium which inhibited the proliferation of 3T3 fibroblasts. Finally, a series of molecules were designed to incorporate dendrons based on amino acids at the termini of the diblock structures. It was determined that lysine, a basic amino acid, covalently coupled to cholesteryl-(L-lactic acid) can promote cell adhesion and spreading while negatively charged and zwitterionic 2nd generation dendrons based on aspartic acid do not. Incorporation of the well known arginine-glycine-aspartic acid (RGD) sequence, which is found in many adhesive proteins, to the dendrons imparted integrin-mediated cell adhesion as evidenced by the formation of stress fibers. We also explored the capacity of integrin receptors to bind to ligands that are not the linear form of RGD, but have R, G, and D spatially positioned to mimic the linear RGD environments. For this purpose, the arms of the 2 nd generation

  17. Silencing of VAMP3 inhibits cell migration and integrin-mediated adhesion

    SciTech Connect

    Luftman, Kevin; Hasan, Nazarul; Day, Paul; Hardee, Deborah; Hu Chuan

    2009-02-27

    Integrins are transmembrane receptors for cell adhesion to the extracellular matrix. In cell migration, integrins are endocytosed from the plasma membrane or the cell surface, transported in vesicles and exocytosed actively at the cell front. In the present study, we examined the roles of VAMP3, a SNARE protein that mediates exocytosis, in cell migration and integrin trafficking. Small interfering RNA (siRNA)-induced silencing of VAMP3 inhibited chemotactic cell migration by more than 60% without affecting cell proliferation. VAMP3 silencing reduced the levels of {beta}1 integrin at the cell surface but had no effect on total cellular {beta}1 integrin, indicating that VAMP3 is required for trafficking of {beta}1 integrin to the plasma membrane. Furthermore, VAMP3 silencing diminished cell adhesion to laminin but not to fibronectin or collagen. Taken together, these data suggest that VAMP3-dependent integrin trafficking is crucial in cell migration and cell adhesion to laminin.

  18. Single Cell Adhesion Assay Using Computer Controlled Micropipette

    PubMed Central

    Salánki, Rita; Hős, Csaba; Orgovan, Norbert; Péter, Beatrix; Sándor, Noémi; Bajtay, Zsuzsa; Erdei, Anna; Horvath, Robert; Szabó, Bálint

    2014-01-01

    Cell adhesion is a fundamental phenomenon vital for all multicellular organisms. Recognition of and adhesion to specific macromolecules is a crucial task of leukocytes to initiate the immune response. To gain statistically reliable information of cell adhesion, large numbers of cells should be measured. However, direct measurement of the adhesion force of single cells is still challenging and today’s techniques typically have an extremely low throughput (5–10 cells per day). Here, we introduce a computer controlled micropipette mounted onto a normal inverted microscope for probing single cell interactions with specific macromolecules. We calculated the estimated hydrodynamic lifting force acting on target cells by the numerical simulation of the flow at the micropipette tip. The adhesion force of surface attached cells could be accurately probed by repeating the pick-up process with increasing vacuum applied in the pipette positioned above the cell under investigation. Using the introduced methodology hundreds of cells adhered to specific macromolecules were measured one by one in a relatively short period of time (∼30 min). We blocked nonspecific cell adhesion by the protein non-adhesive PLL-g-PEG polymer. We found that human primary monocytes are less adherent to fibrinogen than their in vitro differentiated descendants: macrophages and dendritic cells, the latter producing the highest average adhesion force. Validation of the here introduced method was achieved by the hydrostatic step-pressure micropipette manipulation technique. Additionally the result was reinforced in standard microfluidic shear stress channels. Nevertheless, automated micropipette gave higher sensitivity and less side-effect than the shear stress channel. Using our technique, the probed single cells can be easily picked up and further investigated by other techniques; a definite advantage of the computer controlled micropipette. Our experiments revealed the existence of a sub

  19. Single cell adhesion assay using computer controlled micropipette.

    PubMed

    Salánki, Rita; Hős, Csaba; Orgovan, Norbert; Péter, Beatrix; Sándor, Noémi; Bajtay, Zsuzsa; Erdei, Anna; Horvath, Robert; Szabó, Bálint

    2014-01-01

    Cell adhesion is a fundamental phenomenon vital for all multicellular organisms. Recognition of and adhesion to specific macromolecules is a crucial task of leukocytes to initiate the immune response. To gain statistically reliable information of cell adhesion, large numbers of cells should be measured. However, direct measurement of the adhesion force of single cells is still challenging and today's techniques typically have an extremely low throughput (5-10 cells per day). Here, we introduce a computer controlled micropipette mounted onto a normal inverted microscope for probing single cell interactions with specific macromolecules. We calculated the estimated hydrodynamic lifting force acting on target cells by the numerical simulation of the flow at the micropipette tip. The adhesion force of surface attached cells could be accurately probed by repeating the pick-up process with increasing vacuum applied in the pipette positioned above the cell under investigation. Using the introduced methodology hundreds of cells adhered to specific macromolecules were measured one by one in a relatively short period of time (∼30 min). We blocked nonspecific cell adhesion by the protein non-adhesive PLL-g-PEG polymer. We found that human primary monocytes are less adherent to fibrinogen than their in vitro differentiated descendants: macrophages and dendritic cells, the latter producing the highest average adhesion force. Validation of the here introduced method was achieved by the hydrostatic step-pressure micropipette manipulation technique. Additionally the result was reinforced in standard microfluidic shear stress channels. Nevertheless, automated micropipette gave higher sensitivity and less side-effect than the shear stress channel. Using our technique, the probed single cells can be easily picked up and further investigated by other techniques; a definite advantage of the computer controlled micropipette. Our experiments revealed the existence of a sub-population of

  20. Simulation of Cell Adhesion using a Particle Transport Model

    NASA Astrophysics Data System (ADS)

    Chesnutt, Jennifer

    2005-11-01

    An efficient computational method for simulation of cell adhesion through protein binding forces is discussed. In this method, the cells are represented by deformable elastic particles, and the protein binding is represented by a rate equation. The method is first developed for collision and adhesion of two similar cells impacting on each other from opposite directions. The computational method is then applied in a particle-transport model for a cloud of interacting and colliding cells, each of which are represented by particles of finite size. One application might include red blood cells adhering together to form rouleaux, which are chains of red blood cells that are found in different parts of the circulatory system. Other potential applications include adhesion of platelets to a blood vessel wall or mechanical heart valve, which is a precursor of thrombosis formation, or adhesion of cancer cells to organ walls in the lymphatic, circulatory, digestive or pulmonary systems.

  1. Redundant control of migration and adhesion by ERM proteins in vascular smooth muscle cells

    SciTech Connect

    Baeyens, Nicolas; Latrache, Iman; Yerna, Xavier; Noppe, Gauthier; Horman, Sandrine; Morel, Nicole

    2013-11-22

    Highlights: •The three ERM proteins are expressed in vascular smooth muscle cell. •ERM depletion inhibited PDGF-evoked migration redundantly. •ERM depletion increased cell adhesion redundantly. •ERM depletion did not affect PDGF-evoked Ca signal, Rac1 activation, proliferation. •ERM proteins control PDGF-induced migration by regulating adhesion. -- Abstract: Ezrin, radixin, and moesin possess a very similar structure with a C-terminal actin-binding domain and a N-terminal FERM interacting domain. They are known to be involved in cytoskeleton organization in several cell types but their function in vascular smooth muscle cells (VSMC) is still unknown. The aim of this study was to investigate the role of ERM proteins in cell migration induced by PDGF, a growth factor involved in pathophysiological processes like angiogenesis or atherosclerosis. We used primary cultured VSMC obtained from rat aorta, which express the three ERM proteins. Simultaneous depletion of the three ERM proteins with specific siRNAs abolished the effects of PDGF on cell architecture and migration and markedly increased cell adhesion and focal adhesion size, while these parameters were only slightly affected by depletion of ezrin, radixin or moesin alone. Rac1 activation, cell proliferation, and Ca{sup 2+} signal in response to PDGF were unaffected by ERM depletion. These results indicate that ERM proteins exert a redundant control on PDGF-induced VSMC migration by regulating focal adhesion turn-over and cell adhesion to substrate.

  2. Hydrogen peroxide regulates cell adhesion through the redox sensor RPSA.

    PubMed

    Vilas-Boas, Filipe; Bagulho, Ana; Tenente, Rita; Teixeira, Vitor H; Martins, Gabriel; da Costa, Gonçalo; Jerónimo, Ana; Cordeiro, Carlos; Machuqueiro, Miguel; Real, Carla

    2016-01-01

    To become metastatic, a tumor cell must acquire new adhesion properties that allow migration into the surrounding connective tissue, transmigration across endothelial cells to reach the blood stream and, at the site of metastasis, adhesion to endothelial cells and transmigration to colonize a new tissue. Hydrogen peroxide (H2O2) is a redox signaling molecule produced in tumor cell microenvironment with high relevance for tumor development. However, the molecular mechanisms regulated by H2O2 in tumor cells are still poorly known. The identification of H2O2-target proteins in tumor cells and the understanding of their role in tumor cell adhesion are essential for the development of novel redox-based therapies for cancer. In this paper, we identified Ribosomal Protein SA (RPSA) as a target of H2O2 and showed that RPSA in the oxidized state accumulates in clusters that contain specific adhesion molecules. Furthermore, we showed that RPSA oxidation improves cell adhesion efficiency to laminin in vitro and promotes cell extravasation in vivo. Our results unravel a new mechanism for H2O2-dependent modulation of cell adhesion properties and identify RPSA as the H2O2 sensor in this process. This work indicates that high levels of RPSA expression might confer a selective advantage to tumor cells in an oxidative environment.

  3. The evaluation of p,p'-DDT exposure on cell adhesion of hepatocellular carcinoma.

    PubMed

    Jin, Xiaoting; Chen, Meilan; Song, Li; Li, Hanqing; Li, Zhuoyu

    2014-08-01

    Many studies have found a positive association between the progression of hepatocellular carcinoma and DDT exposure. These studies mainly focus on the effect of DDT exposure on cell proliferation and epithelial to mesenchymal transition (EMT) promotion. However, the influence of DDT on cell adhesion of hepatocellular carcinoma remains to be unclear. The aim of our study was to determine the effect of p,p'-DDT on cell adhesion of hepatocellular carcinoma in vitro and in vivo. The data showed that p,p'-DDT, exposing HepG2 cells for 6 days, decreased cell-cell adhesion and elevated cell-matrix adhesion. Strikingly, p,p'-DDT increased reactive oxygen species (ROS) content, and this was accompanied by the activation of JAK/STAT3 pathway. Moreover, ROS inhibitor supplement reversed these effects significantly. However, the addition of ER inhibitor, ICI, had no effect on the p,p'-DDT-induced effects. p,p'-DDT altered the mRNA levels of related adhesion molecules, including inhibition of E-cadherin and promotion of N-cadherin along with CD29. Interestingly, the p,p'-DDT-altered adhesion molecules could be reversed with JAK inhibitor or STAT3 inhibitor. Likewise, p,p'-DDT stimulated the JAK/STAT3 pathway in nude mice, as well as altered the mRNA levels of E-cadherin, N-cadherin, and CD29. Taken together, these results indicate that p,p'-DDT profoundly promotes the adhesion process by decreasing cell-cell adhesion and inducing cell-matrix adhesion via the ROS-mediated JAK/STAT3 pathway. All these events account for the carcinogenic potential of p,p'-DDT in liver.

  4. Shark cartilage extract interferes with cell adhesion and induces reorganization of focal adhesions in cultured endothelial cells.

    PubMed

    Chen, J S; Chang, C M; Wu, J C; Wang, S M

    2000-06-06

    In this study, we examined the effects of shark cartilage extract on the attachment and spreading properties and the focal adhesion structure of cultured bovine pulmonary artery endothelial cells. Treatment with cartilage extract resulted in cell detachment from the substratum. Immunofluorescence staining of those treated cells that remained attached showed that, instead of being present in both central and peripheral focal adhesions as in control cells, both integrin alpha(v)beta(3) and vinculin were found only in peripheral focal adhesion and thinner actin filament bundles were seen. In addition to causing cell detachment, cartilage extract partially inhibited the initial adherence of the cells to the substratum in a dose-dependent manner. Integrin alpha(v)beta(3) and vinculin staining of these cells also showed a peripheral focal adhesion distribution pattern. Vitronectin induced cell spreading in the absence of serum, but was blocked by simultaneous incubation with cartilage extract, which was shown to inhibit both integrin alpha(v)beta(3) and vinculin recruitment to focal adhesion and the formation of stress fibers. Dot binding assays showed that these inhibitory effects on cell attachment and spreading were not due to direct binding of cartilage extract components to integrin alpha(v)beta(3) or vitronectin. Shark cartilage chondroitin sulfate had no inhibitory effect on either cell attachment or spreading of endothelial cells. These results show that the inhibitory effects of cartilage extract on cell attachment and spreading are mediated by modification of the organization of focal adhesion proteins.

  5. Active adhesion concepts for in-orbit structural construction

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Natori, M. C.

    1992-01-01

    The in-orbit assembly of structural elements is presently addressed by means of a continuum-based theory of active-adhesion contact/impact which assumes the manufacturability of active adhesion elements by piezoelectric (and similarly behaving) materials. Block bonding characteristics can furnish an effective alternative to optimal control-based, impact surge force-mitigation strategies, especially in the numerous nonsmooth control problems that are difficult to synthesize and implement. Attention is given to design concepts employing combined serial/parallel-bonded active adhesion elements composed of cascaded piezoelectric devices.

  6. FGFR4 Downregulation of Cell Adhesion in Prostate Cancer

    DTIC Science & Technology

    2007-03-01

    AD_________________ Award Number: W81XWH-06-1-0385 TITLE: FGFR4 Downregulation of Cell Adhesion...2007 2. REPORT TYPE Annual 3. DATES COVERED 1 Mar 2006 – 28 Feb 2007 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER FGFR4 Downregulation of Cell...our project to examine the role of FGFR4 G388R in altering cell adhesion in prostate cancer. This includes acquiring expertise in the passage and

  7. Cell adhesion to borate glasses by colloidal probe microscopy.

    PubMed

    Wiederhorn, Sheldon M; Chae, Young-Hun; Simon, Carl G; Cahn, Jackson; Deng, Yan; Day, Delbert

    2011-05-01

    The adhesion of osteoblast-like cells to silicate and borate glasses was measured in cell growth medium using colloidal probe microscopy. The probes consisted of silicate and borate glass spheres, 25-50 μm in diameter, attached to atomic force microscope cantilevers. Variables of the study included glass composition and time of contact of the cell to the glasses. Increasing the time of contact from 15 to 900 s increased the force of adhesion. The data could be plotted linearly on a log-log plot of adhesive force versus time. Of the seven glasses tested, five had slopes close to 0.5, suggesting a square root dependence of the adhesive force on the contact time. Such behavior can be interpreted as a diffusion limited process occurring during the early stages of cell attachment. We suggest that the rate limiting step in the adhesion process is the diffusion of integrins resident in the cell membrane to the area of cell attachment. Data presented in this paper support the hypothesis of Hench et al. that strong adhesion depends on the formation of a calcium phosphate reaction layer on the surfaces of the glass. Glasses that did not form a calcium phosphate layer exhibited a weaker adhesive force relative to those glasses that did form a calcium phosphate layer.

  8. Transcriptionally Regulated Cell Adhesion Network Dictates Distal Tip Cell Directionality

    PubMed Central

    Wong, Ming-Ching; Kennedy, William P.; Schwarzbauer, Jean E.

    2015-01-01

    Background The mechanisms that govern directional changes in cell migration are poorly understood. The migratory paths of two distal tip cells (DTC) determine the U-shape of the C. elegans hermaphroditic gonad. The morphogenesis of this organ provides a model system to identify genes necessary for the DTCs to execute two stereotyped turns. Results Using candidate genes for RNAi knockdown in a DTC-specific strain, we identified two transcriptional regulators required for DTC turning: cbp-1, the CBP/p300 transcriptional coactivator homologue, and let-607, a CREBH transcription factor homologue. Further screening of potential target genes uncovered a network of integrin adhesion-related genes that have roles in turning and are dependent on cbp-1 and let-607 for expression. These genes include src-1/Src kinase, tln-1/talin, pat-2/α integrin and nmy-2, a nonmuscle myosin heavy chain. Conclusions Transcriptional regulation by means of cbp-1 and let-607 is crucial for determining directional changes during DTC migration. These regulators coordinate a gene network that is necessary for integrin-mediated adhesion. Overall, these results suggest that directional changes in cell migration rely on the precise gene regulation of adhesion. PMID:24811939

  9. Role of cell-cell adhesion complexes in embryonic stem cell biology.

    PubMed

    Pieters, Tim; van Roy, Frans

    2014-06-15

    Pluripotent embryonic stem cells (ESCs) can self-renew or differentiate into any cell type within an organism. Here, we focus on the roles of cadherins and catenins - their cytoplasmic scaffold proteins - in the fate, maintenance and differentiation of mammalian ESCs. E-cadherin is a master stem cell regulator that is required for both mouse ESC (mESC) maintenance and differentiation. E-cadherin interacts with key components of the naive stemness pathway and ablating it prevents stem cells from forming well-differentiated teratomas or contributing to chimeric animals. In addition, depleting E-cadherin converts naive mouse ESCs into primed epiblast-like stem cells (EpiSCs). In line with this, a mesenchymal-to-epithelial transition (MET) occurs during reprogramming of somatic cells towards induced pluripotent stem cells (iPSCs), leading to downregulation of N-cadherin and acquisition of high E-cadherin levels. β-catenin exerts a dual function; it acts in cadherin-based adhesion and in WNT signaling and, although WNT signaling is important for stemness, the adhesive function of β-catenin might be crucial for maintaining the naive state of stem cells. In addition, evidence is rising that other junctional proteins are also important in ESC biology. Thus, precisely regulated levels and activities of several junctional proteins, in particular E-cadherin, safeguard naive pluripotency and are a prerequisite for complete somatic cell reprogramming.

  10. Cell Adhesion Molecules in Chemically-Induced Renal Injury

    PubMed Central

    Prozialeck, Walter C.; Edwards, Joshua R.

    2007-01-01

    Cell adhesion molecules are integral cell-membrane proteins that maintain cell-cell and cell-substrate adhesion, and in some cases, act as regulators of intracellular signaling cascades. In the kidney, cell adhesion molecules such as the cadherins, the catenins, ZO-1, occludin and the claudins are essential for maintaining the epithelial polarity and barrier integrity that are necessary for the normal absorption/excretion of fluid and solutes. A growing volume of evidence indicates that these cell adhesion molecules are important early targets for a variety of nephrotoxic substances including metals, drugs, and venom components. In addition, it is now widely appreciated that molecules such as ICAM-1, the integrins and selectins play important roles in the recruitment of leukocytes and inflammatory responses that are associated with nephrotoxic injury. This review summarizes the results of recent in vitro and in vivo studies indicating that these cell adhesion molecules may be primary molecular targets in many types of chemically-induced renal injury. Some of the specific agents that are discussed include Cd, Hg, Bi, cisplatin, aminoglycoside antibiotics, S-(1,2-dichlorovinyl-L-cysteine) (DCVC) and various venom toxins. This review also includes a discussion of the various mechanisms by which these substances can affect cell adhesion molecules in the kidney. PMID:17316817

  11. Binding of the cell adhesive protein tropoelastin to PTFE through plasma immersion ion implantation treatment.

    PubMed

    Bax, Daniel V; Wang, Yiwei; Li, Zhe; Maitz, Peter K M; McKenzie, David R; Bilek, Marcela M M; Weiss, Anthony S

    2011-08-01

    The interaction of proteins and cells with polymers is critical to their use in scientific and medical applications. In this study, plasma immersion ion implantation (PIII) was used to modify the surface of polytetrafluorethylene (PTFE), enabling the covalent binding of a cell adhesive protein, tropoelastin, without employing chemical linking molecules. Tropoelastin coating of untreated or PIII treated PFTE simultaneously promoted and blocked cell interactions respectively, i.e. PIII treatment of the PTFE surface completely inverses the cell interactive properties of bound tropoelastin. This activity persisted over long term storage of the PIII treated surfaces. The integrin binding C-terminus of tropoelastin was markedly less solvent exposed when bound to PIII treated PTFE than untreated PTFE, accounting for the modulation of cell adhesive activity. This presents a new methodology to specifically modulate cell behavior on a polymer surface using a simple one step treatment process, by adjusting the adhesive activity of a single extracellular matrix protein.

  12. Study of the time effect on the strength of cell-cell adhesion force by a novel nano-picker.

    PubMed

    Shen, Yajing; Nakajima, Masahiro; Kojima, Seiji; Homma, Michio; Fukuda, Toshio

    2011-06-03

    Cell's adhesion is important to cell's interaction and activates. In this paper, a novel method for cell-cell adhesion force measurement was proposed by using a nano-picker. The effect of the contact time on the cell-cell adhesion force was studied. The nano-picker was fabricated from an atomic force microscopy (AFM) cantilever by nano fabrication technique. The cell-cell adhesion force was measured based on the deflection of the nano-picker beam. The result suggests that the adhesion force between cells increased with the increasing of contact time at the first few minutes. After that, the force became constant. This measurement methodology was based on the nanorobotic manipulation system inside an environmental scanning electron microscope. It can realize both the observation and manipulation of a single cell at nanoscale. The quantitative and precise cell-cell adhesion force result can be obtained by this method. It would help us to understand the single cell interaction with time and would benefit the research in medical and biological fields potentially.

  13. Fibronectin Modulates Cell Adhesion and Signaling to Promote Single Cell Migration of Highly Invasive Oral Squamous Cell Carcinoma

    PubMed Central

    Ramos, Grasieli de Oliveira; Bernardi, Lisiane; Lauxen, Isabel; Sant’Ana Filho, Manoel; Horwitz, Alan Rick; Lamers, Marcelo Lazzaron

    2016-01-01

    Cell migration is regulated by adhesion to the extracellular matrix (ECM) through integrins and activation of small RhoGTPases, such as RhoA and Rac1, resulting in changes to actomyosin organization. During invasion, epithelial-derived tumor cells switch from laminin-enriched basal membrane to collagen and fibronectin-enriched connective tissue. How this switch affects the tumor migration is still unclear. We tested the hypothesis that ECM dictates the invasiveness of Oral Squamous Cell Carcinoma (OSCC). We analyzed the migratory properties of two OSCC lines, a low invasive cell line with high e-cadherin levels (Linv/HE-cad) or a highly invasive cell line with low e-cadherin levels (Hinv/LE-cad), plated on different ECM components. Compared to laminin, fibronectin induced non-directional collective migration and decreased RhoA activity in Linv/HE-cad OSCC. For Hinv/LE-cad OSCC, fibronectin increased Rac1 activity and induced smaller adhesions, resulting in a fast single cell migration in both 2D and 3D environments. Consistent with these observations, human OSCC biopsies exhibited similar changes in cell-ECM adhesion distribution at the invasive front of the tumor, where cells encounter fibronectin. Our results indicate that ECM composition might induce a switch from collective to single cell migration according to tumor invasiveness due to changes in cell-ECM adhesion and the resulting signaling pathways that alter actomyosin organization. PMID:26978651

  14. [Musculoskeletal rehabilitation and bone. A novel approach to mechanotransduction using cell-adhesion-patterned cells].

    PubMed

    Katanosaka, Yuki; Naruse, Keiji

    2010-04-01

    Human vascular endothelial cells form the interface between the bloodstream and vessel walls and are continuously subjected to mechanical stimulation. When endothelial cells are stretched cyclically, along one axis, they align perpendicular to the axis of stretch. We previously reported that applying a cyclic, uni-axial strain to cells induced tyrosine phosphorylation of focal adhesion kinase and stimulated mitogen-activated protein kinase. However, it is difficult to quantify and analyze the spatial distribution of tyrosine phosphorylation in these cells, as they form focal adhesions randomly. Recently, we developed a system to overcome this problem by preparing individual, uniform, patterned cells that could be stretched cyclically and uni-axially. In this system we were able to statistically analyze cellular responses in these patterned cells, when subjected to a cyclic, uni-axial strain, using fluorescent microscopy.

  15. Biochemical features of the adhesion G protein-coupled receptor CD97 related to its auto-proteolysis and HeLa cell attachment activities.

    PubMed

    Yang, Li-Yun; Liu, Xiao-Fang; Yang, Yang; Yang, Lin-Lin; Liu, Kai-Wen; Tang, Yu-Bo; Zhang, Min; Tan, Min-Jia; Cheng, Shan-Mei; Xu, Ye-Chun; Yang, Huai-Yu; Liu, Zhi-Jie; Song, Gao-Jie; Huang, Wei

    2017-01-01

    CD97 belongs to the adhesion GPCR family characterized by a long ECD linked to the 7TM via a GPCR proteolytic site (GPS) and plays important roles in modulating cell migration and invasion. CD97 (EGF1-5) is a splicing variant of CD97 that recognizes a specific ligand chondroitin sulfate on cell membranes and the extracellular matrix. The aim of this study was to elucidate the extracellular molecular basis of the CD97 EGF1-5 isoform in protein expression, auto-proteolysis and cell adhesion, including epidermal growth factor (EGF)-like domain, GPCR autoproteolysis-inducing (GAIN) domain, as well as GPS mutagenesis and N-glycosylation. Both wild-type (WT) CD97-ECD and its truncated, GPS mutated, PNGase F-deglycosylated, and N-glycosylation site mutated forms were expressed and purified. The auto-proteolysis of the proteins was analyzed with Western blotting and SDS-PAGE. Small angle X-ray scattering (SAXS) and molecular modeling were used to determine a structural profile of the properly expressed receptor. Potential N-glycosylation sites were identified using MS and were modulated with PNGase F digestion and glyco-site mutations. A flow cytometry-based HeLa cell attachment assay was used for all aforementioned CD97 variants to elucidate the molecular basis of CD97-HeLa interactions. A unique concentration-dependent GPS auto-proteolysis was observed in CD97 EGF1-5 isoform with the highest concentration (4 mg/mL) per sample was self-cleaved much faster than the lower concentration (0.1 mg/mL), supporting an intermolecular mechanism of auto-proteolysis that is distinct to the reported intramolecular mechanism for other CD97 isoforms. N-glycosylation affected the auto-proteolysis of CD97 EGF1-5 isoform in a similar way as the other previously reported CD97 isoforms. SAXS data for WT and deglycosylated CD97ECD revealed a spatula-like shape with GAIN and EGF domains constituting the body and handle, respectively. Structural modeling indicated a potential interaction

  16. Dissecting cell adhesion architecture using advanced imaging techniques

    PubMed Central

    Morton, Penny E

    2011-01-01

    Cell adhesion to extracellular matrix proteins or to other cells is essential for the control of embryonic development, tissue integrity, immune function and wound healing. Adhesions are tightly spatially regulated structures containing over one hundred different proteins that coordinate both dynamics and signaling events at these sites. Extensive biochemical and morphological analysis of adhesion types over the past three decades has greatly improved understanding of individual protein contributions to adhesion signaling and, in some cases, dynamics. However, it is becoming increasingly clear that these diverse macromolecular complexes contain a variety of protein sub-networks, as well as distinct sub-domains that likely play important roles in regulating adhesion behavior. Until recently, resolving these structures, which are often less than a micron in size, was hampered by the limitations of conventional light microscopy. However, recent advances in optical techniques and imaging methods have revealed exciting insight into the intricate control of adhesion structure and assembly. Here we provide an overview of the recent data arising from such studies of cell:matrix and cell:cell contact and an overview of the imaging strategies that have been applied to study the intricacies and hierarchy of proteins within adhesions. PMID:21785274

  17. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions

    PubMed Central

    Doyle, Andrew D.; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M.

    2015-01-01

    The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils. PMID:26548801

  18. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions.

    PubMed

    Doyle, Andrew D; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M

    2015-11-09

    The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils.

  19. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions

    NASA Astrophysics Data System (ADS)

    Doyle, Andrew D.; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M.

    2015-11-01

    The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils.

  20. Amplified effect of surface charge on cell adhesion by nanostructures

    NASA Astrophysics Data System (ADS)

    Xu, Li-Ping; Meng, Jingxin; Zhang, Shuaitao; Ma, Xinlei; Wang, Shutao

    2016-06-01

    Nano-biointerfaces with varied surface charge can be readily fabricated by integrating a template-based process with maleimide-thiol coupling chemistry. Significantly, nanostructures are employed for amplifying the effect of surface charge on cell adhesion, as revealed by the cell-adhesion performance, cell morphology and corresponding cytoskeletal organization. This study may provide a promising strategy for developing new biomedical materials with tailored cell adhesion for tissue implantation and regeneration.Nano-biointerfaces with varied surface charge can be readily fabricated by integrating a template-based process with maleimide-thiol coupling chemistry. Significantly, nanostructures are employed for amplifying the effect of surface charge on cell adhesion, as revealed by the cell-adhesion performance, cell morphology and corresponding cytoskeletal organization. This study may provide a promising strategy for developing new biomedical materials with tailored cell adhesion for tissue implantation and regeneration. Electronic supplementary information (ESI) available: Experimental details, SEM, KFM AFM, chemical modification and characterization. See DOI: 10.1039/c6nr00649c

  1. Degradable poly(apigenin) polymer inhibits tumor cell adhesion to vascular endothelial cells.

    PubMed

    Cochran, David B; Gray, Lindsay N; Anderson, Kimberly W; Dziubla, Thomas D

    2016-10-01

    Cancer and the inflammatory system share a complex intertwined relationship. For instance, in response to an injury or stress, vascular endothelial cells will express cell adhesion molecules as a means of recruiting leukocytes. However, circulating tumor cells (CTCs) have been shown to highjack this expression for the adhesion and invasion during the metastatic cascade. As such, the initiation of endothelial cell inflammation, either by surgical procedures (cancer resection) or chemotherapy can inadvertently increase the metastatic potential of CTCs. Yet, systemic delivery of anti-inflammatories, which weaken the entire immune system, may not be preferred in some treatment settings. In this work, we demonstrate that a long-term releasing flavone-based polymer and subsequent nanoparticle delivery system can inhibit tumor cell adhesion, through the suppression of endothelial cell adhesion molecule expression. The degradation of a this anti-inflammatory polymer provides longer term, localized release profile of active therapeutic drug in nanoparticle form as compared with that of the free drug, permitting more targeted anti-metastatic therapies. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1438-1447, 2016.

  2. Heparanase Facilitates Cell Adhesion and Spreading by Clustering of Cell Surface Heparan Sulfate Proteoglycans

    PubMed Central

    Levy-Adam, Flonia; Feld, Sari; Suss-Toby, Edith; Vlodavsky, Israel; Ilan, Neta

    2008-01-01

    Heparanase is a heparan sulfate (HS) degrading endoglycosidase participating in extracellular matrix degradation and remodeling. Apart of its well characterized enzymatic activity, heparanase was noted to exert also enzymatic-independent functions. Non-enzymatic activities of heparanase include enhanced adhesion of tumor-derived cells and primary T-cells. Attempting to identify functional domains of heparanase that would serve as targets for drug development, we have identified heparin binding domains of heparanase. A corresponding peptide (residues Lys158-Asp171, termed KKDC) was demonstrated to physically associate with heparin and HS, and to inhibit heparanase enzymatic activity. We hypothesized that the pro-adhesive properties of heparanase are mediated by its interaction with cell surface HS proteoglycans, and utilized the KKDC peptide to examine this possibility. We provide evidence that the KKDC peptide interacts with cell membrane HS, resulting in clustering of syndecan-1 and syndecan-4. We applied classical analysis of cell morphology, fluorescent and time-lapse microscopy and demonstrated that the KKDC peptide efficiently stimulates the adhesion and spreading of various cell types, mediated by PKC, Src, and the small GTPase Rac1. These results support, and further substantiate the notion that heparanase function is not limited to its enzymatic activity. PMID:18545691

  3. Minimal synthetic cells to study integrin-mediated adhesion.

    PubMed

    Frohnmayer, Johannes P; Brüggemann, Dorothea; Eberhard, Christian; Neubauer, Stefanie; Mollenhauer, Christine; Boehm, Heike; Kessler, Horst; Geiger, Benjamin; Spatz, Joachim P

    2015-10-12

    To shed light on cell-adhesion-related molecular pathways, synthetic cells offer the unique advantage of a well-controlled model system with reduced molecular complexity. Herein, we show that liposomes with the reconstituted platelet integrin αIIb β3 as the adhesion-mediating transmembrane protein are a functional minimal cell model for studying cellular adhesion mechanisms in a defined environment. The interaction of these synthetic cells with various extracellular matrix proteins was analyzed using a quartz crystal microbalance with dissipation monitoring. The data indicated that integrin was functionally incorporated into the lipid vesicles, thus enabling integrin-specific adhesion of the engineered liposomes to fibrinogen- and fibronectin-functionalized surfaces. Then, we were able to initiate the detachment of integrin liposomes from these surfaces in the presence of the peptide GRGDSP, a process that is even faster with our newly synthesized peptide mimetic SN529, which specifically inhibits the integrin αIIb β3 .

  4. In vitro adhesion of Escherichia coli to porcine small intestinal epithelial cells: pili as adhesive factors.

    PubMed Central

    Isaacson, R E; Fusco, P C; Brinton, C C; Moon, H W

    1978-01-01

    Escherichia coli strains with pili (K99 or 987P) known to facilitate intestinal colonization adhered in vitro to porcine intestinal epithelial cells. These strains adhered equally to both ileal and jejunal epithelial cells. A laboratory E. coli strain that has type 1 pili also adhered to porcine intestinal epithelial cells. When nonpiliated cells derived from 987P+, K99+, or type 1 pilus+ strains were used for in vitro adhesion assays, they failed to adhere. The attachment of piliated bacteria to epithelial cells was a saturable process that plateaued at 30 to 40 bacterial cells attached per epithelial cell. Competitive inhibition of bacterial cell attachment to epithelial cells with purified pili showed that only purified 987P competed against the 987P+ strain and only purified type 1 pili competed against the type 1 pilus+ strain. Competition between a K99+ strain and K99 was not consistently achieved. K99+, 987P+, and type 1 pilus+ bacteria could be prevented from adhering to epithelial cells by Fab fragments specific for K99, 987P, or type 1 pili, respectively. Fab fragments specific for non-K99 bacterial surface antigens did not inhibit adhesion of the K99+ strain. It is concluded that adhesion of E. coli to porcine intestinal epithelial cells in vitro is mediated by pili and that the epithelial cells used apparently had different receptors for different pili. PMID:357285

  5. In vitro adhesion of Escherichia coli to porcine small intestinal epithelial cells: pili as adhesive factors.

    PubMed

    Isaacson, R E; Fusco, P C; Brinton, C C; Moon, H W

    1978-08-01

    Escherichia coli strains with pili (K99 or 987P) known to facilitate intestinal colonization adhered in vitro to porcine intestinal epithelial cells. These strains adhered equally to both ileal and jejunal epithelial cells. A laboratory E. coli strain that has type 1 pili also adhered to porcine intestinal epithelial cells. When nonpiliated cells derived from 987P+, K99+, or type 1 pilus+ strains were used for in vitro adhesion assays, they failed to adhere. The attachment of piliated bacteria to epithelial cells was a saturable process that plateaued at 30 to 40 bacterial cells attached per epithelial cell. Competitive inhibition of bacterial cell attachment to epithelial cells with purified pili showed that only purified 987P competed against the 987P+ strain and only purified type 1 pili competed against the type 1 pilus+ strain. Competition between a K99+ strain and K99 was not consistently achieved. K99+, 987P+, and type 1 pilus+ bacteria could be prevented from adhering to epithelial cells by Fab fragments specific for K99, 987P, or type 1 pili, respectively. Fab fragments specific for non-K99 bacterial surface antigens did not inhibit adhesion of the K99+ strain. It is concluded that adhesion of E. coli to porcine intestinal epithelial cells in vitro is mediated by pili and that the epithelial cells used apparently had different receptors for different pili.

  6. Modulation of cell adhesion complexes by surface protein patterns.

    PubMed

    Pesen, Devrim; Haviland, David B

    2009-03-01

    Cell adhesion is an important process in several biological phenomena. To investigate the formation and organization of focal adhesions, we developed a patterning approach based on electron beam lithography. Nanodots (radius <1230 nm) and nanorings (inner radius <320 nm) of fibronectin (FN) were patterned on a K-Casein background. Intracellular vinculin immunofluorescence mirrored the FN nanopatterns. Atomic force microscopy showed that FN nanodots and nanorings organize the immediate cytoskeleton into straight fibrils and diverging fibril bundles, respectively. Our results suggest that a minimum of approximately 40 FN molecules is required for a cell to form a focal adhesion.

  7. Regulation of Cell Adhesion and Migration by Kindlin-3 Cleavage by Calpain*

    PubMed Central

    Zhao, Yongzhong; Malinin, Nikolay L.; Meller, Julia; Ma, Yi; West, Xiaoxia Z.; Bledzka, Kamila; Qin, Jun; Podrez, Eugene A.; Byzova, Tatiana V.

    2012-01-01

    Integrin activation on hematopoietic cells is essential for platelet aggregation, leukocyte adhesion, and transmigration through endothelium and extracellular matrix into inflamed tissues. To migrate through matrix, leukocyte integrin adhesion complexes undergo dynamic changes. Here we show that Kindlin-3, a main activator and binding partner of integrins in hematopoietic cells, can be cleaved by calpain in an activation-dependent manner. This calpain-mediated cleavage occurs in platelets and leukocytes as well as in endothelial cells. We determined the calpain I cleavage site in Kindlin-3 at tyrosine 373 in the N-terminal part of Kindlin-3 pleckstrin homology domain. Expression of the calpain-resistant Y373N mutant of Kindlin-3 promotes stronger cell adhesion to extracellular matrix under flow as well as to activated endothelium. In contrast, Y373N mutation in Kindlin-3 hinders cell migration. Mechanistically, calpain-resistant Y373N mutant of Kindlin-3 exhibited an activation-independent association with β integrin cytoplasm domain. Thus, cleavage of Kindlin-3 by calpain controls the dynamics of integrin-Kindlin-3 interaction and as a result, integrin-dependent adhesion and migration of hematopoietic cells. This represents a novel mechanism regulating reversibility of integrin adhesion complexes in leukocytes, which, in turn, is critical for their successful transmigration through the extracellular matrix. PMID:23012377

  8. Developmental regulation of the adhesive and enzymatic activity of vascular adhesion protein-1 (VAP-1) in humans.

    PubMed

    Salmi, Marko; Jalkanen, Sirpa

    2006-09-01

    Vascular adhesion protein-1 (VAP-1) is a homodimeric glycoprotein that belongs to a unique subgroup of cell-surface-expressed oxidases. In adults, endothelial VAP-1 supports leukocyte rolling, firm adhesion, and transmigration in both enzyme activity-dependent and enzyme activity-independent manner. Here we studied the induction and function of VAP-1 during human ontogeny. We show that VAP-1 is already found in the smooth muscle at embryonic week 7. There are marked time-dependent switches in VAP-1 expression in the sinusoids of the liver, in the peritubular capillaries of the kidney, in the capillaries of the heart, and in the venules in the lamina propria of the gut. Fetal VAP-1 is dimerized, and it is enzymatically active. VAP-1 in fetal-type venules is able to bind cord blood lymphocytes. Also, adenovirally transfected VAP-1 on human umbilical vein endothelial cells is involved in rolling and firm adhesion of cord blood lymphocytes under conditions of physiologic shear stress. We conclude that VAP-1 is synthesized from early on in human vessels and it is functionally intact already before birth. Thus, VAP-1 may contribute critically to the oxidase activities in utero, and prove important for lymphocyte trafficking during human ontogeny.

  9. Charge displacement by adhesion and spreading of a cell.

    PubMed

    Svetlicić, V; Ivosević, N; Kovac, S; Zutić, V

    2001-01-01

    The potentiostatic control of surface charge density and interfacial tension of an electrode immersed in an aqueous electrolyte solution offers a possibility for direct studies of non-specific interactions in cell adhesion. Unicellular marine alga, Dunaliella tertiolecta (Chlorophyceae) of micrometer size and flexible cell envelope was used as a model cell and 0.1 M NaCl as supporting electrolyte. The dropping mercury electrode acted as in situ adhesion sensor and the electrochemical technique of chronoamperometry allowed measurement of the spread cell-electrode interface area and the distance of the closest approach of a cell. The adhesion and spreading of a single cell at the mercury electrode causes a displacement of counter-ions from the electrical double layer over a broad range of the positive and negative surface charge densities (from +16.0 to -8.2 microC/cm2). The flow of compensating current reflects the dynamics of adhesive contact formation and subsequent spreading of a cell. The adhesion and spreading rates are enhanced by the hydrodynamic regime of electrode's growing fluid interface. The distance of the closest approach of an adherent cell is smaller or equal to the distance of the outer Helmholz plane within the electrical double layer, i.e. 0.3-0.5 nm. There is a clear evidence of cell rupture for the potentials of maximum attraction as the area of the contact interface exceeded up to 100 times the cross-section area of a free cell.

  10. Regulation of promyogenic signal transduction by cell-cell contact and adhesion

    SciTech Connect

    Krauss, Robert S.

    2010-11-01

    Skeletal myoblast differentiation involves acquisition of the muscle-specific transcriptional program and morphological changes, including fusion into multinucleated myofibers. Differentiation is regulated by extracellular signaling cues, including cell-cell contact and adhesion. Cadherin and Ig adhesion receptors have been implicated in distinct but overlapping stages of myogenesis. N-cadherin signals through the Ig receptor Cdo to activate p38 MAP kinase, while the Ig receptor neogenin signals to activate FAK; both processes promote muscle-specific gene expression and myoblast fusion. M-cadherin activates Rac1 to enhance fusion. Specific Ig receptors (Kirre and Sns) are essential for myoblast fusion in Drosophila, also signaling through Rac, and vertebrate orthologs of Kirre and Sns have partially conserved function. Mice lacking specific cytoplasmic signaling factors activated by multiple receptors (e.g., Rac1) have strong muscle phenotypes in vivo. In contrast, mice lacking individual adhesion receptors that lie upstream of these factors have modest phenotypes. Redundancy among receptors may account for this. Many of the mammalian Ig receptors and cadherins associate with each other, and multivalent interactions within these complexes may require removal of multiple components to reveal dramatic defects in vivo. Nevertheless, it is possible that the murine adhesion receptors rate-limiting in vivo have not yet been identified or fully assessed.

  11. Single-cell force spectroscopy of pili-mediated adhesion

    NASA Astrophysics Data System (ADS)

    Sullan, Ruby May A.; Beaussart, Audrey; Tripathi, Prachi; Derclaye, Sylvie; El-Kirat-Chatel, Sofiane; Li, James K.; Schneider, Yves-Jacques; Vanderleyden, Jos; Lebeer, Sarah; Dufrêne, Yves F.

    2013-12-01

    Although bacterial pili are known to mediate cell adhesion to a variety of substrates, the molecular interactions behind this process are poorly understood. We report the direct measurement of the forces guiding pili-mediated adhesion, focusing on the medically important probiotic bacterium Lactobacillus rhamnosus GG (LGG). Using non-invasive single-cell force spectroscopy (SCFS), we quantify the adhesion forces between individual bacteria and biotic (mucin, intestinal cells) or abiotic (hydrophobic monolayers) surfaces. On hydrophobic surfaces, bacterial pili strengthen adhesion through remarkable nanospring properties, which - presumably - enable the bacteria to resist high shear forces under physiological conditions. On mucin, nanosprings are more frequent and adhesion forces larger, reflecting the influence of specific pili-mucin bonds. Interestingly, these mechanical responses are no longer observed on human intestinal Caco-2 cells. Rather, force curves exhibit constant force plateaus with extended ruptures reflecting the extraction of membrane nanotethers. These single-cell analyses provide novel insights into the molecular mechanisms by which piliated bacteria colonize surfaces (nanosprings, nanotethers), and offer exciting avenues in nanomedicine for understanding and controlling the adhesion of microbial cells (probiotics, pathogens).

  12. The first EGF domain of coagulation factor IX attenuates cell adhesion and induces apoptosis.

    PubMed

    Ishikawa, Tomomi; Kitano, Hisataka; Mamiya, Atsushi; Kokubun, Shinichiro; Hidai, Chiaki

    2016-07-01

    Coagulation factor IX (FIX) is an essential plasma protein for blood coagulation. The first epidermal growth factor (EGF) motif of FIX (EGF-F9) has been reported to attenuate cell adhesion to the extracellular matrix (ECM). The purpose of the present study was to determine the effects of this motif on cell adhesion and apoptosis. Treatment with a recombinant EGF-F9 attenuated cell adhesion to the ECM within 10 min. De-adhesion assays with native FIX recombinant FIX deletion mutant proteins suggested that the de-adhesion activity of EGF-F9 requires the same process of FIX activation as that which occurs for coagulation activity. The recombinant EGF-F9 increased lactate dehydrogenase (LDH) activity release into the medium and increased the number of cells stained with annexin V and activated caspase-3, by 8.8- and 2.7-fold respectively, indicating that EGF-F9 induced apoptosis. Activated caspase-3 increased very rapidly after only 5 min of administration of recombinant EGF-F9. Treatment with EGF-F9 increased the level of phosphorylated p38 mitogen-activated protein kinase (MAPK), but not that of phosphorylated MAPK 44/42 or c-Jun N-terminal kinase (JNK). Inhibitors of caspase-3 suppressed the release of LDH. Caspase-3 inhibitors also suppressed the attenuation of cell adhesion and phosphorylation of p38 MAPK by EGF-F9. Our data indicated that EGF-F9 activated signals for apoptosis and induced de-adhesion in a caspase-3 dependent manner.

  13. Adhesion of Human B Cells to Germinal Centers in Vitro Involves VLA-4 and INCAM-110

    NASA Astrophysics Data System (ADS)

    Freedman, Arnold S.; Munro, J. Michael; Rice, G. Edgar; Bevilacqua, Michael P.; Morimoto, Chikao; McIntyre, Bradley W.; Rhynhart, Kurt; Pober, Jordan S.; Nadler, Lee M.

    1990-08-01

    Human B lymphocytes localize and differentiate within the microenvironment of lymphoid germinal centers. A frozen section binding assay was developed for the identification of those molecules involved in the adhesive interactions between B cells and lymphoid follicles. Activated human B cells and B cell lines were found to selectively adhere to germinal centers. The VLA-4 molecule on the lymphocyte and the adhesion molecule INCAM-110, expressed on follicular dendritic cells, supported this interaction. This cellular interaction model can be used for the study of how B cells differentiate.

  14. Cell-Cell Adhesions and Cell Contractility Are Upregulated upon Desmosome Disruption

    PubMed Central

    Sumigray, Kaelyn; Zhou, Kang; Lechler, Terry

    2014-01-01

    Desmosomes are perturbed in a number of disease states – including genetic disorders, autoimmune and bacterial diseases. Here, we report unexpected changes in other cell-cell adhesion structures upon loss of desmosome function. We found that perturbation of desmosomes by either loss of the core desmosomal protein desmoplakin or treatment with pathogenic anti-desmoglein 3 (Dsg3) antibodies resulted in changes in adherens junctions consistent with increased tension. The total amount of myosin IIA was increased in desmoplakin-null epidermis, and myosin IIA became highly localized to cell contacts in both desmoplakin-null and anti-Dsg3-treated mouse keratinocytes. Inhibition of myosin II activity reversed the changes to adherens junctions seen upon desmosome disruption. The increased cortical myosin IIA promoted epithelial sheet fragility, as myosin IIA-null cells were less susceptible to disruption by anti-Dsg3 antibodies. In addition to the changes in adherens junctions, we found a significant increase in the expression of a number of claudin genes, which encode for transmembrane components of the tight junction that provide barrier function. These data demonstrate that desmosome disruption results in extensive transcriptional and posttranslational changes that alter the activity of other cell adhesion structures. PMID:25006807

  15. Cell-cell adhesions and cell contractility are upregulated upon desmosome disruption.

    PubMed

    Sumigray, Kaelyn; Zhou, Kang; Lechler, Terry

    2014-01-01

    Desmosomes are perturbed in a number of disease states - including genetic disorders, autoimmune and bacterial diseases. Here, we report unexpected changes in other cell-cell adhesion structures upon loss of desmosome function. We found that perturbation of desmosomes by either loss of the core desmosomal protein desmoplakin or treatment with pathogenic anti-desmoglein 3 (Dsg3) antibodies resulted in changes in adherens junctions consistent with increased tension. The total amount of myosin IIA was increased in desmoplakin-null epidermis, and myosin IIA became highly localized to cell contacts in both desmoplakin-null and anti-Dsg3-treated mouse keratinocytes. Inhibition of myosin II activity reversed the changes to adherens junctions seen upon desmosome disruption. The increased cortical myosin IIA promoted epithelial sheet fragility, as myosin IIA-null cells were less susceptible to disruption by anti-Dsg3 antibodies. In addition to the changes in adherens junctions, we found a significant increase in the expression of a number of claudin genes, which encode for transmembrane components of the tight junction that provide barrier function. These data demonstrate that desmosome disruption results in extensive transcriptional and posttranslational changes that alter the activity of other cell adhesion structures.

  16. Quantifying Cell Adhesion through Impingement of a Controlled Microjet

    PubMed Central

    Visser, Claas Willem; Gielen, Marise V.; Hao, Zhenxia; Le Gac, Séverine; Lohse, Detlef; Sun, Chao

    2015-01-01

    The impingement of a submerged, liquid jet onto a cell-covered surface allows assessing cell attachment on surfaces in a straightforward and quantitative manner and in real time, yielding valuable information on cell adhesion. However, this approach is insufficiently characterized for reliable and routine use. In this work, we both model and measure the shear stress exerted by the jet on the impingement surface in the micrometer-domain, and subsequently correlate this to jet-induced cell detachment. The measured and numerically calculated shear stress data are in good agreement with each other, and with previously published values. Real-time monitoring of the cell detachment reveals the creation of a circular cell-free area upon jet impingement, with two successive detachment regimes: 1), a dynamic regime, during which the cell-free area grows as a function of both the maximum shear stress exerted by the jet and the jet diameter; followed by 2), a stationary regime, with no further evolution of the cell-free area. For the latter regime, which is relevant for cell adhesion strength assessment, a relationship between the jet Reynolds number, the cell-free area, and the cell adhesion strength is proposed. To illustrate the capability of the technique, the adhesion strength of HeLa cervical cancer cells is determined ((34 ± 14) N/m2). Real-time visualization of cell detachment in the dynamic regime shows that cells detach either cell-by-cell or by collectively (for which intact parts of the monolayer detach as cell sheets). This process is dictated by the cell monolayer density, with a typical threshold of (1.8 ± 0.2) × 109 cells/m2, above which the collective behavior is mostly observed. The jet impingement method presents great promises for the field of tissue engineering, as the influence of both the shear stress and the surface characteristics on cell adhesion can be systematically studied. PMID:25564849

  17. The right motifs for plant cell adhesion: what makes an adhesive site?

    PubMed

    Langhans, Markus; Weber, Wadim; Babel, Laura; Grunewald, Miriam; Meckel, Tobias

    2017-01-01

    Cells of multicellular organisms are surrounded by and attached to a matrix of fibrous polysaccharides and proteins known as the extracellular matrix. This fibrous network not only serves as a structural support to cells and tissues but also plays an integral part in the process as important as proliferation, differentiation, or defense. While at first sight, the extracellular matrices of plant and animals do not have much in common, a closer look reveals remarkable similarities. In particular, the proteins involved in the adhesion of the cell to the extracellular matrix share many functional properties. At the sequence level, however, a surprising lack of homology is found between adhesion-related proteins of plants and animals. Both protein machineries only reveal similarities between small subdomains and motifs, which further underlines their functional relationship. In this review, we provide an overview on the similarities between motifs in proteins known to be located at the plant cell wall-plasma membrane-cytoskeleton interface to proteins of the animal adhesome. We also show that by comparing the proteome of both adhesion machineries at the level of motifs, we are also able to identify potentially new candidate proteins that functionally contribute to the adhesion of the plant plasma membrane to the cell wall.

  18. Alpha-actinin-1 phosphorylation modulates pressure-induced colon cancer cell adhesion through regulation of focal adhesion kinase-Src interaction.

    PubMed

    Craig, David H; Haimovich, Beatrice; Basson, Marc D

    2007-12-01

    Physical forces including pressure, strain, and shear can be converted into intracellular signals that regulate diverse aspects of cell biology. Exposure to increased extracellular pressure stimulates colon cancer cell adhesion by a beta(1)-integrin-dependent mechanism that requires an intact cytoskeleton and activation of focal adhesion kinase (FAK) and Src. alpha-Actinin facilitates focal adhesion formation and physically links integrin-associated focal adhesion complexes with the cytoskeleton. We therefore hypothesized that alpha-actinin may be necessary for the mechanical response pathway that mediates pressure-stimulated cell adhesion. We reduced alpha-actinin-1 and alpha-actinin-4 expression with isoform-specific small interfering (si)RNA. Silencing of alpha-actinin-1, but not alpha-actinin-4, blocked pressure-stimulated cell adhesion in human SW620, HT-29, and Caco-2 colon cancer cell lines. Cell exposure to increased extracellular pressure stimulated alpha-actinin-1 tyrosine phosphorylation and alpha-actinin-1 interaction with FAK and/or Src, and enhanced FAK phosphorylation at residues Y397 and Y576. The requirement for alpha-actinin-1 phosphorylation in the pressure response was investigated by expressing the alpha-actinin-1 tyrosine phosphorylation mutant Y12F in the colon cancer cells. Expression of Y12F blocked pressure-mediated adhesion and inhibited the pressure-induced association of alpha-actinin-1 with FAK and Src, as well as FAK activation. Furthermore, siRNA-mediated reduction of alpha-actinin-1 eliminated the pressure-induced association of alpha-actinin-1 and Src with beta(1)-integrin receptor, as well as FAK-Src complex formation. These results suggest that alpha-actinin-1 phosphorylation at Y12 plays a crucial role in pressure-activated cell adhesion and mechanotransduction by facilitating Src recruitment to beta(1)-integrin, and consequently the association of FAK with Src, to enhance FAK phosphorylation.

  19. Endothelial Lu/BCAM glycoproteins are novel ligands for red blood cell alpha4beta1 integrin: role in adhesion of sickle red blood cells to endothelial cells.

    PubMed

    El Nemer, Wassim; Wautier, Marie-Paule; Rahuel, Cécile; Gane, Pierre; Hermand, Patricia; Galactéros, Frédéric; Wautier, Jean-Luc; Cartron, Jean-Pierre; Colin, Yves; Le Van Kim, Caroline

    2007-04-15

    The Lutheran (Lu) blood group and basal cell adhesion molecule (BCAM) antigens are both carried by 2 glycoprotein isoforms of the immunoglobulin superfamily representing receptors for the laminin alpha(5) chain. In addition to red blood cells, Lu/BCAM proteins are highly expressed in endothelial cells. Abnormal adhesion of red blood cells to the endothelium could potentially contribute to the vaso-occlusive episodes in sickle cell disease. Considering the presence of integrin consensus-binding sites in Lu/BCAM proteins, we investigated their potential interaction with integrin alpha(4)beta(1), the unique integrin expressed on immature circulating sickle red cells. Using cell adhesion assays under static and flow conditions, we demonstrated that integrin alpha(4)beta(1) expressed on transfected cells bound to chimeric Lu-Fc protein. We showed that epinephrine-stimulated sickle cells, but not control red cells, adhered to Lu-Fc via integrin alpha(4)beta(1) under flow conditions. Antibody-mediated activation of integrin alpha(4)beta(1) induced adhesion of sickle red cells to primary human umbilical vein endothelial cells; this adhesion was inhibited by soluble Lu-Fc and vascular cell adhesion molecule-1 (VCAM-1)-Fc proteins. This novel interaction between integrin alpha(4)beta(1) in sickle red cells and endothelial Lu/BCAM proteins could participate in sickle cell adhesion to endothelium and potentially play a role in vaso-occlusive episodes.

  20. Targeting Fyn in Ras-transformed cells induces F-actin to promote adherens junction-mediated cell-cell adhesion.

    PubMed

    Fenton, Sarah E; Hutchens, Kelli A; Denning, Mitchell F

    2015-10-01

    Fyn, a member of the Src family kinases (SFK), is an oncogene in murine epidermis and is associated with cell-cell adhesion turnover and induction of cell migration. Additionally, Fyn upregulation has been reported in multiple tumor types, including cutaneous squamous cell carcinoma (cSCC). Introduction of active H-Ras(G12V) into the HaCaT human keratinocyte cell line resulted in upregulation of Fyn mRNA (200-fold) and protein, while expression of other SFKs remained unaltered. Transduction of active Ras or Fyn was sufficient to induce an epithelial-to-mesenchymal transition in HaCaT cells. Inhibition of Fyn activity, using siRNA or the clinical SFK inhibitor Dasatinib, increased cell-cell adhesion and rapidly (5-60 min) increased levels of cortical F-actin. Fyn inhibition with siRNA or Dasatinib also induced F-actin in MDA-MB-231 breast cancer cells, which have elevated Fyn. F-actin co-localized with adherens junction proteins, and Dasatinib-induced cell-cell adhesion could be blocked by Cytochalasin D, indicating that F-actin polymerization was a key initiator of cell-cell adhesion through the adherens junction. Conversely, inhibiting cell-cell adhesion with low Ca(2+) media did not block Dasatinib-induced F-actin polymerization. Inhibition of the Rho effector kinase ROCK blocked Dasatinib-induced F-actin and cell-cell adhesion, implicating relief of Rho GTPase inhibition as a mechanism of Dasatinib-induced cell-cell adhesion. Finally, topical Dasatinib treatment significantly reduced total tumor burden in the SKH1 mouse model of UV-induced skin carcinogenesis. Together these results identify the promotion of actin-based cell-cell adhesion as a newly described mechanism of action for Dasatinib and suggest that Fyn inhibition may be an effective therapeutic approach in treating cSCC.

  1. The role of adhesion strength in human mesenchymal stem cell osteoblastic differentiation on biodegradable polymers

    NASA Astrophysics Data System (ADS)

    Krizan, Sylva Jana

    Human mesenchymal stem cells (hMSC) are promising candidates for promoting bone growth on biodegradable polymer scaffolds however little is known about early hMSC-polymer interactions. Adhesion is highly dynamic and during adhesive reinforcement, numerous proteins form adhesion plaques linking the cell's cytoskeleton with the extracellular environment. These proteins are known to affect cellular function but their role in hMSC differentiation is less clear. Adhesion plaques are associated with adhesive force, still a detachment force of hMSC on polycaprolactone (PCL), poly-lactide-co-glycolide (PLGA) or alginate has never been described or shown to affect downstream function. We demonstrate that hMSC attached to PCL, PLGA and alginate exhibit different adhesion strengths (tau50) as determined by both fluid shear and spinning disk systems, with PLGA demonstrating the greatest tau 50. Elastic modulus and hydrophobicity were characterized for these surfaces and correlated positively with tau50 to an optimum. Attachment studies of hMSC showed that adhesion plateau timespans were independent of cell line and surface but both morphology and focal adhesion expression varied by polymer type. Differentiation studies of hMSC on PLGA and PCL showed a strong association between markers of differentiation (alkaline phosphatase activity and mineral content) and tau50 within polymer groups, but a poor relationship was found between tau50 and differentiation across polymer groups, suggesting that other polymer properties may be important for differentiation. Subsequently, we examined the role of focal adhesion kinase (FAK) and Rho-GTPase (RhoA) on hMSC adhesion and differentiation when plated onto PLGA. hMSC were retrovirally transduced with mutant constructs of FAK and RhoA cDNA. Alternatively, hMSC were treated with Rho-kinase inhibitor, Y27632. Both cells transduced with mutant RhoA or FAK constructs, or those treated with Y27632 displayed aberrant cell morphology and changes

  2. Inhibition of cell adhesion by phosphorylated Ezrin/Radixin/Moesin.

    PubMed

    Tachibana, Kouichi; Haghparast, Seyed Mohammad Ali; Miyake, Jun

    2015-01-01

    Altered phosphorylation status of the C-terminal Thr residues of Ezrin/Radixin/Moesin (ERM) is often linked to cell shape change. To determine the role of phophorylated ERM, we modified phosphorylation status of ERM and investigated changes in cell adhesion and morphology. Treatment with Calyculin-A (Cal-A), a protein phosphatase inhibitor, dramatically augmented phosphorylated ERM (phospho-ERM). Cal-A-treatment or expression of phospho-mimetic Moesin mutant (Moesin-TD) induced cell rounding in adherent cells. Moreover, reattachment of detached cells to substrate was inhibited by either treatment. Phospho-ERM, Moesin-TD and actin cytoskeleton were observed at the plasma membrane of such round cells. Augmented cell surface rigidity was also observed in both cases. Meanwhile, non-adherent KG-1 cells were rather rich in phospho-ERM. Treatment with Staurosporine, a protein kinase inhibitor that dephosphorylates phospho-ERM, up-regulated the integrin-dependent adhesion of KG-1 cells to substrate. These findings strongly suggest the followings: (1) Phospho-ERM inhibit cell adhesion, and therefore, dephosphorylation of ERM proteins is essential for cell adhesion. (2) Phospho-ERM induce formation and/or maintenance of spherical cell shape. (3) ERM are constitutively both phosphorylated and dephosphorylated in cultured adherent and non-adherent cells.

  3. Adhesion and migration of cells responding to microtopography.

    PubMed

    Estévez, Maruxa; Martínez, Elena; Yarwood, Stephen J; Dalby, Matthew J; Samitier, Josep

    2015-05-01

    It is known that cells respond strongly to microtopography. However, cellular mechanisms of response are unclear. Here, we study wild-type fibroblasts responding to 25 µm(2) posts and compare their response to that of FAK(-/-) fibroblasts and fibroblasts with PMA treatment to stimulate protein kinase C (PKC) and the small g-protein Rac. FAK knockout cells modulated adhesion number and size in a similar way to cells on topography; that is, they used more, smaller adhesions, but migration was almost completely stalled demonstrating the importance of FAK signaling in contact guidance and adhesion turnover. Little similarity, however, was observed to PKC stimulated cells and cells on the topography. Interestingly, with PKC stimulation the cell nuclei became highly deformable bringing focus on these surfaces to the study of metastasis. Surfaces that aid the study of cellular migration are important in developing understanding of mechanisms of wound healing and repair in aligned tissues such as ligament and tendon.

  4. Cell adhesion in zebrafish embryos is modulated by March 8.

    PubMed

    Kim, Mi Ha; Rebbert, Martha L; Ro, Hyunju; Won, Minho; Dawid, Igor B

    2014-01-01

    March 8 is a member of a family of transmembrane E3 ubiquitin ligases that have been studied mostly for their role in the immune system. We find that March 8 is expressed in the zebrafish egg and early embryo, suggesting a role in development. Both knock-down and overexpression of March 8 leads to abnormal development. The phenotype of zebrafish embryos and Xenopus animal explants overexpressing March 8 implicates impairment of cell adhesion as a cause of the effect. In zebrafish embryos and in cultured cells, overexpression of March 8 leads to a reduction in the surface levels of E-cadherin, a major cell-cell adhesion molecule. Experiments in cell culture further show that E-cadherin can be ubiquitinated by March 8. On the basis of these observations we suggest that March 8 functions in the embryo to modulate the strength of cell adhesion by regulating the localization of E-cadherin.

  5. 5,7-Dihydroxy-3,4,6-trimethoxyflavone inhibits intercellular adhesion molecule 1 and vascular cell adhesion molecule 1 via the Akt and nuclear factor-κB-dependent pathway, leading to suppression of adhesion of monocytes and eosinophils to bronchial epithelial cells.

    PubMed

    Jung, Jireh; Ko, Su H; Yoo, Do Y; Lee, Jin Y; Kim, Yeong-Jeon; Choi, Seul M; Kang, Kyung K; Yoon, Ho J; Kim, Hyeyoung; Youn, Jeehee; Kim, Jung M

    2012-09-01

    5,7-Dihydroxy-3',4',6'-trimethoxyflavone (eupatilin), the active pharmacological ingredient from Artemisia asiatica Nakai (Asteraceae), is reported to have a variety of anti-inflammatory properties in intestinal epithelial cells. However, little information is known about the molecular mechanism of eupatilin-induced attenuation of bronchial epithelial inflammation. This study investigates the role of eupatilin in the adhesion of inflammatory cells such as monocytes and eosinophils to bronchial epithelial cells. Stimulation of a human bronchial epithelial cell line (BEAS-2B) with tumour necrosis factor-α (TNF-α) increased the expression of surface adhesion molecules, including intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), in which eupatilin significantly inhibited the expression of those adhesion molecules in a dose-dependent manner. Eupatilin suppressed the TNF-α-induced activation of IκBα and nuclear factor-κB (NF-κB) signals in BEAS-2B cells. The IκB kinase (IKK) activation was also significantly reduced in eupatilin-pre-treated BEAS-2B and primary normal human bronchial epithelial (NHBE) cells. However, eupatilin did not influence AP-1 activity in TNF-α-stimulated cells. Suppression of NF-κB signalling induced by eupatilin resulted in the inhibition of the expression of adhesion molecules and the adhesion of monocytes and eosinophils to BEAS-2B cells. Furthermore, eupatilin suppressed the phosphorylation of Akt in TNF-α-stimulated BEAS-2B and NHBE cells, leading to down-regulation of NF-κB activation and adhesion molecule expression and finally to suppression of the inflammatory cell adhesion to epithelial cells. These results suggest that eupatilin can inhibit the adhesion of inflammatory cells to bronchial epithelial cells via a signalling pathway, including activation of Akt and NF-κB, as well as expression of adhesion molecules.

  6. 5,7-Dihydroxy-3,4,6-trimethoxyflavone inhibits intercellular adhesion molecule 1 and vascular cell adhesion molecule 1 via the Akt and nuclear factor-κB-dependent pathway, leading to suppression of adhesion of monocytes and eosinophils to bronchial epithelial cells

    PubMed Central

    Jung, Jireh; Ko, Su H; Yoo, Do Y; Lee, Jin Y; Kim, Yeong-Jeon; Choi, Seul M; Kang, Kyung K; Yoon, Ho J; Kim, Hyeyoung; Youn, Jeehee; Kim, Jung M

    2012-01-01

    5,7-Dihydroxy-3′,4′,6′-trimethoxyflavone (eupatilin), the active pharmacological ingredient from Artemisia asiatica Nakai (Asteraceae), is reported to have a variety of anti-inflammatory properties in intestinal epithelial cells. However, little information is known about the molecular mechanism of eupatilin-induced attenuation of bronchial epithelial inflammation. This study investigates the role of eupatilin in the adhesion of inflammatory cells such as monocytes and eosinophils to bronchial epithelial cells. Stimulation of a human bronchial epithelial cell line (BEAS-2B) with tumour necrosis factor-α (TNF-α) increased the expression of surface adhesion molecules, including intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), in which eupatilin significantly inhibited the expression of those adhesion molecules in a dose-dependent manner. Eupatilin suppressed the TNF-α-induced activation of IκBα and nuclear factor-κB (NF-κB) signals in BEAS-2B cells. The IκB kinase (IKK) activation was also significantly reduced in eupatilin-pre-treated BEAS-2B and primary normal human bronchial epithelial (NHBE) cells. However, eupatilin did not influence AP-1 activity in TNF-α-stimulated cells. Suppression of NF-κB signalling induced by eupatilin resulted in the inhibition of the expression of adhesion molecules and the adhesion of monocytes and eosinophils to BEAS-2B cells. Furthermore, eupatilin suppressed the phosphorylation of Akt in TNF-α-stimulated BEAS-2B and NHBE cells, leading to down-regulation of NF-κB activation and adhesion molecule expression and finally to suppression of the inflammatory cell adhesion to epithelial cells. These results suggest that eupatilin can inhibit the adhesion of inflammatory cells to bronchial epithelial cells via a signalling pathway, including activation of Akt and NF-κB, as well as expression of adhesion molecules. PMID:22862554

  7. Mutant p53 promotes ovarian cancer cell adhesion to mesothelial cells via integrin β4 and Akt signals.

    PubMed

    Lee, Jong-Gyu; Ahn, Ji-Hye; Jin Kim, Tae; Ho Lee, Jae; Choi, Jung-Hye

    2015-07-30

    Missense mutations in the TP53 gene resulting in the accumulation of mutant proteins are extremely common in advanced ovarian cancer, which is characterised by peritoneal metastasis. Attachment of cancer cells to the peritoneal mesothelium is regarded as an initial, key step for the metastatic spread of ovarian cancer. In the present study, we investigated the possible role of a p53 mutant in the mesothelial adhesion of ovarian cancer cells. We found that OVCAR-3 cells with the R248 TP53 mutation (p53(R248)) were more adhesive to mesothelial Met5A cells than were A2780 cells expressing wild-type p53. In addition, ectopic expression of p53(R248) in p53-null SKOV-3 cells significantly increased adhesion to Met5A cells. Knockdown of mutant p53 significantly compromised p53(R248)-induced cell adhesion to Met5A cells. Microarray analysis revealed that several adhesion-related genes, including integrin β4, were markedly up-regulated, and certain signalling pathways, including PI3K/Akt, were activated in p53(R248) transfectants of SKOV-3 cells. Inhibition of integrin β4 and Akt signalling using blocking antibody and the inhibitor LY294002, respectively, significantly attenuated p53(R248)-mediated ovarian cancer-mesothelial adhesion. These data suggest that the p53(R248) mutant endows ovarian cancer cells with increased adhesiveness and that integrin β4 and Akt signalling are associated with the mutation-enhanced ovarian cancer-mesothelial cell adhesion.

  8. Characterization of adhesive molecule with affinity to Caco-2 cells in Lactobacillus acidophilus by proteome analysis.

    PubMed

    Ashida, Nobuhisa; Yanagihara, Sae; Shinoda, Tadashi; Yamamoto, Naoyuki

    2011-10-01

    The adhesive activities of eight Lactobacillus acidophilus strains toward intestinal epithelial Caco-2 cells were studied to understand the probiotic characteristics of the L. acidophilus L-92 strain. Most of the strains, including L-92, showed high adhesive activity; CP23 showed the lowest adhesive activity. CP23 was selected for comparative analysis of cell wall-associated proteins versus the L-92 strain. Cell wall-associated proteins extracted from L-92 and CP23 were subjected to two-dimensional electrophoresis, and major spots observed in the former were compared to the corresponding spots in the latter. To understand the effects of key components of L-92 on its adhesion to Caco-2 cells, 18 spots with stronger signals in L-92 than those in CP23 were identified by a MALDI-TOF/TOF of Ultraflex analysis. Among the identified proteins of L-92, surface-layer protein A (SlpA) was considered strongly involved in adhesion in the eight L. acidophilus strains. To study the importance of SlpA in the adhesion of L. acidophilus, the amounts of SlpA proteins in LiCl extracts of the eight strains were compared by SDSpolyacrylamide gel electrophoresis. As a result, the adhesive abilities of L. acidophilus strains to Caco-2 cells correlated closely to the amount of SlpA in the cells and the productivity of IL-12, an inflammatory cytokine, in all eight strains. These results strongly suggested that SlpA in L. acidophilus might play a key role in its attachment to Caco-2 cells and in the release of IL-12 from dendritic cells.

  9. Non-muscle myosin II heavy chain has a cryptic cell-adhesion domain.

    PubMed Central

    Grinnell, F; Ho, C H

    1995-01-01

    We have discovered a cryptic cell-adhesion domain in non-muscle myosin II heavy chain. A 205 kDa cell-adhesion-promoting polypeptide (p205) was extracted from BHK cells by Nonidet P-40 or Dounce homogenization. Adhesion to p205 was specifically inhibited by the peptide Gly-Arg-Gly-Asp-Ser-Pro, indicating a role for the Arg-Gly-Asp cell-adhesion motif. Purified p205 was identified as non-muscle myosin II heavy chain, based on sequence analysis and on the cross-reactivity of p205 with anti-(bovine trachea myosin) antibodies. Further experiments showed that the heavy chain of purified myosin II has cell-adhesion-promoting activity in a cell-blotting assay, and cross-reacted with anti-p205 antibodies. Finally, the adhesion domain was located in the tail portion of myosin II heavy chain, where an Arg-Gly-Asp-containing sequence can be found. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7626021

  10. Glycocalyx Degradation Induces a Proinflammatory Phenotype and Increased Leukocyte Adhesion in Cultured Endothelial Cells under Flow

    PubMed Central

    McDonald, Karli K.; Cooper, Scott; Danielzak, Lisa; Leask, Richard L.

    2016-01-01

    Leukocyte adhesion to the endothelium is an early step in the pathogenesis of atherosclerosis. Effective adhesion requires the binding of leukocytes to their cognate receptors on the surface of endothelial cells. The glycocalyx covers the surface of endothelial cells and is important in the mechanotransduction of shear stress. This study aimed to identify the molecular mechanisms underlying the role of the glycocalyx in leukocyte adhesion under flow. We performed experiments using 3-D cell culture models, exposing human abdominal aortic endothelial cells to steady laminar shear stress (10 dynes/cm2 for 24 hours). We found that with the enzymatic degradation of the glycocalyx, endothelial cells developed a proinflammatory phenotype when exposed to uniform steady shear stress leading to an increase in leukocyte adhesion. Our results show an up-regulation of ICAM-1 with degradation compared to non-degraded controls (3-fold increase, p<0.05) and we attribute this effect to a de-regulation in NF-κB activity in response to flow. These results suggest that the glycocalyx is not solely a physical barrier to adhesion but rather plays an important role in governing the phenotype of endothelial cells, a key determinant in leukocyte adhesion. We provide evidence for how the destabilization of this structure may be an early and defining feature in the initiation of atherosclerosis. PMID:27907146

  11. Functionalization of CoCr surfaces with cell adhesive peptides to promote HUVECs adhesion and proliferation

    NASA Astrophysics Data System (ADS)

    Castellanos, Maria Isabel; Mas-Moruno, Carlos; Grau, Anna; Serra-Picamal, Xavier; Trepat, Xavier; Albericio, Fernando; Joner, Michael; Gil, Francisco Javier; Ginebra, Maria Pau; Manero, Jose María; Pegueroles, Marta

    2017-01-01

    Biomimetic surface modification with peptides that have specific cell-binding moieties is a promising approach to improve endothelialization of metal-based stents. In this study, we functionalized CoCr surfaces with RGDS, REDV, YIGSR peptides and their combinations to promote endothelial cells (ECs) adhesion and proliferation. An extensive characterization of the functionalized surfaces was performed by XPS analysis, surface charge and quartz crystal microbalance with dissipation monitoring (QCM-D), which demonstrated the successful immobilization of the peptides to the surface. Cell studies demonstrated that the covalent functionalization of CoCr surfaces with an equimolar combination of RGDS and YIGSR represents the most powerful strategy to enhance the early stages of ECs adhesion and proliferation, indicating a positive synergistic effect between the two peptide motifs. Although these peptide sequences slightly increased smooth muscle cells (SMCs) adhesion, these values were ten times lower than those observed for ECs. The combination of RGDS with the REDV sequence did not show synergistic effects in promoting the adhesion or proliferation of ECs. The strategy presented in this study holds great potential to overcome clinical limitations of current metal stents by enhancing their capacity to support surface endothelialization.

  12. Lamellipodial actin mechanically links myosin activity with adhesion site formation

    PubMed Central

    Giannone, Gregory; Dubin-Thaler, Benjamin; Rossier, Olivier; Cai, Yunfei; Chaga, Oleg; Jiang, Guoying; Beaver, William; Döbereiner, Hans-Günther; Freund, Yoav; Borisy, Gary; Sheetz, Michael P.

    2013-01-01

    Summary Cell motility proceeds by cycles of edge protrusion, adhesion and retraction. Whether these functions are coordinated by biochemical or biomechanical processes is unknown. We find that myosin II pulls the rear of the lamellipodial actin network, causing upward bending, edge retraction and initiation of new adhesion sites. The network then separates from the edge and condenses over the myosin. Protrusion resumes as lamellipodial actin regenerates from the front and extends rearward until it reaches newly assembled myosin, initiating the next cycle. Upward bending, observed by evanescence and electron microscopy, results in ruffle formation when adhesion strength is low. Correlative fluorescence and electron microscopy shows that the regenerating lamellipodium forms a cohesive, separable layer of actin above the lamellum. Thus, actin polymerization periodically builds a mechanical link, the lamellipodium, connecting myosin motors with the initiation of adhesion sites, suggesting that the major functions driving motility are coordinated by a biomechanical process. PMID:17289574

  13. Kindlin-3 Is Essential for the Resting α4β1 Integrin-mediated Firm Cell Adhesion under Shear Flow Conditions.

    PubMed

    Lu, Ling; Lin, ChangDong; Yan, ZhanJun; Wang, Shu; Zhang, YouHua; Wang, ShiHui; Wang, JunLei; Liu, Cui; Chen, JianFeng

    2016-05-06

    Integrin-mediated rolling and firm cell adhesion are two critical steps in leukocyte trafficking. Integrin α4β1 mediates a mixture of rolling and firm cell adhesion on vascular cell adhesion molecule-1 (VCAM-1) when in its resting state but only supports firm cell adhesion upon activation. The transition from rolling to firm cell adhesion is controlled by integrin activation. Kindlin-3 has been shown to bind to integrin β tails and trigger integrin activation via inside-out signaling. However, the role of kindlin-3 in regulating resting α4β1-mediated cell adhesion is not well characterized. Herein we demonstrate that kindlin-3 was required for the resting α4β1-mediated firm cell adhesion but not rolling adhesion. Knockdown of kindlin-3 significantly decreased the binding of kindlin-3 to β1 and down-regulated the binding affinity of the resting α4β1 to soluble VCAM-1. Notably, it converted the resting α4β1-mediated firm cell adhesion to rolling adhesion on VCAM-1 substrates, increased cell rolling velocity, and impaired the stability of cell adhesion. By contrast, firm cell adhesion mediated by Mn(2+)-activated α4β1 was barely affected by knockdown of kindlin-3. Structurally, lack of kindlin-3 led to a more bent conformation of the resting α4β1. Thus, kindlin-3 plays an important role in maintaining a proper conformation of the resting α4β1 to mediate both rolling and firm cell adhesion. Defective kindlin-3 binding to the resting α4β1 leads to a transition from firm to rolling cell adhesion on VCAM-1, implying its potential role in regulating the transition between integrin-mediated rolling and firm cell adhesion.

  14. Investigation of adhesion and mechanical properties of human glioma cells by single cell force spectroscopy and atomic force microscopy.

    PubMed

    Andolfi, Laura; Bourkoula, Eugenia; Migliorini, Elisa; Palma, Anita; Pucer, Anja; Skrap, Miran; Scoles, Giacinto; Beltrami, Antonio Paolo; Cesselli, Daniela; Lazzarino, Marco

    2014-01-01

    Active cell migration and invasion is a peculiar feature of glioma that makes this tumor able to rapidly infiltrate into the surrounding brain tissue. In our recent work, we identified a novel class of glioma-associated-stem cells (defined as GASC for high-grade glioma--HG--and Gasc for low-grade glioma--LG) that, although not tumorigenic, act supporting the biological aggressiveness of glioma-initiating stem cells (defined as GSC for HG and Gsc for LG) favoring also their motility. Migrating cancer cells undergo considerable molecular and cellular changes by remodeling their cytoskeleton and cell interactions with surrounding environment. To get a better understanding about the role of the glioma-associated-stem cells in tumor progression, cell deformability and interactions between glioma-initiating stem cells and glioma-associated-stem cells were investigated. Adhesion of HG/LG-cancer cells on HG/LG-glioma-associated stem cells was studied by time-lapse microscopy, while cell deformability and cell-cell adhesion strengths were quantified by indentation measurements by atomic force microscopy and single cell force spectroscopy. Our results demonstrate that for both HG and LG glioma, cancer-initiating-stem cells are softer than glioma-associated-stem cells, in agreement with their neoplastic features. The adhesion strength of GSC on GASC appears to be significantly lower than that observed for Gsc on Gasc. Whereas, GSC spread and firmly adhere on Gasc with an adhesion strength increased as compared to that obtained on GASC. These findings highlight that the grade of glioma-associated-stem cells plays an important role in modulating cancer cell adhesion, which could affect glioma cell migration, invasion and thus cancer aggressiveness. Moreover this work provides evidence about the importance of investigating cell adhesion and elasticity for new developments in disease diagnostics and therapeutics.

  15. Investigation of Adhesion and Mechanical Properties of Human Glioma Cells by Single Cell Force Spectroscopy and Atomic Force Microscopy

    PubMed Central

    Andolfi, Laura; Bourkoula, Eugenia; Migliorini, Elisa; Palma, Anita; Pucer, Anja; Skrap, Miran; Scoles, Giacinto; Beltrami, Antonio Paolo; Cesselli, Daniela; Lazzarino, Marco

    2014-01-01

    Active cell migration and invasion is a peculiar feature of glioma that makes this tumor able to rapidly infiltrate into the surrounding brain tissue. In our recent work, we identified a novel class of glioma-associated-stem cells (defined as GASC for high-grade glioma -HG- and Gasc for low-grade glioma -LG-) that, although not tumorigenic, act supporting the biological aggressiveness of glioma-initiating stem cells (defined as GSC for HG and Gsc for LG) favoring also their motility. Migrating cancer cells undergo considerable molecular and cellular changes by remodeling their cytoskeleton and cell interactions with surrounding environment. To get a better understanding about the role of the glioma-associated-stem cells in tumor progression, cell deformability and interactions between glioma-initiating stem cells and glioma-associated-stem cells were investigated. Adhesion of HG/LG-cancer cells on HG/LG-glioma-associated stem cells was studied by time-lapse microscopy, while cell deformability and cell-cell adhesion strengths were quantified by indentation measurements by atomic force microscopy and single cell force spectroscopy. Our results demonstrate that for both HG and LG glioma, cancer-initiating-stem cells are softer than glioma-associated-stem cells, in agreement with their neoplastic features. The adhesion strength of GSC on GASC appears to be significantly lower than that observed for Gsc on Gasc. Whereas, GSC spread and firmly adhere on Gasc with an adhesion strength increased as compared to that obtained on GASC. These findings highlight that the grade of glioma-associated-stem cells plays an important role in modulating cancer cell adhesion, which could affect glioma cell migration, invasion and thus cancer aggressiveness. Moreover this work provides evidence about the importance of investigating cell adhesion and elasticity for new developments in disease diagnostics and therapeutics. PMID:25390644

  16. Cell-cell and cell-ECM adhesions cooperate to organize actomyosin networks and maintain force transmission during Dorsal Closure.

    PubMed

    Goodwin, Katharine; Lostchuck, Emily E; Cramb, Kaitlyn M L; Zulueta-Coarasa, Teresa; Fernandez-Gonzalez, Rodrigo; Tanentzapf, Guy

    2017-03-22

    Tissue morphogenesis relies on the coordinated action of actin networks, cell-cell adhesions, and cell-ECM adhesions. Such coordination can be achieved through crosstalk between cell-cell and cell-ECM adhesions. Drosophila Dorsal Closure (DC), a morphogenetic process wherein an extra-embryonic tissue called the amnioserosa contracts and ingresses to close a discontinuity in the dorsal epidermis of the embryo, requires both cell-cell and cell-ECM adhesions. However, whether the function of these two types of adhesion is coordinated during DC is not known. Here, we analyzed possible interdependence between cell-cell and cell-ECM adhesions during DC, and its effect on the actomyosin network. We find that loss of cell-ECM adhesion results in aberrant distributions of cadherin-mediated adhesions and actin networks in the amnioserosa; and subsequent disruption of myosin recruitment and dynamics. Moreover, loss of cell-cell adhesion caused an upregulation of cell-ECM adhesion, leading to reduced cell deformation and force transmission across amnioserosa cells. Our results show how interdependence between cell-cell and cell-ECM adhesions is important in regulating cell behaviours, force generation and force transmission critical for tissue morphogenesis.

  17. Quantification of Depletion-Induced Adhesion of Red Blood Cells

    NASA Astrophysics Data System (ADS)

    Steffen, P.; Verdier, C.; Wagner, C.

    2013-01-01

    Red blood cells (RBCs) are known to form aggregates in the form of rouleaux due to the presence of plasma proteins under physiological conditions. The formation of rouleaux can also be induced in vitro by the addition of macromolecules to the RBC suspension. Current data on the adhesion strength between red blood cells in their natural discocyte shapes mostly originate from indirect measurements such as flow chamber experiments, but data is lacking at the single cell level. Here, we present measurements on the dextran-induced aggregation of red blood cells using atomic force microscopy-based single cell force spectroscopy. The effects of dextran concentration and molecular weight on the interaction energy of adhering RBCs were determined. The results on adhesion energy are in excellent agreement with a model based on the depletion effect and previous experimental studies. Furthermore, our method allowed to determine the adhesion force, a quantity that is needed in theoretical investigations on blood flow.

  18. Thinking outside the cell: how cadherins drive adhesion

    PubMed Central

    Brasch, Julia; Harrison, Oliver J.; Honig, Barry; Shapiro, Lawrence

    2012-01-01

    Cadherins embody a superfamily of cell-surface glycoproteins whose ectodomains contain multiple repeats of β-sandwich EC (extracellular cadherin) domains that adopt a similar fold to immunoglobulin domains. The best characterized cadherins are the vertebrate “classical” cadherins, which mediate adhesion via trans homodimerization between their membrane-distal EC1 domains that extend from apposed cells, and assemble intercellular adherens junctions through cis clustering. To form mature trans adhesive dimers, cadherin domains from apposed cells dimerize in a “strand-swapped” conformation. This occurs in a two-step binding process involving a fast-binding intermediate called the “X-dimer”. Trans dimers are less flexible than cadherin monomers, a factor which drives junction assembly following cell-cell contact by reducing the entropic cost associated with the formation of lateral cis oligomers. Cadherins outside of the classical subfamily appear to have evolved distinct adhesive mechanisms which are just now beginning to be understood. PMID:22555008

  19. Thinking outside the cell: how cadherins drive adhesion.

    PubMed

    Brasch, Julia; Harrison, Oliver J; Honig, Barry; Shapiro, Lawrence

    2012-06-01

    Cadherins are a superfamily of cell surface glycoproteins whose ectodomains contain multiple repeats of β-sandwich extracellular cadherin (EC) domains that adopt a similar fold to immunoglobulin domains. The best characterized cadherins are the vertebrate 'classical' cadherins, which mediate adhesion via trans homodimerization between their membrane-distal EC1 domains that extend from apposed cells, and assemble intercellular adherens junctions through cis clustering. To form mature trans adhesive dimers, cadherin domains from apposed cells dimerize in a 'strand-swapped' conformation. This occurs in a two-step binding process involving a fast-binding intermediate called the 'X-dimer'. Trans dimers are less flexible than cadherin monomers, a factor that drives junction assembly following cell-cell contact by reducing the entropic cost associated with the formation of lateral cis oligomers. Cadherins outside the classical subfamily appear to have evolved distinct adhesive mechanisms that are only now beginning to be understood.

  20. Dynamin2 controls Rap1 activation and integrin clustering in human T lymphocyte adhesion

    PubMed Central

    Eppler, Felix J.

    2017-01-01

    Leukocyte trafficking is crucial to facilitate efficient immune responses. Here, we report that the large GTPase dynamin2, which is generally considered to have a key role in endocytosis and membrane remodeling, is an essential regulator of integrin-dependent human T lymphocyte adhesion and migration. Chemical inhibition or knockdown of dynamin2 expression significantly reduced integrin-dependent T cell adhesion in vitro. This phenotype was not observed when T cells were treated with various chemical inhibitors which abrogate endocytosis or actin polymerization. We furthermore detected dynamin2 in signaling complexes and propose that it controls T cell adhesion via FAK/Pyk2- and RapGEF1-mediated Rap1 activation. In addition, the dynamin2 inhibitor-induced reduction of lymphocyte adhesion can be rescued by Rap1a overexpression. We demonstrate that the dynamin2 effect on T cell adhesion does not involve integrin affinity regulation but instead relies on its ability to modulate integrin valency. Taken together, we suggest a previously unidentified role of dynamin2 in the regulation of integrin-mediated lymphocyte adhesion via a Rap1 signaling pathway. PMID:28273099

  1. Rocking adhesion assay system to study adhesion and transendothelial migration of cancer cells.

    PubMed

    Bapu, Deepashree; Khadim, Munira; Brooks, Susan A

    2014-01-01

    Adhesion of metastatic cancer cells to the vascular endothelium of the target organs and their subsequent transendothelial migration is one of the critical, yet poorly understood, steps of the metastatic cascade. Conventionally, the mechanisms of this complex process have been studied using static adhesion systems or flow assay systems. Static assay systems are easy to set up and perform but do not mimic the physiological conditions of blood flow. Flow assays closely mimic physiological conditions of flow but are time consuming and require specialist equipment. In this chapter we describe the rocking adhesion system which incorporates the key advantages of both the static and flow assay systems and not only is easy to set up and perform but also mimics conditions of blood flow.

  2. Non-Cell-Adhesive Substrates for Printing of Arrayed Biomaterials

    PubMed Central

    Appel, Eric A.; Larson, Benjamin L.; Luly, Kathryn M.; Kim, Jinseong D.

    2015-01-01

    Cellular microarrays have become extremely useful in expediting the investigation of large libraries of (bio)materials for both in vitro and in vivo biomedical applications. We have developed an exceedingly simple strategy for the fabrication of non-cell-adhesive substrates supporting the immobilization of diverse (bio)material features, including both monomeric and polymeric adhesion molecules (e.g. RGD and polylysine), hydrogels, and polymers. PMID:25430948

  3. The Soluble Form of LR11 Protein Is a Regulator of Hypoxia-induced, Urokinase-type Plasminogen Activator Receptor (uPAR)-mediated Adhesion of Immature Hematological Cells*

    PubMed Central

    Nishii, Keigo; Nakaseko, Chiaki; Jiang, Meizi; Shimizu, Naomi; Takeuchi, Masahiro; Schneider, Wolfgang J.; Bujo, Hideaki

    2013-01-01

    A key property of hematopoietic stem and progenitor cells (HSPCs) regarding differentiation from the self-renewing quiescent to the proliferating stage is their adhesion to the bone marrow (BM) niche. An important molecule involved in proliferation and pool size of HSPCs in the BM is the hypoxia-induced urokinase-type plasminogen activator receptor (uPAR). Here, we show that the soluble form (sLR11) of LR11 (also called SorLA or SORL1) modulates the uPAR-mediated attachment of HSPCs under hypoxic conditions. Immunohistochemical and mRNA expression analyses revealed that hypoxia increased LR11 expression in hematological c-Kit+ Lin− cells. In U937 cells, hypoxia induced a transient rise in LR11 transcription, production of cellular protein, and release of sLR11. Attachment to stromal cells of c-Kit+ Lin− cells of lr11−/− mice was reduced by hypoxia much more than of lr11+/+ animals. sLR11 induced the adhesion of U937 and c-Kit+ Lin− cells to stromal cells. Cell attachment was increased by sLR11 and reduced in the presence of anti-uPAR antibodies. Furthermore, the fraction of uPAR co-immunoprecipitated with LR11 in membrane extracts of U937 cells was increased by hypoxia. CoCl2, a chemical inducer of HIF-1α, enhanced the levels of LR11 and sLR11 in U937 cells. The decrease in hypoxia-induced attachment of HIF-1α-knockdown cells was largely prevented by exogenously added sLR11. Finally, hypoxia induced HIF-1α binding to a consensus binding site in the LR11 promoter. Thus, we conclude that sLR11 regulates the hypoxia-enhanced adhesion of HSPCs via an uPAR-mediated pathway that stabilizes the hematological pool size by controlling cell attachment to the BM niche. PMID:23486467

  4. Promotion of neural cell adhesion by electrochemically generated and functionalized polymer films.

    PubMed

    Blau, A; Weinl, C; Mack, J; Kienle, S; Jung, G; Ziegler, C

    2001-11-15

    New strategies for spatially controllable cell adhesion have been developed for brain cells from embryonic chicken. They are based on electrochemically active phenol and pyrrole derivatives, and can be used for the selective coverage of electroconductive substrates. Besides mimicking standard laminin-related adhesion promoting mechanisms by means of an electroactive monomer-linked 18-peptide segment from laminin (SRARKQAASIKVAVSADR), electrochemically generated thin (6-30 nm) polymer films of 3-hydroxybenzyl-hydrazine (3HBH) and 2-(3-hydroxyphenyl)-ethanol (2(3HP)E) with and without mechanically entrapped or covalently linked D-lysine have proved to promote cell adhesion in serum-free medium on indium-doped tin oxide (ITO) substrates during the first 6 culturing days in vitro. The effectiveness of the peptide was strongly density-dependent. Unexpectedly, laminin itself or a combination of laminin and poly-D-lysine (PDL) did not promote cell adhesion and neuron differentiation in serum-free cultures on ITO. However, they worked perfectly well on regular polystyrene substrates in serum-free medium or on ITO when medium with serum was used. This finding might suggest that the adhesion efficiency of laminin does not depend only on the kind of medium supplement but also on the type of substrate. In contrast, the adhesion-promoting properties of "artificial" polymeric films seemed to be based on a more direct cell-film interaction, with the film masking the substrate properties.

  5. Regulation of cell-matrix adhesion dynamics and Rac-1 by integrin linked kinase.

    PubMed

    Boulter, Etienne; Grall, Dominique; Cagnol, Sébastien; Van Obberghen-Schilling, Ellen

    2006-07-01

    Extracellular matrix (ECM) receptors of the integrin family initiate changes in cell shape and motility by recruiting signaling components that coordinate these events. Integrin-linked kinase (ILK) is one such partner of beta1 integrins that participates in dynamic rearrangement of cell-matrix adhesions and cell spreading by mechanisms that are not well understood. To further elucidate the role of ILK in these events, we engineered a chimeric molecule comprising ILK fused to a membrane-targeted green fluorescent protein (ILK-GFP-F). ILK-GFP-F is highly enriched in cell-matrix adhesions, and its expression in fibroblasts leads to an accumulation of focal adhesions (2-5 microm) and elongated adhesions (>5 microm). ILK-GFP-F enhances cell spreading on fibronectin and induces a constitutive increase in the levels of GTP-bound Rac-1. Conversely, ILK knock-down by siRNA transfection decreases active Rac-1. Endogenous ILK was found to associate with PKL (paxillin kinase linker) and the Rac/Cdc42 guanine nucleotide exchange factor betaPIX. Further, expression of a dominant negative betaPIX mutant reversed the increase in active Rac-1 levels of ILK-GFP-F-expressing cells, thus placing betaPIX in the pathway leading from ILK to Rac-1 activation. However, expression of constitutively active Rac only partially restores the spreading defects of ILK-depleted cells, suggesting that an additional ILK-dependent signal is required for cell spreading.

  6. Reelin promotes the adhesion and drug resistance of multiple myeloma cells via integrin β1 signaling and STAT3.

    PubMed

    Lin, Liang; Yan, Fan; Zhao, Dandan; Lv, Meng; Liang, Xiaodong; Dai, Hui; Qin, Xiaodan; Zhang, Yan; Hao, Jie; Sun, Xiuyuan; Yin, Yanhui; Huang, Xiaojun; Zhang, Jun; Lu, Jin; Ge, Qing

    2016-03-01

    Reelin is an extracellular matrix (ECM) protein that is essential for neuron migration and positioning. The expression of reelin in multiple myeloma (MM) cells and its association with cell adhesion and survival were investigated. Overexpression, siRNA knockdown, and the addition of recombinant protein of reelin were used to examine the function of reelin in MM cells. Clinically, high expression of reelin was negatively associated with progression-free survival and overall survival. Functionally, reelin promoted the adhesion of MM cells to fibronectin via activation of α5β1 integrin. The resulting phosphorylation of Focal Adhesion Kinase (FAK) led to the activation of Src/Syk/STAT3 and Akt, crucial signaling molecules involved in enhancing cell adhesion and protecting cells from drug-induced cell apoptosis. These findings indicate reelin's important role in the activation of integrin-β1 and STAT3/Akt pathways in multiple myeloma and highlight the therapeutic potential of targeting reelin/integrin/FAK axis.

  7. Biomechanics of cell rolling: shear flow, cell-surface adhesion, and cell deformability.

    PubMed

    Dong, C; Lei, X X

    2000-01-01

    The mechanics of leukocyte (white blood cell; WBC) deformation and adhesion to endothelial cells (EC) has been investigated using a novel in vitro side-view flow assay. HL-60 cell rolling adhesion to surface-immobilized P-selectin was used to model the WBC-EC adhesion process. Changes in flow shear stress, cell deformability, or substrate ligand strength resulted in significant changes in the characteristic adhesion binding time, cell-surface contact and cell rolling velocity. A 2-D model indicated that cell-substrate contact area under a high wall shear stress (20 dyn/cm2) could be nearly twice of that under a low stress (0.5 dyn/cm2) due to shear flow-induced cell deformation. An increase in contact area resulted in more energy dissipation to both adhesion bonds and viscous cytoplasm, whereas the fluid energy that inputs to a cell decreased due to a flattened cell shape. The model also predicted a plateau of WBC rolling velocity as flow shear stresses further increased. Both experimental and computational studies have described how WBC deformation influences the WBC-EC adhesion process in shear flow.

  8. Cell Adhesion Molecules and Ubiquitination—Functions and Significance

    PubMed Central

    Homrich, Mirka; Gotthard, Ingo; Wobst, Hilke; Diestel, Simone

    2015-01-01

    Cell adhesion molecules of the immunoglobulin (Ig) superfamily represent the biggest group of cell adhesion molecules. They have been analyzed since approximately 40 years ago and most of them have been shown to play a role in tumor progression and in the nervous system. All members of the Ig superfamily are intensively posttranslationally modified. However, many aspects of their cellular functions are not yet known. Since a few years ago it is known that some of the Ig superfamily members are modified by ubiquitin. Ubiquitination has classically been described as a proteasomal degradation signal but during the last years it became obvious that it can regulate many other processes including internalization of cell surface molecules and lysosomal sorting. The purpose of this review is to summarize the current knowledge about the ubiquitination of cell adhesion molecules of the Ig superfamily and to discuss its potential physiological roles in tumorigenesis and in the nervous system. PMID:26703751

  9. Identification of a peptide sequence involved in homophilic binding in the neural cell adhesion molecule NCAM

    PubMed Central

    1992-01-01

    The neural cell adhesion molecule NCAM is capable of mediating cell- cell adhesion via homophilic interactions. In this study, three strategies have been combined to identify regions of NCAM that participate directly in NCAM-NCAM binding: analysis of domain deletion mutations, mapping of epitopes of monoclonal antibodies, and use of synthetic peptides to inhibit NCAM activity. Studies on L cells transfected with NCAM mutant cDNAs using cell aggregation and NCAM- covasphere binding assays indicate that the third immunoglobulin-like domain is involved in homophilic binding. The epitopes of four monoclonal antibodies that have been previously shown to affect cell- cell adhesion mediated by NCAM were also mapped to domain 3. Overlapping hexapeptides were synthesized on plastic pins and assayed for binding with these monoclonal antibodies. One of them (PP) reacted specifically with the sequence KYSFNY. Synthetic oligopeptides containing the PP epitope were potent and specific inhibitors of NCAM binding activity. A substratum containing immobilized peptide conjugates also exhibited adhesiveness for neural retinal cells. Cell attachment was specifically inhibited by peptides that contained the PP- epitope and by anti-NCAM univalent antibodies. The shortest active peptide has the sequence KYSFNYDGSE, suggesting that this site is directly involved in NCAM homophilic interaction. PMID:1380002

  10. The molecular mechanism of mediation of adsorbed serum proteins to endothelial cells adhesion and growth on biomaterials.

    PubMed

    Yang, Dayun; Lü, Xiaoying; Hong, Ying; Xi, Tingfei; Zhang, Deyuan

    2013-07-01

    To explore molecular mechanism of mediation of adsorbed proteins to cell adhesion and growth on biomaterials, this study examined endothelial cell adhesion, morphology and viability on bare and titanium nitride (TiN) coated nickel titanium (NiTi) alloys and chitosan film firstly, and then identified the type and amount of serum proteins adsorbed on the three surfaces by proteomic technology. Subsequently, the mediation role of the identified proteins to cell adhesion and growth was investigated with bioinformatics analyses, and further confirmed by a series of cellular and molecular biological experiments. Results showed that the type and amount of adsorbed serum proteins associated with cell adhesion and growth was obviously higher on the alloys than on the chitosan film, and these proteins mediated endothelial cell adhesion and growth on the alloys via four ways. First, proteins such as adiponectin in the adsorbed protein layer bound with cell surface receptors to generate signal transduction, which activated cell surface integrins through increasing intracellular calcium level. Another way, thrombospondin 1 in the adsorbed protein layer promoted TGF-β signaling pathway activation and enhanced integrins expression. The third, RGD sequence containing proteins such as fibronectin 1, vitronectin and thrombospondin 1 in the adsorbed protein layer bound with activated integrins to activate focal adhesion pathway, increased focal adhesion formation and actin cytoskeleton organization and mediated cell adhesion and spreading. In addition, the activated focal adhesion pathway promoted the expression of cell growth related genes and resulted in cell proliferation. The fourth route, coagulation factor II (F2) and fibronectin 1 in the adsorbed protein layer bound with cell surface F2 receptor and integrin, activated regulation of actin cytoskeleton pathway and regulated actin cytoskeleton organization.

  11. Endoplasmic Reticulum Calcium, Stress and Cell-to-Cell Adhesion

    PubMed Central

    Mauro, Theodora

    2014-01-01

    Darier's Disease (DD) is caused by mutations in the endoplasmic reticulum (ER) Ca2+ ATPase ATP2A2 (protein SERCA2). Current treatment modalities are ineffective for many patients. This report shows that impaired SERCA2 function, both in DD keratinocytes and in normal keratinocytes treated with the SERCA2-inhibitor thapsigargin, depletes ER Ca2+ stores, leading to constitutive ER stress and increased sensitivity to ER stressors. ER stress, in turn, leads to abnormal cell-to-cell adhesion via impaired redistribution of desmoplakin, desmoglein 3, desmocollin 3 and E-cadherin to the plasma membrane. This report illustrates how ER Ca2+ depletion and the resulting ER stress are central to the pathogenesis of the disease. Additionally, the authors introduce a possible new therapeutic agent, Miglustat. PMID:24924761

  12. Self-etching adhesives increase collagenolytic activity in radicular dentin.

    PubMed

    Tay, Franklin R; Pashley, David H; Loushine, Robert J; Weller, R Norman; Monticelli, Francesca; Osorio, Raquel

    2006-09-01

    Endogenous matrix metalloproteinases (MMPs) release from crown dentin and their activation results in degradation of hybrid layers created by dentin adhesives. This study tested the hypothesis that instrumented intraradicular dentin possesses latent collagenolytic activity that is activated by mild self-etching adhesives. Root dentin shavings were produced from 50 cleaned and shaped, saline-irrigated root canals using Gates Glidden drills and rinsed with sodium azide to prevent bacterial growth. Dried dentin powder aliquots were treated with two clinically-relevant MMP inhibitors, 2% chlorhexidine for 10 minutes and 17% EDTA for 1 minute. Additional dentin powder was mixed with Clearfil Liner Bond 2V or Clearfil Tri-S Bond for 1 minute followed by extracting the adhesives with acetone. Dentin powder was also treated with 2% chlorhexidine for 10 minutes before or after adhesive application. Collagenolytic activities of the nine groups were assayed with a fluorometer in 96-well plates, by recording the changes in fluorescence before and after addition of fluorescein-labeled type I collagen. Epoxy resin-embedded powders were examined with TEM for the extent of demineralization. Instrumented, mineralized intraradicular dentin possessed low but detectable collagenolytic activity that was inhibited by chlorhexidine (p < 0.001) and EDTA (p < 0.001). Both adhesives partially demineralized the dentin powder and activated latent MMPs, with 14- to 15-fold increases in collagenolytic activities (p < 0.001) that were significantly (p < 0.001) but incompletely inactivated after 10 min application of chlorhexidine. Mild self-etching adhesives activate latent MMPs without denaturing these enzymes, and may adversely affect the longevity of bonded root canal fillings and posts.

  13. Prenylation is required for polar cell elongation, cell adhesion, and differentiation in Physcomitrella patens.

    PubMed

    Thole, Julie M; Perroud, Pierre-Francois; Quatrano, Ralph S; Running, Mark P

    2014-05-01

    Protein prenylation is required for a variety of growth and developmental processes in flowering plants. Here we report the consequences of loss of function of all known prenylation subunits in the moss Physcomitrella patens. As in Arabidopsis, protein farnesyltransferase and protein geranylgeranyltransferase type I are not required for viability. However, protein geranylgeranyltransferase type I activity is required for cell adhesion, polar cell elongation, and cell differentiation. Loss of protein geranylgeranyltransferase activity results in colonies of round, single-celled organisms that resemble unicellular algae. The loss of protein farnesylation is not as severe but also results in polar cell elongation and differentiation defects. The complete loss of Rab geranylgeranyltransferase activity appears to be lethal in P. patens. Labeling with antibodies to cell wall components support the lack of polarity establishment and the undifferentiated state of geranylgeranyltransferase type I mutant plants. Our results show that prenylated proteins play key roles in P. patens development and differentiation processes.

  14. Interface Immobilization Chemistry of cRGD-based Peptides Regulates Integrin Mediated Cell Adhesion

    PubMed Central

    Pallarola, Diego; Bochen, Alexander; Boehm, Heike; Rechenmacher, Florian; Sobahi, Tariq R; Spatz, Joachim P; Kessler, Horst

    2014-01-01

    The interaction of specific surface receptors of the integrin family with different extracellular matrix-based ligands is of utmost importance for the cellular adhesion process. A ligand consists of an integrin-binding group, here cyclic RGDfX, a spacer molecule that lifts the integrin-binding group from the surface and a surface anchoring group. c(-RGDfX-) peptides are bound to gold nanoparticle structured surfaces via polyproline, polyethylene glycol or aminohexanoic acid containing spacers of different lengths. Although keeping the integrin-binding c(-RGDfX-) peptides constant for all compounds, changes of the ligand's spacer chemistry and length reveal significant differences in cell adhesion activation and focal adhesion formation. Polyproline-based peptides demonstrate improved cell adhesion kinetics and focal adhesion formation compared with common aminohexanoic acid or polyethylene glycol spacers. Binding activity can additionally be improved by applying ligands with two head groups, inducing a multimeric effect. This study gives insights into spacer-based differences in integrin-driven cell adhesion processes and remarkably highlights the polyproline-based spacers as suitable ligand-presenting templates for surface functionalization. PMID:25810710

  15. Cell-cell adhesion in the cnidaria: insights into the evolution of tissue morphogenesis.

    PubMed

    Magie, Craig R; Martindale, Mark Q

    2008-06-01

    Cell adhesion is a major aspect of cell biology and one of the fundamental processes involved in the development of a multicellular animal. Adhesive mechanisms, both cell-cell and between cell and extracellular matrix, are intimately involved in assembling cells into the three-dimensional structures of tissues and organs. The modulation of adhesive complexes could therefore be seen as a central component in the molecular control of morphogenesis, translating information encoded within the genome into organismal form. The availability of whole genomes from early-branching metazoa such as cnidarians is providing important insights into the evolution of adhesive processes by allowing for the easy identification of the genes involved in adhesion in these organisms. Discovery of the molecular nature of cell adhesion in the early-branching groups, coupled with comparisons across the metazoa, is revealing the ways evolution has tinkered with this vital cellular process in the generation of the myriad forms seen across the animal kingdom.

  16. Antagonistic Activity of Lactobacillus reuteri Strains on the Adhesion Characteristics of Selected Pathogens

    PubMed Central

    Singh, Tejinder P.; Kaur, Gurpreet; Kapila, Suman; Malik, Ravinder K.

    2017-01-01

    Adhesion ability of probiotics is the key factor that decides their colonization in the gastrointestinal tract and potential to inhibit pathogens. Therefore, adhesion ability can be considered as a key determinant for probiotic efficacy. Presents study documents the antagonistic activity of viable/untreated, Lithium chloride (LiCl) treated or heat-killed forms of eight probiotic Lactobacillus reuteri strains on the adhesion characteristics of selected pathogens. All strains investigated were able to adhere to Caco-2 cells. L. reuteri strains tested were able to inhibit and displace (P < 0.05) the adhesion of Escherichia coli ATCC25922, Salmonella typhi NCDC113, Listeria monocytogenes ATCC53135, and Enterococcus faecalis NCDC115. The probiotic strain L. reuteri LR6 showed the strongest adhesion and pathogen inhibition ability among the eight L. reuteri strains tested. In addition, the abilities to inhibit and to displace adhered pathogens depended on both the probiotic and the pathogen strains tested suggesting the involvement of various mechanisms. The adhesion and antagonistic potential of the probiotic strains were significantly decreased upon exposure to 5 M LiCl, showing that surface molecules, proteinaceous in nature, are involved. The heat-killed forms of the probiotic L. reuteri strains also inhibited the attachment of selected pathogens to Caco-2 cells. In conclusion, in vitro assays showed that L. reuteri strains, as viable or heat-killed forms, are adherent to Caco-2 cells and are highly antagonistic to pathogens tested in which surface associated proteins play an important role. PMID:28377765

  17. Flagellar tip activation stimulated by membrane adhesions in Chlamydomonas gametes

    PubMed Central

    1980-01-01

    Membrane adhesions between the flagella of mating-type "plus" and "minus" gametes of Chlamydomonas reinhardi are shown to stimulate a rapid change in the ultrastructure of the flagellar tips, designated as flagellar tip activation (FTA). A dense substance, termed fibrous tip material (FTM), accumulates between the flagellar membrane and the nine single A microtubules of the tip. The A microtubules then elongate, growing into the distal region of the tip, increasing tip length by 30%. This study describes FTA kinetics during normal and mutant matings, presents experiments designed to probe its role in the mating reaction, and offers the following conclusions: (a) FTA is elicited by agents that cross-link flagellar membrane components (including natural sexual agglutinins, antiflagellar antisera, and concanavalin A) but not by flagellar adherence to polylysine-coated films. (b) FTA is reversed by flagellar disadhesion. (c) Gametes can undergo repeated cycles of FTA during successive rounds of adhesion/disadhesion. (d) FTA, flagellar tipping, and sexual signaling are simultaneously blocked by colchicine and by vinblastine, suggesting that tubulinlike molecules, perhaps exposed at the membrane surface, are involved in all three responses. (e) FTA is not blocked by short exposure to chymotrypsin, by cytochalasins B and D, nor by concanavalin A, even though all block cell fusion; the response is therefore autonomous and experimentally dissociable from later stages in the mating reaction. (f) Under no experimental conditions is mating-structure activation observed to occur unless FTA also occurs. This study concludes that FTA is a necessary event in the sexual signaling sequence, and presents a testable working model for its mechanism. PMID:7358792

  18. Thrombomodulin-mediated cell adhesion: involvement of its lectin-like domain.

    PubMed

    Huang, Huey-Chun; Shi, Guey-Yueh; Jiang, Shinn-Jong; Shi, Chung-Sheng; Wu, Chun-Mei; Yang, Hsi-Yuan; Wu, Hua-Lin

    2003-11-21

    Thrombomodulin (TM) is an integral membrane glycoprotein that is a potent anticoagulant factor. TM may also possess functions distinct from its anticoagulant activity. Here the influence of TM on cell adhesion was studied in TM-negative melanoma A2058 cells transfected with green fluorescent protein-tagged TM (TMG) or lectin domain-deleted TM (TMG(DeltaL)). Confocal microscopy demonstrated that both TMG and TMG(DeltaL) were distributed in the plasma membrane. TMG-expressed cells grew as closely clustered colonies, with TM localized prominently in the intercellular boundaries. TMG(DeltaL)-expressed cells grew singly. Overexpression of TMG, but not TMG(DeltaL), decreased monolayer permeability in vitro and tumor growth in vivo. The cell-to-cell adhesion in TMG-expressed cells was Ca2+-dependent and was inhibited by monoclonal antibody against the lectin-like domain of TM. The effects of TM-mediated cell adhesion were abolished by the addition of mannose, chondroitin sulfate A, or chondroitin sulfate C. In addition, anti-lectin-like domain antibody disrupted the close clustering of the endogenous TM-expressed keratinocyte HaCaT cell line derived from normal human epidermis. Double-labeling immunofluorescence staining revealed similar distributions of TM and actin filament in the cortex region of the TMG-expressed cells. Thus, TM can function as a Ca2+-dependent cell-to-cell adhesion molecule. Binding of specific carbohydrates to the lectin-like domain is essential for this specific function.

  19. Osteopontin O-glycosylation contributes to its phosphorylation and cell-adhesion properties.

    PubMed

    Kariya, Yoshinobu; Kanno, Mayumi; Matsumoto-Morita, Kana; Konno, Midori; Yamaguchi, Yoshiki; Hashimoto, Yasuhiro

    2014-10-01

    OPN (osteopontin) is a multiphosphorylated extracellular glycoprotein, which has important roles in bone remodelling, inflammation and cancer metastasis. OPN regulates cell spreading and adhesion primarily through its association with several integrins such as αvβ3, and its phosphorylation affects these processes. However, the mechanism by which OPN O-glycosylation affects these processes is not completely understood. In the present study, we demonstrated that OPN O-glycosylation self-regulates its biological activities and also affects its phosphorylation status. We prepared two recombinant OPNs, WT (wild-type)-OPN and mutant OPN (ΔO-OPN), which lacks five O-glycosylation sites at a threonine/proline-rich region. O-glycan defects in OPN increased its phosphorylation level, as observed by dephosphorylation assays. Moreover, compared with WT-OPN, ΔO-OPN exhibited enhanced cell spreading and adhesion activities and decreased associations with β1 integrins. This suggested that defects in O-glycans in OPN altered these activities, and that β1 integrins have a less important role in adhesion to ΔO-OPN. The cell-adhesion activity of dephosphorylated ΔO-OPN was higher than the cell-adhesion activities of ΔO-OPN and dephosphorylated WT-OPN. This suggested that some of the phosphorylation in ΔO-OPN caused by O-glycan defects and O-glycans of OPN suppressed the OPN cell-adhesion activity. Thus functional activities of OPN can be determined by the combined glycosylation and phosphorylation statuses and not by either status alone.

  20. Adhesion and proliferation of human mesenchymal stem cells from dental pulp on porous silicon scaffolds.

    PubMed

    Collart-Dutilleul, Pierre-Yves; Secret, Emilie; Panayotov, Ivan; Deville de Périère, Dominique; Martín-Palma, Raúl J; Torres-Costa, Vicente; Martin, Marta; Gergely, Csilla; Durand, Jean-Olivier; Cunin, Frédérique; Cuisinier, Frédéric J

    2014-02-12

    In regenerative medicine, stem-cell-based therapy often requires a scaffold to deliver cells and/or growth factors to the injured site. Porous silicon (pSi) is a promising biomaterial for tissue engineering as it is both nontoxic and bioresorbable. Moreover, surface modification can offer control over the degradation rate of pSi and can also promote cell adhesion. Dental pulp stem cells (DPSC) are pluripotent mesenchymal stem cells found within the teeth and constitute a readily source of stem cells. Thus, coupling the good proliferation and differentiation capacities of DPSC with the textural and chemical properties of the pSi substrates provides an interesting approach for therapeutic use. In this study, the behavior of human DPSC is analyzed on pSi substrates presenting pores of various sizes, 10 ± 2 nm, 36 ± 4 nm, and 1.0 ± 0.1 μm, and undergoing different chemical treatments, thermal oxidation, silanization with aminopropyltriethoxysilane (APTES), and hydrosilylation with undecenoic acid or semicarbazide. DPSC adhesion and proliferation were followed for up to 72 h by fluorescence microscopy, scanning electron microscopy (SEM), enzymatic activity assay, and BrdU assay for mitotic activity. Porous silicon with 36 nm pore size was found to offer the best adhesion and the fastest growth rate for DPSC compared to pSi comporting smaller pore size (10 nm) or larger pore size (1 μm), especially after silanization with APTES. Hydrosilylation with semicarbazide favored cell adhesion and proliferation, especially mitosis after cell adhesion, but such chemical modification has been found to led to a scaffold that is stable for only 24-48 h in culture medium. Thus, semicarbazide-treated pSi appeared to be an appropriate scaffold for stem cell adhesion and immediate in vivo transplantation, whereas APTES-treated pSi was found to be more suitable for long-term in vitro culture, for stem cell proliferation and differentiation.

  1. Cell-substrate impedance fluctuations of single amoeboid cells encode cell-shape and adhesion dynamics

    NASA Astrophysics Data System (ADS)

    Leonhardt, Helmar; Gerhardt, Matthias; Höppner, Nadine; Krüger, Kirsten; Tarantola, Marco; Beta, Carsten

    2016-01-01

    We show systematic electrical impedance measurements of single motile cells on microelectrodes. Wild-type cells and mutant strains were studied that differ in their cell-substrate adhesion strength. We recorded the projected cell area by time-lapse microscopy and observed irregular oscillations of the cell shape. These oscillations were correlated with long-term variations in the impedance signal. Superposed to these long-term trends, we observed fluctuations in the impedance signal. Their magnitude clearly correlated with the adhesion strength, suggesting that strongly adherent cells display more dynamic cell-substrate interactions.

  2. Graphical analysis of mammalian cell adhesion in vitro.

    PubMed

    Huang, Qiaoling; Antensteiner, Martin; Liu, Xiang Yang; Lin, Changjian; Vogler, Erwin A

    2016-12-01

    Short-term (<2h) cell adhesion kinetics of 3 different mammalian cell types: MDCK (epithelioid), MC3T3-E1 (osteoblastic), and MDA-MB-231 (cancerous) on 7 different substratum surface chemistries spanning the experimentally-observable range of water wettability (surface energy) are graphically analyzed to qualitatively elucidate commonalities and differences among cell/surface/suspending media combinations. We find that short-term mammalian cell attachment/adhesion in vitro correlates with substratum surface energy as measured by water adhesion tension, τ≡γlvcosθ, where γlv is water liquid-vapor interfacial energy (72.8   mJ/m(2)) and cosθ is the cosine of the advancing contact angle subtended by a water droplet on the substratum surface. No definitive functional relationships among cell-adhesion kinetic parameters and τ were observed as in previous work, but previously-observed general trends were reproduced, especially including a sharp transition in the magnitude of kinetic parameters from relatively low-to-high near τ=0mJ/m(2), although the exact adhesion tension at which this transition occurs is difficult to accurately estimate from the current data set. We note, however, that the transition is within the hydrophobic range based on the τ=30mJ/m(2) surface-energetic dividing line that has been proposed to differentiate "hydrophobic" surfaces from "hydrophilic". Thus, a rather sharp hydrophobic/hydrophilic contrast is observed for cell adhesion for disparate cell/surface combinations.

  3. Epithelial cell adhesion and gastrointestinal colonization of Lactobacillus in poultry.

    PubMed

    Spivey, Megan A; Dunn-Horrocks, Sadie L; Duong, Tri

    2014-11-01

    Administration of probiotic Lactobacillus cultures is an important alternative to the use of antibiotic growth promoters and has been demonstrated to improve animal health, growth performance, and preharvest food safety in poultry production. Whereas gastrointestinal colonization is thought to be critical to their probiotic functionality, factors important to Lactobacillus colonization in chickens are not well understood. In this study we investigate epithelial cell adhesion in vitro and colonization of Lactobacillusin vivo in broiler chickens. Adhesion of Lactobacillus cultures to epithelial cells was evaluated using the chicken LMH cell line. Lactobacillus cultures were able adhere effectively to LMH cells relative to Bacillus subtilis and Salmonella Typhimurium. Epithelial cell adhesion was similar for Lactobacillus crispatus TDCC 75, L. cristpatus TDCC 76, and Lactobacillus gallinarum TDCC 77, and all 3 were more adherent than L. gallinarum TDCC 78. However, when colonization was evaluated in the ileum and cecum of broiler chicks, L. crispatus TDCC 75 and L. gallinarum TDCC 77 were more persistent than L. crispatus TDCC 76 and L. gallinarum TDCC 78. The reduction of growth in medium supplemented with oxgal was greater for L. gallinarum TDCC 78 than L. gallinarum TDCC 77, suggesting that whereas adhesion was similar for the 2 strains, the difference in colonization between L. gallinarum strains may be due in part to their bile sensitivity. This study demonstrates that whereas adhesion to epithelial cells may be important in predicting gastrointestinal colonization, other factors including bile tolerance may also contribute to the colonization of Lactobacillus in poultry. Additionally, the chicken LMH cell line is expected to provide a platform for investigating mechanisms of Lactobacillus adhesion to epithelial tissue and evaluating the probiotic potential Lactobacillus in poultry.

  4. Adhesion of platelets to artificial surfaces: effect of red cells.

    PubMed

    Brash, J L; Brophy, J M; Feuerstein, I A

    1976-05-01

    Adhesion of platelets to several polymer- and protein-coated glass surfaces has been studied in vitro. The apparatus consists of a cylindrical probe rotating in a test tube containing the platelet medium and allows close control of fluid shear and mass transport. Suspensions of washed pig platelets constitute the basic platelet medium, and can be modified by adding back red cells and plasma proteins. Adhesion is measured via 51Cr-labeling of platelets. In the absence of red cells, identical low levels of adhesion were seen on all surfaces and saturation was reached within 2 min. In the presence of red cells, adhesion was greater. Saturation on all surfaces except fibrinogen and collagen again occurred within 2 min. The adhesion levels on polymer surfaces and glass were indistinguishable, while those on albumin were lower and those on fibrinogen were higher. Collagen was the most reactive surface. It did not equilibrate within 15 min., and kinetic data indicated a platelet diffusivity strongly dependent on hematocrit. These effects were attributed to rotational and translational motion of the red cells causing increased diffusion and surface-platelet collision energy.

  5. Flexible nanopillars to regulate cell adhesion and movement

    NASA Astrophysics Data System (ADS)

    Chien, Fan-Ching; Dai, Yang-Hong; Kuo, Chiung Wen; Chen, Peilin

    2016-11-01

    Flexible polymer nanopillar substrates were used to systematically demonstrate cell alignment and migration guided by the directional formation of focal adhesions. The polymer nanopillar substrates were constructed to various height specifications to provide an extensive variation of flexibility; a rectangular arrangement created spatial confinement between adjacent nanopillars, providing less spacing in the horizontal and vertical directions. Three polymer nanopillar substrates with the diameter of 400 nm and the heights of 400, 800, and 1200 nm were fabricated. Super-resolution localization imaging and protein pair-distance analysis of vinculin proteins revealed that Chinese hamster ovary (CHO) cells formed mature focal adhesions on 1200 nm high nanopillar substrates by bending adjacent nanopillars to link dot-like adhesions. The spacing confinement of the adjacent nanopillars enhanced the orthogonal directionality of the formation tendency of the mature focal adhesions. The directional formation of the mature focal adhesions also facilitated the organization of actin filaments in the horizontal and vertical directions. Moreover, 78% of the CHO cells were aligned in these two directions, in conformity with the flexibility and nanotopographical cues of the nanopillars. Biased cell migration was observed on the 1200 nm high nanopillar substrates.

  6. Spatially controlled cell adhesion on three-dimensional substrates.

    PubMed

    Richter, Christine; Reinhardt, Martina; Giselbrecht, Stefan; Leisen, Daniel; Trouillet, Vanessa; Truckenmüller, Roman; Blau, Axel; Ziegler, Christiane; Welle, Alexander

    2010-10-01

    The microenvironment of cells in vivo is defined by spatiotemporal patterns of chemical and biophysical cues. Therefore, one important goal of tissue engineering is the generation of scaffolds with defined biofunctionalization in order to control processes like cell adhesion and differentiation. Mimicking extrinsic factors like integrin ligands presented by the extracellular matrix is one of the key elements to study cellular adhesion on biocompatible scaffolds. By using special thermoformable polymer films with anchored biomolecules micro structured scaffolds, e.g. curved and micro-patterned substrates, can be fabricated. Here, we present a novel strategy for the fabrication of micro-patterned scaffolds based on the "Substrate Modification and Replication by Thermoforming" (SMART) technology: The surface of a poly lactic acid membrane, having a low forming temperature of 60 degrees C and being initially very cell attractive, was coated with a photopatterned layer of poly(L-lysine) (PLL) and hyaluronic acid (VAHyal) to gain spatial control over cell adhesion. Subsequently, this modified polymer membrane was thermoformed to create an array of spherical microcavities with diameters of 300 microm for 3D cell culture. Human hepatoma cells (HepG2) and mouse fibroblasts (L929) were used to demonstrate guided cell adhesion. HepG2 cells adhered and aggregated exclusively within these cavities without attaching to the passivated surfaces between the cavities. Also L929 cells adhering very strongly on the pristine substrate polymer were effectively patterned by the cell repellent properties of the hyaluronic acid based hydrogel. This is the first time cell adhesion was controlled by patterned functionalization of a polymeric substrate with UV curable PLL-VAHyal in thermoformed 3D microstructures.

  7. Spatially controlled cell adhesion on three-dimensional substrates

    PubMed Central

    Richter, Christine; Reinhardt, Martina; Giselbrecht, Stefan; Leisen, Daniel; Trouillet, Vanessa; Truckenmüller, Roman; Blau, Axel; Ziegler, Christiane

    2010-01-01

    The microenvironment of cells in vivo is defined by spatiotemporal patterns of chemical and biophysical cues. Therefore, one important goal of tissue engineering is the generation of scaffolds with defined biofunctionalization in order to control processes like cell adhesion and differentiation. Mimicking extrinsic factors like integrin ligands presented by the extracellular matrix is one of the key elements to study cellular adhesion on biocompatible scaffolds. By using special thermoformable polymer films with anchored biomolecules micro structured scaffolds, e.g. curved and µ-patterned substrates, can be fabricated. Here, we present a novel strategy for the fabrication of µ-patterned scaffolds based on the “Substrate Modification and Replication by Thermoforming” (SMART) technology: The surface of a poly lactic acid membrane, having a low forming temperature of 60°C and being initially very cell attractive, was coated with a photopatterned layer of poly(L-lysine) (PLL) and hyaluronic acid (VAHyal) to gain spatial control over cell adhesion. Subsequently, this modified polymer membrane was thermoformed to create an array of spherical microcavities with diameters of 300 µm for 3D cell culture. Human hepatoma cells (HepG2) and mouse fibroblasts (L929) were used to demonstrate guided cell adhesion. HepG2 cells adhered and aggregated exclusively within these cavities without attaching to the passivated surfaces between the cavities. Also L929 cells adhering very strongly on the pristine substrate polymer were effectively patterned by the cell repellent properties of the hyaluronic acid based hydrogel. This is the first time cell adhesion was controlled by patterned functionalization of a polymeric substrate with UV curable PLL-VAHyal in thermoformed 3D microstructures. PMID:20480241

  8. The effects of cell adhesion on the growth and protein productivity of animal cells.

    PubMed

    Nishijima, K; Fujiki, T; Kojima, H; Iijima, S

    2000-07-01

    We investigated the effect of cell adhesion on cellgrowth and productivity of recombinant protein inChinese hamster ovary (CHO) cells. Cells cultured innormal tissue culture dishes attached to the dishsurfaces and grew as a monolayer, while cells culturedin non-treated dishes proliferated in suspension assingle cells without adhering to the dish surfaces. On an agarose-coated dish surface, cell aggregatesformed without attaching to the dish. Growth rates inboth suspension cultures were slightly lower thanthose in monolayer culture. Cell cycle analysisindicated that the duration of the G(1) phase insuspension cultures was longer than that in monolayerculture, suggesting that attachment to the substratummainly affected the transition from the G(1) to theS phase. Consistent with this, CDK inhibitor p27,that inhibits the G(1)S transition, was induced inthe cells cultured in suspension.To assess the productivity of recombinant proteins,CHO cells were transfected with a plasmid containingmurine interferon gamma (mIFN-gamma) under thecontrol of the cytomegalovirus promoter. Insuspension culture, mIFN-gamma productivity wasslightly lower than that in the monolayer culture. When protein kinase C was activated by phorbol ester,mIFN-gamma production was enhanced in both themonolayer and suspension cultures. However, theproductivity in the suspension culture was lower thanthat in the adherent culture even in the presence ofhigh concentrations of phorbol ester. These resultssuggested that cell adhesion to the substratum affectsvarious features of CHO cells.

  9. Quantitative measurement of changes in adhesion force involving focal adhesion kinase during cell attachment, spread, and migration

    SciTech Connect

    Wu, C.-C.; Su, H.-W.; Lee, C.-C.; Tang, M.-J.; Su, F.-C. . E-mail: fcsu@mail.ncku.edu.tw

    2005-04-01

    Focal adhesion kinase (FAK) is a critical protein for the regulation of integrin-mediated cellular functions and it can enhance cell motility in Madin-Darby canine kidney (MDCK) cells by hepatocyte growth factor (HGF) induction. We utilized optical trapping and cytodetachment techniques to measure the adhesion force between pico-Newton and nano-Newton (nN) for quantitatively investigating the effects of FAK on adhesion force during initial binding (5 s), beginning of spreading (30 min), spreadout (12 h), and migration (induced by HGF) in MDCK cells with overexpressed FAK (FAK-WT), FAK-related non-kinase (FRNK), as well as normal control cells. Optical tweezers was used to measure the initial binding force between a trapped cell and glass coverslide or between a trapped bead and a seeded cell. In cytodetachment, the commercial atomic force microscope probe with an appropriate spring constant was used as a cyto-detacher to evaluate the change of adhesion force between different FAK expression levels of cells in spreading, spreadout, and migrating status. The results demonstrated that FAK-WT significantly increased the adhesion forces as compared to FRNK cells throughout all the different stages of cell adhesion. For cells in HGF-induced migration, the adhesion force decreased to almost the same level ({approx}600 nN) regardless of FAK levels indicating that FAK facilitates cells to undergo migration by reducing the adhesion force. Our results suggest FAK plays a role of enhancing cell adhesive ability in the binding and spreading, but an appropriate level of adhesion force is required for HGF-induced cell migration.

  10. Molecular markers of cell adhesion in ameloblastomas. An update.

    PubMed

    González-González, Rogelio; Molina-Frechero, Nelly; Damian-Matsumura, Pablo; Bologna-Molina, Ronell

    2014-01-01

    Ameloblastoma is the most common odontogenic tumor of epithelial origin, and though it is of a benign nature, it frequently infiltrates the bone, has a high rate of recurrence and could potentially become malignant. Cellular adhesion potentially plays an important role in the manifestation of these characteristics and in the tumor biology of ameloblastomas. Losses of cell-cell and extracellular matrix adhesion and cohesion are among the first events that occur in the invasion and growth of tumors of epithelial origin. The present review includes a description of the molecules that are involved in cell adhesion as reported for various types of ameloblastomas and discusses the possible roles of these molecules in the biological behaviors of this odontogenic tumor. Knowledge of the complex mechanisms in which these molecules play a role is critical for the research and discovery of future therapeutic targets.

  11. Relationship between neuronal migration and cell-substratum adhesion: laminin and merosin promote olfactory neuronal migration but are anti- adhesive

    PubMed Central

    1991-01-01

    Regulation by the extracellular matrix (ECM) of migration, motility, and adhesion of olfactory neurons and their precursors was studied in vitro. Neuronal cells of the embryonic olfactory epithelium (OE), which undergo extensive migration in the central nervous system during normal development, were shown to be highly migratory in culture as well. Migration of OE neuronal cells was strongly dependent on substratum- bound ECM molecules, being specifically stimulated and guided by laminin (or the laminin-related molecule merosin) in preference to fibronectin, type I collagen, or type IV collagen. Motility of OE neuronal cells, examined by time-lapse video microscopy, was high on laminin-containing substrata, but negligible on fibronectin substrata. Quantitative assays of adhesion of OE neuronal cells to substrata treated with different ECM molecules demonstrated no correlation, either positive or negative, between the migratory preferences of cells and the strength of cell-substratum adhesion. Moreover, measurements of cell adhesion to substrata containing combinations of ECM proteins revealed that laminin and merosin are anti-adhesive for OE neuronal cells, i.e., cause these cells to adhere poorly to substrata that would otherwise be strongly adhesive. The evidence suggests that the anti- adhesive effect of laminin is not the result of interactions between laminin and other ECM molecules, but rather an effect of laminin on cells, which alters the way in which cells adhere. Consistent with this view, laminin was found to interfere strongly with the formation of focal contacts by OE neuronal cells. PMID:1918163

  12. Endothelial cell responses in terms of adhesion, proliferation, and morphology to stiffness of polydimethylsiloxane elastomer substrates.

    PubMed

    Ataollahi, Forough; Pramanik, Sumit; Moradi, Ali; Dalilottojari, Adel; Pingguan-Murphy, Belinda; Wan Abas, Wan Abu Bakar; Abu Osman, Noor Azuan

    2015-07-01

    Extracellular environments can regulate cell behavior because cells can actively sense their mechanical environments. This study evaluated the adhesion, proliferation and morphology of endothelial cells on polydimethylsiloxane (PDMS)/alumina (Al2 O3 ) composites and pure PDMS. The substrates were prepared from pure PDMS and its composites with 2.5, 5, 7.5, and 10 wt % Al2 O3 at a curing temperature of 50°C for 4 h. The substrates were then characterized by mechanical, structural, and morphological analyses. The cell adhesion, proliferation, and morphology of cultured bovine aortic endothelial (BAEC) cells on substrate materials were evaluated by using resazurin assay and 1,1'-dioctadecyl-1,3,3,3',3'-tetramethylindocarbocyanine perchlorate-acetylated LDL (Dil-Ac-LDL) cell staining, respectively. The composites (PDMS/2.5, 5, 7.5, and 10 wt % Al2 O3 ) exhibited higher stiffness than the pure PDMS substrate. The results also revealed that stiffer substrates promoted endothelial cell adhesion and proliferation and also induced spread morphology in the endothelial cells compared with lesser stiff substrates. Statistical analysis showed that the effect of time on cell proliferation depended on stiffness. Therefore, this study concludes that the addition of different Al2 O3 percentages to PDMS elevated substrate stiffness which in turn increased endothelial cell adhesion and proliferation significantly and induced spindle shape morphology in endothelial cells.

  13. Substrate microtopography can enhance cell adhesive and migratory responsiveness to matrix ligand density.

    PubMed

    Ranucci, C S; Moghe, P V

    2001-02-01

    degree of cell-substrate adhesivity as well as changes in the nature of ligand-induced cell activation processes.

  14. Adhesion between peptides/antibodies and breast cancer cells

    NASA Astrophysics Data System (ADS)

    Meng, J.; Paetzell, E.; Bogorad, A.; Soboyejo, W. O.

    2010-06-01

    Atomic force microscopy (AFM) techniques were used to measure the adhesion forces between the receptors on breast cancer cells specific to human luteinizing hormone-releasing hormone (LHRH) peptides and antibodies specific to the EphA2 receptor. The adhesion forces between LHRH-coated AFM tips and human MDA-MB-231 cells (breast cancer cells) were shown to be about five times greater than those between LHRH-coated AFM tips and normal Hs578Bst breast cells. Similarly, those between EphA2 antibody-coated AFM tips and breast cancer cells were over five times greater than those between EphA2 antibody-coated AFM tips and normal breast cells. The results suggest that AFM can be used for the detection of breast cancer cells in biopsies. The implications of the results are also discussed for the early detection and localized treatment of cancer.

  15. Kinetics of LFA-1 mediated adhesion of human neutrophils to ICAM-1-role of E-selectin signaling post-activation.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    LFA-1 and Mac-1 are the two integrins involved in the arrest and firm adhesion of neutrophils. LFA-1 plays a role in the early stage of cell arrest while Mac-1 stabilizes firm adhesion. Here, we further elucidated the kinetics of LFA-1 activation and its role in mediating neutrophil adhesion to ICAM...

  16. Improvement of early cell adhesion on Thai silk fibroin surface by low energy plasma.

    PubMed

    Amornsudthiwat, Phakdee; Mongkolnavin, Rattachat; Kanokpanont, Sorada; Panpranot, Joongjai; Wong, Chiow San; Damrongsakkul, Siriporn

    2013-11-01

    Low energy plasma has been introduced to treat the surface of Thai silk fibroin which should be enhanced for cell adhesion due to its native hydrophobic surface. Plasma surface treatment could introduce desirable hydrophilic functionalities on the surface without using any chemicals. In this work, nitrogen glow discharge plasma was generated by a low energy AC50Hz power supply system. The plasma operating conditions were optimized to reach the highest nitrogen active species by using optical emission spectroscopy. X-ray photoelectron spectroscopy (XPS) revealed that amine, hydroxyl, ether, and carboxyl groups were induced on Thai silk fibroin surface after plasma treatment. The results on Fourier transform infrared attenuated total reflection (FTIR-ATR) spectroscopy confirmed that the plasma treated effects were only on the outermost layer since there was no change in the bulk chemistry. The surface topography was insignificantly changed from the detection with atomic force microscopy (AFM). The plasma-treated effects were the improved surface wettability and cell adhesion. After a 90-s treatment, the water contact angle was at 20°, while the untreated surface was at 70°. The early cell adhesion of L929 mouse fibroblast was accelerated. L929 cells only took 3h to reach 100% cell adhesion on 90 s N2 plasma-treated surface, while there was less than 50% cell adhesion on the untreated Thai silk fibroin surface after 6h of culture. The cell adhesion results were in agreement with the cytoskeleton development. L929 F-actin was more evident on 90 s N2 plasma-treated surface than others. It could be concluded that a lower energy AC50Hz plasma system enhanced early L929 mouse fibroblast adhesion on Thai silk fibroin surface without any significant change in surface topography and bulk chemistry.

  17. Morin, a Flavonoid from Moraceae, Inhibits Cancer Cell Adhesion to Endothelial Cells and EMT by Downregulating VCAM1 and Ncadherin.

    PubMed

    Lee, JeongHee; Jin, Hana; Lee, Won Sup; Nagappan, Arulkumar; Choi, Yung Hyun; Kim, Gon Sup; Jung, JinMyung; Ryu, Chung Ho; Shin, Sung Chul; Hong, Soon Chan; Kim, Hye Jung

    2016-01-01

    Morin, a flavonoid found in figs and other Moraceae species, displays a variety of biological actions, exerting antioxidant, antiinflammatory and anticarcinogenic effects. Here, we investigated the anticancer activity of morin focusing on antiadhesive influence. We performed experiments with MDAMB231 human breast cancer cells. Morin inhibited TNFinduced cancer cell adhesion to human umbilical vein endothelial cells (HUVECs) without showing any toxicity. It further inhibited the expression of VCAM1 on MDAMB231 cells as well as HUVECs. Morin also decreased the expression of Ncadherin on MDAMB231 cells. In addition, there was apparent antimetastatic activity in vivo. In conclusion, this study suggested that morin inhibits cancer cell adhesion to HUVECs by reducing VCAM1, and EMT by targeting Ncadherin, and that it features antimetastatic activity in vivo. Further investigation of possible antimetastatic activity of morin against human breast cancer cells is warranted.

  18. Thermodynamics of short-term cell adhesion in vitro.

    PubMed Central

    Vogler, E A

    1988-01-01

    A thermodynamic theory of short-term (less than 2 hr) in vitro cell adhesion has been developed which allows calculation of reversible work of adhesion and estimation of a term proportional to cell-substrate contact area. The theory provides a means of determining a parameter related to membrane wetting tension for microscopic cells that does not require special manipulations which might desiccate or denature delicate cell membranes. Semiquantitative agreement between predicted and experimentally-measured cell adhesion obtained for three different cell types (MDCK, RBL-1, and HCT-15) in two different liquid phase compositions of surfactants (Tween-80 and fetal bovine serum) supports concepts and approximations utilized in development of theory. Cell-substrate contact areas were largest for wettable surfaces treated with ionizing corona or plasma discharges and smallest for hydrophobic materials for each cell type studied. Contact area for the continuous dog-kidney cell line MDCK was larger than that of either the leukemic blood cell RBL-1 or the anaplastic human colon cell HCT-15. PMID:3390519

  19. A stochastic model for adhesion-mediated cell random motility and haptotaxis.

    PubMed

    Dickinson, R B; Tranquillo, R T

    1993-01-01

    The active migration of blood and tissue cells is important in a number of physiological processes including inflammation, wound healing, embryogenesis, and tumor cell metastasis. These cells move by transmitting cytoplasmic force through membrane receptors which are bound specifically to adhesion ligands in the surrounding substratum. Recently, much research has focused on the influence of the composition of extracellular matrix and the distribution of its components on the speed and direction of cell migration. It is commonly believed that the magnitude of the adhesion influences cell speed and/or random turning behavior, whereas a gradient of adhesion may bias the net direction of the cell movement, a phenomenon known as haptotaxis. The mechanisms underlying these responses are presently not understood. A stochastic model is presented to provide a mechanistic understanding of how the magnitude and distribution of adhesion ligands in the substratum influence cell movement. The receptor-mediated cell migration is modeled as an interrelation of random processes on distinct time scales. Adhesion receptors undergo rapid binding and transport, resulting in a stochastic spatial distribution of bound receptors fluctuating about some mean distribution. This results in a fluctuating spatio-temporal pattern of forces on the cell, which in turn affects the speed and turning behavior on a longer time scale. The model equations are a system of nonlinear stochastic differential equations (SDE's) which govern the time evolution of the spatial distribution of bound and free receptors, and the orientation and position of the cell. These SDE's are integrated numerically to simulate the behavior of the model cell on both a uniform substratum, and on a gradient of adhesion ligand concentration. Furthermore, analysis of the governing SDE system and corresponding Fokker-Planck equation (FPE) yields analytical expressions for indices which characterize cell movement on multiple time

  20. All-trans-retinoic acid induces integrin-independent B-cell adhesion to ADAM disintegrin domains.

    PubMed

    Bridges, Lance C; Lingo, Joshuah D; Grandon, Rachel A; Kelley, Melissa D

    2008-04-15

    Cell adhesion is an integral aspect of immunity facilitating extravasation of immune cells during homing and activation. All -trans-Retinoic acid ( t-RA) regulates leukocyte differentiation, proliferation, and transmigration. However, the role of t-RA in immune cell adhesion is poorly defined. In this study, we evaluated the impact of t-RA and its metabolism on B and T cell adhesion. Specifically, we address the impact of t-RA on the adhesive properties of the human mature B and T cell lines RPMI 8866, Daudi and Jurkats. The effect of t-RA exposure on cell adhesion to vascular cell adhesion molecule-1 (VCAM-1), a well-established integrin counter receptor involved in immunity, and to nonconventional ADAM integrin ligands was assessed. We show for the first time that t-RA potently induces B cell adhesion in an integrin-independent manner to both VCAM-1 and select ADAM disintegrin domains. Using retinoid extraction and reverse-phase HPLC analysis, we identify the retinoid that is functionally responsible for this augmented adhesion. We also provide evidence that this novel t-RA adhesive response is not prototypical of lymphocytes since both Daudi and Jurkats do not alter their adhesive properties upon t-RA treatment. Further, the t-RA metabolic profiles between these lineages is distinct with 9- cis-retinoic acid being exclusively detected in Jurkat media. This study is the first to demonstrate that t-RA directly induces B cell adhesion in an integrin-independent manner and is not contingent upon t-RA metabolism.

  1. Candida albicans stimulates cytokine production and leukocyte adhesion molecule expression by endothelial cells.

    PubMed Central

    Filler, S G; Pfunder, A S; Spellberg, B J; Spellberg, J P; Edwards, J E

    1996-01-01

    Endothelial cells have the potential to influence significantly the host immune response to blood-borne microbial pathogens, such as Candida albicans. We investigated the ability (of this organism to stimulate endothelial cell responses relevant to host defense in vitro. Infection with C. albicans induced endothelial cells to express mRNAs encoding E-selectin, intercellular adhesion molecule 1, vascular cell adhesion molecule 1, interleukin 6, interleukin 8, monocyte chemoattractant protein 1, and inducible cyclooxygenase (cox2). All three leukocyte adhesion molecule proteins were expressed on the surfaces of the endothelial cells after 8 h of exposure to C. albicans. An increase in secretion of all three cytokines was found after 12 h of infection. Cytochalasin D inhibited accumulation of the endothelial cell cytokine and leukocyte adhesion molecule mRNAs in response to C. albicans, suggesting that endothelial cell phagocytosis of the organism is required to induce this response. Live Candida tropicalis, Candida glabrata, a nongerminating strain of C. albicans, and killed C. albicans did not stimulate the expression of any of the cytokine or leukocyte adhesion molecule mRNAs. These findings indicate that a factor associated with live, germinating C. albicans is required for induction of endothelial cell mRNA expression. Furthermore, since endothelial cells phagocytize killed C. albicans, phagocytosis is likely necessary but not sufficient for this organism to stimulate mRNA accumulation. In conclusion, the secretion of proinflammatory cytokines and expression of leukocyte adhesion molecules by endothelial cells in response to C. albicans could enhance the host defense against this organism by contributing to the recruitment of activated leukocytes to sites of intravascular infection. PMID:8698486

  2. ZF21 protein regulates cell adhesion and motility.

    PubMed

    Nagano, Makoto; Hoshino, Daisuke; Sakamoto, Takeharu; Kawasaki, Noritaka; Koshikawa, Naohiko; Seiki, Motoharu

    2010-07-02

    Cell migration on an extracellular matrix (ECM) requires continuous formation and turnover of focal adhesions (FAs) along the direction of cell movement. However, our knowledge of the components of FAs and the mechanism of their regulation remains limited. Here, we identify ZF21, a member of a protein family characterized by the presence of a phosphatidylinositol 3-phosphate-binding FYVE domain, to be a new regulator of FAs and cell movement. Knockdown of ZF21 expression in cells increased the number of FAs and suppressed cell migration. Knockdown of ZF21 expression also led to a significant delay in FA disassembly following induction of synchronous disassembly of FAs by nocodazole treatment. ZF21 bound to focal adhesion kinase, localized to FAs, and was necessary for dephosphorylation of FAK at Tyr(397), which is important for disassembly of FAs. Thus, ZF21 represents a new component of FAs, mediates disassembly of FAs, and thereby regulates cell motility.

  3. Numerical analysis of cell adhesion in capillary flow

    NASA Astrophysics Data System (ADS)

    Takeishi, Naoki; Imai, Yohsuke; Ishida, Shunichi; Omori, Toshihiro; Kamm, Roger; Ishikawa, Takuji

    2016-11-01

    Numerical simulation of cell adhesion was performed for capillaries whose diameter is comparable to or smaller than that of the cell. Despite a lot of works about leukocyte and tumor cell rolling, cell motion in capillaries has remained unclear. The solid and fluid mechanics of a cell in flow was coupled with a slip bond model of ligand-receptor interactions. When the size of a capillary was reduced, the cell always transitioned to "bullet-like" motion, with a consequent decrease in the velocity of the cell. A state diagram is obtained for various values of capillary diameter and receptor density. According to our numerical results, bullet motion enables firm adhesion of a cell to the capillary wall even for a weak ligand-receptor binding. We also quantified effects of various parameters, including the dissociation rate constant, the spring constant, and the reactive compliance on the characteristics of cell motion. Our results suggest that even under the interaction between PSGL-1 and P-selectin, which is mainly responsible for leukocyte rolling, a cell is able to show firm adhesion in a small capillary. These findings may help in understanding such phenomena as leukocyte plugging and cancer metastasis. This research was supported by JSPS KAKENHI Grant Numbers 25000008, 26107703, 14J03967. We also acknowledge support from the Tohoku University Division for International Advanced Research and Education Organization.

  4. Interferon-alpha and dexamethasone inhibit adhesion of T cells to endothelial cells and synovial cells

    PubMed Central

    Eguchi, K.; Kawakami, A.; Nakashima, M.; Ida, H.; Sakito, S.; Matsuoka, N.; Terada, K.; Sakai, M.; Kawabe, Y.; Fukuda, T.; Ishimaru, T.; Kurouji, K.; Fujita, N.; Aoyagi, T.; Maeda, K.; Nagataki, S.

    1992-01-01

    We investigated whether interferon-gamma (IFN-γ), interferon-alpha (IFN-α) and glucocorticoids affected the adhesion of T cells to human umbilical endothelial cells or human synovial cells. About 30% of peripheral blood T cells could bind to unstimulated endothelial cells, but only a few T cells could bind to unstimulated synovial cells. When both endothelial cells and synovial cells were cultured with recombinant IFN-γ (rIFN-γ), the percentage of T cell binding to both types of cells increased in a dose-dependent manner. rIFN-α and dexamethasone blocked the T cell binding to unstimulated endothelial cells. Furthermore, rIFN-α and dexamethasone suppressed T cell binding to both endothelial cells and synovial cells stimulated by IFN-γ, and also inhibited intercellular adhesion molecule-1 (ICAM-1) expression on both endothelial cells and synovial cells stimulated by IFN-γ. These results suggest that IFN-α and glucocorticoids may inhibit T cell binding to endothelial cells or synovial cells by modulating adhesion molecule expression on these cells. PMID:1606729

  5. Multiparticle adhesive dynamics. Interactions between stably rolling cells.

    PubMed Central

    King, M R; Hammer, D A

    2001-01-01

    A novel numerical simulation of adhesive particles (cells) reversibly interacting with an adhesive surface under flow is presented. Particle--particle and particle--wall hydrodynamic interactions in low Reynolds number Couette flow are calculated using a boundary element method that solves an integral representation of the Stokes equation. Molecular bonds between surfaces are modeled as linear springs and stochastically formed and broken according to postulated descriptions of force-dependent kinetics. The resulting simulation, Multiparticle Adhesive Dynamics, is applied to the problem of selectin-mediated rolling of hard spheres coated with leukocyte adhesion molecules (cell-free system). Simulation results are compared to flow chamber experiments performed with carbohydrate-coated spherical beads rolling on P-selectin. Good agreement is found between theory and experiment, with the main observation being a decrease in rolling velocity with increasing concentration of rolling cells or increasing proximity between rolling cells. Pause times are found to increase and deviation motion is found to decrease as pairs of rolling cells become closer together or align with the flow. PMID:11463626

  6. Cell adhesion and intracellular calcium signaling in neurons

    PubMed Central

    2013-01-01

    Cell adhesion molecules (CAMs) play indispensable roles in the developing and mature brain by regulating neuronal migration and differentiation, neurite outgrowth, axonal fasciculation, synapse formation and synaptic plasticity. CAM-mediated changes in neuronal behavior depend on a number of intracellular signaling cascades including changes in various second messengers, among which CAM-dependent changes in intracellular Ca2+ levels play a prominent role. Ca2+ is an essential secondary intracellular signaling molecule that regulates fundamental cellular functions in various cell types, including neurons. We present a systematic review of the studies reporting changes in intracellular Ca2+ levels in response to activation of the immunoglobulin superfamily CAMs, cadherins and integrins in neurons. We also analyze current experimental evidence on the Ca2+ sources and channels involved in intracellular Ca2+ increases mediated by CAMs of these families, and systematically review the role of the voltage-dependent Ca2+ channels (VDCCs) in neurite outgrowth induced by activation of these CAMs. Molecular mechanisms linking CAMs to VDCCs and intracellular Ca2+ stores in neurons are discussed. PMID:24330678

  7. Suberoylanilide hydroxamic acid (SAHA) at subtoxic concentrations increases the adhesivity of human leukemic cells to fibronectin.

    PubMed

    Kuzelová, Katerina; Pluskalová, Michaela; Brodská, Barbora; Otevrelová, Petra; Elknerová, Klára; Grebenová, Dana; Hrkal, Zbynek

    2010-01-01

    Suberoylanilide hydroxamic acid (SAHA) is an inhibitor of histone deacetylases (HDACs) which is being introduced into clinic for the treatment of hematological diseases. We studied the effect of this compound on six human hematopoietic cell lines (JURL-MK1, K562, CML-T1, Karpas-299, HL-60, and ML-2) as well as on normal human lymphocytes and on leukemic primary cells. SAHA induced dose-dependent and cell type-dependent cell death which displayed apoptotic features (caspase-3 activation and apoptotic DNA fragmentation) in most cell types including the normal lymphocytes. At subtoxic concentrations (0.5-1 microM), SAHA increased the cell adhesivity to fibronectin (FN) in all leukemia/lymphoma-derived cell lines but not in normal lymphocytes. This increase was accompanied by an enhanced expression of integrin beta1 and paxillin, an essential constituent of focal adhesion complexes, both at the protein and mRNA level. On the other hand, the inhibition of ROCK protein, an important regulator of cytoskeleton structure, had no consistent effect on SAHA-induced increase in the cell adhesivity. The promotion of cell adhesivity to FN seems to be specific for SAHA as we observed no such effects with other HDAC inhibitors (trichostatin A and sodium butyrate).

  8. Paxillin-dependent paxillin kinase linker and p21-activated kinase localization to focal adhesions involves a multistep activation pathway.

    PubMed

    Brown, Michael C; West, Kip A; Turner, Christopher E

    2002-05-01

    The precise temporal-spatial regulation of the p21-activated serine-threonine kinase PAK at the plasma membrane is required for proper cytoskeletal reorganization and cell motility. However, the mechanism by which PAK localizes to focal adhesions has not yet been elucidated. Indirect binding of PAK to the focal adhesion protein paxillin via the Arf-GAP protein paxillin kinase linker (PKL) and PIX/Cool suggested a mechanism. In this report, we demonstrate an essential role for a paxillin-PKL interaction in the recruitment of activated PAK to focal adhesions. Similar to PAK, expression of activated Cdc42 and Rac1, but not RhoA, stimulated the translocation of PKL from a generally diffuse localization to focal adhesions. Expression of the PAK regulatory domain (PAK1-329) or the autoinhibitory domain (AID 83-149) induced PKL, PIX, and PAK localization to focal adhesions, indicating a role for PAK scaffold activation. We show PIX, but not NCK, binding to PAK is necessary for efficient focal adhesion localization of PAK and PKL, consistent with a PAK-PIX-PKL linkage. Although PAK activation is required, it is not sufficient for localization. The PKL amino terminus, containing the PIX-binding site, but lacking paxillin-binding subdomain 2 (PBS2), was unable to localize to focal adhesions and also abrogated PAK localization. An identical result was obtained after PKLDeltaPBS2 expression. Finally, neither PAK nor PKL was capable of localizing to focal adhesions in cells overexpressing paxillinDeltaLD4, confirming a requirement for this motif in recruitment of the PAK-PIX-PKL complex to focal adhesions. These results suggest a GTP-Cdc42/GTP-Rac triggered multistep activation cascade leading to the stimulation of the adaptor function of PAK, which through interaction with PIX provokes a functional PKL PBS2-paxillin LD4 association and consequent recruitment to focal adhesions. This mechanism is probably critical for the correct subcellular positioning of PAK, thereby

  9. Intercellular Adhesion Molecule-1 Expression by Skeletal Muscle Cells Augments Myogenesis

    PubMed Central

    Goh, Qingnian; Dearth, Christopher L.; Corbett, Jacob T.; Pierre, Philippe; Chadee, Deborah N.; Pizza, Francis X.

    2014-01-01

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast-myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube-myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube-myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. PMID:25281303

  10. Computer simulations of cell sorting due to differential adhesion.

    PubMed

    Zhang, Ying; Thomas, Gilberto L; Swat, Maciej; Shirinifard, Abbas; Glazier, James A

    2011-01-01

    The actions of cell adhesion molecules, in particular, cadherins during embryonic development and morphogenesis more generally, regulate many aspects of cellular interactions, regulation and signaling. Often, a gradient of cadherin expression levels drives collective and relative cell motions generating macroscopic cell sorting. Computer simulations of cell sorting have focused on the interactions of cells with only a few discrete adhesion levels between cells, ignoring biologically observed continuous variations in expression levels and possible nonlinearities in molecular binding. In this paper, we present three models relating the surface density of cadherins to the net intercellular adhesion and interfacial tension for both discrete and continuous levels of cadherin expression. We then use then the Glazier-Graner-Hogeweg (GGH) model to investigate how variations in the distribution of the number of cadherins per cell and in the choice of binding model affect cell sorting. We find that an aggregate with a continuous variation in the level of a single type of cadherin molecule sorts more slowly than one with two levels. The rate of sorting increases strongly with the interfacial tension, which depends both on the maximum difference in number of cadherins per cell and on the binding model. Our approach helps connect signaling at the molecular level to tissue-level morphogenesis.

  11. Endothelial cell migration on surfaces modified with immobilized adhesive peptides.

    PubMed

    Kouvroukoglou, S; Dee, K C; Bizios, R; McIntire, L V; Zygourakis, K

    2000-09-01

    Endothelial cell (EC) migration has been studied on aminophase surfaces with covalently bound RGDS and YIGSRG cell adhesion peptides. The fluorescent marker dansyl chloride was used to quantify the spatial distribution of the peptides on the modified surfaces. Peptides appeared to be distributed in uniformly dispersed large clusters separated by areas of lower peptide concentrations. We employed digital time-lapse video microscopy and image analysis to monitor EC migration on the modified surfaces and to reconstruct the cell trajectories. The persistent random walk model was then applied to analyze the cell displacement data and compute the mean root square speed, the persistence time, and the random motility coefficient of EC. We also calculated the time-averaged speed of cell locomotion. No differences in the speed of cell locomotion on the various substrates were noted. Immobilization of the cell adhesion peptides (RGDS and YIGSRG), however, significantly increased the persistence of cell movement and, thus, the random motility coefficient. These results suggest that immobilization of cell adhesion peptides on the surface of implantable biomaterials may lead to enhanced endothelization rates.

  12. Quantitative studies of endothelial cell adhesion. Directional remodeling of focal adhesion sites in response to flow forces.

    PubMed Central

    Davies, P F; Robotewskyj, A; Griem, M L

    1994-01-01

    Focal adhesion sites were observed in cultured endothelial cells by tandem scanning confocal microscopy and digitized image analysis, techniques that provide real-time images of adhesion site area and topography in living cells. Image subtraction demonstrated that in the presence of unidirectional steady laminar flow (shear stress [tau] = 10 dyn/cm2) a substantial fraction of focal adhesion sites remodeled in the direction of flow. In contrast, focal adhesions of control (no flow) cells remodeled without preferred direction. In confluent monolayers subjected to shear stresses of 10 dyn/cm2, cells began to realign in the direction of flow after 7-9 h. This was accompanied by redistribution of intracellular stress fibers, alignment of individual focal adhesion sites, and the coalescence of smaller sites resulting in fewer, but larger, focal adhesions per cell. Cell adhesion, repeatedly calculated in the same cells as a function of the areas of focal contact and the separation distances between membrane and substratum, varied by < 10% during both short (30 min), or prolonged (< or = 24 h), periods of exposure to flow. Consistent with these measurements, the gains and losses of focal adhesion area as each site remodeled were approximately equivalent. When the glass substratum was coated with gelatin, rates of remodeling were inhibited by 47% during flow (tau = 10 dyn/cm2). These studies: (a) reveal the dynamic nature of focal adhesion; (b) demonstrate that these sites at the ablumenal endothelial membrane are both acutely and chronically responsive to frictional shear stress forces applied to the opposite (lumenal) cell surface; and (c) suggest that components of the focal adhesion complex may be mechanically responsive elements coupled to the cytoskeleton. Images PMID:8182135

  13. Potentialities of ultrasounds for the nondestructive evaluation of cell adhesion.

    PubMed

    Myrdycz, A; Lefebvre, F; Ouaftouh, M; Monchau, F; Callens, D; Hildebrand, H F

    1999-08-01

    The aim of this paper is to present the potentialities of ultrasounds to investigate the mechanical properties of a cell/substrate interface. The adhesion process plays a major role in the development of osteoblastic cells on various substrates used in orthopedic applications such as metals, bioceramics, etc. Particularly, cell adherence appears to be a critical factor in the colonization process. High-frequency and low-power ultrasounds seem to be an appropriate tool for a nondestructive evaluation of interface properties. First, we present the results obtained with bulk longitudinal and shear waves under an arbitrary incidence over an aluminum-adhesive interface. This study was performed for an industrial application of bonding. The results clearly show the sensitivity of shear waves for the evaluation of the adhesion quality owing to the shear solicitations at the interface they induce. A model of ultrasound interactions with a boundary subject to varying degrees of adhesion has been developed and compared to the experiments. Second, we investigated osteoblastic cell cultures with a high-frequency acoustic microscope working at 50 MHz. The images obtained in the shear mode reveal a better contrast than those obtained in the longitudinal mode. For the time being, these results are qualitative, and theoretical models have to be developed according to the point of view of biologists.

  14. Understanding dynamic changes in live cell adhesion with neutron reflectometry

    SciTech Connect

    Junghans, Ann; Waltman, Mary Jo; Smith, Hillary L.; Pocivavsek, Luka; Zebda, Noureddine; Birukov, Konstantin; Viapiano, Mariano; Majewski, Jaroslaw

    2014-12-10

    In this study, neutron reflectometry (NR) was used to examine various live cells' adhesion to quartz substrates under different environmental conditions, including flow stress. To the best of our knowledge, these measurements represent the first successful visualization and quantization of the interface between live cells and a substrate with sub-nanometer resolution. In our first experiments, we examined live mouse fibroblast cells as opposed to past experiments using supported lipids, proteins, or peptide layers with no associated cells. We continued the NR studies of cell adhesion by investigating endothelial monolayers and glioblastoma cells under dynamic flow conditions. We demonstrated that neutron reflectometry is a powerful tool to study the strength of cellular layer adhesion in living tissues, which is a key factor in understanding the physiology of cell interactions and conditions leading to abnormal or disease circumstances. Continuative measurements, such as investigating changes in tumor cell — surface contact of various glioblastomas, could impact advancements in tumor treatments. In principle, this can help us to identify changes that correlate with tumor invasiveness. Pursuit of these studies can have significant medical impact on the understanding of complex biological problems and their effective treatment, e.g. for the development of targeted anti-invasive therapies.

  15. Understanding dynamic changes in live cell adhesion with neutron reflectometry

    DOE PAGES

    Junghans, Ann; Waltman, Mary Jo; Smith, Hillary L.; ...

    2014-12-10

    In this study, neutron reflectometry (NR) was used to examine various live cells' adhesion to quartz substrates under different environmental conditions, including flow stress. To the best of our knowledge, these measurements represent the first successful visualization and quantization of the interface between live cells and a substrate with sub-nanometer resolution. In our first experiments, we examined live mouse fibroblast cells as opposed to past experiments using supported lipids, proteins, or peptide layers with no associated cells. We continued the NR studies of cell adhesion by investigating endothelial monolayers and glioblastoma cells under dynamic flow conditions. We demonstrated that neutronmore » reflectometry is a powerful tool to study the strength of cellular layer adhesion in living tissues, which is a key factor in understanding the physiology of cell interactions and conditions leading to abnormal or disease circumstances. Continuative measurements, such as investigating changes in tumor cell — surface contact of various glioblastomas, could impact advancements in tumor treatments. In principle, this can help us to identify changes that correlate with tumor invasiveness. Pursuit of these studies can have significant medical impact on the understanding of complex biological problems and their effective treatment, e.g. for the development of targeted anti-invasive therapies.« less

  16. Understanding dynamic changes in live cell adhesion with neutron reflectometry

    PubMed Central

    JUNGHANS, ANN; WALTMAN, MARY JO; SMITH, HILLARY L.; POCIVAVSEK, LUKA; ZEBDA, NOUREDDINE; BIRUKOV, KONSTANTIN; VIAPIANO, MARIANO; MAJEWSKI, JAROSLAW

    2015-01-01

    Neutron reflectometry (NR) was used to examine various live cells adhesion to quartz substrates under different environmental conditions, including flow stress. To the best of our knowledge, these measurements represent the first successful visualization and quantization of the interface between live cells and a substrate with sub-nanometer resolution. In our first experiments, we examined live mouse fibroblast cells as opposed to past experiments using supported lipids, proteins, or peptide layers with no associated cells. We continued the NR studies of cell adhesion by investigating endothelial monolayers and glioblastoma cells under dynamic flow conditions. We demonstrated that neutron reflectometry is a powerful tool to study the strength of cellular layer adhesion in living tissues, which is a key factor in understanding the physiology of cell interactions and conditions leading to abnormal or disease circumstances. Continuative measurements, such as investigating changes in tumor cell – surface contact of various glioblastomas, could impact advancements in tumor treatments. In principle, this can help us to identify changes that correlate with tumor invasiveness. Pursuit of these studies can have significant medical impact on the understanding of complex biological problems and their effective treatment, e.g. for the development of targeted anti-invasive therapies. PMID:25705067

  17. Understanding dynamic changes in live cell adhesion with neutron reflectometry

    NASA Astrophysics Data System (ADS)

    Junghans, Ann; Waltman, Mary Jo; Smith, Hillary L.; Pocivavsek, Luka; Zebda, Noureddine; Birukov, Konstantin; Viapiano, Mariano; Majewski, Jaroslaw

    2014-12-01

    Neutron reflectometry (NR) was used to examine various live cells' adhesion to quartz substrates under different environmental conditions, including flow stress. To the best of our knowledge, these measurements represent the first successful visualization and quantization of the interface between live cells and a substrate with sub-nanometer resolution. In our first experiments, we examined live mouse fibroblast cells as opposed to past experiments using supported lipids, proteins, or peptide layers with no associated cells. We continued the NR studies of cell adhesion by investigating endothelial monolayers and glioblastoma cells under dynamic flow conditions. We demonstrated that neutron reflectometry is a powerful tool to study the strength of cellular layer adhesion in living tissues, which is a key factor in understanding the physiology of cell interactions and conditions leading to abnormal or disease circumstances. Continuative measurements, such as investigating changes in tumor cell — surface contact of various glioblastomas, could impact advancements in tumor treatments. In principle, this can help us to identify changes that correlate with tumor invasiveness. Pursuit of these studies can have significant medical impact on the understanding of complex biological problems and their effective treatment, e.g. for the development of targeted anti-invasive therapies.

  18. The Evolutionary Origin of Epithelial Cell-Cell Adhesion Mechanisms

    PubMed Central

    Miller, Phillip W.; Clarke, Donald N.; Weis, William I.; Lowe, Christopher J.; Nelson, W. James

    2014-01-01

    SUMMARY A simple epithelium forms a barrier between the outside and the inside of an organism, and is the first organized multicellular tissue found in evolution. We examine the relationship between the evolution of epithelia and specialized cell-cell adhesion proteins comprising the classical cadherin/β-catenin/α-catenin complex (CCC). A review of the divergent functional properties of the CCC in metazoans and non-metazoans, and an updated phylogenetic coverage of the CCC using recent genomic data reveal: 1) The core CCC likely originated before the last common ancestor of unikonts and their closest bikont sister taxa. 2) Formation of the CCC may have constrained sequence evolution of the classical cadherin cytoplasmic domain and β-catenin in metazoa. 3) The α-catenin binding domain in β-catenin appears to be the favored mutation site for disrupting β-catenin function in the CCC. 4) The ancestral function of the α/β-catenin heterodimer appears to be an actin-binding module. In some metazoan groups, more complex functions of α-catenin were gained by sequence divergence in the non-actin binding (N-, M-) domains. 5) Allosteric regulation of α-catenin, rather than loss of function mutations, may have evolved for more complex regulation of the actin cytoskeleton. PMID:24210433

  19. On the relation between surface roughness of metallic substrates and adhesion of human primary bone cells.

    PubMed

    Anselme, K; Bigerelle, M

    2014-01-01

    Surface characteristics of materials, whether their topography, chemistry, or surface energy, play an essential part in osteoblast adhesion on biomaterials. Thus, the quality of cell adhesion will influence the cell's capacity to proliferate and differentiate in contact with a biomaterial. We have developed for more than ten years numerous studies on the influence of topography and chemistry of metallic substrates on the response of primary human bone cells. The originality of our approach is that contrary to most of other authors, we quantified the adhesion of primary human bone cells on metallic substrates with perfectly characterized surface topography after some hours but also over 21 days. Moreover, we have developed original statistical approaches for characterizing the relation between surface roughness and cell-adhesion parameters. In this article, we will illustrate different studies we did these last ten years concerning the development of a new adhesion parameter, the adhesion power; the correlation between short-term adhesion, long-term adhesion, and proliferation; the influence of roughness organization on cell adhesion and the development of the order parameter; our modeling approach of cell adhesion on surface topography; the relative influence of surface chemistry and topography on cell adhesion and contact angle; the relation between surface features dimensions and cell adhesion. Further, some considerations will be given on the methods for scanning surface topography for cell-adhesion studies. Finally, perspectives will be given to elucidate these intracellular mechanotransduction mechanisms induced by the deformation of cells on model sinusoidal peaks-or-valleys surfaces.

  20. Identification of CD9 extracellular domains important in regulation of CHO cell adhesion to fibronectin and fibronectin pericellular matrix assembly.

    PubMed

    Cook, George A; Longhurst, Celia M; Grgurevich, Svetozar; Cholera, Shila; Crossno, Joseph T; Jennings, Lisa K

    2002-12-15

    CD9, a 24-kDa member of the tetraspanin family, influences cellular growth and development, activation, adhesion, and motility. Our investigation focuses on the hypothesis that the CD9 second extracellular loop (EC2) is important in modulating cell adhesive events. Using a Chinese hamster ovary (CHO) cell expression system, we previously reported that CD9 expression inhibited cell adhesion to fibronectin and fibronectin matrix assembly. For the first time, a functional epitope on CD9 EC2 that regulates these processes is described. Binding of mAb7, an EC2-specific anti-CD9 monoclonal antibody, reversed the CD9 inhibitory activity on CHO cell adhesion and fibronectin matrix assembly. This reversal of cell phenotype also was observed in CHO cells expressing CD9 EC2 truncations. Furthermore, our data showed that the EC2 sequence (173)LETFTVKSCPDAIKEVFDNK(192) was largely responsible for the CD9-mediated CHO cell phenotype. Two peptides, (135)K-V(172) (peptide 5b) and (168)P-I(185) (peptide 6a), selectively blocked mAb7 binding to soluble CD9 and to CD9 on intact cells. These active peptides reversed the influence of CD9 expression on CHO cell adhesion to fibronectin. In addition, confocal microscopy revealed that CD9 colocalized with the integrin alpha(5)beta(1) and cytoskeletal F-actin in punctate clusters on the cell surface, particularly at the cell margins. Immunoprecipitation studies confirmed CD9 association with beta(1) integrin. The cellular distribution and colocalization of focal adhesion kinase and alpha-actinin with cytoskeletal actin was also influenced by CD9 expression. Thus, CD9 may exhibit its effect by modulating the composition of adhesive complexes important in facilitating cell adhesion and matrix assembly.

  1. Visualizing and quantifying adhesive signals

    PubMed Central

    Sabouri-Ghomi, Mohsen; Wu, Yi; Hahn, Klaus; Danuser, Gaudenz

    2008-01-01

    Understanding the structural adaptation and signaling of adhesion sites in response to mechanical stimuli requires in situ characterization of the dynamic activation of a large number of adhesion components. Here, we review high resolution live cell imaging approaches to measure forces, assembly and interaction of adhesion components, and the activation of adhesion-mediated signals. We conclude by outlining computational multiplexing as a framework for the integration of these data into comprehensive models of adhesion signaling pathways. PMID:18586481

  2. Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis

    SciTech Connect

    Goh, Qingnian; Dearth, Christopher L.; Corbett, Jacob T.; Pierre, Philippe; Chadee, Deborah N.; Pizza, Francis X.

    2015-02-15

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast–myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube–myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube–myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. - Highlights: • We examined mechanisms through which skeletal muscle cell expression of ICAM-1 facilitates events of in vitro myogenesis. • Expression of ICAM-1 by cultured myoblasts did not influence their ability to proliferate or differentiate. • Skeletal muscle cell expression of ICAM-1 augmented myoblast fusion, myotube alignment, myotube–myotube fusion, and myotube size. • ICAM-1 augmented myogenic processes through

  3. Topographic cell instructive patterns to control cell adhesion, polarization and migration

    PubMed Central

    Ventre, Maurizio; Natale, Carlo Fortunato; Rianna, Carmela; Netti, Paolo Antonio

    2014-01-01

    Topographic patterns are known to affect cellular processes such as adhesion, migration and differentiation. However, the optimal way to deliver topographic signals to provide cells with precise instructions has not been defined yet. In this work, we hypothesize that topographic patterns may be able to control the sensing and adhesion machinery of cells when their interval features are tuned on the characteristic lengths of filopodial probing and focal adhesions (FAs). Features separated by distance beyond the length of filopodia cannot be readily perceived; therefore, the formation of new adhesions is discouraged. If, however, topographic features are separated by a distance within the reach of filopodia extension, cells can establish contact between adjacent topographic islands. In the latter case, cell adhesion and polarization rely upon the growth of FAs occurring on a specific length scale that depends on the chemical properties of the surface. Topographic patterns and chemical properties may interfere with the growth of FAs, thus making adhesions unstable. To test this hypothesis, we fabricated different micropatterned surfaces displaying feature dimensions and adhesive properties able to interfere with the filopodial sensing and the adhesion maturation, selectively. Our data demonstrate that it is possible to exert a potent control on cell adhesion, elongation and migration by tuning topographic features’ dimensions and surface chemistry. PMID:25253035

  4. Prior exposure of endothelial cells to hydroxycarbamide alters the flow dynamics and adhesion of sickle red blood cells.

    PubMed

    Verger, Emmanuelle; Schoëvaërt, Damien; Carrivain, Pascal; Victor, Jean-Marc; Lapouméroulie, Claudine; Elion, Jacques

    2014-01-01

    The hallmark of sickle cell disease (SCD) is vasoocclusive crisis (VOC). The sickle red blood cells (SS-RBCs) present enhanced adhesion to activated endothelial cells (ECs) as compared to normal RBCs (AA-RBCs) and believed to contribute to VOC. Hydroxycarbamide (HC), the sole drug thus far proven as efficacious at reducing VOC frequency, alters the expression of adhesion proteins both on RBCs and ECs. We investigated the functional effect of HC on the adhesive properties of ECs from the micro- or the macrocirculation (TrHBMEC, HPMEC, and HUVEC). Using a flow chamber, we analyzed RBC dynamics on the treated or untreated EC bed and firm adhesion in basal and inflammatory conditions. Most significant effects were obtained with ECs from the pulmonary microcirculation (HPMEC). HC treatment of ECs affects both transient interactions and firm adhesion of SS-RBCs to the EC bed. Indeed, first, HC-treatment of ECs decreases the number of firmly adherent SS-RBCs to the adhesion level of AA-RBCs in a VCAM-1 independent manner. Second, HC significantly increases the mean velocity of SS-RBCs and reduces the population of SS-RBCs in contact with the EC bed. These data provide additional evidence that modulation of SS-RBCs/ECs interactions by HC represents an important aspect of its mechanism of action.

  5. A Review of Cell Adhesion Studies for Biomedical and Biological Applications

    PubMed Central

    Ahmad Khalili, Amelia; Ahmad, Mohd Ridzuan

    2015-01-01

    Cell adhesion is essential in cell communication and regulation, and is of fundamental importance in the development and maintenance of tissues. The mechanical interactions between a cell and its extracellular matrix (ECM) can influence and control cell behavior and function. The essential function of cell adhesion has created tremendous interests in developing methods for measuring and studying cell adhesion properties. The study of cell adhesion could be categorized into cell adhesion attachment and detachment events. The study of cell adhesion has been widely explored via both events for many important purposes in cellular biology, biomedical, and engineering fields. Cell adhesion attachment and detachment events could be further grouped into the cell population and single cell approach. Various techniques to measure cell adhesion have been applied to many fields of study in order to gain understanding of cell signaling pathways, biomaterial studies for implantable sensors, artificial bone and tooth replacement, the development of tissue-on-a-chip and organ-on-a-chip in tissue engineering, the effects of biochemical treatments and environmental stimuli to the cell adhesion, the potential of drug treatments, cancer metastasis study, and the determination of the adhesion properties of normal and cancerous cells. This review discussed the overview of the available methods to study cell adhesion through attachment and detachment events. PMID:26251901

  6. The role of adhesion energy in controlling cell–cell contacts

    PubMed Central

    Maître, Jean-Léon; Heisenberg, Carl-Philipp

    2011-01-01

    Recent advances in microscopy techniques and biophysical measurements have provided novel insight into the molecular, cellular and biophysical basis of cell adhesion. However, comparably little is known about a core element of cell–cell adhesion—the energy of adhesion at the cell–cell contact. In this review, we discuss approaches to understand the nature and regulation of adhesion energy, and propose strategies to determine adhesion energy between cells in vitro and in vivo. PMID:21807491

  7. Understanding dynamic changes in live cell adhesion with neutron reflectometry

    NASA Astrophysics Data System (ADS)

    Junghans, Ann

    Understanding the structure and functionality of biological systems on a nanometer-resolution and short temporal scales is important for solving complex biological problems, developing innovative treatment, and advancing the design of highly functionalized biomimetic materials. For example, adhesion of cells to an underlying substrate plays a crucial role in physiology and disease development, and has been investigated with great interest for several decades. In the talk, we would like to highlight recent advances in utilizing neutron scattering to study bio-related structures in dynamic conditions (e . g . under the shear flow) including in-situ investigations of the interfacial properties of living cells. The strength of neutron reflectometry is its non-pertubative nature, the ability to probe buried interfaces with nanometer resolution and its sensitivity to light elements like hydrogen and carbon. That allows us to study details of cell - substrate interfaces that are not accessible with any other standard techniques. We studied the adhesion of human brain tumor cells (U251) to quartz substrates and their responses to the external mechanical forces. Such cells are isolated within the central nervous system which makes them difficult to reach with conventional therapies and therefore making them highly invasive. Our results reveal changes in the thickness and composition of the adhesion layer (a layer between the cell lipid membrane and the quartz substrate), largely composed of hyaluronic acid and associated proteoglycans, when the cells were subjected to shear stress. Further studies will allow us to determine more conditions triggering changes in the composition of the bio-material in the adhesion layer. This, in turn, can help to identify changes that correlate with tumor invasiveness, which can have significant medical impact for the development of targeted anti-invasive therapies.

  8. Low-magnitude, high-frequency vibration promotes the adhesion and the osteogenic differentiation of bone marrow-derived mesenchymal stem cells cultured on a hydroxyapatite-coated surface: The direct role of Wnt/β-catenin signaling pathway activation.

    PubMed

    Chen, Bailing; Lin, Tao; Yang, Xiaoxi; Li, Yiqiang; Xie, Denghui; Zheng, Wenhui; Cui, Haowen; Deng, Weimin; Tan, Xin

    2016-11-01

    The positive effect of low-magnitude, high‑frequency (LMHF) vibration on implant osseointegration has been demonstrated; however, the underlying cellular and molecular mechanisms remain unknown. The aim of this study was to explore the effect of LMHF vibration on the adhesion and the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) cultured on hydroxyapatite (HA)-coated surfaces in an in vitro model as well as to elucidate the molecular mechanism responsible for the effects of LMHF vibration on osteogenesis. LMHF vibration resulted in the increased expression of fibronectin, which was measured by immunostaining and RT-qPCR. Stimulation of BMSCs by LMHF vibration resulted in the rearrangement of the actin cytoskeleton with more prominent F-actin. Moreover, the expression of β1 integrin, vinculin and paxillin was notably increased following LMHF stimulation. Scanning electron microscope observations revealed that there were higher cell numbers and more extracellular matrix attached to the HA-coated surface in the LMHF group. Alkaline phosphatase activity as well as the expression of osteogenic-specific genes, namely Runx2, osterix, collagen I and osteocalcin, were significantly elevated in the LMHF group. In addition, the protein expression of Wnt10B, β-catenin, Runx2 and osterix was increased following exposure to LMHF vibration. Taken together, the findings of this study indicate that LMHF vibration promotes the adhesion and the osteogenic differentiation of BMSCs on HA-coated surfaces in vitro, and LMHF vibration may directly induce osteogenesis by activating the Wnt/β‑catenin signaling pathway. These data suggest that LMHF vibration enhances the osseointegration of bone to a HA-coated implant, and provide a scientific foundation for improving bone-implant osseointegration through the application of LMHF vibration.

  9. Diversity of cell-mediated adhesions in breast cancer spheroids.

    PubMed

    Ivascu, Andrea; Kubbies, Manfred

    2007-12-01

    Due to their three dimensional (3D) architecture, multicellular tumor spheroids mimic avascular tumor areas comprising the establishment of diffusion gradients, reduced proliferation rates and increased drug resistance. We have shown recently that the spontaneous formation of spheroids is restricted to a limited number of cell lines whereas the majority grow only as aggregates of cells with loose cell-cell contacts when cultured in 3D. However, by the addition of reconstituted basement membrane (rBM, Matrigel), aggregates can be transformed into spheroids with diffusion barriers and development of quiescent therapy-resistant cells. In this report, we investigated adhesion molecules responsible for rBM-driven versus spontaneous spheroid formation in a diverse population of eight breast tumor cell lines relevant for in vitro and in vivo antitumor drug testing. Inhibition of spheroid formation was monitored in the presence of adhesion molecule functional blocking antibodies and after siRNA-mediated down-regulation of E- and N-cadherin and integrin beta1 adhesion receptors. We identified that E-cadherin mediates the spontaneous formation of spheroids in MCF7, BT-474, T-47D and MDA-MB-361 cells, whereas N-cadherin is responsible for tight packing of MDA-MB-435S cells. In contrast, the matrix protein-induced transformation of 3D aggregates into spheroids in MDA-MB-231 and SK-BR-3 cells is mediated primarily by the collagen I/integrin beta1 interaction with no cadherin involvement. A combination of both, homophilic E-cadherin and integrin beta1/collagen I interaction establishes spheroids in MDA-MB-468 cells. These findings indicate that an evolutionary diverse and complex pattern of interacting cell surface proteins exists in breast cancer cells that determines the 3D growth characteristic in vitro, thereby influencing small molecule or antibody permeation in preclinical in vitro and in vivo tumor models.

  10. MEK inhibitors, novel anti-adhesive molecules, reduce sickle red blood cell adhesion in vitro and in vivo, and vasoocclusion in vivo.

    PubMed

    Zennadi, Rahima

    2014-01-01

    In sickle cell disease, sickle erythrocyte (SSRBC) interacts with endothelial cells, leukocytes, and platelets, and activates coagulation and inflammation, promoting vessel obstruction, which leads to serious life-threatening complications, including acute painful crises and irreversible damage to multiple organs. The mitogen-activated protein kinase, ERK1/2, is abnormally activated in SSRBCs. However, the therapeutic potential of SSRBC ERK1/2 inactivation has never been investigated. I tested four different inhibitors of MEK1/2 (MEK), the kinase that activates ERK1/2, in a model of human SSRBC adhesion to TNFα-activated endothelial cells (ECs). SSRBC MEK inhibition abrogated adhesion to non-activated and TNFα-activated ECs to levels below baseline SSRBC adhesion to non-activated ECs in vitro. SSRBC MEK inhibition also prevented SSRBCs from activating naïve neutrophils to adhere to endothelium. To determine the effect of MEK inhibitors on SSRBC adherence in vivo, sham-treated or MEK inhibitor-treated SSRBCs were infused to nude mice previously treated with TNFα. Sham-treated SSRBCs displayed marked adhesion and occlusion of enflamed vessels, both small and large. However, SSRBC treatment with MEK inhibitors ex vivo showed poor SSRBC adhesion to enflamed vessels with no visible vasoocclusion in vivo. In addition, MEK inhibitor treatment of SSRBCs reduced SSRBC organ trapping and increased the number of SSRBCs circulating in bloodstream. Thus, these data suggest that SSRBC ERK1/2 plays potentially a critical role in sickle pathogenesis, and that MEK inhibitors may represent a valuable intervention for acute sickle cell crises.

  11. Laser-based microfabrication for cell adhesion and migration

    NASA Astrophysics Data System (ADS)

    Miller, Jordan S.

    Mammalian cell adhesion and migration impact a multitude of cellular behaviors and tissue remodeling processes. Over the past several decades, investigators have methodically improved in vitro systems as mimics of the extracellular microenvironment to study these biologic phenomena. Experiments have progressed from early studies on bifunctional inorganic surfaces to those with purified adhesive proteins against an organic, non-adhesive background. Recently, subcellular geometric patterns of adhesive proteins have proven useful to restrict and direct focal contact formation, cell survival, lamellopodia extension, and the maturation of "supermature" focal contacts. The vast majority of recent studies have involved the construction of hydrophobic patches with adsorbed fibronectin as the adhesive constraint of choice. However, the extracellular matrix (ECM) in which cells operate is a complex and diverse environment where numerous signals interact with a cell simultaneously; signals that the cell must integrate and that directly impact these processes. Microfabrication methods to approximate the extracellular milieu have significant limitations in their potential to be extended to pattern multiple bioactive ligands with high precision. Current techniques require multi-step processes which lose feature fidelity at every pattern transfer step, while simultaneously increasing logistical complexity and the chance of technical missteps. We have developed a family of complementary techniques using the raster-scanning laser of a confocal microscope to address a number of current challenges in improving microfabrication. For our work with thin films of self-assembled organic monolayers, we systematically removed the multi-step processing requirements of conventional photolithographic microfabrication and characterized and verified the technical advantages of our new patterning techniques. For 3D work, we developed and demonstrated micron-scale biochemical and mechanical

  12. Receptor FGFRL1 does not promote cell proliferation but induces cell adhesion

    PubMed Central

    YANG, XIAOCHEN; STEINBERG, FLORIAN; ZHUANG, LEI; BESSEY, RALPH; TRUEB, BEAT

    2016-01-01

    Fibroblast growth factor receptor (FGFR)-like protein 1 (FGFRL1) is the most recently discovered member of the FGFR family. Owing to the fact that it interacts with FGF ligands, but lacks the intracellular tyrosine kinase domain, several researchers have speculated that it may function as a decoy receptor and exert a negative effect on cell proliferation. In this study, we performed overexpression experiments with TetOn-inducible cell clones and downregulation experiments with siRNA oligonucleotides, and found that FGFRL1 had absolutely no effect on cell growth and proliferation. Likewise, we did not observe any influence of FGFRL1 on ERK1/2 activation and on the phosphorylation of 250 other signaling proteins analyzed by the Kinexus antibody microarray. On the other hand, with bacterial petri dishes, we observed a clear effect of FGFRL1 on cell adhesion during the initial hours after cell seeding. Our results suggest that FGFRL1 is a cell adhesion protein similar to the nectins rather than a signaling receptor similar to FGFR1-FGFR4. PMID:27220341

  13. 2-O-sulfotransferase regulates Wnt signaling, cell adhesion and cell cycle during zebrafish epiboly

    PubMed Central

    Cadwalader, Erin L.; Condic, Maureen L.; Yost, H. Joseph

    2012-01-01

    O-sulfotransferases modify heparan sulfate proteoglycans (HSPGs) by catalyzing the transfer of a sulfate to a specific position on heparan sulfate glycosaminoglycan (GAG) chains. Although the roles of specific HSPG modifications have been described in cell culture and invertebrates, little is known about their functions or abilities to modulate specific cell signaling pathways in vertebrate development. Here, we report that 2-O-sulfotransferase (2-OST) is an essential component of canonical Wnt signaling in zebrafish development. 2-OST-defecient embryos have reduced GAG chain sulfation and are refractory to exogenous Wnt8 overexpression. Embryos in which maternally encoded 2-OST is knocked down have normal activation of several zygotic mesoderm, endoderm and ectoderm patterning genes, but have decreased deep cell adhesion and fail to initiate epiboly, which can be rescued by re-expression of 2-OST protein. Reduced cell adhesion and altered cell cycle regulation in 2-OST-deficient embryos are associated with decreased β-catenin and E-cadherin protein levels at cell junctions, and these defects can be rescued by reactivation of the intracellular Wnt pathway, utilizing stabilized β-catenin or dominant-negative Gsk3, but not by overexpression of Wnt8 ligand. Together, these results indicate that 2-OST functions within the Wnt pathway, downstream of Wnt ligand signaling and upstream of Gsk3β and β-catenin intracellular localization and function. PMID:22357927

  14. Focal adhesion molecule Kindlin-1 mediates activation of TGF-β signaling by interacting with TGF-βRI, SARA and Smad3 in colorectal cancer cells.

    PubMed

    Kong, Jinfeng; Du, Juan; Wang, Yunling; Yang, Mingzi; Gao, Jianchao; Wei, Xiaofan; Fang, Weigang; Zhan, Jun; Zhang, Hongquan

    2016-11-15

    Kindlin-1, an integrin-interacting protein, has been implicated in TGF-β/Smad3 signaling. However, the molecular mechanism underlying Kindlin-1 regulation of TGF-β/Smad3 signaling remains elusive. Here, we reported that Kindlin-1 is an important mediator of TGF-β/Smad3 signaling by showing that Kindlin-1 physically interacts with TGF-β receptor I (TβRI), Smad anchor for receptor activation (SARA) and Smad3. Kindlin-1 is required for the interaction of Smad3 with TβRI, Smad3 phosphorylation, nuclear translocation, and finally the activation of TGF-β/Smad3 signaling pathway. Functionally, Kindlin-1 promoted colorectal cancer (CRC) cell proliferation in vitro and tumor growth in vivo, and was also required for CRC cell migration and invasion via an epithelial to mesenchymal transition. Kindlin-1 was found to be increased with the CRC progression from stages I to IV. Importantly, raised expression level of Kindlin-1 correlates with poor outcome in CRC patients. Taken together, we demonstrated that Kindlin-1 promotes CRC progression by recruiting SARA and Smad3 to TβRI and thereby activates TGF-β/Smad3 signaling. Thus, Kindlin-1 is a novel regulator of TGF-β/Smad3 signaling and may also be a potential target for CRC therapeutics.

  15. Focal adhesion molecule Kindlin-1 mediates activation of TGF-β signaling by interacting with TGF-βRI, SARA and Smad3 in colorectal cancer cells

    PubMed Central

    Wang, Yunling; Yang, Mingzi; Gao, Jianchao; Wei, Xiaofan; Fang, Weigang; Zhan, Jun; Zhang, Hongquan

    2016-01-01

    Kindlin-1, an integrin-interacting protein, has been implicated in TGF-β/Smad3 signaling. However, the molecular mechanism underlying Kindlin-1 regulation of TGF-β/Smad3 signaling remains elusive. Here, we reported that Kindlin-1 is an important mediator of TGF-β/Smad3 signaling by showing that Kindlin-1 physically interacts with TGF-β receptor I (TβRI), Smad anchor for receptor activation (SARA) and Smad3. Kindlin-1 is required for the interaction of Smad3 with TβRI, Smad3 phosphorylation, nuclear translocation, and finally the activation of TGF-β/Smad3 signaling pathway. Functionally, Kindlin-1 promoted colorectal cancer (CRC) cell proliferation in vitro and tumor growth in vivo, and was also required for CRC cell migration and invasion via an epithelial to mesenchymal transition. Kindlin-1 was found to be increased with the CRC progression from stages I to IV. Importantly, raised expression level of Kindlin-1 correlates with poor outcome in CRC patients. Taken together, we demonstrated that Kindlin-1 promotes CRC progression by recruiting SARA and Smad3 to TβRI and thereby activates TGF-β/Smad3 signaling. Thus, Kindlin-1 is a novel regulator of TGF-β/Smad3 signaling and may also be a potential target for CRC therapeutics. PMID:27776350

  16. Adhesion receptors as therapeutic targets for circulating tumor cells

    PubMed Central

    Li, Jiahe; King, Michael R.

    2012-01-01

    Metastasis contributes to >90% of cancer-associated mortality. Though primary tumors can be removed by surgical resection or chemo/radiotherapy, metastatic disease is a great challenge to treatment due to its systemic nature. As metastatic “seeds,” circulating tumor cells (CTCs) are believed to be responsible for dissemination from a primary tumor to anatomically distant organs. Despite the possibility of physical trapping of CTCs in microvessels, recent advances have provided insights into the involvement of a variety of adhesion molecules on CTCs. Such adhesion molecules facilitate direct interaction with the endothelium in specific tissues or indirectly through leukocytes. Importantly, significant progress has been made in understanding how these receptors confer enhanced invasion and survival advantage during hematogenous circulation of CTCs through recruitment of macrophages, neutrophils, platelets, and other cells. This review highlights the identification of novel adhesion molecules and how blocking their function can compromise successful seeding and colonization of CTCs in new microenvironment. Encouraged by existing diagnostic tools to identify and isolate CTCs, strategic targeting of these adhesion molecules to deliver conventional chemotherapeutics or novel apoptotic signals is discussed for the neutralization of CTCs in the circulation. PMID:22837985

  17. Dynamic Surfaces for the Study of Mesenchymal Stem Cell Growth through Adhesion Regulation

    PubMed Central

    2016-01-01

    Out of their niche environment, adult stem cells, such as mesenchymal stem cells (MSCs), spontaneously differentiate. This makes both studying these important regenerative cells and growing large numbers of stem cells for clinical use challenging. Traditional cell culture techniques have fallen short of meeting this challenge, but materials science offers hope. In this study, we have used emerging rules of managing adhesion/cytoskeletal balance to prolong MSC cultures by fabricating controllable nanoscale cell interfaces using immobilized peptides that may be enzymatically activated to change their function. The surfaces can be altered (activated) at will to tip adhesion/cytoskeletal balance and initiate differentiation, hence better informing biological mechanisms of stem cell growth. Tools that are able to investigate the stem cell phenotype are important. While large phenotypical differences, such as the difference between an adipocyte and an osteoblast, are now better understood, the far more subtle differences between fibroblasts and MSCs are much harder to dissect. The development of technologies able to dynamically navigate small differences in adhesion are critical in the race to provide regenerative strategies using stem cells. PMID:27322014

  18. Sickle cell disease biochip: a functional red blood cell adhesion assay for monitoring sickle cell disease

    PubMed Central

    ALAPAN, YUNUS; KIM, CEONNE; ADHIKARI, ANIMA; GRAY, KAYLA E.; GURKAN-CAVUSOGLU, EVREN; LITTLE, JANE A.; GURKAN, UMUT A.

    2016-01-01

    Sickle cell disease (SCD) afflicts millions of people worldwide and is associated with considerable morbidity and mortality. Chronic and acute vaso-occlusion are the clinical hallmarks of SCD and can result in pain crisis, widespread organ damage, and early movtality. Even though the molecular underpinnings of SCD were identified more than 60 years ago, there are no molecular or biophysical markers of disease severity that are feasibly measured in the clinic. Abnormal cellular adhesion to vascular endothelium is at the root of vaso-occlusion. However, cellular adhesion is not currently evaluated clinically. Here, we present a clinically applicable microfluidic device (SCD biochip) that allows serial quantitative evaluation of red blood cell (RBC) adhesion to endothelium-associated protein-immobilized microchannels, in a closed and preprocessing-free system. With the SCD biochip, we have analyzed blood samples from more than 100 subjects and have shown associations between the measured RBC adhesion to endothelium-associated proteins (fibronectin and laminin) and individual RBC characteristics, including hemoglobin content, fetal hemoglobin concentration, plasma lactate dehydrogenase level, and reticulocyte count. The SCD biochip is a functional adhesion assay, reflecting quantitative evaluation of RBC adhesion, which could be used at baseline, during crises, relative to various long-term complications, and before and after therapeutic interventions. PMID:27063958

  19. Melanoma Cell Adhesion and Migration Is Modulated by the Uronyl 2-O Sulfotransferase

    PubMed Central

    Nikolovska, Katerina; Spillmann, Dorothe; Haier, Jörg; Ladányi, Andrea; Stock, Christian; Seidler, Daniela G.

    2017-01-01

    Although the vast majority of melanomas are characterized by a high metastatic potential, if detected early, melanoma can have a good prognostic outcome. However, once metastasised, the prognosis is bleak. We showed previously that uronyl-2-O sulfotransferase (Ust) and 2-O sulfation of chondroitin/dermatan sulfate (CS/DS) are involved in cell migration. To demonstrate an impact of 2-O sulfation in metastasis we knocked-down Ust in mouse melanoma cells. This significantly reduced the amount of Ust protein and enzyme activity. Furthermore, in vitro cell motility and adhesion were significantly reduced correlating with the decrease of cellular Ust protein. Single cell migration of B16VshUst(16) cells showed a decreased cell movement phenotype. The adhesion of B16V cells to fibronectin depended on α5β1 but not αvβ3 integrin. Inhibition of glycosaminoglycan sulfation or blocking fibroblast growth factor receptor (FgfR) reduced α5 integrin in B16V cell lines. Interestingly, FgfR1 expression and activation was reduced in Ust knock-down cells. In vivo, pulmonary metastasis of B16VshUst cells was prevented due to a reduction of α5 integrin. As a proof of concept UST knock-down in human melanoma cells also showed a reduction in ITGa5 and adhesion. This is the first study showing that Ust, and consequently 2-O sulfation of the low affinity receptor for FgfR CS/DS, reduces Itga5 and leads to an impaired adhesion and migration of melanoma cells. PMID:28107390

  20. OSTEOBLAST ADHESION OF BREAST CANCER CELLS WITH SCANNING ACOUSTIC MICROSCOPY

    SciTech Connect

    Chiaki Miyasaka; Robyn R. Mercer; Andrea M. Mastro; Ken L. Telschow

    2005-03-01

    Breast cancer frequently metastasizes to the bone. Upon colonizing bone tissue, the cancer cells stimulate osteoclasts (cells that break bone down), resulting in large lesions in the bone. The breast cancer cells also affect osteoblasts (cells that build new bone). Conditioned medium was collected from a bone-metastatic breast cancer cell line, MDA-MB-231, and cultured with an immature osteoblast cell line, MC3T3-E1. Under these conditions the osteoblasts acquired a changed morphology and appeared to adherer in a different way to the substrate and to each other. To characterize cell adhesion, MC3T3-E1 osteoblasts were cultured with or without MDA-MB-231 conditioned medium for two days, and then assayed with a mechanical scanning acoustic reflection microscope (SAM). The SAM indicated that in normal medium the MC3T3-E1 osteoblasts were firmly attached to their plastic substrate. However, MC3T3-E1 cells cultured with MDA-MB-231 conditioned medium displayed both an abnormal shape and poor adhesion at the substrate interface. The cells were fixed and stained to visualize cytoskeletal components using optical microscopic techniques. We were not able to observe these differences until the cells were quite confluent after 7 days of culture. However, using the SAM, we were able to detect these changes within 2 days of culture with MDA-MB-231 conditioned medium

  1. Cell adhesion to proteins separated by lithium dodecyl sulfate-polyacrylamide gel electrophoresis and blotted onto a polyvinylidene difluoride membrane: a new cell-blotting technique.

    PubMed

    Seshi, B

    1994-12-02

    Cell blotting, although conceptually simple, has failed to achieve wide practical application. Described here is a new cell-blotting technique which involves cell adhesion to protein bands after separation by lithium dodecyl sulfate-polyacrylamide gel electrophoresis (LDS-PAGE) and blotting onto polyvinylidene difluoride (PVDF) membrane at 4 degrees C. Cell bands adherent on PVDF are detected using hematoxylin, or propidium iodide (PI) staining followed by viewing under ultraviolet (UV) light. The technique allows quick microscopic visualization of adherent cells composing the bands, without requiring clearing of the membrane. Representative cell adhesion proteins from different sources, i.e., plant lectins (e.g., phytohemagglutinin, PHA; concanavalin A, ConA; and wheat germ agglutinin, WGA); extracellular matrix (ECM) proteins; and integral membrane proteins (e.g., recombinant soluble vascular cell adhesion molecule-1, rs VCAM-1) were tested for cell binding by the new cell-blotting technique using human lymphoid progenitor (NALM-6) and myeloid progenitor (KG1a) cell lines. Cell adhesion proteins retained their adhesion function in all cases tested. Specificity of cell binding on PVDF blot was demonstrated by inhibition of cell adhesion to WGA protein bands using an appropriate sugar, i.e., N-acetyl D-glucosamine. The cell blotting assay was comparable in sensitivity to Coomassie blue staining of protein bands. The ability to conduct protein extraction, separation and blotting at low temperature avoids thermal denaturation, thereby preserving the adhesion properties of the proteins. The electrophoretic/blotting system has unique detergent removal/protein renaturation properties and the ability to preserve functionally active adhesion protein complexes. The cell-blotting technique described is sufficiently robust for routine application in the investigation of novel cell adhesion proteins.

  2. PAK6 targets to cell–cell adhesions through its N-terminus in a Cdc42-dependent manner to drive epithelial colony escape

    PubMed Central

    Morse, Elizabeth M.; Sun, Xiaowen; Olberding, Jordan R.; Ha, Byung Hak; Boggon, Titus J.; Calderwood, David A.

    2016-01-01

    ABSTRACT The six serine/threonine kinases in the p21-activated kinase (PAK) family are important regulators of cell adhesion, motility and survival. PAK6, which is overexpressed in prostate cancer, was recently reported to localize to cell–cell adhesions and to drive epithelial cell colony escape. Here we report that PAK6 targeting to cell–cell adhesions occurs through its N-terminus, requiring both its Cdc42/Rac interactive binding (CRIB) domain and an adjacent polybasic region for maximal targeting efficiency. We find PAK6 localization to cell–cell adhesions is Cdc42-dependent, as Cdc42 knockdown inhibits PAK6 targeting to cell–cell adhesions. We further find the ability of PAK6 to drive epithelial cell colony escape requires kinase activity and is disrupted by mutations that perturb PAK6 cell–cell adhesion targeting. Finally, we demonstrate that all type II PAKs (PAK4, PAK5 and PAK6) target to cell–cell adhesions, albeit to differing extents, but PAK1 (a type I PAK) does not. Notably, the ability of a PAK isoform to drive epithelial colony escape correlates with its targeting to cell–cell adhesions. We conclude that PAKs have a broader role in the regulation of cell–cell adhesions than previously appreciated. PMID:26598554

  3. A transparent conductive adhesive laminate electrode for high-efficiency organic-inorganic lead halide perovskite solar cells.

    PubMed

    Bryant, Daniel; Greenwood, Peter; Troughton, Joel; Wijdekop, Maarten; Carnie, Mathew; Davies, Matthew; Wojciechowski, Konrad; Snaith, Henry J; Watson, Trystan; Worsley, David

    2014-11-26

    A self-adhesive laminate solar-cell electrode is presented based on a metal grid embedded in a polymer film (x-y conduction) and set in contact with the active layer using a pressure-sensitive adhesive containing a very low quantity (1.8%) of organic conductor, which self-organizes to provide z conduction to the grid. This ITO-free material performs in an identical fashion to evaporated gold in high-efficiency perovskite solar cells.

  4. Aurora kinase A mediates epithelial ovarian cancer cell migration and adhesion.

    PubMed

    Do, T-V; Xiao, F; Bickel, L E; Klein-Szanto, A J; Pathak, H B; Hua, X; Howe, C; O'Brien, S W; Maglaty, M; Ecsedy, J A; Litwin, S; Golemis, E A; Schilder, R J; Godwin, A K; Connolly, D C

    2014-01-30

    Aurora kinase A (AURKA) localizes to centrosomes and mitotic spindles where it mediates mitotic progression and chromosomal stability. Overexpression of AURKA is common in cancer, resulting in acquisition of alternate non-mitotic functions. In the current study, we identified a novel role for AURKA in regulating ovarian cancer cell dissemination and evaluated the efficacy of an AURKA-selective small molecule inhibitor, alisertib (MLN8237), as a single agent and combined with paclitaxel using an orthotopic xenograft model of epithelial ovarian cancer (EOC). Ovarian carcinoma cell lines were used to evaluate the effects of AURKA inhibition and overexpression on migration and adhesion. Pharmacological or RNA interference-mediated inhibition of AURKA significantly reduced ovarian carcinoma cell migration and adhesion and the activation-associated phosphorylation of the cytoskeletal regulatory protein SRC at tyrosine 416 (pSRC(Y416)). Conversely, enforced expression of AURKA resulted in increased migration, adhesion and activation of SRC in cultured cells. In vivo tumor growth and dissemination were inhibited by alisertib treatment as a single agent. Moreover, combination of alisertib with paclitaxel, an agent commonly used in treatment of EOC, resulted in more potent inhibition of tumor growth and dissemination compared with either drug alone. Taken together, these findings support a role for AURKA in EOC dissemination by regulating migration and adhesion. They also point to the potential utility of combining AURKA inhibitors with taxanes as a therapeutic strategy for the treatment of EOC patients.

  5. Screening of immunomodulatory and adhesive Lactobacillus with antagonistic activities against Salmonella from fermented vegetables.

    PubMed

    Feng, Junchang; Liu, Pilong; Yang, Xin; Zhao, Xin

    2015-12-01

    The purpose of this study was to select strains of lactic acid bacteria (LAB) by their in vitro adhesive and immunomodulatory properties for potential use as probiotics. In this study, 16 randomly selected LAB strains from fermented vegetables (sauerkraut, bean and cabbage) were first screened for their tolerance to acid, bile salts, pepsin and pancreatin, bacterial inhibitory activities and abilities to adherence to Caco-2 cells. Then, 4 strains with the highest adhesion abilities were selected for further studies of their immunomodulatory properties and inhibitory effects against Salmonella adhesion and invasion to Caco-2 cells in vitro. The results showed that these 16 LAB strains effectively survived in simulated gastrointestinal condition and inhibited growth of six tested pathogens. Lactobacillus rhamnosus P1, Lactobacillus plantarum P2, Lactobacillus rhamnosus P3 and Lactobacillus casei P4 had the highest abilities to adhere to Caco-2 cells. Furthermore, L. plantarum P2 strain showed higher abilities to induce expression of tumor necrosis factor-α and interleukin-12 by splenic monocytes and strongly inhibited the adhesion and invasion of S. enteritidis ATCC13076 to Caco-2 cells. These results suggest that Lactobacillus strains P2 could be used as a probiotic candidate in food against Salmonella infection.

  6. Epidermal growth factor receptor targeting alters gene expression and restores the adhesion function of cancerous cells as measured by single cell force spectroscopy.

    PubMed

    Azadi, Shohreh; Tafazzoli-Shadpour, Mohammad; Omidvar, Ramin; Moradi, Lida; Habibi-Anbouhi, Mahdi

    2016-12-01

    Loss of cell-cell adhesion function is a common characteristic of many human epithelial carcinomas that is frequently due to loss of E-cadherin expression. In cancer progression, loss of E-cadherin is associated with invasion and metastasis potential, hence restoration of its function may contribute to the metastasis inhibition. This study examined effect of Epidermal Growth Factor Receptor (EGFR/Her1) blockade on the E-cadherin expression, cellular adherence, and cell elasticity in two human epithelial cancer cell lines, MCF7 and A431. EGFR blocking agents as antibodies or small molecules target EGFR directly. Furthermore, due to intracellular signaling pathways they influence cell behavior and activities. The idea here is to investigate the effect of reduced activity of this signaling pathway using anti-EGFR Antibody (Cetuximab) and tyrosine kinase inhibitor (Lapatinib) on cell-cell adhesion and cell mechanical properties. Real-Time PCR analysis demonstrated that treatment of cells with considered drugs increased the expression of E-cadherin gene among samples. The atomic force microscopy-based single cell force spectroscopy technique was used to measure adhesive force of cancerous cells. Results indicated that inhibition of EGFR activity elevated cell-cell adhesion force, accompanied by stiffening of the cell bodies. In summary, Cetuximab and Lapatinib have been found to mediate cell-cell adhesion by restoration of E-cadherin expression and function. Our data suggest possible therapeutic potential for inhibition of metastasis via the blockade of EGFR signaling.

  7. Netrin-4 promotes mural cell adhesion and recruitment to endothelial cells

    PubMed Central

    2014-01-01

    Netrins are secreted molecules involved in axon guidance and angiogenesis. We previously showed that Netrin-4 acts as an anti-angiogenic factor by inhibiting endothelial cell (EC) functions. In this study, we investigated the effects of Netrin-4 on vascular smooth muscle cell (VSMC) activity in vitro and in vivo. We show that exogenous Netrin-4 stimulated VSMC adhesion and migration, and increased their coverage on EC tubes (grown on a Matrigel substrate). siRNA knock-down of endogenous Netrin-4 expression in VSMC decreased their recruitment to EC tubes. VSMC expressed Netrin-4 and three of the six Netrin-1 cognate receptors: DCC, Neogenin, and Unc5B. Silencing of these receptors reduced Netrin-4 adhesion to VSMC, strongly suggesting that these receptors were involved in the recruitment process. We previously showed that Netrin-4 overexpression in PC3 cancer cells delayed tumor growth in a model of subcutaneous xenograft by reducing tumor vessel density. Here, we show that Netrin-4 overexpression improved tumor blood vessel structure and increased VSMC coverage. Thus, Netrin-4 induced mural cell recruitment may play a role in the inhibition of tumor growth. Our data suggest that Netrin-4 is important for blood vessel normalization through the regulation of both endothelial and perivascular cells. PMID:24472220

  8. Plakophilin 2 Affects Cell Migration by Modulating Focal Adhesion Dynamics and Integrin Protein Expression

    PubMed Central

    Koetsier, Jennifer L.; Amargo, Evangeline V.; Todorović, Viktor; Green, Kathleen J.; Godsel, Lisa M.

    2014-01-01

    Plakophilin 2 (PKP2), a desmosome component, modulates the activity and localization of the small GTPase RhoA at sites of cell–cell contact. PKP2 regulates cortical actin rearrangement during junction formation, and its loss is accompanied by an increase in actin stress fibers. We hypothesized that PKP2 may regulate focal adhesion dynamics and cell migration. Here we show that PKP2-deficient cells bind efficiently to the extracellular matrix, but upon spreading display total cell areas ~30% smaller than control cells. Focal adhesions in PKP2-deficient cells are ~2× larger and more stable than in control cells, and vinculin displays an increased time for fluorescence recovery after photobleaching. Furthermore, β4 and β1 integrin protein and mRNA expression is elevated in PKP2-silenced cells. Normal focal adhesion phenotypes can be restored in PKP2-null cells by dampening the RhoA pathway or silencing β1 integrin. However, integrin expression levels are not restored by RhoA signaling inhibition. These data uncover a potential role for PKP2 upstream of β1 integrin and RhoA in integrating cell–cell and cell–substrate contact signaling in basal keratinocytes necessary for the morphogenesis, homeostasis, and reepithelialization of the stratified epidermis. PMID:23884246

  9. [Effects of crocetin on VCAM-1 expression in human umbilical vein endothelial cells and monocyte-endothelial cell adhesion].

    PubMed

    Zheng, Shu-guo; Zhao, Meng-qiu; Ren, You-nan; Yang, Jie-ren; Qian, Zhi-yu

    2015-01-01

    Crocetin, a naturally occurring carotenoid, possesses antioxidant and antiatherosclerotic properties, of which the underlying mechanism remains unclear. In the present study, we examined the effects of crocetin (0.1, 1, 10 μmol·L(-1)) on angiotensin II (Ang II, 0.1 μmol·L(-1)) induced expression of vascular cell adhesion molecule-1 (VCAM-1) in human umbilical vein endothelial cells (HUVECs) and monocyte-endothelial cell adhesion. The effects of crocetin on the activation of nuclear factor kappa B (NF-κB) and intracellular reactive oxygen species (ROS) were also observed. The results demonstrated that crocetin notably suppressed Ang II induced NF-κB activation (P<0.01) and VCAM-1 expression (P<0.05, P<0.01) in HUVECs, accompanied by a markedly reduced monocyte-endothelial cell adhesion (P<0.05, P<0.01). In addition, preincubation with crocetin resulted in a significant enhancement of cellular antioxidant capacity (P<0.05, P<0.01), while Ang II induced intracellular ROS decreased markedly (P<0.05, P<0.01). These results indicated that crocetin was capable of suppressing Ang II induced VCAM-1 expression and monocyte-endothelial cell adhesion by suppression of NF-κB activation, which might be derived from the enhancement of antioxidant capacity and subsequent reduction of intracellular ROS.

  10. Phosphoinositide lipid phosphatase SHIP1 and PTEN coordinate to regulate cell migration and adhesion.

    PubMed

    Mondal, Subhanjan; Subramanian, Kulandayan K; Sakai, Jiro; Bajrami, Besnik; Luo, Hongbo R

    2012-04-01

    The second messenger phosphatidylinositol(3,4,5)P(3) (PtdIns(3,4,5)P(3)) is formed by stimulation of various receptors, including G protein-coupled receptors and integrins. The lipid phosphatases PTEN and SHIP1 are critical in regulating the level of PtdIns(3,4,5)P(3) during chemotaxis. Observations that loss of PTEN had minor and loss of SHIP1 resulted in a severe chemotaxis defect in neutrophils led to the belief that SHIP1 rather than PTEN acts as a predominant phospholipid phosphatase in establishing a PtdIns(3,4,5)P(3) compass. In this study, we show that SHIP1 regulates PtdIns(3,4,5)P(3) production in response to cell adhesion and plays a limited role when cells are in suspension. SHIP1((-)/(-)) neutrophils lose their polarity upon cell adhesion and are extremely adherent, which impairs chemotaxis. However, chemo-taxis can be restored by reducing adhesion. Loss of SHIP1 elevates Akt activation following cell adhesion due to increased PtdIns(3,4,5)P(3) production. From our observations, we conclude that SHIP1 prevents formation of top-down PtdIns(3,4,5)P(3) polarity to facilitate proper cell attachment and detachment during chemotaxis.

  11. Nano-clustering of ligands on surrogate antigen presenting cells modulates T cell membrane adhesion and organization.

    PubMed

    Dillard, Pierre; Pi, Fuwei; Lellouch, Annemarie C; Limozin, Laurent; Sengupta, Kheya

    2016-03-14

    We investigate the adhesion and molecular organization of the plasma membrane of T lymphocytes interacting with a surrogate antigen presenting cell comprising glass supported ordered arrays of antibody (α-CD3) nano-dots dispersed in a non-adhesive matrix of polyethylene glycol (PEG). The local membrane adhesion and topography, as well as the distribution of the T cell receptors (TCRs) and the kinase ZAP-70, are influenced by dot-geometry, whereas the cell spreading area is determined by the overall average density of the ligands rather than specific characteristics of the dots. TCR clusters are recruited preferentially to the nano-dots and the TCR cluster size distribution has a weak dot-size dependence. On the patterns, the clusters are larger, more numerous, and more enriched in TCRs, as compared to the homogeneously distributed ligands at comparable concentrations. These observations support the idea that non-ligated TCRs residing in the non-adhered parts of the proximal membrane are able to diffuse and enrich the existing clusters at the ligand dots. However, long distance transport is impaired and cluster centralization in the form of a central supramolecular cluster (cSMAC) is not observed. Time-lapse imaging of early cell-surface contacts indicates that the ZAP-70 microclusters are directly recruited to the site of the antibody dots and this process is concomitant with membrane adhesion. These results together point to a complex interplay of adhesion, molecular organization and activation in response to spatially modulated stimulation.

  12. Amygdalin blocks the in vitro adhesion and invasion of renal cell carcinoma cells by an integrin-dependent mechanism.

    PubMed

    Juengel, Eva; Afschar, Masud; Makarević, Jasmina; Rutz, Jochen; Tsaur, Igor; Mani, Jens; Nelson, Karen; Haferkamp, Axel; Blaheta, Roman A

    2016-03-01

    Information about the natural compound amygdalin, which is employed as an antitumor agent, is sparse and thus its efficacy remains controversial. In this study, to determine whether amygdalin exerts antitumor effects on renal cell carcinoma (RCC) cells, its impact on RCC metastatic activity was investigated. The RCC cell lines, Caki-1, KTC-26 and A498, were exposed to amygdalin from apricot kernels, and adhesion to human vascular endothelium, immobilized collagen or fibronectin was investigated. The influence of amygdalin on chemotactic and invasive activity was also determined, as was the influence of amygdalin on surface and total cellular α and β integrin expression, which are involved in metastasis. We noted that amygdalin caused significant reductions in chemotactic activity, invasion and adhesion to endothelium, collagen and fibronectin. Using FACScan analysis, we noted that amygdalin also induced reductions, particularly in integrins α5 and α6, in all three cell lines. Functional blocking of α5 resulted in significantly diminished adhesion of KTC-26 and A498 to collagen and also in decreased chemotactic behavior in all three cell lines. Blocking α6 integrin significantly reduced chemotactic activity in all three cell lines. Thus, we suggest that exposing RCC cells to amygdalin inhibits metastatic spread and is associated with downregulation of α5 and α6 integrins. Therefore, we posit that amygdalin exerts antitumor activity in vitro, and this may be linked to integrin regulation.

  13. Regulation of tensin-promoted cell migration by its focal adhesion binding and Src homology domain 2.

    PubMed Central

    Chen, Huaiyang; Lo, Su Hao

    2003-01-01

    Tensin1 is an actin- and phosphotyrosine-binding protein that localizes to focal adhesions. Recently, we have shown that both tensin1 and a new family member, tensin2, promote cell migration [Chen, Duncan, Bozorgchami and Lo (2002) Proc. Natl. Acad. Sci. U.S.A. 99, 733-738]. Since localization of proteins to particular intracellular compartments often regulates their functions, and Src homology domain 2 may mediate signals related to cell migration, we hypothesize that tensin-mediated cell migration is regulated by the focal adhesion localization and the Src homology domain 2 of tensin. To test this hypothesis, we have analysed the effects of a series of tensin1 mutants on cell migration. Our results have shown that (1) tensin1 contains two focal adhesion-binding sites, (2) the wild-type tensin1 significantly promotes cell migration, (3) mutants with one focal adhesion-binding site do not promote cell migration, (4) the non-focal adhesion localized mutant suppresses cell migration and (5) the mutant that is not able to bind to phosphotyrosine-containing proteins has no effect on cell migration. These results have indicated that focal adhesion localization of tensin1 and the phosphotyrosine-binding activity are two critical factors in regulating tensin-mediated cell migration. PMID:12495434

  14. Evaluating fundamental position-dependent differences in wood cell wall adhesion using nanoindentation.

    PubMed

    Obersriebnig, Michael; Konnerth, Johannes; Gindl-Altmutter, Wolfgang

    2013-01-01

    Spruce wood specimens were bonded with one-component polyurethane (PUR) and urea-formaldehyde (UF) adhesive, respectively. The adhesion of the adhesives to the wood cell wall was evaluated at two different locations by means of a new micromechanical assay based on nanoindentation. One location tested corresponded to the interface between the adhesive and the natural inner cell wall surface of the secondary cell wall layer 3 (S3), whereas the second location corresponded to the interface between the adhesive and the freshly cut secondary cell wall layer 2 (S2). Overall, a trend towards reduced cell wall adhesion was found for PUR compared to UF. Position-resolved examination revealed excellent adhesion of UF to freshly cut cell walls (S2) but significantly diminished adhesion to the inner cell wall surface (S3). In contrast, PUR showed better adhesion to the inner cell wall surface and less adhesion to freshly cut cell walls. Atomic force microscopy revealed a less polar character for the inner cell wall surface (S3) compared to freshly cut cell walls (S2). It is proposed that differences in the polarity of the used adhesives and the surface chemistry of the two cell wall surfaces examined account for the observed trends.

  15. Lateral adhesion drives reintegration of misplaced cells into epithelial monolayers

    PubMed Central

    St Johnston, Daniel

    2016-01-01

    Cells in simple epithelia orient their mitotic spindles in the plane of the epithelium so that both daughter cells are born within the epithelial sheet. This is assumed to be important to maintain epithelial integrity and prevent hyperplasia, because misaligned divisions give rise to cells outside the epithelium1,2. Here we test this assumption in three types of Drosophila epithelia; the cuboidal follicle epithelium, the columnar early embryonic ectoderm, and the pseudostratified neuroepithelium. Ectopic expression of Inscuteable in these tissues reorients mitotic spindles, resulting in one daughter cell being born outside of the epithelial layer. Live imaging reveals that these misplaced cells reintegrate into the tissue. Reducing the levels of the lateral homophilic adhesion molecules Neuroglian or Fasciclin 2 disrupts reintegration, giving rise to extra-epithelial cells, whereas disruption of adherens junctions has no effect. Thus, the reinsertion of misplaced cells appears to be driven by lateral adhesion, which pulls cells born outside the epithelia layer back into it. Our findings reveal a robust mechanism that protects epithelia against the consequences of misoriented divisions. PMID:26414404

  16. Inhibition by Tyroserleutide (YSL) on the Invasion and Adhesion of the Mouse Melanoma Cell

    PubMed Central

    Yao, Zhi; Che, Xu-chun; Lu, Rong; Zheng, Min-na; Zhu, Zhi-feng; Li, Jin-ping; Jian, Xu; Shi, Lin-xi; Liu, Jun-yan; Gao, Wen-yuan

    2007-01-01

    Tyroserleutide (YSL) is an active, low-molecular-weight polypeptide, comprised of three amino acids, that has shown antitumor effects on human hepatocarcinoma BEL-7402 in vitro and in vivo. In this study, we evaluated the inhibition of YSL on invasion and adhesion of the mouse B16-F10 melanoma cell line by injecting B16-F10 cells into the tail veins of C57BL/6 mice to establish an experimental lung metastasis model. YSL inhibited B16-F10 cell metastasis to lung, reducing the number and area of metastasis lesions. When we treated B16-F10 cells with YSL (0.01, 0.1, 1, 10, or 100 μg/mL) in vitro, we found that YSL inhibited the proliferation of B16-F10 cells with a 28.11% rate of inhibition. YSL significantly decreased the adhesiveness of B16-F10 cells to Matrigel with a 29.15% inhibition rate; YSL also significantly inhibited the invasion of B16-F10 cells, producing an inhibition of 35.31%. By analyses with Western blot and real-time RT-PCR, we found that YSL markedly inhibited the expression of ICAM-1 in B16-F10 cells. These data suggest that YSL inhibits the growth, invasion, and adhesion of B16-F10 cells. PMID:17515953

  17. Integrin engagement mediates tyrosine dephosphorylation on platelet-endothelial cell adhesion molecule 1.

    PubMed Central

    Lu, T T; Yan, L G; Madri, J A

    1996-01-01

    Platelet-endothelial cell adhesion molecule 1 (PECAM-1, CD31) is a 130-kDa member of the immunoglobulin gene superfamily expressed on endothelial cells, platelets, neutrophils, and monocytes and plays a role during endothelial cell migration. Phosphoamino acid analysis and Western blot analysis with anti-phosphotyrosine antibody show that endothelial PECAM-1 is tyrosine-phosphorylated. Phosphorylation is decreased with endothelial cell migration on fibronectin and collagen and with cell spreading on fibronectin but not on plastic. Cell adhesion on anti-integrin antibodies is also able to specifically induce PECAM-1 dephosphorylation while concurrently inducing pp125 focal adhesion kinase phosphorylation. Inhibition of dephosphorylation with sodium orthovanadate suggests that this effect is at least partially mediated by phosphatase activity. Tyr-663 and Tyr-686 are identified as potential phosphorylation sites and mutated to phenylalanine. When expressed, both mutants show reduced PECAM-1 phosphorylation but Phe-686 mutants also show significant reversal of PECAM-1-mediated inhibition of cell migration and do not localize PECAM-1 to cell borders. Our results suggest that beta 1-integrin engagement can signal to dephosphorylate PECAM-1 and that this signaling pathway may play a role during endothelial cell migration. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:8876219

  18. Rutin inhibits proliferation, attenuates superoxide production and decreases adhesion and migration of human cancerous cells.

    PubMed

    Ben Sghaier, Mohamed; Pagano, Alessandra; Mousslim, Mohamed; Ammari, Youssef; Kovacic, Hervé; Luis, José

    2016-12-01

    Lung and colorectal cancer are the principal causes of death in the world. Rutin, an active flavonoid compound, is known for possessing a wide range of biological activities. In this study, we examined the effect of rutin on the viability, superoxide anion production, adhesion and migration of human lung (A549) and colon (HT29 and Caco-2) cancer cell lines. In order to control the harmlessness of the tested concentrations of rutin, the viability of cancer cell lines was assessed using a 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay. ROS generation was measured by lucigenin chemiluminescence detecting superoxide ions. To investigate the effect of rutin on the behavior of human lung and colon cancer cell lines, we performed adhesion assays, using various purified extracellular matrix (ECM) proteins. Finally, in vitro cell migration assays were explored using modified Boyden chambers. The viability of cancerous cells was inhibited by rutin. It also significantly attenuated the superoxide production in HT29 cells. In addition, rutin affected adhesion and migration of A549 and HT29 cell. These findings indicate that rutin, a natural molecule, might have potential as anticancer agent against lung and colorectal carcinogenesis.

  19. A new strategy to measure intercellular adhesion forces in mature cell-cell contacts

    PubMed Central

    Sancho, Ana; Vandersmissen, Ine; Craps, Sander; Luttun, Aernout; Groll, Jürgen

    2017-01-01

    Intercellular adhesion plays a major role in tissue development and homeostasis. Yet, technologies to measure mature cell-cell contacts are not available. We introduce a methodology based on fluidic probe force microscopy to assess cell-cell adhesion forces after formation of mature intercellular contacts in cell monolayers. With this method we quantify that L929 fibroblasts exhibit negligible cell-cell adhesion in monolayers whereas human endothelial cells from the umbilical artery (HUAECs) exert strong intercellular adhesion forces per cell. We use a new in vitro model based on the overexpression of Muscle Segment Homeobox 1 (MSX1) to induce Endothelial-to-Mesenchymal Transition (EndMT), a process involved in cardiovascular development and disease. We reveal how intercellular adhesion forces in monolayer decrease significantly at an early stage of EndMT and we show that cells undergo stiffening and flattening at this stage. This new biomechanical insight complements and expands the established standard biomolecular analyses. Our study thus introduces a novel tool for the assessment of mature intercellular adhesion forces in a physiological setting that will be of relevance to biological processes in developmental biology, tissue regeneration and diseases like cancer and fibrosis. PMID:28393890

  20. Expression of adhesion molecules and chemotactic cytokines in cultured human mesothelial cells.

    PubMed

    Jonjić, N; Peri, G; Bernasconi, S; Sciacca, F L; Colotta, F; Pelicci, P; Lanfrancone, L; Mantovani, A

    1992-10-01

    The mesothelium is a flat epithelial lining of serous cavities that could gate the traffic of molecules and cells between the circulation and these body compartments. The present study was designed to elucidate the capacity of mesothelial cells to express adhesion molecules and chemoattractant cytokines, two fundamental mechanisms of regulation of leukocyte recruitment. Cultured human mesothelial cells express appreciable levels of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), and these were increased by in vitro exposure to tumor necrosis factor (TNF), interferon gamma (IFN-gamma), or TNF and IFN-gamma. Interleukin 1 (IL-1) was a less consistent stimulus for adhesion molecule expression in vitro. Unlike endothelial cells, used as a reference cell population, resting or stimulated mesothelial cells did not express E-selectin and ICAM-2, as assessed by flow cytometry. Analysis of VCAM-1 mRNA by reverse transcriptase and polymerase chain reaction using appropriate primers revealed that mesothelial cells expressed both the seven- and the six-Ig domain transcripts, with predominance of the longer species. Monocytes bound appreciably to "resting" and, to a greater extent, to stimulated mesothelial cells. Monocytes exposed to IFN-gamma and lipopolysaccharide, used as prototypic activation signals, showed increased capacity to bind mesothelial cells. Anti-CD18 monoclonal antibody significantly inhibited binding of monocytes to mesothelial cells, and this blocking effect was amplified by anti-very late antigen 4. Mesothelial cells were able to express the chemotactic cytokines IL-8 and monocyte chemotactic protein 1 at the mRNA and protein levels. These results indicate that mesothelial cells can express a set of adhesion molecules (ICAM-1 and VCAM-1) overlapping with, but distinct from, that expressed in vascular endothelium (ICAM-1, ICAM-2, VCAM-1, E-selectin), and that these are functionally relevant for interacting with

  1. The induction of 72-kD gelatinase in T cells upon adhesion to endothelial cells is VCAM-1 dependent

    PubMed Central

    1994-01-01

    T cell extravasation from the bloodstream into the perivascular tissue during inflammation involves transmigration through the endothelial cell layer and basement membrane into the interstitial matrix. The specific mechanisms by which T cells transmigrate, however, are poorly understood. Matrix degradation by enzymes such as 72-kD gelatinase has been implicated as an important component in tissue invasion by various types of cells. In this study, we have demonstrated that 72-kD gelatinase is induced in T cells upon adhesion to endothelial cells. We also provide evidence that the induction of 72-kD gelatinase is mediated by binding to vascular cell adhesion molecule-1 (VCAM-1). The T cells used in this study were cloned murine Th1 cells antigenic to myelin basic protein. These cells express very late antigen-4 on their cell surface and have been shown to infiltrate the brain parenchyma and cause experimental autoimmune encephalomyelitis when infused into normal mice (Baron, J. L., J. A. Madri, N. H. Ruddle, G. Hashim, and C. A. Janeway. 1993. J. Exp. Med. 177:57-68). In the experiments presented here, T cells were cocultured with VCAM-1-positive and -negative endothelial cells grown in a monolayer in order to study the expression of 72-kD gelatinase upon T cell adhesion. Additional experiments were conducted in which T cells were cocultured with VCAM-1 positive cells grown on microporous membranes suspended in transwells to study 72-kD gelatinase following T cell transmigration. T cells were also incubated with recombinant VCAM-1 in order to study the role of VCAM-1 in inducing 72-kD gelatinase. The results demonstrated that T cells adhered to both VCAM-1-positive and -negative endothelial cells. T cells that adhered to the VCAM-1-positive endothelial cells exhibited an induction in 72-kD gelatinase protein, activity, and mRNA whereas 72- kD gelatinase was not induced in the T cells that adhered to the VCAM-1- negative endothelial cells. Incubating T cells with

  2. Polyelectrolytes Multilayers to Modulate Cell Adhesion: A Study of the Influence of Film Composition and Polyelectrolyte Interdigitation on the Adhesion of the A549 Cell Line.

    PubMed

    Muzzio, Nicolás E; Pasquale, Miguel A; Gregurec, Danijela; Diamanti, Eleftheria; Kosutic, Marija; Azzaroni, Omar; Moya, Sergio E

    2016-04-01

    Polyelectrolyte multilayers (PEMs) with different polycation/polyanion pairs are fabricated by the layer-by-layer technique employing synthetic, natural, and both types of polyelectrolytes. The impact of the chemical composition of PEMs on cell adhesion is assessed by studying cell shape, spreading area, focal contacts, and cell proliferation for the A549 cell line. Cells exhibit good adhesion on PEMs containing natural polycations and poly(sodium 4-styrenesulfonate) (PSS) as polyanion, but limited adhesion is observed on PEMs fabricated from both natural polyelectrolytes. PEMs are then assembled, depositing a block of natural polyelectrolytes on top of a stiffer block with PSS as polyanion. Cell adhesion is enhanced on top of the diblock PEMs compared to purely natural PEMs. This fact could be explained by the interdigitation between polyelectrolytes from the two blocks. Diblock PEM assembly provides a simple means to tune cell adhesion on biocompatible PEMs.

  3. Control of high affinity interactions in the talin C terminus: how talin domains coordinate protein dynamics in cell adhesions.

    PubMed

    Himmel, Mirko; Ritter, Anett; Rothemund, Sven; Pauling, Björg V; Rottner, Klemens; Gingras, Alexandre R; Ziegler, Wolfgang H

    2009-05-15

    In cell-extracellular matrix junctions (focal adhesions), the cytoskeletal protein talin is central to the connection of integrins to the actin cytoskeleton. Talin is thought to mediate this connection via its two integrin, (at least) three actin, and several vinculin binding sites. The binding sites are cryptic in the head-to-rod autoinhibited cytoplasmic form of the protein and require (stepwise) conformational activation. This activation process, however, remains poorly understood, and there are contradictory models with respect to the determinants of adhesion site localization. Here, we report turnover rates and protein-protein interactions in a range of talin rod domain constructs varying in helix bundle structure. We conclude that several bundles of the C terminus cooperate to regulate targeting and concomitantly tailor high affinity interactions of the talin rod in cell adhesions. Intrinsic control of ligand binding activities is essential for the coordination of adhesion site function of talin.

  4. Regulation of Epithelial-Mesenchymal Transition in Breast Cancer Cells by Cell Contact and Adhesion

    PubMed Central

    Cichon, Magdalena A; Nelson, Celeste M; Radisky, Derek C

    2015-01-01

    Epithelial-mesenchymal transition (EMT) is a physiological program that is activated during cancer cell invasion and metastasis. We show here that EMT-related processes are linked to a broad and conserved program of transcriptional alterations that are influenced by cell contact and adhesion. Using cultured human breast cancer and mouse mammary epithelial cells, we find that reduced cell density, conditions under which cell contact is reduced, leads to reduced expression of genes associated with mammary epithelial cell differentiation and increased expression of genes associated with breast cancer. We further find that treatment of cells with matrix metalloproteinase-3 (MMP-3), an inducer of EMT, interrupts a defined subset of cell contact-regulated genes, including genes encoding a variety of RNA splicing proteins known to regulate the expression of Rac1b, an activated splice isoform of Rac1 known to be a key mediator of MMP-3-induced EMT in breast, lung, and pancreas. These results provide new insights into how MMPs act in cancer progression and how loss of cell–cell interactions is a key step in the earliest stages of cancer development. PMID:25698877

  5. Enhanced cell viability and cell adhesion using low conductivity medium for negative dielectrophoretic cell patterning.

    PubMed

    Puttaswamy, Srinivasu Valagerahally; Sivashankar, Shilpa; Chen, Rong-Jhe; Chin, Chung-Kuang; Chang, Hwan-You; Liu, Cheng Hsien

    2010-10-01

    Negative dielectrophoretic (n-DEP) cell manipulation is an efficient way to pattern human liver cells on micro-electrode arrays. Maintaining cell viability is an important objective for this approach. This study investigates the effect of low conductivity medium and the optimally designed microchip on cell viability and cell adhesion. To explore the influence of conductivity on cell viability and cell adhesion, we have used earlier reported dielectrophoresis (DEP) buffer with a conductivity of 10.2 mS/m and three formulated media with conductivity of 9.02 (M1), 8.14 (M2), 9.55 (M3) mS/m. The earlier reported isotonic sucrose/dextrose buffer (DEP buffer) used for DEP manipulation has the drawback of poor cell adhesion and cell viability. A microchip prototype with well-defined positioning of titanium electrode arrays was designed and fabricated on a glass substrate. The gap between the radial electrodes was accurately determined to achieve good cell patterning performance. Parameters such as dimension of positioning electrode, amplitude, and frequency of voltage signal were investigated to optimize the performance of the microchip.

  6. Heme oxygenase-1 inhibits the expression of adhesion molecules associated with endothelial cell activation via inhibition of NF-kappaB RelA phosphorylation at serine 276.

    PubMed

    Seldon, Mark P; Silva, Gabriela; Pejanovic, Nadja; Larsen, Rasmus; Gregoire, Isabel Pombo; Filipe, Josina; Anrather, Josef; Soares, Miguel P

    2007-12-01

    Heme oxygenase-1 (HO-1; encoded by the Hmox1 gene) catalyzes the degradation of free heme into biliverdin, via a reaction that releases iron (Fe) and carbon monoxide. We report that HO-1 down-regulates the proinflammatory phenotype associated with endothelial cell (EC) activation by reducing intracellular nonprotein-bound Fe (labile Fe). EC isolated from Hmox1(-/-) mice have higher levels of intracellular labile Fe and reactive oxygen species (ROS) as compared with EC isolated from Hmox1(+/+) mice. Basal and TNF-induced expression of VCAM-1, ICAM-1, and E-selectin were increased in Hmox1(-/-) vs Hmox1(+/+) EC, an effect reversed by Fe chelation using deferoxamine mesylate (DFO). Fe chelation inhibits TNF-driven transcription of Vcam-1, Icam-1, and E-selectin, as assessed using luciferase reporter assays. This effect is associated with inhibition of the transcription factor NF-kappaB via a mechanism that is not associated with the inhibition of IkappaBalpha phosphorylation/degradation or NF-kappaB (i.e., RelA) nuclear translocation, although it affects very modestly NF-kappaB binding to DNA kappaB consensus sequences in the Vcam-1 and E-selectin promoters. HO-1 inhibits NF-kappaB (i.e., RelA) phosphorylation at Ser(276), a phosphoacceptor that is critical to sustain TNF-driven NF-kappaB activity in EC. This effect was mimicked by Fe chelation as well as by antioxidants (N-acetylcysteine). In conclusion, we demonstrate a novel mechanism via which HO-1 down-modulates the proinflammatory phenotype of activated EC, i.e., the inhibition of RelA phosphorylation at Ser(276).

  7. Biphasic functions of the kinase-defective Ephb6 receptor in cell adhesion and migration.

    PubMed

    Matsuoka, Hiroshi; Obama, Hiroya; Kelly, Meghan L; Matsui, Toshimitsu; Nakamoto, Masaru

    2005-08-12

    EphB6 is a unique member in the Eph family of receptor tyrosine kinases in that its kinase domain contains several alterations in conserved amino acids and is catalytically inactive. Although EphB6 is expressed both in a variety of embryonic and adult tissues, biological functions of this receptor are largely unknown. In the present study, we examined the function of EphB6 in cell adhesion and migration. We demonstrated that EphB6 exerted biphasic effects in response to different concentrations of the ephrin-B2 ligand; EphB6 promoted cell adhesion and migration when stimulated with low concentrations of ephrin-B2, whereas it induced repulsion and inhibited migration upon stimulation with high concentrations of ephrin-B2. A truncated EphB6 receptor lacking the cytoplasmic domain showed monophasic-positive effects on cell adhesion and migration, indicating that the cytoplasmic domain is essential for the negative effects. EphB6 is constitutively associated with the Src family kinase Fyn. High concentrations of ephrin-B2 induced tyrosine phosphorylation of EphB6 through an Src family kinase activity. These results indicate that EphB6 can both positively and negatively regulate cell adhesion and migration, and suggest that tyrosine phosphorylation of the receptor by an Src family kinase acts as the molecular switch for the functional transition.

  8. The oxidase activity of vascular adhesion protein-1 (VAP-1) is essential for function.

    PubMed

    Noonan, Thomas; Lukas, Susan; Peet, Gregory W; Pelletier, Josephine; Panzenbeck, Mark; Hanidu, Adedayo; Mazurek, Suzanne; Wasti, Ruby; Rybina, Irina; Roma, Teresa; Kronkaitis, Anthony; Shoultz, Alycia; Souza, Donald; Jiang, Huiping; Nabozny, Gerald; Modis, Louise Kelly

    2013-01-01

    Vascular adhesion protein-1 (VAP-1) has been implicated in the pathogenesis of inflammatory diseases and is suggested to play a role in immune cell trafficking. It is not clear whether this effect is mediated by the oxidase activity or by other features of the protein such as direct adhesion. In order to study the role of VAP-1 oxidase activity in vivo, we have generated mice carrying an oxidase activity-null VAP-1 protein. We demonstrate that the VAP-1 oxidase null mutant mice have a phenotype similar to the VAP-1 null mice in animal models of sterile peritonitis and antibody induced arthritis suggesting that the oxidase activity is responsible for the inflammatory function of VAP-1.

  9. The oxidase activity of vascular adhesion protein-1 (VAP-1) is essential for function

    PubMed Central

    Noonan, Thomas; Lukas, Susan; Peet, Gregory W; Pelletier, Josephine; Panzenbeck, Mark; Hanidu, Adedayo; Mazurek, Suzanne; Wasti, Ruby; Rybina, Irina; Roma, Teresa; Kronkaitis, Anthony; Shoultz, Alycia; Souza, Donald; Jiang, Huiping; Nabozny, Gerald; Modis, Louise Kelly

    2013-01-01

    Vascular adhesion protein-1 (VAP-1) has been implicated in the pathogenesis of inflammatory diseases and is suggested to play a role in immune cell trafficking. It is not clear whether this effect is mediated by the oxidase activity or by other features of the protein such as direct adhesion. In order to study the role of VAP-1 oxidase activity in vivo, we have generated mice carrying an oxidase activity-null VAP-1 protein. We demonstrate that the VAP-1 oxidase null mutant mice have a phenotype similar to the VAP-1 null mice in animal models of sterile peritonitis and antibody induced arthritis suggesting that the oxidase activity is responsible for the inflammatory function of VAP-1. PMID:23885334

  10. Heparin prevents intracellular hyaluronan synthesis and autophagy responses in hyperglycemic dividing mesangial cells and activates synthesis of an extensive extracellular monocyte-adhesive hyaluronan matrix after completing cell division.

    PubMed

    Wang, Aimin; Ren, Juan; Wang, Christina P; Hascall, Vincent C

    2014-03-28

    Growth-arrested rat mesangial cells (RMCs) at a G0/G1 interphase stimulated to divide in hyperglycemic medium initiate intracellular hyaluronan synthesis that induces autophagy/cyclin D3-induced formation of a monocyte-adhesive extracellular hyaluronan matrix after completing cell division. This study shows that heparin inhibits the intracellular hyaluronan synthesis and autophagy responses, but at the end of cell division it induces synthesis of a much larger extracellular monocyte-adhesive hyaluronan matrix. Heparin bound to RMC surfaces by 1 h, internalizes into the Golgi/endoplasmic reticulum region by 2 h, and was nearly gone by 4 h. Treatment by heparin for only the first 4 h was sufficient for its function. Streptozotocin diabetic rats treated daily with heparin showed similar results. Glomeruli in sections of diabetic kidneys showed extensive accumulation of autophagic RMCs, increased hyaluronan matrix, and influx of macrophages over 6 weeks. Hyaluronan staining in the glomeruli of heparin-treated diabetic rats was very high at week 1 and decreased to near control level by 6 weeks without any RMC autophagy. However, the influx of macrophages by 6 weeks was as pronounced as in diabetic glomeruli. The results are as follows: 1) heparin blocks synthesis of hyaluronan in intracellular compartments, which prevents the autophagy and cyclin D3 responses thereby allowing RMCs to complete cell division and sustain function; 2) interaction of heparin with RMCs in early G1 phase is sufficient to induce signaling pathway(s) for its functions; and 3) influxed macrophages effectively remove the hyaluronan matrix without inducing pro-fibrotic responses that lead to nephropathy and proteinurea in diabetic kidneys.

  11. Single-cell RNAseq reveals cell adhesion molecule profiles in electrophysiologically defined neurons

    PubMed Central

    Földy, Csaba; Darmanis, Spyros; Aoto, Jason; Malenka, Robert C.; Quake, Stephen R.; Südhof, Thomas C.

    2016-01-01

    In brain, signaling mediated by cell adhesion molecules defines the identity and functional properties of synapses. The specificity of presynaptic and postsynaptic interactions that is presumably mediated by cell adhesion molecules suggests that there exists a logic that could explain neuronal connectivity at the molecular level. Despite its importance, however, the nature of such logic is poorly understood, and even basic parameters, such as the number, identity, and single-cell expression profiles of candidate synaptic cell adhesion molecules, are not known. Here, we devised a comprehensive list of genes involved in cell adhesion, and used single-cell RNA sequencing (RNAseq) to analyze their expression in electrophysiologically defined interneurons and projection neurons. We compared the cell type-specific expression of these genes with that of genes involved in transmembrane ion conductances (i.e., channels), exocytosis, and rho/rac signaling, which regulates the actin cytoskeleton. Using these data, we identified two independent, developmentally regulated networks of interacting genes encoding molecules involved in cell adhesion, exocytosis, and signal transduction. Our approach provides a framework for a presumed cell adhesion and signaling code in neurons, enables correlating electrophysiological with molecular properties of neurons, and suggests avenues toward understanding synaptic specificity. PMID:27531958

  12. Control of mesenchymal stem cell phenotype and differentiation depending on cell adhesion mechanism.

    PubMed

    Kang, J; Park, H M; Kim, Y W; Kim, Y H; Varghese, S; Seok, H K; Kim, Y G; Kim, S H

    2014-11-25

    Control of cell-matrix adhesion has become an important issue in the regulation of stem cell function. In this study, a maltose-binding protein (MBP)-linked basic fibroblast growth factor (FGF2)-immobilised polystyrene surface (PS-MBP-FGF2) was applied as an artificial matrix to regulate integrin-mediated signalling. We sought to characterise human mesenchymal-stem cell (hMSC) behaviour in response to two different mechanisms of cell adhesion; (i) FGF2-heparan sulphate proteoglycan (HSPG)-mediated adhesion vs. (ii) fibronectin (FN)-integrin-mediated adhesion. Heparin inhibited hMSC adhesion to PS-MBP-FGF2 but not to FN-coated surface. The phosphorylation of focal adhesion kinase, cytoskeletal re-organisation, and cell proliferation were restricted in hMSCs adhering to PS-MBP-FGF2 compared to FN-coated surface. Expression of MSC markers, such as CD105, CD90 and CD166, decreased in hMSCs expanded on PS-MBP-FGF2 compared to expression in cells expanded on FN-coated surface. hMSCs that were expanded on FN-coated surface differentiated into osteogenic and adipogenic cells more readily than those that were expanded on PS-MBP-FGF2. Furthermore, we characterised the N-linked glycan structures of hMSCs depending on the cell adhesion mechanism using mass spectrometry (MS)-based quantitative techniques. MS analysis revealed that 2,3-sialylated glycans, a potential marker of stem cell function, were more abundant on hMSCs expanded on FN-coated surface than on those expanded on PS-MBP-FGF2. Thus, the differentiation potential of hMSCs is controlled by the type of adhesion substrate that might provide an idea for the design of biomaterials to control stem cell fate. Elucidation of the glycan structure on the cell membrane may help characterise hMSC function.

  13. A new quantitative experimental approach to investigate single cell adhesion on multifunctional substrates.

    PubMed

    Canale, Claudio; Petrelli, Alessia; Salerno, Marco; Diaspro, Alberto; Dante, Silvia

    2013-10-15

    Cell adhesion is fundamental for the organization of cells in multicellular organisms since it has a key role in several physiological functions that drive tissue formation and development. A better knowledge of the affections that influence the adhesion capability of cells in several pathologies, such as cancer diseases or multiple sclerosis could enable the development of new therapeutical strategies. Whereas the optimal control of cell adhesion and growth on new technological materials is a primary issue in modern tissue engineering, few techniques are able to provide quantitative and reliable results on cell adhesion. We present a method that enables the investigation of cell adhesion at the single cell level and provides the capability to test the adhesion of a single cell on multifunctional substrates. To reach this goal we applied single cell force spectroscopy (SCFS) on custom designed patterns of molecules prepared on a rigid substrate by using a cantilever based molecule deposition tool, and we tested the adhesion of Chinese Hamster Ovary cells and Human Embrionic Kidney cells on two polyelectrolytes that are widely used as adhesive factors for cells growth: Polyethylenimine and Poly-D-Lysine. Our results confirm the common hypothesis on the mechanism of adhesion promotion by protonated molecules. Optimizations of the experimental settings of SFCS experiment are introduced here. The presented technique offers the unique opportunity to be extended to the study of cell adhesion on an unlimited number molecular species.

  14. An exploration of plastic deformation dependence of cell viability and adhesion in metallic implant materials.

    PubMed

    Uzer, B; Toker, S M; Cingoz, A; Bagci-Onder, T; Gerstein, G; Maier, H J; Canadinc, D

    2016-07-01

    The relationship between cell viability and adhesion behavior, and micro-deformation mechanisms was investigated on austenitic 316L stainless steel samples, which were subjected to different amounts of plastic strains (5%, 15%, 25%, 35% and 60%) to promote a variety in the slip and twin activities in the microstructure. Confocal laser scanning microscopy (CLSM) and field emission scanning electron microscopy (FESEM) revealed that cells most favored the samples with the largest plastic deformation, such that they spread more and formed significant filopodial extensions. Specifically, brain tumor cells seeded on the 35% deformed samples exhibited the best adhesion performance, where a significant slip activity was prevalent, accompanied by considerable slip-twin interactions. Furthermore, maximum viability was exhibited by the cells seeded on the 60% deformed samples, which were particularly designed in a specific geometry that could endure greater strain values. Overall, the current findings open a new venue for the production of metallic implants with enhanced biocompatibility, such that the adhesion and viability of the cells surrounding an implant can be optimized by tailoring the surface relief of the material, which is dictated by the micro-deformation mechanism activities facilitated by plastic deformation imposed by machining.

  15. Cell Adhesion and Growth on the Anodized Aluminum Oxide Membrane.

    PubMed

    Park, Jeong Su; Moon, Dalnim; Kim, Jin-Seok; Lee, Jin Seok

    2016-03-01

    Nanotopological cues are popular tools for in vivo investigation of the extracellular matrix (ECM) and cellular microenvironments. The ECM is composed of multiple components and generates a complex microenvironment. The development of accurate in vivo methods for the investigation of ECM are important for disease diagnosis and therapy, as well as for studies on cell behavior. Here, we fabricated anodized aluminum oxide (AAO) membranes using sulfuric and oxalic acid under controlled voltage and temperature. The membranes were designed to possess three different pore and interpore sizes, AAO-1, AAO-2, and AAO-3 membranes, respectively. These membranes were used as tools to investigate nanotopology-signal induced cell behavior. Cancerous cells, specifically, the OVCAR-8 cell-line, were cultured on porous AAO membranes and the effects of these membranes on cell shape, proliferation, and viability were studied. AAO-1 membranes bearing small sized pores were found to maintain the spreading shape of the cultured cells. Cells cultured on AAO-2 and AAO-3 membranes, bearing large pore-sized AAO membranes, changed shape from spreading to rounding. Furthermore, cellular area decreased when cells were cultured on all three AAO membranes that confirmed decreased levels of focal adhesion kinase (FAK). Additionally, OVCAR-8 cells exhibited increased proliferation on AAO membranes possessing various pore sizes, indicating the importance of the nanosurface structure in regulating cell behaviors, such as cell proliferation. Our results suggest that porous-AAO membranes induced nanosurface regulated cell behavior as focal adhesion altered the intracellular organization of the cytoskeleton. Our results may find potential applications as tools in in vivo cancer research studies.

  16. Live-cell migration and adhesion turnover assays.

    PubMed

    Lacoste, J; Young, K; Brown, Claire M

    2013-01-01

    Fluorescence microscopy has revolutionized the way live-cell imaging is achieved. At the same time, it is also potentially harmful to a living specimen. Therefore, the specimen must be monitored for viability and health before, during, and after imaging sessions. Methods for monitoring cell viability and health will be discussed in this chapter. Another key to successful live-cell imaging is to minimize light exposure as much as possible. A summary of strategies for minimizing light exposure including maximizing the light throughput of the microscope and the sensitivity of light detection is presented. Various fluorescence microscopy techniques are presented with a focus on how the light is delivered to the sample (i.e., light density) and pros and cons for use with living specimens. The reader is also directed to other publications that go into these topics in more detail. Methods are described on how to prepare samples for single cell migration assays, how to measure cell migration rates (e.g., bright-field, semi-automated, and automated), and how to measure focal adhesion turnover rates. Details of how to correct images for background intensity and field-illumination uniformity artifacts for quantitative imaging are also described. Overall, this chapter will be helpful to scientists who are interested in imaging live specimens using fluorescence microscopy techniques. It will be of particular interest to anyone wanting to perform quantitative fluorescence imaging, and wanting to measure cell migration rates, and focal adhesion dynamics.

  17. Amygdalin Regulates Apoptosis and Adhesion in Hs578T Triple-Negative Breast Cancer Cells.

    PubMed

    Lee, Hye Min; Moon, Aree

    2016-01-01

    Amygdalin, D-mandelonitrile-β-D-glucoside-6-β-glucoside, belongs to aromatic cyanogenic glycoside group derived from rosaceous plant seed. Mounting evidence has supported the anti-cancer effects of amygdalin. However, whether amygdalin indeed acts as an anti-tumor agent against breast cancer cells is not clear. The present study aimed to investigate the effect of amygdalin on the proliferation of human breast cancer cells. Here, we show that amygdalin exerted cytotoxic activities on estrogen receptors (ER)-positive MCF7 cells, and MDA-MB-231 and Hs578T triple-negative breast cancer (TNBC) cells. Amygdalin induced apoptosis of Hs578T TNBC cells. Amygdalin downregulated B-cell lymphoma 2 (Bcl-2), upregulated Bcl-2-associated X protein (Bax), activated of caspase-3 and cleaved poly ADP-ribose polymerase (PARP). Amygdalin activated a pro-apoptotic signaling molecule p38 mitogen-activated protein kinases (p38 MAPK) in Hs578T cells. Treatment of amygdalin significantly inhibited the adhesion of Hs578T cells, in which integrin α5 may be involved. Taken together, this study demonstrates that amygdalin induces apoptosis and inhibits adhesion of breast cancer cells. The results suggest a potential application of amygdalin as a chemopreventive agent to prevent or alleviate progression of breast cancer, especially TNBC.

  18. Amygdalin Regulates Apoptosis and Adhesion in Hs578T Triple-Negative Breast Cancer Cells

    PubMed Central

    Lee, Hye Min; Moon, Aree

    2016-01-01

    Amygdalin, D-mandelonitrile-β-D-glucoside-6-β-glucoside, belongs to aromatic cyanogenic glycoside group derived from rosaceous plant seed. Mounting evidence has supported the anti-cancer effects of amygdalin. However, whether amygdalin indeed acts as an anti-tumor agent against breast cancer cells is not clear. The present study aimed to investigate the effect of amygdalin on the proliferation of human breast cancer cells. Here, we show that amygdalin exerted cytotoxic activities on estrogen receptors (ER)-positive MCF7 cells, and MDA-MB-231 and Hs578T triple-negative breast cancer (TNBC) cells. Amygdalin induced apoptosis of Hs578T TNBC cells. Amygdalin downregulated B-cell lymphoma 2 (Bcl-2), upregulated Bcl-2-associated X protein (Bax), activated of caspase-3 and cleaved poly ADP-ribose polymerase (PARP). Amygdalin activated a pro-apoptotic signaling molecule p38 mitogen-activated protein kinases (p38 MAPK) in Hs578T cells. Treatment of amygdalin significantly inhibited the adhesion of Hs578T cells, in which integrin α5 may be involved. Taken together, this study demonstrates that amygdalin induces apoptosis and inhibits adhesion of breast cancer cells. The results suggest a potential application of amygdalin as a chemopreventive agent to prevent or alleviate progression of breast cancer, especially TNBC. PMID:26759703

  19. Thermodynamics of cell adhesion. II. Freely mobile repellers.

    PubMed Central

    Torney, D C; Dembo, M; Bell, G I

    1986-01-01

    The equilibrium adhesion of a cell or vesicle to a substrate is analyzed in a theoretical model in which two types of mobile molecules in the cell membrane are of interest: receptors that can form bonds with fixed ligands in the substrate and repellers that repel the substrate. If the repulsion between the repeller molecule and substrate is greater than kT, there is substantial redistribution of the repellers from the contact area. Coexisting equilibrium states are observed having comparable free energies (a) with unstretched bonds and repeller redistribution and (b) with stretched bonds and partial redistribution. PMID:3955182

  20. Electrochemically controlled stiffness of multilayers for manipulation of cell adhesion.

    PubMed

    Sun, Yi-xin; Ren, Ke-feng; Wang, Jin-lei; Chang, Guo-xun; Ji, Jian

    2013-06-12

    Stimuli-responsive thin films attract considerable attention in different fields. Herein, an electrochemical redox multilayers with tunable stiffness is constructed through the layer-by-layer self-assembly method. The redox ferrocene modified poly(ethylenimine) play an essential role to induce multilayers' swelling/shrinking under an electrochemical stimulus, resulting reversible change of elastic modulus of the multilayers. The adhesion of fibroblast cells can be thus controlled from well spreading to round shape. Such soft multilayers with electrochemically controlled stiffness could have potentials for cell-based applications.

  1. Adhesive disbond detection using piezoelectric wafer active sensors

    NASA Astrophysics Data System (ADS)

    Roth, William; Giurgiutiu, Victor

    2015-04-01

    The aerospace industry continues to increase the use of adhesives for structural bonding due to the increased joint efficiency (reduced weight), even distribution of the load path and decreases in stress concentrations. However, the limited techniques for verifying the strength of adhesive bonds has reduced its use on primary structures and requires an intensive inspection schedule. This paper discusses a potential structural health monitoring (SHM) technique for the detection of disbonds through the in situ inspection of adhesive joints. This is achieved through the use of piezoelectric wafer active sensors (PWAS), thin unobtrusive sensors which are permanently bonded to the aircraft structure. The detection method discussed in this study is electromechanical impedance spectroscopy (EMIS), a local vibration method. This method detects disbonds from the change in the mechanical impedance of the structure surrounding the disbond. This paper will discuss how predictive modeling can provide valuable insight into the inspection method, and provide better results than empirical methods alone. The inspection scheme was evaluated using the finite element method, and the results were verified experimentally using a large aluminum test article, and included both pristine and disbond coupons.

  2. Defining Fibronectin's Cell Adhesion Synergy Site by Site-Directed Mutagenesis

    PubMed Central

    Redick, Sambra D.; Settles, Daniel L.; Briscoe, Gina; Erickson, Harold P.

    2000-01-01

    Fibronectin's RGD-mediated binding to the α5β1 integrin is dramatically enhanced by a synergy site within fibronectin III domain 9 (FN9). Guided by the crystal structure of the cell-binding domain, we selected amino acids in FN9 that project in the same direction as the RGD, presumably toward the integrin, and mutated them to alanine. R1379 in the peptide PHSRN, and the nearby R1374 have been shown previously to be important for α5β1-mediated adhesion (Aota, S., M. Nomizu, and K.M. Yamada. 1994. J. Biol. Chem. 269:24756–24761). Our more extensive set of mutants showed that R1379 is the key residue in the synergistic effect, but other residues contribute substantially. R1374A decreased adhesion slightly by itself, but the double mutant R1374A-R1379A was significantly less adhesive than R1379A alone. Single mutations of R1369A, R1371A, T1385A, and N1386A had negligible effects on cell adhesion, but combining these substitutions either with R1379A or each other gave a more dramatic reduction of cell adhesion. The triple mutant R1374A/P1376A/R1379A had no detectable adhesion activity. We conclude that, in addition to the R of the PHRSN peptide, other residues on the same face of FN9 are required for the full synergistic effect. The integrin-binding synergy site is a much more extensive surface than the small linear peptide sequence. PMID:10769040

  3. PrP-dependent cell adhesion in N2a neuroblastoma cells.

    PubMed

    Mangé, Alain; Milhavet, Ollivier; Umlauf, David; Harris, David; Lehmann, Sylvain

    2002-03-13

    The cellular isoform of prion protein (PrP(C)) is a ubiquitous glycoprotein expressed by most tissues and with a biological function yet to be determined. Here, we have used a neuroblastoma cell model to investigate the involvement of PrP in cell adhesion. Incubation of single cell suspension induced cell-cell adhesion and formation of cell aggregates. Interestingly, cells overexpressing PrP exhibit increased cation-independent aggregation. Aggregation was reduced after phosphatidylinositol-specific phospholipase C release of the protein and by pre-incubation of cells with an antibody raised against the N-terminal part of PrP(C). Our paradigm allows the study of the function of PrP as an intercellular adhesion molecule and a cell surface ligand or receptor.

  4. Evaluation of the single yeast cell's adhesion to ITO substrates with various surface energies via ESEM nanorobotic manipulation system.

    PubMed

    Shen, Yajing; Ahmad, Mohd Ridzuan; Nakajima, Masahiro; Kojima, Seiji; Homma, Michio; Fukuda, Toshio

    2011-12-01

    Cell-surface adhesion force is important for cell activities and the development of bio materials. In this paper, a method for in situ single cell (W303) adhesion force measurement was proposed based on nanorobotic manipulation system inside an environment scanning electron microscope (ESEM). An end effector was fabricated from a commercial atomic force microscope (AFM) cantilever by focused ion beam (FIB) etching. The spring constant of it was calibrated by nanomanipulation approach. Three kinds of hydrophilic and hydrophobic ITO plates were prepared by using VUV-irradiation and OTS coating techniques. The shear adhesion strength of the single yeast cell to each substrate was measured based on the deflection of the end effector. The results demonstrated that the cell adhesion force was larger under the wet condition in the ESEM environment than in the aqueous condition. It also showed that the cell adhesion force to hydrophilic surface was larger than that to the hydrophobic surface. Studies of single cell's adhesion on various plate surfaces and environments could give new insights into the tissue engineering and biological field.

  5. Lipopolysaccharide promotes adhesion and migration of murine dental papilla-derived MDPC-23 cells via TLR4.

    PubMed

    Park, Jong-Hwan; Kwon, Seong-Min; Yoon, Hyo-Eun; Kim, Soo-A; Ahn, Sang-Gun; Yoon, Jung-Hoon

    2011-02-01

    Odontoblasts and/or dental pulp cells are responsible for tooth repair and dentin formation. Furthermore, adhesion and migration are critical processes for tissue regeneration. This study was performed to clarify whether lipopolysaccharide (LPS) modulates adhesion and migration of the murine odontoblast-like cell line MDPC-23, and whether Toll-like receptor 4 (TLR4) signaling is engaged in this process. TLR4 expression in MDPC-23 cells was examined by RT-PCR. Adhesion assay was performed using type I collagen-coated plates. Migration ability was determined by a commercial assay kit. Phosphorylation of IκB-α, FAK, AKT, and ERK was examined by Western blot analysis. TLR4 was functionally expressed in MDPC-23 cells. LPS treatment enhanced adhesion and migration of MDPC-23 cells in a dose-dependent manner. Blockade of TLR4 using its antibody restored LPS-induced adhesion and migration of MDPC-23 cells. These findings indicate that LPS, an immune activator from Gram-negative bacteria, can promote the adhesion and migration ability of MDPC-23 cells via TLR4.

  6. Quantifying the effect of electric current on cell adhesion studied by single-cell force spectroscopy.

    PubMed

    Jaatinen, Leena; Young, Eleanore; Hyttinen, Jari; Vörös, János; Zambelli, Tomaso; Demkó, László

    2016-03-20

    This study presents the effect of external electric current on the cell adhesive and mechanical properties of the C2C12 mouse myoblast cell line. Changes in cell morphology, viability, cytoskeleton, and focal adhesion structure were studied by standard staining protocols, while single-cell force spectroscopy based on the fluidic force microscopy technology provided a rapid, serial quantification and detailed analysis of cell adhesion and its dynamics. The setup allowed measurements of adhesion forces up to the μN range, and total detachment distances over 40 μm. Force-distance curves have been fitted with a simple elastic model including a cell detachment protocol in order to estimate the Young's modulus of the cells, as well as to reveal changes in the dynamic properties as functions of the applied current dose. While the cell spreading area decreased monotonously with increasing current doses, small current doses resulted only in differences related to cell elasticity. Current doses above 11 As/m(2), however, initiated more drastic changes in cell morphology, viability, cellular structure, as well as in properties related to cell adhesion. The observed differences, eventually leading to cell death toward higher doses, might originate from both the decrease in pH and the generation of reactive oxygen species.

  7. Significant role of adhesion properties of primary osteoblast-like cells in early adhesion events for chondroitin sulfate and dermatan sulfate surface molecules.

    PubMed

    Stanford, C M; Solursh, M; Keller, J C

    1999-12-05

    The purpose of this study was to characterize the role of cell surface adhesive macromolecules through enzyme modulation and metabolic recovery prior to and during a kinetic cell adhesion assay. Primary rat calvarial osteoblast-like cells were derived from Sprague-Dawley calvarial plates. Cell adhesion kinetics was evaluated with the definition of first-order adhesion kinetics. Osteoblasts were incubated in an adhesion buffer for 1 h prior to a cell attachment assay using various enzymes to remove cell surface glycosaminoglycans (GAGs). A subtractive adhesion analysis was performed by plating cells at 5 x 10(4)/well for variable periods through 2 h. The medium was collected, the well surface washed and pooled, and the number of cells enumerated with a Coulter Counter. Cell adhesion demonstrated first-order logarithmic adhesion kinetics in the first 60 min. Scatchard analysis demonstrated a linear relationship. Preexposure of cells to various enzyme combinations demonstrated that 50% of the equilibrium adhesion was dependent on chondroitin sulfate or dermatan sulfate surface macromolecules. These results were confirmed with pretreatment with a metabolic inhibitor of GAG synthesis (beta-D-xyloside). These results suggest an important role for cell associated chondroitin sulfate and dermatan sulfate in cell adhesion in addition to Arg-Gly-Asp or integrin mediated adhesion events.

  8. Study of cell-matrix adhesion dynamics using surface plasmon resonance imaging ellipsometry.

    PubMed

    Kim, Se-Hwa; Chegal, Won; Doh, Junsang; Cho, Hyun Mo; Moon, Dae Won

    2011-04-06

    The interaction of cells with extracellular matrix, termed cell-matrix adhesions, importantly governs multiple cellular phenomena. Knowledge of the functional dynamics of cell-matrix adhesion could provide critical clues for understanding biological phenomena. We developed surface plasmon resonance imaging ellipsometry (SPRIE) to provide high contrast images of the cell-matrix interface in unlabeled living cells. To improve the contrast and sensitivity, the null-type imaging ellipsometry technique was integrated with an attenuated total reflection coupler. We verified that the imaged area of SPRIE was indeed a cell-matrix adhesion area by confocal microscopy imaging. Using SPRIE, we demonstrated that three different cell types exhibit distinct features of adhesion. SPRIE was applied to diverse biological systems, including during cell division, cell migration, and cell-cell communication. We imaged the cell-matrix anchorage of mitotic cells, providing the first label-free imaging of this interaction to our knowledge. We found that cell-cell communication can alter cell-matrix adhesion, possibly providing direct experimental evidence for cell-cell communication-mediated changes in cell adhesion. We also investigated shear-stress-induced adhesion dynamics in real time. Based on these data, we expect that SPRIE will be a useful methodology for studying the role of cell-matrix adhesion in important biological phenomena.

  9. Disruption of cell adhesion by an antibody targeting the cell-adhesive intermediate (X-dimer) of human P-cadherin

    PubMed Central

    Kudo, Shota; Caaveiro, Jose M. M.; Nagatoishi, Satoru; Miyafusa, Takamitsu; Matsuura, Tadashi; Sudou, Yukio; Tsumoto, Kouhei

    2017-01-01

    Human P-cadherin is a cell adhesion protein of the family of classical cadherins, the overexpression of which is correlated with poor prognosis in various types of cancer. Antibodies inhibiting cell-cell adhesion mediated by P-cadherin show clear therapeutic effect, although the mechanistic basis explaining their effectiveness is still unclear. Based on structural, physicochemical, and functional analyses, we have elucidated the molecular mechanism of disruption of cell adhesion by antibodies targeting human P-cadherin. Herein we have studied three different antibodies, TSP5, TSP7, and TSP11, each recognizing a different epitope on the surface of the cell-adhesive domain (EC1). Although all these three antibodies recognized human P-cadherin with high affinity, only TSP7 disrupted cell adhesion. Notably, we demonstrated that TSP7 abolishes cell adhesion by disabling the so-called X-dimer (a kinetic adhesive intermediate), in addition to disrupting the strand-swap dimer (the final thermodynamic state). The inhibition of the X-dimer was crucial for the overall inhibitory effect, raising the therapeutic value of a kinetic intermediary not only for preventing, but also for reversing, cell adhesion mediated by a member of the classical cadherin family. These findings should help to design more innovative and effective therapeutic solutions targeting human P-cadherin. PMID:28045038

  10. The interaction between LYVE-1 with hyaluronan on the cell surface may play a role in the diversity of adhesion to cancer cells.

    PubMed

    Du, Yan; Liu, Hua; He, Yiqing; Liu, Yiwen; Yang, Cuixia; Zhou, Muqing; Wang, Wenjuan; Cui, Lian; Hu, Jiajie; Gao, Feng

    2013-01-01

    Hyaluronan (HA), a simple disaccharide unit, can polymerize and is considered a primary component of the extracellular matrix, which has a wide range of biological functions. In recent years, HA was found on the surface of tumor cells. According to previous reports, differing HA content on the cell surface of tumor cells is closely related to lymph node metastases, but the mechanisms mediating this process remained unclear. This research intended to study the surface content of HA on tumor cells and analyze cell adhesive changes caused by the interaction between HA and its lymphatic endothelial receptor (LYVE-1). We screened and observed high HA content on HS-578T breast cells and low HA content on MCF-7 breast cells through particle exclusion, immunofluorescence and flow cytometry experiments. The expression of LYVE-1, the lymph-vessel specific HA receptor, was consistent with our previous report and enhanced the adhesion of HA(high)-HS-578T cells to COS-7(LYVE-1(+)) through HA in cell static adhesion and dynamic parallel plate flow chamber experiments. MCF-7 breast cells contain little HA on the surface; however, our results showed little adhesion difference between MCF-7 cells and COS-7(LYVE-1(+)) and COS-7(LYVE-1(-)) cells. Similar results were observed concerning the adhesion of HS-578T cells or MCF-7 cells to SVEC4-10 cells. Furthermore, we observed for the first time that the cell surface HA content of high transfer tumor cells was rich, and we visualized the cross-linking of HA cable structures, which may activate LYVE-1 on lymphatic endothelial cells, promoting tumor adhesion. In summary, high-low cell surface HA content of tumor cells through the interaction with LYVE-1 leads to adhesion differences.

  11. 3D Surface Topology Guides Stem Cell Adhesion and Differentiation

    PubMed Central

    Viswanathan, Priyalakshmi; Ondeck, Matthew G.; Chirasatitsin, Somyot; Nghamkham, Kamolchanok; Reilly, Gwendolen C.; Engler, Adam J.; Battaglia, Giuseppe

    2015-01-01

    Polymerized high internal phase emulsion (polyHIPE) foams are extremely versatile materials for investigating cell-substrate interactions in vitro. Foam morphologies can be controlled by polymerization conditions to result in either open or closed pore structures with different levels of connectivity, consequently enabling the comparison between 2D and 3D matrices using the same substrate with identical surface chemistry conditions. Additionally, here we achieve the control of pore surface topology (i.e. how different ligands are clustered together) using amphiphilic block copolymers as emulsion stabilisers. We demonstrate that adhesion of human mesenchymal progenitor (hES-MP) cells cultured on polyHIPE foams is dependent on foam surface topology and chemistry but is independent of porosity and interconnectivity. We also demonstrate that the interconnectivity, architecture and surface topology of the foams has an effect on the osteogenic differentiation potential of hES-MP cells. Together these data demonstrate that the adhesive heterogeneity of a 3D scaffold could regulate not only mesenchymal stem cell attachment but also cell behavior in the absence of soluble growth factors. PMID:25818420

  12. A discrete approach for modeling cell-matrix adhesions

    NASA Astrophysics Data System (ADS)

    Escribano, J.; Sánchez, M. T.; García-Aznar, J. M.

    2014-06-01

    During recent years the interaction between the extracellular matrix and the cytoskeleton of the cell has been object of numerous studies due to its importance in cell migration processes. These interactions are performed through protein clutches, known as focal adhesions. For migratory cells these focal adhesions along with force generating processes in the cytoskeleton are responsible for the formation of protrusion structures like lamellipodia or filopodia. Much is known about these structures: the different proteins that conform them, the players involved in their formation or their role in cell migration. Concretely, growth-cone filopodia structures have attracted significant attention because of their role as cell sensors of their surrounding environment and its complex behavior. On this matter, a vast myriad of mathematical models has been presented to explain its mechanical behavior. In this work, we aim to study the mechanical behavior of these structures through a discrete approach. This numerical model provides an individual analysis of the proteins involved including spatial distribution, interaction between them, and study of different phenomena, such as clutches unbinding or protein unfolding.

  13. Metastable states and activated dynamics in thin-film adhesion to patterned surfaces.

    PubMed

    Lindström, Stefan B; Johansson, Lars; Karlsson, Nils R

    2014-06-01

    We consider adhesion due to London-van der Waals attraction between a thin film and a patterned surface with nanometer asperities. Depending on the surface topography and the stiffness of the film, three regimes of adhesion are identified: complete contact adhesion, partial contact adhesion, and glassy adhesion. For complete contact adhesion, the film conforms to the undulations of the surface, whereas for partial contact and glassy adhesion, the adhesive interface breaks down into microscopic areas of contact. When a film in the glassy regime is peeled off the surface, metastable states develop at which the crack front becomes arrested, analogously to the frustrated motion of the three-phase contact line across a heterogeneous surface. For this glassy regime, we use transition state theory to model the thermally activated progression of the crack front. This theoretical treatment suggests that the rate of the adhesive failure increases exponentially with the applied force.

  14. Wet Chemistry and Peptide Immobilization on Polytetrafluoroethylene for Improved Cell-adhesion.

    PubMed

    Gabriel, Matthias; Niederer, Kerstin; Frey, Holger

    2016-08-15

    Endowing materials surface with cell-adhesive properties is a common strategy in biomaterial research and tissue engineering. This is particularly interesting for already approved polymers that have a long standing use in medicine because these materials are well characterized and legal issues associated with the introduction of newly synthesized polymers may be avoided. Polytetrafluoroethylene (PTFE) is one of the most frequently employed materials for the manufacturing of vascular grafts but the polymer lacks cell adhesion promoting features. Endothelialization, i.e., complete coverage of the grafts inner surface with a confluent layer of endothelial cells is regarded key to optimal performance, mainly by reducing thrombogenicity of the artificial interface. This study investigates the growth of endothelial cells on peptide-modified PTFE and compares these results to those obtained on unmodified substrate. Coupling with the endothelial cell adhesive peptide Arg-Glu-Asp-Val (REDV) is performed via activation of the fluorin-containing polymer using the reagent sodium naphthalenide, followed by subsequent conjugation steps. Cell culture is accomplished using Human Umbilical Vein Endothelial Cells (HUVECs) and excellent cellular growth on peptide-immobilized material is demonstrated over a two-week period.

  15. Adhesive ligand tether length affects the size and length of focal adhesions and influences cell spreading and attachment

    NASA Astrophysics Data System (ADS)

    Attwood, Simon J.; Cortes, Ernesto; Haining, Alexander William M.; Robinson, Benjamin; Li, Danyang; Gautrot, Julien; Del Río Hernández, Armando

    2016-09-01

    Cells are known to respond to physical cues from their microenvironment such as matrix rigidity. Discrete adhesive ligands within flexible strands of fibronectin connect cell surface integrins to the broader extracellular matrix and are thought to mediate mechanosensing through the cytoskeleton-integrin-ECM linkage. We set out to determine if adhesive ligand tether length is another physical cue that cells can sense. Substrates were covalently modified with adhesive arginylglycylaspartic acid (RGD) ligands coupled with short (9.5 nm), medium (38.2 nm) and long (318 nm) length inert polyethylene glycol tethers. The size and length of focal adhesions of human foreskin fibroblasts gradually decreased from short to long tethers. Furthermore, we found cell adhesion varies in a linker length dependent manner with a remarkable 75% reduction in the density of cells on the surface and a 50% reduction in cell area between the shortest and longest linkers. We also report the interplay between RGD ligand concentration and tether length in determining cellular spread area. Our findings show that without varying substrate rigidity or ligand density, tether length alone can modulate cellular behaviour.

  16. Adhesive ligand tether length affects the size and length of focal adhesions and influences cell spreading and attachment

    PubMed Central

    Attwood, Simon J.; Cortes, Ernesto; Haining, Alexander William M.; Robinson, Benjamin; Li, Danyang; Gautrot, Julien; del Río Hernández, Armando

    2016-01-01

    Cells are known to respond to physical cues from their microenvironment such as matrix rigidity. Discrete adhesive ligands within flexible strands of fibronectin connect cell surface integrins to the broader extracellular matrix and are thought to mediate mechanosensing through the cytoskeleton-integrin-ECM linkage. We set out to determine if adhesive ligand tether length is another physical cue that cells can sense. Substrates were covalently modified with adhesive arginylglycylaspartic acid (RGD) ligands coupled with short (9.5 nm), medium (38.2 nm) and long (318 nm) length inert polyethylene glycol tethers. The size and length of focal adhesions of human foreskin fibroblasts gradually decreased from short to long tethers. Furthermore, we found cell adhesion varies in a linker length dependent manner with a remarkable 75% reduction in the density of cells on the surface and a 50% reduction in cell area between the shortest and longest linkers. We also report the interplay between RGD ligand concentration and tether length in determining cellular spread area. Our findings show that without varying substrate rigidity or ligand density, tether length alone can modulate cellular behaviour. PMID:27686622

  17. Adhesive ligand tether length affects the size and length of focal adhesions and influences cell spreading and attachment.

    PubMed

    Attwood, Simon J; Cortes, Ernesto; Haining, Alexander William M; Robinson, Benjamin; Li, Danyang; Gautrot, Julien; Del Río Hernández, Armando

    2016-09-30

    Cells are known to respond to physical cues from their microenvironment such as matrix rigidity. Discrete adhesive ligands within flexible strands of fibronectin connect cell surface integrins to the broader extracellular matrix and are thought to mediate mechanosensing through the cytoskeleton-integrin-ECM linkage. We set out to determine if adhesive ligand tether length is another physical cue that cells can sense. Substrates were covalently modified with adhesive arginylglycylaspartic acid (RGD) ligands coupled with short (9.5 nm), medium (38.2 nm) and long (318 nm) length inert polyethylene glycol tethers. The size and length of focal adhesions of human foreskin fibroblasts gradually decreased from short to long tethers. Furthermore, we found cell adhesion varies in a linker length dependent manner with a remarkable 75% reduction in the density of cells on the surface and a 50% reduction in cell area between the shortest and longest linkers. We also report the interplay between RGD ligand concentration and tether length in determining cellular spread area. Our findings show that without varying substrate rigidity or ligand density, tether length alone can modulate cellular behaviour.

  18. ARAP3 inhibits peritoneal dissemination of scirrhous gastric carcinoma cells by regulating cell adhesion and invasion.

    PubMed

    Yagi, R; Tanaka, M; Sasaki, K; Kamata, R; Nakanishi, Y; Kanai, Y; Sakai, R

    2011-03-24

    During the analysis of phosphotyrosine-containing proteins in scirrhous gastric carcinoma cell lines, we observed an unusual expression of Arf-GAP with Rho-GAP domain, ankyrin repeat and PH domain 3 (ARAP3), a multimodular signaling protein that is a substrate of Src family kinases. Unlike other phosphotyrosine proteins, such as CUB domain-containing protein 1 (CDCP1) and Homo sapiens chromosome 9 open reading frame 10/oxidative stress-associated Src activator (C9orf10/Ossa), which are overexpressed and hyperphosphorylated in scirrhous gastric carcinoma cell lines, ARAP3 was underexpressed in cancerous human gastric tissues. In this study, we found that overexpression of ARAP3 in the scirrhous gastric carcinoma cell lines significantly reduced peritoneal dissemination. In vitro studies also showed that ARAP3 regulated cell attachment to the extracellular matrix, as well as invasive activities. These effects were suppressed by mutations in the Rho-GTPase-activating protein (GAP) domain or in the C-terminal two tyrosine residues that are phosphorylated by Src. Thus, the expression and phosphorylation state of ARAP3 may affect the invasiveness of cancer by modulating cell adhesion and motility. Our results suggest that ARAP3 is a unique Src substrate that suppresses peritoneal dissemination of scirrhous gastric carcinoma cells.

  19. Uptake of Marasmius oreades agglutinin disrupts integrin-dependent cell adhesion

    PubMed Central

    Juillot, Samuel; Cott, Catherine; Madl, Josef; Claudinon, Julie; van der Velden, Niels Sebastiaan Johannes; Künzler, Markus; Thuenauer, Roland; Römer, Winfried

    2016-01-01

    Background Fruiting body lectins have been proposed to act as effector proteins in the defense of fungi against parasites and predators. The Marasmius oreades agglutinin (MOA) is a lectin from the fairy ring mushroom with specificity for Galα1-3Gal containing carbohydrates. This lectin is composed of an N-terminal carbohydrate-binding domain and a C-terminal dimerization domain. The dimerization domain of MOA shows in addition calcium-dependent cysteine protease activity, similar to the calpain family. Methods Cell detachment assay, cell viability assay, immunofluorescence, live cell imaging and Western blot using MDCKII cell line. Results In this study, we demonstrate in MDCKII cells that after internalization, MOA protease activity induces profound physiological cellular responses, like cytoskeleton rearrangement, cell detachment and cell death. These changes are preceded by a decrease in FAK phosphorylation and an internalization and degradation of β1-integrin, consistent with a disruption of integrin-dependent cell adhesion signaling. Once internalized, MOA accumulates in late endosomal compartments. Conclusion Our results suggest a possible toxic mechanism of MOA, which consists of disturbing the cell adhesion and the cell viability. General significance After being ingested by a predator, MOA might exert a protective role by diminishing host cell integrity. PMID:26546712

  20. Modulating Influence of Chemotactic Factor-Induced Cell Adhesiveness on Granulocyte Function

    PubMed Central

    Fehr, Jorg; Dahinden, Clemens

    1979-01-01

    The importance of adhesion in regulating locomotion and accumulation of polymorphonuclear leukocytes (PMN) has remained vague. We found that the chemotaxis of human PMN resuspended in heat-inactivated plasma was maximal toward 1-10 nM N-formyl-met-leu-phe (f-Met-Leu-Phe), but fell below random motility toward ≥ 100 nM. This impressive decrease of motility was paralleled by increased cell adherence on Petri dishes being minimal at 1 nM and maximal at >10 nM f-Met-Leu-Phe (6±1 and 37±2% [SE] adherent cells, respectively). Checked by phase-contrast microscopy, cells under stimulated adhesion lost the typical bipolar shape of moving PMN and became immobilized and highly flattened. PMN, preexposed to 250 nM f-Met-Leu-Phe and tested after washing, retained increased adhesiveness and showed extremely low random and chemotactic motility. In contrast, preexposure to 1 nM f-Met-Leu-Phe had no effect on chemotaxis. Supporting the concept that immobilizing hyperadhesiveness does not correspond to a general functional hyporesponsiveness of PMN, no depression of the initial ingestion rate was observed in the presence of 250 nM f-Met-Leu-Phe. Moreover, a close correlation was found between the induction of PMN adhesiveness and the stimulation of the hexose monophosphate pathway activity as well as of lysomal enzyme release (r ≥ 0.98). Thus, “chemotactic deactivation” and “high-dose inhibition of chemotaxis” by N-formyl peptides is the consequence of increased cell adhesiveness. This phenomenon provides a mechanism for cell trapping at the inflammatory site. Conversely, if operative in circulating blood, e.g., in septicemia, it may impair PMN emigration to such sites. Images PMID:447862

  1. Liprin-α1 and ERC1 control cell edge dynamics by promoting focal adhesion turnover

    PubMed Central

    Astro, Veronica; Tonoli, Diletta; Chiaretti, Sara; Badanai, Sabrina; Sala, Kristyna; Zerial, Marino; de Curtis, Ivan

    2016-01-01

    Liprin-α1 and ERC1 are interacting scaffold proteins regulating the motility of normal and tumor cells. They act as part of plasma membrane-associated platforms at the edge of motile cells to promote protrusion by largely unknown mechanisms. Here we identify an amino-terminal region of the liprin-α1 protein (liprin-N) that is sufficient and necessary for the interaction with other liprin-α1 molecules. Similar to liprin-α1 or ERC1 silencing, expression of the liprin-N negatively affects tumor cell motility and extracellular matrix invasion, acting as a dominant negative by interacting with endogenous liprin-α1 and causing the displacement of the endogenous ERC1 protein from the cell edge. Interfering with the localization of ERC1 at the cell edge inhibits the disassembly of focal adhesions, impairing protrusion. Liprin-α1 and ERC1 proteins colocalize with active integrin β1 clusters distinct from those colocalizing with cytoplasmic focal adhesion proteins, and influence the localization of peripheral Rab7-positive endosomes. We propose that liprin-α1 and ERC1 promote protrusion by displacing cytoplasmic adhesion components to favour active integrin internalization into Rab7-positive endosomes. PMID:27659488

  2. Adhesion-Dependent Wave Generation in Crawling Cells.

    PubMed

    Barnhart, Erin L; Allard, Jun; Lou, Sunny S; Theriot, Julie A; Mogilner, Alex

    2017-01-09

    Dynamic actin networks are excitable. In migrating cells, feedback loops can amplify stochastic fluctuations in actin dynamics, often resulting in traveling waves of protrusion. The precise contributions of various molecular and mechanical interactions to wave generation have been difficult to disentangle, in part due to complex cellular morphodynamics. Here we used a relatively simple cell type-the fish epithelial keratocyte-to define a set of mechanochemical feedback loops underlying actin network excitability and wave generation. Although keratocytes are normally characterized by the persistent protrusion of a broad leading edge, increasing cell-substrate adhesion strength results in waving protrusion of a short leading edge. We show that protrusion waves are due to fluctuations in actin polymerization rates and that overexpression of VASP, an actin anti-capping protein that promotes actin polymerization, switches highly adherent keratocytes from waving to persistent protrusion. Moreover, VASP localizes both to adhesion complexes and to the leading edge. Based on these results, we developed a mathematical model for protrusion waves in which local depletion of VASP from the leading edge by adhesions-along with lateral propagation of protrusion due to the branched architecture of the actin network and negative mechanical feedback from the cell membrane-results in regular protrusion waves. Consistent with our model simulations, we show that VASP localization at the leading edge oscillates, with VASP leading-edge enrichment greatest just prior to protrusion initiation. We propose that the mechanochemical feedbacks underlying wave generation in keratocytes may constitute a general module for establishing excitable actin dynamics in other cellular contexts.

  3. Cell adhesion to cathodic arc plasma deposited CrAlSiN thin films

    NASA Astrophysics Data System (ADS)

    Kim, Sun Kyu; Pham, Vuong-Hung; Kim, Chong-Hyun

    2012-07-01

    Osteoblast cell response (cell adhesion, actin cytoskeleton and focal contact adhesion as well as cell proliferation) to CrN, CrAlSiN and Ti thin films was evaluated in vitro. Cell adhesion and actin stress fibers organization depended on the film composition significantly. Immunofluorescent staining of vinculin in osteoblast cells showed good focal contact adhesion on the CrAlSiN and Ti thin films but not on the CrN thin films. Cell proliferation was significantly greater on the CrAlSiN thin films as well as on Ti thin films than on the CrN thin films.

  4. A small fibronectin-mimicking protein from bacteria induces cell spreading and focal adhesion formation.

    PubMed

    Tegtmeyer, Nicole; Hartig, Roland; Delahay, Robin M; Rohde, Manfred; Brandt, Sabine; Conradi, Jens; Takahashi, Seiichiro; Smolka, Adam J; Sewald, Norbert; Backert, Steffen

    2010-07-23

    Fibronectin, a 250-kDa eukaryotic extracellular matrix protein containing an RGD motif plays crucial roles in cell-cell communication, development, tissue homeostasis, and disease development. The highly complex fibrillar fibronectin meshwork orchestrates the functions of other extracellular matrix proteins, promoting cell adhesion, migration, and intracellular signaling. Here, we demonstrate that CagL, a 26-kDa protein of the gastric pathogen and type I carcinogen Helicobacter pylori, mimics fibronectin in various cellular functions. Like fibronectin, CagL contains a RGD motif and is located on the surface of the bacterial type IV secretion pili as previously shown. CagL binds to the integrin receptor alpha(5)beta(1) and mediates the injection of virulence factors into host target cells. We show that purified CagL alone can directly trigger intracellular signaling pathways upon contact with mammalian cells and can complement the spreading defect of fibronectin(-/-) knock-out cells in vitro. During interaction with various human and mouse cell lines, CagL mimics fibronectin in triggering cell spreading, focal adhesion formation, and activation of several tyrosine kinases in an RGD-dependent manner. Among the activated factors are the nonreceptor tyrosine kinases focal adhesion kinase and Src but also the epidermal growth factor receptor and epidermal growth factor receptor family member Her3/ErbB3. Interestingly, fibronectin activates a similar range of tyrosine kinases but not Her3/ErbB3. These findings suggest that the bacterial protein CagL not only exhibits functional mimicry with fibronectin but is also capable of activating fibronectin-independent signaling events. We thus postulate that CagL may contribute directly to H. pylori pathogenesis by promoting aberrant signaling cross-talk within host cells.

  5. Increase of β2-integrin on adhesion of THP-1 cells to collagen vitrigel membrane.

    PubMed

    Uchino, Tadashi; Kuroda, Yukie; Ishida, Seiichi; Yamashita, Kunihiko; Miyazaki, Hiroshi; Oshikata, Ayumi; Shimizu, Kumiko; Kojima, Hajime; Takezawa, Toshiaki; Akiyama, Takumi; Ikarashi, Yoshiaki

    2016-07-04

    When human monocyte-derived leukemia (THP-1) cells, which are floating cells, are stimulated with lipid peroxides, or Streptococcus suis, these cells adhere to a plastic plate or endothelial cells. However, it is unclear whether or not non-stimulated THP-1 cells adhere to collagen vitrigel membrane (CVM). In this study, firstly, we investigated the rate of adhesion of THP-1 cells to CVM. When THP-1 cells were not stimulated, the rate of adhesion to CVM was high. Then, to identify adhesion molecules involved in adhesion of THP-1 cells to CVM, expressions of various cell adhesion molecules on the surface of THP-1 cells adhering to CVM were measured. β-actin, β-catenin, and β1-integrin expressions did not change in non-stimulated THP-1 cells cultured on CVM compared with those in cells cultured in a flask, but β2-integrin expression markedly increased.

  6. Heparanase expression upregulates platelet adhesion activity and thrombogenicity

    PubMed Central

    Österholm, Cecilia; Zhang, Xiao; Hedin, Ulf; Vlodavsky, Israel; Li, Jin-Ping

    2016-01-01

    Heparanase is an endo-glucuronidase that specifically cleaves heparan sulfate (HS) and heparin polysaccharides. The enzym