Science.gov

Sample records for activity cell growth

  1. Critical telomerase activity for uncontrolled cell growth

    NASA Astrophysics Data System (ADS)

    Wesch, Neil L.; Burlock, Laura J.; Gooding, Robert J.

    2016-08-01

    The lengths of the telomere regions of chromosomes in a population of cells are modelled using a chemical master equation formalism, from which the evolution of the average number of cells of each telomere length is extracted. In particular, the role of the telomere-elongating enzyme telomerase on these dynamics is investigated. We show that for biologically relevant rates of cell birth and death, one finds a critical rate, R crit, of telomerase activity such that the total number of cells diverges. Further, R crit is similar in magnitude to the rates of mitosis and cell death. The possible relationship of this result to replicative immortality and its associated hallmark of cancer is discussed.

  2. Critical telomerase activity for uncontrolled cell growth.

    PubMed

    Wesch, Neil L; Burlock, Laura J; Gooding, Robert J

    2016-01-01

    The lengths of the telomere regions of chromosomes in a population of cells are modelled using a chemical master equation formalism, from which the evolution of the average number of cells of each telomere length is extracted. In particular, the role of the telomere-elongating enzyme telomerase on these dynamics is investigated. We show that for biologically relevant rates of cell birth and death, one finds a critical rate, R crit, of telomerase activity such that the total number of cells diverges. Further, R crit is similar in magnitude to the rates of mitosis and cell death. The possible relationship of this result to replicative immortality and its associated hallmark of cancer is discussed. PMID:27500377

  3. Tomato waste: Carotenoids content, antioxidant and cell growth activities.

    PubMed

    Stajčić, Sladjana; Ćetković, Gordana; Čanadanović-Brunet, Jasna; Djilas, Sonja; Mandić, Anamarija; Četojević-Simin, Dragana

    2015-04-01

    The carotenoid content, antioxidant and cell growth activities of tomato waste extracts, obtained from five different tomato genotypes, was investigated. High performance liquid chromatography was used to identify and quantify the main carotenoids present in tomato waste extracts. The antioxidant activity of tomato waste extracts was tested using spectrophotometric methods, 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity and reducing power assay. The highest DPPH scavenging activity (IC50 = 0.057 mg/ml) was obtained for Bačka extract. The Knjaz extract showed the best reducing power (IC50 = 2.12 mg/ml). Cell growth effects were determined in HeLa, MCF7 and MRC-5 cell lines by sulforhodamine B test. Anti-proliferative effects were observed in all cell lines at higher concentrations (⩾ 0.125 mg/ml). The carotenoid contents exhibited a strong correlation with antioxidant and anti-proliferation activity. The results obtained indicated that tomato waste should be regarded as potential nutraceutic resource and may be used as a functional food ingredient.

  4. Tomato waste: Carotenoids content, antioxidant and cell growth activities.

    PubMed

    Stajčić, Sladjana; Ćetković, Gordana; Čanadanović-Brunet, Jasna; Djilas, Sonja; Mandić, Anamarija; Četojević-Simin, Dragana

    2015-04-01

    The carotenoid content, antioxidant and cell growth activities of tomato waste extracts, obtained from five different tomato genotypes, was investigated. High performance liquid chromatography was used to identify and quantify the main carotenoids present in tomato waste extracts. The antioxidant activity of tomato waste extracts was tested using spectrophotometric methods, 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity and reducing power assay. The highest DPPH scavenging activity (IC50 = 0.057 mg/ml) was obtained for Bačka extract. The Knjaz extract showed the best reducing power (IC50 = 2.12 mg/ml). Cell growth effects were determined in HeLa, MCF7 and MRC-5 cell lines by sulforhodamine B test. Anti-proliferative effects were observed in all cell lines at higher concentrations (⩾ 0.125 mg/ml). The carotenoid contents exhibited a strong correlation with antioxidant and anti-proliferation activity. The results obtained indicated that tomato waste should be regarded as potential nutraceutic resource and may be used as a functional food ingredient. PMID:25442547

  5. Synergistic activation of cells by Epstein-Barr virus and B-cell growth factor.

    PubMed Central

    Hutt-Fletcher, L M

    1987-01-01

    Infection with Epstein-Barr virus (EBV) is initiated by virus binding to the C3dg-C3d receptor CR2. Several workers have implicated this receptor in the control of B-cell activation by examining the effects of antibodies to CR2 and isolated C3d on B-cell proliferation and differentiation. We report here on the activating effects of irradiated EBV, which retains its capacity to bind to CR2 but loses its ability to function as a T-independent B-cell activator. EBV synergized with B-cell growth factor in the induction of uptake of tritiated thymidine by T cell-depleted leukocytes from seronegative donors but did not induce secretion of immunoglobulin. Synergism could be inhibited with an anti-viral antibody that inhibited binding of EBV to CR2. No similar synergism was found between EBV and recombinant interleukin 2, interleukin 1 alpha, or gamma interferon or with the lipid A fraction of bacterial lipopolysaccharide. EBV may thus initiate B-cell activation as it binds to CR2. Infectious virus may, under normal circumstances, induce the cell to make those growth factors necessary to support B-cell proliferation; the difficulty of transforming cells with transfected EBV DNA may in part reflect the absence of an activation event provided by intact virus as it attaches to CR2. The synergism of EBV and B-cell growth factor more clearly distinguishes the effects of B-cell growth factor from those of interleukin 1 and interleukin 2 in other models of B-cell activation. Thus, this may be a useful model for further delineation of unique effects of B-cell growth factor on B-cell function. PMID:3027404

  6. Ratite oils promote keratinocyte cell growth and inhibit leukocyte activation

    PubMed Central

    Bennett, Darin C.; Leung, Gigi; Wang, Eddy; Ma, Sam; Lo, Blanche K. K.; McElwee, Kevin J.; Cheng, Kimberly M.

    2015-01-01

    Traditionally, native Australian aborigines have used emu oil for the treatment of inflammation and to accelerate wound healing. Studies on mice suggest that topically applied emu oil may have anti-inflammatory properties and may promote wound healing. We investigated the effects of ratite oils (6 emu, 3 ostrich, 1 rhea) on immortalized human keratinocytes (HaCaT cells) in vitro by culturing the cells in media with oil concentrations of 0%, 0.5%, and 1.0%. Peking duck, tea tree, and olive oils were used as comparative controls. The same oils at 0.5% concentration were evaluated for their influence on peripheral blood mononuclear cell (PBMC) survival over 48 hr and their ability to inhibit IFNγ production in PBMCs activated by phytohemagglutinin (PHA) in ELISpot assays. Compared to no oil control, significantly shorter population doubling time durations were observed for HaCaT cells cultured in emu oil (1.51 × faster), ostrich oil (1.46 × faster), and rhea oil (1.64 × faster). Tea tree oil demonstrated significant antiproliferative activity and olive oil significantly prolonged (1.35 × slower) cell population doubling time. In contrast, almost all oils, particularly tea tree oil, significantly reduced PBMC viability. Different oils had different levels of inhibitory effect on IFNγ production with individual emu, ostrich, rhea, and duck oil samples conferring full inhibition. This preliminary investigation suggests that emu oil might promote wound healing by accelerating the growth rate of keratinocytes. Combined with anti-inflammatory properties, ratite oil may serve as a useful component in bandages and ointments for the treatment of wounds and inflammatory skin conditions. PMID:26217022

  7. Ratite oils promote keratinocyte cell growth and inhibit leukocyte activation.

    PubMed

    Bennett, Darin C; Leung, Gigi; Wang, Eddy; Ma, Sam; Lo, Blanche K K; McElwee, Kevin J; Cheng, Kimberly M

    2015-09-01

    Traditionally, native Australian aborigines have used emu oil for the treatment of inflammation and to accelerate wound healing. Studies on mice suggest that topically applied emu oil may have anti-inflammatory properties and may promote wound healing. We investigated the effects of ratite oils (6 emu, 3 ostrich, 1 rhea) on immortalized human keratinocytes (HaCaT cells) in vitro by culturing the cells in media with oil concentrations of 0%, 0.5%, and 1.0%. Peking duck, tea tree, and olive oils were used as comparative controls. The same oils at 0.5% concentration were evaluated for their influence on peripheral blood mononuclear cell (PBMC) survival over 48 hr and their ability to inhibit IFNγ production in PBMCs activated by phytohemagglutinin (PHA) in ELISpot assays. Compared to no oil control, significantly shorter population doubling time durations were observed for HaCaT cells cultured in emu oil (1.51×faster), ostrich oil (1.46×faster), and rhea oil (1.64×faster). Tea tree oil demonstrated significant antiproliferative activity and olive oil significantly prolonged (1.35×slower) cell population doubling time. In contrast, almost all oils, particularly tea tree oil, significantly reduced PBMC viability. Different oils had different levels of inhibitory effect on IFNγ production with individual emu, ostrich, rhea, and duck oil samples conferring full inhibition. This preliminary investigation suggests that emu oil might promote wound healing by accelerating the growth rate of keratinocytes. Combined with anti-inflammatory properties, ratite oil may serve as a useful component in bandages and ointments for the treatment of wounds and inflammatory skin conditions. PMID:26217022

  8. Apoptotic Cells Activate AMP-activated Protein Kinase (AMPK) and Inhibit Epithelial Cell Growth without Change in Intracellular Energy Stores*

    PubMed Central

    Patel, Vimal A.; Massenburg, Donald; Vujicic, Snezana; Feng, Lanfei; Tang, Meiyi; Litbarg, Natalia; Antoni, Angelika; Rauch, Joyce; Lieberthal, Wilfred; Levine, Jerrold S.

    2015-01-01

    Apoptosis plays an indispensable role in the maintenance and development of tissues. We have shown that receptor-mediated recognition of apoptotic target cells by viable kidney proximal tubular epithelial cells (PTECs) inhibits the proliferation and survival of PTECs. Here, we examined the effect of apoptotic targets on PTEC cell growth (cell size during G1 phase of the cell cycle). Using a cell culture model, we show that apoptotic cells potently activate AMP-activated protein kinase (AMPK), a highly sensitive sensor of intracellular energy stores. AMPK activation leads to decreased activity of its downstream target, ribosomal protein p70 S6 kinase (p70S6K), and concomitant inhibition of cell growth. Importantly, these events occur without detectable change in intracellular levels of AMP, ADP, or ATP. Inhibition of AMPK, either pharmacologically by compound C or molecularly by shRNA, diminishes the effects of apoptotic targets and largely restores p70S6K activity and cell size to normal levels. Apoptotic targets also inhibit Akt, a second signaling pathway regulating cell growth. Expression of a constitutively active Akt construct partially relieved cell growth inhibition but was less effective than inhibition of AMPK. Inhibition of cell growth by apoptotic targets is dependent on physical interaction between apoptotic targets and PTECs but independent of phagocytosis. We conclude that receptor-mediated recognition of apoptotic targets mimics the effects of intracellular energy depletion, activating AMPK and inhibiting cell growth. By acting as sentinels of environmental change, apoptotic death may enable nearby viable cells, especially nonmigratory epithelial cells, to monitor and adapt to local stresses. PMID:26183782

  9. Teroxirone inhibited growth of human non-small cell lung cancer cells by activating p53

    SciTech Connect

    Wang, Jing-Ping; Lin, Kai-Han; Liu, Chun-Yen; Yu, Ya-Chu; Wu, Pei-Tsun; Chiu, Chien-Chih; Su, Chun-Li; Chen, Kwun-Min; Fang, Kang

    2013-11-15

    In this work, we demonstrated that the growth of human non-small-cell-lung-cancer cells H460 and A549 cells can be inhibited by low concentrations of an epoxide derivative, teroxirone, in both in vitro and in vivo models. The cytotoxicity was mediated by apoptotic cell death through DNA damage. The onset of ultimate apoptosis is dependent on the status of p53. Teroxirone caused transient elevation of p53 that activates downstream p21 and procaspase-3 cleavage. The presence of caspase-3 inhibitor reverted apoptotic phenotype. Furthermore, we showed the cytotoxicity of teroxirone in H1299 cells with stable ectopic expression of p53, but not those of mutant p53. A siRNA-mediated knockdown of p53 expression attenuated drug sensitivity. The in vivo experiments demonstrated that teroxirone suppressed growth of xenograft tumors in nude mice. Being a potential therapeutic agent by restraining cell growth through apoptotic death at low concentrations, teroxirone provides a feasible perspective in reversing tumorigenic phenotype of human lung cancer cells. - Highlights: • Teroxirone repressed tumor cell growth in nude mice of human lung cancer cells. • The apoptotic cell death reverted by caspase-3 inhibitor is related to p53 status. • Teroxirone provides a good candidate for lung cancer treatment.

  10. Benzimidazoles diminish ERE transcriptional activity and cell growth in breast cancer cells

    SciTech Connect

    Payton-Stewart, Florastina; Tilghman, Syreeta L.; Williams, LaKeisha G.; Winfield, Leyte L.

    2014-08-08

    Highlights: • The methyl-substituted benzimidazole was more effective at inhibiting growth in MDA-MB 231 cells. • The naphthyl-substituted benzimidazole was more effective at inhibiting growth in MCF-7 cells than ICI. • The benzimidazole molecules demonstrated a dose-dependent reduction in ERE transcriptional activity. • The benzimidazole molecules had binding mode in ERα and ERβ comparable to that of the co-crystallized ligand. - Abstract: Estrogen receptors (ERα and ERβ) are members of the nuclear receptor superfamily. They regulate the transcription of estrogen-responsive genes and mediate numerous estrogen related diseases (i.e., fertility, osteoporosis, cancer, etc.). As such, ERs are potentially useful targets for developing therapies and diagnostic tools for hormonally responsive human breast cancers. In this work, two benzimidazole-based sulfonamides originally designed to reduce proliferation in prostate cancer, have been evaluated for their ability to modulate growth in estrogen dependent and independent cell lines (MCF-7 and MDA-MB 231) using cell viability assays. The molecules reduced growth in MCF-7 cells, but differed in their impact on the growth of MDA-MB 231 cells. Although both molecules reduced estrogen response element (ERE) transcriptional activity in a dose dependent manner, the contrasting activity in the MDA-MB-231 cells seems to suggest that the molecules may act through alternate ER-mediated pathways. Further, the methyl analog showed modest selectivity for the ERβ receptor in an ER gene expression array panel, while the naphthyl analog did not significantly alter gene expression. The molecules were docked in the ligand binding domains of the ERα-antagonist and ERβ-agonist crystal structures to evaluate the potential of the molecules to interact with the receptors. The computational analysis complimented the results obtained in the assay of transcriptional activity and gene expression suggesting that the molecules

  11. Correlation between dielectric property by dielectrophoretic levitation and growth activity of cells exposed to electric field.

    PubMed

    Hakoda, Masaru; Hirota, Yusuke

    2013-09-01

    The purpose of this study is to develop a system analyzing cell activity by the dielectrophoresis method. Our previous studies revealed a correlation between the growth activity and dielectric property (Re[K(ω)]) of mouse hybridoma 3-2H3 cells using dielectrophoretic levitation. Furthermore, it was clarified that the differentiation activity of many stem cells could be evaluated by the Re[K(ω)] without differentiation induction. In this paper, 3-2H3 cells exposed to an alternating current (AC) electric field or a direct current (DC) electric field were cultivated, and the influence of damage by the electric field on the growth activity of the cells was examined. To evaluate the activity of the cells by measuring the Re[K(ω)], the correlation between the growth activity and the Re[K(ω)] of the cells exposed to the electric field was examined. The relations between the cell viability, growth activity, and Re[K(ω)] in the cells exposed to the AC electric field were obtained. The growth activity of the cells exposed to the AC electric field could be evaluated by the Re[K(ω)]. Furthermore, it was found that the adverse effects of the electric field on the cell viability and the growth activity were smaller in the AC electric field than the DC electric field.

  12. β-Catenin activation regulates tissue growth non-cell autonomously in the hair stem cell niche.

    PubMed

    Deschene, Elizabeth R; Myung, Peggy; Rompolas, Panteleimon; Zito, Giovanni; Sun, Thomas Yang; Taketo, Makoto M; Saotome, Ichiko; Greco, Valentina

    2014-03-21

    Wnt/β-catenin signaling is critical for tissue regeneration. However, it is unclear how β-catenin controls stem cell behaviors to coordinate organized growth. Using live imaging, we show that activation of β-catenin specifically within mouse hair follicle stem cells generates new hair growth through oriented cell divisions and cellular displacement. β-Catenin activation is sufficient to induce hair growth independently of mesenchymal dermal papilla niche signals normally required for hair regeneration. Wild-type cells are co-opted into new hair growths by β-catenin mutant cells, which non-cell autonomously activate Wnt signaling within the neighboring wild-type cells via Wnt ligands. This study demonstrates a mechanism by which Wnt/β-catenin signaling controls stem cell-dependent tissue growth non-cell autonomously and advances our understanding of the mechanisms that drive coordinated regeneration.

  13. Hormone activities and the cell cycle machinery in immunity-triggered growth inhibition.

    PubMed

    Reitz, M U; Gifford, M L; Schäfer, P

    2015-04-01

    Biotic stress and diseases caused by pathogen attack pose threats in crop production and significantly reduce crop yields. Enhancing immunity against pathogens is therefore of outstanding importance in crop breeding. However, this must be balanced, as immune activation inhibits plant growth. This immunity-coupled growth trade-off does not support resistance but is postulated to reflect the reallocation of resources to drive immunity. There is, however, increasing evidence that growth-immunity trade-offs are based on the reconfiguration of hormone pathways, shared by growth and immunity signalling. Studies in roots revealed the role of hormones in orchestrating growth across different cell types, with some hormones showing a defined cell type-specific activity. This is apparently highly relevant for the regulation of the cell cycle machinery and might be part of the growth-immunity cross-talk. Since plants are constantly exposed to Immuno-activating microbes under agricultural conditions, the transition from a growth to an immunity operating mode can significantly reduce crop yield and can conflict our efforts to generate next-generation crops with improved yield under climate change conditions. By focusing on roots, we outline the current knowledge of hormone signalling on the cell cycle machinery to explain growth trade-offs induced by immunity. By referring to abiotic stress studies, we further introduce how root cell type-specific hormone activities might contribute to growth under immunity and discuss the feasibility of uncoupling the growth-immunity cross-talk.

  14. Insulin and insulin-like growth factor I exert different effects on plasminogen activator production or cell growth in the ovine thyroid cell line OVNIS.

    PubMed

    Degryse, B; Maisonobe, F; Hovsépian, S; Fayet, G

    1991-11-01

    Insulin and Insulin-like Growth Factor I (IGF-I) are evaluated for their capacity to affect cell proliferation and plasminogen activator (PA) activity production in an ovine thyroid cell line OVNIS. Insulin at physiological and supraphysiological doses induces cell proliferation and increases PA activity. IGF-I, which is also clearly mitogenic for these cells, surprisingly does not modulate PA activity. The results indicate that the growth promoting effect is mediated through the insulin and IGF-I receptors whereas PA activity is solely regulated via the insulin receptors. PMID:1802921

  15. Activation of Cell Surface Bound 20S Proteasome Inhibits Vascular Cell Growth and Arteriogenesis

    PubMed Central

    Ito, Wulf D.; Lund, Natalie; Zhang, Ziyang; Buck, Friedrich; Lellek, Heinrich; Horst, Andrea; Machens, Hans-Günther; Schunkert, Heribert; Schaper, Wolfgang; Meinertz, Thomas

    2015-01-01

    Arteriogenesis is an inflammatory process associated with rapid cellular changes involving vascular resident endothelial progenitor cells (VR-EPCs). Extracellular cell surface bound 20S proteasome has been implicated to play an important role in inflammatory processes. In our search for antigens initially regulated during collateral growth mAb CTA 157-2 was generated against membrane fractions of growing collateral vessels. CTA 157-2 stained endothelium of growing collateral vessels and the cell surface of VR-EPCs. CTA 157-2 bound a protein complex (760 kDa) that was identified as 26 kDa α7 and 21 kDa β3 subunit of 20S proteasome in mass spectrometry. Furthermore we demonstrated specific staining of 20S proteasome after immunoprecipitation of VR-EPC membrane extract with CTA 157-2 sepharose beads. Functionally, CTA 157-2 enhanced concentration dependently AMC (7-amino-4-methylcoumarin) cleavage from LLVY (N-Succinyl-Leu-Leu-Val-Tyr) by recombinant 20S proteasome as well as proteasomal activity in VR-EPC extracts. Proliferation of VR-EPCs (BrdU incorporation) was reduced by CTA 157-2. Infusion of the antibody into the collateral circulation reduced number of collateral arteries, collateral proliferation, and collateral conductance in vivo. In conclusion our results indicate that extracellular cell surface bound 20S proteasome influences VR-EPC function in vitro and collateral growth in vivo. PMID:26146628

  16. The deubiquitinating enzyme activity of USP22 is necessary for regulating HeLa cell growth.

    PubMed

    Liu, Ying-Li; Zheng, Jie; Tang, Li-Juan; Han, Wei; Wang, Jian-Min; Liu, Dian-Wu; Tian, Qing-Bao

    2015-11-01

    Ubiquitin-specific protease 22 (USP22) can regulate the cell cycle and apoptosis in many cancer cell types, while it is still unclear whether the deubiquitinating enzyme activity of USP22 is necessary for these processes. As little is known about the impact of USP22 on the growth of HeLa cell, we observed whether USP22 can effectively regulate HeLa cell growth as well as the necessity of deubiquitinating enzyme activity for these processes in HeLa cell. In this study, we demonstrate that USP22 can regulate cell cycle but not apoptosis in HeLa cell. The deubiquitinating enzyme activity of USP22 is necessary for this process as confirmed by an activity-deleted mutant (C185S) and an activity-decreased mutant (Y513C). In addition, the deubiquitinating enzyme activity of USP22 is related to the levels of BMI-1, c-Myc, cyclin D2 and p53. Our findings indicate that the deubiquitinating enzyme activity of USP22 is necessary for regulating HeLa cell growth, and it promotes cell proliferation via the c-Myc/cyclin D2, BMI-1 and p53 pathways in HeLa cell.

  17. Hormone activities and the cell cycle machinery in immunity-triggered growth inhibition

    PubMed Central

    Reitz, M. U.; Gifford, M. L.; Schäfer, P.

    2015-01-01

    Biotic stress and diseases caused by pathogen attack pose threats in crop production and significantly reduce crop yields. Enhancing immunity against pathogens is therefore of outstanding importance in crop breeding. However, this must be balanced, as immune activation inhibits plant growth. This immunity-coupled growth trade-off does not support resistance but is postulated to reflect the reallocation of resources to drive immunity. There is, however, increasing evidence that growth–immunity trade-offs are based on the reconfiguration of hormone pathways, shared by growth and immunity signalling. Studies in roots revealed the role of hormones in orchestrating growth across different cell types, with some hormones showing a defined cell type-specific activity. This is apparently highly relevant for the regulation of the cell cycle machinery and might be part of the growth–immunity cross-talk. Since plants are constantly exposed to Immuno-activating microbes under agricultural conditions, the transition from a growth to an immunity operating mode can significantly reduce crop yield and can conflict our efforts to generate next-generation crops with improved yield under climate change conditions. By focusing on roots, we outline the current knowledge of hormone signalling on the cell cycle machinery to explain growth trade-offs induced by immunity. By referring to abiotic stress studies, we further introduce how root cell type-specific hormone activities might contribute to growth under immunity and discuss the feasibility of uncoupling the growth–immunity cross-talk. PMID:25821072

  18. Neural Stem Cells Restore Hair Growth Through Activation of the Hair Follicle Niche.

    PubMed

    Hwang, Insik; Choi, Kyung-Ah; Park, Hang-Soo; Jeong, Hyesun; Kim, Jeong-Ok; Seol, Ki-Cheon; Kwon, Han-Jin; Park, In-Hyun; Hong, Sunghoi

    2016-01-01

    Several types of hair loss result from the inability of hair follicles to initiate the anagen phase of the hair regeneration cycle. Modulating signaling pathways in the hair follicle niche can stimulate entry into the anagen phase. Despite much effort, stem cell-based or pharmacological therapies to activate the hair follicle niche have not been successful. Here, we set out to test the effect of neural stem cell (NSC) extract on the hair follicle niche for hair regrowth. NSC extracts were applied to the immortalized cell lines HaCaT keratinocytes and dermal papilla cells (DPCs) and the shaven dorsal skin of mice. Treatment with NSC extract dramatically improved the growth of HaCaT keratinocytes and DPCs. In addition, NSC extract enhanced the hair growth of the shaven dorsal skin of mice. In order to determine the molecular signaling pathways regulated by NSCs, we evaluated the expression levels of multiple growth and signaling factors, such as insulin-like growth factor-1 (IGF-1), hepatocyte growth factor (HGF), keratinocyte growth factor (KGF), vascular endothelial growth factor (VEGF), transforming growth factor-β (TGF-β), and bone morphogenetic protein (BMP) family members. We found that treatment with an NSC extract enhanced hair growth by activating hair follicle niches via coregulation of TGF-β and BMP signaling pathways in the telogen phase. We also observed activation and differentiation of intrafollicular hair follicle stem cells, matrix cells, and extrafollicular DPCs in vivo and in vitro. We tested whether activation of growth factor pathways is a major effect of NSC treatment on hair growth by applying the growth factors to mouse skin. Combined growth factors, including TGF-β, significantly increased the hair shaft length and growth rate. DNA damage and cell death were not observed in skin cells of mice treated with the NSC extract for a prolonged period. Overall, our data demonstrate that NSC extract provides an effective approach for promoting

  19. Sirtuin Activation: A Role for Plasma Membrane in the Cell Growth Puzzle

    PubMed Central

    2013-01-01

    For more than 20 years, the observation that impermeable oxidants can stimulate cell growth has not been satisfactorily explained. The discovery of sirtuins provides a logical answer to the puzzle. The NADH-dependent transplasma membrane electron transport system, which is stimulated by growth factors and interventions such as calorie restriction, can transfer electrons to external acceptors and protect against stress-induced apoptosis. We hypothesize that the activation of plasma membrane electron transport contributes to the cytosolic NAD+ pool required for sirtuin to activate transcription factors necessary for cell growth and survival. PMID:23033342

  20. Chitosan hydrogels enriched with polyphenols: Antibacterial activity, cell adhesion and growth and mineralization.

    PubMed

    Lišková, Jana; Douglas, Timothy E L; Beranová, Jana; Skwarczyńska, Agata; Božič, Mojca; Samal, Sangram Keshari; Modrzejewska, Zofia; Gorgieva, Selestina; Kokol, Vanja; Bačáková, Lucie

    2015-09-20

    Injectable hydrogels for bone regeneration consisting of chitosan, sodium beta-glycerophosphate (Na-β-GP) and alkaline phosphatase (ALP) were enriched with the polyphenols phloroglucinol (PG) and gallic acid (GA) and characterized physicochemically and biologically with respect to properties relevant for applications in bone regeneration, namely gelation kinetics, mineralizability, antioxidant properties, antibacterial activity, cytocompatibility and ability to support adhesion and growth of human osteoblast-like MG63 cells. Enrichment with PG and GA had no negative effect on gelation kinetics and mineralizability. PG and GA both enhanced antioxidant activity of unmineralized hydrogels. Mineralization reduced antioxidant activity of hydrogels containing GA. Hydrogels containing GA, PG and without polyphenols reduced colony forming ability of Escherichia coli after 1h, 3h and 6h incubation and slowed E. coli growth in liquid culture for 150min. Hydrogels containing GA were cytotoxic and supported cell growth more poorly than polyphenol-free hydrogels. PG had no negative effect on cell adhesion and growth.

  1. The DUSP26 phosphatase activator adenylate kinase 2 regulates FADD phosphorylation and cell growth

    NASA Astrophysics Data System (ADS)

    Kim, Hyunjoo; Lee, Ho-June; Oh, Yumin; Choi, Seon-Guk; Hong, Se-Hoon; Kim, Hyo-Jin; Lee, Song-Yi; Choi, Ji-Woo; Su Hwang, Deog; Kim, Key-Sun; Kim, Hyo-Joon; Zhang, Jianke; Youn, Hyun-Jo; Noh, Dong-Young; Jung, Yong-Keun

    2014-02-01

    Adenylate kinase 2 (AK2), which balances adenine nucleotide pool, is a multi-functional protein. Here we show that AK2 negatively regulates tumour cell growth. AK2 forms a complex with dual-specificity phosphatase 26 (DUSP26) phosphatase and stimulates DUSP26 activity independently of its AK activity. AK2/DUSP26 phosphatase protein complex dephosphorylates fas-associated protein with death domain (FADD) and regulates cell growth. AK2 deficiency enhances cell proliferation and induces tumour formation in a xenograft assay. This anti-growth function of AK2 is associated with its DUSP26-stimulating activity. Downregulation of AK2 is frequently found in tumour cells and human cancer tissues showing high levels of phospho-FADDSer194. Moreover, reconstitution of AK2 in AK2-deficient tumour cells retards both cell proliferation and tumourigenesis. Consistent with this, AK2+/- mouse embryo fibroblasts exhibit enhanced cell proliferation with a significant alteration in phospho-FADDSer191. These results suggest that AK2 is an associated activator of DUSP26 and suppresses cell proliferation by FADD dephosphorylation, postulating AK2 as a negative regulator of tumour growth.

  2. Stimulation of protein phosphatase activity by insulin and growth factors in 3T3 cells

    SciTech Connect

    Chan, C.P.; McNall, S.J.; Krebs, E.G.; Fischer, E.H. )

    1988-09-01

    Incubation of Swiss mouse 3T3-D1 cells with physiological concentrations of insulin resulted in a rapid and transient activation of protein phosphatase activity as measure by using ({sup 32}P)phosphorylase {alpha} as substrate. Activation reached a maximum level (140% of control value) within 5 min of addition and returned to control levels within 20 min. The effect of insulin was dose-dependent with half-maximal activation occurring at {approx}5 nM insulin. This activity could be completely inhibited by addition of the heat-stable protein inhibitor 2, which suggests the presence of an activated type-1 phosphatase. Similar effects on phosphatase activity were seen when epidermal growth factor and platelet-derived growth factor were tested. These results suggest that some of the intracellular effects caused by insulin and growth factors are mediated through the activation of a protein phosphatase.

  3. Sphingosine-1-phosphate mediates epidermal growth factor-induced muscle satellite cell activation.

    PubMed

    Nagata, Yosuke; Ohashi, Kazuya; Wada, Eiji; Yuasa, Yuki; Shiozuka, Masataka; Nonomura, Yoshiaki; Matsuda, Ryoichi

    2014-08-01

    Skeletal muscle can regenerate repeatedly due to the presence of resident stem cells, called satellite cells. Because satellite cells are usually quiescent, they must be activated before participating in muscle regeneration in response to stimuli such as injury, overloading, and stretch. Although satellite cell activation is a crucial step in muscle regeneration, little is known of the molecular mechanisms controlling this process. Recent work showed that the bioactive lipid sphingosine-1-phosphate (S1P) plays crucial roles in the activation, proliferation, and differentiation of muscle satellite cells. We investigated the role of growth factors in S1P-mediated satellite cell activation. We found that epidermal growth factor (EGF) in combination with insulin induced proliferation of quiescent undifferentiated mouse myoblast C2C12 cells, which are also known as reserve cells, in serum-free conditions. Sphingosine kinase activity increased when reserve cells were stimulated with EGF. Treatment of reserve cells with the D-erythro-N,N-dimethylsphingosine, Sphingosine Kinase Inhibitor, or siRNA duplexes specific for sphingosine kinase 1, suppressed EGF-induced C2C12 activation. We also present the evidence showing the S1P receptor S1P2 is involved in EGF-induced reserve cell activation. Moreover, we demonstrated a combination of insulin and EGF promoted activation of satellite cells on single myofibers in a manner dependent on SPHK and S1P2. Taken together, our observations show that EGF-induced satellite cell activation is mediated by S1P and its receptor.

  4. Activation of PPARalpha inhibits IGF-I-mediated growth and survival responses in medulloblastoma cell lines.

    PubMed

    Urbanska, Katarzyna; Pannizzo, Paola; Grabacka, Maja; Croul, Sidney; Del Valle, Luis; Khalili, Kamel; Reiss, Krzysztof

    2008-09-01

    Recent studies suggest a potential role of lipid lowering drugs, fibrates and statins, in anticancer treatment. One candidate for tumor chemoprevention is fenofibrate, which is a potent agonist of peroxisome proliferator activated receptor alpha (PPARalpha). Our results demonstrate elevated expression of PPARalpha in the nuclei of neoplatic cells in 12 out of 13 cases of medulloblastoma, and of PPARgamma in six out of 13 cases. Further analysis demonstrated that aggressive mouse medulloblastoma cells, BsB8, express PPARalpha in the absence PPARgamma, and human medulloblastoma cells, D384 and Daoy, express both PPARalpha and PPARgamma. Mouse and human cells responded to fenofibrate by a significant increase of PPAR-mediated transcriptional activity, and by a gradual accumulation of cells in G1 and G2/M phase of the cell cycle, leading to the inhibition of cell proliferation and elevated apoptosis. Preincubation of BsB8 cells with fenofibrate attenuated IGF-I-induced IRS-1, Akt, ERKs and GSK3beta phosphorylation, and inhibited clonogenic growth. In Daoy and D384 cells, fenofibrate also inhibited IGF-I-mediated growth responses, and simultaneous delivery of fenofibrate with low dose of the IGF-IR inhibitor, NVP-AEW541, completely abolished their clonogenic growth and survival. These results indicate a strong supportive role of fenofibrate in chemoprevention against IGF-I-induced growth responses in medulloblastoma.

  5. PKN3 is required for malignant prostate cell growth downstream of activated PI 3-kinase

    PubMed Central

    Leenders, Frauke; Möpert, Kristin; Schmiedeknecht, Anett; Santel, Ansgar; Czauderna, Frank; Aleku, Manuela; Penschuck, Silke; Dames, Sibylle; Sternberger, Maria; Röhl, Thomas; Wellmann, Axel; Arnold, Wolfgang; Giese, Klaus; Kaufmann, Jörg; Klippel, Anke

    2004-01-01

    Chronic activation of the phosphoinositide 3-kinase (PI3K)/PTEN signal transduction pathway contributes to metastatic cell growth, but up to now effectors mediating this response are poorly defined. By simulating chronic activation of PI3K signaling experimentally, combined with three-dimensional (3D) culture conditions and gene expression profiling, we aimed to identify novel effectors that contribute to malignant cell growth. Using this approach we identified and validated PKN3, a barely characterized protein kinase C-related molecule, as a novel effector mediating malignant cell growth downstream of activated PI3K. PKN3 is required for invasive prostate cell growth as assessed by 3D cell culture assays and in an orthotopic mouse tumor model by inducible expression of short hairpin RNA (shRNA). We demonstrate that PKN3 is regulated by PI3K at both the expression level and the catalytic activity level. Therefore, PKN3 might represent a preferred target for therapeutic intervention in cancers that lack tumor suppressor PTEN function or depend on chronic activation of PI3K. PMID:15282551

  6. Sphingosine-1-phosphate mediates epidermal growth factor-induced muscle satellite cell activation

    SciTech Connect

    Nagata, Yosuke Ohashi, Kazuya; Wada, Eiji; Yuasa, Yuki; Shiozuka, Masataka; Nonomura, Yoshiaki; Matsuda, Ryoichi

    2014-08-01

    Skeletal muscle can regenerate repeatedly due to the presence of resident stem cells, called satellite cells. Because satellite cells are usually quiescent, they must be activated before participating in muscle regeneration in response to stimuli such as injury, overloading, and stretch. Although satellite cell activation is a crucial step in muscle regeneration, little is known of the molecular mechanisms controlling this process. Recent work showed that the bioactive lipid sphingosine-1-phosphate (S1P) plays crucial roles in the activation, proliferation, and differentiation of muscle satellite cells. We investigated the role of growth factors in S1P-mediated satellite cell activation. We found that epidermal growth factor (EGF) in combination with insulin induced proliferation of quiescent undifferentiated mouse myoblast C2C12 cells, which are also known as reserve cells, in serum-free conditions. Sphingosine kinase activity increased when reserve cells were stimulated with EGF. Treatment of reserve cells with the D-erythro-N,N-dimethylsphingosine, Sphingosine Kinase Inhibitor, or siRNA duplexes specific for sphingosine kinase 1, suppressed EGF-induced C2C12 activation. We also present the evidence showing the S1P receptor S1P2 is involved in EGF-induced reserve cell activation. Moreover, we demonstrated a combination of insulin and EGF promoted activation of satellite cells on single myofibers in a manner dependent on SPHK and S1P2. Taken together, our observations show that EGF-induced satellite cell activation is mediated by S1P and its receptor. - Highlights: • EGF in combination with insulin induces proliferation of quiescent C2C12 cells. • Sphingosine kinase activity increases when reserve cells are stimulated with EGF. • EGF-induced activation of reserve cells is dependent on sphingosine kinase and ERK. • The S1P receptor S1P2 is involved in EGF-induced reserve cell activation. • EGF-induced reserve cell activation is mediated by S1P and its

  7. Cellular localization of the activated EGFR determines its effect on cell growth in MDA-MB-468 cells

    SciTech Connect

    Hyatt, Dustin C.; Ceresa, Brian P.

    2008-11-01

    The epidermal growth factor (EGF) receptor (EGFR) is a ubiquitously expressed receptor tyrosine kinase that regulates diverse cell functions that are dependent upon cell type, the presence of downstream effectors, and receptor density. In addition to activating biochemical pathways, ligand stimulation causes the EGFR to enter the cell via clathrin-coated pits. Endocytic trafficking influences receptor signaling by controlling the duration of EGFR phosphorylation and coordinating the receptor's association with downstream effectors. To better understand the individual contributions of cell surface and cytosolic EGFRs on cell physiology, we used EGF that was conjugated to 900 nm polystyrene beads (EGF-beads). EGF-beads can stimulate the EGFR and retain the activated receptor at the plasma membrane. In MDA-MB-468 cells, a breast cancer cell line that over-expresses the EGFR, only internalized, activated EGFRs stimulate caspase-3 and induce cell death. Conversely, signaling cascades triggered from activated EGFR retained at the cell surface inhibit caspase-3 and promote cell proliferation. Thus, through endocytosis, the activated EGFR can differentially regulate cell growth in MDA-MB-468 cells.

  8. Inhibition of prolidase activity by nickel causes decreased growth of proline auxotrophic CHO cells.

    PubMed

    Miltyk, Wojciech; Surazynski, Arkadiusz; Kasprzak, Kazimierz S; Fivash, Matthew J; Buzard, Gregory S; Phang, James M

    2005-04-15

    Occupational exposure to nickel has been epidemiologically linked to increased cancer risk in the respiratory tract. Nickel-induced cell transformation is associated with both genotoxic and epigenetic mechanisms that are poorly understood. Prolidase [E.C.3.4.13.9] is a cytosolic Mn(II)-activated metalloproteinase that specifically hydrolyzes imidodipeptides with C-terminal proline or hydroxyproline and plays an important role in the recycling of proline for protein synthesis and cell growth. Prolidase also provides free proline as substrate for proline oxidase, whose gene is activated by p53 during apoptosis. The inhibition of prolidase activity by nickel has not yet been studied. We first showed that Ni(II) chloride specifically inhibited prolidase activity in CHO-K1 cells in situ. This interpretation was possible because CHO-K1 cells are proline auxotrophs requiring added free proline or proline released from added Gly-Pro by prolidase. In a dose-dependent fashion, Ni(II) inhibited growth on Gly-Pro but did not inhibit growth on proline, thereby showing inhibition of prolidase in situ in the absence of nonspecific toxicity. Studies using cell-free extracts showed that Ni(II) inhibited prolidase activity when present during prolidase activation with Mn(II) or during incubation with Gly-Pro. In kinetic studies, we found that Ni(II) inhibition of prolidase varied with respect to Mn(II) concentration. Analysis of these data suggested that increasing concentrations of Mn(II) stabilized the enzyme protein against Ni(II) inhibition. Because prolidase is an important enzyme in collagen metabolism, inhibition of the enzyme activity by nickel could alter the metabolism of collagen and other matrix proteins, and thereby alter cell-matrix and cell-cell interactions involved in gene expression, genomic stability, cellular differentiation, and cell proliferation. PMID:15696600

  9. Physical Activity Counteracts Tumor Cell Growth in Colon Carcinoma C26-Injected Muscles: An Interim Report

    PubMed Central

    Hiroux, Charlotte; Vandoorne, Tijs; Koppo, Katrien; De Smet, Stefan; Hespel, Peter; Berardi, Emanuele

    2016-01-01

    Skeletal muscle tissue is a rare site of tumor metastasis but is the main target of the degenerative processes occurring in cancer-associated cachexia syndrome. Beneficial effects of physical activity in counteracting cancer-related muscle wasting have been described in the last decades. Recently it has been shown that, in tumor xeno-transplanted mouse models, physical activity is able to directly affect tumor growth by modulating inflammatory responses in the tumor mass microenvironment. Here, we investigated the effect of physical activity on tumor cell growth in colon carcinoma C26 cells injected tibialis anterior muscles of BALB/c mice. Histological analyses revealed that 4 days of voluntary wheel running significantly counteracts tumor cell growth in C26-injected muscles compared to the non-injected sedentary controls. Since striated skeletal muscle tissue is the site of voluntary contraction, our results confirm that physical activity can also directly counteract tumor cell growth in a metabolically active tissue that is usually not a target for metastasis. PMID:27478560

  10. Elevated autocrine chemokine ligand 18 expression promotes oral cancer cell growth and invasion via Akt activation

    PubMed Central

    Hong, Yun; Wu, Tong; Chen, Xiaobing; Xia, Juan; Cheng, Bin

    2016-01-01

    Chemokine (C-C motif) ligand 18 (CCL18) has been implicated in the pathogenesis and progression of various cancers; however, in oral squamous cell carcinoma (OSCC), the role of CCL18 is unknown. In this study, we found that CCL18 was overexpressed in primary OSCC tissues and was associated with an advanced clinical stage. CCL18 was found in both the cytoplasm and cell membrane of OSCC cells and was predominantly produced by cancer epithelial cells, as opposed to tumor-infiltrating macrophages. In vitro studies indicated that the effects of endogenous CCL18 on OSCC cell growth, migration, and invasion could be blocked by treatment with a neutralizing anti-CCL18 antibody or CCL18 knockdown, while exogenous recombinant CCL18 (rCCL18) rescued those effects. Akt was activated in rCCL18-treated OSCC cells, while LY294002, a pan-PI3K inhibitor, abolished both endogenous and exogenous CCL18-induced OSCC cell invasion. In vivo, LY294002 treatment attenuated rCCL18-induced OSCC cell growth. Our results indicate that CCL18 acts in an autocrine manner via Akt activation to stimulate OSCC cell growth and invasion during OSCC progression. They also provide a potential therapeutic target for the treatment of oral cancer. PMID:26919103

  11. The Anaplastic Lymphoma Kinase controls cell shape and growth of Anaplastic Large Cell Lymphoma through Cdc42 activation

    PubMed Central

    Ambrogio, Chiara; Voena, Claudia; Manazza, Andrea D.; Martinengo, Cinzia; Costa, Carlotta; Kirchhausen, Tomas; Hirsch, Emilio; Inghirami, Giorgio; Chiarle, Roberto

    2008-01-01

    Anaplastic Large Cell Lymphoma (ALCL) is a Non-Hodgkin Lymphoma (NHL) that originates from T cells and frequently expresses oncogenic fusion proteins derived from chromosomal translocations or inversions of the Anaplastic Lymphoma Kinase (ALK) gene. Proliferation and survival of ALCL cells are determined by the ALK activity. Here we show that the kinase activity of the Nucleophosmin (NPM)-ALK fusion regulated the shape of ALCL cells and F-actin filaments assembly in a pattern similar to T-Cell Receptor (TCR) stimulated cells. NPM-ALK formed a complex with the Guanine Exchange Factor (GEF) VAV1, enhancing its activation through phosphorylation. VAV1 increased Cdc42 activity and, in turn, Cdc42 regulated the shape and the migration of ALCL cells. In vitro knock-down of VAV1 or Cdc42 by sh-RNA, as well as pharmacological inhibition of Cdc42 activity by secramine, resulted in a cell-cycle arrest and apoptosis of ALCL cells. Importantly, the concomitant inhibition of Cdc42 and NPM-ALK kinase acted synergistically to induce apoptosis of ALCL cells. Finally, Cdc42 was necessary for the growth as well as for the maintenance of already established lymphomas in vivo. Thus, our data open perspectives for new therapeutic strategies by revealing a mechanism of regulation of ALCL cells growth through Cdc42. PMID:18974134

  12. Urokinase-type plasminogen activator receptor signaling is critical in nasopharyngeal carcinoma cell growth and metastasis.

    PubMed

    Bao, Ying-Na; Cao, Xue; Luo, Dong-Hua; Sun, Rui; Peng, Li-Xia; Wang, Lin; Yan, Yong-Pan; Zheng, Li-Sheng; Xie, Ping; Cao, Yun; Liang, Ying-Ying; Zheng, Fang-Jing; Huang, Bi-Jun; Xiang, Yan-Qun; Lv, Xing; Chen, Qiu-Yan; Chen, Ming-Yuan; Huang, Pei-Yu; Guo, Ling; Mai, Hai-Qiang; Guo, Xiang; Zeng, Yi-Xin; Qian, Chao-Nan

    2014-01-01

    Nasopharyngeal carcinoma (NPC) is one of the most common malignancies in southern China and Southeast Asia, with the highest metastasis rate among head and neck cancers. The mechanisms underlying NPC progression remain poorly understood. Genome-wide expression profiling on 18 NPC vs. 18 noncancerous nasopharyngeal tissues together with GeneGo pathway analysis and expression verification in NPC cells and tissues revealed a potential role of urokinase-type plasminogen activator receptor (uPAR) in NPC progression, which has not been investigated in NPC. We then observed that uPAR expression is increased in poorly differentiated, highly metastatic NPC cells compared with lowly metastatic cells or differentiated NPC cells. In vitro studies demonstrated that uPAR regulates NPC cell growth, colony formation, migration, and invasion and promotes the epithelial-mesenchymal transition (EMT). Additional tumor xenograft and spontaneous metastasis experiments revealed that uPAR promotes NPC cell growth and metastasis in vivo. The JAK-STAT pathway is involved in uPAR-regulated signaling in NPC cells as determined by immunoblotting. Moreover, uPAR-mediated growth and motility is partially abolished upon treatment with the Jak1/Jak2 inhibitor INCB018424. We suppressed uPA expression in uPAR-overexpressing NPC cells and found that uPAR-mediated cellular growth and motility is not exclusively dependent on uPA. In summary, uPAR is a significant regulator of NPC progression and could serve as a promising therapeutic target. PMID:24763226

  13. Monocarboxylate transporter 1 contributes to growth factor-induced tumor cell migration independent of transporter activity

    PubMed Central

    Gray, Alana L.; Coleman, David T.; Shi, Runhua; Cardelli, James A.

    2016-01-01

    Tumor progression to metastatic disease contributes to the vast majority of incurable cancer. Understanding the processes leading to advanced stage cancer is important for the development of future therapeutic strategies. Here, we establish a connection between tumor cell migration, a prerequisite to metastasis, and monocarboxylate transporter 1 (MCT1). MCT1 transporter activity is known to regulate aspects of tumor progression and, as such, is a clinically relevant target for treating cancer. Knockdown of MCT1 expression caused decreased hepatocyte growth factor (HGF)-induced as well as epidermal growth factor (EGF)-induced tumor cell scattering and wound healing. Western blot analysis suggested that MCT1 knockdown (KD) hinders signaling through the HGF receptor (c-Met) but not the EGF receptor. Exogenous, membrane-permeable MCT1 substrates were not able to rescue motility in MCT1 KD cells, nor was pharmacologic inhibition of MCT1 able to recapitulate decreased cell motility as seen with MCT1 KD cells, indicating transporter activity of MCT1 was dispensable for EGF- and HGF-induced motility. These results indicate MCT1 expression, independent of transporter activity, is required for growth factor-induced tumor cell motility. The findings presented herein suggest a novel function for MCT1 in tumor progression independent of its role as a monocarboxylate transporter. PMID:27127175

  14. Troglitazone enhances tamoxifen-induced growth inhibitory activity of MCF-7 cells

    SciTech Connect

    Yu, Hong-Nu; Noh, Eun-Mi; Lee, Young-Rae; Roh, Si-Gyun; Song, Eun-Kyung; Han, Myung-Kwan; Lee, Yong-Chul; Shim, In Kyong; Lee, Seung Jin; Jung, Sung Hoo; Kim, Jong-Suk Youn, Hyun Jo

    2008-12-05

    Peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) ligands have been identified as a potential source of therapy for human cancers. However, PPAR{gamma} ligands have a limitation for breast cancer therapy, since estrogen receptor {alpha} (ER{sub {alpha}}) negatively interferes with PPAR{gamma} signaling in breast cancer cells. Here we show that ER{sub {alpha}} inhihits PPAR{gamma} transactivity and ER{sub {alpha}}-mediated inhibition of PPAR{gamma} transactivity is blocked by tamoxifen, an estrogen receptor blocker. The activation of ER{sub {alpha}} with 17-{beta}-estradiol blocked PPRE transactivity induced by troglitazone, a PPAR{gamma} ligand, indicating the resistance of ER{sub {alpha}}-positive breast cancer cells to troglitazone. Indeed, troglitazone inhibited the growth of ER{sub {alpha}}-negative MDA-MB-231 cells more than that of ER{sub {alpha}}-positive MCF-7 cells. Combination of troglitazone with tamoxifen led to a marked increase in growth inhibition of ER{sub {alpha}}-positive MCF-7 cells compared to either agent alone. Our data indicates that troglitazone enhances the growth inhibitory activity of tamoxifen in ER{sub {alpha}}-positive MCF-7 cells.

  15. Retardation of cell growth by avian reovirus p17 through the activation of p53 pathway

    SciTech Connect

    Liu, H.-J.; Lin, P.-Y.; Lee, J.-W.; Hsu, H.-Y.; Shih, W.-L. . E-mail: shihwl@mail.tcu.edu.tw

    2005-10-21

    The second open reading frame of avian reovirus S1 gene segment encodes a 17 kDa non-structural protein, named p17. The biological role of p17 is fully unknown so far. Using trypan blue dye exclusion and MTT assay, we demonstrated that the ectopic expression of p17 results in the reduction of viable cell number and cell proliferation rate of Vero, BHK, 293, and HeLa cells. Measurement of LDH activity and DNA fragmentation analysis revealed that p17 expression did not cause cell death or apoptosis. These data indicated that the p17 possessed the growth retardation function. Semi-quantitative RT-PCR and Western blotting revealed that p17-expressing cells induced the expression of CDK inhibitor p21{sup cip1/waf1} in a time- and dose-dependent manner, but the transcripts of CDK inhibitor p15{sup INK4b}, p16{sup INK4a}, or p27{sup kip} were not altered. In the presence of p17, the p53 protein level and p53-driven reporter activity were elevated significantly. Dominant negative p53 alleviated the p21 accumulation, p53 activation, and growth inhibition effect induced by p17. Taken together, these studies revealed a possible intrinsic function of p17 in growth regulation through the activation of p53 and p21{sup cip1/waf1}.

  16. Cell Surface Epidermal Growth Factor Receptors Increase Src and c-Cbl Activity and Receptor Ubiquitylation*

    PubMed Central

    Parks, Eileen E.; Ceresa, Brian P.

    2014-01-01

    There is an established role for the endocytic pathway in regulation of epidermal growth factor receptor (EGFR) signaling to downstream effectors. However, because ligand-mediated EGFR endocytosis utilizes multiple “moving parts,” dissecting the spatial versus temporal contributions has been challenging. Blocking all endocytic trafficking can have unintended effects on other receptors as well as give rise to compensatory mechanisms, both of which impact interpretation of EGFR signaling. To overcome these limitations, we used epidermal growth factor (EGF) conjugated to polystyrene beads (EGF beads). EGF beads simultaneously activate the EGFR while blocking its endocytosis and allow analysis of EGFR signaling from the plasma membrane. Human telomerase immortalized corneal epithelial (hTCEpi) cells were used to model normal epithelial cell biology. In hTCEpi cells, both cell surface and intracellular EGFRs exhibited dose-dependent increases in effector activity after 15 min of ligand stimulation, but only the serine phosphorylation of signal transducer and activator of transcription 3 (STAT3) was statistically significant when accounting for receptor phosphorylation. However, over time with physiological levels of receptor phosphorylation, cell surface receptors produced either enhanced or sustained mitogen-activated protein kinase kinase (MEK), Casitas B-lineage lymphoma (c-Cbl), and the pro-oncogene Src activity. These increases in effector communication by cell surface receptors resulted in an increase in EGFR ubiquitylation with sustained ligand incubation. Together, these data indicate that spatial regulation of EGFR signaling may be an important regulatory mechanism in receptor down-regulation. PMID:25074934

  17. Activation of autophagic pathways is related to growth inhibition and senescence in cutaneous squamous cell carcinoma.

    PubMed

    Choi, So Ra; Chung, Bo Young; Kim, Seong Who; Kim, Chang Deok; Yun, Woo Jin; Lee, Mi Woo; Choi, Jee Ho; Chang, Sung Eun

    2014-10-01

    Cutaneous squamous cell carcinoma (SCC) is a very common resectable cancer; however, cutaneous SCC is highly resistant to chemotherapy if metastasis develops. Activating transcription factor 3 (ATF3) has been suggested as a marker of advanced or metastatic cutaneous SCC. Autophagy is one of the most important mechanisms in cancer biology and commonly induced by in vitro serum starvation. To investigate the role of autophagy activation in cutaneous SCC, we activated autophagic pathways by serum starvation in SCC13 and ATF3-overexpressing SCC13 (ATF3-SCC13) cell lines. ATF3-SCC13 cells demonstrated high proliferative capacity and low p53 and autophagy levels in comparison with control SCC13 cells under basal conditions. Intriguingly, autophagic stimulation via serum starvation resulted in growth inhibition and senescence in both cells, while ATF3-SCC13 cells further demonstrated growth inhibition and senescence. Apoptosis was not significantly induced by autophagy activation. Taken together, autophagy activation may be a promising antitumor approach for advanced cutaneous SCC. PMID:25046976

  18. Effects of cell heterogeneity on production of polypeptide growth factors and mesoderm-inducing activity by Xenopus laevis XTC cells.

    PubMed

    Snoek, G T; Koster, C H; de Laat, S W; Heideveld, M; Durston, A J; van Zoelen, E J

    1990-04-01

    The Xenopus laevis XTC cell line has been analyzed for the production of polypeptide growth factors and mesoderm-inducing activity. By the use of specific biological assays, it is shown that XTC cells produce a growth factor functionally related to the platelet-derived growth factor (PDGF) and two transforming growth factor (TGF) beta-like activities. Mesoderm-inducing activity, as measured on X. laevis ectodermal explants from stage 10 embryos, was found to coelute on a Bio-Gel P-100 column with one of the TGF beta-like activities at an apparent molecular weight of 6-10 kDa. Analysis of the DNA content from XTC cells by flow cytometry demonstrated that the cell line is heterogeneous and consists of both tetraploid and diploid cells. Cloning of the XTC cells and selecting single-cell colonies on the basis of their ability to grow in soft agar resulted in the isolation of several homogeneous, morphologically different clonal derivatives. Analysis of conditioned medium from these clonal derivatives showed that only one of them, the only diploid line among six investigated, produced a strong heat- and acid-stable mesoderm-inducing activity that induced notochord and muscle formation in stage 10 X. laevis ectodermal explants. The relation between this activity and a recently described TGF beta-like mesoderm-inducing factor obtained from XTC-conditioned medium will be discussed. In conclusion, a clonal cell line derived from X. laevis XTC cells which provides a good source for further characterization of mesoderm-inducing factors has been established.

  19. Inhibitory effects of docosyl p-coumarate on DNA topoisomerase activity and human cancer cell growth.

    PubMed

    Mizushina, Yoshiyuki; Nishimura, Katsumi; Takenaka, Yukiko; Takeuchi, Toshifumi; Sugawara, Fumio; Yoshida, Hiromi; Tanahashi, Takao

    2010-10-01

    We previously found six compounds of alkyl p-coumarates from a composite plant Artemisia annua L., and chemically synthesized these compounds (cis-isomer of C20, C22 and C24, and trans-isomer of C20, C22 and C24 of p-coumarates are compounds 1-6, respectively). This report describes the inhibitory activities of these alkyl p-coumarates against DNA polymerase (pol), DNA topoisomerase (topo), and human cancer cell growth. Among the compounds tested, compounds 1 and 4 weakly inhibited repair-related pol beta activity, but no compound influenced the activity of replicative pol alpha. Compounds 4-6 and compounds 2 and 5 were potent inhibitors of human topos I and II, respectively. Compounds 2, 4, 5 and 6 also suppressed the growth of human colon carcinoma cell line, HCT116, with or without p53, suggesting that cell growth inhibition had the same tendency as the inhibition of topos rather than pols. Compound 5 (docosyl p-coumarate), which was the strongest inhibitor of topo II and cancer cell growth in the compounds tested, halted HCT116 p53(+/+) cells in G2/M phases, and induced apoptosis, although this compound did not affect the cell cycle of HCT116 p53(-/-) cells. These results suggest that the effect of p53-dependent cell cycle arrest may be effective for topo inhibition by com-pound 5. From these findings, the action mode of alkyl p-coumarates as an anti-cancer agent is discussed. PMID:20811721

  20. CEP-701 and CEP-751 inhibit constitutively activated RET tyrosine kinase activity and block medullary thyroid carcinoma cell growth.

    PubMed

    Strock, Christopher J; Park, Jong-In; Rosen, Mark; Dionne, Craig; Ruggeri, Bruce; Jones-Bolin, Susan; Denmeade, Samuel R; Ball, Douglas W; Nelkin, Barry D

    2003-09-01

    All of the cases of medullary thyroid carcinoma (MTC) express the RET receptor tyrosine kinase. In essentially all of the hereditary cases and approximately 40% of the sporadic cases of MTC, the RET kinase is constitutively activated by mutation. This suggests that RET may be an effective therapeutic target for treatment of MTC. We show that the indolocarbazole derivatives, CEP-701 and CEP-751, inhibit RET in MTC cells. These compounds effectively inhibit RET phosphorylation in a dose-dependent manner at concentrations <100 nM in 0.5% serum and at somewhat higher concentrations in the presence of 16% serum. They also blocked the growth of these MTC cells in culture. CEP-751 and its prodrug, CEP-2563, also inhibited tumor growth in MTC cell xenografts. These results show that inhibiting RET can block the growth of MTC cells and may have a therapeutic benefit in MTC.

  1. Activation of Epidermal Growth Factor Receptor in Macrophages Mediates Feedback Inhibition of M2 Polarization and Gastrointestinal Tumor Cell Growth.

    PubMed

    Zhao, Gang; Liu, Liping; Peek, Richard M; Hao, Xishan; Polk, D Brent; Li, Hui; Yan, Fang

    2016-09-23

    EGF receptor (EGFR) in tumor cells serves as a tumor promoter. However, information about EGFR activation in macrophages in regulating M2 polarization and tumor development is limited. This study aimed to investigate the effects of EGFR activation in macrophages on M2 polarization and development of gastrointestinal tumors. IL-4, a cytokine to elicit M2 polarization, stimulated release of an EGFR ligand, HB-EGF, and transactivation and down-regulation of EGFR in Raw 264.7 cells and peritoneal macrophages from WT mice. Knockdown of HB-EGF in macrophages inhibited EGFR transactivation by IL-4. IL-4-stimulated STAT6 activation, Arg1 and YM1 gene expression, and HB-EGF production were further enhanced by inhibition of EGFR activity in Raw 264.7 cells using an EGFR kinase inhibitor and in peritoneal macrophages from Egfr(wa5) mice with kinase inactive EGFR and by knockdown of EGFR in peritoneal macrophages from Egfr(fl/fl) LysM-Cre mice with myeloid cell-specific EGFR deletion. Chitin induced a higher level of M2 polarization in peritoneal macrophages in Egfr(fl/fl) LysM-Cre mice than that in Egfr(fl/fl) mice. Accordingly, IL-4-conditioned medium stimulated growth and epithelial-to-mesenchymal transition in gastric epithelial and colonic tumor cells, which were suppressed by that from Raw 264.7 cells with HB-EGF knockdown but promoted by that from Egfr(wa5) and Egfr(fl/fl) LysM-Cre peritoneal macrophages. Clinical assessment revealed that the number of macrophages with EGFR expression became less, indicating decreased inhibitory effects on M2 polarization, in late stage of human gastric cancers. Thus, IL-4-stimulated HB-EGF-dependent transactivation of EGFR in macrophages may mediate inhibitory feedback for M2 polarization and HB-EGF production, thereby inhibiting gastrointestinal tumor growth.

  2. Release of basic fibroblast growth factor-heparan sulfate complexes from endothelial cells by plasminogen activator-mediated proteolytic activity

    PubMed Central

    1990-01-01

    Cultured bovine capillary endothelial (BCE) cells synthesize heparan sulfate proteoglycans (HSPG), which are both secreted into the culture medium and deposited in the cell layer. The nonsoluble HSPGs can be isolated as two predominant species: a larger 800-kD HSPG, which is recovered from preparations of extracellular matrix, and a 250-kD HSPG, which is solubilized by nonionic detergent extraction of the cells. Both HSPG species bind bFGF. 125I-bFGF bound to BCE cell cultures is readily released by either heparinase or plasmin. When released by plasmin, the growth factor is recovered from the incubation medium as a complex with the partly degraded high molecular mass HSPG. Endogenous bFGF activity is released by a proteolytic treatment of cultured BCE cells. The bFGF-binding HSPGs are also released when cultures are incubated with the inactive proenzyme plasminogen. Under such experimental conditions, the release of the extracellular proteoglycans can be enhanced by treating the cells either with bFGF, which increases the plasminogen activating activity expressed by the cells, or decreased by treating the cells with transforming growth factor beta, which decreases the plasminogen activating activity of the cells. Specific immune antibodies raised against bovine urokinase also block the release of HSPG from BCE cell cultures. We propose that this plasminogen activator-mediated proteolysis provides a mechanism for the release of biologically active bFGF-HSPG complexes from the extracellular matrix and that bFGF release can be regulated by the balance between factors affecting the pericellular proteolytic activity. PMID:2137829

  3. Chitosan hydrogels enriched with polyphenols: Antibacterial activity, cell adhesion and growth and mineralization.

    PubMed

    Lišková, Jana; Douglas, Timothy E L; Beranová, Jana; Skwarczyńska, Agata; Božič, Mojca; Samal, Sangram Keshari; Modrzejewska, Zofia; Gorgieva, Selestina; Kokol, Vanja; Bačáková, Lucie

    2015-09-20

    Injectable hydrogels for bone regeneration consisting of chitosan, sodium beta-glycerophosphate (Na-β-GP) and alkaline phosphatase (ALP) were enriched with the polyphenols phloroglucinol (PG) and gallic acid (GA) and characterized physicochemically and biologically with respect to properties relevant for applications in bone regeneration, namely gelation kinetics, mineralizability, antioxidant properties, antibacterial activity, cytocompatibility and ability to support adhesion and growth of human osteoblast-like MG63 cells. Enrichment with PG and GA had no negative effect on gelation kinetics and mineralizability. PG and GA both enhanced antioxidant activity of unmineralized hydrogels. Mineralization reduced antioxidant activity of hydrogels containing GA. Hydrogels containing GA, PG and without polyphenols reduced colony forming ability of Escherichia coli after 1h, 3h and 6h incubation and slowed E. coli growth in liquid culture for 150min. Hydrogels containing GA were cytotoxic and supported cell growth more poorly than polyphenol-free hydrogels. PG had no negative effect on cell adhesion and growth. PMID:26050898

  4. Growth inhibitory activity of extracts and compounds from Cimicifuga species on human breast cancer cells

    PubMed Central

    Einbond, Linda Saxe; Wen-Cai, Ye; He, Kan; Wu, Hsan-au; Cruz, Erica; Roller, Marc; Kronenberg, Fredi

    2008-01-01

    The purpose of this report is to explore the growth inhibitory effect of extracts and compounds from black cohosh and related Cimicifuga species on human breast cancer cells and to determine the nature of the active components. Black cohosh fractions enriched for triterpene glycosides and purified components from black cohosh and related Asian species were tested for growth inhibition of the ER− Her2 overexpressing human breast cancer cell line MDA-MB-453. Growth inhibitory activity was assayed using the Coulter Counter, MTT and colony formation assays. Results suggested that the growth inhibitory activity of black cohosh extracts appears to be related to their triterpene glycoside composition. The most potent Cimicifuga component tested was 25-acetyl-7,8-didehydrocimigenol 3-O-β-D-xylopyranoside, which has an acetyl group at position C-25. It had an IC50 of 3.2 µg/ml (5 µM) compared to7.2 µg/ml (12.1 µM) for the parent compound 7,8-didehydrocimigenol 3-O-β-D-xylopyranoside. Thus, the acetyl group at position C-25 enhances growth inhibitory activity. The purified triterpene glycoside actein (β-D-xylopyranoside), with an IC50 equal to 5.7 µg/ml (8.4 µM), exhibited activity comparable to cimigenol 3-O-β-D-xyloside. MCF7 (ER+Her2 low) cells transfected for Her2 are more sensitive than the parental MCF7 cells to the growth inhibitory effects of actein from black cohosh, indicating that Her2 plays a role in the action of actein. The effect of actein on Her2 overexpressing MDA-MB-453 and MCF7 (ER+Her2 low) human breast cancer cells was examined by fluorescent microscopy. Treatment with actein altered the distribution of actin filaments and induced apoptosis in these cells. These findings, coupled with our previous evidence that treatment with the triterpene glycoside actein induced a stress response and apoptosis in human breast cancer cells, suggest that compounds from Cimicifuga species may be useful in the prevention and treatment of human breast cancer

  5. Lymphokine-activated killer (LAK) cells can be focused at sites of tumor growth by products of macrophage activation

    SciTech Connect

    Migliori, R.J.; Gruber, S.A.; Sawyer, M.D.; Hoffman, R.; Ochoa, A.; Bach, F.H.; Simmons, R.L.

    1987-08-01

    Successful adoptive cancer immunotherapy presumably depends on the accumulation of tumoricidal leukocytes at the sites of tumor growth. Large numbers of lymphokine-activated killer (LAK) cells can be generated in vitro by growth in high concentrations of interleukin-2 (IL-2), but relatively few arrive at the tumor site after intravenous injection. We hypothesize that the delivery of LAK cells to tumor sites may be augmented by previously demonstrated lymphocyte-recruiting factors, including activated macrophage products such as interleukin-1 (IL-1) and tumor necrosis factor. /sup 111/Indium-labeled LAK cells were injected intravenously into syngeneic mice bearing the macrophage activator endotoxin (LPS) in one hind footpad, and saline solution was injected into the contralateral footpad. Significantly more activity was recovered from the LPS-bearing footpad at all times during a 96-hour period. Recombinant IL-1 also attracted more LAK cells after injection into tumor-free hind footpads. Furthermore, LAK cells preferentially homed to hind footpads that were bearing 3-day established sarcomas after intralesional injections of LPS, IL-1, or tumor necrosis factor when compared with contralateral tumor-bearing footpads injected with saline solution alone. In preliminary experiments, mice with hind-footpad tumors appeared to survive longer after combined systemic IL-2 and LAK therapy if intralesional LPS was administered. These studies demonstrate that macrophage activation factors that have been shown capable of attracting circulating normal lymphocytes can also effectively attract LAK cells from the circulation. By the stimulation of macrophages at the sites of tumor growth, more LAK cells can be attracted. It is hoped that by focusing the migration of LAK cells to tumors, LAK cells and IL-2 would effect tumor regression more efficiently and with less toxicity.

  6. Phosphatidylinositol kinase is activated in membranes derived from cells treated with epidermal growth factor.

    PubMed Central

    Walker, D H; Pike, L J

    1987-01-01

    The ability of epidermal growth factor (EGF) to stimulate phosphatidylinositol (PtdIns) kinase activity in A431 cells was examined. The incorporation of 32P from [gamma-32P]ATP into PtdIns by A431 membranes was increased in membranes prepared from cells that had been pretreated with EGF. Demonstration of a stimulation of the PtdIns kinase activity by EGF required the use of subconfluent cultures and was dependent on the inclusion of protease inhibitors in the buffers used to prepare the membranes. Stimulation of the PtdIns kinase activity was rapid. The activation peaked 2 min after the addition of EGF and declined slowly thereafter. Half-maximal stimulation of the PtdIns kinase occurred at 7 nM EGF. Kinetic analyses of the reaction indicated that treatment of the cells with EGF resulted in a decrease in the Km for PtdIns with no change in the Vmax. The kinetic parameters for the utilization of ATP were unchanged in the EGF-treated membranes compared to the control membranes. Pretreatment of the cells with the phorbol ester phorbol 12-myristate 13-acetate blocked the ability of EGF to stimulate PtdIns kinase activity. These findings demonstrate that a PtdIns kinase activity in A431 cells is regulated by EGF and provide a good system for examining the mechanism by which EGF stimulates the activity of this intracellular enzyme. PMID:2823265

  7. Interleukin-6 regulates androgen receptor activity and prostate cancer cell growth.

    PubMed

    Culig, Zoran; Bartsch, Georg; Hobisch, Alfred

    2002-11-29

    Interleukin-6 (IL-6) is a multifunctional cytokine which is involved in regulation of growth of various malignant tumors. IL-6 binds to its receptor, which is composed of a ligand-binding and a signal-transducing subunit and activates pathways of signal transducers and activators of transcription and mitogen-activated protein kinases (MAPKs). In prostate cancer cells, IL-6 induces divergent proliferative responses. Serum levels of IL-6 are elevated in patients with therapy-resistant carcinoma of the prostate. We have investigated whether IL-6 interacts with the androgen signaling pathway in prostate cancer cells. In DU-145 cells, transiently transfected with androgen receptor (AR) cDNA, IL-6 caused ligand-independent and synergistic activation of the AR. Nonsteroidal antagonists of the AR down-regulated AR activity induced by IL-6. In LNCaP cells, IL-6-induced expression of the AR-regulated prostate-specific antigen gene. Inhibitors of protein kinase A and C and MAPK down-regulated IL-6-induced AR activity. IL-6 expression in human prostate tissue was studied by immunohistochemistry. In benign prostatic tissue, IL-6 immunoreactivity was confined to basal cells. In prostate intraepithelial neoplasia and in cancer tissue, atypical intraluminal and cancer cells expressed IL-6. The expression of IL-6 receptor was demonstrated in benign and malignant tissue in both epithelium and stroma. In the authors' laboratory, IL-6-inhibited proliferation of parental LNCaP cells. A new LNCaP subline was generated to investigate changes in signal transduction which might occur after prolonged treatment with IL-6. In the subline LNCaP-IL-6+, IL-6 neither reduced a number of cells nor caused G1 growth arrest. IL-6 receptor expression declined during long-term IL-6 treatment. However, IL-6-up-regulated AR expression and was capable of inducing AR activity in LNCaP-IL-6+ cells. Parental LNCaP cells do not express IL-6. In contrast, IL-6 mRNA and protein expression were detectable in

  8. Poly(ADP-Ribose)Polymerase Activity Controls Plant Growth by Promoting Leaf Cell Number

    PubMed Central

    Schulz, Philipp; Jansseune, Karel; Degenkolbe, Thomas; Méret, Michaël; Claeys, Hannes; Skirycz, Aleksandra; Teige, Markus; Willmitzer, Lothar; Hannah, Matthew A.

    2014-01-01

    A changing global environment, rising population and increasing demand for biofuels are challenging agriculture and creating a need for technologies to increase biomass production. Here we demonstrate that the inhibition of poly (ADP-ribose) polymerase activity is a promising technology to achieve this under non-stress conditions. Furthermore, we investigate the basis of this growth enhancement via leaf series and kinematic cell analysis as well as single leaf transcriptomics and plant metabolomics under non-stress conditions. These data indicate a regulatory function of PARP within cell growth and potentially development. PARP inhibition enhances growth of Arabidopsis thaliana by enhancing the cell number. Time course single leaf transcriptomics shows that PARP inhibition regulates a small subset of genes which are related to growth promotion, cell cycle and the control of metabolism. This is supported by metabolite analysis showing overall changes in primary and particularly secondary metabolism. Taken together the results indicate a versatile function of PARP beyond its previously reported roles in controlling plant stress tolerance and thus can be a useful target for enhancing biomass production. PMID:24587323

  9. Calpain-Mediated Positional Information Directs Cell Wall Orientation to Sustain Plant Stem Cell Activity, Growth and Development.

    PubMed

    Liang, Zhe; Brown, Roy C; Fletcher, Jennifer C; Opsahl-Sorteberg, Hilde-Gunn

    2015-09-01

    Eukaryotic development and stem cell control depend on the integration of cell positional sensing with cell cycle control and cell wall positioning, yet few factors that directly link these events are known. The DEFECTIVE KERNEL1 (DEK1) gene encoding the unique plant calpain protein is fundamental for development and growth, being essential to confer and maintain epidermal cell identity that allows development beyond the globular embryo stage. We show that DEK1 expression is highest in the actively dividing cells of seeds, meristems and vasculature. We further show that eliminating Arabidopsis DEK1 function leads to changes in developmental cues from the first zygotic division onward, altered microtubule patterns and misshapen cells, resulting in early embryo abortion. Expression of the embryonic marker genes WOX2, ATML1, PIN4, WUS and STM, related to axis organization, cell identity and meristem functions, is also altered in dek1 embryos. By monitoring cell layer-specific DEK1 down-regulation, we show that L1- and 35S-induced down-regulation mainly affects stem cell functions, causing severe shoot apical meristem phenotypes. These results are consistent with a requirement for DEK1 to direct layer-specific cellular activities and set downstream developmental cues. Our data suggest that DEK1 may anchor cell wall positions and control cell division and differentiation, thereby balancing the plant's requirement to maintain totipotent stem cell reservoirs while simultaneously directing growth and organ formation. A role for DEK1 in regulating microtubule-orchestrated cell wall orientation during cell division can explain its effects on embryonic development, and suggests a more general function for calpains in microtubule organization in eukaryotic cells.

  10. Withaferin-A Inhibits Colon Cancer Cell Growth by Blocking STAT3 Transcriptional Activity

    PubMed Central

    Choi, Bu Young; Kim, Bong-Woo

    2015-01-01

    Background: Withania somnifera (known as Ashwagandha) is a medicinal plant used in the ayurvedic medicines in India. Withaferin-A, a withanolide derived from the leaf extract of W. somnifera, has been reported to exhibit anti-tumor activity against various cancer cells, such as leukemia, breast cancer and colon cancer cells. Methods: We investigated the anti-cancer effects of withaferin-A on the proliferation and migration of human colorectal cancer (HCT116) cells. And we evaluated the effects of withaferin-A on the transcriptional activity of STAT3 and the growth of HCT116 cells in xenograft mouse tumor model. Results: In the present study, we found that withaferin-A inhibited the proliferation and migration of HCT116 cells in a concentration-dependent manner. Treatment of HCT116 cells with withaferin-A attenuated interleukin-6-induced activation of STAT3, which has been implicated in the development and progression of colon cancer. To examine the effect of withaferin-A on HCT116 cells proliferation in vivo, we generated HCT116 cells xenograft tumors in Balb/c nude mice and treated the tumor bearing mice with or without withaferin-A intraperitoneally. Treatment with withaferin-A exhibited significant decrease in the volume and weight of tumors as compared to untreated controls. Conclusions: The present study suggests that withaferin-A holds the potential to be developed as a small molecule inhibitor of STAT3 for the treatment of HCT116. PMID:26473157

  11. Recombinant insulin-like growth factor-1 activates satellite cells in the mouse urethral rhabdosphincter

    PubMed Central

    2013-01-01

    Background The goal of this study is to demonstrate the efficacy of a new method for the treatment of urinary incontinence by stimulation of urethral rhabdosphincter satellite cells. We show that satellite cells do exist in the sphincter muscle of retired male mice breeders by staining for c-Met, a satellite cell specific protein. Once activated by recombinant mouse Insulin-like Growth Factor-1(rIgf-1), the satellite cells develop into muscle cells within the rhabdosphincter thereby potentially strengthening it. Methods 20 μl (1 μg/μl) of rIgf-1 was surgically injected directly into the urethral wall of retired male mouse breeders. Mice injected with phosphate buffered saline (PBS) were used as controls. 4 weeks later, urethras were harvested and serially-sectioned through the sphincter for routine hematoxylin-eosin staining as well as immunohistochemical staining with satellite cell specific anti-c-Met antibody and proliferation specific anti-Ki-67 antibody. Results Anti-c-Met antibody positive cells (c-Met+) were identified in the rhabdosphincter. c-Met+ cells increased by 161.8% relative to controls four weeks after rIGF-1 injection. Anti- Ki-67 antibody positive cells were identified and characterized as cells with centrally located nuclei in striated muscle bundles of rIGF-1 treated animals. Conclusions Satellite cells in the mouse rhabdosphincter can be activated by rIGF-1 treatment, which subsequently are incorporated into existing skeletal muscle bundles. Using this approach, the rhabdosphincter can be induced to regenerate and potentially strengthen via satellite cell activation and likely improve urinary continence. PMID:24279352

  12. Recurrent exposure to nicotine differentiates human bronchial epithelial cells via epidermal growth factor receptor activation

    SciTech Connect

    Martinez-Garcia, Eva; Irigoyen, Marta; Anso, Elena; Martinez-Irujo, Juan Jose; Rouzaut, Ana

    2008-05-01

    Cigarette smoking is the major preventable cause of lung cancer in developed countries. Nicotine (3-(1-methyl-2-pyrrolidinyl)-pyridine) is one of the major alkaloids present in tobacco. Besides its addictive properties, its effects have been described in panoply of cell types. In fact, recent studies have shown that nicotine behaves as a tumor promoter in transformed epithelial cells. This research focuses on the effects of acute repetitive nicotine exposure on normal human bronchial epithelial cells (NHBE cells). Here we show that treatment of NHBE cells with recurrent doses of nicotine up to 500 {mu}M triggered cell differentiation towards a neuronal-like phenotype: cells emitted filopodia and expressed neuronal markers such as neuronal cell adhesion molecule, neurofilament-M and the transcription factors neuronal N and Pax-3. We also demonstrate that nicotine treatment induced NF-kB translocation to the nucleus, phosphorylation of the epidermal growth factor receptor (EGFR), and accumulation of heparin binding-EGF in the extracellular medium. Moreover, addition of AG1478, an inhibitor of EGFR tyrosine phosphorylation, or cetuximab, a monoclonal antibody that precludes ligand binding to the same receptor, prevented cell differentiation by nicotine. Lastly, we show that differentiated cells increased their adhesion to the extracellular matrix and their protease activity. Given that several lung pathologies are strongly related to tobacco consumption, these results may help to better understand the damaging consequences of nicotine exposure.

  13. BMP promotes motility and represses growth of smooth muscle cells by activation of tandem Wnt pathways

    PubMed Central

    de Jesus Perez, Vinicio A.; Ali, Ziad; Alastalo, Tero-Pekka; Ikeno, Fumiaki; Sawada, Hirofumi; Lai, Ying-Ju; Kleisli, Thomas; Spiekerkoetter, Edda; Qu, Xiumei; Rubinos, Laura H.; Ashley, Euan; Amieva, Manuel; Dedhar, Shoukat

    2011-01-01

    We present a novel cell-signaling paradigm in which bone morphogenetic protein 2 (BMP-2) consecutively and interdependently activates the wingless (Wnt)–β-catenin (βC) and Wnt–planar cell polarity (PCP) signaling pathways to facilitate vascular smooth muscle motility while simultaneously suppressing growth. We show that BMP-2, in a phospho-Akt–dependent manner, induces βC transcriptional activity to produce fibronectin, which then activates integrin-linked kinase 1 (ILK-1) via α4-integrins. ILK-1 then induces the Wnt–PCP pathway by binding a proline-rich motif in disheveled (Dvl) and consequently activating RhoA-Rac1–mediated motility. Transfection of a Dvl mutant that binds βC without activating RhoA-Rac1 not only prevents BMP-2–mediated vascular smooth muscle cell motility but promotes proliferation in association with persistent βC activity. Interfering with the Dvl-dependent Wnt–PCP activation in a murine stented aortic graft injury model promotes extensive neointima formation, as shown by optical coherence tomography and histopathology. We speculate that, in response to injury, factors that subvert BMP-2–mediated tandem activation of Wnt–βC and Wnt–PCP pathways contribute to obliterative vascular disease in both the systemic and pulmonary circulations. PMID:21220513

  14. Effects of nitrendipine on growth activity in cultured vascular smooth muscle cells.

    PubMed

    Absher, M P; Baldor, L; Warshaw, D M

    1988-01-01

    Proliferation and migration of smooth muscle cells (SMCs) in the arterial wall may play a role in the development of atherosclerosis and hypertension. If cell migration and proliferation are dependent on extracellular calcium, then treatment with calcium channel blockers such as nitrendipine may alter these cellular responses. In the studies reported here, proliferation and migration activities were assessed in cultured bovine carotid artery smooth muscle cells exposed to nitrendipine. SMCs in long-term culture are characterized by periods of either stable or enhanced proliferative activity. During the stable periods, 1 microM nitrendipine has no effect on proliferation, but during periods of enhanced proliferation, 1 microM nitrendipine augments growth by approximately 20%. SMC migration rates and interdivision times were determined from analysis of time-lapse cinematography films. During stable periods of growth, cell migration rate was inversely related to interdivision time (i.e., fast migrating cells had the shortest interdivision times). Treatment with 1 microM nitrendipine abolished the relationship between migration rate and interdivision time and prolonged interdivision times. These data suggest that the ability of nitrendipine to alter SMC proliferation, interdivision time, and migration is dependent upon the overall proliferative state of the culture.

  15. Physical and biological characterization of a growth-inhibitory activity purified from the neuroepithelioma cell line A673.

    PubMed Central

    Stam, K; Stewart, A A; Qu, G Y; Iwata, K K; Fenyö, D; Chait, B T; Marshak, D R; Haley, J D

    1995-01-01

    Epithelial- and haematopoietic-cell growth-inhibitory activities have been identified in the conditioned medium of the human peripheral neuroepithelioma cell line A673. An A673-cell-derived growth-inhibitory activity was previously fractionated into two distinct components which inhibited the proliferation of human carcinoma and leukaemia cells in culture. One inhibitory activity was shown to comprise interleukin-1 alpha (IL-1 alpha). Here, we have purified to homogeneity a distinct activity which inhibited the growth of the epithelial cells in vitro. Using a combination of protein-sequence analysis and mass spectrometry, we demonstrated that biological activity can be assigned to a dimeric protein with a molecular mass of 25,576 (+/- 4) Da and an N-terminal sequence identical with that of transforming growth factor-beta 1 (TGF-beta 1). Further characterization of the growth inhibitor with TGF-beta-isoform-specific antibodies showed that > 90% of the bioactivity consists of TGF-beta 1 and not TGF-beta 2 or TGF-beta 3. Although A673 cells were growth-inhibited by exogenous TGF-beta 1, we showed that TGF-beta 1 in A673-cell-conditioned media was present in the latent, biologically inactive, form which did not act as an autocrine growth modulator of A673 cells in vitro. Images Figure 2 Figure 3 PMID:7826358

  16. Differential activation of mitogen-activated protein kinase in response to basic fibroblast growth factor in skeletal muscle cells.

    PubMed Central

    Campbell, J S; Wenderoth, M P; Hauschka, S D; Krebs, E G

    1995-01-01

    In the MM14 mouse myoblast cell line, fibroblast growth factor (FGF) stimulates proliferation and represses differentiation. However, the intracellular signaling pathways used by FGF to affect these cellular processes are unknown. The predominant FGF receptor present on MM14 cells, FGFR1, is a receptor tyrosine kinase capable of activating the mitogen-activated protein kinase (MAPK) cascade in fibroblast and neuronal cell lines. To determine whether the FGF signal is mediated via the MAPK cascade in myoblasts, MM14 cells were stimulated with basic FGF (bFGF) and activities of the various kinases were measured. After withdrawal from serum and bFGF for 3 hr, bFGF stimulated MAPK kinase (MAPKK) activity, but MAPK and S6 peptide kinase activities were not detected. In contrast, when serum and bFGF were withdrawn for 10 hr, the activities of MAPKK, MAPK, and S6 peptide kinase were all stimulated by bFGF treatment. The inability of bFGF to stimulate MAPK after 3 hr of withdrawal may be due, in part, to the presence of a MAPK phosphatase activity that was detected in MM14 cell extracts. This dephosphorylating activity diminishes during commitment to terminal differentiation and is inhibited by sodium orthovanadate. Thus, the ability of bFGF to stimulate MAPK in MM14 cells is correlated with the loss of a MAPK phosphatase activity. These results show that although bFGF activates MAPKK in proliferating myoblasts, the mitogenic signal does not progress to the downstream kinases, providing a physiological example of an uncoupling of the MAPK cascade. Images Fig. 4 Fig. 5 PMID:7846069

  17. Lack of effective anti-apoptotic activities restricts growth of Parachlamydiaceae in insect cells.

    PubMed

    Sixt, Barbara S; Hiess, Birgit; König, Lena; Horn, Matthias

    2012-01-01

    The fundamental role of programmed cell death in host defense is highlighted by the multitude of anti-apoptotic strategies evolved by various microbes, including the well-known obligate intracellular bacterial pathogens Chlamydia trachomatis and Chlamydia (Chlamydophila) pneumoniae. As inhibition of apoptosis is assumed to be essential for a successful infection of humans by these chlamydiae, we analyzed the anti-apoptotic capacity of close relatives that occur as symbionts of amoebae and might represent emerging pathogens. While Simkania negevensis was able to efficiently replicate within insect cells, which served as model for metazoan-derived host cells, the Parachlamydiaceae (Parachlamydia acanthamoebae and Protochlamydia amoebophila) displayed limited intracellular growth, yet these bacteria induced typical features of apoptotic cell death, including formation of apoptotic bodies, nuclear condensation, internucleosomal DNA fragmentation, and effector caspase activity. Induction of apoptosis was dependent on bacterial activity, but not bacterial de novo protein synthesis, and was detectable already at very early stages of infection. Experimental inhibition of host cell death greatly enhanced parachlamydial replication, suggesting that lack of potent anti-apoptotic activities in Parachlamydiaceae may represent an important factor compromising their ability to successfully infect non-protozoan hosts. These findings highlight the importance of the evolution of anti-apoptotic traits for the success of chlamydiae as pathogens of humans and animals. PMID:22253735

  18. Lack of Effective Anti-Apoptotic Activities Restricts Growth of Parachlamydiaceae in Insect Cells

    PubMed Central

    Sixt, Barbara S.; Hiess, Birgit; König, Lena; Horn, Matthias

    2012-01-01

    The fundamental role of programmed cell death in host defense is highlighted by the multitude of anti-apoptotic strategies evolved by various microbes, including the well-known obligate intracellular bacterial pathogens Chlamydia trachomatis and Chlamydia (Chlamydophila) pneumoniae. As inhibition of apoptosis is assumed to be essential for a successful infection of humans by these chlamydiae, we analyzed the anti-apoptotic capacity of close relatives that occur as symbionts of amoebae and might represent emerging pathogens. While Simkania negevensis was able to efficiently replicate within insect cells, which served as model for metazoan-derived host cells, the Parachlamydiaceae (Parachlamydia acanthamoebae and Protochlamydia amoebophila) displayed limited intracellular growth, yet these bacteria induced typical features of apoptotic cell death, including formation of apoptotic bodies, nuclear condensation, internucleosomal DNA fragmentation, and effector caspase activity. Induction of apoptosis was dependent on bacterial activity, but not bacterial de novo protein synthesis, and was detectable already at very early stages of infection. Experimental inhibition of host cell death greatly enhanced parachlamydial replication, suggesting that lack of potent anti-apoptotic activities in Parachlamydiaceae may represent an important factor compromising their ability to successfully infect non-protozoan hosts. These findings highlight the importance of the evolution of anti-apoptotic traits for the success of chlamydiae as pathogens of humans and animals. PMID:22253735

  19. Autocrine activities of basic fibroblast growth factor: regulation of endothelial cell movement, plasminogen activator synthesis, and DNA synthesis

    PubMed Central

    1988-01-01

    We have found that the spontaneous migration of bovine aortic endothelial cells from the edge of a denuded area in a confluent monolayer is dependent upon the release of endogenous basic fibroblast growth factor (bFGF). Cell movement is blocked by purified polyclonal rabbit IgG to bFGF as well as affinity purified anti-bFGF IgG and anti- bFGF F(ab')2 fragments. The inhibitory effect of the immunoglobulins is dependent upon antibody concentration, is reversible, is overcome by the addition of recombinant bFGF, and is removed by affinity chromatography of the antiserum through a column of bFGF-Sepharose. Cell movement is also reversibly inhibited by the addition of protamine sulfate and suramin; two agents reported to block bFGF binding to its receptor. The addition of recombinant bFGF to wounded monolayers accelerates the movement of cells into the denuded area. Transforming growth factor beta which has been shown to antagonize several other effects of bFGF also inhibits cell movement. The anti-bFGF IgG prevents the movement of bovine capillary endothelial cells, BHK-21, NIH 3T3, and human skin fibroblasts into a denuded area. Antibodies to bFGF, as well as suramin and protamine sulfate also suppress the basal levels of plasminogen activator and DNA synthesis in bovine aortic endothelial cells. PMID:3417781

  20. Solutions for a local equation of anisotropic plant cell growth: an analytical study of expansin activity.

    PubMed

    Pietruszka, Mariusz

    2011-07-01

    This paper presents a generalization of the Lockhart equation for plant cell/organ expansion in the anisotropic case. The intent is to take into account the temporal and spatial variation in the cell wall mechanical properties by considering the wall 'extensibility' (Φ), a time- and space-dependent parameter. A dynamic linear differential equation of a second-order tensor is introduced by describing the anisotropic growth process with some key biochemical aspects included. The distortion and expansion of plant cell walls initiated by expansins, a class of proteins known to enhance cell wall 'extensibility', is also described. In this approach, expansin proteins are treated as active agents participating in isotropic/anisotropic growth. Two-parameter models and an equation for describing α- and β-expansin proteins are proposed by delineating the extension of isolated wall samples, allowing turgor-driven polymer creep, where expansins weaken the non-covalent binding between wall polysaccharides. We observe that the calculated halftime (t(1/2) = εΦ(0) log 2) of stress relaxation due to expansin action can be described in mechanical terms.

  1. Mechanics of Cell Growth

    PubMed Central

    Ateshian, Gerard A.; Morrison, Barclay; Holmes, Jeffrey W.; Hung, Clark T.

    2012-01-01

    Cell growth describes an essential feature of biological tissues. This growth process may be modeled by using a set of relatively simple governing equations based on the axioms of mass and momentum balance, and using a continuum framework that describes cells and tissues as mixtures of a solid matrix, a solvent and multiple solutes. In this model the mechanics of cell growth is driven by osmotic effects, regulated by the cells’ active uptake of solutes and passive uptake of solvent. By accounting for the anisotropy of the cells’ cytoskeletal structures or extracellular matrix, as well as external constraints, a wide variety of growing shapes may be produced as illustrated in various examples. PMID:22904576

  2. Silk fibroin sponges with cell growth-promoting activity induced by genetically fused basic fibroblast growth factor.

    PubMed

    Kambe, Yusuke; Kojima, Katsura; Tamada, Yasushi; Tomita, Naohide; Kameda, Tsunenori

    2016-01-01

    Transgenic silkworm technology has enabled the biological properties of silk fibroin protein to be altered by fusion to recombinant bioactive proteins. However, few studies have reported the fabrication of genetically modified fibroin proteins into three-dimensional spongy structures to serve as scaffolds for tissue engineering. We generated a transgenic silkworm strain that produces fibroin fused to basic fibroblast growth factor (bFGF) and processed the fibroin into a spongy structure using a simple freeze/thaw method. NIH3T3 mouse embryonic fibroblasts grown on bFGF-fused fibroin sponges proliferated and spread out well, showing half the population doubling time of cells cultured on wild-type fibroin sponges. Furthermore, the number of primary rabbit articular chondrocytes growing on bFGF-fused fibroin sponges was around five-times higher than that of the wild-type control at 3-days post cell-seeding. As the physical properties of wild-type and bFGF-fused fibroin sponges were almost identical, it is suggested that bFGF fused to fibroin retained its biological activity, even after the bFGF-fused fibroin was fabricated into the spongy structure. The bFGF-fused fibroin sponge has the potential for widespread application in the field of tissue engineering, and the method of fabricating this structure could be applicable to other recombinant bioactive fibroin proteins.

  3. Therapeutic effects of cell-permeant peptides that activate G proteins downstream of growth factors

    PubMed Central

    Ma, Gary S.; Aznar, Nicolas; Kalogriopoulos, Nicholas; Midde, Krishna K.; Lopez-Sanchez, Inmaculada; Sato, Emi; Dunkel, Ying; Gallo, Richard L.; Ghosh, Pradipta

    2015-01-01

    In eukaryotes, receptor tyrosine kinases (RTKs) and trimeric G proteins are two major signaling hubs. Signal transduction via trimeric G proteins has long been believed to be triggered exclusively by G protein-coupled receptors (GPCRs). This paradigm has recently been challenged by several studies on a multimodular signal transducer, Gα-Interacting Vesicle associated protein (GIV/Girdin). We recently demonstrated that GIV’s C terminus (CT) serves as a platform for dynamic association of ligand-activated RTKs with Gαi, and for noncanonical transactivation of G proteins. However, exogenous manipulation of this platform has remained beyond reach. Here we developed cell-permeable GIV-CT peptides by fusing a TAT-peptide transduction domain (TAT-PTD) to the minimal modular elements of GIV that are necessary and sufficient for activation of Gi downstream of RTKs, and used them to engineer signaling networks and alter cell behavior. In the presence of an intact GEF motif, TAT-GIV-CT peptides enhanced diverse processes in which GIV’s GEF function has previously been implicated, e.g., 2D cell migration after scratch-wounding, invasion of cancer cells, and finally, myofibroblast activation and collagen production. Furthermore, topical application of TAT-GIV-CT peptides enhanced the complex, multireceptor-driven process of wound repair in mice in a GEF-dependent manner. Thus, TAT-GIV peptides provide a novel and versatile tool to manipulate Gαi activation downstream of growth factors in a diverse array of pathophysiologic conditions. PMID:25926659

  4. AMP-activated protein kinase is required for cell survival and growth in HeLa-S3 cells in vivo.

    PubMed

    Song, Xuhong; Huang, Dongyang; Liu, Yanmin; Pan, Xiaokang; Zhang, Jing; Liang, Bin

    2014-06-01

    Activation of the AMP-dependent protein kinase (AMPK) is linked to cancer cell survival in a variety of cancer cell lines, particularly under conditions of stress. As a potent activator of AMPK, metformin has become a hot topic of discussion for its effect on cancer cell. Here, we report that AMPK activated by metformin promotes HeLa-S3 cell survival and growth in vivo. Our results show that metformin inhibited cell proliferation in MCF-7 cells, but not in LKB1-deficient HeLa-S3 cells. Re-expression of LKB-1 in HeLa-S3 cells restored the growth inhibitory effect of metformin, indicating a requirement for LKB-1 in metformin-induced growth inhibition. Moreover, AMPK activation exerted a protective effect in HeLa-S3 cells by relieving ER stress, modulating ER Ca(2+) storage, and finally contributing to cellular adaptation and resistance to apoptosis. Our findings identify a link between AMPK activation and cell survival in HeLa-S3 cells, which demonstrates a beneficial effect of AMPK activated by metformin in cancer cell, and suggests a discrete re-evaluation on the role of metformin/AMPK activation on tumor cell growth, proliferation, and on clinical application in cancer therapy.

  5. Nerve growth factor enhances the CRE-dependent transcriptional activity activated by nobiletin in PC12 cells.

    PubMed

    Takito, Jiro; Kimura, Junko; Kajima, Koji; Uozumi, Nobuyuki; Watanabe, Makoto; Yokosuka, Akihito; Mimaki, Yoshihiro; Nakamura, Masanori; Ohizumi, Yasushi

    2016-07-01

    Prevention and treatment of Alzheimer disease are urgent problems for elderly people in developed countries. We previously reported that nobiletin, a poly-methoxylated flavone from the citrus peel, improved the symptoms in various types of animal models of memory loss and activated the cAMP responsive element (CRE)-dependent transcription in PC12 cells. Nobiletin activated the cAMP/PKA/MEK/Erk/MAPK signaling pathway without using the TrkA signaling activated by nerve growth factor (NGF). Here, we examined the effect of combination of nobiletin and NGF on the CRE-dependent transcription in PC12 cells. Although NGF alone had little effect on the CRE-dependent transcription, NGF markedly enhanced the CRE-dependent transcription induced by nobiletin. The NGF-induced enhancement was neutralized by a TrkA antagonist, K252a. This effect of NGF was effective on the early signaling event elicited by nobiletin. These results suggested that there was crosstalk between NGF and nobiletin signaling in activating the CRE-dependent transcription in PC12 cells.

  6. Diosgenin attenuates hepatic stellate cell activation through transforming growth factor-β/Smad signaling pathway

    PubMed Central

    Xie, Wei-Lin; Jiang, Rong; Shen, Xiao-Lu; Chen, Zhi-Yu; Deng, Xiao-Ming

    2015-01-01

    Activation of hepatic stellate cells (HSC) plays a pivotal role in the development of hepatic fibrosis. Transforming growth factor-β1 (TGF-β1) is considered to be the main stimuli factor responsible for the activation of HSC. Diosgenin is a steroidal saponin found in several plants including Solanum and Dioscorea species, and it inhibited high glucose-induced renal tubular fibrosis. However, the effects of diosgenin against hepatic fibrosis remain elusive. Therefore, in this study, we investigated the effects of diosgenin on TGF-β1-induced HSCs and elucidate the possible mechanism of its anti-fibrotic effect. Our results demonstrated that diosgenin inhibited TGF-β1-induced HSC proliferation, reduced the expression of collagen I and α-smooth muscle actin (α-SMA), as well as the expression of TGF-β receptor I (TGF-β RI) and II. Moreover, diosgenin suppressed TGF-β1-induced phosphorylation of Smad3 in HSCs. In conclusion, our data demonstrate that diosgenin inhibited HSC-T6 cell proliferation and activation, at least in part, via the TGF-β1/Smad signaling pathway. These results provide that diosgenin may have potential to treat liver fibrosis. PMID:26884947

  7. Diosgenin attenuates hepatic stellate cell activation through transforming growth factor-β/Smad signaling pathway.

    PubMed

    Xie, Wei-Lin; Jiang, Rong; Shen, Xiao-Lu; Chen, Zhi-Yu; Deng, Xiao-Ming

    2015-01-01

    Activation of hepatic stellate cells (HSC) plays a pivotal role in the development of hepatic fibrosis. Transforming growth factor-β1 (TGF-β1) is considered to be the main stimuli factor responsible for the activation of HSC. Diosgenin is a steroidal saponin found in several plants including Solanum and Dioscorea species, and it inhibited high glucose-induced renal tubular fibrosis. However, the effects of diosgenin against hepatic fibrosis remain elusive. Therefore, in this study, we investigated the effects of diosgenin on TGF-β1-induced HSCs and elucidate the possible mechanism of its anti-fibrotic effect. Our results demonstrated that diosgenin inhibited TGF-β1-induced HSC proliferation, reduced the expression of collagen I and α-smooth muscle actin (α-SMA), as well as the expression of TGF-β receptor I (TGF-β RI) and II. Moreover, diosgenin suppressed TGF-β1-induced phosphorylation of Smad3 in HSCs. In conclusion, our data demonstrate that diosgenin inhibited HSC-T6 cell proliferation and activation, at least in part, via the TGF-β1/Smad signaling pathway. These results provide that diosgenin may have potential to treat liver fibrosis. PMID:26884947

  8. Connective tissue growth factor production by activated pancreatic stellate cells in mouse alcoholic chronic pancreatitis

    PubMed Central

    Charrier, Alyssa; Brigstock, David R.

    2010-01-01

    Alcoholic chronic pancreatitis (ACP) is characterized by pancreatic necrosis, inflammation, and scarring, the latter of which is due to excessive collagen deposition by activated pancreatic stellate cells (PSC). The aim of this study was to establish a model of ACP in mice, a species that is usually resistant to the toxic effects of alcohol, and to identify the cell type(s) responsible for production of connective tissue growth factor (CTGF), a pro-fibrotic molecule. C57Bl/6 male mice received intraperitoneal ethanol injections for three weeks against a background of cerulein-induced acute pancreatitis. Peak blood alcohol levels remained consistently high in ethanol-treated mice as compared to control mice. In mice receiving ethanol plus cerulein, there was increased collagen deposition as compared to other treatment groups as well as increased frequency of α-smooth muscle actin and desmin-positive PSC which also demonstrated significantly enhanced CTGF protein production. Expression of mRNA for collagen α1(I), α-smooth muscle actin or CTGF were all increased and co-localized exclusively to activated PSC in ACP. Pancreatic expression of mRNA for key profibrotic markers were all increased in ACP. In conclusion, a mouse model of ACP has been developed that mimics key pathophysiological features of the disease in humans and which shows that activated PSC are the principal producers of collagen and CTGF. PSC-derived CTGF is thus a candidate therapeutic target in anti-fibrotic strategies for ACP. PMID:20368699

  9. Novel STAT3 phosphorylation inhibitors exhibit potent growth suppressive activity in pancreatic and breast cancer cells

    PubMed Central

    Lin, Li; Hutzen, Brian; Zuo, Mingxin; Ball, Sarah; Deangelis, Stephanie; Foust, Elizabeth; Pandit, Bulbul; Ihnat, Michael A.; Shenoy, Satyendra S.; Kulp, Samuel; Li, Pui-Kai; Li, Chenglong; Fuchs, James; Lin, Jiayuh

    2010-01-01

    The constitutive activation of Signal Transducer and Activator of Transcription 3 (STAT3) is frequently detected in most types of human cancer where it plays important roles in survival, drug-resistance, angiogenesis, and other functions. Targeting constitutive STAT3 signaling is thus an attractive therapeutic approach for these cancers. We have recently developed novel small molecule STAT3 inhibitors known as FLLL31 and FLLL32, which are derived from curcumin (the primary bioactive compound of turmeric). These compounds are designed to bind selectively to Janus Kinase 2 (JAK2) and the STAT3 SH2 domain, which serves crucial roles in STAT3 dimerization and signal transduction. Here we show that FLLL31 and FLLL32 are effective inhibitors of STAT3 phosphorylation, DNA binding activity, and transactivation in vitro, leading to the impediment of multiple oncogenic processes and the induction of apoptosis in pancreatic and breast cancer cell lines. FLLL31 and FLLL32 also inhibit colony formation in soft agar, cell invasion, and exhibit synergy with the anti-cancer drug doxorubicin against breast cancer cells. In addition, we show that FLLL32 can inhibit the induction of STAT3 phosphorylation by Interferon-α (IFNα) and Interleukin-6 (IL-6) in breast cancer cells. We also demonstrate that administration of FLLL32 can inhibit tumor growth and vascularity in chicken embryo xenografts as well as substantially reduce tumor volumes in mouse xenografts. Our findings highlight the potential of these new compounds and their efficacy in targeting pancreatic and breast cancers that exhibit constitutive STAT3 signaling. PMID:20215512

  10. INSULIN INDUCED EPIDERMAL GROWTH FACTOR ACTIVATION IN VASCULAR SMOOTH MUSCLE CELLS IS ADAM-DEPENDENT

    PubMed Central

    Roztocil, Elisa; Nicholl, Suzanne M.; Davies, Mark G.

    2008-01-01

    Background With the rise in metabolic syndrome, understanding the role of insulin signaling within the cells of vasculature has become more important but yet remains poorly defined. The study examines the role of insulin actions on a pivotal cross-talk receptor, Epidermal Growth Factor Receptor (EGFR). EGFR is transactivated by both G-protein-coupled receptors and receptor linked tyrosine kinases and is key to many of their responses. Objective To determine the pathway of EGFR transactivation by insulin in human coronary smooth muscle cells (VSMC) Methods VSMC were cultured in vitro. Assays of EGFR phosphorylation were examined in response to insulin in the presence and absence of the plasmin inhibitors (e-aminocaproic acid and aprotinin) matrix metalloprotease (MMP) inhibitor GM6001, the ADAM (A Disintegrin And Metalloproteinase Domain) inhibitors TAPI-0 and TAPI-1, Heparin binding epidermal growth factor (HB-EGF) inhibitor, CRM197, HB-EGF inhibitory antibodies, EGF inhibitory antibodies and the EGFR inhibitor AG1478. Results Insulin induced time-dependent EGFR phosphorylation, which was inhibited by AG1478 in a concentration dependent manner. Application of the plasmin inhibitors did not block the response. EGFR phosphorylation by insulin was blocked by inhibition of MMP activity and the ligand HB-EGF. The presence of the ADAM inhibitors, TAPI-0 and TAPI-1 significantly decreased EGFR activation. EGFR phosphorylation by EGF was not interrupted by inhibition of plasmin, MMPs TAPIs, or HB-EGF. Direct blockade of the EGFR prevented activation by both insulin and EGF. Conclusion Insulin can induce transactivation of EGFR by an ADAM-mediated, HB-EGF dependent process. This is the first description of crosstalk via ADAM between insulin and EGFR in vascular SMC. Targeting a pivotal cross-talk receptor such as EGFR, which can be transactivated by both G-protein-coupled receptors and receptor tyrosine kinases is an attractive molecular target. PMID:18656632

  11. Constitutively active Notch1 induces growth arrest of HPV-positive cervical cancer cells via separate signaling pathways

    SciTech Connect

    Talora, Claudio; Cialfi, Samantha; Segatto, Oreste; Morrone, Stefania; Kim Choi, John; Frati, Luigi; Paolo Dotto, Gian; Gulino, Alberto; Screpanti, Isabella . E-mail: isabella.screpanti@uniroma1.it

    2005-05-01

    Notch signaling plays a key role in cell-fate determination and differentiation in different organisms and cell types. Several reports suggest that Notch signaling may be involved in neoplastic transformation. However, in primary keratinocytes, Notch1 can function as a tumor suppressor. Similarly, in HPV-positive cervical cancer cells, constitutively active Notch1 signaling was found to cause growth suppression. Activated Notch1 in these cells represses viral E6/E7 expression through AP-1 down-modulation, resulting in increased p53 expression and a block of pRb hyperphosphorylation. Here we show that in cervical cancer cell lines in which Notch1 ability to repress AP-1 activity is impaired, Notch1-enforced expression elicits an alternative pathway leading to growth arrest. Indeed, activated Notch1 signaling suppresses activity of the helix-loop-helix transcription factor E47, via ERK1/2 activation, resulting in inhibition of cell cycle progression. Moreover, we found that RBP-J{kappa}-dependent Notch signaling is specifically repressed in cervical cancer cells and this repression could provide one such mechanism that needs to be activated for cervical carcinogenesis. Finally, we show that inhibition of endogenous Notch1 signaling, although results in a proliferative advantage, sensitizes cervical cancer cell lines to drug-induced apoptosis. Together, our results provide novel molecular insights into Notch1-dependent growth inhibitory effects, counteracting the transforming potential of HPV.

  12. Intracellular reactive oxygen species activate Src tyrosine kinase during cell adhesion and anchorage-dependent cell growth.

    PubMed

    Giannoni, Elisa; Buricchi, Francesca; Raugei, Giovanni; Ramponi, Giampietro; Chiarugi, Paola

    2005-08-01

    Src tyrosine kinases are central components of adhesive responses and are required for cell spreading onto the extracellular matrix. Among other intracellular messengers elicited by integrin ligation are reactive oxygen species, which act as synergistic mediators of cytoskeleton rearrangement and cell spreading. We report that after integrin ligation, the tyrosine kinase Src is oxidized and activated. Src displays an early activation phase, concurrent with focal adhesion formation and driven mainly by Tyr527 dephosphorylation, and a late phase, concomitant with reactive oxygen species production, cell spreading, and integrin-elicited kinase oxidation. In addition, our results suggest that reactive oxygen species are key mediators of in vitro and in vivo v-Src tumorigenic properties, as both antioxidant treatments and the oxidant-insensitive C245A and C487A Src mutants greatly decrease invasivity, serum-independent and anchorage-independent growth, and tumor onset. Therefore we propose that, in addition to the known phosphorylation/dephosphorylation circuitry, redox regulation of Src activity is required during both cell attachment to the extracellular matrix and tumorigenesis.

  13. Metformin inhibits growth of human non-small cell lung cancer cells via liver kinase B-1-independent activation of adenosine monophosphate-activated protein kinase

    PubMed Central

    GUO, QIANQIAN; LIU, ZHIYAN; JIANG, LILI; LIU, MENGJIE; MA, JIEQUN; YANG, CHENGCHENG; HAN, LILI; NAN, KEJUN; LIANG, XUAN

    2016-01-01

    Metformin, the most widely administered oral anti-diabetic therapeutic agent, exerts its glucose-lowering effect predominantly via liver kinase B1 (LKB1)-dependent activation of adenosine monophosphate-activated protein kinase (AMPK). Accumulating evidence has demonstrated that metformin possesses potential antitumor effects. However, whether the antitumor effect of metformin is via the LKB1/AMPK signaling pathway remains to be determined. In the current study, the effects of metformin on proliferation, cell cycle progression, and apoptosis of human non-small cell lung cancer (NSCLC) H460 (LKB1-null) and H1299 (LKB1-positive) cells were assessed, and the role of LKB1/AMPK signaling in the anti-growth effects of metformin were investigated. Cell viability was determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, cell cycle distribution and apoptosis were assessed by flow cytometry, and protein expression levels were measured by western blotting. Metformin inhibited proliferation, induced significant cell cycle arrest at the G0–G1 phase and increased apoptosis in NSCLC cells in a time- and concentration-dependent manner, regardless of the level of LKB1 protein expression. Furthermore, knockdown of LKB1 with short hairpin RNA (shRNA) did not affect the antiproliferative effect of metformin in the H1299 cells. Metformin stimulated AMPK phosphorylation and subsequently suppressed the phosphorylation of mammalian target of rapamycin and its downstream effector, 70-kDa ribosomal protein S6 kinase in the two cell lines. These effects were abrogated by silencing AMPK with small interfering RNA (siRNA). In addition, knockdown of AMPK with siRNA inhibited the effect of metformin on cell proliferation in the two cell lines. These results provide evidence that the growth inhibition of metformin in NSCLC cells is mediated by LKB1-independent activation of AMPK, indicating that metformin may be a potential therapeutic agent for the treatment of

  14. Pharmacological activity in growth inhibition and apoptosis of cultured human leiomyomal cells of tropical plant Scutellaria barbata D. Don (Lamiaceae).

    PubMed

    Lee, Tae-Kyun; Lee, Yun-Jeong; Kim, Dong-Il; Kim, Hyung-Min; Chang, Young-Chae; Kim, Cheorl-Ho

    2006-01-01

    Scutellaria barbata D. Don (Lamiaceae) (SB), which is known in traditional Korean medicine, has been used as an anti-inflammatory and antitumor agent. Since uterine leiomyoma is the most common benign smooth muscle cell tumor of the myometrium, we aimed to determine the growth inhibition and the induction of apoptotic cell death brought about by the herb SB in two different leiomyomal cells, named LM-1 and LM-2, and to clarify the mechanism of this apoptosis. Water-soluble ingredients of SB, and the leiomyomal cell lines of LM-1 and LM-2, were used in vitro. Growth inhibition, induction of cell death, morphological features, the presence of DNA ladders, increases in Caspase 3-like activity, the effects of a Caspase 3 inhibitor on apoptotic cell death, and the release of Cytochrome C by SB were analyzed. SB inhibited the growth and decreased the viability of the leiomyomal cells. The viability of normal myomatrial smooth muscle cells (SMC) in the presence of low concentrations of SB was higher than those of leiomyomal cells. Apoptotic bodies and DNA ladders were observed to be induced in leiomyomal cells of LM-1 and LM-2 by SB. The synthetic tetrapeptide Caspase 3 inhibitor, N-acetyl-Asp-Glu-Val-Asp-aldehyde (Ac-DEVD-CHO), inhibited the apoptotic cell death of leiomyomal cells induced by SB. The Caspase 3-like activity in leiomyomal cells LM-1 and LM-2 increased after the addition of SB. Cytochrome C was released from mitochondria into the cytosol 8h after the addition of SB, and reached a peak at 16h. The peak of Cytochrome C release was earlier than that of Caspase 3-like activity. We concluded that SB inhibited the growth of the leiomyomal cells and induced apoptosis. The apoptosis of leiomyomal cells induced by SB was associated with the release of Cytochrome C from the mitochondria, followed by an increase in Caspase 3-like activity.

  15. Knockdown of Slit2 promotes growth and motility in gastric cancer cells via activation of AKT/β-catenin.

    PubMed

    Shi, Rongliang; Yang, Zhen; Liu, Weiyan; Liu, Bingya; Xu, Ziping; Zhang, Ziping

    2014-02-01

    We previously showed that Slit2 was highly expressed in gastric cancer tissues that exhibit less advanced clinicopathological features, suggesting a tumor suppressor role for Slit2. In the present study, we investigated the effects of Slit2 knockdown on gastric cancer cells. Slit2-specific shRNAs were used to generate Slit2-knockdown SGC-7901 gastric cancer cells. Cell proliferation assay, Annexin V/PI double staining and cell cycle analysis were used to investigate the role of Slit2 knockdown in cell growth. Wound-healing and in vitro migration/invasion assays were performed. Subcutaneous tumor formation and peritoneal spreading in nude mice were employed to examine the in vivo effects of Slit2 knockdown. Cell signaling changes induced by Slit2 knockdown were analyzed by immunoblotting. Slit2 knockdown increased gastric cancer cell growth in monolayer and soft agar/Matrigel 3D culture. Slit2 knockdown inhibited apoptosis but did not alter cell cycle progression. Slit2-knockdown cells formed larger tumors and produced more peritoneal metastatic nodules in nude mice. Slit2 knockdown increased AKT phosphorylation, activated anti-apoptotic signaling, suppressed GSK3β activity and induced β-catenin activation. Blocking the effects of PI3K/AKT using pharmacological inhibitors abolished the ability of Slit2 knockdown to induce apoptosis resistance and cell migration/invasion. These results indicate that Slit2 knockdown promotes gastric cancer growth and metastasis through activation of the AKT/β‑catenin-mediated signaling pathway.

  16. A living thick nanofibrous implant bifunctionalized with active growth factor and stem cells for bone regeneration.

    PubMed

    Eap, Sandy; Keller, Laetitia; Schiavi, Jessica; Huck, Olivier; Jacomine, Leandro; Fioretti, Florence; Gauthier, Christian; Sebastian, Victor; Schwinté, Pascale; Benkirane-Jessel, Nadia

    2015-01-01

    New-generation implants focus on robust, durable, and rapid tissue regeneration to shorten recovery times and decrease risks of postoperative complications for patients. Herein, we describe a new-generation thick nanofibrous implant functionalized with active containers of growth factors and stem cells for regenerative nanomedicine. A thick electrospun poly(ε-caprolactone) nanofibrous implant (from 700 μm to 1 cm thick) was functionalized with chitosan and bone morphogenetic protein BMP-7 as growth factor using layer-by-layer technology, producing fish scale-like chitosan/BMP-7 nanoreservoirs. This extracellular matrix-mimicking scaffold enabled in vitro colonization and bone regeneration by human primary osteoblasts, as shown by expression of osteocalcin, osteopontin, and bone sialoprotein (BSPII), 21 days after seeding. In vivo implantation in mouse calvaria defects showed significantly more newly mineralized extracellular matrix in the functionalized implant compared to a bare scaffold after 30 days' implantation, as shown by histological scanning electron microscopy/energy dispersive X-ray microscopy study and calcein injection. We have as well bifunctionalized our BMP-7 therapeutic implant by adding human mesenchymal stem cells (hMSCs). The activity of this BMP-7-functionalized implant was again further enhanced by the addition of hMSCs to the implant (living materials), in vivo, as demonstrated by the analysis of new bone formation and calcification after 30 days' implantation in mice with calvaria defects. Therefore, implants functionalized with BMP-7 nanocontainers associated with hMSCs can act as an accelerator of in vivo bone mineralization and regeneration. PMID:25709432

  17. A living thick nanofibrous implant bifunctionalized with active growth factor and stem cells for bone regeneration

    PubMed Central

    Eap, Sandy; Keller, Laetitia; Schiavi, Jessica; Huck, Olivier; Jacomine, Leandro; Fioretti, Florence; Gauthier, Christian; Sebastian, Victor; Schwinté, Pascale; Benkirane-Jessel, Nadia

    2015-01-01

    New-generation implants focus on robust, durable, and rapid tissue regeneration to shorten recovery times and decrease risks of postoperative complications for patients. Herein, we describe a new-generation thick nanofibrous implant functionalized with active containers of growth factors and stem cells for regenerative nanomedicine. A thick electrospun poly(ε-caprolactone) nanofibrous implant (from 700 μm to 1 cm thick) was functionalized with chitosan and bone morphogenetic protein BMP-7 as growth factor using layer-by-layer technology, producing fish scale-like chitosan/BMP-7 nanoreservoirs. This extracellular matrix-mimicking scaffold enabled in vitro colonization and bone regeneration by human primary osteoblasts, as shown by expression of osteocalcin, osteopontin, and bone sialoprotein (BSPII), 21 days after seeding. In vivo implantation in mouse calvaria defects showed significantly more newly mineralized extracellular matrix in the functionalized implant compared to a bare scaffold after 30 days’ implantation, as shown by histological scanning electron microscopy/energy dispersive X-ray microscopy study and calcein injection. We have as well bifunctionalized our BMP-7 therapeutic implant by adding human mesenchymal stem cells (hMSCs). The activity of this BMP-7-functionalized implant was again further enhanced by the addition of hMSCs to the implant (living materials), in vivo, as demonstrated by the analysis of new bone formation and calcification after 30 days’ implantation in mice with calvaria defects. Therefore, implants functionalized with BMP-7 nanocontainers associated with hMSCs can act as an accelerator of in vivo bone mineralization and regeneration. PMID:25709432

  18. Belinostat-induced apoptosis and growth inhibition in pancreatic cancer cells involve activation of TAK1-AMPK signaling axis

    SciTech Connect

    Wang, Bing Wang, Xin-bao; Chen, Li-yu; Huang, Ling; Dong, Rui-zen

    2013-07-19

    Highlights: •Belinostat activates AMPK in cultured pancreatic cancer cells. •Activation of AMPK is important for belinostat-induced cytotoxic effects. •ROS and TAK1 are involved in belinostat-induced AMPK activation. •AMPK activation mediates mTOR inhibition by belinostat. -- Abstract: Pancreatic cancer accounts for more than 250,000 deaths worldwide each year. Recent studies have shown that belinostat, a novel pan histone deacetylases inhibitor (HDACi) induces apoptosis and growth inhibition in pancreatic cancer cells. However, the underlying mechanisms are not fully understood. In the current study, we found that AMP-activated protein kinase (AMPK) activation was required for belinostat-induced apoptosis and anti-proliferation in PANC-1 pancreatic cancer cells. A significant AMPK activation was induced by belinostat in PANC-1 cells. Inhibition of AMPK by RNAi knockdown or dominant negative (DN) mutation significantly inhibited belinostat-induced apoptosis in PANC-1 cells. Reversely, AMPK activator AICAR and A-769662 exerted strong cytotoxicity in PANC-1 cells. Belinostat promoted reactive oxygen species (ROS) production in PANC-1 cells, increased ROS induced transforming growth factor-β-activating kinase 1 (TAK1)/AMPK association to activate AMPK. Meanwhile, anti-oxidants N-Acetyl-Cysteine (NAC) and MnTBAP as well as TAK1 shRNA knockdown suppressed belinostat-induced AMPK activation and PANC-1 cell apoptosis. In conclusion, we propose that belinostat-induced apoptosis and growth inhibition require the activation of ROS-TAK1-AMPK signaling axis in cultured pancreatic cancer cells.

  19. Multifunctional carbon nanotube/bioceramics modulate the directional growth and activity of osteoblastic cells.

    PubMed

    Mata, D; Oliveira, F J; Ferro, M; Gomes, P S; Fernandes, M H; Lopes, M A; Silval, R F

    2014-05-01

    Biomaterials can still be reinvented to become simple and universal bone regeneration solutions. Following this roadmap, a bone graft of carbon nanotube (CNT)/glass/hydroxyapatite (HA) with controlled CNT agglomeration state was designed with multifunctionalities able to stimulate the bone cell phenotype. The preparation route, the mechanical and electrical behavior and the in vitro profiles of degradation and osteocompatibility were described. A non-destructive dynamic route was found to have a higher influence than the Diels-Alder functionalization one on controlling the CNT agglomerate state in the ceramic-matrix composite. Biologically safe CNT agglomerates, with diameter sizes below 3 microm homogenously distributed, were obtained in non-functionalized and functionalized composites. Yet, the lowest CNT damage and the highest mechanical and electrical properties were found for the non-functionalized materials. Even though that these composites present higher degradation rate at pH:3 than the ceramic matrix, the CNT agglomerates are released with safe diameter sizes. Also, non-functionalized composites allowed cellular adhesion and modulated the orientation of the cell growth, with a proliferation/differentiation relationship favoring osteoblastic functional activity. Findings offer further contributions for bone tissue engineering by showing that multifunctional bone grafts with high electroconductivity, and integrating CNT agglomerates with maximized interfacing area, allow the in situ control of bone cell functions.

  20. Integrin α5/β1 Mediates Fibronectin-dependent Epithelial Cell Proliferation through Epidermal Growth Factor Receptor Activation

    PubMed Central

    Kuwada, Scott K.; Li, Xiufen

    2000-01-01

    Human integrin α5 was transfected into the integrin α5/β1–negative intestinal epithelial cell line Caco-2 to study EGF receptor (EGFR) and integrin α5/β1 signaling interactions involved in epithelial cell proliferation. On uncoated or fibronectin-coated plastic, the integrin α5 and control (vector only) transfectants grew at similar rates. In the presence of the EGFR antagonistic mAb 225, the integrin α5 transfectants and controls were significantly growth inhibited on plastic. However, when cultured on fibronectin, the integrin α5 transfectants were not growth inhibited by mAb 225. The reversal of mAb 225–mediated growth inhibition on fibronectin for the integrin α5 transfectants correlated with activation of the EGFR, activation of MAPK, and expression of proliferating cell nuclear antigen. EGFR kinase activity was necessary for both MAPK activation and integrin α5/β1–mediated cell proliferation. Although EGFR activation occurred when either the integrin α5–transfected or control cells were cultured on fibronectin, coprecipitation of the EGFR with SHC could be demonstrated only in the integrin α5–transfected cells. These results suggest that integrin α5/β1 mediates fibronectin-induced epithelial cell proliferation through activation of the EGFR. PMID:10888683

  1. Activation of AMPK inhibits cervical cancer cell growth through AKT/FOXO3a/FOXM1 signaling cascade

    PubMed Central

    2013-01-01

    Background Although advanced-stage cervical cancer can benefit from current treatments, approximately 30% patients may fail after definitive treatment eventually. Therefore, exploring alternative molecular therapeutic approaches is imperatively needed for this disease. We have recently shown that activation of AMP-activated protein kinase (AMPK), a metabolic sensor, hampers cervical cancer cell growth through blocking the Wnt/β-catenin signaling activity. Here, we report that activated AMPK (p-AMPK) also inhibits cervical cancer cell growth by counteracting FOXM1 function. Methods Effect of the activation of AMPK on FOXM1 expression was examined by hypoxia and glucose deprivation, as well as pharmacological AMPK activators such as A23187, AICAR and metformin. RT Q-PCR and Western blot analysis were employed to investigate the activities of AMPK, FOXM1 and AKT/FOXO3a signaling. Results Consistent with our previous findings, the activation of AMPK by either AMPK activators such as AICAR, A23187, metformin, glucose deprivation or hypoxia significantly inhibited the cervical cancer cell growth. Importantly, we found that activated AMPK activity was concomitantly associated with the reduction of both the mRNA and protein levels of FOXM1. Mechanistically, we showed that activated AMPK was able to reduce AKT mediated phosphorylation of p-FOXO3a (Ser253). Interestingly, activated AMPK could not cause any significant changes in FOXM1 in cervical cancer cells in which endogenous FOXO3a levels were knocked down using siRNAs, suggesting that FOXO3a is involved in the suppression of FOXM1. Conclusion Taken together, our results suggest the activated AMPK impedes cervical cancer cell growth through reducing the expression of FOXM1. PMID:23819460

  2. Activation of β-Catenin Signaling in CD133-Positive Dermal Papilla Cells Drives Postnatal Hair Growth

    PubMed Central

    Zhou, Linli; Xu, Mingang; Yang, Yongguang; Yang, Kun; Wickett, Randall R.; Andl, Thomas; Millar, Sarah E.

    2016-01-01

    The hair follicle dermal papilla (DP) contains a unique prominin-1/CD133-positive (CD133+) cell subpopulation, which has been shown to possess hair follicle-inducing capability. By assaying for endogenous CD133 expression and performing lineage tracing using CD133-CreERT2; ZsGreen1 reporter mice, we find that CD133 is expressed in a subpopulation of DP cells during the growth phase of the murine hair cycle (anagen), but is absent at anagen onset. However, how CD133+ DP cells interact with keratinocytes to induce hair regenerative growth remains unclear. Wnt/β-catenin has long been recognized as a major signaling pathway required for hair follicle morphogenesis, development, and regeneration. Nuclear Wnt/β-catenin activity is observed in the DP during the hair growth phase. Here we show that induced expression of a stabilized form of β-catenin in CD133+ DP cells significantly accelerates spontaneous and depilation-induced hair growth. However, hair follicle regression is not affected in these mutants. Further analysis indicates that CD133+ DP-expressed β-catenin increases proliferation and differentiation of epithelial matrix keratinocytes. Upregulated Wnt/β-catenin activity in CD133+ DP cells also increases the number of proliferating DP cells in each anagen follicle. Our data demonstrate that β-catenin signaling potentiates the capability of CD133+ DP cells to promote postnatal hair growth. PMID:27472062

  3. Activation of β-Catenin Signaling in CD133-Positive Dermal Papilla Cells Drives Postnatal Hair Growth.

    PubMed

    Zhou, Linli; Xu, Mingang; Yang, Yongguang; Yang, Kun; Wickett, Randall R; Andl, Thomas; Millar, Sarah E; Zhang, Yuhang

    2016-01-01

    The hair follicle dermal papilla (DP) contains a unique prominin-1/CD133-positive (CD133+) cell subpopulation, which has been shown to possess hair follicle-inducing capability. By assaying for endogenous CD133 expression and performing lineage tracing using CD133-CreERT2; ZsGreen1 reporter mice, we find that CD133 is expressed in a subpopulation of DP cells during the growth phase of the murine hair cycle (anagen), but is absent at anagen onset. However, how CD133+ DP cells interact with keratinocytes to induce hair regenerative growth remains unclear. Wnt/β-catenin has long been recognized as a major signaling pathway required for hair follicle morphogenesis, development, and regeneration. Nuclear Wnt/β-catenin activity is observed in the DP during the hair growth phase. Here we show that induced expression of a stabilized form of β-catenin in CD133+ DP cells significantly accelerates spontaneous and depilation-induced hair growth. However, hair follicle regression is not affected in these mutants. Further analysis indicates that CD133+ DP-expressed β-catenin increases proliferation and differentiation of epithelial matrix keratinocytes. Upregulated Wnt/β-catenin activity in CD133+ DP cells also increases the number of proliferating DP cells in each anagen follicle. Our data demonstrate that β-catenin signaling potentiates the capability of CD133+ DP cells to promote postnatal hair growth. PMID:27472062

  4. ADP-ribosylation factor 1 controls the activation of the phosphatidylinositol 3-kinase pathway to regulate epidermal growth factor-dependent growth and migration of breast cancer cells.

    PubMed

    Boulay, Pierre-Luc; Cotton, Mathieu; Melançon, Paul; Claing, Audrey

    2008-12-26

    Activation of intracellular signaling pathways by growth factors is one of the major causes of cancer development and progression. Recent studies have demonstrated that monomeric G proteins of the Ras family are key regulators of cell proliferation, migration, and invasion. Using an invasive breast cancer cell lines, we demonstrate that the ADP-ribosylation factor 1 (ARF1), a small GTPase classically associated with the Golgi, is an important regulator of the biological effects induced by epidermal growth factor. Here, we show that this ARF isoform is activated following epidermal growth factor stimulation and that, in MDA-MB-231 cells, ARF1 is found in dynamic plasma membrane ruffles. Inhibition of endogenous ARF1 expression results in the inhibition of breast cancer cell migration and proliferation. The underlying mechanism involves the activation of the phosphatidylinositol 3-kinase pathway. Our data demonstrate that depletion of ARF1 markedly impairs the recruitment of the phosphatidylinositol 3-kinase catalytic subunit (p110alpha) to the plasma membrane, and the association of the regulatory subunit (p85alpha) to the activated receptor. These results uncover a novel molecular mechanism by which ARF1 regulates breast cancer cell growth and invasion during cancer progression.

  5. Faster voltage-dependent activation of Na+ channels in growth cones versus somata of neuroblastoma N1E-115 cells.

    PubMed Central

    Zhang, J; Loew, L M; Davidson, R M

    1996-01-01

    Kinetics of voltage-gated ionic channels fundamentally reflect the response of the channels to local electric fields. In this report cell-attached patch-clamp studies reveal that the voltage-dependent activation rate of sodium channels residing in the growth cone membrane differs from that of soma sodium channels in differentiating N1E-115 neuroblastoma cells. Because other electrophysiological properties of these channels do not differ, this finding may be a reflection of the difference in intramembrane electric field in these two regions of the cell. This represents a new mechanism for channels to attain a range of activities both within and between cells. PMID:8913589

  6. Endogenous dendritic cells from the tumor microenvironment support T-ALL growth via IGF1R activation.

    PubMed

    Triplett, Todd A; Cardenas, Kim T; Lancaster, Jessica N; Hu, Zicheng; Selden, Hilary J; Jasso, Guadalupe J; Balasubramanyam, Sadhana; Chan, Kathy; Li, LiQi; Chen, Xi; Marcogliese, Andrea N; Davé, Utpal P; Love, Paul E; Ehrlich, Lauren I R

    2016-02-23

    Primary T-cell acute lymphoblastic leukemia (T-ALL) cells require stromal-derived signals to survive. Although many studies have identified cell-intrinsic alterations in signaling pathways that promote T-ALL growth, the identity of endogenous stromal cells and their associated signals in the tumor microenvironment that support T-ALL remains unknown. By examining the thymic tumor microenvironments in multiple murine T-ALL models and primary patient samples, we discovered the emergence of prominent epithelial-free regions, enriched for proliferating tumor cells and dendritic cells (DCs). Systematic evaluation of the functional capacity of tumor-associated stromal cells revealed that myeloid cells, primarily DCs, are necessary and sufficient to support T-ALL survival ex vivo. DCs support T-ALL growth both in primary thymic tumors and at secondary tumor sites. To identify a molecular mechanism by which DCs support T-ALL growth, we first performed gene expression profiling, which revealed up-regulation of platelet-derived growth factor receptor beta (Pdgfrb) and insulin-like growth factor I receptor (Igf1r) on T-ALL cells, with concomitant expression of their ligands by tumor-associated DCs. Both Pdgfrb and Igf1r were activated in ex vivo T-ALL cells, and coculture with tumor-associated, but not normal thymic DCs, sustained IGF1R activation. Furthermore, IGF1R signaling was necessary for DC-mediated T-ALL survival. Collectively, these studies provide the first evidence that endogenous tumor-associated DCs supply signals driving T-ALL growth, and implicate tumor-associated DCs and their mitogenic signals as auspicious therapeutic targets. PMID:26862168

  7. TGF-β promotes glioma cell growth via activating Nodal expression through Smad and ERK1/2 pathways

    SciTech Connect

    Sun, Jing; Liu, Su-zhi; Lin, Yan; Cao, Xiao-pan; Liu, Jia-ming

    2014-01-17

    Highlights: •TGF-β promoted Nodal expression in glioma cells. •TGF-β promoted Nodal expression via activating Smad and ERK1/2 pathways. •TGF-β promotes glioma cell growth via activating Nodal expression. -- Abstract: While there were certain studies focusing on the mechanism of TGF-β promoting the growth of glioma cells, the present work revealed another novel mechanism that TGF-β may promote glioma cell growth via enhancing Nodal expression. Our results showed that Nodal expression was significantly upregulated in glioma cells when TGF-β was added, whereas the TGF-β-induced Nodal expression was evidently inhibited by transfection Smad2 or Smad3 siRNAs, and the suppression was especially significant when the Smad3 was downregulated. Another, the attenuation of TGF-β-induced Nodal expression was observed with blockade of the ERK1/2 pathway also. Further detection of the proliferation, apoptosis, and invasion of glioma cells indicated that Nodal overexpression promoted the proliferation and invasion of tumor cells and inhibited their apoptosis, resembling the effect of TGF-β addition. Downregulation of Nodal expression via transfection Nodal-specific siRNA in the presence of TGF-β weakened the promoting effect of the latter on glioma cells growth, and transfecting Nodal siRNA alone in the absence of exogenous TGF-β more profoundly inhibited the growth of glioma cells. These results demonstrated that while both TGF-β and Nodal promoted glioma cells growth, the former might exert such effect by enhancing Nodal expression, which may form a new target for glioma therapy.

  8. Bone marrow-derived cultured mast cells and peritoneal mast cells as targets of a growth activity secreted by BALB/3T3 fibroblasts

    SciTech Connect

    Jozaki, K.; Kuriu, A.; Hirota, S.; Onoue, H.; Ebi, Y.; Adachi, S.; Ma, J.Y.; Tarui, S.; Kitamura, Y. )

    1991-03-01

    When fibroblast cell lines were cultured in contact with bone marrow-derived cultured mast cells (CMC), both NIH/3T3 and BALB/3T3 cell lines supported the proliferation of CMC. In contrast, when contact between fibroblasts and CMC was prohibited by Biopore membranes or soft agar, only BALB/3T3 fibroblasts supported CMC proliferation, suggesting that BALB/3T3 but not NIH/3T3 cells secreted a significant amount of a mast cell growth activity. Moreover, the BALB/3T3-derived growth activity induced the incorporation of (3H)thymidine by CMC and the clonal growth of peritoneal mast cells in methylcellulose. The mast cell growth activity appeared to be different from interleukin 3 (IL-3) and interleukin 4 (IL-4), because mRNAs for these interleukins were not detectable in BALB/3T3 fibroblasts. Although mast cells are genetically deficient in tissues of W/Wv mice, CMC did develop when bone marrow cells of W/Wv mice were cultured with pokeweed mitogen-stimulated spleen cell-conditioned medium. Because BALB/3T3 fibroblast-conditioned medium (BALB-FCM) did not induce the incorporation of (3H)thymidine by W/Wv CMC, the growth activity in BALB-FCM appeared to be a ligand for the receptor encoded by the W (c-kit) locus. Because CMC and peritoneal mast cells are obtained as homogeneous suspensions rather easily, these cells may be potentially useful as targets for the fibroblast-derived mast cell growth activity.

  9. Growth Factor–dependent Activation of αvβ3 Integrin in Normal Epithelial Cells: Implications for Tumor Invasion

    PubMed Central

    Trusolino, Livio; Serini, Guido; Cecchini, Germana; Besati, Cristina; Ambesi-Impiombato, Francesco Saverio; Marchisio, Pier Carlo; De Filippi, Rosaria

    1998-01-01

    Integrin activation is a multifaceted phenomenon leading to increased affinity and avidity for matrix ligands. To investigate whether cytokines produced during stromal infiltration of carcinoma cells activate nonfunctional epithelial integrins, a cellular system of human thyroid clones derived from normal glands (HTU-5) and papillary carcinomas (HTU-34) was employed. In HTU-5 cells, αvβ3 integrin was diffused all over the membrane, disconnected from the cytoskeleton, and unable to mediate adhesion. Conversely, in HTU-34 cells, αvβ3 was clustered at focal contacts (FCs) and mediated firm attachment and spreading. αvβ3 recruitment at FCs and ligand-binding activity, essentially identical to those of HTU-34, occurred in HTU-5 cells upon treatment with hepatocyte growth factor/scatter factor (HGF/SF). The HTU-34 clone secreted HGF/SF and its receptor was constitutively tyrosine phosphorylated suggesting an autocrine loop responsible for αvβ3 activated state. Antibody-mediated inhibition of HGF/SF function in HTU-34 cells disrupted αvβ3 enrichment at FCs and impaired adhesion. Accordingly, activation of αvβ3 in normal cells was produced by HTU-34 conditioned medium on the basis of its content of HGF/SF. These results provide the first example of a growth factor–driven integrin activation mechanism in normal epithelial cells and uncover the importance of cytokine-based autocrine loops for the physiological control of integrin activation. PMID:9722624

  10. Tumor cell growth inhibitory activity and structure-activity relationship of polyoxygenated steroids from the gorgonian Menella kanisa.

    PubMed

    Wang, Pan; Tang, Hua; Liu, Bao-Shu; Li, Tie-Jun; Sun, Peng; Zhu, Wen; Luo, Yan-Ping; Zhang, Wen

    2013-09-01

    Fourteen new polyoxygenated steroids (6, 9, 14-18, 20-23, 25-27) having carbon skeletons of cholestane, ergostane, and 24-norcholestane, were isolated together with thirteen known analogues (1-5, 7, 8, 10-13, 19, 24) from the South China Sea gorgonian Menella kanisa. The structures of the new compounds were elucidated by detailed analysis of spectroscopic data and comparisons with reported data. This is the first report of chemical investigation on the title gorgonian. Compounds 12 and 13 were reported for the first time from natural sources. These compounds exhibited different levels of growth inhibition activity against A549 and MG-63 cell lines in bioassay in vitro. Preliminary structure-activity analysis revealed an important role of side chain in the activity. A substitution of a 5α-hydroxy or an oxidation of 6β-hydroxy to a ketone carbonyl group may decrease the activity whereas the contribution of the 1-ketone group remains uncertain.

  11. AZD-4547 exerts potent cytostatic and cytotoxic activities against fibroblast growth factor receptor (FGFR)-expressing colorectal cancer cells.

    PubMed

    Yao, Ting-Jing; Zhu, Jin-Hai; Peng, De-Feng; Cui, Zhen; Zhang, Chao; Lu, Pei-hua

    2015-07-01

    Colorectal cancer (CRC) causes significant mortalities worldwide. Fibroblast growth factor (FGF) receptor (FGFR) signaling is frequently dysregulated and/or constitutively activated in CRCs, contributing to cancer carcinogenesis and progression. Here, we studied the activity of AZD-4547, a novel and potent FGFR kinase inhibitor, on CRC cells. AZD-4547 inhibited CRC cell growth in vitro, and its activity correlated with the FGFR-1/2 expression level. AZD-4547 was cytotoxic and pro-apoptotic in FGFR-1/2-expressed CRC cell lines (NCI-H716 and HCT-116), but not in FGFR-1/2 null HT-29 cells. Further, AZD-4547 inhibited cell cycle progression and attenuated the activation of FGFR1-FGFR substrate 2 (FRS-2), ERK/mitogen-activated protein kinase (MAPK), and AKT/mammalian target of rapamycin (AKT/mTOR) signalings in NCI-H716 and HCT-116 cells. In vivo, AZD-4547 oral administration at effective doses inhibited NCI-H716 (high FGFR-1/2 expression) xenograft growth in nude mice. Phosphorylation of FGFR-1, AKT, and ERK1/2 in xenograft specimens was also inhibited by AZD-4547 administration. Thus, our preclinical studies strongly support possible clinical investigations of AZD-4547 for the treatment of CRCs harboring deregulated FGFR signalings. PMID:25691251

  12. Zfra activates memory Hyal-2+ CD3- CD19- spleen cells to block cancer growth, stemness, and metastasis in vivo.

    PubMed

    Lee, Ming-Hui; Su, Wan-Pei; Wang, Wan-Jen; Lin, Sing-Ru; Lu, Chen-Yu; Chen, Yu-An; Chang, Jean-Yun; Huang, Shenq-Shyang; Chou, Pei-Yi; Ye, Siou-Ru; Chen, Szu-Jung; He, Huan; Liu, Ting-Hsiu; Chou, Ying-Tsen; Hsu, Li-Jin; Lai, Feng-Jie; Chen, Shean-Jen; Lee, Hoong-Chien; Kakhniashvili, David; Goodman, Steven R; Chang, Nan-Shan

    2015-02-28

    Zfra is a 31-amino-acid zinc finger-like protein, which participates in the tumor necrosis factor signaling. Here, we determined that when nude mice and BALB/c mice were pre-injected with nanogram levels of a synthetic Zfra1-31 or truncated Zfra4-10 peptide via tail veins, these mice became resistant to the growth, metastasis and stemness of melanoma cells, and many malignant cancer cells. The synthetic peptides underwent self-polymerization in phosphate-buffered saline. Alteration of the Ser8 phosphorylation site to Gly8 abolished Zfra aggregation and its-mediated cancer suppression in vivo. Injected Zfra peptide autofluoresced due to polymerization and was trapped mainly in the spleen. Transfer of Zfra-stimulated spleen cells to naïve mice conferred resistance to cancer growth. Zfra-binding cells, designated Hyal-2+ CD3- CD19- Z cells, are approximately 25-30% in the normal spleen, but are significantly downregulated (near 0-3%) in tumor-growing mice. Zfra prevented the loss of Z cells caused by tumors. In vitro stimulation or education of naïve spleen cells with Zfra allowed generation of activated Z cells to confer a memory anticancer response in naïve or cancer-growing mice. In particular, Z cells are abundant in nude and NOD-SCID mice, and can be readily activated by Zfra to mount against cancer growth.

  13. Growth profiles of recent canine distemper isolates on Vero cells expressing canine signalling lymphocyte activation molecule (SLAM).

    PubMed

    Lan, N T; Yamaguchi, R; Uchida, K; Sugano, S; Tateyama, S

    2005-07-01

    Fresh samples of lymph node, lung and cerebrum taken post mortem from dogs no. 1, 2 and 3 yielded canine distemper virus (CDV) strains 007 Lm, 009 L and 011 C, respectively. These were titrated on Vero cells stably expressing canine signalling lymphocyte activation molecule (SLAM; Vero-DST cells). Growth curves of the three strains were produced by titration of the released virus and cell-associated virus at various timepoints. All three isolates, especially 007 Lm, grew well on Vero-DST cells. The titres of cell-associated virus of two strains (009 L and 011 C) were clearly lower than those of virus released into the culture supernate. The results indicate that Vero-DST cells are not only useful for primary isolation but also efficient for titrating virus from fresh tissues and for the study of growth profiles of recent CDV isolates.

  14. Inhibition of intracellular growth of Histoplasma capsulatum yeast cells by cytokine-activated human monocytes and macrophages.

    PubMed Central

    Newman, S L; Gootee, L; Bucher, C; Bullock, W E

    1991-01-01

    Human monocytes/macrophages (M psi) were infected with Histoplasma capsulatum yeast cells, and intracellular growth was quantified after 24 h of incubation in medium alone or in medium containing cytokines. Yeast cells multiplied within freshly isolated monocytes, cultured M psi, and alveolar M psi with intracellular generation times of 14.2 +/- 1.4, 18.5 +/- 2.1, and 19.9 +/- 1.9 h (mean +/- standard error of the mean), respectively. Monocytes and M psi inhibited the intracellular growth of yeast cells in response to cytokine supernatant; maximum inhibition was obtained when cytokines were added to cell monolayers immediately after infection. Opsonization of yeast cells in normal serum or in H. capsulatum-immune serum did not affect the intracellular generation time of yeast cells in either control M psi or cytokine-activated M psi. PMID:1898916

  15. Dexamethasone effects on creatine kinase activity and insulin-like growth factor receptors in cultured muscle cells

    NASA Technical Reports Server (NTRS)

    Whitson, Peggy A.; Stuart, Charles A.; Huls, M. H.; Sams, Clarence F.; Cintron, Nitza M.

    1989-01-01

    The effect of dexamethasone on the activity of creatine kinase (CK) and the insulin-like growth factor I (IGF-I) binding were investigated using skeletal- and cardiac-muscle-derived cultured cell lines (mouse, C2C12; rat, L6 and H9c2). It was found that, in skeletal muscle cells, dexamethasone treatment during differentiation of skeletal-muscle cells caused dose-dependent increases in CK activity and increases in the degree of myotube formation, whereas cardiac cells (H9c2) exhibited very low CK activity during culture or dexamethasone treatment. Results for IGF-I binding were similar in all three cell lines. The IGF-I binding to dexamethasone-treated cells (50 nM for 24 hr on the day prior to confluence) resulted in an increased number of available binding sites, with no effect on the binding affinities.

  16. Inhibition of transforming growth factor-β-activated kinase-1 blocks cancer cell adhesion, invasion, and metastasis

    PubMed Central

    Ray, D M; Myers, P H; Painter, J T; Hoenerhoff, M J; Olden, K; Roberts, J D

    2012-01-01

    Background: Tumour cell metastasis involves cell adhesion and invasion, processes that depend on signal transduction, which can be influenced by the tumour microenvironment. N-6 polyunsaturated fatty acids, found both in the diet and in response to inflammatory responses, are important components of this microenvironment. Methods: We used short hairpin RNA (shRNA) knockdown of TGF-β-activated kinase-1 (TAK1) in human tumour cells to examine its involvement in fatty acid-stimulated cell adhesion and invasion in vitro. An in vivo model of metastasis was developed in which cells, stably expressing firefly luciferase and either a control shRNA or a TAK1-specific shRNA, were injected into the mammary fat pads of mice fed diets, rich in n-6 polyunsaturated fatty acids. Tumour growth and spontaneous metastasis were monitored with in vivo and in situ imaging of bioluminescence. Results: Arachidonic acid activated TAK1 and downstream kinases in MDA-MB-435 breast cancer cells and led to increased adhesion and invasion. Knockdown of TAK1 blocked this activation and inhibited both cell adhesion and invasion in vitro. Tumour growth at the site of injection was not affected by TAK1 knockdown, but both the incidence and extent of metastasis to the lung were significantly reduced in mice injected with TAK1 knockdown cells compared with mice carrying control tumour cells. Conclusion: These data demonstrate the importance of TAK1 signalling in tumour metastasis in vivo and suggest an opportunity for antimetastatic therapies. PMID:22644295

  17. Inhibition of focal adhesion kinase (FAK) activity prevents anchorage-independent ovarian carcinoma cell growth and tumor progression

    PubMed Central

    Ward, Kristy K.; Tancioni, Isabelle; Lawson, Christine; Miller, Nichol L.G.; Jean, Christine; Chen, Xiao Lei; Uryu, Sean; Kim, Josephine; Tarin, David; Stupack, Dwayne G.; Plaxe, Steven C.; Schlaepfer, David D.

    2013-01-01

    Recurrence and spread of ovarian cancer is the 5th leading cause of death for women in the United States. Focal adhesion kinase (FAK) is a cytoplasmic protein-tyrosine kinase located on chromosome 8q24.3 (gene is Ptk2), a site commonly amplified in serous ovarian cancer. Elevated FAK mRNA levels in serous ovarian carcinoma are associated with decreased (logrank P = 0.0007, hazard ratio 1.43) patient overall survival, but how FAK functions in tumor progression remains undefined. We have isolated aggressive ovarian carcinoma cells termed ID8-IP after intraperitoneal (IP) growth of murine ID8 cells in C57Bl6 mice. Upon orthotopic implantation within the periovarian bursa space, ID8-IP cells exhibit greater tumor growth, local and distant metastasis, and elevated numbers of ascites-associated cells compared to parental ID8 cells. ID8-IP cells exhibit enhanced growth under non-adherent conditions with elevated FAK and c-Src tyrosine kinase activation compared to parental ID8 cells. In vitro, the small molecule FAK inhibitor (Pfizer, PF562,271, PF-271) at 0.1 uM selectively prevented anchorage-independent ID8-IP cell growth with the inhibition of FAK tyrosine (Y)397 but not c-Src Y416 phosphorylation. Oral PF-271 administration (30 mg/kg, twice daily) blocked FAK but not c-Src tyrosine phosphorylation in ID8-IP tumors. This was associated with decreased tumor size, prevention of peritoneal metastasis, reduced tumor-associated endothelial cell number, and increased tumor cell-associated apoptosis. FAK knockdown and re-expression assays showed that FAK activity selectively promoted anchorage-independent ID8-IP cell survival. These results support the continued evaluation of FAK inhibitors as a promising clinical treatment for ovarian cancer. PMID:23275034

  18. Growth inhibitory activity of cucurbitacin glucosides isolated from Citrullus colocynthis on human breast cancer cells.

    PubMed

    Tannin-Spitz, Tehila; Grossman, Shlomo; Dovrat, Sara; Gottlieb, Hugo E; Bergman, Margalit

    2007-01-01

    Our aim was to study the effects of cucurbitacin glucosides extracted from Citrullus colocynthis leaves on human breast cancer cell growth. Leaves were extracted, resulting in the identification of cucurbitacin B/E glucosides. The cucurbitacin glucoside combination (1:1) inhibited growth of ER(+) MCF-7 and ER(-) MDA-MB-231 human breast cancer cell lines. Cell-cycle analysis showed that treatment with isolated cucurbitacin glucoside combination resulted in accumulation of cells at the G(2)/M phase of the cell cycle. Treated cells showed rapid reduction in the level of the key protein complex necessary to the regulation of G(2) exit and initiation of mitosis, namely the p34(CDC2)/cyclin B1 complex. cucurbitacin glucoside treatment also caused changes in the overall cell morphology from an elongated form to a round-shaped cell, which indicates that cucurbitacin treatment caused impairment of actin filament organization. This profound morphological change might also influence intracellular signaling by molecules such as PKB, resulting in inhibition in the transmission of survival signals. Reduction in PKB phosphorylation and inhibition of survivin, an anti-apoptosis family member, was observed. The treatment caused elevation in p-STAT3 and in p21(WAF), proven to be a STAT3 positive target in absence of survival signals. Cucurbitacin glucoside treatment also induced apoptosis, as measured by Annexin V/propidium iodide staining and by changes in mitochondrial membrane potential (DeltaPsi) using a fluorescent dye, JC-1. We suggest that cucurbitacin glucosides exhibit pleiotropic effects on cells, causing both cell cycle arrest and apoptosis. These results suggest that cucurbitacin glucosides might have therapeutic value against breast cancer cells.

  19. Overexpression of Csk-binding protein decreases growth, invasion, and migration of esophageal carcinoma cells by controlling Src activation

    PubMed Central

    Zhou, Dong; Dong, Peng; Li, Yu-Min; Guo, Fa-Cai; Zhang, An-Ping; Song, Run-Ze; Zhang, Ya-Min; Li, Zhi-Yong; Yuan, Dong; Yang, Chuan

    2015-01-01

    AIM: To investigate the mechanisms by which Csk-binding protein (CBP) inhibits tumor progression in esophageal carcinoma. METHODS: A CBP overexpressing esophageal carcinoma cell line (TE-1) was established. The growth, invasion, and migration of CBP-TE-1 cells, as well as the expression of Src were then determined and compared with those in normal TE-1 cells. RESULTS: The expression of Src was decreased by the overexpression of CBP in TE-1 cells. The growth, invasion, and migration of TE-1 cells were decreased by the overexpression of CBP. CONCLUSION: This study indicates that CBP may decrease the metastasis of esophageal carcinoma by inhibiting the activation of Src. CBP may be a potential tumor suppressor and targeting the CBP gene may be an alternative strategy for the development of therapies for esophageal carcinoma. PMID:25684946

  20. Epidermal growth factor induces biphasic activation of ornithine decarboxylase in human stomach-derived KATO-III cells.

    PubMed

    Ishikawa, T; Mitsuhashi, M; Ichikawa, Y; Tarnawski, A

    1994-01-01

    Effect of epidermal growth factor (EGF) on ornithine decarboxylase (ODC) was examined in human gastric cancer-derived KATO-III cells, because 125I-EGF binding studies indicated a presence of specific binding sites for EGF on these cells. Upon stimulation with EGF, both ODC mRNA expression and ODC enzyme activity were significantly increased in KATO-III cells. However, unlike in other cellular systems, both EGF-induced ODC mRNA expression and ODC enzyme activation were biphasic with the peaks at 15 +/- 10 min and 2.1 +/- 1.5 hrs (mean +/- SE) for mRNA, and 3.1 +/- 1.5 and 7.7 +/- 1.8 hrs (mean +/- SE) for enzyme activity, respectively. Therefore, KATO-III cell line may provide a unique model for the biochemical analysis of EGF action on ODC activation. PMID:8190004

  1. Cell Growth and Division

    PubMed Central

    Bell, George I.

    1968-01-01

    In a previous paper, we proposed a model in which the volume growth rate and probability of division of a cell were assumed to be determined by the cell's age and volume. Some further mathematical implications of the model are here explored. In particular we seek properties of the growth and division functions which are required for the balanced exponential growth of a cell population. Integral equations are derived which relate the distribution of birth volumes in successive generations and in which the existence of balanced exponential growth can be treated as an eigenvalue problem. The special case in which all cells divide at the same age is treated in some detail and conditions are derived for the existence of a balanced exponential solution and for its stability or instability. The special case of growth rate proportional to cell volume is seen to have neutral stability. More generally when the division probability depends on age only and growth rate is proportional to cell volume, there is no possibility of balanced exponential growth. Some comparisons are made with experimental results. It is noted that the model permits the appearance of differentiated cells. A generalization of the model is formulated in which cells may be described by many state variables instead of just age and volume. PMID:5643273

  2. Wounding Sheets of Epithelial Cells Activates the Epidermal Growth Factor Receptor through Distinct Short- and Long-Range Mechanisms

    PubMed Central

    Block, Ethan R.

    2008-01-01

    Wounding epithelia induces activation of the epidermal growth factor receptor (EGFR), which is absolutely required for induction of motility. ATP is released from cells after wounding; it binds to purinergic receptors on the cell surface, and the EGFR is subsequently activated. Exogenous ATP activates phospholipase D, and we show here that ATP activates the EGFR through the phospholipase D2 isoform. The EGFR is activated in cells far (>0.3 cm) from wounds, which is mediated by diffusion of extracellular ATP because activation at a distance from wounds is abrogated by eliminating ATP in the medium with apyrase. In sharp contrast, activation of the EGFR near wounds is not sensitive to apyrase. Time-lapse microscopy revealed that cells exhibit increased motilities near edges of wounds; this increase in motility is not sensitive to apyrase, and apyrase does not detectably inhibit healing of wounds in epithelial sheets. This novel ATP/PLD2-independent pathway activates the EGFR by a transactivation process through ligand release, and it involves signaling by a member of the Src family of kinases. We conclude that wounding activates two distinct signaling pathways that induce EGFR activation and promote healing of wounds in epithelial cells. One pathway signals at a distance from wounds through release of ATP, and another pathway acts locally and is independent on ATP signaling. PMID:18799627

  3. Potentiation of growth factor signaling by insulin-like growth factor-binding protein-3 in breast epithelial cells requires sphingosine kinase activity.

    PubMed

    Martin, Janet L; Lin, Mike Z; McGowan, Eileen M; Baxter, Robert C

    2009-09-18

    We have investigated the mechanism underlying potentiation of epidermal growth factor receptor (EGFR) and type 1 insulin-like growth factor receptor (IGFR1) signaling by IGF-binding protein-3 (IGFBP-3) in MCF-10A breast epithelial cells, focusing on a possible involvement of the sphingosine kinase (SphK) system. IGFBP-3 potentiated EGF-stimulated EGF receptor activation and DNA synthesis, and this was blocked by inhibitors of SphK activity or small interference RNA-mediated silencing of SphK1, but not SphK2, expression. Similarly, IGFR1 phosphorylation and DNA synthesis stimulated by LR3-IGF-I (an IGF-I analog not bound by IGFBP-3), were enhanced by IGFBP-3, and this was blocked by SphK1 silencing. SphK1 expression and activity were stimulated by IGFBP-3 approximately 2-fold over 24 h. Silencing of sphingosine 1-phosphate receptor 1 (S1P1) or S1P3, but not S1P2, abolished the effect of IGFBP-3 on EGF-stimulated EGFR activation. The effects of IGFBP-3 could be reproduced with exogenous S1P or medium conditioned by cells treated with IGFBP-3, and this was also blocked by inhibition of S1P1 and S1P3. These data indicate that potentiation of growth factor signaling by IGFBP-3 in MCF-10A cells requires SphK1 activity and S1P1/S1P3, suggesting that S1P, the product of SphK activity and ligand for S1P1 and S1P3, is the "missing link" mediating IGF and EGFR transactivation and cell growth stimulation by IGFBP-3.

  4. Monitoring cell growth.

    PubMed

    Strober, W

    2001-05-01

    This appendix provides two protocols for monitoring cell growth. Counting cells using a hemacytometer is tedious but it allows one to effectively distinguish live cells from dead cells (using Trypan Blue exclusion). In addition, this procedure is less subject to errors due to cell clumping or heterogeneity of cell size. The use of an electronic cell counter is quicker and easier than counting cells using a hemacytometer. However, an electronic cell counter as currently constructed does not distinguish live from dead cells in a reliable fashion and is subject to error due to the presence of cell clumps. Overall, the electronic cell counter is best reserved for repetitive and rapid counting of fresh peripheral blood cells and should be used with caution when counting cell populations derived from tissues. PMID:18432653

  5. Notch Signaling Activation in Cervical Cancer Cells Induces Cell Growth Arrest with the Involvement of the Nuclear Receptor NR4A2

    PubMed Central

    Sun, Lichun; Liu, Mingqiu; Sun, Guang-Chun; Yang, Xu; Qian, Qingqing; Feng, Shuyu; Mackey, L. Vienna; Coy, David H.

    2016-01-01

    Cervical cancer is a second leading cancer death in women world-wide, with most cases in less developed countries. Notch signaling is highly conserved with its involvement in many cancers. In the present study, we established stable cervical cell lines with Notch activation and inactivation and found that Notch activation played a suppressive role in cervical cancer cells. Meanwhile, the transient overexpression of the active intracellular domain of all four Notch receptors (ICN1, 2, 3, and 4) also induced the suppression of cervical cancer Hela cell growth. ICN1 also induced cell cycle arrest at phase G1. Notch1 signaling activation affected the expression of serial genes, especially the genes associated with cAMP signaling, with an increase of genes like THBS1, VCL, p63, c-Myc and SCG2, a decrease of genes like NR4A2, PCK2 and BCL-2. Particularly, The nuclear receptor NR4A2 was observed to induce cell proliferation via MTT assay and reduce cell apoptosis via FACS assay. Furthermore, NR4A2's activation could reverse ICN1-induced suppression of cell growth while erasing ICN1-induced increase of tumor suppressor p63. These findings support that Notch signaling mediates cervical cancer cell growth suppression with the involvement of nuclear receptor NR4A2. Notably, Notch/NR4A2/p63 signaling cascade possibly is a new signling pathway undisclosed. PMID:27471554

  6. Notch Signaling Activation in Cervical Cancer Cells Induces Cell Growth Arrest with the Involvement of the Nuclear Receptor NR4A2.

    PubMed

    Sun, Lichun; Liu, Mingqiu; Sun, Guang-Chun; Yang, Xu; Qian, Qingqing; Feng, Shuyu; Mackey, L Vienna; Coy, David H

    2016-01-01

    Cervical cancer is a second leading cancer death in women world-wide, with most cases in less developed countries. Notch signaling is highly conserved with its involvement in many cancers. In the present study, we established stable cervical cell lines with Notch activation and inactivation and found that Notch activation played a suppressive role in cervical cancer cells. Meanwhile, the transient overexpression of the active intracellular domain of all four Notch receptors (ICN1, 2, 3, and 4) also induced the suppression of cervical cancer Hela cell growth. ICN1 also induced cell cycle arrest at phase G1. Notch1 signaling activation affected the expression of serial genes, especially the genes associated with cAMP signaling, with an increase of genes like THBS1, VCL, p63, c-Myc and SCG2, a decrease of genes like NR4A2, PCK2 and BCL-2. Particularly, The nuclear receptor NR4A2 was observed to induce cell proliferation via MTT assay and reduce cell apoptosis via FACS assay. Furthermore, NR4A2's activation could reverse ICN1-induced suppression of cell growth while erasing ICN1-induced increase of tumor suppressor p63. These findings support that Notch signaling mediates cervical cancer cell growth suppression with the involvement of nuclear receptor NR4A2. Notably, Notch/NR4A2/p63 signaling cascade possibly is a new signling pathway undisclosed. PMID:27471554

  7. PTEN mutation and epidermal growth factor receptor activation regulate vascular endothelial growth factor (VEGF) mRNA expression in human glioblastoma cells by transactivating the proximal VEGF promoter.

    PubMed

    Pore, Nabendu; Liu, Shuang; Haas-Kogan, Daphne A; O'Rourke, Donald M; Maity, Amit

    2003-01-01

    Our previous work showed that, compared with parental U87MG human glioblastoma cells, vascular endothelial growth factor (VEGF) mRNA levels are decreased in U87/T691, a derivative line in which epidermal growth factor receptor (EGFR) signaling is inhibited by introduction of a truncated p185(Neu) protein (A. Maity et al., Cancer Res., 60: 5879-5886, 2000). The effect of EGFR activation on VEGF was mediated at the level of transcription via a phosphatidylinositol 3'-kinase (PI3K)-dependent pathway. In the current study we investigated the effect of PTEN, a negative regulator of PI3K signaling commonly mutated in glioblastoma cells, on VEGF expression. Several glioblastoma cell lines containing mutant PTEN, including U87MG, U87/T691, and U251MG, were infected with adenovirus expressing wild-type PTEN. This led to a decrease in the levels of both VEGF mRNA and phosphorylated Akt, a marker for PI3K activation. Treatment of U87MG cells with LY294002, a PI3K inhibitor, or cotransfection with a vector expressing wild-type PTEN decreased VEGF promoter activity using reporters containing either 1.5 kb of the promoter or a fragment extending from -88 to +54 bp. Activity of the -88/+54 VEGF promoter was down-regulated by dominant negative Akt and up-regulated by constitutively active myristoylated Akt. Introduction of wild-type PTEN and pharmacological inhibition of EGFR decreased VEGF mRNA expression and VEGF promoter activity in U87MG cells to a greater extent that did either manipulation by itself. Therefore, in human glioblastoma cells, PTEN mutation can cooperate with EGFR activation to increase VEGF mRNA levels by transcriptionally up-regulating the proximal VEGF promoter via the PI3K/Akt pathway.

  8. Ginkgetin inhibits the growth of DU−145 prostate cancer cells through inhibition of signal transducer and activator of transcription 3 activity

    PubMed Central

    Jeon, Yoon Jung; Jung, Seung-Nam; Yun, Jieun; Lee, Chang Woo; Choi, Jiyeon; Lee, Yu-Jin; Han, Dong Cho; Kwon, Byoung-Mog

    2015-01-01

    Signal transducer and activator of transcription 3 (STAT3) is constitutively activated in human cancers. Therefore, STAT3 is a therapeutic target of cancer drug discovery. We previously reported that natural products inhibited constitutively activated STAT3 in human prostate tumor cells. We used a dual-luciferase assay to screen 200 natural products isolated from herbal medicines and we identified ginkgetin obtained from the leaves of Ginkgo biloba L. as a STAT3 inhibitor. Ginkgetin inhibited both inducible and constitutively activated STAT3 and blocked the nuclear translocation of p-STAT3 in DU-145 prostate cancer cells. Furthermore, ginkgetin selectively inhibited the growth of prostate tumor cells stimulated with activated STAT3. Ginkgetin induced STAT3 dephosphorylation at Try705 and inhibited its localization to the nucleus, leading to the inhibition of expression of STAT3 target genes such as cell survival-related genes (cyclin D1 and survivin) and anti-apoptotic proteins (Bcl-2 and Bcl-xL). Therefore, ginkgetin inhibited the growth of STAT3-activated tumor cells. We also found that ginkgetin inhibited tumor growth in xenografted nude mice and downregulated p-STAT3Tyr705 and survivin in tumor tissues. This is the first report that ginkgetin exerts antitumor activity by inhibiting STAT3. Therefore, ginkgetin is a good STAT3 inhibitor and may be a useful lead molecule for development of a therapeutic STAT3 inhibitor. PMID:25611086

  9. Uric acid induces oxidative stress and growth inhibition by activating adenosine monophosphate-activated protein kinase and extracellular signal-regulated kinase signal pathways in pancreatic β cells.

    PubMed

    Zhang, Yongneng; Yamamoto, Tetsuya; Hisatome, Ichiro; Li, Youfeng; Cheng, Weijie; Sun, Ning; Cai, Bozhi; Huang, Tianliang; Zhu, Yuzhang; Li, Zhi; Jing, Xubin; Zhou, Rui; Cheng, Jidong

    2013-08-15

    Hyperuricaemia is a disorder of purine metabolism, and is strongly associated with insulin resistance and abnormal glucose metabolism. As the producer of insulin, pancreatic β cells might be affected by elevated serum uric acid levels and contribute to the disregulated glucose metabolism. In this study, we investigated the effect of high uric acid on rat pancreatic β cell function. Under high uric acid condition, proliferation of pancreatic β cells was inhibited, production of reactive oxygen species increased, and glucose stimulated insulin secretion was also compromised. Further examination on signal transduction pathways revealed that uric acid-induced ROS is involved in the activation of adenosine monophosphate-activated protein kinase (AMPK), and extracellular signal-regulated kinase (ERK). Pharmacological inhibition of ERK activation rescued β cells from growth inhibition. More importantly, activation of ERK induced by uric acid is significantly diminished by AMPK inhibitor, indicating ERK as a downstream target of AMPK in response to high uric acid condition. We also investigated the transportation channel for uric acid into pancreatic β cells. While major urate transporter URAT1 is not expressed in β cells, organic anion transporter (OAT) inhibitor successfully blocked the activation of ERK by uric acid. Our data indicate that high uric acid levels induce oxidative damage and inhibit growth of rat pancreatic β cells by activating the AMPK and ERK signal pathways. Hyperuricemia may contribute to abnormal glucose metabolism by causing oxidative damage and function inhibition of pancreatic β cells.

  10. Mechanisms of TGF-beta1-induced intimal growth: plasminogen-independent activities of plasminogen activator inhibitor-1 and heterogeneous origin of intimal cells.

    PubMed

    Otsuka, Goro; Stempien-Otero, April; Frutkin, Andrew D; Dichek, David A

    2007-05-11

    Transforming growth factor (TGF)-beta(1) is a potent stimulator of intimal growth. We showed previously that TGF-beta(1) stimulates intimal growth through early upregulation of plasminogen activator inhibitor-1 (PAI-1) and, subsequently, PAI-1-dependent increases in cell migration and matrix accumulation. We also showed that PAI-1 negatively regulates TGF-beta(1) expression in the artery wall. Here we use plasminogen-deficient mice to test whether TGF-beta(1)-stimulated, PAI-1-dependent intimal growth and PAI-1 suppression of TGF-beta(1) expression are mediated through inhibition of plasminogen activation by PAI-1. We also use lineage tracing to investigate the origin of cells in TGF-beta(1)-induced intimas. Surprisingly, both TGF-beta(1)-induced, PAI-1-dependent intimal growth and PAI-1 suppression of TGF-beta(1) expression are independent of plasminogen. Moreover, approximately 50% of cells that migrate into the intima of TGF-beta(1)-overexpressing arteries carry a smooth muscle lineage marker, <1% carry a bone marrow lineage marker, and the remaining cells carry neither marker. Therefore, PAI-1 stimulates intimal growth and suppresses TGF-beta(1) expression through activities other than inhibition of plasminogen activation. In addition, contrary to widely held models, our results do not support a role for plasmin (or thrombospondin) in TGF-beta(1) activation in the artery wall. Further identification of the molecular targets through which PAI-1 stimulates intimal formation and suppresses TGF-beta(1) expression in the artery wall may reveal new approaches for inhibiting intimal formation. Our studies also discount bone marrow as an important source from which TGF-beta(1) recruits intimal cells and suggest instead that TGF-beta(1) induces substantial cell migration either from the adventitia or from an extravascular, but nonhematopoietic source.

  11. PSMB4 promotes multiple myeloma cell growth by activating NF-κB-miR-21 signaling

    SciTech Connect

    Zheng, Peihao; Guo, Honggang; Li, Guangchao; Han, Siqi; Luo, Fei; Liu, Yi

    2015-03-06

    Proteasomal subunit PSMB4, was recently identified as potential cancer driver genes in several tumors. However, the regulatory mechanism of PSMB4 on carcinogenesis process remains unclear. In this study, we investigated the expression and roles of PSMB4 in multiple myeloma (MM). We found a significant up-regulation of PSMB4 in MM plasma and cell lines. Ectopic overexpression of PSMB4 promoted cell growth and colony forming ability of MM cells, whereas inhibition of PSMB4 led to a decrease of such events. Furthermore, our results demonstrated the up-regulation of miR-21 and a positive correlation between the levels of miR-21 and PSMB4 in MM. Re-expression of miR-21 markedly rescued PSMB4 knockdown-mediated suppression of cell proliferation and clone-formation. Additionally, while enforced expression of PSMB4 profoundly increased NF-κB activity and the level of miR-21, PSMB4 knockdown or NF-κB inhibition suppressed miR-21 expression in MM cells. Taken together, our results demonstrated that PSMB4 regulated MM cell growth in part by activating NF-κB-miR-21 signaling, which may represent promising targets for novel specific therapies. - Highlights: • First reported upregulation of PSMB4 in MM plasma and cell lines. • PSMB4 promoted MM cell growth and colony forming ability. • Further found miR-21 was up-regulated by PSMB4 in MM plasma and cell lines. • PSMB4-induced miR-21 expression was modulated by NF-κB. • PSMB4-NF-κB-miR-21 axis may be potential therapeutic targets of MM.

  12. ZIP4 Regulates Pancreatic Cancer Cell Growth by Activating IL-6/STAT3 Pathway via Zinc Finger Transcription Factor CREB

    PubMed Central

    Zhang, Yuqing; Bharadwaj, Uddalak; Logsdon, Craig D.; Chen, Changyi; Yao, Qizhi; Li, Min

    2010-01-01

    Purpose Recent studies indicate a strong correlation of zinc transporter ZIP4 and pancreatic cancer progression; however, the underlying mechanisms are unclear. We have recently found that ZIP4 is overexpressed in pancreatic cancer. In this study, we investigated the signaling pathway through which ZIP4 regulates pancreatic cancer growth. Experimental Design The expression of cyclin D1, IL-6, and STAT3 in pancreatic cancer xenografts and cells were examined by real time PCR, Bio-Plex cytokine assay, and Western blot, respectively. The activity of CREB is examined by a promoter activity assay. Results Cyclin D1 was significantly increased in the ZIP4 overexpressing MIA PaCa-2 cells (MIA-ZIP4)-injected orthotopic xenografts and was downregulated in the ZIP4 silenced ASPC-1 (ASPC-shZIP4) group. The phosphorylation of signal transducer and activator of transcription 3 (STAT3), an upstream activator of cyclin D1, was increased in MIA-ZIP4 cells, and decreased in ASPC-shZIP4 cells. IL-6, a known upstream activator for STAT3, was also found to be significantly increased in the MIA-ZIP4 cells and xenografts, and decreased in the ASPC-shZIP4 group. Overexpression of ZIP4 led to a 75% increase of IL-6 promoter activity, and caused increased phosphorylation of cAMP response element binding protein (CREB). Conclusions Our study suggest that ZIP4 overexpression causes increased IL-6 transcription via CREB, which in turn activates STAT3, and leads to increased cyclin D1 expression, resulting in increased cell proliferation and tumor progression in pancreatic cancer. These results elucidated a novel pathway in ZIP4-mediated pancreatic cancer growth, and suggest new therapeutic targets including ZIP4, IL-6, and STAT3 in pancreatic cancer treatment. PMID:20160059

  13. The clinically used photosensitizer Verteporfin (VP) inhibits YAP-TEAD and human retinoblastoma cell growth in vitro without light activation

    PubMed Central

    Brodowska, Katarzyna; Moujahed, Ahmad; Marmalidou, Anna; zu Horste, Melissa Meyer; Cichy, Joanna; Miller, Joan W.; Gragoudas, Evangelos; Vavvas, Demetrios G.

    2014-01-01

    Verteporfin (VP), a benzoporphyrin derivative, is clinically used in photodynamic therapy for neovascular macular degeneration. Recent studies indicate that VP may inhibit growth of hepatoma cells without photoactivation hrough inhibition of YAP-TEAD complex. In this study, we examined the effects of VP without light activation on human retinoblastoma cell lines. Verteporfin but not vehicle control inhibited the growth, proliferation and viability of human retinoblastoma cell lines (Y79 and WERI) in a dose-dependent manner and was associated with downregulation of YAP-TEAD associated downstream proto-oncogenes such as c-myc, axl, and surviving. In addition VP affected signals involved in cell migration and angiogenesis such as CTGF, cyr61, and VEGF-A but was not associated with significant effect on the mTOR/autophagy pathway. Of interest the pluripotency marker Oct4 were downregulated by Verteporfin treatment. Our results indicate that the clinically used photosensitizer VP is a potent inhibitor of cell growth in retinoblastoma cells, disrupting YAPTEAD signaling and pluripotential marker OCT4. This study highlights for the first time the role of the YAP-TEAD pathway in Retinoblastoma and suggests that VP may be a useful adjuvant therapeutic tool in treating Rb patients. PMID:24837142

  14. Cancer Cell Growth Is Differentially Affected by Constitutive Activation of NRF2 by KEAP1 Deletion and Pharmacological Activation of NRF2 by the Synthetic Triterpenoid, RTA 405

    PubMed Central

    Probst, Brandon L.; McCauley, Lyndsey; Trevino, Isaac; Wigley, W. Christian; Ferguson, Deborah A.

    2015-01-01

    Synthetic triterpenoids are antioxidant inflammation modulators (AIMs) that exhibit broad anticancer activity. AIMs bind to KEAP1 and inhibit its ability to promote NRF2 degradation. As a result, NRF2 increases transcription of genes that restore redox balance and reduce inflammation. AIMs inhibit tumor growth and metastasis by increasing NRF2 activity in the tumor microenvironment and by modulating the activity of oncogenic signaling pathways, including NF-κB, in tumor cells. Accumulating evidence suggests that KEAP1 loss or mutation—which results in high levels of sustained NRF2 activity—may promote cancer growth and increase chemoresistance. Loss of KEAP1 also increases the levels of other oncogenic proteins, including IKKβ and BCL2. The apparent survival advantage provided to some tumor cells by loss of functional KEAP1 raises the question of whether pharmacological inhibition of KEAP1 could promote tumor growth. To address this issue, we characterized the basal levels of KEAP1 and NRF2 in a panel of human tumor cell lines and profiled the activity of an AIM, RTA 405. We found that in tumor cell lines with low or mutant KEAP1, and in Keap1-/- murine embryonic fibroblasts, multiple KEAP1 targets including NRF2, IKKβ, and BCL2 were elevated. Keap1-/- murine embryonic fibroblasts also had higher rates of proliferation and colony formation than their wild-type counterparts. In cells with functional KEAP1, RTA 405 increased NRF2 levels, but not IKKβ or BCL2 levels, and did not increase cell proliferation or survival. Moreover, RTA 405 inhibited growth at similar concentrations in cells with different basal NRF2 activity levels and in cells with wild-type or mutant KRAS. Finally, pre-treatment with RTA 405 did not protect tumor cells from doxorubicin- or cisplatin-mediated growth inhibition. Collectively, these data demonstrate that pharmacological activation of NRF2 by AIMs is distinct from genetic activation and does not provide a growth or survival

  15. Osteostatin improves the osteogenic activity of fibroblast growth factor-2 immobilized in Si-doped hydroxyapatite in osteoblastic cells.

    PubMed

    Lozano, Daniel; Feito, María José; Portal-Núñez, Sergio; Lozano, Rosa María; Matesanz, María Concepción; Serrano, María Concepción; Vallet-Regí, María; Portolés, María Teresa; Esbrit, Pedro

    2012-07-01

    Si-doped hydroxyapatite (Si-HA) is a suitable ceramic for the controlled release of agents to improve bone repair. We recently showed that parathyroid hormone-related protein (PTHrP) (107-111) (osteostatin) has remarkable osteogenic features in various in vitro and in vivo systems. Fibroblast growth factor (FGF)-2 modulates osteoblastic function and induces angiogenesis, and can promote osteoblast adhesion and proliferation after immobilization on Si-HA. In the present study we examined whether osteostatin might improve the biological efficacy of FGF-2-coated Si-HA in osteoblastic MC3T3-E1 cells in vitro. We found that Si-HA/FGF-2 in the presence or absence of osteostatin (100 nM) similarly increased cell growth (by about 50%). However, addition of the latter peptide to Si-HA/FGF-2 significantly enhanced gene expression of Runx2, osteocalcin, vascular endothelial growth factor (VEGF) and the VEGF receptors 1 and 2, without significantly affecting that of FGF receptors in these cells. Moreover, secreted VEGF in the MC3T3-E1 cell conditioned medium, which induced the proliferation of pig endothelial-like cells, was also enhanced by these combined factors. The synergistic action of osteostatin and Si-HA/FGF-2 on the VEGF system was abrogated by a mitogen-activated protein kinase inhibitor (U0126) and by the calcium antagonist verapamil. This action was related to an enhancement of alkaline phosphatase activity and matrix mineralization in MC3T3-E1 cells, and also in primary human osteoblastic cells. These in vitro data show that osteostatin increases the osteogenic efficacy of a Si-HA/FGF-2 biomaterial by a mechanism involving mitogen-activated protein kinases and intracellular Ca(2+). These findings provide an attractive strategy for bone tissue engineering.

  16. The use of growth factors to modulate the activities of antigen–specific CD8+ T cells in vitro

    PubMed Central

    Alenzi, FQ; Alenazi, FA; Al-Kaabi, Y; Salem, ML

    2011-01-01

    Rationale: Adoptive T cell therapy depends on the harvesting of the cells from the host, their activation in vitro, and their infusion back to the same host. The way of activating the T cells in vitro is a critical factor for their homing, survival and function in vivo. Sustaining T cell homing molecules, particularly CD62L, is benefic for the trafficking of the adoptive transferred cells. Objective: The aim of the present study is to test whether insulin–like growth factor–1 (IGF–1), thymosin– α1 (T–α1) as well as all–trans retinoid acid (ATRA) alone or in combination with IL–2, IL–12, IL–15 can enhance the activation and survival phenotypes of antigen-activated T cells in vitro. Methods & Results: To this end, OT–1 transgenic T cells were used as a model. These CD8+ T cells recognize OVA peptide presented by MHC class–I. The results showed that antigen stimulation of OT1 cells resulted in their activation as evidenced by the decrease in surface expression of CD62L, analyzed for 3 days after antigen stimulation and was more pronounced on day 5. The addition of IL–12 or IGF–1 alone but not of IL–2, IL–15 augmented OT–1 cell activation measured on day 5. Interestingly, the combination of IL–12 with IGF–1 sustained the expression of CD62L on OT1 cells. Although the addition of ATRA alone or in combination with IL–12 resulted in decreases in CD62L expression on day 3, they showed a dose–dependent effect on the restoration of CD62L expression on day 5. The analysis of the activation–induced cell death (apoptosis) of OT1 cells showed an increased rate of death on day 5 than on day 3–post antigen stimulation. The addition of only IL–12 or IGF–1 alone, but not of IL–2, IL–15 or T– α1, decreased OT1 cell apoptosis on day 3. These anti–apoptotic effects of IL–12 and IGF– 1, however, were recovered on day 5–post stimulation. Discussion: In conclusion, these results indicate that the activation phenotype and the

  17. Inhibition of COP9-signalosome (CSN) deneddylating activity and tumor growth of diffuse large B-cell lymphomas by doxycycline

    PubMed Central

    Pulvino, Mary; Chen, Luojing; Oleksyn, David; Li, Jing; Compitello, George; Rossi, Randy; Spence, Stephen; Balakrishnan, Vijaya; Jordan, Craig; Poligone, Brian; Casulo, Carla; Burack, Richard; Shapiro, Joel L.; Bernstein, Steven; Friedberg, Jonathan W.; Deshaies, Raymond J.; Land, Hartmut; Zhao, Jiyong

    2015-01-01

    In searching for small-molecule compounds that inhibit proliferation and survival of diffuse large B-cell lymphoma (DLBCL) cells and may, therefore, be exploited as potential therapeutic agents for this disease, we identified the commonly used and well-tolerated antibiotic doxycycline as a strong candidate. Here, we demonstrate that doxycycline inhibits the growth of DLBCL cells both in vitro and in mouse xenograft models. In addition, we show that doxycycline accumulates in DLBCL cells to high concentrations and affects multiple signaling pathways that are crucial for lymphomagenesis. Our data reveal the deneddylating activity of COP-9 signalosome (CSN) as a novel target of doxycycline and suggest that doxycycline may exert its effects in DLBCL cells in part through a CSN5-HSP90 pathway. Consistently, knockdown of CSN5 exhibited similar effects as doxycycline treatment on DLBCL cell survival and HSP90 chaperone function. In addition to DLBCL cells, doxycycline inhibited growth of several other types of non-Hodgkin lymphoma cells in vitro. Together, our results suggest that doxycycline may represent a promising therapeutic agent for DLBCL and other non-Hodgkin lymphomas subtypes. PMID:26142707

  18. REPRESSION OF SHOOT GROWTH, a bZIP Transcriptional Activator, Regulates Cell Elongation by Controlling the Level of Gibberellins

    PubMed Central

    Fukazawa, Jutarou; Sakai, Tatsuya; Ishida, Sarahmi; Yamaguchi, Isomaro; Kamiya, Yuji; Takahashi, Yohsuke

    2000-01-01

    Cell expansion, a developmental process regulated by both endogenous programs and environmental stimuli, is critically important for plant growth. Here, we report the isolation and characterization of RSG (for repression of shoot growth), a transcriptional activator with a basic leucine zipper (bZIP) domain. To examine the role of RSG in plant development, we generated transgenic tobacco plants expressing a dominant-negative form of RSG, which repressed the activity of full-length RSG. In transgenic plants, this expression severely inhibited stem internode growth, specifically cell elongation. These plants also had less endogenous amounts of the major active gibberellin (GA) in tobacco, GA1. Applying GAs restored the dwarf phenotypes of transgenic tobacco plants that expressed the dominant-negative form of RSG. To investigate the function of RSG in the regulation of the endogenous amounts of GAs, we identified a target for RSG. RSG bound and activated the promoter of Arabidopsis GA3, one of the genes encoding enzymes involved in GA biosynthesis. Moreover, the dominant-negative form of RSG decreased expression of the GA3 homolog in transgenic tobacco plants. Our results show that RSG, a bZIP transcriptional activator, regulates the morphology of plants by controlling the endogenous amounts of GAs. PMID:10852936

  19. Fibroblast Growth Factor-9 Activates c-Kit Progenitor Cells and Enhances Angiogenesis in the Infarcted Diabetic Heart

    PubMed Central

    Singla, Dinender; Wang, Jing

    2016-01-01

    We hypothesized that fibroblast growth factor-9 (FGF-9) would enhance angiogenesis via activating c-kit positive stem cells in the infarcted nondiabetic and diabetic heart. In brief, animals were divided into three groups: Sham, MI, and MI+FGF-9. Two weeks following MI or sham surgery, our data suggest that treatment with FGF-9 significantly diminished vascular apoptosis compared to the MI group in both C57BL/6 and db/db mice (p < 0.05). Additionally, the number of c-kit+ve/SM α-actin+ve cells and c-kit+ve/CD31+ve cells were greatly enhanced in the MI+FGF-9 groups relative to the MI suggesting FGF-9 enhances c-Kit cell activation and their differentiation into vascular smooth muscle cells and endothelial cells, respectively (p < 0.05). Histology shows that the total number of vessels were quantified for all groups and our data suggest that the FGF-9 treated groups had significantly more vessels than their MI counterparts (p < 0.05). Finally, echocardiographic data suggests a significant improvement in left ventricular output, as indicated by fractional shortening and ejection fraction in both nondiabetic and diabetic animals treated with FGF-9 (p < 0.05). Overall, our data suggests FGF-9 has the potential to attenuate vascular cell apoptosis, activate c-Kit progenitor cells, and enhance angiogenesis and neovascularization in C57BL/6 and db/db mice leading to improved cardiac function. PMID:26682010

  20. Tunable growth of nanodendritic silver by galvanic-cell mechanism on formed activated carbon.

    PubMed

    Wang, Fei; Lai, Yijian; Zhao, Binyuan; Hu, Xiaobin; Zhang, Di; Hu, Keao

    2010-06-01

    Well-defined silver dendritic nanostructures have been prepared in large quantities in an ambient environment using formed activated carbon (FAC) only. A reasonable mechanism (step 1: reduction by surface reductive groups; step 2: growing in the form of a galvanic cell) is suggested.

  1. Growth-dependent catalase localization in Exiguobacterium oxidotolerans T-2-2T reflected by catalase activity of cells.

    PubMed

    Hanaoka, Yoshiko; Takebe, Fumihiko; Nodasaka, Yoshinobu; Hara, Isao; Matsuyama, Hidetoshi; Yumoto, Isao

    2013-01-01

    A psychrotolerant and H2O2-resistant bacterium, Exiguobacterium oxidotolerans T-2-2(T), exhibits extraordinary H2O2 resistance and produces catalase not only intracellularly but also extracellularly. The intracellular and extracellular catalases exhibited the same enzymatic characteristics, that is, they exhibited the temperature-dependent activity characteristic of a cold-adapted enzyme, their heat stabilities were similar to those of mesophilic enzymes and very high catalytic intensity. In addition, catalase gene analysis indicated that the bacterium possessed the sole clade 1 catalase gene corresponding to intracellular catalase. Hence, intracellular catalase is secreted into the extracellular space. In addition to intracellular and extracellular catalases, the inner circumference of the cells showed the localization of catalase in the mid-stationary growth phase, which was observed by immunoelectron microscopy using an antibody against the intracellular catalase of the strain. The cells demonstrated higher catalase activity in the mid-stationary growth phase than in the exponential growth phase. The catalase localized in the inner circumference can be dissociated by treatment with Tween 60. Thus, the localized catalase is not tightly bound to the inner circumference of the cells and may play a role in the oxidative defense of the cells under low metabolic state.

  2. In vitro cancer cell growth inhibition and antioxidant activity of Bombax ceiba (Bombacaceae) flower extracts.

    PubMed

    Tundis, Rosa; Rashed, Khaled; Said, Ataa; Menichini, Francesco; Loizzo, Monica R

    2014-05-01

    The flowers of Bombax ceiba were investigated for their chemical composition, antioxidant effects and antiproliferative activity against seven human cancer cell lines. The antiproliferative responses of diethyl ether (DE) and light petroleum (PE) extracts were evaluated by sulforhodamine B (SRB) assay against MCF-7, HeLa, COR-L23, C32, A375, ACHN, and LNCaP cells in comparison with a human normal cell line, 142BR. Moreover, extracts were characterized by GC-MS analysis and tested for their antioxidant properties by different in vitro systems, namely DPPH, Fe-chelating activity and beta-carotene bleaching test. Both PE and DE extracts showed the highest antiproliferative activity against human renal adenocarcinoma (ACHN) in a concentration-dependent manner. PE extract showed the highest radical scavenging activity against the DPPH radical, while DE extract was more active in the beta-carotene bleaching test. The presence of beta-sitosterol and some fatty acids may contribute to the bioactivity of B. ceiba flower extracts.

  3. Photo-activated pheophorbide a inhibits the growth of prostate cancer cells

    NASA Astrophysics Data System (ADS)

    Xu, D. D.; Cho, W. C. S.; Wu, P.; Lam, H. M.; Leung, A. W. N.

    2011-09-01

    Pheophorbide a (PhA) was identified as a photosensitizer to exert cytotoxicity on tumor cells. However, the efficacy of this compound on the treatment of prostate cancer remains unknown. The aim of this study was to evaluate the photodynamic effect of PhA on prostate cancer cells. Cellular uptake of PhA and cell viability after photo-activation was studied in LNCaP prostate cancer cells. The corresponding production of reactive oxygen species within cells was determined after photodynamic therapy (PDT). Our results showed that the uptake of PhA into LNCaP cells was in a time-dependent manner and the cytotoxicity of PhA-PDT was photosensitizer dose- and light dose-dependent. The intracellular reactive oxygen species was remarkably induced after PDT treatment, which was responsible for the inhibition effect on prostate cancer cells. This is the first report to evaluate the photodynamic effect of PhA on prostate cancer. Our findings demonstrate that PhA-PDT may be a potentially promising treatment for localized prostate cancer, which can be a therapeutic option after the failures of radiotherapy and hormone therapy.

  4. Satellite cell activation in stretched skeletal muscle and the role of nitric oxide and hepatocyte growth factor.

    PubMed

    Tatsumi, Ryuichi; Liu, Xiaosong; Pulido, Antonio; Morales, Mark; Sakata, Tomowa; Dial, Sharon; Hattori, Akihito; Ikeuchi, Yoshihide; Allen, Ronald E

    2006-06-01

    In the present study, we examined the roles of hepatocyte growth factor (HGF) and nitric oxide (NO) in the activation of satellite cells in passively stretched rat skeletal muscle. A hindlimb suspension model was developed in which the vastus, adductor, and gracilis muscles were subjected to stretch for 1 h. Satellite cells were activated by stretch determined on the basis of 5-bromo-2'-deoxyuridine (BrdU) incorporation in vivo. Extracts from stretched muscles stimulated BrdU incorporation in freshly isolated control rat satellite cells in a concentration-dependent manner. Extracts from stretched muscles contained the active form of HGF, and the satellite cell-activating activity could be neutralized by incubation with anti-HGF antibody. The involvement of NO was investigated by administering nitro-L-arginine methyl ester (L-NAME) or the inactive enantiomer N(G)-nitro-D-arginine methyl ester HCl (D-NAME) before stretch treatment. In vivo activation of satellite cells in stretched muscle was not inhibited by D-NAME but was inhibited by L-NAME. The activity of stretched muscle extract was abolished by L-NAME treatment but could be restored by the addition of HGF, indicating that the extract was not inhibitory. Finally, NO synthase activity in stretched and unstretched muscles was assayed in muscle extracts immediately after 2-h stretch treatment and was found to be elevated in stretched muscle but not in stretched muscle from L-NAME-treated rats. The results of these experiments demonstrate that stretching muscle liberates HGF in a NO-dependent manner, which can activate satellite cells.

  5. CAMTA1, a 1p36 tumor suppressor candidate, inhibits growth and activates differentiation programs in neuroblastoma cells.

    PubMed

    Henrich, Kai-Oliver; Bauer, Tobias; Schulte, Johannes; Ehemann, Volker; Deubzer, Hedwig; Gogolin, Sina; Muth, Daniel; Fischer, Matthias; Benner, Axel; König, Rainer; Schwab, Manfred; Westermann, Frank

    2011-04-15

    A distal portion of human chromosome 1p is often deleted in neuroblastomas and other cancers and it is generally assumed that this region harbors one or more tumor suppressor genes. In neuroblastoma, a 261 kb region at 1p36.3 that encompasses the smallest region of consistent deletion pinpoints the locus for calmodulin binding transcription activator 1 (CAMTA1). Low CAMTA1 expression is an independent predictor of poor outcome in multivariate survival analysis, but its potential functionality in neuroblastoma has not been explored. In this study, we used inducible cell models to analyze the impact of CAMTA1 on neuroblastoma biology. In neuroblastoma cells that expressed little endogenous CAMTA1, its ectopic expression slowed cell proliferation, increasing the relative proportion of cells in G(1)/G(0) phases of the cell cycle, inhibited anchorage-independent colony formation, and suppressed the growth of tumor xenografts. CAMTA1 also induced neurite-like processes and markers of neuronal differentiation in neuroblastoma cells. Further, retinoic acid and other differentiation- inducing stimuli upregulated CAMTA1 expression in neuroblastoma cells. Transciptome analysis revealed 683 genes regulated on CAMTA1 induction and gene ontology analysis identified genes consistent with CAMTA1-induced phenotypes, with a significant enrichment for genes involved in neuronal function and differentiation. Our findings define properties of CAMTA1 in growth suppression and neuronal differentiation that support its assignment as a 1p36 tumor suppressor gene in neuroblastoma.

  6. Gamma-glutamylcyclotransferase promotes the growth of human glioma cells by activating Notch-Akt signaling.

    PubMed

    Shen, Shang-Hang; Yu, Ning; Liu, Xi-Yao; Tan, Guo-Wei; Wang, Zhan-Xiang

    2016-03-18

    Glioma as an aggressive type tumor is rapidly growing and has become one of the leading cause of cancer-related death worldwide. γ-Glutamylcyclotransferase (GGCT) has been shown as a diagnostic marker in various cancers. To reveal whether there is a correlation between GGCT and human glioma, GGCT expression in human glioma tissues and cell lines was first determined. We found that GGCT expression was up-regulated in human glioma tissues and cell lines. Further, we demonstrate that GGCT knockdown inhibits glioma cell T98G and U251 proliferation and colony formation, whereas GGCT overexpression leads to oppose effects. GGCT overexpression promotes the expression of Notch receptors and activates Akt signaling in glioma cells, and Notch-Akt signaling is activated in glioma tissues with high expression of GGCT. Finally, we show that inhibition of Notch-Akt signaling with Notch inhibitor MK-0752 blocks the effects of GGCT on glioma proliferation and colony formation. In conclusion, GGCT plays a critical role in glioma cell proliferation and may be a potential cancer therapeutic target. PMID:26828272

  7. Activated hepatic stellate cells are dependent on self-collagen, cleaved by membrane type 1 matrix metalloproteinase for their growth.

    PubMed

    Birukawa, Naoko Kubo; Murase, Kazuyuki; Sato, Yasushi; Kosaka, Akemi; Yoneda, Akihiro; Nishita, Hiroki; Fujita, Ryosuke; Nishimura, Miyuki; Ninomiya, Takafumi; Kajiwara, Keiko; Miyazaki, Miyono; Nakashima, Yusuke; Ota, Sigenori; Murakami, Yuya; Tanaka, Yasunobu; Minomi, Kenjiro; Tamura, Yasuaki; Niitsu, Yoshiro

    2014-07-18

    Stellate cells are distributed throughout organs, where, upon chronic damage, they become activated and proliferate to secrete collagen, which results in organ fibrosis. An intriguing property of hepatic stellate cells (HSCs) is that they undergo apoptosis when collagen is resolved by stopping tissue damage or by treatment, even though the mechanisms are unknown. Here we disclose the fact that HSCs, normal diploid cells, acquired dependence on collagen for their growth during the transition from quiescent to active states. The intramolecular RGD motifs of collagen were exposed by cleavage with their own membrane type 1 matrix metalloproteinase (MT1-MMP). The following evidence supports this conclusion. When rat activated HSCs (aHSCs) were transduced with siRNA against the collagen-specific chaperone gp46 to inhibit collagen secretion, the cells underwent autophagy followed by apoptosis. Concomitantly, the growth of aHSCs was suppressed, whereas that of quiescent HSCs was not. These in vitro results are compatible with the in vivo observation that apoptosis of aHSCs was induced in cirrhotic livers of rats treated with siRNAgp46. siRNA against MT1-MMP and addition of tissue inhibitor of metalloproteinase 2 (TIMP-2), which mainly inhibits MT1-MMP, also significantly suppressed the growth of aHSCs in vitro. The RGD inhibitors echistatin and GRGDS peptide and siRNA against the RGD receptor αVβ1 resulted in the inhibition of aHSCs growth. Transduction of siRNAs against gp46, αVβ1, and MT1-MMP to aHSCs inhibited the survival signal of PI3K/AKT/IκB. These results could provide novel antifibrosis strategies.

  8. Lipopolysaccharide (LPS)-Induced Biliary Epithelial Cell NRas Activation Requires Epidermal Growth Factor Receptor (EGFR).

    PubMed

    Trussoni, Christy E; Tabibian, James H; Splinter, Patrick L; O'Hara, Steven P

    2015-01-01

    Cholangiocytes (biliary epithelial cells) actively participate in microbe-induced proinflammatory responses in the liver and contribute to inflammatory and infectious cholangiopathies. We previously demonstrated that cholangiocyte TLR-dependent NRas activation contributes to proinflammatory/ proliferative responses. We test the hypothesis that LPS-induced activation of NRas requires the EGFR. SV40-transformed human cholangiocytes (H69 cells), or low passage normal human cholangiocytes (NHC), were treated with LPS in the presence or absence of EGFR or ADAM metallopeptidase domain 17 (TACE) inhibitors. Ras activation assays, quantitative RT-PCR, and proliferation assays were performed in cells cultured with or without inhibitors or an siRNA to Grb2. Immunofluorescence for phospho-EGFR was performed on LPS-treated mouse samples and specimens from patients with primary sclerosing cholangitis, primary biliary cirrhosis, hepatitis C, and normal livers. LPS-treatment induced an association between the TLR/MyD88 and EGFR/Grb2 signaling apparatus, NRas activation, and EGFR phosphorylation. NRas activation was sensitive to EGFR and TACE inhibitors and correlated with EGFR phosphorylation. The TACE inhibitor and Grb2 depletion prevented LPS-induced IL6 expression (p<0.05) and proliferation (p<0.01). Additionally, cholangiocytes from LPS-treated mouse livers and human primary sclerosing cholangitis (PSC) livers exhibited increased phospho-EGFR (p<0.01). Moreover, LPS-induced mouse cholangiocyte proliferation was inhibited by concurrent treatment with the EGFR inhibitor, Erlotinib. Our results suggest that EGFR is essential for LPS-induced, TLR4/MyD88-mediated NRas activation and induction of a robust proinflammatory cholangiocyte response. These findings have implications not only for revealing the signaling potential of TLRs, but also implicate EGFR as an integral component of cholangiocyte TLR-induced proinflammatory processes.

  9. Effective growth-suppressive activity of maternal embryonic leucine-zipper kinase (MELK) inhibitor against small cell lung cancer

    PubMed Central

    Inoue, Hiroyuki; Kato, Taigo; Olugbile, Sope; Tamura, Kenji; Chung, Suyoun; Miyamoto, Takashi; Matsuo, Yo; Salgia, Ravi; Nakamura, Yusuke; Park, Jae-Hyun

    2016-01-01

    Maternal embryonic leucine zipper kinase (MELK), that plays a critical role in maintenance of cancer stem cells (CSCs), is predominantly expressed in various types of human cancer including small cell lung cancer (SCLC). SCLC usually acquires resistance to anti-cancer drugs and portends dismal prognosis. We have delineated roles of MELK in development/progression of SCLC and examined anti-tumor efficacy of OTS167, a highly potent MELK inhibitor, against SCLC. MELK expression was highly upregulated in both SCLC cell lines and primary tumors. siRNA-mediated MELK knockdown induced significant growth inhibition in SCLC cell lines. Concordantly, treatment with OTS167 exhibited strong cytotoxicity against eleven SCLC cell lines with IC50 of < 10 nM. As similar to siRNA knockdown, OTS167 treatment induced cytokinetic defects with intercellular bridges, and in some cell lines we observed formation of neuronal protrusions accompanied with increase of a neuronal differentiation marker (CD56), indicating that the compound induced differentiation of cancer cells to neuron-like cells. Furthermore, the MELK inhibition decreased its downstream FOXM1 activity and Akt expression in SCLC cells, and led to apoptotic cell death. OTS167 appeared to be more effective to CSCs as measured by the sphere formation assay, thus MELK inhibition might become a promising treatment modality for SCLC. PMID:26871945

  10. Vascular smooth muscle cells from injured rat aortas display elevated matrix production associated with transforming growth factor-beta activity.

    PubMed Central

    Rasmussen, L. M.; Wolf, Y. G.; Ruoslahti, E.

    1995-01-01

    The arterial response to injury is characterized by a short period of increased proliferation and migration of vascular smooth muscle cells, followed by an extended period of extracellular matrix accumulation in the intima. Transforming growth factor-beta (TGF-beta) has been implicated as a causative factor in the formation of extracellular matrix in this process, which leads to progressive thickening of the intima, known as intimal hyperplasia. In vitro analysis of vascular smooth muscle cells harvested from normal rat aortas and from aortas injured 14 days earlier showed that both types of cells attached equally well to culture dishes but that the initial spreading of the cells was increased in cells derived from injured vessels. Cells from the injured arteries produced more fibronectin and proteoglycans into the culture medium than the cells from normal arteries and contained more TGF-beta 1 mRNA. TGF-beta 1 increased proteoglycan synthesis by normal smooth muscle cells, and the presence of a neutralizing anti-TGF-beta 1 antibody reduced proteoglycan synthesis by the cells from injured arteries in culture. Fibronectin synthesis was not altered by these treatments. These results indicate that the accumulation of extracellular matrix components in neointimal lesions is at least partially caused by autocrine TGF-beta activity in vascular smooth muscle cells. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:7573349

  11. Effective growth-suppressive activity of maternal embryonic leucine-zipper kinase (MELK) inhibitor against small cell lung cancer.

    PubMed

    Inoue, Hiroyuki; Kato, Taigo; Olugbile, Sope; Tamura, Kenji; Chung, Suyoun; Miyamoto, Takashi; Matsuo, Yo; Salgia, Ravi; Nakamura, Yusuke; Park, Jae-Hyun

    2016-03-22

    Maternal embryonic leucine zipper kinase (MELK), that plays a critical role in maintenance of cancer stem cells (CSCs), is predominantly expressed in various types of human cancer including small cell lung cancer (SCLC). SCLC usually acquires resistance to anti-cancer drugs and portends dismal prognosis. We have delineated roles of MELK in development/progression of SCLC and examined anti-tumor efficacy of OTS167, a highly potent MELK inhibitor, against SCLC. MELK expression was highly upregulated in both SCLC cell lines and primary tumors. siRNA-mediated MELK knockdown induced significant growth inhibition in SCLC cell lines. Concordantly, treatment with OTS167 exhibited strong cytotoxicity against eleven SCLC cell lines with IC50 of < 10 nM. As similar to siRNA knockdown, OTS167 treatment induced cytokinetic defects with intercellular bridges, and in some cell lines we observed formation of neuronal protrusions accompanied with increase of a neuronal differentiation marker (CD56), indicating that the compound induced differentiation of cancer cells to neuron-like cells. Furthermore, the MELK inhibition decreased its downstream FOXM1 activity and Akt expression in SCLC cells, and led to apoptotic cell death. OTS167 appeared to be more effective to CSCs as measured by the sphere formation assay, thus MELK inhibition might become a promising treatment modality for SCLC. PMID:26871945

  12. Platelet-activating factor induces ovine fetal pulmonary venous smooth muscle cell proliferation: role of epidermal growth factor receptor transactivation.

    PubMed

    Zhou, Weilin; Ibe, Basil O; Raj, J Usha

    2007-06-01

    We have previously reported that platelet-activating factor (PAF) is present in very high levels in the ovine fetal lung and circulation and that PAF serves as an important physiological vasoconstrictor of the pulmonary circulation in utero. However, it is not known whether PAF stimulates pulmonary vascular smooth muscle cell (SMC) proliferation. In this study, we used ovine fetal pulmonary venous SMCs as our model system to study the effects and mechanisms of action of PAF on SMC proliferation. We found that PAF induced SMC proliferation in a dose-dependent manner. PAF also stimulated activation of both ERK and p38 but not c-Jun NH(2) terminal kinase (JNK) mitogen-activated protein (MAP) kinase pathways. PAF (10 nM) induced phosphorylation of epidermal growth factor receptor (EGFR). Specific inhibition of EGFR by AG-1478 and by the expression of a dominant-negative EGFR mutant in SMCs attenuated PAF-stimulated cell proliferation. Inhibition of heparin-binding EGF-like growth factor (HB-EGF) release by CRM-197 and inhibition of matrix metalloproteinases (MMP) by GM-6001 abolished PAF-induced MAP kinase activation and cell proliferation. Increased alkaline phosphatase (AP) activity after PAF treatment in AP-HB-EGF fusion construct-transfected SMCs indicated that PAF induced the release of HB-EGF within 1 min. Gelatin zymography data showed that PAF stimulated MMP-2 activity and MMP-9 activity within 1 min. These results suggest that PAF promotes pulmonary vascular SMC proliferation via transactivation of EGFR through MMP activation and HB-EGF, resulting in p38 and ERK activation and that EGFR transactivation is essential for the mitogenic effect of PAF in pulmonary venous SMC. PMID:17322418

  13. Xanthohumol inhibits STAT3 activation pathway leading to growth suppression and apoptosis induction in human cholangiocarcinoma cells.

    PubMed

    Dokduang, Hasaya; Yongvanit, Puangrat; Namwat, Nisana; Pairojkul, Chawalit; Sangkhamanon, Sakkarn; Yageta, Mika Sakurai; Murakami, Yoshinori; Loilome, Watcharin

    2016-04-01

    STAT3 plays a significant role in the development of cholangiocarcinoma (CCA) associated with the liver fluke (Opisthorchis viverrini; Ov). Xanthohumol (XN), a prenylated flavonoid extracted from hops, has known anticancer activity and could potentially target STAT3. The present study determined the effect of XN on STAT3, as well as ascertained its usefulness against CCA. The CCA cell proliferation at 20 µM and 50 µM of XN was shown to inhibited, while 20 µM partially inhibited IL-6-induced STAT3 activation. At 50 µM, the inhibition was complete. The reduction in STAT3 activity at 20 and 50 µM was associated with a significant reduction of CCA cell growth and apoptosis. We also found that the administration of 50 µM XN orally in drinking water to nude mice inoculated with CCA led to a reduction in tumor growth in comparison with controls. In addition, apoptosis of cancer cells increased although there was no visible toxicity. The present study shows that XN can inhibit STAT3 activation both in vivo and in vitro due to suppression of the Akt-NFκB signaling pathway. XN should be considered as a possible therapeutic agent against CCA. PMID:26794001

  14. Purification and NH2-terminal amino acid sequence of a T-cell-derived lymphokine with growth factor activity for B-cell hybridomas.

    PubMed Central

    Van Snick, J; Cayphas, S; Vink, A; Uyttenhove, C; Coulie, P G; Rubira, M R; Simpson, R J

    1986-01-01

    A T-cell-derived lymphokine was identified by its ability to support the growth of a subset of B-cell hybridomas. Hybrids that failed to survive in the absence of this molecule represented a major proportion of rat-mouse hybridomas but were very rare among mouse-mouse B-cell hybrids. Stable factor-dependent B-cell hybridomas were used to monitor the purification of the growth factor from the supernatant of a clonotypically stimulated mouse helper T-cell clone. Sequential fractionation using gel filtration, anion-exchange chromatography, and reversed-phase HPLC resolved the factor from other B-cell growth factors and yielded a single-chain protein characterized by a major charge (pI = 5-7) and molecular mass (22- to 29-kDa) heterogeneity, probably due to variations in glycosylation. The NH2-terminal amino acid sequence of this protein, which is active on B-cell hybridomas in the 0.1 pM range, showed no significant homology with that of known lymphokines. Because the purified factor also supported the growth and survival in vitro of murine plasmacytomas (to be published elsewhere), it was provisionally designated interleukin-HP1 (where H stands for hybridoma and P stands for plasmacytoma). Images PMID:2948184

  15. The effect of anisotropic collagen-GAG scaffolds and growth factor supplementation on tendon cell recruitment, alignment, and metabolic activity

    PubMed Central

    Caliari, Steven R.; Harley, Brendan A.C.

    2014-01-01

    Current surgical and tissue engineering approaches for treating tendon injuries have shown limited success, suggesting the need for new biomaterial strategies. Here we describe the development of an anisotropic collagen-glycosaminoglycan (CG) scaffold and use of growth factor supplementation strategies to create a 3D platform for tendon tissue engineering. We fabricated cylindrical CG scaffolds with aligned tracks of ellipsoidal pores that mimic the native physiology of tendon by incorporating a directional solidification step into a conventional lyophilization strategy. By modifying the freezing temperature, we created a homologous series of aligned CG scaffolds with constant relative density and degree of anisotropy but a range of pore sizes (55–243 μm). Equine tendon cells showed greater levels of attachment, metabolic activity, and alignment as well as less cell-mediated scaffold contraction, when cultured in anisotropic scaffolds compared to an isotropic CG scaffold control. The anisotropic CG scaffolds also provided critical contact guidance cues for cell alignment. While tendon cells were randomly oriented in the isotropic control scaffold and the transverse (unaligned) plane of the anisotropic scaffolds, significant cell alignment was observed in the direction of the contact guidance cues in the longitudinal plane of the anisotropic scaffolds. Scaffold pore size was found to significantly influence tendon cell viability, proliferation, penetration into the scaffold, and metabolic activity in a manner predicted by cellular solids arguments. Finally, the addition of the growth factors PDGF-BB and IGF-1 to aligned CG scaffolds was found to enhance tendon cell motility, viability, and metabolic activity in dose-dependent manners. This work suggests a composite strategy for developing bioactive, 3D material systems for tendon tissue engineering. PMID:21550653

  16. Insulin-like growth factor I enhances proenkephalin synthesis and dopamine. beta. -hydroxylase activity in adrenal chromaffin cells

    SciTech Connect

    Wilson, S.P. )

    1991-01-01

    Insulin-like growth factor I (IGF-I) increased both the contents of proenkephalin derived enkephalin-containing peptides and the activity of dopamine {beta}-hydroxylase in bovine adrenal chromaffin cells. These increases in dopamine {beta}-hydroxylase and enkephalin-containing peptides continued for at least 8 days. The half-maximal IGF-I concentration for these effects was {approximately} 1 nM, with maximal effects observed at 10-30 nM. In contrast, insulin was 1,000-fold less potent. Pretreatment of chromaffin cells with IGF-I increased the rate of ({sup 35}S)proenkephalin synthesis 4-fold compared to untreated cells. Total protein synthesis increased only 1.5-fold under these conditions. These results suggest that IGF-I may be a normal regulator of chromaffin cell function.

  17. Histone Deacetylase Inhibitors Activate Tristetraprolin Expression through Induction of Early Growth Response Protein 1 (EGR1) in Colorectal Cancer Cells

    PubMed Central

    Sobolewski, Cyril; Sanduja, Sandhya; Blanco, Fernando F.; Hu, Liangyan; Dixon, Dan A.

    2015-01-01

    The RNA-binding protein tristetraprolin (TTP) promotes rapid decay of mRNAs bearing 3' UTR AU-rich elements (ARE). In many cancer types, loss of TTP expression is observed allowing for stabilization of ARE-mRNAs and their pathologic overexpression. Here we demonstrate that histone deacetylase (HDAC) inhibitors (Trichostatin A, SAHA and sodium butyrate) promote TTP expression in colorectal cancer cells (HCA-7, HCT-116, Moser and SW480 cells) and cervix carcinoma cells (HeLa). We found that HDAC inhibitors-induced TTP expression, promote the decay of COX-2 mRNA, and inhibit cancer cell proliferation. HDAC inhibitors were found to promote TTP transcription through activation of the transcription factor Early Growth Response protein 1 (EGR1). Altogether, our findings indicate that loss of TTP in tumors occurs through silencing of EGR1 and suggests a therapeutic approach to rescue TTP expression in colorectal cancer. PMID:26343742

  18. Retinoic acid induced growth arrest of human breast carcinoma cells requires protein kinase C alpha expression and activity.

    PubMed

    Cho, Y; Tighe, A P; Talmage, D A

    1997-09-01

    Retinoic acid inhibits proliferation of hormone-dependent, but not hormone-independent breast cancer cells. Retinoic acid-induced changes in cellular proliferation and differentiation are associated with disturbances in growth factor signaling and frequently with changes in protein kinase C expression. PKC delta, epsilon, and zeta are expressed in both hormone-dependent (T-47D) and hormone-independent (MDA-MB-231) cell lines. Retinoic acid arrested T-47D proliferation, induced PKC alpha expression and concomitantly repressed PKC zeta expression. The changes in PKC alpha and PKC zeta reflect retinoic acid-induced changes in mRNA. In contrast, retinoic acid had no effect on growth, or PKC expression in MDA-MB-231 cells. Growth arrest and the induction of PKC alpha, but not the reduction in PKC zeta, resulted from selective activation of RAR alpha. In total, these results support an important role for PKC alpha in mediating the anti-proliferative action of retinoids on human breast carcinoma cells.

  19. Anti-histone acetyltransferase activity from allspice extracts inhibits androgen receptor-dependent prostate cancer cell growth.

    PubMed

    Lee, Yoo-Hyun; Hong, Soon Won; Jun, Woojin; Cho, Hong Yon; Kim, Han-Cheon; Jung, Myung Gu; Wong, Jiemin; Kim, Ha-Il; Kim, Chang-Hoon; Yoon, Ho-Geun

    2007-11-01

    Histone acetylation depends on the activity of two enzyme families, histone acetyltransferase (HAT) and deacetylase (HDAC). In this study, we screened various plant extracts to find potent HAT inhibitors. Hot water extracts of allspice inhibited HAT activity, especially p300 and CBP (40% at 100 microg/ml). The mRNA levels of two androgen receptor (AR) regulated genes, PSA and TSC22, decreased with allspice treatment (100 microg/ml). Importantly, in IP western analysis, AR acetylation was dramatically decreased by allspice treatment.Furthermore, chromatin immunoprecipitation indicated that the acetylation of histone H3 in the PSA and B2M promoter regions was also repressed. Finally, allspice treatment reduced the growth of human prostate cancer cells, LNCaP (50% growth inhibition at 200 microg/ml). Taken together, our data indicate that the potent HAT inhibitory activity of allspice reduced AR and histone acetylation and led to decreased transcription of AR target genes, resulting in inhibition of prostate cancer cell growth.

  20. Gastrodin stimulates anticancer immune response and represses transplanted H22 hepatic ascitic tumor cell growth: Involvement of NF-κB signaling activation in CD4 + T cells

    SciTech Connect

    Shu, Guangwen; Yang, Tianming; Wang, Chaoyuan; Su, Hanwen; Xiang, Meixian

    2013-06-15

    Gastrodia elata Blume (G. elata) is a famous restorative food in East Asia. It can be used as an auxiliary reagent in hepatocellular carcinoma (HCC) treatment. Previous studies unveiled that G. elata exhibited immunomodulatory activities. To explore the active ingredients contributing to its immunomodulatory activities, gastrodin, vanillin, and parishin B were purified from G. elata and their anti-HCC effects were assessed in vivo. Among these compounds, only gastrodin was capable of repressing transplanted H22 ascitic hepatic tumor cell growth in vivo with low toxicity. Further investigations were designed to explore the effects of gastrodin on the immune system of tumor-bearing mice and potential molecular mechanisms underlying these effects. Our data showed that gastrodin ameliorated tumor cell transplantation-induced activation of endogenous pro-apoptotic pathway in CD4 + T cells and abnormalities in serum cytokine profiles in host animals. These events enhanced cytotoxic activities of natural killer and CD8 + T cells against H22 hepatic cancer cells. Gastrodin administration specifically upregulated mRNA levels of several nuclear factor κB (NF-κB) responsive genes in CD4 + T cells but not in CD8 + T cells. Chromatin immunoprecipitation assay showed that gastrodin increased the association of NF-κB p65 subunit to the promoter regions of IL-2 and Bcl-2 encoding genes in CD4 + T cells. Our investigations demonstrated that gastrodin is the main active ingredient contributing to the anticancer immunomodulatory properties of G. elata. Promoting NF-κB-mediated gene transcription in CD4 + T cells is implicated in its immunomodulatory activity. - Highlights: • Gastrodin stimulates anticancer immune response. • Gastrodin represses tumor transplantation-induced CD4 + T cell apoptosis. • Gastrodin activates NF-κB activity in CD4 + T cells.

  1. Macrophages inhibit human osteosarcoma cell growth after activation with the bacterial cell wall derivative liposomal muramyl tripeptide in combination with interferon-γ

    PubMed Central

    2014-01-01

    Background In osteosarcoma, the presence of tumor-infiltrating macrophages positively correlates with patient survival in contrast to the negative effect of tumor-associated macrophages in patients with other tumors. Liposome-encapsulated muramyl tripeptide (L-MTP-PE) has been introduced in the treatment of osteosarcoma patients, which may enhance the potential anti-tumor activity of macrophages. Direct anti-tumor activity of human macrophages against human osteosarcoma cells has not been described so far. Hence, we assessed osteosarcoma cell growth after co-culture with human macrophages. Methods Monocyte-derived M1-like and M2-like macrophages were polarized with LPS + IFN-γ, L-MTP-PE +/− IFN-γ or IL-10 and incubated with osteosarcoma cells. Two days later, viable tumor cell numbers were analyzed. Antibody-dependent effects were investigated using the therapeutic anti-EGFR antibody cetuximab. Results M1-like macrophages inhibited osteosarcoma cell growth when activated with LPS + IFN-γ. Likewise, stimulation of M1-like macrophages with liposomal muramyl tripeptide (L-MTP-PE) inhibited tumor growth, but only when combined with IFN-γ. Addition of the tumor-reactive anti-EGFR antibody cetuximab did not further improve the anti-tumor activity of activated M1-like macrophages. The inhibition was mediated by supernatants of activated M1-like macrophages, containing TNF-α and IL-1β. However, specific blockage of these cytokines, nitric oxide or reactive oxygen species did not inhibit the anti-tumor effect, suggesting the involvement of other soluble factors released upon macrophage activation. While LPS + IFN-γ–activated M2-like macrophages had low anti-tumor activity, IL-10–polarized M2-like macrophages were able to reduce osteosarcoma cell growth in the presence of the anti-EGFR cetuximab involving antibody-dependent tumor cell phagocytosis. Conclusion This study demonstrates that human macrophages can be induced to exert direct anti

  2. Gefitinib in the treatment of nonsmall cell lung cancer with activating epidermal growth factor receptor mutation

    PubMed Central

    Nurwidya, Fariz; Takahashi, Fumiyuki; Takahashi, Kazuhisa

    2016-01-01

    Lung cancer is still the main cause of cancer-related deaths worldwide, with most patients present with advanced disease and poor long-term prognosis. The aim of lung cancer treatment is to slow down the progression of the disease, to relieve the patients from the lung cancer symptoms and whenever possible, to increase the overall survival. The discovery of small molecule targeting tyrosine kinase of epidermal growth factor receptor opens a new way in the management of advanced nonsmall cell lung cancer (NSCLC). This review will discuss several Phase II and III trials evaluated the clinical efficacy of gefitinib as monotherapy in pretreated patients with advanced NSCLC, as well as both monotherapy and combined with chemotherapy in chemotherapy-naive patients. PMID:27433059

  3. Synthetic Polymers Active against Clostridium difficile Vegetative Cell Growth and Spore Outgrowth

    PubMed Central

    2015-01-01

    Nylon-3 polymers (poly-β-peptides) have been investigated as synthetic mimics of host-defense peptides in recent years. These polymers are attractive because they are much easier to synthesize than are the peptides themselves, and the polymers resist proteolysis. Here we describe in vitro analysis of selected nylon-3 copolymers against Clostridium difficile, an important nosocomial pathogen that causes highly infectious diarrheal disease. The best polymers match the human host-defense peptide LL-37 in blocking vegetative cell growth and inhibiting spore outgrowth. The polymers and LL-37 were effective against both the epidemic 027 ribotype and the 012 ribotype. In contrast, neither vancomycin nor nisin inhibited outgrowth for the 012 ribotype. The best polymer was less hemolytic than LL-37. Overall, these findings suggest that nylon-3 copolymers may be useful for combatting C. difficle. PMID:25279431

  4. Synthetic polymers active against Clostridium difficile vegetative cell growth and spore outgrowth.

    PubMed

    Liu, Runhui; Suárez, Jose M; Weisblum, Bernard; Gellman, Samuel H; McBride, Shonna M

    2014-10-15

    Nylon-3 polymers (poly-β-peptides) have been investigated as synthetic mimics of host-defense peptides in recent years. These polymers are attractive because they are much easier to synthesize than are the peptides themselves, and the polymers resist proteolysis. Here we describe in vitro analysis of selected nylon-3 copolymers against Clostridium difficile, an important nosocomial pathogen that causes highly infectious diarrheal disease. The best polymers match the human host-defense peptide LL-37 in blocking vegetative cell growth and inhibiting spore outgrowth. The polymers and LL-37 were effective against both the epidemic 027 ribotype and the 012 ribotype. In contrast, neither vancomycin nor nisin inhibited outgrowth for the 012 ribotype. The best polymer was less hemolytic than LL-37. Overall, these findings suggest that nylon-3 copolymers may be useful for combatting C. difficle. PMID:25279431

  5. Transbilayer phospholipid flipping regulates Cdc42p signaling during polarized cell growth via Rga GTPase-activating proteins.

    PubMed

    Saito, Koji; Fujimura-Kamada, Konomi; Hanamatsu, Hisatoshi; Kato, Utako; Umeda, Masato; Kozminski, Keith G; Tanaka, Kazuma

    2007-11-01

    An important problem in polarized morphogenesis is how polarized transport of membrane vesicles is spatiotemporally regulated. Here, we report that a local change in the transbilayer phospholipid distribution of the plasma membrane regulates the axis of polarized growth. Type 4 P-type ATPases Lem3p-Dnf1p and -Dnf2p are putative heteromeric phospholipid flippases in budding yeast that are localized to polarized sites on the plasma membrane. The lem3Delta mutant exhibits prolonged apical growth due to a defect in the switch to isotropic bud growth. In lem3Delta cells, the small GTPase Cdc42p remains polarized at the bud tip where phosphatidylethanolamine remains exposed on the outer leaflet. Intriguingly, phosphatidylethanolamine and phosphatidylserine stimulate GTPase-activating protein (GAP) activity of Rga1p and Rga2p toward Cdc42p, whereas PI(4,5)P(2) inhibits it. We propose that a redistribution of phospholipids to the inner leaflet of the plasma membrane triggers the dispersal of Cdc42p from the apical growth site, through activation of GAPs.

  6. An activated form of ADAM10 is tumor selective and regulates cancer stem-like cells and tumor growth.

    PubMed

    Atapattu, Lakmali; Saha, Nayanendu; Chheang, Chanly; Eissman, Moritz F; Xu, Kai; Vail, Mary E; Hii, Linda; Llerena, Carmen; Liu, Zhanqi; Horvay, Katja; Abud, Helen E; Kusebauch, Ulrike; Moritz, Robert L; Ding, Bi-Sen; Cao, Zhongwei; Rafii, Shahin; Ernst, Matthias; Scott, Andrew M; Nikolov, Dimitar B; Lackmann, Martin; Janes, Peter W

    2016-08-22

    The transmembrane metalloprotease ADAM10 sheds a range of cell surface proteins, including ligands and receptors of the Notch, Eph, and erbB families, thereby activating signaling pathways critical for tumor initiation and maintenance. ADAM10 is thus a promising therapeutic target. Although widely expressed, its activity is normally tightly regulated. We now report prevalence of an active form of ADAM10 in tumors compared with normal tissues, in mouse models and humans, identified by our conformation-specific antibody mAb 8C7. Structure/function experiments indicate mAb 8C7 binds an active conformation dependent on disulfide isomerization and oxidative conditions, common in tumors. Moreover, this active ADAM10 form marks cancer stem-like cells with active Notch signaling, known to mediate chemoresistance. Importantly, specific targeting of active ADAM10 with 8C7 inhibits Notch activity and tumor growth in mouse models, particularly regrowth after chemotherapy. Our results indicate targeted inhibition of active ADAM10 as a potential therapy for ADAM10-dependent tumor development and drug resistance. PMID:27503072

  7. Gateway synthesis of daphnane congeners and their protein kinase C affinities and cell-growth activities

    NASA Astrophysics Data System (ADS)

    Wender, Paul A.; Buschmann, Nicole; Cardin, Nathan B.; Jones, Lisa R.; Kan, Cindy; Kee, Jung-Min; Kowalski, John A.; Longcore, Kate E.

    2011-08-01

    The daphnane diterpene orthoesters constitute a structurally fascinating family of natural products that exhibit a remarkable range of potent biological activities. Although partial activity information is available for some natural daphnanes, little information exists for non-natural congeners or on how changes in structure affect mode of action, function, potency or selectivity. A gateway strategy designed to provide general synthetic access to natural and non-natural daphnanes is described and utilized in the synthesis of two novel members of this class. In this study, a commercially available tartrate derivative was elaborated through a key late-stage diversification intermediate into B-ring yuanhuapin analogues to initiate exploration of the structure-function relationships of this class. Protein kinase C was identified as a cellular target for these agents, and their activity against human lung and leukaemia cell lines was evaluated. The natural product and a novel non-natural analogue exhibited significant potency, but the epimeric epoxide was essentially inactive.

  8. Voltage-gated Sodium Channel Activity Promotes Cysteine Cathepsin-dependent Invasiveness and Colony Growth of Human Cancer Cells.

    PubMed

    Gillet, Ludovic; Roger, Sébastien; Besson, Pierre; Lecaille, Fabien; Gore, Jacques; Bougnoux, Philippe; Lalmanach, Gilles; Le Guennec, Jean-Yves

    2009-03-27

    Voltage-gated sodium channels (Na(V)) are functionally expressed in highly metastatic cancer cells derived from nonexcitable epithelial tissues (breast, prostate, lung, and cervix). MDA-MB-231 breast cancer cells express functional sodium channel complexes, consisting of Na(V)1.5 and associated auxiliary beta-subunits, that are responsible for a sustained inward sodium current at the membrane potential. Although these channels do not regulate cellular multiplication or migration, their inhibition by the specific blocker tetrodotoxin impairs both the extracellular gelatinolytic activity (monitored with DQ-gelatin) and cell invasiveness leading to the attenuation of colony growth and cell spreading in three-dimensional Matrigel-composed matrices. MDA-MB-231 cells express functional cysteine cathepsins, which we found play a predominant role ( approximately 65%) in cancer invasiveness. Matrigel invasion is significantly decreased in the presence of specific inhibitors of cathepsins B and S (CA-074 and Z-FL-COCHO, respectively), and co-application of tetrodotoxin does not further reduce cell invasion. This suggests that cathepsins B and S are involved in invasiveness and that their proteolytic activity partly depends on Na(V) function. Inhibiting Na(V) has no consequence for cathepsins at the transcription, translation, and secretion levels. However, Na(V) activity leads to an intracellular alkalinization and a perimembrane acidification favorable for the extracellular activity of these acidic proteases. We propose that Na(v) enhance the invasiveness of cancer cells by favoring the pH-dependent activity of cysteine cathepsins. This general mechanism could lead to the identification of new targets allowing the therapeutic prevention of metastases. PMID:19176528

  9. Photoactivation of ROS Production In Situ Transiently Activates Cell Proliferation in Mouse Skin and in the Hair Follicle Stem Cell Niche Promoting Hair Growth and Wound Healing.

    PubMed

    Carrasco, Elisa; Calvo, María I; Blázquez-Castro, Alfonso; Vecchio, Daniela; Zamarrón, Alicia; de Almeida, Irma Joyce Dias; Stockert, Juan C; Hamblin, Michael R; Juarranz, Ángeles; Espada, Jesús

    2015-11-01

    The role of reactive oxygen species (ROS) in the regulation of hair follicle (HF) cycle and skin homeostasis is poorly characterized. ROS have been traditionally linked to human disease and aging, but recent findings suggest that they can also have beneficial physiological functions in vivo in mammals. To test this hypothesis, we transiently switched on in situ ROS production in mouse skin. This process activated cell proliferation in the tissue and, interestingly, in the bulge region of the HF, a major reservoir of epidermal stem cells, promoting hair growth, as well as stimulating tissue repair after severe burn injury. We further show that these effects were associated with a transient Src kinase phosphorylation at Tyr416 and with a strong transcriptional activation of the prolactin family 2 subfamily c of growth factors. Our results point to potentially relevant modes of skin homeostasis regulation and demonstrate that a local and transient ROS production can regulate stem cell and tissue function in the whole organism.

  10. Simvastatin impairs growth hormone-activated signal transducer and activator of transcription (STAT) signaling pathway in UMR-106 osteosarcoma cells.

    PubMed

    Sandoval-Usme, María Claudia; Umaña-Pérez, Adriana; Guerra, Borja; Hernández-Perera, Octavio; Hernández-Perera, Orlando; García-Castellano, José Manuel; Fernández-Pérez, Leandro; Sánchez-Gómez, Myriam

    2014-01-01

    Recent studies have demonstrated that statins reduce cell viability and induce apoptosis in various types of cancer cells. The molecular mechanisms underlying these effects are poorly understood. The JAK/STAT pathway plays an important role in the regulation of proliferation and apoptosis in many tissues, and its deregulation is believed to be involved in tumorigenesis and cancer. The physiological activation of STAT proteins by GH is rapid but transient in nature and its inactivation is regulated mainly by the expression of SOCS proteins. UMR-106 osteosarcoma cells express a GH-responsive JAK2/STAT5 signaling pathway, providing an experimental model to study the influence of statins on this system. In this study we investigated the actions of simvastatin on cell proliferation, migration, and invasion on UMR-106 cells and examined whether alterations in GH-stimulated JAK/STAT/SOCS signaling may be observed. Results showed that treatment of osteosarcoma cells with simvastatin at 3 to 10 µM doses decreases cell proliferation, migration, and invasion in a time- and dose-dependent manner. At the molecular level, although the mechanisms used by simvastatin are not entirely clear, the effect of the statin on the reduction of JAK2 and STAT5 phosphorylation levels may partially explain the decrease in the GH-stimulated STAT5 transcriptional activity. This effect correlated with a time- and dose-dependent increase of SOCS-3 expression levels in cells treated with simvastatin, a regulatory role that has not been previously described. Furthermore, the finding that simvastatin is capable of inducing SOCS-3 and CIS genes expression shows the potential of the JAK/STAT pathway as a therapeutic target, reinforcing the efficacy of simvastatin as chemotherapeutic drug for the treatment of osteosarcoma.

  11. Effect of Okinawa Propolis on PAK1 Activity, Caenorhabditis elegans Longevity, Melanogenesis, and Growth of Cancer Cells.

    PubMed

    Taira, Nozomi; Nguyen, Binh Cao Quan; Be Tu, Pham Thi; Tawata, Shinkichi

    2016-07-13

    Propolis from different areas has been reported to inhibit oncogenic/aging kinase PAK1, which is responsible for a variety of conditions, including cancer, longevity, and melanogenesis. Here, a crude extract of Okinawa propolis (OP) was tested against PAK1 activity, Caenorhabditis elegans (C. elegans) longevity, melanogenesis, and growth of cancer cells. We found that OP blocks PAK1 and exhibits anticancer activity in the A549 cell (human lung cancer cell) line with IC50 values of 6 μg/mL and 12 μg/mL, respectively. Most interestingly, OP (1 μg/mL) significantly reduces reproduction and prolongs the lifespan of C. elegans by activating the HSP-16.2 gene, as shown in the PAK1-deficient strain. Furthermore, OP inhibits melanogenesis in a melanoma cell line (B16F10) by downregulating intracellular tyrosinase activity with an IC50 of 30 μg/mL. Our results suggest that OP demonstrated a life span extending effect, C. elegans, anticancer, and antimelanogenic effects via PAK1 inactivation; therefore, this can be a potent natural medicinal supplement against PAK1-dependent diseases.

  12. Helicobacter pylori culture supernatant interferes with epidermal growth factor-activated signal transduction in human gastric KATO III cells.

    PubMed Central

    Pai, R.; Wyle, F. A.; Cover, T. L.; Itani, R. M.; Domek, M. J.; Tarnawski, A. S.

    1998-01-01

    The mechanisms by which Helicobacter pylori infection leads to gastroduodenal ulceration remain poorly understood. Previous studies have shown that H. pylori vacuolating cytotoxin (VacA) inhibits proliferation of gastric epithelial cells, which suggests that H pylori may interfere with gastric mucosal repair mechanisms. In this study, we investigated the effects of H. pylori broth culture supernatants on epidermal growth factor (EGF)-mediated signal transduction pathways in a gastric carcinoma cell line (KATO III). Exposure of these cells to EGF resulted in increased expression and phosphorylation of the EGF receptor (EGF-R), increased ERK2 activity and phosphorylation, and increased c-fos protein levels. Preincubation of cells with broth culture supernatant from VacA (+) H. pylori strain 60190 inhibited the capacity of EGF to induce each of these effects. In contrast, preincubation of cells with broth culture supernatant from an isogenic VacA-mutant strain (H. pylori 60190-v1) failed to inhibit the effects of EGF. These results suggest that the H. pylori vacuolating cytotoxin interferes with EGF-activated signal transduction pathways, which are known to be essential for cell proliferation and ulcer healing. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:9626065

  13. Helicobacter pylori culture supernatant interferes with epidermal growth factor-activated signal transduction in human gastric KATO III cells.

    PubMed

    Pai, R; Wyle, F A; Cover, T L; Itani, R M; Domek, M J; Tarnawski, A S

    1998-06-01

    The mechanisms by which Helicobacter pylori infection leads to gastroduodenal ulceration remain poorly understood. Previous studies have shown that H. pylori vacuolating cytotoxin (VacA) inhibits proliferation of gastric epithelial cells, which suggests that H pylori may interfere with gastric mucosal repair mechanisms. In this study, we investigated the effects of H. pylori broth culture supernatants on epidermal growth factor (EGF)-mediated signal transduction pathways in a gastric carcinoma cell line (KATO III). Exposure of these cells to EGF resulted in increased expression and phosphorylation of the EGF receptor (EGF-R), increased ERK2 activity and phosphorylation, and increased c-fos protein levels. Preincubation of cells with broth culture supernatant from VacA (+) H. pylori strain 60190 inhibited the capacity of EGF to induce each of these effects. In contrast, preincubation of cells with broth culture supernatant from an isogenic VacA-mutant strain (H. pylori 60190-v1) failed to inhibit the effects of EGF. These results suggest that the H. pylori vacuolating cytotoxin interferes with EGF-activated signal transduction pathways, which are known to be essential for cell proliferation and ulcer healing. PMID:9626065

  14. Neferine, an alkaloid from lotus seed embryo, inhibits human lung cancer cell growth by MAPK activation and cell cycle arrest.

    PubMed

    Poornima, Paramasivan; Weng, Ching Feng; Padma, Viswanadha Vijaya

    2014-01-01

    Neferine is the major bisbenzylisoquinoline alkaloid isolated from the seed embryo of a traditional medicinal plant Nelumbo nucifera (Lotus). Epidemiological studies have revealed the therapeutic potential of lotus seed embryo. Although several mechanisms have been proposed, a clear anticancer action mechanism of neferine on lung cancer cells is still not known. Lung cancer is the most common cause of cancer death in the world, and the patients with advanced stage of nonsmall lung cancer require adjunct chemotherapy after surgical resection for the eradication of cancer cells. In this study, the effects of neferine were evaluated and characterized in A549 cells. Neferine induced apoptosis in a dose-dependent manner with the hypergeneration of reactive oxygen species, activation of MAPKs, lipid peroxidation, depletion of cellular antioxidant pool, loss of mitochondrial membrane potential, and intracellular calcium accumulation. Furthermore, neferine treatment leads to the inhibition of nuclear factor kappaB and Bcl2, upregulation of Bax and Bad, release of cytochrome C, activation of caspase cascade, and DNA fragmentation. In addition, neferine could induce p53 and its effector protein p21 and downregulation of cell cycle regulatory protein cyclin D1 thereby inducing G1 cell cycle arrest. These results suggest a novel function of neferine as an apoptosis inducer in lung cancer cells.

  15. Matriptase is required for the active form of hepatocyte growth factor induced Met, focal adhesion kinase and protein kinase B activation on neural stem/progenitor cell motility.

    PubMed

    Fang, Jung-Da; Lee, Sheau-Ling

    2014-07-01

    Hepatocyte growth factor (HGF) is a chemoattractant and inducer for neural stem/progenitor (NS/P) cell migration. Although the type II transmembrane serine protease, matriptase (MTP) is an activator of the latent HGF, MTP is indispensable on NS/P cell motility induced by the active form of HGF. This suggests that MTP's action on NS/P cell motility involves mechanisms other than proteolytic activation of HGF. In the present study, we investigate the role of MTP in HGF-stimulated signaling events. Using specific inhibitors of phosphatidylinositol-3-kinase (PI3K), protein kinase B (Akt) or focal adhesion kinase (FAK), we demonstrated that in NS/P cells HGF-activated c-Met induces PI3k-Akt signaling which then leads to FAK activation. This signaling pathway ultimately induces MMP2 expression and NS/P cell motility. Knocking down of MTP in NS/P cells with specific siRNA impaired HGF-stimulation of c-Met, Akt and FAK activation, blocked HGF-induced production of MMP2 and inhibited HGF-stimulated NS/P cell motility. MTP-knockdown NS/P cells cultured in the presence of recombinant protein of MTP protease domain or transfected with the full-length wild-type but not the protease-defected MTP restored HGF-responsive events in NS/P cells. In addition to functioning as HGF activator, our data revealed novel function of MTP on HGF-stimulated c-Met signaling activation.

  16. Differential effects of growth temperature on ice nuclei active at different temperatures that are produced by cells of Pseudomonas syringae.

    PubMed

    Gurian-Sherman, D; Lindow, S E

    1995-04-01

    The temperature at which ice-nucleating bacteria are grown causes differences of 100- to 10,000-fold in the fraction of cells that nucleate ice at a given temperature (ice nucleation frequency). Ice nucleation frequencies of cells of Pseudomonas syringae grown at temperatures that ranged from 9 to 33 degrees C were examined in order to more accurately characterize physiological effects on ice nuclei active at temperatures of from about -2 to -10 degrees C, the temperature range for this phenotype. Large differences in ice nucleation frequency occurred at all but the lowest assay temperatures in cells of P. syringae grown in the temperature range of 15 to 33 degrees C. These differences in ice nucleation frequency may be attributed, at least in part, to post-translational factors. Because other studies have indicated that ice nuclei active at the lowest assay temperatures may reflect the amount of ice nucleation protein produced, while higher nucleation temperatures reflect aggregates of this ice nucleation protein, data was normalized to the frequency of ice nuclei active at the lowest ice nucleation temperatures (which also correspond to the most abundant nuclei). This was done in order to develop a baseline of comparison for cells grown at different temperatures that more clearly shows possible post-translational effects such as aggregation of the nucleation protein. After this normalization was performed, and in contrast to the results noted above, the number of ice nuclei in cells grown at 9, 15, and 20 degrees C that were active at different assay temperatures was very similar. Differences in ice nucleation frequency that occurred over all assay temperatures in cells grown between 9 and 20 degrees C may be attributed to differences in the total number of nuclei present in the population of cells. The large effects of growth temperature on nucleation frequency have important implications for estimating numbers of ice nucleating bacteria in environmental samples

  17. Triptolide Abrogates Growth of Colon Cancer and Induces Cell Cycle Arrest by Inhibiting Transcriptional Activation of E2F

    PubMed Central

    Chugh, Rohit; Skube, Steven J; Majumder, Kaustav; Banerjee, Sulagna; Sangwan, Veena; Li, Lihua; Dawra, Rajinder; Subramanian, Subbaya; Saluja, Ashok; Dudeja, Vikas

    2016-01-01

    Background Despite significant progress in diagnostics and therapeutics, over fifty thousand patients die from colorectal cancer annually. Hence there is urgent need for new lines of treatment. Triptolide, a natural compound isolated from the Chinese herb Tripterygium wilfordii, is effective against multiple cancers. We have synthesized a water soluble analog of triptolide, named Minnelide, which is currently in phase I trial against pancreatic cancer. The aims of the current study were to evaluate whether triptolide/Minnelide is effective against colorectal cancer and to elucidate the mechanism by which triptolide induces cell death in colorectal cancer. Methods Efficacy of Minnelide was evaluated in subcutaneous xenograft and liver metastasis model of colorectal cancer. For mechanistic studies colon cancer cell lines HCT116 and HT29 were treated with triptolide and the effect on viability, caspase activation, annexin positivity, lactate dehydrogenase(LDH) release and cell cycle progression was evaluated. Effect of triptolide on E2F transcriptional activity, mRNA levels of E2F dependent genes, E2F1-Rb binding and proteins levels of regulator of G1-S transition was also measured. DNA binding of E2F1 was evaluated by chromatin immunoprecipitation assay. Results Triptolide decreased colon cancer cell viability in a dose- and time-dependent fashion. Minnelide markedly inhibited the growth of colon cancer in the xenograft and liver metastasis model of colon cancer and more than doubles the median survival of animals with liver metastases from colon cancer. Mechanistically we demonstrate that at low concentrations, triptolide induces apoptotic cell death but at higher concentrations it induces cell cycle arrest. Our data suggest that triptolide is able to induce G1 cell cycle arrest by inhibiting transcriptional activation of E2F1. Our data also show that triptolide downregulates E2F activity by potentially modulating events downstream of DNA binding. Conclusion

  18. EGCG inhibits activation of the insulin-like growth factor-1 receptor in human colon cancer cells

    SciTech Connect

    Shimizu, Masahito; Deguchi, Atsuko; Hara, Yukihiko; Moriwaki, Hisataka; Weinstein, I. Bernard . E-mail: ibw1@columbia.edu

    2005-09-02

    The IGF/IGF-1R system, which includes the IGF, IGF-1R, and IGFBPs proteins, plays an important role in the development and growth of colorectal cancer. We previously reported that in the HT29 human colon cancer cell line EGCG, the major biologically active component of green tea, inhibits activation of the RTKs EGFR, HER2, and HER3, and that this is associated with inhibition of multiple downstream signaling pathways. Since IGF-1R is also a RTK, in this study we examined the effects of EGCG on the activity of IGF/IGF-1R system in human colon cancer cells. We found that the colon cancer cell lines Caco2, HT29, SW837, and SW480 express high levels of the IGF-1R receptor, and that both SW837 and SW480 cells display constitutive activation of this receptor. Treatment of SW837 cells with 20 {mu}g/ml of EGCG (the IC{sub 50} concentration for growth inhibition) caused within 6 h a decrease in the phosphorylated (i.e., activated) form of the IGF-1R protein. At 12 h, there was a decrease in the levels of both IGF-1 protein and mRNA and within 3-6 h there was an increase in the levels of both IGFBP-3 protein and mRNA. The increased expression of the latter protein was sustained for at least 48 h. When SW837 cells were treated with EGCG for a longer time, i.e., 96 h, a very low concentration (1.0 {mu}g/ml) of EGCG also caused inhibition of activation of IGF-1R, a decrease in the IGF-1 protein, and an increase in the IGFBP-3 protein. EGCG also caused a decrease in the levels of mRNAs that encode MMPs-7 and -9, proteins that proteolyze IGFBP-3. In addition, treatment with EGCG caused a transient increase in the expression of TGF-{beta}2, an inducer of IGFBP-3 expression. These findings expand the roles of EGCG as an inhibitor of critical RTKs involved in cell proliferation, providing further evidence that EGCG and related compounds may be useful in the chemoprevention or treatment of colorectal cancer.

  19. Cell Growth Enhancement

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Exogene Corporation uses advanced technologies to enhance production of bio-processed substances like proteins, antibiotics and amino acids. Among them are genetic modification and a genetic switch. They originated in research for Jet Propulsion Laboratory. Extensive experiments in cell growth through production of hemoglobin to improve oxygen supply to cells were performed. By improving efficiency of oxygen use by cells, major operational expenses can be reduced. Greater product yields result in decreased raw material costs and more efficient use of equipment. A broad range of applications is cited.

  20. XET Activity is Found Near Sites of Growth and Cell Elongation in Bryophytes and Some Green Algae: New Insights into the Evolution of Primary Cell Wall Elongation

    PubMed Central

    Van Sandt, Vicky S. T.; Stieperaere, Herman; Guisez, Yves; Verbelen, Jean-Pierre; Vissenberg, Kris

    2007-01-01

    Background and Aims In angiosperms xyloglucan endotransglucosylase (XET)/hydrolase (XTH) is involved in reorganization of the cell wall during growth and development. The location of oligo-xyloglucan transglucosylation activity and the presence of XTH expressed sequence tags (ESTs) in the earliest diverging extant plants, i.e. in bryophytes and algae, down to the Phaeophyta was examined. The results provide information on the presence of an XET growth mechanism in bryophytes and algae and contribute to the understanding of the evolution of cell wall elongation in general. Methods Representatives of the different plant lineages were pressed onto an XET test paper and assayed. XET or XET-related activity was visualized as the incorporation of fluorescent signal. The Physcomitrella genome database was screened for the presence of XTHs. In addition, using the 3′ RACE technique searches were made for the presence of possible XTH ESTs in the Charophyta. Key Results XET activity was found in the three major divisions of bryophytes at sites corresponding to growing regions. In the Physcomitrella genome two putative XTH-encoding cDNA sequences were identified that contain all domains crucial for XET activity. Furthermore, XET activity was located at the sites of growth in Chara (Charophyta) and Ulva (Chlorophyta) and a putative XTH ancestral enzyme in Chara was identified. No XET activity was identified in the Rhodophyta or Phaeophyta. Conclusions XET activity was shown to be present in all major groups of green plants. These data suggest that an XET-related growth mechanism originated before the evolutionary divergence of the Chlorobionta and open new insights in the evolution of the mechanisms of primary cell wall expansion. PMID:17098750

  1. NBBS isolated from Pygeum africanum bark exhibits androgen antagonistic activity, inhibits AR nuclear translocation and prostate cancer cell growth.

    PubMed

    Papaioannou, Maria; Schleich, Sonja; Roell, Daniela; Schubert, Undine; Tanner, Tamzin; Claessens, Frank; Matusch, Rudolf; Baniahmad, Aria

    2010-12-01

    Extracts from Pygeum africanum are used in the treatment of prostatitis, benign prostatic hyperplasia (BPH) and prostate cancer (PCa). The ligand-activated human androgen receptor (AR) is known to control the growth of the prostate gland. Inhibition of human AR is therefore a major goal in treatment of patients. Here, we characterize the compound N-butylbenzene-sulfonamide (NBBS) isolated from P. africanum as a specific AR antagonist. This antihormonal activity inhibits AR- and progesterone receptor- (PR) mediated transactivation, but not the related human glucocorticoid receptor (GR) or the estrogen receptors (ERα or ERβ). Importantly, NBBS inhibits both endogenous PSA expression and growth of human PCa cells. Mechanistically, NBBS binds to AR and inhibits its translocation to the cell nucleus. Furthermore, using a battery of chemically synthesized derivatives of NBBS we revealed important structural aspects for androgen antagonism and have identified more potent AR antagonistic compounds. Our data suggest that NBBS is one of the active compounds of P. africanum bark and may serve as a naturally occurring, novel therapeutic agent for treatment of prostatic diseases. Thus, NBBS and its derivatives may serve as novel chemical platform for treatment prostatitis, BPH and PCa.

  2. Silodosin inhibits the growth of bladder cancer cells and enhances the cytotoxic activity of cisplatin via ELK1 inactivation

    PubMed Central

    Kawahara, Takashi; Ide, Hiroki; Kashiwagi, Eiji; Patterson, John D; Inoue, Satoshi; Shareef, Hasanain Khaleel; Aljarah, Ali Kadhim; Zheng, Yichun; Baras, Alexander S; Miyamoto, Hiroshi

    2015-01-01

    Silodosin, a selective α1A-adrenergic blocker prescribed for the symptomatic treatment of benign prostatic hyperplasia, was previously shown to decrease the expression of ELK1, a c-fos proto-oncogene regulator and a well-described downstream target of the PKC/Raf-1/ERK pathway, in human prostate smooth muscle cells. PKC/Raf-1/ERK activation has also been implicated in drug resistance. In the current study, we assessed the effects of silodosin on ELK1 expression/activity in bladder cancer cells as well as on their proliferation in the presence or absence of chemotherapeutic drugs, including cisplatin and gemcitabine. In bladder cancer cell lines, silodosin reduced the expression of ELK1 (mRNA/protein) and its downstream target, c-fos gene, as well as the transcriptional activity of ELK1. While silodosin alone (up to 10 μM) insignificantly affected the growth of bladder cancer cells cultured in androgen depleted conditions or those expressing ELK1-short hairpin RNA, it considerably inhibited the viability of androgen receptor (AR)-positive/ELK1-positive cells in the presence of androgens. Silodosin also inhibited the migration of ELK1-positive cells with or without a functional AR, but not that of ELK1 knockdown cells. Interestingly, silodosin treatment or ELK1 silencing resulted in increases in drug sensitivity to cisplatin, but not to gemcitabine, even in AR-negative cells or AR-positive cells cultured in an androgen-depleted condition. In addition, silodosin decreased the expression of NF-κB, a key regulator of chemoresistance, and its transcriptional activity. Moreover, immunohistochemistry in bladder cancer specimens from patients who received neoadjuvant chemotherapy revealed that phospho-ELK1 positivity strongly correlated with chemoresistance. Silodosin was thus found to not only inhibit cell viability and migration but also enhance the cytotoxic activity of cisplatin in bladder cancer lines via inactivating ELK1. Our results suggest that combined

  3. Evidence for nerve growth factor-potentiating activities of the nonpeptidic compound SR 57746A in PC12 cells.

    PubMed

    Pradines, A; Magazin, M; Schiltz, P; Le Fur, G; Caput, D; Ferrara, P

    1995-05-01

    SR 57746A (1-[2-(naphth-2-yl)ethyl]-4-(3-trifluoromethylphenyl)-1,2,5,6- tetrahydropyridine hydrochloride) exhibits neurotrophic activities in vivo and in vitro. We used the rat pheochromocytoma PC12 cell line to investigate in vitro cellular changes induced by SR 57746A. A significant increase in the percentage of cells bearing neurite-like processes was obtained in cells treated by SR 57746A and nerve growth factor (NGF) compared with NGF treatment alone. SR 57746A added alone, however, had no effect on morphogenesis or on survival of cells in serum-free medium. In contrast, SR 57746A induced a "priming" effect on PC12 cells for neurite outgrowth within 6 h of addition of the protein tyrosine kinase inhibitor genistein. An increase in alpha-actinin content resulted from treatment with SR 57746A. Expression of NGF-mediated acetylcholinesterase and choline acetyltransferase was enhanced within 5 days by SR 57746A. The molecule also induced rapid F-actin redistribution. Within 2 min of incubation, outgrowth of F-actin-containing filopodia was clearly visible at the cell periphery, as previously shown with NGF. It is interesting that this effect of SR 57746A could be mimicked by protein tyrosine kinase inhibitors and abolished by preincubation with sodium orthovanadate, a protein tyrosine phosphatase inhibitor. PMID:7722483

  4. Blockade of Ca2+-activated K+ channels inhibits proliferation of human endothelial cells induced by basic fibroblast growth factor.

    PubMed

    Wiecha, J; Münz, B; Wu, Y; Noll, T; Tillmanns, H; Waldecker, B

    1998-01-01

    Basic fibroblast growth factor (bFGF) exerts angiogenic and mitogenic properties in human tissue. Since changes in ion currents modulate essential Ca2+-dependent intracellular pathways in endothelial cells, we have investigated a possible contribution of Ca2+-activated K+ channels (BKCa) on bFGF-induced endothelial cell proliferation. The patch-clamp technique was used to identify BKCa and to study their modulation by bFGF in cultured endothelial cells of human umbilical cord veins (HUVEC). Cell counts of HUVEC were carried out on different days to analyze bFGF-induced cell proliferation and its influence by the specific BKCa blocker iberiotoxin (IBX). Using single-channel recordings, we found characteristic BKCa with a single-channel slope conductance of 170.3 +/- 2.1 pS (n = 7), half-maximal activation at internal pCa = 5.7 (n = 5; test potential: 80 mV), and dose-dependent block by IBX (25-100 nmol/l). In cell-attached patches bFGF (50 ng/ml) caused a significant increase in the open-state probability (NPo) after 6 min at test potentials of 80 and 100 mV (n = 28; p < 0.001), respectively, which lasted up to 30 min. After preincubation with pertussis toxin (100 ng/ml; 4 h) bFGF superfusion did not cause a significant increase in BKCa activity until 25 min had passed (n = 20; p < 0.01). Addition of 100 nmol/l IBX to the pipette solution caused a total block of BKCa within 2 min in cell-attached patches, whereas bFGF (50 ng/ml) was not able to activate BKCa. When incubated with IBX (25-100 nmol/l) every 2 days, bFGF-induced proliferation of HUVEC was significantly decreased by 50 (-41%) and 100 nmol/l (-50%) IBX (n = 5; p < 0.001) after 7 days. We conclude that activation of BKCa by bFGF may play an important role in bFGF-induced proliferation of human endothelial cells and thus might be important in the process of angiogenesis and vascular remodelling.

  5. Vascular endothelial growth factor regulates myeloid cell leukemia-1 expression through neuropilin-1-dependent activation of c-MET signaling in human prostate cancer cells

    PubMed Central

    2010-01-01

    Background Myeloid cell leukemia-1 (Mcl-1) is a member of the Bcl-2 family, which inhibits cell apoptosis by sequestering pro-apoptotic proteins Bim and Bid. Mcl-1 overexpression has been associated with progression in leukemia and some solid tumors including prostate cancer (PCa). However, the regulatory mechanism for Mcl-1 expression in PCa cells remains elusive. Results Immunohistochemical analyses revealed that Mcl-1 expression was elevated in PCa specimens with high Gleason grades and further significantly increased in bone metastasis, suggesting a pivotal role of Mcl-1 in PCa metastasis. We further found that vascular endothelial growth factor (VEGF) is a novel regulator of Mcl-1 expression in PCa cells. Inhibition of endogenous Mcl-1 induced apoptosis, indicating that Mcl-1 is an important survival factor in PCa cells. Neuropilin-1 (NRP1), the "co-receptor" for VEGF165 isoform, was found to be highly expressed in PCa cells, and indispensible in the regulation of Mcl-1. Intriguingly, VEGF165 promoted physical interaction between NRP1 and hepatocyte growth factor (HGF) receptor c-MET, and facilitated c-MET phosphorylation via a NRP1-dependent mechanism. VEGF165 induction of Mcl-1 may involve rapid activation of Src kinases and signal transducers and activators of transcription 3 (Stat3). Importantly, NRP1 overexpression and c-MET activation were positively associated with progression and bone metastasis in human PCa specimens and xenograft tissues. Conclusions This study demonstrated that Mcl-1 overexpression is associated with PCa bone metastasis. Activation of VEGF165-NRP1-c-MET signaling could confer PCa cells survival advantages by up-regulating Mcl-1, contributing to PCa progression. PMID:20085644

  6. Retinoid-dependent growth inhibition, differentiation and apoptosis in acute promyelocytic leukemia cells. Expression and activation of caspases.

    PubMed

    Gianni, M; Ponzanelli, I; Mologni, L; Reichert, U; Rambaldi, A; Terao, M; Garattini, E

    2000-05-01

    In the NB4 model of acute promyelocytic leukemia (APL), ATRA, 9-cis retinoic acid (9-cis RA), the pan-RAR and RARalpha-selective agonists, TTNPB and AM580, induce growth inhibition, granulocytic differentiation and apoptosis. By contrast, two RXR agonists, a RARbeta agonist and an anti-AP1 retinoid have very limited activity, ATRA- and AM580-dependent effects are completely inhibited by RAR antagonistic blockade, while 9-cis RA-induced cell-growth-inhibition and apoptosis are equally inhibited by RAR and RXR antagonists. ATRA, 9-cis RA and AM580 cause upregulation of the mRNAs coding for pro-caspase-1, -7, -8, and -9, which, however, results in increased synthesis of only pro-caspase-1 and -7 proteins. These phenomena are associated with activation of pro-caspase-6, -7 and -8, cytochrome c release from the mitochondria, inversion of Bcl-2/Bax ratio and degradation of PML-RARalpha. Caspase activation is fundamental for retinoid-induced apoptosis, which is suppressed by the caspase-inhibitor z-VAD.

  7. Membrane-to-nucleus signaling links insulin-like growth factor-1- and stem cell factor-activated pathways.

    PubMed

    Hayashi, Yujiro; Asuzu, David T; Gibbons, Simon J; Aarsvold, Kirsten H; Bardsley, Michael R; Lomberk, Gwen A; Mathison, Angela J; Kendrick, Michael L; Shen, K Robert; Taguchi, Takahiro; Gupta, Anu; Rubin, Brian P; Fletcher, Jonathan A; Farrugia, Gianrico; Urrutia, Raul A; Ordog, Tamas

    2013-01-01

    Stem cell factor (mouse: Kitl, human: KITLG) and insulin-like growth factor-1 (IGF1), acting via KIT and IGF1 receptor (IGF1R), respectively, are critical for the development and integrity of several tissues. Autocrine/paracrine KITLG-KIT and IGF1-IGF1R signaling are also activated in several cancers including gastrointestinal stromal tumors (GIST), the most common sarcoma. In murine gastric muscles, IGF1 promotes Kitl-dependent development of interstitial cells of Cajal (ICC), the non-neoplastic counterpart of GIST, suggesting cooperation between these pathways. Here, we report a novel mechanism linking IGF1-IGF1R and KITLG-KIT signaling in both normal and neoplastic cells. In murine gastric muscles, the microenvironment for ICC and GIST, human hepatic stellate cells (LX-2), a model for cancer niches, and GIST cells, IGF1 stimulated Kitl/KITLG protein and mRNA expression and promoter activity by activating several signaling pathways including AKT-mediated glycogen synthase kinase-3β inhibition (GSK3i). GSK3i alone also stimulated Kitl/KITLG expression without activating mitogenic pathways. Both IGF1 and GSK3i induced chromatin-level changes favoring transcriptional activation at the Kitl promoter including increased histone H3/H4 acetylation and H3 lysine (K) 4 methylation, reduced H3K9 and H3K27 methylation and reduced occupancy by the H3K27 methyltransferase EZH2. By pharmacological or RNA interference-mediated inhibition of chromatin modifiers we demonstrated that these changes have the predicted impact on KITLG expression. KITLG knock-down and immunoneutralization inhibited the proliferation of GIST cells expressing wild-type KIT, signifying oncogenic autocrine/paracrine KITLG-KIT signaling. We conclude that membrane-to-nucleus signaling involving GSK3i establishes a previously unrecognized link between the IGF1-IGF1R and KITLG-KIT pathways, which is active in both physiologic and oncogenic contexts and can be exploited for therapeutic purposes. PMID:24116170

  8. Ubiquitous Expression of MAKORIN-2 in Normal and Malignant Hematopoietic Cells and Its Growth Promoting Activity

    PubMed Central

    Lee, King Yiu; Chan, Kathy Yuen Yee; Tsang, Kam Sze; Chen, Yang Chao; Kung, Hsiang-fu; Ng, Pak Cheung; Li, Chi Kong; Leung, Kam Tong; Li, Karen

    2014-01-01

    Makorin-2 (MKRN2) is a highly conserved protein and yet its functions are largely unknown. We investigated the expression levels of MKRN2 and RAF1 in normal and malignant hematopoietic cells, and leukemia cell lines. We also attempted to delineate the role of MKRN2 in umbilical cord blood CD34+ stem/progenitor cells and K562 cell line by over-expression and inhibition of MKRN2 through lentivirus transduction and shRNA nucleofection, respectively. Our results provided the first evidence on the ubiquitous expression of MKRN2 in normal hematopoietic cells, embryonic stem cell lines, primary leukemia and leukemic cell lines of myeloid, lymphoid, erythroid and megakaryocytic lineages. The expression levels of MKRN2 were generally higher in primary leukemia samples compared with those in age-matched normal BM cells. In all leukemia subtypes, there was no significant correlation between expression levels of MKRN2 and RAF1. sh-MKRN2-silenced CD34+ cells had a significantly lower proliferation capacity and decreased levels of the early stem/progenitor subpopulation (CFU-GEMM) compared with control cultures. Over-expression of MKRN2 in K562 cells increased cell proliferation. Our results indicated possible roles of MKRN2 in normal and malignant hematopoiesis. PMID:24675897

  9. Rapid burst of H2O2 by plant growth regulators increases intracellular Ca2+ amounts and modulates CD4+ T cell activation.

    PubMed

    Ahmed, Asma; Mukherjee, Sambuddho; Deobagkar, Mukta; Naik, Tanushree; Nandi, Dipankar

    2010-11-01

    The identification of small molecules that affect T cell activation is an important area of research. Three molecules that regulate plant growth and differentiation, but not their structurally similar analogs, were identified to enhance primary mouse CD4(+) T cell activation in conjunction with soluble anti-CD3 stimulation: Indoleacetic acid (natural plant auxin), 1-Napthaleneacetic acid (synthetic plant auxin) and 2,4-Dichlorophenoxyacetic acid (synthetic plant auxin and herbicide). These effects are distinct in comparison to Curcumin, the well known phenolic immunomodulator, which lowers T cell activation. An investigation into the mechanisms of action of the three plant growth regulators revealed a rapid induction of reactive oxygen species (ROS), mainly comprising H(2)O(2). In addition, these three molecules synergize with soluble anti-CD3 signaling to enhance intracellular Ca(2+) concentrations [Ca(2+)](i), leading to greater T cell activation, e.g. induction of CD25 and IL-2. Enhanced production of TNFα and IFNγ by CD4(+) T cells is also observed upon plant growth regulator treatment with soluble anti-CD3. Interestingly, maximal IL-2 production and CD4(+) T cell cycle progression are observed upon activation with soluble anti-CD3 and phorbol 12-myristate 13-acetate (PMA), a phorbol ester. Additionally, stimulation with PMA and Ionomcyin (a Ca(2+) ionophore), which activates T cells by circumventing the TCR, and plant growth regulators also demonstrated the role of the strength of signal (SOS): T cell cycle progression is enhanced with gentle activation conditions but decreased with strong activation conditions. This study demonstrates the direct effects of three plant growth regulators on CD4(+) T cell activation and cycling.

  10. Functional and structural characterization of P40, a mouse glycoprotein with T-cell growth factor activity.

    PubMed Central

    Uyttenhove, C; Simpson, R J; Van Snick, J

    1988-01-01

    Antigen-independent cell lines were derived from mouse helper T-cell clones by culture in autologous supernatant obtained after stimulation with concanavalin A. A factor, termed P40, supporting the growth of these lines was purified and characterized as a basic 32- to 39-kDa single-chain glycoprotein functionally distinct from previously identified T-cell growth factors and apparently unrelated structurally to any known protein. Of a number of cell lines, only helper T cells responded to P40, and this response was not mediated by either interleukin 2 or interleukin 4. Images PMID:3137580

  11. Expression and characterization of biologically active human hepatocyte growth factor (HGF) by insect cells infected with HGF-recombinant baculovirus.

    PubMed

    Yee, C J; DeFrances, M C; Bell, A; Bowen, W; Petersen, B; Michalopoulos, G K; Zarnegar, R

    1993-08-10

    A cDNA containing the entire coding sequence of human hepatocyte growth factor (HGF) [also known as scatter factor (SF)] was inserted into the genome of Autographa california nuclear polyhedrosis virus (baculovirus) adjacent to the polyhedrin promoter by homologous recombination. Insect cells (Spodoptera frugiperda) infected with the recombinant virus secrete relatively high levels (3-8 mg/L) of biologically active HGF into the culture medium. The recombinant HGF induces pronounced morphological changes and scattering of primary cultures of rat, mouse, and human hepatocytes within 24 h after plating and stimulates DNA synthesis in these cells with the same magnitude as native HGF derived from human placenta or rabbit serum. The human recombinant HGF produced by the insect cells is N-glycosylated, binds to heparin like native HGF, and is recognized by polyclonal antiserums raised against human or rabbit HGF as assessed by immunoblot, ELISA, and immunoneutralization experiments. Metabolic radiolabeling with L-[35S]methionine (pulse-chase experiments) as well as Western blot analysis indicates that the recombinant HGF is synthesized and secreted by the infected insect cells as the unprocessed single-chain form (pro-HGF) when the cells are cultured in serum-free medium. However, when the infected insect cells are cultured in insect culture medium (Grace's medium) containing fetal bovine serum, the secreted HGF is present mainly in the mature heterodimeric form. Addition of serum to the baculovirus-expressed single-chain [125I]HGF in a cell-free system results in conversion to the heterodimeric two-chain form, and the activation is prevented by the serine protease inhibitor PMSF. Incubation of 125I-labeled pro-HGF with rat liver or spleen extracts resulted in conversion of pro-HGF to the heterodimeric two-chain form. A truncated form of HGF containing the N-terminal portion of HGF (kringles 1-3) was also produced in the same expression system. This deleted HGF, by

  12. Activation of the Ras/Mitogen-Activated Protein Kinase Pathway by Kinase-Defective Epidermal Growth Factor Receptors Results in Cell Survival but Not Proliferation

    PubMed Central

    Walker, Francesca; Kato, Akiko; Gonez, L. Jorge; Hibbs, Margaret L.; Pouliot, Normand; Levitzki, Alexander; Burgess, Antony W.

    1998-01-01

    Signalling by the epidermal growth factor (EGF) receptor (EGFR) has been studied intensively, but for most cell types the analysis is complicated by the fact that EGFR not only homodimerizes but can also form heterodimers with other EGFR family members. Heterodimerization is a particular problem in the study of EGFR mutants, where the true phenotype of the mutants is confounded by the contribution of the heterodimer partner to signal transduction. We have made use of the murine hemopoietic cell line BaF/3, which does not express EGFR family members, to express wild-type (WT) EGFR, three kinase-defective EGFR mutants (V741G, Y740F, and K721R), or a C-terminally truncated EGFR (CT957) and have measured their responses to EGF. We found that under the appropriate conditions EGF can stimulate cell proliferation of BaF/3 cells expressing WT or CT957 EGFRs but not that of cells expressing the kinase-defective mutants. However, EGF promotes the survival of BaF/3 cells expressing either of the kinase-defective receptors (V741G and Y740F), indicating that these receptors can still transmit a survival signal. Analysis of the early signalling events by the WT, V741G, and Y740F mutant EGF receptors indicated that EGF stimulates comparable levels of Shc phosphorylation, Shc–GRB-2 association, and activation of Ras, B-Raf, and Erk-1. Blocking the mitogen-activated protein kinase (MAPK) signalling pathway with the specific inhibitor PD98059 abrogates completely the EGF-dependent survival of cells expressing the kinase-defective EGFR mutants but has no effect on the EGF-dependent proliferation mediated by WT and CT957 EGFRs. Similarly, the Src family kinase inhibitor PP1 abrogates EGF-dependent survival without affecting proliferation. However blocking phosphatidylinositol-3-kinase or JAK-2 kinase with specific inhibitors does arrest growth factor-dependent cell proliferation. Thus, EGFR-mediated mitogenic signalling in BaF/3 cells requires an intact EGFR tyrosine kinase activity

  13. Fibroblast growth factor-2 induces osteogenic differentiation through a Runx2 activation in vascular smooth muscle cells

    SciTech Connect

    Nakahara, Takehiro; Sato, Hiroko; Shimizu, Takehisa; Tanaka, Toru; Matsui, Hiroki; Kawai-Kowase, Keiko; Sato, Mahito; Iso, Tatsuya; Arai, Masashi; Kurabayashi, Masahiko

    2010-04-02

    Expression of bone-associated proteins and osteoblastic transcription factor Runx2 in arterial cells has been implicated in the development of vascular calcification. However, the signaling upstream of the Runx2-mediated activation of osteoblastic program in vascular smooth muscle cells (VSMC) is poorly understood. We examined the effects of fibroblast growth factor-2 (FGF-2), an important regulator of bone formation, on osteoblastic differentiation of VSMC. Stimulation of cultured rat aortic SMC (RASMC) with FGF-2 induced the expression of the osteoblastic markers osteopontin (OPN) and osteocalcin. Luciferase assays showed that FGF-2 induced osteocyte-specific element (OSE)-dependent transcription. Downregulation of Runx2 by siRNA repressed the basal and FGF-2-stimulated expression of the OPN gene in RASMC. FGF-2 produced hydrogen peroxide in RASMC, as evaluated by fluorescent probe. Induction of OPN expression by FGF-2 was inhibited not only by PD98059 (MEK1 inhibitor) and PP1 (c-Src inhibitor), but also by an antioxidant, N-acetyl cysteine. Nuclear extracts from FGF-2-treated RASMC exhibited increased DNA-binding of Runx2 to its target sequence. Immunohistochemistry of human coronary atherectomy specimens and calcified aortic tissues showed that expression of FGF receptor-1 and Runx2 was colocalized. In conclusion, these results suggest that FGF-2 plays a role in inducing osteoblastic differentiation of VSMC by activating Runx2 through mitogen-activated protein kinase (MAPK)-dependent- and oxidative stress-sensitive-signaling pathways.

  14. Mechano-growth factor induces migration of rat mesenchymal stem cells by altering its mechanical properties and activating ERK pathway

    SciTech Connect

    Wu, Jiamin; Wu, Kewen; Lin, Feng; Luo, Qing; Yang, Li; Shi, Yisong; Song, Guanbin; Sung, Kuo-Li Paul

    2013-11-08

    Highlights: •MGF induced the migration of rat MSC in a concentration-dependent manner. •MGF enhanced the mechanical properties of rMSC in inducing its migration. •MGF activated the ERK 1/2 signaling pathway of rMSC in inducing its migration. •rMSC mechanics may synergy with ERK 1/2 pathway in MGF-induced rMSC migration. -- Abstract: Mechano-growth factor (MGF) generated by cells in response to mechanical stimulation has been identified as a mechano effector molecule, playing a key role in regulating mesenchymal stem cell (MSC) function, including proliferation and migration. However, the mechanism(s) underlying how MGF-induced MSC migration occurs is still unclear. In the present study, MGF motivated migration of rat MSCs (rMSCs) in a concentration-dependent manner and optimal concentration of MGF at 50 ng/mL (defined as MGF treatment in this paper) was demonstrated. Notably, enhancement of mechanical properties that is pertinent to cell migration, such as cell traction force and cell stiffness were found to respond to MGF treatment. Furthermore, MGF increased phosphorylation of extracellular signal-regulated kinase (ERK), ERK inhibitor (i.e., PD98059) suppressed ERK phosphorylation, and abolished MGF-induced rMSC migration were found, demonstrating that ERK is involved molecule for MGF-induced rMSC migration. These in vitro evidences of MGF-induced rMSC migration and its direct link to altering rMSC mechanics and activating the ERK pathway, uncover the underlying biomechanical and biological mechanisms of MGF-induced rMSC migration, which may help find MGF-based application of MSC in clinical therapeutics.

  15. Activation of GPR30 inhibits the growth of prostate cancer cells through sustained activation of Erk1/2, c-jun/c-fos-dependent upregulation of p21, and induction of G(2) cell-cycle arrest.

    PubMed

    Chan, Q K Y; Lam, H-M; Ng, C-F; Lee, A Y Y; Chan, E S Y; Ng, H-K; Ho, S-M; Lau, K-M

    2010-09-01

    G-protein-coupled receptor-30 (GPR30) shows estrogen-binding affinity and mediates non-genomic signaling of estrogen to regulate cell growth. We here showed for the first time, in contrast to the reported promoting action of GPR30 on the growth of breast and ovarian cancer cells, that activation of GPR30 by the receptor-specific, non-estrogenic ligand G-1 inhibited the growth of androgen-dependent and androgen-independent prostate cancer (PCa) cells in vitro and PC-3 xenografts in vivo. However, G-1 elicited no growth or histological changes in the prostates of intact mice and did not inhibit growth in quiescent BPH-1, an immortalized benign prostatic epithelial cell line. Treatment of PC-3 cells with G-1 induced cell-cycle arrest at the G(2) phase and reduced the expression of G(2)-checkpoint regulators (cyclin-A2, cyclin-B1, cdc25c, and cdc2) and phosphorylation of their common transcriptional regulator NF-YA in PC-3 cells. With extensive use of siRNA-knockdown experiments and the MEK inhibitor PD98059 in this study, we dissected the mechanism underlying G-1-induced inhibition of PC-3 cell growth, which was mediated through GPR30, followed by sustained activation of Erk1/2 and a c-jun/c-fos-dependent upregulation of p21, resulting in the arrest of PC-3 growth at the G(2) phase. The discovery of this signaling pathway lays the foundation for future development of GPR30-based therapies for PCa.

  16. Epidermal growth factor activates telomerase activity by direct binding of Ets-2 to hTERT promoter in lung cancer cells.

    PubMed

    Hsu, Chung-Ping; Lee, Li-Wen; Tang, Sheau-Chung; Hsin, I-Lun; Lin, Yu-Wen; Ko, Jiunn-Liang

    2015-07-01

    Growth signals are directly or indirectly involved in telomerase regulation. In this study, we investigated molecular mechanisms of the effect of EGF (epidermal growth factor) on regulating hTERT (human telomerase reverse transcriptase) expression. To elucidate specific transcription factors involved in EGF-stimulated hTERT transcription in A549 and H1299 lung cancer cells, transcription factors drives hTERT promoter activity, such as Myc, Mad, and Ets-2, was evaluated on luciferase reporter assay. The upregulation of hTERT promoter by Ets-2 and Myc were abolished by Mad. Using DAPA (DNA affinity precipitation assay), Ets-2 binding to SNP (T) was stronger than Ets-2 binding to SNP (C) at -245 bp upstream of the transcription start site within the core promoter of hTERT. Ets-2 silence by siRNA decreased hTERT expression at mRNA and protein levels. The regulation of hTERT promoter by EGF/Ets-2 was diminished via the EGFR kinase signal pathway-specific inhibitors AG1478 and Iressa. Inhibitors of Erk and Akt inhibited Ets-2-activated hTERT promoter activity. These data suggested that Ets-2, a genuine cancer-specific transcription factor, is actively involved in EGFR kinase-induced hTERT overexpression pathway in lung cancer cells. Blockage of this pathway may contribute to targeted gene therapy in lung cancer.

  17. Development of a morphogenetically active scaffold for three-dimensional growth of bone cells: biosilica-alginate hydrogel for SaOS-2 cell cultivation.

    PubMed

    Müller, Werner E G; Schröder, Heinz C; Feng, Qingling; Schlossmacher, Ute; Link, Thorben; Wang, Xiaohong

    2015-11-01

    Polymeric silica is formed from ortho-silicate during a sol-gel formation process, while biosilica is the product of an enzymatically driven bio-polycondensation reaction. Both polymers have recently been described as a template that induces an increased expression of the genes encoding bone morphogenetic protein 2 (BMP-2) and osteoprotegerin in osteoblast-related SaOS-2 cells; simultaneously or subsequently the cells respond with enhanced hydroxyapatite formation. In order to assess whether the biocompatible polymeric silica/biosilica can serve as a morphogenetically active matrix suitable for three-dimensional (3D) cell growth, or even for 3D cell bioprinting, SaOS-2 cells were embedded into a Na-alginate-based hydrogel. Four different gelatinous hydrogel matrices were used for suspending SaOS-2 cells: (a) the hydrogel alone; (b) the hydrogel with 400 μM ortho-silicate; (c) the hydrogel supplemented with 400 μM ortho-silicate and recombinant silicatein to allow biosilica synthesis to occur; and (d) the hydrogel with ortho-silicate and BSA. The SaOS-2 cells showed an increased growth if silica/biosilica components were present in the hydrogel. Likewise intensified was the formation of hydroxyapatite nodules in the silica-containing hydrogels. After an incubation period of 2 weeks, cells present in silica-containing hydrogels showed a significantly higher expression of the genes encoding the cytokine BMP-2, the major fibrillar structural protein collagen 1 and likewise of carbonic anhydrase. It is concluded that silica, and to a larger extent biosilica, retains its morphogenetic/osteogenic potential after addition to Na-alginate-based hydrogels. This property might qualify silica hydrogels to be also used as a matrix for 3D cell printing.

  18. Alginate Oligosaccharides Inhibit Fungal Cell Growth and Potentiate the Activity of Antifungals against Candida and Aspergillus spp

    PubMed Central

    Tøndervik, Anne; Sletta, Håvard; Klinkenberg, Geir; Emanuel, Charlotte; Powell, Lydia C.; Pritchard, Manon F.; Khan, Saira; Craine, Kieron M.; Onsøyen, Edvar; Rye, Phil D.; Wright, Chris; Thomas, David W.; Hill, Katja E.

    2014-01-01

    The oligosaccharide OligoG, an alginate derived from seaweed, has been shown to have anti-bacterial and anti-biofilm properties and potentiates the activity of selected antibiotics against multi-drug resistant bacteria. The ability of OligoG to perturb fungal growth and potentiate conventional antifungal agents was evaluated using a range of pathogenic fungal strains. Candida (n = 11) and Aspergillus (n = 3) spp. were tested using germ tube assays, LIVE/DEAD staining, scanning electron microscopy (SEM), atomic force microscopy (AFM) and high-throughput minimum inhibition concentration assays (MICs). In general, the strains tested showed a significant dose-dependent reduction in cell growth at ≥6% OligoG as measured by optical density (OD600; P<0.05). OligoG (>0.5%) also showed a significant inhibitory effect on hyphal growth in germ tube assays, although strain-dependent variations in efficacy were observed (P<0.05). SEM and AFM both showed that OligoG (≥2%) markedly disrupted fungal biofilm formation, both alone, and in combination with fluconazole. Cell surface roughness was also significantly increased by the combination treatment (P<0.001). High-throughput robotic MIC screening demonstrated the potentiating effects of OligoG (2, 6, 10%) with nystatin, amphotericin B, fluconazole, miconazole, voriconazole or terbinafine with the test strains. Potentiating effects were observed for the Aspergillus strains with all six antifungal agents, with an up to 16-fold (nystatin) reduction in MIC. Similarly, all the Candida spp. showed potentiation with nystatin (up to 16-fold) and fluconazole (up to 8-fold). These findings demonstrate the antifungal properties of OligoG and suggest a potential role in the management of fungal infections and possible reduction of antifungal toxicity. PMID:25409186

  19. Id-1 expression induces androgen-independent prostate cancer cell growth through activation of epidermal growth factor receptor (EGF-R).

    PubMed

    Ling, Ming-Tat; Wang, Xianghong; Lee, Davy T; Tam, P C; Tsao, Sai-Wah; Wong, Yong-Chuan

    2004-04-01

    The failure of prostate cancer treatment is largely due to the development of androgen independence, since the androgen depletion therapy remains the front-line option for this cancer. Previously, we reported that over-expression of the helix-loop-helix protein Id-1 was associated with progression of prostate cancer and ectopic expression of Id-1 induced serum-independent proliferation in prostate cancer cells. In the present study, we investigated if exogenous Id-1 expression in the androgen sensitive LNCaP cells had any effect on androgen-dependent cell growth and studied the molecular mechanisms involved. Using stable Id-1 transfectants, we found that expression of Id-1 was able to reduce androgen-stimulated growth and S phase fraction of the cell cycle in LNCaP cells, indicating that Id-1 may be involved in the development of androgen independence in these cells. The Id-1-induced androgen-independent prostate cancer cell growth was correlated with up-regulation of EGF-R (epidermal growth factor-receptor) and PSA (prostate specific antigen) expression, as confirmed by western blotting analysis and luciferase assays. In contrast, down-regulation of Id-1 in androgen-independent DU145 cells by its antisense oligonucleotides resulted in suppression of EGF-R expression at both transcriptional and protein levels. In addition, the results from immunohistochemistry study showed that Id-1 expression was significantly elevated in hormone refractory prostate cancer tissues when compared with the hormone-dependent tumours. Our results suggest that up-regulation of Id-1 in prostate cancer cells may be one of the mechanisms responsible for developing androgen independence and this process may be regulated through induction of EGF-R expression. Inactivation of Id-1 may provide a potential therapeutic strategy leading to inhibition of androgen-independent prostate cancer cell growth.

  20. Calpain-Mediated positional information directs cell wall orientation to sustain plant stem cell activity, growth and development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eukaryotic development and stem cell control depend on the integration of cell positional sensing with cell cycle control and cell wall positioning, yet few factors that directly link these events are known. The DEFECTIVE KERNEL1 (DEK1) gene encoding the unique plant calpain protein is fundamental f...

  1. Kaiso depletion attenuates transforming growth factor-β signaling and metastatic activity of triple-negative breast cancer cells

    PubMed Central

    Bassey-Archibong, B I; Kwiecien, J M; Milosavljevic, S B; Hallett, R M; Rayner, L G A; Erb, M J; Crawford-Brown, C J; Stephenson, K B; Bédard, P-A; Hassell, J A; Daniel, J M

    2016-01-01

    Triple-negative breast cancers (TNBCs) represent a subset of breast tumors that are highly aggressive and metastatic, and are responsible for a disproportionate number of breast cancer-related deaths. Several studies have postulated a role for the epithelial-to-mesenchymal transition (EMT) program in the increased aggressiveness and metastatic propensity of TNBCs. Although EMT is essential for early vertebrate development and wound healing, it is frequently co-opted by cancer cells during tumorigenesis. One prominent signaling pathway involved in EMT is the transforming growth factor-β (TGFβ) pathway. In this study, we report that the novel POZ-ZF transcription factor Kaiso is highly expressed in TNBCs and correlates with a shorter metastasis-free survival. Notably, Kaiso expression is induced by the TGFβ pathway and silencing Kaiso expression in the highly invasive breast cancer cell lines, MDA-MB-231 (hereafter MDA-231) and Hs578T, attenuated the expression of several EMT-associated proteins (Vimentin, Slug and ZEB1), abrogated TGFβ signaling and TGFβ-dependent EMT. Moreover, Kaiso depletion attenuated the metastasis of TNBC cells (MDA-231 and Hs578T) in a mouse model. Although high Kaiso and high TGFβR1 expression is associated with poor overall survival in breast cancer patients, overexpression of a kinase-active TGFβR1 in the Kaiso-depleted cells was insufficient to restore the metastatic potential of these cells, suggesting that Kaiso is a key downstream component of TGFβ-mediated pro-metastatic responses. Collectively, these findings suggest a critical role for Kaiso in TGFβ signaling and the metastasis of TNBCs. PMID:26999717

  2. Kaiso depletion attenuates transforming growth factor-β signaling and metastatic activity of triple-negative breast cancer cells.

    PubMed

    Bassey-Archibong, B I; Kwiecien, J M; Milosavljevic, S B; Hallett, R M; Rayner, L G A; Erb, M J; Crawford-Brown, C J; Stephenson, K B; Bédard, P-A; Hassell, J A; Daniel, J M

    2016-01-01

    Triple-negative breast cancers (TNBCs) represent a subset of breast tumors that are highly aggressive and metastatic, and are responsible for a disproportionate number of breast cancer-related deaths. Several studies have postulated a role for the epithelial-to-mesenchymal transition (EMT) program in the increased aggressiveness and metastatic propensity of TNBCs. Although EMT is essential for early vertebrate development and wound healing, it is frequently co-opted by cancer cells during tumorigenesis. One prominent signaling pathway involved in EMT is the transforming growth factor-β (TGFβ) pathway. In this study, we report that the novel POZ-ZF transcription factor Kaiso is highly expressed in TNBCs and correlates with a shorter metastasis-free survival. Notably, Kaiso expression is induced by the TGFβ pathway and silencing Kaiso expression in the highly invasive breast cancer cell lines, MDA-MB-231 (hereafter MDA-231) and Hs578T, attenuated the expression of several EMT-associated proteins (Vimentin, Slug and ZEB1), abrogated TGFβ signaling and TGFβ-dependent EMT. Moreover, Kaiso depletion attenuated the metastasis of TNBC cells (MDA-231 and Hs578T) in a mouse model. Although high Kaiso and high TGFβR1 expression is associated with poor overall survival in breast cancer patients, overexpression of a kinase-active TGFβR1 in the Kaiso-depleted cells was insufficient to restore the metastatic potential of these cells, suggesting that Kaiso is a key downstream component of TGFβ-mediated pro-metastatic responses. Collectively, these findings suggest a critical role for Kaiso in TGFβ signaling and the metastasis of TNBCs.

  3. MLS-2384, a new 6-bromoindirubin derivative with dual JAK/Src kinase inhibitory activity, suppresses growth of diverse cancer cells.

    PubMed

    Liu, Lucy; Gaboriaud, Nicolas; Vougogianopoulou, Konstantina; Tian, Yan; Wu, Jun; Wen, Wei; Skaltsounis, Leandros; Jove, Richard

    2014-02-01

    Janus kinase (JAK) and Src kinase are the two major tyrosine kinase families upstream of signal transducer and activator of transcription (STAT). Among the seven STAT family proteins, STAT3 is constitutively activated in many diverse cancers. Upon activation, JAK and Src kinases phosphorylate STAT3, and thereby promote cell growth and survival. MLS-2384 is a novel 6-bromoindirubin derivative with a bromo-group at the 6-position on one indole ring and a hydrophilic group at the 3'-position on the other indole ring. In this study, we investigated the kinase inhibitory activity and anticancer activity of MLS-2384. Our data from in vitro kinase assays, cell viability analyses, western blotting analyses, and animal model studies, demonstrate that MLS-2384 is a dual JAK/Src kinase inhibitor, and suppresses growth of various human cancer cells, such as prostate, breast, skin, ovarian, lung, and liver. Consistent with the inactivation of JAK and Src kinases, phosphorylation of STAT3 was inhibited in a dose-dependent manner in the cancer cells treated with MLS-2384. STAT3 downstream proteins involved in cell proliferation and survival, such as c-Myc and Mcl-1, are downregulated by MLS-2384 in prostate cancer cells, whereas survivin is downregulated in A2058 cells. In these two cancer cell lines, PARP is cleaved, indicating that MLS-2384 induces apoptosis in human melanoma and prostate cancer cells. Importantly, MLS-2384 suppresses tumor growth with low toxicity in a mouse xenograft model of human melanoma. Taken together, MLS-2384 demonstrates dual JAK/Src inhibitory activity and suppresses tumor cell growth both in vitro and in vivo. Our findings support further development of MLS-2384 as a potential small-molecule therapeutic agent that targets JAK, Src, and STAT3 signaling in multiple human cancer cells.

  4. Photoactivation of ROS production in situ transiently activates cell proliferation in mouse skin and in the hair follicle stem cell niche promoting hair growth and wound healing

    PubMed Central

    Carrasco, Elisa; Calvo, María I.; Blázquez-Castro, Alfonso; Vecchio, Daniela; Zamarrón, Alicia; de Almeida, Irma Joyce Dias; Stockert, Juan C.; Hamblin, Michael R.; Juarranz, Ángeles; Espada, Jesús

    2015-01-01

    The role of reactive oxygen species (ROS) in the regulation of hair follicle cycle and skin homeostasis is poorly characterized. ROS have been traditionally linked to human disease and ageing, but recent findings suggest that can also have beneficial physiological functions in vivo in mammals. To test this hypothesis, we transiently switched on in situ ROS production in mouse skin. This process activated cell proliferation in the tissue and, interestingly, in the bulge region of the hair follicle, a major reservoir of epidermal stem cells, promoting hair growth as well as stimulating tissue repair after severe burn injury. We further show that these effects were associated with a transient Src kinase phosphorylation at Tyr416 and with a strong transcriptional activation of the prolactin family 2 subfamily c of growth factors. Our results point to potentially relevant modes of skin homeostasis regulation and demonstrate that a local and transient ROS production can regulate stem cell and tissue function in the whole organism. PMID:26134949

  5. Determination of growth stimulating activity of 'Rhizoginin-S' on cell cultures used in virology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have developed a new bioregulator based on phosphoinositol (PI), designated Rhizoginin-S, which stimulates plant cell division very effectively. The invention of Rhizoginin-S was only possible after development of a simple and effective method of preparation PI, U.S. patent (4,977,091). Developme...

  6. Curcumin induces growth-arrest and apoptosis in association with the inhibition of constitutively active JAK-STAT pathway in T cell leukemia

    SciTech Connect

    Rajasingh, Johnson; Raikwar, Himanshu P.; Muthian, Gladson; Johnson, Caroline; Bright, John J. . E-mail: jbright1@clarian.org

    2006-02-10

    Adult T cell leukemia is an aggressive and frequently fatal malignancy that expressess constitutively activated growth-signaling pathways in association with deregulated growth and resistance to apoptosis. Curcumin (diferuloylmethane) is a naturally occurring yellow pigment, isolated from the rhizomes of the plant Curcuma longa that has traditionally been used in the treatment of injury and inflammation. But the effect and mechanism of action of curcumin on T cell leukemia is not known. To investigate the antitumor activity of curcumin in T cell leukemia, we examined its effect on constitutive phosphorylation of JAK and STAT proteins, proliferation, and apoptosis in HTLV-I-transformed T cell lines. HTLV-I-transformed T cell leukemia lines, MT-2, HuT-102, and SLB-1, express constitutively phosphorylated JAK3, TYK2, STAT3, and STAT5 signaling proteins. In vitro treatment with curcumin induced a dose-dependent decrease in JAK and STAT phosphorylation resulting in the induction of growth-arrest and apoptosis in T cell leukemia. The induction of growth-arrest and apoptosis in association with the blockade of constitutively active JAK-STAT pathway suggests this be a mechanism by which curcumin induces antitumor activity in T cell leukemia.

  7. Pyridine analogues of curcumin exhibit high activity for inhibiting CWR-22Rv1 human prostate cancer cell growth and androgen receptor activation

    PubMed Central

    ZHOU, DAI-YING; ZHAO, SU-QING; DU, ZHI-YUN; ZHENG, XI; ZHANG, KUN

    2016-01-01

    The concentrations required for curcumin to exert its anticancer activity (IC50, 20 µM) are difficult to achieve in the blood plasma of patients, due to the low bioavailability of the compound. Therefore, much effort has been devoted to the development of curcumin analogues that exhibit stronger anticancer activity and a lower IC50 than curcumin. The present study investigated twelve pyridine analogues of curcumin, labeled as groups AN, BN, EN and FN, to determine their effects in CWR-22Rv1 human prostate cancer cells. The inhibitory effects of these compounds on testosterone (TT)-induced androgen receptor (AR) activity was determined by performing an AR-linked luciferase assay and by TT-induced expression of prostate-specific antigen. The results of the current study suggested that the FN group of analogues had the strongest inhibitory effect of growth on CWR-22Rv1 cultured cells, and were the most potent inhibitor of AR activity compared with curcumin, and the AN, BN and EN analogues. Thus, the results of the present study indicate the inhibition of the AR pathways as a potential mechanism for the anticancer effect of curcumin analogues in human prostate cancer cells. Furthermore, curcumin analogues with pyridine as a distal ring and tetrahydrothiopyran-4-one as a linker may be good candidates for the development of novel drugs for the treatment of prostate cancer, by targeting the AR signaling pathway. PMID:27313760

  8. MT1-MMP promotes cell growth and ERK activation through c-Src and paxillin in three-dimensional collagen matrix

    SciTech Connect

    Takino, Takahisa; Tsuge, Hisashi; Ozawa, Terumasa; Sato, Hiroshi

    2010-06-11

    Membrane-type 1 matrix metalloproteinase (MT1-MMP) is essential for tumor invasion and growth. We show here that MT1-MMP induces extracellular signal-regulated kinase (ERK) activation in cancer cells cultured in collagen gel, which is indispensable for their proliferation. Inhibition of MT1-MMP by MMP inhibitor or small interfering RNA suppressed activation of focal adhesion kinase (FAK) and ERK in MT1-MMP-expressing cancer cells, which resulted in up-regulation of p21{sup WAF1} and suppression of cell growth in collagen gel. Cell proliferation was also abrogated by the inhibitor against ERK pathway without affecting FAK phosphorylation. MT1-MMP and integrin {alpha}{sub v}{beta}{sub 3} were shown to be involved in c-Src activation, which induced FAK and ERK activation in collagen gel. These MT1-MMP-mediated signal transductions were paxillin dependent, as knockdown of paxillin reduced cell growth and ERK activation, and co-expression of MT1-MMP with paxillin induced ERK activation. The results suggest that MT1-MMP contributes to proliferation of cancer cells in the extracellular matrix by activating ERK through c-Src and paxillin.

  9. Hepatocyte Growth Factor Activator Inhibitor-1 Is Induced by Bone Morphogenetic Proteins and Regulates Proliferation and Cell Fate of Neural Progenitor Cells

    PubMed Central

    Koivuniemi, Raili; Mäkelä, Johanna; Hokkanen, Marie-Estelle; Bruelle, Céline; Ho, Tho Huu; Ola, Roxana; Korhonen, Laura; Schröder, Jim; Kataoka, Hiroaki; Lindholm, Dan

    2013-01-01

    Background Neural progenitor cells (NPCs) in the developing neuroepithelium are regulated by intrinsic and extrinsic factors. There is evidence that NPCs form a self-supporting niche for cell maintenance and proliferation. However, molecular interactions and cell-cell contacts and the microenvironment within the neuroepithelium are largely unknown. We hypothesized that cellular proteases especially those associated with the cell surface of NPCs play a role in regulation of progenitor cells in the brain. Methodology/Principal Findings In this work, we show that NPCs, isolated from striatal anlage of developing rat brain, express hepatocyte growth factor activator inhibitor-1 and -2 (HAI-1 and HAI-2) that are cell surface-linked serine protease inhibitors. In addition, radial glia cells derived from mouse embryonic stem cells also express HAI-1 and HAI-2. To study the functional significance of HAI-1 and HAI-2 in progenitor cells, we modulated their levels using expression plasmids or silencing RNA (siRNA) transfected into the NPCs. Data showed that overexpression of HAI-1 or HAI-2 decreased cell proliferation of cultured NPCs, whilst their siRNAs had opposite effects. HAI-1 also influenced NPC differentiation by increasing the number of glial fibrillary acidic protein (GFAP) expressing cells in the culture. Expression of HAI-1 in vivo decreased cell proliferation in developing neuroepithelium in E15 old animals and promoted astrocyte cell differentiation in neonatal animals. Studying the regulation of HAI-1, we observed that Bone morphogenetic protein-2 (BMP-2) and BMP-4 increased HAI-1 levels in the NPCs. Experiments using HAI-1-siRNA showed that these BMPs act on the NPCs partly in a HAI-1-dependent manner. Conclusions This study shows that the cell-surface serine protease inhibitors, HAI-1 and HAI-2 influence proliferation and cell fate of NPCs and their expression levels are linked to BMP signaling. Modulation of the levels and actions of HAI-1 in NPCs may be of

  10. Suppression of Erk activation and in vivo growth in esophageal cancer cells by the dominant negative Ras mutant, N116Y.

    PubMed

    Senmaru, N; Shichinohe, T; Takeuchi, M; Miyamoto, M; Sazawa, A; Ogiso, Y; Takahashi, T; Okushiba, S; Takimoto, M; Kato, H; Kuzumaki, N

    1998-10-29

    Our previous studies demonstrated that introduction of a dominant negative H-ras mutant, N116Y, inhibits the growth of various types of cancer cells in vitro. In this study, we tested the efficacy of N116Y in blocking the growth of esophageal cancer cells using an adenoviral vector. Infection with N116Y adenovirus, (AdCMV-N116Y), in which N116Y expression is driven by the cytomegalovirus promoter, significantly reduced the in vitro growth of all esophageal cancer cell lines studied. Esophageal cancer cells that contained wild-type K-ras and H-ras (TE8, SGF3, SGF7) were more sensitive to AdCMV-N116Y than HEC46 cells that expressed mutant K-ras protein. Most importantly, direct injection of AdCMV-N116Y into TE8- or SGF3-induced tumors in nude mice suppressed their growth significantly. To examine the suppressive mechanism of N116Y, cell cycle profile and the activation of extracellular signal-regulated kinase 2 (Erk2) were examined by flow cytometry and Western blot analysis, respectively. In TE8 cells, progression into S phase was clearly blocked after infection with AdCMV-N116Y. Infection with AdCMV-N116Y did not strongly suppress the activation of Erk2 after EGF stimulation in serum-starved HEC46 cells, whereas it completely suppressed activation in TE8, SGF3 and SGF7 cells. Our observations suggest that N116Y reduces growth of human esophageal cancer cells and suppresses the activation of Erk2; they also indicate that N116Y is a potential candidate gene for human esophageal cancer gene therapy.

  11. Glutathione levels discriminate between oxidative stress and transforming growth factor-beta signaling in activated rat hepatic stellate cells.

    PubMed

    De Bleser, P J; Xu, G; Rombouts, K; Rogiers, V; Geerts, A

    1999-11-26

    Reactive oxygen species are implicated in the pathogenesis of several diseases, including Alzheimer's disease, multiple sclerosis, human immunodeficiency virus, and liver fibrosis. With respect to liver fibrosis, we have investigated differences in antioxidant enzymes expression in stellate cells (SCs) and parenchymal cells from normal and CCl(4)-treated rat livers. We observed an increase in the expression of catalase in activated SCs. Treatment with transforming growth factor-beta (TGF-beta) increased the production of H(2)O(2). Treatment with catalase decreased TGF-beta expression. Addition of H(2)O(2) resulted in increased TGF-beta production. 3-Amino-1,2,4-triazole abolished the capacity of SCs to remove H(2)O(2). A paradoxical increase in capacity was observed when the cells were pretreated with diethyl maleate. Treatment with 3-amino-1, 2,4-triazole increased TGF-beta production. A paradoxical decrease of TGF-beta production was observed with diethyl maleate. Treatment of the cells with N-acetylcysteine resulted in increased TGF-beta production. TGF-beta decreased the capacity of the SCs to remove H(2)O(2.) An increase in the capacity to remove H(2)O(2) was observed when TGF-beta was removed by neutralizing antibodies. In conclusion, our results suggest: 1) a link between cellular GSH levels and TGF-beta production and 2) that cellular GSH levels discriminate whether H(2)O(2) is the result of oxidative stress or acts as second messenger in the TGF-beta signal transduction pathway.

  12. Aminolaevulinate synthetase of Micrococcus denitrificans. Purification and properties of the enzyme, and the effect of growth conditions on the enzyme activity in cells.

    PubMed

    Tait, G H

    1973-02-01

    1. 5-Aminolaevulinate synthetase was detected in extracts of the non-photosynthetic bacterium Micrococcus denitrificans. 2. Activity is high in cells grown anaerobically in a defined nitrate medium, but is low in cells grown in an iron-deficient medium, and in cells grown aerobically. 3. Aminolaevulinate synthetase was purified extensively; it has a molecular weight of about 68000; apparent K(m) values for glycine, succinyl-CoA and pyridoxal phosphate are 12mm, 10mum and 11mum respectively; 2mum-haemin and 14mum-protoporphyrin inhibit by 50%. 4. The low activity of aminolaevulinate synthetase in iron-deficient cells increases on adding iron salts to cells only under conditions where protein synthesis can occur. 5. In defined nitrate medium with a high Ca(2+) concentration anaerobic growth yield is higher, but aminolaevulinate synthetase activity is lower than in cells grown in the medium with a low Ca(2+) concentration. In medium made from AnalaR constituents, growth yield is low and aminolaevulinate synthetase activity is high even in the presence of high concentrations of Ca(2+); on adding Cu(2+) (0.1mum) to the medium growth yield and aminolaevulinate synthetase activity become the same as in non-AnalaR medium. 6. Cells incubated under conditions where protein synthesis does not occur but where electron transport does, lose their aminolaevulinate synthetase activity rapidly. 7. The activities of aminolaevulinate dehydratase and succinic thiokinase do not change under any of the conditions of growth examined. 8. The possible mechanisms controlling aminolaevulinate synthetase activity and the role of this enzyme in controlling the synthesis of haem in this organism are discussed. PMID:4722442

  13. Cytotoxic T lymphocytes block tumor growth both by lytic activity and IFNγ-dependent cell-cycle arrest.

    PubMed

    Matsushita, Hirokazu; Hosoi, Akihiro; Ueha, Satoshi; Abe, Jun; Fujieda, Nao; Tomura, Michio; Maekawa, Ryuji; Matsushima, Kouji; Ohara, Osamu; Kakimi, Kazuhiro

    2015-01-01

    To understand global effector mechanisms of CTL therapy, we performed microarray gene expression analysis in a murine model using pmel-1 T-cell receptor (TCR) transgenic T cells as effectors and B16 melanoma cells as targets. In addition to upregulation of genes related to antigen presentation and the MHC class I pathway, and cytotoxic effector molecules, cell-cycle-promoting genes were downregulated in the tumor on days 3 and 5 after CTL transfer. To investigate the impact of CTL therapy on the cell cycle of tumor cells in situ, we generated B16 cells expressing a fluorescent ubiquitination-based cell-cycle indicator (B16-fucci) and performed CTL therapy in mice bearing B16-fucci tumors. Three days after CTL transfer, we observed diffuse infiltration of CTLs into the tumor with a large number of tumor cells arrested at the G1 phase of the cell cycle, and the presence of spotty apoptotic or necrotic areas. Thus, tumor growth suppression was largely dependent on G1 cell-cycle arrest rather than killing by CTLs. Neutralizing antibody to IFNγ prevented both tumor growth inhibition and G1 arrest. The mechanism of G1 arrest involved the downregulation of S-phase kinase-associated protein 2 (Skp2) and the accumulation of its target cyclin-dependent kinase inhibitor p27 in the B16-fucci tumor cells. Because tumor-infiltrating CTLs are far fewer in number than the tumor cells, we propose that CTLs predominantly regulate tumor growth via IFNγ-mediated profound cytostatic effects rather than via cytotoxicity. This dominance of G1 arrest over other mechanisms may be widespread but not universal because IFNγ sensitivity varied among tumors.

  14. Measles virus C protein suppresses gamma-activated factor formation and virus-induced cell growth arrest

    SciTech Connect

    Yokota, Shin-ichi; Okabayashi, Tamaki; Fujii, Nobuhiro

    2011-05-25

    Measles virus (MeV) produces two accessory proteins, V and C, from the P gene. These accessory proteins have been reported to contribute to efficient virus proliferation through the modulation of host cell events. Our previous paper described that Vero cell-adapted strains of MeV led host cells to growth arrest through the upregulation of interferon regulatory factor 1 (IRF-1), and wild strains did not. In the present study, we found that C protein expression levels varied among MeV strains in infected SiHa cells. C protein levels were inversely correlated with IRF-1 expression levels and with cell growth arrest. Forced expression of C protein released cells from growth arrest. C-deficient recombinant virus efficiently upregulated IRF-1 and caused growth arrest more efficiently than the wild-type virus. C protein preferentially bound to phosphorylated STAT1 and suppressed STAT1 dimer formation. We conclude that MeV C protein suppresses IFN-{gamma} signaling pathway via inhibition of phosphorylated STAT1 dimerization.

  15. Effects of o-phenanthroline, 2,2'-dipyridyl and neocuproine on the activities of bleomycin to inhibit DNA synthesis and growth of cultured cells.

    PubMed

    Takahashi, K; Takita, T; Umezawa, H

    1986-10-01

    Effects of o-phenanthroline, 2,2'-dipyridyl and neocuproine, which form stable complexes preferentially with Fe(II), Fe(II) and specifically with Cu(I), respectively, on the inhibitory activity of bleomycin against DNA synthesis of rat ascites hepatoma AH66 cells were examined. The inhibitory activity of metal-free bleomycin was suppressed in the presence of o-phenanthroline or 2,2'-dipyridyl, but not by neocuproine, though these chelating agents also showed the inhibitory activity against the DNA synthesis of the cells by themselves alone. The activity of bleomycin-Cu(II) was also suppressed by o-phenanthroline, but bleomycin-Fe(II) and bleomycin-Fe(III) exhibited some activities in the presence of o-phenanthroline. The growth inhibitory activity of bleomycin against HeLa cells was also suppressed by o-phenanthroline. From these results, bleomycin-iron complexes were suggested to be responsible to the bleomycin action in cells.

  16. Soluble purified recombinant C2ORF40 protein inhibits tumor cell growth in vivo by decreasing telomerase activity in esophageal squamous cell carcinoma

    PubMed Central

    Li, Linwei; Li, Xiaoyan; Wang, Wenyu; Gao, Tianhui; Zhou, Yun; Lu, Shixin

    2016-01-01

    The chromosome 2 open reading frame 40 (C2ORF40) gene is a candidate tumor suppressor gene for a variety of tumors. Previous results by the present authors revealed that the C2ORF40 protein is a secreted protein. However, the exact biological function of secreted C2ORF40 protein in carcinogenesis has not been thoroughly investigated. In the present study, the signal peptide sequence of the C2ORF40 cDNA was initially removed to produce secreted recombinant human C2ORF40 protein (rhC2ORF40). Soluble rhC2ORF40 was successfully expressed and purified, which was evaluated for the first time, to the best of our knowledge, for tumor-suppressing function in vivo in esophageal cancer. The present results revealed that soluble purified rhC2ORF40 was concentrated with a purity of >95%. Furthermore, rhC2ORF40 inhibited esophageal cancer cell growth in vivo in a dose-dependent manner compared with a control group (P<0.05). In addition, the present study demonstrated for the first time that rhC2ORF40 decreased telomerase activity using telomeric repeat amplification protocol-enzyme-linked immunosorbent assay (P<0.05), without affecting the expression levels of telomerase-component RNA (P>0.05), as shown with polymerase chain reaction. Overall, the present results demonstrated that soluble rhC2ORF40 inhibited tumor cell growth in vivo by decreasing telomerase activity in esophageal squamous cell carcinoma. Therefore, soluble rhC2ORF40 with a high purity and biological activity may be a potential biological therapy drug for esophageal cancer. PMID:27698864

  17. Soluble purified recombinant C2ORF40 protein inhibits tumor cell growth in vivo by decreasing telomerase activity in esophageal squamous cell carcinoma

    PubMed Central

    Li, Linwei; Li, Xiaoyan; Wang, Wenyu; Gao, Tianhui; Zhou, Yun; Lu, Shixin

    2016-01-01

    The chromosome 2 open reading frame 40 (C2ORF40) gene is a candidate tumor suppressor gene for a variety of tumors. Previous results by the present authors revealed that the C2ORF40 protein is a secreted protein. However, the exact biological function of secreted C2ORF40 protein in carcinogenesis has not been thoroughly investigated. In the present study, the signal peptide sequence of the C2ORF40 cDNA was initially removed to produce secreted recombinant human C2ORF40 protein (rhC2ORF40). Soluble rhC2ORF40 was successfully expressed and purified, which was evaluated for the first time, to the best of our knowledge, for tumor-suppressing function in vivo in esophageal cancer. The present results revealed that soluble purified rhC2ORF40 was concentrated with a purity of >95%. Furthermore, rhC2ORF40 inhibited esophageal cancer cell growth in vivo in a dose-dependent manner compared with a control group (P<0.05). In addition, the present study demonstrated for the first time that rhC2ORF40 decreased telomerase activity using telomeric repeat amplification protocol-enzyme-linked immunosorbent assay (P<0.05), without affecting the expression levels of telomerase-component RNA (P>0.05), as shown with polymerase chain reaction. Overall, the present results demonstrated that soluble rhC2ORF40 inhibited tumor cell growth in vivo by decreasing telomerase activity in esophageal squamous cell carcinoma. Therefore, soluble rhC2ORF40 with a high purity and biological activity may be a potential biological therapy drug for esophageal cancer.

  18. The mitogen-activated protein kinase pathway can mediate growth inhibition and proliferation in smooth muscle cells. Dependence on the availability of downstream targets.

    PubMed Central

    Bornfeldt, K E; Campbell, J S; Koyama, H; Argast, G M; Leslie, C C; Raines, E W; Krebs, E G; Ross, R

    1997-01-01

    Activation of the classical mitogen-activated protein kinase (MAPK) pathway leads to proliferation of many cell types. Accordingly, an inhibitor of MAPK kinase, PD 098059, inhibits PDGF-induced proliferation of human arterial smooth muscle cells (SMCs) that do not secrete growth-inhibitory PGs such as PGE2. In striking contrast, in SMCs that express the inducible form of cyclooxygenase (COX-2), activation of MAPK serves as a negative regulator of proliferation. In these cells, PDGF-induced MAPK activation leads to cytosolic phospholipase A2 activation, PGE2 release, and subsequent activation of the cAMP-dependent protein kinase (PKA), which acts as a strong inhibitor of SMC proliferation. Inhibition of either MAPK kinase signaling or of COX-2 in these cells releases them from the influence of the growth-inhibitory PGs and results in the subsequent cell cycle traverse and proliferation. Thus, the MAPK pathway mediates either proliferation or growth inhibition in human arterial SMCs depending on the availability of specific downstream enzyme targets. PMID:9259587

  19. Sulindac selectively inhibits colon tumor cell growth by activating the cGMP/PKG pathway to suppress Wnt/β-catenin signaling.

    PubMed

    Li, Nan; Xi, Yaguang; Tinsley, Heather N; Gurpinar, Evrim; Gary, Bernard D; Zhu, Bing; Li, Yonghe; Chen, Xi; Keeton, Adam B; Abadi, Ashraf H; Moyer, Mary P; Grizzle, William E; Chang, Wen-Chi; Clapper, Margie L; Piazza, Gary A

    2013-09-01

    Nonsteroidal anti-inflammatory drugs (NSAID) display promising antineoplastic activity for colorectal and other cancers, but toxicity from COX inhibition limits their long-term use for chemoprevention. Previous studies have concluded that the basis for their tumor cell growth inhibitory activity does not require COX inhibition, although the underlying mechanism is poorly understood. Here, we report that the NSAID sulindac sulfide inhibits cyclic guanosine 3',5'-monophosphate phosphodiesterase (cGMP PDE) activity to increase intracellular cGMP levels and activate cGMP-dependent protein kinase (PKG) at concentrations that inhibit proliferation and induce apoptosis of colon tumor cells. Sulindac sulfide did not activate the cGMP/PKG pathway, nor affect proliferation or apoptosis in normal colonocytes. Knockdown of the cGMP-specific PDE5 isozyme by siRNA and PDE5-specific inhibitors tadalafil and sildenafil also selectively inhibited the growth of colon tumor cells that expressed high levels of PDE5 compared with colonocytes. The mechanism by which sulindac sulfide and the cGMP/PKG pathway inhibits colon tumor cell growth involves the transcriptional suppression of β-catenin to inhibit Wnt/β-catenin T-cell factor transcriptional activity, leading to downregulation of cyclin D1 and survivin. These observations suggest that safer and more efficacious sulindac derivatives can be developed for colorectal cancer chemoprevention by targeting PDE5 and possibly other cGMP-degrading isozymes. PMID:23804703

  20. The JAK2V617F oncogene requires expression of inducible phosphofructokinase/fructose-bisphosphatase 3 for cell growth and increased metabolic activity

    PubMed Central

    Reddy, Mamatha M.; Fernandes, Margret S.; Deshpande, Anagha; Weisberg, Ellen; Inguilizian, Haig V.; Abdel-Wahab, Omar; Kung, Andrew L.; Levine, Ross L.; Griffin, James D.; Sattler, Martin

    2011-01-01

    Myeloproliferative neoplasms (MPNs) are characterized by overproduction of myeloid lineage cells with frequent acquisition of oncogenic JAK2V617F kinase mutations. The molecular mechanisms that regulate energy requirements in these diseases are poorly understood. Transformed cells tend to rely on fermentation instead of more efficient oxidative phosphorylation for energy production. Our data in JAK2V617F-transformed cells show that growth and metabolic activity were strictly dependent on the presence of glucose. Uptake of glucose and cell surface expression of the glucose transporter Glut1 required the oncogenic tyrosine kinase. Importantly, JAK2V617F as well as active STAT5 increased the expression of the inducible rate-limiting enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), which controls glycolytic flux through 6-phosphofructo-1-kinase. PFKFB3 was required for JAK2V617F-dependent lactate production, oxidative metabolic activity and glucose uptake. Targeted knockdown of PFKFB3 also limited cell growth under normoxic and hypoxic conditions and blocked in vivo tumor formation in mice. Overall, these data suggest that inducible PFKFB3 is required for increased growth, metabolic activity and is regulated through active JAK2 and STAT5. Novel therapies that specifically block PFKFB3 activity or expression would therefore be expected to inhibit JAK2/STAT5-dependent malignancies and related cancers. PMID:21860432

  1. The Enzymatic Activity of Apoptosis-inducing Factor Supports Energy Metabolism Benefiting the Growth and Invasiveness of Advanced Prostate Cancer Cells*

    PubMed Central

    Lewis, Eric M.; Wilkinson, Amanda S.; Jackson, Jacqueline S.; Mehra, Rohit; Varambally, Sooryanarayana; Chinnaiyan, Arul M.; Wilkinson, John C.

    2012-01-01

    Apoptosis-inducing factor (AIF) promotes cell death yet also controls mitochondrial homeostasis and energy metabolism. It is unclear how these activities are coordinated, and the impact of AIF upon human disease, in particular cancer, is not well documented. In this study we have explored the contribution of AIF to the progression of prostate cancer. Analysis of archival gene expression data demonstrated that AIF transcript levels are elevated in human prostate cancer, and we found that AIF protein is increased in prostate tumors. Suppression of AIF expression in the prostate cancer cell lines LNCaP, DU145, and PC3 demonstrated that AIF does not contribute to cell toxicity via a variety of chemical death triggers, and growth under nutrient-rich conditions is largely unaffected by AIF ablation. However, under growth stress conditions, AIF depletion from DU145 and PC3 cell lines led to significant reductions in cell survival and growth that were not observed in LNCaP cells. Moreover AIF-deficient PC3 cells exhibited substantial reduction of tumorigenic growth in vivo. This reduced survival correlated with decreased expression of mitochondrial complex I protein subunits and concomitant changes in glucose metabolism. Finally, restoration of AIF-deficient PC3 cells with AIF variants demonstrated that the enzymatic activity of AIF is required for aggressive growth. Overall these studies show that AIF is an important factor for advanced prostate cancer cells and that through control of energy metabolism and redox balance, the enzymatic activity of AIF is critical for this support. PMID:23118229

  2. Transforming growth factor-beta1 induces activation of Ras, Raf-1, MEK and MAPK in rat hepatic stellate cells.

    PubMed

    Reimann, T; Hempel, U; Krautwald, S; Axmann, A; Scheibe, R; Seidel, D; Wenzel, K W

    1997-02-10

    The transdifferentiation of hepatic stellate cells into myofibroblast-like cells and the proliferation of the transdifferentiated cells are controlled by TGF-beta1. Little is known about the intracellular signal transducers of TGF-beta1. In this paper we show that in cultured hepatic stellate cells TGF-beta1 induces activation of Ras, Raf-1, MEK and MAPK p42 and p44. The activation of MAPK depends on the activation of MEK. Our data exclude that the observed effects are mediated by a bFGF or PDGF autocrine loop. PMID:9038360

  3. Electrical activity of ferroelectric biomaterials and its effects on the adhesion, growth and enzymatic activity of human osteoblast-like cells

    NASA Astrophysics Data System (ADS)

    Vaněk, P.; Kolská, Z.; Luxbacher, T.; García, J. A. L.; Lehocký, M.; Vandrovcová, M.; Bačáková, L.; Petzelt, J.

    2016-05-01

    Ferroelectrics have been, among others, studied as electroactive implant materials. Previous investigations have indicated that such implants induce improved bone formation. If a ferroelectric is immersed in a liquid, an electric double layer and a diffusion layer are formed at the interface. This is decisive for protein adsorption and bioactive behaviour, particularly for the adhesion and growth of cells. The charge distribution can be characterized, in a simplified way, by the zeta potential. We measured the zeta potential in dependence on the surface polarity on poled ferroelectric single crystalline LiNbO3 plates. Both our results and recent results of colloidal probe microscopy indicate that the charge distribution at the surface can be influenced by the surface polarity of ferroelectrics under certain ‘ideal’ conditions (low ionic strength, non-contaminated surface, very low roughness). However, suggested ferroelectric coatings on the surface of implants are far from ideal: they are rough, polycrystalline, and the body fluid is complex and has high ionic strength. In real cases, it can therefore be expected that there is rather low influence of the sign of the surface polarity on the electric diffusion layer and thus on the specific adsorption of proteins. This is supported by our results from studies of the adhesion, growth and the activity of alkaline phosphatase of human osteoblast-like Saos-2 cells on ferroelectric LiNbO3 plates in vitro.

  4. Wogonoside induces growth inhibition and cell cycle arrest via promoting the expression and binding activity of GATA-1 in chronic myelogenous leukemia cells.

    PubMed

    Li, Hui; Hui, Hui; Xu, Jingyan; Yang, Hao; Zhang, Xiaoxiao; Liu, Xiao; Zhou, Yuxin; Li, Zhiyu; Guo, Qinglong; Lu, Na

    2016-06-01

    GATA-1, a zinc finger transcription factor, has been demonstrated to play a key role in the progression of leukemia. In this study, we investigate the effects of wogonoside, a naturally bioactive flavonoid derived from Scutellaria baicalensis Georgi, on cell growth and cell cycle in chronic myeloid leukemia (CML) cells, and uncover its underlying mechanisms. The experimental design comprised CML cell lines K562, imatinib-resistant K562 (K562r) cells, and primary CML cells, treated in vitro or in vivo, respectively, with wogonoside; growth and cell cycle were then evaluated. We found that wogonoside could induce growth inhibition and G0/G1 cell cycle arrest in both normal and K562r cells. Wogonoside promotes the expression of GATA-1 and facilitates the binding to methyl ethyl ketone (MEK) and p21 promoter, thus inhibiting MEK/extracellular signal-regulated kinase signaling and cell cycle checkpoint proteins, including CDK2, CDK4, cyclin A, and cyclin D1, and increasing p21 expression. Furthermore, in vivo studies showed that administration of wogonoside decreased CML cells and prolonged survival in NOD/SCID mice with CML cell xenografts. In conclusion, these results clearly revealed the inhibitory effect of wogonoside on the growth in CML cells and suggested that wogonoside may act as a promising drug for the treatment of imatinib-resistant CML. PMID:26104856

  5. Cross-talk between human mast cells and bronchial epithelial cells in plasminogen activator inhibitor-1 production via transforming growth factor-β1.

    PubMed

    Cho, Seong H; Lee, Sun H; Kato, Atsushi; Takabayashi, Tetsuji; Kulka, Marianna; Shin, Soon C; Schleimer, Robert P

    2015-01-01

    Previous reports suggest that plasminogen activator inhibitor-1 (PAI-1) promotes airway remodeling and that human and mouse mast cells (MCs) are an important source of PAI-1. In the present study we investigated MC-epithelial cell (EC) interactions in the production of PAI-1. We stimulated the human MC line LAD2 with IgE-receptor cross-linking and collected the supernatants. We incubated the human bronchial EC line BEAS-2B with the LAD2 supernatants and measured the level of PAI-1. When the supernatants from IgE-stimulated LAD2 were added to BEAS-2B, there was a significant enhancement of PAI-1 production by BEAS-2B. When we treated the MC supernatants with a transforming growth factor (TGF)-β1 neutralizing antibody, the MC-derived induction of PAI-1 from BEAS-2B was completely abrogated. Although TGF-β1 mRNA was constitutively expressed in resting LAD2, it was not highly induced by IgE-mediated stimulation. Nonetheless, active TGF-β1 protein was significantly increased in LAD2 after IgE-mediated stimulation. Active TGF-β1 produced by primary cultured human MCs was significantly reduced in the presence of a chymase inhibitor, suggesting a role of MC chymase as an activator of latent TGF-β1. This study indicates that stimulation of human MCs by IgE receptor cross-linking triggers activation of TGF-β1, at least in part via chymase, which in turn induces the production of PAI-1 by bronchial ECs. Our data suggest that human MCs may play an important role in airway remodeling in asthma as a direct source of PAI-1 and by activating bronchial ECs to produce further PAI-1 via a TGF-β1-mediated activation pathway.

  6. Circulating Fibroblast Growth Factor-2, HIV-Tat, and Vascular Endothelial Cell Growth Factor-A in HIV-Infected Children with Renal Disease Activate Rho-A and Src in Cultured Renal Endothelial Cells

    PubMed Central

    Das, Jharna R; Gutkind, J. Silvio; Ray, Patricio E

    2016-01-01

    Renal endothelial cells (REc) are the first target of HIV-1 in the kidney. The integrity of REc is maintained at least partially by heparin binding growth factors that bind to heparan sulfate proteoglycans located on their cell surface. However, previous studies showed that the accumulation of two heparin-binding growth factors, Vascular Endothelial Cell Growth Factor-A (VEGF-A) and Fibroblast Growth Factor-2 (FGF-2), in combination with the viral protein Tat, can precipitate the progression of HIV-renal diseases. Nonetheless, very little is known about how these factors affect the behavior of REc in HIV+ children. We carried out this study to determine how VEGF-A, FGF-2, and HIV-Tat, modulate the cytoskeletal structure and permeability of cultured REc, identify key signaling pathways involved in this process, and develop a functional REc assay to detect HIV+ children affected by these changes. We found that VEGF-A and FGF-2, acting in synergy with HIV-Tat and heparin, affected the cytoskeletal structure and permeability of REc through changes in Rho-A, Src, and Rac-1 activity. Furthermore, urine samples from HIV+ children with renal diseases, showed high levels of VEGF-A and FGF-2, and induced similar changes in cultured REc and podocytes. These findings suggest that FGF-2, VEGF-A, and HIV-Tat, may affect the glomerular filtration barrier in HIV+ children through the induction of synergistic changes in Rho-A and Src activity. Further studies are needed to define the clinical value of the REc assay described in this study to identify HIV+ children exposed to circulating factors that may induce glomerular injury through similar mechanisms. PMID:27097314

  7. Circulating Fibroblast Growth Factor-2, HIV-Tat, and Vascular Endothelial Cell Growth Factor-A in HIV-Infected Children with Renal Disease Activate Rho-A and Src in Cultured Renal Endothelial Cells.

    PubMed

    Das, Jharna R; Gutkind, J Silvio; Ray, Patricio E

    2016-01-01

    Renal endothelial cells (REc) are the first target of HIV-1 in the kidney. The integrity of REc is maintained at least partially by heparin binding growth factors that bind to heparan sulfate proteoglycans located on their cell surface. However, previous studies showed that the accumulation of two heparin-binding growth factors, Vascular Endothelial Cell Growth Factor-A (VEGF-A) and Fibroblast Growth Factor-2 (FGF-2), in combination with the viral protein Tat, can precipitate the progression of HIV-renal diseases. Nonetheless, very little is known about how these factors affect the behavior of REc in HIV+ children. We carried out this study to determine how VEGF-A, FGF-2, and HIV-Tat, modulate the cytoskeletal structure and permeability of cultured REc, identify key signaling pathways involved in this process, and develop a functional REc assay to detect HIV+ children affected by these changes. We found that VEGF-A and FGF-2, acting in synergy with HIV-Tat and heparin, affected the cytoskeletal structure and permeability of REc through changes in Rho-A, Src, and Rac-1 activity. Furthermore, urine samples from HIV+ children with renal diseases, showed high levels of VEGF-A and FGF-2, and induced similar changes in cultured REc and podocytes. These findings suggest that FGF-2, VEGF-A, and HIV-Tat, may affect the glomerular filtration barrier in HIV+ children through the induction of synergistic changes in Rho-A and Src activity. Further studies are needed to define the clinical value of the REc assay described in this study to identify HIV+ children exposed to circulating factors that may induce glomerular injury through similar mechanisms.

  8. Circulating Fibroblast Growth Factor-2, HIV-Tat, and Vascular Endothelial Cell Growth Factor-A in HIV-Infected Children with Renal Disease Activate Rho-A and Src in Cultured Renal Endothelial Cells.

    PubMed

    Das, Jharna R; Gutkind, J Silvio; Ray, Patricio E

    2016-01-01

    Renal endothelial cells (REc) are the first target of HIV-1 in the kidney. The integrity of REc is maintained at least partially by heparin binding growth factors that bind to heparan sulfate proteoglycans located on their cell surface. However, previous studies showed that the accumulation of two heparin-binding growth factors, Vascular Endothelial Cell Growth Factor-A (VEGF-A) and Fibroblast Growth Factor-2 (FGF-2), in combination with the viral protein Tat, can precipitate the progression of HIV-renal diseases. Nonetheless, very little is known about how these factors affect the behavior of REc in HIV+ children. We carried out this study to determine how VEGF-A, FGF-2, and HIV-Tat, modulate the cytoskeletal structure and permeability of cultured REc, identify key signaling pathways involved in this process, and develop a functional REc assay to detect HIV+ children affected by these changes. We found that VEGF-A and FGF-2, acting in synergy with HIV-Tat and heparin, affected the cytoskeletal structure and permeability of REc through changes in Rho-A, Src, and Rac-1 activity. Furthermore, urine samples from HIV+ children with renal diseases, showed high levels of VEGF-A and FGF-2, and induced similar changes in cultured REc and podocytes. These findings suggest that FGF-2, VEGF-A, and HIV-Tat, may affect the glomerular filtration barrier in HIV+ children through the induction of synergistic changes in Rho-A and Src activity. Further studies are needed to define the clinical value of the REc assay described in this study to identify HIV+ children exposed to circulating factors that may induce glomerular injury through similar mechanisms. PMID:27097314

  9. Overexpression of activin-A and -B in malignant mesothelioma – Attenuated Smad3 signaling responses and ERK activation promote cell migration and invasive growth

    SciTech Connect

    Tamminen, Jenni A.; Yin, Miao; Rönty, Mikko; Sutinen, Eva; Pasternack, Arja; Ritvos, Olli; Myllärniemi, Marjukka; Koli, Katri

    2015-03-01

    Activin-A and activin-B, members of the TGF-β superfamily, are regulators of reproductive functions, inflammation and wound healing. These dimeric molecules regulate various cellular activities such as proliferation, migration and suvival. Malignant mesothelioma is an asbestos exposure related tumor affecting mainly pleura and it usually has a dismal prognosis. Here, we demonstrate that both activin-A and -B are abundantly expressed in mesothelioma tumor tissue as well as in cultured primary and established mesothelioma cells. Migratory and invasive mesothelioma cells were also found to have attenuated activation of the Smad2/3 pathway in response to activins. Migration and invasive growth of the cells in three-dimentional matrix was prevented by inhibition of activin activity using a soluble activin receptor 2B (sActR2B-Fc). This was associated with decreased ERK activity. Furthermore, migration and invasive growth was significantly inhibited by blocking ERK phosphorylation. Mesothelioma tumors are locally invasive and our results clearly suggest that acivins have a tumor-promoting function in mesothelioma through increasing expression and switching from canonical Smad3 pathway to non-canonical ERK pathway signaling. Blocking activin activity offers a new therapeutic approach for inhibition of mesothelioma invasive growth. - Highlights: • Activin-A and activin-B are highly expressed in mesothelioma. • Mesothelioma cell migration and invasive growth can be blocked with sActR2B. • Activin induced Smad3 activity is attenuated in invasive mesothelioma cells. • Activins induce ERK activity in mesothelioma cells.

  10. In Vitro Growth Inhibitory Activities of Natural Products from Irciniid Sponges against Cancer Cells: A Comparative Study

    PubMed Central

    BenRedjem Romdhane, Yosr; Elbour, Monia; Carbone, Marianna; Ciavatta, Maria Letizia; Gavagnin, Margherita; Mathieu, Véronique; Lefranc, Florence; Ktari, Leila; Ben Mustapha, Karim; Boudabous, Abdellatif; Kiss, Robert

    2016-01-01

    Marine sponges of the Irciniidae family contain both bioactive furanosesterterpene tetronic acids (FTAs) and prenylated hydroquinones (PHQs). Both classes of compounds are known for their anti-inflammatory, antioxidant, and antimicrobial properties and known to display growth inhibitory effects against various human tumor cell lines. However, the different experimental conditions of the reported in vitro bioassays, carried out on different cancer cell lines within separate studies, prevent realistic actual discrimination between the two classes of compounds from being carried out in terms of growth inhibitory effects. In the present work, a chemical investigation of irciniid sponges from Tunisian coasts led to the purification of three known FTAs and three known PHQs. The in vitro growth inhibitory properties of the six purified compounds have been evaluated in the same experiment in a panel of five human and one murine cancer cell lines displaying various levels of sensitivity to proapoptotic stimuli. Surprisingly, FTAs and PHQs elicited distinct profiles of growth inhibitory-responses, differing by one to two orders of magnitude in favor of the PHQs in all cell lines. The obtained comparative results are discussed in the light of a better selection of drug candidates from natural sources.

  11. In Vitro Growth Inhibitory Activities of Natural Products from Irciniid Sponges against Cancer Cells: A Comparative Study

    PubMed Central

    BenRedjem Romdhane, Yosr; Elbour, Monia; Carbone, Marianna; Ciavatta, Maria Letizia; Gavagnin, Margherita; Mathieu, Véronique; Lefranc, Florence; Ktari, Leila; Ben Mustapha, Karim; Boudabous, Abdellatif; Kiss, Robert

    2016-01-01

    Marine sponges of the Irciniidae family contain both bioactive furanosesterterpene tetronic acids (FTAs) and prenylated hydroquinones (PHQs). Both classes of compounds are known for their anti-inflammatory, antioxidant, and antimicrobial properties and known to display growth inhibitory effects against various human tumor cell lines. However, the different experimental conditions of the reported in vitro bioassays, carried out on different cancer cell lines within separate studies, prevent realistic actual discrimination between the two classes of compounds from being carried out in terms of growth inhibitory effects. In the present work, a chemical investigation of irciniid sponges from Tunisian coasts led to the purification of three known FTAs and three known PHQs. The in vitro growth inhibitory properties of the six purified compounds have been evaluated in the same experiment in a panel of five human and one murine cancer cell lines displaying various levels of sensitivity to proapoptotic stimuli. Surprisingly, FTAs and PHQs elicited distinct profiles of growth inhibitory-responses, differing by one to two orders of magnitude in favor of the PHQs in all cell lines. The obtained comparative results are discussed in the light of a better selection of drug candidates from natural sources. PMID:27597966

  12. In Vitro Growth Inhibitory Activities of Natural Products from Irciniid Sponges against Cancer Cells: A Comparative Study.

    PubMed

    BenRedjem Romdhane, Yosr; Elbour, Monia; Carbone, Marianna; Ciavatta, Maria Letizia; Gavagnin, Margherita; Mathieu, Véronique; Lefranc, Florence; Ktari, Leila; Ben Mustapha, Karim; Boudabous, Abdellatif; Kiss, Robert; Mollo, Ernesto

    2016-01-01

    Marine sponges of the Irciniidae family contain both bioactive furanosesterterpene tetronic acids (FTAs) and prenylated hydroquinones (PHQs). Both classes of compounds are known for their anti-inflammatory, antioxidant, and antimicrobial properties and known to display growth inhibitory effects against various human tumor cell lines. However, the different experimental conditions of the reported in vitro bioassays, carried out on different cancer cell lines within separate studies, prevent realistic actual discrimination between the two classes of compounds from being carried out in terms of growth inhibitory effects. In the present work, a chemical investigation of irciniid sponges from Tunisian coasts led to the purification of three known FTAs and three known PHQs. The in vitro growth inhibitory properties of the six purified compounds have been evaluated in the same experiment in a panel of five human and one murine cancer cell lines displaying various levels of sensitivity to proapoptotic stimuli. Surprisingly, FTAs and PHQs elicited distinct profiles of growth inhibitory-responses, differing by one to two orders of magnitude in favor of the PHQs in all cell lines. The obtained comparative results are discussed in the light of a better selection of drug candidates from natural sources. PMID:27597966

  13. Structural development of benzhydrol-type 1'-acetoxychavicol acetate (ACA) analogs as human leukemia cell-growth inhibitors based on quantitative structure-activity relationship (QSAR) analysis.

    PubMed

    Misawa, Takashi; Aoyama, Hiroshi; Furuyama, Taniyuki; Dodo, Kosuke; Sagawa, Morihiko; Miyachi, Hiroyuki; Kizaki, Masahiro; Hashimoto, Yuichi

    2008-10-01

    Benzhydrol-type analogs of 1'-acetoxychavicol acetate (ACA) were developed as inhibitors of human leukemia HL-60 cell growth based on quantitative structure-activity relationship (QSAR) analysis. An analog containing an anthracenyl moiety (8) was a potent inhibitor with the IC(50) value of 0.12 microM.

  14. Sulindac selectively inhibits colon tumor cell growth by activating the cGMP/PKG pathway to suppress Wnt/β-catenin signaling

    PubMed Central

    Li, Nan; Xi, Yaguang; Tinsley, Heather N.; Gurpinar, Evrim; Gary, Bernard D.; Zhu, Bing; Li, Yonghe; Chen, Xi; Keeton, Adam B.; Abadi, Ashraf H.; Moyer, Mary P.; Grizzle, William E.; Chang, Wen-chi; Clapper, Margie L.; Piazza, Gary A.

    2013-01-01

    NSAIDs display promising antineoplastic activity for colorectal and other cancers, but toxicity from cyclooxygenase (COX) inhibition limits their long-term use for chemoprevention. Previous studies have concluded that the basis for their tumor cell growth inhibitory activity does not required COX inhibition, although the underlying mechanism is poorly understood. Here we report that the NSAID, sulindac sulfide (SS) inhibits cyclic guanosine monophosphate phosphodiesterase (cGMP PDE) activity to increase intracellular cGMP levels and activate cGMP dependent protein kinase (PKG) at concentrations that inhibit proliferation and induce apoptosis of colon tumor cells. SS did not activate the cGMP/PKG pathway, nor affect proliferation or apoptosis in normal colonocytes. Knockdown of the cGMP-specific PDE5 isozyme by siRNA and PDE5-specific inhibitors, tadalafil and sildenafil, also selectively inhibited the growth of colon tumor cells that expressed high levels of PDE5 compared with colonocytes. The mechanism by which SS and the cGMP/PKG pathway inhibits colon tumor cell growth appears to involve the transcriptional suppression of β-catenin to inhibit Wnt/β-catenin TCF transcriptional activity, leading to down-regulation of cyclin D1 and survivin. These observations suggest that safer and more efficacious sulindac derivatives can be developed for colorectal cancer chemoprevention by targeting PDE5 and possibly other cGMP degrading isozymes. PMID:23804703

  15. IRF-1 inhibits NF-κB activity, suppresses TRAF2 and cIAP1 and induces breast cancer cell specific growth inhibition.

    PubMed

    Armstrong, Michaele J; Stang, Michael T; Liu, Ye; Yan, Jin; Pizzoferrato, Eva; Yim, John H

    2015-01-01

    Interferon Regulatory Factor (IRF)-1, originally identified as a transcription factor of the human interferon (IFN)-β gene, mediates tumor suppression and may inhibit oncogenesis. We have shown that IRF-1 in human breast cancer cells results in the down-regulation of survivin, tumor cell death, and the inhibition of tumor growth in vivo in xenogeneic mouse models. In this current report, we initiate studies comparing the effect of IRF-1 in human nonmalignant breast cell and breast cancer cell lines. While IRF-1 in breast cancer cells results in growth inhibition and cell death, profound growth inhibition and cell death are not observed in nonmalignant human breast cells. We show that TNF-α or IFN-γ induces IRF-1 in breast cancer cells and results in enhanced cell death. Abrogation of IRF-1 diminishes TNF-α and IFN-γ-induced apoptosis. We test the hypothesis that IRF-1 augments TNF-α-induced apoptosis in breast cancer cells. Potential signaling networks elicited by IRF-1 are investigated by evaluating the NF-κB pathway. TNF-α and/or IFN-γ results in decreased presence of NF-κB p65 in the nucleus of breast cancer cells. While TNF-α and/or IFN-γ can induce IRF-1 in nonmalignant breast cells, a marked change in NF-κB p65 is not observed. Moreover, the ectopic expression of IRF-1 in breast cancer cells results in caspase-3, -7, -8 cleavage, inhibits NF-κB activity, and suppresses the expression of molecules involved in the NF-κB pathway. These data show that IRF-1 in human breast cancer cells elicits multiple signaling networks including intrinsic and extrinsic cell death and down-regulates molecules involved in the NF-κB pathway. PMID:26011589

  16. IRF-1 inhibits NF-κB activity, suppresses TRAF2 and cIAP1 and induces breast cancer cell specific growth inhibition

    PubMed Central

    Armstrong, Michaele J; Stang, Michael T; Liu, Ye; Yan, Jin; Pizzoferrato, Eva; Yim, John H

    2015-01-01

    Interferon Regulatory Factor (IRF)-1, originally identified as a transcription factor of the human interferon (IFN)-β gene, mediates tumor suppression and may inhibit oncogenesis. We have shown that IRF-1 in human breast cancer cells results in the down-regulation of survivin, tumor cell death, and the inhibition of tumor growth in vivo in xenogeneic mouse models. In this current report, we initiate studies comparing the effect of IRF-1 in human nonmalignant breast cell and breast cancer cell lines. While IRF-1 in breast cancer cells results in growth inhibition and cell death, profound growth inhibition and cell death are not observed in nonmalignant human breast cells. We show that TNF-α or IFN-γ induces IRF-1 in breast cancer cells and results in enhanced cell death. Abrogation of IRF-1 diminishes TNF-α and IFN-γ-induced apoptosis. We test the hypothesis that IRF-1 augments TNF-α-induced apoptosis in breast cancer cells. Potential signaling networks elicited by IRF-1 are investigated by evaluating the NF-κB pathway. TNF-α and/or IFN-γ results in decreased presence of NF-κB p65 in the nucleus of breast cancer cells. While TNF-α and/or IFN-γ can induce IRF-1 in nonmalignant breast cells, a marked change in NF-κB p65 is not observed. Moreover, the ectopic expression of IRF-1 in breast cancer cells results in caspase-3, -7, -8 cleavage, inhibits NF-κB activity, and suppresses the expression of molecules involved in the NF-κB pathway. These data show that IRF-1 in human breast cancer cells elicits multiple signaling networks including intrinsic and extrinsic cell death and down-regulates molecules involved in the NF-κB pathway. PMID:26011589

  17. TGF-β-Mediated Sustained ERK1/2 Activity Promotes the Inhibition of Intracellular Growth of Mycobacterium avium in Epithelioid Cells Surrogates

    PubMed Central

    L'Abbate, Carolina; Cipriano, Ivone; Pérez-Hurtado, Elizabeth Cristina; Leão, Sylvia Cardoso; Carneiro, Célia Regina Whitaker; Machado, Joel

    2011-01-01

    Transforming growth factor beta (TGF-β) has been implicated in the pathogenesis of several diseases including infection with intracellular pathogens such as the Mycobacterium avium complex. Infection of macrophages with M. avium induces TGF-β production and neutralization of this cytokine has been associated with decreased intracellular bacterial growth. We have previously demonstrated that epithelioid cell surrogates (ECs) derived from primary murine peritoneal macrophages through a process of differentiation induced by IL-4 overlap several features of epithelioid cells found in granulomas. In contrast to undifferentiated macrophages, ECs produce larger amounts of TGF-β and inhibit the intracellular growth of M. avium. Here we asked whether the levels of TGF-β produced by ECs are sufficient to induce a self-sustaining autocrine TGF-β signaling controlling mycobacterial replication in infected-cells. We showed that while exogenous addition of increased concentration of TGF-β to infected-macrophages counteracted M. avium replication, pharmacological blockage of TGF-β receptor kinase activity with SB-431542 augmented bacterial load in infected-ECs. Moreover, the levels of TGF-β produced by ECs correlated with high and sustained levels of ERK1/2 activity. Inhibition of ERK1/2 activity with U0126 increased M. avium replication in infected-cells, suggesting that modulation of intracellular bacterial growth is dependent on the activation of ERK1/2. Interestingly, blockage of TGF-β receptor kinase activity with SB-431542 in infected-ECs inhibited ERK1/2 activity, enhanced intracellular M. avium burden and these effects were followed by a severe decrease in TGF-β production. In summary, our findings indicate that the amplitude of TGF-β signaling coordinates the strength and duration of ERK1/2 activity that is determinant for the control of intracellular mycobacterial growth. PMID:21731758

  18. In Vitro and in Vivo Anticancer Activity of Pardaxin against Proliferation and Growth of Oral Squamous Cell Carcinoma.

    PubMed

    Han, Yifan; Cui, Zhibin; Li, Yen-Hsing; Hsu, Wei-Hsuan; Lee, Bao-Hong

    2016-01-01

    Pardaxin (H-GFFALIPKIISSPLFKTLLSAVGSALSSSGGQE-OH), a 33-amino-acid polypeptide, is an antimicrobial peptide (AMP) isolated from the marine fish species Pardachirus marmoratus. Pardaxin shows antibacterial and antitumor activities. However, pardaxin-induced inhibition of oral cancer and the mechanism of tumor reduction in buccal pouch carcinogenesis after pardaxin painting remain undetermined. Additionally, the toxic effects of pardaxin on normal tissue remain unclear. The present study investigated the anticancer activity of pardaxin in oral squamous cell carcinoma (OSCC) cells in the hamster buccal pouch model with or without 7,12-dimethylbenz[a]anthracene (DMBA) pretreatment. This is the first study to confirm the effects of pardaxin on normal tissue and its nontoxic effects in vivo. Cell viability assays and colony formation tests in OSCC cell lines (SCC-4) demonstrated that pardaxin reduced cell viability in a dose-dependent manner. Immunofluorescence staining of cleaved caspase-3 in SCC-4 cells revealed that expression of activated caspase-3 in SCC-4 cells significantly increased after 24-h treatment with pardaxin. Additionally, a cell cycle analysis indicated that pardaxin treatment resulted in the cell cycle arrest of SCC-4 cells in the G2/M phase, thereby limiting cell proliferation. Furthermore, pardaxin treatment substantially alleviated carcinogenesis in the DMBA-induced hamster buccal pouch model by lowering prostaglandin E₂ levels. These results suggest that pardaxin is a potential marine drug for adjuvant chemotherapy for human OSCC and oral cancer. PMID:26703631

  19. In Vitro and in Vivo Anticancer Activity of Pardaxin against Proliferation and Growth of Oral Squamous Cell Carcinoma

    PubMed Central

    Han, Yifan; Cui, Zhibin; Li, Yen-Hsing; Hsu, Wei-Hsuan; Lee, Bao-Hong

    2015-01-01

    Pardaxin (H-GFFALIPKIISSPLFKTLLSAVGSALSSSGGQE-OH), a 33-amino-acid polypeptide, is an antimicrobial peptide (AMP) isolated from the marine fish species Pardachirus marmoratus. Pardaxin shows antibacterial and antitumor activities. However, pardaxin-induced inhibition of oral cancer and the mechanism of tumor reduction in buccal pouch carcinogenesis after pardaxin painting remain undetermined. Additionally, the toxic effects of pardaxin on normal tissue remain unclear. The present study investigated the anticancer activity of pardaxin in oral squamous cell carcinoma (OSCC) cells in the hamster buccal pouch model with or without 7,12-dimethylbenz[a]anthracene (DMBA) pretreatment. This is the first study to confirm the effects of pardaxin on normal tissue and its nontoxic effects in vivo. Cell viability assays and colony formation tests in OSCC cell lines (SCC-4) demonstrated that pardaxin reduced cell viability in a dose-dependent manner. Immunofluorescence staining of cleaved caspase-3 in SCC-4 cells revealed that expression of activated caspase-3 in SCC-4 cells significantly increased after 24-h treatment with pardaxin. Additionally, a cell cycle analysis indicated that pardaxin treatment resulted in the cell cycle arrest of SCC-4 cells in the G2/M phase, thereby limiting cell proliferation. Furthermore, pardaxin treatment substantially alleviated carcinogenesis in the DMBA-induced hamster buccal pouch model by lowering prostaglandin E2 levels. These results suggest that pardaxin is a potential marine drug for adjuvant chemotherapy for human OSCC and oral cancer. PMID:26703631

  20. Angiotensin II-induced Akt activation through the epidermal growth factor receptor in vascular smooth muscle cells is mediated by phospholipid metabolites derived by activation of phospholipase D.

    PubMed

    Li, Fang; Malik, Kafait U

    2005-03-01

    Angiotensin II (Ang II) activates cytosolic Ca(2+)-dependent phospholipase A(2) (cPLA(2)), phospholipase D (PLD), p38 mitogen-activated protein kinase (MAPK), epidermal growth factor receptor (EGFR) and Akt in vascular smooth muscle cells (VSMC). This study was conducted to investigate the relationship between Akt activation by Ang II and other signaling molecules in rat VSMC. Ang II-induced Akt phosphorylation was significantly reduced by the PLD inhibitor 1-butanol, but not by its inactive analog 2-butanol, and by brefeldin A, an inhibitor of the PLD cofactor ADP-ribosylation factor, and in cells infected with retrovirus containing PLD(2) siRNA or transfected with PLD(2) antisense but not control LacZ or sense oligonucleotide. Diacylglycerol kinase inhibitor II diminished Ang II-induced and diC8-phosphatidic acid (PA)-increased Akt phosphorylation, suggesting that PLD-dependent Akt activation is mediated by PA. Ang II-induced EGFR phosphorylation was inhibited by 1-butanol and PLD(2) siRNA and also by cPLA(2) siRNA. In addition, the inhibitor of arachidonic acid (AA) metabolism 5,8,11,14-eicosatetraynoic acid (ETYA) reduced both Ang II- and AA-induced EGFR transactivation. Furthermore, ETYA, cPLA(2) antisense, and cPLA(2) siRNA attenuated Ang II-elicited PLD activation. p38 MAPK inhibitor SB202190 [4-(4-flurophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)1H-imidazole] reduced PLD activity and EGFR and Akt phosphorylation elicited by Ang II. Pyrrolidine-1, a cPLA(2) inhibitor, and cPLA(2) siRNA decreased p38 MAPK activity. These data indicate that Ang II-stimulated Akt activity is mediated by cPLA(2)-dependent, p38 MAPK regulated PLD(2) activation and EGFR transactivation. We propose the following scheme of the sequence of events leading to activation of Akt in VSMC by Ang II: Ang II-->cPLA(2)-->AA-->p38 MAPK-->PLD(2)-->PA-->EGFR-->Akt. PMID:15525798

  1. Angiotensin II-induced Akt activation through the epidermal growth factor receptor in vascular smooth muscle cells is mediated by phospholipid metabolites derived by activation of phospholipase D.

    PubMed

    Li, Fang; Malik, Kafait U

    2005-03-01

    Angiotensin II (Ang II) activates cytosolic Ca(2+)-dependent phospholipase A(2) (cPLA(2)), phospholipase D (PLD), p38 mitogen-activated protein kinase (MAPK), epidermal growth factor receptor (EGFR) and Akt in vascular smooth muscle cells (VSMC). This study was conducted to investigate the relationship between Akt activation by Ang II and other signaling molecules in rat VSMC. Ang II-induced Akt phosphorylation was significantly reduced by the PLD inhibitor 1-butanol, but not by its inactive analog 2-butanol, and by brefeldin A, an inhibitor of the PLD cofactor ADP-ribosylation factor, and in cells infected with retrovirus containing PLD(2) siRNA or transfected with PLD(2) antisense but not control LacZ or sense oligonucleotide. Diacylglycerol kinase inhibitor II diminished Ang II-induced and diC8-phosphatidic acid (PA)-increased Akt phosphorylation, suggesting that PLD-dependent Akt activation is mediated by PA. Ang II-induced EGFR phosphorylation was inhibited by 1-butanol and PLD(2) siRNA and also by cPLA(2) siRNA. In addition, the inhibitor of arachidonic acid (AA) metabolism 5,8,11,14-eicosatetraynoic acid (ETYA) reduced both Ang II- and AA-induced EGFR transactivation. Furthermore, ETYA, cPLA(2) antisense, and cPLA(2) siRNA attenuated Ang II-elicited PLD activation. p38 MAPK inhibitor SB202190 [4-(4-flurophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)1H-imidazole] reduced PLD activity and EGFR and Akt phosphorylation elicited by Ang II. Pyrrolidine-1, a cPLA(2) inhibitor, and cPLA(2) siRNA decreased p38 MAPK activity. These data indicate that Ang II-stimulated Akt activity is mediated by cPLA(2)-dependent, p38 MAPK regulated PLD(2) activation and EGFR transactivation. We propose the following scheme of the sequence of events leading to activation of Akt in VSMC by Ang II: Ang II-->cPLA(2)-->AA-->p38 MAPK-->PLD(2)-->PA-->EGFR-->Akt.

  2. Substance P activates responses correlated with tumour growth in human glioma cell lines bearing tachykinin NK1 receptors

    PubMed Central

    Palma, C; Nardelli, F; Manzini, S; Maggi, C A

    1999-01-01

    The neuropeptide substance P (SP), by stimulating tachykinin NK1receptors (NK1R), triggers a number of biological responses in human glioma cells which are potentially relevant for tumour growth. First, radioligand binding studies demonstrated the presence of tachykinin NK1R on SNB-19, DBTRG-05 MG and U373 MG, but not on U138 MG and MOG-G-GCM human glioma cell lines. Second, application of SP or neurokinin A (NKA) to NK1R+glioma cell lines increased the secretion of interleukin 6 (IL-6) and potentiated IL-6 secretion induced by IL-1β. SP also up-regulated the release of transforming growth factor β1 (TGF-β1) by the U373 MG glioma cell line. Third, SP induced new DNA synthesis and enhanced the proliferation rate of NK1R+, but not of NK1R−glioma cell lines. Also, NKA stimulated the proliferation and cytokine secretion in NK1R+glioma cell lines. All the stimulant effects of SP/NKA on NK1R+glioma cell lines were completely blocked by a specific tachykinin NK1R antagonist, MEN 11467. These data support the potential use of tachykinin NK1R antagonist for controlling the proliferative rate of human gliomas. © 1999 Cancer Research Campaign PMID:9888463

  3. Inhibition of human carcinoma cell growth and DNA synthesis by silibinin, an active constituent of milk thistle: comparison with silymarin.

    PubMed

    Bhatia, N; Zhao, J; Wolf, D M; Agarwal, R

    1999-12-01

    Several studies from our laboratory have shown the cancer chemopreventive and anti-carcinogenic effects of silymarin, a flavonoid antioxidant isolated from milk thistle, in long-term tumorigenesis models and in human prostate, breast and cervical carcinoma cells. Since silymarin is composed mainly of silibinin with small amounts of other stereoisomers of silibinin, in the present communication, studies were performed to assess whether the cancer preventive and anti-carcinogenic effects of silymarin are due to its major component silibinin. Treatment of different prostate, breast, and cervical human carcinoma cells with silibinin resulted in a highly significant inhibition of both cell growth and DNA synthesis in a time-dependent manner with large loss of cell viability only in case of cervical carcinoma cells. When compared with silymarin, these effects of silibinin were consistent and comparable in terms of cell growth and DNA synthesis inhibition, and loss of cell viability. Based on the comparable results of silibinin and silymarin, we suggest that the cancer chemopreventive and anti-carcinogenic effects of silymarin reported earlier are due to the main constituent silibinin.

  4. Intercalated chemotherapy and erlotinib for non-small cell lung cancer (NSCLC) with activating epidermal growth factor receptor (EGFR) mutations

    PubMed Central

    Zwitter, Matjaz; Rajer, Mirjana; Stanic, Karmen; Vrankar, Martina; Doma, Andrej; Cuderman, Anka; Grmek, Marko; Kern, Izidor; Kovac, Viljem

    2016-01-01

    ABSTRACT Among attempts to delay development of resistance to tyrosine kinase inhibitors (TKIs) in patients with advanced non-small cell lung cancer (NSCLC) with activating mutations of epidermal growth factor receptor (EGFR), intercalated therapy has not been properly evaluated. In a phase II trial, 38 patients with EGFR mutated NSCLC in advanced stage were treated with 4 to 6 3-weekly cycles of intercalated schedule with gemcitabine (1250 mg/m2, days 1 and 4), cisplatin (75 mg/m2, day 2) and erlotinib (150 mg, days 5 – 15), followed by continuous erlotinib as maintenance. In addition to standard radiologic evaluation according to RECIST, PET/CT was done prior to treatment and at 6 months, using PERCIST as a method for assessment of response. The primary endpoint was progression-free survival (PFS). In general, tolerance to treatment was good, even among 8 patients with performance status 2–3 and 13 patients with brain metastases; grade 4 toxicity included 2 cases of neutropenia and 4 thrombo-embolic events. Complete response (CR) or partial response (PR) were seen in 15 (39.5%) and 17 (44.7%) cases, respectively. All cases of CR were confirmed also by PET/CT. Median PFS was 23.4 months and median overall survival (OS) was 38.3  months. After a median follow-up of 35 months, 8 patients are still in CR and on maintenance erlotinib. In conclusion, intercalated treatment for treatment-naive patients with EGFR activating mutations leads to excellent response rate and prolonged PFS and survival. Comparison of the intercalated schedule to monotherapy with TKIs in a randomized trial is warranted. PMID:27261103

  5. Telomerase and estrogen-sensing activities are essential for continued mammary growth in vivo but dispensable for “reprogramming” neural stem cells

    PubMed Central

    George, Andrea L.; Boulanger, Corinne A.; Smith, Gilbert H.

    2016-01-01

    It has been proposed that the erosion of telomere length is a limiting factor in replicative capacity and important in cell senescence. To determine if this activity was essential in the mouse mammary gland in vivo, we serially transplanted mammary fragments from wild type (TER+/+), heterozygous (TER+/−), and homozygous (TER−/−) mammary tissues into the cleared mammary fat pads of immune-compromised nude mice. Individual implants from both homozygous and heterozygous TER null outgrowths showed growth senescence beginning at transplant generation two, earlier than implants from TER+/+ mammary glands which continued to show growth. This result suggests that either mammary epithelial stem cells maintain their telomere length in order to self renew, or that the absence or reduction of telomerase template results in more frequent death/extinction of stem cells during symmetric divisions. A third possibility is the inability of signaling cells in the niche to replicate resulting in reduction of the maintenance signals necessary for stem cell renewal. Consistent with this, examination of senescent outgrowths revealed the absence of estrogen receptor alpha (ERα+) epithelium although progesterone receptor (PR+) cells were abundant. Despite their inability to establish mammary growth in vivo, TER+/− cells were able to direct neural stem cells to mammary cell fates. PMID:27347776

  6. Telomerase and estrogen-sensing activities are essential for continued mammary growth in vivo but dispensable for "reprogramming" neural stem cells.

    PubMed

    George, Andrea L; Boulanger, Corinne A; Smith, Gilbert H

    2016-07-01

    It has been proposed that the erosion of telomere length is a limiting factor in replicative capacity and important in cell senescence. To determine if this activity was essential in the mouse mammary gland in vivo, we serially transplanted mammary fragments from wild type (TER+/+), heterozygous (TER+/-), and homozygous (TER-/-) mammary tissues into the cleared mammary fat pads of immune-compromised nude mice. Individual implants from both homozygous and heterozygous TER null outgrowths showed growth senescence beginning at transplant generation two, earlier than implants from TER+/+ mammary glands which continued to show growth. This result suggests that either mammary epithelial stem cells maintain their telomere length in order to self renew, or that the absence or reduction of telomerase template results in more frequent death/extinction of stem cells during symmetric divisions. A third possibility is the inability of signaling cells in the niche to replicate resulting in reduction of the maintenance signals necessary for stem cell renewal. Consistent with this, examination of senescent outgrowths revealed the absence of estrogen receptor alpha (ERα+) epithelium although progesterone receptor (PR+) cells were abundant. Despite their inability to establish mammary growth in vivo, TER+/- cells were able to direct neural stem cells to mammary cell fates. PMID:27347776

  7. Inhibition of mitogen-activated protein kinase kinase, DNA methyltransferase, and transforming growth factor-β promotes differentiation of human induced pluripotent stem cells into enterocytes.

    PubMed

    Kodama, Nao; Iwao, Takahiro; Kabeya, Tomoki; Horikawa, Takashi; Niwa, Takuro; Kondo, Yuki; Nakamura, Katsunori; Matsunaga, Tamihide

    2016-06-01

    We previously reported that small-molecule compounds were effective in generating pharmacokinetically functional enterocytes from human induced pluripotent stem (iPS) cells. In this study, to determine whether the compounds promote the differentiation of human iPS cells into enterocytes, we investigated the effects of a combination of mitogen-activated protein kinase kinase (MEK), DNA methyltransferase (DNMT), and transforming growth factor (TGF)-β inhibitors on intestinal differentiation. Human iPS cells cultured on feeder cells were differentiated into endodermal cells by activin A. These endodermal-like cells were then differentiated into intestinal stem cells by fibroblast growth factor 2. Finally, the cells were differentiated into enterocyte cells by epidermal growth factor and small-molecule compounds. After differentiation, mRNA expression levels and drug-metabolizing enzyme activities were measured. The mRNA expression levels of the enterocyte marker sucrase-isomaltase and the major drug-metabolizing enzyme cytochrome P450 (CYP) 3A4 were increased by a combination of MEK, DNMT, and TGF-β inhibitors. The mRNA expression of CYP3A4 was markedly induced by 1α,25-dihydroxyvitamin D3. Metabolic activities of CYP1A1/2, CYP2B6, CYP2C9, CYP2C19, CYP3A4/5, UDP-glucuronosyltransferase, and sulfotransferase were also observed in the differentiated cells. In conclusion, MEK, DNMT, and TGF-β inhibitors can be used to promote the differentiation of human iPS cells into pharmacokinetically functional enterocytes.

  8. Peroxisome proliferator-activated receptor γ agonist efatutazone impairs transforming growth factor β2-induced motility of epidermal growth factor receptor tyrosine kinase inhibitor-resistant lung cancer cells.

    PubMed

    Serizawa, Masakuni; Murakami, Haruyasu; Watanabe, Masaru; Takahashi, Toshiaki; Yamamoto, Nobuyuki; Koh, Yasuhiro

    2014-06-01

    Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKI) are effective for non-small cell lung cancers (NSCLC) with EGFR-activating mutations. However, most responders develop resistance. Efatutazone, a novel peroxisome proliferator-activated receptor gamma (PPARγ) agonist, is currently under clinical evaluation; it has antiproliferative effects and induces cellular morphological changes and differentiation. The present study investigated the effects of efatutazone in EGFR-TKI-resistant NSCLC cells, while focusing on cell motility. The PC-9-derived NSCLC cell lines PC-9ER and PC-9ZD, resistant to EGFR-TKI due to v-crk avian sarcoma virus CT10 oncogene homolog-like (CRKL) amplification-induced phosphatidylinositol 3-kinase (PI3K)/v-akt murine thymoma viral oncogene homolog (AKT) activation and an EGFR T790M mutation, respectively, were used. These cells exhibit enhanced cell motility due to transforming growth factor β (TGF-β)/Smad2 family member 2 (Smad2) pathway activation. Efatutazone had no growth-inhibitory effect on the tested cells but inhibited the motility of EGFR-TKI-resistant cells in wound closure and transwell assays. Efatutazone plus erlotinib treatment provided greater inhibition of PC-9ER cell migration than efatutazone or erlotinib alone. Efatutazone suppressed increased TGF-β2 secretion from both cell lines (shown by ELISA) and downregulation of TGF-β2 transcription (observed by quantitative RT-PCR). Immunoblot analysis and luciferase assays revealed that efatutazone suppressed Smad2 phosphorylation and its transcriptional activity. These results suggest that efatutazone inhibits cell motility by antagonizing the TGF-β/Smad2 pathway and effectively prevents metastasis in NSCLC patients with acquired resistance to EGFR-TKI regardless of the resistance mechanism.

  9. Chlorpyrifos promotes colorectal adenocarcinoma H508 cell growth through the activation of EGFR/ERK1/2 signaling pathway but not cholinergic pathway.

    PubMed

    Suriyo, Tawit; Tachachartvanich, Phum; Visitnonthachai, Daranee; Watcharasit, Piyajit; Satayavivad, Jutamaad

    2015-12-01

    Aside from the effects on neuronal cholinergic system, epidemiological studies suggest an association between chlorpyrifos (CPF) exposure and cancer risk. This in vitro study examined the effects of CPF and its toxic metabolite, chlorpyrifos oxon (CPF-O), on the growth of human colorectal adenocarcinoma H508, colorectal adenocarcinoma HT-29, normal colon epithelial CCD841, liver hepatocellular carcinoma HepG2, and normal liver hepatocyte THLE-3 cells. The results showed that CPF (5-100 μM) concentration-dependently increased viability of H508 and CCD841 cells in serum-free conditions. This increasing trend was not found in HT-29, HepG2 and THLE-3 cells. In contrast, CPF-O (50-100 μM) reduced the viability of all cell lines. Cell cycle analysis showed the induction of cells in the S phase, and EdU incorporation assay revealed the induction of DNA synthesis in CPF-treated H508 cells indicating that CPF promotes cell cycle progression. Despite the observation of acetylcholinesterase activity inhibition and reactive oxygen species (ROS) generation, atropine (a non-selective muscarinic acetylcholine receptor antagonist) and N-acetylcysteine (a potent antioxidant) failed to inhibit the growth-promoting effect of CPF. CPF increased the phosphorylation of epidermal growth factor receptor (EGFR) and its downstream effector, extracellular signal regulated kinase (ERK1/2), in H508 cells. AG-1478 (a specific EGFR tyrosine kinase inhibitor) and U0126 (a specific MEK inhibitor) completely mitigated the growth promoting effect of CPF. Altogether, these results suggest that EGFR/ERK1/2 signaling pathway but not cholinergic pathway involves in CPF-induced colorectal adenocarcinoma H508 cell growth.

  10. Growth inhibition and apoptosis by an active component of OK-432, a streptococcal agent, via Toll-like receptor 4 in human head and neck cancer cell lines.

    PubMed

    Tano, Tomoyuki; Okamoto, Masato; Kan, Shin; Nakashiro, Koh-ichi; Shimodaira, Shigetaka; Yamashita, Naomi; Kawakami, Yutaka; Hamakawa, Hiroyuki

    2012-08-01

    Toll-like receptor 4 (TLR4) plays a significant role in cancer therapy as receptors of bacteria-derived immunotherapeutic agents such as OK-432, a streptococcal immunotherapeutic agent. In addition, recent reports demonstrated that TLRs, including TLR4, are also expressed in cancer cells as well as in immunocompetent cells. It is a problem in cancer therapy that the immunoadjuvant may activate survival signals such as nuclear factor (NF)-κB or mitogen-activated protein kinases (MAPKs) in cancer cells via TLRs. In the current study, we investigated responsiveness of human head and neck cancer cell lines against TLR4 ligands, OK-PSA, an active component of OK-432, and a lipopolysaccharide (LPS). Stimulation with LPS or OK-PSA resulted in the activation of NF-κB in these cell lines expressing TLR4 and MD-2 that is a significant coreceptor for TLR4 signaling. Interestingly, OK-PSA induced cell-growth inhibition, while LPS enhanced the proliferation of the cancer cells. OK-PSA induced NF-κB activation more slowly than that induced by LPS. In addition, phosphorylation of p38 MAPK by OK-PSA was only slight compared with that by LPS. OK-PSA also induced apoptosis of the cancer cells mediated by the activation of caspase 1, 3 and 8 in a p53-independent manner. These findings strongly suggest that active components of OK-432 may elicit anti-cancer effects via enhancing host immunity as well as via directly inducing the growth inhibition and apoptosis of head and neck cancer cells through TLR4 signal.

  11. Growth-stimulatory activity of TIMP-2 is mediated through c-Src activation followed by activation of FAK, PI3-kinase/AKT, and ERK1/2 independent of MMP inhibition in lung adenocarcinoma cells.

    PubMed

    Kim, Han Ie; Lee, Hyun-Sung; Kim, Tae Hyun; Lee, Ju-Seog; Lee, Seung-Taek; Lee, Seo-Jin

    2015-12-15

    Tissue inhibitors of metalloproteinases (TIMPs) control extracellular matrix (ECM) homeostasis by inhibiting the activity of matrix metalloproteinases (MMPs), which are associated with ECM turnover. Recent studies have revealed that TIMPs are implicated in tumorigenesis in both MMP-dependent and MMP-independent manners. We examined a mechanism by which TIMP-2 stimulated lung adenocarcinoma cell proliferation, independent of MMP inhibition. The stimulation of growth by TIMP-2 in A549 cells required c-Src kinase activation. c-Src kinase activity, induced by TIMP-2, concomitantly increased FAK, phosphoinositide 3-kinase (PI3-kinase)/AKT, and ERK1/2 activation. Selective knockdown of integrin α3β1, known as a TIMP-2 receptor, did not significantly change TIMP-2 growth promoting activity. Furthermore, we showed that high TIMP-2 expression in lung adenocarcinomas is associated with a worse prognosis from multiple cohorts, especially for stage I lung adenocarcinoma. Through integrated analysis of The Cancer Genome Atlas data, TIMP-2 expression was significantly associated with the alteration of driving genes, c-Src activation, and PI3-kinase/AKT pathway activation. Taken together, our results demonstrate that TIMP-2 stimulates lung adenocarcinoma cell proliferation through c-Src, FAK, PI3-kinase/AKT, and ERK1/2 pathway activation in an MMP-independent manner.

  12. INHIBITION OF PROTEIN TYROSINE PHOSPHATASE ACTIVITY MEDIATES EPIDERMAL GROWTH FACTOR RECEPTOR SIGNALING IN HUMAN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    Epidemiological studies have implicated zinc in the toxicity of ambient particulate matter (PM) inhalation. We previously showed that exposure to metal-laden PM inhibits protein tyrosine phosphatase (PTP) activity in human primary bronchial epithelial cells (HAEC) and leads t...

  13. Melatonin downregulates nuclear receptor RZR/RORγ expression causing growth-inhibitory and anti-angiogenesis activity in human gastric cancer cells in vitro and in vivo

    PubMed Central

    Wang, Ri-Xiong; Liu, Hui; Xu, Li; Zhang, Hui; Zhou, Rui-Xiang

    2016-01-01

    An adequate supply of oxygen and nutrients, derived from the formation of novel blood vessels, is critical for the growth and expansion of tumor cells. It has been demonstrated that melatonin (MLT) exhibits marked in vitro and in vivo oncostatic activities. The primary purpose of the present study was to evaluate the in vitro and in vivo antitumor activity of MLT on the growth and angiogenesis of gastric cancer cells, and explore the underlying molecular mechanisms. The present results revealed that MLT inhibited the growth of gastric cancer SGC-7901 cells in a dose- and time-dependent manner. In addition, the present study demonstrated that low concentrations (0.01, 0.1 and 1 mM) of MLT had no clear effect on vascular endothelial growth factor (VEGF) secretion, whereas a high concentration (3 mM) of MLT suppressed VEGF secretion in SGC-7901 cells. Notably, administration of MLT caused suppression of gastric cancer growth and blockade of tumor angiogenesis in tumor-bearing nude mice. Furthermore, MLT treatment reduced the expression of the MLT nuclear receptor RZR/RORγ, SUMO-specific protease 1, hypoxia-inducible factor-1α and VEGF at transcriptional and translational levels within gastric cancer cells during tumorigenesis. In conclusion, MLT nuclear receptor RZR/RORγ may be of great importance in the MLT mediated anti-angiogenesis and growth-inhibitory effect in gastric cancer cells. Since RZR/RORγ is overexpressed in multiple human cancers, MLT may be a promising agent for the treatment of cancers. PMID:27446366

  14. Activation of H-Ras and Rac1 correlates with epidermal growth factor-induced invasion in Hs578T and MDA-MB-231 breast carcinoma cells.

    PubMed

    Koh, Min-Soo; Moon, Aree

    2011-03-01

    There is considerable experimental evidence that hyperactive Ras proteins promote breast cancer growth and development including invasiveness, despite the low frequency of mutated forms of Ras in breast cancer. We have previously shown that H-Ras, but not N-Ras, induces an invasive phenotype mediated by small GTPase Rac1 in MCF10A human breast epithelial cells. Epidermal growth factor (EGF) plays an important role in aberrant growth and metastasis formation of many tumor types including breast cancer. The present study aims to investigate the correlation between EGF-induced invasiveness and Ras activation in four widely used breast cancer cell lines. Upon EGF stimulation, invasive abilities and H-Ras activation were significantly increased in Hs578T and MDA-MB-231 cell lines, but not in MDA-MB-453 and T47D cell lines. Using small interfering RNA (siRNA) to target H-Ras, we showed a crucial role of H-Ras in the invasive phenotype induced by EGF in Hs578T and MDA-MB-231 cells. Moreover, siRNA-knockdown of Rac1 significantly inhibited the EGF-induced invasiveness in these cells. Taken together, this study characterized human breast cancer cell lines with regard to the relationship between H-Ras activation and the invasive phenotype induced by EGF. Our data demonstrate that the activation of H-Ras and the downstream molecule Rac1 correlates with EGF-induced breast cancer cell invasion, providing important information on the regulation of malignant progression in mammary carcinoma cells.

  15. Insulin, insulin-like growth factor-I, and platelet-derived growth factor activate extracellular signal-regulated kinase by distinct pathways in muscle cells.

    PubMed

    Tsakiridis, T; Tsiani, E; Lekas, P; Bergman, A; Cherepanov, V; Whiteside, C; Downey, G P

    2001-10-19

    We have investigated the signaling pathways initiated by insulin, insulin-like growth factor-1 (IGF-I), and platelet-derived growth factor (PDGF) leading to activation of the extracellular signal-regulated kinase (ERK) in L6 myotubes. Insulin but not IGF-I or PDGF-induced ERK activation was abrogated by Ras inhibition, either by treatment with the farnesyl transferase inhibitor FTP III, or by actin disassembly by cytochalasin D, previously shown to inhibit Ras activation. The protein kinase C (PKC) inhibitor bisindolylmaleimide abolished PDGF but not IGF-I or insulin-induced ERK activation. ERK activation by insulin, IGF-I, or PDGF was unaffected by the phosphatidylinositol 3-kinase inhibitor wortmannin but was abolished by the MEK inhibitor PD98059. In contrast, activation of the pathway involving phosphatidylinositol 3-kinase (PI3k), protein kinase B, and glycogen synthase kinase 3 (GSK3) was mediated similarly by all three receptors, through a PI 3-kinase-dependent but Ras- and actin-independent pathway. We conclude that ERK activation is mediated by distinct pathways including: (i) a cytoskeleton- and Ras-dependent, PKC-independent, pathway utilized by insulin, (ii) a PKC-dependent, cytoskeleton- and Ras-independent pathway used by PDGF, and (iii) a cytoskeleton-, Ras-, and PKC-independent pathway utilized by IGF-I.

  16. Effects of cyclohexanone analogues of curcumin on growth, apoptosis and NF-κB activity in PC-3 human prostate cancer cells.

    PubMed

    Wei, Xingchuan; DU, Zhi-Yun; Cui, Xiao-Xing; Verano, Michael; Mo, Rong Qing; Tang, Zhi Kai; Conney, Allan H; Zheng, Xi; Zhang, Kun

    2012-08-01

    Curcumin is a non-nutritive yellow pigment found in the spice turmeric, which is derived from the rhizome of the plant Curcuma longa Linn. Six cyclohexanone analogues of curcumin (A(1)-A(6)) were investigated for their effects on growth and apoptosis in PC-3 human prostate cancer cells. The ability of these compounds to inhibit NF-κB activity in PC-3 cells was also determined. Five out of the six curcumin analogues (A(2)-A(6)) had stronger inhibitory effects compared to curcumin on the growth of cultured PC-3 cells. Compounds A(2)-A(6) also had stronger stimulatory effects on apoptosis in PC-3 cells than curcumin, and these curcumin analogues more potently inhibited NF-κB activity than curcumin. The inhibitory effects of these compounds on NF-κB activity correlated with their effects on growth inhibition and apoptosis stimulation in PC-3 cells. The results of the present study provide a rationale for in vivo studies with A(2)-A(6) using suitable animal models of prostate cancer.

  17. Effects of cyclohexanone analogues of curcumin on growth, apoptosis and NF-κB activity in PC-3 human prostate cancer cells.

    PubMed

    Wei, Xingchuan; DU, Zhi-Yun; Cui, Xiao-Xing; Verano, Michael; Mo, Rong Qing; Tang, Zhi Kai; Conney, Allan H; Zheng, Xi; Zhang, Kun

    2012-08-01

    Curcumin is a non-nutritive yellow pigment found in the spice turmeric, which is derived from the rhizome of the plant Curcuma longa Linn. Six cyclohexanone analogues of curcumin (A(1)-A(6)) were investigated for their effects on growth and apoptosis in PC-3 human prostate cancer cells. The ability of these compounds to inhibit NF-κB activity in PC-3 cells was also determined. Five out of the six curcumin analogues (A(2)-A(6)) had stronger inhibitory effects compared to curcumin on the growth of cultured PC-3 cells. Compounds A(2)-A(6) also had stronger stimulatory effects on apoptosis in PC-3 cells than curcumin, and these curcumin analogues more potently inhibited NF-κB activity than curcumin. The inhibitory effects of these compounds on NF-κB activity correlated with their effects on growth inhibition and apoptosis stimulation in PC-3 cells. The results of the present study provide a rationale for in vivo studies with A(2)-A(6) using suitable animal models of prostate cancer. PMID:22844370

  18. Effects of cyclohexanone analogues of curcumin on growth, apoptosis and NF-κB activity in PC-3 human prostate cancer cells

    PubMed Central

    WEI, XINGCHUAN; DU, ZHI-YUN; CUI, XIAO-XING; VERANO, MICHAEL; MO, RONG QING; TANG, ZHI KAI; CONNEY, ALLAN H.; ZHENG, XI; ZHANG, KUN

    2012-01-01

    Curcumin is a non-nutritive yellow pigment found in the spice turmeric, which is derived from the rhizome of the plant Curcuma longa Linn. Six cyclohexanone analogues of curcumin (A1-A6) were investigated for their effects on growth and apoptosis in PC-3 human prostate cancer cells. The ability of these compounds to inhibit NF-κB activity in PC-3 cells was also determined. Five out of the six curcumin analogues (A2-A6) had stronger inhibitory effects compared to curcumin on the growth of cultured PC-3 cells. Compounds A2-A6 also had stronger stimulatory effects on apoptosis in PC-3 cells than curcumin, and these curcumin analogues more potently inhibited NF-κB activity than curcumin. The inhibitory effects of these compounds on NF-κB activity correlated with their effects on growth inhibition and apoptosis stimulation in PC-3 cells. The results of the present study provide a rationale for in vivo studies with A2-A6 using suitable animal models of prostate cancer. PMID:22844370

  19. Tricyclic antidepressant amitriptyline activates fibroblast growth factor receptor signaling in glial cells: involvement in glial cell line-derived neurotrophic factor production.

    PubMed

    Hisaoka, Kazue; Tsuchioka, Mami; Yano, Ryoya; Maeda, Natsuko; Kajitani, Naoto; Morioka, Norimitsu; Nakata, Yoshihiro; Takebayashi, Minoru

    2011-06-17

    Recently, both clinical and animal studies demonstrated neuronal and glial plasticity to be important for the therapeutic action of antidepressants. Antidepressants increase glial cell line-derived neurotrophic factor (GDNF) production through monoamine-independent protein-tyrosine kinase, extracellular signal-regulated kinase (ERK), and cAMP responsive element-binding protein (CREB) activation in glial cells (Hisaoka, K., Takebayashi, M., Tsuchioka, M., Maeda, N., Nakata, Y., and Yamawaki, S. (2007) J. Pharmacol. Exp. Ther. 321, 148-157; Hisaoka, K., Maeda, N., Tsuchioka, M., and Takebayashi, M. (2008) Brain Res. 1196, 53-58). This study clarifies the type of tyrosine kinase and mechanism of antidepressant-induced GDNF production in C6 glioma cells and normal human astrocytes. The amitriptyline (a tricyclic antidepressant)-induced ERK activation was specifically and completely inhibited by fibroblast growth factor receptor (FGFR) tyrosine kinase inhibitors and siRNA for FGFR1 and -2. Treatment with amitriptyline or several different classes of antidepressants, but not non-antidepressants, acutely increased the phosphorylation of FGFRs and FGFR substrate 2α (FRS2α). Amitriptyline-induced CREB phosphorylation and GDNF production were blocked by FGFR-tyrosine kinase inhibitors. Therefore, antidepressants activate the FGFR/FRS2α/ERK/CREB signaling cascade, thus resulting in GDNF production. Furthermore, we attempted to elucidate how antidepressants activate FGFR signaling. The effect of amitriptyline was inhibited by heparin, non-permeant FGF-2 neutralizing antibodies, and matrix metalloproteinase (MMP) inhibitors. Serotonin (5-HT) also increased GDNF production through FGFR2 (Tsuchioka, M., Takebayashi, M., Hisaoka, K., Maeda, N., and Nakata, Y. (2008) J. Neurochem. 106, 244-257); however, the effect of 5-HT was not inhibited by heparin and MMP inhibitors. These results suggest that amitriptyline-induced FGFR activation might occur through an extracellular pathway

  20. Brain-derived neurotrophic factor inhibits osmotic swelling of rat retinal glial (Müller) and bipolar cells by activation of basic fibroblast growth factor signaling.

    PubMed

    Berk, B-A; Vogler, S; Pannicke, T; Kuhrt, H; Garcia, T B; Wiedemann, P; Reichenbach, A; Seeger, J; Bringmann, A

    2015-06-01

    Water accumulation in retinal glial (Müller) and neuronal cells resulting in cellular swelling contributes to the development of retinal edema and neurodegeneration. Intravitreal administration of neurotrophins such as brain-derived neurotrophic factor (BDNF) is known to promote survival of retinal neurons. Here, we show that exogenous BDNF inhibits the osmotic swelling of Müller cell somata induced by superfusion of rat retinal slices or freshly isolated cells with a hypoosmotic solution containing barium ions. BDNF also inhibited the osmotic swelling of bipolar cell somata in retinal slices, but failed to inhibit the osmotic soma swelling of freshly isolated bipolar cells. The inhibitory effect of BDNF on Müller cell swelling was mediated by activation of tropomyosin-related kinase B (TrkB) and transactivation of fibroblast growth factor receptors. Exogenous basic fibroblast growth factor (bFGF) fully inhibited the osmotic swelling of Müller cell somata while it partially inhibited the osmotic swelling of bipolar cell somata. Isolated Müller cells displayed immunoreactivity of truncated TrkB, but not full-length TrkB. Isolated rod bipolar cells displayed immunoreactivities of both TrkB isoforms. Data suggest that the neuroprotective effect of exogenous BDNF in the retina is in part mediated by prevention of the cytotoxic swelling of retinal glial and bipolar cells. While BDNF directly acts on Müller cells by activation of TrkB, BDNF indirectly acts on bipolar cells by inducing glial release of factors like bFGF that inhibit bipolar cell swelling.

  1. Characterization of thimet oligopeptidase and neurolysin activities in B16F10-Nex2 tumor cells and their involvement in angiogenesis and tumor growth

    PubMed Central

    Paschoalin, Thaysa; Carmona, Adriana K; Rodrigues, Elaine G; Oliveira, Vitor; Monteiro, Hugo P; Juliano, Maria A; Juliano, Luiz; Travassos, Luiz R

    2007-01-01

    Background Angiogenesis is a fundamental process that allows tumor growth by providing nutrients and oxygen to the tumor cells. Beyond the oxygen diffusion limit from a capillary blood vessel, tumor cells become apoptotic. Angiogenesis results from a balance of pro- and anti-angiogenic stimuli. Endogenous inhibitors regulate enzyme activities that promote angiogenesis. Tumor cells may express pro-angiogenic factors and hydrolytic enzymes but also kinin-degrading oligopeptidases which have been investigated. Results Angiogenesis induced by B16F10-Nex2 melanoma cells was studied in a co-culture with HUVEC on Matrigel. A stimulating effect on angiogenesis was observed in the presence of B16F10-Nex2 lysate and plasma membrane. In contrast, the B16F10-Nex2 culture supernatant inhibited angiogenesis in a dose-dependent manner. This effect was abolished by the endo-oligopeptidase inhibitor, JA-2. Thimet oligopeptidase (TOP) and neurolysin activities were then investigated in B16F10-Nex2 melanoma cells aiming at gene sequencing, enzyme distribution and activity, influence on tumor development, substrate specificity, hydrolytic products and susceptibility to inhibitors. Fluorescence resonance energy transfer (FRET) peptides as well as neurotensin and bradykinin were used as substrates. The hydrolytic activities in B16F10-Nex2 culture supernatant were totally inhibited by o-phenanthrolin, JA-2 and partially by Pro-Ile. Leupeptin, PMSF, E-64, Z-Pro-Prolinal and captopril failed to inhibit these hydrolytic activities. Genes encoding M3A enzymes in melanoma cells were cloned and sequenced being highly similar to mouse genes. A decreased proliferation of B16F10-Nex2 cells was observed in vitro with specific inhibitors of these oligopeptidases. Active rTOP but not the inactive protein inhibited melanoma cell development in vivo increasing significantly the survival of mice challenged with the tumor cells. On Matrigel, rTOP inhibited the bradykinin – induced angiogenesis. A

  2. Growth arrest of lung carcinoma cells (A549) by polyacrylate-anchored peroxovanadate by activating Rac1-NADPH oxidase signalling axis.

    PubMed

    Chatterjee, Nirupama; Anwar, Tarique; Islam, Nashreen S; Ramasarma, T; Ramakrishna, Gayatri

    2016-09-01

    Hydrogen peroxide is often required in sublethal, millimolar concentrations to show its oxidant effects on cells in culture as it is easily destroyed by cellular catalase. Previously, we had shown that diperoxovanadate, a physiologically stable peroxovanadium compound, can substitute H2O2 effectively in peroxidation reactions. We report here that peroxovanadate when anchored to polyacrylic acid (PAPV) becomes a highly potent inhibitor of growth of lung carcinoma cells (A549). The early events associated with PAPV treatment included cytoskeletal modifications, increase in GTPase activity of Rac1, accumulation of the reactive oxygen species, and also increase in phosphorylation of H2AX (γH2AX), a marker of DNA damage. These effects persisted even at 24 h after removal of the compound and culminated in increased levels of p53 and p21 together with growth arrest. The PAPV-mediated growth arrest was significantly abrogated in cells pre-treated with the N-acetylcysteine, Rac1 knocked down by siRNA and DPI an inhibitor of NADPH oxidase. In conclusion, our results show that polyacrylate derivative of peroxovanadate efficiently arrests growth of A549 cancerous cells by activating the axis of Rac1-NADPH oxidase leading to oxidative stress and DNA damage. PMID:27435854

  3. Comparison of the growth promoting activities and toxicities of various auxin analogs on cells derived from wild type and a nonrooting mutant of tobacco

    SciTech Connect

    Caboche, M.; Muller, J.F. ); Chanut, F. ); Aranda, G.; Cirakoglu, S. )

    1987-01-01

    A naphthaleneacetic acid tolerant mutant isolated from a mutagenized culture of tobacco mesophyll protoplasts and impaired in root morphogenesis has been previously characterized by genetic analysis. To understand the biochemical basis for naphthaleneacetic acid resistance, cells derived from this mutant and from wild-type tobacco were compared for their ability to respond to various growth regulators. The growth promoting abilities and cytotoxicities of auxin analogs were different for mutant and wild-type cells. These different activities were not correlated with increased rate of conjugation or breakdown of the auxins by mutant cells. These observations, as well as previous studies on the interaction of the mutant with Agrobacterium, suggest that mutant resistance to auxins is not a result of a specific modification of the process by which auxins induce cell killing, but to a more general alteration of the cellular response to auxin. A screening of auxin-related molecules which induce cell death in wild-type cells but not mutant cells without promoting growth in either was performed. p-Bromophenyleacetic acid was found to display these characteristics.

  4. P21-Activated Kinase Inhibitors FRAX486 and IPA3: Inhibition of Prostate Stromal Cell Growth and Effects on Smooth Muscle Contraction in the Human Prostate

    PubMed Central

    Wang, Yiming; Gratzke, Christian; Tamalunas, Alexander; Wiemer, Nicolas; Ciotkowska, Anna; Rutz, Beata; Waidelich, Raphaela; Strittmatter, Frank; Liu, Chunxiao; Stief, Christian G.; Hennenberg, Martin

    2016-01-01

    Prostate smooth muscle tone and hyperplastic growth are involved in the pathophysiology and treatment of male lower urinary tract symptoms (LUTS). Available drugs are characterized by limited efficacy. Patients’ adherence is particularly low to combination therapies of 5α-reductase inhibitors and α1-adrenoceptor antagonists, which are supposed to target contraction and growth simultaneously. Consequently, molecular etiology of benign prostatic hyperplasia (BPH) and new compounds interfering with smooth muscle contraction or growth in the prostate are of high interest. Here, we studied effects of p21-activated kinase (PAK) inhibitors (FRAX486, IPA3) in hyperplastic human prostate tissues, and in stromal cells (WPMY-1). In hyperplastic prostate tissues, PAK1, -2, -4, and -6 may be constitutively expressed in catecholaminergic neurons, while PAK1 was detected in smooth muscle and WPMY-1 cells. Neurogenic contractions of prostate strips by electric field stimulation were significantly inhibited by high concentrations of FRAX486 (30 μM) or IPA3 (300 μM), while noradrenaline- and phenylephrine-induced contractions were not affected. FRAX486 (30 μM) inhibited endothelin-1- and -2-induced contractions. In WPMY-1 cells, FRAX486 or IPA3 (24 h) induced concentration-dependent (1–10 μM) degeneration of actin filaments. This was paralleled by attenuation of proliferation rate, being observed from 1 to 10 μM FRAX486 or IPA3. Cytotoxicity of FRAX486 and IPA3 in WPMY-1 cells was time- and concentration-dependent. Stimulation of WPMY-1 cells with endothelin-1 or dihydrotestosterone, but not noradrenaline induced PAK phosphorylation, indicating PAK activation by endothelin-1. Thus, PAK inhibitors may inhibit neurogenic and endothelin-induced smooth muscle contractions in the hyperplastic human prostate, and growth of stromal cells. Targeting prostate smooth muscle contraction and stromal growth at once by a single compound is principally possible, at least under

  5. A kinetic model describing cell growth and production of highly active, recombinant ice nucleation protein in Escherichia coli.

    PubMed

    Palaiomylitou, M A; Matis, K A; Zouboulis, A I; Kyriakidis, D A

    2002-05-01

    A structured kinetic model, which describes the production of the recombinant ice nucleation protein in different conditions, was applied. The model parameters were estimated based on the variation of the specific growth rate and the intracellular product concentration during cultivation. The equations employed relate the cellular plasmid content or plasmid copy number with the cloned-gene expression; these correlations were successfully tested on the experimental data. The optimal nutrient conditions for the growth of Escherichia coli expressing the inaZ gene of Pseudomonas syringae were determined for the production of active ice nucleation protein. The kinetics of the cultures expressing the inaZ gene were studied in a bioreactor at different growth temperatures and nutrient conditions. PMID:11920448

  6. Hepatocyte growth factor (HGF) enhances cardiac commitment of differentiating embryonic stem cells by activating PI3 kinase

    SciTech Connect

    Roggia, Cristiana; Ukena, Christian; Boehm, Michael; Kilter, Heiko . E-mail: kilter@med-in.uni-saarland.de

    2007-03-10

    Hepatocyte growth factor (HGF) is a pleiotropic cytokine promoting proliferation, migration and survival in several cell types. HGF and its cognate receptor c-Met are expressed in cardiac cells during early cardiogenesis, but data concerning its role in cardiac differentiation of embryonic stem cells (ESCs) and the underlying molecular mechanisms involved are limited. In the present study we show that HGF significantly increases the number of beating embryoid bodies of differentiating ESCs without affecting beating frequency. Furthermore, HGF up-regulates the expression of the cardiac-specific transcription factors Nkx 2.5 and GATA-4 and of markers of differentiated cardiomyocytes, i.e. {alpha}-MHC, {beta}-MHC, ANF, MLC2v and Troponin T. The HGF-induced increase in Nkx 2.5 expression was inhibited by co-treatment with the PI3 kinase inhibitors Wortmannin and LY294002, but not by its inactive homolog LY303511, suggesting an involvement of the PI3 kinase/Akt pathway in this effect. We conclude that HGF is an important growth factor involved in cardiac differentiation and/or proliferation of ESCs and may therefore be critical for the in vitro generation of pre- or fully differentiated cardiomyocytes as required for clinical use of embryonic stem cells in cardiac diseases.

  7. Suppression of β-catenin/TCF transcriptional activity and colon tumor cell growth by dual inhibition of PDE5 and 10

    PubMed Central

    Li, Nan; Chen, Xi; Zhu, Bing; Ramírez-Alcántara, Verónica; Canzoneri, Joshua C.; Lee, Kevin; Sigler, Sara; Gary, Bernard; Li, Yonghe; Zhang, Wei; Moyer, Mary P.; Salter, E. Alan; Wierzbicki, Andrzej; Keeton, Adam B.; Piazza, Gary A.

    2015-01-01

    Previous studies suggest the anti-inflammatory drug, sulindac inhibits tumorigenesis by a COX independent mechanism involving cGMP PDE inhibition. Here we report that the cGMP PDE isozymes, PDE5 and 10, are elevated in colon tumor cells compared with normal colonocytes, and that inhibitors and siRNAs can selectively suppress colon tumor cell growth. Combined treatment with inhibitors or dual knockdown suppresses tumor cell growth to a greater extent than inhibition from either isozyme alone. A novel sulindac derivative, ADT-094 was designed to lack COX-1/-2 inhibitory activity but have improved potency to inhibit PDE5 and 10. ADT-094 displayed >500 fold higher potency to inhibit colon tumor cell growth compared with sulindac by activating cGMP/PKG signaling to suppress proliferation and induce apoptosis. Combined inhibition of PDE5 and 10 by treatment with ADT-094, PDE isozyme-selective inhibitors, or by siRNA knockdown also suppresses β-catenin, TCF transcriptional activity, and the levels of downstream targets, cyclin D1 and survivin. These results suggest that dual inhibition of PDE5 and 10 represents novel strategy for developing potent and selective anticancer drugs. PMID:26299804

  8. Linoleic acid and its metabolites, hydroperoxyoctadecadienoic acids, stimulate c-Fos, c-Jun, and c-Myc mRNA expression, mitogen-activated protein kinase activation, and growth in rat aortic smooth muscle cells.

    PubMed Central

    Rao, G N; Alexander, R W; Runge, M S

    1995-01-01

    Previous studies from other laboratories suggest that linoleic acid and its metabolites, hydroperoxyoctadecadienoic acids, play an important role in modulating the growth of some cells. A correlation has been demonstrated between hydroperoxyoctadecadienoic acids and conditions characterized by abnormal cell growth such as atherosclerosis and psoriasis. To determine if linoleic acid and its metabolites modulate cell growth in atherosclerosis, we measured DNA synthesis, protooncogene mRNA expression, and mitogen-activated protein kinase (MAPK) activation in vascular smooth muscle cells (VSMC). Linoleic acid induces DNA synthesis, c-fos, c-jun, and c-myc mRNA expression and MAPK activation in VSMC. Furthermore, nordihydroguaiaretic acid, a potent inhibitor of the lipoxygenase system, significantly reduced the growth-response effects of linoleic acid in VSMC, suggesting that conversion of linoleic acid to hydroperoxyoctadecadienoic acids (HPODEs) is required for these effects. HPODEs also caused significant induction of DNA synthesis, protooncogene mRNA expression, and MAPK activation in growth-arrested VSMC, suggesting that linoleic acid and its metabolic products, HPODEs, are potential mitogens in VSMC, and that conditions such as oxidative stress and lipid peroxidation which provoke the production of these substances may alter VSMC growth. Images PMID:7635978

  9. Effects of microgravity on osteoblast growth activation.

    PubMed

    Hughes-Fulford, M; Lewis, M L

    1996-04-10

    Space flight is an environmental condition where astronauts can lose up to 19% of weight-bearing bone during long duration missions. We used the MC3T3-E1 osteoblast to investigate bone cell growth in microgravity (10(-6) to 10(-9)g). Osteoblasts were launched on the STS-56 shuttle flight in a quiescent state with 0.5% fetal calf serum (FCS) medium and growth activation was initiated by adding fresh medium with 10% FCS during microgravity exposure. Four days after serum activation, the cells were fixed before return to normal Earth gravity. Ground controls were treated in parallel with the flight samples in identical equipment. On landing, cell number, cell cytoskeleton, glucose utilization, and prostaglandin synthesis in flight (n = 4) and ground controls (n = 4) were examined. The flown osteoblasts grew slowly in microgravity with total cell number significantly reduced (55 +/- 6 vs 141 +/- 8 cells per microscopic field). The cytoskeleton of the flight osteoblasts had a reduced number of stress fibers and a unique abnormal morphology. Nuclei in the ground controls were large and round with punctate Hoechst staining of the DNA nucleosomes. The flight nuclei were 30% smaller than the controls (P < 0.0001) and oblong in shape, with fewer punctate areas. Due to their reduced numbers, the cells activated in microgravity used significantly less glucose than ground controls (80.2 +/- 0.7 vs 50.3 +/- 3.7 mg of glucose/dl remaining in the medium) and had reduced prostaglandin E2 (PGE2) synthesis when compared to controls (57.3 +/- 17 vs 138.3 +/- 41 pmol/ml). Cell viability was normal since, on a per-cell basis, glucose use and prostaglandin synthesis were comparable for flight and ground samples. Taken together, these data suggest that growth activation in microgravity results in reduced growth, causing reduced glucose utilization and reduced prostaglandin synthesis, with significantly altered actin cytoskeleton in osteoblasts.

  10. Effects of microgravity on osteoblast growth activation

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.; Lewis, M. L.

    1996-01-01

    Space flight is an environmental condition where astronauts can lose up to 19% of weight-bearing bone during long duration missions. We used the MC3T3-E1 osteoblast to investigate bone cell growth in microgravity (10(-6) to 10(-9)g). Osteoblasts were launched on the STS-56 shuttle flight in a quiescent state with 0.5% fetal calf serum (FCS) medium and growth activation was initiated by adding fresh medium with 10% FCS during microgravity exposure. Four days after serum activation, the cells were fixed before return to normal Earth gravity. Ground controls were treated in parallel with the flight samples in identical equipment. On landing, cell number, cell cytoskeleton, glucose utilization, and prostaglandin synthesis in flight (n = 4) and ground controls (n = 4) were examined. The flown osteoblasts grew slowly in microgravity with total cell number significantly reduced (55 +/- 6 vs 141 +/- 8 cells per microscopic field). The cytoskeleton of the flight osteoblasts had a reduced number of stress fibers and a unique abnormal morphology. Nuclei in the ground controls were large and round with punctate Hoechst staining of the DNA nucleosomes. The flight nuclei were 30% smaller than the controls (P < 0.0001) and oblong in shape, with fewer punctate areas. Due to their reduced numbers, the cells activated in microgravity used significantly less glucose than ground controls (80.2 +/- 0.7 vs 50.3 +/- 3.7 mg of glucose/dl remaining in the medium) and had reduced prostaglandin E2 (PGE2) synthesis when compared to controls (57.3 +/- 17 vs 138.3 +/- 41 pmol/ml). Cell viability was normal since, on a per-cell basis, glucose use and prostaglandin synthesis were comparable for flight and ground samples. Taken together, these data suggest that growth activation in microgravity results in reduced growth, causing reduced glucose utilization and reduced prostaglandin synthesis, with significantly altered actin cytoskeleton in osteoblasts.

  11. Insulin-like growth factor 1 receptor and p38 mitogen-activated protein kinase signals inversely regulate signal transducer and activator of transcription 3 activity to control human dental pulp stem cell quiescence, propagation, and differentiation.

    PubMed

    Vandomme, Jerome; Touil, Yasmine; Ostyn, Pauline; Olejnik, Cecile; Flamenco, Pilar; El Machhour, Raja; Segard, Pascaline; Masselot, Bernadette; Bailliez, Yves; Formstecher, Pierre; Polakowska, Renata

    2014-04-15

    Dental pulp stem cells (DPSCs) remain quiescent until activated in response to severe dental pulp damage. Once activated, they exit quiescence and enter regenerative odontogenesis, producing reparative dentin. The factors and signaling molecules that control the quiescence/activation and commitment to differentiation of human DPSCs are not known. In this study, we determined that the inhibition of insulin-like growth factor 1 receptor (IGF-1R) and p38 mitogen-activated protein kinase (p38 MAPK) signaling commonly activates DPSCs and promotes their exit from the G0 phase of the cell cycle as well as from the pyronin Y(low) stem cell compartment. The inhibition of these two pathways, however, inversely determines DPSC fate. In contrast to p38 MAPK inhibitors, IGF-1R inhibitors enhance dental pulp cell sphere-forming capacity and reduce the cells' colony-forming capacity without inducing cell death. The inverse cellular changes initiated by IGF-1R and p38 MAPK inhibitors were accompanied by inverse changes in the levels of active signal transducer and activator of transcription 3 (STAT3) factor, inactive glycogen synthase kinase 3, and matrix extracellular phosphoglycoprotein, a marker of early odontoblast differentiation. Our data suggest that there is cross talk between the IGF-1R and p38 MAPK signaling pathways in DPSCs and that the signals provided by these pathways converge at STAT3 and inversely regulate its activity to maintain quiescence or to promote self-renewal and differentiation of the cells. We propose a working model that explains the possible interactions between IGF-1R and p38 MAPK at the molecular level and describes the cellular consequences of these interactions. This model may inspire further fundamental study and stimulate research on the clinical applications of DPSC in cellular therapy and tissue regeneration. PMID:24266654

  12. Growth regulation of cultured human nevus cells.

    PubMed

    Mancianti, M L; Györfi, T; Shih, I M; Valyi-Nagy, I; Levengood, G; Menssen, H D; Halpern, A C; Elder, D E; Herlyn, M

    1993-03-01

    Cells isolated from congenital melanocytic nevi and cultured in vitro have growth characteristics that resemble their premalignant stage in situ. A serum-free, chemically defined medium has been developed that allows continuous growth of established nevus cultures for up to several months. Like primary melanoma cells, nevus cells in high-calcium-containing W489 medium require insulin for growth. In contrast to melanoma cells, nevus cells in serum-free medium require the presence of alpha-melanocyte-stimulating hormone, which enhanced intracellular levels of cyclic adenosine monophosphate. In contrast to the requirements of normal human melanocytes from newborn foreskin, congenital nevus cells grow with less dependency on basic fibroblast growth factor (bFGF). Nevus cultures contain bFGF-like activity, and they express bFGF mRNA. Nevic cells of compound nevi also express bFGF mRNA in situ but only in the junctional areas. These results indicate that bFGF plays an important growth regulatory role for nevus cells in vitro and in vivo. PMID:8440904

  13. Abrogation of Gli3 expression suppresses the growth of colon cancer cells via activation of p53

    SciTech Connect

    Kang, Han Na; Oh, Sang Cheul; Kim, Jun Suk

    2012-03-10

    p53, the major human tumor suppressor, appears to be related to sonic hedgehog (Shh)-Gli-mediated tumorigenesis. However, the role of p53 in tumor progression by the Shh-Gli signaling pathway is poorly understood. Herein we investigated the critical regulation of Gli3-p53 in tumorigenesis of colon cancer cells and the molecular mechanisms underlying these effects. RT-PCR analysis indicated that the mRNA level of Shh and Gli3 in colon tumor tissues was significantly higher than corresponding normal tissues (P < 0.001). The inhibition of Gli3 by treatment with Gli3 siRNA resulted in a clear decrease in cell proliferation and enhanced the level of expression of p53 proteins compared to treatment with control siRNA. The half-life of p53 was dramatically increased by treatment with Gli3 siRNA. In addition, treatment with MG132 blocked MDM2-mediated p53 ubiquitination and degradation, and led to accumulation of p53 in Gli3 siRNA-overexpressing cells. Importantly, ectopic expression of p53 siRNA reduced the ability of Gli3 siRNA to suppress proliferation of those cells compared with the cells treated with Gli3 siRNA alone. Moreover, Gli3 siRNA sensitized colon cancer cells to treatment with anti-cancer agents (5-FU and bevacizumab). Taken together, our studies demonstrate that loss of Gli3 signaling leads to disruption of the MDM2-p53 interaction and strongly potentiate p53-dependent cell growth inhibition in colon cancer cells, indicating a basis for the rational use of Gli3 antagonists as a novel treatment option for colon cancer.

  14. Influence of extracellular pH on growth, viability, cell size, acidification activity, and intracellular pH of Lactococcus lactis in batch fermentations.

    PubMed

    Hansen, Gunda; Johansen, Claus Lindvald; Marten, Gunvor; Wilmes, Jacqueline; Jespersen, Lene; Arneborg, Nils

    2016-07-01

    In this study, we investigated the influence of three extracellular pH (pHex) values (i.e., 5.5, 6.5, and 7.5) on the growth, viability, cell size, acidification activity in milk, and intracellular pH (pHi) of Lactococcus lactis subsp. lactis DGCC1212 during pH-controlled batch fermentations. A universal parameter (e.g., linked to pHi) for the description or prediction of viability, specific acidification activity, or growth behavior at a given pHex was not identified. We found viability as determined by flow cytometry to remain high during all growth phases and irrespectively of the pH set point. Furthermore, regardless of the pHex, the acidification activity per cell decreased over time which seemed to be linked to cell shrinkage. Flow cytometric pHi determination demonstrated an increase of the averaged pHi level for higher pH set points, while the pH gradient (pHi-pHex) and the extent of pHi heterogeneity decreased. Cells maintained positive pH gradients at a low pHex of 5.5 and even during substrate limitation at the more widely used pHex 6.5. Moreover, the strain proved able to grow despite small negative or even absent pH gradients at a high pHex of 7.5. The larger pHi heterogeneity at pHex 5.5 and 6.5 was associated with more stressful conditions resulting, e.g., from higher concentrations of non-dissociated lactic acid, while the low pHi heterogeneity at pHex 7.5 most probably corresponded to lower concentrations of non-dissociated lactic acid which facilitated the cells to reach the highest maximum active cell counts of the three pH set points. PMID:27020293

  15. Influence of extracellular pH on growth, viability, cell size, acidification activity, and intracellular pH of Lactococcus lactis in batch fermentations.

    PubMed

    Hansen, Gunda; Johansen, Claus Lindvald; Marten, Gunvor; Wilmes, Jacqueline; Jespersen, Lene; Arneborg, Nils

    2016-07-01

    In this study, we investigated the influence of three extracellular pH (pHex) values (i.e., 5.5, 6.5, and 7.5) on the growth, viability, cell size, acidification activity in milk, and intracellular pH (pHi) of Lactococcus lactis subsp. lactis DGCC1212 during pH-controlled batch fermentations. A universal parameter (e.g., linked to pHi) for the description or prediction of viability, specific acidification activity, or growth behavior at a given pHex was not identified. We found viability as determined by flow cytometry to remain high during all growth phases and irrespectively of the pH set point. Furthermore, regardless of the pHex, the acidification activity per cell decreased over time which seemed to be linked to cell shrinkage. Flow cytometric pHi determination demonstrated an increase of the averaged pHi level for higher pH set points, while the pH gradient (pHi-pHex) and the extent of pHi heterogeneity decreased. Cells maintained positive pH gradients at a low pHex of 5.5 and even during substrate limitation at the more widely used pHex 6.5. Moreover, the strain proved able to grow despite small negative or even absent pH gradients at a high pHex of 7.5. The larger pHi heterogeneity at pHex 5.5 and 6.5 was associated with more stressful conditions resulting, e.g., from higher concentrations of non-dissociated lactic acid, while the low pHi heterogeneity at pHex 7.5 most probably corresponded to lower concentrations of non-dissociated lactic acid which facilitated the cells to reach the highest maximum active cell counts of the three pH set points.

  16. Xyloglucan oligosaccharides promote growth and activate cellulase: Evidence for a role of cellulase in cell expansion. [Pisum sativum L

    SciTech Connect

    McDougall, G.J.; Fry, S.C. )

    1990-07-01

    Oligosaccharides produced by the action of fungal cellulase on xyloglucans promoted the elongation of etiolated pea (Pisum sativum L.) stem segments in a straight-growth bioassay designed for the determination of auxins. The oligosaccharides were most active at about 1 micromolar. We tested the relative growth-promoting activities of four HPLC-purified oligosaccharides which shared a common glucose{sub 4} {center dot} xylose{sub 3} (XG7) core. The substituted oligosaccharides XG8 (glucose{sub 4} {center dot} xylose{sub 3} {center dot} galactose) and XG9n (glucose{sub 4} {center dot} xylose{sub 3} {center dot} galactose{sub 2}) were more effective than XG7 itself and XG9 (glucose{sub 4} {center dot} xylose{sub 3} {center dot} galactose {center dot} fucose). The same oligosaccharides also promoted the degradation, assayed viscometrically, of xyloglucan by an acidic cellulase from bean (Phaseolus vulgaris L.) leaves. The oligosaccharides were highly active at 10{sup {minus}4} molar, causing up to a fourfold increase in activity, but the effect was still detectable at 1 micromolar. Those oligosaccharides (XG8 and XG9n) which best promoted growth, stimulated cellulase activity to the greatest extent. The oligosaccharides did not stimulate the action of the cellulase in an assay based on the conversion of ({sup 3}H)xyloglucan to ethanol-soluble fragments. This suggests that the oligosaccharides enhanced the midchain hydrolysis of xyloglucan molecules (which would rapidly reduce the viscosity of the solution), at the expense of cleavage near the termini (which would yield ethanol-soluble products).

  17. Fermented milk containing Lactobacillus GG alleviated DSS-induced colitis in mice and activated epidermal growth factor receptor and Akt signaling in intestinal epithelial cells.

    PubMed

    Yoda, Kazutoyo; He, Fang; Miyazawa, Kenji; Hiramatsu, Masaru; Yan, Fang

    2012-01-01

    Lactobacillus rhamnosus GG was assessed for its ability to alleviate DSS-induced colitis in mice and activate epidermal growth factor receptor and Akt signaling in intestinal epithelial cells. In this study mice were treated with DSS to induce colitis and they were given Lactobacillus GG fermented milk to assess the effect of probiotic on colitis. Lactobacillus GG fermented milk significantly reduced the colitis associated changes suggesting a protective effect against DSS induced colitis.

  18. Inhibiting oncogenic signaling by sorafenib activates PUMA via GSK3β and NF-κB to suppress tumor cell growth.

    PubMed

    Dudgeon, C; Peng, R; Wang, P; Sebastiani, A; Yu, J; Zhang, L

    2012-11-15

    Aberrant Ras/Raf/MEK/ERK signaling is one of the most prevalent oncogenic alterations and confers survival advantage to tumor cells. Inhibition of this pathway can effectively suppress tumor cell growth. For example, sorafenib, a multi-kinase inhibitor targeting c-Raf and other oncogenic kinases, has been used clinically for treating advanced liver and kidney tumors, and also has shown efficacy against other malignancies. However, how inhibition of oncogenic signaling by sorafenib and other drugs suppresses tumor cell growth remains unclear. In this study, we found that sorafenib kills cancer cells by activating PUMA (p53-upregulated modulator of apoptosis), a p53 target and a BH3-only Bcl-2 family protein. Sorafenib treatment induces PUMA in a variety of cancer cells irrespective of their p53 status. Surprisingly, the induction of PUMA by sorafenib is mediated by IκB-independent activation of nuclear factor (NF)-κB, which directly binds to the PUMA promoter to activate its transcription. NF-κB activation by sorafenib requires glycogen synthase kinase 3β activation, subsequent to ERK inhibition. Deficiency in PUMA abrogates sorafenib-induced apoptosis and caspase activation, and renders sorafenib resistance in colony formation and xenograft tumor assays. Furthermore, the chemosensitization effect of sorafenib is dependent on PUMA, and involves concurrent PUMA induction through different pathways. BH3 mimetics potentiate the anti-cancer effects of sorafenib, and restore sorafenib sensitivity in resistant cells. Together, these results demonstrate a key role of PUMA-dependent apoptosis in therapeutic inhibition of Ras/Raf/MEK/ERK signaling. They provide a rationale for manipulating the apoptotic machinery to improve sensitivity and overcome resistance to the therapies that target oncogenic kinase signaling.

  19. Blockade of GpIIb/IIIa inhibits the release of vascular endothelial growth factor (VEGF) from tumor cell-activated platelets and experimental metastasis.

    PubMed

    Amirkhosravi, A; Amaya, M; Siddiqui, F; Biggerstaff, J P; Meyer, T V; Francis, J L

    1999-01-01

    Evidence that platelets play a role in tumor metastasis includes the observation of circulating tumor cell-platelet aggregates and the anti-metastatic effect of thrombocytopenia and anti-platelet drugs. Platelets have recently been shown to contain vascular endothelial growth factor (VEGF) which is released during clotting. We therefore studied the effects of (1) tumor cell-platelet adherence and tumor cell TF activity on platelet VEGF release; and (2) the effects of GpIIb/IIIa blockade on tumor cell-induced platelet VEGF release, tumor cell-induced thrombocytopenia and experimental metastasis. Adherent A375 human melanoma cells (TF+) and KG1 myeloid leukemia (TF-) cells were cultured in RPMI containing 10% fetal bovine serum. Platelet-rich plasma was obtained from normal citrated whole blood and the presence of VEGF (34 and 44 kDa isoforms) confirmed by immunoblotting. Platelet-rich plasma with or without anti-GpIIb/IIIa (Abciximab) was added to A375 monolayers and supernatant VEGF measured by ELISA. Tumor cell-induced platelet activation and release were determined by CD62P expression and serotonin release respectively. In vitro, tumor cell-platelet adherence was evaluated by flow cytometry. In vivo, thrombocytopenia and lung seeding were assessed 30 min and 18 days, respectively, after i.v. injection of Lewis Lung carcinoma (LL2) cells into control or murine 7E3 F(ab')(2) (6 mg/ kg) athymic rats. Maximal in vitro platelet activation (72% serotonin release) occurred 30 min after adding platelets to tumor cells. At this time, 87% of the A375 cells had adhered to platelets. Abciximab significantly (P<0.05) reduced platelet adherence to tumor cells as evidenced by flow cytometry. Incubation of A375 cells with platelets induced VEGF release in a time-dependent manner. This release was significantly inhibited by Abciximab (81% at 30 min; P<0.05). In the presence of fibrinogen and FII, VEGF release induced by A375 (TF+) cells was significantly higher than that induced

  20. Blockade of GpIIb/IIIa inhibits the release of vascular endothelial growth factor (VEGF) from tumor cell-activated platelets and experimental metastasis.

    PubMed

    Amirkhosravi, A; Amaya, M; Siddiqui, F; Biggerstaff, J P; Meyer, T V; Francis, J L

    1999-01-01

    Evidence that platelets play a role in tumor metastasis includes the observation of circulating tumor cell-platelet aggregates and the anti-metastatic effect of thrombocytopenia and anti-platelet drugs. Platelets have recently been shown to contain vascular endothelial growth factor (VEGF) which is released during clotting. We therefore studied the effects of (1) tumor cell-platelet adherence and tumor cell TF activity on platelet VEGF release; and (2) the effects of GpIIb/IIIa blockade on tumor cell-induced platelet VEGF release, tumor cell-induced thrombocytopenia and experimental metastasis. Adherent A375 human melanoma cells (TF+) and KG1 myeloid leukemia (TF-) cells were cultured in RPMI containing 10% fetal bovine serum. Platelet-rich plasma was obtained from normal citrated whole blood and the presence of VEGF (34 and 44 kDa isoforms) confirmed by immunoblotting. Platelet-rich plasma with or without anti-GpIIb/IIIa (Abciximab) was added to A375 monolayers and supernatant VEGF measured by ELISA. Tumor cell-induced platelet activation and release were determined by CD62P expression and serotonin release respectively. In vitro, tumor cell-platelet adherence was evaluated by flow cytometry. In vivo, thrombocytopenia and lung seeding were assessed 30 min and 18 days, respectively, after i.v. injection of Lewis Lung carcinoma (LL2) cells into control or murine 7E3 F(ab')(2) (6 mg/ kg) athymic rats. Maximal in vitro platelet activation (72% serotonin release) occurred 30 min after adding platelets to tumor cells. At this time, 87% of the A375 cells had adhered to platelets. Abciximab significantly (P<0.05) reduced platelet adherence to tumor cells as evidenced by flow cytometry. Incubation of A375 cells with platelets induced VEGF release in a time-dependent manner. This release was significantly inhibited by Abciximab (81% at 30 min; P<0.05). In the presence of fibrinogen and FII, VEGF release induced by A375 (TF+) cells was significantly higher than that induced

  1. Human prostatic tumor cells in culture produce growth and differentiation factors active on osteoblasts: a new biological and clinical parameter for prostatic carcinoma.

    PubMed

    Festuccia, C; Teti, A; Bianco, P; Guerra, F; Vicentini, C; Tennina, R; Villanova, I; Sciortino, G; Bologna, M

    1997-01-01

    Prostate cancer (PRCA) cells metastasize to bone with high frequency, inducing typical osteosclerotic lesions. To establish if local stimuli on the bone tissue may derive from metastatic colonies of prostatic origin, we evaluated the biologic activities secreted by human prostatic epithelium and effective on osteoblast-like cells in vitro. Supernatant from short-term tissue cultures of human prostatic tissue samples obtained from PRCA (35 cases) and benign prostatic hyperplasia (BPH, 12 cases) patients were applied to three models of cells with osteoblastic phenotype: two normal [rabbit osteoblasts (OB) and rat periosteal cells (PO)] and one transformed (human osteosarcoma cell line, MG63). Proliferative activity was monitored through enzymatic reduction of tetrazolium salts and expressed as relative mitogenic activities (RMA). Analysis of proliferation and alkaline phosphatase (ALP) activity, a marker of osteoblast function, demonstrates that conditioned media (CM) from PRCA cultures stimulate both growth and activity of osteoblast-like cells to a greater extent compared to CM from BPH. Furthermore, cell growth and activity of osteoblast-like cells are progressively increased by CM derived from patients with stage B (tumor confined within the prostate capsule), stage C (locally invasive tumor), and stage D (invasive tumor with distant metastasis) disease. One of the mechanisms potentially underlying the CM-stimulated effects on bone cells is associated with the urokinase (uPA) enzyme route, whose release progressively increases with the stage of disease. However, antibodies against uPA and p-aminobenzamidine (a low molecular weight urokinase inhibitor) treatment, which both inhibit the proliferative and differentiative effects induced by exogenous urokinase, partially slow down the effects of CM from PRCA tissue cultures, suggesting that additional factors are secreted by prostatic tumor cells in vitro. In conclusion, we show that the mitogenic and differentiative

  2. Epithelial to mesenchymal transition in arsenic-transformed cells promotes angiogenesis through activating β-catenin–vascular endothelial growth factor pathway

    SciTech Connect

    Wang, Zhishan; Humphries, Brock; Xiao, Hua; Jiang, Yiguo; Yang, Chengfeng

    2013-08-15

    Arsenic exposure represents a major health concern increasing cancer risks, yet the mechanism of arsenic carcinogenesis has not been elucidated. We and others recently reported that cell malignant transformation by arsenic is accompanied by epithelial to mesenchymal transition (EMT). However, the role of EMT in arsenic carcinogenesis is not well understood. Although previous studies showed that short term exposure of endothelial cells to arsenic stimulated angiogenesis, it remains to be determined whether cells that were malignantly transformed by long term arsenic exposure have a pro-angiogenic effect. The objective of this study was to investigate the effect of arsenic-transformed human bronchial epithelial cells that underwent EMT on angiogenesis and the underlying mechanism. It was found that the conditioned medium from arsenic-transformed cells strongly stimulated tube formation by human umbilical vein endothelial cells (HUVECs). Moreover, enhanced angiogenesis was detected in mouse xenograft tumor tissues resulting from inoculation of arsenic-transformed cells. Mechanistic studies revealed that β-catenin was activated in arsenic-transformed cells up-regulating its target gene expression including angiogenic-stimulating vascular endothelial growth factor (VEGF). Stably expressing microRNA-200b in arsenic-transformed cells that reversed EMT inhibited β-catenin activation, decreased VEGF expression and reduced tube formation by HUVECs. SiRNA knockdown β-catenin decreased VEGF expression. Adding a VEGF neutralizing antibody into the conditioned medium from arsenic-transformed cells impaired tube formation by HUVECs. Reverse transcriptase-PCR analysis revealed that the mRNA levels of canonical Wnt ligands were not increased in arsenic-transformed cells. These findings suggest that EMT in arsenic-transformed cells promotes angiogenesis through activating β-catenin–VEGF pathway. - Highlights: • Arsenic-transformed cells that underwent EMT displayed a pro

  3. ERas protein is overexpressed and binds to the activated platelet-derived growth factor β receptor in bovine urothelial tumour cells associated with papillomavirus infection.

    PubMed

    Russo, Valeria; Roperto, Franco; Esposito, Iolanda; Ceccarelli, Dora Maria; Zizzo, Nicola; Leonardi, Leonardo; Capparelli, Rosanna; Borzacchiello, Giuseppe; Roperto, Sante

    2016-06-01

    Embryonic stem cell-expressed Ras (ERas) encodes a constitutively active form of guanosine triphosphatase (GTPase) that binds to and activates phosphatidylinositol 3 kinase (PI3K), which in turn phosphorylates and activates downstream targets such as Akt. The current study evaluated ERas regulation and expression in papillomavirus-associated urothelial tumours in cattle grazing on lands rich in bracken fern. ERas was found upregulated and overexpressed by PCR, real time PCR and Western blot. Furthermore, protein overexpression was also confirmed by immunohistochemistry. ERas was found to interact physically and colocalise with the activated platelet derived growth factor β receptor (PDGFβR) by coimmunoprecipitation and laser scanning confocal investigations. Phosphorylation of Akt, a downstream effector both of ERas and PDGFβR, appeared to be increased in urothelial tumour cells. Altogether, these data indicate that ERas/PDGFβR complex could play a role in the pathogenesis of bovine papillomavirus-associated bladder neoplasia. PMID:27256024

  4. Bifunctional silver nanoparticle cathode in microbial fuel cells for microbial growth inhibition with comparable oxygen reduction reaction activity.

    PubMed

    An, Junyeong; Jeon, Hongrae; Lee, Jaeyoung; Chang, In Seop

    2011-06-15

    Organic contamination of water bodies in which benthic microbial fuel cells (benthic MFCs) are installed, and organic crossover from the anode to the cathode of membraneless MFCs, is a factor causing oxygen depletion and substrate loss in the cathode due to the growth of heterotrophic aerobic bacteria. This study examines the possible use of silver nanoparticles (AgNPs) as a cathodic catalyst for MFCs suffering from organic contamination and oxygen depletion. Four treated cathodes (AgNPs-coated, Pt/C-coated, Pt/C+AgNPs-coated, and plain graphite cathodes) were prepared and tested under high levels of organics loading. During operation (fed with 50 mM acetate), the AgNPs-coated system showed the highest DO concentration (0.8 mg/L) in the cathode area as well as the highest current (ranging from 0.04 to 0.12 mA). Based on these results, we concluded that (1) the growth of oxygen-consuming heterotrophic microbes could be inhibited by AgNPs, (2) the function of AgNPs as a bacterial growth inhibitor resulted in a greater increase of DO concentration in the cathode than the other tested cathode systems, (3) AgNPs could be applied as a cathode catalyst for oxygen reduction, and as a result (4) the MFC with the AgNPs-coated cathode led to the highest current generation among the tested MFCs. PMID:21585217

  5. Metformin Induced AMPK Activation, G0/G1 Phase Cell Cycle Arrest and the Inhibition of Growth of Esophageal Squamous Cell Carcinomas In Vitro and In Vivo.

    PubMed

    Cai, Xianbin; Hu, Xi; Tan, Xiaojun; Cheng, Weijie; Wang, Qinjia; Chen, Xiaofeng; Guan, Yinghong; Chen, Chong; Jing, Xubin

    2015-01-01

    Esophageal squamous cell carcinomas (ESCC) have become a severe threat to health and the current treatments for ESCC are frequently not effective. Recent epidemiological studies suggest that the anti-hyperglycemic agent metformin may reduce the risk of developing cancer, including ESCC, among diabetic patients. However, the antitumor effects of metformin on ESCC and the mechanisms underlying its cell cycle regulation remain elusive. The findings reported herein show that the anti-proliferative action of metformin on ESCC cell lines is partially mediated by AMPK. Moreover, we observed that metformin induced G0/G1 phase arrest accompanied by the up-regulation of p21CIP1 and p27KIP1. In vivo experiments further showed that metformin inhibited tumor growth in a ESCC xenograft model. Most importantly, the up-regulation of AMPK, p53, p21CIP1, p27KIP1 and the down-regulation of cyclinD1 are involved in the anti-tumor action of metformin in vivo. In conclusion, metformin inhibits the growth of ESCC cells both in cell cultures and in an animal model. AMPK, p53, p21CIP1, p27KIP1 and cyclinD1 are involved in the inhibition of tumor growth that is induced by metformin and cell cycle arrest in ESCC. These findings indicate that metformin has the potential for use in the treatment of ESCC.

  6. FAP-α (Fibroblast activation protein-α) is involved in the control of human breast cancer cell line growth and motility via the FAK pathway

    PubMed Central

    2014-01-01

    Background Fibroblast Activation Protein alpha (FAP-α) or seprase is an integral membrane serine peptidase. Previous work has not satisfactorily explained both the suppression and promotion effects that have been observed in cancer. The purpose of this work was to investigate the role of FAP-α in human breast cancer. Expression of FAP-α was characterized in primary tumour samples and in cell lines, along with the effects of FAP-α expression on in vitro growth, invasion, attachment and migration. Furthermore the potential interaction of FAP-α with other signalling pathways was investigated. Results FAP-α was significantly increased in patients with poor outcome and survival. In vitro results showed that breast cancer cells over expressing FAP-α had increased growth ability and impaired migratory ability. The growth of MDA-MB-231 cells and the adhesion and invasion ability of both MCF-7 cells and MDA-MB-231 cells were not dramatically influenced by FAP-α expression. Over-expression of FAP-α resulted in a reduction of phosphorylated focal adhesion kinase (FAK) level in both cells cultured in normal media and serum-free media. An inhibitor to FAK restored the reduced motility ability of both MCF-7exp cells and MDA-MB-231exp cells and prevented the change in phosphorylated FAK levels. However, inhibitors to PI3K, ERK, PLCϒ, NWASP, ARP2/3, and ROCK had no influence this. Conclusions FAP-α in significantly associated with poor outcome in patients with breast cancer. In vitro, FAP-α promotes proliferation and inhibits migration of breast cancer cells, potentially by regulating the FAK pathway. These results suggest FAP-α could be a target for future therapies. PMID:24885257

  7. Mdm2 ligase dead mutants did not act in a dominant negative manner to re-activate p53, but promoted tumor cell growth.

    PubMed

    Swaroop, Manju; Sun, Yi

    2003-01-01

    Mdm2 (murine double minute 2) is an oncogene, first identified in BALB/c 3T3 cells. Over-expression and gene amplification of Mdm2 were found in a variety of human cancers. Recently, Mdm2 was found to be an E3 ubiquitin ligase that promotes degradation of p53, which contributes significantly to its oncogenic activity. In this study, we test a hypothesis that Mdm2 ligase dead mutants, which retained p53 binding activity but lost degradation activity, would act in a dominant negative manner to re-activate p53, especially upon stressed conditions. Five Mdm2 constructs expressing wild-type and E3 ligase-dead Mdm2 proteins were generated in a Tet-Off system and transfected into MCF-7 breast cancer cells (p53+/+ with Mdm2 overexpression) as well as MCF10A immortalized breast cells (p53+/+ without Mdm2 overexpression) as a normal control. We found that expression of Mdm2 mutants were tightly regulated by doxycycline. Withdrawal of doxycycline in culture medium triggered overexpression of Mdm2 mutants. However, expression of ligase dead mutants in MCF7 and MCF10A cells did not reactivate p53 as shown by a luciferase-reporter transcription assay and Western blot of p53 and its downstream target p21 under either unstressed condition or after exposure to DNA damaging agents. Biologically, over-expression of Mdm2 mutants had no effect on p53-induced apoptosis following DNA damage. Interestingly, over-expression of Mdm2 mutants promoted growth of MCF7 tumor cells probably via a p53-independent mechanism. Over-expression of Mdm2 mutants, however, had no effect on the growth of normal MCF10A cells and did not cause their transformation. Thus, ligase dead mutants of Mdm2 did not act in a dominant negative manner to reactivate p53 and they are not oncogenes in MCF10A cells.

  8. Biological evaluation of synthesized allicin and its transformation products obtained by microwaves in methanol: antioxidant activity and effect on cell growth

    PubMed Central

    Ilić, Dušica P.; Stojanović, Sanja; Najman, Stevo; Nikolić, Vesna D.; Stanojević, Ljiljana P.; Tačić, Ana; Nikolić, Ljubiša B.

    2015-01-01

    Allicin is the most biologically active substance present in garlic. It can be synthesized or obtained by extraction of fresh garlic. Transformation products of allicin are also biologically active. The aim of this study was to examine the antioxidant activity of synthesized allicin and its transformation products obtained using microwaves in methanol at 55 °C as well as their effect on HeLa cells growth. The antioxidant activity was determined by DPPH (2,2-diphenyl-1-picrylhydrazyl radical) test. The effect on HeLa cells growth was determined by MTT (3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) test. For MTT test, allicin and its transformation products were dispersed in carmellose sodium solution and examined in concentrations ranging from 0.3 μg/mL to 3 mg/mL. Allicin showed stronger antioxidant activity than the transformation products. A maximum degree of neutralization of DPPH radicals, about 90%, was reached when the concentration of allicin was 2 mg/mL, with an EC50 (concentration of sample which is required for reduction of the initial concentration DPPH radicals to 50%) value of 0.37 mg/mL. In our study, allicin and its transformation products were not cytotoxic to HeLa cells under the examined conditions. The highest concentration of allicin and its transformation products had a slight antiproliferative effect, with a more pronounced effect of allicin, which reflected on the morphology of HeLa cells. The examined substances are safe to use on epithelial cells at concentrations up to 3 mg/mL when applied in carmellose sodium solution. Using carmellose sodium as a dispersing agent could be recommended as a good approach for testing liposoluble substances in liquid cell cultures. PMID:26019632

  9. Role of NF-κB activation in matrix metalloproteinase 9, vascular endothelial growth factor and interleukin 8 expression and secretion in human breast cancer cells.

    PubMed

    Li, Caijuan; Guo, Sufen; Shi, Tiemei

    2013-04-01

    The aims of this study were to assess the effects and potential mechanisms of parthenolide on the expression of vascular endothelial growth factor (VEGF), interleukin 8 (IL-8) and matrix metalloproteinase 9 (MMP-9) in human breast cancer cell line MDA-MB-231. After incubation with different concentrations of parthenolide for 24 h, MDA-MB-231 cells were collected, and the expressions of VEGF, IL-8 and MMP-9 were measured by real-time PCR and Western blot. The secretions of VEGF, IL-8 and MMP-9 in culture supernatant of MDA-MB-231 cells were then measured with ELISA assays. The NF-κB DNA-binding activity of breast cancer cells treated with parthenolide was analyzed using electrophoretic mobility assays. The real-time PCR and Western blot data showed that the expressions of VEGF, IL-8 and MMP-9 were significantly inhibited by parthenolide at both transcription level and protein level in MDA-MB-231 cells. ELISA results also confirmed these effects at a secretion level. The electrophoretic mobility assay results demonstrated that parthenolide can inhibit NF-κB DNA-binding activity of the breast cancer cells. Hence, the expression of VEGF, IL-8 and MMP-9 may be suppressed by parthenolide through the inhibition of NF-κB DNA-binding activity in MDA-MB-231 cells.

  10. Graphene Nanoribbons Elicit Cell Specific Uptake and Delivery Via Activation of Epidermal Growth Factor Receptor Enhanced by Human PapillomaVirus E5 Protein

    PubMed Central

    Chowdhury, Sayan Mullick; Mannepalli, Prady; Sitharaman, Balaji

    2014-01-01

    Ligands such as peptides, antibodies or other epitopes bind and activate specific cell receptors, and are employed for targeted cellular delivery of pharmaceuticals such as drugs, genes and imaging agents. Herein, we show that oxidized graphene nanoribbons, non-covalently functionalized with PEG-DSPE (1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-N[amino(polyethyleneglycol)]) (O-GNR-PEG-DSPE) activate epidermal growth factor receptors (EGFRs). This activation generates predominantly dynamin-dependent macropinocytosis-like response, and results in significant O-GNR-PEG-DSPE uptake into cells with high EGFR expression. Cells with an integrated human papillomavirus (HPV) genome also show increased uptake due to the modulation of the activated EFGR by the viral protein E5. We demonstrate that this cell specific uptake of O-GNR-PEG-DSPE can be exploited to achieve significantly enhanced drug efficacies even in drug resistant cells. These results have implications towards the development of active targeting and delivery agents without ligand functionalization for use in the diagnosis and treatment of pathologies that overexpress EGFR or mediated by HPV. PMID:24980059

  11. Addition of Selenium Nanoparticles to Electrospun Silk Scaffold Improves the Mammalian Cell Activity While Reducing Bacterial Growth.

    PubMed

    Chung, Stanley; Ercan, Batur; Roy, Amit K; Webster, Thomas J

    2016-01-01

    Silk possesses many beneficial wound healing properties, and electrospun scaffolds are especially applicable for skin applications, due to their smaller interstices and higher surface areas. However, purified silk promotes microbial growth. Selenium nanoparticles have shown excellent antibacterial properties and are a novel antimicrobial chemistry. Here, electrospun silk scaffolds were doped with selenium nanoparticles to impart antibacterial properties to the silk scaffolds. Results showed significantly improved bacterial inhibition and mild improvement in human dermal fibroblast metabolic activity. These results suggest that the addition of selenium nanoparticles to electrospun silk is a promising approach to improve wound healing with reduced infection, without relying on antibiotics. PMID:27471473

  12. Addition of Selenium Nanoparticles to Electrospun Silk Scaffold Improves the Mammalian Cell Activity While Reducing Bacterial Growth

    PubMed Central

    Chung, Stanley; Ercan, Batur; Roy, Amit K.; Webster, Thomas J.

    2016-01-01

    Silk possesses many beneficial wound healing properties, and electrospun scaffolds are especially applicable for skin applications, due to their smaller interstices and higher surface areas. However, purified silk promotes microbial growth. Selenium nanoparticles have shown excellent antibacterial properties and are a novel antimicrobial chemistry. Here, electrospun silk scaffolds were doped with selenium nanoparticles to impart antibacterial properties to the silk scaffolds. Results showed significantly improved bacterial inhibition and mild improvement in human dermal fibroblast metabolic activity. These results suggest that the addition of selenium nanoparticles to electrospun silk is a promising approach to improve wound healing with reduced infection, without relying on antibiotics. PMID:27471473

  13. Insulin-like growth factor-I extends in vitro replicative life span of skeletal muscle satellite cells by enhancing G1/S cell cycle progression via the activation of phosphatidylinositol 3'-kinase/Akt signaling pathway

    NASA Technical Reports Server (NTRS)

    Chakravarthy, M. V.; Abraha, T. W.; Schwartz, R. J.; Fiorotto, M. L.; Booth, F. W.

    2000-01-01

    Interest is growing in methods to extend replicative life span of non-immortalized stem cells. Using the insulin-like growth factor I (IGF-I) transgenic mouse in which the IGF-I transgene is expressed during skeletal muscle development and maturation prior to isolation and during culture of satellite cells (the myogenic stem cells of mature skeletal muscle fibers) as a model system, we elucidated the underlying molecular mechanisms of IGF-I-mediated enhancement of proliferative potential of these cells. Satellite cells from IGF-I transgenic muscles achieved at least five additional population doublings above the maximum that was attained by wild type satellite cells. This IGF-I-induced increase in proliferative potential was mediated via activation of the phosphatidylinositol 3'-kinase/Akt pathway, independent of mitogen-activated protein kinase activity, facilitating G(1)/S cell cycle progression via a down-regulation of p27(Kip1). Adenovirally mediated ectopic overexpression of p27(Kip1) in exponentially growing IGF-I transgenic satellite cells reversed the increase in cyclin E-cdk2 kinase activity, pRb phosphorylation, and cyclin A protein abundance, thereby implicating an important role for p27(Kip1) in promoting satellite cell senescence. These observations provide a more complete dissection of molecular events by which increased local expression of a growth factor in mature skeletal muscle fibers extends replicative life span of primary stem cells than previously known.

  14. Insulin-like growth factor-I extends in vitro replicative life span of skeletal muscle satellite cells by enhancing G1/S cell cycle progression via the activation of phosphatidylinositol 3'-kinase/Akt signaling pathway.

    PubMed

    Chakravarthy, M V; Abraha, T W; Schwartz, R J; Fiorotto, M L; Booth, F W

    2000-11-17

    Interest is growing in methods to extend replicative life span of non-immortalized stem cells. Using the insulin-like growth factor I (IGF-I) transgenic mouse in which the IGF-I transgene is expressed during skeletal muscle development and maturation prior to isolation and during culture of satellite cells (the myogenic stem cells of mature skeletal muscle fibers) as a model system, we elucidated the underlying molecular mechanisms of IGF-I-mediated enhancement of proliferative potential of these cells. Satellite cells from IGF-I transgenic muscles achieved at least five additional population doublings above the maximum that was attained by wild type satellite cells. This IGF-I-induced increase in proliferative potential was mediated via activation of the phosphatidylinositol 3'-kinase/Akt pathway, independent of mitogen-activated protein kinase activity, facilitating G(1)/S cell cycle progression via a down-regulation of p27(Kip1). Adenovirally mediated ectopic overexpression of p27(Kip1) in exponentially growing IGF-I transgenic satellite cells reversed the increase in cyclin E-cdk2 kinase activity, pRb phosphorylation, and cyclin A protein abundance, thereby implicating an important role for p27(Kip1) in promoting satellite cell senescence. These observations provide a more complete dissection of molecular events by which increased local expression of a growth factor in mature skeletal muscle fibers extends replicative life span of primary stem cells than previously known.

  15. Hypoxia-induced cell death and changes in hypoxia-inducible factor-1 activity in PC12 cells upon exposure to nerve growth factor.

    PubMed

    Charlier, Nico; Leclere, Norbert; Felderhoff, Ursula; Heldt, Julia; Kietzmann, Thomas; Obladen, Michael; Gross, Johann

    2002-07-15

    The transcription factor hypoxia-inducible factor-1 (HIF-1) strongly contributes to the expression of adaptive genes under hypoxic conditions. In addition, HIF-1 has been implicated in the regulation of delayed neuronal cell death. Suspension-grown and adherent PC12 cells treated with NGF were used as an experimental model for studying the relationship between hypoxia-induced cell death and activation of HIF-1. Cell damage was assessed by flow cytometry of double-stained (Annexin V and propidiumiodide) cells, and by analysis of the overall death parameters LDH and mitochondrial dehydrogenase. In parallel, cells were transfected with a control and a three-hypoxia-responsive-elements (HRE)-containing vector and HIF-1-driven luciferase activity was determined. Exposure of NGF-treated PC12 cells to hypoxia resulted in a higher cell death rate when compared to untreated controls. PC12 cells exposed for 2 days to NGF exhibited a decrease of HIF-1 activity up to a factor of ten. This decrease may contribute to the enhanced hypoxia-induced cell death via reduced expression of HIF-1alpha-regulated genes responsible for adaptation to hypoxia, like those for glucose transport proteins and enzymes of the glycolytic chain. The decrease in HIF-1 activity and the increase in hypoxia sensitivity may suggest that NGF act as an hierarchically organized signaling molecule.

  16. Irradiation-Induced Regulation of Plasminogen Activator Inhibitor Type-1 and Vascular Endothelial Growth Factor in Six Human Squamous Cell Carcinoma Lines of the Head and Neck

    SciTech Connect

    Artman, Tuuli; Schilling, Daniela; Multhoff, Gabriele

    2010-02-01

    Purpose: It has been shown that plasminogen activator inhibitor type-1 (PAI-1) and vascular endothelial growth factor (VEGF) are involved in neo-angiogenesis. The aim of this study was to investigate the irradiation-induced regulation of PAI-1 and VEGF in squamous cell carcinomas of the head and neck (SCCHN) cell lines of varying radiation sensitivity. Methods and Materials: Six cell lines derived from SCCHN were investigated in vitro. The colorimetric AlamarBlue assay was used to detect metabolic activity of cell lines during irradiation as a surrogate marker for radiation sensitivity. PAI-1 and VEGF secretion levels were measured by enzyme-linked immunosorbent assay 24, 48, and 72 h after irradiation with 0, 2, 6, and 10 Gy. The direct radioprotective effect of exogenous PAI-1 was measured using the clonogenic assay. For regulation studies, transforming growth factor-beta1 (TGF-beta1), hypoxia-inducible factor-1alpha (HIF-1alpha), hypoxia-inducible factor-2alpha (HIF-2alpha), or both HIF-1alpha and HIF-2alpha were downregulated using siRNA. Results: Although baseline levels varied greatly, irradiation led to a comparable dose-dependent increase in PAI-1 and VEGF secretion in all six cell lines. Addition of exogenous stable PAI-1 to the low PAI-1-expressing cell lines, XF354 and FaDu, did not lead to a radioprotective effect. Downregulation of TGF-beta1 significantly decreased VEGF secretion in radiation-sensitive XF354 cells, and downregulation of HIF-1alpha and HIF-2alpha reduced PAI-1 and VEGF secretion in radiation-resistant SAS cells. Conclusions: Irradiation dose-dependently increased PAI-1 and VEGF secretion in all SCCHN cell lines tested regardless of their basal levels and radiation sensitivity. In addition, TGF-beta1 and HIF-1alpha could be partly responsible for VEGF and PAI-1 upregulation after irradiation.

  17. Restoration of caveolin-1 expression suppresses growth, membrane-type-4 metalloproteinase expression and metastasis-associated activities in colon cancer cells.

    PubMed

    Nimri, Lili; Barak, Hossei; Graeve, Lutz; Schwartz, Betty

    2013-11-01

    Caveolin-1 (cav-1) and flotillin-1 are two major structural proteins associated with lipid rafts in mammalian cells. The membrane-type matrix metalloproteinases (MT-MMPs) are expressed at the cell surface, hydrolyze extracellular matrix, and play an important role in cancer cell migration and metastasis. Expression of cav-1, flotillin-1, and MT4-MMP in lysates and lipid rafts of LS174T and HM-7 colon cancer cells was determined. The impact of restoration of cav-1 expression on proliferation, adhesion, motility in vitro, and growth of implanted tumors in vivo was characterized. Cav-1 is not expressed in lipid rafts of the highly metastatic colon cancer cell line (HM-7), but expressed in cytosolic fractions of the parental lower metastatic cell line (LS174T). In contrast, MT4-MMP was expressed in lipid rafts of HM-7 cells but not in LS174T cells. Overexpression of cav-1 in HM-7 cells down-regulate proliferation, viability, wound closure, adhesion to laminin, invasion, and development of filopodial and lamellipodial structures in a dose-dependent manner. Cav-1 positive HM-7 clones ceased to express MT4-MMP in their lipid rafts. Comparative proteomic analyses of lipid rafts from cav-1 positive and cav-1 negative cells demonstrated de novo expression of flotillin-1 only on the cells expressing cav-1. Xenografting control cells devoid of cav-1 in nude mice induced development of bigger tumors expressing higher levels of proliferating cell nuclear antigen as compared to mice injected with cells expressing the highest cav-1 levels. We conclude that cav-1 orchestrates and reorganize several proteins in lipid rafts, activities directly associated with reduced tumorigenic and metastatic ability of colon cancer cells.

  18. EGCG inhibits the growth and tumorigenicity of nasopharyngeal tumor-initiating cells through attenuation of STAT3 activation.

    PubMed

    Lin, Chien-Hung; Chao, Li-Keng; Hung, Peir-Haur; Chen, Yann-Jang

    2014-01-01

    A subset of cancer cells, termed cancer stem cells (CSCs) or tumor-initiating cells (TICs) could initiate tumors and are responsible for tumor recurrence and chemotherapeutic resistance. In this study, we enriched TICs in nasopharyngeal carcinoma (NPC) by the spheres formation and characterized the stem-like signatures such as self-renewal, proliferation, chemoresistance and tumorigenicity. By this method, we investigated that epigallocathechin gallate (EGCG), the major polyphenol in green tea could target TICs and potently inhibit sphere formation, eliminate the stem-like properties and enhance chemosensitivity in NPC through attenuation of STAT3 activation, which could be important in regulating the stemness expression in NPC. Our results demonstrated that STAT3 pathway plays an important role in mediating tumor-initiating capacities in NPC and suggest that inactivation of STAT3 with EGCG may represent a potential preventive and therapeutic approach for NPC. PMID:24966947

  19. Suppression of growth and invasive behavior of human prostate cancer cells by ProstaCaid™: mechanism of activity.

    PubMed

    Jiang, Jiahua; Eliaz, Isaac; Sliva, Daniel

    2011-06-01

    Since the use of dietary supplements as alternative treatments or adjuvant therapies in cancer treatment is growing, a scientific verification of their biological activity and the detailed mechanisms of their action are necessary for the acceptance of dietary supplements in conventional cancer treatments. In the present study we have evaluated the anti-cancer effects of dietary supplement ProstaCaid™ (PC) which contains mycelium from medicinal mushrooms (Ganoderma lucidum, Coriolus versicolor, Phellinus linteus), saw palmetto berry, pomegranate, pumpkin seed, green tea [40% epigallocatechin-3-gallate (EGCG)], Japanese knotweed (50% resveratrol), extracts of turmeric root (BCM-95®), grape skin, pygeum bark, sarsaparilla root, Scutellaria barbata, eleuthero root, Job's tears, astragalus root, skullcap, dandelion, coptis root, broccoli, and stinging nettle, with purified vitamin C, vitamin D3, selenium, quercetin, citrus bioflavonoid complex, β sitosterolzinc, lycopene, α lipoic acid, boron, berberine and 3.3'-diinodolymethane (DIM). We show that PC treatment resulted in the inhibition of cell proliferation of the highly invasive human hormone refractory (independent) PC-3 prostate cancer cells in a dose- and time-dependent manner with IC50 56.0, 45.6 and 39.0 µg/ml for 24, 48 and 72 h, respectively. DNA-microarray analysis demonstrated that PC inhibits proliferation through the modulation of expression of CCND1, CDK4, CDKN1A, E2F1, MAPK6 and PCNA genes. In addition, PC also suppresses metastatic behavior of PC-3 by the inhibition of cell adhesion, cell migration and cell invasion, which was associated with the down-regulation of expression of CAV1, IGF2, NR2F1, and PLAU genes and suppressed secretion of the urokinase plasminogen activator (uPA) from PC-3 cells. In conclusion, the dietary supplement PC is a promising natural complex with the potency to inhibit invasive human prostate cancer.

  20. Suppression of growth and invasive behavior of human prostate cancer cells by ProstaCaid™: mechanism of activity.

    PubMed

    Jiang, Jiahua; Eliaz, Isaac; Sliva, Daniel

    2011-06-01

    Since the use of dietary supplements as alternative treatments or adjuvant therapies in cancer treatment is growing, a scientific verification of their biological activity and the detailed mechanisms of their action are necessary for the acceptance of dietary supplements in conventional cancer treatments. In the present study we have evaluated the anti-cancer effects of dietary supplement ProstaCaid™ (PC) which contains mycelium from medicinal mushrooms (Ganoderma lucidum, Coriolus versicolor, Phellinus linteus), saw palmetto berry, pomegranate, pumpkin seed, green tea [40% epigallocatechin-3-gallate (EGCG)], Japanese knotweed (50% resveratrol), extracts of turmeric root (BCM-95®), grape skin, pygeum bark, sarsaparilla root, Scutellaria barbata, eleuthero root, Job's tears, astragalus root, skullcap, dandelion, coptis root, broccoli, and stinging nettle, with purified vitamin C, vitamin D3, selenium, quercetin, citrus bioflavonoid complex, β sitosterolzinc, lycopene, α lipoic acid, boron, berberine and 3.3'-diinodolymethane (DIM). We show that PC treatment resulted in the inhibition of cell proliferation of the highly invasive human hormone refractory (independent) PC-3 prostate cancer cells in a dose- and time-dependent manner with IC50 56.0, 45.6 and 39.0 µg/ml for 24, 48 and 72 h, respectively. DNA-microarray analysis demonstrated that PC inhibits proliferation through the modulation of expression of CCND1, CDK4, CDKN1A, E2F1, MAPK6 and PCNA genes. In addition, PC also suppresses metastatic behavior of PC-3 by the inhibition of cell adhesion, cell migration and cell invasion, which was associated with the down-regulation of expression of CAV1, IGF2, NR2F1, and PLAU genes and suppressed secretion of the urokinase plasminogen activator (uPA) from PC-3 cells. In conclusion, the dietary supplement PC is a promising natural complex with the potency to inhibit invasive human prostate cancer. PMID:21468543

  1. Changes in Dehydrodiferulic Acids and Peroxidase Activity against Ferulic Acid Associated with Cell Walls during Growth of Pinus pinaster Hypocotyl.

    PubMed Central

    Sanchez, M.; Pena, M. J.; Revilla, G.; Zarra, I.

    1996-01-01

    Hydroxycinnamic acids associated with hypocotyl cell walls of dark-grown seedlings of Pinus pinaster Aiton were extracted with 1 N NaOH and identified by gas chromatography-mass spectrometry. The main hydroxycinnamic acid found was ferulic acid. Diferulic acid dehydrodimers were also found, with the 8,8-coupled isomer (compound 11) being the dehydrodiferulate present in the highest amount. However, the 5,5-coupled isomer, commonly referred to referred to as diferulic acid, was not detected. Two truxillic acids, 4-4[prime]-dihydroxy-3-3[prime]-dimethoxy-[alpha]-truxillic acids I and II, were tentatively identified. The 8,8-coupled dehydrodiferulic acid (compound 11) was the phenolic acid that showed the most conspicuous changes with hypocotyl age as well as along the hypocotyl axis. Peroxidase activity against ferulic acid was found in the apoplastic fluid as well as being ionically and covalently bound to the cell walls. The peroxidase activity increased with hypocotyl age as well as from the subapical toward the basal region of the hypocotyls. A key role in the cell-wall stiffening of 8,8 but not 5,5 dimerization of ferulic acid catalyzed by cell-wall peroxidases is proposed. PMID:12226339

  2. Constitutive Activation of Epidermal Growth Factor Receptor Promotes Tumorigenesis of Cr(VI)-transformed Cells through Decreased Reactive Oxygen Species and Apoptosis Resistance Development*

    PubMed Central

    Kim, Donghern; Dai, Jin; Fai, Leonard Yenwong; Yao, Hua; Son, Young-Ok; Wang, Lei; Pratheeshkumar, Poyil; Kondo, Kazuya; Shi, Xianglin; Zhang, Zhuo

    2015-01-01

    Hexavalent chromium (Cr(VI)) compounds are well-established lung carcinogens. Epidermal growth factor receptor (EGFR) is a tyrosine kinase transmembrane receptor that regulates cell survival, tumor invasion, and angiogenesis. Our results show that chronic exposure of human bronchial epithelial (BEAS-2B) cells to Cr(VI) is able to cause malignant cell transformation. These transformed cells exhibit apoptosis resistance with reduced poly ADP-ribose polymerase cleavage (C-PARP) and Bax expression and enhanced expressions of Bcl-2 and Bcl-xL. These transformed cells also exhibit reduced capacity of reactive oxygen species (ROS) generation along with elevated expression of antioxidant manganese superoxide dismutase 2 (SOD2). The expression of this antioxidant was also elevated in lung tumor tissue from a worker exposed to Cr(VI) for 19 years. EGFR was activated in Cr(VI)-transformed BEAS-2B cells, lung tissue from animals exposed to Cr(VI) particles, and human lung tumor tissue. Further study indicates that constitutive activation of EGFR in Cr(VI)-transformed cells was due to increased binding to its ligand amphiregulin (AREG). Inhibition of EGFR or AREG increased Bax expression and reduced Bcl-2 expression, resulting in reduced apoptosis resistance. Furthermore, inhibition of AREG or EGFR restored capacity of ROS generation and decreased SOD2 expression. PI3K/AKT was activated, which depended on EGFR in Cr(VI)-transformed BEAS-2B cells. Inhibition of PI3K/AKT increased ROS generation and reduced SOD2 expression, resulting in reduced apoptosis resistance with commitment increase in Bax expression and reduction of Bcl-2 expression. Xenograft mouse tumor study further demonstrates the essential role of EGFR in tumorigenesis of Cr(VI)-transformed cells. In summary, the present study suggests that ligand-dependent constitutive activation of EGFR causes reduced ROS generation and increased antioxidant expression, leading to development of apoptosis resistance, contributing

  3. Growth inhibitory activities of crude extracts obtained from herbal plants in the Ryukyu Islands on several human colon carcinoma cell lines.

    PubMed

    Kaneshiro, Tatsuya; Suzui, Masumi; Takamatsu, Reika; Murakami, Akira; Ohigashi, Hajime; Fujino, Tetsuya; Yoshimi, Naoki

    2005-01-01

    There is increasing interest in the use of herbs for the treatment of human diseases including cancer. Therefore, the purpose of this study was to determine whether crude extracts obtained from 44 herbal plants in the Ryukyu Islands might contain components capable of inhibiting the growth of a variety of human colon carcinoma cell lines. Leaves, roots and other parts of the plants were extracted with chloroform, and the crude extracts were dissolved in dimethylsulfoxide and used for the experiments. Extracts of Hemerocallis fulva, Ipomoea batatas, Curcuma longa, and Nasturium officinale caused marked dose-dependent growth inhibition, with IC(50) values in the range of 10-80 mug/ml. With the HCT116 cell line, the extracts of Hemerocallis fulva and Ipomoea batatas induced G1 cell cycle arrest after 48 h of treatment. In addition, we found that extracts of Curcuma longa, and Nasturium officinale induced apoptosis in these cells after 48 h of treatment. The present studies are the first systematic examination of the growth inhibitory effects of crude extracts obtained from herbal plants in the Ryukyu Islands. The findings provide evidence that several plants in the Ryukyu Islands contain components that may have anticancer activity. PMID:16235999

  4. Sorafenib induces growth arrest and apoptosis of human glioblastoma cells through the dephosphorylation of signal transducers and activators of transcription 3.

    PubMed

    Yang, Fan; Brown, Christine; Buettner, Ralf; Hedvat, Michael; Starr, Renate; Scuto, Anna; Schroeder, Anne; Jensen, Michael; Jove, Richard

    2010-04-01

    Glioblastoma is the most common type of primary brain tumor and is rapidly progressive with few treatment options. Here, we report that sorafenib (< or =10 micromol/L) inhibited cell proliferation and induced apoptosis in two established cell lines (U87 and U251) and two primary cultures (PBT015 and PBT022) from human glioblastomas. The effects of sorafenib on these tumor cells were associated with inhibiting phosphorylated signal transducers and activators of transcription 3 (STAT3; Tyr705). Expression of a constitutively activated STAT3 mutant partially blocked the effects of sorafenib, consistent with a role for STAT3 inhibition in the response to sorafenib. Phosphorylated Janus-activated kinase (JAK)1 was inhibited in U87 and U251 cells, whereas phosphorylated JAK2 was inhibited in primary cultures. Sodium vanadate, a general inhibitor of protein tyrosine phosphatases, blocked the inhibition of phosphorylation of STAT3 (Tyr705) induced by sorafenib. These data indicate that the inhibition of STAT3 activity by sorafenib involves both the inhibition of upstream kinases (JAK1 and JAK2) of STAT3 and increased phosphatase activity. Phosphorylation of AKT was also reduced by sorafenib. In contrast, mitogen-activated protein kinases were not consistently inhibited by sorafenib in these cells. Two key cyclins (D and E) and the antiapoptotic protein Mcl-1 were downregulated by sorafenib in both cell lines and primary cultures. Our data suggest that inhibition of STAT3 signaling by sorafenib contributes to growth arrest and induction of apoptosis in glioblastoma cells. These findings provide a rationale for potential treatment of malignant gliomas with sorafenib. Mol Cancer Ther; 9(4); 953-62. (c)2010 AACR.

  5. Cytotoxic activity of Macrosolen parasiticus (L.) Danser on the growth of breast cancer cell line (MCF-7)

    PubMed Central

    Sodde, Vijay Kumar; Lobo, Richard; Kumar, Nimmy; Maheshwari, Rajalekshmi; Shreedhara, C. S.

    2015-01-01

    Background: Macrosolen parasiticus (L.) Danser belonging to Loranthaceaea (mistletoe family) is a parasitic plant that grows on different host plants such as mango, jack fruit, peepal, neem tree, etc., This study was aimed to investigate the anti-cancer activity of methanolic and aqueous extract of stem of M. parasiticus. Objectives: To investigate the in vitro cytotoxic potential of the methanolic and aqueous extracts from stems of M. parasiticus against MCF-7 breast cancer cells by brine shrimp lethality (BSL) bioassay, MTT assay and sulforhodamine B (SRB) assay. Materials and Methods: The extracts were tested in human breast cancer cell lines in vitro for percentage cytotoxicity, apoptosis by acridine orange/ethidium bromide staining, LD50 and IC50 values after treatment with M. parasiticus extracts. Results: In BSL bioassay, aqueous extract showed more significant (P < 0.01) cytotoxicity with LD50 82.79 ± 2.67 μg/mL as compared to methanolic extract with LD50 125 ± 3.04 μg/mL. The methanolic extract of M. parasiticus showed IC50 97.33 ± 3.75 μg/mL (MTT) (P < 0.05) and 94.58 ± 3.84 μg/mL (SRB) (P < 0.01) assays against MCF-7. The aqueous extract of M. parasiticus demonstrated higher activity with IC50 59.33 ± 3.3 μg/mL (MTT) (P < 0.01) and 51.9 ± 1.87 μg/mL (SRB)(P < 0.01) assays, after 48 h of exposure and thus showed significant dose-dependent cytotoxic activity. Conclusion: The finding demonstrated that both extracts of M. parasiticus showed significant cytotoxic activity, however aqueous extract demonstrated higher activity against MCF-7 breast cancer cells. PMID:26109761

  6. Date syrup-derived polyphenols attenuate angiogenic responses and exhibits anti-inflammatory activity mediated by vascular endothelial growth factor and cyclooxygenase-2 expression in endothelial cells.

    PubMed

    Taleb, Hajer; Morris, R Keith; Withycombe, Cathryn E; Maddocks, Sarah E; Kanekanian, Ara D

    2016-07-01

    Bioactive components such as polyphenols, present in many plants, are purported to have anti-inflammatory and antiangiogenic properties. Date syrup, produced from date fruit of the date palm tree, has traditionally been used to treat a wide range of diseases with etiologies involving angiogenesis and inflammation. It was hypothesized that polyphenols in date syrup reduce angiogenic responses such as cell migration, tube formation, and matrix metalloproteinase activity in an inflammatory model by exhibiting anti-inflammatory activity mediated by vascular endothelial growth factor (VEGF) and the prostaglandin enzyme cyclooxygenase-2 (COX-2) in endothelial cells. Date syrup polyphenols at 60 and 600μg/mL reduced inflammation and suppressed several stages of angiogenesis, including endothelial cell migration, invasion, matrix metalloproteinase activity, and tube formation, without evidence of cytotoxicity. VEGF and COX-2 expression induced by tumor necrosis factor-alpha at both gene expression and protein level was significantly reduced by date syrup polyphenols in comparison to untreated cells. In conclusion, polyphenols in date syrup attenuated angiogenic responses and exhibited anti-inflammatory activity mediated by VEGF and COX-2 expression in endothelial cells. PMID:27333954

  7. Evaluating the Effects of Tetrachloro-1,4-benzoquinone, an Active Metabolite of Pentachlorophenol, on the Growth of Human Breast Cancer Cells

    PubMed Central

    Ling, Binbing; Gao, Bosong; Yang, Jian

    2016-01-01

    Tetrachloro-1,4-benzoquinone (TCBQ), an active metabolite of pentachlorophenol (PCP), is genotoxic and potentially carcinogenic. As an electrophilic and oxidative molecule, TCBQ can conjugate with deoxyguanosine in DNA molecules and/or impose oxidative stress in cells. In the current study, we investigated the effects of TCBQ on intracellular ROS production, apoptosis, and cytotoxicity against three different subtypes of human breast cancer cells. Luminal A subtype MCF7 (ER+, PR+, HER2−) cells maintained the highest intracellular ROS level and were subjected to TCBQ-induced ROS reduction, apoptosis, and cytotoxicity. HER2 subtype Sk-Br-3 (ER−, PR−, HER2+) cells possessed the lowest intracellular ROS level. TCBQ promoted ROS production, inhibited apoptosis, and elevated cytotoxicity (due to necrosis) against Sk-Br-3 cells. Triple-negative/basal-like subtype MDA-MB-231 cells were less sensitive towards TCBQ treatment. Therefore, the effect of prolonged exposure to PCP and its active metabolites on cancer growth is highly cancer-cell-type specific. PMID:26981120

  8. Structure-activity relationships of benzhydrol derivatives based on 1'-acetoxychavicol acetate (ACA) and their inhibitory activities on multiple myeloma cell growth via inactivation of the NF-κB pathway.

    PubMed

    Misawa, Takashi; Dodo, Kosuke; Ishikawa, Minoru; Hashimoto, Yuichi; Sagawa, Morihiko; Kizaki, Masahiro; Aoyama, Hiroshi

    2015-05-01

    1'-Acetoxychavicol acetate (ACA), which was isolated from the rhizomes of Zingiberaceae, exhibits various biological actions, including anti-inflammatory, anti-human immunodeficiency virus (HIV), and anti-cancer activities. ACA represents an attractive candidate for the treatment of many cancers. We herein examined the structure-activity relationships of ACA derivatives based on the benzhydrol skeleton in human leukemia cells (HL-60). Our results revealed that the ACA derivatives synthesized (ACA, 1, and 18) had inhibitory effects on the growth of multiple myeloma cells (IM-9 cells) by inactivating the NF-κB pathway.

  9. Different Roles of a Rat Cortical Thymic Epithelial Cell Line In Vitro on Thymocytes and Thymocyte Hybridoma Cells: Phagocytosis, Induction of Apoptosis, Nursing and Growth Promoting Activities

    PubMed Central

    Vučević, Dragana; Čolić, Miodrag; Popović, Petar; Gašić, Sonja

    2002-01-01

    In this work, the interaction between a rat cortical thymic epithelial cell (TEC) line (R-TNC.1) with nursing activity and thymocytes as well as BWRT 8 thymocyte hybridoma (TH) cells has been studied. The R-TNC.1 cell line significantly bound thymocytes and TH. Binding was stronger during the first 30 min of cell incubation and was followed by a progressive deadhesion. Among adherent thymocytes the proportion of apoptotic cells increased with culture time which was a consequence of higher capacity of the line for binding of apoptotic than viable cells and induction of apoptosis in a subset of adherent thymocytes. Emperiopolesis activity of this thymic nurse cell (TNC) line was manifested by engulfment of thymocytes as well as TH cells. A subset of viable intra-TNC thymocytes has been triggered to die by apoptosis, whereas other internalized thymocytes have been stimulated to proliferate, as measured by an increase in the percentage of cells in mitosis and higher incorporation of bromodeoxyuridine (BrdU), in comparison to thymocytes cultivated alone. A significant stimulation of proliferation of engulfed TH cells was also observed. The R-TNC.1 cell line efficiently phagocytosed both apoptotic thymocytes and TH, and the process is followed by intra-TNC destruction of ingested cells. Cumulatively, these results suggest different role of the R-TNC.1 clone: phagocytosis of apoptotic cells; induction of apoptotic cell death in a subset of both bound and internalized thymocytes and stimulation of proliferation of a subset of intra-TNC thymocytes or TH cells. PMID:12739783

  10. Overexpression of EB1 in human esophageal squamous cell carcinoma (ESCC) may promote cellular growth by activating beta-catenin/TCF pathway.

    PubMed

    Wang, Yihua; Zhou, Xiaobo; Zhu, Hongxia; Liu, Shuang; Zhou, Cuiqi; Zhang, Guo; Xue, Liyan; Lu, Ning; Quan, Lanping; Bai, Jinfeng; Zhan, Qimin; Xu, Ningzhi

    2005-10-01

    Esophageal squamous cell carcinoma (ESCC) has a multifactorial etiology involving environmental and/or genetic factors. End-binding protein 1 (EB1), which was cloned as an interacting partner of the adenomatous polyposis coli (APC) tumor suppressor protein, was previously found overexpressed in ESCC. However, the precise role of EB1 in the development of this malignancy has not yet been elucidated. In this study, we analysed freshly resected ESCC specimens and demonstrated that EB1 was overexpressed in approximately 63% of tumor samples compared to matched normal tissue. We report that overexpression of EB1 in the ESCC line EC9706 significantly promotes cell growth, whereas suppression of EB1 protein level by RNA interference significantly inhibited growth of esophageal tumor cells. In addition, EB1 overexpression induced nuclear accumulation of beta-catenin and promoted the transcriptional activity of beta-catenin/T-cell factor (TCF). These effects were partially or completely abolished by coexpression of APC or DeltaN TCF4, respectively. Also, we found that EB1 affected the interaction between beta-catenin and APC. Furthermore, EB1 overexpression was correlated with cytoplasmic/nuclear accumulation of beta-catenin in primary human ESCC. Taken together, these results support the novel hypothesis that EB1 overexpression may play a role in the development of ESCC by affecting APC function and activating the beta-catenin/TCF pathway.

  11. [Stem cells and growth factors in wound healing].

    PubMed

    Pikuła, Michał; Langa, Paulina; Kosikowska, Paulina; Trzonkowski, Piotr

    2015-01-02

    Wound healing is a complex process which depends on the presence of various types of cells, growth factors, cytokines and the elements of extracellular matrix. A wound is a portal of entry for numerous pathogens, therefore during the evolution wound healing process has formed very early, being critical for the survival of every individual. Stem cells, which give rise to their early descendants progenitor cells and subsequently differentiated cells, play a specific role in the process of wound healing. Among the most important cells which take part in wound healing the following cells need to be distinguished: epidermal stem cells, dermal precursor of fibroblasts, adipose-derived stem cells as well as bone marrow cells. The activity of these cells is strictly regulated by various growth factors, inter alia epidermal growth factor (EGF), fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), transforming growth factor (TGF), vascular endothelial growth factor (VEGF). Any disorders in functioning of stem cells and biological activity of growth factors may lead to the defects in wound healing, for instance delayed wound healing or creation of hypertrophic scars. Therefore, knowledge concerning the mechanisms of wound healing is extremely essential from clinical point of view. In this review the current state of the knowledge of the role of stem cells and growth factors in the process of wound healing has been presented. Moreover, some clinical aspects of wound healing as well as the possibility of the therapy based on stem cells and growth factors have included.

  12. Voltage-gated Sodium Channel Activity Promotes Cysteine Cathepsin-dependent Invasiveness and Colony Growth of Human Cancer Cells*S⃞

    PubMed Central

    Gillet, Ludovic; Roger, Sébastien; Besson, Pierre; Lecaille, Fabien; Gore, Jacques; Bougnoux, Philippe; Lalmanach, Gilles; Le Guennec, Jean-Yves

    2009-01-01

    Voltage-gated sodium channels (NaV) are functionally expressed in highly metastatic cancer cells derived from nonexcitable epithelial tissues (breast, prostate, lung, and cervix). MDA-MB-231 breast cancer cells express functional sodium channel complexes, consisting of NaV1.5 and associated auxiliary β-subunits, that are responsible for a sustained inward sodium current at the membrane potential. Although these channels do not regulate cellular multiplication or migration, their inhibition by the specific blocker tetrodotoxin impairs both the extracellular gelatinolytic activity (monitored with DQ-gelatin) and cell invasiveness leading to the attenuation of colony growth and cell spreading in three-dimensional Matrigel®-composed matrices. MDA-MB-231 cells express functional cysteine cathepsins, which we found play a predominant role (∼65%) in cancer invasiveness. Matrigel® invasion is significantly decreased in the presence of specific inhibitors of cathepsins B and S (CA-074 and Z-FL-COCHO, respectively), and co-application of tetrodotoxin does not further reduce cell invasion. This suggests that cathepsins B and S are involved in invasiveness and that their proteolytic activity partly depends on NaV function. Inhibiting NaV has no consequence for cathepsins at the transcription, translation, and secretion levels. However, NaV activity leads to an intracellular alkalinization and a perimembrane acidification favorable for the extracellular activity of these acidic proteases. We propose that Nav enhance the invasiveness of cancer cells by favoring the pH-dependent activity of cysteine cathepsins. This general mechanism could lead to the identification of new targets allowing the therapeutic prevention of metastases. PMID:19176528

  13. leptin-induced growth stimulation of breast cancer cells involves recruitment of histone acetyltransferases and mediator complex to CYCLIN D1 promoter via activation of Stat3.

    PubMed

    Saxena, Neeraj K; Vertino, Paula M; Anania, Frank A; Sharma, Dipali

    2007-05-01

    Numerous epidemiological studies documented that obesity is a risk factor for breast cancer development in postmenopausal women. Leptin, the key player in the regulation of energy balance and body weight control also acts as a growth factor on certain organs in both normal and disease state. In this study, we analyzed the role of leptin and the molecular mechanism(s) underlying its action in breast cancer cells that express both short and long isoforms of leptin receptor. Leptin increased MCF7 cell population in the S-phase of the cell cycle along with a robust increase in CYCLIN D1 expression. Also, leptin induced Stat3-phosphorylation-dependent proliferation of MCF7 cells as blocking Stat3 phosphorylation with a specific inhibitor, AG490, abolished leptin-induced proliferation. Using deletion constructs of CYCLIN D1 promoter and chromatin immunoprecipitation assay, we show that leptin induced increase in CYCLIN D1 promoter activity is mediated through binding of activated Stat3 at the Stat binding sites and changes in histone acetylation and methylation. We also show specific involvement of coactivator molecules, histone acetyltransferase SRC1, and mediator complex in leptin-mediated regulation of CYCLIN D1 promoter. Importantly, silencing of SRC1 and Med1 abolished the leptin induced increase in CYCLIN D1 expression and MCF7 cell proliferation. Intriguingly, recruitment of both SRC1 and Med1 was dependent on phosphorylated Stat3 as AG490 treatment inhibited leptin-induced recruitment of these coactivators to CYCLIN D1 promoter. Our data suggest that CYCLIN D1 may be a target gene for leptin mediated growth stimulation of breast cancer cells and molecular mechanisms involve activated Stat3-mediated recruitment of distinct coactivator complexes.

  14. Adenoviral delivery of an antisense RNA complementary to the 3' coding sequence of transforming growth factor-beta1 inhibits fibrogenic activities of hepatic stellate cells.

    PubMed

    Arias, Monica; Lahme, Birgit; Van de Leur, Eddy; Gressner, Axel M; Weiskirchen, Ralf

    2002-06-01

    Liver fibrosis occurs as a consequence of the transdifferentiationof hepatic stellate cells into myofibroblasts and is associated with an increased expression and activation of transforming growth factor (TGF)-beta1. This pluripotent, profibrogenic cytokine stimulates matrix synthesis and decreases matrix degradation, resulting in fibrosis. Thus, blockade of synthesis or sequestering of mature TGF-beta1 is a primary target for the development of antifibrotic approaches. The purpose of this study was to investigate whether the administration of adenoviruses constitutively expressing an antisense mRNA complementary to the 3' coding sequence of TGF-beta1 is able to suppress the synthesis of TGF-beta1 in culture-activated hepatic stellate cells. We demonstrate that the adenoviral vehicle directs high-level expression of the transgene and proved that the transduced antisense is biologically active by immunoprecipitation, Western blot, quantitative TGF-beta1 ELISA, and cell proliferation assays. Additionally, the biological function of the transgene was confirmed by analysis of differential activity of TGF-beta1-responsive genes using cell ELISA, Northern blotting, and by microarray technology, respectively. Furthermore, we examined the effects of that transgene on the expression of TGF-beta2, TGF-beta3, collagen type alpha1(I), latent transforming growth factor binding protein 1, types I and II TGF-beta receptors, and alpha-smooth muscle actin. Our results indicate that the administration of antisense mRNA offers a feasible approach to block autocrine TGF-beta1 signaling in hepatic stellate cells and may be useful and applicable in future to the treatment of fibrosis in chronic liver diseases.

  15. Target interaction profiling of midostaurin and its metabolites in neoplastic mast cells predicts distinct effects on activation and growth

    PubMed Central

    Peter, Barbara; Winter, Georg E.; Blatt, Katharina; Bennett, Keiryn L.; Stefanzl, Gabriele; Rix, Uwe; Eisenwort, Gregor; Hadzijusufovic, Emir; Gridling, Manuela; Dutreix, Catherine; Hoermann, Gregor; Schwaab, Juliana; Radia, Deepti; Roesel, Johannes; Manley, Paul W.; Reiter, Andreas; Superti-Furga, Giulio; Valent, Peter

    2016-01-01

    Proteomic-based drug testing is an emerging approach to establish the clinical value and anti-neoplastic potential of multi-kinase inhibitors. The multikinase inhibitor midostaurin (PKC412) is a promising new agent used to treat patients with advanced systemic mastocytosis (SM). We examined the target interaction-profiles and the mast cell (MC)-targeting effects of two pharmacologically relevant midostaurin metabolites, CGP52421 and CGP62221. All three compounds, midostaurin and the two metabolites, suppressed IgE-dependent histamine secretion in basophils and MC with reasonable IC50 values. Midostaurin and CGP62221 also produced growth-inhibition and dephosphorylation of KIT in the MC leukemia cell line HMC-1.2, whereas the second metabolite, CGP52421, that accumulates in vivo, showed no substantial effects. Chemical proteomic profiling and drug-competition experiments revealed that midostaurin interacts with KIT and several additional kinase-targets. The key downstream-regulator FES was recognized by midostaurin and CGP62221, but not by CGP52421 in MC lysates, whereas the IgE-receptor-downstream target SYK was recognized by both metabolites. Together, our data show that the clinically relevant midostaurin metabolite CGP52421 inhibits IgE-dependent histamine release, but is a weak inhibitor of MC proliferation which may have clinical implications and may explain why mediator-related symptoms improve in SM patients even when disease progression occurs. PMID:26349526

  16. Regulation of connective tissue growth factor activity in cultured rat mesangial cells and its expression in experimental diabetic glomerulosclerosis.

    PubMed

    Riser, B L; Denichilo, M; Cortes, P; Baker, C; Grondin, J M; Yee, J; Narins, R G

    2000-01-01

    Connective tissue growth factor (CTGF) is a peptide secreted by cultured endothelial cells and fibroblasts when stimulated by transforming growth factor-beta (TGF-beta), and is overexpressed during fibrotic processes in coronary arteries and in skin. To determine whether CTGF is implicated in the pathogenesis of diabetic glomerulosclerosis, cultured rat mesangial cells (MC) as well as kidney cortex and microdissected glomeruli were examined from obese, diabetic db/db mice and their normal counterparts. Exposure of MC to recombinant human CTGF significantly increased fibronectin and collagen type I production. Furthermore, unstimulated MC expressed low levels of CTGF message and secreted minimal amounts of CTGF protein (36 to 38 kD) into the media. However, sodium heparin treatment resulted in a greater than fourfold increase in media-associated CTGF, suggesting that the majority of CTGF produced was cell- or matrix-bound. Exposure of MC to TGF-beta, increased glucose concentrations, or cyclic mechanical strain, all causal factors in diabetic glomerulosclerosis, markedly induced the expression of CTGF transcripts, while recombinant human CTGF was able to autoinduce its own expression. TGF-, and high glucose, but not mechanical strain, stimulated the concomitant secretion of CTGF protein, the former also inducing abundant quantities of a small molecular weight form of CTGF (18 kD) containing the heparin-binding domain. The induction of CTGF protein by a high glucose concentration was mediated by TGF-beta, since a TGF-beta-neutralizing antibody blocked this stimulation. In vivo studies using quantitative reverse transcription-PCR demonstrated that although CTGF transcripts were low in the glomeruli of control mice, expression was increased 28-fold after approximately 3.5 mo of diabetes. This change occurred early in the course of diabetic nephropathy when mesangial expansion was mild, and interstitial disease and proteinuria were absent. A substantially reduced

  17. Phyllanthus amarus inhibits cell growth and induces apoptosis in Dalton's lymphoma ascites cells through activation of caspase-3 and downregulation of Bcl-2.

    PubMed

    Harikumar, Kuzhuvelil B; Kuttan, Girija; Kuttan, Ramadasan

    2009-06-01

    The authors found in an earlier study that Phyllanthus amarus extract could significantly inhibit the solid and ascites tumor development in mice induced by Dalton's lymphoma ascites (DLA) cells. In the present study, the apoptotic effects of P. amarus against DLA cells in culture was evaluated. P. amarus produced significant reduction in cell viability as determined by the MTT assay. It also induces the formation of apoptotic bodies with characteristic features like plasma membrane invagination, elongation, fragmentation, and chromatin condensation. P. amarus at concentrations of 100 and 200 microg/mL is shown to induce DNA fragmentation. Gene expression analysis reveals that P. amarus induces the expression of caspase-3 and inhibits the expression of Bcl-2, which is an antiapoptotic protein. So the present study provides some insights into the possible mechanism by which P. amarus brings about apoptosis and growth inhibition in DLA cells. PMID:19223368

  18. A Natural Hepatocyte Growth Factor/Scatter Factor Autocrine Loop in Myoblast Cells and the Effect of the Constitutive Met Kinase Activation on Myogenic Differentiation

    PubMed Central

    Anastasi, Sergio; Giordano, Silvia; Sthandier, Olga; Gambarotta, Giovanna; Maione, Rossella; Comoglio, Paolo; Amati, Paolo

    1997-01-01

    As a rule, hepatocyte growth factor/scatter factor (HGF/SF) is produced by mesenchymal cells, while its receptor, the tyrosine kinase encoded by the met proto-oncogene, is expressed by the neighboring epithelial cells in a canonical paracrine fashion. In the present work we show that both HGF/SF and met are coexpressed by undifferentiated C2 mouse myoblasts. In growing cells, the autocrine loop is active as the receptor exhibits a constitutive phosphorylation on tyrosine that can be abrogated by exogenously added anti-HGF/SF neutralizing antibodies. The transcription of HGF/SF and met genes is downregulated when myoblasts stop proliferating and differentiate. The coexpression of HGF/SF and met genes is not exclusive to C2 cells since it has been assessed also in other myogenic cell lines and in mouse primary satellite cells, suggesting that HGF/SF could play a role in muscle development through an autocrine way. To analyze the biological effects of HGF/SF receptor activation, we stably expressed the constitutively activated receptor catalytic domain (p65tpr-met) in C2 cells. This active kinase determined profound changes in cell shape and inhibited myogenesis at both morphological and biochemical levels. Notably, a complete absence of muscle regulatory markers such as MyoD and myogenin was observed in p65tpr-met highly expressing C2 clones. We also studied the effects of the ectopic expression of human isoforms of met receptor (h-met) and of HGF/SF (h-HGF/SF) in stable transfected C2 cells. Single constitutive expression of h-met or h-HGF/SF does not alter substantially the growth and differentiation properties of the myoblast cells, probably because of a species-specific ligand–receptor interaction. A C2 clone expressing simultaneously both h-met and h-HGF/SF is able to grow in soft agar and shows a decrease in myogenic potential comparable to that promoted by p65tpr-met kinase. These data indicate that a met kinase signal released from differentiation

  19. Parsing ERK Activation Reveals Quantitatively Equivalent Contributions From Epidermal Growth Factor Receptor and HER2 In Human Mammary Epithelial Cells

    SciTech Connect

    Hendriks, Bart S.; Orr, Galya; Wells, Alan H.; Wiley, H. S.; Lauffenburger, Douglas A.

    2005-02-18

    HER2, a member of the EGFR tyrosine kinase family, functions as an accessory EGFR signaling component and alters EGFR trafficking by heterodimerization. HER2 overexpression leads to aberrant cell behavior including enhanced proliferation and motility. Here we apply a combination of computational modeling and quantitative experimental studies of the dynamic interactions between EGFR and HER2, and their downstream activation of extracellular signal-related kinase (ERK) to understand this complex signaling system. Using cells expressing different levels of HER2 relative to the EGFR, we can separate relative contributions of EGFR and HER2 to signaling amplitude and duration. Based on our model calculations, we demonstrate that, in contrast with previous suggestions in the literature, the intrinsic capabilities of EGFR and HER2 to activated ERK are quantitatively equivalent . We find that HER2-mediated effects on EGFR dimerization and trafficking are sufficient to explain the detected HER2-mediated amplification of EGF-induced ERK signaling. Our model suggests that transient amplification of ERK activity by HER2 arises predominantly from the 2-to-1 stoichiometry of receptor kinase to bound ligand in EGFR/HER2 heterodimers compared to the 1-to-1 stoichiometry of the EGFR homodimer, but alterations in receptor trafficking, with resultant EGFR sparing, cause the sustained HER2-mediated enhancement of ERK signaling.

  20. The F-box protein Fbp1 functions in the invasive growth and cell wall integrity mitogen-activated protein kinase (MAPK) pathways in Fusarium oxysporum.

    PubMed

    Miguel-Rojas, Cristina; Hera, Concepcion

    2016-01-01

    F-box proteins determine substrate specificity of the ubiquitin-proteasome system. Previous work has demonstrated that the F-box protein Fbp1, a component of the SCF(Fbp1) E3 ligase complex, is essential for invasive growth and virulence of the fungal plant pathogen Fusarium oxysporum. Here, we show that, in addition to invasive growth, Fbp1 also contributes to vegetative hyphal fusion and fungal adhesion to tomato roots. All of these functions have been shown previously to require the mitogen-activated protein kinase (MAPK) Fmk1. We found that Fbp1 is required for full phosphorylation of Fmk1, indicating that Fbp1 regulates virulence and invasive growth via the Fmk1 pathway. Moreover, the Δfbp1 mutant is hypersensitive to sodium dodecylsulfate (SDS) and calcofluor white (CFW) and shows reduced phosphorylation levels of the cell wall integrity MAPK Mpk1 after SDS treatment. Collectively, these results suggest that Fbp1 contributes to both the invasive growth and cell wall integrity MAPK pathways of F. oxysporum.

  1. Inhibition of Enzyme Activity of Rhipicephalus (Boophilus) microplus Triosephosphate Isomerase and BME26 Cell Growth by Monoclonal Antibodies

    PubMed Central

    Saramago, Luiz; Franceschi, Mariana; Logullo, Carlos; Masuda, Aoi; Vaz, Itabajara da Silva; Farias, Sandra Estrazulas; Moraes, Jorge

    2012-01-01

    In the present work, we produced two monoclonal antibodies (BrBm37 and BrBm38) and tested their action against the triosephosphate isomerase of Rhipicephalus (Boophilus) microplus (RmTIM). These antibodies recognize epitopes on both the native and recombinant forms of the protein. rRmTIM inhibition by BrBm37 was up to 85% whereas that of BrBrm38 was 98%, depending on the antibody-enzyme ratio. RmTIM activity was lower in ovarian, gut, and fat body tissue extracts treated with BrBm37 or BrBm38 mAbs. The proliferation of the embryonic tick cell line (BME26) was inhibited by BrBm37 and BrBm38 mAbs. In summary, the results reveal that it is possible to interfere with the RmTIM function using antibodies, even in intact cells. PMID:23202941

  2. Inhibition of enzyme activity of Rhipicephalus (Boophilus) microplus triosephosphate isomerase and BME26 cell growth by monoclonal antibodies.

    PubMed

    Saramago, Luiz; Franceschi, Mariana; Logullo, Carlos; Masuda, Aoi; Vaz, Itabajara da Silva; Farias, Sandra Estrazulas; Moraes, Jorge

    2012-10-12

    In the present work, we produced two monoclonal antibodies (BrBm37 and BrBm38) and tested their action against the triosephosphate isomerase of Rhipicephalus (Boophilus) microplus (RmTIM). These antibodies recognize epitopes on both the native and recombinant forms of the protein. rRmTIM inhibition  by BrBm37 was up to 85% whereas that of BrBrm38 was 98%, depending on the antibody-enzyme ratio. RmTIM activity was lower in ovarian, gut, and fat body tissue extracts treated with BrBm37 or BrBm38 mAbs. The proliferation of the embryonic tick cell line (BME26) was inhibited by BrBm37 and BrBm38 mAbs. In summary, the results reveal that it is possible to interfere with the RmTIM function using antibodies, even in intact cells.

  3. Brigatinib, an anaplastic lymphoma kinase inhibitor, abrogates activity and growth in ALK-positive neuroblastoma cells, Drosophila and mice

    PubMed Central

    Pfeifer, Kathrin; Rivera, Victor M.; Guan, Jikui; Palmer, Ruth H.; Hallberg, Bengt

    2016-01-01

    Anaplastic lymphoma kinase (ALK) is a tyrosine kinase receptor which has been implicated in numerous solid and hematologic cancers. ALK mutations are reported in about 5-7% of neuroblastoma cases but the ALK-positive percentage increases significantly in the relapsed patient population. Crizotinib, the first clinically approved ALK inhibitor for the treatment of ALK-positive lung cancer has had less dramatic responses in neuroblastoma. Here we investigate the efficacy of a second-generation ALK inhibitor, brigatinib, in a neuroblastoma setting. Employing neuroblastoma cell lines, mouse xenograft and Drosophila melanogaster model systems expressing different constitutively active ALK variants, we show clear and efficient inhibition of ALK activity by brigatinib. Similar abrogation of ALK activity was observed in vitro employing a set of different constitutively active ALK variants in biochemical assays. These results suggest that brigatinib is an effective inhibitor of ALK kinase activity in ALK addicted neuroblastoma that should be considered as a potential future therapeutic option for ALK-positive neuroblastoma patients alone or in combination with other treatments. PMID:27049722

  4. ErbB-3 activation by NRG-1β sustains growth and promotes vemurafenib resistance in BRAF-V600E colon cancer stem cells (CSCs)

    PubMed Central

    Prasetyanti, Pramudita R.; Capone, Emily; Barcaroli, Daniela; D'Agostino, Daniela; Volpe, Silvia; Benfante, Antonina; van Hooff, Sander; Iacobelli, Valentina; Rossi, Cosmo; Iacobelli, Stefano; Medema, Jan Paul; De Laurenzi, Vincenzo; Sala, Gianluca

    2015-01-01

    Approximately 5-10% of metastatic colorectal cancers harbor a BRAF-V600E mutation, which is correlated with resistance to EGFR-targeted therapies and worse clinical outcome. Vice versa, targeted inhibition of BRAF-V600E with the selective inhibitor PLX 4032 (Vemurafenib) is severely limited due to feedback re-activation of EGFR in these tumors. Mounting evidence indicates that upregulation of the ErbB-3 signaling axis may occur in response to several targeted therapeutics, including Vemurafenib, and NRG-1β-dependent re-activation of the PI3K/AKT survival pathway has been associated with therapy resistance. Here we show that colon CSCs express, next to EGFR and ErbB-2, also significant amounts of ErbB-3 on their membrane. This expression is functional as NRG-1β strongly induces AKT/PKB and ERK phosphorylation, cell proliferation, clonogenic growth and promotes resistance to Vemurafenib in BRAF-V600E mutant colon CSCs. This resistance was completely dependent on ErbB-3 expression, as evidenced by knockdown of ErbB-3. More importantly, resistance could be alleviated with therapeutic antibody blocking ErbB-3 activation, which impaired NRG-1β-driven AKT/PKB and ERK activation, clonogenic growth in vitro and tumor growth in xenograft models. In conclusion, our findings suggest that targeting ErbB-3 receptors could represent an effective therapeutic approach in BRAF-V600E mutant colon cancer. PMID:26160848

  5. Hinokitiol inhibits vasculogenic mimicry activity of breast cancer stem/progenitor cells through proteasome-mediated degradation of epidermal growth factor receptor

    PubMed Central

    TU, DOM-GENE; YU, YUN; LEE, CHE-HSIN; KUO, YU-LIANG; LU, YIN-CHE; TU, CHI-WEN; CHANG, WEN-WEI

    2016-01-01

    Hinokitiol, alternatively known as β-thujaplicin, is a tropolone-associated natural compound with antimicrobial, anti-inflammatory and antitumor activity. Breast cancer stem/progenitor cells (BCSCs) are a subpopulation of breast cancer cells associated with tumor initiation, chemoresistance and metastatic behavior, and may be enriched by mammosphere cultivation. Previous studies have demonstrated that BCSCs exhibit vasculogenic mimicry (VM) activity via the epidermal growth factor receptor (EGFR) signaling pathway. The present study investigated the anti-VM activity of hinokitiol in BCSCs. At a concentration below the half maximal inhibitory concentration, hinokitiol inhibited VM formation of mammosphere cells derived from two human breast cancer cell lines. Hinokitiol was additionally indicated to downregulate EGFR protein expression in mammosphere-forming BCSCs without affecting the expression of messenger RNA. The protein stability of EGFR in BCSCs was also decreased by hinokitiol. The EGFR protein expression and VM formation capability of hinokitiol-treated BCSCs were restored by co-treatment with MG132, a proteasome inhibitor. In conclusion, the present study indicated that hinokitiol may inhibit the VM activity of BCSCs through stimulating proteasome-mediated EGFR degradation. Hinokitiol may act as an anti-VM agent, and may be useful for the development of novel breast cancer therapeutic agents. PMID:27073579

  6. Differential responsiveness of luteinized human granulosa cells to gonadotropins and insulin-like growth factor I for induction of aromatase activity

    SciTech Connect

    Christman, G.M.; Randolph, J.F. Jr.; Peegel, H.; Menon, K.M. )

    1991-06-01

    The objective of this study was to examine the in vitro responsiveness of cultured luteinized human granulosa cells over time to insulin-like growth factor 1 (IGF-1), human follicle-stimulating hormone (FSH), and human chorionic gonadotropin (hCG) for the induction of aromatase activity. Granulosa cells were retrieved from preovulatory follicles in patients undergoing in vitro fertilization. Cells were cultured for a period of 72 hours or 10 days. The ability of hCG, human FSH, and/or IGF-I to induce aromatase activity was assayed by the stereospecific release of tritium from (1B-3H)androstenedione. Short-term cultures (72 hours) demonstrated a marked rise in aromatase activity in response to human FSH and IGF-I, whereas a smaller response to hCG was observed. In contrast, 10-day cultures demonstrated responsiveness predominantly to hCG rather than human FSH for the induction of aromatase activity with no remarkable effect of IGF-I. Luteinized human granulosa cells undergo a transformation from an initial human FSH and IGF-I responsive state to an hCG responsive state in long-term cultures.

  7. Treatment of melanoma cells with the synthetic retinoid CD437 induces apoptosis via activation of AP-1 in vitro, and causes growth inhibition in xenografts in vivo

    PubMed Central

    1996-01-01

    Human malignant melanoma is notoriously resistant to pharmacological modulation. We describe here for the first time that the synthetic retinoid CD437 has a strong dose-dependent antiproliferative effect on human melanoma cells (IC50: 5 x 10(-6) M) via the induction of programmed cell death, as judged by analysis of cell morphology, electron microscopical features, and DNA fragmentation. Programmed cell death was preceded by a strong activation of the AP-1 complex in CD437- treated cells as demonstrated by gel retardation and chloramphenicol transferase (CAT) assays. Northern blot analysis showed a time- dependent increase in the expression of c-fos and c-jun encoding components of AP-1, whereas bcl-2 and p53 mRNA levels remained constant. CD437 also exhibited a strong growth inhibitory effect on MeWo melanoma cells in a xenograft model. In tissue sections of CD437- treated MeWo tumors from these animals, apoptotic melanoma cells and c- fos overexpressing cells were colocalized by TdT-mediated deoxyuridine triphosphate-digoxigenin nick end labeling (TUNEL) staining and in situ hybridization. Taken together, this report identifies CD437 as a retinoid that activates and upregulates the transcription factor AP-1, leading eventually to programmed cell death of exposed human melanoma cells in vitro and in vivo. Further studies are needed to evaluate whether synthetic retinoids such as CD437 represent a new class of retinoids, which may open up new ways to a more effective therapy of malignant melanoma. PMID:8991099

  8. 17(E)-picolinylidene androstane derivatives as potential inhibitors of prostate cancer cell growth: antiproliferative activity and molecular docking studies.

    PubMed

    Ajduković, Jovana J; Djurendić, Evgenija A; Petri, Edward T; Klisurić, Olivera R; Celić, Andjelka S; Sakač, Marija N; Jakimov, Dimitar S; Gaši, Katarina M Penov

    2013-12-01

    We report a rapid and efficient synthesis of A-ring modified 17α-picolyl and 17(E)-picolinylidene androstane derivatives from dehydroepiandrosterone. Compounds were validated spectroscopically and structurally characterized by X-ray crystallography. Virtual screening by molecular docking against clinical targets of steroidal anticancer drugs (ERα, AR, Aromatase and CYP17A1) suggests that 17(E)-picolinylidene, but not 17α-picolyl androstanes could specifically interact with CYP17A1 (17α-hydroxylase) with similar geometry and affinity as Abiraterone, a 17-pyridinyl androstane drug clinically used in the treatment of prostate cancer. In addition, several 17(E)-picolinylidene androstanes demonstrated selective antiproliferative activity against PC3 prostate cancer cells, which correlates with Abiraterone antiproliferative activity and predicted CYP17A1 binding affinities. Based on these preliminary results, 17(E)-picolinylidene androstane derivatives could be a promising starting point for the development of new compounds for the treatment of prostate cancer.

  9. Mutations reducing replication from R-loops suppress the defects of growth, chromosome segregation and DNA supercoiling in cells lacking topoisomerase I and RNase HI activity.

    PubMed

    Usongo, Valentine; Martel, Makisha; Balleydier, Aurélien; Drolet, Marc

    2016-04-01

    R-loop formation occurs when the nascent RNA hybridizes with the template DNA strand behind the RNA polymerase. R-loops affect a wide range of cellular processes and their use as origins of replication was the first function attributed to them. In Escherichia coli, R-loop formation is promoted by the ATP-dependent negative supercoiling activity of gyrase (gyrA and gyrB) and is inhibited by topoisomerase (topo) I (topA) relaxing transcription-induced negative supercoiling. RNase HI (rnhA) degrades the RNA moiety of R-loops. The depletion of RNase HI activity in topA null mutants was previously shown to lead to extensive DNA relaxation, due to DNA gyrase inhibition, and to severe growth and chromosome segregation defects that were partially corrected by overproducing topo III (topB). Here, DNA gyrase assays in crude cell extracts showed that the ATP-dependent activity (supercoiling) of gyrase but not its ATP-independent activity (relaxation) was inhibited in topA null cells lacking RNase HI. To characterize the cellular event(s) triggered by the absence of RNase HI, we performed a genetic screen for suppressors of the growth defect of topA rnhA null cells. Suppressors affecting genes in replication (holC2::aph and dnaT18::aph) nucleotide metabolism (dcd49::aph), RNA degradation (rne59::aph) and fimbriae synthesis (fimD22::aph) were found to reduce replication from R-loops and to restore supercoiling, thus pointing to a correlation between R-loop-dependent replication in topA rnhA mutants and the inhibition of gyrase activity and growth. Interestingly, the position of fimD on the E. coli chromosome corresponds to the site of one of the five main putative origins of replication from R-loops in rnhA null cells recently identified by next-generation sequencing, thus suggesting that the fimD22::aph mutation inactivated one of these origins. Furthermore, we show that topo III overproduction is unable to complement the growth defect of topA rnhA null mutants at low

  10. Transforming growth factor-{beta} inhibits CCAAT/enhancer-binding protein expression and PPAR{gamma} activity in unloaded bone marrow stromal cells

    SciTech Connect

    Ahdjoudj, S.; Kaabeche, K.; Holy, X.; Fromigue, O.; Modrowski, D.; Zerath, E.; Marie, P.J. . E-mail: pierre.marie@larib.inserm.fr

    2005-02-01

    The molecular mechanisms regulating the adipogenic differentiation of bone marrow stromal cells in vivo remain largely unknown. In this study, we investigated the regulatory effects of transforming growth factor beta-2 (TGF-{beta}2) on transcription factors involved in adipogenic differentiation induced by hind limb suspension in rat bone marrow stromal cells in vivo. Time course real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR) analysis of gene expression showed that skeletal unloading progressively increases the expression of CCAAT/enhancer-binding protein (C/EBP){alpha} and C/EBP{beta} {alpha} at 5 days in bone marrow stromal cells resulting in increased peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}2) transcripts at 7 days. TGF-{beta}2 administration in unloaded rats corrected the rise in C/EBP{alpha} and C/EBP{beta} transcripts induced by unloading in bone marrow stromal cells. This resulted in inhibition of PPAR{gamma}2 expression that was associated with increased Runx2 expression. Additionally, the inhibition of C/EBP{alpha} and C/EBP{beta} expression by TGF-{beta}2 was associated with increased PPAR{gamma} serine phosphorylation in bone marrow stromal cells, a mechanism that inhibits PPAR{gamma} transactivating activity. The sequential inhibitory effect of TGF-{beta}2 on C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma}2 resulted in reduced LPL expression and abolition of bone marrow stromal cell adipogenic differentiation, which contributed to prevent bone loss induced by skeletal unloading. We conclude that TGF-{beta}2 inhibits the excessive adipogenic differentiation of bone marrow stromal cells induced by skeletal unloading by inhibiting C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma} expression and activity, which provides a sequential mechanism by which TGF-{beta}2 regulates adipogenic differentiation of bone marrow stromal cells in vivo.

  11. The role of peroxisome proliferator-activated receptor-{beta}/{delta} in epidermal growth factor-induced HaCaT cell proliferation

    SciTech Connect

    Liang Pengfei; Jiang Bimei; Yang Xinghua; Xiao Xianzhong Huang Xu; Long Jianhong; Zhang Pihong; Zhang Minghua; Xiao Muzhang; Xie Tinghong; Huang Xiaoyuan

    2008-10-15

    Epidermal growth factor (EGF) has been shown to be a potent mitogen for epidermal cells both in vitro and in vivo, thus contributing to the development of an organism. It has recently become clear that peroxisome proliferator-activated receptor-{beta}/{delta} (PPAR{beta}/{delta}) expression and activation is involved in the cell proliferation. However, little is known about the role of PPAR{beta}/{delta} in EGF-induced proliferation of HaCaT keratinocytes. In this study, HaCaT cells were cultured in the presence and absence of EGF and we identified that EGF induced an increase of PPAR{beta}/{delta} mRNA and protein level expression in time-dependent and dose-dependent manner, and AG1487, an EGF receptor (EGFR) special inhibitor, caused attenuation of PPAR{beta}/{delta} protein expression. Electrophoretic mobility shift assay (EMSA) revealed that EGF significantly increased PPAR{beta}/{delta} binding activity in HaCaT keratinocytes. Antisense phosphorothioate oligonucleotides (asODNs) against PPAR{beta}/{delta} caused selectively inhibition of PPAR{beta}/{delta} protein content induced by EGF and significantly attenuated EGF-mediated cell proliferation. Treatment of the cells with L165041, a specific synthetic ligand for PPAR{beta}/{delta}, significantly enhanced EGF-mediated cell proliferation. Finally, c-Jun ablation inhibited PPAR{beta}/{delta} up-regulation induced by EGF, and chromatin immunoprecipitation (ChIP) showed that c-Jun bound to the PPAR{beta}/{delta} promoter and the binding increased in EGF-stimulated cells. These results demonstrate that EGF induces PPAR{beta}/{delta} expression in a c-Jun-dependent manner and PPAR{beta}/{delta} plays a vital role in EGF-stimulated proliferation of HaCaT cells.

  12. Estrogen receptor beta growth-inhibitory effects are repressed through activation of MAPK and PI3K signalling in mammary epithelial and breast cancer cells.

    PubMed

    Cotrim, C Z; Fabris, V; Doria, M L; Lindberg, K; Gustafsson, J-Å; Amado, F; Lanari, C; Helguero, L A

    2013-05-01

    Two thirds of breast cancers express estrogen receptors (ER). ER alpha (ERα) mediates breast cancer cell proliferation, and expression of ERα is the standard choice to indicate adjuvant endocrine therapy. ERbeta (ERβ) inhibits growth in vitro; its effects in vivo have been incompletely investigated and its role in breast cancer and potential as alternative target in endocrine therapy needs further study. In this work, mammary epithelial (EpH4 and HC11) and breast cancer (MC4-L2) cells with endogenous ERα and ERβ expression and T47-D human breast cancer cells with recombinant ERβ (T47-DERβ) were used to explore effects exerted in vitro and in vivo by the ERβ agonists 2,3-bis (4-hydroxy-phenyl)-propionitrile (DPN) and 7-bromo-2-(4-hydroxyphenyl)-1,3-benzoxazol-5-ol (WAY). In vivo, ERβ agonists induced mammary gland hyperplasia and MC4-L2 tumour growth to a similar extent as the ERα agonist 4,4',4''-(4-propyl-(1H)-pyrazole-1,3,5-triyl) trisphenol (PPT) or 17β-estradiol (E2) and correlated with higher number of mitotic and lower number of apoptotic features. In vitro, in MC4-L2, EpH4 or HC11 cells incubated under basal conditions, ERβ agonists induced apoptosis measured as upregulation of p53 and apoptosis-inducible factor protein levels and increased caspase 3 activity, whereas PPT and E2 stimulated proliferation. However, when extracellular signal-regulated kinase 1 and 2 (ERK ½) were activated by co-incubation with basement membrane extract or epidermal growth factor, induction of apoptosis by ERβ agonists was repressed and DPN induced proliferation in a similar way as E2 or PPT. In a context of active ERK ½, phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/RAC-alpha serine/threonine-protein kinase (AKT) signalling was necessary to allow proliferation stimulated by ER agonists. Inhibition of MEK ½ with UO126 completely restored ERβ growth-inhibitory effects, whereas inhibition of PI3K by LY294002 inhibited ERβ-induced proliferation. These

  13. SIRT6 suppresses glioma cell growth via induction of apoptosis, inhibition of oxidative stress and suppression of JAK2/STAT3 signaling pathway activation.

    PubMed

    Feng, Jun; Yan, Peng-Fei; Zhao, Hong-Yang; Zhang, Fang-Cheng; Zhao, Wo-Hua; Feng, Min

    2016-03-01

    Sirtuin 6 (SIRT6) is a member of the mammalian NAD+‑dependent deacetylase sirtuin family that acts to maintain genomic stability and to repress genes. SIRT6 has recently been reported to be a tumor suppressor that controls cancer metabolism, although this effect of SIRT6 is still in dispute. Moreover, the role of SIRT6 in glioma is largely unknown. In the present study, we found that overexpression of SIRT6 using an adenovirus inhibited glioma cell growth and induced marked cell injury in two glioma cell lines (U87‑MG and T98G). Fluorescent terminal deoxyribonucleotidyl transferase (TdT)‑mediated biotin‑16‑dUTP nick‑end labelling (TUNEL) assay showed that SIRT6 overexpression induced obvious apoptosis in the T98G glioma cells. Immunoblotting and immunofluorescent staining demonstrated that SIRT6 overexpression promoted the mitochondrial-to‑nuclear translocation of apoptosis‑inducing factor (AIF), a potent apoptosis inducer. Moreover, we found that SIRT6 overexpression largely reduced oxidative stress and suppressed the activation of the JAK2/STAT3 signaling pathway in glioma cells. Finally, we showed that SIRT6 mRNA and protein levels in human glioblastoma multiforme tissues were significantly lower than the levels in peritumor tissues. In summary, our data suggest that SIRT6 suppresses glioma cell growth via induction of apoptosis, inhibition of oxidative stress and inhibition of the activation of the JAK2/STAT3 signaling pathway. These results indicate that SIRT6 may be a promising therapeutic target for glioma treatment. PMID:26648570

  14. The herbal compound Songyou Yin (SYY) inhibits hepatocellular carcinoma growth and improves survival in models of chronic fibrosis via paracrine inhibition of activated hepatic stellate cells

    PubMed Central

    Xue, Tong-Chun; Zhang, Quan-Bao; Zhang, Ke-Zhi; Zhang, Qiang-Bo; You, Yang; Tian, Hui; Qin, Lun-Xiu; Tang, Zhao-You

    2015-01-01

    Chronic fibrosis is a major risk factor for the development of hepatocellular carcinoma (HCC). The pathological progression of hepatic fibrosis has been linked to cellular processes that promote tumor growth and metastasis. Several recent studies have highlighted the cross-talk between tumor cells and activated hepatic stellate cells (aHSCs) in HCC. The herbal compound Songyou Yin (SYY) is known to attenuate hepatoma cell invasion and metastasis via down-regulation of cytokine secretion by aHSCs. However the underlying mechanism of SYY treatment in reversal of hepatic fibrosis and metastasis of liver cancers is not known. In the current study, a nude mouse model with liver fibrosis bearing orthotopic xenograft was established and we found that SYY could reduce associated fibrosis, inhibit tumor growth and improve survival. In the subcutaneous tumor model with fibrosis, we found that SYY could inhibit liver cancer. In vitro, hepatoma cells incubated with conditioned media (CM) from SYY treated aHSCs showed reduced proliferation, decrease in colony formation and invasive potential. SYY treated group showed altered gene expression, with 1205 genes up-regulated and 1323 genes down-regulated. Gene cluster analysis indicated that phosphatidylinositol-3-kinase (PI3K) was one of the key genes altered in the expression profiles. PI3K related markers were all significantly down-regulated. ELISA also indicated decreased secretion of cytokines which were regulated by PI3K/AKT signaling after SYY treatment in the hepatic stellate cell line, LX2. These data clearly demonstrate that SYY therapy inhibits HCC invasive and metastatic potential and improves survival in nude mice models with chronic fibrosis background via inhibition of cytokine secretion by activated hepatic stellate cells. PMID:26517671

  15. LINE-1 ORF-1p functions as a novel HGF/ETS-1 signaling pathway co-activator and promotes the growth of MDA-MB-231 cell.

    PubMed

    Yang, Qian; Feng, Fan; Zhang, Fan; Wang, Chunping; Lu, Yinying; Gao, Xudong; Zhu, Yunfeng; Yang, Yongping

    2013-12-01

    Long interspersed nucleotide element (LINE)-1 ORF-1p is encoded by the human pro-oncogene LINE-1. It is involved in the development and progression of several human carcinomas, such as hepatocellular carcinoma and lung and breast cancers. The hepatocyte growth factor (HGF)/ETS-1 signaling pathway is involved in regulation of cancer cell proliferation, metastasis and invasion. The biological function of the interaction between LINE-1 ORF-1p and the HGF/ETS-1 signaling pathway in regulation of human breast cancer proliferation remains largely unknown. Here, we showed that LINE-1 ORF-1p enhanced ETS-1 transcriptional activity and increased expression of downstream genes of ETS-1. Interaction between ETS-1 and LINE-1 ORF-1p was identified by immunoprecipitation assays. LINE-1 ORF-1p modulated ETS-1 activity through cytoplasm/nucleus translocation and recruitment to the ETS-1 binding element in the MMP1 gene promoter. We also showed that LINE-1 ORF-1p promoted proliferation and anchorage-independent growth of MDA-MB-231 breast cancer cells. By investigating a novel role of the LINE-1 ORF-1p in the HGF/ETS-1 signaling pathway and MDA-MB-231 cells, we demonstrated that LINE-1 ORF-1p may be a novel ETS-1 coactivator and molecular target for therapy of human triple negative breast cancer.

  16. Polypeptides with nonsuppressible insulin-like and cell-growth promoting activities in human serum: isolation, chemical characterization, and some biological properties of forms I and II.

    PubMed

    Rinderknecht, E; Humbel, R E

    1976-07-01

    Serum contains a polypeptide with insulin-like activity not suppressible by insulin antibodies (NSILA). A large-scale isolation procedure for NSILA is described, starting from an acid ethanol extract of a Cohn fraction (precipitate B) obtained from human plasma. Two homogenous polypeptides with insulin-like and cell-growth promoting activities could be isolated by gel filtration, ion exchange chromatography, and preparative polyacrylamide gel electrophoresis. Both components are slightly basic polypeptides with a minimal molecular weight of 5800 +/- 400. Both are single-chain molecules with two intrachain disulfide bridges each and no free sulfhydryl groups. NSILA I and II differ, however, in their amino acid compositions. The N-terminal amino acid sequences are Gly-Pro-Glu- in NSILA I, and Ala-Tyr-Arg- and Tyr-Arg- in NSILA II. Both NSILA I and II enhance net gas exchange in adipose tissue with a specific activity 60 times lower than that of insulin. In the range of 1-50 ng/ml, both substances stimulate [3H]thymidine incorporation into DNA of chick embryo fibroblasts. The same effect can be obtained with insulin but only at concentrations 50-100 times higher than those of NSILA. These results suggest that NSILA I and II are two forms of an insulin-like hormone with predominating effects on cell and tissue growth parameters.

  17. Depletion of hepatoma-derived growth factor-related protein-3 induces apoptotic sensitization of radioresistant A549 cells via reactive oxygen species-dependent p53 activation

    SciTech Connect

    Yun, Hong Shik; Hong, Eun-Hee; Lee, Su-Jae; Baek, Jeong-Hwa; Lee, Chang-Woo; Yim, Ji-Hye; Um, Hong-Duck; Hwang, Sang-Gu

    2013-09-27

    Highlights: •HRP-3 is a radiation- and anticancer drug-responsive protein in A549 cells. •Depletion of HRP-3 induces apoptosis of radio- and chemoresistant A549 cells. •Depletion of HRP-3 promotes ROS generation via inhibition of the Nrf2/HO-1 pathway. •Depletion of HRP-3 enhances ROS-dependent p53 activation and PUMA expression. -- Abstract: Biomarkers based on functional signaling have the potential to provide greater insight into the pathogenesis of cancer and may offer additional targets for anticancer therapeutics. Here, we identified hepatoma-derived growth factor-related protein-3 (HRP-3) as a radioresistance-related gene and characterized the molecular mechanism by which its encoded protein regulates the radio- and chemoresistant phenotype of lung cancer-derived A549 cells. Knockdown of HRP-3 promoted apoptosis of A549 cells and potentiated the apoptosis-inducing action of radio- and chemotherapy. This increase in apoptosis was associated with a substantial generation of reactive oxygen species (ROS) that was attributable to inhibition of the Nrf2/HO-1 antioxidant pathway and resulted in enhanced ROS-dependent p53 activation and p53-dependent expression of PUMA (p53 upregulated modulator of apoptosis). Therefore, the HRP-3/Nrf2/HO-1/ROS/p53/PUMA cascade is an essential feature of the A549 cell phenotype and a potential radiotherapy target, extending the range of targets in multimodal therapies against lung cancer.

  18. Cell growth and proteolytic activity of Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus delbrueckii ssp. bulgaricus, and Streptococcus thermophilus in milk as affected by supplementation with peptide fractions.

    PubMed

    Gandhi, Akanksha; Shah, Nagendra P

    2014-12-01

    The present investigation examined the effects of supplementation of milk peptide fractions produced by enzymatic hydrolysis on the fermentation of reconstituted skim milk (RSM). Changes in pH, cell growth, proteolytic activity, and angiotensin-converting enzyme (ACE)-inhibitory activity were monitored during fermentation of RSM by pure cultures of Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus delbrueckii ssp. bulgaricus, and Streptococcus thermophilus. The study showed that supplementation with peptide fractions of different molecular weights did not significantly affect the bacterial growth in RSM. All bacteria showed an increased proteolytic activity in RSM supplemented with large peptides (>10 kDa), and L. helveticus in general exhibited the highest proteolytic activity among the bacteria studied. The ACE-inhibitory activity was observed to be the maximum in RSM supplemented with larger peptides (>10 kDa) for all bacteria. The results suggest that proteolysis by bacteria leads to increased production of ACE-inhibitory peptides compared to the supplemented peptides produced by enzymatic hydrolysis.

  19. A low-cost non-toxic post-growth activation step for CdTe solar cells.

    PubMed

    Major, J D; Treharne, R E; Phillips, L J; Durose, K

    2014-07-17

    Cadmium telluride, CdTe, is now firmly established as the basis for the market-leading thin-film solar-cell technology. With laboratory efficiencies approaching 20 per cent, the research and development targets for CdTe are to reduce the cost of power generation further to less than half a US dollar per watt (ref. 2) and to minimize the environmental impact. A central part of the manufacturing process involves doping the polycrystalline thin-film CdTe with CdCl2. This acts to form the photovoltaic junction at the CdTe/CdS interface and to passivate the grain boundaries, making it essential in achieving high device efficiencies. However, although such doping has been almost ubiquitous since the development of this processing route over 25 years ago, CdCl2 has two severe disadvantages; it is both expensive (about 30 cents per gram) and a water-soluble source of toxic cadmium ions, presenting a risk to both operators and the environment during manufacture. Here we demonstrate that solar cells prepared using MgCl2, which is non-toxic and costs less than a cent per gram, have efficiencies (around 13%) identical to those of a CdCl2-processed control group. They have similar hole densities in the active layer (9 × 10(14) cm(-3)) and comparable impurity profiles for Cl and O, these elements being important p-type dopants for CdTe thin films. Contrary to expectation, CdCl2-processed and MgCl2-processed solar cells contain similar concentrations of Mg; this is because of Mg out-diffusion from the soda-lime glass substrates and is not disadvantageous to device performance. However, treatment with other low-cost chlorides such as NaCl, KCl and MnCl2 leads to the introduction of electrically active impurities that do compromise device performance. Our results demonstrate that CdCl2 may simply be replaced directly with MgCl2 in the existing fabrication process, thus both minimizing the environmental risk and reducing the cost of CdTe solar-cell production.

  20. A low-cost non-toxic post-growth activation step for CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Major, J. D.; Treharne, R. E.; Phillips, L. J.; Durose, K.

    2014-07-01

    Cadmium telluride, CdTe, is now firmly established as the basis for the market-leading thin-film solar-cell technology. With laboratory efficiencies approaching 20 per cent, the research and development targets for CdTe are to reduce the cost of power generation further to less than half a US dollar per watt (ref. 2) and to minimize the environmental impact. A central part of the manufacturing process involves doping the polycrystalline thin-film CdTe with CdCl2. This acts to form the photovoltaic junction at the CdTe/CdS interface and to passivate the grain boundaries, making it essential in achieving high device efficiencies. However, although such doping has been almost ubiquitous since the development of this processing route over 25 years ago, CdCl2 has two severe disadvantages; it is both expensive (about 30 cents per gram) and a water-soluble source of toxic cadmium ions, presenting a risk to both operators and the environment during manufacture. Here we demonstrate that solar cells prepared using MgCl2, which is non-toxic and costs less than a cent per gram, have efficiencies (around 13%) identical to those of a CdCl2-processed control group. They have similar hole densities in the active layer (9 × 1014 cm-3) and comparable impurity profiles for Cl and O, these elements being important p-type dopants for CdTe thin films. Contrary to expectation, CdCl2-processed and MgCl2-processed solar cells contain similar concentrations of Mg; this is because of Mg out-diffusion from the soda-lime glass substrates and is not disadvantageous to device performance. However, treatment with other low-cost chlorides such as NaCl, KCl and MnCl2 leads to the introduction of electrically active impurities that do compromise device performance. Our results demonstrate that CdCl2 may simply be replaced directly with MgCl2 in the existing fabrication process, thus both minimizing the environmental risk and reducing the cost of CdTe solar-cell production.

  1. (Z)-1-aryl-3-arylamino-2-propen-1-ones, highly active stimulators of tubulin polymerization: synthesis, structure-activity relationship (SAR), tubulin polymerization, and cell growth inhibition studies.

    PubMed

    Reddy, M V Ramana; Akula, Balaiah; Cosenza, Stephen C; Lee, Clement M; Mallireddigari, Muralidhar R; Pallela, Venkat R; Subbaiah, D R C Venkata; Udofa, Andrew; Reddy, E Premkumar

    2012-06-14

    Tubulin, the major structural component of microtubules, is a target for the development of anticancer agents. A series of (Z)-1-aryl-3-arylamino-2-propen-1-one (10) were synthesized and evaluated for antiproliferative activity in cell-based assay. The most active compound (Z)-1-(2-bromo-3,4,5-trimethoxyphenyl)-3-(3-hydroxy-4-methoxyphenylamino)prop-2-en-1-one (10ae) was tested in 20 tumor cell lines including multidrug resistant phenotype and was found to induce apoptosis in all these cell lines with similar GI(50) values. Flow cytometry studies showed that 10ae arrested the cells in G2/M phase of cell cycle. In addition to G2/M block, these compounds caused microtubule stabilization like paclitaxel and induced apoptosis via activation of the caspase family. The observations made in this investigation demonstrate that (Z)-1-Aryl-3-arylamino-2-propen-1-one (10) represents a new class of microtubule-stabilizing agents.

  2. (Z)-1-Aryl-3-arylamino-2-propen-1-ones, Highly Active Stimulators of Tubulin Polymerization: Synthesis, Structure Activity Relationship (SAR), Tubulin Polymerization and Cell Growth Inhibition Studies

    PubMed Central

    Reddy, M.V. Ramana; Akula, Balaiah; Cosenza, Stephen C; Lee, Clement M; Mallireddigari, Muralidhar R; Pallela, Venkat R; Subbaiah, DRC Venkata; Udofa, Andrew; Reddy, E. Premkumar

    2012-01-01

    Tubulin, the major structural component of microtubules, is a target for the development of anticancer agents. A series of (Z)-1-Aryl-3-arylamino-2-propen-1-one (10) were synthesized and evaluated for anti-proliferative activity in cell based assay. The most active compound (Z)-1-(2- bromo-3,4,5-trimethoxyphenyl)-3-(3-hydroxy-4-methoxyphenylamino)-prop-2-en-1-one (10ae) was tested in 20 tumor cell lines including multidrug resistant phenotype and was found to induce apoptosis in all these cell lines with similar GI50 values. Flow cytometry studies showed that 10ae arrested the cells in G2/M phase of cell cycle. In addition to G2/M block, these compounds caused microtubule stabilization like paclitaxel and induced apoptosis via activation of the caspase family. The observations made in this investigation demonstrate that (Z)-1-Aryl-3- arylamino-2-propen-1-one (10) represents a new class of microtubule – stabilizing agents. PMID:22587519

  3. Androgen Receptor Expression in Prostate Cancer Cells Is Suppressed by Activation of Epidermal Growth Factor Receptor and ErbB2

    PubMed Central

    Cai, Changmeng; Portnoy, David C.; Wang, Hongyun; Jiang, Xinnong; Chen, Shaoyong; Balk, Steven P.

    2016-01-01

    Prostate cancers (PCa) that relapse after androgen deprivation therapies [castration-resistant PCa (CRPC)] express high levels of androgen receptor (AR) and androgen-regulated genes, and evidence from several groups indicates that ErbB family receptor tyrosine kinases [epidermal growth factor (EGF) receptor (EGFR) and ErbB2] may contribute to enhancing this AR activity. We found that activation of these kinases with EGF and heregulin-β1 rapidly (within 8 hours) decreased expression of endogenous AR and androgen-regulated PSA in LNCaP PCa cells. AR expression was similarly decreased in LAPC4 and C4-2 cells, but not in the CWR22Rv1 PCa cell line. The rapid decrease in AR was not due to increased AR protein degradation and was not blocked by phosphatidylinositol 3-kinase (LY294002) or MEK (UO126) inhibitors. Significantly, AR mRNA levels in LNCaP cells were markedly decreased by EGF and heregulin-β1, and experiments with actinomycin D to block new mRNA synthesis showed that AR mRNA degradation was increased. AR mRNA levels were still markedly decreased by EGF and heregulin-β1 in LNCaP cells adapted to growth in androgen-depleted medium, although AR protein levels did not decline due to increased AR protein stability. These findings show that EGFR and ErbB2 can negatively regulate AR mRNA and may provide an approach to suppress AR expression in CRPC. PMID:19491261

  4. Panaxydol, a component of Panax ginseng, induces apoptosis in cancer cells through EGFR activation and ER stress and inhibits tumor growth in mouse models.

    PubMed

    Kim, Hee Suk; Lim, Jang Mi; Kim, Joo Young; Kim, Yongjin; Park, Serkin; Sohn, Jeongwon

    2016-03-15

    We reported previously that panaxydol, a component of Panax ginseng roots, induced mitochondria-mediated apoptosis preferentially in transformed cells. This study demonstrates that EGFR activation and the resulting ER stress mediate panaxydol-induced apoptosis, and that panaxydol suppresses in vivo tumor growth in syngeneic and xenogeneic mouse tumor models. In addition, we elucidated that CaMKII and TGF-β-activated kinase (TAK1) participate in p38/JNK activation by elevated cytoplasmic Ca(2+) concentration ([Ca(2+)]c). In MCF-7 cells, EGFR was activated immediately after exposure to panaxydol, and this activation was necessary for induction of apoptosis, suggesting that panaxydol might be a promising anticancer candidate, especially for EGFR-addicted cancer. Activation of PLCγ followed EGFR activation, resulting in Ca(2+) release from the endoplasmic reticulum (ER) via inositol triphosphate and ryanodine receptors. ER Ca(2+) release triggered mitochondrial Ca(2+) uptake indirectly through oxidative stress and ensuing ER stress. Elevated [Ca(2+)]c triggered sequential activation of calmodulin/CaMKII, TAK1 and p38/JNK. As shown previously, p38 and JNK activate NADPH oxidase. Here, it was shown that the resulting oxidative stress triggered ER stress. Among the three signaling branches of the unfolded protein response, protein kinase R-like ER kinase (PERK), but not inositol-requiring enzyme 1 or activating transcription factor 6, played a role in transmitting the apoptosis signal. PERK induced C/EBP homologous protein (CHOP), and CHOP elevated Bim expression, initiating mitochondrial Ca(2+) uptake and apoptosis. In summary, we identified roles of EGFR, the CAMKII-TAK1-p38/JNK pathway, and ER stress in panaxydol-induced apoptosis and demonstrated the in vivo anticancer effect of panaxydol.

  5. Panaxydol, a component of Panax ginseng, induces apoptosis in cancer cells through EGFR activation and ER stress and inhibits tumor growth in mouse models.

    PubMed

    Kim, Hee Suk; Lim, Jang Mi; Kim, Joo Young; Kim, Yongjin; Park, Serkin; Sohn, Jeongwon

    2016-03-15

    We reported previously that panaxydol, a component of Panax ginseng roots, induced mitochondria-mediated apoptosis preferentially in transformed cells. This study demonstrates that EGFR activation and the resulting ER stress mediate panaxydol-induced apoptosis, and that panaxydol suppresses in vivo tumor growth in syngeneic and xenogeneic mouse tumor models. In addition, we elucidated that CaMKII and TGF-β-activated kinase (TAK1) participate in p38/JNK activation by elevated cytoplasmic Ca(2+) concentration ([Ca(2+)]c). In MCF-7 cells, EGFR was activated immediately after exposure to panaxydol, and this activation was necessary for induction of apoptosis, suggesting that panaxydol might be a promising anticancer candidate, especially for EGFR-addicted cancer. Activation of PLCγ followed EGFR activation, resulting in Ca(2+) release from the endoplasmic reticulum (ER) via inositol triphosphate and ryanodine receptors. ER Ca(2+) release triggered mitochondrial Ca(2+) uptake indirectly through oxidative stress and ensuing ER stress. Elevated [Ca(2+)]c triggered sequential activation of calmodulin/CaMKII, TAK1 and p38/JNK. As shown previously, p38 and JNK activate NADPH oxidase. Here, it was shown that the resulting oxidative stress triggered ER stress. Among the three signaling branches of the unfolded protein response, protein kinase R-like ER kinase (PERK), but not inositol-requiring enzyme 1 or activating transcription factor 6, played a role in transmitting the apoptosis signal. PERK induced C/EBP homologous protein (CHOP), and CHOP elevated Bim expression, initiating mitochondrial Ca(2+) uptake and apoptosis. In summary, we identified roles of EGFR, the CAMKII-TAK1-p38/JNK pathway, and ER stress in panaxydol-induced apoptosis and demonstrated the in vivo anticancer effect of panaxydol. PMID:26421996

  6. Triiodothyronine regulates cell growth and survival in renal cell cancer.

    PubMed

    Czarnecka, Anna M; Matak, Damian; Szymanski, Lukasz; Czarnecka, Karolina H; Lewicki, Slawomir; Zdanowski, Robert; Brzezianska-Lasota, Ewa; Szczylik, Cezary

    2016-10-01

    Triiodothyronine plays an important role in the regulation of kidney cell growth, differentiation and metabolism. Patients with renal cell cancer who develop hypothyreosis during tyrosine kinase inhibitor (TKI) treatment have statistically longer survival. In this study, we developed cell based model of triiodothyronine (T3) analysis in RCC and we show the different effects of T3 on renal cell cancer (RCC) cell growth response and expression of the thyroid hormone receptor in human renal cell cancer cell lines from primary and metastatic tumors along with human kidney cancer stem cells. Wild-type thyroid hormone receptor is ubiquitously expressed in human renal cancer cell lines, but normalized against healthy renal proximal tube cell expression its level is upregulated in Caki-2, RCC6, SKRC-42, SKRC-45 cell lines. On the contrary the mRNA level in the 769-P, ACHN, HKCSC, and HEK293 cells is significantly decreased. The TRβ protein was abundant in the cytoplasm of the 786-O, Caki-2, RCC6, and SKRC-45 cells and in the nucleus of SKRC-42, ACHN, 769-P and cancer stem cells. T3 has promoting effect on the cell proliferation of HKCSC, Caki-2, ASE, ACHN, SK-RC-42, SMKT-R2, Caki-1, 786-0, and SK-RC-45 cells. Tyrosine kinase inhibitor, sunitinib, directly inhibits proliferation of RCC cells, while thyroid hormone receptor antagonist 1-850 (CAS 251310‑57-3) has less significant inhibitory impact. T3 stimulation does not abrogate inhibitory effect of sunitinib. Renal cancer tumor cells hypostimulated with T3 may be more responsive to tyrosine kinase inhibition. Moreover, some tumors may be considered as T3-independent and present aggressive phenotype with thyroid hormone receptor activated independently from the ligand. On the contrary proliferation induced by deregulated VHL and or c-Met pathways may transgress normal T3 mediated regulation of the cell cycle. PMID:27632932

  7. Elevated hepatocyte growth factor expression as an autocrine c-Met activation mechanism in acquired resistance to sorafenib in hepatocellular carcinoma cells.

    PubMed

    Firtina Karagonlar, Zeynep; Koc, Dogukan; Iscan, Evin; Erdal, Esra; Atabey, Neşe

    2016-04-01

    Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and the third leading cause of cancer-related deaths worldwide. Limitations in HCC treatment result due to poor prognosis and resistance against traditional radiotherapy and chemotherapies. The multikinase inhibitor sorafenib is the only FDA approved drug available for advanced HCC patients, and development of second-line treatment options for patients who cannot tolerate or develop resistance to sorafenib is an urgent medical need. In this study, we established sorafenib-resistant cells from Huh7 and Mahlavu cell lines by long-term sorafenib exposure. Sorafenib-resistant HCC cells acquired spindle-shape morphology, upregulated mesenchymal markers, and showed significant increase in both migration and invasion abilities compared to their parental counterparts. Moreover, after long-term sorafenib treatment, HCC cells showed induction of hepatocyte growth factor (HGF) synthesis and secretion along with increased levels of c-Met kinase and its active phosphorylated form, indicating autocrine activation of HGF/c-Met signaling. Importantly, the combined treatment of the resistant cells with c-Met kinase inhibitor SU11274 and HGF neutralizing antibody significantly reversed the increased invasion ability of the cells. The combined treatment also significantly augmented sorafenib-induced apoptosis, suggesting restoration of sorafenib sensitivity. These results describe, for the first time, compensatory upregulation of HGF synthesis leading to autocrine activation of HGF/c-Met signaling as a novel cellular strategy in the acquisition of sorafenib resistance. Therefore, we suggest that combinatorial therapeutic strategies with HGF and c-Met inhibitors comprise promising candidates for overcoming sorafenib resistance. PMID:26790028

  8. Cumulin, an Oocyte-secreted Heterodimer of the Transforming Growth Factor-β Family, Is a Potent Activator of Granulosa Cells and Improves Oocyte Quality.

    PubMed

    Mottershead, David G; Sugimura, Satoshi; Al-Musawi, Sara L; Li, Jing-Jie; Richani, Dulama; White, Melissa A; Martin, Georgia A; Trotta, Andrew P; Ritter, Lesley J; Shi, Junyan; Mueller, Thomas D; Harrison, Craig A; Gilchrist, Robert B

    2015-09-25

    Growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) are oocyte-specific growth factors with central roles in mammalian reproduction, regulating species-specific fecundity, ovarian follicular somatic cell differentiation, and oocyte quality. In the human, GDF9 is produced in a latent form, the mechanism of activation being an open question. Here, we produced a range of recombinant GDF9 and BMP15 variants, examined their in silico and physical interactions and their effects on ovarian granulosa cells (GC) and oocytes. We found that the potent synergistic actions of GDF9 and BMP15 on GC can be attributed to the formation of a heterodimer, which we have termed cumulin. Structural modeling of cumulin revealed a dimerization interface identical to homodimeric GDF9 and BMP15, indicating likely formation of a stable complex. This was confirmed by generation of recombinant heterodimeric complexes of pro/mature domains (pro-cumulin) and covalent mature domains (cumulin). Both pro-cumulin and cumulin exhibited highly potent bioactivity on GC, activating both SMAD2/3 and SMAD1/5/8 signaling pathways and promoting proliferation and expression of a set of genes associated with oocyte-regulated GC differentiation. Cumulin was more potent than pro-cumulin, pro-GDF9, pro-BMP15, or the two combined on GC. However, on cumulus-oocyte complexes, pro-cumulin was more effective than all other growth factors at notably improving oocyte quality as assessed by subsequent day 7 embryo development. Our results support a model of activation for human GDF9 dependent on cumulin formation through heterodimerization with BMP15. Oocyte-secreted cumulin is likely to be a central regulator of fertility in mono-ovular mammals.

  9. Cumulin, an Oocyte-secreted Heterodimer of the Transforming Growth Factor-β Family, Is a Potent Activator of Granulosa Cells and Improves Oocyte Quality*

    PubMed Central

    Mottershead, David G.; Sugimura, Satoshi; Al-Musawi, Sara L.; Li, Jing-Jie; Richani, Dulama; White, Melissa A.; Martin, Georgia A.; Trotta, Andrew P.; Ritter, Lesley J.; Shi, Junyan; Mueller, Thomas D.; Harrison, Craig A.; Gilchrist, Robert B.

    2015-01-01

    Growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) are oocyte-specific growth factors with central roles in mammalian reproduction, regulating species-specific fecundity, ovarian follicular somatic cell differentiation, and oocyte quality. In the human, GDF9 is produced in a latent form, the mechanism of activation being an open question. Here, we produced a range of recombinant GDF9 and BMP15 variants, examined their in silico and physical interactions and their effects on ovarian granulosa cells (GC) and oocytes. We found that the potent synergistic actions of GDF9 and BMP15 on GC can be attributed to the formation of a heterodimer, which we have termed cumulin. Structural modeling of cumulin revealed a dimerization interface identical to homodimeric GDF9 and BMP15, indicating likely formation of a stable complex. This was confirmed by generation of recombinant heterodimeric complexes of pro/mature domains (pro-cumulin) and covalent mature domains (cumulin). Both pro-cumulin and cumulin exhibited highly potent bioactivity on GC, activating both SMAD2/3 and SMAD1/5/8 signaling pathways and promoting proliferation and expression of a set of genes associated with oocyte-regulated GC differentiation. Cumulin was more potent than pro-cumulin, pro-GDF9, pro-BMP15, or the two combined on GC. However, on cumulus-oocyte complexes, pro-cumulin was more effective than all other growth factors at notably improving oocyte quality as assessed by subsequent day 7 embryo development. Our results support a model of activation for human GDF9 dependent on cumulin formation through heterodimerization with BMP15. Oocyte-secreted cumulin is likely to be a central regulator of fertility in mono-ovular mammals. PMID:26254468

  10. Oxidatively modified LDL contains phospholipids with platelet-activating factor-like activity and stimulates the growth of smooth muscle cells.

    PubMed Central

    Heery, J M; Kozak, M; Stafforini, D M; Jones, D A; Zimmerman, G A; McIntyre, T M; Prescott, S M

    1995-01-01

    Oxidative modification of lipoproteins is believed to be important in the genesis of atherosclerosis. We established cultures of smooth muscle cells (SMC) and exposed them to native LDL or oxidized LDL. Oxidized LDL, but not native LDL, was mitogenic as measured by incorporation of [3H]-thymidine into DNA. This effect was concentration dependent, averaged 288% of control, and was blocked by a platelet-activating factor (PAF) receptor antagonist. We hypothesized that phospholipids with PAF-like activity were generated during the oxidation of LDL. To test this hypothesis we extracted phospholipids from copper-oxidized LDL and assayed for PAF-like activity. Phospholipids extracted from oxidized LDL and purified by HPLC induced neutrophil adhesion equivalent to PAF (10 nM) and were mitogenic for smooth muscle cells. These effects were not seen with phospholipids extracted from native LDL and were blocked by two structurally different, competitive antagonists of the PAF receptor. The effects of these lipids were also abolished by pretreating them with PAF acetylhydrolase. Finally, we used Chinese hamster ovary cells that had seen stably transfected with a cDNA for the PAF receptor to confirm that phospholipids from oxidized LDL act via this receptor. We found that PAF (control) and the oxidized phospholipids each induced release of arachidonic acid from the transfected cells, but had no effect on wildtype Chinese hamster ovary cells, which lack the PAF receptor. This effect was also blocked by a PAF receptor antagonist. Thus, phospholipids generated during oxidative modification of LDL may participate in atherosclerosis by stimulating SMC proliferation and leukocyte activation. Images PMID:7593619

  11. The HIF-1-inducible lysyl oxidase activates HIF-1 via the Akt pathway in a positive regulation loop and synergizes with HIF-1 in promoting tumor cell growth.

    PubMed

    Pez, Floriane; Dayan, Frédéric; Durivault, Jérome; Kaniewski, Bastien; Aimond, Géraldine; Le Provost, Gabrielle S; Deux, Blandine; Clézardin, Philippe; Sommer, Pascal; Pouysségur, Jacques; Reynaud, Caroline

    2011-03-01

    Adaptation to hypoxia is a driving force for tumor progression that leads to therapy resistance and poor clinical outcome. Hypoxic responses are mainly mediated by hypoxia-inducible transcription factor-1 (HIF-1). One critical HIF-1 target mediating tumor progression is lysyl oxidase (LOX), which catalyzes cross-linking of collagens and elastin in the extracellular matrix, thereby regulating tissue tensile strength. Paradoxically, LOX has been reported to be both upregulated and downregulated in cancer cells, especially in colorectal cancer. Thus, we hypothesized that LOX might regulate expression of HIF-1 to create a self-timing regulatory circuit. Using human colorectal carcinoma cell lines in which HIF-1 and LOX expression could be modulated, we showed that LOX induction enhanced HIF-1 expression, whereas LOX silencing reduced it. Mechanistic investigations revealed that LOX activated the PI3K (phosphoinositide 3-kinase)-Akt signaling pathway, thereby upregulating HIF-1α protein synthesis in a manner requiring LOX-mediated hydrogen peroxide production. Consistent with these results, cancer cell proliferation was stimulated by secreted and active LOX in an HIF-1α-dependent fashion. Furthermore, nude mice xenograft assays established that HIF-1 potentiated LOX action on tumor growth in vivo. Taken together, these findings provide compelling evidence that LOX and HIF-1 act in synergy to foster tumor formation, and they suggest that HIF-1/LOX mutual regulation is a pivotal mechanism in the adaptation of tumor cells to hypoxia. PMID:21239473

  12. Selective expression of constitutively active pro-apoptotic protein BikDD gene in primary mammary tumors inhibits tumor growth and reduces tumor initiating cells.

    PubMed

    Rahal, Omar M; Nie, Lei; Chan, Li-Chuan; Li, Chia-Wei; Hsu, Yi-Hsin; Hsu, Jennifer; Yu, Dihua; Hung, Mien-Chie

    2015-01-01

    Our previous study showed that specifically delivering BikDD, a constitutive active mutant of pro-apoptotic protein Bik, to breast cancer cell xenografts in immunocompromised mice has a potent activity against tumor initiating cells (TICs), and that the combination between tyrosine kinase inhibitors (TKI) and BikDD gene therapy yielded synergistic effect on EGFR and HER2 positive breast cancer cells in immunodeficient nude mice. Those encouraging results have allowed us to propose a clinical trial using the liposome-complexing plasmid DNA expressing BikDD gene which has been approved by the NIH RAC Advisory committee. However, it is imperative to test whether systemic delivery of BikDD-expressing plasmid DNAs with liposomes into immunocompetent mice has therapeutic efficacy and tolerable side effects as what we observed in the nude mice model. In this study, we investigated the effects of BikDD gene-therapy on the primary mammary tumors, especially on tumor initiating cells (TICs), of a genetically engineered immunocompetent mouse harboring normal microenvironment and immune response. The effects on TIC population in tumors were determined by FACS analysis with different sets of murine specific TIC markers, CD49f(high)CD61(high) and CD24(+)Jagged1(-). First we showed in vitro that ectopic expression of BikDD in murine N202 cells derived from MMTV-HER2/Neu transgenic mouse tumors induced apoptosis and decreased the number of TICs. Consistently, systemic delivery of VISA-Claudin4-BikDD by liposome complexes significantly inhibited mammary tumor growth and slowed down residual tumor growth post cessation of therapy in MMTV-HER2/Neu transgenic mice compared to the controls. In addition, the anti-tumor effects of BikDD in vivo were consistent with decreased TIC population assessed by FACS analysis and in vitro tumorsphere formation assay of freshly isolated tumor cells. Importantly, systemic administration of BikDD did not cause significant cytotoxic response in

  13. Live imaging of transforming growth factor-β activated kinase 1 activation in Lewis lung carcinoma 3LL cells implanted into syngeneic mice and treated with polyinosinic:polycytidylic acid.

    PubMed

    Takaoka, Saori; Kamioka, Yuji; Takakura, Kanako; Baba, Ai; Shime, Hiroaki; Seya, Tsukasa; Matsuda, Michiyuki

    2016-05-01

    Transforming growth factor-β activated kinase 1 (TAK1) has been shown to play a crucial role in cell death, differentiation, and inflammation. Here, we live-imaged robust TAK1 activation in Lewis lung carcinoma 3LL cells implanted into the s.c. tissue of syngeneic C57BL/6 mice and treated with polyinosinic:polycytidylic acid (PolyI:C). First, we developed and characterized a Förster resonance energy transfer-based biosensor for TAK1 activity. The TAK1 biosensor, named Eevee-TAK1, responded to stress-inducing reagents such as anisomycin, tumor necrosis factor-α, and interleukin1-β. The anisomycin-induced increase in Förster resonance energy transfer was abolished by the TAK1 inhibitor (5z)-7-oxozeaenol. Activity of TAK1 in 3LL cells was markedly increased by PolyI:C in the presence of macrophages. 3LL cells expressing Eevee-TAK1 were implanted into mice and observed through imaging window by two-photon excitation microscopy. During the growth of tumor, the 3LL cells at the periphery of the tumor showed higher TAK1 activity than the 3LL cells located at the center of the tumor, suggesting that cells at the periphery of the tumor mass were under stronger stress. Injection of PolyI:C, which is known to induce regression of the implanted tumors, induced marked and homogenous TAK1 activation within the tumor tissues. The effect of PolyI:C faded within 4 days. These observations suggest that Eevee-TAK1 is a versatile tool to monitor cellular stress in cancer tissues. PMID:26931406

  14. Synergistic anti-proliferative and pro-apoptotic activity of combined therapy with bortezomib, a proteasome inhibitor, with anti-epidermal growth factor receptor (EGFR) drugs in human cancer cells.

    PubMed

    Cascone, Tina; Morelli, Maria Pia; Morgillo, Floriana; Kim, Woo-Young; Rodolico, Gabriella; Pepe, Stefano; Tortora, Giampaolo; Berrino, Liberato; Lee, Ho-Young; Heymach, John V; Ciardiello, Fortunato

    2008-09-01

    The proteasome plays a pivotal role in the turnover of regulatory transduction proteins induced by activated cell membrane growth factor receptors. The epidermal growth factor receptor (EGFR) pathway is crucial in the development and progression of human epithelial cancers. Proteasome inhibition may sensitize human cancer cell lines to EGFR inhibitors. We investigated the growth inhibitory and pro-apoptotic effects of the proteasome inhibitor bortezomib in combination with anti-EGFR drugs, such as gefitinib, vandetanib, and cetuximab in EGFR-expressing human cancer cell lines. Bortezomib determined dose-dependent growth inhibition in a nine cancer cell line panel (IC(50) values, range 6-42 nM). A significant synergistic growth inhibitory effect was observed with the combination of bortezomib and each EGFR inhibitor in all cell lines (combination index, CI, range 0.10-0.55), which was accompanied by a significant induction in apoptosis by the combined treatment with bortezomib, cetuximab and vandetanib. In HCT-116 colon cancer and A549 lung adenocarcinoma cells, bortezomib plus EGFR inhibitor treatment induced a more effective inhibition of EGFR-activated down-stream signals, including a marked suppression in activated, phosphorylated Akt (P-Akt). In contrast, overexpression of a constitutively active P-Akt protected A549 cells by cell growth inhibition and apoptosis following treatment with bortezomib and EGFR inhibitors. The combined treatment with bortezomib and EGFR inhibitors has a synergistic growth inhibitory and pro-apoptotic activity in different human cancer cells which possess a functional EGFR-dependent autocrine growth pathway through to a more efficient and sustained inhibition of Akt.

  15. The P21-activated kinase expression pattern is different in non-small cell lung cancer and affects lung cancer cell sensitivity to epidermal growth factor receptor tyrosine kinase inhibitors.

    PubMed

    Liu, Yang; Wang, Si; Dong, Qian-Ze; Jiang, Gui-Yang; Han, Yong; Wang, Liang; Wang, En-Hua

    2016-03-01

    Exploring methods for increasing epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) sensitivity has become a major focus in non-small cell lung cancer (NSCLC). Major downstream effectors of the Rho family small guanosine triphosphatases, P21-activated kinases (PAKs) activate the main signaling pathways downstream of EGFR and thus promote tumor cell proliferation. In this study, we explored the expression pattern of phosphorylated PAKs in NSCLC and their potential value as drug targets for treating cancer. The expression and prognostic significance of phosphorylated group I and II PAKs were evaluated in 182 patients with NSCLC. Immunohistochemical analysis revealed low group I PAK expression in normal lung tissues and increased expressed in the cytoplasm, particularly in lung squamous cell carcinoma. Abnormal group I PAK expression was associated with lymph node metastases and high tumor-node-metastases (TNM) stage in NSCLC patients and correlated with poor prognosis. We used group I PAK inhibitor (IPA3) to specifically decrease group I PAK activity in human lung cancer cell lines. Decreased group I PAK activity inhibited cell proliferation and combined IPA3 and EGFR-TKI (gefitinib) treatment inhibited cell proliferation in an obvious manner. Together, our results revealed the PAK expression pattern in NSCLC, and a role for group I PAK in cell proliferation, which provides evidence that decreased PAK activity may have a potential application as a molecular targeted therapy in advanced NSCLC.

  16. Parathyroid hormone-related protein (107-139) increases human osteoblastic cell survival by activation of vascular endothelial growth factor receptor-2.

    PubMed

    Alonso, Verónica; de Gortázar, Arancha R; Ardura, Juan A; Andrade-Zapata, Irene; Alvarez-Arroyo, M Victoria; Esbrit, Pedro

    2008-12-01

    Parathyroid hormone-related protein (PTHrP) (107-139), in contrast to the N-terminal fragment PTHrP (1-36), has been shown to interact with the vascular endothelial growth factor (VEGF) system to modulate human osteoblast differentiation. In this study, we evaluated whether this interaction might affect human osteoblastic cell survival. Pre-incubation with PTHrP (107-139) for 1-24 h dose-dependently (0.1-100 nM) inhibited dexamethasone- or etoposide-induced cell death in human osteoblastic MG-63 cells and human osteoblast-like cells from trabecular bone. This effect, but not that elicited by PTHrP (1-36), was abolished by the VEGF receptor (VEGFR)-2 inhibitors SU5614 and SU1498 or VEGFR-2 siRNA transfection in these cells. PTHrP (107-139), but not PTHrP (1-36), at 100 nM, rapidly (within 2 min) increased VEGFR-2 tyrosine-phosphorylation in MG-63 cells; an effect unaffected by several inhibitors of metalloproteinases, neutralizing VEGF(165) or VEGFR-2 antibodies, or the VEGF binding inhibitor CBO-PP1. The latter two antagonists also failed to affect (125)I-[Tyr(116)] PTHrP (107-115) binding to these cells. Consistent with its effect on VEGFR-2 activation, PTHrP (107-139) rapidly induced extracellular signal-regulated kinase (ERK) 1/2 and Akt activaton, and both ERK and phosphatidylinsositol-3 kinase (PI3K) inhibitors abolished its pro-survival effect in human osteoblastic cells. In addition, SU5614 and the latter two types of inhibitors abrogated Runx2 activation by this peptide in MG-63 cells. Transfection with a dominant-negative Runx2 construct abolished the pro-survival effect of PTHrP (107-139), associated with a decrease in Bcl-2/Bax protein ratio. Our findings demonstrate that PTHrP (107-139) interacts with VEGFR-2 to promote human osteoblastic cell survival by a mechanism involving Runx2 activation.

  17. Exogenous hydrogen sulfide promotes C6 glioma cell growth through activation of the p38 MAPK/ERK1/2-COX-2 pathways.

    PubMed

    Zhen, Yulan; Zhang, Wei; Liu, Chujie; He, Jing; Lu, Yun; Guo, Ruixian; Feng, Jianqiang; Zhang, Ying; Chen, Jingfu

    2015-11-01

    Hydrogen sulfide (H2S) participates in multifarious physiological and pathophysiologic progresses of cancer both in vitro and in vivo. We have previously demonstrated that exogenous H2S promoted liver cancer cells proliferation/anti‑apoptosis/angiogenesis/migration effects via amplifying the activation of NF-κB pathway. However, the effects of H2S on cancer cell proliferation and apoptosis are controversial and remain unclear in C6 glioma cells. The present study investigated the effects of exogenous H2S on cancer cells growth via activating p38 MAPK/ERK1/2-COX-2 pathways in C6 glioma cells. C6 glioma cells were treated with 400 µmol/l NaHS (a donor of H2S) for 24 h. The expression levels of phosphorylated (p)-p38 MAPK, total (t)-p38 MAPK, p-ERK1/2, t-ERK1/2, cyclooxygenase-2 (COX-2) and caspase-3 were measured by western blotting assay. Cell viability was detected by Cell Counting Kit-8 (CCK-8). Apoptotic cells were observed by Hoechst 33258 staining assay. Cell proliferation was directly detected under fully automatic inverted microscope. Exposure of C6 glioma cells to NaHS resulted in cell proliferation, as evidenced by an increase in cell viability. In addition, NaHS treatment reduced apoptosis, as indicated by the decreased apoptotic percentage and the cleaved caspase-3 expression. Importantly, exposure of the cells to NaHS increased the expression levels of p-p38 MAPK, p-ERK1/2 and COX-2. Notably, co-treatment of C6 glioma cells with 400 µmol/l NaHS and AOAA (an inhibitor of CBS) largely suppressed the above NaHS-induced effects. Combined treatment with NaHS and SB203580 (an inhibitor of p38 MAPK) or PD-98059 (an inhibitor of ERK1/2) resulted in the synergistic reduction of COX-2 expression and increase of caspase-3 expression, a decreased number of apoptotic cells, along with decreased cell viability. Combined treatment with NS-398 (an inhibitor of COX-2) and NaHS also resulted in the synergistic increase of caspase-3, a decreased in the

  18. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    SciTech Connect

    Varga, Nora; Vereb, Zoltan; Rajnavoelgyi, Eva; Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs; Apati, Agota

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  19. Newly synthesized proteoglycans secreted by sequentially derived populations of cells from new-born rat calvaria: effects of transforming growth factor-beta and matrigenin activity.

    PubMed

    Chopra, R K; Li, Z M; Vickery, S; Anastassiades, T

    1990-10-01

    Three populations (1, 3 and 6) of bone cells, derived from rat calvaria by sequential enzymatic digestion, were cultured with [3H]glucosamine and [35S]sulfate, in the presence or absence of transforming growth factor-beta (TGF-beta) or bone-derived matrigenin activity. Population 6 synthesized a chondroitin sulfate proteoglycan (PG) and responded to the addition of the factors by increased rates of synthesis of hyaluronic acid (HA) and PG and an increase in the size of the HA. Comparisons of populations 1, 3 and 6 showed an ordered, spontaneous increase in HA and PG synthesis. However, the addition of matrigenin activity resulted in a much greater stimulation of PG, but not HA, synthesis in population 1 compared to population 6, suggesting a cellular organization in the calvarium whose net effect would be to direct PG synthesis towards the periphery of the tissue.

  20. Increases of ferrous iron oxidation activity and arsenic stressed cell growth by overexpression of Cyc2 in Acidithiobacillus ferrooxidans ATCC19859.

    PubMed

    Liu, Wei; Lin, Jianqun; Pang, Xin; Mi, Shuang; Cui, Shuang; Lin, Jianqiang

    2013-01-01

    Acidithiobacillus ferrooxidans plays an important role in bioleaching in reproducing the mineral oxidant of ferric iron (Fe(3+) ) by oxidization of ferrous iron (Fe(2+) ). The high-molecular-weight c-type cytochrome Cyc2 that is located in the external membrane is postulated as the first electron carrier in the Fe(2+) oxidation respiratory pathway of A. ferrooxidans. To increase ferrous iron oxidation activity, a recombinant plasmid pTCYC2 containing cyc2 gene under the control of Ptac promoter was constructed and transferred into A. ferrooxidans ATCC19859. The transcriptional level of cyc2 gene was increased by 2.63-fold and Cyc2 protein expression was observed in the recombinant strain compared with the control. The ferrous iron oxidation activity and the arsenic stressed cell growth of the recombinant strain were also elevated.

  1. The mechanism and significance of synergistic induction of the expression of plasminogen activator inhibitor-1 by glucocorticoid and transforming growth factor beta in human ovarian cancer cells.

    PubMed

    Pan, Xiao-yu; Wang, Yan; Su, Jie; Huang, Gao-xiang; Cao, Dong-mei; Qu, Shen; Lu, Jian

    2015-05-15

    Plasminogen activator inhibitor-1 (PAI-1) plays a key role in tissue remodeling and tumor development by suppression of plasminogen activator function. Glucocorticoids (GCs) and transforming growth factor beta (TGF-β) signal pathways cross-talk to regulate gene expression, but the mechanism is poorly understood. Here we investigated the mechanism and significance of co-regulation of PAI-1 by TGF-β and dexamethasone (DEX), a synthetic glucocorticoid in ovarian cancer cells. We found that TGF-β and DEX showed rapidly synergistic induction of PAI-1 expression, which contributed to the early pro-adhesion effects. The synergistic induction effect was accomplished by several signal pathways, including GC receptor (GR) pathway and TGF-β-activated p38MAPK, ERK and Smad3 pathways. TGF-β-activated p38MAPK and ERK pathways cross-talked with GR pathway to augment the expression of PAI-1 through enhancing DEX-induced GR phosphorylation at Ser211 in ovarian cancer cells. These findings reveal possible novel mechanisms by which TGF-β pathways cooperatively cross-talk with GR pathway to regulate gene expression.

  2. Adventitial Vessel Growth and Progenitor Cells Activation in an Ex Vivo Culture System Mimicking Human Saphenous Vein Wall Strain after Coronary Artery Bypass Grafting

    PubMed Central

    Prandi, Francesca; Piola, Marco; Soncini, Monica; Colussi, Claudia; D’Alessandra, Yuri; Penza, Eleonora; Agrifoglio, Marco; Vinci, Maria Cristina; Polvani, Gianluca; Gaetano, Carlo; Fiore, Gianfranco Beniamino; Pesce, Maurizio

    2015-01-01

    Saphenous vein graft disease is a timely problem in coronary artery bypass grafting. Indeed, after exposure of the vein to arterial blood flow, a progressive modification in the wall begins, due to proliferation of smooth muscle cells in the intima. As a consequence, the graft progressively occludes and this leads to recurrent ischemia. In the present study we employed a novel ex vivo culture system to assess the biological effects of arterial-like pressure on the human saphenous vein structure and physiology, and to compare the results to those achieved in the presence of a constant low pressure and flow mimicking the physiologic vein perfusion. While under both conditions we found an activation of Matrix Metallo-Proteases 2/9 and of microRNAs-21/146a/221, a specific effect of the arterial-like pressure was observed. This consisted in a marked geometrical remodeling, in the suppression of Tissue Inhibitor of Metallo-Protease-1, in the enhanced expression of TGF-β1 and BMP-2 mRNAs and, finally, in the upregulation of microRNAs-138/200b/200c. In addition, the veins exposed to arterial-like pressure showed an increase in the density of the adventitial vasa vasorum and of cells co-expressing NG2, CD44 and SM22α markers in the adventitia. Cells with nuclear expression of Sox-10, a transcription factor characterizing multipotent vascular stem cells, were finally found in adventitial vessels. Our findings suggest, for the first time, a role of arterial-like wall strain in the activation of pro-pathologic pathways resulting in adventitial vessels growth, activation of vasa vasorum cells, and upregulation of specific gene products associated to vascular remodeling and inflammation. PMID:25689822

  3. Suppressing Akt phosphorylation and activating Fas by safrole oxide inhibited angiogenesis and induced vascular endothelial cell apoptosis in the presence of fibroblast growth factor-2 and serum.

    PubMed

    Zhao, Jing; Miao, Junying; Zhao, Baoxiang; Zhang, Shangli; Yin, Deling

    2006-01-01

    At present, vascular endothelial cell (VEC) apoptosis induced by deprivation of fibroblast growth factor-2 (FGF-2) and serum has been well studied. But how to trigger VEC apoptosis in the presence of FGF-2 and serum is not well known. To address this question, in this study, the effects of safrole oxide on angiogenesis and VEC growth stimulated by FGF-2 were investigated. The results showed that safrole oxide inhibited angiogenesis and induced VEC apoptosis in the presence of FGF-2 and serum. To understand the possible mechanism of safrole oxide acting, we first examined the phosphorylation of Akt and the activity of nitric oxide synthase (NOS); secondly, we analyzed the expressions and distributions of Fas and P53; then we measured the activity of phosphatidylcholine specific phospholipase C (PC-PLC) in the VECs treated with and without safrole oxide. The results showed that this small molecule obviously suppressed Akt phosphorylation and the activity of NOS, and promoted the expressions of Fas and P53 markedly. Simultaneously, Fas protein clumped on cell membrane, instead of homogenously distributed. The activity of PC-PLC was not changed obviously. The data suggested that safrole oxide effectively inhibited angiogenesis and triggered VEC apoptosis in the presence of FGF-2 and serum, and it might perform its functions by suppressing Akt/NOS signal pathway, upregulating the expressions of Fas and P53 and modifying the distributing pattern of Fas in VEC. This finding provided a powerful chemical probe for promoting VEC apoptosis during angiogenesis stimulated by FGF-2.

  4. The catalytic domain of endogenous urokinase-type plasminogen activator is required for the mitogenic activity of platelet-derived and basic fibroblast growth factors in human vascular smooth muscle cells.

    PubMed

    Padró, Teresa; Mesters, Rolf M; Dankbar, Berno; Hintelmann, Heike; Bieker, Ralf; Kiehl, Michael; Berdel, Wolfgang E; Kienast, Joachim

    2002-05-01

    Emerging data suggest that urokinase-type plasminogen activator (UPA), beyond its role in pericellular proteolysis, may also act as a mitogen. We investigated the function of endogenous UPA in mediating the mitogenic effects of platelet-derived growth factor (PDGF) and basic fibroblast growth factor (bFGF) on human vascular smooth muscle cells (SMC). Growth-arrested SMC constitutively expressed UPA, but UPA expression and secretion increased several times upon stimulation with either PDGF or bFGF. Inhibition of endogenous UPA with a polyclonal antibody significantly reduced DNA synthesis and proliferation of PDGF or bFGF stimulated SMC, this effect already being evident when the cells entered S-phase. The proliferative activity of endogenous UPA was dependent on a functional catalytic domain as demonstrated by inhibition experiments with a specific monoclonal antibody (394OA) and p-aminobenzamidine, respectively. In contrast, neither plasmin generation nor binding of UPA to its receptor (CD87) were required for UPA-mediated mitogenic effects. The results demonstrate that endogenous UPA is not only overexpressed in SMC upon stimulation with PDGF/bFGF, but also mediates the mitogenic activity of the growth factors in a catalytic-domain-dependent manner. Specific inhibition of this UPA domain may represent an attractive target for pharmacological interventions in atherogenesis and restenosis after angioplasty. PMID:11956327

  5. The cell-penetrating peptide domain from human heparin-binding epidermal growth factor-like growth factor (HB-EGF) has anti-inflammatory activity in vitro and in vivo

    SciTech Connect

    Lee, Jue-Yeon; Seo, Yoo-Na; Park, Hyun-Jung; Park, Yoon-Jeong; Chung, Chong-Pyoung

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer HBP sequence identified from HB-EGF has cell penetration activity. Black-Right-Pointing-Pointer HBP inhibits the NF-{kappa}B dependent inflammatory responses. Black-Right-Pointing-Pointer HBP directly blocks phosphorylation and degradation of I{kappa}B{alpha}. Black-Right-Pointing-Pointer HBP inhibits nuclear translocation of NF-{kappa}B p65 subunit. -- Abstract: A heparin-binding peptide (HBP) sequence from human heparin-binding epidermal growth factor-like growth factor (HB-EGF) was identified and was shown to exhibit cell penetration activity. This cell penetration induced an anti-inflammatory reaction in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. HBP penetrated the cell membrane during the 10 min treatment and reduced the LPS-induced production of nitric oxide (NO), inducible nitric oxide synthase (iNOS), and cytokines (TNF-{alpha} and IL-6) in a concentration-dependent manner. Additionally, HBP inhibited the LPS-induced upregulation of cytokines, including TNF-{alpha} and IL-6, and decreased the interstitial infiltration of polymorphonuclear leukocytes in a lung inflammation model. HBP inhibited NF-{kappa}B-dependent inflammatory responses by directly blocking the phosphorylation and degradation of I{kappa}B{alpha} and by subsequently inhibiting the nuclear translocation of the p65 subunit of NF-{kappa}B. Taken together, this novel HBP may be potentially useful candidate for anti-inflammatory treatments and can be combined with other drugs of interest to transport attached molecules into cells.

  6. HIGD1A regulates oxygen consumption, ROS production and AMPK activity during glucose deprivation to modulate cell survival and tumor growth

    PubMed Central

    Ameri, Kurosh; Jahangiri, Arman; Rajah, Anthony M.; Tormos, Kathryn V.; Nagarajan, Ravi; Pekmezci, Melike; Nguyen, Vien; Wheeler, Matthew L.; Murphy, Michael P.; Sanders, Timothy A.; Jeffrey, Stefanie S.; Yeghiazarians, Yerem; Rinaudo, Paolo F.; Costello, Joseph F.; Aghi, Manish K.; Maltepe, Emin

    2015-01-01

    Hypoxia-Inducible Gene Domain Family Member 1A (HIGD1A) is a survival factor induced by Hypoxia-inducible Factor-1 (HIF1). HIF1 regulates many responses to oxygen deprivation but viable cells within hypoxic perinecrotic solid tumor regions frequently lack HIF1α. HIGD1A is induced in these HIF-deficient extreme environments and interacts with the mitochondrial electron transport chain to repress oxygen consumption, enhance AMPK activity and lower cellular ROS levels. Importantly, HIGD1A decreases tumor growth but promotes tumor cell survival in vivo. The human Higd1a gene is located on chromosome 3p22.1, where many tumor suppressor genes reside. Consistent with this, the Higd1a gene promoter is differentially methylated in human cancers, preventing its hypoxic induction. When hypoxic tumor cells are confronted with glucose deprivation, however, DNA methyltransferase activity is inhibited, enabling HIGD1A expression, metabolic adaptation and possible dormancy induction. Our findings therefore reveal important new roles for this family of mitochondrial proteins in cancer biology. PMID:25683712

  7. Analysis of thymic stromal cell subpopulations grown in vitro on extracellular matrix in defined medium. III. Growth conditions of human thymic epithelial cells and immunomodulatory activities in their culture supernatant.

    PubMed Central

    Schreiber, L; Eshel, I; Meilin, A; Sharabi, Y; Shoham, J

    1991-01-01

    We report here on a new approach to the cultivation of human thymic epithelial (HTE) cells, which apparently allows more faithful preservation of cell function. This approach, previously developed by us for mouse thymic epithelial (MTE) cells, is based on the use of culture plates coated with extracellular matrix (ECM), and on the use of serum-free, growth factor-supplemented medium. The nutritional requirements of HTE and MTE are somewhat different. Although both are critically dependent on ECM and insulin, they differ in their dependency on other growth factors: selenium and transferrin are much more important for HTE cells, whereas epidermal growth factor and hydrocortisone play a more essential role in MTE cultures. The epithelial nature of the cultured cells is indicated by positive staining with anti-keratin antibodies and by the presence of desmosomes and tonofilaments. The ultrastructural appearance of the cells further suggests high metabolic and secretory activities, not usually found in corresponding cell lines. The culture supernatant (CS) of HTE cells exhibited a strong enhancing effect on thymocyte response to Con A stimulation, as measured by cell proliferation and lymphokine production. The effect was observed on both human and mouse thymocytes, but was much stronger in the homologous combination. Thymic factors tested in parallel did not have such a differential effect. The dose-effect relationships were in the form of a bell-shaped curve, with fivefold enhancement of response at the peak and a measurable effect even with 1:1000 dilution, when human thymocytes were used. The responding thymocytes were those which do not bind peanut agglutinin and are resistant to hydrocortisone. The culture system described here may have advantages for the in vitro study of thymic stromal cell function. Images Figure 1 Figure 3 Figure 4 PMID:1783421

  8. Parabolic growth patterns in 96-well plate cell growth experiments.

    PubMed

    Faessel, H M; Levasseur, L M; Slocum, H K; Greco, W R

    1999-05-01

    In preparing for the routine use of the ubiquitous in vitro cell growth inhibition assay for the study of anticancer agents, we characterized the statistical properties of the assay and found some surprising results. Parabolic well-to-well cell growth patterns were discovered, which could profoundly affect the results of routine growth inhibition studies of anticancer and other agents. Four human ovarian cell lines, A2780/WT, A2780/DX5, A2780/DX5B, and A121, and one human ileocecal adenocarcinoma cell line, HCT-8, were seeded into plastic 96-well plates with a 12-channel pipette, without drugs, and grown from 1-5 d. The wells were washed with a plate washer, cells stained with sulforhodamine B (SRB), and dye absorbance measured with a plate reader. Variance models were fit to the data from replicates to determine the nature of the heteroscedastic error structure. Exponential growth models were fit to data to estimate doubling times for each cell line. Polynomial models were fit to data from 10-plate stacks of 96-well plates to explore nonuniformity of cell growth in wells in different regions of the stacks. Each separate step in the assay was examined for precision, patterns, and underlying causes of variation. Differential evaporation of water from wells is likely a major, but not exclusive, contributor to the systematic well-to-well cell growth patterns. Because the fundamental underlying causes of the parabolic growth patterns were not conclusively found, a randomization step for the growth assay was developed.

  9. Growth maintenance of the maize primary root at low water potentials involves increases in cell-wall extension properties, expansin activity, and wall susceptibility to expansins.

    PubMed Central

    Wu, Y; Sharp, R E; Durachko, D M; Cosgrove, D J

    1996-01-01

    Previous work on the growth biophysics of maize (Zea mays L.) primary roots suggested that cell walls in the apical 5 mm of the elongation zone increased their yielding ability as an adaptive response to low turgor and water potential (psi w). To test this hypothesis more directly, we measured the acid-induced extension of isolated walls from roots grown at high (-0.03 MPa) or low (-1.6 MPa) psi w using an extensometer. Acid-induced extension was greatly increased in the apical 5 mm and was largely eliminated in the 5- to 10-mm region of roots grown at low psi w. This pattern is consistent with the maintenance of elongation toward the apex and the shortening of the elongation zone in these roots. Wall proteins extracted from the elongation zone possessed expansin activity, which increased substantially in roots grown at low psi w. Western blots likewise indicated higher expansin abundance in the roots at low psi w. Additionally, the susceptibility of walls to expansin action was higher in the apical 5 mm of roots at low psi w than in roots at high psi w. The basal region of the elongation zone (5-10 mm) did not extend in response to expansins, indicating that loss of susceptibility to expansins was associated with growth cessation in this region. Our results indicate that both the increase in expansin activity and the increase in cell-wall susceptibility to expansins play a role in enhancing cell-wall yielding and, therefore, in maintaining elongation in the apical region of maize primary roots at low psi w. PMID:11536740

  10. Measurement of adherent cell mass and growth

    PubMed Central

    Park, Kidong; Millet, Larry J.; Kim, Namjung; Li, Huan; Jin, Xiaozhong; Popescu, Gabriel; Aluru, N. R.; Hsia, K. Jimmy; Bashir, Rashid

    2010-01-01

    The characterization of physical properties of cells such as their mass and stiffness has been of great interest and can have profound implications in cell biology, tissue engineering, cancer, and disease research. For example, the direct dependence of cell growth rate on cell mass for individual adherent human cells can elucidate the mechanisms underlying cell cycle progression. Here we develop an array of micro-electro-mechanical systems (MEMS) resonant mass sensors that can be used to directly measure the biophysical properties, mass, and growth rate of single adherent cells. Unlike conventional cantilever mass sensors, our sensors retain a uniform mass sensitivity over the cell attachment surface. By measuring the frequency shift of the mass sensors with growing (soft) cells and fixed (stiff) cells, and through analytical modeling, we derive the Young’s modulus of the unfixed cell and unravel the dependence of the cell mass measurement on cell stiffness. Finally, we grew individual cells on the mass sensors and measured their mass for 50+ hours. Our results demonstrate that adherent human colon epithelial cells have increased growth rates with a larger cell mass, and the average growth rate increases linearly with the cell mass, at 3.25%/hr. Our sensitive mass sensors with a position-independent mass sensitivity can be coupled with microscopy for simultaneous monitoring of cell growth and status, and provide an ideal method to study cell growth, cell cycle progression, differentiation, and apoptosis. PMID:21068372

  11. Indolo-pyrido-isoquinolin based alkaloid inhibits growth, invasion and migration of breast cancer cells via activation of p53-miR34a axis.

    PubMed

    Avtanski, Dimiter B; Nagalingam, Arumugam; Tomaszewski, Joseph E; Risbood, Prabhakar; Difillippantonio, Michael J; Saxena, Neeraj K; Malhotra, Sanjay V; Sharma, Dipali

    2016-08-01

    The tumor suppressor p53 plays a critical role in suppressing cancer growth and progression and is an attractive target for the development of new targeted therapies. We synthesized several indolo-pyrido-isoquinolin based alkaloids to activate p53 function and examined their therapeutic efficacy using NCI-60 screening. Here, we provide molecular evidence that one of these compounds, 11-methoxy-2,3,4,13-tetrahydro-1H-indolo[2',3':3,4]pyrido[1,2-b]isoquinolin-6-ylium-bromide (termed P18 or NSC-768219) inhibits growth and clonogenic potential of cancer cells. P18 treatment results in downregulation of mesenchymal markers and concurrent upregulation of epithelial markers as well as inhibition of migration and invasion. Experimental epithelial-mesenchymal-transition (EMT) induced by exposure to TGFβ/TNFα is also completely reversed by P18. Importantly, P18 also inhibits mammosphere-formation along with a reduction in the expression of stemness factors, Oct4, Nanog and Sox2. We show that P18 induces expression, phosphorylation and accumulation of p53 in cancer cells. P18-mediated induction of p53 leads to increased nuclear localization and elevated expression of p53 target genes. Using isogenic cancer cells differing only in p53 status, we show that p53 plays an important role in P18-mediated alteration of mesenchymal and epithelial genes, inhibition of migration and invasion of cancer cells. Furthermore, P18 increases miR-34a expression in p53-dependent manner and miR-34a is integral for P18-mediated inhibition of growth, invasion and mammosphere-formation. miR-34a mimics potentiate P18 efficacy while miR-34a antagomirs antagonize P18. Collectively, these data provide evidence that P18 may represent a promising therapeutic strategy for the inhibition of growth and progression of breast cancer and p53-miR-34a axis is important for P18 function.

  12. Growth inhibition of Candida by human oral epithelial cells.

    PubMed

    Steele, C; Leigh, J; Swoboda, R; Fidel, P L

    2000-11-01

    Oropharyngeal candidiasis (OPC) caused by Candida albicans is a significant problem in human immunodeficiency virus (HIV)-infected persons. Recognizing the paucity of information on innate and/or adaptive mucosal host defenses against C. albicans, we recently reported that human and nonhuman primate and mouse vaginal epithelial cells inhibit the growth of C. albicans in vitro. In the present study, oral epithelial cells collected from saliva of healthy volunteers and a purified oral epithelial cell line were found to inhibit blastoconidia and/or hyphal growth of several Candida species. Cell contact was a strict requirement for the epithelial cell anti-Candida activity; neither saliva nor culture supernatants alone inhibited Candida growth, and addition of saliva to the coculture did not modulate the epithelial cell activity. Finally, epithelial cell anti-Candida activity was significantly lower in HIV-infected persons with OPC. Together, these results suggest that oral epithelial cells may play a role in innate resistance against OPC.

  13. Lnk is an important modulator of insulin-like growth factor-1/Akt/peroxisome proliferator-activated receptor-gamma axis during adipogenesis of mesenchymal stem cells

    PubMed Central

    Lee, Jun Hee; Lee, Sang Hun; Lee, Hyang Seon; Ji, Seung Taek; Jung, Seok Yun; Kim, Jae Ho; Bae, Sun Sik

    2016-01-01

    Adipogenic differentiation of mesenchymal stem cells (MSCs) is critical for metabolic homeostasis and nutrient signaling during development. However, limited information is available on the pivotal modulators of adipogenic differentiation of MSCs. Adaptor protein Lnk (Src homology 2B3 [SH2B3]), which belongs to a family of SH2-containing proteins, modulates the bioactivities of different stem cells, including hematopoietic stem cells and endothelial progenitor cells. In this study, we investigated whether an interaction between insulin-like growth factor-1 receptor (IGF-1R) and Lnk regulated IGF-1-induced adipogenic differentiation of MSCs. We found that wild-type MSCs showed greater adipogenic differentiation potential than Lnk–/– MSCs. An ex vivo adipogenic differentiation assay showed that Lnk–/– MSCs had decreased adipogenic differentiation potential compared with wild-type MSCs. Interestingly, we found that Lnk formed a complex with IGF-1R and that IGF-1 induced the dissociation of this complex. In addition, we observed that IGF-1-induced increase in the phosphorylation of Akt and mammalian target of rapamycin was triggered by the dissociation of the IGF-1R–Lnk complex. Expression levels of a pivotal transcription factor peroxisome proliferator-activated receptor gamma (PPAR-γ) and its adipogenic target genes (LPL and FABP4) significantly decreased in Lnk–/– MSCs. These results suggested that Lnk adaptor protein regulated the adipogenesis of MSCs through the IGF-1/Akt/PPAR-γ pathway. PMID:27610032

  14. Lnk is an important modulator of insulin-like growth factor-1/Akt/peroxisome proliferator-activated receptor-gamma axis during adipogenesis of mesenchymal stem cells.

    PubMed

    Lee, Jun Hee; Lee, Sang Hun; Lee, Hyang Seon; Ji, Seung Taek; Jung, Seok Yun; Kim, Jae Ho; Bae, Sun Sik; Kwon, Sang-Mo

    2016-09-01

    Adipogenic differentiation of mesenchymal stem cells (MSCs) is critical for metabolic homeostasis and nutrient signaling during development. However, limited information is available on the pivotal modulators of adipogenic differentiation of MSCs. Adaptor protein Lnk (Src homology 2B3 [SH2B3]), which belongs to a family of SH2-containing proteins, modulates the bioactivities of different stem cells, including hematopoietic stem cells and endothelial progenitor cells. In this study, we investigated whether an interaction between insulin-like growth factor-1 receptor (IGF-1R) and Lnk regulated IGF-1-induced adipogenic differentiation of MSCs. We found that wild-type MSCs showed greater adipogenic differentiation potential than Lnk (-/-) MSCs. An ex vivo adipogenic differentiation assay showed that Lnk (-/-) MSCs had decreased adipogenic differentiation potential compared with wild-type MSCs. Interestingly, we found that Lnk formed a complex with IGF-1R and that IGF-1 induced the dissociation of this complex. In addition, we observed that IGF-1-induced increase in the phosphorylation of Akt and mammalian target of rapamycin was triggered by the dissociation of the IGF-1R-Lnk complex. Expression levels of a pivotal transcription factor peroxisome proliferator-activated receptor gamma (PPAR-γ) and its adipogenic target genes (LPL and FABP4) significantly decreased in Lnk (-/-) MSCs. These results suggested that Lnk adaptor protein regulated the adipogenesis of MSCs through the IGF-1/Akt/PPAR-γ pathway. PMID:27610032

  15. Lnk is an important modulator of insulin-like growth factor-1/Akt/peroxisome proliferator-activated receptor-gamma axis during adipogenesis of mesenchymal stem cells

    PubMed Central

    Lee, Jun Hee; Lee, Sang Hun; Lee, Hyang Seon; Ji, Seung Taek; Jung, Seok Yun; Kim, Jae Ho; Bae, Sun Sik

    2016-01-01

    Adipogenic differentiation of mesenchymal stem cells (MSCs) is critical for metabolic homeostasis and nutrient signaling during development. However, limited information is available on the pivotal modulators of adipogenic differentiation of MSCs. Adaptor protein Lnk (Src homology 2B3 [SH2B3]), which belongs to a family of SH2-containing proteins, modulates the bioactivities of different stem cells, including hematopoietic stem cells and endothelial progenitor cells. In this study, we investigated whether an interaction between insulin-like growth factor-1 receptor (IGF-1R) and Lnk regulated IGF-1-induced adipogenic differentiation of MSCs. We found that wild-type MSCs showed greater adipogenic differentiation potential than Lnk–/– MSCs. An ex vivo adipogenic differentiation assay showed that Lnk–/– MSCs had decreased adipogenic differentiation potential compared with wild-type MSCs. Interestingly, we found that Lnk formed a complex with IGF-1R and that IGF-1 induced the dissociation of this complex. In addition, we observed that IGF-1-induced increase in the phosphorylation of Akt and mammalian target of rapamycin was triggered by the dissociation of the IGF-1R–Lnk complex. Expression levels of a pivotal transcription factor peroxisome proliferator-activated receptor gamma (PPAR-γ) and its adipogenic target genes (LPL and FABP4) significantly decreased in Lnk–/– MSCs. These results suggested that Lnk adaptor protein regulated the adipogenesis of MSCs through the IGF-1/Akt/PPAR-γ pathway.

  16. Fe(III) and Fe(II) ions different effects on Enterococcus hirae cell growth and membrane-associated ATPase activity

    SciTech Connect

    Vardanyan, Zaruhi; Trchounian, Armen

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Fe{sup 3+} stimulates but Fe{sup 2+} suppresses Enterococcus hirae wild-type and atpD mutant growth. Black-Right-Pointing-Pointer Fe ions change oxidation-reduction potential drop during cell growth. Black-Right-Pointing-Pointer Fe{sup 3+} and Fe{sup 2+} have opposite effects on a membrane-associated ATPase activity. Black-Right-Pointing-Pointer These effects are either in the presence of F{sub 0}F{sub 1} inhibitor or non-functional F{sub 0}F{sub 1}. Black-Right-Pointing-Pointer Fe ions decrease protons and coupled potassium ions fluxes across the membrane. -- Abstract: Enterococcus hirae is able to grow under anaerobic conditions during glucose fermentation (pH 8.0) which is accompanied by acidification of the medium and drop in its oxidation-reduction potential (E{sub h}) from positive values to negative ones (down to {approx}-200 mV). In this study, iron (III) ions (Fe{sup 3+}) have been shown to affect bacterial growth in a concentration-dependent manner (within the range of 0.05-2 mM) by decreasing lag phase duration and increasing specific growth rate. While iron(II) ions (Fe{sup 2+}) had opposite effects which were reflected by suppressing bacterial growth. These ions also affected the changes in E{sub h} values during bacterial growth. It was revealed that ATPase activity with and without N,N Prime -dicyclohexylcarbodiimide (DCCD), an inhibitor of the F{sub 0}F{sub 1}-ATPase, increased in the presence of even low Fe{sup 3+} concentration (0.05 mM) but decreased in the presence of Fe{sup 2+}. It was established that Fe{sup 3+} and Fe{sup 2+} both significantly inhibited the proton-potassium exchange of bacteria, but stronger effects were in the case of Fe{sup 2+} with DCCD. Such results were observed with both wild-type ATCC9790 and atpD mutant (with defective F{sub 0}F{sub 1}) MS116 strains but they were different with Fe{sup 3+} and Fe{sup 2+}. It is suggested that the effects of Fe{sup 3+} might be due to

  17. A composite demineralized bone matrix--self assembling peptide scaffold for enhancing cell and growth factor activity in bone marrow.

    PubMed

    Hou, Tianyong; Li, Zhiqiang; Luo, Fei; Xie, Zhao; Wu, Xuehui; Xing, Junchao; Dong, Shiwu; Xu, Jianzhong

    2014-07-01

    The need for suitable bone grafts is high; however, there are limitations to all current graft sources, such as limited availability, the invasive harvest procedure, insufficient osteoinductive properties, poor biocompatibility, ethical problems, and degradation properties. The lack of osteoinductive properties is a common problem. As an allogenic bone graft, demineralized bone matrix (DBM) can overcome issues such as limited sources and comorbidities caused by invasive harvest; however, DBM is not sufficiently osteoinductive. Bone marrow has been known to magnify osteoinductive components for bone reconstruction because it contains osteogenic cells and factors. Mesenchymal stem cells (MSCs) derived from bone marrow are the gold standard for cell seeding in tissue-engineered biomaterials for bone repair, and these cells have demonstrated beneficial effects. However, the associated high cost and the complicated procedures limit the use of tissue-engineered bone constructs. To easily enrich more osteogenic cells and factors to DBM by selective cell retention technology, DBM is modified by a nanoscale self-assembling peptide (SAP) to form a composite DBM/SAP scaffold. By decreasing the pore size and increasing the charge interaction, DBM/SAP scaffolds possess a much higher enriching yield for osteogenic cells and factors compared with DBM alone scaffolds. At the same time, SAP can build a cellular microenvironment for cell adhesion, proliferation, and differentiation that promotes bone reconstruction. As a result, a suitable bone graft fabricated by DBM/SAP scaffolds and bone marrow represents a new strategy and product for bone transplantation in the clinic.

  18. A benzoxazine derivative induces vascular endothelial cell apoptosis in the presence of fibroblast growth factor-2 by elevating NADPH oxidase activity and reactive oxygen species levels.

    PubMed

    Zhao, Jing; He, Qiuxia; Cheng, Yizhe; Zhao, Baoxiang; Zhang, Yun; Zhang, Shangli; Miao, Junying

    2009-09-01

    Previously, we found that 6,8-dichloro-2,3-dihydro-3-hydroxymethyl-1,4-benzoxazine (DBO) promoted apoptosis of human umbilical vascular endothelial cells (HUVECs) deprived of growth factors. In this study, we aimed to investigate the effect of DBO and its mechanism of action on angiogenesis and apoptosis of HUVECs in the presence of fibroblast growth factor-2 (FGF-2), which promotes angiogenesis and inhibits apoptosis in vivo and in vitro. DBO significantly inhibited capillary-like tube formation by promoting apoptosis of HUVECs in the presence of FGF-2 in vitro. Furthermore, DBO elevated the levels of reactive oxygen species (ROS) and nitric oxide (NO) and increased the activity of NADPH oxidase and inducible nitric oxide synthase (iNOS) in promoting apoptosis under this condition. Moreover, when NADPH oxidase was inhibited by its specific inhibitor, dibenziodolium chloride (DPI), DBO could not elevate ROS and NO levels in HUVECs. The data suggest that DBO is a new modulator of apoptosis in vitro, and it might function by increasing the activity of NADPH oxidase and iNOS, subsequently elevating the levels of ROS and NO in HUVECs. The findings of this study provide a new small molecule for investigating the FGF-2/NADPH oxidase/iNOS signaling pathway in apoptosis.

  19. Secreted phospholipase A2-IIA-induced a phenotype of activated microglia in BV-2 cells requires epidermal growth factor receptor transactivation and proHB-EGF shedding

    PubMed Central

    2012-01-01

    Background Activation of microglia, the primary component of the innate immune response in the brain, is a hallmark of neuroinflammation in neurodegenerative disorders, including Alzheimer’s disease (AD) and other pathological conditions such as stroke or CNS infection. In response to a variety of insults, microglial cells produce high levels of inflammatory cytokines that are often involved in neuronal injury, and play an important role in the recognition, engulfment, and clearance of apoptotic cells and/or invading microbes. Secreted phospholipase A2-IIA (sPLA2-IIA), an enzyme that interacts with cells involved in the systemic immune/inflammatory response, has been found up-regulated in the cerebrospinal fluid and brain of AD patients. However, despite several approaches, its functions in mediating CNS inflammation remain unknown. In the present study, the role of sPLA2-IIA was examined by investigating its direct effects on microglial cells. Methods Primary and immortalized microglial cells were stimulated by sPLA2-IIA in order to characterize the cytokine-like actions of the phospholipase. The hallmarks of activated microglia analyzed include: mitogenic response, phagocytic capabilities and induction of inflammatory mediators. In addition, we studied several of the potential molecular mechanisms involved in those events. Results The direct exposure of microglial cells to sPLA2-IIA stimulated, in a time- and dose-dependent manner, their phagocytic and proliferative capabilities. sPLA2-IIA also triggered the synthesis of the inflammatory proteins COX-2 and TNFα. In addition, EGFR phosphorylation and shedding of the membrane-anchored heparin-binding EGF-like growth factor (pro-HB-EGF) ectodomain, as well as a rapid activation/phosphorylation of the classical survival proteins ERK, P70S6K and rS6 were induced upon sPLA2-IIA treatment. We further demonstrated that the presence of an EGFR inhibitor (AG1478), a matrix metalloproteinase inhibitor (GM6001), an ADAM

  20. Apple Polyphenol Phloretin Inhibits Colorectal Cancer Cell Growth via Inhibition of the Type 2 Glucose Transporter and Activation of p53-Mediated Signaling.

    PubMed

    Lin, Sheng-Tsai; Tu, Shih-Hsin; Yang, Po-Sheng; Hsu, Sung-Po; Lee, Wei-Hwa; Ho, Chi-Tang; Wu, Chih-Hsiung; Lai, Yu-Hsin; Chen, Ming-Yao; Chen, Li-Ching

    2016-09-14

    Glucose transporters (GLUTs) are required for glucose uptake in malignant cells, and they can be used as molecular targets for cancer therapy. An RT-PCR analysis was performed to investigate the mRNA levels of 14 subtypes of GLUTs in human colorectal cancer (COLO 205 and HT-29) and normal (FHC) cells. RT-PCR (n = 27) was used to assess the differences in paired tissue samples (tumor vs normal) isolated from colorectal cancer patients. GLUT2 was detected in all tested cells. The average GLUT2 mRNA level in 12 of 27 (44.4%) cases was 2.4-fold higher in tumor compared to normal tissues (*, p = 0.027). Higher GLUT2 mRNA expression was preferentially detected in advanced-stage tumors (stage 0 vs 3 = 16.38-fold, 95% CI = 9.22-26.54-fold; *, p = 0.029). The apple polyphenol phloretin (Ph) and siRNA methods were used to inhibit GLUT2 protein expression. Ph (0-100 μM, for 24 h) induced COLO 205 cell growth cycle arrest in a p53-dependent manner, which was confirmed by pretreatment of the cells with a p53-specific dominant negative expression vector. Hepatocyte nuclear factor 6 (HNF6), which was previously reported to be a transcription factor that activates GLUT2 and p53, was also induced by Ph (0-100 μM, for 24 h). The antitumor effect of Ph (25 mg/kg or DMSO twice a week for 6 weeks) was demonstrated in vivo using BALB/c nude mice bearing COLO 205 tumor xenografts. In conclusion, targeting GLUT2 could potentially suppress colorectal tumor cell invasiveness. PMID:27538679

  1. Interplay between cell growth and cell cycle in plants.

    PubMed

    Sablowski, Robert; Carnier Dornelas, Marcelo

    2014-06-01

    The growth of organs and whole plants depends on both cell growth and cell-cycle progression, but the interaction between both processes is poorly understood. In plants, the balance between growth and cell-cycle progression requires coordinated regulation of four different processes: macromolecular synthesis (cytoplasmic growth), turgor-driven cell-wall extension, mitotic cycle, and endocycle. Potential feedbacks between these processes include a cell-size checkpoint operating before DNA synthesis and a link between DNA contents and maximum cell size. In addition, key intercellular signals and growth regulatory genes appear to target at the same time cell-cycle and cell-growth functions. For example, auxin, gibberellin, and brassinosteroid all have parallel links to cell-cycle progression (through S-phase Cyclin D-CDK and the anaphase-promoting complex) and cell-wall functions (through cell-wall extensibility or microtubule dynamics). Another intercellular signal mediated by microtubule dynamics is the mechanical stress caused by growth of interconnected cells. Superimposed on developmental controls, sugar signalling through the TOR pathway has recently emerged as a central control point linking cytoplasmic growth, cell-cycle and cell-wall functions. Recent progress in quantitative imaging and computational modelling will facilitate analysis of the multiple interconnections between plant cell growth and cell cycle and ultimately will be required for the predictive manipulation of plant growth.

  2. Epidermal growth factor upregulates motility of Mat-LyLu rat prostate cancer cells partially via voltage-gated Na+ channel activity

    PubMed Central

    Ding, Yanning; Brackenbury, William J.; Onganer, Pinar U.; Montano, Ximena; Porter, Louise M.; Bates, Lucy F.; Djamgoz, Mustafa B. A.

    2014-01-01

    The main aim of this investigation was to determine whether a functional relationship existed between epidermal growth factor (EGF) and voltage-gated sodium channel (VGSC) upregulation, both associated with strongly metastatic prostate cancer cells. Incubation with EGF for 24 h more than doubled VGSC current density. Similar treatment with EGF significantly and dose-dependently enhanced the cells’ migration through Transwell filters. Both the patch clamp recordings and the migration assay suggested that endogenous EGF played a similar role. Importantly, co-application of EGF and tetrodotoxin, a highly selective VGSC blocker, abolished 65% of the potentiating effect of EGF. It is suggested that a significant portion of the EGF-induced enhancement of migration occurred via VGSC activity. PMID:17960590

  3. Copper(II) and uranyl(II) complexes with acylthiosemicarbazide: synthesis, characterization, antibacterial activity and effects on the growth of promyelocytic leukemia cells HL-60.

    PubMed

    Angelusiu, Madalina Veronica; Almajan, Gabriela Laura; Rosu, Tudor; Negoiu, Maria; Almajan, Eva-Ruxandra; Roy, Jenny

    2009-08-01

    New chelates of N(1)-[4-(4-X-phenylsulfonyl)benzoyl]-N(4)-butyl-thiosemicarbazide (X=H, Cl, Br) with Cu(2+) and UO(2)(2+) have been prepared and characterized by analytical and physico-chemical techniques such as magnetic susceptibility measurements, elemental and thermal analyses, electronic, ESR and IR spectral studies. Room temperature ESR spectra of Cu(II) complexes yield {g} values characteristic of distorted octahedral and pseudo-tetrahedral geometry. Infrared spectra indicate that complexes contain six-coordinate uranium atom with the ligand atoms arranged in an equatorial plane around the linear uranyl group. Effects of these complexes on the growth of human promyelocytic leukemia cells HL-60 and their antibacterial activity (against Staphylococcus epidermidis ATCC 14990, Bacillus subtilis ATCC 6633, Bacillus cereus ATCC 14579, Pseudomonas aeruginosa ATCC 9027 and Escherichia coli ATCC 11775 strains) were studied comparatively with that of free ligands. PMID:19356828

  4. The effect of clinorotation on structural and functional organization of assimilative tissues, cells and growth regulator activity in orchids of different age

    NASA Astrophysics Data System (ADS)

    Cherevchenko, T.; Zaimenko, N.; Sitnyanska, N.; Majko, T.; Grishko, M. M.

    Ultrastructural analyses of assimilative tissues of the orchids, Cymbidium hybridum and Doritis pulcherrima, show that, in plants of different age, chloroplasts differ in structure and stage of membrane system development. Variability was found in the number, size and electron density of plastoglobuli, and in the orientation and length of thylakoid membranes. We consider significant the increase of the plastoglobuli which completely fill the stroma of chloroplasts in cells of old leaves and, under conditions of clinorotation (using a horizontal clinostat at 3 r.p.m.), are able to block membrane function. In the early stages of orchid plant development, the content of substances with auxin-like activity (as judged by bioassay) in the leaves was low, but increased with age. Clinorotation resulted in a sharp decrease of their content. There was a concomitant increase in the content of growth inhibitors of a phenolic nature.

  5. Glanduliferins A and B, two new glucosylated steroids from Impatiens glandulifera, with in vitro growth inhibitory activity in human cancer cells.

    PubMed

    Cimmino, Alessio; Mathieu, Véronique; Evidente, Marco; Ferderin, Marlène; Moreno Y Banuls, Laetitia; Masi, Marco; De Carvalho, Annelise; Kiss, Robert; Evidente, Antonio

    2016-03-01

    Impatiens glandulifera has been imported from Himalaya in Europe and is considered as an invasive alien plant whose spreading arouses increasing interest among scientific literature. Via anti-cancer bioguiding, two new glucosylated steroids, named glanduliferins A and B, were isolated from the dried stem of I. glandulifera plants, together with the well-known α-spinasterol and 2-methoxy-1,4-naphthoquinone, which are also isolated from roots and leaves. They were characterized as 17-(2-hydroxy-2-pentamethylcyclopropyl-ethyl)-10,13-dimethyl-2,3,4,5,6,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopents[a]phenathren-3-O-(4-O-acetyl)-α-D-glucopyranoside and 17-(4-ethyl-1,5-dimethyl-hex-2-enyl)-10,13-dimethyl-2,3,4,5,6,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopents[a]phenathren-3-O-(6-O-acetyl)-β-D-glucopyranoside using various NMR and HRESIMS techniques and chemical methods. In vitro determination of the growth inhibitory activity of the four isolated compounds using the MTT colorimetric assay revealed mean IC50 growth inhibitory value of ~30 μM for glanduliferin A while glanduliferin B and α-spinasterol were poorly active till 100 μM. 2-methoxy-1,4-naphthoquinone revealed to be active in the single micromolar digit range as previously described. Quantitative videomicroscopy analyses of the effects of glanduliferins A and B suggested cytostatic rather than cytotoxic activity in U373 glioblastoma (GBM) cells.

  6. Glanduliferins A and B, two new glucosylated steroids from Impatiens glandulifera, with in vitro growth inhibitory activity in human cancer cells.

    PubMed

    Cimmino, Alessio; Mathieu, Véronique; Evidente, Marco; Ferderin, Marlène; Moreno Y Banuls, Laetitia; Masi, Marco; De Carvalho, Annelise; Kiss, Robert; Evidente, Antonio

    2016-03-01

    Impatiens glandulifera has been imported from Himalaya in Europe and is considered as an invasive alien plant whose spreading arouses increasing interest among scientific literature. Via anti-cancer bioguiding, two new glucosylated steroids, named glanduliferins A and B, were isolated from the dried stem of I. glandulifera plants, together with the well-known α-spinasterol and 2-methoxy-1,4-naphthoquinone, which are also isolated from roots and leaves. They were characterized as 17-(2-hydroxy-2-pentamethylcyclopropyl-ethyl)-10,13-dimethyl-2,3,4,5,6,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopents[a]phenathren-3-O-(4-O-acetyl)-α-D-glucopyranoside and 17-(4-ethyl-1,5-dimethyl-hex-2-enyl)-10,13-dimethyl-2,3,4,5,6,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopents[a]phenathren-3-O-(6-O-acetyl)-β-D-glucopyranoside using various NMR and HRESIMS techniques and chemical methods. In vitro determination of the growth inhibitory activity of the four isolated compounds using the MTT colorimetric assay revealed mean IC50 growth inhibitory value of ~30 μM for glanduliferin A while glanduliferin B and α-spinasterol were poorly active till 100 μM. 2-methoxy-1,4-naphthoquinone revealed to be active in the single micromolar digit range as previously described. Quantitative videomicroscopy analyses of the effects of glanduliferins A and B suggested cytostatic rather than cytotoxic activity in U373 glioblastoma (GBM) cells. PMID:26732071

  7. Hepatocyte growth factor inhibits hypoxia/reoxygenation-induced activation of xanthine oxidase in endothelial cells through the JAK2 signaling pathway

    PubMed Central

    Zhang, Ying Qian; Hu, Shun Ying; Chen, Yun Dai; Guo, Ming Zhou; Wang, Shan

    2016-01-01

    Vascular endothelial cells (ECs) appear to be one of the primary targets of hypoxia/reoxygenation (H/R) injury. In our previous study, we demonstrated that hepatocyte growth factor (HGF) exhibited a protective effect in cardiac microvascular endothelial cells (CMECs) subjected to H/R by inhibiting xanthine oxidase (XO) by reducing the cytosolic Ca2+ concentration increased in response to H/R. The precise mechanisms through which HGF inhibits XO activation remain to be determined. In the present study, we examined the signaling pathway through which HGF regulates Ca2+ concentrations and the activation of XO during H/R in primary cultured rat CMECs. CMECs were exposed to 4 h of hypoxia and 1 h of reoxygenation. The protein expression of XO and the activation of the phosphoinositide 3-kinase (PI3K), janus kinase 2 (JAK2) and p38 mitogen-activated protein kinase (p38 MAPK) signaling pathways were detected by western blot analysis. Cytosolic calcium (Ca2+) concentrations and reactive oxygen species (ROS) levels were measured by flow cytometry. The small interfering RNA (siRNA)-mediated knockdown of XO inhibited the increase in ROS production induced by H/R. LY294002 and AG490 inhibited the H/R-induced increase in the production and activation of XO. The PI3K and JAK2 signaling pathways were activated by H/R. The siRNA-mediated knockdown of PI3K and JAK2 also inhibited the increase in the production of XO protein. HGF inhibited JAK2 activation whereas it had no effect on PI3K activation. The siRNA-mediated knockdown of JAK2 prevented the increase in cytosolic Ca2+ induced by H/R. Taken together, these findings suggest that H/R induces the production and activation of XO through the JAK2 and PI3K signaling pathways. Furthermore, HGF prevents XO activation following H/R primarily by inhibiting the JAK2 signaling pathway and in turn, inhibiting the increase in cytosolic Ca2+. PMID:27573711

  8. VHL Induces Renal Cell Differentiation and Growth Arrest through Integration of Cell-Cell and Cell-Extracellular Matrix Signaling

    PubMed Central

    Davidowitz, Eliot J.; Schoenfeld, Alan R.; Burk, Robert D.

    2001-01-01

    Mutations in the von Hippel-Lindau (VHL) gene are involved in the family cancer syndrome for which it is named and the development of sporadic renal cell cancer (RCC). Reintroduction of VHL into RCC cells lacking functional VHL [VHL(−)] can suppress their growth in nude mice, but not under standard tissue culture conditions. To examine the hypothesis that the tumor suppressor function of VHL requires signaling through contact with extracellular matrix (ECM), 786-O VHL(−) RCC cells and isogenic sublines stably expressing VHL gene products [VHL(+)] were grown on ECMs. Cell-cell and cell-ECM signalings were required to elicit VHL-dependent differences in growth and differentiation. VHL(+) cells differentiated into organized epithelial sheets, whereas VHL(−) cells were branched and disorganized. VHL(+) cells grown to high density on collagen I underwent growth arrest, whereas VHL(−) cells continued to proliferate. Integrin levels were up-regulated in VHL(−) cells, and cell adhesion was down-regulated in VHL(+) cells during growth at high cell density. Hepatocyte nuclear factor 1α, a transcription factor and global activator of proximal tubule-specific genes in the nephron, was markedly up-regulated in VHL(+) cells grown at high cell density. These data indicate that VHL can induce renal cell differentiation and mediate growth arrest through integration of cell-cell and cell-ECM signals. PMID:11154273

  9. Stimulation with monochromatic green light during incubation alters satellite cell mitotic activity and gene expression in relation to embryonic and posthatch muscle growth of broiler chickens.

    PubMed

    Zhang, L; Zhang, H J; Wang, J; Wu, S G; Qiao, X; Yue, H Y; Yao, J H; Qi, G H

    2014-01-01

    Previous studies showed that monochromatic green light stimuli during embryogenesis accelerated posthatch body weight (BW) and pectoral muscle growth of broilers. In this experiment, we further investigated the morphological and molecular basis of this phenomenon. Fertile broiler eggs (Arbor Acres, n=880) were pre-weighed and randomly assigned to 1 of the 2 incubation treatment groups: (1) dark condition (control group), and (2) monochromatic green light group (560 nm). The monochromatic lighting systems sourced from light-emitting diode lamps and were equalized at the intensity of 15 lx at eggshell level. The dark condition was set as a commercial control from day 1 until hatching. After hatch, 120 male 1-day-old chicks from each group were housed under incandescent white light with an intensity of 30 lx at bird-head level. No effects of light stimuli during embryogenesis on hatching time, hatchability, hatching weight and bird mortality during the feeding trial period were observed in the present study. Compared with the dark condition, the BW, pectoral muscle weight and myofiber cross-sectional areas were significantly greater on 7-day-old chicks incubated under green light. Green light also increased the satellite cell mitotic activity of pectoral muscle on 1- and 3-day-old birds. In addition, green light upregulated MyoD, myogenin and myostatin mRNA expression in late embryos and/ or newly hatched chicks. These data suggest that stimulation with monochromatic green light during incubation promote muscle growth by enhancing proliferation and differentiation of satellite cells in late embryonic and newly hatched stages. Higher expression of myostatin may ultimately help prevent excessive proliferation and differentiation of satellite cells in birds incubated under green light.

  10. Resistin and interleukin-6 exhibit racially-disparate expression in breast cancer patients, display molecular association and promote growth and aggressiveness of tumor cells through STAT3 activation.

    PubMed

    Deshmukh, Sachin K; Srivastava, Sanjeev K; Bhardwaj, Arun; Singh, Ajay P; Tyagi, Nikhil; Marimuthu, Saravanakumar; Dyess, Donna L; Dal Zotto, Valeria; Carter, James E; Singh, Seema

    2015-05-10

    African-American (AA) women with breast cancer (BC) are diagnosed with more aggressive disease, have higher risk of recurrence and poorer prognosis as compared to Caucasian American (CA) women. Therefore, it is imperative to define the factors associated with such disparities to reduce the unequal burden of cancer. Emerging data suggest that inherent differences exist in the tumor microenvironment of AA and CA BC patients, however, its molecular bases and functional impact have remained poorly understood. Here, we conducted cytokine profiling in serum samples from AA and CA BC patients and identified resistin and IL-6 to be the most differentially-expressed cytokines with relative greater expression in AA patients. Resistin and IL-6 exhibited positive correlation in serum levels and treatment of BC cells with resistin led to enhanced production of IL-6. Moreover, resistin also enhanced the expression and phosphorylation of STAT3, and treatment of BC cells with IL-6-neutralizing antibody prior to resistin stimulation abolished STAT3 phosphorylation. In addition, resistin promoted growth and aggressiveness of BC cells, and these effects were mediated through STAT3 activation. Together, these findings suggest a crucial role of resistin, IL-6 and STAT3 in BC racial disparity.

  11. Fighting arboviral diseases: low toxicity on mammalian cells, dengue growth inhibition (in vitro), and mosquitocidal activity of Centroceras clavulatum-synthesized silver nanoparticles.

    PubMed

    Murugan, Kadarkarai; Aruna, Palanimuthu; Panneerselvam, Chellasamy; Madhiyazhagan, Pari; Paulpandi, Manickam; Subramaniam, Jayapal; Rajaganesh, Rajapandian; Wei, Hui; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Nicoletti, Marcello; Syuhei, Ban; Canale, Angelo; Benelli, Giovanni

    2016-02-01

    Dengue is a mosquito-borne viral disease that has rapidly spread in all regions of the world in recent years. Female mosquitoes, mainly Aedes aegypti, transmit dengue. Approximately 3,900 million people, in 128 countries, are at risk of dengue infection. Recently, a focus has been provided on the potential of green-synthesized nanoparticles as inhibitors of the production of dengue viral envelope (E) protein in Vero cells and downregulators of the expression of dengue viral E gene. Algae are an outstanding reservoir of novel compounds, which may help in the fight against mosquito-borne diseases. In this research, silver nanoparticles (AgNP) were rapidly synthesized using a cheap extract of the alga Centroceras clavulatum. AgNP were characterized by UV–vis spectrophotometry, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). In mosquitocidal assays, LC50 values of C. clavulatum extract against A. aegypti larvae and pupae were 269.361 ppm (larva I), 309.698 ppm (larva II), 348.325 ppm (larva III), 387.637 ppm (larva IV), and 446.262 ppm (pupa). C. clavulatum extract also exhibited moderate antioxidant activity, both in 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) radical scavenging assays. LC50 values of C. clavulatum-synthesized AgNP were 21.460 ppm (larva I), 23.579 ppm (larva II), 25.912 ppm (larva III), 29.155 ppm (larva IV), and 33.877 ppm (pupa). Furthermore, C. clavulatum-synthesized AgNP inhibited dengue (serotype dengue virus type-2 (DEN-2)) viral replication in Vero cells. Notably, 50 μg/ml of green-synthesized AgNP showed no cytotoxicity on Vero cells while reduced DEN-2 viral growth of more than 80%; 12.5 μg/ml inhibited viral growth of more than 50%. Cellular internalization assays highlighted that untreated infected cells showed high intensity of fluorescence emission, which denotes high level of viral internalization. Conversely

  12. Berberine modulates AP-1 activity to suppress HPV transcription and downstream signaling to induce growth arrest and apoptosis in cervical cancer cells

    PubMed Central

    2011-01-01

    Background- Specific types of high risk Human papillomaviruses (HR-HPVs) particularly, HPV types 16 and 18 cause cervical cancer and while the two recently developed vaccines against these HPV types are prophylactic in nature, therapeutic options for treatment and management of already existing HPV infection are not available as yet. Because transcription factor, Activator Protein-1 (AP-1) plays a central role in HPV-mediated cervical carcinogenesis, we explored the possibility of its therapeutic targeting by berberine, a natural alkaloid derived from a medicinal plant species, Berberis which has been shown to possess anti-inflammatory and anti-cancer properties with no known toxicity; however, the effect of berberine against HPV has not been elucidated. Results- We studied the effect of berberine on HPV16-positive cervical cancer cell line, SiHa and HPV18-positive cervical cancer cell line, HeLa using electrophoretic mobility gel shift assays, western and northern blotting which showed that berberine could selectively inhibit constitutively activated AP-1 in a dose- and time-dependent manner and downregulates HPV oncogenes expression. Inhibition of AP-1 was also accompanied by changes in the composition of their DNA-binding complex. Berberine specifically downregulated expression of oncogenic c-Fos which was also absent in the AP-1 binding complex. Treatment with berberine resulted in repression of E6 and E7 levels and concomitant increase in p53 and Rb expression in both cell types. Berberine also suppressed expression of telomerase protein, hTERT, which translated into growth inhibition of cervical cancer cells. Interestingly, a higher concentration of berberine was found to reduce the cell viability through mitochondria-mediated pathway and induce apoptosis by activating caspase-3. Conclusion- These results indicate that berberine can effectively target both the host and viral factors responsible for development of cervical cancer through inhibition of AP-1 and

  13. Cell Competition Drives the Growth of Intestinal Adenomas in Drosophila.

    PubMed

    Suijkerbuijk, Saskia J E; Kolahgar, Golnar; Kucinski, Iwo; Piddini, Eugenia

    2016-02-22

    Tumor-host interactions play an increasingly recognized role in modulating tumor growth. Thus, understanding the nature and impact of this complex bidirectional communication is key to identifying successful anti-cancer strategies. It has been proposed that tumor cells compete with and kill neighboring host tissue to clear space that they can expand into; however, this has not been demonstrated experimentally. Here we use the adult fly intestine to investigate the existence and characterize the role of competitive tumor-host interactions. We show that APC(-/-)-driven intestinal adenomas compete with and kill surrounding cells, causing host tissue attrition. Importantly, we demonstrate that preventing cell competition, by expressing apoptosis inhibitors, restores host tissue growth and contains adenoma expansion, indicating that cell competition is essential for tumor growth. We further show that JNK signaling is activated inside the tumor and in nearby tissue and is required for both tumor growth and cell competition. Lastly, we find that APC(-/-) cells display higher Yorkie (YAP) activity than host cells and that this promotes tumor growth, in part via cell competition. Crucially, we find that relative, rather than absolute, Hippo activity determines adenoma growth. Overall, our data indicate that the intrinsic over-proliferative capacity of APC(-/-) cells is not uncontrolled and can be constrained by host tissues if cell competition is inhibited, suggesting novel possible therapeutic approaches.

  14. Cell Competition Drives the Growth of Intestinal Adenomas in Drosophila

    PubMed Central

    Suijkerbuijk, Saskia J.E.; Kolahgar, Golnar; Kucinski, Iwo; Piddini, Eugenia

    2016-01-01

    Summary Tumor-host interactions play an increasingly recognized role in modulating tumor growth. Thus, understanding the nature and impact of this complex bidirectional communication is key to identifying successful anti-cancer strategies. It has been proposed that tumor cells compete with and kill neighboring host tissue to clear space that they can expand into; however, this has not been demonstrated experimentally. Here we use the adult fly intestine to investigate the existence and characterize the role of competitive tumor-host interactions. We show that APC−/−-driven intestinal adenomas compete with and kill surrounding cells, causing host tissue attrition. Importantly, we demonstrate that preventing cell competition, by expressing apoptosis inhibitors, restores host tissue growth and contains adenoma expansion, indicating that cell competition is essential for tumor growth. We further show that JNK signaling is activated inside the tumor and in nearby tissue and is required for both tumor growth and cell competition. Lastly, we find that APC−/− cells display higher Yorkie (YAP) activity than host cells and that this promotes tumor growth, in part via cell competition. Crucially, we find that relative, rather than absolute, Hippo activity determines adenoma growth. Overall, our data indicate that the intrinsic over-proliferative capacity of APC−/− cells is not uncontrolled and can be constrained by host tissues if cell competition is inhibited, suggesting novel possible therapeutic approaches. PMID:26853366

  15. The growth hormone receptor: mechanism of activation and clinical implications.

    PubMed

    Brooks, Andrew J; Waters, Michael J

    2010-09-01

    Growth hormone is widely used clinically to promote growth and anabolism and for other purposes. Its actions are mediated via the growth hormone receptor, both directly by tyrosine kinase activation and indirectly by induction of insulin-like growth factor 1 (IGF-1). Insensitivity to growth hormone (Laron syndrome) can result from mutations in the growth hormone receptor and can be treated with IGF-1. This treatment is, however, not fully effective owing to the loss of the direct actions of growth hormone and altered availability of exogenous IGF-1. Excessive activation of the growth hormone receptor by circulating growth hormone results in gigantism and acromegaly, whereas cell transformation and cancer can occur in response to autocrine activation of the receptor. Advances in understanding the mechanism of receptor activation have led to a model in which the growth hormone receptor exists as a constitutive dimer. Binding of the hormone realigns the subunits by rotation and closer apposition, resulting in juxtaposition of the catalytic domains of the associated tyrosine-protein kinase JAK2 below the cell membrane. This change results in activation of JAK2 by transphosphorylation, then phosphorylation of receptor tyrosines in the cytoplasmic domain, which enables binding of adaptor proteins, as well as direct phosphorylation of target proteins. This model is discussed in the light of salient information from closely related class 1 cytokine receptors, such as the erythropoietin, prolactin and thrombopoietin receptors. PMID:20664532

  16. Role of epidermal growth factor receptor transactivation in the activation of cytosolic phospholipase A(2) in leptin protection of salivary gland acinar cells against ethanol cytotoxicity.

    PubMed

    Slomiany, B L; Slomiany, A

    2009-06-01

    A pleiotropic hormone, leptin, secreted into saliva by the acinar cells of salivary glands is an important mediator of the processes of oral mucosal defense. Here, we report on the role of epidermal growth factor receptor (EGFR) transactivation in the signaling events that mediate leptin protection of sublingual salivary gland acinar cells against ethanol cytotoxicity. We show that the protective effect of leptin against ethanol cytotoxicity was associated with the increased EGFR protein tyrosine kinase and cytosolic phospholipase A(2) (cPLA(2)) activity, and characterized by a marked increase in matrix metalloproteinase MMP-9 and arachidonic acid (AA) release, and PGE(2) generation. The loss in countering capacity of leptin against ethanol cytotoxicity was attained with JAK inhibitor AG490, Src inhibitor PP2, and EGFR inhibitor AG1478, as well as ERK inhibitor PD98059. Moreover, the agents evoked also the inhibition in leptin-induced up-regulation in cPLA(2) activity, AA release, and PGE(2) generation. The changes caused by leptin in EGFR phosphorylation, MMP-9, and cPLA(2) activation were susceptible to suppression by metalloprotease inhibitor GM6001, but the production of MMP-9 was not affected by EGFR inhibitor AG1478 or PKC inhibitor Ro318220. These findings point to the involvement of MMP-9 in the event of leptin-induced EGFR transactivation that results in the signaling cascade leading to cPLA(2) activation and up-regulation in PGE(2) generation, thus providing new insights into the mechanism of oral mucosal protection against ethanol toxicity.

  17. Nuclear factor kappaB/p49 is a negative regulatory factor in nerve growth factor-induced choline acetyltransferase promoter activity in PC12 cells.

    PubMed

    Toliver-Kinsky, T; Wood, T; Perez-Polo, J R

    2000-12-01

    Anovel nuclear factor kappaB (NF-kappaB) binding site has been identified within the promoter region of the mouse gene encoding choline acetyltransferase (ChAT), the enzyme that synthesizes acetylcholine and has been implicated in the cognitive deficits associated with aging and Alzheimer's disease. This binding site, which is located within the nerve growth factor (NGF)-responsive enhancer element, was recognized by the NF-kappaB protein p49 but not p65 or p50. p49 from both basal forebrain and PC12 nuclear extracts interacted with this specific sequence in electrophoretic mobility shift assays. Mutation of the NF-kappaB site caused an increase in NGF-induced promoter activation, whereas overexpression of p49 in NGF-differentiated PC12 cells caused a decrease in endogenous ChAT enzyme activity and a decrease in promoter activity that was specifically mediated through this NF-kappaB binding site. Treatment of PC12 cells with NGF resulted in a drastic reduction in nuclear p49 binding to the ChAT NF-kappaB site after 24 h, but nuclear p49 levels were not altered, suggesting that late NGF-mediated events prevent binding of p49 to the ChAT promoter by an unknown mechanism other than nuclear translocation. Decreased ChAT expression and increased NF-kappaB activity in the brain are associated with aging and Alzheimer's disease. These data indicate that p49 is a negative regulator of ChAT expression and suggest a possible mechanism for aging-associated declines in cholinergic function.

  18. Differential control of growth, apoptotic activity and gene expression in human colon cancer cells by extracts derived from medicinal herbs, Rhazya stricta and Zingiber officinale and their combination

    PubMed Central

    Elkady, Ayman I; Hussein, Rania Abd El Hamid; Abu-Zinadah, Osama A

    2014-01-01

    AIM: To investigate the effects of extracts from Rhazya stricta (R. stricta) and Zingiber officinale (Z. officinale) on human colorectal cancer cells. METHODS: Human colorectal cancer cells (HCT116) were subjected to increasing doses of crude alkaloid extracts from R. stricta (CAERS) and crude flavonoid extracts from Z. officinale (CFEZO). Cells were then harvested after 24, 48 or 72 h and cell viability was examined by trypan blue exclusion dye test; clonogenicity and soft agar colony-forming assays were also carried out. Nuclear stain (Hoechst 33342), acridine orange/ethidium bromide double staining, agarose gel electrophoresis and comet assays were performed to assess pro-apoptotic potentiality of the extracts. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR), using gene-specific primers and Western blot analyses were performed to assess the impact of CAERS and CFEZO on the expression levels of key regulatory proteins in HCT116 cells. RESULTS: Treatment with a combination of CAERS and CFEZO synergistically suppressed the proliferation, colony formation and anchorage-independent growth of HCT116 cells. Calculated IC50, after 24, 48 and 72 h, were 70, 90 and 130 μg/mL for CAERS, 65, 85 and 120 μg/mL for CFEZO and 20, 25 and 45 μg/mL for both agents, respectively. CAERS- and CFEZO-treated cells exhibited morphologic and biochemical features of apoptotic cell death. The induction of apoptosis was associated with the release of mitochondrial cytochrome c, an increase in the Bax/Bcl-2 ratio, activation of caspases 3 and 9 and cleavage of poly ADP-ribose polymerase. CAERS and CFEZO treatments downregulated expression levels of anti-apoptotic proteins including Bcl-2, Bcl-X, Mcl-1, survivin and XIAP, and upregulated expression levels of proapoptotic proteins such as Bad and Noxa. CAERS and CFEZO treatments elevated expression levels of the oncosuppressor proteins, p53, p21 and p27, and reduced levels of the oncoproteins, cyclin D1, cyclin

  19. Cell growth on immobilized cell growth factor. 8. Protein-free cell culture on insulin-immobilized microcarriers.

    PubMed

    Ito, Y; Uno, T; Liu, S Q; Imanishi, Y

    1992-12-01

    In order to develop a new protein-free cell culture system, microcarriers immobilized with insulin were synthesized. For the synthesis, glass and polyacrylamide beads were treated for the introduction of amino groups on the surface, and insulin was immobilized on the surface by using several method. Anchorage-dependent cells. mouse fibroblast cells STO and fibroic sarcoma cells HSDM(1)C(1), and the anchorage-independent cells, mouse hybridoma cells SJK132-20 and RDP 45/20 were cultivated on the microcarriers immobilized with insulin. The insulin-immobilized microcarriers did not have any effect on the proliferation of the anchorage independent cells but promoted the growth of anchorage-dependent cells remarkably. The activity of immobilized insulin was larger than that of free or adsorbed insulin. The repeated use of the insulin-immobilized microcarrier was possible, and the promotion activity in the the repeated use was greater than that in the use.

  20. Autocrine growth factors for human tumor clonogenic cells.

    PubMed

    Hamburger, A W; White, C P

    1985-11-01

    A human epithelial-derived cell line, SW-13, releases a soluble substance that functions as an autocrine growth factor. SW-13 cells, derived from a human adenocarcinoma of the adrenal cortex, form a few small colonies when suspended in soft agar at low densities. The number of colonies increased significantly when either viable SW-13 cells or serum-free medium conditioned by SW-13 cells (CM) was added to agar underlayers. CM increased colony formation in a dose-dependent fashion. Clonal growth at low cell densities was dependent on the presence of both horse serum and SW-13 CM. Neither activity alone was capable of sustaining growth. Even when cells were plated at high densities CM could not substitute for serum, but could reduce the threshold serum concentration. The results suggest that autocrine and serum-derived factors act in concert to maintain clonal growth of epithelial tumor cells in soft agar.

  1. Oligomerization of epidermal growth factor receptors on A431 cells studied by time-resolved fluorescence imaging microscopy. A stereochemical model for tyrosine kinase receptor activation

    PubMed Central

    1995-01-01

    The aggregation states of the epidermal growth factor receptor (EGFR) on single A431 human epidermoid carcinoma cells were assessed with two new techniques for determining fluorescence resonance energy transfer: donor photobleaching fluorescence resonance energy transfer (pbFRET) microscopy and fluorescence lifetime imaging microscopy (FLIM). Fluorescein-(donor) and rhodamine-(acceptor) labeled EGF were bound to the cells and the extent of oligomerization was monitored by the spatially resolved FRET efficiency as a function of the donor/acceptor ratio and treatment conditions. An average FRET efficiency of 5% was determined after a low temperature (4 degrees C) incubation with the fluorescent EGF analogs for 40 min. A subsequent elevation of the temperature for 5 min caused a substantial increase of the average FRET efficiency to 14% at 20 degrees C and 31% at 37 degrees C. In the context of a two-state (monomer/dimer) model for the EGFR, these FRET efficiencies were consistent with minimal average receptor dimerizations of 13, 36, and 69% at 4, 20, and 37 degrees C, respectively. A431 cells were pretreated with the monoclonal antibody mAb 2E9 that specifically blocks EGF binding to the predominant population of low affinity EGFR (15). The average FRET efficiency increased dramatically to 28% at 4 degrees C, indicative of a minimal receptor dimerization of 65% for the subpopulation of high affinity receptors. These results are in accordance with prior studies indicating that binding of EGF leads to a fast and temperature- dependent microclustering of EGFR, but suggest in addition that the high affinity functional subclass of receptors on quiescent A431 cells are present in a predimerized or oligomerized state. We propose that the transmission of the external ligand-binding signal to the cytoplasmic domain is effected by a concerted relative rotational rearrangement of the monomeric units comprising the dimeric receptor, thereby potentiating a mutual activation of

  2. Protein Disulfide Isomerase Is Required for Platelet-derived Growth Factor-induced Vascular Smooth Muscle Cell Migration, Nox1 NADPH Oxidase Expression, and RhoGTPase Activation

    PubMed Central

    Pescatore, Luciana A.; Bonatto, Diego; Forti, Fábio L.; Sadok, Amine; Kovacic, Hervé; Laurindo, Francisco R. M.

    2012-01-01

    Vascular Smooth Muscle Cell (VSMC) migration into vessel neointima is a therapeutic target for atherosclerosis and postinjury restenosis. Nox1 NADPH oxidase-derived oxidants synergize with growth factors to support VSMC migration. We previously described the interaction between NADPH oxidases and the endoplasmic reticulum redox chaperone protein disulfide isomerase (PDI) in many cell types. However, physiological implications, as well as mechanisms of such association, are yet unclear. We show here that platelet-derived growth factor (PDGF) promoted subcellular redistribution of PDI concomitant to Nox1-dependent reactive oxygen species production and that siRNA-mediated PDI silencing inhibited such reactive oxygen species production, while nearly totally suppressing the increase in Nox1 expression, with no change in Nox4. Furthermore, PDI silencing inhibited PDGF-induced VSMC migration assessed by distinct methods, whereas PDI overexpression increased spontaneous basal VSMC migration. To address possible mechanisms of PDI effects, we searched for PDI interactome by systems biology analysis of physical protein-protein interaction networks, which indicated convergence with small GTPases and their regulator RhoGDI. PDI silencing decreased PDGF-induced Rac1 and RhoA activities, without changing their expression. PDI co-immunoprecipitated with RhoGDI at base line, whereas such association was decreased after PDGF. Also, PDI co-immunoprecipitated with Rac1 and RhoA in a PDGF-independent way and displayed detectable spots of perinuclear co-localization with Rac1 and RhoGDI. Moreover, PDI silencing promoted strong cytoskeletal changes: disorganization of stress fibers, decreased number of focal adhesions, and reduced number of RhoGDI-containing vesicular recycling adhesion structures. Overall, these data suggest that PDI is required to support Nox1/redox and GTPase-dependent VSMC migration. PMID:22773830

  3. Flavonoids with epidermal growth factor-receptor tyrosine kinase inhibitory activity stimulate PEPT1-mediated cefixime uptake into human intestinal epithelial cells.

    PubMed

    Wenzel, U; Kuntz, S; Daniel, H

    2001-10-01

    We have tested 33 flavonoids, occurring ubiquitously in foods of plant origin, for their ability to alter the transport of the beta-lactam antibiotic cefixime via the H+-coupled intestinal peptide transporter PEPT1 in the human intestinal epithelial cell line Caco-2. Of the flavonoids tested, quercetin, genistein, naringin, diosmin, acacetin, and chrysin increased uptake of [14C]cefixime dose dependently by up to 60%. All other flavonoids were either without effect or decreased the absorption of cefixime. Quercetin was shown to increase the Vmax of cefixime influx without changing the apparent Km for transport. However, the expected concomitant increase in intracellular acidification due to PEPT1-mediated cefixime/H+-cotransport was less pronounced in the presence of quercetin. This suggested that pH regulatory systems such as apical Na+/H+-exchange could be activated by quercetin and maintain the proton-motive driving force for cefixime uptake. Since quercetin and genistein have been shown to inhibit epidermal growth factor (EGF)-receptor tyrosine kinases, we applied tyrphostin 25 to prove whether such an inhibition could explain the stimulatory effects seen on cefixime uptake. It was found that tyrphostin 25 simulated the effects of quercetin by increasing cefixime absorption due to maintenance of the transmembrane pH gradient. In conclusion, our studies show that flavonoids with EGF-receptor tyrosine kinase inhibitory activities enhance the intestinal absorption of the beta-lactam antibiotic cefixime in Caco-2 cells by activation of apical Na+/H+-exchange and a concomitant increase of the driving force for PEPT1.

  4. Transforming growth factor β-activated kinase 1 negatively regulates interleukin-1α-induced stromal-derived factor-1 expression in vascular smooth muscle cells

    SciTech Connect

    Yang, Bin; Li, Wei; Zheng, Qichang; Qin, Tao; Wang, Kun; Li, Jinjin; Guo, Bing; Yu, Qihong; Wu, Yuzhe; Gao, Yang; Cheng, Xiang; Hu, Shaobo; Kumar, Stanley Naveen; Liu, Sanguang; Song, Zifang

    2015-07-17

    Stromal-derived Factor-1 (SDF-1) derived from vascular smooth muscle cells (VSMCs) contributes to vascular repair and remodeling in various vascular diseases. In this study, the mechanism underlying regulation of SDF-1 expression by interleukin-1α (IL-1α) was investigated in primary rat VSMCs. We found IL-1α promotes SDF-1 expression by up-regulating CCAAT-enhancer-binding protein β (C/EBPβ) in an IκB kinase β (IKKβ) signaling-dependent manner. Moreover, IL-1α-induced expression of C/EBPβ and SDF-1 was significantly potentiated by knockdown of transforming growth factor β-activated kinase 1 (TAK1), an upstream activator of IKKβ signaling. In addition, we also demonstrated that TAK1/p38 mitogen-activated protein kinase (p38 MAPK) signaling exerted negative effect on IL-1α-induced expression of C/EBPβ and SDF-1 through counteracting ROS-dependent up-regulation of nuclear factor erythroid 2-related factor 2 (NRF2). In conclusion, TAK1 acts as an important regulator of IL-1α-induced SDF-1 expression in VSMCs, and modulating activity of TAK1 may serve as a potential strategy for modulating vascular repair and remodeling. - Highlights: • IL-1α induces IKKβ signaling-dependent SDF-1 expression by up-regulating C/EBPβ. • Activation of TAK1 by IL-1α negatively regulates C/EBPβ-dependent SDF-1 expression. • IL-1α-induced TAK1/p38 MAPK signaling counteracts ROS-dependent SDF-1 expression. • TAK1 counteracts IL-1α-induced SDF-1 expression by attenuating NRF2 up-regulation.

  5. Epitaxial silicon growth for solar cells

    NASA Technical Reports Server (NTRS)

    Daiello, R. V.; Robinson, P. H.; Richman, D.

    1978-01-01

    Growth and fabrication procedures for the baseline solar cells are described along with measured cell parameters, and the results. Reproducibility of these results was established and the direction to be taken for higher efficiency is identified.

  6. Role of mast cells in tumor growth.

    PubMed

    Conti, Pio; Castellani, Maria L; Kempuraj, Durasamy; Salini, Vincenzo; Vecchiet, Jacopo; Tetè, Stefano; Mastrangelo, Filiberto; Perrella, Alessandro; De Lutiis, Maria Anna; Tagen, Michael; Theoharides, Theoharis C

    2007-01-01

    The growth of malignant tumors is determined in large part by the proliferative capacity of the tumor cells. Clinical observations and animal experiments have established that tumor cells elicit immune responses. Histopathologic studies show that many tumors are surrounded by mononuclear cell and mast cell infiltrates. Mast cells are ubiquitous in the body and are critical for allergic reactions. Increasing evidence indicates that mast cells secrete proinflammatory cytokines and are involved in neuro-inflammatory processes and cancer. Mast cells accumulate in the stroma surrounding certain tumors, especially mammary adenocarcinoma, and the molecules they secrete can benefit the tumor. However, mast cells can also increase at the site of tumor growth and participate in tumor rejection. Mast cells may be recruited by tumor-derived chemoattractants and selectively secrete molecules such as growth factors, histamine, heparin, VEGF, and IL-8, as well as proteases that permit the formation of new blood vessels and metastases. Tumor mast cell intersections play regulatory and modulatory roles affecting various aspects of tumor growth. Discovery of these new roles of mast cells further complicates the understanding of tumor growth. This review focuses on the strategic importance of mast cells to the progression of tumors, and proposes a revised immune effector mechanism of mast cell involvement in tumor growth. PMID:18000287

  7. Cell Assisted Cell Growth Experiments with Dictyostelium discoideum

    NASA Astrophysics Data System (ADS)

    Bae, Albert; Ip, Wui; Franck, Carl

    2007-03-01

    In eukaryotic cell culture, it is routinely recommended to keep the cells above a minimum cell density to maintain vigorous growth. We are investigating the basis for this prescription by viewing cell growth as a social behavior facilitated by cell-cell communication. Employing Dictyostelium discoideum, we find good evidence for a slow-fast transition in the cell growth rate vs. density in well mixed, 25 ml, cell cultures. We also use low height microfluidic chambers (four orders of magnitude smaller in volume) to find similar behavior even though the system is not well mixed and the cells are confined to substrates. A preliminary measurement at a flow rate that should strongly perturb cell-cell communication by means of diffusing signal molecules suggests that cell communication essential for growth is not accomplished by such means but possibly via direct contacts.

  8. Stochastic Gompertz model of tumour cell growth.

    PubMed

    Lo, C F

    2007-09-21

    In this communication, based upon the deterministic Gompertz law of cell growth, a stochastic model in tumour growth is proposed. This model takes account of both cell fission and mortality too. The corresponding density function of the size of the tumour cells obeys a functional Fokker--Planck equation which can be solved analytically. It is found that the density function exhibits an interesting "multi-peak" structure generated by cell fission as time evolves. Within this framework the action of therapy is also examined by simply incorporating a therapy term into the deterministic cell growth term.

  9. Regulation of human amnion cell growth and morphology by sera, plasma, and growth factors.

    PubMed

    Gaffney, E V; Grimaldi, M A

    1981-01-01

    The requirements of human epithelial cells derived from the amnion membrane for serum factors were investigated. The growth promoting effects of human whole blood serum (WBS), platelet-poor defibrinogenated plasma, and plasma-derived serum (PDS) were examined in primary cultures of these ectodermal cells. The numbers of population doublings recorded after 10 days in the presence of 10% WBS, defibrinogenated plasma, or PDS were 2.3, 2.0 or 1.5, respectively. Although dialysis of sera or plasma had little effect on growth promotion, it markedly decreased the capacity of plasma to maintain cells in culture beyond 10 days. The differences in growth activities could not be attributed to the presence of anticoagulant in plasma and PDS or to the presence of excess calcium in PDS. Platelet lysates and purified platelet-derived growth factor had no effect on growth. Amnion cell growth was enhanced by epidermal growth factor (EGF) or hydrocortisone, but the glucocorticoid did not condition cells to respond to growth factors. Insulin and fibroblast growth factor singly or in combination had no effect on cell replication. Giant cell formation accompanied maintenance in hydrocortisone with defibrinogenated plasma and PDS. Discrete regions of dense population appeared in the presence of hydrocortisone, EGF, and undialyzed supplements.

  10. In-situ growth of antimony sulfide in carbon nanoparticle matrix: Enhanced electrocatalytic activity as counter electrode in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Sun, Panpan; Zhang, Ming; Ai, Changzhi; Wu, Zhixin; Lu, Shuang; Zhang, Xintong; Huang, Niu; Sun, Yihua; Sun, Xiaohua

    2016-07-01

    Considering the undesirable electrocatalytic activity toward I-/I3- redox system of prinstine antimony sulfide (Sb2S3) fabricated with the existing conditions, a mesoporous carbon nanoparticle film (CNP) is introduced here for in-situ growth of Sb2S3 to construct a Sb2S3@CNP hybrid catalyst. Based on a Sb-thiourea precursor solution, in-situ growth of Sb2S3 can be achieved via solution deposition (denoted as Sb2S3@CNP-S) as well as atmospheric pressure thermal evaporation (denoted as Sb2S3@CNP-T) in CNP matrix. Structural characterizations indicate that Sb2S3 particles have well dispersed in the pores of CNP matrix. Because of the introduction of porous and conductive CNP matrix to support Sb2S3, the hybrid catalyst exhibits lower charge transfer resistance at the catalyst/electrolyte interface and higher electrocatalytic activity. When used as counter electrode (CE) for dye-sensitized solar cells (DSSCs), devices using Sb2S3@CNP hybrid catalyst as CE produce fill factor of 67.6% and 66.3%, which is significantly higher than that using pristine Sb2S3 fabricated in our previous work (52.8%). Finally, the corresponding power conversion efficiencies reach 6.69% (Sb2S3@CNP-S) and 6.24% (Sb2S3@CNP-T), respectively, which are comparable to that using Pt CE measured under the same conditions (6.74%).

  11. Dynamic mast cell-stromal cell interactions promote growth of pancreatic cancer

    PubMed Central

    Ma, Ying; Hwang, Rosa F.; Logsdon, Craig D.; Ullrich, Stephen E.

    2013-01-01

    Pancreatic ductal adenocarcinoma (PDAC) exists in a complex desmoplastic microenvironment, which includes cancer-associated fibroblasts (also known as pancreatic stellate cells, PSCs) and immune cells that provide a fibrotic niche that impedes successful cancer therapy. We have found that mast cells are essential for PDAC tumorigenesis. Whether mast cells contribute to the growth of PDAC and/or PSCs is unknown. Here we tested the hypothesis that mast cells contribute to the growth of PSCs and tumor cells, thus contributing to PDAC development. Tumor cells promoted mast cell migration. Both tumor cells and PSCs stimulated mast cell activation. Conversely, mast cell-derived IL-13 and tryptase stimulated PSC proliferation. Treating tumor-bearing mice with agents that block mast cell migration and function depressed PDAC growth. Our findings suggest that mast cells exacerbate the cellular and extracellular dynamics of the tumor microenvironment found in PDAC. Therefore, targeting mast cells may inhibit stromal formation and improve therapy. PMID:23633481

  12. RhoA/phosphatidylinositol 3-kinase/protein kinase B/mitogen-activated protein kinase signaling after growth arrest-specific protein 6/mer receptor tyrosine kinase engagement promotes epithelial cell growth and wound repair via upregulation of hepatocyte growth factor in macrophages.

    PubMed

    Lee, Ye-Ji; Park, Hyun-Jung; Woo, So-Youn; Park, Eun-Mi; Kang, Jihee Lee

    2014-09-01

    Growth arrest-specific protein 6 (Gas6)/Mer receptor tyrosine kinase (Mer) signaling modulates cytokine secretion and helps to regulate the immune response and apoptotic cell clearance. Signaling pathways that activate an epithelial growth program in macrophages are still poorly defined. We report that Gas6/Mer/RhoA signaling can induce the production of epithelial growth factor hepatic growth factor (HGF) in macrophages, which ultimately promotes epithelial cell proliferation and wound repair. The RhoA/protein kinase B (Akt)/mitogen-activated protein (MAP) kinases, including p38 MAP kinase, extracellular signal-regulated protein kinase, and Jun NH2-terminal kinase axis in RAW 264.7 cells, was identified as Gas6/Mer downstream signaling pathway for the upregulation of HGF mRNA and protein. Conditioned medium from RAW 264.7 cells that had been exposed to Gas6 or apoptotic cells enhanced epithelial cell proliferation of the epithelial cell line LA-4 and wound closure. Cotreatment with an HGF receptor-blocking antibody or c-Met antagonist downregulated this enhancement. Inhibition of Mer with small interfering RNA (siRNA) or the RhoA/Rho kinase pathway by RhoA siRNA or Rho kinase pharmacologic inhibitor suppressed Gas6-induced HGF mRNA and protein expression in macrophages and blocked epithelial cell proliferation and wound closure induced by the conditioned medium. Our data provide evidence that macrophages can be reprogrammed by Gas6 to promote epithelial proliferation and wound repair via HGF, which is induced by the Mer/RhoA/Akt/MAP kinase pathway. Thus, defects in Gas6/Mer/RhoA signaling in macrophages may delay tissue repair after injury to the alveolar epithelium.

  13. Effect of vitamin D status improvement with 25-hydroxycholecalciferol on skeletal muscle growth characteristics and satellite cell activity in broiler chickens.

    PubMed

    Hutton, K C; Vaughn, M A; Litta, G; Turner, B J; Starkey, J D

    2014-08-01

    Skeletal muscle satellite cells (SC) play a critical role in the hypertrophic growth of postnatal muscle. Increases in breast meat yield have been consistently observed in broiler chickens fed 25-hydroxycholecalciferol (25OHD3), but it is unclear whether this effect is mediated by SC. Thus, our objective was to determine the effect of vitamin D status improvement by replacing the majority of dietary vitamin D3 (D3) with 25OHD3 on SC activity and muscle growth characteristics in the pectoralis major (PM) and the biceps femoris (BF) muscles. Day-old, male Ross 708 broiler chickens (n = 150) were fed 1 of 2 corn and soybean meal-based diets for 49 d. The control diet (CTL) contained 5,000 IU D3 per kg of diet and the experimental diet (25OHD3) contained 2,240 IU D3 per kg of diet + 2,760 IU 25OHD3 per kg of diet. Ten birds per treatment were harvested every 7 d. Two hours before harvest, birds were injected intraperitoneally with 5'-bromo-2'deoxyuridine (BrdU) to label mitotically active cells. Blood was collected from each bird at harvest to measure circulating concentrations of 25OHD3, a marker of vitamin D status. The PM and BF muscles were weighed and processed for cryohistological determination of skeletal muscle fiber cross-sectional area, enumeration of Myf-5+ and Pax7+ SC, and mitotically active (BrdU+) SC using immunofluorescence microscopy. Circulating 25OHD3 concentrations were greater in 25OHD3-fed birds on d 7, 14, 21, 28, 35, 42, and 49 when compared with CTL (P < 0.001). Growth performance and feed efficiency did not differ among dietary treatments (P > 0.10). Improved vitamin D status as a result of feeding 25OHD3 increased the number of mitotically active (Pax7+;BrdU+) SC (P = 0.01) and tended to increase the density of Pax7+ SC (P = 0.07) in the PM muscles of broilers on d 21 and 35, respectively. Broiler chickens fed 25OHD3 also tended to have greater Myf-5+ SC density (P = 0.09) on d 14, greater total nuclear density (P = 0.05) on d 28, and a

  14. Transforming growth factor-β1 induces cell cycle arrest by activating atypical cyclin-dependent kinase 5 through up-regulation of Smad3-dependent p35 expression in human MCF10A mammary epithelial cells.

    PubMed

    Park, Seong Ji; Yang, Sun Woo; Kim, Byung-Chul

    2016-04-01

    Cyclin-dependent kinases (Cdks) play important roles in control of cell division. Cdk5 is an atypical member of Cdk family with non-cyclin-like regulatory subunit, p35, but its role in cell cycle progression is still unclear. In the present study, we investigated the role of Cdk5/p35 on transforming growth factor-β1 (TGF-β1)-induced cell cycle arrest. In human MCF10A mammary epithelial cells, TGF-β1 induced cell cycle arrest at G1 phase and increased p27KIP1 expression. Interestingly, pretreatment with roscovitine, an inhibitor of Cdk5, or transfection with small interfering (si) RNAs specific to Cdk5 and p35 significantly attenuated the TGF-β1-induced p27KIP1 expression and cell cycle arrest. TGF-β1 increased Cdk5 activity via up-regulation of p35 gene at transcriptional level, and these effects were abolished by transfection with Smad3 siRNA or infection of adenovirus carrying Smad3 mutant at the C-tail (3SA). Chromatin immunoprecipitation assay further revealed that wild type Smad3, but not mutant Smad3 (3SA), binds to the region of the p35 promoter region (-1000--755) in a TGF-β1-dependent manner. These results for the first time demonstrate a role of Cdk5/p35 in the regulation of cell cycle progression modulated by TGF-β1. PMID:26966064

  15. Transforming growth factor-β1 induces cell cycle arrest by activating atypical cyclin-dependent kinase 5 through up-regulation of Smad3-dependent p35 expression in human MCF10A mammary epithelial cells.

    PubMed

    Park, Seong Ji; Yang, Sun Woo; Kim, Byung-Chul

    2016-04-01

    Cyclin-dependent kinases (Cdks) play important roles in control of cell division. Cdk5 is an atypical member of Cdk family with non-cyclin-like regulatory subunit, p35, but its role in cell cycle progression is still unclear. In the present study, we investigated the role of Cdk5/p35 on transforming growth factor-β1 (TGF-β1)-induced cell cycle arrest. In human MCF10A mammary epithelial cells, TGF-β1 induced cell cycle arrest at G1 phase and increased p27KIP1 expression. Interestingly, pretreatment with roscovitine, an inhibitor of Cdk5, or transfection with small interfering (si) RNAs specific to Cdk5 and p35 significantly attenuated the TGF-β1-induced p27KIP1 expression and cell cycle arrest. TGF-β1 increased Cdk5 activity via up-regulation of p35 gene at transcriptional level, and these effects were abolished by transfection with Smad3 siRNA or infection of adenovirus carrying Smad3 mutant at the C-tail (3SA). Chromatin immunoprecipitation assay further revealed that wild type Smad3, but not mutant Smad3 (3SA), binds to the region of the p35 promoter region (-1000--755) in a TGF-β1-dependent manner. These results for the first time demonstrate a role of Cdk5/p35 in the regulation of cell cycle progression modulated by TGF-β1.

  16. Essential Roles of RNA-binding Protein HuR in Activation of Hepatic Stellate Cells Induced by Transforming Growth Factor-β1

    PubMed Central

    Ge, Jingjing; Chang, Na; Zhao, Zhongxin; Tian, Lei; Duan, Xianghui; Yang, Lin; Li, Liying

    2016-01-01

    RNA-binding protein HuR mediates transforming growth factor (TGF)-β1-induced profibrogenic actions. Up-regulation of Sphingosine kinase 1 (SphK1) is involved in TGF-β1-induced activation of hepatic stellate cells (HSCs) in liver fibrogenesis. However, the molecular mechanism of TGF-β1 regulates SphK1 remains unclear. This study was designed to investigate the role of HuR in TGF-β1-induced SphK1 expression and identify a new molecular mechanism in liver fibrogenensis. In vivo, HuR expression was increased, translocated to cytoplasm, and bound to SphK1 mRNA in carbon tetrachloride- and bile duct ligation-induced mouse fibrotic liver. HuR mRNA expression had a positive correlation with mRNA expressions of SphK1 and fibrotic markers, α-smooth muscle actin (α-SMA) and Collagen α1(I), respectively. In vitro, up-regulation of SphK1 and activation of HSCs stimulated by TGF-β1 depended on HuR cytoplasmic accumulation. The effects of TGF-β1 were diminished when HuR was silenced or HuR cytoplasmic translocation was blocked. Meanwhile, overexpression of HuR mimicked the effects of TGF-β1. Furthermore, TGF-β1 prolonged half-life of SphK1 mRNA by promoting its binding to HuR. Pharmacological or siRNA-induced SphK1 inhibition abrogated HuR-mediated HSC activation. In conclusion, our data suggested that HuR bound to SphK1 mRNA and played a crucial role in TGF-β1-induced HSC activation. PMID:26912347

  17. Essential Roles of RNA-binding Protein HuR in Activation of Hepatic Stellate Cells Induced by Transforming Growth Factor-β1.

    PubMed

    Ge, Jingjing; Chang, Na; Zhao, Zhongxin; Tian, Lei; Duan, Xianghui; Yang, Lin; Li, Liying

    2016-02-25

    RNA-binding protein HuR mediates transforming growth factor (TGF)-β1-induced profibrogenic actions. Up-regulation of Sphingosine kinase 1 (SphK1) is involved in TGF-β1-induced activation of hepatic stellate cells (HSCs) in liver fibrogenesis. However, the molecular mechanism of TGF-β1 regulates SphK1 remains unclear. This study was designed to investigate the role of HuR in TGF-β1-induced SphK1 expression and identify a new molecular mechanism in liver fibrogenensis. In vivo, HuR expression was increased, translocated to cytoplasm, and bound to SphK1 mRNA in carbon tetrachloride- and bile duct ligation-induced mouse fibrotic liver. HuR mRNA expression had a positive correlation with mRNA expressions of SphK1 and fibrotic markers, α-smooth muscle actin (α-SMA) and Collagen α1(I), respectively. In vitro, up-regulation of SphK1 and activation of HSCs stimulated by TGF-β1 depended on HuR cytoplasmic accumulation. The effects of TGF-β1 were diminished when HuR was silenced or HuR cytoplasmic translocation was blocked. Meanwhile, overexpression of HuR mimicked the effects of TGF-β1. Furthermore, TGF-β1 prolonged half-life of SphK1 mRNA by promoting its binding to HuR. Pharmacological or siRNA-induced SphK1 inhibition abrogated HuR-mediated HSC activation. In conclusion, our data suggested that HuR bound to SphK1 mRNA and played a crucial role in TGF-β1-induced HSC activation.

  18. Ligustrazine attenuates oxidative stress-induced activation of hepatic stellate cells by interrupting platelet-derived growth factor-β receptor-mediated ERK and p38 pathways

    SciTech Connect

    Zhang, Feng; Ni, Chunyan; Kong, Desong; Zhang, Xiaoping; Zhu, Xiaojing; Chen, Li; Lu, Yin; Zheng, Shizhong

    2012-11-15

    Hepatic fibrosis represents a frequent event following chronic insult to trigger wound healing reactions with accumulation of extracellular matrix (ECM) in the liver. Activation of hepatic stellate cells (HSCs) is the pivotal event during liver fibrogenesis. Compelling evidence indicates that oxidative stress is concomitant with liver fibrosis irrespective of the underlying etiology. Natural antioxidant ligustrazine exhibits potent antifibrotic activities, but the mechanisms are poorly understood. Our studies were to investigate the ligustrazine effects on HSC activation stimulated by hydrogen peroxide (H{sub 2}O{sub 2}), an in vitro model mimicking the oxidative stress in liver fibrogenesis, and to elucidate the possible mechanisms. Our results demonstrated that H{sub 2}O{sub 2} at 5 μM significantly stimulated HSC proliferation and expression of marker genes of HSC activation; whereas ligustrazine dose-dependently suppressed proliferation and induced apoptosis in H{sub 2}O{sub 2}-activated HSCs, and attenuated expression of fibrotic marker genes. Mechanistic investigations revealed that ligustrazine reduced platelet-derived growth factor-β receptor (PDGF-βR) expression and blocked the phosphorylation of extracellular regulated protein kinase (ERK) and p38 kinase, two downstream effectors of PDGF-βR. Further molecular evidence suggested that ligustrazine interruption of ERK and p38 pathways was dependent on the blockade of PDGF-βR and might be involved in ligustrazine reduction of fibrotic marker gene expression under H{sub 2}O{sub 2} stimulation. Furthermore, ligustrazine modulated some proteins critical for HSC activation and ECM homeostasis in H{sub 2}O{sub 2}-stimulated HSCs. These data collectively indicated that ligustrazine could attenuate HSC activation caused by oxidative stress, providing novel insights into ligustrazine as a therapeutic option for hepatic fibrosis. Highlights: ► Ligustrazine inhibits oxidative stress-induced HSC activation.

  19. Effect of light wavelength on cell growth, content of phenolic compounds and antioxidant activity in cell suspension cultures of Thevetia peruviana.

    PubMed

    Arias, J P; Zapata, K; Rojano, B; Arias, M

    2016-10-01

    Thevetia peruviana (T. peruviana) has been considered as a potentially important plant for industrial and pharmacological application. Among the number of compounds which are produced by T. peruviana, antioxidants and polyphenols are of particular interest due to their benefits on human health. Cell suspension cultures of T. peruviana were established under different conditions: 1) constant illumination (24h/day) at different light wavelengths (red, green, blue, yellow and white), 2) darkness and 3) control (12h/12h: day light/dark) to investigate their biomass, substrate uptake, polyphenols production and oxidizing activity. The results showed biomass concentrations between 17.1g dry weight (DW)/l (green light) and 18.2g DW/l (control) after 13days. The cultures that grew under green light conditions consumed completely all substrates after 10days, while other cultures required at least 13days or more. The total phenolic content was between 7.21 and 9.46mg gallic acid (GA)/g DW for all light conditions. In addition the ferric reducing antioxidant power and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid antioxidant activity ranged from 5.41-6.58mg ascorbic acid (AA)/g DW and 82.93-110.39μmol Trolox/g DW, respectively. Interestingly, the samples which grew under the darkness presented a higher phenolic content and antioxidant capacity when compared to the light conditions. All together, these results demonstrate the extraordinary effect of different lighting conditions on polyphenols production and antioxidant compounds by T. peruviana.

  20. Effect of light wavelength on cell growth, content of phenolic compounds and antioxidant activity in cell suspension cultures of Thevetia peruviana.

    PubMed

    Arias, J P; Zapata, K; Rojano, B; Arias, M

    2016-10-01

    Thevetia peruviana (T. peruviana) has been considered as a potentially important plant for industrial and pharmacological application. Among the number of compounds which are produced by T. peruviana, antioxidants and polyphenols are of particular interest due to their benefits on human health. Cell suspension cultures of T. peruviana were established under different conditions: 1) constant illumination (24h/day) at different light wavelengths (red, green, blue, yellow and white), 2) darkness and 3) control (12h/12h: day light/dark) to investigate their biomass, substrate uptake, polyphenols production and oxidizing activity. The results showed biomass concentrations between 17.1g dry weight (DW)/l (green light) and 18.2g DW/l (control) after 13days. The cultures that grew under green light conditions consumed completely all substrates after 10days, while other cultures required at least 13days or more. The total phenolic content was between 7.21 and 9.46mg gallic acid (GA)/g DW for all light conditions. In addition the ferric reducing antioxidant power and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid antioxidant activity ranged from 5.41-6.58mg ascorbic acid (AA)/g DW and 82.93-110.39μmol Trolox/g DW, respectively. Interestingly, the samples which grew under the darkness presented a higher phenolic content and antioxidant capacity when compared to the light conditions. All together, these results demonstrate the extraordinary effect of different lighting conditions on polyphenols production and antioxidant compounds by T. peruviana. PMID:27541569

  1. Fibroblast growth factor 8 increases breast cancer cell growth by promoting cell cycle progression and by protecting against cell death

    SciTech Connect

    Nilsson, Emeli M.; Brokken, Leon J.S.; Haerkoenen, Pirkko L.

    2010-03-10

    Fibroblast growth factor 8 (FGF-8) is expressed in a large proportion of breast cancers, whereas its level in normal mammary gland epithelium is low. Previous studies have shown that FGF-8b stimulates breast cancer cell growth in vitro and in vivo. To explore the mechanisms by which FGF-8b promotes growth, we studied its effects on cell cycle regulatory proteins and signalling pathways in mouse S115 and human MCF-7 breast cancer cells. We also studied the effect of FGF-8b on cell survival. FGF-8b induced cell cycle progression and up-regulated particularly cyclin D1 mRNA and protein in S115 cells. Silencing cyclin D1 with siRNA inhibited most but not all FGF-8b-induced proliferation. Inhibition of the FGF-8b-activated ERK/MAPK pathway decreased FGF-8b-stimulated proliferation. Blocking the constitutively active PI3K/Akt and p38 MAPK pathways also lowered FGF-8b-induced cyclin D1 expression and proliferation. Corresponding results were obtained in MCF-7 cells. In S115 and MCF-7 mouse tumours, FGF-8b increased cyclin D1 and Ki67 levels. Moreover, FGF-8b opposed staurosporine-induced S115 cell death which effect was blocked by inhibiting the PI3K/Akt pathway but not the ERK/MAPK pathway. In conclusion, our results suggest that FGF-8b increases breast cancer cell growth both by stimulating cell cycle progression and by protecting against cell death.

  2. Thrombin Induces Tumor Cell Cycle Activation and Spontaneous Growth by Down-regulation of p27Kip1, in Association with the Up-regulation of Skp2 and MiR-222

    PubMed Central

    Hu, Liang; Ibrahim, Sherif; Liu, Cynthia; Skaar, Jeffrey; Pagano, Michele; Karpatkin, Simon

    2009-01-01

    The effect of thrombin on tumor cell cycle activation and spontaneous growth was examined in synchronized serum-starved tumor cell lines and a model of spontaneous prostate cancer development in TRAMP mice. BrdUrd incorporation and propidium iodide staining of prostate LNCaP cells arrested in G0 and treated with thrombin or serum revealed a 48- and 29-fold increase in S phase cells, respectively, at 8 hours. Similar results were obtained with TRAMP cells and a glioblastoma cell line, T98G. Cell cycle kinases and inhibitors in synchronized tumor cells revealed high levels of p27Kip1 and low levels of Skp2 and cyclins D1 and A. Addition of thrombin, TFLLRN, or serum down-regulated p27Kip1 with concomitant induction of Skp2, Cyclin D1, and Cyclin A with similar kinetics. LNCaP p27Kip1-transfected cells or Skp2 knockdown cells were refractory to thrombin-induced cell cycle activation. MicroRNA 222, an inhibitor of p27Kip1, was robustly up-regulated by thrombin. The in vitro observations were tested in vivo with transgenic TRAMP mice. Repetitive thrombin injection enhanced prostate tumor volume 6- to 8-fold (P < 0.04). Repetitive hirudin, a specific potent antithrombin, decreased tumor volume 13- to 24-fold (P < 0.04). Thus, thrombin stimulates tumor cell growth in vivo by down-regulation of p27Kip1. PMID:19351827

  3. Pumpkin seed extract: Cell growth inhibition of hyperplastic and cancer cells, independent of steroid hormone receptors.

    PubMed

    Medjakovic, Svjetlana; Hobiger, Stefanie; Ardjomand-Woelkart, Karin; Bucar, Franz; Jungbauer, Alois

    2016-04-01

    Pumpkin seeds have been known in folk medicine as remedy for kidney, bladder and prostate disorders since centuries. Nevertheless, pumpkin research provides insufficient data to back up traditional beliefs of ethnomedical practice. The bioactivity of a hydro-ethanolic extract of pumpkin seeds from the Styrian pumpkin, Cucurbita pepo L. subsp. pepo var. styriaca, was investigated. As pumpkin seed extracts are standardized to cucurbitin, this compound was also tested. Transactivational activity was evaluated for human androgen receptor, estrogen receptor and progesterone receptor with in vitro yeast assays. Cell viability tests with prostate cancer cells, breast cancer cells, colorectal adenocarcinoma cells and a hyperplastic cell line from benign prostate hyperplasia tissue were performed. As model for non-hyperplastic cells, effects on cell viability were tested with a human dermal fibroblast cell line (HDF-5). No transactivational activity was found for human androgen receptor, estrogen receptor and progesterone receptor, for both, extract and cucurbitin. A cell growth inhibition of ~40-50% was observed for all cell lines, with the exception of HDF-5, which showed with ~20% much lower cell growth inhibition. Given the receptor status of some cell lines, a steroid-hormone receptor independent growth inhibiting effect can be assumed. The cell growth inhibition for fast growing cells together with the cell growth inhibition of prostate-, breast- and colon cancer cells corroborates the ethnomedical use of pumpkin seeds for a treatment of benign prostate hyperplasia. Moreover, due to the lack of androgenic activity, pumpkin seed applications can be regarded as safe for the prostate.

  4. Fibroblast growth factor 5-short (FGF5s) inhibits the activity of FGF5 in primary and secondary hair follicle dermal papilla cells of cashmere goats.

    PubMed

    He, Xiaolin; Chao, Yuan; Zhou, Guangxian; Chen, Yulin

    2016-01-10

    To determine the relationship between fibroblast growth factor 5 (FGF5) and FGF5-short (FGF5s) in dermal papilla cells of cashmere goat primary and secondary hair follicles. We isolated dermal papilla cells from primary hair follicle (PHF) and secondary hair follicle (SHF) of cashmere goat, and found that the FGF5 receptor, fibroblast growth factor receptor 1 (FGFR1), was expressed in these two types of dermal papilla cells. Moreover, adenovirus-mediated overexpression of FGF5 could upregulate the mRNA expression of insulin-like growth factor-1 (IGF-1), versican and noggin that were important for follicle growth maintenance, whereas downregulate the expression of anagen chalone bone morphogenetic protein 4 (BMP4) in dermal papilla cells. However, these alterations were partly reversed by FGF5s overexpression. In conclusion, our results demonstrated that FGF5s acted as an inhibitor of FGF5 in the regulation of anagen-catagen transition of cashmere goat dermal papilla cells.

  5. Catalase regulates cell growth in HL60 human promyelocytic cells: evidence for growth regulation by H(2)O(2).

    PubMed

    Hachiya, Misao; Akashi, Makoto

    2005-03-01

    Reactive oxygen species (ROS) including hydrogen peroxide (H(2)O(2)) are generated constitutively in mammalian cells. Because of its relatively long life and high permeability across membranes, H(2)O(2) is thought to be an important second messenger. Generation of H(2)O(2) is increased in response to external insults, including radiation. Catalase is located at the peroxisome and scavenges H(2)O(2). In this study, we investigated the role of catalase in cell growth using the H(2)O(2)-resistant variant HP100-1 of human promyelocytic HL60 cells. HP100-1 cells had an almost 10-fold higher activity of catalase than HL60 cells without differences in levels of glutathione peroxidase, manganese superoxide dismutase (MnSOD), and copper-zinc SOD (CuZnSOD). HP100-1 cells had higher proliferative activity than HL60 cells. Treatment wit