Science.gov

Sample records for activity cell growth

  1. Critical telomerase activity for uncontrolled cell growth

    NASA Astrophysics Data System (ADS)

    Wesch, Neil L.; Burlock, Laura J.; Gooding, Robert J.

    2016-08-01

    The lengths of the telomere regions of chromosomes in a population of cells are modelled using a chemical master equation formalism, from which the evolution of the average number of cells of each telomere length is extracted. In particular, the role of the telomere-elongating enzyme telomerase on these dynamics is investigated. We show that for biologically relevant rates of cell birth and death, one finds a critical rate, R crit, of telomerase activity such that the total number of cells diverges. Further, R crit is similar in magnitude to the rates of mitosis and cell death. The possible relationship of this result to replicative immortality and its associated hallmark of cancer is discussed.

  2. Protein kinase C activators inhibit capillary endothelial cell growth

    SciTech Connect

    Doctrow, S.R.

    1986-05-01

    Phorbol 12,13-dibutyrate (PDBu) binds specifically to bovine capillary endothelial (BCE) cells (K/sub d/ = 8nM) and inhibits the proliferation (K/sub 50/ = 6 +/- 4 nM). Under similar conditions, PDBu does not inhibit the growth of bovine aortic endothelial or smooth muscle cells. PDBu markedly attenuates the response of BCE cells to purified human hepatoma-derived growth factor which, in the absence of PDBu, stimulates BCE cell growth by about 3-fold. Several observations suggest that the inhibition of BCE cell growth by PDBu is mediated by protein kinase C: (1) different phorbol compounds inhibit BCE cell growth according to the relative potencies as protein kinase C activators (12-tetradecanoylphorbol 13-acetate > PDBu >> phorbol 12,13-diacetate >>>..beta..-phorbol; ..cap alpha..-phorbol 12,13-didecanoate). (2) Specific binding of PDBu to BCE cells is displaced by sn-1,2-dioctanoylglycerol (diC/sub 8/), a protein kinase C activator and an analog of the putative second messenger activating this kinase in vivo. The weak protein kinase C activator, sn-1,2-dibutyrylglycerol, does not affect PDBu binding. (3) A cytosolic extract from BCE cells contains a Ca/sup 2 +//phosphatidylserine-dependent kinase that is activated by diC/sub 8/ and PDBu, but not by ..beta..-phorbol. These results support a role for protein kinase C in suppressing capillary endothelial cell growth and may therefore have implications in the intracellular regulation of angiogenesis.

  3. Synergistic activation of cells by Epstein-Barr virus and B-cell growth factor.

    PubMed Central

    Hutt-Fletcher, L M

    1987-01-01

    Infection with Epstein-Barr virus (EBV) is initiated by virus binding to the C3dg-C3d receptor CR2. Several workers have implicated this receptor in the control of B-cell activation by examining the effects of antibodies to CR2 and isolated C3d on B-cell proliferation and differentiation. We report here on the activating effects of irradiated EBV, which retains its capacity to bind to CR2 but loses its ability to function as a T-independent B-cell activator. EBV synergized with B-cell growth factor in the induction of uptake of tritiated thymidine by T cell-depleted leukocytes from seronegative donors but did not induce secretion of immunoglobulin. Synergism could be inhibited with an anti-viral antibody that inhibited binding of EBV to CR2. No similar synergism was found between EBV and recombinant interleukin 2, interleukin 1 alpha, or gamma interferon or with the lipid A fraction of bacterial lipopolysaccharide. EBV may thus initiate B-cell activation as it binds to CR2. Infectious virus may, under normal circumstances, induce the cell to make those growth factors necessary to support B-cell proliferation; the difficulty of transforming cells with transfected EBV DNA may in part reflect the absence of an activation event provided by intact virus as it attaches to CR2. The synergism of EBV and B-cell growth factor more clearly distinguishes the effects of B-cell growth factor from those of interleukin 1 and interleukin 2 in other models of B-cell activation. Thus, this may be a useful model for further delineation of unique effects of B-cell growth factor on B-cell function. PMID:3027404

  4. Ratite oils promote keratinocyte cell growth and inhibit leukocyte activation.

    PubMed

    Bennett, Darin C; Leung, Gigi; Wang, Eddy; Ma, Sam; Lo, Blanche K K; McElwee, Kevin J; Cheng, Kimberly M

    2015-09-01

    Traditionally, native Australian aborigines have used emu oil for the treatment of inflammation and to accelerate wound healing. Studies on mice suggest that topically applied emu oil may have anti-inflammatory properties and may promote wound healing. We investigated the effects of ratite oils (6 emu, 3 ostrich, 1 rhea) on immortalized human keratinocytes (HaCaT cells) in vitro by culturing the cells in media with oil concentrations of 0%, 0.5%, and 1.0%. Peking duck, tea tree, and olive oils were used as comparative controls. The same oils at 0.5% concentration were evaluated for their influence on peripheral blood mononuclear cell (PBMC) survival over 48 hr and their ability to inhibit IFNγ production in PBMCs activated by phytohemagglutinin (PHA) in ELISpot assays. Compared to no oil control, significantly shorter population doubling time durations were observed for HaCaT cells cultured in emu oil (1.51×faster), ostrich oil (1.46×faster), and rhea oil (1.64×faster). Tea tree oil demonstrated significant antiproliferative activity and olive oil significantly prolonged (1.35×slower) cell population doubling time. In contrast, almost all oils, particularly tea tree oil, significantly reduced PBMC viability. Different oils had different levels of inhibitory effect on IFNγ production with individual emu, ostrich, rhea, and duck oil samples conferring full inhibition. This preliminary investigation suggests that emu oil might promote wound healing by accelerating the growth rate of keratinocytes. Combined with anti-inflammatory properties, ratite oil may serve as a useful component in bandages and ointments for the treatment of wounds and inflammatory skin conditions.

  5. Ratite oils promote keratinocyte cell growth and inhibit leukocyte activation

    PubMed Central

    Bennett, Darin C.; Leung, Gigi; Wang, Eddy; Ma, Sam; Lo, Blanche K. K.; McElwee, Kevin J.; Cheng, Kimberly M.

    2015-01-01

    Traditionally, native Australian aborigines have used emu oil for the treatment of inflammation and to accelerate wound healing. Studies on mice suggest that topically applied emu oil may have anti-inflammatory properties and may promote wound healing. We investigated the effects of ratite oils (6 emu, 3 ostrich, 1 rhea) on immortalized human keratinocytes (HaCaT cells) in vitro by culturing the cells in media with oil concentrations of 0%, 0.5%, and 1.0%. Peking duck, tea tree, and olive oils were used as comparative controls. The same oils at 0.5% concentration were evaluated for their influence on peripheral blood mononuclear cell (PBMC) survival over 48 hr and their ability to inhibit IFNγ production in PBMCs activated by phytohemagglutinin (PHA) in ELISpot assays. Compared to no oil control, significantly shorter population doubling time durations were observed for HaCaT cells cultured in emu oil (1.51 × faster), ostrich oil (1.46 × faster), and rhea oil (1.64 × faster). Tea tree oil demonstrated significant antiproliferative activity and olive oil significantly prolonged (1.35 × slower) cell population doubling time. In contrast, almost all oils, particularly tea tree oil, significantly reduced PBMC viability. Different oils had different levels of inhibitory effect on IFNγ production with individual emu, ostrich, rhea, and duck oil samples conferring full inhibition. This preliminary investigation suggests that emu oil might promote wound healing by accelerating the growth rate of keratinocytes. Combined with anti-inflammatory properties, ratite oil may serve as a useful component in bandages and ointments for the treatment of wounds and inflammatory skin conditions. PMID:26217022

  6. Teroxirone inhibited growth of human non-small cell lung cancer cells by activating p53

    SciTech Connect

    Wang, Jing-Ping; Lin, Kai-Han; Liu, Chun-Yen; Yu, Ya-Chu; Wu, Pei-Tsun; Chiu, Chien-Chih; Su, Chun-Li; Chen, Kwun-Min; Fang, Kang

    2013-11-15

    In this work, we demonstrated that the growth of human non-small-cell-lung-cancer cells H460 and A549 cells can be inhibited by low concentrations of an epoxide derivative, teroxirone, in both in vitro and in vivo models. The cytotoxicity was mediated by apoptotic cell death through DNA damage. The onset of ultimate apoptosis is dependent on the status of p53. Teroxirone caused transient elevation of p53 that activates downstream p21 and procaspase-3 cleavage. The presence of caspase-3 inhibitor reverted apoptotic phenotype. Furthermore, we showed the cytotoxicity of teroxirone in H1299 cells with stable ectopic expression of p53, but not those of mutant p53. A siRNA-mediated knockdown of p53 expression attenuated drug sensitivity. The in vivo experiments demonstrated that teroxirone suppressed growth of xenograft tumors in nude mice. Being a potential therapeutic agent by restraining cell growth through apoptotic death at low concentrations, teroxirone provides a feasible perspective in reversing tumorigenic phenotype of human lung cancer cells. - Highlights: • Teroxirone repressed tumor cell growth in nude mice of human lung cancer cells. • The apoptotic cell death reverted by caspase-3 inhibitor is related to p53 status. • Teroxirone provides a good candidate for lung cancer treatment.

  7. Benzimidazoles diminish ERE transcriptional activity and cell growth in breast cancer cells

    SciTech Connect

    Payton-Stewart, Florastina; Tilghman, Syreeta L.; Williams, LaKeisha G.; Winfield, Leyte L.

    2014-08-08

    Highlights: • The methyl-substituted benzimidazole was more effective at inhibiting growth in MDA-MB 231 cells. • The naphthyl-substituted benzimidazole was more effective at inhibiting growth in MCF-7 cells than ICI. • The benzimidazole molecules demonstrated a dose-dependent reduction in ERE transcriptional activity. • The benzimidazole molecules had binding mode in ERα and ERβ comparable to that of the co-crystallized ligand. - Abstract: Estrogen receptors (ERα and ERβ) are members of the nuclear receptor superfamily. They regulate the transcription of estrogen-responsive genes and mediate numerous estrogen related diseases (i.e., fertility, osteoporosis, cancer, etc.). As such, ERs are potentially useful targets for developing therapies and diagnostic tools for hormonally responsive human breast cancers. In this work, two benzimidazole-based sulfonamides originally designed to reduce proliferation in prostate cancer, have been evaluated for their ability to modulate growth in estrogen dependent and independent cell lines (MCF-7 and MDA-MB 231) using cell viability assays. The molecules reduced growth in MCF-7 cells, but differed in their impact on the growth of MDA-MB 231 cells. Although both molecules reduced estrogen response element (ERE) transcriptional activity in a dose dependent manner, the contrasting activity in the MDA-MB-231 cells seems to suggest that the molecules may act through alternate ER-mediated pathways. Further, the methyl analog showed modest selectivity for the ERβ receptor in an ER gene expression array panel, while the naphthyl analog did not significantly alter gene expression. The molecules were docked in the ligand binding domains of the ERα-antagonist and ERβ-agonist crystal structures to evaluate the potential of the molecules to interact with the receptors. The computational analysis complimented the results obtained in the assay of transcriptional activity and gene expression suggesting that the molecules

  8. Dehydroascorbate uptake activity correlates with cell growth and cell division of tobacco bright yellow-2 cell cultures.

    PubMed

    Horemans, Nele; Potters, Geert; De Wilde, Leen; Caubergs, Roland J

    2003-09-01

    Recently, ascorbate (ASC) concentration and the activity of a number of enzymes from the ASC metabolism have been proven to correlate with differences in growth or cell cycle progression. Here, a possible correlation between growth and the activity of a plasma membrane dehydroascorbate (DHA) transporter was investigated. Protoplasts were isolated from a tobacco (Nicotiana tabacum) Bright Yellow-2 cell culture at different intervals after inoculation and the activity of DHA transport was tested with (14)C-labeled ASC. Ferricyanide (1 mM) or dithiothreitol (1 mM) was included in the test to keep the external (14)C-ASC in its oxidized respectively reduced form. Differential uptake activity was observed, correlating with growth phases of the cell culture. Uptake of DHA in cells showed a peak in exponential growth phase, whereas uptake in the presence of dithiothreitol did not. The enhanced DHA uptake was not due to higher endogenous ASC levels that are normally present in exponential phase because preloading of protoplasts of different ages did not affect DHA uptake. Preloading was achieved by incubating cells before protoplastation for 4 h in a medium supplemented with 1 mM DHA. In addition to testing cells at different growth phases, uptake of DHA into the cells was also followed during the cell cycle. An increase in uptake activity was observed during M phase and the M/G1 transition. These experiments are the first to show that DHA transport activity into plant cells differs with cell growth. The relevance of the data to the action of DHA and ASC in cell growth will be discussed.

  9. Correlation between dielectric property by dielectrophoretic levitation and growth activity of cells exposed to electric field.

    PubMed

    Hakoda, Masaru; Hirota, Yusuke

    2013-09-01

    The purpose of this study is to develop a system analyzing cell activity by the dielectrophoresis method. Our previous studies revealed a correlation between the growth activity and dielectric property (Re[K(ω)]) of mouse hybridoma 3-2H3 cells using dielectrophoretic levitation. Furthermore, it was clarified that the differentiation activity of many stem cells could be evaluated by the Re[K(ω)] without differentiation induction. In this paper, 3-2H3 cells exposed to an alternating current (AC) electric field or a direct current (DC) electric field were cultivated, and the influence of damage by the electric field on the growth activity of the cells was examined. To evaluate the activity of the cells by measuring the Re[K(ω)], the correlation between the growth activity and the Re[K(ω)] of the cells exposed to the electric field was examined. The relations between the cell viability, growth activity, and Re[K(ω)] in the cells exposed to the AC electric field were obtained. The growth activity of the cells exposed to the AC electric field could be evaluated by the Re[K(ω)]. Furthermore, it was found that the adverse effects of the electric field on the cell viability and the growth activity were smaller in the AC electric field than the DC electric field.

  10. Cancer cell-binding peptide fused Fc domain activates immune effector cells and blocks tumor growth

    PubMed Central

    Mobergslien, Anne; Peng, Qian; Vasovic, Vlada; Sioud, Mouldy

    2016-01-01

    Therapeutic strategies aiming at mobilizing immune effector cells to kill tumor cells independent of tumor mutational load and MHC expression status are expected to benefit cancer patients. Recently, we engineered various peptide-Fc fusion proteins for directing Fcg receptor-bearing immune cells toward tumor cells. Here, we investigated the immunostimulatory and anti-tumor effects of one of the engineered Fc fusion proteins (WN-Fc). In contrast to the Fc control, soluble WN-Fc-1 fusion protein activated innate immune cells (e.g. monocytes, macrophages, dendritic cells, NK cells), resulting in cytokine production and surface display of the lytic granule marker CD107a on NK cells. An engineered Fc-fusion variant carrying two peptide sequences (WN-Fc-2) also activated immune cells and bound to various cancer cell types with high affinity, including the murine 4T1 breast carcinoma cells. When injected into 4T1 tumor-bearing BALB/c mice, both peptide-Fc fusions accumulated in tumor tissues as compared to other organs such as the lungs. Moreover, treatment of 4T1 tumor-bearing BALB/c mice by means of two intravenous injections of the WN-Fc fusion proteins inhibited tumor growth with WN-Fc-2 being more effective than WN-Fc-1. Treatment resulted in tumor infiltration by T cells and NK cells. These new engineered WN-Fc fusion proteins may be a promising alternative to existing immunotherapies for cancer. PMID:27713158

  11. Requirement of Stat3 but not Stat1 activation for epidermal growth factor receptor- mediated cell growth In vitro.

    PubMed Central

    Grandis, J R; Drenning, S D; Chakraborty, A; Zhou, M Y; Zeng, Q; Pitt, A S; Tweardy, D J

    1998-01-01

    Stimulation of epidermal growth factor receptor (EGFR) by ligand(s) leads to activation of signaling molecules including Stat1 and Stat3, two members of the signal transducers and activators of transcription (STAT) protein family. Activation of Stat1 and Stat3 was constitutive in transformed squamous epithelial cells, which produce elevated levels of TGF-alpha, and was enhanced by the addition of exogenous TGF-alpha. Targeting of Stat3 using antisense oligonucleotides directed against the translation initiation site, resulted in significant growth inhibition. In addition, cells stably transfected with dominant negative mutant Stat3 constructs failed to proliferate in vitro. In contrast, targeting of Stat1 using either antisense or dominant-negative strategies had no effect on cell growth. Thus, TGF-alpha/EGFR-mediated autocrine growth of transformed epithelial cells is dependent on activation of Stat3 but not Stat1. PMID:9769331

  12. Overexpressed active Notch1 induces cell growth arrest of HeLa cervical carcinoma cells.

    PubMed

    Wang, L; Qin, H; Chen, B; Xin, X; Li, J; Han, H

    2007-01-01

    Human cervical carcinoma is one of the most common malignant tumors, but the mechanisms that orchestrate the multiple oncogenic insults required for initiation and progression are not clear. Notch signaling plays a critical role in maintaining the balance between cell proliferation, differentiation, and apoptosis, but perturbed Notch signaling may contribute to tumorigenesis. We now show that Notch1 is detected in all cervical cancer, including advanced diseases. We also constitutively overexpressed active Notch1 in human cervical carcinoma to explore the effects of Notch1 signaling on human cervical carcinoma cell growth and to investigate the underlying molecular mechanisms. The signaling may participate in the development of human cervical carcinoma cells, but overexpressed active Notch1 inhibits their growth through induction of cell cycle arrest. Increased Notch1 signaling induced a downmodulation of human papillomavirus transcription through suppression of activator protein (AP)-1 activity by upregulation of c-Jun and the decreased expression of c-Fos. Thus, Notch1 signaling plays a key role and exerts dual effects, functioning in context-specific manner.

  13. Loss of endothelial programmed cell death 10 activates glioblastoma cells and promotes tumor growth

    PubMed Central

    Zhu, Yuan; Zhao, Kai; Prinz, Anja; Keyvani, Kathy; Lambertz, Nicole; Kreitschmann-Andermahr, Ilonka; Lei, Ting; Sure, Ulrich

    2016-01-01

    Background Neo-angiogenesis is a hallmark of glioblastoma (GBM) and is sustained by autocrine and paracrine interactions between neoplastic and nonneoplastic cells. Programmed cell death 10 (PDCD10) is ubiquitously expressed in nearly all tissues and plays crucial roles in regulating angiogenesis and apoptosis. We recently discovered the absence of PDCD10 expression in the tumor vessels of GBM patients. This raised the hypothesis that loss of endothelial PDCD10 affected GBM cell phenotyping and tumor progression. Methods Endothelial PDCD10 was silenced by siRNA and lentiviral shRNA. The tumor cell phenotype was studied in direct and indirect co-culture of endothelial cells (ECs) with U87 or LN229. Angiogenic protein array was performed in the media of PDCD10-silenced ECs. Tumor angiogenesis and tumor growth were investigated in a human GBM xenograft mouse model. Results Endothelial silence of PDCD10 significantly stimulated tumor cell proliferation, migration, adhesion, and invasion and inhibited apoptosis in co-cultures. Stable knockdown of endothelial PDCD10 increased microvessel density and the formation of a functional vascular network, leading to a 4-fold larger tumor mass in mice. Intriguingly, endothelial deletion of PDCD10 increased (≥2-fold) the release of 20 of 55 tested proangiogenic factors including VEGF, which in turn activated Erk1/2 and Akt in GBM cells. Conclusions For the first time, we provide evidence that loss of endothelial PDCD10 activates GBM cells and promotes tumor growth, most likely via a paracrine mechanism. PDCD10 shows a tumor-suppressor-like function in the cross talk between ECs and tumor cells and is potentially implicated in GBM progression. PMID:26254477

  14. Insulin and insulin-like growth factor I exert different effects on plasminogen activator production or cell growth in the ovine thyroid cell line OVNIS.

    PubMed

    Degryse, B; Maisonobe, F; Hovsépian, S; Fayet, G

    1991-11-01

    Insulin and Insulin-like Growth Factor I (IGF-I) are evaluated for their capacity to affect cell proliferation and plasminogen activator (PA) activity production in an ovine thyroid cell line OVNIS. Insulin at physiological and supraphysiological doses induces cell proliferation and increases PA activity. IGF-I, which is also clearly mitogenic for these cells, surprisingly does not modulate PA activity. The results indicate that the growth promoting effect is mediated through the insulin and IGF-I receptors whereas PA activity is solely regulated via the insulin receptors.

  15. The deubiquitinating enzyme activity of USP22 is necessary for regulating HeLa cell growth.

    PubMed

    Liu, Ying-Li; Zheng, Jie; Tang, Li-Juan; Han, Wei; Wang, Jian-Min; Liu, Dian-Wu; Tian, Qing-Bao

    2015-11-01

    Ubiquitin-specific protease 22 (USP22) can regulate the cell cycle and apoptosis in many cancer cell types, while it is still unclear whether the deubiquitinating enzyme activity of USP22 is necessary for these processes. As little is known about the impact of USP22 on the growth of HeLa cell, we observed whether USP22 can effectively regulate HeLa cell growth as well as the necessity of deubiquitinating enzyme activity for these processes in HeLa cell. In this study, we demonstrate that USP22 can regulate cell cycle but not apoptosis in HeLa cell. The deubiquitinating enzyme activity of USP22 is necessary for this process as confirmed by an activity-deleted mutant (C185S) and an activity-decreased mutant (Y513C). In addition, the deubiquitinating enzyme activity of USP22 is related to the levels of BMI-1, c-Myc, cyclin D2 and p53. Our findings indicate that the deubiquitinating enzyme activity of USP22 is necessary for regulating HeLa cell growth, and it promotes cell proliferation via the c-Myc/cyclin D2, BMI-1 and p53 pathways in HeLa cell.

  16. Growth-inhibitory activity of lymphoid cell plasma membranes. II. Partial characterization of the inhibitor

    PubMed Central

    1984-01-01

    We have shown that plasma membranes from lymphoid cells have inhibitory activity for the growth of normal lymphocytes and lymphoid tumor cells (Stallcup, K. C., A. Dawson, and M. F. Mescher, J. Cell Biol. 99:1221- 1226). This growth-inhibitory activity has been found to co-purify with major histocompatibility complex class I antigens (H-2K and D) when these cell surface glycoproteins are isolated from detergent lysates of cells by affinity chromatography on monoclonal antibody columns. When incorporated into liposomes, the affinity-purified H-2 antigens inhibited the growth of both normal lymphocytes and tumor cells at concentrations of 1-3 micrograms/ml. Inhibition was readily reversed upon removal of the liposomes from the cell cultures, even after several days of exposure of cells to the inhibitor. Inhibitory activity was insensitive to protease digestion or heat treatment, indicating that it was not due to the H-2 glycoproteins. This was confirmed by the demonstration that inhibitory activity could be separated from the H-2 protein by gel filtration in the presence of deoxycholate and could be extracted from membranes or H-2 antigen preparations with organic solvents. The results demonstrate that the growth-inhibitory component(s) of the plasma membrane is a minor lipid or lipid-like molecule which retains activity in the absence of other membrane components. The findings reported here and in the preceding article suggest that this novel membrane component may have a role in control of lymphoid cell growth, possibly mediated by cell contacts. PMID:6332814

  17. Control of cell growth: Rag GTPases in activation of TORC1.

    PubMed

    Yang, Huirong; Gong, Rui; Xu, Yanhui

    2013-08-01

    The target of rapamycin (TOR) is a central regulator controlling cell growth. TOR is highly conserved from yeast to mammals, and is deregulated in human cancers and diabetes. TOR complex 1 (TORC1) integrates signals from growth factors, cellular energy status, stress, and amino acids to control cell growth, mitochondrial metabolism, and lipid biosynthesis. The mechanisms of growth factors and cellular energy status in regulating TORC1 have been well established, whereas the mechanism by which amino acid induces TORC1 remains largely unknown. Recent studies revealed that Rag GTPases play a central role in the regulation of TORC1 activation in response to amino acids. In this review, we will discuss the recent progress in our understanding of Rag GTPase-regulated TORC1 activation in response to amino acids. Particular focus will be given to the function of Rag GTPases in TORC1 activation and how Rag GTPases are regulated by amino acids.

  18. Growth Factor Midkine Promotes T-Cell Activation through Nuclear Factor of Activated T Cells Signaling and Th1 Cell Differentiation in Lupus Nephritis.

    PubMed

    Masuda, Tomohiro; Maeda, Kayaho; Sato, Waichi; Kosugi, Tomoki; Sato, Yuka; Kojima, Hiroshi; Kato, Noritoshi; Ishimoto, Takuji; Tsuboi, Naotake; Uchimura, Kenji; Yuzawa, Yukio; Maruyama, Shoichi; Kadomatsu, Kenji

    2017-04-01

    Activated T cells play crucial roles in the pathogenesis of autoimmune diseases, including lupus nephritis (LN). The activation of calcineurin/nuclear factor of activated T cells (NFAT) and STAT4 signaling is essential for T cells to perform various effector functions. Here, we identified the growth factor midkine (MK; gene name, Mdk) as a novel regulator in the pathogenesis of 2,6,10,14-tetramethylpentadecane-induced LN via activation of NFAT and IL-12/STAT4 signaling. Wild-type (Mdk(+/+)) mice showed more severe glomerular injury than MK-deficient (Mdk(-/-)) mice, as demonstrated by mesangial hypercellularity and matrix expansion, and glomerular capillary loops with immune-complex deposition. Compared with Mdk(-/-) mice, the frequency of splenic CD69(+) T cells and T helper (Th) 1 cells, but not of regulatory T cells, was augmented in Mdk(+/+) mice in proportion to LN disease activity, and was accompanied by skewed cytokine production. MK expression was also enhanced in activated CD4(+) T cells in vivo and in vitro. MK induced activated CD4(+) T cells expressing CD69 through nuclear activation of NFAT transcription and selectively increased in vitro differentiation of naive CD4(+) T cells into Th1 cells by promoting IL-12/STAT4 signaling. These results suggest that MK serves an indispensable role in the NFAT-regulated activation of CD4(+) T cells and Th1 cell differentiation, eventually leading to the exacerbation of LN.

  19. Sphingosine-1-phosphate mediates epidermal growth factor-induced muscle satellite cell activation.

    PubMed

    Nagata, Yosuke; Ohashi, Kazuya; Wada, Eiji; Yuasa, Yuki; Shiozuka, Masataka; Nonomura, Yoshiaki; Matsuda, Ryoichi

    2014-08-01

    Skeletal muscle can regenerate repeatedly due to the presence of resident stem cells, called satellite cells. Because satellite cells are usually quiescent, they must be activated before participating in muscle regeneration in response to stimuli such as injury, overloading, and stretch. Although satellite cell activation is a crucial step in muscle regeneration, little is known of the molecular mechanisms controlling this process. Recent work showed that the bioactive lipid sphingosine-1-phosphate (S1P) plays crucial roles in the activation, proliferation, and differentiation of muscle satellite cells. We investigated the role of growth factors in S1P-mediated satellite cell activation. We found that epidermal growth factor (EGF) in combination with insulin induced proliferation of quiescent undifferentiated mouse myoblast C2C12 cells, which are also known as reserve cells, in serum-free conditions. Sphingosine kinase activity increased when reserve cells were stimulated with EGF. Treatment of reserve cells with the D-erythro-N,N-dimethylsphingosine, Sphingosine Kinase Inhibitor, or siRNA duplexes specific for sphingosine kinase 1, suppressed EGF-induced C2C12 activation. We also present the evidence showing the S1P receptor S1P2 is involved in EGF-induced reserve cell activation. Moreover, we demonstrated a combination of insulin and EGF promoted activation of satellite cells on single myofibers in a manner dependent on SPHK and S1P2. Taken together, our observations show that EGF-induced satellite cell activation is mediated by S1P and its receptor.

  20. Sphingosine-1-phosphate mediates epidermal growth factor-induced muscle satellite cell activation

    SciTech Connect

    Nagata, Yosuke Ohashi, Kazuya; Wada, Eiji; Yuasa, Yuki; Shiozuka, Masataka; Nonomura, Yoshiaki; Matsuda, Ryoichi

    2014-08-01

    Skeletal muscle can regenerate repeatedly due to the presence of resident stem cells, called satellite cells. Because satellite cells are usually quiescent, they must be activated before participating in muscle regeneration in response to stimuli such as injury, overloading, and stretch. Although satellite cell activation is a crucial step in muscle regeneration, little is known of the molecular mechanisms controlling this process. Recent work showed that the bioactive lipid sphingosine-1-phosphate (S1P) plays crucial roles in the activation, proliferation, and differentiation of muscle satellite cells. We investigated the role of growth factors in S1P-mediated satellite cell activation. We found that epidermal growth factor (EGF) in combination with insulin induced proliferation of quiescent undifferentiated mouse myoblast C2C12 cells, which are also known as reserve cells, in serum-free conditions. Sphingosine kinase activity increased when reserve cells were stimulated with EGF. Treatment of reserve cells with the D-erythro-N,N-dimethylsphingosine, Sphingosine Kinase Inhibitor, or siRNA duplexes specific for sphingosine kinase 1, suppressed EGF-induced C2C12 activation. We also present the evidence showing the S1P receptor S1P2 is involved in EGF-induced reserve cell activation. Moreover, we demonstrated a combination of insulin and EGF promoted activation of satellite cells on single myofibers in a manner dependent on SPHK and S1P2. Taken together, our observations show that EGF-induced satellite cell activation is mediated by S1P and its receptor. - Highlights: • EGF in combination with insulin induces proliferation of quiescent C2C12 cells. • Sphingosine kinase activity increases when reserve cells are stimulated with EGF. • EGF-induced activation of reserve cells is dependent on sphingosine kinase and ERK. • The S1P receptor S1P2 is involved in EGF-induced reserve cell activation. • EGF-induced reserve cell activation is mediated by S1P and its

  1. Metabolism and growth inhibitory activity of cranberry derived flavonoids in bladder cancer cells.

    PubMed

    Prasain, Jeevan K; Rajbhandari, Rajani; Keeton, Adam B; Piazza, Gary A; Barnes, Stephen

    2016-09-14

    In the present study, anti-proliferative activities of cranberry derived flavonoids and some of their in vivo metabolites were evaluated using a panel of human bladder tumor cell lines (RT4, SCABER, and SW-780) and non-tumorigenic immortalized human uroepithelial cells (SV-HUC). Among the compounds tested, quercetin 3-O-glucoside, isorhamnetin (3'-O-methylquercetin), myricetin and quercetin showed strong concentration-dependent cell growth inhibitory activities in bladder cancer cells with IC50 values in a range of 8-92 μM. Furthermore, isorhamnetin and myricetin had very low inhibitory activity against SV-HUC even at very high concentrations (>200 μM) compared to bladder cancer cells, indicating that their cytotoxicity is selective for cancer cells. To determine whether the differential cell growth inhibitory effects of isomeric flavonoids quercetin 3-O-glucoside (active) and hyperoside (quercetin 3-O-galactoside) (inactive) are related to their metabolism by the cancer cells, SW-780 cells were incubated with these compounds and their metabolism was examined by LC-MS/MS. Compared to quercetin 3-O-glucoside, hyperoside undergoes relatively less metabolic biotransformation (methylation, glucuronidation and quinone formation). These data suggest that isorhamnetin and quercetin 3-O-glucoside may be the active forms of quercetin in prevention of bladder cancer in vivo and emphasize the importance of metabolism for the prevention of bladder cancer by diets rich in cranberries.

  2. The influence of cell growth and enzyme activity changes on intracellular metabolite dynamics in AGE1.HN.AAT cells.

    PubMed

    Rath, Alexander G; Rehberg, Markus; Janke, Robert; Genzel, Yvonne; Scholz, Sebastian; Noll, Thomas; Rose, Thomas; Sandig, Volker; Reichl, Udo

    2014-05-20

    Optimization of bioprocesses with mammalian cells mainly concentrates on cell engineering, cell screening and medium optimization to achieve enhanced cell growth and productivity. For improving cell lines by cell engineering techniques, in-depth understandings of the regulation of metabolism and product formation as well as the resulting demand for the different medium components are needed. In this work, the relationship of cell specific growth and uptake rates and of changes in maximum in vitro enzyme activities with intracellular metabolite pools of glycolysis, pentose phosphate pathway, citric acid cycle and energy metabolism were determined for batch cultivations with AGE1.HN.AAT cells. Results obtained by modeling cell growth and consumption of main substrates showed that the dynamics of intracellular metabolite pools is primarily linked to the dynamics of specific glucose and glutamine uptake rates. By analyzing maximum in vitro enzyme activities we found low activities of pyruvate dehydrogenase and pyruvate carboxylase which suggest a reduced metabolite transfer into the citric acid cycle resulting in lactate release (Warburg effect). Moreover, an increase in the volumetric lactate production rate during the transition from exponential to stationary growth together with a transient accumulation of fructose 1,6-bisphosphate, fructose 1-phosphate and ribose 5-phosphate point toward an upregulation of PK via FBP. Glutaminase activity was about 44-fold lower than activity of glutamine synthetase. This seemed to be sufficient for the supply of intermediates for biosynthesis but might lead to unnecessary dissipation of ATP. Taken together, our results elucidate regulation of metabolic networks of immortalized mammalian cells by changes of metabolite pools over the time course of batch cultivations. Eventually, it enables the use of cell engineering strategies to improve the availability of building blocks for biomass synthesis by increasing glucose as well as

  3. Effects of KRC-108 on the Aurora A activity and growth of colorectal cancer cells.

    PubMed

    Chung, Hye Jin; Park, Kyeong Ryang; Lee, Hyo Jeong; Lee, Jongkook; Kim, Jeong-Hyun; Kim, Yong-Chul; Han, Sun-Young

    2015-06-12

    Aurora A is involved in regulating multiple steps of mitosis. Over-expression of Aurora A is related to tumorigenesis and poor prognosis. KRC-108 is a novel multi-kinase inhibitor which has anti-tumor activity in vivo. In this study, we identified the inhibitory effects of KRC-108 on Aurora A kinase and growth-inhibitory characteristics of KRC-108. The in vitro kinase activity assay, immunoblot, and immunofluorescence analyses demonstrated that KRC-108 inhibited Aurora A activity. KRC-108 exhibited cytotoxicity against human colorectal cancer cell line HT-29. Colony formation assays showed that KRC-108 reduced the colony growth of HT-29 cells. KRC-108 also inhibited migration of HT-29 cells. The expression levels of cyclin B1 and CDC2 were decreased by KRC-108 in HT-29 cells. Cell cycle analysis and flow cytometry indicated that the inhibitory effects of KRC-108 on cell growth are due to induction of G2/M arrest and apoptosis by inhibition of Aurora A. KRC-108 induces cell-cycle arrest and apoptosis in colorectal cancer cell line by Aurora A inhibition. The reported in vivo anti-tumor effects of KRC-108 might partly be due to anti-Aurora A effects. This study suggests that KRC-108 has potential for development as an anti-tumor agent, although further studies are needed.

  4. Activated alveolar epithelial cells initiate fibrosis through autocrine and paracrine secretion of connective tissue growth factor.

    PubMed

    Yang, Jibing; Velikoff, Miranda; Canalis, Ernesto; Horowitz, Jeffrey C; Kim, Kevin K

    2014-04-15

    Fibrogenesis involves a pathological accumulation of activated fibroblasts and extensive matrix remodeling. Profibrotic cytokines, such as TGF-β, stimulate fibroblasts to overexpress fibrotic matrix proteins and induce further expression of profibrotic cytokines, resulting in progressive fibrosis. Connective tissue growth factor (CTGF) is a profibrotic cytokine that is indicative of fibroblast activation. Epithelial cells are abundant in the normal lung, but their contribution to fibrogenesis remains poorly defined. Profibrotic cytokines may activate epithelial cells with protein expression and functions that overlap with the functions of active fibroblasts. We found that alveolar epithelial cells undergoing TGF-β-mediated mesenchymal transition in vitro were also capable of activating lung fibroblasts through production of CTGF. Alveolar epithelial cell expression of CTGF was dramatically reduced by inhibition of Rho signaling. CTGF reporter mice demonstrated increased CTGF promoter activity by lung epithelial cells acutely after bleomycin in vivo. Furthermore, mice with lung epithelial cell-specific deletion of CTGF had an attenuated fibrotic response to bleomycin. These studies provide direct evidence that epithelial cell activation initiates a cycle of fibrogenic effector cell activation during progressive fibrosis. Therapy targeted at epithelial cell production of CTGF offers a novel pathway for abrogating this progressive cycle and limiting tissue fibrosis.

  5. Physical Activity Counteracts Tumor Cell Growth in Colon Carcinoma C26-Injected Muscles: An Interim Report

    PubMed Central

    Hiroux, Charlotte; Vandoorne, Tijs; Koppo, Katrien; De Smet, Stefan; Hespel, Peter; Berardi, Emanuele

    2016-01-01

    Skeletal muscle tissue is a rare site of tumor metastasis but is the main target of the degenerative processes occurring in cancer-associated cachexia syndrome. Beneficial effects of physical activity in counteracting cancer-related muscle wasting have been described in the last decades. Recently it has been shown that, in tumor xeno-transplanted mouse models, physical activity is able to directly affect tumor growth by modulating inflammatory responses in the tumor mass microenvironment. Here, we investigated the effect of physical activity on tumor cell growth in colon carcinoma C26 cells injected tibialis anterior muscles of BALB/c mice. Histological analyses revealed that 4 days of voluntary wheel running significantly counteracts tumor cell growth in C26-injected muscles compared to the non-injected sedentary controls. Since striated skeletal muscle tissue is the site of voluntary contraction, our results confirm that physical activity can also directly counteract tumor cell growth in a metabolically active tissue that is usually not a target for metastasis. PMID:27478560

  6. Induction of pancreatic cancer cell migration by an autocrine epidermal growth factor receptor activation.

    PubMed

    Stock, Anna-Maria; Hahn, Stephan A; Troost, Gabriele; Niggemann, Bernd; Zänker, Kurt S; Entschladen, Frank

    2014-08-15

    Pancreatic cancer is characterized by aggressive local invasion and early metastasis formation. Active migration of the pancreatic cancer cells is essential for these processes. We have shown previously that the pancreatic cancer cells lines CFPAC1 and IMIM-PC2 show high migratory activity, and we have investigated herein the reason for this observation. Cell migration was assessed using a three-dimensional, collagen-based assay and computer-assisted cell tracking. The expression of receptor tyrosine kinases was determined by flow-cytometry and cytokine release was measured by an enzyme-linked immunoassay. Receptor function was blocked by antibodies or pharmacological enzyme inhibitors. Both cells lines express the epidermal growth factor receptor (EGFR) as well as its family-member ErbB2 and the platelet-derived growth factor receptor (PDGFR)α, whereas only weak expression was detected for ErbB3 and no expression of PDGFRβ. Pharmacological inhibition of the EGFR or ErbB2 significantly reduced the migratory activity in both cell lines, as did an anti-EGFR antibody. Interestingly, combination of the latter with an anti-PDGFR antibody led to an even more pronounced reduction. Both cell lines release detectable amounts of EGF. Thus, the high migratory activity of the investigated pancreatic cancer cell lines is due to autocrine EGFR activation and possibly of other receptor tyrosine kinases.

  7. Cellular localization of the activated EGFR determines its effect on cell growth in MDA-MB-468 cells

    SciTech Connect

    Hyatt, Dustin C.; Ceresa, Brian P.

    2008-11-01

    The epidermal growth factor (EGF) receptor (EGFR) is a ubiquitously expressed receptor tyrosine kinase that regulates diverse cell functions that are dependent upon cell type, the presence of downstream effectors, and receptor density. In addition to activating biochemical pathways, ligand stimulation causes the EGFR to enter the cell via clathrin-coated pits. Endocytic trafficking influences receptor signaling by controlling the duration of EGFR phosphorylation and coordinating the receptor's association with downstream effectors. To better understand the individual contributions of cell surface and cytosolic EGFRs on cell physiology, we used EGF that was conjugated to 900 nm polystyrene beads (EGF-beads). EGF-beads can stimulate the EGFR and retain the activated receptor at the plasma membrane. In MDA-MB-468 cells, a breast cancer cell line that over-expresses the EGFR, only internalized, activated EGFRs stimulate caspase-3 and induce cell death. Conversely, signaling cascades triggered from activated EGFR retained at the cell surface inhibit caspase-3 and promote cell proliferation. Thus, through endocytosis, the activated EGFR can differentially regulate cell growth in MDA-MB-468 cells.

  8. Troglitazone enhances tamoxifen-induced growth inhibitory activity of MCF-7 cells

    SciTech Connect

    Yu, Hong-Nu; Noh, Eun-Mi; Lee, Young-Rae; Roh, Si-Gyun; Song, Eun-Kyung; Han, Myung-Kwan; Lee, Yong-Chul; Shim, In Kyong; Lee, Seung Jin; Jung, Sung Hoo; Kim, Jong-Suk Youn, Hyun Jo

    2008-12-05

    Peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) ligands have been identified as a potential source of therapy for human cancers. However, PPAR{gamma} ligands have a limitation for breast cancer therapy, since estrogen receptor {alpha} (ER{sub {alpha}}) negatively interferes with PPAR{gamma} signaling in breast cancer cells. Here we show that ER{sub {alpha}} inhihits PPAR{gamma} transactivity and ER{sub {alpha}}-mediated inhibition of PPAR{gamma} transactivity is blocked by tamoxifen, an estrogen receptor blocker. The activation of ER{sub {alpha}} with 17-{beta}-estradiol blocked PPRE transactivity induced by troglitazone, a PPAR{gamma} ligand, indicating the resistance of ER{sub {alpha}}-positive breast cancer cells to troglitazone. Indeed, troglitazone inhibited the growth of ER{sub {alpha}}-negative MDA-MB-231 cells more than that of ER{sub {alpha}}-positive MCF-7 cells. Combination of troglitazone with tamoxifen led to a marked increase in growth inhibition of ER{sub {alpha}}-positive MCF-7 cells compared to either agent alone. Our data indicates that troglitazone enhances the growth inhibitory activity of tamoxifen in ER{sub {alpha}}-positive MCF-7 cells.

  9. Growth inhibitory activity of Ankaferd hemostat on primary melanoma cells and cell lines

    PubMed Central

    Turk, Seyhan; Malkan, Umit Yavuz; Ghasemi, Mehdi; Hocaoglu, Helin; Mutlu, Duygu; Gunes, Gursel; Aksu, Salih; Haznedaroglu, Ibrahim Celalettin

    2017-01-01

    Objective: Ankaferd hemostat is the first topical hemostatic agent about the red blood cell–fibrinogen relations tested in the clinical trials. Ankaferd hemostat consists of standardized plant extracts including Alpinia officinarum, Glycyrrhiza glabra, Thymus vulgaris, Urtica dioica, and Vitis vinifera. The aim of this study was to determine the effect of Ankaferd hemostat on viability of melanoma cell lines. Methods: Dissimilar melanoma cell lines and primary cells were used in this study. These cells were treated with different concentrations of Ankaferd hemostat to assess the impact of different dosages of the drug. All cells treated with different concentrations were incubated for different time intervals. After the data had been obtained, one-tailed T-test was used to determine whether the Ankaferd hemostat would have any significant inhibitory impact on cell growth. Results: We demonstrated in this study that cells treated with Ankaferd hemostat showed a significant decrease in cell viability compared to control groups. The cells showed different resistances against Ankaferd hemostat which depended on the dosage applied and the time treated cells had been incubated. We also demonstrated an inverse relationship between the concentration of the drug and the incubation time on one hand and the viability of the cells on the other hand, that is, increasing the concentration of the drug and the incubation time had a negative impact on cell viability. Conclusion: The findings in our study contribute to our knowledge about the anticancer impact of Ankaferd hemostat on different melanoma cells. PMID:28293423

  10. Muscle Atrophy Reversed by Growth Factor Activation of Satellite Cells in a Mouse Muscle Atrophy Model

    PubMed Central

    Hauerslev, Simon; Vissing, John; Krag, Thomas O.

    2014-01-01

    Muscular dystrophies comprise a large group of inherited disorders that lead to progressive muscle wasting. We wanted to investigate if targeting satellite cells can enhance muscle regeneration and thus increase muscle mass. We treated mice with hepatocyte growth factor and leukemia inhibitory factor under three conditions: normoxia, hypoxia and during myostatin deficiency. We found that hepatocyte growth factor treatment led to activation of the Akt/mTOR/p70S6K protein synthesis pathway, up-regulation of the myognic transcription factors MyoD and myogenin, and subsequently the negative growth control factor, myostatin and atrophy markers MAFbx and MuRF1. Hypoxia-induced atrophy was partially restored by hepatocyte growth factor combined with leukemia inhibitory factor treatment. Dividing satellite cells were three-fold increased in the treatment group compared to control. Finally, we demonstrated that myostatin regulates satellite cell activation and myogenesis in vivo following treatment, consistent with previous findings in vitro. Our results suggest, not only a novel in vivo pharmacological treatment directed specifically at activating the satellite cells, but also a myostatin dependent mechanism that may contribute to the progressive muscle wasting seen in severely affected patients with muscular dystrophy and significant on-going regeneration. This treatment could potentially be applied to many conditions that feature muscle wasting to increase muscle bulk and strength. PMID:24963862

  11. Muscle atrophy reversed by growth factor activation of satellite cells in a mouse muscle atrophy model.

    PubMed

    Hauerslev, Simon; Vissing, John; Krag, Thomas O

    2014-01-01

    Muscular dystrophies comprise a large group of inherited disorders that lead to progressive muscle wasting. We wanted to investigate if targeting satellite cells can enhance muscle regeneration and thus increase muscle mass. We treated mice with hepatocyte growth factor and leukemia inhibitory factor under three conditions: normoxia, hypoxia and during myostatin deficiency. We found that hepatocyte growth factor treatment led to activation of the Akt/mTOR/p70S6K protein synthesis pathway, up-regulation of the myognic transcription factors MyoD and myogenin, and subsequently the negative growth control factor, myostatin and atrophy markers MAFbx and MuRF1. Hypoxia-induced atrophy was partially restored by hepatocyte growth factor combined with leukemia inhibitory factor treatment. Dividing satellite cells were three-fold increased in the treatment group compared to control. Finally, we demonstrated that myostatin regulates satellite cell activation and myogenesis in vivo following treatment, consistent with previous findings in vitro. Our results suggest, not only a novel in vivo pharmacological treatment directed specifically at activating the satellite cells, but also a myostatin dependent mechanism that may contribute to the progressive muscle wasting seen in severely affected patients with muscular dystrophy and significant on-going regeneration. This treatment could potentially be applied to many conditions that feature muscle wasting to increase muscle bulk and strength.

  12. Protein kinase C activators suppress stimulation of capillary endothelial cell growth by angiogenic endothelial mitogens

    PubMed Central

    1987-01-01

    The intracellular events regulating endothelial cell proliferation and organization into formalized capillaries are not known. We report that the protein kinase C activator beta-phorbol 12,13-dibutyrate (PDBu) suppresses bovine capillary endothelial (BCE) cell proliferation (K50 = 6 +/- 4 nM) and DNA synthesis in response to human hepatoma-derived growth factor, an angiogenic endothelial mitogen. In contrast, PDBu has no effect on the proliferation of bovine aortic endothelial cells and is mitogenic for bovine aortic smooth muscle and BALB/c 3T3 cells. Several observations indicate that the inhibition of human hepatoma- derived growth factor-stimulated BCE cell growth by PDBu is mediated through protein kinase C. Different phorbol compounds inhibit BCE cell growth according to their potencies as protein kinase C activators (12- O-tetradecanoylphorbol 13-acetate greater than PDBu much greater than beta-phorbol 12,13-diacetate much much greater than beta-phorbol; alpha- phorbol 12,13-dibutyrate; alpha-phorbol 12,13-didecanoate). PDBu binds to a single class of specific, saturable sites on the BCE cell with an apparent Kd of 8 nM, in agreement with reported affinities of PDBu for protein kinase C in other systems. Specific binding of PDBu to BCE cells is displaced by sn-1,2-dioctanoylglycerol, a protein kinase C activator and an analog of the putative second messenger activating this kinase in vivo. The weak protein kinase C activator, sn-1,2- dibutyrylglycerol, does not affect PDBu binding. A cytosolic extract from BCE cells contains a calcium/phosphatidylserine-dependent protein kinase that is activated by sn-1,2-dioctanoylglycerol and PDBu, but not by beta-phorbol. These findings indicate that protein kinase C activation can cause capillary endothelial cells to become desensitized to angiogenic endothelial mitogens. This intracellular regulatory mechanism might be invoked during certain phases of angiogenesis, for example when proliferating endothelial cells become

  13. Mast cell growth-enhancing activity (MEA) is structurally related and functionally identical to the novel mouse T cell growth factor P40/TCGFIII (interleukin 9).

    PubMed

    Hültner, L; Druez, C; Moeller, J; Uyttenhove, C; Schmitt, E; Rüde, E; Dörmer, P; Van Snick, J

    1990-06-01

    We have previously shown that certain bone marrow-derived mast cell (BMMC) lines proliferate in response to a mast cell growth-enhancing activity (MEA) that is distinct from interleukin (IL) 3 and IL 4. Here we provide evidence that MEA is identical with the recently cloned mouse T cell growth factor P40. The evidence is as follows: (a) recombinant P40 displayed all the biological activities ascribed to MEA: it supported the growth of MEA-sensitive BMMC lines, it induced IL 6 secretion by these cells, and it enhanced survival of primary mast cell cultures; (b) highly purified MEA stimulated the growth of P40-dependent cell lines; (c) a rabbit monospecific antiserum directed against P40 specifically inhibited the action of MEA on BMMC; (d) specific binding sites for P40 were detected on BMMC and (e) MEA competed with P40 for binding to P40-dependent T cells, indicating that the two molecules interact with the same receptor. These observations further extend the range of biological activities ascribed to P40 and warrant its proposed designation as IL9.

  14. Endothelial cells regulate β-catenin activity in adrenocortical cells via secretion of basic fibroblast growth factor.

    PubMed

    Schwafertz, Carolin; Schinner, Sven; Kühn, Markus C; Haase, Matthias; Asmus, Amelie; Mülders-Opgenoorth, Birgit; Ansurudeen, Ishrath; Hornsby, Peter J; Morawietz, Henning; Oetjen, Elke; Schott, Matthias; Willenberg, Holger S

    2017-02-05

    Endothelial cell-derived products influence the synthesis of aldosterone and cortisol in human adrenocortical cells by modulating proteins such as steroidogenic acute-regulatory (StAR) protein, steroidogenic factor (SF)-1 and CITED2. However, the potential endothelial cell-derived factors that mediate this effect are still unknown. The current study was perfomed to look into the control of β-catenin activity by endothelial cell-derived factors and to identify a mechanism by which they affect β-catenin activity in adrenocortical NCIH295R cells. Using reporter gene assays and Western blotting, we found that endothelial cell-conditioned medium (ECCM) led to nuclear translocation of β-catenin and an increase in β-catenin-dependent transcription that could be blocked by U0126, an inhibitor of the mitogen-activated protein kinase pathway. Furthermore, we found that a receptor tyrosin kinase (RTK) was involved in ECCM-induced β-catenin-dependent transcription. Through selective inhibition of RTK using Su5402, it was shown that receptors responding to basic fibroblast growth factor (bFGF) mediate the action of ECCM. Adrenocortical cells treated with bFGF showed a significant greater level of bFGF mRNA. In addition, HUVECs secrete bFGF in a density-dependent manner. In conclusion, the data suggest that endothelial cells regulate β-catenin activity in adrenocortical cells also via secretion of basic fibroblast growth factor.

  15. Growth inhibitory activity of extracts and compounds from Cimicifuga species on human breast cancer cells.

    PubMed

    Einbond, Linda Saxe; Wen-Cai, Ye; He, Kan; Wu, Hsan-au; Cruz, Erica; Roller, Marc; Kronenberg, Fredi

    2008-06-01

    The purpose of this report is to explore the growth inhibitory effect of extracts and compounds from black cohosh and related Cimicifuga species on human breast cancer cells and to determine the nature of the active components. Black cohosh fractions enriched for triterpene glycosides and purified components from black cohosh and related Asian species were tested for growth inhibition of the ER(-) Her2 overexpressing human breast cancer cell line MDA-MB-453. Growth inhibitory activity was assayed using the Coulter Counter, MTT and colony formation assays. Results suggested that the growth inhibitory activity of black cohosh extracts appears to be related to their triterpene glycoside composition. The most potent Cimicifuga component tested was 25-acetyl-7,8-didehydrocimigenol 3-O-beta-d-xylopyranoside, which has an acetyl group at position C-25. It had an IC(50) of 3.2microg/ml (5microM) compared to 7.2microg/ml (12.1microM) for the parent compound 7,8-didehydrocimigenol 3-O-beta-d-xylopyranoside. Thus, the acetyl group at position C-25 enhances growth inhibitory activity. The purified triterpene glycoside actein (beta-d-xylopyranoside), with an IC(50) equal to 5.7microg/ml (8.4microM), exhibited activity comparable to cimigenol 3-O-beta-d-xyloside. MCF7 (ER(+)Her2 low) cells transfected for Her2 are more sensitive than the parental MCF7 cells to the growth inhibitory effects of actein from black cohosh, indicating that Her2 plays a role in the action of actein. The effect of actein on Her2 overexpressing MDA-MB-453 and MCF7 (ER(+)Her2 low) human breast cancer cells was examined by fluorescent microscopy. Treatment with actein altered the distribution of actin filaments and induced apoptosis in these cells. These findings, coupled with our previous evidence that treatment with the triterpene glycoside actein induced a stress response and apoptosis in human breast cancer cells, suggest that compounds from Cimicifuga species may be useful in the prevention and

  16. Lymphokine-activated killer (LAK) cells can be focused at sites of tumor growth by products of macrophage activation

    SciTech Connect

    Migliori, R.J.; Gruber, S.A.; Sawyer, M.D.; Hoffman, R.; Ochoa, A.; Bach, F.H.; Simmons, R.L.

    1987-08-01

    Successful adoptive cancer immunotherapy presumably depends on the accumulation of tumoricidal leukocytes at the sites of tumor growth. Large numbers of lymphokine-activated killer (LAK) cells can be generated in vitro by growth in high concentrations of interleukin-2 (IL-2), but relatively few arrive at the tumor site after intravenous injection. We hypothesize that the delivery of LAK cells to tumor sites may be augmented by previously demonstrated lymphocyte-recruiting factors, including activated macrophage products such as interleukin-1 (IL-1) and tumor necrosis factor. /sup 111/Indium-labeled LAK cells were injected intravenously into syngeneic mice bearing the macrophage activator endotoxin (LPS) in one hind footpad, and saline solution was injected into the contralateral footpad. Significantly more activity was recovered from the LPS-bearing footpad at all times during a 96-hour period. Recombinant IL-1 also attracted more LAK cells after injection into tumor-free hind footpads. Furthermore, LAK cells preferentially homed to hind footpads that were bearing 3-day established sarcomas after intralesional injections of LPS, IL-1, or tumor necrosis factor when compared with contralateral tumor-bearing footpads injected with saline solution alone. In preliminary experiments, mice with hind-footpad tumors appeared to survive longer after combined systemic IL-2 and LAK therapy if intralesional LPS was administered. These studies demonstrate that macrophage activation factors that have been shown capable of attracting circulating normal lymphocytes can also effectively attract LAK cells from the circulation. By the stimulation of macrophages at the sites of tumor growth, more LAK cells can be attracted. It is hoped that by focusing the migration of LAK cells to tumors, LAK cells and IL-2 would effect tumor regression more efficiently and with less toxicity.

  17. Alteration of growth and metabolic activity of cells in the presence of propranolol and metoprolol.

    PubMed

    Lodowska, Jolanta; Wilczok, Adam; Tam, Irena; Cwalina, Beata; Swiatkowska, Longina; Wilczok, Tadeusz

    2003-01-01

    Mechanisms of action at the cellular level of a variety of drugs and xenobiotics may be assessed using Chlorella vulgaris cells. Synchronous culture, which consists of cells at the same phase of development, provides the most convenient model for studying processes at the cellular level. Stability of metabolic activity of synchronously growing cells is achieved by conducting cell culturing under strictly controlled conditions. The aim of the present study was to determine to what extent propranolol and metoprolol alter the Chlorella vulgaris metabolic activity, expressed by the number of progeny cells, the culture absorbance at lambda = 680 nm and the amount of selected photosynthetic pigments (chlorophyll a, chlorophyll b, antheraxanthin, lutein, violaxanthin and beta-carotene). Three different concentrations (10(-4), 10(-5) and 10(-6) M) of propranolol and metoprolol were administered to the Chlorella vulgaris cultures. It has been demonstrated that the higher the propranolol and metoprolol concentrations (from 10(-6) M to 10(-4) M) the lower the number of progeny cells in the cultures, expressed by the lower values of division coefficient. Both the propranolol and metoprolol caused a decrease in the photosynthetic pigments production in the mother cells. This effect was more important in the propranolol-treated cultures. The higher values of photosynthetic pigments concentrations in the progeny cells grown under the presence of a drug indicate that both the drugs tested influence mainly the cell growth and in a lower manner--their metabolic activity, expressed by the production of photosynthetic pigments.

  18. Genetic Screening for Bacterial Mutants in Liquid Growth Media By Fluorescence-Activated Cell Sorting

    PubMed Central

    Abuaita, Basel H.; Withey, Jeffrey H.

    2010-01-01

    Many bacterial pathogens have defined in vitro virulence inducing conditions in liquid media which lead to production of virulence factors important during an infection. Identifying mutants that no longer respond to virulence inducing conditions will increase our understanding of bacterial pathogenesis. However, traditional genetic screens require growth on solid media. Bacteria in a single colony are in every phase of the growth curve, which complicates the analysis and make screens for growth phase-specific mutants problematic. Here, we utilize fluorescence-activated cell sorting in conjunction with random transposon mutagenesis to isolate bacteria grown in liquid media that are defective in virulence activation. This method permits analysis of an entire bacterial population in real time and selection of individual bacterial mutants with the desired gene expression profile at any time point after induction. We have used this method to identify Vibrio cholerae mutants defective in virulence induction. PMID:21094189

  19. Kaempferol inhibits cancer cell growth by antagonizing estrogen-related receptor α and γ activities.

    PubMed

    Wang, Haibin; Gao, Minghui; Wang, Junjian

    2013-11-01

    Kaempferol is a dietary flavonoid that can function as a selective estrogen receptor modulator (SERM). Estrogen-related receptors alpha and gamma (ERRα and ERRγ) are orphan nuclear receptors that play important roles in mitochondrial biogenesis and cancer development. We have shown that kaempferol can functionally antagonize the activities of ERRs based on both response element reporter systems and target gene analysis. Kaempferol modulation of mitochondrial function and suppression cancer cell growth has been confirmed. These findings suggest that kaempferol may exert their anti-cancer activities through antagonizing ERRs activities.

  20. Epidermal growth factor receptor activity is necessary for mouse basal cell proliferation

    PubMed Central

    Brechbuhl, Heather M.; Li, Bilan; Smith, Russell W.

    2014-01-01

    ERB family receptors (EGFR, ERB-B2, ERB-B3, and ERB-B4) regulate epithelial cell function in many tissue types. In the human airway epithelium, changes in ERB receptor expression are associated with epithelial repair defects. However, the specific role(s) played by ERB receptors in repair have not been determined. We aimed to determine whether ERB receptors regulate proliferation of the tracheobronchial progenitor, the basal cell. Receptor tyrosine kinase arrays were used to evaluate ERB activity in normal and naphthalene (NA)-injured mouse trachea and in air-liquid interface cultures. Roles for epidermal growth factor (EGF), EGFR, and ERB-B2 in basal cell proliferation were evaluated in vitro. NA injury and transgenic expression of an EGFR-dominant negative (DN) receptor were used to evaluate roles for EGFR signaling in vivo. EGFR and ERB-B2 were active in normal and NA-injured trachea and were the only active ERB receptors detected in proliferating basal cells in vitro. EGF was necessary for basal cell proliferation in vitro. The EGFR inhibitor, AG1478, decreased proliferation by 99, and the Erb-B2 inhibitor, AG825, decreased proliferation by ∼66%. In vivo, EGFR-DN expression in basal cells significantly decreased basal cell proliferation after NA injury. EGF and EGFR are necessary for basal cell proliferation. The EGFR/EGFR homo- and the EGFR/ERB-B2 heterodimer account for ∼34 and 66%, respectively, of basal cell proliferation in vitro. Active EGFR is necessary for basal cell proliferation after NA injury. We conclude that EGFR activation is necessary for mouse basal cell proliferation and normal epithelial repair. PMID:25217659

  1. Germ cell mitogenic activity is associated with nerve growth factor-like protein(s).

    PubMed

    Onoda, M; Pflug, B; Djakiew, D

    1991-12-01

    The mitogenicity of germ cell proteins released from round spermatids (RS) and pachytene spermatocytes (PS) was investigated. Germ cells were isolated by centrifugal elutriation from 90-day-old rat testes and incubated in a supplement enriched culture media that lacked exogenous proteins. The conditioned culture media of RS and PS were dialysed/concentrated and lyophilized to prepare RS protein (RSP) and PS protein (PSP). Mitogenic activity of RSP and PSP was determined by 3H-thymidine incorporation into Swiss 3T3 fibroblasts. RSP and PSP stimulated 3H-thymidine incorporation by fibroblasts in a dose-dependent manner. At a higher concentration of RSP (300 micrograms/ml), fibroblast proliferation was stimulated from 6- to 20-fold of control cultures, whereas PSP (300 micrograms/ml) stimulated fibroblast proliferation 2.5-fold of control cultures. Since RSP exhibited substantially greater mitogenic activity than PSP we further investigated the RSP mitogenic substance(s) by immunoneutralization with antibodies against several growth factors. The mitogenic activity of RSP was significantly reduced by treatment with nerve growth factor (NGF) antibody, while neither the treatment of RSP with acidic fibroblast growth factor (aFGF) antibody, nor basic fibroblast growth factor (bFGF) antibody significantly modified the mitogenic activity of RSP. Interestingly, murine NGF-beta, recombinant human NGF-beta, and bovine serum albumin (BSA) did not exhibit mitogenic activity on 3T3 fibroblasts. Nevertheless, the presence of a NGF-like protein in RS and PS was confirmed by indirect immunofluorescence staining with a murine NGF antibody. Subsequently, a Western blot analysis with the NGF antibody identified two immunoreactive bands of 41 +/- 2 kDa and 51 +/- 1 kDa in both RSP and PSP under reduced conditions. These germ cell NGF-like proteins were apparently different from similarly prepared murine and human NGFs (13 kDa) in their molecular weight. Furthermore, neurite outgrowth

  2. 8-Cl-cAMP antagonizes mitogen-activated protein kinase activation and cell growth stimulation induced by epidermal growth factor

    PubMed Central

    Budillon, A; Gennaro, E Di; Caraglia, M; Barbarulo, D; Abbruzzese, A; Tagliaferri, P

    1999-01-01

    The growth factor-activated mitogenic pathways are often disregulated in tumour cells and, therefore, they can provide specific molecular targets for novel anti-tumour approaches. 8-Chloro-cAMP (8-Cl-cAMP), a synthetic cAMP analogue, is a novel anti-tumour agent that has recently undergone clinical evaluation. We investigated the effects of 8-CI-cAMP on the epidermal growth factor (EGF)/EGF receptor (EGF-R) signalling in human epidermoid cancer KB cells, which are responsive to the mitogenic stimulus of EGF. We found that the growth-promoting activity of EGF was completely abolished when EGF treatment was performed in combination with 8-CI-cAMP. The inhibition of the EGF-induced proliferation by 8-CI-cAMP was paralleled by the blockade of the EGF-stimulated activation of mitogen-activated protein kinases (MAPK), ERK-1 and ERK-2. Conversely, we found an increase of EGF-R expression and EGF-R tyrosine phosphorylation when KB cells were growth inhibited by 8-Cl-cAMP. Moreover, the activity of Raf-1 and MEK-1 protein kinases, the activators upstream MAPK in the phosphorylation cascade induced by EGF, was not modified in 8-Cl-cAMP-treated cells. We concluded that the impairment of KB cell response to EGF, induced by 8-Cl-cAMP, resides in the specific inhibition of MAPK/ERKs activity while the function of the upstream elements in the EGF-R signalling is preserved. © 1999 Cancer Research Campaign PMID:10584873

  3. Poly(ADP-Ribose)Polymerase Activity Controls Plant Growth by Promoting Leaf Cell Number

    PubMed Central

    Schulz, Philipp; Jansseune, Karel; Degenkolbe, Thomas; Méret, Michaël; Claeys, Hannes; Skirycz, Aleksandra; Teige, Markus; Willmitzer, Lothar; Hannah, Matthew A.

    2014-01-01

    A changing global environment, rising population and increasing demand for biofuels are challenging agriculture and creating a need for technologies to increase biomass production. Here we demonstrate that the inhibition of poly (ADP-ribose) polymerase activity is a promising technology to achieve this under non-stress conditions. Furthermore, we investigate the basis of this growth enhancement via leaf series and kinematic cell analysis as well as single leaf transcriptomics and plant metabolomics under non-stress conditions. These data indicate a regulatory function of PARP within cell growth and potentially development. PARP inhibition enhances growth of Arabidopsis thaliana by enhancing the cell number. Time course single leaf transcriptomics shows that PARP inhibition regulates a small subset of genes which are related to growth promotion, cell cycle and the control of metabolism. This is supported by metabolite analysis showing overall changes in primary and particularly secondary metabolism. Taken together the results indicate a versatile function of PARP beyond its previously reported roles in controlling plant stress tolerance and thus can be a useful target for enhancing biomass production. PMID:24587323

  4. Poly(ADP-ribose)polymerase activity controls plant growth by promoting leaf cell number.

    PubMed

    Schulz, Philipp; Jansseune, Karel; Degenkolbe, Thomas; Méret, Michaël; Claeys, Hannes; Skirycz, Aleksandra; Teige, Markus; Willmitzer, Lothar; Hannah, Matthew A

    2014-01-01

    A changing global environment, rising population and increasing demand for biofuels are challenging agriculture and creating a need for technologies to increase biomass production. Here we demonstrate that the inhibition of poly (ADP-ribose) polymerase activity is a promising technology to achieve this under non-stress conditions. Furthermore, we investigate the basis of this growth enhancement via leaf series and kinematic cell analysis as well as single leaf transcriptomics and plant metabolomics under non-stress conditions. These data indicate a regulatory function of PARP within cell growth and potentially development. PARP inhibition enhances growth of Arabidopsis thaliana by enhancing the cell number. Time course single leaf transcriptomics shows that PARP inhibition regulates a small subset of genes which are related to growth promotion, cell cycle and the control of metabolism. This is supported by metabolite analysis showing overall changes in primary and particularly secondary metabolism. Taken together the results indicate a versatile function of PARP beyond its previously reported roles in controlling plant stress tolerance and thus can be a useful target for enhancing biomass production.

  5. Subcutaneous adipocytes promote melanoma cell growth by activating the Akt signaling pathway: role of palmitic acid.

    PubMed

    Kwan, Hiu Yee; Fu, Xiuqiong; Liu, Bin; Chao, Xiaojuan; Chan, Chi Leung; Cao, Huihui; Su, Tao; Tse, Anfernee Kai Wing; Fong, Wang Fun; Yu, Zhi-Ling

    2014-10-31

    Tumorigenesis involves constant communication between tumor cells and neighboring normal cells such as adipocytes. The canonical function of adipocytes is to store triglyceride and release fatty acids for other tissues. This study was aimed to find out if adipocytes promoted melanoma cell growth and to investigate the underlying mechanism. Here we isolated adipocytes from inguinal adipose tissue in mice and co-cultured with melanoma cells. We found that the co-cultured melanoma had higher lipid accumulation compared with mono-cultured melanoma. In addition, fluorescently labeled fatty acid BODIPY® FLC16 signal was detected in melanoma co-cultured with the adipocytes that had been loaded with the fluorescent dye, suggesting that the adipocytes provide fatty acids to melanoma cells. Compared with mono-cultured melanoma, co-cultured melanoma cells had a higher proliferation and phospho-Akt (Ser-473 and Thr-450) expression. Overexpression of Akt mutants in melanoma cells reduced the co-culture-enhanced proliferation. A lipidomic study showed that the co-cultured melanoma had an elevated palmitic acid level. Interestingly, we found that palmitic acid stimulated melanoma cell proliferation, changed the cell cycle distribution, and increased phospho-Akt (Ser-473 and Thr-450) and PI3K but not phospho-PTEN (phosphophosphatase and tensin homolog) expressions. More importantly, the palmitic acid-stimulated proliferation was further enhanced in the Akt-overexpressed melanoma cells and was reduced by LY294002 or knockdown of endogenous Akt or overexpression of Akt mutants. We also found that palmitic acid-pretreated B16F10 cells were grown to a significantly larger tumor in mice compared with control cells. Taken together, we suggest that adipocytes may serve as an exogenous source of palmitic acid that promotes melanoma cell growth by activating Akt.

  6. Subcutaneous Adipocytes Promote Melanoma Cell Growth by Activating the Akt Signaling Pathway

    PubMed Central

    Kwan, Hiu Yee; Fu, Xiuqiong; Liu, Bin; Chao, Xiaojuan; Chan, Chi Leung; Cao, Huihui; Su, Tao; Tse, Anfernee Kai Wing; Fong, Wang Fun; Yu, Zhi-Ling

    2014-01-01

    Tumorigenesis involves constant communication between tumor cells and neighboring normal cells such as adipocytes. The canonical function of adipocytes is to store triglyceride and release fatty acids for other tissues. This study was aimed to find out if adipocytes promoted melanoma cell growth and to investigate the underlying mechanism. Here we isolated adipocytes from inguinal adipose tissue in mice and co-cultured with melanoma cells. We found that the co-cultured melanoma had higher lipid accumulation compared with mono-cultured melanoma. In addition, fluorescently labeled fatty acid BODIPY® FLC16 signal was detected in melanoma co-cultured with the adipocytes that had been loaded with the fluorescent dye, suggesting that the adipocytes provide fatty acids to melanoma cells. Compared with mono-cultured melanoma, co-cultured melanoma cells had a higher proliferation and phospho-Akt (Ser-473 and Thr-450) expression. Overexpression of Akt mutants in melanoma cells reduced the co-culture-enhanced proliferation. A lipidomic study showed that the co-cultured melanoma had an elevated palmitic acid level. Interestingly, we found that palmitic acid stimulated melanoma cell proliferation, changed the cell cycle distribution, and increased phospho-Akt (Ser-473 and Thr-450) and PI3K but not phospho-PTEN (phosphophosphatase and tensin homolog) expressions. More importantly, the palmitic acid-stimulated proliferation was further enhanced in the Akt-overexpressed melanoma cells and was reduced by LY294002 or knockdown of endogenous Akt or overexpression of Akt mutants. We also found that palmitic acid-pretreated B16F10 cells were grown to a significantly larger tumor in mice compared with control cells. Taken together, we suggest that adipocytes may serve as an exogenous source of palmitic acid that promotes melanoma cell growth by activating Akt. PMID:25228694

  7. Calpain-Mediated Positional Information Directs Cell Wall Orientation to Sustain Plant Stem Cell Activity, Growth and Development.

    PubMed

    Liang, Zhe; Brown, Roy C; Fletcher, Jennifer C; Opsahl-Sorteberg, Hilde-Gunn

    2015-09-01

    Eukaryotic development and stem cell control depend on the integration of cell positional sensing with cell cycle control and cell wall positioning, yet few factors that directly link these events are known. The DEFECTIVE KERNEL1 (DEK1) gene encoding the unique plant calpain protein is fundamental for development and growth, being essential to confer and maintain epidermal cell identity that allows development beyond the globular embryo stage. We show that DEK1 expression is highest in the actively dividing cells of seeds, meristems and vasculature. We further show that eliminating Arabidopsis DEK1 function leads to changes in developmental cues from the first zygotic division onward, altered microtubule patterns and misshapen cells, resulting in early embryo abortion. Expression of the embryonic marker genes WOX2, ATML1, PIN4, WUS and STM, related to axis organization, cell identity and meristem functions, is also altered in dek1 embryos. By monitoring cell layer-specific DEK1 down-regulation, we show that L1- and 35S-induced down-regulation mainly affects stem cell functions, causing severe shoot apical meristem phenotypes. These results are consistent with a requirement for DEK1 to direct layer-specific cellular activities and set downstream developmental cues. Our data suggest that DEK1 may anchor cell wall positions and control cell division and differentiation, thereby balancing the plant's requirement to maintain totipotent stem cell reservoirs while simultaneously directing growth and organ formation. A role for DEK1 in regulating microtubule-orchestrated cell wall orientation during cell division can explain its effects on embryonic development, and suggests a more general function for calpains in microtubule organization in eukaryotic cells.

  8. T-cell growth transformation by herpesvirus saimiri is independent of STAT3 activation.

    PubMed

    Heck, Elke; Lengenfelder, Doris; Schmidt, Monika; Müller-Fleckenstein, Ingrid; Fleckenstein, Bernhard; Biesinger, Brigitte; Ensser, Armin

    2005-05-01

    Herpesvirus saimiri (saimirine herpesvirus 2) (HVS), a T-lymphotropic tumor virus, induces lymphoproliferative disease in several species of New World primates. In addition, strains of HVS subgroup C are able to transform T cells of Old World primates, including humans, to permanently growing T-cell lines. In concert with the Stp oncoprotein, the tyrosine kinase-interacting protein (Tip) of HVS C488 is required for T-cell transformation in vitro and lymphoma induction in vivo. Tip was previously shown to interact with the protein tyrosine kinase Lck. Constitutive activation of signal transducers and activators of transcription (STATs) has been associated with oncogenesis and has also been detected in HVS-transformed T-cell lines. Furthermore, Tip contains a putative consensus YXPQ binding motif for the SH2 (src homology 2) domains of STAT1 and STAT3. Tip tyrosine phosphorylation at this site was required for binding of STATs and induction of STAT-dependent transcription. Here we sought to address the relevance of STAT activation for transformation of human T cells by introducing a tyrosine-to-phenylalanine mutation in the YXPQ motif of Tip of HVS C488. Unexpectedly, the recombinant virus was still able to transform human T lymphocytes, but it had lost its capability to activate STAT3 as well as STAT1. This demonstrates that growth transformation by HVS is independent of STAT3 activation.

  9. BMP promotes motility and represses growth of smooth muscle cells by activation of tandem Wnt pathways

    PubMed Central

    de Jesus Perez, Vinicio A.; Ali, Ziad; Alastalo, Tero-Pekka; Ikeno, Fumiaki; Sawada, Hirofumi; Lai, Ying-Ju; Kleisli, Thomas; Spiekerkoetter, Edda; Qu, Xiumei; Rubinos, Laura H.; Ashley, Euan; Amieva, Manuel; Dedhar, Shoukat

    2011-01-01

    We present a novel cell-signaling paradigm in which bone morphogenetic protein 2 (BMP-2) consecutively and interdependently activates the wingless (Wnt)–β-catenin (βC) and Wnt–planar cell polarity (PCP) signaling pathways to facilitate vascular smooth muscle motility while simultaneously suppressing growth. We show that BMP-2, in a phospho-Akt–dependent manner, induces βC transcriptional activity to produce fibronectin, which then activates integrin-linked kinase 1 (ILK-1) via α4-integrins. ILK-1 then induces the Wnt–PCP pathway by binding a proline-rich motif in disheveled (Dvl) and consequently activating RhoA-Rac1–mediated motility. Transfection of a Dvl mutant that binds βC without activating RhoA-Rac1 not only prevents BMP-2–mediated vascular smooth muscle cell motility but promotes proliferation in association with persistent βC activity. Interfering with the Dvl-dependent Wnt–PCP activation in a murine stented aortic graft injury model promotes extensive neointima formation, as shown by optical coherence tomography and histopathology. We speculate that, in response to injury, factors that subvert BMP-2–mediated tandem activation of Wnt–βC and Wnt–PCP pathways contribute to obliterative vascular disease in both the systemic and pulmonary circulations. PMID:21220513

  10. Effects of nitrendipine on growth activity in cultured vascular smooth muscle cells.

    PubMed

    Absher, M P; Baldor, L; Warshaw, D M

    1988-01-01

    Proliferation and migration of smooth muscle cells (SMCs) in the arterial wall may play a role in the development of atherosclerosis and hypertension. If cell migration and proliferation are dependent on extracellular calcium, then treatment with calcium channel blockers such as nitrendipine may alter these cellular responses. In the studies reported here, proliferation and migration activities were assessed in cultured bovine carotid artery smooth muscle cells exposed to nitrendipine. SMCs in long-term culture are characterized by periods of either stable or enhanced proliferative activity. During the stable periods, 1 microM nitrendipine has no effect on proliferation, but during periods of enhanced proliferation, 1 microM nitrendipine augments growth by approximately 20%. SMC migration rates and interdivision times were determined from analysis of time-lapse cinematography films. During stable periods of growth, cell migration rate was inversely related to interdivision time (i.e., fast migrating cells had the shortest interdivision times). Treatment with 1 microM nitrendipine abolished the relationship between migration rate and interdivision time and prolonged interdivision times. These data suggest that the ability of nitrendipine to alter SMC proliferation, interdivision time, and migration is dependent upon the overall proliferative state of the culture.

  11. Recurrent exposure to nicotine differentiates human bronchial epithelial cells via epidermal growth factor receptor activation

    SciTech Connect

    Martinez-Garcia, Eva; Irigoyen, Marta; Anso, Elena; Martinez-Irujo, Juan Jose; Rouzaut, Ana

    2008-05-01

    Cigarette smoking is the major preventable cause of lung cancer in developed countries. Nicotine (3-(1-methyl-2-pyrrolidinyl)-pyridine) is one of the major alkaloids present in tobacco. Besides its addictive properties, its effects have been described in panoply of cell types. In fact, recent studies have shown that nicotine behaves as a tumor promoter in transformed epithelial cells. This research focuses on the effects of acute repetitive nicotine exposure on normal human bronchial epithelial cells (NHBE cells). Here we show that treatment of NHBE cells with recurrent doses of nicotine up to 500 {mu}M triggered cell differentiation towards a neuronal-like phenotype: cells emitted filopodia and expressed neuronal markers such as neuronal cell adhesion molecule, neurofilament-M and the transcription factors neuronal N and Pax-3. We also demonstrate that nicotine treatment induced NF-kB translocation to the nucleus, phosphorylation of the epidermal growth factor receptor (EGFR), and accumulation of heparin binding-EGF in the extracellular medium. Moreover, addition of AG1478, an inhibitor of EGFR tyrosine phosphorylation, or cetuximab, a monoclonal antibody that precludes ligand binding to the same receptor, prevented cell differentiation by nicotine. Lastly, we show that differentiated cells increased their adhesion to the extracellular matrix and their protease activity. Given that several lung pathologies are strongly related to tobacco consumption, these results may help to better understand the damaging consequences of nicotine exposure.

  12. Physical and biological characterization of a growth-inhibitory activity purified from the neuroepithelioma cell line A673.

    PubMed Central

    Stam, K; Stewart, A A; Qu, G Y; Iwata, K K; Fenyö, D; Chait, B T; Marshak, D R; Haley, J D

    1995-01-01

    Epithelial- and haematopoietic-cell growth-inhibitory activities have been identified in the conditioned medium of the human peripheral neuroepithelioma cell line A673. An A673-cell-derived growth-inhibitory activity was previously fractionated into two distinct components which inhibited the proliferation of human carcinoma and leukaemia cells in culture. One inhibitory activity was shown to comprise interleukin-1 alpha (IL-1 alpha). Here, we have purified to homogeneity a distinct activity which inhibited the growth of the epithelial cells in vitro. Using a combination of protein-sequence analysis and mass spectrometry, we demonstrated that biological activity can be assigned to a dimeric protein with a molecular mass of 25,576 (+/- 4) Da and an N-terminal sequence identical with that of transforming growth factor-beta 1 (TGF-beta 1). Further characterization of the growth inhibitor with TGF-beta-isoform-specific antibodies showed that > 90% of the bioactivity consists of TGF-beta 1 and not TGF-beta 2 or TGF-beta 3. Although A673 cells were growth-inhibited by exogenous TGF-beta 1, we showed that TGF-beta 1 in A673-cell-conditioned media was present in the latent, biologically inactive, form which did not act as an autocrine growth modulator of A673 cells in vitro. Images Figure 2 Figure 3 PMID:7826358

  13. Mast Cell Tryptase Contributes to Pancreatic Cancer Growth through Promoting Angiogenesis via Activation of Angiopoietin-1.

    PubMed

    Guo, Xiangjie; Zhai, Liqin; Xue, Ruobing; Shi, Jieru; Zeng, Qiang; Gao, Cairong

    2016-05-27

    Pancreatic cancer is a highly lethal malignancy and one of the leading causes of cancer-related death. During the development and progression of cancer, tumor angiogenesis plays a crucial role. A great deal of evidence has revealed that human mast cells (MCs) contributed to tumor angiogenesis through releasing several pro-angiogenetic factors, among which tryptase is one of the most active. However, the role of mast cell tryptase (MCT) in human pancreatic cancer angiogenesis is still not well documented. In this study, we examined the MCT levels in serum from pancreatic cancer patients and evaluated the correlationship of the MCT level and tumor angiogenesis. In addition, the effect of MCT on endothelial cell proliferation and tube formation was investigated both in vitro and in nude mice bearing pancreatic tumor. It was found that MCT contributes to endothelial cell growth and tube formation via up-regulation of angiopoietin-1 expression. Moreover, using the MCT inhibitor nafamostat, tryptase-induced angiogenesis was obviously suppressed both in vitro and in vivo. Our findings suggest that MCT plays an important role in pancreatic cancer angiogenesis and tumor growth via activating the angiopoietin-1 pathway, and tryptase inhibitors may be evaluated as an effective anti-angiogenetic approach in pancreatic cancer therapy.

  14. Biological energy from the igneous rock enhances cell growth and enzyme activity.

    PubMed

    Lin, Y; Kuo, H; Chen, C; Kuo, S

    2000-08-01

    Some effects from natural resources might be ignored and unused by humans. Environmental hormesis could be a phenomena necessary to bio-organism existence on earth. Since 1919, radiation and some heavy metal hormesis from the environment were proved in various reports. In this study, igneous rock with very low radioactivity and high ferrous activity was measured by multichannel analyzer and inductively coupled plasma analyzer. The water treated by igneous rock, both directly soaked or indirectly in contact, induced increased activities of glucose oxidase, catalase, peroxidase, and superoxide dismutase. It also increased cell growth of SC-M1, HCT-15, Raji, and fibroblast cell lines. The water after treatment of igneous rock had no change in pH values, but displayed decreased conductivity values. We assume that the igneous rock could transfer energy to water to change the molecular structure or conformation of water cluster, or by radiation hormesis effect could then induce increased enzyme activity and cell growth. It is also possible that the energy from rock may combine radiation hormesis with other transferable biological energy forms to change water cluster conformation.

  15. Aberrant Transforming Growth Factor-β Activation Recruits Mesenchymal Stem Cells During Prostatic Hyperplasia.

    PubMed

    Wang, Long; Xie, Liang; Tintani, Francis; Xie, Hui; Li, Changjun; Cui, Zhuang; Wan, Mei; Zu, Xiongbing; Qi, Lin; Cao, Xu

    2017-02-01

    Benign prostatic hyperplasia (BPH) is the overgrowth of prostate tissues with high prevalence in older men. BPH pathogenesis is not completely understood, but it is believed to be a result of de novo overgrowth of prostatic stroma. In this study, we show that aberrant activation of transforming growth factor-β (TGF-β) mobilizes mesenchymal/stromal stem cells (MSCs) in circulating blood, which are recruited for the prostatic stromal hyperplasia. Elevated levels of active TGF-β were observed in both a phenylephrine-induced prostatic hyperplasia mouse model and human BPH tissues. Nestin lineage tracing revealed that 39.6% ± 6.3% of fibroblasts and 73.3% ± 4.2% smooth muscle cells were derived from nestin(+) cells in Nestin-Cre, Rosa26-YFP(flox/+) mice. Nestin(+) MSCs were increased in the prostatic hyperplasia mice. Our parabiosis experiment demonstrate that nestin(+) MSCs were mobilized and recruited to the prostatic stroma of wild-type mice and gave rise to the fibroblasts. Moreover, injection of a TGF-β neutralizing antibody (1D11) inhibits mobilization of MSCs, their recruitment to the prostatic stroma and hyperplasia. Importantly, knockout of TβRII in nestin(+) cell lineage ameliorated stromal hyperplasia. Thus, elevated levels of TGF-β-induced mobilization and recruitment of MSCs to the reactive stroma resulting in overgrowth of prostate tissues in BPH and, thus, inhibition of TGF-β activity could be a potential therapy for BPH. Stem Cells Translational Medicine 2017;6:394-404.

  16. Platelet-derived growth factor (PDGF) stimulates glycogen synthase activity in 3T3 cells

    SciTech Connect

    Chan, C.P.; Bowen-Pope, D.F.; Ross, R.; Krebs, E.G.

    1986-05-01

    Hormonal regulation of glycogen synthase, an enzyme that can be phosphorylated on multiple sites, is often associated with changes in its phosphorylation state. Enzyme activation is conventionally monitored by determining the synthase activity ratio ((activity in the absence of glucose 6-P)/(activity in the presence of glucose 6-P)). Insulin causes an activation of glycogen synthase with a concomitant decrease in its phosphate content. In a previous report, the authors showed that epidermal growth factor (EGF) increases the glycogen synthase activity ratio in Swiss 3T3 cells. The time and dose-dependency of this response was similar to that of insulin. Their recent results indicate that PDGF also stimulates glycogen synthase activity. Enzyme activation was maximal after 30 min. of incubation with PDGF; the time course observed was very similar to that with insulin and EGF. At 1 ng/ml (0.03nM), PDGF caused a maximal stimulation of 4-fold in synthase activity ratio. Half-maximal stimulation was observed at 0.2 ng/ml (6 pM). The time course of changes in enzyme activity ratio closely followed that of /sup 125/I-PDGF binding. The authors data suggest that PDGF, as well as EFG and insulin, may be important in regulating glycogen synthesis through phosphorylation/dephosphorylation mechanisms.

  17. Pioglitazone induces cell growth arrest and activates mitochondrial apoptosis in human uterine leiomyosarcoma cells by a peroxisome proliferator-activated receptor γ-independent mechanism.

    PubMed

    Lützen, Ulf; Zhao, Yi; Lucht, Katja; Zuhayra, Maaz; Marx, Marlies; Cascorbi, Ingolf; Culman, Juraj

    2017-01-01

    The peroxisome proliferator-activated receptor γ (PPARγ) agonists, thiazolidinediones, including pioglitazone (PIO) exhibit anti-tumour activities in cancer cells. The present study investigates the effects of PIO on cell proliferation and apoptosis in SK-UT-1 cells, a human uterine leiomyosarcoma cell line, and human uterine smooth muscle cells (HUtSMC). The proliferation and viability of SK-UT-1 cells treated with vehicle or PIO were assessed by cell counting and WST-1 assay. The activity of MEK/ERK and p38 MAPK signalling pathways and the expression of p53, the cyclin-dependent kinase inhibitor, p21, Bax, Bad and Bim proteins and cleaved caspase-3 were analysed by Western blotting. Quiescent SK-UT-1 cells intensively proliferate and display high levels of phosphorylated, activated MEK1/2, ERK1/2 and p38 MAPK. PIO (10 or 25 μM) induced time- and dose-dependently cell-growth arrest, reduced the cell numbers and effectively suppressed the over-activated MEK/ERK and p38 MAPK signalling pathways as evidenced by the abolished levels of phosphorylated MEK1/2, ERK1/2 and p38 MAPK. PIO activated the intrinsic apoptotic pathway, i.e. up-regulated the p53, p21, Bax and Bad proteins and cleaved caspase-3. PIO also reduced cell numbers of highly proliferative SK-UT-1 cells cultured in growth medium. The anti-proliferative and pro-apoptotic actions of PIO were not PPARγ dependent and exclusive for SK-UT-1 cells as PIO did not interfere with the proliferation of HUtSMC. The pronounced anti-tumorigenic effects of PIO in SK-UT-1 cells address an important issue about the relevance of the PPARγ agonist in the treatment of the human uterine leiomyosarcoma.

  18. The activation of OR51E1 causes growth suppression of human prostate cancer cells.

    PubMed

    Maßberg, Désirée; Jovancevic, Nikolina; Offermann, Anne; Simon, Annika; Baniahmad, Aria; Perner, Sven; Pungsrinont, Thanakorn; Luko, Katarina; Philippou, Stathis; Ubrig, Burkhard; Heiland, Markus; Weber, Lea; Altmüller, Janine; Becker, Christian; Gisselmann, Günter; Gelis, Lian; Hatt, Hanns

    2016-07-26

    The development of prostate cancer (PCa) is regulated by the androgen-dependent activity of the androgen receptor (AR). Androgen-deprivation therapy (ADT) is therefore the gold standard treatment to suppress malignant progression of PCa. Nevertheless, due to the development of castration resistance, recurrence of disease after initial response to ADT is a major obstacle to successful treatment. As G-protein coupled receptors play a fundamental role in PCa physiology, they might represent promising alternative or combinatorial targets for advanced diseases. Here, we verified gene expression of the olfactory receptors (ORs) OR51E1 [prostate-specific G-protein coupled receptor 2 (PSGR2)] and OR51E2 (PSGR) in human PCa tissue by RNA-Seq analysis and RT-PCR and elucidated the subcellular localization of both receptor proteins in human prostate tissue. The OR51E1 agonist nonanoic acid (NA) leads to the phosphorylation of various protein kinases and growth suppression of the PCa cell line LNCaP. Furthermore, treatment with NA causes reduction of androgen-mediated AR target gene expression. Interestingly, NA induces cellular senescence, which coincides with reduced E2F1 mRNA levels. In contrast, treatment with the structurally related compound 1-nonanol or the OR2AG1 agonist amyl butyrate, neither of which activates OR51E1, did not lead to reduced cell growth or an induction of cellular senescence. However, decanoic acid, another OR51E1 agonist, also induces cellular senescence. Thus, our results suggest the involvement of OR51E1 in growth processes of PCa cells and its impact on AR-mediated signaling. These findings provide novel evidences to support the functional importance of ORs in PCa pathogenesis.

  19. Epigallocatechin-3-gallate(EGCG) suppresses melanoma cell growth and metastasis by targeting TRAF6 activity

    PubMed Central

    Zhang, Xu; Zhou, Youyou; Luo, Zhongling; Zeng, Weiqi; Su, Juan; Peng, Cong; Chen, Xiang

    2016-01-01

    TRAF6 (TNF Receptor-Associated Factor 6) is an E3 ubiquitin ligase that contains a Ring domain, induces K63-linked polyubiquitination, and plays a critical role in signaling transduction. Our previous results demonstrated that TRAF6 is overexpressed in melanoma and that TRAF6 knockdown dramatically attenuates tumor cell growth and metastasis. In this study, we found that EGCG can directly bind to TRAF6, and a computational model of the interaction between EGCG and TRAF6 revealed that EGCG probably interacts with TRAF6 at the residues of Gln54, Gly55, Asp57 ILe72, Cys73 and Lys96. Among these amino acids, mutation of Gln54, Asp57, ILe72 in TRAF6 could destroy EGCG bound to TRAF6, furthermore, our results demonstrated that EGCG significantly attenuates interaction between TRAF6 and UBC13(E2) and suppresses TRAF6 E3 ubiquitin ligase activity in vivo and in vitro. Additionally, the phosphorylation of IκBα, p-TAK1 expression are decreased and the nuclear translocation of p65 and p50 is blocked by treatment with EGCG, leading to inactivation of the NF-κB pathway. Moreover, EGCG significantly inhibits cell growth as well as the migration and invasion of melanoma cells. Taken together, these findings show that EGCG is a novel E3 ubiquitin ligase inhibitor that could be used to target TRAF6 for chemotherapy or the prevention of melanoma. PMID:27791197

  20. Growth-Inhibiting Activity of Resveratrol Imine Analogs on Tumor Cells In Vitro

    PubMed Central

    Wang, Shan; Willenberg, Ina; Krohn, Michael; Hecker, Tanja; Meckelmann, Sven; Li, Chang; Pan, Yuanjiang; Schebb, Nils Helge; Steinberg, Pablo; Empl, Michael Telamon

    2017-01-01

    Although resveratrol exerts manifold antitumorigenic effects in vitro, its efficacy against malignancies in vivo seems limited. This has been increasingly recognized in recent years and has prompted scientists to search for structurally related compounds with more promising anticarcinogenic and/or pharmacokinetic properties. A class of structurally modified resveratrol derivatives, so-called resveratrol imine analogs (IRA’s), might meet these requirements. Therefore, the biological activity of five of these compounds was examined and compared to that of resveratrol. Firstly, the antiproliferative potency of all five IRA’s was investigated using the p53 wildtype-carrying colorectal carcinoma cell line HCT-116wt. Then, using the former and a panel of various other tumor cell lines (including the p53 knockout variant HCT-116p53-/-), the growth-inhibiting and cell cycle-disturbing effects of the most potent IRA (IRA 5, 2-[[(2-hydroxyphenyl)methylene]amino]-phenol) were studied as was its influence on cyclooxygenase-2 expression and activity. Finally, rat liver microsomes were used to determine the metabolic stability of that compound. IRA 5 was clearly the most potent compound in HCT-116wt cells, with an unusually high IC50-value of 0.6 μM. However, in the other five cell lines used, the antiproliferative activity was mostly similar to resveratrol and the effects on the cell cycle were heterogeneous. Although all cell lines were affected by treatment with IRA 5, cells expressing functional p53 seemed to react more sensitively, suggesting that this protein plays a modulating role in the induction of IRA 5-mediated biological effects. Lastly, IRA 5 led to contradictory effects on cyclooxygenase-2 expression and activity and was less glucuronidated than resveratrol. As IRA 5 is approximately 50 times more toxic towards HCT-116wt cells, exerts different effects on the cyclooxygenase-2 and is metabolized to a lesser extent, it shows certain advantages over resveratrol

  1. The SLT2(MPK1) MAP kinase is activated during periods of polarized cell growth in yeast.

    PubMed Central

    Zarzov, P; Mazzoni, C; Mann, C

    1996-01-01

    The SLT2(MPK1) mitogen-activated protein kinase signal transduction pa thway has been implicated in several biological processes in Saccharomyces cerevisiae, including the regulation of cytoskeletal and cell wall structure, polarized cell growth, and response to nutrient availability, hypo-osmotic shock and heat shock. We examined the conditions under which the SLT2 pathway is activated. We found that the SLT2 kinase is tyrosine phosphorylated and activated during periods in which yeast cells are undergoing polarized cell growth, namely during bud formation of vegetative cell division and during projection formation upon treatment with mating pheromone. BCK1(SLK1), a MEK kinase, is required for SLT2 activation in both of these situations. Upstream of BCK1(SLK1), we found that the STE20 kinase was required for SLT2 activation by mating pheromone, but was unnecessary for its activation during the vegetative cell cycle. Finally, SLT2 activation during vegetative growth was partially dependent on CDC28 in that the stimulation of SLT2 tyrosine phosphorylation was significantly reduced directly after a temperature shift in cdc28 ts mutants. Our data are consistent with a role for SLT2 in promoting polarized cell growth. Images PMID:8598209

  2. Therapeutic effects of cell-permeant peptides that activate G proteins downstream of growth factors

    PubMed Central

    Ma, Gary S.; Aznar, Nicolas; Kalogriopoulos, Nicholas; Midde, Krishna K.; Lopez-Sanchez, Inmaculada; Sato, Emi; Dunkel, Ying; Gallo, Richard L.; Ghosh, Pradipta

    2015-01-01

    In eukaryotes, receptor tyrosine kinases (RTKs) and trimeric G proteins are two major signaling hubs. Signal transduction via trimeric G proteins has long been believed to be triggered exclusively by G protein-coupled receptors (GPCRs). This paradigm has recently been challenged by several studies on a multimodular signal transducer, Gα-Interacting Vesicle associated protein (GIV/Girdin). We recently demonstrated that GIV’s C terminus (CT) serves as a platform for dynamic association of ligand-activated RTKs with Gαi, and for noncanonical transactivation of G proteins. However, exogenous manipulation of this platform has remained beyond reach. Here we developed cell-permeable GIV-CT peptides by fusing a TAT-peptide transduction domain (TAT-PTD) to the minimal modular elements of GIV that are necessary and sufficient for activation of Gi downstream of RTKs, and used them to engineer signaling networks and alter cell behavior. In the presence of an intact GEF motif, TAT-GIV-CT peptides enhanced diverse processes in which GIV’s GEF function has previously been implicated, e.g., 2D cell migration after scratch-wounding, invasion of cancer cells, and finally, myofibroblast activation and collagen production. Furthermore, topical application of TAT-GIV-CT peptides enhanced the complex, multireceptor-driven process of wound repair in mice in a GEF-dependent manner. Thus, TAT-GIV peptides provide a novel and versatile tool to manipulate Gαi activation downstream of growth factors in a diverse array of pathophysiologic conditions. PMID:25926659

  3. AMP-activated protein kinase is required for cell survival and growth in HeLa-S3 cells in vivo.

    PubMed

    Song, Xuhong; Huang, Dongyang; Liu, Yanmin; Pan, Xiaokang; Zhang, Jing; Liang, Bin

    2014-06-01

    Activation of the AMP-dependent protein kinase (AMPK) is linked to cancer cell survival in a variety of cancer cell lines, particularly under conditions of stress. As a potent activator of AMPK, metformin has become a hot topic of discussion for its effect on cancer cell. Here, we report that AMPK activated by metformin promotes HeLa-S3 cell survival and growth in vivo. Our results show that metformin inhibited cell proliferation in MCF-7 cells, but not in LKB1-deficient HeLa-S3 cells. Re-expression of LKB-1 in HeLa-S3 cells restored the growth inhibitory effect of metformin, indicating a requirement for LKB-1 in metformin-induced growth inhibition. Moreover, AMPK activation exerted a protective effect in HeLa-S3 cells by relieving ER stress, modulating ER Ca(2+) storage, and finally contributing to cellular adaptation and resistance to apoptosis. Our findings identify a link between AMPK activation and cell survival in HeLa-S3 cells, which demonstrates a beneficial effect of AMPK activated by metformin in cancer cell, and suggests a discrete re-evaluation on the role of metformin/AMPK activation on tumor cell growth, proliferation, and on clinical application in cancer therapy.

  4. Activation of the Na+/H+ antiport is not required for epidermal growth factor-dependent gene expression, growth inhibition or proliferation in human breast cancer cells.

    PubMed Central

    Church, J G; Mills, G B; Buick, R N

    1989-01-01

    Mitogen interaction with specific receptors in many cell types leads to activation of the Na+/H+ antiport and a resultant cytoplasmic alkalinization. Since amiloride inhibits both Na+/H+ exchange and cell proliferation, it has been hypothesized that activation of the antiport is an obligatory requirement for mitogenesis. However, concentrations of amiloride which inhibit the antiport also inhibit other cellular processes, including protein synthesis and phosphorylation. We have used an epidermal growth factor (EGF) receptor gene-amplified human breast cancer cell line, the growth of which is inhibited by high levels of EGF in culture (MDA-468) and a variant, the growth of which is stimulated by EGF (MDA-468-S4), along with two potent amiloride analogues to examine whether activation of the Na+/H+ antiport and cytoplasmic alkalinization is necessary for both EGF-dependent effects to occur. At concentrations of the amiloride analogues which block Na+/H+ exchange in both cell types by 76-98%, the EGF-dependent alterations in [3H]thymidine incorporation or induction in c-myc or c-fos gene transcription were unaltered. These results were confirmed by a lack of effect of the amiloride analogues on both the growth-stimulatory and growth-inhibitory effects on EGF in an anchorage-independent growth assay. Similarly, in pH-altered media that prevented normal cytoplasmic alkalinization, the response of both MDA-468 and MDA-468-S4 to EGF activation was unaltered. In addition, activation of the Na+/H+ antiport alone was not sufficient to induce c-myc and c-fos transcription in either cell type. Taken together, these data suggest that neither the Na+/H+ antiport nor cytoplasmic alkalinization are necessary or sufficient for either EGF-dependent growth stimulation or growth inhibition in MDA-468 human breast cancer cells. Images Fig. 3. PMID:2537620

  5. Nerve growth factor enhances the CRE-dependent transcriptional activity activated by nobiletin in PC12 cells.

    PubMed

    Takito, Jiro; Kimura, Junko; Kajima, Koji; Uozumi, Nobuyuki; Watanabe, Makoto; Yokosuka, Akihito; Mimaki, Yoshihiro; Nakamura, Masanori; Ohizumi, Yasushi

    2016-07-01

    Prevention and treatment of Alzheimer disease are urgent problems for elderly people in developed countries. We previously reported that nobiletin, a poly-methoxylated flavone from the citrus peel, improved the symptoms in various types of animal models of memory loss and activated the cAMP responsive element (CRE)-dependent transcription in PC12 cells. Nobiletin activated the cAMP/PKA/MEK/Erk/MAPK signaling pathway without using the TrkA signaling activated by nerve growth factor (NGF). Here, we examined the effect of combination of nobiletin and NGF on the CRE-dependent transcription in PC12 cells. Although NGF alone had little effect on the CRE-dependent transcription, NGF markedly enhanced the CRE-dependent transcription induced by nobiletin. The NGF-induced enhancement was neutralized by a TrkA antagonist, K252a. This effect of NGF was effective on the early signaling event elicited by nobiletin. These results suggested that there was crosstalk between NGF and nobiletin signaling in activating the CRE-dependent transcription in PC12 cells.

  6. Connective tissue growth factor production by activated pancreatic stellate cells in mouse alcoholic chronic pancreatitis

    PubMed Central

    Charrier, Alyssa; Brigstock, David R.

    2010-01-01

    Alcoholic chronic pancreatitis (ACP) is characterized by pancreatic necrosis, inflammation, and scarring, the latter of which is due to excessive collagen deposition by activated pancreatic stellate cells (PSC). The aim of this study was to establish a model of ACP in mice, a species that is usually resistant to the toxic effects of alcohol, and to identify the cell type(s) responsible for production of connective tissue growth factor (CTGF), a pro-fibrotic molecule. C57Bl/6 male mice received intraperitoneal ethanol injections for three weeks against a background of cerulein-induced acute pancreatitis. Peak blood alcohol levels remained consistently high in ethanol-treated mice as compared to control mice. In mice receiving ethanol plus cerulein, there was increased collagen deposition as compared to other treatment groups as well as increased frequency of α-smooth muscle actin and desmin-positive PSC which also demonstrated significantly enhanced CTGF protein production. Expression of mRNA for collagen α1(I), α-smooth muscle actin or CTGF were all increased and co-localized exclusively to activated PSC in ACP. Pancreatic expression of mRNA for key profibrotic markers were all increased in ACP. In conclusion, a mouse model of ACP has been developed that mimics key pathophysiological features of the disease in humans and which shows that activated PSC are the principal producers of collagen and CTGF. PSC-derived CTGF is thus a candidate therapeutic target in anti-fibrotic strategies for ACP. PMID:20368699

  7. Constitutively active Notch1 induces growth arrest of HPV-positive cervical cancer cells via separate signaling pathways.

    PubMed

    Talora, Claudio; Cialfi, Samantha; Segatto, Oreste; Morrone, Stefania; Kim Choi, John; Frati, Luigi; Paolo Dotto, Gian; Gulino, Alberto; Screpanti, Isabella

    2005-05-01

    Notch signaling plays a key role in cell-fate determination and differentiation in different organisms and cell types. Several reports suggest that Notch signaling may be involved in neoplastic transformation. However, in primary keratinocytes, Notch1 can function as a tumor suppressor. Similarly, in HPV-positive cervical cancer cells, constitutively active Notch1 signaling was found to cause growth suppression. Activated Notch1 in these cells represses viral E6/E7 expression through AP-1 down-modulation, resulting in increased p53 expression and a block of pRb hyperphosphorylation. Here we show that in cervical cancer cell lines in which Notch1 ability to repress AP-1 activity is impaired, Notch1-enforced expression elicits an alternative pathway leading to growth arrest. Indeed, activated Notch1 signaling suppresses activity of the helix-loop-helix transcription factor E47, via ERK1/2 activation, resulting in inhibition of cell cycle progression. Moreover, we found that RBP-Jkappa-dependent Notch signaling is specifically repressed in cervical cancer cells and this repression could provide one such mechanism that needs to be activated for cervical carcinogenesis. Finally, we show that inhibition of endogenous Notch1 signaling, although results in a proliferative advantage, sensitizes cervical cancer cell lines to drug-induced apoptosis. Together, our results provide novel molecular insights into Notch1-dependent growth inhibitory effects, counteracting the transforming potential of HPV.

  8. Constitutively active Notch1 induces growth arrest of HPV-positive cervical cancer cells via separate signaling pathways

    SciTech Connect

    Talora, Claudio; Cialfi, Samantha; Segatto, Oreste; Morrone, Stefania; Kim Choi, John; Frati, Luigi; Paolo Dotto, Gian; Gulino, Alberto; Screpanti, Isabella . E-mail: isabella.screpanti@uniroma1.it

    2005-05-01

    Notch signaling plays a key role in cell-fate determination and differentiation in different organisms and cell types. Several reports suggest that Notch signaling may be involved in neoplastic transformation. However, in primary keratinocytes, Notch1 can function as a tumor suppressor. Similarly, in HPV-positive cervical cancer cells, constitutively active Notch1 signaling was found to cause growth suppression. Activated Notch1 in these cells represses viral E6/E7 expression through AP-1 down-modulation, resulting in increased p53 expression and a block of pRb hyperphosphorylation. Here we show that in cervical cancer cell lines in which Notch1 ability to repress AP-1 activity is impaired, Notch1-enforced expression elicits an alternative pathway leading to growth arrest. Indeed, activated Notch1 signaling suppresses activity of the helix-loop-helix transcription factor E47, via ERK1/2 activation, resulting in inhibition of cell cycle progression. Moreover, we found that RBP-J{kappa}-dependent Notch signaling is specifically repressed in cervical cancer cells and this repression could provide one such mechanism that needs to be activated for cervical carcinogenesis. Finally, we show that inhibition of endogenous Notch1 signaling, although results in a proliferative advantage, sensitizes cervical cancer cell lines to drug-induced apoptosis. Together, our results provide novel molecular insights into Notch1-dependent growth inhibitory effects, counteracting the transforming potential of HPV.

  9. Metformin inhibits growth of human non-small cell lung cancer cells via liver kinase B-1-independent activation of adenosine monophosphate-activated protein kinase

    PubMed Central

    GUO, QIANQIAN; LIU, ZHIYAN; JIANG, LILI; LIU, MENGJIE; MA, JIEQUN; YANG, CHENGCHENG; HAN, LILI; NAN, KEJUN; LIANG, XUAN

    2016-01-01

    Metformin, the most widely administered oral anti-diabetic therapeutic agent, exerts its glucose-lowering effect predominantly via liver kinase B1 (LKB1)-dependent activation of adenosine monophosphate-activated protein kinase (AMPK). Accumulating evidence has demonstrated that metformin possesses potential antitumor effects. However, whether the antitumor effect of metformin is via the LKB1/AMPK signaling pathway remains to be determined. In the current study, the effects of metformin on proliferation, cell cycle progression, and apoptosis of human non-small cell lung cancer (NSCLC) H460 (LKB1-null) and H1299 (LKB1-positive) cells were assessed, and the role of LKB1/AMPK signaling in the anti-growth effects of metformin were investigated. Cell viability was determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, cell cycle distribution and apoptosis were assessed by flow cytometry, and protein expression levels were measured by western blotting. Metformin inhibited proliferation, induced significant cell cycle arrest at the G0–G1 phase and increased apoptosis in NSCLC cells in a time- and concentration-dependent manner, regardless of the level of LKB1 protein expression. Furthermore, knockdown of LKB1 with short hairpin RNA (shRNA) did not affect the antiproliferative effect of metformin in the H1299 cells. Metformin stimulated AMPK phosphorylation and subsequently suppressed the phosphorylation of mammalian target of rapamycin and its downstream effector, 70-kDa ribosomal protein S6 kinase in the two cell lines. These effects were abrogated by silencing AMPK with small interfering RNA (siRNA). In addition, knockdown of AMPK with siRNA inhibited the effect of metformin on cell proliferation in the two cell lines. These results provide evidence that the growth inhibition of metformin in NSCLC cells is mediated by LKB1-independent activation of AMPK, indicating that metformin may be a potential therapeutic agent for the treatment of

  10. Neurotensin-induced Erk1/2 phosphorylation and growth of human colonic cancer cells are independent from growth factors receptors activation

    SciTech Connect

    Massa, Fabienne; Tormo, Aurelie; Beraud-Dufour, Sophie; Coppola, Thierry; Mazella, Jean

    2011-10-14

    Highlights: {yields} We compare intracellular pathways of NT and EGF in HT29 cells. {yields} NT does not transactivate EGFR. {yields} Transactivation of EGFR is not a general rule in cancer cell growth. -- Abstract: Neurotensin (NT) promotes the proliferation of human colonic cancer cells by undefined mechanisms. We already demonstrated that, in the human colon adenocarcinoma cell line HT29, the effects of NT were mediated by a complex formed between the NT receptor-1 (NTSR1) and-3 (NTSR3). Here we examined cellular mechanisms that led to NT-induced MAP kinase phosphorylation and growth factors receptors transactivation in colonic cancer cells and proliferation in HT29 cells. With the aim to identify upstream signaling involved in NT-elicited MAP kinase activation, we found that the stimulatory effects of the peptide were totally independent from the activation of the epidermal growth factor receptor (EGFR) both in the HT29 and the HCT116 cells. NT was unable to promote phosphorylation of EGFR and to compete with EGF for its binding to the receptor. Pharmacological approaches allowed us to differentiate EGF and NT signaling in HT29 cells since only NT activation of Erk1/2 was shown to be sensitive to PKC inhibitors and since only NT increased the intracellular level of calcium. We also observed that NT was not able to transactivate Insulin-like growth factor receptor. Our findings indicate that, in the HT29 and HCT116 cell lines, NT stimulates MAP kinase phosphorylation and cell growth by a pathway which does not involve EGF system but rather NT receptors which transduce their own intracellular effectors. These results indicate that depending on the cell line used, blocking EGFR is not the general rule to inhibit NT-induced cancer cell proliferation.

  11. [Activation of the expression of the microcin C51 operon upon glucose starvation of cells at the exponential growth phase].

    PubMed

    Veselovskiĭ, A M; Metlitskaia, A Z; Lipasova, V A; Bass, I A; Khmel', I A

    2005-01-01

    It was earlier shown that expression of the microcin C51 operon in Escherichia coli cells is activated upon decelerated growth of cells during their transition to the stationary growth phase and depends on the sigmaS subunit of RNA polymerase. Using a single-copy construct containing the cloned promoter region of the microcin C51 operon and a promoterless lac operon (P(mcc)-lac), it was shown that the promoter of the microcin operon was also induced by stress caused by the transition of cells at the exponential growth phase into the medium without glucose as a sole carbon source. Activation of P(mcc)-lac expression upon severe glucose starvation occurred in rpoS+ and rpoS- strains. In cells carrying the rpoD800 mutation that renders the sigma70 subunit of RNA polymerase temperature-sensitive, an activation of P(mcc)-lac expression was observed at nonpermissive temperature, in contrast to its complete inhibition in E. coli cells at the phase of delayed growth. Other stressors-nitrogen starvation, high temperatures, osmotic shock, tetracycline and chloramphenicol-did not activate P(mcc)-lac expression in cells at the exponential growth phase.

  12. IPA-3 Inhibits the Growth of Liver Cancer Cells By Suppressing PAK1 and NF-κB Activation

    PubMed Central

    Wong, Leo Lap-Yan; Lam, Ian Pak-Yan; Wong, Tracy Yuk-Nar; Lai, Wai-Lung; Liu, Heong-Fai; Yeung, Lam-Lung; Ching, Yick-Pang

    2013-01-01

    Hepatocellular carcinoma (HCC) is one of the major malignancies worldwide and is associated with poor prognosis due to the high incidences of metastasis and tumor recurrence. Our previous study showed that overexpression of p21-activated protein kinase 1 (PAK1) is frequently observed in HCC and is associated with a more aggressive tumor behavior, suggesting that PAK1 is a potential therapeutic target in HCC. In the current study, an allosteric small molecule PAK1 inhibitor, IPA-3, was evaluated for the potential in suppressing hepatocarcinogenesis. Consistent with other reports, inhibition of PAK1 activity was observed in several human HCC cell lines treated with various dosages of IPA-3. Using cell proliferation, colony formation and BrdU incorporation assays, we demonstrated that IPA-3 treatment significantly inhibited the growth of HCC cells. The mechanisms through which IPA-3 treatment suppresses HCC cell growth are enhancement of apoptosis and blockage of activation of NF-κB. Furthermore, our data suggested that IPA-3 not only inhibits the HCC cell growth, but also suppresses the metastatic potential of HCC cells. Nude mouse xenograft assay demonstrated that IPA-3 treatment significantly reduced the tumor growth rate and decreased tumor volume, indicating that IPA-3 can suppress the in vivo tumor growth of HCC cells. Taken together, our demonstration of the potential preclinical efficacy of IPA-3 in HCC provides the rationale for cancer therapy. PMID:23894351

  13. Belinostat-induced apoptosis and growth inhibition in pancreatic cancer cells involve activation of TAK1-AMPK signaling axis

    SciTech Connect

    Wang, Bing Wang, Xin-bao; Chen, Li-yu; Huang, Ling; Dong, Rui-zen

    2013-07-19

    Highlights: •Belinostat activates AMPK in cultured pancreatic cancer cells. •Activation of AMPK is important for belinostat-induced cytotoxic effects. •ROS and TAK1 are involved in belinostat-induced AMPK activation. •AMPK activation mediates mTOR inhibition by belinostat. -- Abstract: Pancreatic cancer accounts for more than 250,000 deaths worldwide each year. Recent studies have shown that belinostat, a novel pan histone deacetylases inhibitor (HDACi) induces apoptosis and growth inhibition in pancreatic cancer cells. However, the underlying mechanisms are not fully understood. In the current study, we found that AMP-activated protein kinase (AMPK) activation was required for belinostat-induced apoptosis and anti-proliferation in PANC-1 pancreatic cancer cells. A significant AMPK activation was induced by belinostat in PANC-1 cells. Inhibition of AMPK by RNAi knockdown or dominant negative (DN) mutation significantly inhibited belinostat-induced apoptosis in PANC-1 cells. Reversely, AMPK activator AICAR and A-769662 exerted strong cytotoxicity in PANC-1 cells. Belinostat promoted reactive oxygen species (ROS) production in PANC-1 cells, increased ROS induced transforming growth factor-β-activating kinase 1 (TAK1)/AMPK association to activate AMPK. Meanwhile, anti-oxidants N-Acetyl-Cysteine (NAC) and MnTBAP as well as TAK1 shRNA knockdown suppressed belinostat-induced AMPK activation and PANC-1 cell apoptosis. In conclusion, we propose that belinostat-induced apoptosis and growth inhibition require the activation of ROS-TAK1-AMPK signaling axis in cultured pancreatic cancer cells.

  14. Multifunctional carbon nanotube/bioceramics modulate the directional growth and activity of osteoblastic cells.

    PubMed

    Mata, D; Oliveira, F J; Ferro, M; Gomes, P S; Fernandes, M H; Lopes, M A; Silval, R F

    2014-05-01

    Biomaterials can still be reinvented to become simple and universal bone regeneration solutions. Following this roadmap, a bone graft of carbon nanotube (CNT)/glass/hydroxyapatite (HA) with controlled CNT agglomeration state was designed with multifunctionalities able to stimulate the bone cell phenotype. The preparation route, the mechanical and electrical behavior and the in vitro profiles of degradation and osteocompatibility were described. A non-destructive dynamic route was found to have a higher influence than the Diels-Alder functionalization one on controlling the CNT agglomerate state in the ceramic-matrix composite. Biologically safe CNT agglomerates, with diameter sizes below 3 microm homogenously distributed, were obtained in non-functionalized and functionalized composites. Yet, the lowest CNT damage and the highest mechanical and electrical properties were found for the non-functionalized materials. Even though that these composites present higher degradation rate at pH:3 than the ceramic matrix, the CNT agglomerates are released with safe diameter sizes. Also, non-functionalized composites allowed cellular adhesion and modulated the orientation of the cell growth, with a proliferation/differentiation relationship favoring osteoblastic functional activity. Findings offer further contributions for bone tissue engineering by showing that multifunctional bone grafts with high electroconductivity, and integrating CNT agglomerates with maximized interfacing area, allow the in situ control of bone cell functions.

  15. Biological Evaluation of Ferrocenyl Olefins: Cancer Cell Growth Inhibition, ROS Production, and Apoptosis Activity.

    PubMed

    Sun, Aijing; Lin, Junsheng; Pi, Chao; Xu, Ruian; Cui, Xiuling

    2016-03-01

    The antiproliferative effects of various ferrocenyl olefins were evaluated against the cell lines MCF-7 (human breast cancer cells), DLD-1 (human colon adenocarcinoma cells), HUVEC (human umbilical vein endothelial cells), and A549 (human lung carcinoma cells), using the MTT test. IC50 values were determined. Compounds 8, 9, 11, and 12 with high antiproliferative activity were tested for their reactive oxygen species (ROS) production, and cell cycle analysis was performed on A549 cells. The results show that these compounds might perform their antiproliferative activity through inducing ROS generation, apoptosis induction, and cell cycle arrest.

  16. Enhancement of UV-induced nucleotide excision repair activity upon forskolin treatment is cell growth-dependent

    PubMed Central

    Lee, Jeong-Min; Park, Jeong-Min; Kang, Tae-Hong

    2016-01-01

    Forskolin (FSK), an adenylyl cyclase activator, has recently been shown to enhance nucleotide excision repair (NER) upon UV exposure. However, our study revealed that this effect was detected in human skin epithelial ARPE19 cells only in growing cells, but not in non-cycling cells. When the cells were grown at low density (70% confluence), FSK was capable of stimulating cAMP responsive element binding (CREB) phosphorylation, a marker for FSK-stimulated PKA activation, and resulted in a significant increase of NER activity compared to control treatment. However, cells grown under 100% confluent conditions showed neither FSK-induced CREB phosphorylation nor the resulting NER enhancement. These findings indicate that cellular growth is critical for FSK-induced NER enhancement and suggest that cellular growth conditions should be considered as a variable while evaluating a reagent’s pharmacotherapeutic efficacy. [BMB Reports 2016; 49(10): 566-571] PMID:27470212

  17. Enhancement of UV-induced nucleotide excision repair activity upon forskolin treatment is cell growth-dependent.

    PubMed

    Lee, Jeong-Min; Park, Jeong-Min; Kang, Tae-Hong

    2016-10-01

    Forskolin (FSK), an adenylyl cyclase activator, has recently been shown to enhance nucleotide excision repair (NER) upon UV exposure. However, our study revealed that this effect was detected in human skin epithelial ARPE19 cells only in growing cells, but not in non-cycling cells. When the cells were grown at low density (70% confluence), FSK was capable of stimulating cAMP responsive element binding (CREB) phosphorylation, a marker for FSK-stimulated PKA activation, and resulted in a significant increase of NER activity compared to control treatment. However, cells grown under 100% confluent conditions showed neither FSK-induced CREB phosphorylation nor the resulting NER enhancement. These findings indicate that cellular growth is critical for FSK-induced NER enhancement and suggest that cellular growth conditions should be considered as a variable while evaluating a reagent's pharmacotherapeutic efficacy. [BMB Reports 2016; 49(10): 566-571].

  18. Rapid blockade of telomerase activity and tumor cell growth by the DPL lipofection of ribbon antisense to hTR.

    PubMed

    Bajpai, Arun K; Park, Jeong-Hoh; Moon, Ik-Jae; Kang, Hyungu; Lee, Yun-Han; Doh, Kyung-Oh; Suh, Seong-Il; Chang, Byeong-Churl; Park, Jong-Gu

    2005-09-29

    Ribbon antisense (RiAS) to the hTR RNA, a component of the telomerase complex, was employed to inhibit telomerase activity and cancer cell growth. The antisense molecule, hTR-RiAS, combined with enhanced cellular uptake was shown to effectively inhibit telomerase activity and cause rapid cell death in various cancer cell lines. When cancer cells were treated with hTR-RiAS, the level of hTR RNA was reduced by more than 90% accompanied with reduction in telomerase activity. When checked for cancer cell viability, cancer cell lines treated with hTR-RiAS using DNA+Peptide+Lipid complex showed 70-80% growth inhibition in 3 days. The reduced cell viability was due to apoptosis as the percentage of cells exhibiting the sub-G0 arrest and DNA fragmentation increased after antisense treatment. Further, when subcutaneous tumors of a colon cancer cell line (SW480) were treated intratumorally with hTR-RiAS, tumor growth was markedly suppressed with almost total ablation of hTR RNA in the tumor tissue. Cells in the tumor tissue were also found to undergo apoptosis after hTR-RiAS treatment. These results suggest that hTR-RiAS is an effective anticancer reagent, with a potential for broad efficacy to diverse malignant tumors.

  19. Notch3 activation modulates cell growth behaviour and cross-talk to Wnt/TCF signalling pathway.

    PubMed

    Wang, Tao; Holt, Cathy M; Xu, Chiheng; Ridley, Caroline; P O Jones, Richard; Baron, Martin; Trump, Dorothy

    2007-12-01

    Notch3 is one of the four Notch receptors identified in mammal and expressed mainly in the arterial smooth muscle cells of human adult. Signalling via Notch3 is thought to be important in maintaining the phenotypic stability of the cells, but the nature of the signalling and its regulation to other signalling pathways are largely unknown. To understand further of the cellular function of Notch3 signalling, we generated cell lines stably expressing a constitutively active form of human Notch3 comprising of its soluble intracellular domain (N3IC). The N3IC expressing cells showed accelerated proliferation, decreased migration, increased cell surface N-cadherin, and growth in a colonised fashion that was reversible by N-cadherin blockade. N3IC expressing cells were also protected significantly against staurosporine-induced apoptosis and exhibited lower caspase 3/7 activity, accompanied by up-regulation of pAKT compared to control cells. We also found a complex cross-talk between Notch3 signalling and the Wnt pathway. N3IC stimulated Wnt-independent T-cell factor (TCF, the target transcription factor in the Wnt pathway) activation which was associated with increased Tyr-142 phosphorylation of beta-catenin. In contrast N3IC suppressed TCF activation in response to LiCl, which mimics the Wnt-dependent TCF activation mechanism. We conclude that Notch3 promotes cell growth and survival by activating PI3-kinase/AKT pathway; N-cadherin participates in the change of cell growth caused by Notch3 activation; and Notch3 signalling has dual-effects on the Wnt/TCF pathway suggesting a buffering role that Notch3 signalling may play in balancing these two important signalling pathways in regulating cell function.

  20. Prolonged induction of p21Cip1/WAF1/CDK2/PCNA complex by epidermal growth factor receptor activation mediates ligand-induced A431 cell growth inhibition

    PubMed Central

    1995-01-01

    Proliferation of some cultured human tumor cell lines bearing high numbers of epidermal growth factor (EGF) receptors is paradoxically inhibited by EGF in nanomolar concentrations. In the present study, we have investigated the biochemical mechanism of growth inhibition in A431 human squamous carcinoma cells exposed to exogenous EGF. In parallel, we studied a selected subpopulation, A431-F, which is resistant to EGF-mediated growth inhibition. We observed a marked reduction in cyclin-dependent kinase-2 (CDK2) activity when A431 and A431-F cells were cultured with 20 nM EGF for 4 h. After further continuous exposure of A431 cells to EGF, the CDK2 activity remained at a low level and was accompanied by persistent G1 arrest. In contrast, the early reduced CDK2 activity and G1 accumulation in A431-F cells was only transient. We found that, at early time points (4-8 h), EGF induces p21Cip1/WAF1 mRNA and protein expression in both EGF-sensitive A431 cells and EGF-resistant A431-F cells. But only in A431 cells, was p21Cip1/WAF1 expression sustained at a significantly increased level for up to 5 d after addition of EGF. Induction of p21Cip1/WAF1 by EGF could be inhibited by a specific EGF receptor tyrosine kinase inhibitor, tyrphostin AG1478, suggesting that p21Cip1/WAF1 induction was a consequence of receptor tyrosine kinase activation by EGF. We also demonstrated that the increased p21Cip1/WAF1 was associated with both CDK2 and proliferating cell nuclear antigen (PCNA). Taken together, our results demonstrate that p21Cip1/WAF1 is an important mediator of EGF-induced G1 arrest and growth inhibition in A431 cells. PMID:7559780

  1. Faster voltage-dependent activation of Na+ channels in growth cones versus somata of neuroblastoma N1E-115 cells.

    PubMed Central

    Zhang, J; Loew, L M; Davidson, R M

    1996-01-01

    Kinetics of voltage-gated ionic channels fundamentally reflect the response of the channels to local electric fields. In this report cell-attached patch-clamp studies reveal that the voltage-dependent activation rate of sodium channels residing in the growth cone membrane differs from that of soma sodium channels in differentiating N1E-115 neuroblastoma cells. Because other electrophysiological properties of these channels do not differ, this finding may be a reflection of the difference in intramembrane electric field in these two regions of the cell. This represents a new mechanism for channels to attain a range of activities both within and between cells. PMID:8913589

  2. TGF-β promotes glioma cell growth via activating Nodal expression through Smad and ERK1/2 pathways

    SciTech Connect

    Sun, Jing; Liu, Su-zhi; Lin, Yan; Cao, Xiao-pan; Liu, Jia-ming

    2014-01-17

    Highlights: •TGF-β promoted Nodal expression in glioma cells. •TGF-β promoted Nodal expression via activating Smad and ERK1/2 pathways. •TGF-β promotes glioma cell growth via activating Nodal expression. -- Abstract: While there were certain studies focusing on the mechanism of TGF-β promoting the growth of glioma cells, the present work revealed another novel mechanism that TGF-β may promote glioma cell growth via enhancing Nodal expression. Our results showed that Nodal expression was significantly upregulated in glioma cells when TGF-β was added, whereas the TGF-β-induced Nodal expression was evidently inhibited by transfection Smad2 or Smad3 siRNAs, and the suppression was especially significant when the Smad3 was downregulated. Another, the attenuation of TGF-β-induced Nodal expression was observed with blockade of the ERK1/2 pathway also. Further detection of the proliferation, apoptosis, and invasion of glioma cells indicated that Nodal overexpression promoted the proliferation and invasion of tumor cells and inhibited their apoptosis, resembling the effect of TGF-β addition. Downregulation of Nodal expression via transfection Nodal-specific siRNA in the presence of TGF-β weakened the promoting effect of the latter on glioma cells growth, and transfecting Nodal siRNA alone in the absence of exogenous TGF-β more profoundly inhibited the growth of glioma cells. These results demonstrated that while both TGF-β and Nodal promoted glioma cells growth, the former might exert such effect by enhancing Nodal expression, which may form a new target for glioma therapy.

  3. JAK3 deregulation by activating mutations confers invasive growth advantage in extranodal nasal-type natural killer cell lymphoma.

    PubMed

    Bouchekioua, A; Scourzic, L; de Wever, O; Zhang, Y; Cervera, P; Aline-Fardin, A; Mercher, T; Gaulard, P; Nyga, R; Jeziorowska, D; Douay, L; Vainchenker, W; Louache, F; Gespach, C; Solary, E; Coppo, P

    2014-02-01

    Extranodal, nasal-type natural killer (NK)/T-cell lymphoma (NKCL) is an aggressive malignancy with poor prognosis in which, usually, signal transducer and activator of transcription 3 (STAT3) is constitutively activated and oncogenic. Here, we demonstrate that STAT3 activation mostly results from constitutive Janus kinase (JAK)3 phosphorylation on tyrosine 980, as observed in three of the four tested NKCL cell lines and in 20 of the 23 NKCL tumor samples under study. In one of the cell lines and in 4 of 19 (21%) NKCL primary tumor samples, constitutive JAK3 activation was related to an acquired mutation (A573V or V722I) in the JAK3 pseudokinase domain. We then show that constitutive activation of the JAK3/STAT3 pathway has a major role in NKCL cell growth and survival and in the invasive phenotype. Indeed, NKCL cell growth was slowed down in vitro by targeting JAK3 with chemical inhibitors or small-interfering RNAs. In a human NKCL xenograft mouse model, tumor growth was significantly delayed by the JAK3 inhibitor CP-690550. Altogether, the constitutive activation of JAK3, which can result from JAK3-activating mutations, is a frequent feature of NKCL that deserves to be tested as a therapeutic target.

  4. A natural small molecule harmine inhibits angiogenesis and suppresses tumour growth through activation of p53 in endothelial cells.

    PubMed

    Dai, Fujun; Chen, Yihua; Song, Yajuan; Huang, Li; Zhai, Dong; Dong, Yanmin; Lai, Li; Zhang, Tao; Li, Dali; Pang, Xiufeng; Liu, Mingyao; Yi, Zhengfang

    2012-01-01

    Activation of p53 effectively inhibits tumor angiogenesis that is necessary for tumor growth and metastasis. Reactivation of the p53 by small molecules has emerged as a promising new strategy for cancer therapy. Several classes of small-molecules that activate the p53 pathway have been discovered using various approaches. Here, we identified harmine (β-carboline alkaloid) as a novel activator of p53 signaling involved in inhibition of angiogenesis and tumor growth. Harmine induced p53 phosphorylation and disrupted the p53-MDM2 interaction. Harmine also prevented p53 degradation in the presence of cycloheximide and activated nuclear accumulation of p53 followed by increasing its transcriptional activity in endothelial cells. Moreover, harmine not only induced endothelial cell cycle arrest and apoptosis, but also suppressed endothelial cell migration and tube formation as well as induction of neovascularity in a mouse corneal micropocket assay. Finally, harmine inhibited tumor growth by reducing tumor angiogenesis, as demonstrated by a xenograft tumor model. Our results suggested a novel mechanism and bioactivity of harmine, which inhibited tumor growth by activating the p53 signaling pathway and blocking angiogenesis in endothelial cells.

  5. Bone marrow-derived cultured mast cells and peritoneal mast cells as targets of a growth activity secreted by BALB/3T3 fibroblasts

    SciTech Connect

    Jozaki, K.; Kuriu, A.; Hirota, S.; Onoue, H.; Ebi, Y.; Adachi, S.; Ma, J.Y.; Tarui, S.; Kitamura, Y. )

    1991-03-01

    When fibroblast cell lines were cultured in contact with bone marrow-derived cultured mast cells (CMC), both NIH/3T3 and BALB/3T3 cell lines supported the proliferation of CMC. In contrast, when contact between fibroblasts and CMC was prohibited by Biopore membranes or soft agar, only BALB/3T3 fibroblasts supported CMC proliferation, suggesting that BALB/3T3 but not NIH/3T3 cells secreted a significant amount of a mast cell growth activity. Moreover, the BALB/3T3-derived growth activity induced the incorporation of (3H)thymidine by CMC and the clonal growth of peritoneal mast cells in methylcellulose. The mast cell growth activity appeared to be different from interleukin 3 (IL-3) and interleukin 4 (IL-4), because mRNAs for these interleukins were not detectable in BALB/3T3 fibroblasts. Although mast cells are genetically deficient in tissues of W/Wv mice, CMC did develop when bone marrow cells of W/Wv mice were cultured with pokeweed mitogen-stimulated spleen cell-conditioned medium. Because BALB/3T3 fibroblast-conditioned medium (BALB-FCM) did not induce the incorporation of (3H)thymidine by W/Wv CMC, the growth activity in BALB-FCM appeared to be a ligand for the receptor encoded by the W (c-kit) locus. Because CMC and peritoneal mast cells are obtained as homogeneous suspensions rather easily, these cells may be potentially useful as targets for the fibroblast-derived mast cell growth activity.

  6. AZD-4547 exerts potent cytostatic and cytotoxic activities against fibroblast growth factor receptor (FGFR)-expressing colorectal cancer cells.

    PubMed

    Yao, Ting-Jing; Zhu, Jin-Hai; Peng, De-Feng; Cui, Zhen; Zhang, Chao; Lu, Pei-hua

    2015-07-01

    Colorectal cancer (CRC) causes significant mortalities worldwide. Fibroblast growth factor (FGF) receptor (FGFR) signaling is frequently dysregulated and/or constitutively activated in CRCs, contributing to cancer carcinogenesis and progression. Here, we studied the activity of AZD-4547, a novel and potent FGFR kinase inhibitor, on CRC cells. AZD-4547 inhibited CRC cell growth in vitro, and its activity correlated with the FGFR-1/2 expression level. AZD-4547 was cytotoxic and pro-apoptotic in FGFR-1/2-expressed CRC cell lines (NCI-H716 and HCT-116), but not in FGFR-1/2 null HT-29 cells. Further, AZD-4547 inhibited cell cycle progression and attenuated the activation of FGFR1-FGFR substrate 2 (FRS-2), ERK/mitogen-activated protein kinase (MAPK), and AKT/mammalian target of rapamycin (AKT/mTOR) signalings in NCI-H716 and HCT-116 cells. In vivo, AZD-4547 oral administration at effective doses inhibited NCI-H716 (high FGFR-1/2 expression) xenograft growth in nude mice. Phosphorylation of FGFR-1, AKT, and ERK1/2 in xenograft specimens was also inhibited by AZD-4547 administration. Thus, our preclinical studies strongly support possible clinical investigations of AZD-4547 for the treatment of CRCs harboring deregulated FGFR signalings.

  7. Epidermal growth factor stimulates Rac activation through Src and phosphatidylinositol 3-kinase to promote colonic epithelial cell migration.

    PubMed

    Dise, Rebecca S; Frey, Mark R; Whitehead, Robert H; Polk, D Brent

    2008-01-01

    Regulated intestinal epithelial cell migration plays a key role in wound healing and maintenance of a healthy gastrointestinal tract. Epidermal growth factor (EGF) stimulates cell migration and wound closure in intestinal epithelial cells through incompletely understood mechanisms. In this study we investigated the role of the small GTPase Rac in EGF-induced cell migration using an in vitro wound-healing assay. In mouse colonic epithelial (MCE) cell lines, EGF-stimulated wound closure was accompanied by a doubling of the number of cells containing lamellipodial extensions at the wound margin, increased Rac membrane translocation in cells at the wound margin, and rapid Rac activation. Either Rac1 small interfering (si)RNA or a Rac1 inhibitor completely blocked EGF-stimulated wound closure. Whereas EGF failed to activate Rac in colon cells from EGF receptor (EGFR) knockout mice, stable expression of wild-type EGFR restored EGF-stimulated Rac activation and migration. Pharmacological inhibition of either phosphatidylinositol 3-kinase (PI3K) or Src family kinases reduced EGF-stimulated Rac activation. Cotreatment of cells with both inhibitors completely blocked EGF-stimulated Rac activation and localization to the leading edge of cells and lamellipodial extension. Our results present a novel mechanism by which the PI3K and Src signaling cascades cooperate to activate Rac and promote intestinal epithelial cell migration downstream of EGFR.

  8. Dexamethasone effects on creatine kinase activity and insulin-like growth factor receptors in cultured muscle cells

    NASA Technical Reports Server (NTRS)

    Whitson, Peggy A.; Stuart, Charles A.; Huls, M. H.; Sams, Clarence F.; Cintron, Nitza M.

    1989-01-01

    The effect of dexamethasone on the activity of creatine kinase (CK) and the insulin-like growth factor I (IGF-I) binding were investigated using skeletal- and cardiac-muscle-derived cultured cell lines (mouse, C2C12; rat, L6 and H9c2). It was found that, in skeletal muscle cells, dexamethasone treatment during differentiation of skeletal-muscle cells caused dose-dependent increases in CK activity and increases in the degree of myotube formation, whereas cardiac cells (H9c2) exhibited very low CK activity during culture or dexamethasone treatment. Results for IGF-I binding were similar in all three cell lines. The IGF-I binding to dexamethasone-treated cells (50 nM for 24 hr on the day prior to confluence) resulted in an increased number of available binding sites, with no effect on the binding affinities.

  9. Alpha7-nicotinic acetylcholine receptors affect growth regulation of human mesothelioma cells: role of mitogen-activated protein kinase pathway.

    PubMed

    Trombino, Sonya; Cesario, Alfredo; Margaritora, Stefano; Granone, PierLuigi; Motta, Giovanni; Falugi, Carla; Russo, Patrizia

    2004-01-01

    This study presents data suggesting that both human mesothelioma (cell lines and human mesothelioma biopsies) and human normal mesothelial cells express receptors for acetylcholine and that stimulation of these receptors by nicotine prompted cell growth via activation of nicotinic cholinergic receptors. Thus, these data demonstrate that: (a) human mesothelioma cells and human biopsies of mesothelioma as well as of normal pleural mesothelial cells express functionally alpha-7 nicotinic acethlycholine receptors, evaluated by alpha-bungarotoxin-FITC binding, receptor binding assay, Western blot, and reverse transcription-PCR; (b) choline acetyltransferase immunostaining is present in mesothelioma cells; (c) mesothelioma cell growth is modulated by the cholinergic system in which agonists (i.e., nicotine) has a proliferative effect, and antagonists (i.e., curare) has an inhibitory effect, evaluated by cell cloning, DNA synthesis and cell cycle; (d) nicotine induces Ca(+2) influx, evaluated by [(45)Ca(2+)] uptake, and consequently activation of mitogen-activated protein kinase pathway (extracellular signal-regulated kinase and p90(RSK) phosphorylation), evaluated by Western blot; and (e) apoptosis mechanisms in mesothelioma cells are under the control of the cholinergic system (nicotine antiapoptotic via induction of nuclear factor-kappaB complexes and phosphorylation of Bad at Ser(112); curare proapoptotic via G(0)-G(1) arrest p21(waf-1) dependent but p53 independent). The involvement of the nonneuronal cholinergic system in mesothelioma appears reasonable and open up new therapeutic strategies.

  10. Colon tumor cell growth inhibitory activity of sulindac sulfide and other NSAIDs is associated with PDE5 inhibition

    PubMed Central

    Tinsley, Heather N.; Gary, Bernard D.; Thaiparambil, Jose; Li, Nan; Lu, Wenyan; Li, Yonghe; Maxuitenko, Yulia Y.; Keeton, Adam B.; Piazza, Gary A.

    2010-01-01

    In experimental studies, nonsteroidal anti-inflammatory drugs (NSAIDs) display promising antineoplastic activity, but toxicity resulting from cyclooxygenase (COX) inhibition limits their clinical use for chemoprevention. Studies suggest that the mechanism may be COX independent, although alternative targets have not been well defined. Here we show that the NSAID, sulindac sulfide (SS) inhibits cGMP phosphodiesterase (PDE) activity in colon tumor cell lysates at concentrations that inhibit colon tumor cell growth in vitro and in vivo. A series of chemically diverse NSAIDs inhibited cGMP hydrolysis at concentrations that correlate with their potency to inhibit colon tumor cell growth, while no correlation was observed with COX-2 inhibition. Consistent with its selectivity for inhibiting cGMP hydrolysis compared with cAMP hydrolysis, SS inhibited the cGMP specific PDE5 isozyme and increased cGMP levels in colon tumor cells. Of numerous PDE isozyme specific inhibitors evaluated, only the PDE5 selective inhibitor MY5445 inhibited colon tumor cell growth. The effects of SS and MY5445 on cell growth were associated with inhibition of β-catenin mediated transcriptional activity to suppress the synthesis of cyclin D and survivin, which regulate tumor cell proliferation and apoptosis, respectively. SS had minimal effects on cGMP PDE activity in normal colonocytes, which displayed reduced sensitivity to SS and did not express PDE5. PDE5 was found to be overexpressed in colon tumor cell lines as well as in colon adenomas and adenocarcinomas compared to normal colonic mucosa. These results suggest that PDE5 inhibition, cGMP elevation, and inhibition of β-catenin transcriptional activity may contribute to the chemopreventive properties of certain NSAIDs. PMID:20876730

  11. Protein kinase C and epidermal growth factor stimulation of Raf1 potentiates adenylyl cyclase type 6 activation in intact cells.

    PubMed

    Beazely, Michael A; Alan, Jamie K; Watts, Val J

    2005-01-01

    Adenylyl cyclase type 6 (AC6) activity is inhibited by protein kinase C (PKC) in vitro; however, in intact cells, PKC activation does not inhibit the activity of transiently expressed AC6. To investigate the effects of PKC activation on AC6 activity in intact cells, we constructed human embryonic kidney (HEK) 293 cells that stably express wild-type AC6 (AC6-WT) or an AC6 mutant lacking a PKC and cyclic AMP-dependent protein kinase (PKA) phosphorylation site, Ser674 (AC6-S674A). In contrast to in vitro observations, we observed a PKC-mediated enhancement of forskolin- and isoproterenol-stimulated cyclic AMP accumulation in HEK-AC6 cells. Phorbol 12-myristate 13-acetate also potentiated cyclic AMP accumulation in cells expressing endogenous AC6, including Chinese hamster ovary cells and differentiated Cath.a differentiated cells. In HEK-AC6-S674A cells, the potentiation of AC6 stimulation was significantly greater than in cells expressing AC6-WT. The positive effect of PKC activation on AC6 activity seemed to involve Raf1 kinase because the Raf1 inhibitor 3-(3,5-dibromo-4-hydroxybenzylidene-5-iodo-1,3-dihydro-indol-2-one (GW5074) inhibited the PKC potentiation of AC6 activity. Furthermore, the forskolin-stimulated activity of a recombinant AC6 in which the putative Raf1 regulatory sites have been eliminated was not potentiated by activation of PKC. The ability of Raf1 to regulate AC6 may involve a direct interaction because AC6 and a constitutively active Raf1 construct were coimmunoprecipitated. In addition, we report that epidermal growth factor receptor activation also enhances AC6 signaling in a Raf1-dependent manner. These data suggest that Raf1 potentiates drug-stimulated cyclic AMP accumulation in cells expressing AC6 after activation of multiple signaling pathways.

  12. Induction of apoptosis in bacillus Calmette-Guérin-activated T cells by transforming growth factor-beta.

    PubMed

    Méndez-Samperio, P; Hernández-Garay, M; García-Martínez, E

    2000-06-15

    In view of the critical role played by bacillus Calmette-Guérin (BCG) in the development and functional activation of protective T cells against tuberculosis, it has become important to understand the mechanisms by which cytokines regulate BCG-mediated immune responses. There is evidence that cytokine-mediated suppression of T cell function by mechanisms, including apoptosis, may reduce host resistance in tuberculosis. However, it is unclear whether cytokine-mediated suppression of antigen-responsive T cells through apoptotic mechanisms may be operating during human cellular activation induced by BCG. Here we present evidence, for the first time, that treatment of BCG-activated T cells with transforming growth factor-beta (TGF-beta) induces cellular apoptosis. These results were further supported by the fact that treatment of cells with a blocking mAb directed to TGF-beta significantly inhibited the percentage of apoptosis induced by TGF-beta. Interestingly, TGF-beta-mediated death of BCG-activated T cells in cultures containing interleukin (IL)-12 was observed. Moreover, our results demonstrated the induction of apoptosis by TGF-beta in BCG-activated T cells cultured in the presence of exogenous IL-12. In addition, our data indicated that TGF-beta significantly inhibited both BCG-induced cell growth determined by thymidine uptake and BCG-induced IFN-gamma secretion. Finally, TGF-beta-induced apoptosis in BCG-activated T cells correlated inversely with BCG-induced IFN-gamma secretion. Taken together, these findings indicate that TGF-beta induces apoptosis in human T cells activated with BCG and at the same time suggest that loss of BCG-reactive T cells through apoptotic mechanisms could contribute to an increased susceptibility to Mycobacterium tuberculosis infection.

  13. PIAS4 is an activator of hypoxia signalling via VHL suppression during growth of pancreatic cancer cells

    PubMed Central

    Chien, W; Lee, K L; Ding, L W; Wuensche, P; Kato, H; Doan, N B; Poellinger, L; Said, J W; Koeffler, H P

    2013-01-01

    Background: The PIAS4 protein belongs to the family of protein inhibitors of activated STAT, but has since been implicated in various biological activities including the post-translational modification known as sumoylation. In this study, we explored the roles of PIAS4 in pancreatic tumourigenesis. Methods: The expression levels of PIAS4 in pancreatic cancer cells were examined. Cell proliferation and invasion was studied after overexpression and gene silencing of PIAS4. The effect of PIAS4 on hypoxia signalling was investigated. Results: The protein was overexpressed in pancreatic cancer cells compared with the normal pancreas. Gene silencing by PIAS4 small interfering RNA (siRNA) suppressed pancreatic cancer cell growth and overexpression of PIAS4 induced expression of genes related to cell growth. The overexpression of PIAS4 is essential for the regulation of the hypoxia signalling pathway. PIAS4 interacts with the tumour suppressor von Hippel-Lindau (VHL) and leads to VHL sumoylation, oligomerization, and impaired function. Pancreatic cancer cells (Panc0327, MiaPaCa2) treated with PIAS4 siRNA suppressed expression of the hypoxia-inducible factor hypoxia-inducible factor 1 alpha and its target genes JMJD1A, VEGF, and STAT3. Conclusion: Our study elucidates the role of PIAS4 in the regulation of pancreatic cancer cell growth, where the suppression of its activity represents a novel therapeutic target for pancreatic cancers. PMID:24002598

  14. Tumor STAT1 transcription factor activity enhances breast tumor growth and immune suppression mediated by myeloid-derived suppressor cells.

    PubMed

    Hix, Laura M; Karavitis, John; Khan, Mohammad W; Shi, Yihui H; Khazaie, Khashayarsha; Zhang, Ming

    2013-04-26

    Previous studies had implicated the IFN-γ transcription factor signal transducer and activator of transcription 1 (STAT1) as a tumor suppressor. However, accumulating evidence has correlated increased STAT1 activation with increased tumor progression in multiple types of cancer, including breast cancer. Indeed, we present evidence that tumor up-regulation of STAT1 activity in human and mouse mammary tumors correlates with increasing disease progression to invasive carcinoma. A microarray analysis comparing low aggressive TM40D and highly aggressive TM40D-MB mouse mammary carcinoma cells revealed significantly higher STAT1 activity in the TM40D-MB cells. Ectopic overexpression of constitutively active STAT1 in TM40D cells promoted mobilization of myeloid-derived suppressor cells (MDSCs) and inhibition of antitumor T cells, resulting in aggressive tumor growth in tumor-transplanted, immunocompetent mice. Conversely, gene knockdown of STAT1 in the metastatic TM40D-MB cells reversed these events and attenuated tumor progression. Importantly, we demonstrate that in human breast cancer, the presence of tumor STAT1 activity and tumor-recruited CD33(+) myeloid cells correlates with increasing disease progression from ductal carcinoma in situ to invasive carcinoma. We conclude that STAT1 activity in breast cancer cells is responsible for shaping an immunosuppressive tumor microenvironment, and inhibiting STAT1 activity is a promising immune therapeutic approach.

  15. Soft matrices downregulate FAK activity to promote growth of tumor-repopulating cells.

    PubMed

    Tan, Youhua; Wood, Adam Richard; Jia, Qiong; Zhou, Wenwen; Luo, Junyu; Yang, Fang; Chen, Junwei; Chen, Junjian; Sun, Jian; Seong, Jihye; Tajik, Arash; Singh, Rishi; Wang, Ning

    2017-01-29

    Tumor-repopulating cells (TRCs) are a tumorigenic sub-population of cancer cells that drives tumorigenesis. We have recently reported that soft fibrin matrices maintain TRC growth by promoting histone 3 lysine 9 (H3K9) demethylation and Sox2 expression and that Cdc42 expression influences H3K9 methylation. However, the underlying mechanisms of how soft matrices induce H3K9 demethylation remain elusive. Here we find that TRCs exhibit lower focal adhesion kinase (FAK) and H3K9 methylation levels in soft fibrin matrices than control melanoma cells on 2D rigid substrates. Silencing FAK in control melanoma cells decreases H3K9 methylation, whereas overexpressing FAK in tumor-repopulating cells enhances H3K9 methylation. Overexpressing Cdc42 or RhoA in the presence of FAK knockdown restores H3K9 methylation levels. Importantly, silencing FAK, Cdc42, or RhoA promotes Sox2 expression and proliferation of control melanoma cells in stiff fibrin matrices, whereas overexpressing each gene suppresses Sox2 expression and reduces growth of TRCs in soft but not in stiff fibrin matrices. Our findings suggest that low FAK mediated by soft fibrin matrices downregulates H3K9 methylation through reduction of Cdc42 and RhoA and promotes TRC growth.

  16. Cells transformed by murine herpesvirus 68 (MHV-68) release compounds with transforming and transformed phenotype suppressing activity resembling growth factors.

    PubMed

    Šupolíková, M; Staňová, A Vojs; Kúdelová, M; Marák, J; Zelník, V; Golais, F

    2015-12-01

    In this study, we investigated the medium of three cell lines transformed with murine herpesvirus 68 (MHV-68) in vitro and in vivo, 68/HDF, 68/NIH3T3, and S11E, for the presence of compounds resembling growth factors of some herpesviruses which have displayed transforming and transformed phenotype suppressing activity in normal and tumor cells. When any of spent medium was added to cell culture we observed the onset of transformed phenotype in baby hamster kidney cells (BHK-21) cells and transformed phenotype suppressing activity in tumor human epithelial cells (HeLa). In media tested, we have identified the presence of putative growth factor related to MHV-68 (MHGF-68). Its bivalent properties have been blocked entirely by antisera against MHV-68 and two monoclonal antibodies against glycoprotein B (gB) of MHV-68 suggesting viral origin of MHGF-68. The results of initial efforts to separate MHGF-68 on FPLC Sephadex G15 column in the absence of salts revealed the loss of its transforming activity but transformed phenotype suppressing activity retained. On the other hand, the use of methanol-water mobile phase on RP-HPLC C18 column allowed separation of MHGF-68 to two compounds. Both separated fractions, had only the transforming activity to normal cells. Further experiments exploring the nature and the structure of hitherto unknown MHGF-68 are now in the progress to characterize its molecular and biological properties.

  17. Platelet-rich plasma stimulated by pulse electric fields: Platelet activation, procoagulant markers, growth factor release and cell proliferation.

    PubMed

    Frelinger, A L; Torres, A S; Caiafa, A; Morton, C A; Berny-Lang, M A; Gerrits, A J; Carmichael, S L; Neculaes, V B; Michelson, A D

    2016-01-01

    Therapeutic use of activated platelet-rich plasma (PRP) has been explored for wound healing, hemostasis and antimicrobial wound applications. Pulse electric field (PEF) stimulation may provide more consistent platelet activation and avoid complications associated with the addition of bovine thrombin, the current state of the art ex vivo activator of therapeutic PRP. The aim of this study was to compare the ability of PEF, bovine thrombin and thrombin receptor activating peptide (TRAP) to activate human PRP, release growth factors and induce cell proliferation in vitro. Human PRP was prepared in the Harvest SmartPreP2 System and treated with vehicle, PEF, bovine thrombin, TRAP or Triton X-100. Platelet activation and procoagulant markers and microparticle generation were measured by flow cytometry. Released growth factors were measured by ELISA. The releasates were tested for their ability to stimulate proliferation of human epithelial cells in culture. PEF produced more platelet-derived microparticles, P-selectin-positive particles and procoagulant annexin V-positive particles than bovine thrombin or TRAP. These differences were associated with higher levels of released epidermal growth factor after PEF than after bovine thrombin or TRAP but similar levels of platelet-derived, vascular-endothelial, and basic fibroblast growth factors, and platelet factor 4. Supernatant from PEF-treated platelets significantly increased cell proliferation compared to plasma. In conclusion, PEF treatment of fresh PRP results in generation of microparticles, exposure of prothrombotic platelet surfaces, differential release of growth factors compared to bovine thrombin and TRAP and significant cell proliferation. These results, together with PEF's inherent advantages, suggest that PEF may be a superior alternative to bovine thrombin activation of PRP for therapeutic applications.

  18. Growth differentiation factor 9 signaling requires ERK1/2 activity in mouse granulosa and cumulus cells.

    PubMed

    Sasseville, Maxime; Ritter, Lesley J; Nguyen, Thao M; Liu, Fang; Mottershead, David G; Russell, Darryl L; Gilchrist, Robert B

    2010-09-15

    Ovarian folliculogenesis is driven by the combined action of endocrine cues and paracrine factors. The oocyte secretes powerful mitogens, such as growth differentiation factor 9 (GDF9), that regulate granulosa cell proliferation, metabolism, steroidogenesis and differentiation. This study investigated the role of the epidermal growth factor receptor (EGFR)-extracellular signal-regulated kinase 1 and 2 (ERK1/2; also known as MAPK3/1) signaling pathway on GDF9 action on granulosa cells. Results show that mitogenic action of the oocyte is prevented by pharmacological inhibition of the EGFR-ERK1/2 pathway. Importantly, EGFR-ERK1/2 activity as well as rous sarcoma oncogene family kinases (SFK) are required for signaling through SMADs, mediating GDF9, activin A and TGFbeta1 mitogenic action in granulosa cells. GDF9 could not activate ERK1/2 or affect EGF-stimulated ERK1/2 in granulosa cells. However, induction of the SMAD3-specific CAGA reporter by GDF9 in granulosa cells required active EGFR, SFKs and ERK1/2 as did GDF9-responsive gene expression. Finally, the EGFR-SFKs-ERK1/2 pathway was shown to be required for the maintenance of phosphorylation of the SMAD3 linker region. Together our results suggest that receptivity of granulosa cells to oocyte-secreted factors, including GDF9, is regulated by the level of activation of the EGFR and resulting ERK1/2 activity, through the requisite permissive phosphorylation of SMAD3 in the linker region. Our results indicate that oocyte-secreted TGFbeta-like ligands and EGFR-ERK1/2 signaling are cooperatively required for the unique granulosa cell response to the signal from oocytes mediating granulosa cell survival and proliferation and hence the promotion of follicle growth and ovulation.

  19. AZD1480 delays tumor growth in a melanoma model while enhancing the suppressive activity of myeloid-derived suppressor cells

    PubMed Central

    Maenhout, Sarah K.; Four, Stephanie Du; Corthals, Jurgen; Neyns, Bart; Thielemans, Kris; Aerts, Joeri L.

    2014-01-01

    AZD1480 is a potent, competitive small-molecule inhibitor of JAK1/2 kinase which inhibits STAT3 phosphorylation and tumor growth. Here we investigated the effects of AZD1480 on the function of different immune cell populations in a melanoma model. When MO4 tumor-bearing mice were treated with AZD1480 we observed a strong inhibition of tumor growth as well as a prolonged survival. Moreover, a significant decrease in the percentage of myeloid-derived suppressor cells (MDSCs) was observed after treatment with AZD1480. However, AZD1480 enhanced the suppressive capacity of murine MDSCs while at the same time impairing the proliferative as well as the IFN-γ secretion capacity of murine T cells. The addition of AZD1480 to co-cultures of human MDSCs and T cells does not affect the suppressive activity of MDSCs but it does reduce the IFN-γ secretion and the proliferative capacity of T cells. We showed that although AZD1480 has the ability to delay the tumor growth of MO4 tumor-bearing mice, this drug has detrimental effects on several aspects of the immune system. These data indicate that systemic targeting of the JAK/STAT pathway by JAK1/2 inhibition can have divergent effects on tumor growth and anti-tumor immune responses. PMID:25149535

  20. Novel juglone and plumbagin 5-O derivatives and their in vitro growth inhibitory activity against apoptosis-resistant cancer cells.

    PubMed

    Fiorito, Serena; Genovese, Salvatore; Taddeo, Vito Alessandro; Mathieu, Véronique; Kiss, Robert; Epifano, Francesco

    2016-01-15

    Juglone 1 an plumbagin 2 are plant secondary metabolites nowadays well known for their anticancer properties. In this study we synthesized analogues of 1 and 2 deriving from the functionalization of the OH group in position 5 with different side chains in form of esters and ethers. Therefore the growth inhibitory activities of these adducts were evaluated in vitro on six cancer cell lines using the MTT colorimetric assays along with the two natural parent compounds. The data revealed that these latter displayed the strongest growth inhibitory activities in vitro. Quantitative videomicroscopy analyses were then carried out on human U373 glioblastoma cells, which are characterized by various level of resistance to pro-apoptotic stimuli. We compared the naturally occurring reference compounds 1 and 2 with the derivatives exerting the best activities in terms of IC50 growth inhibitory values. These analyses showed that both juglone and plumbagin had a cytostatic effect on U373 cells and were able to overcome the intrinsic resistance of U373 cancer cells to pro-apoptotic stimuli.

  1. Overexpression and activation of hepatocyte growth factor/scatter factor in human non-small-cell lung carcinomas.

    PubMed Central

    Olivero, M.; Rizzo, M.; Madeddu, R.; Casadio, C.; Pennacchietti, S.; Nicotra, M. R.; Prat, M.; Maggi, G.; Arena, N.; Natali, P. G.; Comoglio, P. M.; Di Renzo, M. F.

    1996-01-01

    Hepatocyte growth factor/scatter factor (HGF/SF) stimulates the invasive growth of epithelial cells via the c-MET oncogene-encoded receptor. In normal lung, both the receptor and the ligand are detected, and the latter is known to be a mitogenic and a motogenic factor for both cultured bronchial epithelial cells and non-small-cell carcinoma lines. Here, ligand and receptor expression was examined in 42 samples of primary human non-small-cell lung carcinoma of different histotype. Each carcinoma sample was compared with adjacent normal lung tissue. The Met/HGF receptor was found to be 2 to 10-fold increased in 25% of carcinoma samples (P = 0.0113). The ligand, HGF/SF, was found to be 10 to 100-fold overexpressed in carcinoma samples (P < 0.0001). Notably, while HGF/SF was occasionally detectable and found exclusively as a single-chain inactive precursor in normal tissues, it was constantly in the biologically-active heterodimeric form in carcinomas. Immunohistochemical staining showed homogeneous expression of both the receptor and the ligand in carcinoma samples, whereas staining was barely detectable in their normal counterparts. These data show that HGF/SF is overexpressed and consistently activated in non-small-cell lung carcinomas and may contribute to the invasive growth of lung cancer. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8980383

  2. Lentivirally engineered dendritic cells activate AFP-specific T cells which inhibit hepatocellular carcinoma growth in vitro and in vivo.

    PubMed

    Liu, Yang; Butterfield, Lisa H; Fu, Xiaohui; Song, Zhenshun; Zhang, Xiaoping; Lu, Chongde; Ding, Guanghui; Wu, Mengchao

    2011-07-01

    α-fetoprotein (AFP), a tumor-associated antigen for hepatocellular carcinoma (HCC), is an established biomarker for HCC. In this study, we created a lentivirus expressing the AFP antigen and investigated the anti-tumor activity of AFP-specific CD8+ T cells, with and without CD4+ T cells, which were activated by either AFP peptide-pulsed or Lenti-AFP-engineered Dendritic cells (DCs) in vitro and in vivo. AFP-specific T cells could efficiently kill HepG2 HCC cells, and produced IL-2, IFN-γ, TNF-α, perforin and granzyme B, with minimal production of IL-10 (a negative regulator of T cell activation). Both strategies activated AFP-specific T cells, but the lentiviral strategy was superior by several measures. Data also support an impact of CD4+ T cells in supporting anti-tumor activity. In vivo studies in a xenograft HCC tumor model also showed that AFP-specific T cells could markedly suppress HCC tumor formation and morbidity in tumor-bearing nude mice, as well as regulate serum levels of related cytokines and anti-tumor molecules. In parallel with human in vitro T cell cultures, the in vivo model demonstrated superior anti-tumor effects and Th1-skewing with Lenti-AFP-DCs. This study supports the superiority of a full-length antigen lentivirus-based DCs vaccine strategy over peptides, and provides new insight into the design of DCs-based vaccines.

  3. PSMB4 promotes multiple myeloma cell growth by activating NF-κB-miR-21 signaling

    SciTech Connect

    Zheng, Peihao; Guo, Honggang; Li, Guangchao; Han, Siqi; Luo, Fei; Liu, Yi

    2015-03-06

    Proteasomal subunit PSMB4, was recently identified as potential cancer driver genes in several tumors. However, the regulatory mechanism of PSMB4 on carcinogenesis process remains unclear. In this study, we investigated the expression and roles of PSMB4 in multiple myeloma (MM). We found a significant up-regulation of PSMB4 in MM plasma and cell lines. Ectopic overexpression of PSMB4 promoted cell growth and colony forming ability of MM cells, whereas inhibition of PSMB4 led to a decrease of such events. Furthermore, our results demonstrated the up-regulation of miR-21 and a positive correlation between the levels of miR-21 and PSMB4 in MM. Re-expression of miR-21 markedly rescued PSMB4 knockdown-mediated suppression of cell proliferation and clone-formation. Additionally, while enforced expression of PSMB4 profoundly increased NF-κB activity and the level of miR-21, PSMB4 knockdown or NF-κB inhibition suppressed miR-21 expression in MM cells. Taken together, our results demonstrated that PSMB4 regulated MM cell growth in part by activating NF-κB-miR-21 signaling, which may represent promising targets for novel specific therapies. - Highlights: • First reported upregulation of PSMB4 in MM plasma and cell lines. • PSMB4 promoted MM cell growth and colony forming ability. • Further found miR-21 was up-regulated by PSMB4 in MM plasma and cell lines. • PSMB4-induced miR-21 expression was modulated by NF-κB. • PSMB4-NF-κB-miR-21 axis may be potential therapeutic targets of MM.

  4. Mutational activation of BRAF confers sensitivity to transforming growth factor beta inhibitors in human cancer cells

    PubMed Central

    Spender, Lindsay C.; Ferguson, G. John; Liu, Sijia; Cui, Chao; Girotti, Maria Romina; Sibbet, Gary; Higgs, Ellen B.; Shuttleworth, Morven K.; Hamilton, Tom; Lorigan, Paul; Weller, Michael; Vincent, David F.; Sansom, Owen J.; Frame, Margaret; Dijke, Peter ten; Marais, Richard; Inman, Gareth J.

    2016-01-01

    Recent data implicate elevated transforming growth factor-β (TGFβ) signalling in BRAF inhibitor drug-resistance mechanisms, but the potential for targeting TGFβ signalling in cases of advanced melanoma has not been investigated. We show that mutant BRAFV600E confers an intrinsic dependence on TGFβ/TGFβ receptor 1 (TGFBR1) signalling for clonogenicity of murine melanocytes. Pharmacological inhibition of the TGFBR1 blocked the clonogenicity of human mutant BRAF melanoma cells through SMAD4-independent inhibition of mitosis, and also inhibited metastasis in xenografted zebrafish. When investigating the therapeutic potential of combining inhibitors of mutant BRAF and TGFBR1, we noted that unexpectedly, low-dose PLX-4720 (a vemurafenib analogue) promoted proliferation of drug-naïve melanoma cells. Pharmacological or pharmacogenetic inhibition of TGFBR1 blocked growth promotion and phosphorylation of SRC, which is frequently associated with vemurafenib-resistance mechanisms. Importantly, vemurafenib-resistant patient derived cells retained sensitivity to TGFBR1 inhibition, suggesting that TGFBR1 could be targeted therapeutically to combat the development of vemurafenib drug-resistance. PMID:27835901

  5. Protein arginine methyltransferase 5 functions as an epigenetic activator of the androgen receptor to promote prostate cancer cell growth

    PubMed Central

    Deng, X; Shao, G; Zhang, H-T; Li, C; Zhang, D; Cheng, L; Elzey, B D; Pili, R; Ratliff, T L; Huang, J; Hu, C-D

    2017-01-01

    Protein arginine methyltransferase 5 (PRMT5) is an emerging epigenetic enzyme that mainly represses transcription of target genes via symmetric dimethylation of arginine residues on histones H4R3, H3R8 and H2AR3. Accumulating evidence suggests that PRMT5 may function as an oncogene to drive cancer cell growth by epigenetic inactivation of several tumor suppressors. Here, we provide evidence that PRMT5 promotes prostate cancer cell growth by epigenetically activating transcription of the androgen receptor (AR) in prostate cancer cells. Knockdown of PRMT5 or inhibition of PRMT5 by a specific inhibitor reduces the expression of AR and suppresses the growth of multiple AR-positive, but not AR-negative, prostate cancer cells. Significantly, knockdown of PRMT5 in AR-positive LNCaP cells completely suppresses the growth of xenograft tumors in mice. Molecular analysis reveals that PRMT5 binds to the proximal promoter region of the AR gene and contributes mainly to the enriched symmetric dimethylation of H4R3 in the same region. Mechanistically, PRMT5 is recruited to the AR promoter by its interaction with Sp1, the major transcription factor responsible for AR transcription, and forms a complex with Brg1, an ATP-dependent chromatin remodeler, on the proximal promoter region of the AR gene. Furthermore, PRMT5 expression in prostate cancer tissues is significantly higher than that in benign prostatic hyperplasia tissues, and PRMT5 expression correlates positively with AR expression at both the protein and mRNA levels. Taken together, our results identify PRMT5 as a novel epigenetic activator of AR in prostate cancer. Given that inhibiting AR transcriptional activity or androgen synthesis remains the major mechanism of action for most existing anti-androgen agents, our findings also raise an interesting possibility that targeting PRMT5 may represent a novel approach for prostate cancer treatment by eliminating AR expression. PMID:27546619

  6. Protein arginine methyltransferase 5 functions as an epigenetic activator of the androgen receptor to promote prostate cancer cell growth.

    PubMed

    Deng, X; Shao, G; Zhang, H-T; Li, C; Zhang, D; Cheng, L; Elzey, B D; Pili, R; Ratliff, T L; Huang, J; Hu, C-D

    2017-03-02

    Protein arginine methyltransferase 5 (PRMT5) is an emerging epigenetic enzyme that mainly represses transcription of target genes via symmetric dimethylation of arginine residues on histones H4R3, H3R8 and H2AR3. Accumulating evidence suggests that PRMT5 may function as an oncogene to drive cancer cell growth by epigenetic inactivation of several tumor suppressors. Here, we provide evidence that PRMT5 promotes prostate cancer cell growth by epigenetically activating transcription of the androgen receptor (AR) in prostate cancer cells. Knockdown of PRMT5 or inhibition of PRMT5 by a specific inhibitor reduces the expression of AR and suppresses the growth of multiple AR-positive, but not AR-negative, prostate cancer cells. Significantly, knockdown of PRMT5 in AR-positive LNCaP cells completely suppresses the growth of xenograft tumors in mice. Molecular analysis reveals that PRMT5 binds to the proximal promoter region of the AR gene and contributes mainly to the enriched symmetric dimethylation of H4R3 in the same region. Mechanistically, PRMT5 is recruited to the AR promoter by its interaction with Sp1, the major transcription factor responsible for AR transcription, and forms a complex with Brg1, an ATP-dependent chromatin remodeler, on the proximal promoter region of the AR gene. Furthermore, PRMT5 expression in prostate cancer tissues is significantly higher than that in benign prostatic hyperplasia tissues, and PRMT5 expression correlates positively with AR expression at both the protein and mRNA levels. Taken together, our results identify PRMT5 as a novel epigenetic activator of AR in prostate cancer. Given that inhibiting AR transcriptional activity or androgen synthesis remains the major mechanism of action for most existing anti-androgen agents, our findings also raise an interesting possibility that targeting PRMT5 may represent a novel approach for prostate cancer treatment by eliminating AR expression.

  7. New proangiogenic activity on vascular endothelial cells for C-terminal mechano growth factor.

    PubMed

    Deng, Moyuan; Wang, Yuanliang; Zhang, Bingbing; Liu, Peng; Xiao, Hualiang; Zhao, Jianhua

    2012-04-01

    Angiogenesis is crucial in wound healing. The administration of the C-terminal 24-a.a. peptide of mechano growth factor (MGF24E) has been previously demonstrated to induce more blood vessels in regenerating bone around defective areas compared with the control. Accordingly, this study aims to determine whether MGF24E promotes bone defect healing through MGF24E-increased angiogenesis and whether MGF24E has positive effects on angiogenesis in vitro. The roles of MGF24E on angiogenesis and the underlying mechanisms were investigated. The cell proliferation, migration, and tubulogenesis of the human vascular endothelial EA.hy926 cells co-treated with 2% serum and MGF24E were determined to assess angiogenesis in comparison with 100 ng/ml of vascular endothelial growth factor 165 (VEGF(165))-positive control or vehicle control (phosphate-buffered saline). MGF24E treatment (10 ng/ml) significantly promoted the biological processes of angiogenesis on EA.hy926 cells compared with the vehicle control. The suppression of vascular endothelial growth factor and angiopoietin-I expressions by 2% serum starvation was reversed by the addition of 10 ng/ml of MGF24E in 2% serum medium. This result suggests that MGF24E has a protective effect on angiogenesis. Moreover, the inhibition of ERK due to PD98050 pretreatment completely abolished and mostly blocked MGF24E-induced proliferation and migration, respectively, whereas the MGF24-induced tubulogenesis and the angiogenic factor expression were only partially inhibited. These new findings suggest that MGF24E promotes angiogenesis by enhancing the expression of angiogenic cytokines which involves the MAPK/ERK-signaling pathway.

  8. Inhibition of COP9-signalosome (CSN) deneddylating activity and tumor growth of diffuse large B-cell lymphomas by doxycycline.

    PubMed

    Pulvino, Mary; Chen, Luojing; Oleksyn, David; Li, Jing; Compitello, George; Rossi, Randy; Spence, Stephen; Balakrishnan, Vijaya; Jordan, Craig; Poligone, Brian; Casulo, Carla; Burack, Richard; Shapiro, Joel L; Bernstein, Steven; Friedberg, Jonathan W; Deshaies, Raymond J; Land, Hartmut; Zhao, Jiyong

    2015-06-20

    In searching for small-molecule compounds that inhibit proliferation and survival of diffuse large B-cell lymphoma (DLBCL) cells and may, therefore, be exploited as potential therapeutic agents for this disease, we identified the commonly used and well-tolerated antibiotic doxycycline as a strong candidate. Here, we demonstrate that doxycycline inhibits the growth of DLBCL cells both in vitro and in mouse xenograft models. In addition, we show that doxycycline accumulates in DLBCL cells to high concentrations and affects multiple signaling pathways that are crucial for lymphomagenesis. Our data reveal the deneddylating activity of COP-9 signalosome (CSN) as a novel target of doxycycline and suggest that doxycycline may exert its effects in DLBCL cells in part through a CSN5-HSP90 pathway. Consistently, knockdown of CSN5 exhibited similar effects as doxycycline treatment on DLBCL cell survival and HSP90 chaperone function. In addition to DLBCL cells, doxycycline inhibited growth of several other types of non-Hodgkin lymphoma cells in vitro. Together, our results suggest that doxycycline may represent a promising therapeutic agent for DLBCL and other non-Hodgkin lymphomas subtypes.

  9. Inhibition of COP9-signalosome (CSN) deneddylating activity and tumor growth of diffuse large B-cell lymphomas by doxycycline

    PubMed Central

    Pulvino, Mary; Chen, Luojing; Oleksyn, David; Li, Jing; Compitello, George; Rossi, Randy; Spence, Stephen; Balakrishnan, Vijaya; Jordan, Craig; Poligone, Brian; Casulo, Carla; Burack, Richard; Shapiro, Joel L.; Bernstein, Steven; Friedberg, Jonathan W.; Deshaies, Raymond J.; Land, Hartmut; Zhao, Jiyong

    2015-01-01

    In searching for small-molecule compounds that inhibit proliferation and survival of diffuse large B-cell lymphoma (DLBCL) cells and may, therefore, be exploited as potential therapeutic agents for this disease, we identified the commonly used and well-tolerated antibiotic doxycycline as a strong candidate. Here, we demonstrate that doxycycline inhibits the growth of DLBCL cells both in vitro and in mouse xenograft models. In addition, we show that doxycycline accumulates in DLBCL cells to high concentrations and affects multiple signaling pathways that are crucial for lymphomagenesis. Our data reveal the deneddylating activity of COP-9 signalosome (CSN) as a novel target of doxycycline and suggest that doxycycline may exert its effects in DLBCL cells in part through a CSN5-HSP90 pathway. Consistently, knockdown of CSN5 exhibited similar effects as doxycycline treatment on DLBCL cell survival and HSP90 chaperone function. In addition to DLBCL cells, doxycycline inhibited growth of several other types of non-Hodgkin lymphoma cells in vitro. Together, our results suggest that doxycycline may represent a promising therapeutic agent for DLBCL and other non-Hodgkin lymphomas subtypes. PMID:26142707

  10. Activation of protein kinase D1 in mast cells in response to innate, adaptive, and growth factor signals.

    PubMed

    Murphy, Thomas R; Legere, Henry J; Katz, Howard R

    2007-12-01

    Little is known about the serine/threonine kinase protein kinase D (PKD)1 in mast cells. We sought to define ligands that activate PKD1 in mast cells and to begin to address the contributions of this enzyme to mast cell activation induced by diverse agonists. Mouse bone marrow-derived mast cells (BMMC) contained both PKD1 mRNA and immunoreactive PKD1 protein. Activation of BMMC through TLR2, Kit, or FcepsilonRI with Pam(3)CSK(4) (palmitoyl-3-cysteine-serine-lysine-4), stem cell factor (SCF), and cross-linked IgE, respectively, induced activation of PKD1, as determined by immunochemical detection of autophosphorylation. Activation of PKD1 was inhibited by the combined PKD1 and protein kinase C (PKC) inhibitor Gö 6976 but not by broad-spectrum PKC inhibitors, including bisindolylmaleimide (Bim) I. Pam(3)CSK(4) and SCF also induced phosphorylation of heat shock protein 27, a known substrate of PKD1, which was also inhibited by Gö 6976 but not Bim I in BMMC. This pattern also extended to activation-induced increases in mRNA encoding the chemokine CCL2 (MCP-1) and release of the protein. In contrast, both pharmacologic agents inhibited exocytosis of beta-hexosaminidase induced by SCF or cross-linked IgE. Our findings establish that stimuli representing innate, adaptive, and growth factor pathways activate PKD1 in mast cells. In contrast with certain other cell types, activation of PKD1 in BMMC is largely independent of PKC activation. Furthermore, our findings also indicate that PKD1 preferentially influences transcription-dependent production of CCL2, whereas PKC predominantly regulates the rapid exocytosis of preformed secretory granule mediators.

  11. The use of growth factors to modulate the activities of antigen–specific CD8+ T cells in vitro

    PubMed Central

    Alenzi, FQ; Alenazi, FA; Al-Kaabi, Y; Salem, ML

    2011-01-01

    Rationale: Adoptive T cell therapy depends on the harvesting of the cells from the host, their activation in vitro, and their infusion back to the same host. The way of activating the T cells in vitro is a critical factor for their homing, survival and function in vivo. Sustaining T cell homing molecules, particularly CD62L, is benefic for the trafficking of the adoptive transferred cells. Objective: The aim of the present study is to test whether insulin–like growth factor–1 (IGF–1), thymosin– α1 (T–α1) as well as all–trans retinoid acid (ATRA) alone or in combination with IL–2, IL–12, IL–15 can enhance the activation and survival phenotypes of antigen-activated T cells in vitro. Methods & Results: To this end, OT–1 transgenic T cells were used as a model. These CD8+ T cells recognize OVA peptide presented by MHC class–I. The results showed that antigen stimulation of OT1 cells resulted in their activation as evidenced by the decrease in surface expression of CD62L, analyzed for 3 days after antigen stimulation and was more pronounced on day 5. The addition of IL–12 or IGF–1 alone but not of IL–2, IL–15 augmented OT–1 cell activation measured on day 5. Interestingly, the combination of IL–12 with IGF–1 sustained the expression of CD62L on OT1 cells. Although the addition of ATRA alone or in combination with IL–12 resulted in decreases in CD62L expression on day 3, they showed a dose–dependent effect on the restoration of CD62L expression on day 5. The analysis of the activation–induced cell death (apoptosis) of OT1 cells showed an increased rate of death on day 5 than on day 3–post antigen stimulation. The addition of only IL–12 or IGF–1 alone, but not of IL–2, IL–15 or T– α1, decreased OT1 cell apoptosis on day 3. These anti–apoptotic effects of IL–12 and IGF– 1, however, were recovered on day 5–post stimulation. Discussion: In conclusion, these results indicate that the activation phenotype and the

  12. Growth-dependent catalase localization in Exiguobacterium oxidotolerans T-2-2T reflected by catalase activity of cells.

    PubMed

    Hanaoka, Yoshiko; Takebe, Fumihiko; Nodasaka, Yoshinobu; Hara, Isao; Matsuyama, Hidetoshi; Yumoto, Isao

    2013-01-01

    A psychrotolerant and H2O2-resistant bacterium, Exiguobacterium oxidotolerans T-2-2(T), exhibits extraordinary H2O2 resistance and produces catalase not only intracellularly but also extracellularly. The intracellular and extracellular catalases exhibited the same enzymatic characteristics, that is, they exhibited the temperature-dependent activity characteristic of a cold-adapted enzyme, their heat stabilities were similar to those of mesophilic enzymes and very high catalytic intensity. In addition, catalase gene analysis indicated that the bacterium possessed the sole clade 1 catalase gene corresponding to intracellular catalase. Hence, intracellular catalase is secreted into the extracellular space. In addition to intracellular and extracellular catalases, the inner circumference of the cells showed the localization of catalase in the mid-stationary growth phase, which was observed by immunoelectron microscopy using an antibody against the intracellular catalase of the strain. The cells demonstrated higher catalase activity in the mid-stationary growth phase than in the exponential growth phase. The catalase localized in the inner circumference can be dissociated by treatment with Tween 60. Thus, the localized catalase is not tightly bound to the inner circumference of the cells and may play a role in the oxidative defense of the cells under low metabolic state.

  13. Effect of Vitreoscilla hemoglobin expression on growth and specific tissue plasminogen activator productivity in recombinant Chinese hamster ovary cells

    SciTech Connect

    Pendse, G.J.; Bailey, J.E. . Dept. of Chemical Engineering)

    1994-12-01

    Previous studies suggest that secretion of cloned proteins synthesized by recombinant Chinese hamster ovary (CHO) cells can be adenosine triphosphate (ATP) limited. Other research indicates that the presence of cloned Vitreoscilla hemoglobin (VHb) enhances ATP production in oxygen-limited Escherichia coli. To evaluate the influence of VHb expression on recombinant CHO cell productivity, the vhb gene has been fused to the mouse mammary tumor virus (MMTV) promoter and cloned in a CHO cell line previously engineered to express human tissue plasminogen activator (tPA). Western blot analysis confirms dexamethasone-inducible VHb expression in all of the clones tested. Batch cultivation experiments with one VHb-expressing clone and the parental CHO-tPA cells show a reduced specific growth rate in the VHb-expressing cells. The VHb-expressing clone exhibits specific tPA production 40 to 100% greater than the parental CHO-tPA culture.

  14. Transforming growth factor-β promotes ‘death by neglect’ in post-activated human T cells

    PubMed Central

    Sillett, H K; Cruickshank, S M; Southgate, J; Trejdosiewicz, L K

    2001-01-01

    Transforming growth factor-β (TGF-β) is central to the wound repair processes that follow local trauma and inflammation. In order to mimic the early events of wound-healing, we studied the effects of TGF-β on mitogen-stimulated peripheral blood cells. TGF-β added at the initiation of mitogenesis did not significantly alter T-cell activation, proliferation, CD45 isoform switching, or activation-induced cell death. By contrast, TGF-β added 72 hr post-activation (or later) enhanced the cumulative increase in apoptotic T cells. TGF-β had no effect on mitogen-induced up-regulation of Fas (CD95) or Fas ligand and did not enhance killing of the Fas-sensitive Jurkat cell line by activated T cells. Furthermore, TGF-β had no direct effect on levels of mRNA for members of the bcl family (bcl-X, bfl-1, bik, bak, bax, bcl-2 and mcl-1). These findings suggest that TGF-β does not directly induce apoptosis via the Fas system or by direct effects on bcl proteins. However, interleukin-2, which can ‘rescue’ lymphocytes from spontaneous apoptosis due to cytokine deprivation, abolished the pro-apoptotic effects of TGF-β on post-activated T cells, thus demonstrating that TGF-β increases the cytokine-dependence of T cells for survival. We propose a novel role for TGF-β in the suppression of inflammation by promoting the elimination of post-activated T cells once the initiating stimulus has been resolved. PMID:11298829

  15. Biological evaluation of twenty-eight ferrocenyl tetrasubstituted olefins: cancer cell growth inhibition, ROS production and hemolytic activity.

    PubMed

    de Oliveira, Alane Cabral; Hillard, Elizabeth A; Pigeon, Pascal; Rocha, Danilo Damasceno; Rodrigues, Felipe A R; Montenegro, Raquel C; Costa-Lotufo, Letícia V; Goulart, Marilia O F; Jaouen, Gérard

    2011-09-01

    The antiproliferative effects of twenty-eight tetrasubstituted olefins bearing a ferrocenyl group, including six never-reported compounds, were evaluated against SF-295 (human glioblastoma), HCT-8 (human colon cancer), MDA-MB-435 (human melanoma) and HL-60 (human promyelocytic leukemia) using the MTT test. IC(50) values were determined for twenty-three active compounds and of these, ten compounds had IC(50) values lower than 2 μM on one or more cell lines. Of all the compounds, only two produced significant amounts of ROS on HL-60 cells, and ROS production and growth inhibition could not be correlated. The ten most antiproliferative compounds were tested for their hemolytic activity on mouse erythrocytes. Five compounds showing high antiproliferative activity and low hemolytic activity were thus identified for further study.

  16. Glucocorticoid Insensitivity in Virally Infected Airway Epithelial Cells Is Dependent on Transforming Growth Factor-β Activity

    PubMed Central

    Radwan, Asmaa; Keenan, Christine R.; Langenbach, Shenna Y.; Li, Meina; Londrigan, Sarah L.; Gualano, Rosa C.; Stewart, Alastair G.

    2017-01-01

    Asthma and chronic obstructive pulmonary disease (COPD) exacerbations are commonly associated with respiratory syncytial virus (RSV), rhinovirus (RV) and influenza A virus (IAV) infection. The ensuing airway inflammation is resistant to the anti-inflammatory actions of glucocorticoids (GCs). Viral infection elicits transforming growth factor-β (TGF-β) activity, a growth factor we have previously shown to impair GC action in human airway epithelial cells through the activation of activin-like kinase 5 (ALK5), the type 1 receptor of TGF-β. In the current study, we examine the contribution of TGF-β activity to the GC-resistance caused by viral infection. We demonstrate that viral infection of human bronchial epithelial cells with RSV, RV or IAV impairs GC anti-inflammatory action. Poly(I:C), a synthetic analog of double-stranded RNA, also impairs GC activity. Both viral infection and poly(I:C) increase TGF-β expression and activity. Importantly, the GC impairment was attenuated by the selective ALK5 (TGFβRI) inhibitor, SB431542 and prevented by the therapeutic agent, tranilast, which reduced TGF-β activity associated with viral infection. This study shows for the first time that viral-induced glucocorticoid-insensitivity is partially mediated by activation of endogenous TGF-β. PMID:28046097

  17. Activation of paracrine growth factors by heparan sulphate induced by glucocorticoid in A549 lung carcinoma cells.

    PubMed

    Yevdokimova, N; Freshney, R I

    1997-01-01

    Alkaline phosphatase, a marker of differentiation in the human alveolar adenocarcinoma cell line A549, is inducible by conditioned medium from lung fibroblasts and by cytokines including oncostatin M and interleukin 6, but only in the presence of a glucocorticoid, dexamethasone. Dexamethasone was shown to induce incorporation of [3H]glucosamine into three fractions of medium and cell trypsinate from subconfluent A549 cells, eluting from DEAE ion-exchange chromatography. The first peak did not correspond to any of the unlabelled glycosaminoglycans and was not characterized further. Induction was seen in two other peaks, corresponding to hyaluronic acid and heparan sulphate. Of these, heparan sulphate, eluting as one well-defined peak (referred to as HS1) and another of lower activity and less well defined (HS2), was selected as the most likely to interact with growth factors and cytokines and was isolated from the eluate, concentrated and desalted, and used in alkaline phosphatase induction experiments in place of dexamethasone. HS1 isolated from the medium (HS1m) of subconfluent A549 cells was shown to replace dexamethasone in induction experiments with fibroblast-conditioned medium, oncostatin M and interleukin 6. HS1 from the cell trypsinate and HS2 from the medium and trypsinate were inactive. As the activity of HS1m could be abolished by heparinase and heparitinase but not by chondroitinase ABC, it was concluded that HS1m was a fraction of heparan sulphate involved in the regulation of paracrine growth factor activity in lung fibroblast-conditioned medium, and in the regulation of other growth factors with potential roles in the paracrine control of cell differentiation.

  18. Activation of paracrine growth factors by heparan sulphate induced by glucocorticoid in A549 lung carcinoma cells.

    PubMed Central

    Yevdokimova, N.; Freshney, R. I.

    1997-01-01

    Alkaline phosphatase, a marker of differentiation in the human alveolar adenocarcinoma cell line A549, is inducible by conditioned medium from lung fibroblasts and by cytokines including oncostatin M and interleukin 6, but only in the presence of a glucocorticoid, dexamethasone. Dexamethasone was shown to induce incorporation of [3H]glucosamine into three fractions of medium and cell trypsinate from subconfluent A549 cells, eluting from DEAE ion-exchange chromatography. The first peak did not correspond to any of the unlabelled glycosaminoglycans and was not characterized further. Induction was seen in two other peaks, corresponding to hyaluronic acid and heparan sulphate. Of these, heparan sulphate, eluting as one well-defined peak (referred to as HS1) and another of lower activity and less well defined (HS2), was selected as the most likely to interact with growth factors and cytokines and was isolated from the eluate, concentrated and desalted, and used in alkaline phosphatase induction experiments in place of dexamethasone. HS1 isolated from the medium (HS1m) of subconfluent A549 cells was shown to replace dexamethasone in induction experiments with fibroblast-conditioned medium, oncostatin M and interleukin 6. HS1 from the cell trypsinate and HS2 from the medium and trypsinate were inactive. As the activity of HS1m could be abolished by heparinase and heparitinase but not by chondroitinase ABC, it was concluded that HS1m was a fraction of heparan sulphate involved in the regulation of paracrine growth factor activity in lung fibroblast-conditioned medium, and in the regulation of other growth factors with potential roles in the paracrine control of cell differentiation. PMID:9252193

  19. Photo-activated pheophorbide a inhibits the growth of prostate cancer cells

    NASA Astrophysics Data System (ADS)

    Xu, D. D.; Cho, W. C. S.; Wu, P.; Lam, H. M.; Leung, A. W. N.

    2011-09-01

    Pheophorbide a (PhA) was identified as a photosensitizer to exert cytotoxicity on tumor cells. However, the efficacy of this compound on the treatment of prostate cancer remains unknown. The aim of this study was to evaluate the photodynamic effect of PhA on prostate cancer cells. Cellular uptake of PhA and cell viability after photo-activation was studied in LNCaP prostate cancer cells. The corresponding production of reactive oxygen species within cells was determined after photodynamic therapy (PDT). Our results showed that the uptake of PhA into LNCaP cells was in a time-dependent manner and the cytotoxicity of PhA-PDT was photosensitizer dose- and light dose-dependent. The intracellular reactive oxygen species was remarkably induced after PDT treatment, which was responsible for the inhibition effect on prostate cancer cells. This is the first report to evaluate the photodynamic effect of PhA on prostate cancer. Our findings demonstrate that PhA-PDT may be a potentially promising treatment for localized prostate cancer, which can be a therapeutic option after the failures of radiotherapy and hormone therapy.

  20. Fulvestrant regulates epidermal growth factor (EGF) family ligands to activate EGF receptor (EGFR) signaling in breast cancer cells.

    PubMed

    Zhang, Xihong; Diaz, Michael R; Yee, Douglas

    2013-06-01

    Estrogen receptor-α (ER) targeted therapies are routinely used to treat breast cancer. However, patient responses are limited by resistance to endocrine therapy. Breast cancer cells resistant to the pure steroidal ER antagonist fulvestrant (fulv) demonstrate increased activation of epidermal growth factor receptor (EGFR) family members and downstream ERK signaling. In this study, we investigated the effects of fulv on EGFR signaling and ligand regulation in several breast cancer cell lines. EGFR/HER2/HER3 phosphorylation and ERK1,2 activation were seen after 24-48 h after fulvestrant treatment in ER-positive breast cancer cell lines. 4-Hydroxy-tamoxifen and estradiol did not cause EGFR activation. Fulvestrant did not affect EGFR expression. Cycloheximide abolished the ability of fulv to activate EGFR suggesting the autocrine production of EGFR ligands might be responsible for fulvestrant induced EGFR signaling. qRT-PCR results showed fulv differentially regulated EGFR ligands; HB-EGF mRNA was increased, while amphiregulin and epiregulin mRNAs were decreased. Fulvestrant induced EGFR activation and upregulation of EGFR ligands were ER dependent since fulv treatment in C4-12, an ER-negative cell line derivative of MCF-7 cells, did not result in EGFR activation or change in ligand mRNA levels. ER downregulation by siRNA induced similar EGFR activation and regulation of EGFR ligands as fulvestrant. Neutralizing HB-EGF antibody blocked fulv-induced EGFR activation. Combination of fulv and EGFR family tyrosine kinase inhibitors (erlotinib and lapatinib) significantly decreased EGFR signaling and cell survival. In conclusion, fulvestrant-activated EGFR family members accompanied by ER dependent upregulation of HB-EGF within 48 h. EGF receptor or ligand inhibition might enhance or prolong the therapeutic effects of targeting ER by fulvestrant in breast cancer.

  1. Activated Hepatic Stellate Cells Are Dependent on Self-collagen, Cleaved by Membrane Type 1 Matrix Metalloproteinase for Their Growth

    PubMed Central

    Birukawa, Naoko Kubo; Murase, Kazuyuki; Sato, Yasushi; Kosaka, Akemi; Yoneda, Akihiro; Nishita, Hiroki; Fujita, Ryosuke; Nishimura, Miyuki; Ninomiya, Takafumi; Kajiwara, Keiko; Miyazaki, Miyono; Nakashima, Yusuke; Ota, Sigenori; Murakami, Yuya; Tanaka, Yasunobu; Minomi, Kenjiro; Tamura, Yasuaki; Niitsu, Yoshiro

    2014-01-01

    Stellate cells are distributed throughout organs, where, upon chronic damage, they become activated and proliferate to secrete collagen, which results in organ fibrosis. An intriguing property of hepatic stellate cells (HSCs) is that they undergo apoptosis when collagen is resolved by stopping tissue damage or by treatment, even though the mechanisms are unknown. Here we disclose the fact that HSCs, normal diploid cells, acquired dependence on collagen for their growth during the transition from quiescent to active states. The intramolecular RGD motifs of collagen were exposed by cleavage with their own membrane type 1 matrix metalloproteinase (MT1-MMP). The following evidence supports this conclusion. When rat activated HSCs (aHSCs) were transduced with siRNA against the collagen-specific chaperone gp46 to inhibit collagen secretion, the cells underwent autophagy followed by apoptosis. Concomitantly, the growth of aHSCs was suppressed, whereas that of quiescent HSCs was not. These in vitro results are compatible with the in vivo observation that apoptosis of aHSCs was induced in cirrhotic livers of rats treated with siRNAgp46. siRNA against MT1-MMP and addition of tissue inhibitor of metalloproteinase 2 (TIMP-2), which mainly inhibits MT1-MMP, also significantly suppressed the growth of aHSCs in vitro. The RGD inhibitors echistatin and GRGDS peptide and siRNA against the RGD receptor αVβ1 resulted in the inhibition of aHSCs growth. Transduction of siRNAs against gp46, αVβ1, and MT1-MMP to aHSCs inhibited the survival signal of PI3K/AKT/IκB. These results could provide novel antifibrosis strategies. PMID:24867951

  2. Activated hepatic stellate cells are dependent on self-collagen, cleaved by membrane type 1 matrix metalloproteinase for their growth.

    PubMed

    Birukawa, Naoko Kubo; Murase, Kazuyuki; Sato, Yasushi; Kosaka, Akemi; Yoneda, Akihiro; Nishita, Hiroki; Fujita, Ryosuke; Nishimura, Miyuki; Ninomiya, Takafumi; Kajiwara, Keiko; Miyazaki, Miyono; Nakashima, Yusuke; Ota, Sigenori; Murakami, Yuya; Tanaka, Yasunobu; Minomi, Kenjiro; Tamura, Yasuaki; Niitsu, Yoshiro

    2014-07-18

    Stellate cells are distributed throughout organs, where, upon chronic damage, they become activated and proliferate to secrete collagen, which results in organ fibrosis. An intriguing property of hepatic stellate cells (HSCs) is that they undergo apoptosis when collagen is resolved by stopping tissue damage or by treatment, even though the mechanisms are unknown. Here we disclose the fact that HSCs, normal diploid cells, acquired dependence on collagen for their growth during the transition from quiescent to active states. The intramolecular RGD motifs of collagen were exposed by cleavage with their own membrane type 1 matrix metalloproteinase (MT1-MMP). The following evidence supports this conclusion. When rat activated HSCs (aHSCs) were transduced with siRNA against the collagen-specific chaperone gp46 to inhibit collagen secretion, the cells underwent autophagy followed by apoptosis. Concomitantly, the growth of aHSCs was suppressed, whereas that of quiescent HSCs was not. These in vitro results are compatible with the in vivo observation that apoptosis of aHSCs was induced in cirrhotic livers of rats treated with siRNAgp46. siRNA against MT1-MMP and addition of tissue inhibitor of metalloproteinase 2 (TIMP-2), which mainly inhibits MT1-MMP, also significantly suppressed the growth of aHSCs in vitro. The RGD inhibitors echistatin and GRGDS peptide and siRNA against the RGD receptor αVβ1 resulted in the inhibition of aHSCs growth. Transduction of siRNAs against gp46, αVβ1, and MT1-MMP to aHSCs inhibited the survival signal of PI3K/AKT/IκB. These results could provide novel antifibrosis strategies.

  3. GLI activation by atypical protein kinase C ι/λ regulates the growth of basal cell carcinomas.

    PubMed

    Atwood, Scott X; Li, Mischa; Lee, Alex; Tang, Jean Y; Oro, Anthony E

    2013-02-28

    Growth of basal cell carcinomas (BCCs) requires high levels of hedgehog (HH) signalling through the transcription factor GLI. Although inhibitors of membrane protein smoothened (SMO) effectively suppress HH signalling, early tumour resistance illustrates the need for additional downstream targets for therapy. Here we identify atypical protein kinase C ι/λ (aPKC-ι/λ) as a novel GLI regulator in mammals. aPKC-ι/λ and its polarity signalling partners co-localize at the centrosome and form a complex with missing-in-metastasis (MIM), a scaffolding protein that potentiates HH signalling. Genetic or pharmacological loss of aPKC-ι/λ function blocks HH signalling and proliferation of BCC cells. Prkci is a HH target gene that forms a positive feedback loop with GLI and exists at increased levels in BCCs. Genome-wide transcriptional profiling shows that aPKC-ι/λ and SMO control the expression of similar genes in tumour cells. aPKC-ι/λ functions downstream of SMO to phosphorylate and activate GLI1, resulting in maximal DNA binding and transcriptional activation. Activated aPKC-ι/λ is upregulated in SMO-inhibitor-resistant tumours and targeting aPKC-ι/λ suppresses signalling and growth of resistant BCC cell lines. These results demonstrate that aPKC-ι/λ is critical for HH-dependent processes and implicates aPKC-ι/λ as a new, tumour-selective therapeutic target for the treatment of SMO-inhibitor-resistant cancers.

  4. Effective growth-suppressive activity of maternal embryonic leucine-zipper kinase (MELK) inhibitor against small cell lung cancer

    PubMed Central

    Inoue, Hiroyuki; Kato, Taigo; Olugbile, Sope; Tamura, Kenji; Chung, Suyoun; Miyamoto, Takashi; Matsuo, Yo; Salgia, Ravi; Nakamura, Yusuke; Park, Jae-Hyun

    2016-01-01

    Maternal embryonic leucine zipper kinase (MELK), that plays a critical role in maintenance of cancer stem cells (CSCs), is predominantly expressed in various types of human cancer including small cell lung cancer (SCLC). SCLC usually acquires resistance to anti-cancer drugs and portends dismal prognosis. We have delineated roles of MELK in development/progression of SCLC and examined anti-tumor efficacy of OTS167, a highly potent MELK inhibitor, against SCLC. MELK expression was highly upregulated in both SCLC cell lines and primary tumors. siRNA-mediated MELK knockdown induced significant growth inhibition in SCLC cell lines. Concordantly, treatment with OTS167 exhibited strong cytotoxicity against eleven SCLC cell lines with IC50 of < 10 nM. As similar to siRNA knockdown, OTS167 treatment induced cytokinetic defects with intercellular bridges, and in some cell lines we observed formation of neuronal protrusions accompanied with increase of a neuronal differentiation marker (CD56), indicating that the compound induced differentiation of cancer cells to neuron-like cells. Furthermore, the MELK inhibition decreased its downstream FOXM1 activity and Akt expression in SCLC cells, and led to apoptotic cell death. OTS167 appeared to be more effective to CSCs as measured by the sphere formation assay, thus MELK inhibition might become a promising treatment modality for SCLC. PMID:26871945

  5. Vascular smooth muscle cells from injured rat aortas display elevated matrix production associated with transforming growth factor-beta activity.

    PubMed Central

    Rasmussen, L. M.; Wolf, Y. G.; Ruoslahti, E.

    1995-01-01

    The arterial response to injury is characterized by a short period of increased proliferation and migration of vascular smooth muscle cells, followed by an extended period of extracellular matrix accumulation in the intima. Transforming growth factor-beta (TGF-beta) has been implicated as a causative factor in the formation of extracellular matrix in this process, which leads to progressive thickening of the intima, known as intimal hyperplasia. In vitro analysis of vascular smooth muscle cells harvested from normal rat aortas and from aortas injured 14 days earlier showed that both types of cells attached equally well to culture dishes but that the initial spreading of the cells was increased in cells derived from injured vessels. Cells from the injured arteries produced more fibronectin and proteoglycans into the culture medium than the cells from normal arteries and contained more TGF-beta 1 mRNA. TGF-beta 1 increased proteoglycan synthesis by normal smooth muscle cells, and the presence of a neutralizing anti-TGF-beta 1 antibody reduced proteoglycan synthesis by the cells from injured arteries in culture. Fibronectin synthesis was not altered by these treatments. These results indicate that the accumulation of extracellular matrix components in neointimal lesions is at least partially caused by autocrine TGF-beta activity in vascular smooth muscle cells. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:7573349

  6. Xanthohumol inhibits STAT3 activation pathway leading to growth suppression and apoptosis induction in human cholangiocarcinoma cells.

    PubMed

    Dokduang, Hasaya; Yongvanit, Puangrat; Namwat, Nisana; Pairojkul, Chawalit; Sangkhamanon, Sakkarn; Yageta, Mika Sakurai; Murakami, Yoshinori; Loilome, Watcharin

    2016-04-01

    STAT3 plays a significant role in the development of cholangiocarcinoma (CCA) associated with the liver fluke (Opisthorchis viverrini; Ov). Xanthohumol (XN), a prenylated flavonoid extracted from hops, has known anticancer activity and could potentially target STAT3. The present study determined the effect of XN on STAT3, as well as ascertained its usefulness against CCA. The CCA cell proliferation at 20 µM and 50 µM of XN was shown to inhibited, while 20 µM partially inhibited IL-6-induced STAT3 activation. At 50 µM, the inhibition was complete. The reduction in STAT3 activity at 20 and 50 µM was associated with a significant reduction of CCA cell growth and apoptosis. We also found that the administration of 50 µM XN orally in drinking water to nude mice inoculated with CCA led to a reduction in tumor growth in comparison with controls. In addition, apoptosis of cancer cells increased although there was no visible toxicity. The present study shows that XN can inhibit STAT3 activation both in vivo and in vitro due to suppression of the Akt-NFκB signaling pathway. XN should be considered as a possible therapeutic agent against CCA.

  7. [The causes of the biological action of electrochemically activated solutions by changes in the growth of Escherichia coli cells].

    PubMed

    Miroshnikov, A I

    2004-01-01

    To study the causes of the biological effect of electrochemically activated solutions, nutrient growth media M 9 were prepared using catholyte and anolyte solutions containing separate components of the nutrient medium, such as distilled water, phosphate buffer, phosphate buffer with chlorides (NaCl, NH4Cl), and chlorides. The biological activity of different nutrient media was assessed by a comparison with the stimulation or inhibition of the growth of Escherichia coli cells in the catholyte and anolyte of the complete nutrient medium M 9. It was shown that medium M 9 prepared on the catholytes of different initial solutions acquired the stimulating properties only if the initial solution contained salts containing chlorine. The stimulating effect of the initial solution was 18-24%. Electrochemical treatment of solutions containing no chlorides (distilled water, phosphate buffer) and subsequent addition of the components of nutrient medium to exposed solutions had neither a stimulating nor the inhibiting effect on cell growth. The cultivation of cells in a nutrient medium based on the catholyte of preliminarily treated hydrochloric acid showed that it is the presence of chlorine ions in solution during electrolysis that causes the stimulating effect of the nutrient medium based on the catholyte. The formation of oxidizers and the inhibitory effect of the anolyte described previously was also observed if the solution contained chlorine ions during electrolysis. Possible mechanisms of the biological effect of catholytes containing chlorides during electrolysis were discussed.

  8. Construction of multifunctional proteins for tissue engineering: epidermal growth factor with collagen binding and cell adhesive activities.

    PubMed

    Hannachi Imen, Elloumi; Nakamura, Makiko; Mie, Masayasu; Kobatake, Eiry

    2009-01-01

    The development of different techniques based on natural and polymeric scaffolds are useful for the design of different biomimetic materials. These approaches, however, require supplementary steps for the chemical or physical modification of the biomaterial. To avoid such steps, in the present study, we constructed a new multifunctional protein that can be easily immobilized onto hydrophobic surfaces, and at the same time helps enhance specific cell adhesion and proliferation onto collagen substrates. A collagen binding domain was fused to a previously constructed protein, which had an epidermal growth factor fused to a hydrophobic peptide that allows for cell adhesion. The new fusion protein, designated fnCBD-ERE-EGF is produced in Escherichia coli, and its abilities to bind to collagen and promote cell proliferation were investigated. fnCBD-ERE-EGF was shown to keep both collagen binding and cell growth-promoting activities comparable to those of the corresponding unfused proteins. The results obtained in this study also suggest the use of a fnCBD-ERE-EGF as an alternative for the design of multifunctional ECM-bound growth factor based materials.

  9. Anti-histone acetyltransferase activity from allspice extracts inhibits androgen receptor-dependent prostate cancer cell growth.

    PubMed

    Lee, Yoo-Hyun; Hong, Soon Won; Jun, Woojin; Cho, Hong Yon; Kim, Han-Cheon; Jung, Myung Gu; Wong, Jiemin; Kim, Ha-Il; Kim, Chang-Hoon; Yoon, Ho-Geun

    2007-11-01

    Histone acetylation depends on the activity of two enzyme families, histone acetyltransferase (HAT) and deacetylase (HDAC). In this study, we screened various plant extracts to find potent HAT inhibitors. Hot water extracts of allspice inhibited HAT activity, especially p300 and CBP (40% at 100 microg/ml). The mRNA levels of two androgen receptor (AR) regulated genes, PSA and TSC22, decreased with allspice treatment (100 microg/ml). Importantly, in IP western analysis, AR acetylation was dramatically decreased by allspice treatment.Furthermore, chromatin immunoprecipitation indicated that the acetylation of histone H3 in the PSA and B2M promoter regions was also repressed. Finally, allspice treatment reduced the growth of human prostate cancer cells, LNCaP (50% growth inhibition at 200 microg/ml). Taken together, our data indicate that the potent HAT inhibitory activity of allspice reduced AR and histone acetylation and led to decreased transcription of AR target genes, resulting in inhibition of prostate cancer cell growth.

  10. Synthetic polymers active against Clostridium difficile vegetative cell growth and spore outgrowth.

    PubMed

    Liu, Runhui; Suárez, Jose M; Weisblum, Bernard; Gellman, Samuel H; McBride, Shonna M

    2014-10-15

    Nylon-3 polymers (poly-β-peptides) have been investigated as synthetic mimics of host-defense peptides in recent years. These polymers are attractive because they are much easier to synthesize than are the peptides themselves, and the polymers resist proteolysis. Here we describe in vitro analysis of selected nylon-3 copolymers against Clostridium difficile, an important nosocomial pathogen that causes highly infectious diarrheal disease. The best polymers match the human host-defense peptide LL-37 in blocking vegetative cell growth and inhibiting spore outgrowth. The polymers and LL-37 were effective against both the epidemic 027 ribotype and the 012 ribotype. In contrast, neither vancomycin nor nisin inhibited outgrowth for the 012 ribotype. The best polymer was less hemolytic than LL-37. Overall, these findings suggest that nylon-3 copolymers may be useful for combatting C. difficle.

  11. Activation of trkA induces differentiation and inhibits the growth of JK-GMS Askin tumor cells.

    PubMed

    Kim, Gi-Jin; Kim, Chong Jai; Cho, So Young; Chung, In Pyung; Park, Sun-Hwa; Lee, Min Jung; Chi, Je G

    2002-02-01

    Peripheral primitive neuroectodermal tumor (PNET) and Ewing's sarcoma (ES) constitute a unique group of small round cell tumors in childhood and young adults that are characterized by the same chromosomal translocation t(11;22)(q24;q12). Recently, the expression of neurotrophin receptors has been found in various human tumors including PNET/ES, but the functional significance of these receptor expressions has not been documented in PNET/ES. In the present study, we investigated the biologic effects of trkA neurotrophin receptor activation by nerve growth factor (NGF) in a newly established Askin tumor cell line, JK-GMS, which constitutively expresses a high level of trkA. The activation of trkA induced differentiation and inhibited the growth of JK-GMS cells, which was characteristically associated with down-regulation of c-myc and N-myc mRNA expression. NGF did not exert significant changes in two different PNET/ES cell lines, CADO-ES1 and RD-ES, which did not express detectable levels of trkA. The biologic effects mediated by NGF were abrogated by treatment of the cells with K-252a, and the treatment with brain-derived neurotrophic factor did not affect the biologic behavior of JK-GMS cells, indicating that the effects are trkA specific. The results observed were quite similar to those of neuroblastoma cells, another childhood tumor of neural crest origin. Overall findings strongly suggest that the trkA-mediated signaling pathway plays a crucial role in controlling the basic biologic properties of JK-GMS cells.

  12. An activated form of ADAM10 is tumor selective and regulates cancer stem-like cells and tumor growth

    PubMed Central

    Saha, Nayanendu; Eissman, Moritz F.; Xu, Kai; Llerena, Carmen; Kusebauch, Ulrike; Ding, Bi-Sen; Cao, Zhongwei; Rafii, Shahin; Ernst, Matthias; Scott, Andrew M.; Nikolov, Dimitar B.; Lackmann, Martin

    2016-01-01

    The transmembrane metalloprotease ADAM10 sheds a range of cell surface proteins, including ligands and receptors of the Notch, Eph, and erbB families, thereby activating signaling pathways critical for tumor initiation and maintenance. ADAM10 is thus a promising therapeutic target. Although widely expressed, its activity is normally tightly regulated. We now report prevalence of an active form of ADAM10 in tumors compared with normal tissues, in mouse models and humans, identified by our conformation-specific antibody mAb 8C7. Structure/function experiments indicate mAb 8C7 binds an active conformation dependent on disulfide isomerization and oxidative conditions, common in tumors. Moreover, this active ADAM10 form marks cancer stem-like cells with active Notch signaling, known to mediate chemoresistance. Importantly, specific targeting of active ADAM10 with 8C7 inhibits Notch activity and tumor growth in mouse models, particularly regrowth after chemotherapy. Our results indicate targeted inhibition of active ADAM10 as a potential therapy for ADAM10-dependent tumor development and drug resistance. PMID:27503072

  13. Gastrodin stimulates anticancer immune response and represses transplanted H22 hepatic ascitic tumor cell growth: Involvement of NF-κB signaling activation in CD4 + T cells

    SciTech Connect

    Shu, Guangwen; Yang, Tianming; Wang, Chaoyuan; Su, Hanwen; Xiang, Meixian

    2013-06-15

    Gastrodia elata Blume (G. elata) is a famous restorative food in East Asia. It can be used as an auxiliary reagent in hepatocellular carcinoma (HCC) treatment. Previous studies unveiled that G. elata exhibited immunomodulatory activities. To explore the active ingredients contributing to its immunomodulatory activities, gastrodin, vanillin, and parishin B were purified from G. elata and their anti-HCC effects were assessed in vivo. Among these compounds, only gastrodin was capable of repressing transplanted H22 ascitic hepatic tumor cell growth in vivo with low toxicity. Further investigations were designed to explore the effects of gastrodin on the immune system of tumor-bearing mice and potential molecular mechanisms underlying these effects. Our data showed that gastrodin ameliorated tumor cell transplantation-induced activation of endogenous pro-apoptotic pathway in CD4 + T cells and abnormalities in serum cytokine profiles in host animals. These events enhanced cytotoxic activities of natural killer and CD8 + T cells against H22 hepatic cancer cells. Gastrodin administration specifically upregulated mRNA levels of several nuclear factor κB (NF-κB) responsive genes in CD4 + T cells but not in CD8 + T cells. Chromatin immunoprecipitation assay showed that gastrodin increased the association of NF-κB p65 subunit to the promoter regions of IL-2 and Bcl-2 encoding genes in CD4 + T cells. Our investigations demonstrated that gastrodin is the main active ingredient contributing to the anticancer immunomodulatory properties of G. elata. Promoting NF-κB-mediated gene transcription in CD4 + T cells is implicated in its immunomodulatory activity. - Highlights: • Gastrodin stimulates anticancer immune response. • Gastrodin represses tumor transplantation-induced CD4 + T cell apoptosis. • Gastrodin activates NF-κB activity in CD4 + T cells.

  14. Alteration of N-glycoproteins/N-glycosites in human hepatic stellate cells activated with transforming growth factor-β1.

    PubMed

    Qin, Y; Wang, Q; Zhong, Y; Zhao, F; Wu, F; Wang, Y; Ma, T; Liu, C; Bian, H; Li, Z

    2016-03-20

    Proteins N-glycosylation is significantly increased in the activated human hepatic stellate cells (HSCs) stimulated by transforming growth factor-β1 (TGF-β1) compared to the quiescent HSCs according to our previous study. However, little is known about the alteration of N-glycoprotein profiles in the activated HSCs. Profiles of N-glycopeptides / N-glycoproteins / N-glycosites in LX-2 cells, with and without activation by TGF-β1, were identified and compared using hydrazide chemistry enrichment coupled with liquid chromatography - mass spectrometry analysis. Western blot and immunohistochemistry were further used for validation. A total of 103 non-redundant N-glycopeptides, with 107 glycosylation sites from 86 N-glycoproteins, were identified in activated and quiescent LX-2 cells respectively. Among these, 23 proteins were known N-glycoproteins, and 58 were newly identified N-glycoproteins. In addition, 43 proteins (e.g., pigment epithelium-derived factor and clathrin heavy chain 1) were solely identified or up-regulated in the activated LX-2 cells, which participated in focal adhesion and glycosaminoglycan degradation pathways and were involved in interaction clusters of cytoskeletal proteins (e.g., myosin light chains and keratins). The increased expression of glucosamine (N-acetyl)-6-sulfatase and phospholipase C beta 2 and the decreased expression of zinc finger and BTB domain-containing protein 1 were validated in the activated compared to the quiescent LX-2 cells. In conclusion, increased expression of N-glycoproteins and N-glycosites play important roles in cellular contractility, signal transduction, and responses to stimuli in the activated HSCs, which might provide useful information for discovering novel molecular mechanism of HSC activation and therapeutic targets in liver fibrosis.

  15. HB-EGF release mediates glucose-induced activation of the epidermal growth factor receptor in mesangial cells.

    PubMed

    Uttarwar, L; Peng, F; Wu, D; Kumar, S; Gao, B; Ingram, A J; Krepinsky, J C

    2011-04-01

    Glomerular matrix accumulation is a hallmark of diabetic nephropathy. We showed that transactivation of the epidermal growth factor receptor (EGFR) is an important mediator of matrix upregulation in mesangial cells (MC) in response to high glucose (HG). Here, we study the mechanism of EGFR transactivation. In primary MC, EGFR transactivation by 1 h of HG (30 mM) was unaffected by inhibitors of protein kinase C, reactive oxygen species, or the angiotensin II AT1 receptor. However, general metalloprotease inhibition, as well as specific inhibitors of heparin-binding EGF-like growth factor (HB-EGF), prevented both EGFR and downstream Akt activation. HB-EGF was released into the medium by 30 min of HG, and this depended on metalloprotease activity. One of the metalloproteases shown to cleave proHB-EGF is ADAM17 (TACE). HG, but not an osmotic control, activated ADAM17, and its inhibition prevented EGFR and Akt activation and HB-EGF release into the medium. siRNA to either ADAM17 or HB-EGF prevented HG-induced EGFR transactivation. We previously showed that EGFR/Akt signaling increases transforming growth factor (TGF)-β1 transcription through the transcription factor activator protein (AP)-1. HG-induced AP-1 activation, as assessed by EMSA, was abrogated by inhibitors of metalloproteases, HB-EGF and ADAM17. HB-EGF and ADAM17 siRNA also prevented AP-1 activation. Finally, these inhibitors and siRNA prevented TGF-β1 upregulation by HG. Thus, HG-induced EGFR transactivation in MC is mediated by the release of HB-EGF, which requires activity of the metalloprotease ADAM17. The mechanism of ADAM17 activation awaits identification. Targeting upstream mediators of EGFR transactivation including HB-EGF or ADAM17 provides novel therapeutic targets for the treatment of diabetic nephropathy.

  16. Metformin inhibits estrogen-dependent endometrial cancer cell growth by activating the AMPK-FOXO1 signal pathway.

    PubMed

    Zou, Jingfang; Hong, Liangli; Luo, Chaohuan; Li, Zhi; Zhu, Yuzhang; Huang, Tianliang; Zhang, Yongneng; Yuan, Huier; Hu, Yaqiu; Wen, Tengfei; Zhuang, Wanling; Cai, Bozhi; Zhang, Xin; Huang, Jiexiong; Cheng, Jidong

    2016-12-01

    Metformin is an oral biguanide commonly used for treating type II diabetes and has recently been reported to possess antiproliferative properties that can be exploited for the prevention and treatment of a variety of cancers. The mechanisms underlying this effect have not been fully elucidated. Our study shows a marked loss of AMP-activated protein kinase (AMPK) phosphorylation and nuclear human Forkhead box O1 (FOXO1) protein in estrogen-dependent endometrial cancer (EC) tumors compared to normal control endometrium. Metformin treatment suppressed EC cell growth in a time-dependent manner in vitro; this effect was cancelled by cotreatment with an AMPK inhibitor, compound C. Metformin decreased FOXO1 phosphorylation and increased FOXO1 nuclear localization in Ishikawa and HEC-1B cells, with non-significant increase in FOXO1 mRNA expression. Moreover, compound C blocked the metformin-induced changes of FOXO1 and its phosphorylation protein, suggesting that metformin upregulated FOXO1 activity by AMPK activation. Similar results were obtained after treatment with insulin. In addition, transfection with siRNA for FOXO1 cancelled metformin-inhibited cell growth, indicating that FOXO1 mediated metformin to inhibit EC cell proliferation. A xenograft mouse model further revealed that metformin suppressed HEC-1B tumor growth, accompanied by downregulated ki-67 and upregulated AMPK phosphorylation and nuclear FOXO1 protein. Taken together, these data provide a novel mechanism of antineoplastic effect for metformin through the regulation of FOXO1, and suggest that the AMPK-FOXO1 pathway may be a therapeutic target to the development of new antineoplastic drugs.

  17. Estrogen Signaling via a Linear Pathway Involving Insulin-Like Growth Factor I Receptor, Matrix Metalloproteinases, and Epidermal Growth Factor Receptor to Activate Mitogen-Activated Protein Kinase in MCF-7 Breast Cancer Cells

    PubMed Central

    Song, Robert X.-D.; Zhang, Zhenguo; Chen, Yucai; Bao, Yongde; Santen, Richard J.

    2009-01-01

    We present an integrated model of an extranuclear, estrogen receptor-α (ERα)-mediated, rapid MAPK activation pathway in breast cancer cells. In noncancer cells, IGF-I initiates a linear process involving activation of the IGF-I receptor (IGF-IR) and matrix metalloproteinases (MMP), release of heparin-binding epidermal growth factor (HB-EGF), and activation of EGF receptor (EGFR)-dependent MAPK. 17β-Estradiol (E2) rapidly activates IGF-IR in breast cancer cells. We hypothesize that E2 induces a similar linear pathway involving IGF-IR, MMP, HB-EGF, EGFR, and MAPK. Using MCF-7 breast cancer cells, we for the first time demonstrated that a sequential activation of IGF-IR, MMP, and EGFR existed in E2 and IGF-I actions, which was supported by evidence that the selective inhibitors of IGF-IR and MMP or knockdown of IGF-IR all inhibited E2- or IGF-I-induced EGFR phosphorylation. Using the inhibitors and small inhibitoryRNA strategies,we also demonstrated that the same sequential activation of the receptors occurred in E2-, IGF-I-, but not EGF-induced MAPK phosphorylation. Additionally, a HB-EGF neutralizing antibody significantly blocked E2-induced MAPK activation, further supporting our hypothesis. The biological effects of sequential activation of IGF-IR and EGFR on E2 stimulation of cell proliferation were also investigated. Knockdown or blockade of IGF-IR significantly inhibited E2- or IGF-I-stimulated but not EGF-induced cell growth. Knockdown or blockade of EGFR abrogated cell growth induced by E2, IGF-I, and EGF, indicating that EGFR is a downstream molecule of IGF-IR in E2 and IGF-I action. Together, our data support the novel view that E2 can activate a linear pathway involving the sequential activation of IGF-IR, MMP, HB-EGF, EGFR, and MAPK. PMID:17525128

  18. Ellagitannin-rich cloudberry inhibits hepatocyte growth factor induced cell migration and phosphatidylinositol 3-kinase/AKT activation in colon carcinoma cells and tumors in Min mice

    PubMed Central

    Pajari, Anne-Maria; Päivärinta, Essi; Paavolainen, Lassi; Vaara, Elina; Koivumäki, Tuuli; Garg, Ritu; Heiman-Lindh, Anu; Mutanen, Marja; Marjomäki, Varpu; Ridley, Anne J.

    2016-01-01

    Berries have been found to inhibit colon carcinogenesis in animal models, and thus represent a potential source of compounds for prevention and treatment of colorectal cancer. The mechanistic basis for their effects is not well understood. We used human colon carcinoma cells and Min mice to investigate the effects of ellagitannin-rich cloudberry (Rubus chamaemorus) extract on cancer cell migration and underlying cell signaling. Intrinsic and hepatocyte growth factor (HGF) -induced cell motility in human HT29 and HCA7 colon carcinoma cells was assessed carrying out cell scattering and scratch wound healing assays using time-lapse microscopy. Activation of Met, AKT, and ERK in cell lines and tumors of cloudberry-fed Min mice were determined using immunoprecipitation, Western blot and immunohistochemical analyses. Cloudberry extract significantly inhibited particularly HGF-induced cancer cell migration in both cell lines. Cloudberry extract inhibited the Met receptor tyrosine phosphorylation by HGF and strongly suppressed HGF-induced AKT and ERK activation in both HT29 and HCA7 cells. Consistently, cloudberry feeding (10% w/w freeze-dried berries in diet for 10 weeks) reduced the level of active AKT and prevented phosphoMet localization at the edges in tumors of Min mice. These results indicate that cloudberry reduces tumor growth and cancer cell motility by inhibiting Met signaling and consequent activation of phosphatidylinositol 3-kinase/AKT in vitro and in tumors in vivo. As the Met receptor is recognized to be a major target in cancer treatment, our results suggest that dietary phytochemicals may have therapeutic value in reducing cancer progression and metastasis. PMID:27270323

  19. Polysaccharides from Capsosiphon fulvescens stimulate the growth of IEC-6 Cells by activating the MAPK signaling pathway.

    PubMed

    Go, Hiroe; Hwang, Hye-Jung; Nam, Taek-Jeong

    2011-06-01

    Seaweed extracts show diverse bioactivities, such as antioxidant and antitumor activity. Capsosiphon fulvescens is a green alga that is abundant along the southwest coast of South Korea. Although it is consumed for its purported health-enhancing properties, particularly as a treatment for stomach disorders and hangovers, the health effects of dietary C. fulvescens remain unclear. We extracted polysaccharides from C. fulvescens (Cf-PS), investigated their effects on the proliferation of rat small intestinal epithelial IEC-6 cells, and determined the signaling cascade involved. We cultured IEC-6 cells in the presence of Cf-PS, which stimulated cell proliferation in a dose-dependent manner, and analyzed the Wnt and MAPK signaling pathways, which are related to cell proliferation. Cf-PS treatment induced the translocation of β-catenin, an effector of the Wnt signaling pathway, from the cytosol to the nucleus and increased the expression of cyclinD1 and c-myc. Cf-PS also induced ERK1/2 phosphorylation, which is activated by mitogenic and proliferative stimuli such as growth factors, but the phosphorylation of JNK and p38 was not enhanced. Our results show that Cf-PS regulates proliferation via stimulating the nuclear translocation of β-catenin and ERK1/2 activation in intestinal epithelial cells.

  20. Anti-Müllerian hormone inhibits growth of AMH type II receptor-positive human ovarian granulosa cell tumor cells by activating apoptosis.

    PubMed

    Anttonen, Mikko; Färkkilä, Anniina; Tauriala, Hanna; Kauppinen, Marjut; Maclaughlin, David T; Unkila-Kallio, Leila; Bützow, Ralf; Heikinheimo, Markku

    2011-11-01

    Ovarian granulosa cell tumors (GCTs) are sex cord stromal tumors that constitute 3-5% of all ovarian cancers. GCTs usually present with an indolent course but there is a high risk of recurrence, which associates with increased mortality, and targeted treatments would be desirable. Anti-Müllerian hormone (AMH), a key factor regulating sexual differentiation of the reproductive organs, has been implicated as a growth inhibitor in ovarian cancer. GCTs and normal granulosa cells produce AMH, but its expression in large GCTs is usually downregulated. Further, as the lack of specific AMH-signaling pathway components leads to GCT development in mice, we hypothesized that AMH inhibits growth of GCTs. Utilizing a large panel of human GCT tissue samples, we found that AMH type I receptors (ALK2, ALK3 and ALK6) and type II receptor (AMHRII), as well as their downstream effectors Smad1/5, are expressed and active in GCTs. AMHRII expression was detected in the vast majority (96%) of GCTs and correlated with AMH mRNA and protein expression. AMH mRNA level was low in large GCTs, confirming previous findings on low-AMH protein expression in large human as well as mouse GCTs. To study the functional role of AMH in this peculiar ovarian cancer, we utilized a human GCT cell line (KGN) and 10 primary GCT cell cultures. We found that the AMH-Smad1/5-signaling pathway was active in these cells, and that exogenous AMH further activated Smad1/5 in KGN cells. Furthermore, AMH treatment reduced the number of KGN cells and primary GCT cells, with increasing amounts of AMH leading to augmented activation of caspase-3 and subsequent apoptosis. All in all, these data support the premise that AMH is a growth inhibitor of GCTs.

  1. Basic Fibroblast Growth Factor Contributes to a Shift in the Angioregulatory Activity of Retinal Glial (Müller) Cells

    PubMed Central

    Yafai, Yousef; Iandiev, Ianors; Lange, Johannes; Yang, Xiu Mei; Wiedemann, Peter; Bringmann, Andreas; Eichler, Wolfram

    2013-01-01

    Basic fibroblast growth factor (bFGF) is a pleiotropic cytokine with pro-angiogenic and neurotrophic effects. The angioregulatory role of this molecule may become especially significant in retinal neovascularization, which is a hallmark of a number of ischemic eye diseases. This study was undertaken to reveal expression characteristics of bFGF, produced by retinal glial (Müller) cells, and to determine conditions under which glial bFGF may stimulate the proliferation of retinal microvascular endothelial cells. Immunofluorescence labeling detected bFGF in Müller cells of the rat retina and in acutely isolated Müller cells with bFGF levels, which increased after ischemia-reperfusion in postischemic retinas. In patients with proliferative diabetic retinopathy or myopia, the immunoreactivity of bFGF co-localized to glial fibrillary acidic protein (GFAP)-positive cells in surgically excised retinal tissues. RT-PCR and ELISA analyses indicated that cultured Müller cells produce bFGF, which is elevated under hypoxia or oxidative stress, as well as under stimulation with various growth factors and cytokines, including pro-inflammatory factors. When retinal endothelial cells were cultured in the presence of media from hypoxia (0.2%)-conditioned Müller cells, a distinct picture of endothelial cell proliferation emerged. Media from 24-h cultured Müller cells inhibited proliferation, whereas 72-h conditioned media elicited a stimulatory effect. BFGF-neutralizing antibodies suppressed the enhanced endothelial cell proliferation to a similar extent as anti-VEGF antibodies. Furthermore, phosphorylation of extracellular signal-regulated kinases (ERK−1/−2) in retinal endothelial cells was increased when the cells were cultured in 72-h conditioned media, while neutralizing bFGF attenuated the activation of this signaling pathway. These data provide evidence that retinal (glial) Müller cells are major sources of bFGF in the ischemic retina. Müller cells under

  2. Effect of Okinawa Propolis on PAK1 Activity, Caenorhabditis elegans Longevity, Melanogenesis, and Growth of Cancer Cells.

    PubMed

    Taira, Nozomi; Nguyen, Binh Cao Quan; Be Tu, Pham Thi; Tawata, Shinkichi

    2016-07-13

    Propolis from different areas has been reported to inhibit oncogenic/aging kinase PAK1, which is responsible for a variety of conditions, including cancer, longevity, and melanogenesis. Here, a crude extract of Okinawa propolis (OP) was tested against PAK1 activity, Caenorhabditis elegans (C. elegans) longevity, melanogenesis, and growth of cancer cells. We found that OP blocks PAK1 and exhibits anticancer activity in the A549 cell (human lung cancer cell) line with IC50 values of 6 μg/mL and 12 μg/mL, respectively. Most interestingly, OP (1 μg/mL) significantly reduces reproduction and prolongs the lifespan of C. elegans by activating the HSP-16.2 gene, as shown in the PAK1-deficient strain. Furthermore, OP inhibits melanogenesis in a melanoma cell line (B16F10) by downregulating intracellular tyrosinase activity with an IC50 of 30 μg/mL. Our results suggest that OP demonstrated a life span extending effect, C. elegans, anticancer, and antimelanogenic effects via PAK1 inactivation; therefore, this can be a potent natural medicinal supplement against PAK1-dependent diseases.

  3. Mast cell growth-enhancing activity (MEA) stimulates interleukin 6 production in a mouse bone marrow-derived mast cell line and a malignant subline.

    PubMed

    Hültner, L; Moeller, J

    1990-09-01

    A novel mast cell growth-enhancing activity (MEA/P40/interleukin 9 [IL-9]) purified from the conditioned medium of a murine interleukin 2 (IL-2)-dependent Mlsa-specific T-cell line (MLS4.2) was tested for its capacity to induce interleukin 6 (IL-6) production in a mouse bone marrow-derived factor-dependent mast cell line (L138.8A). This interleukin 3 (IL-3)/interleukin 4 (IL-4)/MEA-responsive cell line was demonstrated recently to express IL-6 mRNA and to secrete IL-6 when cultured with IL-3/IL-4. Now we were able to show that conditioned medium from L138.8A mast cells stimulated with MEA alone contained growth factor activity for the IL-6-dependent mouse hybridoma cell line 7TD1 that was completely blocked by the monoclonal anti-IL-6 antibody 6B4. A dose-response study including IL-3, IL-4, and MEA tested either alone or in different combinations revealed that among these growth factors MEA was the most potent inducer of IL-6 in L138.8A cells. Moreover, IL-4 but not IL-3 had a strong synergistic effect on MEA-induced IL-6 production. The autonomous malignant mast cell subline L138Cauto also showed enhanced IL-6 production when stimulated with MEA. Our findings indicate that MEA (IL-9) not only provides a proliferation signal, but also leads to a marked functional activation of responsive mast cells.

  4. Monocyte-expressed urokinase inhibits vascular smooth muscle cell growth by activating Stat1.

    PubMed

    Kunigal, Sateesh; Kusch, Angelika; Tkachuk, Natalia; Tkachuk, Sergey; Jerke, Uwe; Haller, Hermann; Dumler, Inna

    2003-12-15

    After vascular injury, a remodeling process occurs that features leukocyte migration and infiltration. Loss of endothelial integrity allows the leukocytes to interact with vascular smooth muscle cells (VSMCs) and to elicit "marching orders"; however, the signaling processes are poorly understood. We found that human monocytes inhibit VSMC proliferation and induce a migratory potential. The monocytes signal the VSMCs through the urokinase-type plasminogen activator (uPA). The VSMC uPA receptor (uPAR) receives the signal and activates the transcription factor Stat1 that, in turn, mediates the antiproliferative effects. These results provide the first evidence that monocytes signal VSMCs by mechanisms involving the fibrinolytic system, and they imply an important link between the uPA/uPAR-related signaling machinery and human vascular disease.

  5. Activation of Keap1/Nrf2 signaling pathway by nuclear epidermal growth factor receptor in cancer cells

    PubMed Central

    Huo, Longfei; Li, Chia-Wei; Huang, Tzu-Hsuan; Lam, Yung Carmen; Xia, Weiya; Tu, Chun; Chang, Wei-Chao; Hsu, Jennifer L; Lee, Dung-Fang; Nie, Lei; Yamaguchi, Hirohito; Wang, Yan; Lang, Jingyu; Li, Long-Yuan; Chen, Chung-Hsuan; Mishra, Lopa; Hung, Mien-Chie

    2014-01-01

    Nuclear translocation of EGFR has been shown to be important for tumor cell growth, survival, and therapeutic resistance. Previously, we detected the association of EGFR with Keap1 in the nucleus. Keap1 is a Kelch-like ECH-associated protein, which plays an important role in cellular response to chemical and oxidative stress by regulating Nrf2 protein stability and nuclear translocation. In this study, we investigate the role of EGFR in regulating Keap1/Nrf2 cascade in the nucleus and provide evidence to show that nuclear EGFR interacts with and phosphorylates nuclear Keap1 to reduce its nuclear protein level. The reduction of nuclear Keap1 consequently stabilizes nuclear Nrf2 and increases its transcriptional activity in cancer cells, which contributes to tumor cell resistance to chemotherapy. PMID:25628777

  6. Cell Growth Enhancement

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Exogene Corporation uses advanced technologies to enhance production of bio-processed substances like proteins, antibiotics and amino acids. Among them are genetic modification and a genetic switch. They originated in research for Jet Propulsion Laboratory. Extensive experiments in cell growth through production of hemoglobin to improve oxygen supply to cells were performed. By improving efficiency of oxygen use by cells, major operational expenses can be reduced. Greater product yields result in decreased raw material costs and more efficient use of equipment. A broad range of applications is cited.

  7. Basal Autophagy and Feedback Activation of Akt Are Associated with Resistance to Metformin-Induced Inhibition of Hepatic Tumor Cell Growth.

    PubMed

    Yang, Hua; Peng, Yuan-Fei; Ni, Hong-Min; Li, Yuan; Shi, Ying-Hong; Ding, Wen-Xing; Fan, Jia

    2015-01-01

    While accumulating evidence has shown that the use of the diabetic drug metformin may be beneficial against various tumors in some epidemiological studies, a few studies failed to show the same beneficial effects. The molecular and cellular mechanisms for these conflicting observations are not clear. In this study, we compared the inhibitory effects of cell growth by metformin on several hepatic tumor cell lines: SMMC-7721, HCC-97L, HCC-LM3 and HepG2. While metformin inhibited cell growth in all these cells, we found that SMMC-7721, HCC-97L and HCC-LM3 cells were more resistant than HepG2 cells. Mechanistically, we found that metformin inhibited mTOR in all these hepatic tumor cells. However, SMMC-7721 cells had higher levels of basal autophagy and mTORC2-mediated feedback activation of Akt than HepG2 cells, which may render SMMC-7721 cells to be more resistant to metformin-induced inhibition of cell growth. Similarly, HCC-97L and HCC-LM3 cells also had higher feedback activation of AKT than HepG2 cells, which may also account for their resistance to metformin-induced inhibition of cell growth. Therefore, the various basal autophagy and mTOR activity in different cancer cells may contribute to the controversial findings on the use of metformin in inhibition of cancers in humans.

  8. XET Activity is Found Near Sites of Growth and Cell Elongation in Bryophytes and Some Green Algae: New Insights into the Evolution of Primary Cell Wall Elongation

    PubMed Central

    Van Sandt, Vicky S. T.; Stieperaere, Herman; Guisez, Yves; Verbelen, Jean-Pierre; Vissenberg, Kris

    2007-01-01

    Background and Aims In angiosperms xyloglucan endotransglucosylase (XET)/hydrolase (XTH) is involved in reorganization of the cell wall during growth and development. The location of oligo-xyloglucan transglucosylation activity and the presence of XTH expressed sequence tags (ESTs) in the earliest diverging extant plants, i.e. in bryophytes and algae, down to the Phaeophyta was examined. The results provide information on the presence of an XET growth mechanism in bryophytes and algae and contribute to the understanding of the evolution of cell wall elongation in general. Methods Representatives of the different plant lineages were pressed onto an XET test paper and assayed. XET or XET-related activity was visualized as the incorporation of fluorescent signal. The Physcomitrella genome database was screened for the presence of XTHs. In addition, using the 3′ RACE technique searches were made for the presence of possible XTH ESTs in the Charophyta. Key Results XET activity was found in the three major divisions of bryophytes at sites corresponding to growing regions. In the Physcomitrella genome two putative XTH-encoding cDNA sequences were identified that contain all domains crucial for XET activity. Furthermore, XET activity was located at the sites of growth in Chara (Charophyta) and Ulva (Chlorophyta) and a putative XTH ancestral enzyme in Chara was identified. No XET activity was identified in the Rhodophyta or Phaeophyta. Conclusions XET activity was shown to be present in all major groups of green plants. These data suggest that an XET-related growth mechanism originated before the evolutionary divergence of the Chlorobionta and open new insights in the evolution of the mechanisms of primary cell wall expansion. PMID:17098750

  9. Endothelins Inhibit Osmotic Swelling of Rat Retinal Glial and Bipolar Cells by Activation of Growth Factor Signaling.

    PubMed

    Vogler, Stefanie; Grosche, Antje; Pannicke, Thomas; Wiedemann, Peter; Reichenbach, Andreas; Bringmann, Andreas

    2016-10-01

    Water accumulation in retinal glial (Müller) and neuronal cells resulting in cellular swelling contributes to the development of retinal edema and neurodegeneration. Here, we show that endothelin-1 (ET-1) dose-dependently inhibits the hypoosmotic swelling of Müller cells in freshly isolated retinal slices of control and diabetic rats, with a maximal inhibition at 100 nM. Osmotic Müller cell swelling was also inhibited by ET-2. The effect of ET-1 was mediated by activation of ETA and ETB receptors resulting in transactivation of metabotropic glutamate receptors, purinergic P2Y1, and adenosine A1 receptors. ET-1 (but not ET-2) also inhibited the osmotic swelling of bipolar cells in retinal slices, but failed to inhibit the swelling of freshly isolated bipolar cells. The inhibitory effect of ET-1 on the bipolar cell swelling in retinal slices was abrogated by inhibitors of the FGF receptor kinase (PD173074) and of TGF-β1 superfamily activin receptor-like kinase receptors (SB431542), respectively. Both Müller and bipolar cells displayed immunoreactivities of ETA and ETB receptor proteins. The data may suggest that neuroprotective effects of ETs in the retina are in part mediated by prevention of the cytotoxic swelling of retinal glial and bipolar cells. ET-1 acts directly on Müller cells, while the inhibitory effect of ET-1 on bipolar cell swelling is indirectly mediated, via stimulation of the release of growth factors like bFGF and TGF-β1 from Müller cells.

  10. Ubiquitylation activates a peptidase that promotes cleavage and destabilization of its activating E3 ligases and diverse growth regulatory proteins to limit cell proliferation in Arabidopsis

    PubMed Central

    Dong, Hui; Dumenil, Jack; Lu, Fu-Hao; Na, Li; Vanhaeren, Hannes; Naumann, Christin; Klecker, Maria; Prior, Rachel; Smith, Caroline; McKenzie, Neil; Saalbach, Gerhard; Chen, Liangliang; Xia, Tian; Gonzalez, Nathalie; Seguela, Mathilde; Inzé, Dirk; Dissmeyer, Nico; Li, Yunhai; Bevan, Michael W.

    2017-01-01

    The characteristic shapes and sizes of organs are established by cell proliferation patterns and final cell sizes, but the underlying molecular mechanisms coordinating these are poorly understood. Here we characterize a ubiquitin-activated peptidase called DA1 that limits the duration of cell proliferation during organ growth in Arabidopsis thaliana. The peptidase is activated by two RING E3 ligases, Big Brother (BB) and DA2, which are subsequently cleaved by the activated peptidase and destabilized. In the case of BB, cleavage leads to destabilization by the RING E3 ligase PROTEOLYSIS 1 (PRT1) of the N-end rule pathway. DA1 peptidase activity also cleaves the deubiquitylase UBP15, which promotes cell proliferation, and the transcription factors TEOSINTE BRANCED 1/CYCLOIDEA/PCF 15 (TCP15) and TCP22, which promote cell proliferation and repress endoreduplication. We propose that DA1 peptidase activity regulates the duration of cell proliferation and the transition to endoreduplication and differentiation during organ formation in plants by coordinating the destabilization of regulatory proteins. PMID:28167503

  11. Osmotic induction of placental growth factor in retinal pigment epithelial cells in vitro: contribution of NFAT5 activity.

    PubMed

    Hollborn, Margrit; Reichmuth, Konrad; Prager, Philipp; Wiedemann, Peter; Bringmann, Andreas; Kohen, Leon

    2016-08-01

    One risk factor of neovascular age-related macular degeneration is systemic hypertension; hypertension is mainly caused by extracellular hyperosmolarity after consumption of dietary salt. In retinal pigment epithelial (RPE) cells, high extracellular osmolarity induces vascular endothelial growth factor (VEGF)-A (Hollborn et al. in Mol Vis 21:360-377, 2015). The aim of the present study was to determine whether extracellular hyperosmolarity and chemical hypoxia trigger the expression of further VEGF family members including placental growth factor (PlGF) in human RPE cells. Hyperosmotic media were made up by addition of 100 mM NaCl or sucrose. Chemical hypoxia was induced by CoCl2. Gene expression was quantified by real-time RT-PCR, and secretion of PlGF-2 was investigated with ELISA. Nuclear factor of activated T cell 5 (NFAT5) was depleted using siRNA. Extracellular hyperosmolarity triggered expression of VEGF-A, VEGF-D, and PlGF genes, and secretion of PlGF-2. Hypoosmolarity decreased PlGF gene expression. Hypoxia induced expression of VEGF-A, VEGF-B, VEGF-D, and PlGF genes. Extracellular hyperosmolarity and hypoxia produced additive PlGF gene expression. Both hyperosmolarity and hypoxia induced expression of KDR and FLT-4 receptor genes, while hyperosmolarity caused neuropilin-2 and hypoxia neuropilin-1 gene expression. The hyperosmotic, but not the hypoxic, PlGF gene expression was in part mediated by NFAT5. The expression of PlGF in RPE cells depends on the extracellular osmolarity. The data suggest that high consumption of dietary salt may exacerbate the angiogenic response of RPE cells in the hypoxic retina via transcriptional activation of various VEGF family member genes.

  12. Effects of complexation with in vivo enhancing monoclonal antibodies on activity of growth hormone in two responsive cell culture systems.

    PubMed

    Beattie, J; Borromeo, V; Bramani, S; Secchi, C; Baumbach, W R; Mockridge, J

    1999-12-01

    We describe the properties of three monoclonal antibodies (MAbs) to ovine GH, two of which have previously been shown to enhance, in vivo, the biological activity of bovine and ovine growth hormone. We have examined the effects of these MAbs on GH activity in two appropriate GH-responsive cell culture systems, investigating both acute signalling effects (Janus-activated kinase (Jak)-2 tyrosine phosphorylation -5 min) and longer-term (MTT-formazan production -24 h) effects of hormone-antibody complexes. In the 3T3-F442A pre-adipocyte cell line (which has been demonstrated to be GH responsive), we show that complexation of recombinant bovine (rb) GH with either of the two enhancing anti-ovine GH MAbs (OA11 and OA15) and the non-enhancing MAb, OA14, attenuates the ability of GH to stimulate tyrosine phosphorylation of Jak-2 at a 5-min time point. Using the mouse myeloid cell line, FDC-P1, stably transfected with the full-length ovine GH receptor (oGHR), we demonstrate that rbGH causes a dose-dependent increase in MTT-formazan production by these cells. Further, we demonstrate that OA11 and OA14, but not OA15, cause a decrease in this stimulatory activity of rbGH over a hormone concentration range of 5-50 ng/ml at both 24 and 48 h. We conclude that the different in vitro activities of the two in vivo enhancing MAbs are most probably related to the time-courses over which these two assays are performed, and also to the relative affinities between antibody, hormone and receptor. In addition, the in vitro inhibitory activity of the enhancing MAb OA11 in both short- and long-term bioassay lends further support to an exclusively in vivo model for MAb-mediated enhancement of GH action.

  13. Interferon response factor 3 is crucial to poly-I:C induced NK cell activity and control of B16 melanoma growth.

    PubMed

    Moore, Tyler C; Kumm, Phyllis M; Brown, Deborah M; Petro, Thomas M

    2014-04-28

    Interferon Response Factor 3 (IRF3) induces several NK-cell activating factors, is activated by poly-I:C, an experimental cancer therapeutic, but is suppressed during many viral infections. IRF3 Knockout (KO) mice exhibited enhanced B16 melanoma growth, impaired intratumoral NK cell infiltration, but not an impaired poly-I:C therapeutic effect due to direct suppression of B16 growth. IRF3 was responsible for poly-I:C decrease in TIM-3 expression by intratumoral dendritic cells, induction of NK-cell Granzyme B and IFN-γ, and induction of macrophage IL-12, IL-15, IL-6, and IRF3-dependent NK-activating molecule (INAM). Thus, IRF3 is a key factor controlling melanoma growth through NK-cell activities, especially during poly-I:C therapy.

  14. Plane of nutrition affects growth rate, organ size and skeletal muscle satellite cell activity in newborn calves.

    PubMed

    MacGhee, M E; Bradley, J S; McCoski, S R; Reeg, A M; Ealy, A D; Johnson, S E

    2016-11-18

    Plane of nutrition effects on body, tissue and cellular growth in the neonatal calf are poorly understood. The hypothesis that a low plane of nutrition (LPN) would limit skeletal muscle size by reducing fibre growth and muscle progenitor cell activity was tested. At birth, calves were randomly assigned to either a LPN (20% CP, 20% fat; GE=1.9 Mcal/days) or a high plane of nutrition (HPN; 27% CP, 10% fat, GE = 3.8 Mcal/days) in a 2 × 3 factorial design to test the impact of diet on neonatal calf growth, organ weight and skeletal muscle morphometry with time. Groups of calves (n = 4 or 5) were euthanised at 2, 4 and 8 week of age and organ and empty carcass weights were recorded. Body composition was measured by DXA. Longissimus muscle (LM) fibre cross-sectional area (CSA), fibre/mm(2) and Pax7 were measured by immunohistology. Satellite cells were isolated at each time point and proliferation rates were measured by EdU incorporation. Calves fed a HPN had greater (p < 0.05) BW, ADG and hip height than those fed a LPN for 2, 4 or 8 weeks. HPN calves contained a greater (p < 0.05) percentage of fat tissue than LPN calves. Liver, spleen and thymus weights were less (p < 0.05) in LPN calves than HPN animals. Calves fed HPN had larger (p < 0.05) LM CSA at 8 weeks than LPN fed animals with no differences between the groups in numbers of satellite cells per fibre. Proliferation rates of satellite cells isolated from HPN fed calves were greater (p < 0.05) at 2 weeks than LPN fed animals, which exhibited greater (p < 0.05) proliferation rates at 4 weeks than HPN fed calves. We conclude a LPN diet reduces body growth and organ size and metabolically reprograms satellite cell activity.

  15. Activity ranking of synthetic analogs targeting vascular endothelial growth factor receptor 2 by an integrated cell membrane chromatography system.

    PubMed

    Wang, Dongyao; Lv, Diya; Chen, Xiaofei; Liu, Yue; Ding, Xuan; Jia, Dan; Chen, Langdong; Zhu, Zhenyu; Cao, Yan; Chai, Yifeng

    2015-12-01

    Evaluating the biological activities of small molecules represents an important part of the drug discovery process. Cell membrane chromatography (CMC) is a well-developed biological chromatographic technique. In this study, we have developed combined SMMC-7721/CMC and HepG2/CMC with high-performance liquid chromatography and time-of-flight mass spectrometry to establish an integrated screening platform. These systems was subsequently validated and used for evaluating the activity of quinazoline compounds, which were designed and synthesized to target vascular endothelial growth factor receptor 2. The inhibitory activities of these compounds towards this receptor were also tested using a classical caliper mobility shift assay. The results revealed a significant correlation between these two methods (R(2) = 0.9565 or 0.9420) for evaluating the activities of these compounds. Compared with traditional methods of evaluating the activities analogous compounds, this integrated cell membrane chromatography screening system took less time and was more cost effective, indicating that it could be used as a practical method in drug discovery.

  16. Down-regulation of E-cadherin in human bronchial epithelial cells leads to epidermal growth factor receptor-dependent Th2 cell-promoting activity.

    PubMed

    Heijink, Irene H; Kies, P Marcel; Kauffman, Henk F; Postma, Dirkje S; van Oosterhout, Antoon J M; Vellenga, Edo

    2007-06-15

    Airway epithelial cells are well-known producers of thymus- and activation-regulated chemokine (TARC), a Th2 cell-attracting chemokine that may play an important role in the development of allergic airway inflammation. However, the mechanism responsible for up-regulation of TARC in allergy is still unknown. In the asthmatic airways, loss of expression of the cell-cell contact molecule E-cadherin and reduced epithelial barrier function has been observed, which may be the result of an inadequate repair response. Because E-cadherin also suppressed multiple signaling pathways, we studied whether disruption of E-cadherin-mediated cell contact may contribute to increased proallergic activity of epithelial cells, e.g., production of the chemokine TARC. We down-regulated E-cadherin in bronchial epithelial cells by small interference RNA and studied effects on electrical resistance, signaling pathways, and TARC expression (by electric cell-substrate impedance sensing, immunodetection, immunofluorescent staining, and real-time PCR). Small interference RNA silencing of E-cadherin resulted in loss of E-cadherin-mediated junctions, enhanced phosphorylation of epidermal growth factor receptor (EGFR), and the downstream targets MEK/ERK-1/2 and p38 MAPK, finally resulting in up-regulation of TARC as well as thymic stromal lymphopoietin expression. The use of specific inhibitors revealed that the effect on TARC is mediated by EGFR-dependent activation of the MAPK pathways. In contrast to TARC, expression of the Th1/Treg cell-attracting chemokine RANTES was unaffected by E-cadherin down-regulation. In summary, we show that loss of E-cadherin-mediated epithelial cell-cell contact by damaging stimuli, e.g., allergens, may result in reduced suppression of EGFR-dependent signaling pathways and subsequent induction of Th2 cell-attracting molecule TARC. Thus, disruption of intercellular epithelial contacts may specifically promote Th2 cell recruitment in allergic asthma.

  17. Liposomal delivery improves the growth-inhibitory and apoptotic activity of low doses of gemcitabine in multiple myeloma cancer cells.

    PubMed

    Celia, Christian; Malara, Natalia; Terracciano, Rosa; Cosco, Donato; Paolino, Donatella; Fresta, Massimo; Savino, Rocco

    2008-06-01

    Gemcitabine-loaded pegylated unilamellar liposomes (200 nm) were proposed for the treatment of multiple myeloma cancer disease. Physicochemical and technological parameters of liposomes were evaluated by using laser light scattering and gel permeation chromatography. The growth-inhibitory activity of gemcitabine-loaded liposomes compared to the free drug was assayed in vitro on U266 (autocrine, interleukin-6-independent) and INA-6 (IL-6-dependent) multiple myeloma cell lines. Liposomes noticeably improved the growth-inhibitory activity of gemcitabine in terms of both dose-dependent and incubation-time effects. Liposomal delivery of gemcitabine consistently and significantly increased induction of apoptosis and caused a complete inhibition of proliferation. Liposomes were able to interact with multiple myeloma cells as demonstrated by confocal laser scanning microscopy and hence to improve the intracellular gemcitabine delivery. Gemcitabine-loaded liposomes were much more effective in vitro than the free drug. This formulation may offer even more in vivo advantages both in terms of drug pharmacokinetic and biodistribution.

  18. Decursin inhibits growth of human bladder and colon cancer cells via apoptosis, G1-phase cell cycle arrest and extracellular signal-regulated kinase activation.

    PubMed

    Kim, Wun-Jae; Lee, Se-Jung; Choi, Young Deuk; Moon, Sung-Kwon

    2010-04-01

    Decursin, a pyranocoumarin isolated from the Korean Angelica gigas root, has demonstrated anti-cancer properties. In the present study, we found that decursin inhibited cell viability in cultured human urinary bladder cancer 235J cells and colon cancer HCT116 cells. The inhibited proliferation was due to apoptotic induction, because both cells treated with decursin dose-dependently showed a sub-G1 phase accumulation and an increased cytoplasmic DNA-histone complex. Cell death caused by decursin was also associated with the down-regulation of anti-apoptotic factor Bcl-2 and the up-regulation of pro-apoptotic molecules cytochrome c, caspase 3 and Bax. Treatment of both types of cancer cells with decursin resulted in G1-phase cell cycle arrest, as revealed by FACS analyses. In addition, decursin increased protein levels of p21WAF1 with a decrease in cyclins and cyclin dependent kinases (CDKs). Furthermore, decursin induced the activation of extracellular signal-regulated kinases (ERK) in both cancer cell lines, with the notable exceptions of c-Jun N-terminal kinase (JNK) and p38 mitogen activated protein (MAP) kinase. Finally, pretreatment with ERK-specific inhibitor PD98059 reversed decursin-induced p21WAF1 expression and decursin-inhibited cell growth. Thus, these findings suggest that decursin has potential therapeutic efficacy for the treatment of bladder and colon cancer.

  19. Leptin Enhances Cholangiocarcinoma Cell Growth

    PubMed Central

    Fava, Giammarco; Alpini, Gianfranco; Rychlicki, Chiara; Saccomanno, Stefania; DeMorrow, Sharon; Trozzi, Luciano; Candelaresi, Cinzia; Venter, Julie; Di Sario, Antonio; Marzioni, Marco; Bearzi, Italo; Glaser, Shannon; Alvaro, Domenico; Marucci, Luca; Francis, Heather; Svegliati-Baroni, Gianluca; Benedetti, Antonio

    2008-01-01

    Cholangiocarcinoma is a strongly aggressive malignancy with a very poor prognosis. Effective therapeutic strategies are lacking because molecular mechanisms regulating cholangiocarcinoma cell growth are unknown. Furthermore, experimental in vivo animal models useful to study the pathophysiologic mechanisms of malignant cholangiocytes are lacking. Leptin, the hormone regulating caloric homeostasis, which is increased in obese patients, stimulates the growth of several cancers, such as hepatocellular carcinoma. The aim of this study was to define if leptin stimulates cholangiocarcinoma growth. We determined the expression of leptin receptors in normal and malignant human cholangiocytes. Effects on intrahepatic cholangiocarcinoma (HuH-28) cell proliferation, migration, and apoptosis of the in vitro exposure to leptin, together with the intracellular pathways, were then studied. Moreover, cholangiocarcinoma was experimentally induced in obese fa/fa Zucker rats, a genetically established animal species with faulty leptin receptors, and in their littermates by chronic feeding with thioacetamide, a potent carcinogen. After 24 weeks, the effect of leptin on cholangiocarcinoma development and growth was assessed. Normal and malignant human cholangiocytes express leptin receptors. Leptin increased the proliferation and the metastatic potential of cholangiocarcinoma cells in vitro through a signal transducers and activators of transcription 3–dependent activation of extracellular signal-regulated kinase 1/2. Leptin increased the growth and migration, and was antiapoptotic for cholangiocarcinoma cells. Moreover, the loss of leptin function reduced the development and the growth of cholangiocarcinoma. The experimental carcinogenesis model induced by thioacetamide administration is a valid and reproducible method to study cholangiocarcinoma pathobiology. Modulation of the leptin-mediated signal could be considered a valid tool for the prevention and treatment of

  20. TGF-β1 activation in human hamstring cells through growth factor binding peptides on polycaprolactone surfaces.

    PubMed

    Crispim, J; Fernandes, H A M; Fu, S C; Lee, Y W; Jonkheijm, P; Saris, D B F

    2017-01-26

    The administration of soluble growth factors (GFs) to injured tendons and ligaments (T/L) is known to promote and enhance the healing process. However, the administration of GFs is a complex, expensive and heavily-regulated process and only achieved by employing supraphysiological GF concentrations. In addition, for proper healing, specific and spatial immobilization of the GFs (s) is critical. We hypothesized that biomaterials functionalized with GF-binding peptides can be employed to capture endogenous GFs in a spatially-controlled manner, thus overcoming the need for the exogenous administration of supraphysiological doses of GFs. Here we demonstrate that the modification of films of polycaprolactone (PCL) with transforming growth factor β1 (TGF-β1)-binding peptides allows GFs to be captured and presented to the target cells. Moreover, using a TGF-β reporter cell line and immunocytochemistry, we show that the GFs retained their biological activity. In human primary tendon cells, the immobilized TGF-β1 activated TGF-β target genes ultimately lead to a 2.5-fold increase in total collagen matrix production. In vivo implantation in rats clearly shows an accumulation of TGF-β1 on the polymer films functionalized with the TGF-β1-binding peptide when compared with the native films. This accumulation leads to an increase in the recruitment of inflammatory cells at day 3 and an increase in the fibrogenic response and vascularization around the implant at day 7. The results herein presented will endow current and future medical devices with novel biological properties and by doing so will accelerate T/L healing.

  1. Effects of transforming growth factor-[beta] and budesonide on mitogen-activated protein kinase activation and apoptosis in airway epithelial cells.

    PubMed

    Pelaia, Girolamo; Cuda, Giovanni; Vatrella, Alessandro; Fratto, Donatella; Grembiale, Rosa D; Tagliaferri, Pierosandro; Maselli, Rosario; Costanzo, Francesco S; Marsico, Serafino A

    2003-07-01

    Airway epithelial cells play a central role in the inflammatory, apoptotic, and remodeling processes associated with asthma. Within this context, a key function is exerted by transforming growth factor-beta (TGF-beta), whose biological effects are mediated at least in part by mitogen-activated protein kinases (MAPKs). The aim of our study was to investigate, in primary cultures of human bronchial epithelial cells (HBEC), the effects of TGF-beta (10 ng/ml) on both MAPK activation and apoptosis, in the presence or absence of a pretreatment with budesonide (10-8 M). MAPK activation was detected by Western blotting, using anti-phospho-MAPK monoclonal antibodies, which specifically recognize the phosphorylated, active forms of these enzymes. Apoptosis was assayed by caspase-3 activation and fluorescence microscopy, using annexin-V (An-V) and propidium iodide (PI) as markers of cell death. Our results show that TGF-beta induced a marked ( reverse similar 9-fold) increase in p38 MAPK phosphorylation, and also dramatically enhanced cell death, which was completely prevented by specific MAPK inhibitors. Both MAPK activation and apoptosis were effectively inhibited by budesonide (BUD), thereby suggesting that the powerful antiapoptotic action of inhaled glucocorticoids may be very important for their protective role against epithelial injury, which represents a key pathogenic event in asthma.

  2. Src-Family Kinases Are Activated in Non-Small Cell Lung Cancer and Promote the Survival of Epidermal Growth Factor Receptor-Dependent Cell Lines

    PubMed Central

    Zhang, Jie; Kalyankrishna, Shailaja; Wislez, Marie; Thilaganathan, Nishan; Saigal, Babita; Wei, Wei; Ma, Long; Wistuba, Ignacio I.; Johnson, Faye M.; Kurie, Jonathan M.

    2007-01-01

    The role of Src-family kinases (SFKs) in non-small cell lung cancer (NSCLC) has not been fully defined. Here we addressed this question by examining SFK phosphorylation in NSCLC biopsy samples and using genetic and pharmacological approaches to inhibit SFK expression and activity in cultured NSCLC cells. Immunohistochemical analysis of NSCLC biopsy samples using a Tyr416 phosphorylation-specific, pan-SFK antibody revealed staining in 123 (33%) of 370 tumors. Because c-Src is known to be both an upstream activator and downstream mediator of epidermal growth factor receptor (EGFR), we next investigated SFK phosphorylation in a panel of NSCLC cell lines, including ones that depend on EGFR for survival. The EGFR-dependent NSCLC cell lines HCC827 and H3255 had increased phosphorylation of SFKs, and treatment of these cells with an SFK inhibitor (PP1 or SKI-606) induced apoptosis. PP1 decreased phosphorylation of EGFR, ErbB2, and ErbB3 and strikingly enhanced apoptosis by gefitinib, an EGFR inhibitor. HCC827 cells transfected with c-Src short hairpin RNA exhibited diminished phosphorylation of EGFR and ErbB2 and decreased sensitivity to apoptosis by PP1 or gefitinib. We conclude that SFKs are activated in NSCLC biopsy samples, promote the survival of EGFR-dependent NSCLC cells, and should be investigated as therapeutic targets in NSCLC patients. PMID:17200208

  3. The broad-spectrum metalloproteinase inhibitor BB-94 inhibits growth, HER3 and Erk activation in fulvestrant-resistant breast cancer cell lines.

    PubMed

    Kirkegaard, Tove; Yde, Christina W; Kveiborg, Marie; Lykkesfeldt, Anne E

    2014-07-01

    Breast cancer cells can switch from estrogen receptor α (ER)- to human epidermal growth factor receptor (HER)-driven cell growth upon acquiring antiestrogen resistance. HER ligands are cleaved by metalloproteinases leading to release of active HER ligands, activation of HER receptors and consequently increased cell growth. In this study, we investigated the importance of HER receptors, in particular HER3, and HER ligand shedding for growth and signaling in human MCF-7 breast cancer cells and MCF-7-derived sublines resistant to the antiestrogen fulvestrant. The HER3/HER4 ligand heregulin 1β induced phosphorylation of HER3, Akt and Erk, and partly rescued fulvestrant-inhibited growth of MCF-7 cells. HER3 ligands were found to be produced and shed from the fulvestrant-resistant cells as conditioned medium from fulvestrant-resistant MCF-7 cells induced phosphorylation of HER3 and Akt in MCF-7 cells. This was prevented by treatment of resistant cells with the metalloproteinase inhibitor TAPI-2. Only the broad-spectrum metalloproteinase inhibitor BB-94, and not the more selective inhibitors GM6001 or TAPI-2, which inhibited shedding of the HER ligands produced by the fulvestrant-resistant cells, was able to inhibit growth and activation of HER3 and Erk in resistant cells. Compared to MCF-7, fulvestrant-resistant cells have increased HER3 phosphorylation, but knockdown of HER3 had no inhibitory effect on resistant cell growth. The EGFR inhibitor gefitinib exhibited only a minor growth inhibition, whereas the pan-HER inhibitor CI-1033 exerted growth arrest. Thus, neither HER3 nor EGFR alone are the main driver of fulvestrant-resistant cell growth and treatment should target both receptors. Ligand shedding is not a treatment target, as receptor activation occurred, independent of release of ligands. Only the broad-spectrum metalloproteinase inhibitor BB-94 could abrogate HER3 and Erk activation in the resistant cells, which stresses the complexity of the resistance

  4. Involvement of JAK1, JAK2, and JAK3 in Stimulation of Functional Activity of Mesenchymal Progenitor Cells by Fibroblast Growth Factor.

    PubMed

    Zyuz'kov, G N; Zhdanov, V V; Udut, E V; Miroshnichenko, L A; Simanina, E V; Polyakova, T Yu; Stavrova, L A; Udut, V V; Minakova, M Yu; Dygai, A M

    2016-12-01

    We studied the involvement of individual JAK kinases in the realization of the growth potential of mesenchymal precursors under the effect of fibroblast growth factor. The important role of JAK2 and JAK3 in determining the initial level of mitotic activity of progenitor cells and participation of JAK1 in this process under conditions of cytokine stimulation of progenitor cells were demonstrated. Specific inhibitors of these kinases reduced the yield of fibroblast CFU and the rate of their division. Moreover, blockade of JAK1, JAK2, and JAK3 under the effect of fibroblast growth factor was accompanied by an increase in the intensity of progenitor cell differentiation.

  5. Cryptotanshinone inhibits lung tumor growth by increasing CD4+ T cell cytotoxicity through activation of the JAK2/STAT4 pathway

    PubMed Central

    Man, Yonghong; Yang, Le; Zhang, Dongxian; Bi, Yongyi

    2016-01-01

    Cryptotanshinone is one of the fat-soluble phenanthrene quinone components. In vitro studies have shown that tanshinone compounds can inhibit the proliferation of various tumor cells and affect cell cycle distribution. The aim of the present study was to better understand the effect of cryptotanshinone on the inhibition of small cell lung cancer by cytotoxic cluster of differentiation (CD)4+ T cells through activation of the Janus kinase 2/signal transducer and activator of transcription 4 (JAK2/STAT4) pathway. The Cell Counting kit-8 assay and the lactate dehydrogenase assay were used to analyze the cell proliferation of H446 and CD4+ T cells, and the cell cytotoxicity of CD4+ and CD8+ T cells, respectively. JAK2 and STAT4 protein expression was measured by western blot analysis. Cryptotanshinone effectively inhibited the tumor growth of the H446 cells and the cell proliferation of the CD4+ T cells. Treatment with cryptotanshinone increased the cytotoxicity of the CD4+ T cells, but could not affect the cytotoxicity of the CD8+ T cells. Meanwhile, cryptotanshinone induced phosphorylated (p)-JAK2 and p-STAT4 protein expression in the CD4+ T cells. These results suggest that cryptotanshinone inhibits the cell growth of lung tumors by increasing CD4+ T cell toxicity through activation of the JAK2/STAT4 pathway. PMID:27895777

  6. Hypoxia-inducible factor 1α promotes primary tumor growth and tumor-initiating cell activity in breast cancer

    PubMed Central

    2012-01-01

    Introduction Overexpression of the oxygen-responsive transcription factor hypoxia-inducible factor 1α (HIF-1α) correlates with poor prognosis in breast cancer patients. The mouse mammary tumor virus polyoma virus middle T (MMTV-PyMT) mouse is a widely utilized preclinical mouse model that resembles human luminal breast cancer and is highly metastatic. Prior studies in which the PyMT model was used demonstrated that HIF-1α is essential to promoting carcinoma onset and lung metastasis, although no differences in primary tumor end point size were observed. Using a refined model system, we investigated whether HIF-1α is directly implicated in the regulation of tumor-initiating cells (TICs) in breast cancer. Methods Mammary tumor epithelial cells were created from MMTV-PyMT mice harboring conditional alleles of Hif1a, followed by transduction ex vivo with either adenovirus β-galactosidase or adenovirus Cre to generate wild-type (WT) and HIF-1α-null (KO) cells, respectively. The impact of HIF-1α deletion on tumor-initiating potential was investigated using tumorsphere assays, limiting dilution transplantation and gene expression analysis. Results Efficient deletion of HIF-1α reduced primary tumor growth and suppressed lung metastases, prolonging survival. Loss of HIF-1α led to reduced expression of markers of the basal lineage (K5/K14) in cells and tumors and of multiple genes involved in the epithelial-to-mesenchymal transition. HIF-1α also enhanced tumorsphere formation at normoxia and hypoxia. Decreased expression of several genes in the Notch pathway as well as Vegf and Prominin-1 (CD133)was observed in response to Hif1a deletion. Immunohistochemistry confirmed that CD133 expression was reduced in KO cells and in tumorspheres. Tumorsphere formation was enhanced in CD133hi versus CD133neg cells sorted from PyMT tumors. Limiting dilution transplantation of WT and KO tumor cells into immunocompetent recipients revealed > 30-fold enrichment of TICs in WT cells

  7. High glucose concentration induces the overexpression of transforming growth factor-beta through the activation of a platelet-derived growth factor loop in human mesangial cells.

    PubMed Central

    Di Paolo, S.; Gesualdo, L.; Ranieri, E.; Grandaliano, G.; Schena, F. P.

    1996-01-01

    High glucose concentration has been shown to induce the overexpression of transforming growth factor (TGF)-beta 1 mRNA and protein in different cell types, including murine mesangial cells, thus possibly accounting for the expansion of mesangial extracellular matrix observed in diabetic glomerulopathy. In the present study, we evaluated platelet-derived growth factor (PDGF) B-chain and PDGF-beta receptor gene expression in human mesangial cells (HMCs) exposed to different concentrations of glucose and then sought a possible relationship between a PDGF loop and the modulation of TGF-beta 1 expression. HMC [3H]thymidine incorporation was upregulated by 30 mmol/L glucose (HG) up to 24 hours, whereas it was significantly inhibited at later time points. Neutralizing antibodies to PDGF BB abolished the biphasic response to HG, whereas anti-TGF-beta antibodies reversed only the late inhibitory effect of hyperglycemic medium. HG induced an early and persistent increase of PDGF B-chain gene expression, as evaluated by reverse transcriptase polymerase chain reaction, whereas PDGF-beta receptor mRNA increased by twofold after 6 hours, thereafter declining at levels 70% lower than in controls after 24 hours. 125I-Labeled PDGF BB binding studies in HMCs exposed to HG for 24 hours confirmed the decrease of PDGF-beta receptor expression. TGF-beta 1-specific transcripts showed 43 and 78% increases after 24 and 48 hours of incubation in HG, respectively, which was markedly diminished by anti-PDGF BB neutralizing antibodies or suramin. We conclude that HG induces an early activation of a PDGF loop that, in turn, causes an increase of TGF-beta 1 gene expression, thus modulating both HMC proliferation and mesangial matrix production. Images Figure 2 Figure 3 Figure 4 Figure 5 PMID:8952542

  8. Fibroblast growth factor-2 induces osteogenic differentiation through a Runx2 activation in vascular smooth muscle cells

    SciTech Connect

    Nakahara, Takehiro; Sato, Hiroko; Shimizu, Takehisa; Tanaka, Toru; Matsui, Hiroki; Kawai-Kowase, Keiko; Sato, Mahito; Iso, Tatsuya; Arai, Masashi; Kurabayashi, Masahiko

    2010-04-02

    Expression of bone-associated proteins and osteoblastic transcription factor Runx2 in arterial cells has been implicated in the development of vascular calcification. However, the signaling upstream of the Runx2-mediated activation of osteoblastic program in vascular smooth muscle cells (VSMC) is poorly understood. We examined the effects of fibroblast growth factor-2 (FGF-2), an important regulator of bone formation, on osteoblastic differentiation of VSMC. Stimulation of cultured rat aortic SMC (RASMC) with FGF-2 induced the expression of the osteoblastic markers osteopontin (OPN) and osteocalcin. Luciferase assays showed that FGF-2 induced osteocyte-specific element (OSE)-dependent transcription. Downregulation of Runx2 by siRNA repressed the basal and FGF-2-stimulated expression of the OPN gene in RASMC. FGF-2 produced hydrogen peroxide in RASMC, as evaluated by fluorescent probe. Induction of OPN expression by FGF-2 was inhibited not only by PD98059 (MEK1 inhibitor) and PP1 (c-Src inhibitor), but also by an antioxidant, N-acetyl cysteine. Nuclear extracts from FGF-2-treated RASMC exhibited increased DNA-binding of Runx2 to its target sequence. Immunohistochemistry of human coronary atherectomy specimens and calcified aortic tissues showed that expression of FGF receptor-1 and Runx2 was colocalized. In conclusion, these results suggest that FGF-2 plays a role in inducing osteoblastic differentiation of VSMC by activating Runx2 through mitogen-activated protein kinase (MAPK)-dependent- and oxidative stress-sensitive-signaling pathways.

  9. Endogenous GABAA receptor activity suppresses glioma growth.

    PubMed

    Blanchart, A; Fernando, R; Häring, M; Assaife-Lopes, N; Romanov, R A; Andäng, M; Harkany, T; Ernfors, P

    2017-02-09

    Although genome alterations driving glioma by fueling cell malignancy have largely been resolved, less is known of the impact of tumor environment on disease progression. Here, we demonstrate functional GABAA receptor-activated currents in human glioblastoma cells and show the existence of a continuous GABA signaling within the tumor cell mass that significantly affects tumor growth and survival expectancy in mouse models. Endogenous GABA released by tumor cells, attenuates proliferation of the glioma cells with enriched expression of stem/progenitor markers and with competence to seed growth of new tumors. Our results suggest that GABA levels rapidly increase in tumors impeding further growth. Thus, shunting chloride ions by a maintained local GABAA receptor activity within glioma cells has a significant impact on tumor development by attenuating proliferation, reducing tumor growth and prolonging survival, a mechanism that may have important impact on therapy resistance and recurrence following tumor resection.

  10. Mechano-growth factor induces migration of rat mesenchymal stem cells by altering its mechanical properties and activating ERK pathway

    SciTech Connect

    Wu, Jiamin; Wu, Kewen; Lin, Feng; Luo, Qing; Yang, Li; Shi, Yisong; Song, Guanbin; Sung, Kuo-Li Paul

    2013-11-08

    Highlights: •MGF induced the migration of rat MSC in a concentration-dependent manner. •MGF enhanced the mechanical properties of rMSC in inducing its migration. •MGF activated the ERK 1/2 signaling pathway of rMSC in inducing its migration. •rMSC mechanics may synergy with ERK 1/2 pathway in MGF-induced rMSC migration. -- Abstract: Mechano-growth factor (MGF) generated by cells in response to mechanical stimulation has been identified as a mechano effector molecule, playing a key role in regulating mesenchymal stem cell (MSC) function, including proliferation and migration. However, the mechanism(s) underlying how MGF-induced MSC migration occurs is still unclear. In the present study, MGF motivated migration of rat MSCs (rMSCs) in a concentration-dependent manner and optimal concentration of MGF at 50 ng/mL (defined as MGF treatment in this paper) was demonstrated. Notably, enhancement of mechanical properties that is pertinent to cell migration, such as cell traction force and cell stiffness were found to respond to MGF treatment. Furthermore, MGF increased phosphorylation of extracellular signal-regulated kinase (ERK), ERK inhibitor (i.e., PD98059) suppressed ERK phosphorylation, and abolished MGF-induced rMSC migration were found, demonstrating that ERK is involved molecule for MGF-induced rMSC migration. These in vitro evidences of MGF-induced rMSC migration and its direct link to altering rMSC mechanics and activating the ERK pathway, uncover the underlying biomechanical and biological mechanisms of MGF-induced rMSC migration, which may help find MGF-based application of MSC in clinical therapeutics.

  11. The Nedd8-activating enzyme inhibitor MLN4924 induces autophagy and apoptosis to suppress liver cancer cell growth.

    PubMed

    Luo, Zhongguang; Yu, Guangyang; Lee, Hyuk Woo; Li, Lihui; Wang, Lingyan; Yang, Dongqin; Pan, Yongfu; Ding, Chan; Qian, Jing; Wu, Lijun; Chu, Yiwei; Yi, Jing; Wang, Xiangdong; Sun, Yi; Jeong, Lak Shin; Liu, Jie; Jia, Lijun

    2012-07-01

    Posttranslational neddylation of cullins in the Cullin-Ring E3 ligase (CRL) complexes is needed for proteolytic degradation of CRL substrates, whose accumulation induces cell-cycle arrest, apoptosis, and senescence. The Nedd8-activating enzyme (NAE) is critical for neddylation of CRL complexes and their growth-promoting function. Recently, the anticancer small molecule MLN4924 currently in phase I trials was determined to be an inhibitor of NAE that blocks cullin neddylation and inactivates CRL, triggering an accumulation of CRL substrates that trigger cell-cycle arrest, apoptosis, and senescence in cancer cells. Here, we report that MLN4924 also triggers autophagy in response to CRL inactivation and that this effect is important for the ability of MLN4924 to suppress the outgrowth of liver cancer cells in vitro and in vivo. MLN4924-induced autophagy was attributed partially to inhibition of mTOR activity, due to accumulation of the mTOR inhibitory protein Deptor, as well as to induction of reactive oxygen species stress. Inhibiting autophagy enhanced MLN4924-induced apoptosis, suggesting that autophagy is a survival signal triggered in response to CRL inactivation. In a xenograft model of human liver cancer, MLN4924 was well-tolerated and displayed a significant antitumor effect characterized by CRL inactivation and induction of autophagy and apoptosis in liver cancer cells. Together, our findings support the clinical investigation of MLN4924 for liver cancer treatment and provide a preclinical proof-of-concept for combination therapy with an autophagy inhibitor to enhance therapeutic efficacy.

  12. ETV6/ARG oncoprotein confers autonomous cell growth by enhancing c-Myc expression via signal transducer and activator of transcription 5 activation in the acute promyelocytic leukemia cell line HT93A.

    PubMed

    Iriyama, Noriyoshi; Hatta, Yoshihiro; Takei, Masami

    2015-01-01

    We investigated the role of ETV6/ARG fusion gene by exposing the HT93A cell line to nilotinib. HT93A cells were cultured with or without nilotinib±50 ng/mL of granulocyte colony-stimulating factor (G-CSF). Nilotinib treatment inhibited cell growth by increasing the percentage of cells in G0/G1 phase through the decrease of phosphorylated signal transducer and activator of transcription 3 (STAT3) (Y705), STAT5 (Y694) and c-Myc expression. After stimulation with G-CSF, STAT5 but not STAT3 was significantly phosphorylated in both nilotinib-treated and untreated cells. Moreover, combination therapy with nilotinib and G-CSF returned the expression level of c-Myc, cell growth and cell cycle distribution to the control level. These findings suggest that the ETV6/ARG oncoprotein contributes to autonomous cell growth by compensating for the requirement of growth factor through activating STAT5 signaling, which leads to the up-regulation of c-Myc. Our data suggest that ETV6/ARG oncoprotein is a potential target in the treatment of leukemia.

  13. Epidermal growth factor activates telomerase activity by direct binding of Ets-2 to hTERT promoter in lung cancer cells.

    PubMed

    Hsu, Chung-Ping; Lee, Li-Wen; Tang, Sheau-Chung; Hsin, I-Lun; Lin, Yu-Wen; Ko, Jiunn-Liang

    2015-07-01

    Growth signals are directly or indirectly involved in telomerase regulation. In this study, we investigated molecular mechanisms of the effect of EGF (epidermal growth factor) on regulating hTERT (human telomerase reverse transcriptase) expression. To elucidate specific transcription factors involved in EGF-stimulated hTERT transcription in A549 and H1299 lung cancer cells, transcription factors drives hTERT promoter activity, such as Myc, Mad, and Ets-2, was evaluated on luciferase reporter assay. The upregulation of hTERT promoter by Ets-2 and Myc were abolished by Mad. Using DAPA (DNA affinity precipitation assay), Ets-2 binding to SNP (T) was stronger than Ets-2 binding to SNP (C) at -245 bp upstream of the transcription start site within the core promoter of hTERT. Ets-2 silence by siRNA decreased hTERT expression at mRNA and protein levels. The regulation of hTERT promoter by EGF/Ets-2 was diminished via the EGFR kinase signal pathway-specific inhibitors AG1478 and Iressa. Inhibitors of Erk and Akt inhibited Ets-2-activated hTERT promoter activity. These data suggested that Ets-2, a genuine cancer-specific transcription factor, is actively involved in EGFR kinase-induced hTERT overexpression pathway in lung cancer cells. Blockage of this pathway may contribute to targeted gene therapy in lung cancer.

  14. Alginate Oligosaccharides Inhibit Fungal Cell Growth and Potentiate the Activity of Antifungals against Candida and Aspergillus spp

    PubMed Central

    Tøndervik, Anne; Sletta, Håvard; Klinkenberg, Geir; Emanuel, Charlotte; Powell, Lydia C.; Pritchard, Manon F.; Khan, Saira; Craine, Kieron M.; Onsøyen, Edvar; Rye, Phil D.; Wright, Chris; Thomas, David W.; Hill, Katja E.

    2014-01-01

    The oligosaccharide OligoG, an alginate derived from seaweed, has been shown to have anti-bacterial and anti-biofilm properties and potentiates the activity of selected antibiotics against multi-drug resistant bacteria. The ability of OligoG to perturb fungal growth and potentiate conventional antifungal agents was evaluated using a range of pathogenic fungal strains. Candida (n = 11) and Aspergillus (n = 3) spp. were tested using germ tube assays, LIVE/DEAD staining, scanning electron microscopy (SEM), atomic force microscopy (AFM) and high-throughput minimum inhibition concentration assays (MICs). In general, the strains tested showed a significant dose-dependent reduction in cell growth at ≥6% OligoG as measured by optical density (OD600; P<0.05). OligoG (>0.5%) also showed a significant inhibitory effect on hyphal growth in germ tube assays, although strain-dependent variations in efficacy were observed (P<0.05). SEM and AFM both showed that OligoG (≥2%) markedly disrupted fungal biofilm formation, both alone, and in combination with fluconazole. Cell surface roughness was also significantly increased by the combination treatment (P<0.001). High-throughput robotic MIC screening demonstrated the potentiating effects of OligoG (2, 6, 10%) with nystatin, amphotericin B, fluconazole, miconazole, voriconazole or terbinafine with the test strains. Potentiating effects were observed for the Aspergillus strains with all six antifungal agents, with an up to 16-fold (nystatin) reduction in MIC. Similarly, all the Candida spp. showed potentiation with nystatin (up to 16-fold) and fluconazole (up to 8-fold). These findings demonstrate the antifungal properties of OligoG and suggest a potential role in the management of fungal infections and possible reduction of antifungal toxicity. PMID:25409186

  15. Development of a morphogenetically active scaffold for three-dimensional growth of bone cells: biosilica-alginate hydrogel for SaOS-2 cell cultivation.

    PubMed

    Müller, Werner E G; Schröder, Heinz C; Feng, Qingling; Schlossmacher, Ute; Link, Thorben; Wang, Xiaohong

    2015-11-01

    Polymeric silica is formed from ortho-silicate during a sol-gel formation process, while biosilica is the product of an enzymatically driven bio-polycondensation reaction. Both polymers have recently been described as a template that induces an increased expression of the genes encoding bone morphogenetic protein 2 (BMP-2) and osteoprotegerin in osteoblast-related SaOS-2 cells; simultaneously or subsequently the cells respond with enhanced hydroxyapatite formation. In order to assess whether the biocompatible polymeric silica/biosilica can serve as a morphogenetically active matrix suitable for three-dimensional (3D) cell growth, or even for 3D cell bioprinting, SaOS-2 cells were embedded into a Na-alginate-based hydrogel. Four different gelatinous hydrogel matrices were used for suspending SaOS-2 cells: (a) the hydrogel alone; (b) the hydrogel with 400 μM ortho-silicate; (c) the hydrogel supplemented with 400 μM ortho-silicate and recombinant silicatein to allow biosilica synthesis to occur; and (d) the hydrogel with ortho-silicate and BSA. The SaOS-2 cells showed an increased growth if silica/biosilica components were present in the hydrogel. Likewise intensified was the formation of hydroxyapatite nodules in the silica-containing hydrogels. After an incubation period of 2 weeks, cells present in silica-containing hydrogels showed a significantly higher expression of the genes encoding the cytokine BMP-2, the major fibrillar structural protein collagen 1 and likewise of carbonic anhydrase. It is concluded that silica, and to a larger extent biosilica, retains its morphogenetic/osteogenic potential after addition to Na-alginate-based hydrogels. This property might qualify silica hydrogels to be also used as a matrix for 3D cell printing.

  16. miR-221 promotes growth and invasion of hepatocellular carcinoma cells by constitutive activation of NFκB

    PubMed Central

    Liu, Zimin; Wang, Chenghong; Jiao, Xuelong; Zhao, Shanna; Liu, Xudong; Wang, Yun; Zhang, Jian

    2016-01-01

    Background and Objective: microRNAs (miRs) are small noncoding RNAs that modulate a variety of cellular processes by regulating multiple targets, which can promote or inhibit the development of malignant behaviors. Accumulating evidence suggests that microRNA-221 (miR-221) plays important roles in human carcinogenesis. It has recently found that miR-221 was overexpressed in hepatocellular carcinoma (HCC), and overexpression of miR-221 has a bad prognosis in these patients. Thus, down-regulation of miR-221 expression in HCC would provide new treatment approaches. This study aimed to study the role of miR-221 on HCC cell growth, apoptosis, invasion and metastasis in vitro and vivo, and explored the possible mechanisms involved. Methods: Effects of miR-221 upregulation or miR-221 downregulation by miR-221 inhibitor (anti-miR-221) or miR-221 mimic (miR-221) transfection on growth, apoptosis and invasion of HepG2 cells in vitro was detected. Using p65 siRNA and p65 cDNA transfection to examine the NFκB signaling pathway. A subcutaneously implanted tumor model of HepG2 cells in nude mouse was used to assess the effects of anti-miR-221 or miR-221 overexpression on tumorigenesis development. Using an intravenously injected tumor model of HepG2 cells to assess the effects of anti-miR-221 or miR-221 overexpression on lung metastasis. The signaling pathway was analyzed in vivo. Results: Anti-miR-221 inhibited growth, invasion and induced apoptosis of HepG2 cells in vitro. This was accompanied by concomitant attenuation of NFκB, and downregulation of NFκB downstream genes such as Bcl-2, VEGF and MMP-9. In addition, miR-221 overexpression promoted growth and invasion of HepG2 cells in vitro, and accompanied by activation of NFκB, and upregulation of NFκB downstream genes Bcl-2, VEGF and MMP-9. Targeting P65 or P65 overexpression reversed the effect of miR-221, and inhibited or induced miR-221 expression, creating a positive feedback loop in human HepG2, respectively

  17. Ophiobolin A, a sesterterpenoid fungal phytotoxin, displays higher in vitro growth-inhibitory effects in mammalian than in plant cells and displays in vivo antitumor activity.

    PubMed

    Bury, Marina; Novo-Uzal, Esther; Andolfi, Anna; Cimini, Sara; Wauthoz, Nathalie; Heffeter, Petra; Lallemand, Benjamin; Avolio, Fabiana; Delporte, Cédric; Cimmino, Alessio; Dubois, Jacques; Van Antwerpen, Pierre; Zonno, Maria Chiara; Vurro, Maurizio; Poumay, Yves; Berger, Walter; Evidente, Antonio; De Gara, Laura; Kiss, Robert; Locato, Vittoria

    2013-08-01

    Ophiobolin A, a sesterterpenoid produced by plant pathogenic fungi, was purified from the culture extract of Drechslera gigantea and tested for its growth-inhibitory activity in both plant and mammalian cells. Ophiobolin A induced cell death in Nicotiana tabacum L. cv. Bright Yellow 2 (TBY-2) cells at concentrations ≥10 µM, with the TBY-2 cells showing typical features of apoptosis-like cell death. At a concentration of 5 µM, ophiobolin A did not affect plant cell viability but prevented cell proliferation. When tested on eight cancer cell lines, concentrations <1 µM of ophiobolin A inhibited growth by 50% after 3 days of culture irrespective of their multidrug resistance (MDR) phenotypes and their resistance levels to pro-apoptotic stimuli. It is, thus, unlikely that ophiobolin A exerts these in vitro growth-inhibitory effects in cancer cells by activating pro-apoptotic processes. Highly proliferative human keratinocytes appeared more sensitive to the growth-inhibitory effects of ophiobolin A than slowly proliferating ones. Ophiobolin A also displayed significant antitumor activity at the level of mouse survival when assayed at 10 mg/kg in the B16F10 mouse melanoma model with lung pseudometastases. Ophiobolin A could, thus, represent a novel scaffold to combat cancer types that display various levels of resistance to pro-apoptotic stimuli and/or various MDR phenotypes.

  18. Screening and discovery of nitro-benzoxadiazole compounds activating epidermal growth factor receptor (EGFR) in cancer cells.

    PubMed

    Sakanyan, Vehary; Angelini, Marie; Le Béchec, Mickael; Lecocq, Michèle Françoise; Benaiteau, Florence; Rousseau, Bénédicte; Gyulkhandanyan, Aram; Gyulkhandanyan, Lusine; Logé, Cédric; Reiter, Eric; Roussakis, Christos; Fleury, Fabrice

    2014-02-05

    Peptide ligand-induced dimerization of the extracellular region of the epidermal growth factor receptor (sEGFR) is central to the signal transduction of many cellular processes. A small molecule microarray screen has been developed to search for non-peptide compounds able to bind to sEGFR. We describe the discovery of nitro-benzoxadiazole (NBD) compounds that enhance tyrosine phosphorylation of EGFR and thereby trigger downstream signaling pathways and other receptor tyrosine kinases in cancer cells. The protein phosphorylation profile in cells exposed to NBD compounds is to some extent reminiscent of the profile induced by the cognate ligand. Experimental studies indicate that the small compounds bind to the dimerization domain of sEGFR, and generate stable dimers providing allosteric activation of the receptor. Moreover, receptor phosphorylation is associated with inhibition of PTP-1B phosphatase. Our data offer a promising paradigm for investigating new aspects of signal transduction mediated by EGFR in cancer cells exposed to electrophilic NBD compounds.

  19. Maltol complexes of vanadium (IV) and (V) regulate in vitro alkaline phosphatase activity and osteoblast-like cell growth.

    PubMed

    Barrio, D A; Braziunas, M D; Etcheverry, S B; Cortizo, A M

    1997-06-01

    Vanadium compounds have been found to possess insulin- and growth factor-mimetic effects. In consequence, these derivatives are potentially useful as effective oral therapeutic agents in diabetic patients. However, their use has been limited by various toxic side-effects and by the low solubility of different derivatives. Recently, vanadium complex with maltol, a sugar used as a common food additive, have been synthesised and investigated in animals, showing possible insulin-mimetic effects with low toxic side-effects. In the present study we have investigated the effect of bis(maltolato)oxovanadium (IV) (BMOV) and bis(maltolato)dioxovanadium (V) (BMV) on bone cells in culture as well as their direct effect on alkaline phosphatase in vitro. A comparison was also made with the action of vanadate and vanadyl cation. Vanadium compounds regulated cell proliferation in a biphasic manner with similar potencies. Osteoblast differentiation, assessed by alkaline phosphatase activity, was found to be dose-dependent, with the inhibitory effect being stronger for vanadate and BMOV than for vanadyl and BMV. All vanadium compounds directly inhibited bovine intestinal ALP with a similar potency. Thus, maltol vanadium derivatives behave in a similar way to vanadate and vanadyl in osteoblast-like UMR 106 cells in culture.

  20. Inhibition of prostate cancer growth by solanine requires the suppression of cell cycle proteins and the activation of ROS/P38 signaling pathway.

    PubMed

    Pan, Bin; Zhong, Weifeng; Deng, Zhihai; Lai, Caiyong; Chu, Jing; Jiao, Genlong; Liu, Junfeng; Zhou, Qizhao

    2016-11-01

    Solanine, a naturally steroidal glycoalkaloid in nightshade (Solanum nigrum Linn.), can inhibit proliferation and induce apoptosis of tumor cells. However, the mechanism of solanine-suppressing prostate cancer cell growth remains to be elucidated. This study investigates the inhibition mechanism of solanine on cancer development in vivo and in cultured human prostate cancer cell DU145 in vitro. Results show that solanine injection significantly suppresses the tumor cell growth in xenograft athymic nude mice. Solanine regulates the protein levels of cell cycle proteins, including Cyclin D1, Cyclin E1, CDK2, CDK4, CDK6, and P21 in vivo and in vitro. Also, in cultured DU145 cell, solanine significantly inhibits cell growth. Moreover, the administration of NAC, an active oxygen scavenger, markedly reduces solanine-induced cell death. Blockade of P38 MAPK kinase cannot suppress reactive oxygen species (ROS), but can suppress solanine-induced cell apoptosis. Also, inhibition of ROS by NAC inactivates P38 pathway. Taken together, the data suggest that inhibition of prostate cancer growth by solanine may be through blocking the expression of cell cycle proteins and inducing apoptosis via ROS and activation of P38 pathway. These findings indicate an attractive therapeutic potential of solanine for suppression of prostate cancer.

  1. MLS-2384, a new 6-bromoindirubin derivative with dual JAK/Src kinase inhibitory activity, suppresses growth of diverse cancer cells.

    PubMed

    Liu, Lucy; Gaboriaud, Nicolas; Vougogianopoulou, Konstantina; Tian, Yan; Wu, Jun; Wen, Wei; Skaltsounis, Leandros; Jove, Richard

    2014-02-01

    Janus kinase (JAK) and Src kinase are the two major tyrosine kinase families upstream of signal transducer and activator of transcription (STAT). Among the seven STAT family proteins, STAT3 is constitutively activated in many diverse cancers. Upon activation, JAK and Src kinases phosphorylate STAT3, and thereby promote cell growth and survival. MLS-2384 is a novel 6-bromoindirubin derivative with a bromo-group at the 6-position on one indole ring and a hydrophilic group at the 3'-position on the other indole ring. In this study, we investigated the kinase inhibitory activity and anticancer activity of MLS-2384. Our data from in vitro kinase assays, cell viability analyses, western blotting analyses, and animal model studies, demonstrate that MLS-2384 is a dual JAK/Src kinase inhibitor, and suppresses growth of various human cancer cells, such as prostate, breast, skin, ovarian, lung, and liver. Consistent with the inactivation of JAK and Src kinases, phosphorylation of STAT3 was inhibited in a dose-dependent manner in the cancer cells treated with MLS-2384. STAT3 downstream proteins involved in cell proliferation and survival, such as c-Myc and Mcl-1, are downregulated by MLS-2384 in prostate cancer cells, whereas survivin is downregulated in A2058 cells. In these two cancer cell lines, PARP is cleaved, indicating that MLS-2384 induces apoptosis in human melanoma and prostate cancer cells. Importantly, MLS-2384 suppresses tumor growth with low toxicity in a mouse xenograft model of human melanoma. Taken together, MLS-2384 demonstrates dual JAK/Src inhibitory activity and suppresses tumor cell growth both in vitro and in vivo. Our findings support further development of MLS-2384 as a potential small-molecule therapeutic agent that targets JAK, Src, and STAT3 signaling in multiple human cancer cells.

  2. Epidermal growth factor-like domain 7 promotes migration and invasion of human trophoblast cells through activation of MAPK, PI3K and NOTCH signaling pathways.

    PubMed

    Massimiani, M; Vecchione, L; Piccirilli, D; Spitalieri, P; Amati, F; Salvi, S; Ferrazzani, S; Stuhlmann, H; Campagnolo, L

    2015-05-01

    Epidermal growth factor-like domain 7 (Egfl7) is a gene that encodes a partially secreted protein and whose expression is largely restricted to the endothelia. We recently reported that EGFL7 is also expressed by trophoblast cells in mouse and human placentas. Here, we investigated the molecular pathways that are regulated by EGFL7 in trophoblast cells. Stable EGFL7 overexpression in a Jeg3 human choriocarcinoma cell line resulted in significantly increased cell migration and invasiveness, while cell proliferation was unaffected. Analysis of mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways showed that EGFL7 promotes Jeg3 cell motility by activating both pathways. We show that EGFL7 activates the epidermal growth factor receptor (EGFR) in Jeg3 cells, resulting in downstream activation of extracellular regulated kinases (ERKs). In addition, we provide evidence that EGFL7-triggered migration of Jeg3 cells involves activation of NOTCH signaling. EGFL7 and NOTCH1 are co-expressed in Jeg3 cells, and blocking of NOTCH activation abrogates enhanced migration of Jeg3 cells overexpressing EGFL7. We also demonstrate that signaling through EGFR and NOTCH converged to mediate EGFL7 effects. Reduction of endogenous EGFL7 expression in Jeg3 cells significantly decreased cell migration. We further confirmed that EGFL7 stimulates cell migration by using primary human first trimester trophoblast (PTB) cells overexpressing EGFL7. In conclusion, our data suggest that in trophoblast cells, EGFL7 regulates cell migration and invasion by activating multiple signaling pathways. Our results provide a possible explanation for the correlation between reduced expression of EGFL7 and inadequate trophoblast invasion observed in placentopathies.

  3. Curcumin induces growth-arrest and apoptosis in association with the inhibition of constitutively active JAK-STAT pathway in T cell leukemia

    SciTech Connect

    Rajasingh, Johnson; Raikwar, Himanshu P.; Muthian, Gladson; Johnson, Caroline; Bright, John J. . E-mail: jbright1@clarian.org

    2006-02-10

    Adult T cell leukemia is an aggressive and frequently fatal malignancy that expressess constitutively activated growth-signaling pathways in association with deregulated growth and resistance to apoptosis. Curcumin (diferuloylmethane) is a naturally occurring yellow pigment, isolated from the rhizomes of the plant Curcuma longa that has traditionally been used in the treatment of injury and inflammation. But the effect and mechanism of action of curcumin on T cell leukemia is not known. To investigate the antitumor activity of curcumin in T cell leukemia, we examined its effect on constitutive phosphorylation of JAK and STAT proteins, proliferation, and apoptosis in HTLV-I-transformed T cell lines. HTLV-I-transformed T cell leukemia lines, MT-2, HuT-102, and SLB-1, express constitutively phosphorylated JAK3, TYK2, STAT3, and STAT5 signaling proteins. In vitro treatment with curcumin induced a dose-dependent decrease in JAK and STAT phosphorylation resulting in the induction of growth-arrest and apoptosis in T cell leukemia. The induction of growth-arrest and apoptosis in association with the blockade of constitutively active JAK-STAT pathway suggests this be a mechanism by which curcumin induces antitumor activity in T cell leukemia.

  4. Calpain-Mediated positional information directs cell wall orientation to sustain plant stem cell activity, growth and development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eukaryotic development and stem cell control depend on the integration of cell positional sensing with cell cycle control and cell wall positioning, yet few factors that directly link these events are known. The DEFECTIVE KERNEL1 (DEK1) gene encoding the unique plant calpain protein is fundamental f...

  5. Imipramine activates glial cell line-derived neurotrophic factor via early growth response gene 1 in astrocytes.

    PubMed

    Kim, Yeni; Kim, Se Hyun; Kim, Yong Sik; Lee, Young Han; Ha, Kyooseob; Shin, Soon Young

    2011-06-01

    Recent evidence has suggested that deficits in glial plasticity contribute to the pathophysiology of depressive disorders. The present study explored early growth response 1 (EGR-1) transcriptional regulation of imipramine-induced glial cell line-derived neurotrophic factor (GDNF) expression in astrocytes. After we observed the induction of GDNF mRNA expression in rat astrocytes in response to imipramine, deletion mutant studies showed that the proximal region between -493 and -114 of the GDNF promoter, which contains three binding sites for EGR-1, was essential for maximal imipramine-induced activation of GDNF promoter. The dose-dependent upregulation of EGR-1 by imipramine, the activation of GDNF by the over-expression of EGR-1 without imipramine and the reduction in the imipramine-induced GDNF mRNA expression after silencing of endogenous EGR-1 demonstrated that EGR-1 is upregulated by imipramine to activate the GDNF promoter. Furthermore, imipramine-induced GDNF mRNA expression was strongly attenuated in primary astrocytes from Egr-1(-/-) mice, and the immunoreactivity to an anti-GDNF antibody in glial fibrillary acidic protein-positive cells was lower in imipramine-treated astrocytes from Egr-1(-/-) mice than in those from Egr-1(+/-) mice. To determine whether mitogen-activated protein kinases (MAPKs) were associated with imipramine-induced EGR-1 expression, we examined the induction of MAPK phosphorylation in response to imipramine. Pretreatment of rat primary astrocytes with the MAPK kinase inhibitor U0126 or the JNK inhibitor SP600125 strongly inhibited imipramine-stimulated EGR-1 expression. In conclusion, we found that imipramine induction of EGR-1 upregulated GDNF in astrocytes in a dose-dependent manner. This upregulation may occur through the MEK/ERK and JNK MAPK pathways, which suggests a new therapeutic mechanism of action for depressive disorders.

  6. Pyridine analogues of curcumin exhibit high activity for inhibiting CWR-22Rv1 human prostate cancer cell growth and androgen receptor activation

    PubMed Central

    ZHOU, DAI-YING; ZHAO, SU-QING; DU, ZHI-YUN; ZHENG, XI; ZHANG, KUN

    2016-01-01

    The concentrations required for curcumin to exert its anticancer activity (IC50, 20 µM) are difficult to achieve in the blood plasma of patients, due to the low bioavailability of the compound. Therefore, much effort has been devoted to the development of curcumin analogues that exhibit stronger anticancer activity and a lower IC50 than curcumin. The present study investigated twelve pyridine analogues of curcumin, labeled as groups AN, BN, EN and FN, to determine their effects in CWR-22Rv1 human prostate cancer cells. The inhibitory effects of these compounds on testosterone (TT)-induced androgen receptor (AR) activity was determined by performing an AR-linked luciferase assay and by TT-induced expression of prostate-specific antigen. The results of the current study suggested that the FN group of analogues had the strongest inhibitory effect of growth on CWR-22Rv1 cultured cells, and were the most potent inhibitor of AR activity compared with curcumin, and the AN, BN and EN analogues. Thus, the results of the present study indicate the inhibition of the AR pathways as a potential mechanism for the anticancer effect of curcumin analogues in human prostate cancer cells. Furthermore, curcumin analogues with pyridine as a distal ring and tetrahydrothiopyran-4-one as a linker may be good candidates for the development of novel drugs for the treatment of prostate cancer, by targeting the AR signaling pathway. PMID:27313760

  7. Determination of growth stimulating activity of 'Rhizoginin-S' on cell cultures used in virology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have developed a new bioregulator based on phosphoinositol (PI), designated Rhizoginin-S, which stimulates plant cell division very effectively. The invention of Rhizoginin-S was only possible after development of a simple and effective method of preparation PI, U.S. patent (4,977,091). Developme...

  8. Photoactivation of ROS production in situ transiently activates cell proliferation in mouse skin and in the hair follicle stem cell niche promoting hair growth and wound healing

    PubMed Central

    Carrasco, Elisa; Calvo, María I.; Blázquez-Castro, Alfonso; Vecchio, Daniela; Zamarrón, Alicia; de Almeida, Irma Joyce Dias; Stockert, Juan C.; Hamblin, Michael R.; Juarranz, Ángeles; Espada, Jesús

    2015-01-01

    The role of reactive oxygen species (ROS) in the regulation of hair follicle cycle and skin homeostasis is poorly characterized. ROS have been traditionally linked to human disease and ageing, but recent findings suggest that can also have beneficial physiological functions in vivo in mammals. To test this hypothesis, we transiently switched on in situ ROS production in mouse skin. This process activated cell proliferation in the tissue and, interestingly, in the bulge region of the hair follicle, a major reservoir of epidermal stem cells, promoting hair growth as well as stimulating tissue repair after severe burn injury. We further show that these effects were associated with a transient Src kinase phosphorylation at Tyr416 and with a strong transcriptional activation of the prolactin family 2 subfamily c of growth factors. Our results point to potentially relevant modes of skin homeostasis regulation and demonstrate that a local and transient ROS production can regulate stem cell and tissue function in the whole organism. PMID:26134949

  9. MT1-MMP promotes cell growth and ERK activation through c-Src and paxillin in three-dimensional collagen matrix

    SciTech Connect

    Takino, Takahisa; Tsuge, Hisashi; Ozawa, Terumasa; Sato, Hiroshi

    2010-06-11

    Membrane-type 1 matrix metalloproteinase (MT1-MMP) is essential for tumor invasion and growth. We show here that MT1-MMP induces extracellular signal-regulated kinase (ERK) activation in cancer cells cultured in collagen gel, which is indispensable for their proliferation. Inhibition of MT1-MMP by MMP inhibitor or small interfering RNA suppressed activation of focal adhesion kinase (FAK) and ERK in MT1-MMP-expressing cancer cells, which resulted in up-regulation of p21{sup WAF1} and suppression of cell growth in collagen gel. Cell proliferation was also abrogated by the inhibitor against ERK pathway without affecting FAK phosphorylation. MT1-MMP and integrin {alpha}{sub v}{beta}{sub 3} were shown to be involved in c-Src activation, which induced FAK and ERK activation in collagen gel. These MT1-MMP-mediated signal transductions were paxillin dependent, as knockdown of paxillin reduced cell growth and ERK activation, and co-expression of MT1-MMP with paxillin induced ERK activation. The results suggest that MT1-MMP contributes to proliferation of cancer cells in the extracellular matrix by activating ERK through c-Src and paxillin.

  10. Regulation of cellular growth, apoptosis, and Akt activity in human U251 glioma cells by a combination of cisplatin with CRM197.

    PubMed

    Wang, Lifei; Wang, Ping; Liu, Yunhui; Xue, Yixue

    2012-01-01

    The aberrantly activated antiapoptotic phospatidyl-3-inositol-kinase (PI3K)/Akt signaling induced by cisplatin limits the effectiveness of chemotherapy; inhibition of this pathway may augment the sensitivity of tumor cells to cisplatin-induced toxicity and promote apoptosis. Cross-reacting material 197 (CRM197), the nontoxic mutant of diphtheria toxin, could act as an heparin-binding epidermal growth factor inhibitor and has been shown to have some anticancer effects, but the effect of CRM197 on glioma cells remains unclear. The aim of this study was to investigate the effects of a combination of cisplatin with CRM197 on the growth and apoptosis of human U251 glioma cells and the possible mechanism. In this study, we demonstrated that cisplatin or CRM197 induced a dose-dependent growth inhibition in U251 cells, but cisplatin at 5 µg/ml and CRM197 at 1 µg/ml did not affect the viability of human astrocytes. Cisplatin induced a time-dependent growth inhibition in U251 cells, whereas the growth-inhibitory effects induced by CRM197 alone or combined with cisplatin reached a peak at 24 h after treatment. Compared with the administration of cisplatin or CRM197 alone, CRM197 combined with cisplatin significantly enhanced U251 cell growth inhibition and apoptosis. Cisplatin induced sustained activation of Akt, whereas CRM197 markedly suppressed the Akt phosphorylation induced by cisplatin. The effects of growth inhibition and apoptosis were markedly enhanced after a combination of cisplatin with CRM197 plus the PI3K inhibitor LY294002 or wortmannin. Therefore, CRM197 combined with cisplatin could enhance growth inhibition and apoptosis of glioma cells by inhibiting the cisplatin-induced PI3K/Akt pathway.

  11. Disruption of thioredoxin metabolism enhances the toxicity of transforming growth factor β-activated kinase 1 (TAK1) inhibition in KRAS-mutated colon cancer cells

    PubMed Central

    Hrabe, Jennifer E.; O’Leary, Brianne R.; Fath, Melissa A.; Rodman, Samuel N.; Button, Anna M.; Domann, Frederick E.; Spitz, Douglas R.; Mezhir, James J.

    2015-01-01

    Transforming growth factor β-activated kinase 1 (TAK1) is critical for survival of many KRAS mutated colorectal cancer cells, and TAK1 inhibition with 5Z-7-oxozeaenol has been associated with oxidative stress leading to tumor cell killing. When SW 620 and HCT 116 human colon cancer cells were treated with 5 µM 5Z-7-oxozeaenol, cell viability, growth, and clonogenic survival were significantly decreased. Consistent with TAK1 inhibition being causally related to thiol-mediated oxidative stress, 10 mM N-acetylcysteine (NAC) partially reversed the growth inhibitory effects of 5Z-7-oxozeaenol. In addition, 5Z-7-oxozeaenol also increased steady-state levels of H2DCFDA oxidation as well as increased levels of total glutathione (GSH) and glutathione disulfide (GSSG). Interestingly, depletion of GSH using buthionine sulfoximine did not significantly potentiate 5Z-7-oxozeaenol toxicity in either cell line. In contrast, pre-treatment of cells with auranofin (Au) to inhibit thioredoxin reductase activity significantly increased levels of oxidized thioredoxin as well as sensitized cells to 5Z-7-oxozeaenol-induced growth inhibition and clonogenic cell killing. These results were confirmed in SW 620 murine xenografts, where treatment with 5Z-7-oxozeaenol or with Au plus 5Z-7-oxozeaenol significantly inhibited growth, with Au plus 5Z-7-oxozeaenol trending toward greater growth inhibition compared to 5Z-7-oxozeaenol alone. These results support the hypothesis that thiol-mediated oxidative stress is causally related to TAK1-induced colon cancer cell killing. In addition, these results support the hypothesis that thioredoxin metabolism is a critical target for enhancing colon cancer cell killing via TAK1 inhibition and could represent an effective therapeutic strategy in patients with these highly resistant tumors. PMID:26114584

  12. Anti-cancer effect of bee venom on colon cancer cell growth by activation of death receptors and inhibition of nuclear factor kappa B

    PubMed Central

    Zheng, Jie; Lee, Hye Lim; Ham, Young Wan; Song, Ho Sueb; Song, Min Jong; Hong, Jin Tae

    2015-01-01

    Bee venom (BV) has been used as a traditional medicine to treat arthritis, rheumatism, back pain, cancerous tumors, and skin diseases. However, the effects of BV on the colon cancer and their action mechanisms have not been reported yet. We used cell viability assay and soft agar colony formation assay for testing cell viability, electro mobility shift assay for detecting DNA binding activity of nuclear factor kappa B (NF-κB) and Western blotting assay for detection of apoptosis regulatory proteins. We found that BV inhibited growth of colon cancer cells through induction of apoptosis. We also found that the expression of death receptor (DR) 4, DR5, p53, p21, Bax, cleaved caspase-3, cleaved caspase-8, and cleaved caspase-9 was increased by BV treatment in a dose dependent manner (0–5 μg/ml). Consistent with cancer cell growth inhibition, the DNA binding activity of nuclear factor kappa B (NF-κB) was also inhibited by BV treatment. Besides, we found that BV blocked NF-κB activation by directly binding to NF-κB p50 subunit. Moreover, combination treatment with BV and p50 siRNA or NF-κB inhibitor augmented BV-induced cell growth inhibition. However, p50 mutant plasmid (C62S) transfection partially abolished BV-induced cell growth inhibiton. In addition, BV significantly suppressed tumor growth in vivo. Therefore, these results suggested that BV could inhibit colon cancer cell growth, and these anti-proliferative effects may be related to the induction of apoptosis by activation of DR4 and DR5 and inhibition of NF-κB. PMID:26561202

  13. Culture of human mesenchymal stem cells at low oxygen tension improves growth and genetic stability by activating glycolysis

    PubMed Central

    Estrada, J C; Albo, C; Benguría, A; Dopazo, A; López-Romero, P; Carrera-Quintanar, L; Roche, E; Clemente, E P; Enríquez, J A; Bernad, A; Samper, E

    2012-01-01

    Expansion of human stem cells before cell therapy is typically performed at 20% O2. Growth in these pro-oxidative conditions can lead to oxidative stress and genetic instability. Here, we demonstrate that culture of human mesenchymal stem cells at lower, physiological O2 concentrations significantly increases lifespan, limiting oxidative stress, DNA damage, telomere shortening and chromosomal aberrations. Our gene expression and bioenergetic data strongly suggest that growth at reduced oxygen tensions favors a natural metabolic state of increased glycolysis and reduced oxidative phosphorylation. We propose that this balance is disturbed at 20% O2, resulting in abnormally increased levels of oxidative stress. These observations indicate that bioenergetic pathways are intertwined with the control of lifespan and decisively influence the genetic stability of human primary stem cells. We conclude that stem cells for human therapy should be grown under low oxygen conditions to increase biosafety. PMID:22139129

  14. Measles virus C protein suppresses gamma-activated factor formation and virus-induced cell growth arrest

    SciTech Connect

    Yokota, Shin-ichi; Okabayashi, Tamaki; Fujii, Nobuhiro

    2011-05-25

    Measles virus (MeV) produces two accessory proteins, V and C, from the P gene. These accessory proteins have been reported to contribute to efficient virus proliferation through the modulation of host cell events. Our previous paper described that Vero cell-adapted strains of MeV led host cells to growth arrest through the upregulation of interferon regulatory factor 1 (IRF-1), and wild strains did not. In the present study, we found that C protein expression levels varied among MeV strains in infected SiHa cells. C protein levels were inversely correlated with IRF-1 expression levels and with cell growth arrest. Forced expression of C protein released cells from growth arrest. C-deficient recombinant virus efficiently upregulated IRF-1 and caused growth arrest more efficiently than the wild-type virus. C protein preferentially bound to phosphorylated STAT1 and suppressed STAT1 dimer formation. We conclude that MeV C protein suppresses IFN-{gamma} signaling pathway via inhibition of phosphorylated STAT1 dimerization.

  15. Sulindac selectively inhibits colon tumor cell growth by activating the cGMP/PKG pathway to suppress Wnt/β-catenin signaling.

    PubMed

    Li, Nan; Xi, Yaguang; Tinsley, Heather N; Gurpinar, Evrim; Gary, Bernard D; Zhu, Bing; Li, Yonghe; Chen, Xi; Keeton, Adam B; Abadi, Ashraf H; Moyer, Mary P; Grizzle, William E; Chang, Wen-Chi; Clapper, Margie L; Piazza, Gary A

    2013-09-01

    Nonsteroidal anti-inflammatory drugs (NSAID) display promising antineoplastic activity for colorectal and other cancers, but toxicity from COX inhibition limits their long-term use for chemoprevention. Previous studies have concluded that the basis for their tumor cell growth inhibitory activity does not require COX inhibition, although the underlying mechanism is poorly understood. Here, we report that the NSAID sulindac sulfide inhibits cyclic guanosine 3',5'-monophosphate phosphodiesterase (cGMP PDE) activity to increase intracellular cGMP levels and activate cGMP-dependent protein kinase (PKG) at concentrations that inhibit proliferation and induce apoptosis of colon tumor cells. Sulindac sulfide did not activate the cGMP/PKG pathway, nor affect proliferation or apoptosis in normal colonocytes. Knockdown of the cGMP-specific PDE5 isozyme by siRNA and PDE5-specific inhibitors tadalafil and sildenafil also selectively inhibited the growth of colon tumor cells that expressed high levels of PDE5 compared with colonocytes. The mechanism by which sulindac sulfide and the cGMP/PKG pathway inhibits colon tumor cell growth involves the transcriptional suppression of β-catenin to inhibit Wnt/β-catenin T-cell factor transcriptional activity, leading to downregulation of cyclin D1 and survivin. These observations suggest that safer and more efficacious sulindac derivatives can be developed for colorectal cancer chemoprevention by targeting PDE5 and possibly other cGMP-degrading isozymes.

  16. Glycitein activates extracellular signal-regulated kinase via vascular endothelial growth factor receptor signaling in nontumorigenic (RWPE-1) prostate epithelial cells.

    PubMed

    Clubbs, Elizabeth A; Bomser, Joshua A

    2007-08-01

    Increased consumption of soy is associated with a decreased risk for prostate cancer; however, the specific cellular mechanisms responsible for this anticancer activity are unknown. Dietary modulation of signaling cascades controlling cellular growth, proliferation and differentiation has emerged as a potential chemopreventive mechanism. The present study examined the effects of four soy isoflavones (genistein, daidzein, glycitein and equol) on extracellularsignal-regulated kinase (ERK1/2) activity in a nontumorigenic prostate epithelial cell line (RWPE-1). All four isoflavones (10 micromol/L) significantly increased ERK1/2 activity in RWPE-1 cells, as determined by immunoblotting. Isoflavone-induced ERK1/2 activation was rapid and sustained for approximately 2 h posttreatment. Glycitein, the most potent activator of ERK1/2, decreased RWPE-1 cell proliferation by 40% (P<.01). Glycitein-induced ERK1/2 activation was dependent, in part, on tyrosine kinase activity associated with vascular endothelial growth factor receptor (VEGFR). The presence of both VEGFR1 and VEGFR2 in the RWPE-1 cell line was confirmed by immunocytochemistry. Treatment of RWPE-1 cells with VEGF(165) resulted in transient ERK1/2 activation and increased cellular proliferation. The ability of isoflavones to modulate ERK1/2 signaling cascade via VEGFR signaling in the prostate may be responsible, in part, for the anticancer activity of soy.

  17. Electrical activity of ferroelectric biomaterials and its effects on the adhesion, growth and enzymatic activity of human osteoblast-like cells

    NASA Astrophysics Data System (ADS)

    Vaněk, P.; Kolská, Z.; Luxbacher, T.; García, J. A. L.; Lehocký, M.; Vandrovcová, M.; Bačáková, L.; Petzelt, J.

    2016-05-01

    Ferroelectrics have been, among others, studied as electroactive implant materials. Previous investigations have indicated that such implants induce improved bone formation. If a ferroelectric is immersed in a liquid, an electric double layer and a diffusion layer are formed at the interface. This is decisive for protein adsorption and bioactive behaviour, particularly for the adhesion and growth of cells. The charge distribution can be characterized, in a simplified way, by the zeta potential. We measured the zeta potential in dependence on the surface polarity on poled ferroelectric single crystalline LiNbO3 plates. Both our results and recent results of colloidal probe microscopy indicate that the charge distribution at the surface can be influenced by the surface polarity of ferroelectrics under certain ‘ideal’ conditions (low ionic strength, non-contaminated surface, very low roughness). However, suggested ferroelectric coatings on the surface of implants are far from ideal: they are rough, polycrystalline, and the body fluid is complex and has high ionic strength. In real cases, it can therefore be expected that there is rather low influence of the sign of the surface polarity on the electric diffusion layer and thus on the specific adsorption of proteins. This is supported by our results from studies of the adhesion, growth and the activity of alkaline phosphatase of human osteoblast-like Saos-2 cells on ferroelectric LiNbO3 plates in vitro.

  18. Acidic substitution of the activation loop tyrosines in TrkA supports nerve growth factor-dependent, but not nerve growth factor-independent, differentiation and cell cycle arrest in the human neuroblastoma cell line, SY5Y.

    PubMed

    Gryz, Ela A; Meakin, Susan O

    2003-11-27

    TrkA is the receptor tyrosine kinase (RTK) for nerve growth factor (NGF) and stimulates NGF-dependent cell survival and differentiation in primary neurons and also differentiation of neuroblastomas and apoptosis of medulloblastomas. We have previously shown that aspartic acid and glutamic acid substitution (AspGlu and GluAsp) of the activation loop tyrosines in TrkA (Tyr(683) and Tyr(684)) supports NGF-independent neuritogenesis and cell survival in PC12 cell-derived nnr5 cells. In this study, the AspGlu and GluAsp mutant Trks have been analysed for their ability to support NGF-independent and NGF-dependent neuritogenesis, proliferation and cell signalling in the human neuroblastoma cell line, SY5Y. We find that the AspGlu and GluAsp mutant Trks support NGF-dependent, but not NGF-independent, autophosphorylation, neuritogenic responses and/or inhibit cell cycle progression. The NGF-dependent neuritogenic responses are lower for the mutant Trks (approximately 30-60% for AspGlu and 50-60% for GluAsp), relative to wild-type TrkA. While both the AspGlu and GluAsp mutant Trks support NGF-dependent transient phosphorylation of Shc, PLCgamma-1, AKT, FRS2, SH2B as well as prolonged MAP kinase activation, the GluAsp mutant induces stronger NGF-dependent tyrosine phosphorylation of FRS2 and SH2B, as well as a stronger reduction in bromodeoxyuridine (BrdU) incorporation. Collectively, these data suggest that neither absolute levels of receptor autophosphorylation, high levels of TrkA expression nor the activation of a specific signalling pathway is dominant and absolutely essential for neuritogenesis and cell cycle arrest of SY5Y cells.

  19. Colon tumor cell growth-inhibitory activity of sulindac sulfide and other nonsteroidal anti-inflammatory drugs is associated with phosphodiesterase 5 inhibition.

    PubMed

    Tinsley, Heather N; Gary, Bernard D; Thaiparambil, Jose; Li, Nan; Lu, Wenyan; Li, Yonghe; Maxuitenko, Yulia Y; Keeton, Adam B; Piazza, Gary A

    2010-10-01

    Nonsteroidal anti-inflammatory drugs (NSAID) display promising antineoplastic activity, but toxicity resulting from cyclooxygenase (COX) inhibition limits their clinical use for chemoprevention. Studies suggest that the mechanism may be COX independent, although alternative targets have not been well defined. Here, we show that the NSAID sulindac sulfide (SS) inhibits cyclic guanosine 3',5'-monophosphate (cGMP) phosphodiesterase (PDE) activity in colon tumor cell lysates at concentrations that inhibit colon tumor cell growth in vitro and in vivo. A series of chemically diverse NSAIDs also inhibited cGMP hydrolysis at concentrations that correlate with their potency to inhibit colon tumor cell growth, whereas no correlation was observed with COX-2 inhibition. Consistent with its selectivity for inhibiting cGMP hydrolysis compared with cyclic AMP hydrolysis, SS inhibited the cGMP-specific PDE5 isozyme and increased cGMP levels in colon tumor cells. Of numerous PDE isozyme-specific inhibitors evaluated, only the PDE5-selective inhibitor MY5445 inhibited colon tumor cell growth. The effects of SS and MY5445 on cell growth were associated with inhibition of β-catenin-mediated transcriptional activity to suppress the synthesis of cyclin D and survivin, which regulate tumor cell proliferation and apoptosis, respectively. SS had minimal effects on cGMP PDE activity in normal colonocytes, which displayed reduced sensitivity to SS and did not express PDE5. PDE5 was found to be overexpressed in colon tumor cell lines as well as in colon adenomas and adenocarcinomas compared with normal colonic mucosa. These results suggest that PDE5 inhibition, cGMP elevation, and inhibition of β-catenin transcriptional activity may contribute to the chemopreventive properties of certain NSAIDs.

  20. Necrosis in DU145 prostate cancer spheroids induces COX-2/mPGES-1-derived PGE2 to promote tumor growth and to inhibit T cell activation.

    PubMed

    Sha, Weixiao; Olesch, Catherine; Hanaka, Hiromi; Rådmark, Olof; Weigert, Andreas; Brüne, Bernhard

    2013-10-01

    Cyclooxygenase (COX)-2-derived prostaglandin E2 (PGE2 ) supports the growth of a spectrum of cancers. The potential benefit of COX-2-inhibiting non-steroidal anti-inflammatory drugs (NSAIDs) for cancer treatment is however limited by their well-known cardiovascular side-effects. Therefore, targeting microsomal PGE synthase 1 (mPGES-1), the downstream enzyme in the COX-2-dependent pathway of PGE2 production might be attractive, although conflicting data regarding a potential tumor-supporting function of mPGES-1 were reported. We determined the impact of mPGES-1 in human DU145 prostate cancer cell growth. Surprisingly, knockdown of mPGES-1 did not alter growth of DU145 monolayer cells, but efficiently inhibited the growth of DU145 multicellular tumor spheroids (MCTS). Opposed to MCTS, monolayer cells did not secrete PGE2 due to a lack of COX-2 expression, which was induced during spheroid formation. Pharmacological inhibition of COX-2 and mPGES-1 supported the crucial role of PGE2 for growth of MCTS. The functionality of spheroid-derived PGE2 was demonstrated by its ability to inhibit cytotoxic T cell activation. When investigating mechanisms of spheroid-induced COX-2 induction, we observed that among microenvironmental factors neither glucose deprivation, hypoxia nor tumor cell apoptosis enhanced COX-2 expression. Interestingly, interfering with apoptosis in spheroids triggered a shift towards necrosis, thus augmenting COX-2 expression. We went on to demonstrate that necrotic cells induced COX-2 mRNA expression and PGE2 secretion from live tumor cells. In conclusion, necrosis-dependent COX-2 upregulation in MCTS promoted PGE2 -dependent tumor growth and inhibited activated cytotoxic T cells. Hence, blocking mPGES-1 as a therapeutic option may be considered for COX-2/mPGES-1-positive solid cancers.

  1. A distinct basic fibroblast growth factor (FGF-2)/FGF receptor interaction distinguishes urokinase-type plasminogen activator induction from mitogenicity in endothelial cells.

    PubMed Central

    Rusnati, M; Dell'Era, P; Urbinati, C; Tanghetti, E; Massardi, M L; Nagamine, Y; Monti, E; Presta, M

    1996-01-01

    Basic fibroblast growth factor (FGF-2) induces cell proliferation and urokinase-type plasminogen activator (uPA) production in fetal bovine aortic endothelial GM 7373 cells. In the present paper we investigated the role of the interaction of FGF-2 with tyrosine-kinase (TK) FGF receptors (FGFRs) in mediating uPA up-regulation in these cells. The results show that FGF-2 antagonists suramin, protamine, heparin, the synthetic peptide FGF-2(112-155), and a soluble form of FGFR-1 do not inhibit FGF-2-mediated uPA up-regulation at concentrations that affect growth factor binding to cell surface receptors and mitogenic activity. In contrast, tyrosine phosphorylation inhibitors and overexpression of a dominant negative TK- mutant of FGFR-1 abolish the uPA-inducing activity of FGF-2, indicating that FGFR and its TK activity are essential in mediating uPA induction. Accordingly, FGF-2 induces uPA up-regulation in Chinese hamster ovary cells transfected with wild-type FGFR-1, -2, -3, or -4 but not with TK- FGFR-1 mutant. Small unilamellar phosphatidyl choline:cholesterol vesicles loaded with FGF-2 increased uPA production in GM 7373 cells in the absence of a mitogenic response. Liposome-encapsulated FGF-2 showed a limited but significant capacity, relative to free FGF-2, to interact with FGFR both at 4 degrees C and 37 degrees C and to be internalized within the cell. uPA up-regulation by liposome-encapsulated FGF-2 was quenched by neutralizing anti-FGF-2 antibodies, indicating that the activity of liposome-delivered FGF-2 is mediated by an extracellular action of the growth factor. Taken together, the data indicate that a distinct interaction of FGF-2 with FGFR, quantitatively and/or qualitatively different from the one that leads to mitogenicity, is responsible for the uPA-inducing activity of the growth factor. Images PMID:8868466

  2. Wogonoside induces growth inhibition and cell cycle arrest via promoting the expression and binding activity of GATA-1 in chronic myelogenous leukemia cells.

    PubMed

    Li, Hui; Hui, Hui; Xu, Jingyan; Yang, Hao; Zhang, Xiaoxiao; Liu, Xiao; Zhou, Yuxin; Li, Zhiyu; Guo, Qinglong; Lu, Na

    2016-06-01

    GATA-1, a zinc finger transcription factor, has been demonstrated to play a key role in the progression of leukemia. In this study, we investigate the effects of wogonoside, a naturally bioactive flavonoid derived from Scutellaria baicalensis Georgi, on cell growth and cell cycle in chronic myeloid leukemia (CML) cells, and uncover its underlying mechanisms. The experimental design comprised CML cell lines K562, imatinib-resistant K562 (K562r) cells, and primary CML cells, treated in vitro or in vivo, respectively, with wogonoside; growth and cell cycle were then evaluated. We found that wogonoside could induce growth inhibition and G0/G1 cell cycle arrest in both normal and K562r cells. Wogonoside promotes the expression of GATA-1 and facilitates the binding to methyl ethyl ketone (MEK) and p21 promoter, thus inhibiting MEK/extracellular signal-regulated kinase signaling and cell cycle checkpoint proteins, including CDK2, CDK4, cyclin A, and cyclin D1, and increasing p21 expression. Furthermore, in vivo studies showed that administration of wogonoside decreased CML cells and prolonged survival in NOD/SCID mice with CML cell xenografts. In conclusion, these results clearly revealed the inhibitory effect of wogonoside on the growth in CML cells and suggested that wogonoside may act as a promising drug for the treatment of imatinib-resistant CML.

  3. Circulating Fibroblast Growth Factor-2, HIV-Tat, and Vascular Endothelial Cell Growth Factor-A in HIV-Infected Children with Renal Disease Activate Rho-A and Src in Cultured Renal Endothelial Cells

    PubMed Central

    Das, Jharna R; Gutkind, J. Silvio; Ray, Patricio E

    2016-01-01

    Renal endothelial cells (REc) are the first target of HIV-1 in the kidney. The integrity of REc is maintained at least partially by heparin binding growth factors that bind to heparan sulfate proteoglycans located on their cell surface. However, previous studies showed that the accumulation of two heparin-binding growth factors, Vascular Endothelial Cell Growth Factor-A (VEGF-A) and Fibroblast Growth Factor-2 (FGF-2), in combination with the viral protein Tat, can precipitate the progression of HIV-renal diseases. Nonetheless, very little is known about how these factors affect the behavior of REc in HIV+ children. We carried out this study to determine how VEGF-A, FGF-2, and HIV-Tat, modulate the cytoskeletal structure and permeability of cultured REc, identify key signaling pathways involved in this process, and develop a functional REc assay to detect HIV+ children affected by these changes. We found that VEGF-A and FGF-2, acting in synergy with HIV-Tat and heparin, affected the cytoskeletal structure and permeability of REc through changes in Rho-A, Src, and Rac-1 activity. Furthermore, urine samples from HIV+ children with renal diseases, showed high levels of VEGF-A and FGF-2, and induced similar changes in cultured REc and podocytes. These findings suggest that FGF-2, VEGF-A, and HIV-Tat, may affect the glomerular filtration barrier in HIV+ children through the induction of synergistic changes in Rho-A and Src activity. Further studies are needed to define the clinical value of the REc assay described in this study to identify HIV+ children exposed to circulating factors that may induce glomerular injury through similar mechanisms. PMID:27097314

  4. Overexpression of activin-A and -B in malignant mesothelioma – Attenuated Smad3 signaling responses and ERK activation promote cell migration and invasive growth

    SciTech Connect

    Tamminen, Jenni A.; Yin, Miao; Rönty, Mikko; Sutinen, Eva; Pasternack, Arja; Ritvos, Olli; Myllärniemi, Marjukka; Koli, Katri

    2015-03-01

    Activin-A and activin-B, members of the TGF-β superfamily, are regulators of reproductive functions, inflammation and wound healing. These dimeric molecules regulate various cellular activities such as proliferation, migration and suvival. Malignant mesothelioma is an asbestos exposure related tumor affecting mainly pleura and it usually has a dismal prognosis. Here, we demonstrate that both activin-A and -B are abundantly expressed in mesothelioma tumor tissue as well as in cultured primary and established mesothelioma cells. Migratory and invasive mesothelioma cells were also found to have attenuated activation of the Smad2/3 pathway in response to activins. Migration and invasive growth of the cells in three-dimentional matrix was prevented by inhibition of activin activity using a soluble activin receptor 2B (sActR2B-Fc). This was associated with decreased ERK activity. Furthermore, migration and invasive growth was significantly inhibited by blocking ERK phosphorylation. Mesothelioma tumors are locally invasive and our results clearly suggest that acivins have a tumor-promoting function in mesothelioma through increasing expression and switching from canonical Smad3 pathway to non-canonical ERK pathway signaling. Blocking activin activity offers a new therapeutic approach for inhibition of mesothelioma invasive growth. - Highlights: • Activin-A and activin-B are highly expressed in mesothelioma. • Mesothelioma cell migration and invasive growth can be blocked with sActR2B. • Activin induced Smad3 activity is attenuated in invasive mesothelioma cells. • Activins induce ERK activity in mesothelioma cells.

  5. Generation, modulation and maintenance of the plasma membrane asymmetric phospholipid composition in yeast cells during growth: their relation to surface potential and membrane protein activity.

    PubMed

    Cerbón, J; Calderón, V

    1995-04-12

    During growth a cyclic exposure of anionic phospholipids to the external surface of the plasma membrane was found. The surface charge density (sigma) increased gradually reaching a maximum in the first 5 h of growth and returned gradually to their initial value at the end of the logarithmic phase of growth (10-12 h). Phosphatidylinositol, that determines to a large extent the magnitude of the sigma, increased 83% in the yeast cells during the first 4 h of growth and returned gradually to their initial level at 10-12 h. During the stationary phase (12-24 h), both sigma and the anionic/zwitterionic phospholipid ratio, remained without any significant variation. The high-affinity H-linked glutamate transport system that behaves as a sensor of the changes in the membrane surface potential (phi) increased its activity in the first 5 h and then decreased it, following with great accuracy the sigma variations and remained without changes during the stationary phase of growth. The phosphatidylserine (PS) relative concentration in the cells (9.0%) did not significantly change during the whole growth curve, but their asymmetric distribution varied, contributing to the changes in sigma. PS facing the outer membrane surface increased 2.45-times during the first 5 h of growth and then returned to their original value at the end of the log phase (12 h). Phosphatidylcholine (PC) remained constant during the whole growth curve (50%), while phosphatidylethanolamine (PE) decreased 3-fold in the first 4 h and then increased to its original value at 10 h. Interestingly, PE at the outer membrane surface remained constant (3% of the total phospholipids) during the whole growth curve. During growth yeast cells change their phospholipid composition originating altered patterns of the plasma membrane phospholipid composition and IN-OUT distribution. This dynamic asymmetry is involved in the regulation of the surface potential and membrane protein activity.

  6. In Vitro Growth Inhibitory Activities of Natural Products from Irciniid Sponges against Cancer Cells: A Comparative Study

    PubMed Central

    BenRedjem Romdhane, Yosr; Elbour, Monia; Carbone, Marianna; Ciavatta, Maria Letizia; Gavagnin, Margherita; Mathieu, Véronique; Lefranc, Florence; Ktari, Leila; Ben Mustapha, Karim; Boudabous, Abdellatif; Kiss, Robert

    2016-01-01

    Marine sponges of the Irciniidae family contain both bioactive furanosesterterpene tetronic acids (FTAs) and prenylated hydroquinones (PHQs). Both classes of compounds are known for their anti-inflammatory, antioxidant, and antimicrobial properties and known to display growth inhibitory effects against various human tumor cell lines. However, the different experimental conditions of the reported in vitro bioassays, carried out on different cancer cell lines within separate studies, prevent realistic actual discrimination between the two classes of compounds from being carried out in terms of growth inhibitory effects. In the present work, a chemical investigation of irciniid sponges from Tunisian coasts led to the purification of three known FTAs and three known PHQs. The in vitro growth inhibitory properties of the six purified compounds have been evaluated in the same experiment in a panel of five human and one murine cancer cell lines displaying various levels of sensitivity to proapoptotic stimuli. Surprisingly, FTAs and PHQs elicited distinct profiles of growth inhibitory-responses, differing by one to two orders of magnitude in favor of the PHQs in all cell lines. The obtained comparative results are discussed in the light of a better selection of drug candidates from natural sources. PMID:27597966

  7. Tricarboxylic Acid Cycle Activity Regulates Tomato Root Growth via Effects on Secondary Cell Wall Production1[W][OA

    PubMed Central

    van der Merwe, Margaretha J.; Osorio, Sonia; Araújo, Wagner L.; Balbo, Ilse; Nunes-Nesi, Adriano; Maximova, Eugenia; Carrari, Fernando; Bunik, Victoria I.; Persson, Staffan; Fernie, Alisdair R.

    2010-01-01

    Transgenic tomato (Solanum lycopersicum ‘Moneymaker’) plants independently expressing fragments of various genes encoding enzymes of the tricarboxylic acid cycle in antisense orientation have previously been characterized as exhibiting altered root growth. In this study, we evaluate the rates of respiration of roots from these lines in addition to determining their total dry weight accumulation. Given that these features were highly correlated, we decided to carry out an evaluation of the cell wall composition in the transformants that revealed a substantial reduction in cellulose. Since the bulk of cellulose is associated with the secondary cell walls in roots, we reasoned that the transformants most likely were deficient in secondary wall cellulose production. Consistent with these findings, cross-sections of the root collar (approximately 15 mm from the junction between root and stem) displayed reduced lignified secondary cell walls for the transformants. In contrast, cell and cell wall patterning displayed no differences in elongating cells close to the root tip. To further characterize the modified cell wall metabolism, we performed feeding experiments in which we incubated excised root tips in [U-14C]glucose in the presence or absence of phosphonate inhibitors of the reaction catalyzed by 2-oxoglutarate dehydrogenase. Taken together, the combined results suggest that restriction of root respiration leads to a deficit in secondary cell wall synthesis. These data are discussed in the context of current models of biomass partitioning and plant growth. PMID:20118274

  8. Novel multiple tyrosine kinase inhibitor ponatinib inhibits bFGF-activated signaling in neuroblastoma cells and suppresses neuroblastoma growth in vivo

    PubMed Central

    Lu, Jiaxiong; Pan, Jessie; Yu, Yang; Zhao, Yanling; Zhang, Huiyuan; Hu, Ting; Liu, Qing; Yang, Jianhua

    2017-01-01

    Neuroblastoma (NB) is one of the most common pediatric malignancies in children. Abnormal activation of receptor tyrosine kinases contributes to the pathological development of NB. Therefore, targeting tyrosine kinase receptors to cure NB is a promising strategy. Here, we report that a multi-targeted tyrosine kinase inhibitor ponatinib inhibited NB cell proliferation and induced NB cell apoptosis in a dose-dependent manner. In addition, ponatinib suppressed the colony formation ability of NB cells. Mechanistically, ponatinib effectively inhibited the FGFR1-activated signaling pathway. Ponatinib also enhanced the cytotoxic effects of doxorubicin on NB cells. Furthermore, ponatinib demonstrated anti-tumor efficacy in vivo by inhibiting tumor growth in an orthotopic xenograft NB mouse model. In summary, our results showed that ponatinib inhibited NB growth both in vitro and in vivo. PMID:27564113

  9. Growth Differentiation Factor-15–Induced Contractile Activity and Extracellular Matrix Production in Human Trabecular Meshwork Cells

    PubMed Central

    Muralidharan, Arumugam Ramachandran; Maddala, Rupalatha; Skiba, Nikolai P.; Rao, Ponugoti Vasantha

    2016-01-01

    Purpose To determine the role and regulation of growth differentiation factor-15 (GDF-15), a TGF-β–related cytokine in human trabecular meshwork (TM) cells in the context of aqueous humor (AH) outflow and IOP. Methods Regulation of expression by external cues, and the distribution and secretion of GDF-15 by human TM primary cell cultures, and the effects of recombinant (r) GDF-15 on TM cell contractile characteristics, actin cytoskeleton, cell adhesion, extracellular matrix (ECM), α-smooth muscle actin (αSMA), SMAD signaling, and gene expression were determined by immunoblot, immunofluorescence, mass spectrometry, cDNA microarray, and real-time quantitative PCR (RT-qPCR) analyses. Results Growth differentiation factor-15, a common constituent of ECM derived from the human TM cells, was confirmed to be distributed throughout the conventional aqueous humor outflow pathway of the human eye. Growth differentiation factor-15 protein levels were significantly increased in human TM cells in response to TGF-β2, dexamethasone, endothelin-1, lysophosphatidic acid, TNF-α, IL-1β treatment, and by cyclic mechanical stretch. Stimulation of human TM cells with rGDF-15 caused a significant increase in the formation of actin stress fibers and focal adhesions, myosin light chain phosphorylation, SMAD signaling, gene expression, and the levels of αSMA and ECM proteins. Conclusions The results of this study, including a robust induction of GDF-15 expression by several external factors known to elevate IOP, and rGDF-15–induced increase in contractility, cell adhesion, and the levels of ECM proteins and αSMA in TM cells, collectively suggest a potential role for GDF-15 in homeostasis and dysregulation of AH outflow and IOP in normal and glaucomatous eyes, respectively. PMID:27918822

  10. TGF-β-Mediated Sustained ERK1/2 Activity Promotes the Inhibition of Intracellular Growth of Mycobacterium avium in Epithelioid Cells Surrogates

    PubMed Central

    L'Abbate, Carolina; Cipriano, Ivone; Pérez-Hurtado, Elizabeth Cristina; Leão, Sylvia Cardoso; Carneiro, Célia Regina Whitaker; Machado, Joel

    2011-01-01

    Transforming growth factor beta (TGF-β) has been implicated in the pathogenesis of several diseases including infection with intracellular pathogens such as the Mycobacterium avium complex. Infection of macrophages with M. avium induces TGF-β production and neutralization of this cytokine has been associated with decreased intracellular bacterial growth. We have previously demonstrated that epithelioid cell surrogates (ECs) derived from primary murine peritoneal macrophages through a process of differentiation induced by IL-4 overlap several features of epithelioid cells found in granulomas. In contrast to undifferentiated macrophages, ECs produce larger amounts of TGF-β and inhibit the intracellular growth of M. avium. Here we asked whether the levels of TGF-β produced by ECs are sufficient to induce a self-sustaining autocrine TGF-β signaling controlling mycobacterial replication in infected-cells. We showed that while exogenous addition of increased concentration of TGF-β to infected-macrophages counteracted M. avium replication, pharmacological blockage of TGF-β receptor kinase activity with SB-431542 augmented bacterial load in infected-ECs. Moreover, the levels of TGF-β produced by ECs correlated with high and sustained levels of ERK1/2 activity. Inhibition of ERK1/2 activity with U0126 increased M. avium replication in infected-cells, suggesting that modulation of intracellular bacterial growth is dependent on the activation of ERK1/2. Interestingly, blockage of TGF-β receptor kinase activity with SB-431542 in infected-ECs inhibited ERK1/2 activity, enhanced intracellular M. avium burden and these effects were followed by a severe decrease in TGF-β production. In summary, our findings indicate that the amplitude of TGF-β signaling coordinates the strength and duration of ERK1/2 activity that is determinant for the control of intracellular mycobacterial growth. PMID:21731758

  11. Lentivirally Engineered DC activate AFP-specific T cells which Inhibit Hepatocellular Carcinoma Growth in vitro and in vivo

    PubMed Central

    Liu, Yang; Butterfield, Lisa H.; Fu, Xiaohui; Song, Zhenshun; Zhang, Xiaoping; Lu, Chongde; Ding, Guanghui; Wu, Mengchao

    2012-01-01

    Alpha-fetoprotein (AFP), a tumor-associated antigen for hepatocellular carcinoma (HCC), is an established biomarker for HCC. In this study, we created a lentivirus expressing the AFP antigen and investigated the antitumor activity of AFP-specific CD8+ T cells, with and without CD4+ T cells, which were activated by either AFP peptide-pulsed or Lenti-AFP-engineered DC in vitro and in vivo. AFP-specific T cells could efficiently kill HepG2 HCC cells, and produced IL-2, IFN-γ, TNF-α, perforin and granzyme B, with minimal production of IL-10 (a negative regulator of T cell activation). Both strategies activated AFP-specific T cells, but the lentiviral strategy was superior by several measures. Data also support an impact of CD4+ T cells in supporting anti-tumor activity. In vivo studies in a xenograft HCC tumor model also showed that AFP-specific T cells could markedly suppress HCC tumor formation and morbidity in tumor-bearing nude mice, as well as regulate serum levels of related cytokines and antitumor molecules. In parallel with human in vitro T cell cultures, the in vivo model demonstrated superior anti-tumor effects and Th1-skewing with Lenti-AFP-DC. This study supports the superiority of a full-length antigen lentivirus-based DC vaccine strategy over peptides, and provides new insight into the design of DC-based vaccines. PMID:21491085

  12. IRF-1 inhibits NF-κB activity, suppresses TRAF2 and cIAP1 and induces breast cancer cell specific growth inhibition.

    PubMed

    Armstrong, Michaele J; Stang, Michael T; Liu, Ye; Yan, Jin; Pizzoferrato, Eva; Yim, John H

    2015-01-01

    Interferon Regulatory Factor (IRF)-1, originally identified as a transcription factor of the human interferon (IFN)-β gene, mediates tumor suppression and may inhibit oncogenesis. We have shown that IRF-1 in human breast cancer cells results in the down-regulation of survivin, tumor cell death, and the inhibition of tumor growth in vivo in xenogeneic mouse models. In this current report, we initiate studies comparing the effect of IRF-1 in human nonmalignant breast cell and breast cancer cell lines. While IRF-1 in breast cancer cells results in growth inhibition and cell death, profound growth inhibition and cell death are not observed in nonmalignant human breast cells. We show that TNF-α or IFN-γ induces IRF-1 in breast cancer cells and results in enhanced cell death. Abrogation of IRF-1 diminishes TNF-α and IFN-γ-induced apoptosis. We test the hypothesis that IRF-1 augments TNF-α-induced apoptosis in breast cancer cells. Potential signaling networks elicited by IRF-1 are investigated by evaluating the NF-κB pathway. TNF-α and/or IFN-γ results in decreased presence of NF-κB p65 in the nucleus of breast cancer cells. While TNF-α and/or IFN-γ can induce IRF-1 in nonmalignant breast cells, a marked change in NF-κB p65 is not observed. Moreover, the ectopic expression of IRF-1 in breast cancer cells results in caspase-3, -7, -8 cleavage, inhibits NF-κB activity, and suppresses the expression of molecules involved in the NF-κB pathway. These data show that IRF-1 in human breast cancer cells elicits multiple signaling networks including intrinsic and extrinsic cell death and down-regulates molecules involved in the NF-κB pathway.

  13. Angiotensin II-induced Akt activation through the epidermal growth factor receptor in vascular smooth muscle cells is mediated by phospholipid metabolites derived by activation of phospholipase D.

    PubMed

    Li, Fang; Malik, Kafait U

    2005-03-01

    Angiotensin II (Ang II) activates cytosolic Ca(2+)-dependent phospholipase A(2) (cPLA(2)), phospholipase D (PLD), p38 mitogen-activated protein kinase (MAPK), epidermal growth factor receptor (EGFR) and Akt in vascular smooth muscle cells (VSMC). This study was conducted to investigate the relationship between Akt activation by Ang II and other signaling molecules in rat VSMC. Ang II-induced Akt phosphorylation was significantly reduced by the PLD inhibitor 1-butanol, but not by its inactive analog 2-butanol, and by brefeldin A, an inhibitor of the PLD cofactor ADP-ribosylation factor, and in cells infected with retrovirus containing PLD(2) siRNA or transfected with PLD(2) antisense but not control LacZ or sense oligonucleotide. Diacylglycerol kinase inhibitor II diminished Ang II-induced and diC8-phosphatidic acid (PA)-increased Akt phosphorylation, suggesting that PLD-dependent Akt activation is mediated by PA. Ang II-induced EGFR phosphorylation was inhibited by 1-butanol and PLD(2) siRNA and also by cPLA(2) siRNA. In addition, the inhibitor of arachidonic acid (AA) metabolism 5,8,11,14-eicosatetraynoic acid (ETYA) reduced both Ang II- and AA-induced EGFR transactivation. Furthermore, ETYA, cPLA(2) antisense, and cPLA(2) siRNA attenuated Ang II-elicited PLD activation. p38 MAPK inhibitor SB202190 [4-(4-flurophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)1H-imidazole] reduced PLD activity and EGFR and Akt phosphorylation elicited by Ang II. Pyrrolidine-1, a cPLA(2) inhibitor, and cPLA(2) siRNA decreased p38 MAPK activity. These data indicate that Ang II-stimulated Akt activity is mediated by cPLA(2)-dependent, p38 MAPK regulated PLD(2) activation and EGFR transactivation. We propose the following scheme of the sequence of events leading to activation of Akt in VSMC by Ang II: Ang II-->cPLA(2)-->AA-->p38 MAPK-->PLD(2)-->PA-->EGFR-->Akt.

  14. Galectin-3 Protein Modulates Cell Surface Expression and Activation of Vascular Endothelial Growth Factor Receptor 2 in Human Endothelial Cells*

    PubMed Central

    Markowska, Anna I.; Jefferies, Kevin C.; Panjwani, Noorjahan

    2011-01-01

    Angiogenesis is heavily influenced by VEGF-A and its family of receptors, particularly VEGF receptor 2 (VEGF-R2). Like most cell surface proteins, VEGF-R2 is glycosylated, although the function of VEGF-R2 with respect to its glycosylation pattern is poorly characterized. Galectin-3, a glycan binding protein, interacts with the EGF and TGFβ receptors, retaining them on the plasma membrane and altering their signal transduction. Because VEGF-R2 is glycosylated and both galectin-3 and VEGF-R2 are involved with angiogenesis, we hypothesized that galectin-3 binds VEGF-R2 and modulates its signal transduction as well. Employing a Western blot analysis approach, we found that galectin-3 induces phosphorylation of VEGF-R2 in endothelial cells. Knockdown of galectin-3 and Mgat5, an enzyme that synthesizes high-affinity glycan ligands of galectin-3, reduced VEGF-A mediated angiogenesis in vitro. A direct interaction on the plasma membrane was detected between galectin-3 and VEGF-R2, and this interaction was dependent on the expression of Mgat5. Using immunofluorescence and cell surface labeling, we found an increase in the level of internalized VEGF-R2 in both Mgat5 and galectin-3 knockdown cells, suggesting that galectin-3 retains the receptor on the plasma membrane. Finally, we observed reduced suture-induced neovascularization in the corneas of Gal3−/− and Mgat5−/− mice. These findings are consistent with the hypothesis that, like its role with the EGF and TGFβ receptors, galectin-3 contributes to the plasma membrane retention and proangiogenic function of VEGF-R2. PMID:21715322

  15. Intercalated chemotherapy and erlotinib for non-small cell lung cancer (NSCLC) with activating epidermal growth factor receptor (EGFR) mutations

    PubMed Central

    Zwitter, Matjaz; Rajer, Mirjana; Stanic, Karmen; Vrankar, Martina; Doma, Andrej; Cuderman, Anka; Grmek, Marko; Kern, Izidor; Kovac, Viljem

    2016-01-01

    ABSTRACT Among attempts to delay development of resistance to tyrosine kinase inhibitors (TKIs) in patients with advanced non-small cell lung cancer (NSCLC) with activating mutations of epidermal growth factor receptor (EGFR), intercalated therapy has not been properly evaluated. In a phase II trial, 38 patients with EGFR mutated NSCLC in advanced stage were treated with 4 to 6 3-weekly cycles of intercalated schedule with gemcitabine (1250 mg/m2, days 1 and 4), cisplatin (75 mg/m2, day 2) and erlotinib (150 mg, days 5 – 15), followed by continuous erlotinib as maintenance. In addition to standard radiologic evaluation according to RECIST, PET/CT was done prior to treatment and at 6 months, using PERCIST as a method for assessment of response. The primary endpoint was progression-free survival (PFS). In general, tolerance to treatment was good, even among 8 patients with performance status 2–3 and 13 patients with brain metastases; grade 4 toxicity included 2 cases of neutropenia and 4 thrombo-embolic events. Complete response (CR) or partial response (PR) were seen in 15 (39.5%) and 17 (44.7%) cases, respectively. All cases of CR were confirmed also by PET/CT. Median PFS was 23.4 months and median overall survival (OS) was 38.3  months. After a median follow-up of 35 months, 8 patients are still in CR and on maintenance erlotinib. In conclusion, intercalated treatment for treatment-naive patients with EGFR activating mutations leads to excellent response rate and prolonged PFS and survival. Comparison of the intercalated schedule to monotherapy with TKIs in a randomized trial is warranted. PMID:27261103

  16. Cancer cells. 3: Growth factors and transformation

    SciTech Connect

    Feramisco, J.; Ozanne, B.; Stiles, C.

    1985-01-01

    This book contains over 50 papers. Some of the titles are: Structure of Human Epidermal Growth Factor and Expression of Normal and Variant mRNAs in Epdermoid Carcinoma Cells; Tyrosine Kinase Activity Associated with the v-erb-B Gene Product; Cloning and Characterization of Human Epidermal Growth Factor-Receptor Gene Sequences in A431 Carcinoma Cells; Anti-oncogenes and the Suppression of Tumor Formation; and Normal Human sis/PDGF-2 Gene Expression Induces Cellular Transformation.

  17. Elevated TAK1 augments tumor growth and metastatic capacities of ovarian cancer cells through activation of NF-κB signaling

    PubMed Central

    Cai, Patty C.H.; Shi, Lei; Liu, Vincent W.S.; Tang, Hermit W.M.; Liu, Iris J.; Leung, Thomas H.Y.; Chan, Karen K.L.; Yam, Judy W.P.; Yao, Kwok-Ming; Ngan, Hextan Y.S.; Chan, David W.

    2014-01-01

    Transforming growth factor (TGF)-β-activating kinase 1 (TAK1) is a serine/threonine kinase which is frequently associated with human cancer progression. However, its functional role in tumorigenesis is still controversial. Here, we report that TAK1 enhances the oncogenic capacity of ovarian cancer cells through the activation of NF-κB signaling. We found that TAK1 is frequently upregulated and significantly associated with high-grade and metastatic ovarian cancers. Mechanistic studies showed that Ser412 phosphorylation is required for TAK1 in activating NF-κB signaling and promotes aggressiveness of ovarian cancer cells. Conversely, suppression of TAK1 activity by point mutation at Ser412, RNAi mediated gene knockdown or TAK1 specific inhibitor ((5Z) -7-Oxozeaenol) remarkably impairs tumor growth and metastasis in ovarian cancer in vitro and in vivo. Our study underscores the importance of targeting TAK1 as a promising therapeutic approach to counteract the ovarian cancer progression. PMID:25277189

  18. Chlorpyrifos promotes colorectal adenocarcinoma H508 cell growth through the activation of EGFR/ERK1/2 signaling pathway but not cholinergic pathway.

    PubMed

    Suriyo, Tawit; Tachachartvanich, Phum; Visitnonthachai, Daranee; Watcharasit, Piyajit; Satayavivad, Jutamaad

    2015-12-02

    Aside from the effects on neuronal cholinergic system, epidemiological studies suggest an association between chlorpyrifos (CPF) exposure and cancer risk. This in vitro study examined the effects of CPF and its toxic metabolite, chlorpyrifos oxon (CPF-O), on the growth of human colorectal adenocarcinoma H508, colorectal adenocarcinoma HT-29, normal colon epithelial CCD841, liver hepatocellular carcinoma HepG2, and normal liver hepatocyte THLE-3 cells. The results showed that CPF (5-100 μM) concentration-dependently increased viability of H508 and CCD841 cells in serum-free conditions. This increasing trend was not found in HT-29, HepG2 and THLE-3 cells. In contrast, CPF-O (50-100 μM) reduced the viability of all cell lines. Cell cycle analysis showed the induction of cells in the S phase, and EdU incorporation assay revealed the induction of DNA synthesis in CPF-treated H508 cells indicating that CPF promotes cell cycle progression. Despite the observation of acetylcholinesterase activity inhibition and reactive oxygen species (ROS) generation, atropine (a non-selective muscarinic acetylcholine receptor antagonist) and N-acetylcysteine (a potent antioxidant) failed to inhibit the growth-promoting effect of CPF. CPF increased the phosphorylation of epidermal growth factor receptor (EGFR) and its downstream effector, extracellular signal regulated kinase (ERK1/2), in H508 cells. AG-1478 (a specific EGFR tyrosine kinase inhibitor) and U0126 (a specific MEK inhibitor) completely mitigated the growth promoting effect of CPF. Altogether, these results suggest that EGFR/ERK1/2 signaling pathway but not cholinergic pathway involves in CPF-induced colorectal adenocarcinoma H508 cell growth.

  19. A novel sulindac derivative that potently suppresses colon tumor cell growth by inhibiting cGMP phosphodiesterase and β-catenin transcriptional activity.

    PubMed

    Whitt, Jason D; Li, Nan; Tinsley, Heather N; Chen, Xi; Zhang, Wei; Li, Yonghe; Gary, Bernard D; Keeton, Adam B; Xi, Yaguang; Abadi, Ashraf H; Grizzle, William E; Piazza, Gary A

    2012-06-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) have been widely reported to inhibit tumor growth by a COX-independent mechanism, although alternative targets have not been well defined or used to develop improved drugs for cancer chemoprevention. Here, we characterize a novel sulindac derivative referred to as sulindac benzylamine (SBA) that does not inhibit COX-1 or COX-2, yet potently inhibits the growth and induces the apoptosis of human colon tumor cells. The basis for this activity appears to involve cyclic guanosine 3',5',-monophosphate phosphodiesterase (cGMP PDE) inhibition as evident by its ability to inhibit cGMP hydrolysis in colon tumor cell lysates and purified cGMP-specific PDE5, increase intracellular cGMP levels, and activate cGMP-dependent protein kinase G at concentrations that suppress tumor cell growth. PDE5 was found to be essential for colon tumor cell growth as determined by siRNA knockdown studies, elevated in colon tumor cells as compared with normal colonocytes, and associated with the tumor selectivity of SBA. SBA activation of PKG may suppress the oncogenic activity of β-catenin as evident by its ability to reduce β-catenin nuclear levels, Tcf (T-cell factor) transcriptional activity, and survivin levels. These events preceded apoptosis induction and appear to result from a rapid elevation of intracellular cGMP levels following cGMP PDE inhibition. We conclude that PDE5 and possibly other cGMP degrading isozymes can be targeted to develop safer and more efficacious NSAID derivatives for colorectal cancer chemoprevention.

  20. Melatonin downregulates nuclear receptor RZR/RORγ expression causing growth-inhibitory and anti-angiogenesis activity in human gastric cancer cells in vitro and in vivo

    PubMed Central

    Wang, Ri-Xiong; Liu, Hui; Xu, Li; Zhang, Hui; Zhou, Rui-Xiang

    2016-01-01

    An adequate supply of oxygen and nutrients, derived from the formation of novel blood vessels, is critical for the growth and expansion of tumor cells. It has been demonstrated that melatonin (MLT) exhibits marked in vitro and in vivo oncostatic activities. The primary purpose of the present study was to evaluate the in vitro and in vivo antitumor activity of MLT on the growth and angiogenesis of gastric cancer cells, and explore the underlying molecular mechanisms. The present results revealed that MLT inhibited the growth of gastric cancer SGC-7901 cells in a dose- and time-dependent manner. In addition, the present study demonstrated that low concentrations (0.01, 0.1 and 1 mM) of MLT had no clear effect on vascular endothelial growth factor (VEGF) secretion, whereas a high concentration (3 mM) of MLT suppressed VEGF secretion in SGC-7901 cells. Notably, administration of MLT caused suppression of gastric cancer growth and blockade of tumor angiogenesis in tumor-bearing nude mice. Furthermore, MLT treatment reduced the expression of the MLT nuclear receptor RZR/RORγ, SUMO-specific protease 1, hypoxia-inducible factor-1α and VEGF at transcriptional and translational levels within gastric cancer cells during tumorigenesis. In conclusion, MLT nuclear receptor RZR/RORγ may be of great importance in the MLT mediated anti-angiogenesis and growth-inhibitory effect in gastric cancer cells. Since RZR/RORγ is overexpressed in multiple human cancers, MLT may be a promising agent for the treatment of cancers. PMID:27446366

  1. INHIBITION OF PROTEIN TYROSINE PHOSPHATASE ACTIVITY MEDIATES EPIDERMAL GROWTH FACTOR RECEPTOR SIGNALING IN HUMAN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    Epidemiological studies have implicated zinc in the toxicity of ambient particulate matter (PM) inhalation. We previously showed that exposure to metal-laden PM inhibits protein tyrosine phosphatase (PTP) activity in human primary bronchial epithelial cells (HAEC) and leads t...

  2. PKCθ activation in pancreatic acinar cells by gastrointestinal hormones/neurotransmitters and growth factors is needed for stimulation of numerous important cellular signaling cascades.

    PubMed

    Sancho, Veronica; Berna, Marc J; Thill, Michelle; Jensen, R T

    2011-12-01

    The novel PKCθ isoform is highly expressed in T-cells, brain and skeletal muscle and originally thought to have a restricted distribution. It has been extensively studied in T-cells and shown to be important for apoptosis, T-cell activation and proliferation. Recent studies showed its presence in other tissues and importance in insulin signaling, lung surfactant secretion, intestinal barrier permeability, platelet and mast-cell functions. However, little information is available for PKCθ activation by gastrointestinal (GI) hormones/neurotransmitters and growth factors. In the present study we used rat pancreatic acinar cells to explore their ability to activate PKCθ and the possible interactions with important cellular mediators of their actions. Particular attention was paid to cholecystokinin (CCK), a physiological regulator of pancreatic function and important in pathological processes affecting acinar function, like pancreatitis. PKCθ-protein/mRNA was present in the pancreatic acini, and T538-PKCθ phosphorylation/activation was stimulated only by hormones/neurotransmitters activating phospholipase C. PKCθ was activated in time- and dose-related manner by CCK, mediated 30% by high-affinity CCK(A)-receptor activation. CCK stimulated PKCθ translocation from cytosol to membrane. PKCθ inhibition (by pseudostrate-inhibitor or dominant negative) inhibited CCK- and TPA-stimulation of PKD, Src, RafC, PYK2, p125(FAK) and IKKα/β, but not basal/stimulated enzyme secretion. Also CCK- and TPA-induced PKCθ activation produced an increment in PKCθ's direct association with AKT, RafA, RafC and Lyn. These results show for the first time the PKCθ presence in pancreatic acinar cells, its activation by some GI hormones/neurotransmitters and involvement in important cell signaling pathways mediating physiological responses (enzyme secretion, proliferation, apoptosis, cytokine expression, and pathological responses like pancreatitis and cancer growth).

  3. PKCθ activation in pancreatic acinar cells by gastrointestinal hormones/neurotransmitters and growth factors is needed for stimulation of numerous important cellular signaling cascades

    PubMed Central

    Sancho, Veronica; Berna, Marc J.; Thill, Michelle; Jensen, R. T.

    2011-01-01

    The novel PKCθ isoform is highly expressed in T-cells, brain and skeletal muscle and originally thought to have a restricted distribution. It has been extensively studied in T-cells and shown to be important for apoptosis, T-cell activation and proliferation. Recent studies showed its presence in other tissues and importance in insulin signaling, lung surfactant secretion, intestinal barrier permeability, platelet and mast-cell functions. However, little information is available for PKCθ activation by gastrointestinal(GI) hormones/neurotransmitters and growth factors. In the present study we used rat pancreatic acinar cells to explore their ability to activate PKCθ and the possible interactions with important cellular mediators of their actions. Particular attention was paid to cholecystokinin(CCK), a physiological regulator of pancreatic function and important in pathological processes affecting acinar function, like pancreatitis. PKCθ-protein/mRNA were present in the pancreatic acini, and T538-PKCθ phosphorylation/activation was stimulated only by hormones/neurotransmitters activating phospholipase C. PKCθ was activated in time- and dose-related manner by CCK, mediated 30% by high-affinity CCKA-receptor activation. CCK stimulated PKCθ translocation from cytosol to membrane. PKCθ inhibition (by pseudostrate-inhibitor or dominant negative) inhibited CCK- and TPA-stimulation of PKD, Src, RafC, PYK2, p125FAK and IKKα/β, but not basal/stimulated enzyme secretion. Also CCK- and TPA-induced PKCθ activation produced an increment in PKCθ’s direct association with AKT, RafA, RafC and Lyn. These results show for the first time PKCθ presence in pancreatic acinar cells, its activation by some GI hormones/neurotransmitters and involvement in important cell signaling pathways mediating physiological responses (enzyme secretion, proliferation, apoptosis, cytokine expression, and pathological responses like pancreatitis and cancer growth). PMID:21810446

  4. Epidermal growth factor-induced proliferation of collecting duct cells from Oak Ridge polycystic kidney mice involves activation of Na+/H+ exchanger.

    PubMed

    Coaxum, Sonya D; Blanton, Mary G; Joyner, Alisha; Akter, Tanjina; Bell, P Darwin; Luttrell, Louis M; Raymond, John R; Lee, Mi-Hye; Blichmann, Paul A; Garnovskaya, Maria N; Saigusa, Takamitsu

    2014-09-15

    Epidermal growth factor (EGF) is linked to the pathogenesis of polycystic kidney disease (PKD). We explored signaling pathways activated by EGF in orpk cilia (-) collecting duct cell line derived from a mouse model of PKD (hypomorph of the Tg737/Ift88 gene) with severely stunted cilia, and in a control orpk cilia (+) cell line with normal cilia. RT-PCR demonstrated mRNAs for EGF receptor subunits ErbB1, ErbB2, ErbB3, ErbB4, and mRNAs for Na(+)/H(+) exchangers (NHE), NHE-1, NHE-2, NHE-3, NHE-4, and NHE-5 in both cell lines. EGF stimulated proton efflux in both cell lines. This effect was significantly attenuated by MIA, 5-(n-methyl-N-isobutyl) amiloride, a selective inhibitor of NHE-1 and NHE-2, and orpk cilia (-) cells were more sensitive to MIA than control cells (P < 0.01). EGF significantly induced extracellular signal-regulated kinase (ERK) phosphorylation in both cilia (+) and cilia (-) cells (63.3 and 123.6%, respectively), but the effect was more pronounced in orpk cilia (-) cells (P < 0.01). MIA significantly attenuated EGF-induced ERK phosphorylation only in orpk cilia (-) cells (P < 0.01). EGF increased proliferation of orpk cilia (+) cells and orpk cilia (-) cells, respectively, and MIA at 1-5 μM attenuated EGF-induced proliferation in orpk cilia (-) cells without affecting proliferation of orpk cilia (+) cells. EGF-induced proliferation of both cell lines was significantly decreased by the EGFR tyrosine kinase inhibitor AG1478 and MEK inhibitor PD98059. These results suggest that EGF exerts mitogenic effects in the orpk cilia (-) cells via activation of growth-associated amiloride-sensitive NHEs and ERK.

  5. Growth requirements of human mammary epithelial cells in culture.

    PubMed

    Taylor-Papadimitriou, J; Shearer, M; Stoker, M G

    1977-12-15

    Colony-forming epithelial cells can be separated from the non-dividing "foam cells" in human milk by differential adhesion to glass and freezing. The growth of such partially purified mammary epithelial cells is stimulated by co-culture with non-dividing feeder cells. Foam cells, mitomycin-treated mouse fibroblast lines and human mammary fibroblasts and calf lens epithelial cells are all effective in promoting mammary epithelial cell growth. Contact between epithelial cells and feeders is not required for the growth-promoting effect. The mitogenic effect of epidermal growth factor on mammary epithelial cells also requires feeder cell activity.

  6. Effects of cyclohexanone analogues of curcumin on growth, apoptosis and NF-κB activity in PC-3 human prostate cancer cells.

    PubMed

    Wei, Xingchuan; DU, Zhi-Yun; Cui, Xiao-Xing; Verano, Michael; Mo, Rong Qing; Tang, Zhi Kai; Conney, Allan H; Zheng, Xi; Zhang, Kun

    2012-08-01

    Curcumin is a non-nutritive yellow pigment found in the spice turmeric, which is derived from the rhizome of the plant Curcuma longa Linn. Six cyclohexanone analogues of curcumin (A(1)-A(6)) were investigated for their effects on growth and apoptosis in PC-3 human prostate cancer cells. The ability of these compounds to inhibit NF-κB activity in PC-3 cells was also determined. Five out of the six curcumin analogues (A(2)-A(6)) had stronger inhibitory effects compared to curcumin on the growth of cultured PC-3 cells. Compounds A(2)-A(6) also had stronger stimulatory effects on apoptosis in PC-3 cells than curcumin, and these curcumin analogues more potently inhibited NF-κB activity than curcumin. The inhibitory effects of these compounds on NF-κB activity correlated with their effects on growth inhibition and apoptosis stimulation in PC-3 cells. The results of the present study provide a rationale for in vivo studies with A(2)-A(6) using suitable animal models of prostate cancer.

  7. A peptide from Porphyra yezoensis stimulates the proliferation of IEC-6 cells by activating the insulin-like growth factor I receptor signaling pathway.

    PubMed

    Lee, Min-Kyeong; Kim, In-Hye; Choi, Youn-Hee; Nam, Taek-Jeong

    2015-02-01

    Porphyra yezoensis (P. yezoensis) is the most noteworthy red alga and is mainly consumed in China, Japan and Korea. In the present study, the effects of a P. yezoensis peptide (PY‑PE) on cell proliferation and the associated signaling pathways were examined in IEC‑6 rat intestinal epithelial cells. First, the MTS assay showed that PY‑PE induced cell proliferation in a dose‑dependent manner. Subsequently, the mechanism behind the proliferative activity induced by PY‑PE was determined. The insulin‑like growth factor‑I receptor (IGF‑IR) signaling pathway was the main focus as it plays an important role in the regulation of cell growth and proliferation. PY‑PE increased the protein and mRNA expression of IGF‑IR, insulin receptor substrate‑1, Shc and PY‑99. In addition, PY‑PE stimulated extracellular signal‑regulated kinase phosphorylation and phosphatidylinositol 3‑kinase/Akt activation but inhibited p38 and c‑Jun N‑terminal kinase phosphorylation. Furthermore, PY‑PE treatment increased protein and mRNA expression levels of activator protein‑1, which regulates cell proliferation and survival, in the nuclear fraction. These results have significant implications for understanding the role of cell proliferation signaling pathways in intestinal epithelial cells.

  8. Biphasic activation of extracellular signal-regulated kinase (ERK) 1/2 in epidermal growth factor (EGF)-stimulated SW480 colorectal cancer cells

    PubMed Central

    Joo, Donghyun; Woo, Jong Soo; Cho, Kwang-Hyun; Han, Seung Hyun; Min, Tae Sun; Yang, Deok-Chun; Yun, Cheol-Heui

    2016-01-01

    Cancer cells have different characteristics due to the genetic differences where these unique features may strongly influence the effectiveness of therapeutic interventions. Here, we show that the spontaneous reactivation of extracellular signalregulated kinase (ERK), distinct from conventional ERK activation, represents a potent mechanism for cancer cell survival. We studied ERK1/2 activation in vitro in SW480 colorectal cancer cells. Although ERK signaling tends to be transiently activated, we observed the delayed reactivation of ERK1/2 in epidermal growth factor (EGF)-stimulated SW480 cells. This effect was observed even after EGF withdrawal. While phosphorylated ERK1/2 translocated into the nucleus following its primary activation, it remained in the cytoplasm during late-phase activation. The inhibition of primary ERK1/2 activation or protein trafficking, blocked reactivation and concurrently increased caspase 3 activity. Our results suggest that the biphasic activation of ERK1/2 plays a role in cancer cell survival; thus, regulation of ERK1/2 activation may improve the efficacy of cancer therapies that target ERK signaling. [BMB Reports 2016; 49(4): 220-225] PMID:26879318

  9. Brain-derived neurotrophic factor inhibits osmotic swelling of rat retinal glial (Müller) and bipolar cells by activation of basic fibroblast growth factor signaling.

    PubMed

    Berk, B-A; Vogler, S; Pannicke, T; Kuhrt, H; Garcia, T B; Wiedemann, P; Reichenbach, A; Seeger, J; Bringmann, A

    2015-06-04

    Water accumulation in retinal glial (Müller) and neuronal cells resulting in cellular swelling contributes to the development of retinal edema and neurodegeneration. Intravitreal administration of neurotrophins such as brain-derived neurotrophic factor (BDNF) is known to promote survival of retinal neurons. Here, we show that exogenous BDNF inhibits the osmotic swelling of Müller cell somata induced by superfusion of rat retinal slices or freshly isolated cells with a hypoosmotic solution containing barium ions. BDNF also inhibited the osmotic swelling of bipolar cell somata in retinal slices, but failed to inhibit the osmotic soma swelling of freshly isolated bipolar cells. The inhibitory effect of BDNF on Müller cell swelling was mediated by activation of tropomyosin-related kinase B (TrkB) and transactivation of fibroblast growth factor receptors. Exogenous basic fibroblast growth factor (bFGF) fully inhibited the osmotic swelling of Müller cell somata while it partially inhibited the osmotic swelling of bipolar cell somata. Isolated Müller cells displayed immunoreactivity of truncated TrkB, but not full-length TrkB. Isolated rod bipolar cells displayed immunoreactivities of both TrkB isoforms. Data suggest that the neuroprotective effect of exogenous BDNF in the retina is in part mediated by prevention of the cytotoxic swelling of retinal glial and bipolar cells. While BDNF directly acts on Müller cells by activation of TrkB, BDNF indirectly acts on bipolar cells by inducing glial release of factors like bFGF that inhibit bipolar cell swelling.

  10. Tricyclic antidepressant amitriptyline activates fibroblast growth factor receptor signaling in glial cells: involvement in glial cell line-derived neurotrophic factor production.

    PubMed

    Hisaoka, Kazue; Tsuchioka, Mami; Yano, Ryoya; Maeda, Natsuko; Kajitani, Naoto; Morioka, Norimitsu; Nakata, Yoshihiro; Takebayashi, Minoru

    2011-06-17

    Recently, both clinical and animal studies demonstrated neuronal and glial plasticity to be important for the therapeutic action of antidepressants. Antidepressants increase glial cell line-derived neurotrophic factor (GDNF) production through monoamine-independent protein-tyrosine kinase, extracellular signal-regulated kinase (ERK), and cAMP responsive element-binding protein (CREB) activation in glial cells (Hisaoka, K., Takebayashi, M., Tsuchioka, M., Maeda, N., Nakata, Y., and Yamawaki, S. (2007) J. Pharmacol. Exp. Ther. 321, 148-157; Hisaoka, K., Maeda, N., Tsuchioka, M., and Takebayashi, M. (2008) Brain Res. 1196, 53-58). This study clarifies the type of tyrosine kinase and mechanism of antidepressant-induced GDNF production in C6 glioma cells and normal human astrocytes. The amitriptyline (a tricyclic antidepressant)-induced ERK activation was specifically and completely inhibited by fibroblast growth factor receptor (FGFR) tyrosine kinase inhibitors and siRNA for FGFR1 and -2. Treatment with amitriptyline or several different classes of antidepressants, but not non-antidepressants, acutely increased the phosphorylation of FGFRs and FGFR substrate 2α (FRS2α). Amitriptyline-induced CREB phosphorylation and GDNF production were blocked by FGFR-tyrosine kinase inhibitors. Therefore, antidepressants activate the FGFR/FRS2α/ERK/CREB signaling cascade, thus resulting in GDNF production. Furthermore, we attempted to elucidate how antidepressants activate FGFR signaling. The effect of amitriptyline was inhibited by heparin, non-permeant FGF-2 neutralizing antibodies, and matrix metalloproteinase (MMP) inhibitors. Serotonin (5-HT) also increased GDNF production through FGFR2 (Tsuchioka, M., Takebayashi, M., Hisaoka, K., Maeda, N., and Nakata, Y. (2008) J. Neurochem. 106, 244-257); however, the effect of 5-HT was not inhibited by heparin and MMP inhibitors. These results suggest that amitriptyline-induced FGFR activation might occur through an extracellular pathway

  11. Vitamin E inhibition of normal mammary epithelial cell growth is associated with a reduction in protein kinase C(alpha) activation.

    PubMed

    Sylvester, P W; McIntyre, B S; Gapor, A; Briski, K P

    2001-12-01

    Tocopherols and tocotrienols represent the two subclasses within the vitamin E family of compounds. However, tocotrienols are significantly more potent than tocopherols in suppressing epidermal growth factor (EGF)-dependent normal mammary epithelial cell growth. EGF is a potent mitogen for normal mammary epithelial cells and an initial event in EGF-receptor mitogenic-signalling is protein kinase C (PKC) activation. Studies were conducted to determine if the antiproliferative effects of specific tocopherol and tocotrienol isoforms are associated with a reduction in EGF-receptor mitogenic signalling and/or PKC activation. Normal mammary epithelial cells isolated from midpregnant BALB/c mice were grown in primary culture, and maintained on serum-free media containing 10 ng/mL EGF as a mitogen, and treated with various doses (0-250 microm) of alpha-, gamma-, or delta-tocopherol or alpha-, gamma-, or delta-tocotrienol. Treatment with growth inhibitory doses of delta-tocopherol (100 microm), alpha-tocotrienol (50 microm), or gamma- or delta-tocotrienol (10 microm) did not affect EGF-receptor levels, EGF-induced EGF-receptor tyrosine kinase activity, or total intracellular levels of PKC(alpha). However, these treatments were found to inhibit EGF-induced PKC(alpha) activation as determined by its translocation from the cytosolic to membrane fraction. Treatment with 250 microm alpha- or gamma-tocopherol had no affect on EGF-receptor mitogenic signalling or cell growth. These findings demonstrate that the inhibitory effects of specific tocopherol and tocotrienol isoforms on EGF-dependent normal mammary epithelial cell mitogenesis occurs downstream from the EGF-receptor and appears to be mediated, at least in part, by a reduction in PKC(alpha) activation.

  12. Growth arrest of lung carcinoma cells (A549) by polyacrylate-anchored peroxovanadate by activating Rac1-NADPH oxidase signalling axis.

    PubMed

    Chatterjee, Nirupama; Anwar, Tarique; Islam, Nashreen S; Ramasarma, T; Ramakrishna, Gayatri

    2016-09-01

    Hydrogen peroxide is often required in sublethal, millimolar concentrations to show its oxidant effects on cells in culture as it is easily destroyed by cellular catalase. Previously, we had shown that diperoxovanadate, a physiologically stable peroxovanadium compound, can substitute H2O2 effectively in peroxidation reactions. We report here that peroxovanadate when anchored to polyacrylic acid (PAPV) becomes a highly potent inhibitor of growth of lung carcinoma cells (A549). The early events associated with PAPV treatment included cytoskeletal modifications, increase in GTPase activity of Rac1, accumulation of the reactive oxygen species, and also increase in phosphorylation of H2AX (γH2AX), a marker of DNA damage. These effects persisted even at 24 h after removal of the compound and culminated in increased levels of p53 and p21 together with growth arrest. The PAPV-mediated growth arrest was significantly abrogated in cells pre-treated with the N-acetylcysteine, Rac1 knocked down by siRNA and DPI an inhibitor of NADPH oxidase. In conclusion, our results show that polyacrylate derivative of peroxovanadate efficiently arrests growth of A549 cancerous cells by activating the axis of Rac1-NADPH oxidase leading to oxidative stress and DNA damage.

  13. P21-Activated Kinase Inhibitors FRAX486 and IPA3: Inhibition of Prostate Stromal Cell Growth and Effects on Smooth Muscle Contraction in the Human Prostate

    PubMed Central

    Wang, Yiming; Gratzke, Christian; Tamalunas, Alexander; Wiemer, Nicolas; Ciotkowska, Anna; Rutz, Beata; Waidelich, Raphaela; Strittmatter, Frank; Liu, Chunxiao; Stief, Christian G.; Hennenberg, Martin

    2016-01-01

    Prostate smooth muscle tone and hyperplastic growth are involved in the pathophysiology and treatment of male lower urinary tract symptoms (LUTS). Available drugs are characterized by limited efficacy. Patients’ adherence is particularly low to combination therapies of 5α-reductase inhibitors and α1-adrenoceptor antagonists, which are supposed to target contraction and growth simultaneously. Consequently, molecular etiology of benign prostatic hyperplasia (BPH) and new compounds interfering with smooth muscle contraction or growth in the prostate are of high interest. Here, we studied effects of p21-activated kinase (PAK) inhibitors (FRAX486, IPA3) in hyperplastic human prostate tissues, and in stromal cells (WPMY-1). In hyperplastic prostate tissues, PAK1, -2, -4, and -6 may be constitutively expressed in catecholaminergic neurons, while PAK1 was detected in smooth muscle and WPMY-1 cells. Neurogenic contractions of prostate strips by electric field stimulation were significantly inhibited by high concentrations of FRAX486 (30 μM) or IPA3 (300 μM), while noradrenaline- and phenylephrine-induced contractions were not affected. FRAX486 (30 μM) inhibited endothelin-1- and -2-induced contractions. In WPMY-1 cells, FRAX486 or IPA3 (24 h) induced concentration-dependent (1–10 μM) degeneration of actin filaments. This was paralleled by attenuation of proliferation rate, being observed from 1 to 10 μM FRAX486 or IPA3. Cytotoxicity of FRAX486 and IPA3 in WPMY-1 cells was time- and concentration-dependent. Stimulation of WPMY-1 cells with endothelin-1 or dihydrotestosterone, but not noradrenaline induced PAK phosphorylation, indicating PAK activation by endothelin-1. Thus, PAK inhibitors may inhibit neurogenic and endothelin-induced smooth muscle contractions in the hyperplastic human prostate, and growth of stromal cells. Targeting prostate smooth muscle contraction and stromal growth at once by a single compound is principally possible, at least under

  14. Comparison of the Growth Promoting Activities and Toxicities of Various Auxin Analogs on Cells Derived from Wild Type and a Nonrooting Mutant of Tobacco 1

    PubMed Central

    Caboche, Michel; Muller, Jean-François; Chanut, Françoise; Aranda, Gérard; C̷irakoǵlu, Sheyda

    1987-01-01

    A naphthaleneacetic acid tolerant mutant isolated from a mutagenized culture of tobacco mesophyll protoplasts and impaired in root morphogenesis has been previously characterized by genetic analysis. To understand the biochemical basis for naphthaleneacetic acid resistance, cells derived from this mutant and from wild-type tobacco were compared for their ability to respond to various growth regulators. The growth promoting abilities and cytotoxicities of auxin analogs were different for mutant and wild-type cells. These different activities were not correlated with increased rate of conjugation or breakdown of the auxins by mutant cells. These observations, as well as previous studies on the interaction of the mutant with Agrobacterium, suggest that mutant resistance to auxins is not a result of a specific modification of the process by which auxins induce cell killing, but to a more general alteration of the cellular response to auxin. A screening of auxin-related molecules which induce cell death in wild-type cells but not mutant cells without promoting growth in either was performed. p-Bromophenyleacetic acid was found to display these characteristics. Images Fig. 1 Fig. 4 PMID:16665341

  15. Comparison of the growth promoting activities and toxicities of various auxin analogs on cells derived from wild type and a nonrooting mutant of tobacco

    SciTech Connect

    Caboche, M.; Muller, J.F. ); Chanut, F. ); Aranda, G.; Cirakoglu, S. )

    1987-01-01

    A naphthaleneacetic acid tolerant mutant isolated from a mutagenized culture of tobacco mesophyll protoplasts and impaired in root morphogenesis has been previously characterized by genetic analysis. To understand the biochemical basis for naphthaleneacetic acid resistance, cells derived from this mutant and from wild-type tobacco were compared for their ability to respond to various growth regulators. The growth promoting abilities and cytotoxicities of auxin analogs were different for mutant and wild-type cells. These different activities were not correlated with increased rate of conjugation or breakdown of the auxins by mutant cells. These observations, as well as previous studies on the interaction of the mutant with Agrobacterium, suggest that mutant resistance to auxins is not a result of a specific modification of the process by which auxins induce cell killing, but to a more general alteration of the cellular response to auxin. A screening of auxin-related molecules which induce cell death in wild-type cells but not mutant cells without promoting growth in either was performed. p-Bromophenyleacetic acid was found to display these characteristics.

  16. Th17-type cytokines, IL-6 and TNF-α synergistically activate STAT3 and NF-kB to promote colorectal cancer cell growth.

    PubMed

    De Simone, V; Franzè, E; Ronchetti, G; Colantoni, A; Fantini, M C; Di Fusco, D; Sica, G S; Sileri, P; MacDonald, T T; Pallone, F; Monteleone, G; Stolfi, C

    2015-07-01

    Colorectal cancers (CRCs) often show a dense infiltrate of cytokine-producing immune/inflammatory cells. The exact contribution of each immune cell subset and cytokine in the activation of the intracellular pathways sustaining CRC cell growth is not understood. Herein, we isolate tumor-infiltrating leukocytes (TILs) and lamina propria mononuclear cells (LPMCs) from the tumor area and the macroscopically unaffected, adjacent, colonic mucosa of patients who underwent resection for sporadic CRC and show that the culture supernatants of TILs, but not of LPMCs, potently enhance the growth of human CRC cell lines through the activation of the oncogenic transcription factors signal transducer and activator of transcription 3 (STAT3) and nuclear factor-kappa B (NF-kB). Characterization of immune cell complexity of TILs and LPMCs reveals no differences in the percentages of T cells, natural killer T cells, natural killer (NK) cells, macrophages and B cells. However, T cells from TILs show a functional switch compared with those from LPMCs to produce large amounts of T helper type 17 (Th17)-related cytokines (that is, interleukin-17A (IL-17A), IL-17F, IL-21 and IL-22), tumor necrosis factor-α (TNF-α) and IL-6. Individual neutralization of IL-17A, IL-17F, IL-21, IL-22, TNF-α or IL-6 does not change TIL-derived supernatant-driven STAT3 and NF-kB activation, as well as their proproliferative effect in CRC cells. In contrast, simultaneous neutralization of both IL-17A and TNF-α, which abrogates NF-kB signaling, and IL-22 and IL-6, which abrogates STAT3 signaling, reduces the mitogenic effect of supernatants in CRC cells. IL-17A, IL-21, IL-22, TNF-α and IL-6 are also produced in excess in the early colonic lesions in a mouse model of sporadic CRC, associated with enhanced STAT3/NF-kB activation. Mice therapeutically given BP-1-102, an orally bioavailable compound targeting STAT3/NF-kB activation and cross-talk, exhibit reduced colon tumorigenesis and diminished expression of

  17. A Murine Fibroblast Growth Factor (FGF) Receptor Expressed in CHO Cells is Activated by Basic FGF and Kaposi FGF

    NASA Astrophysics Data System (ADS)

    Mansukhani, Alka; Moscatelli, David; Talarico, Daniela; Levytska, Vera; Basilico, Claudio

    1990-06-01

    We have cloned a murine cDNA encoding a tyrosine kinase receptor with about 90% similarity to the chicken fibroblast growth factor (FGF) receptor and the human fms-like gene (FLG) tyrosine kinase. This mouse receptor lacks 88 amino acids in the extracellular portion, leaving only two immunoglobulin-like domains compared to three in the chicken FGF receptor. The cDNA was cloned into an expression vector and transfected into receptor-negative CHO cells. We show that cells expressing the receptor can bind both basic FGF and Kaposi FGF. Although the receptor binds basic FGF with a 15- to 20-fold higher affinity, Kaposi FGF is able to induce down-regulation of the receptor to the same extent as basic FGF. The receptor is phosphorylated upon stimulation with both FGFs, DNA synthesis is stimulated, and a proliferative response is produced in cells expressing the receptor, whereas cells expressing the cDNA in the antisense orientation show none of these responses to basic FGF or Kaposi FGF. Thus this receptor can functionally interact with two growth factors of the FGF family.

  18. Hepatocyte growth factor (HGF) enhances cardiac commitment of differentiating embryonic stem cells by activating PI3 kinase

    SciTech Connect

    Roggia, Cristiana; Ukena, Christian; Boehm, Michael; Kilter, Heiko . E-mail: kilter@med-in.uni-saarland.de

    2007-03-10

    Hepatocyte growth factor (HGF) is a pleiotropic cytokine promoting proliferation, migration and survival in several cell types. HGF and its cognate receptor c-Met are expressed in cardiac cells during early cardiogenesis, but data concerning its role in cardiac differentiation of embryonic stem cells (ESCs) and the underlying molecular mechanisms involved are limited. In the present study we show that HGF significantly increases the number of beating embryoid bodies of differentiating ESCs without affecting beating frequency. Furthermore, HGF up-regulates the expression of the cardiac-specific transcription factors Nkx 2.5 and GATA-4 and of markers of differentiated cardiomyocytes, i.e. {alpha}-MHC, {beta}-MHC, ANF, MLC2v and Troponin T. The HGF-induced increase in Nkx 2.5 expression was inhibited by co-treatment with the PI3 kinase inhibitors Wortmannin and LY294002, but not by its inactive homolog LY303511, suggesting an involvement of the PI3 kinase/Akt pathway in this effect. We conclude that HGF is an important growth factor involved in cardiac differentiation and/or proliferation of ESCs and may therefore be critical for the in vitro generation of pre- or fully differentiated cardiomyocytes as required for clinical use of embryonic stem cells in cardiac diseases.

  19. Effects of microgravity on osteoblast growth activation

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.; Lewis, M. L.

    1996-01-01

    Space flight is an environmental condition where astronauts can lose up to 19% of weight-bearing bone during long duration missions. We used the MC3T3-E1 osteoblast to investigate bone cell growth in microgravity (10(-6) to 10(-9)g). Osteoblasts were launched on the STS-56 shuttle flight in a quiescent state with 0.5% fetal calf serum (FCS) medium and growth activation was initiated by adding fresh medium with 10% FCS during microgravity exposure. Four days after serum activation, the cells were fixed before return to normal Earth gravity. Ground controls were treated in parallel with the flight samples in identical equipment. On landing, cell number, cell cytoskeleton, glucose utilization, and prostaglandin synthesis in flight (n = 4) and ground controls (n = 4) were examined. The flown osteoblasts grew slowly in microgravity with total cell number significantly reduced (55 +/- 6 vs 141 +/- 8 cells per microscopic field). The cytoskeleton of the flight osteoblasts had a reduced number of stress fibers and a unique abnormal morphology. Nuclei in the ground controls were large and round with punctate Hoechst staining of the DNA nucleosomes. The flight nuclei were 30% smaller than the controls (P < 0.0001) and oblong in shape, with fewer punctate areas. Due to their reduced numbers, the cells activated in microgravity used significantly less glucose than ground controls (80.2 +/- 0.7 vs 50.3 +/- 3.7 mg of glucose/dl remaining in the medium) and had reduced prostaglandin E2 (PGE2) synthesis when compared to controls (57.3 +/- 17 vs 138.3 +/- 41 pmol/ml). Cell viability was normal since, on a per-cell basis, glucose use and prostaglandin synthesis were comparable for flight and ground samples. Taken together, these data suggest that growth activation in microgravity results in reduced growth, causing reduced glucose utilization and reduced prostaglandin synthesis, with significantly altered actin cytoskeleton in osteoblasts.

  20. A Novel Sulindac Derivative That Does Not Inhibit Cyclooxygenases but Potently Inhibits Colon Tumor Cell Growth and Induces Apoptosis with Antitumor Activity

    PubMed Central

    Piazza, Gary A.; Keeton, Adam B.; Tinsley, Heather N.; Gary, Bernard D.; Whitt, Jason D.; Mathew, Bini; Thaiparambil, Jose; Coward, Lori; Gorman, Gregory; Li, Yonghe; Sani, Brahma; Hobrath, Judith V.; Maxuitenko, Yulia Y.; Reynolds, Robert C.

    2011-01-01

    Nonsteroidal anti-inflammatory drugs such as sulindac have shown promising antineoplastic activity, although toxicity from cyclooxygenase (COX) inhibition and the suppression of prostaglandin synthesis limits their use for chemoprevention. Previous studies have concluded that the mechanism responsible for their antineoplastic activity may be COX independent. To selectively design out the COX inhibitory activity of sulindac sulfide (SS), in silico modeling studies were done that revealed the crucial role of the carboxylate moiety for COX-1 and COX-2 binding. These studies prompted the synthesis of a series of SS derivatives with carboxylate modifications that were screened for tumor cell growth and COX inhibitory activity. A SS amide (SSA) with a N,N-dimethylethyl amine substitution was found to lack COX-1 and COX-2 inhibitory activity, yet potently inhibit the growth of human colon tumor cell lines, HT-29, SW480, and HCT116 with IC50 values of 2 to 5 µmol/L compared with 73 to 85 µmol/L for SS. The mechanism of growth inhibition involved the suppression of DNA synthesis and apoptosis induction. Oral administration of SSA was well-tolerated in mice and generated plasma levels that exceeded its in vitro IC50 for tumor growth inhibition. In the human HT-29 colon tumor xenograft mouse model, SSA significantly inhibited tumor growth at a dosage of 250 mg/kg. Combined treatment of SSA with the chemotherapeutic drug, Camptosar, caused a more sustained suppression of tumor growth compared with Camptosar treatment alone. These results indicate that SSA has potential safety and efficacy advantages for colon cancer chemoprevention as well as utility for treating malignant disease if combined with chemotherapy. PMID:19470791

  1. A novel sulindac derivative that does not inhibit cyclooxygenases but potently inhibits colon tumor cell growth and induces apoptosis with antitumor activity.

    PubMed

    Piazza, Gary A; Keeton, Adam B; Tinsley, Heather N; Gary, Bernard D; Whitt, Jason D; Mathew, Bini; Thaiparambil, Jose; Coward, Lori; Gorman, Gregory; Li, Yonghe; Sani, Brahma; Hobrath, Judith V; Maxuitenko, Yulia Y; Reynolds, Robert C

    2009-06-01

    Nonsteroidal anti-inflammatory drugs such as sulindac have shown promising antineoplastic activity, although toxicity from cyclooxygenase (COX) inhibition and the suppression of prostaglandin synthesis limits their use for chemoprevention. Previous studies have concluded that the mechanism responsible for their antineoplastic activity may be COX independent. To selectively design out the COX inhibitory activity of sulindac sulfide (SS), in silico modeling studies were done that revealed the crucial role of the carboxylate moiety for COX-1 and COX-2 binding. These studies prompted the synthesis of a series of SS derivatives with carboxylate modifications that were screened for tumor cell growth and COX inhibitory activity. A SS amide (SSA) with a N,N-dimethylethyl amine substitution was found to lack COX-1 and COX-2 inhibitory activity, yet potently inhibit the growth of human colon tumor cell lines, HT-29, SW480, and HCT116 with IC(50) values of 2 to 5 micromol/L compared with 73 to 85 micromol/L for SS. The mechanism of growth inhibition involved the suppression of DNA synthesis and apoptosis induction. Oral administration of SSA was well-tolerated in mice and generated plasma levels that exceeded its in vitro IC(50) for tumor growth inhibition. In the human HT-29 colon tumor xenograft mouse model, SSA significantly inhibited tumor growth at a dosage of 250 mg/kg. Combined treatment of SSA with the chemotherapeutic drug, Camptosar, caused a more sustained suppression of tumor growth compared with Camptosar treatment alone. These results indicate that SSA has potential safety and efficacy advantages for colon cancer chemoprevention as well as utility for treating malignant disease if combined with chemotherapy.

  2. Suppression of β-catenin/TCF transcriptional activity and colon tumor cell growth by dual inhibition of PDE5 and 10.

    PubMed

    Li, Nan; Chen, Xi; Zhu, Bing; Ramírez-Alcántara, Verónica; Canzoneri, Joshua C; Lee, Kevin; Sigler, Sara; Gary, Bernard; Li, Yonghe; Zhang, Wei; Moyer, Mary P; Salter, E Alan; Wierzbicki, Andrzej; Keeton, Adam B; Piazza, Gary A

    2015-09-29

    Previous studies suggest the anti-inflammatory drug, sulindac inhibits tumorigenesis by a COX independent mechanism involving cGMP PDE inhibition. Here we report that the cGMP PDE isozymes, PDE5 and 10, are elevated in colon tumor cells compared with normal colonocytes, and that inhibitors and siRNAs can selectively suppress colon tumor cell growth. Combined treatment with inhibitors or dual knockdown suppresses tumor cell growth to a greater extent than inhibition from either isozyme alone. A novel sulindac derivative, ADT-094 was designed to lack COX-1/-2 inhibitory activity but have improved potency to inhibit PDE5 and 10. ADT-094 displayed >500 fold higher potency to inhibit colon tumor cell growth compared with sulindac by activating cGMP/PKG signaling to suppress proliferation and induce apoptosis. Combined inhibition of PDE5 and 10 by treatment with ADT-094, PDE isozyme-selective inhibitors, or by siRNA knockdown also suppresses β-catenin, TCF transcriptional activity, and the levels of downstream targets, cyclin D1 and survivin. These results suggest that dual inhibition of PDE5 and 10 represents novel strategy for developing potent and selective anticancer drugs.

  3. Suppression of β-catenin/TCF transcriptional activity and colon tumor cell growth by dual inhibition of PDE5 and 10

    PubMed Central

    Li, Nan; Chen, Xi; Zhu, Bing; Ramírez-Alcántara, Verónica; Canzoneri, Joshua C.; Lee, Kevin; Sigler, Sara; Gary, Bernard; Li, Yonghe; Zhang, Wei; Moyer, Mary P.; Salter, E. Alan; Wierzbicki, Andrzej; Keeton, Adam B.; Piazza, Gary A.

    2015-01-01

    Previous studies suggest the anti-inflammatory drug, sulindac inhibits tumorigenesis by a COX independent mechanism involving cGMP PDE inhibition. Here we report that the cGMP PDE isozymes, PDE5 and 10, are elevated in colon tumor cells compared with normal colonocytes, and that inhibitors and siRNAs can selectively suppress colon tumor cell growth. Combined treatment with inhibitors or dual knockdown suppresses tumor cell growth to a greater extent than inhibition from either isozyme alone. A novel sulindac derivative, ADT-094 was designed to lack COX-1/-2 inhibitory activity but have improved potency to inhibit PDE5 and 10. ADT-094 displayed >500 fold higher potency to inhibit colon tumor cell growth compared with sulindac by activating cGMP/PKG signaling to suppress proliferation and induce apoptosis. Combined inhibition of PDE5 and 10 by treatment with ADT-094, PDE isozyme-selective inhibitors, or by siRNA knockdown also suppresses β-catenin, TCF transcriptional activity, and the levels of downstream targets, cyclin D1 and survivin. These results suggest that dual inhibition of PDE5 and 10 represents novel strategy for developing potent and selective anticancer drugs. PMID:26299804

  4. Docosapentaenoic acid (22:5, n-3) suppressed tube-forming activity in endothelial cells induced by vascular endothelial growth factor.

    PubMed

    Tsuji, Masako; Murota, Se-itsu; Morita, Ikuo

    2003-05-01

    It is generally accepted that n-3 polyunsaturated fatty acids have beneficial effects on vascular homeostasis. Among the several functions of endothelial cells, angiogenesis contributes to tumor growth, inflammation, and microangiopathy. We have already demonstrated that eicosapentaenoic acid (EPA, 20:5, n-3) suppressed angiogenesis. In this paper, we examined the effect of docosapentaenoic acid (DPA, 22:5, n-3), an elongated metabolite of EPA, on tube-forming activity in bovine aortic endothelial cells (BAE cells) incubated between type I collagen gels. The pretreatment of BAE cells with DPA suppressed tube-forming activity induced by vascular endothelial growth factor (VEGF). The effect of DPA was stronger than those of EPA and docosahexaenoic acid (22:6, n-3). The migrating activity of endothelial cells stimulated with VEGF was also suppressed by DPA pretreatment. The treatment of BAE cells with DPA caused the suppression of VEGF receptor-2 (VEGFR-2, the kinase insert domain-containing receptor, KDR) expression in both plastic dish and collagen gel cultures. These data indicate that DPA has a potent inhibitory effect on angiogenesis through the suppression of VEGFR-2 expression.

  5. Regulation of growth and gene activity in euploid hybrids between human neonatal fibroblasts and epithelioid amniotic fluid cells.

    PubMed Central

    Bryant, E M; Crouch, E; Bornstein, P; Martin, G M; Johnston, P; Hoehn, H

    1978-01-01

    Pure populations of proliferating synkaryons were obtained from polyethylene glycol-mediated crosses between diploid human foreskin fibroblasts and epithelioid amniotic fluid cells. These hybrids proved to be chromosomally stable tetraploids. They continuously produced heteropolymeric G6PD and showed strictly additive patterns of silver staining of both parental sets of nucleolar organizing chromosomes. Collagenous proteins characteristic of the fibroblast parent were synthesized, while fibronectin production appeared to be directed by the epithelioid portion of the genome. Even though these heterotypic hybrids proliferated at a reduced rate and achieved fewer population doublings relative to homotypic (fibroblast X fibroblast) crosses, they survived passage by trypsinization better than pure populations of epithelioid cells. These observations suggest a concerted action of both parental genomes with respect to proteins responsible for "household" functions, but complementation and possibly modulation of gene action with respect to "luxury" protein synthesis and cell growth. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 PMID:717401

  6. Activation of glucagon-like peptide-1 receptor inhibits growth and promotes apoptosis of human pancreatic cancer cells in a cAMP-dependent manner.

    PubMed

    Zhao, Hejun; Wei, Rui; Wang, Liang; Tian, Qing; Tao, Ming; Ke, Jing; Liu, Ye; Hou, Wenfang; Zhang, Lin; Yang, Jin; Hong, Tianpei

    2014-06-15

    Glucagon-like peptide-1 (GLP-1) promotes pancreatic β-cell regeneration through GLP-1 receptor (GLP-1R) activation. However, whether it promotes exocrine pancreas growth and thereby increases the risk of pancreatic cancer has been a topic of debate in recent years. Clinical data and animal studies published so far have been controversial. In the present study, we report that GLP-1R activation with liraglutide inhibited growth and promoted apoptosis in human pancreatic cancer cell lines in vitro and attenuated pancreatic tumor growth in a mouse xenograft model in vivo. These effects of liraglutide were mediated through activation of cAMP production and consequent inhibition of Akt and ERK1/2 signaling pathways in a GLP-1R-dependent manner. Moreover, we examined GLP-1R expression in human pancreatic cancer tissues and found that 43.3% of tumor tissues were GLP-1R-null. In the GLP-1R-positive tumor tissues (56.7%), the level of GLP-1R was lower compared with that in tumor-adjacent normal pancreatic tissues. Furthermore, the GLP-1R-positive tumors were significantly smaller than the GLP-1R-null tumors. Our study shows for the first time that GLP-1R activation has a cytoreductive effect on human pancreatic cancer cells in vitro and in vivo, which may help address safety concerns of GLP-1-based therapies in the context of human pancreatic cancer.

  7. The PI3-Kinase/mTOR-Targeting Drug NVP-BEZ235 Inhibits Growth and IgE-Dependent Activation of Human Mast Cells and Basophils

    PubMed Central

    Blatt, Katharina; Herrmann, Harald; Mirkina, Irina; Hadzijusufovic, Emir; Peter, Barbara; Strommer, Sabine; Hoermann, Gregor; Mayerhofer, Matthias; Hoetzenecker, Konrad; Klepetko, Walter; Ghanim, Viviane; Marth, Katharina; Füreder, Thorsten; Wacheck, Volker; Valenta, Rudolf; Valent, Peter

    2012-01-01

    The phosphoinositide 3-kinase (PI3-kinase) and the mammalian target of rapamycin (mTOR) are two major signaling molecules involved in growth and activation of mast cells (MC) and basophils (BA). We examined the effects of the dual PI3-kinase/mTOR blocker NVP-BEZ235 on growth of normal and neoplastic BA and MC as well as immunoglobulin E (IgE)-dependent cell activation. Growth of MC and BA were determined by measuring 3H-thymidine uptake and apoptosis. Cell activation was determined in histamine release experiments and by measuring upregulation of CD63 and CD203c after challenging with IgE plus anti-IgE or allergen. We found that NVP-BEZ235 exerts profound inhibitory effects on growth of primary and cloned neoplastic MC. In the MC leukemia cell line HMC-1, NVP-BEZ235 showed similar IC50 values in the HMC-1.1 subclone lacking KIT D816V (0.025 µM) and the HMC-1.2 subclone expressing KIT D816V (0.005 µM). Moreover, NVP-BEZ235 was found to exert strong growth-inhibitory effects on neoplastic MC in a xenotransplant-mouse model employing NMR1-Foxn1nu mice. NVP-BEZ235 also exerted inhibitory effects on cytokine-dependent differentiation of normal BA and MC, but did not induce growth inhibition or apoptosis in mature MC or normal bone marrow cells. Finally, NVP-BEZ235 was found to inhibit IgE-dependent histamine release in BA and MC (IC50 0.5–1 µM) as well as anti-IgE-induced upregulation of CD203c in BA and IgE-dependent upregulation of CD63 in MC. In summary, NVP-BEZ235 produces growth-inhibitory effects in immature neoplastic MC and inhibits IgE-dependent activation of mature BA and MC. Whether these potentially beneficial drug effects have clinical implications is currently under investigation. PMID:22299028

  8. Cell metabolism: an essential link between cell growth and apoptosis

    PubMed Central

    Mason, Emily F.; Rathmell, Jeffrey C.

    2010-01-01

    Growth factor-stimulated or cancerous cells require sufficient nutrients to meet the metabolic demands of cell growth and division. If nutrients are insufficient, metabolic checkpoints are triggered that lead to cell cycle arrest and the activation of the intrinsic apoptotic cascade through a process dependent on the Bcl-2 family of proteins. Given the connections between metabolism and apoptosis, the notion of targeting metabolism to induce cell death in cancer cells has recently garnered much attention. However, the signaling pathways by which metabolic stresses induce apoptosis have not as of yet been fully elucidated. Thus, the best approach to this promising therapeutic avenue remains unclear. This review will discuss the intricate links between metabolism, growth, and intrinsic apoptosis and will consider ways in which manipulation of metabolism might be exploited to promote apoptotic cell death in cancer cells. PMID:20816705

  9. Mediators in cell growth and differentiation

    SciTech Connect

    Ford, R.J.; Maizel, A.L.

    1985-01-01

    This book contains papers divided among seven sections. The section headings are: Cell Cycle and Control of Cell Growth, Growth Factors for Nonlymphoid Cells, Colony-Stimulating Factors, Stem Cells and Hematopoiesis, Lymphoid Growth Factors, Growth Factors in Neoplasia, Interferon, and Differentiation in Normal and Neoplastic Cells.

  10. Influence of extracellular pH on growth, viability, cell size, acidification activity, and intracellular pH of Lactococcus lactis in batch fermentations.

    PubMed

    Hansen, Gunda; Johansen, Claus Lindvald; Marten, Gunvor; Wilmes, Jacqueline; Jespersen, Lene; Arneborg, Nils

    2016-07-01

    In this study, we investigated the influence of three extracellular pH (pHex) values (i.e., 5.5, 6.5, and 7.5) on the growth, viability, cell size, acidification activity in milk, and intracellular pH (pHi) of Lactococcus lactis subsp. lactis DGCC1212 during pH-controlled batch fermentations. A universal parameter (e.g., linked to pHi) for the description or prediction of viability, specific acidification activity, or growth behavior at a given pHex was not identified. We found viability as determined by flow cytometry to remain high during all growth phases and irrespectively of the pH set point. Furthermore, regardless of the pHex, the acidification activity per cell decreased over time which seemed to be linked to cell shrinkage. Flow cytometric pHi determination demonstrated an increase of the averaged pHi level for higher pH set points, while the pH gradient (pHi-pHex) and the extent of pHi heterogeneity decreased. Cells maintained positive pH gradients at a low pHex of 5.5 and even during substrate limitation at the more widely used pHex 6.5. Moreover, the strain proved able to grow despite small negative or even absent pH gradients at a high pHex of 7.5. The larger pHi heterogeneity at pHex 5.5 and 6.5 was associated with more stressful conditions resulting, e.g., from higher concentrations of non-dissociated lactic acid, while the low pHi heterogeneity at pHex 7.5 most probably corresponded to lower concentrations of non-dissociated lactic acid which facilitated the cells to reach the highest maximum active cell counts of the three pH set points.

  11. Xyloglucan oligosaccharides promote growth and activate cellulase: Evidence for a role of cellulase in cell expansion. [Pisum sativum L

    SciTech Connect

    McDougall, G.J.; Fry, S.C. )

    1990-07-01

    Oligosaccharides produced by the action of fungal cellulase on xyloglucans promoted the elongation of etiolated pea (Pisum sativum L.) stem segments in a straight-growth bioassay designed for the determination of auxins. The oligosaccharides were most active at about 1 micromolar. We tested the relative growth-promoting activities of four HPLC-purified oligosaccharides which shared a common glucose{sub 4} {center dot} xylose{sub 3} (XG7) core. The substituted oligosaccharides XG8 (glucose{sub 4} {center dot} xylose{sub 3} {center dot} galactose) and XG9n (glucose{sub 4} {center dot} xylose{sub 3} {center dot} galactose{sub 2}) were more effective than XG7 itself and XG9 (glucose{sub 4} {center dot} xylose{sub 3} {center dot} galactose {center dot} fucose). The same oligosaccharides also promoted the degradation, assayed viscometrically, of xyloglucan by an acidic cellulase from bean (Phaseolus vulgaris L.) leaves. The oligosaccharides were highly active at 10{sup {minus}4} molar, causing up to a fourfold increase in activity, but the effect was still detectable at 1 micromolar. Those oligosaccharides (XG8 and XG9n) which best promoted growth, stimulated cellulase activity to the greatest extent. The oligosaccharides did not stimulate the action of the cellulase in an assay based on the conversion of ({sup 3}H)xyloglucan to ethanol-soluble fragments. This suggests that the oligosaccharides enhanced the midchain hydrolysis of xyloglucan molecules (which would rapidly reduce the viscosity of the solution), at the expense of cleavage near the termini (which would yield ethanol-soluble products).

  12. Inhibition of leukemic U937 cell growth by induction of apoptosis, cell cycle arrest and suppression of VEGF, MMP-2 and MMP-9 activities by cytotoxin protein NN-32 purified from Indian spectacled cobra (Naja naja) venom.

    PubMed

    Das, Tanaya; Bhattacharya, Shamik; Biswas, Archita; Gupta, Shubho Das; Gomes, Antony; Gomes, Aparna

    2013-04-01

    A cytotoxin NN-32 (6.7 kDa) from Indian cobra (Naja naja) venom inhibited human leukemic U937 cell growth as observed by Trypan blue dye exclusion method and cytotoxicity was confirmed by MTT assay. NN-32 induced apoptosis of U937 cell and cell cycle arrest of sub-G1 phase were revealed by FACS analysis. Increased Bax/Bcl-2 ratio, increased caspase 3 and 9 activities, cleaved PARP, decreased VEGF, MMP-2 and MMP-9 activities were observed after NN-32 treatment of U937 cell. Antileukemic activity of NN-32 on U937 cell may be due to activation of apoptosis, arresting cell cycle and antiangiogenesis activities.

  13. Alveolar epithelial cells are critical in protection of the respiratory tract by secretion of factors able to modulate the activity of pulmonary macrophages and directly control bacterial growth.

    PubMed

    Chuquimia, Olga D; Petursdottir, Dagbjort H; Periolo, Natalia; Fernández, Carmen

    2013-01-01

    The respiratory epithelium is a physical and functional barrier actively involved in the clearance of environmental agents. The alveolar compartment is lined with membranous pneumocytes, known as type I alveolar epithelial cells (AEC I), and granular pneumocytes, type II alveolar epithelial cells (AEC II). AEC II are responsible for epithelial reparation upon injury and ion transport and are very active immunologically, contributing to lung defense by secreting antimicrobial factors. AEC II also secrete a broad variety of factors, such as cytokines and chemokines, involved in activation and differentiation of immune cells and are able to present antigen to specific T cells. Another cell type important in lung defense is the pulmonary macrophage (PuM). Considering the architecture of the alveoli, a good communication between the external and the internal compartments is crucial to mount effective responses. Our hypothesis is that being in the interface, AEC may play an important role in transmitting signals from the external to the internal compartment and in modulating the activity of PuM. For this, we collected supernatants from AEC unstimulated or stimulated in vitro with lipopolysaccharide (LPS). These AEC-conditioned media were used in various setups to test for the effects on a number of macrophage functions: (i) migration, (ii) phagocytosis and intracellular control of bacterial growth, and (iii) phenotypic changes and morphology. Finally, we tested the direct effect of AEC-conditioned media on bacterial growth. We found that AEC-secreted factors had a dual effect, on one hand controlling bacterial growth and on the other hand increasing macrophage activity.

  14. Heme-bound iron activates placenta growth factor in erythroid cells via erythroid Krüppel-like factor.

    PubMed

    Wang, Xunde; Mendelsohn, Laurel; Rogers, Heather; Leitman, Susan; Raghavachari, Nalini; Yang, Yanqin; Yau, Yu Ying; Tallack, Michael; Perkins, Andrew; Taylor, James G; Noguchi, Constance Tom; Kato, Gregory J

    2014-08-07

    In adults with sickle cell disease (SCD), markers of iron burden are associated with excessive production of the angiogenic protein placenta growth factor (PlGF) and high estimated pulmonary artery pressure. Enforced PlGF expression in mice stimulates production of the potent vasoconstrictor endothelin-1, producing pulmonary hypertension. We now demonstrate heme-bound iron (hemin) induces PlGF mRNA >200-fold in a dose- and time-dependent fashion. In murine and human erythroid cells, expression of erythroid Krüppel-like factor (EKLF) precedes PlGF, and its enforced expression in human erythroid progenitor cells induces PlGF mRNA. Hemin-induced expression of PlGF is abolished in EKLF-deficient murine erythroid cells but rescued by conditional expression of EKLF. Chromatin immunoprecipitation reveals that EKLF binds to the PlGF promoter region. SCD patients show higher level expression of both EKLF and PlGF mRNA in circulating blood cells, and markers of iron overload are associated with high PlGF and early mortality. Finally, PlGF association with iron burden generalizes to other human diseases of iron overload. Our results demonstrate a specific mechanistic pathway induced by excess iron that is linked in humans with SCD and in mice to markers of vasculopathy and pulmonary hypertension. These trials were registered at www.clinicaltrials.gov as #NCT00007150, #NCT00023296, #NCT00081523, and #NCT00352430.

  15. Heparin-binding epidermal-growth-factor-like growth factor gene expression is induced by scrape-wounding epithelial cell monolayers: involvement of mitogen-activated protein kinase cascades.

    PubMed Central

    Ellis, P D; Hadfield, K M; Pascall, J C; Brown, K D

    2001-01-01

    Peptide growth factors can promote the cell migration and proliferation that is needed to repair epithelia after mechanical or chemical injury. We report here that scrape-wounding rat intestinal epithelial (RIE-1) cell monolayers caused a rapid increase in levels of heparin-binding epidermal-growth-factor-like growth factor (HB-EGF) mRNA, with a maximal response at approx. 1 h. Hybridization in situ showed that transcript induction occurred primarily in cells at or near wound borders. The increase in HB-EGF mRNA was preceded by activation of the p42 mitogen-activated protein kinase (MAPK) in the wounded cell cultures. Moreover, the induction of HB-EGF mRNA was blocked by PD098059 and U0126, inhibitors that prevent the activation of p42/p44 MAPKs and extracellular signal-regulated protein kinase 5 (ERK5). Both p42 MAPK activation and HB-EGF mRNA induction were inhibited by genistein, indicating a requirement for an upstream tyrosine kinase activity. In contrast, neither response was affected by inhibition of phosphoinositide 3-kinase activity, down-regulation of protein kinase C, or disruption of the actin cytoskeleton with cytochalasin B. We conclude that scrape-wounding epithelial cell monolayers induces HB-EGF mRNA expression by a mechanism that most probably requires p42/p44 MAPK activation, although we cannot exclude a role for ERK5. Our results suggest a physiological role for locally synthesized HB-EGF in promoting epithelial repair after injury. PMID:11171084

  16. Tea catechins inhibit hepatocyte growth factor receptor (MET kinase) activity in human colon cancer cells: kinetic and molecular docking studies

    PubMed Central

    Larsen, Christine A.; Bisson, William H.; Dashwood, Roderick H.

    2009-01-01

    Most cancer deaths result from spread of the primary tumor to distant sites (metastasis). MET is an important protein for metastasis in multiple tumor types. Here we report on the ability of tea catechins to suppress MET activation in human colon cancer cells, and propose a mechanism by which they might compete for the kinase domain of the MET protein. PMID:19839593

  17. COLCEMID INHIBITION OF CELL GROWTH AND THE CHARACTERIZATION OF A COLCEMID-BINDING ACTIVITY IN SACCHAROMYCES CEREVISIAE

    PubMed Central

    Haber, James E.; Peloquin, John G.; Halvorson, Harlyn O.; Borisy, Gary G.

    1972-01-01

    Under restricted culture conditions, the growth and division of Saccharomyces cerevisiae was inhibited by the antimitotic drug Colcemid; in contrast, the related drug colchicine had no effect. The difference in the sensitivity of yeast to these two agents was not dependent on their ability to permeate the cell but rather reflected an inherent difference in the affinity of the two drugs for a cellular-binding site. The binding moiety was characterized by gel filtration as a macromolecule of approximately 110,000 mol wt with an affinity constant for Colcemid of 0.5 x 104 liters per mole; in addition, this macromolecule was retained by diethylaminoethyl (DEAE) ion exchangers. On the basis of these properties, the Colcemid-binding substance in S. cerevisiae cells was provisionally identified as microtubule subunits. PMID:4561943

  18. Isoprenoid Biosynthesis Inhibitors Targeting Bacterial Cell Growth.

    PubMed

    Desai, Janish; Wang, Yang; Wang, Ke; Malwal, Satish R; Oldfield, Eric

    2016-10-06

    We synthesized potential inhibitors of farnesyl diphosphate synthase (FPPS), undecaprenyl diphosphate synthase (UPPS), or undecaprenyl diphosphate phosphatase (UPPP), and tested them in bacterial cell growth and enzyme inhibition assays. The most active compounds were found to be bisphosphonates with electron-withdrawing aryl-alkyl side chains which inhibited the growth of Gram-negative bacteria (Acinetobacter baumannii, Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa) at ∼1-4 μg mL(-1) levels. They were found to be potent inhibitors of FPPS; cell growth was partially "rescued" by the addition of farnesol or overexpression of FPPS, and there was synergistic activity with known isoprenoid biosynthesis pathway inhibitors. Lipophilic hydroxyalkyl phosphonic acids inhibited UPPS and UPPP at micromolar levels; they were active (∼2-6 μg mL(-1) ) against Gram-positive but not Gram-negative organisms, and again exhibited synergistic activity with cell wall biosynthesis inhibitors, but only indifferent effects with other inhibitors. The results are of interest because they describe novel inhibitors of FPPS, UPPS, and UPPP with cell growth inhibitory activities as low as ∼1-2 μg mL(-1) .

  19. Epithelial to mesenchymal transition in arsenic-transformed cells promotes angiogenesis through activating β-catenin–vascular endothelial growth factor pathway

    SciTech Connect

    Wang, Zhishan; Humphries, Brock; Xiao, Hua; Jiang, Yiguo; Yang, Chengfeng

    2013-08-15

    Arsenic exposure represents a major health concern increasing cancer risks, yet the mechanism of arsenic carcinogenesis has not been elucidated. We and others recently reported that cell malignant transformation by arsenic is accompanied by epithelial to mesenchymal transition (EMT). However, the role of EMT in arsenic carcinogenesis is not well understood. Although previous studies showed that short term exposure of endothelial cells to arsenic stimulated angiogenesis, it remains to be determined whether cells that were malignantly transformed by long term arsenic exposure have a pro-angiogenic effect. The objective of this study was to investigate the effect of arsenic-transformed human bronchial epithelial cells that underwent EMT on angiogenesis and the underlying mechanism. It was found that the conditioned medium from arsenic-transformed cells strongly stimulated tube formation by human umbilical vein endothelial cells (HUVECs). Moreover, enhanced angiogenesis was detected in mouse xenograft tumor tissues resulting from inoculation of arsenic-transformed cells. Mechanistic studies revealed that β-catenin was activated in arsenic-transformed cells up-regulating its target gene expression including angiogenic-stimulating vascular endothelial growth factor (VEGF). Stably expressing microRNA-200b in arsenic-transformed cells that reversed EMT inhibited β-catenin activation, decreased VEGF expression and reduced tube formation by HUVECs. SiRNA knockdown β-catenin decreased VEGF expression. Adding a VEGF neutralizing antibody into the conditioned medium from arsenic-transformed cells impaired tube formation by HUVECs. Reverse transcriptase-PCR analysis revealed that the mRNA levels of canonical Wnt ligands were not increased in arsenic-transformed cells. These findings suggest that EMT in arsenic-transformed cells promotes angiogenesis through activating β-catenin–VEGF pathway. - Highlights: • Arsenic-transformed cells that underwent EMT displayed a pro

  20. Loss of platelet-derived growth factor-stimulated phospholipase activity in NIH-3T3 cells expressing the EJ-ras oncogene

    SciTech Connect

    Benjamin, C.W.; Tarpley, W.G.; Gorman, R.R.

    1987-01-01

    Data indicating that the 21-kDa protein (p21) Harvey-ras gene product shares sequence homology with guanine nucleotide-binding proteins (G proteins) has stimulated research on the influence(s) of p21 on G-protein-regulated systems in vertebrate cells. Previous work demonstrated that NIH-3T3 mouse cells expressing high levels of the cellular ras oncogene isolated from the EJ human bladder carcinoma (EJ-ras) exhibited reduced hormone-stimulated adenylate cyclase activity. The authors now report that in these cells another enzyme system thought to be regulated by G proteins is inhibited, namely phospholipases A/sub 2/ and C. NIH-3T3 cells incubated in plasma-derived serum release significant levels of prostaglandin E/sub 2/ (PGE/sub 2/) as determined by radioimmunoassay when exposed to platelet-derived growth factor (PDGF) at 2 units/ml. The lack of PDGF-stimulated PGE/sub 2/ release from EJ-ras-transfected cells is not due to a defect in the prostaglandin cyclooxygenase enzyme, since incubation of control cells and EJ-ras-transfected cells in 0.33, 3.3, or 33 ..mu..M arachidonate resulted in identical levels of PGE/sub 2/ release. The lack of PDGF-stimulated PGE/sub 2/ release from EJ-ras-transfected cells also does not result from the loss of functional PDGF receptors. EJ-ras-transformed cells bind 70% as much /sup 125/I-labeled PDGF as control cells and are stimulated to incorporate (/sup 3/H)thymidine and to proliferate after exposure to PDGF. Determination of total water-soluble inositolphospholipids and changes in the specific activities of phosphatidylcholine in control and EJ-ras-transfected cells demonstrated that PDGF-stimulated phospholipase C and A/sub 2/ activities are inhibited in the EJ-ras-transfected cells.

  1. Control of cell cycle and cell growth by molecular chaperones.

    PubMed

    Aldea, Martí; Garí, Eloi; Colomina, Neus

    2007-11-01

    Cells adapt their size to both intrinsic and extrinsic demands and, among them, those that stem from growth and proliferation rates are crucial for cell size homeostasis. Here we revisit mechanisms that regulate cell cycle and cell growth in budding yeast. Cyclin Cln3, the most upstream activator of Start, is retained at the endoplasmic reticulum in early G(1) and released by specific chaperones in late G(1) to initiate the cell cycle. On one hand, these chaperones are rate-limiting for release of Cln3 and cell cycle entry and, on the other hand, they are required for key biosynthetic processes. We propose a model whereby the competition for specialized chaperones between growth and cycle machineries could gauge biosynthetic rates and set a critical size threshold at Start.

  2. Biological evaluation of synthesized allicin and its transformation products obtained by microwaves in methanol: antioxidant activity and effect on cell growth.

    PubMed

    Ilić, Dušica P; Stojanović, Sanja; Najman, Stevo; Nikolić, Vesna D; Stanojević, Ljiljana P; Tačić, Ana; Nikolić, Ljubiša B

    2015-01-02

    Allicin is the most biologically active substance present in garlic. It can be synthesized or obtained by extraction of fresh garlic. Transformation products of allicin are also biologically active. The aim of this study was to examine the antioxidant activity of synthesized allicin and its transformation products obtained using microwaves in methanol at 55 °C as well as their effect on HeLa cells growth. The antioxidant activity was determined by DPPH (2,2-diphenyl-1-picrylhydrazyl radical) test. The effect on HeLa cells growth was determined by MTT (3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) test. For MTT test, allicin and its transformation products were dispersed in carmellose sodium solution and examined in concentrations ranging from 0.3 μg/mL to 3 mg/mL. Allicin showed stronger antioxidant activity than the transformation products. A maximum degree of neutralization of DPPH radicals, about 90%, was reached when the concentration of allicin was 2 mg/mL, with an EC50 (concentration of sample which is required for reduction of the initial concentration DPPH radicals to 50%) value of 0.37 mg/mL. In our study, allicin and its transformation products were not cytotoxic to HeLa cells under the examined conditions. The highest concentration of allicin and its transformation products had a slight antiproliferative effect, with a more pronounced effect of allicin, which reflected on the morphology of HeLa cells. The examined substances are safe to use on epithelial cells at concentrations up to 3 mg/mL when applied in carmellose sodium solution. Using carmellose sodium as a dispersing agent could be recommended as a good approach for testing liposoluble substances in liquid cell cultures.

  3. Epidermal growth factor receptor transactivation is implicated in IL-6-induced proliferation and ERK1/2 activation in non-transformed prostate epithelial cells.

    PubMed

    Poncet, Nadège; Guillaume, Johann; Mouchiroud, Guy

    2011-03-01

    Epidermal growth factor receptor (EGF-R) is a receptor tyrosine kinase that can be activated by molecules other than its cognate ligands. This form of crosstalk called transactivation is frequently observed in both physiological and pathological cellular responses, yet it involves various mechanisms. Using the RWPE-1 cell line as a model of non-transformed prostate epithelial progenitor cells, we observed that interleukin-6 (IL-6) is able to promote cell proliferation and ERK1/2 activation provided that EGF-R kinase activity is not impaired. Treatment with GM6001, a general matrix metalloprotease inhibitor, indicated that IL-6 activates EGF-R through cleavage and release of membrane-anchored EGF-R ligands. Several inhibitors were used to test implication of "a disintegrin and metalloprotease" ADAM10 and ADAM17. GW280264X that targets both ADAM10 and ADAM17 blocked IL-6-induced proliferation and ERK1/2 phosphorylation with same potency as GM6001. However, ADAM10 inhibitor GI254023X and ADAM17 inhibitor TAPI-2 were less efficient in inhibiting response of RWPE-1 cells to IL-6, indicating possible cooperation of ADAM17 with ADAM10 or other metalloproteases. Accordingly, our findings suggest that IL-6 stimulates shedding of EGF-R ligands and transactivation of EGF-R in normal prostate epithelial cells, which may be an important mechanism to promote cell proliferation in inflammatory prostate.

  4. Epidermal growth factor receptor is a common element in the signaling pathways activated by cell volume changes in isosmotic, hyposmotic or hyperosmotic conditions.

    PubMed

    Lezama, R; Díaz-Téllez, A; Ramos-Mandujano, G; Oropeza, L; Pasantes-Morales, H

    2005-12-01

    Changes in external osmolarity, including both hyper- or hyposmotic conditions, elicit the tyrosine phosphorylation of a number of tyrosine kinase receptors (TKR). We show here that the epidermal growth factor receptor (EGFR) is activated by both cell swelling (hyposmolarity, isosmotic urea, hyperosmotic sorbitol) or shrinkage (hyperosmotic NaCl or raffinose) and discuss the mechanisms by which these apparently opposed conditions come to the same effect, i.e., EGFR activation. Evidence suggests that this results from early activation of integrins, p38 and tyrosine kinases of the Src family, which are all activated in the two anisosmotic conditions. TKR transactivation by integrins and p38 is likely occurring via an effect on the metalloproteinases. Information discussed in this review, points to TKR as elements in osmotransduction as a useful mechanism to amplify and diversify the initial response to anisosmolarity and cell volume changes, due to their privileged situation as convergence point for numerous intracellular signaling pathways. The variety of effector pathways connected to TKR is advantageous for the cell to cope with the changes in cell volume including adaptation to stress, cytoskeleton remodeling, adhesion reactions, cell survival and the adaptive mechanisms to ultimately restore the original cell volume.

  5. Two sites on P-selectin (the lectin and epidermal growth factor-like domains) are involved in the adhesion of monocytes to thrombin-activated endothelial cells.

    PubMed Central

    Murphy, J F; McGregor, J L

    1994-01-01

    P-selectin, also known as GMP-140, PADGEM or CD62, is expressed on the surface of thrombin-activated platelets and endothelial cells (EC). It is a member of the selectin family of adhesion molecules that regulate leucocyte interactions with the blood vessel wall. In this study we have found that peptides derived from both the lectin (residues 19-34 and 51-61) and epidermal growth factor (EGF)-like (residues 127-139) domains inhibit the adhesion of peripheral blood mononuclear cells (PBMC), elutriated monocytes and a monocytic cell line (U937) to thrombin-activated EC. This inhibition occurred in a concentration-dependent manner and the peptide most active at the lowest concentrations was the one derived from the EGF-like motif (127-139). The scrambled forms of these peptides, identical in amino acid composition to the authentic peptides but with altered sequences, were not inhibitory. Thrombin-activated platelets supported adhesion of U937 cells and this adhesion was dramatically inhibited by the two peptides derived from the lectin-like domain (residues 19-34 and 51-61). All three peptides, when conjugated to BSA and coated on plastic plates, mediated U937 cell adhesion. This study shows, for the first time, that two sites on P-selectin, the lectin and EGF-like domains, are involved in the adhesion of monocytes to thrombin-activated EC. PMID:7526845

  6. Addition of Selenium Nanoparticles to Electrospun Silk Scaffold Improves the Mammalian Cell Activity While Reducing Bacterial Growth

    PubMed Central

    Chung, Stanley; Ercan, Batur; Roy, Amit K.; Webster, Thomas J.

    2016-01-01

    Silk possesses many beneficial wound healing properties, and electrospun scaffolds are especially applicable for skin applications, due to their smaller interstices and higher surface areas. However, purified silk promotes microbial growth. Selenium nanoparticles have shown excellent antibacterial properties and are a novel antimicrobial chemistry. Here, electrospun silk scaffolds were doped with selenium nanoparticles to impart antibacterial properties to the silk scaffolds. Results showed significantly improved bacterial inhibition and mild improvement in human dermal fibroblast metabolic activity. These results suggest that the addition of selenium nanoparticles to electrospun silk is a promising approach to improve wound healing with reduced infection, without relying on antibiotics. PMID:27471473

  7. Sesamin inhibits macrophage-induced vascular endothelial growth factor and matrix metalloproteinase-9 expression and proangiogenic activity in breast cancer cells.

    PubMed

    Lee, Chun-Chung; Liu, Ko-Jiunn; Wu, Yu-Chen; Lin, Sue-Jane; Chang, Ching-Chun; Huang, Tze-Sing

    2011-06-01

    Sesamin is a sesame component with antihypertensive and antioxidative activities and has recently aroused much interest in studying its potential anticancer application. Macrophage is one of the infiltrating inflammatory cells in solid tumor and may promote tumor progression via enhancement of tumor angiogenesis. In this study, we investigated whether sesamin inhibited macrophage-enhanced proangiogenic activity of breast cancer cell lines MCF-7 and MDA-MB-231. Using vascular endothelial cell capillary tube and network formation assays, both breast cancer cell lines exhibited elevated proangiogenic activities after coculture with macrophages or pretreatment with macrophage-conditioned medium. This elevation of proangiogenic activity was drastically suppressed by sesamin. Vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) induced by macrophages in both cell lines were also inhibited by sesamin. Nuclear levels of HIF-1α and NF-κB, important transcription factors for VEGF and MMP-9 expression, respectively, were obviously reduced by sesamin. VEGF induction by macrophage in MCF-7 cells was shown to be via ERK, JNK, phosphatidylinositol 3-kinase, and NF-κB-mediated pathways. These signaling molecules and additional p38(MAPK) were also involved in macrophage-induced MMP-9 expression. Despite such diverse pathways were induced by macrophage, only Akt and p38(MAPK) activities were potently inhibited by sesamin. Expression of interleukin (IL)-6, IL-8, and tumor necrosis factor-α were substantially increased and involved in macrophage-induced VEGF and MMP-9 mRNA expression in MCF-7 cells. Sesamin effectively inhibited the expression of these cytokines to avoid the reinforced induction of VEGF and MMP-9. In conclusion, sesamin potently inhibited macrophage-enhanced proangiogenic activity of breast cancer cells via inhibition of VEGF and MMP-9 induction.

  8. AKT1 Activation is Obligatory for Spontaneous BCC Tumor Growth in a Murine Model that Mimics Some Features of Basal Cell Nevus Syndrome.

    PubMed

    Kim, Arianna L; Back, Jung Ho; Zhu, Yucui; Tang, Xiuwei; Yardley, Nathan P; Kim, Katherine J; Athar, Mohammad; Bickers, David R

    2016-10-01

    Patients with basal cell nevus syndrome (BCNS), also known as Gorlin syndrome, develop numerous basal cell carcinomas (BCC) due to germline mutations in the tumor suppressor PTCH1 and aberrant activation of Hedgehog (Hh) signaling. Therapies targeted at components of the Hh pathway, including the smoothened (SMO) inhibitor vismodegib, can ablate these tumors clinically, but tumors recur upon drug discontinuation. Using SKH1-Ptch1(+/-) as a model that closely mimics the spontaneous and accelerated growth pattern of BCCs in patients with BCNS, we show that AKT1, a serine/threonine protein kinase, is intrinsically activated in keratinocytes derived from the skin of newborn Ptch1(+/-) mice in the absence of carcinogenic stimuli. Introducing Akt1 haplodeficiency in Ptch1(+/-) mice (Akt1(+/-) Ptch1(+/-)) significantly abrogated BCC growth. Similarly, pharmacological inhibition of AKT with perifosine, an alkyl phospholipid AKT inhibitor, diminished the growth of spontaneous and UV-induced BCCs. Our data demonstrate an obligatory role for AKT1 in BCC growth, and targeting AKT may help reduce BCC tumor burden in BCNS patients. Cancer Prev Res; 9(10); 794-802. ©2016 AACR.

  9. Insulin-like growth factor-I extends in vitro replicative life span of skeletal muscle satellite cells by enhancing G1/S cell cycle progression via the activation of phosphatidylinositol 3'-kinase/Akt signaling pathway

    NASA Technical Reports Server (NTRS)

    Chakravarthy, M. V.; Abraha, T. W.; Schwartz, R. J.; Fiorotto, M. L.; Booth, F. W.

    2000-01-01

    Interest is growing in methods to extend replicative life span of non-immortalized stem cells. Using the insulin-like growth factor I (IGF-I) transgenic mouse in which the IGF-I transgene is expressed during skeletal muscle development and maturation prior to isolation and during culture of satellite cells (the myogenic stem cells of mature skeletal muscle fibers) as a model system, we elucidated the underlying molecular mechanisms of IGF-I-mediated enhancement of proliferative potential of these cells. Satellite cells from IGF-I transgenic muscles achieved at least five additional population doublings above the maximum that was attained by wild type satellite cells. This IGF-I-induced increase in proliferative potential was mediated via activation of the phosphatidylinositol 3'-kinase/Akt pathway, independent of mitogen-activated protein kinase activity, facilitating G(1)/S cell cycle progression via a down-regulation of p27(Kip1). Adenovirally mediated ectopic overexpression of p27(Kip1) in exponentially growing IGF-I transgenic satellite cells reversed the increase in cyclin E-cdk2 kinase activity, pRb phosphorylation, and cyclin A protein abundance, thereby implicating an important role for p27(Kip1) in promoting satellite cell senescence. These observations provide a more complete dissection of molecular events by which increased local expression of a growth factor in mature skeletal muscle fibers extends replicative life span of primary stem cells than previously known.

  10. Generating controlled reducing environments in aerobic recombinant Escherichia coli fermentations: effects on cell growth, oxygen uptake, heat shock protein expression, and in vivo CAT activity.

    PubMed

    Gill, R T; Cha, H J; Jain, A; Rao, G; Bentley, W E

    1998-07-20

    The independent control of culture redox potential (CRP) by the regulated addition of a reducing agent, dithiothreitol (DTT) was demonstrated in aerated recombinant Escherichia coli fermentations. Moderate levels of DTT addition resulted in minimal changes to specific oxygen uptake, growth rate, and dissolved oxygen. Excessive levels of DTT addition were toxic to the cells resulting in cessation of growth. Chloramphenicol acetyltransferase (CAT) activity (nmoles/microgram total protein min.) decreased in batch fermentation experiments with respect to increasing levels of DTT addition. To further investigate the mechanisms affecting CAT activity, experiments were performed to assay heat shock protein expression and specific CAT activity (nmoles/microgram CAT min.). Expression of such molecular chaperones as GroEL and DnaK were found to increase after addition of DTT. Additionally, sigma factor 32 (sigma32) and several proteases were seen to increase dramatically during addition of DTT. Specific CAT activity (nmoles/microgram CAT min. ) varied greatly as DTT was added, however, a minimum in activity was found at the highest level of DTT addition in E. coli strains RR1 [pBR329] and JM105 [pROEX-CAT]. In conjunction, cellular stress was found to reach a maximum at the same levels of DTT. Although DTT addition has the potential for directly affecting intracellular protein folding, the effects felt from the increased stress within the cell are likely the dominant effector. That the effects of DTT were measured within the cytoplasm of the cell suggests that the periplasmic redox potential was also altered. The changes in specific CAT activity, molecular chaperones, and other heat shock proteins, in the presence of minimal growth rate and oxygen uptake alterations, suggest that the ex vivo control of redox potential provides a new process for affecting the yield and conformation of heterologous proteins in aerated E. coli fermentations.

  11. Irradiation-Induced Regulation of Plasminogen Activator Inhibitor Type-1 and Vascular Endothelial Growth Factor in Six Human Squamous Cell Carcinoma Lines of the Head and Neck

    SciTech Connect

    Artman, Tuuli; Schilling, Daniela; Multhoff, Gabriele

    2010-02-01

    Purpose: It has been shown that plasminogen activator inhibitor type-1 (PAI-1) and vascular endothelial growth factor (VEGF) are involved in neo-angiogenesis. The aim of this study was to investigate the irradiation-induced regulation of PAI-1 and VEGF in squamous cell carcinomas of the head and neck (SCCHN) cell lines of varying radiation sensitivity. Methods and Materials: Six cell lines derived from SCCHN were investigated in vitro. The colorimetric AlamarBlue assay was used to detect metabolic activity of cell lines during irradiation as a surrogate marker for radiation sensitivity. PAI-1 and VEGF secretion levels were measured by enzyme-linked immunosorbent assay 24, 48, and 72 h after irradiation with 0, 2, 6, and 10 Gy. The direct radioprotective effect of exogenous PAI-1 was measured using the clonogenic assay. For regulation studies, transforming growth factor-beta1 (TGF-beta1), hypoxia-inducible factor-1alpha (HIF-1alpha), hypoxia-inducible factor-2alpha (HIF-2alpha), or both HIF-1alpha and HIF-2alpha were downregulated using siRNA. Results: Although baseline levels varied greatly, irradiation led to a comparable dose-dependent increase in PAI-1 and VEGF secretion in all six cell lines. Addition of exogenous stable PAI-1 to the low PAI-1-expressing cell lines, XF354 and FaDu, did not lead to a radioprotective effect. Downregulation of TGF-beta1 significantly decreased VEGF secretion in radiation-sensitive XF354 cells, and downregulation of HIF-1alpha and HIF-2alpha reduced PAI-1 and VEGF secretion in radiation-resistant SAS cells. Conclusions: Irradiation dose-dependently increased PAI-1 and VEGF secretion in all SCCHN cell lines tested regardless of their basal levels and radiation sensitivity. In addition, TGF-beta1 and HIF-1alpha could be partly responsible for VEGF and PAI-1 upregulation after irradiation.

  12. Restoration of caveolin-1 expression suppresses growth, membrane-type-4 metalloproteinase expression and metastasis-associated activities in colon cancer cells.

    PubMed

    Nimri, Lili; Barak, Hossei; Graeve, Lutz; Schwartz, Betty

    2013-11-01

    Caveolin-1 (cav-1) and flotillin-1 are two major structural proteins associated with lipid rafts in mammalian cells. The membrane-type matrix metalloproteinases (MT-MMPs) are expressed at the cell surface, hydrolyze extracellular matrix, and play an important role in cancer cell migration and metastasis. Expression of cav-1, flotillin-1, and MT4-MMP in lysates and lipid rafts of LS174T and HM-7 colon cancer cells was determined. The impact of restoration of cav-1 expression on proliferation, adhesion, motility in vitro, and growth of implanted tumors in vivo was characterized. Cav-1 is not expressed in lipid rafts of the highly metastatic colon cancer cell line (HM-7), but expressed in cytosolic fractions of the parental lower metastatic cell line (LS174T). In contrast, MT4-MMP was expressed in lipid rafts of HM-7 cells but not in LS174T cells. Overexpression of cav-1 in HM-7 cells down-regulate proliferation, viability, wound closure, adhesion to laminin, invasion, and development of filopodial and lamellipodial structures in a dose-dependent manner. Cav-1 positive HM-7 clones ceased to express MT4-MMP in their lipid rafts. Comparative proteomic analyses of lipid rafts from cav-1 positive and cav-1 negative cells demonstrated de novo expression of flotillin-1 only on the cells expressing cav-1. Xenografting control cells devoid of cav-1 in nude mice induced development of bigger tumors expressing higher levels of proliferating cell nuclear antigen as compared to mice injected with cells expressing the highest cav-1 levels. We conclude that cav-1 orchestrates and reorganize several proteins in lipid rafts, activities directly associated with reduced tumorigenic and metastatic ability of colon cancer cells.

  13. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and PH domain and leucine-rich repeat phosphatase cross-talk (PHLPP) in cancer cells and in transforming growth factor β-activated stem cells.

    PubMed

    Ghalali, Aram; Ye, Zhi-Wei; Högberg, Johan; Stenius, Ulla

    2014-04-25

    Akt kinase controls cell survival, proliferation, and invasive growth and is a critical factor for cancer development. Here we describe a cross-talk between phosphatases that may preserve levels of activated/phosphorylated Akt and confer aggressive growth of cancer cells. In prostatic cancer cells, but not in non-transformed cells or in prostate stem cells, we found that the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) overexpression down-regulated PH domain and leucine-rich repeat phosphatase (PHLPP) and that PHLPP overexpression down-regulated PTEN. We also show that silencing PTEN by siRNA increased the levels of PHLPPs. This cross-talk facilitated invasive migration and was mediated by epigenetic alterations, including activation of miR-190, miR-214, polycomb group of proteins, as well as DNA methylation. A role for the purinergic receptor P2X4, previously associated with wound healing, was indicated. We also show that TGF-β1 induced cross-talk concomitant with epithelial-mesenchymal transition in stem cells. The cross-talk emerged as an integrated part of epithelial-mesenchymal transition. We conclude that cross-talk between PTEN and PHLPPs is silenced in normal prostate cells but activated in TGF-β1 transformed prostate stem and cancer cells and facilitates invasive growth.

  14. The requirements for growth of in vivo activated autoimmune B cells are similar to those of in vitro generated lipopolysaccharide B cell blasts and dissimilar to anti-IgM plus IL-4 induced B lymphoblasts.

    PubMed

    Cabrero, E; Sánchez, M J; Gutiérrez, C

    1992-06-01

    The requirements for growth of in vivo activated B cells (natural blasts) from autoimmune NZB/W mice and of B cells from the same animals activated in vitro with either LPS or anti-IgM plus IL4 (mimicking 'in vitro' antigen induced TH cell-B cell interaction) were studied comparatively. The proliferation of natural and LPS blasts was inhibited by anti-IgM antibodies and augmented by recombinant IL-5. In contrast, anti-IgM stimulated the growth of anti-IgM plus IL-4 primed B cells but was without effect on the proliferative responses in the presence of IL-5. The growth inhibition induced by anti-IgM signalling on natural and LPS blasts seemed to be due to cross-linking of sIg rather than to binding of anti-IgM antibodies to the Fc receptors since a similar effect was observed with the F(ab)'2 fragment of this molecule. Maximum proliferation was obtained by a combination of IL-4 and IL-5 in natural and LPS blasts, whereas peak responses in anti-IgM plus IL-4 blasts were achieved by a combination of anti-IgM and IL-4. Lymphoblasts recovered after preculturing natural blasts in medium alone (more differentiated in vivo activated B cells) displayed high spontaneous proliferation which was strongly inhibited by anti-IgM. This inhibition was reversed partially by IL-4 and totally by IL-5. To define better the role of BLy+ cells in the spleen of NZB/W mice, purified Ly1+ and Ly1- cells, obtained by separation using magnetic beads, were analysed. The growth of both cell subpopulations was inhibited by anti-IgM and enhanced by IL-5. Cytotoxic elimination of Ly1+ cells from the primed B blast populations did not modify the proliferative pattern of these cells. Our results show that the growth requirements of in vivo activated autoimmune B cells resemble those of LPS blasts and differ from those following stimulation with anti-IgM plus IL-4, suggesting that B cells in systemic autoimmune diseases may have been activated by polyclonal stimulation. Nevertheless, other mechanisms

  15. Suppression of growth and invasive behavior of human prostate cancer cells by ProstaCaid™: mechanism of activity.

    PubMed

    Jiang, Jiahua; Eliaz, Isaac; Sliva, Daniel

    2011-06-01

    Since the use of dietary supplements as alternative treatments or adjuvant therapies in cancer treatment is growing, a scientific verification of their biological activity and the detailed mechanisms of their action are necessary for the acceptance of dietary supplements in conventional cancer treatments. In the present study we have evaluated the anti-cancer effects of dietary supplement ProstaCaid™ (PC) which contains mycelium from medicinal mushrooms (Ganoderma lucidum, Coriolus versicolor, Phellinus linteus), saw palmetto berry, pomegranate, pumpkin seed, green tea [40% epigallocatechin-3-gallate (EGCG)], Japanese knotweed (50% resveratrol), extracts of turmeric root (BCM-95®), grape skin, pygeum bark, sarsaparilla root, Scutellaria barbata, eleuthero root, Job's tears, astragalus root, skullcap, dandelion, coptis root, broccoli, and stinging nettle, with purified vitamin C, vitamin D3, selenium, quercetin, citrus bioflavonoid complex, β sitosterolzinc, lycopene, α lipoic acid, boron, berberine and 3.3'-diinodolymethane (DIM). We show that PC treatment resulted in the inhibition of cell proliferation of the highly invasive human hormone refractory (independent) PC-3 prostate cancer cells in a dose- and time-dependent manner with IC50 56.0, 45.6 and 39.0 µg/ml for 24, 48 and 72 h, respectively. DNA-microarray analysis demonstrated that PC inhibits proliferation through the modulation of expression of CCND1, CDK4, CDKN1A, E2F1, MAPK6 and PCNA genes. In addition, PC also suppresses metastatic behavior of PC-3 by the inhibition of cell adhesion, cell migration and cell invasion, which was associated with the down-regulation of expression of CAV1, IGF2, NR2F1, and PLAU genes and suppressed secretion of the urokinase plasminogen activator (uPA) from PC-3 cells. In conclusion, the dietary supplement PC is a promising natural complex with the potency to inhibit invasive human prostate cancer.

  16. Growth inhibitory activities of crude extracts obtained from herbal plants in the Ryukyu Islands on several human colon carcinoma cell lines.

    PubMed

    Kaneshiro, Tatsuya; Suzui, Masumi; Takamatsu, Reika; Murakami, Akira; Ohigashi, Hajime; Fujino, Tetsuya; Yoshimi, Naoki

    2005-01-01

    There is increasing interest in the use of herbs for the treatment of human diseases including cancer. Therefore, the purpose of this study was to determine whether crude extracts obtained from 44 herbal plants in the Ryukyu Islands might contain components capable of inhibiting the growth of a variety of human colon carcinoma cell lines. Leaves, roots and other parts of the plants were extracted with chloroform, and the crude extracts were dissolved in dimethylsulfoxide and used for the experiments. Extracts of Hemerocallis fulva, Ipomoea batatas, Curcuma longa, and Nasturium officinale caused marked dose-dependent growth inhibition, with IC(50) values in the range of 10-80 mug/ml. With the HCT116 cell line, the extracts of Hemerocallis fulva and Ipomoea batatas induced G1 cell cycle arrest after 48 h of treatment. In addition, we found that extracts of Curcuma longa, and Nasturium officinale induced apoptosis in these cells after 48 h of treatment. The present studies are the first systematic examination of the growth inhibitory effects of crude extracts obtained from herbal plants in the Ryukyu Islands. The findings provide evidence that several plants in the Ryukyu Islands contain components that may have anticancer activity.

  17. Differential regulation of S6 phosphorylation by insulin and epidermal growth factor in Swiss mouse 3T3 cells: insulin activation of type 1 phosphatase.

    PubMed Central

    Olivier, A R; Ballou, L M; Thomas, G

    1988-01-01

    Insulin and epidermal growth factor (EGF) induce distinct kinetics of S6 kinase activation and S6 phosphorylation in Swiss 3T3 cells. Both events are differentially regulated by specific phosphatases. The major S6 phosphatase in cell extracts was identified as a type 1 enzyme by its chromatographic properties, its sensitivity to inhibitor 2, and its substrate specificity. This enzyme is different from the major S6 kinase phosphatase, which is a type 2A enzyme. Insulin at physiological concentrations causes up to a 2-fold activation of a type 1 S6 phosphatase, whereas at higher concentrations this effect is significantly diminished. EGF alone has little effect on this enzyme, and with both agents together the total phosphatase activity remains basal. The results are consistent with the phosphorylation state of S6 observed in vivo and suggest a role of phosphatase type 1 in the regulation of protein synthesis. Images PMID:2838844

  18. Two synthetic Sp1-binding sites functionally substitute for the 21-base-pair repeat region to activate simian virus 40 growth in CV-1 cells.

    PubMed Central

    Lednicky, J; Folk, W R

    1992-01-01

    The 21-bp repeat region of simian virus 40 (SV40) activates viral transcription and DNA replication and contains binding sites for many cellular proteins, including Sp1, LSF, ETF, Ap2, Ap4, GT-1B, H16, and p53, and for the SV40 large tumor antigen. We have attempted to reduce the complexity of this region while maintaining its growth-promoting capacity. Deletion of the 21-bp repeat region from the SV40 genome delays the expression of viral early proteins and DNA replication and reduces virus production in CV-1 cells. Replacement of the 21-bp repeat region with two copies of DNA sequence motifs bound with high affinities by Sp1 promotes SV40 growth in CV-1 cells to nearly wild-type levels, but substitution by motifs bound less avidly by Sp1 or bound by other activator proteins does not restore growth. This indicates that Sp1 or a protein with similar sequence specificity is primarily responsible for the function of the 21-bp repeat region. We speculate about how Sp1 activates both SV40 transcription and DNA replication. Images PMID:1328672

  19. Sorafenib induces growth arrest and apoptosis of human glioblastoma cells through the dephosphorylation of signal transducers and activators of transcription 3.

    PubMed

    Yang, Fan; Brown, Christine; Buettner, Ralf; Hedvat, Michael; Starr, Renate; Scuto, Anna; Schroeder, Anne; Jensen, Michael; Jove, Richard

    2010-04-01

    Glioblastoma is the most common type of primary brain tumor and is rapidly progressive with few treatment options. Here, we report that sorafenib (< or =10 micromol/L) inhibited cell proliferation and induced apoptosis in two established cell lines (U87 and U251) and two primary cultures (PBT015 and PBT022) from human glioblastomas. The effects of sorafenib on these tumor cells were associated with inhibiting phosphorylated signal transducers and activators of transcription 3 (STAT3; Tyr705). Expression of a constitutively activated STAT3 mutant partially blocked the effects of sorafenib, consistent with a role for STAT3 inhibition in the response to sorafenib. Phosphorylated Janus-activated kinase (JAK)1 was inhibited in U87 and U251 cells, whereas phosphorylated JAK2 was inhibited in primary cultures. Sodium vanadate, a general inhibitor of protein tyrosine phosphatases, blocked the inhibition of phosphorylation of STAT3 (Tyr705) induced by sorafenib. These data indicate that the inhibition of STAT3 activity by sorafenib involves both the inhibition of upstream kinases (JAK1 and JAK2) of STAT3 and increased phosphatase activity. Phosphorylation of AKT was also reduced by sorafenib. In contrast, mitogen-activated protein kinases were not consistently inhibited by sorafenib in these cells. Two key cyclins (D and E) and the antiapoptotic protein Mcl-1 were downregulated by sorafenib in both cell lines and primary cultures. Our data suggest that inhibition of STAT3 signaling by sorafenib contributes to growth arrest and induction of apoptosis in glioblastoma cells. These findings provide a rationale for potential treatment of malignant gliomas with sorafenib. Mol Cancer Ther; 9(4); 953-62. (c)2010 AACR.

  20. Transforming growth factor beta-activated kinase 1 (TAK1)-dependent checkpoint in the survival of dendritic cells promotes immune homeostasis and function.

    PubMed

    Wang, Yanyan; Huang, Gonghua; Vogel, Peter; Neale, Geoffrey; Reizis, Boris; Chi, Hongbo

    2012-02-07

    Homeostatic control of dendritic cell (DC) survival is crucial for adaptive immunity, but the molecular mechanism is not well defined. Moreover, how DCs influence immune homeostasis under steady state remains unclear. Combining DC-specific and -inducible deletion systems, we report that transforming growth factor beta-activated kinase 1 (TAK1) is an essential regulator of DC survival and immune system homeostasis and function. Deficiency of TAK1 in CD11c(+) cells induced markedly elevated apoptosis, leading to the depletion of DC populations, especially the CD8(+) and CD103(+) DC subsets in lymphoid and nonlymphoid tissues, respectively. TAK1 also contributed to DC development by promoting the generation of DC precursors. Prosurvival signals from Toll-like receptors, CD40 and receptor activator of nuclear factor-κB (RANK) are integrated by TAK1 in DCs, which in turn mediated activation of downstream NF-κB and AKT-Foxo pathways and established a gene-expression program. TAK1 deficiency in DCs caused a myeloid proliferative disorder characterized by expansion of neutrophils and inflammatory monocytes, disrupted T-cell homeostasis, and prevented effective T-cell priming and generation of regulatory T cells. Moreover, TAK1 signaling in DCs was required to prevent myeloid proliferation even in the absence of lymphocytes, indicating a previously unappreciated regulatory mechanism of DC-mediated control of myeloid cell-dependent inflammation. Therefore, TAK1 orchestrates a prosurvival checkpoint in DCs that affects the homeostasis and function of the immune system.

  1. Growth inhibitory effects of gastric cancer cells with an increase in S phase and alkaline phosphatase activity repression by aloe-emodin.

    PubMed

    Guo, Junming; Xiao, Bingxiu; Zhang, Shun; Liu, Donghai; Liao, Yiping; Sun, Qian

    2007-01-01

    Aloe-emodin is a novel active compound found in the root and rhizome of Rheum palmatum. To investigate the effects and mechanisms of aloe-emodin on human gastric cancer, MGC-803 cells were treated with 2.5, 5, 10, 20 and 40 microM aloe-emodin for 1-5 d. The results showed that aloe-emodin inhibited the growth of cancer cells in a dose-dependent manner with an increase in S phase and in the proportion of cells cycling at a higher ploidy level (>G2/M). Moreover, the alkaline phosphatase (ALP) activity, an indicator of cell differentiation, was found decreased. This is one of the first to focus on the effect of ALP activity in human gastric carcinomas cells treated by aloe-emodin. These results indicate that aloe-emodin has a potential value for the treatment of gastric cancer and its mechanisms are by means of cell cycle interruption and induce differentiation.

  2. Aberrant mucosal mast cell protease expression in the enteric epithelium of nematode-infected mice lacking the integrin alphavbeta6, a transforming growth factor-beta1 activator.

    PubMed

    Knight, Pamela A; Brown, Jeremy K; Wright, Steven H; Thornton, Elisabeth M; Pate, Judith A; Miller, Hugh R P

    2007-10-01

    Infection of mice with the nematode Trichinella spiralis triggers recruitment and differentiation of intraepithelial intestinal mucosal mast cells expressing mouse mast cell protease 1 (Mcpt-1), which contributes to expulsion of the parasite. Expression of Mcpt-1 is transforming growth factor (TGF)-beta1-dependent in vitro. TGF-beta1, which is secreted within tissues as a biologically inactive complex with latency-associated peptide, requires extracellular modification to become functionally active. The integrin-alpha(nu)beta(6) mediates local activation of TGF-beta(1) in association with epithelia. Using T. spiralis-infected beta(6)(-/-) mice, we show accumulation of mucosal mast cells in the lamina propria of the small intestine with minimal recruitment into the epithelial compartment. This was accompanied by a coordinate reduction in expression of both Mcpt-1 and -2 in the jejunum and increased tryptase expression, whereas Mcpt-9 became completely undetectable. In contrast, the cytokine stem cell factor, a regulator of mast cell differentiation and survival, was significantly up-regulated in T. spiralis-infected beta(6)(-/-) mice compared with infected beta(6)(+/+) controls. Despite these changes, beta(6)(-/-) mice still appeared to expel the worms normally. We postulate that compromised TGF-beta(1) activation within the gastrointestinal epithelial compartment is a major, but not the only, contributing factor to the observed changes in mucosal mast cell protease and epithelial cytokine expression in beta(6)(-/-) mice.

  3. Cytotoxic activity of Macrosolen parasiticus (L.) Danser on the growth of breast cancer cell line (MCF-7)

    PubMed Central

    Sodde, Vijay Kumar; Lobo, Richard; Kumar, Nimmy; Maheshwari, Rajalekshmi; Shreedhara, C. S.

    2015-01-01

    Background: Macrosolen parasiticus (L.) Danser belonging to Loranthaceaea (mistletoe family) is a parasitic plant that grows on different host plants such as mango, jack fruit, peepal, neem tree, etc., This study was aimed to investigate the anti-cancer activity of methanolic and aqueous extract of stem of M. parasiticus. Objectives: To investigate the in vitro cytotoxic potential of the methanolic and aqueous extracts from stems of M. parasiticus against MCF-7 breast cancer cells by brine shrimp lethality (BSL) bioassay, MTT assay and sulforhodamine B (SRB) assay. Materials and Methods: The extracts were tested in human breast cancer cell lines in vitro for percentage cytotoxicity, apoptosis by acridine orange/ethidium bromide staining, LD50 and IC50 values after treatment with M. parasiticus extracts. Results: In BSL bioassay, aqueous extract showed more significant (P < 0.01) cytotoxicity with LD50 82.79 ± 2.67 μg/mL as compared to methanolic extract with LD50 125 ± 3.04 μg/mL. The methanolic extract of M. parasiticus showed IC50 97.33 ± 3.75 μg/mL (MTT) (P < 0.05) and 94.58 ± 3.84 μg/mL (SRB) (P < 0.01) assays against MCF-7. The aqueous extract of M. parasiticus demonstrated higher activity with IC50 59.33 ± 3.3 μg/mL (MTT) (P < 0.01) and 51.9 ± 1.87 μg/mL (SRB)(P < 0.01) assays, after 48 h of exposure and thus showed significant dose-dependent cytotoxic activity. Conclusion: The finding demonstrated that both extracts of M. parasiticus showed significant cytotoxic activity, however aqueous extract demonstrated higher activity against MCF-7 breast cancer cells. PMID:26109761

  4. Acidic substitution of the activation loop tyrosines in TrkA supports nerve growth factor-independent cell survival and neuronal differentiation.

    PubMed

    Gryz, E A; Meakin, S O

    2000-01-20

    TrkA is the receptor tyrosine kinase (RTK) for nerve growth factor (NGF) and stimulates NGF-dependent cell survival and differentiation in primary neurons. TrkA expression in neuronal tumors also supports NGF-dependent differentiation of neuroblastomas and apoptosis of medulloblastomas. Phosphorylation of the activation loop tyrosines in RTK's are essential to activation as well as allosteric changes that facilitate substrate interaction and phosphorylation. Acidic amino acid substitution of the activation loop tyrosines in TrkA, Tyr683Tyr684, was performed to mimic the negative charges normally induced by ligand activation and receptor phosphorylation. A total of eight independent mutants containing single or double substitutions were generated for comparison. Herein, we demonstrate that acidic substitution of the activation loop tyrosines is sufficient to induce allosteric changes required for constitutive TrkA kinase activity as well as phosphorylation of TrkA signaling proteins such as Shc, PLCgamma-1, FRS-2 and erk1/2. The strongest constitutively active TrkA mutants, GluAsp and AspGlu, support NGF-independent neuritogenesis and cell survival to levels approximately 65 and 80-100%, respectively, of NGF-activated wild type TrkA. Thus, constitutively active TrkA may provide a useful strategy in future therapeutic approaches to limit the development and progression of neuronal tumors.

  5. Transforming growth factor beta and cyclosporin A inhibit the inducible activity of the interleukin-2 gene in T cells through a noncanonical octamer-binding site.

    PubMed Central

    Brabletz, T; Pfeuffer, I; Schorr, E; Siebelt, F; Wirth, T; Serfling, E

    1993-01-01

    Transforming growth factor beta (TGF-beta) has a growth-inhibitory effect on numerous different cell types of the immune system, including T lymphocytes. We show in this study that the inhibitory action of TGF-beta on T lymphocytes is accompanied by a block of interleukin 2 (IL-2) gene expression which is mediated, at least in part, by inhibition of IL-2 promoter/enhancer activity. The functional analysis of cis-regulatory (proto-enhancer) elements of the IL-2 enhancer/promoter region showed that the most TGF-beta-responsive element maps to its so-called upstream promoter site. The proto-enhancer activity of the upstream promoter site element is also inhibited by cyclosporin A. The upstream promoter site DNA harbors two noncanonical, closely linked binding sequences for octamer and AP-1-like factors. Both sites are involved in the establishment of IL-2 enhancer activity. Since the activity of genuine octamer sites but not that of AP-1-binding sites is also impaired by TGF-beta and cyclosporin A in El4 T lymphoma cells, we conclude that both immunosuppressives interfere with the activity but not the DNA binding of octamer factors in T lymphocytes. Images PMID:8423782

  6. Evaluating the Effects of Tetrachloro-1,4-benzoquinone, an Active Metabolite of Pentachlorophenol, on the Growth of Human Breast Cancer Cells

    PubMed Central

    Ling, Binbing; Gao, Bosong; Yang, Jian

    2016-01-01

    Tetrachloro-1,4-benzoquinone (TCBQ), an active metabolite of pentachlorophenol (PCP), is genotoxic and potentially carcinogenic. As an electrophilic and oxidative molecule, TCBQ can conjugate with deoxyguanosine in DNA molecules and/or impose oxidative stress in cells. In the current study, we investigated the effects of TCBQ on intracellular ROS production, apoptosis, and cytotoxicity against three different subtypes of human breast cancer cells. Luminal A subtype MCF7 (ER+, PR+, HER2−) cells maintained the highest intracellular ROS level and were subjected to TCBQ-induced ROS reduction, apoptosis, and cytotoxicity. HER2 subtype Sk-Br-3 (ER−, PR−, HER2+) cells possessed the lowest intracellular ROS level. TCBQ promoted ROS production, inhibited apoptosis, and elevated cytotoxicity (due to necrosis) against Sk-Br-3 cells. Triple-negative/basal-like subtype MDA-MB-231 cells were less sensitive towards TCBQ treatment. Therefore, the effect of prolonged exposure to PCP and its active metabolites on cancer growth is highly cancer-cell-type specific. PMID:26981120

  7. Changes in P-glycoprotein activity are mediated by the growth of a tumour cell line as multicellular spheroids

    PubMed Central

    Valeria, Ponce de León; Raúl, Barrera-Rodríguez

    2005-01-01

    Background Expression of P-glycoprotein (P-gp), the multidrug resistance (MDR) 1 gene product, can lead to multidrug resistance in tumours. However, the physiological role of P-gp in tumours growing as multicellular spheroids is not well understood. Recent evidence suggests that P-gp activity may be modulated by cellular components such as membrane proteins, membrane-anchoring proteins or membrane-lipid composition. Since, multicellular spheroids studies have evidenced alterations in numerous cellular components, including those related to the plasma membrane function, result plausible that some of these changes might modulate P-gp function and be responsible for the acquisition of multicellular drug resistance. In the present study, we asked if a human lung cancer cell line (INER-51) grown as multicellular spheroids can modify the P-gp activity to decrease the levels of doxorubicin (DXR) retained and increase their drug resistance. Results Our results showed that INER-51 spheroids retain 3-folds lower doxorubicin than the same cells as monolayers however; differences in retention were not observed when the P-gp substrate Rho-123 was used. Interestingly, neither the use of the P-gp-modulating agent cyclosporin-A (Cs-A) nor a decrease in ATP-pools were able to increase DXR retention in the multicellular spheroids. Only the lack of P-gp expression throughout the pharmacological selection of a P-gp negative (P-gpneg) mutant clone (PSC-1) derived from INER-51 cells, allow increase of DXR retention in spheroids. Conclusion Thus, multicellular arrangement appears to alter the P-gp activity to maintain lower levels of DXR. However, the non expression of P-gp by cells forming multicellular spheroids has only a minor impact in the resistance to chemotherapeutic agents. PMID:16001980

  8. Overexpression of EB1 in human esophageal squamous cell carcinoma (ESCC) may promote cellular growth by activating beta-catenin/TCF pathway.

    PubMed

    Wang, Yihua; Zhou, Xiaobo; Zhu, Hongxia; Liu, Shuang; Zhou, Cuiqi; Zhang, Guo; Xue, Liyan; Lu, Ning; Quan, Lanping; Bai, Jinfeng; Zhan, Qimin; Xu, Ningzhi

    2005-10-06

    Esophageal squamous cell carcinoma (ESCC) has a multifactorial etiology involving environmental and/or genetic factors. End-binding protein 1 (EB1), which was cloned as an interacting partner of the adenomatous polyposis coli (APC) tumor suppressor protein, was previously found overexpressed in ESCC. However, the precise role of EB1 in the development of this malignancy has not yet been elucidated. In this study, we analysed freshly resected ESCC specimens and demonstrated that EB1 was overexpressed in approximately 63% of tumor samples compared to matched normal tissue. We report that overexpression of EB1 in the ESCC line EC9706 significantly promotes cell growth, whereas suppression of EB1 protein level by RNA interference significantly inhibited growth of esophageal tumor cells. In addition, EB1 overexpression induced nuclear accumulation of beta-catenin and promoted the transcriptional activity of beta-catenin/T-cell factor (TCF). These effects were partially or completely abolished by coexpression of APC or DeltaN TCF4, respectively. Also, we found that EB1 affected the interaction between beta-catenin and APC. Furthermore, EB1 overexpression was correlated with cytoplasmic/nuclear accumulation of beta-catenin in primary human ESCC. Taken together, these results support the novel hypothesis that EB1 overexpression may play a role in the development of ESCC by affecting APC function and activating the beta-catenin/TCF pathway.

  9. [Stem cells and growth factors in wound healing].

    PubMed

    Pikuła, Michał; Langa, Paulina; Kosikowska, Paulina; Trzonkowski, Piotr

    2015-01-02

    Wound healing is a complex process which depends on the presence of various types of cells, growth factors, cytokines and the elements of extracellular matrix. A wound is a portal of entry for numerous pathogens, therefore during the evolution wound healing process has formed very early, being critical for the survival of every individual. Stem cells, which give rise to their early descendants progenitor cells and subsequently differentiated cells, play a specific role in the process of wound healing. Among the most important cells which take part in wound healing the following cells need to be distinguished: epidermal stem cells, dermal precursor of fibroblasts, adipose-derived stem cells as well as bone marrow cells. The activity of these cells is strictly regulated by various growth factors, inter alia epidermal growth factor (EGF), fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), transforming growth factor (TGF), vascular endothelial growth factor (VEGF). Any disorders in functioning of stem cells and biological activity of growth factors may lead to the defects in wound healing, for instance delayed wound healing or creation of hypertrophic scars. Therefore, knowledge concerning the mechanisms of wound healing is extremely essential from clinical point of view. In this review the current state of the knowledge of the role of stem cells and growth factors in the process of wound healing has been presented. Moreover, some clinical aspects of wound healing as well as the possibility of the therapy based on stem cells and growth factors have included.

  10. UTP Controls Cell Surface Distribution and Vasomotor Activity of the Human P2Y2 Receptor through an Epidermal Growth Factor Receptor-transregulated Mechanism*

    PubMed Central

    Norambuena, Andrés; Palma, Francisco; Poblete, M. Inés; Donoso, M. Verónica; Pardo, Evelyn; González, Alfonso; Huidobro-Toro, J. Pablo

    2010-01-01

    Extracellular nucleotides transmit signals into the cells through the P2 family of cell surface receptors. These receptors are amply expressed in human blood vessels and participate in vascular tone control; however, their signaling mechanisms remain unknown. Here we show that in smooth muscle cells of isolated human chorionic arteries, the activation of the P2Y2 receptor (P2Y2R) induces not only its partition into membrane rafts but also its rapid internalization. Cholesterol depletion with methyl-β-cyclodextrin reduced the association of the agonist-activated receptor into membrane rafts but did not affect either the UTP-mediated vasoconstrictions or the vasomotor responses elicited by both serotonin and KCl. Ex vivo perfusion of human chorionic artery segments with 1–10 μm UTP, a selective P2Y2R agonist, displaced the P2Y2R localization into membrane rafts within 1 min, a process preceded by the activation of both RhoA and Rac1 GTPases. AG1478, a selective and potent inhibitor of the epidermal growth factor receptor tyrosine kinase activity, not only blocked the UTP-induced vasomotor activity but also abrogated both RhoA and Rac1 activation, the P2Y2R association with membrane rafts, and its internalization. Altogether, these results show for the first time that the plasma membrane distribution of the P2Y2R is transregulated by the epidermal growth factor receptor, revealing an unsuspected functional interplay that controls both the membrane distribution and the vasomotor activity of the P2Y2R in intact human blood vessels. PMID:19996104

  11. Leptin-induced Growth Stimulation of Breast Cancer Cells Involves Recruitment of Histone Acetyltransferases and Mediator Complex to CYCLIN D1 Promoter via Activation of Stat3*

    PubMed Central

    Saxena, Neeraj K.; Vertino, Paula M.; Anania, Frank A.; Sharma, Dipali

    2010-01-01

    Numerous epidemiological studies documented that obesity is a risk factor for breast cancer development in postmenopausal women. Leptin, the key player in the regulation of energy balance and body weight control also acts as a growth factor on certain organs in both normal and disease state. In this study, we analyzed the role of leptin and the molecular mechanism(s) underlying its action in breast cancer cells that express both short and long isoforms of leptin receptor. Leptin increased MCF7 cell population in the S-phase of the cell cycle along with a robust increase in CYCLIN D1 expression. Also, leptin induced Stat3-phosphorylation-dependent proliferation of MCF7 cells as blocking Stat3 phosphorylation with a specific inhibitor, AG490, abolished leptin-induced proliferation. Using deletion constructs of CYCLIN D1 promoter and chromatin immunoprecipitation assay, we show that leptin induced increase in CYCLIN D1 promoter activity is mediated through binding of activated Stat3 at the Stat binding sites and changes in histone acetylation and methylation. We also show specific involvement of coactivator molecules, histone acetyltransferase SRC1, and mediator complex in leptin-mediated regulation of CYCLIN D1 promoter. Importantly, silencing of SRC1 and Med1 abolished the leptin induced increase in CYCLIN D1 expression and MCF7 cell proliferation. Intriguingly, recruitment of both SRC1 and Med1 was dependent on phosphorylated Stat3 as AG490 treatment inhibited leptin-induced recruitment of these coactivators to CYCLIN D1 promoter. Our data suggest that CYCLIN D1 may be a target gene for leptin mediated growth stimulation of breast cancer cells and molecular mechanisms involve activated Stat3-mediated recruitment of distinct coactivator complexes. PMID:17344214

  12. EGCG Inhibits Proliferation, Invasiveness and Tumor Growth by Up-Regulation of Adhesion Molecules, Suppression of Gelatinases Activity, and Induction of Apoptosis in Nasopharyngeal Carcinoma Cells

    PubMed Central

    Fang, Chih-Yeu; Wu, Chung-Chun; Hsu, Hui-Yu; Chuang, Hsin-Ying; Huang, Sheng-Yen; Tsai, Ching-Hwa; Chang, Yao; Tsao, George Sai-Wah; Chen, Chi-Long; Chen, Jen-Yang

    2015-01-01

    (−)-Epigallocatechin-3-gallate (EGCG), a major green tea polyphenol, has been shown to inhibit the proliferation of a variety of tumor cells. Epidemiological studies have shown that drinking green tea can reduce the incidence of nasopharyngeal carcinoma (NPC), yet the underlying mechanism is not well understood. In this study, the inhibitory effect of EGCG was tested on a set of Epstein Barr virus-negative and -positive NPC cell lines. Treatment with EGCG inhibited the proliferation of NPC cells but did not affect the growth of a non-malignant nasopharyngeal cell line, NP460hTert. Moreover, EGCG treated cells had reduced migration and invasive properties. The expression of the cell adhesion molecules E-cadherin and β-catenin was found to be up-regulated by EGCG treatment, while the down-regulation of matrix metalloproteinases (MMP)-2 and MMP-9 were found to be mediated by suppression of extracellular signal-regulated kinase (ERK) phosphorylation and AP-1 and Sp1 transactivation. Spheroid formation by NPC cells in suspension was significantly inhibited by EGCG. Oral administration of EGCG was capable of suppressing tumor growth in xenografted mice bearing NPC tumors. Treatment with EGCG was found to elevate the expression of p53 and p21, and eventually led to apoptosis of NPC cells via caspase 3 activation. The nuclear translocation of NF-κB and β-catenin was also suppressed by EGCG treatment. These results indicate that EGCG can inhibit the proliferation and invasiveness, and induce apoptosis, of NPC cells, making it a promising agent for chemoprevention or adjuvant therapy of NPC. PMID:25625511

  13. Regulation of connective tissue growth factor activity in cultured rat mesangial cells and its expression in experimental diabetic glomerulosclerosis.

    PubMed

    Riser, B L; Denichilo, M; Cortes, P; Baker, C; Grondin, J M; Yee, J; Narins, R G

    2000-01-01

    Connective tissue growth factor (CTGF) is a peptide secreted by cultured endothelial cells and fibroblasts when stimulated by transforming growth factor-beta (TGF-beta), and is overexpressed during fibrotic processes in coronary arteries and in skin. To determine whether CTGF is implicated in the pathogenesis of diabetic glomerulosclerosis, cultured rat mesangial cells (MC) as well as kidney cortex and microdissected glomeruli were examined from obese, diabetic db/db mice and their normal counterparts. Exposure of MC to recombinant human CTGF significantly increased fibronectin and collagen type I production. Furthermore, unstimulated MC expressed low levels of CTGF message and secreted minimal amounts of CTGF protein (36 to 38 kD) into the media. However, sodium heparin treatment resulted in a greater than fourfold increase in media-associated CTGF, suggesting that the majority of CTGF produced was cell- or matrix-bound. Exposure of MC to TGF-beta, increased glucose concentrations, or cyclic mechanical strain, all causal factors in diabetic glomerulosclerosis, markedly induced the expression of CTGF transcripts, while recombinant human CTGF was able to autoinduce its own expression. TGF-, and high glucose, but not mechanical strain, stimulated the concomitant secretion of CTGF protein, the former also inducing abundant quantities of a small molecular weight form of CTGF (18 kD) containing the heparin-binding domain. The induction of CTGF protein by a high glucose concentration was mediated by TGF-beta, since a TGF-beta-neutralizing antibody blocked this stimulation. In vivo studies using quantitative reverse transcription-PCR demonstrated that although CTGF transcripts were low in the glomeruli of control mice, expression was increased 28-fold after approximately 3.5 mo of diabetes. This change occurred early in the course of diabetic nephropathy when mesangial expansion was mild, and interstitial disease and proteinuria were absent. A substantially reduced

  14. The F-box protein Fbp1 functions in the invasive growth and cell wall integrity mitogen-activated protein kinase (MAPK) pathways in Fusarium oxysporum.

    PubMed

    Miguel-Rojas, Cristina; Hera, Concepcion

    2016-01-01

    F-box proteins determine substrate specificity of the ubiquitin-proteasome system. Previous work has demonstrated that the F-box protein Fbp1, a component of the SCF(Fbp1) E3 ligase complex, is essential for invasive growth and virulence of the fungal plant pathogen Fusarium oxysporum. Here, we show that, in addition to invasive growth, Fbp1 also contributes to vegetative hyphal fusion and fungal adhesion to tomato roots. All of these functions have been shown previously to require the mitogen-activated protein kinase (MAPK) Fmk1. We found that Fbp1 is required for full phosphorylation of Fmk1, indicating that Fbp1 regulates virulence and invasive growth via the Fmk1 pathway. Moreover, the Δfbp1 mutant is hypersensitive to sodium dodecylsulfate (SDS) and calcofluor white (CFW) and shows reduced phosphorylation levels of the cell wall integrity MAPK Mpk1 after SDS treatment. Collectively, these results suggest that Fbp1 contributes to both the invasive growth and cell wall integrity MAPK pathways of F. oxysporum.

  15. Parsing ERK Activation Reveals Quantitatively Equivalent Contributions From Epidermal Growth Factor Receptor and HER2 In Human Mammary Epithelial Cells

    SciTech Connect

    Hendriks, Bart S.; Orr, Galya; Wells, Alan H.; Wiley, H. S.; Lauffenburger, Douglas A.

    2005-02-18

    HER2, a member of the EGFR tyrosine kinase family, functions as an accessory EGFR signaling component and alters EGFR trafficking by heterodimerization. HER2 overexpression leads to aberrant cell behavior including enhanced proliferation and motility. Here we apply a combination of computational modeling and quantitative experimental studies of the dynamic interactions between EGFR and HER2, and their downstream activation of extracellular signal-related kinase (ERK) to understand this complex signaling system. Using cells expressing different levels of HER2 relative to the EGFR, we can separate relative contributions of EGFR and HER2 to signaling amplitude and duration. Based on our model calculations, we demonstrate that, in contrast with previous suggestions in the literature, the intrinsic capabilities of EGFR and HER2 to activated ERK are quantitatively equivalent . We find that HER2-mediated effects on EGFR dimerization and trafficking are sufficient to explain the detected HER2-mediated amplification of EGF-induced ERK signaling. Our model suggests that transient amplification of ERK activity by HER2 arises predominantly from the 2-to-1 stoichiometry of receptor kinase to bound ligand in EGFR/HER2 heterodimers compared to the 1-to-1 stoichiometry of the EGFR homodimer, but alterations in receptor trafficking, with resultant EGFR sparing, cause the sustained HER2-mediated enhancement of ERK signaling.

  16. Reactive astrocytes promote the metastatic growth of breast cancer stem-like cells by activating Notch signalling in brain.

    PubMed

    Xing, Fei; Kobayashi, Aya; Okuda, Hiroshi; Watabe, Misako; Pai, Sudha K; Pandey, Puspa R; Hirota, Shigeru; Wilber, Andrew; Mo, Yin-Yuan; Moore, Brian E; Liu, Wen; Fukuda, Koji; Iiizumi, Megumi; Sharma, Sambad; Liu, Yin; Wu, Kerui; Peralta, Elizabeth; Watabe, Kounosuke

    2013-03-01

    Brain metastasis of breast cancer profoundly affects the cognitive and sensory functions as well as morbidity of patients, and the 1 year survival rate among these patients remains less than 20%. However, the pathological mechanism of brain metastasis is as yet poorly understood. In this report, we found that metastatic breast tumour cells in the brain highly expressed IL-1β which then 'activated' surrounding astrocytes. This activation significantly augmented the expression of JAG1 in the astrocytes, and the direct interaction of the reactivated astrocytes and cancer stem-like cells (CSCs) significantly stimulated Notch signalling in CSCs. We also found that the activated Notch signalling in CSCs up-regulated HES5 followed by promoting self-renewal of CSCs. Furthermore, we have shown that the blood-brain barrier permeable Notch inhibitor, Compound E, can significantly suppress the brain metastasis in vivo. These results represent a novel paradigm for the understanding of how metastatic breast CSCs re-establish their niche for their self-renewal in a totally different microenvironment, which opens a new avenue to identify a novel and specific target for the brain metastatic disease.

  17. Inhibition of enzyme activity of Rhipicephalus (Boophilus) microplus triosephosphate isomerase and BME26 cell growth by monoclonal antibodies.

    PubMed

    Saramago, Luiz; Franceschi, Mariana; Logullo, Carlos; Masuda, Aoi; Vaz, Itabajara da Silva; Farias, Sandra Estrazulas; Moraes, Jorge

    2012-10-12

    In the present work, we produced two monoclonal antibodies (BrBm37 and BrBm38) and tested their action against the triosephosphate isomerase of Rhipicephalus (Boophilus) microplus (RmTIM). These antibodies recognize epitopes on both the native and recombinant forms of the protein. rRmTIM inhibition  by BrBm37 was up to 85% whereas that of BrBrm38 was 98%, depending on the antibody-enzyme ratio. RmTIM activity was lower in ovarian, gut, and fat body tissue extracts treated with BrBm37 or BrBm38 mAbs. The proliferation of the embryonic tick cell line (BME26) was inhibited by BrBm37 and BrBm38 mAbs. In summary, the results reveal that it is possible to interfere with the RmTIM function using antibodies, even in intact cells.

  18. Inhibition of Enzyme Activity of Rhipicephalus (Boophilus) microplus Triosephosphate Isomerase and BME26 Cell Growth by Monoclonal Antibodies

    PubMed Central

    Saramago, Luiz; Franceschi, Mariana; Logullo, Carlos; Masuda, Aoi; Vaz, Itabajara da Silva; Farias, Sandra Estrazulas; Moraes, Jorge

    2012-01-01

    In the present work, we produced two monoclonal antibodies (BrBm37 and BrBm38) and tested their action against the triosephosphate isomerase of Rhipicephalus (Boophilus) microplus (RmTIM). These antibodies recognize epitopes on both the native and recombinant forms of the protein. rRmTIM inhibition by BrBm37 was up to 85% whereas that of BrBrm38 was 98%, depending on the antibody-enzyme ratio. RmTIM activity was lower in ovarian, gut, and fat body tissue extracts treated with BrBm37 or BrBm38 mAbs. The proliferation of the embryonic tick cell line (BME26) was inhibited by BrBm37 and BrBm38 mAbs. In summary, the results reveal that it is possible to interfere with the RmTIM function using antibodies, even in intact cells. PMID:23202941

  19. Antimicrobial activity, growth inhibition of human tumour cell lines, and phytochemical characterization of the hydromethanolic extract obtained from Sapindus saponaria L. aerial parts.

    PubMed

    Rashed, Khaled N; Ćirić, Ana; Glamočlija, Jasmina; Calhelha, Ricardo C; Ferreira, Isabel C F R; Soković, Marina

    2013-01-01

    The hydromethanolic extract of Sapindus saponaria L. aerial parts was investigated for antimicrobial activity (against several Gram-positive and Gram-negative bacteria and fungi) and capacity to inhibit the growth of different human tumor cell lines as also nontumor liver cells. The evaluated extract was further characterized in terms of phytochemicals using UV, (1)H-NMR, (13)C-NMR, and MS spectroscopic tools. The extract has shown a significant antimicrobial activity on all tested bacterial and fungal species. The best activity was achieved against Bacillus cereus and Staphylococcus aureus among bacteria and against all three Penicillium species tested. It also revealed cytotoxicity against human colon (HCT-15), cervical (HeLa), breast (MCF-7), and lung (NCI-H460) carcinoma cell lines, with HeLa being the most susceptible tumor cell line. The extract was not toxic for nontumor liver cells. Chromatographic separation of the extract resulted in the isolation and identification of stigmasterol, oleanolic acid, luteolin, luteolin 8-C-β-glucoside (orientin), luteolin 6-C-β-glucoside (isoorientin), luteolin 7-O-β-glucuronide, and rutin. The results of the present findings may be useful for the discovery of novel antitumor and antimicrobial agents from plant origin.

  20. Antimicrobial Activity, Growth Inhibition of Human Tumour Cell Lines, and Phytochemical Characterization of the Hydromethanolic Extract Obtained from Sapindus saponaria L. Aerial Parts

    PubMed Central

    Ćirić, Ana; Glamočlija, Jasmina; Calhelha, Ricardo C.; Ferreira, Isabel C. F. R.; Soković, Marina

    2013-01-01

    The hydromethanolic extract of Sapindus saponaria L. aerial parts was investigated for antimicrobial activity (against several Gram-positive and Gram-negative bacteria and fungi) and capacity to inhibit the growth of different human tumor cell lines as also nontumor liver cells. The evaluated extract was further characterized in terms of phytochemicals using UV, 1H-NMR, 13C-NMR, and MS spectroscopic tools. The extract has shown a significant antimicrobial activity on all tested bacterial and fungal species. The best activity was achieved against Bacillus cereus and Staphylococcus aureus among bacteria and against all three Penicillium species tested. It also revealed cytotoxicity against human colon (HCT-15), cervical (HeLa), breast (MCF-7), and lung (NCI-H460) carcinoma cell lines, with HeLa being the most susceptible tumor cell line. The extract was not toxic for nontumor liver cells. Chromatographic separation of the extract resulted in the isolation and identification of stigmasterol, oleanolic acid, luteolin, luteolin 8-C-β-glucoside (orientin), luteolin 6-C-β-glucoside (isoorientin), luteolin 7-O-β-glucuronide, and rutin. The results of the present findings may be useful for the discovery of novel antitumor and antimicrobial agents from plant origin. PMID:24455713

  1. Differential responsiveness of luteinized human granulosa cells to gonadotropins and insulin-like growth factor I for induction of aromatase activity

    SciTech Connect

    Christman, G.M.; Randolph, J.F. Jr.; Peegel, H.; Menon, K.M. )

    1991-06-01

    The objective of this study was to examine the in vitro responsiveness of cultured luteinized human granulosa cells over time to insulin-like growth factor 1 (IGF-1), human follicle-stimulating hormone (FSH), and human chorionic gonadotropin (hCG) for the induction of aromatase activity. Granulosa cells were retrieved from preovulatory follicles in patients undergoing in vitro fertilization. Cells were cultured for a period of 72 hours or 10 days. The ability of hCG, human FSH, and/or IGF-I to induce aromatase activity was assayed by the stereospecific release of tritium from (1B-3H)androstenedione. Short-term cultures (72 hours) demonstrated a marked rise in aromatase activity in response to human FSH and IGF-I, whereas a smaller response to hCG was observed. In contrast, 10-day cultures demonstrated responsiveness predominantly to hCG rather than human FSH for the induction of aromatase activity with no remarkable effect of IGF-I. Luteinized human granulosa cells undergo a transformation from an initial human FSH and IGF-I responsive state to an hCG responsive state in long-term cultures.

  2. Morusin inhibits human cervical cancer stem cell growth and migration through attenuation of NF-κB activity and apoptosis induction.

    PubMed

    Wang, Li; Guo, Huijie; Yang, Liuqi; Dong, Lihua; Lin, Caiyu; Zhang, Jie; Lin, Ping; Wang, Xiujie

    2013-07-01

    Cancer stem cells (CSCs) are believed to be responsible for tumor metastasis, recurrence, and high mortality of cancer patients due to their high tumorigenicity resistance to chemo-radiotherapy. Morusin possesses anti-cancer activity through attenuation of NF-κB activity, which is up-regulated in cancer stem cells. The purpose of this study is to confirm the growth and migration inhibition effect of morusin on human cervical CSCs, and to clarify its partial mechanism of activity. Human cervical CSCs were enriched using non-adhesive culture system. Their stemness characteristics were identified with tumor sphere formation, self-renewal, toluidine blue staining, migration assays, RT-PCR analysis, and immunofluorescence staining of putative stem cell markers, Oct4, SOX2, and ALDH1; the epithelial-to-mesenchymal (EMT) transition markers and relevant transcription factors were evaluated with Western blotting. The growth and migration inhibition effects of morusin on human cervical CSCs were tested by cell proliferation, tumor sphere formation, and transwell assay; apoptotic death of human cervical CSCs in response to morusin was measured with DAPI staining, apoptotic DNA fragmentation; NF-κBp65, Bcl-2, Bax, and caspase-3 protein expressions were detected through Western blotting. Under this non-adhesive culture system, typical tumor spheres appeared within 5-7 days, the tumor sphere formation, self-renewal, and cell migration, expressions of putative stem cell markers, EMT markers, and relevant transcription factors of the tumor sphere cells were increased significantly. After morusin treatment, the proliferation, tumor sphere formation, and migration of human cervical CSCs were decreased significantly, DAPI-stained apoptotic cells increased, apoptotic DNA fragmentations formed evidently; the expression levels of NF-κBp65 and Bcl-2 decreased significantly, Bax, and caspase-3 increased significantly in a dose-dependent manner. Using the non-adhesive culture system

  3. Mutations reducing replication from R-loops suppress the defects of growth, chromosome segregation and DNA supercoiling in cells lacking topoisomerase I and RNase HI activity.

    PubMed

    Usongo, Valentine; Martel, Makisha; Balleydier, Aurélien; Drolet, Marc

    2016-04-01

    R-loop formation occurs when the nascent RNA hybridizes with the template DNA strand behind the RNA polymerase. R-loops affect a wide range of cellular processes and their use as origins of replication was the first function attributed to them. In Escherichia coli, R-loop formation is promoted by the ATP-dependent negative supercoiling activity of gyrase (gyrA and gyrB) and is inhibited by topoisomerase (topo) I (topA) relaxing transcription-induced negative supercoiling. RNase HI (rnhA) degrades the RNA moiety of R-loops. The depletion of RNase HI activity in topA null mutants was previously shown to lead to extensive DNA relaxation, due to DNA gyrase inhibition, and to severe growth and chromosome segregation defects that were partially corrected by overproducing topo III (topB). Here, DNA gyrase assays in crude cell extracts showed that the ATP-dependent activity (supercoiling) of gyrase but not its ATP-independent activity (relaxation) was inhibited in topA null cells lacking RNase HI. To characterize the cellular event(s) triggered by the absence of RNase HI, we performed a genetic screen for suppressors of the growth defect of topA rnhA null cells. Suppressors affecting genes in replication (holC2::aph and dnaT18::aph) nucleotide metabolism (dcd49::aph), RNA degradation (rne59::aph) and fimbriae synthesis (fimD22::aph) were found to reduce replication from R-loops and to restore supercoiling, thus pointing to a correlation between R-loop-dependent replication in topA rnhA mutants and the inhibition of gyrase activity and growth. Interestingly, the position of fimD on the E. coli chromosome corresponds to the site of one of the five main putative origins of replication from R-loops in rnhA null cells recently identified by next-generation sequencing, thus suggesting that the fimD22::aph mutation inactivated one of these origins. Furthermore, we show that topo III overproduction is unable to complement the growth defect of topA rnhA null mutants at low

  4. Estrogen receptor beta growth-inhibitory effects are repressed through activation of MAPK and PI3K signalling in mammary epithelial and breast cancer cells.

    PubMed

    Cotrim, C Z; Fabris, V; Doria, M L; Lindberg, K; Gustafsson, J-Å; Amado, F; Lanari, C; Helguero, L A

    2013-05-09

    Two thirds of breast cancers express estrogen receptors (ER). ER alpha (ERα) mediates breast cancer cell proliferation, and expression of ERα is the standard choice to indicate adjuvant endocrine therapy. ERbeta (ERβ) inhibits growth in vitro; its effects in vivo have been incompletely investigated and its role in breast cancer and potential as alternative target in endocrine therapy needs further study. In this work, mammary epithelial (EpH4 and HC11) and breast cancer (MC4-L2) cells with endogenous ERα and ERβ expression and T47-D human breast cancer cells with recombinant ERβ (T47-DERβ) were used to explore effects exerted in vitro and in vivo by the ERβ agonists 2,3-bis (4-hydroxy-phenyl)-propionitrile (DPN) and 7-bromo-2-(4-hydroxyphenyl)-1,3-benzoxazol-5-ol (WAY). In vivo, ERβ agonists induced mammary gland hyperplasia and MC4-L2 tumour growth to a similar extent as the ERα agonist 4,4',4''-(4-propyl-(1H)-pyrazole-1,3,5-triyl) trisphenol (PPT) or 17β-estradiol (E2) and correlated with higher number of mitotic and lower number of apoptotic features. In vitro, in MC4-L2, EpH4 or HC11 cells incubated under basal conditions, ERβ agonists induced apoptosis measured as upregulation of p53 and apoptosis-inducible factor protein levels and increased caspase 3 activity, whereas PPT and E2 stimulated proliferation. However, when extracellular signal-regulated kinase 1 and 2 (ERK ½) were activated by co-incubation with basement membrane extract or epidermal growth factor, induction of apoptosis by ERβ agonists was repressed and DPN induced proliferation in a similar way as E2 or PPT. In a context of active ERK ½, phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/RAC-alpha serine/threonine-protein kinase (AKT) signalling was necessary to allow proliferation stimulated by ER agonists. Inhibition of MEK ½ with UO126 completely restored ERβ growth-inhibitory effects, whereas inhibition of PI3K by LY294002 inhibited ERβ-induced proliferation. These

  5. Growth Factor-Activated Stem Cell Circuits and Stromal Signals Cooperatively Accelerate Non-Integrated iPSC Reprogramming of Human Myeloid Progenitors

    PubMed Central

    Park, Tea Soon; Huo, Jeffrey S.; Peters, Ann; Talbot, C. Conover; Verma, Karan; Zimmerlin, Ludovic; Kaplan, Ian M.; Zambidis, Elias T.

    2012-01-01

    Nonviral conversion of skin or blood cells into clinically useful human induced pluripotent stem cells (hiPSC) occurs in only rare fractions (∼0.001%–0.5%) of donor cells transfected with non-integrating reprogramming factors. Pluripotency induction of developmentally immature stem-progenitors is generally more efficient than differentiated somatic cell targets. However, the nature of augmented progenitor reprogramming remains obscure, and its potential has not been fully explored for improving the extremely slow pace of non-integrated reprogramming. Here, we report highly optimized four-factor reprogramming of lineage-committed cord blood (CB) myeloid progenitors with bulk efficiencies of ∼50% in purified episome-expressing cells. Lineage-committed CD33+CD45+CD34− myeloid cells and not primitive hematopoietic stem-progenitors were the main targets of a rapid and nearly complete non-integrated reprogramming. The efficient conversion of mature myeloid populations into NANOG+TRA-1-81+ hiPSC was mediated by synergies between hematopoietic growth factor (GF), stromal activation signals, and episomal Yamanaka factor expression. Using a modular bioinformatics approach, we demonstrated that efficient myeloid reprogramming correlated not to increased proliferation or endogenous Core factor expressions, but to poised expression of GF-activated transcriptional circuits that commonly regulate plasticity in both hematopoietic progenitors and embryonic stem cells (ESC). Factor-driven conversion of myeloid progenitors to a high-fidelity pluripotent state was further accelerated by soluble and contact-dependent stromal signals that included an implied and unexpected role for Toll receptor-NFκB signaling. These data provide a paradigm for understanding the augmented reprogramming capacity of somatic progenitors, and reveal that efficient induced pluripotency in other cell types may also require extrinsic activation of a molecular framework that commonly regulates self

  6. Transforming growth factor-{beta} inhibits CCAAT/enhancer-binding protein expression and PPAR{gamma} activity in unloaded bone marrow stromal cells

    SciTech Connect

    Ahdjoudj, S.; Kaabeche, K.; Holy, X.; Fromigue, O.; Modrowski, D.; Zerath, E.; Marie, P.J. . E-mail: pierre.marie@larib.inserm.fr

    2005-02-01

    The molecular mechanisms regulating the adipogenic differentiation of bone marrow stromal cells in vivo remain largely unknown. In this study, we investigated the regulatory effects of transforming growth factor beta-2 (TGF-{beta}2) on transcription factors involved in adipogenic differentiation induced by hind limb suspension in rat bone marrow stromal cells in vivo. Time course real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR) analysis of gene expression showed that skeletal unloading progressively increases the expression of CCAAT/enhancer-binding protein (C/EBP){alpha} and C/EBP{beta} {alpha} at 5 days in bone marrow stromal cells resulting in increased peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}2) transcripts at 7 days. TGF-{beta}2 administration in unloaded rats corrected the rise in C/EBP{alpha} and C/EBP{beta} transcripts induced by unloading in bone marrow stromal cells. This resulted in inhibition of PPAR{gamma}2 expression that was associated with increased Runx2 expression. Additionally, the inhibition of C/EBP{alpha} and C/EBP{beta} expression by TGF-{beta}2 was associated with increased PPAR{gamma} serine phosphorylation in bone marrow stromal cells, a mechanism that inhibits PPAR{gamma} transactivating activity. The sequential inhibitory effect of TGF-{beta}2 on C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma}2 resulted in reduced LPL expression and abolition of bone marrow stromal cell adipogenic differentiation, which contributed to prevent bone loss induced by skeletal unloading. We conclude that TGF-{beta}2 inhibits the excessive adipogenic differentiation of bone marrow stromal cells induced by skeletal unloading by inhibiting C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma} expression and activity, which provides a sequential mechanism by which TGF-{beta}2 regulates adipogenic differentiation of bone marrow stromal cells in vivo.

  7. The role of peroxisome proliferator-activated receptor-{beta}/{delta} in epidermal growth factor-induced HaCaT cell proliferation

    SciTech Connect

    Liang Pengfei; Jiang Bimei; Yang Xinghua; Xiao Xianzhong Huang Xu; Long Jianhong; Zhang Pihong; Zhang Minghua; Xiao Muzhang; Xie Tinghong; Huang Xiaoyuan

    2008-10-15

    Epidermal growth factor (EGF) has been shown to be a potent mitogen for epidermal cells both in vitro and in vivo, thus contributing to the development of an organism. It has recently become clear that peroxisome proliferator-activated receptor-{beta}/{delta} (PPAR{beta}/{delta}) expression and activation is involved in the cell proliferation. However, little is known about the role of PPAR{beta}/{delta} in EGF-induced proliferation of HaCaT keratinocytes. In this study, HaCaT cells were cultured in the presence and absence of EGF and we identified that EGF induced an increase of PPAR{beta}/{delta} mRNA and protein level expression in time-dependent and dose-dependent manner, and AG1487, an EGF receptor (EGFR) special inhibitor, caused attenuation of PPAR{beta}/{delta} protein expression. Electrophoretic mobility shift assay (EMSA) revealed that EGF significantly increased PPAR{beta}/{delta} binding activity in HaCaT keratinocytes. Antisense phosphorothioate oligonucleotides (asODNs) against PPAR{beta}/{delta} caused selectively inhibition of PPAR{beta}/{delta} protein content induced by EGF and significantly attenuated EGF-mediated cell proliferation. Treatment of the cells with L165041, a specific synthetic ligand for PPAR{beta}/{delta}, significantly enhanced EGF-mediated cell proliferation. Finally, c-Jun ablation inhibited PPAR{beta}/{delta} up-regulation induced by EGF, and chromatin immunoprecipitation (ChIP) showed that c-Jun bound to the PPAR{beta}/{delta} promoter and the binding increased in EGF-stimulated cells. These results demonstrate that EGF induces PPAR{beta}/{delta} expression in a c-Jun-dependent manner and PPAR{beta}/{delta} plays a vital role in EGF-stimulated proliferation of HaCaT cells.

  8. Potentiation of Mitogenic Activity of Platelet-Derived Growth Factor by Physiological Concentrations of Insulin via the MAP Kinase Cascade in Rat A10 Vascular Smooth Muscle Cells

    PubMed Central

    Yamada, Hitomi; Murakami, Hitomi; Uchigata, Yasuko; Iwamoto, Yasuhiko

    2002-01-01

    Hyperinsulinemia has been shown to be associated with diabetic angiopathy. Migration and proliferation of vascular smooth muscle cells (VSMC) are the processes required for the development of atherosclerosis. In this study, we attempted to determine whether insulin affects mitogenic signaling induced by plateletderived growth factor (PDGF) in a rat VSMC cell line (A10 cells). PDGF stimulated DNA synthesis which was totally dependent on Ras, because transfection of dominant negative Ras resulted in complete loss of PDGF-stimulated DNA synthesis. Initiation of DNA synthesis was preceded by activation of Raf-1, MEK and MAP kinases (Erk 1 and Erk2). Treatment of the cells with PD98059, an inhibitor of MAPK kinase (MEK) attenuated but did not abolish PDGF-stimulated DNA synthesis, suggesting that MAPK is required but not essential for DNA synthesis. PDGF also stimulated phosphorylation of protein kinase B (Akt/PKB) and p70 S6Kinase (p70S6K) in a wortmannin-sensitive manner. Rapamycin, an inhibitor of p70S6K, markedly suppressed DNA synthesis. Low concentrations of insulin (1-10 nmol/l) alone showed little mitogenic activity and no significant effect on MAPK activity. However, the presence of insulin enhanced both DNA synthesis and MAPK activation by PDGF. The enhancing effect of insulin was not seen in cells treated with PD98059. Insulin was without effect on PDGF-stimulated activations of protein kinase B (Akt/PKB) and p70S6K. We conclude that insulin, at pathophysiologically relevant concentrations, potentiates the PDGFstimulated DNA synthesis, at least in part, by potentiating activation of the MAPK cascade. These results are consistent with the notion that hyperinsulinemia is a risk factor for the development of atherosclerosis. PMID:11991199

  9. The herbal compound Songyou Yin (SYY) inhibits hepatocellular carcinoma growth and improves survival in models of chronic fibrosis via paracrine inhibition of activated hepatic stellate cells

    PubMed Central

    Xue, Tong-Chun; Zhang, Quan-Bao; Zhang, Ke-Zhi; Zhang, Qiang-Bo; You, Yang; Tian, Hui; Qin, Lun-Xiu; Tang, Zhao-You

    2015-01-01

    Chronic fibrosis is a major risk factor for the development of hepatocellular carcinoma (HCC). The pathological progression of hepatic fibrosis has been linked to cellular processes that promote tumor growth and metastasis. Several recent studies have highlighted the cross-talk between tumor cells and activated hepatic stellate cells (aHSCs) in HCC. The herbal compound Songyou Yin (SYY) is known to attenuate hepatoma cell invasion and metastasis via down-regulation of cytokine secretion by aHSCs. However the underlying mechanism of SYY treatment in reversal of hepatic fibrosis and metastasis of liver cancers is not known. In the current study, a nude mouse model with liver fibrosis bearing orthotopic xenograft was established and we found that SYY could reduce associated fibrosis, inhibit tumor growth and improve survival. In the subcutaneous tumor model with fibrosis, we found that SYY could inhibit liver cancer. In vitro, hepatoma cells incubated with conditioned media (CM) from SYY treated aHSCs showed reduced proliferation, decrease in colony formation and invasive potential. SYY treated group showed altered gene expression, with 1205 genes up-regulated and 1323 genes down-regulated. Gene cluster analysis indicated that phosphatidylinositol-3-kinase (PI3K) was one of the key genes altered in the expression profiles. PI3K related markers were all significantly down-regulated. ELISA also indicated decreased secretion of cytokines which were regulated by PI3K/AKT signaling after SYY treatment in the hepatic stellate cell line, LX2. These data clearly demonstrate that SYY therapy inhibits HCC invasive and metastatic potential and improves survival in nude mice models with chronic fibrosis background via inhibition of cytokine secretion by activated hepatic stellate cells. PMID:26517671

  10. Astragalus and Paeoniae Radix Rubra extract (APE) inhibits hepatic stellate cell activation by modulating transforming growth factor-β/smad pathway

    PubMed Central

    HUANG, WEIJUAN; LI, LIN; TIAN, XIAOPENG; YAN, JINJIN; YANG, XINZHENG; WANG, XINLONG; LIAO, GUOZHEN; QIU, GENQUAN

    2015-01-01

    Previous studies have shown that Astragalus and Paeoniae Radix Rubra extract (APE) is capable of protecting against liver fibrosis in rats. The hypothesis of the present study was that APE exerts its anti-fibrotic effect by mediating the transforming growth factor β (TGF-β)/Smad signaling pathway. In order to investigate this hypothesis, a series of assays were designed to detect the effects of APE on cell proliferation, cell invasion and the activation of hepatic stellate cells (HSCs). In addition, the effects of APE on the TGF-β/Smad signaling pathway were explored, with the aim of elucidating the underlying mechanisms. HSCs were initially isolated from normal rat liver. A number of assays were then employed in order to evaluate the effects of APE on the function of these cells. Cell proliferation was investigated using an MTT assay and cell invasion was observed with the use of transwell invasion chambers. Collagen synthesis was measured with a 3H-proline incorporation assay and expression of α-smooth muscle actin was used to determine the extent of HSC activation. Protein expression induced by TGF-β1 in HSCs was investigated by western blot and immunofluorescence analyses. Plasminogen activator inhibitor type1 (PAI-1) and urokinase-type plasminogen activator (uPA) transcriptional activity was measured using reverse transcription polymerase chain reaction. The results demonstrated that APE (5–80 μg/ml) significantly inhibited fetal bovine serum-induced cell proliferation in a dose-dependent manner. Cell invasion and activation of HSCs induced by TGF-β1 were disrupted by treatment with APE in a dose-dependent manner. TGF-β1 was observed to increase the phosphorylation of Smad2/3, while APE administered at higher doses produced inhibitory effects on Smad2/3 phosphorylation. In addition, administration of APE abrogated the TGF-β1-induced reduction in Smad-7 expression in a dose-dependent manner. The results further indicated that APE treatment not only

  11. LINE-1 ORF-1p functions as a novel HGF/ETS-1 signaling pathway co-activator and promotes the growth of MDA-MB-231 cell.

    PubMed

    Yang, Qian; Feng, Fan; Zhang, Fan; Wang, Chunping; Lu, Yinying; Gao, Xudong; Zhu, Yunfeng; Yang, Yongping

    2013-12-01

    Long interspersed nucleotide element (LINE)-1 ORF-1p is encoded by the human pro-oncogene LINE-1. It is involved in the development and progression of several human carcinomas, such as hepatocellular carcinoma and lung and breast cancers. The hepatocyte growth factor (HGF)/ETS-1 signaling pathway is involved in regulation of cancer cell proliferation, metastasis and invasion. The biological function of the interaction between LINE-1 ORF-1p and the HGF/ETS-1 signaling pathway in regulation of human breast cancer proliferation remains largely unknown. Here, we showed that LINE-1 ORF-1p enhanced ETS-1 transcriptional activity and increased expression of downstream genes of ETS-1. Interaction between ETS-1 and LINE-1 ORF-1p was identified by immunoprecipitation assays. LINE-1 ORF-1p modulated ETS-1 activity through cytoplasm/nucleus translocation and recruitment to the ETS-1 binding element in the MMP1 gene promoter. We also showed that LINE-1 ORF-1p promoted proliferation and anchorage-independent growth of MDA-MB-231 breast cancer cells. By investigating a novel role of the LINE-1 ORF-1p in the HGF/ETS-1 signaling pathway and MDA-MB-231 cells, we demonstrated that LINE-1 ORF-1p may be a novel ETS-1 coactivator and molecular target for therapy of human triple negative breast cancer.

  12. Activation of prostaglandin E2-receptor EP2 and EP4 pathways induces growth inhibition in human gastric carcinoma cell lines.

    PubMed

    Okuyama, T; Ishihara, S; Sato, H; Rumi, M A K; Kawashima, K; Miyaoka, Y; Suetsugu, H; Kazumori, H; Cava, C F Ortega; Kadowaki, Y; Fukuda, R; Kinoshita, Y

    2002-08-01

    The effect of prostaglandin E2 (PGE2) on the proliferation of gastric cancer cells is still unclear. PGE2 receptors are divided into four subtypes - EP1, EP2, EP3, and EP4 - which are coupled to three different intracellular signal-transduction systems. Stimulation of EP2 and EP4 is linked with cyclic adenosine 3', 5'-monophosphate (cAMP)-dependent protein kinase A (PKA). In some human gastric cancer cells, PGE2 has been suggested to have an antiproliferative effect by way of increased cAMP production. Expression of EP2 and EP4 in human gastric carcinoma cells, however, has not been examined. We examined the expression of EP2 and EP4 and the antiproliferative effects of specific EP2 and EP4 agonists on four different human gastric cancer cell lines. Our data clarified that all the cell lines investigated in this study expressed EP2 and EP4 and that the specific agonists of these receptors induced growth inhibition with an accompanying increase in cAMP production. In summary, gastric cancer cells have EP2 and EP4 receptors, and their selective activation is linked with the decreased cell proliferation.

  13. Proepithelin Regulates Prostate Cancer Cell Biology by Promoting Cell Growth, Migration, and Anchorage-Independent Growth

    PubMed Central

    Monami, Giada; Emiliozzi, Velia; Bitto, Alessandro; Lovat, Francesca; Xu, Shi-Qiong; Goldoni, Silvia; Fassan, Matteo; Serrero, Ginette; Gomella, Leonard G.; Baffa, Raffaele; Iozzo, Renato V.; Morrione, Andrea

    2009-01-01

    The growth factor proepithelin has recently emerged as an important regulator of transformation in several physiological and pathological systems. In this study, we determined the biological roles of proepithelin in prostate cancer cells using purified human recombinant proepithelin as well as proepithelin-depletion strategies. Proepithelin promoted the migration of androgen-dependent and -independent human prostate cancer cells; androgen-independent DU145 cells were the more responsive. In these cells, proepithelin additionally stimulated wound closure, invasion, and promotion of cell growth in vitro. These effects required the activation of both the Akt and mitogen-activated protein kinase pathways. We have analyzed proepithelin expression levels in different available prostate cancer microarray studies using the Oncomine database and found a statistically significant increase in proepithelin mRNA expression levels in prostate cancers compared with nonneoplastic controls. Notably, depletion of endogenous proepithelin by siRNA and antisense strategies impaired the ability of DU145 cells to grow and migrate after serum withdrawal and inhibited anchorage-independent growth. Our results provide the first evidence for a role of proepithelin in stimulating the migration, invasion, proliferation, and anchorage-independent growth of prostate cancer cells. This study supports the hypothesis that proepithelin may play a critical role as an autocrine growth factor in the establishment and initial progression of prostate cancer. Furthermore, proepithelin may prove to be a useful clinical marker for the diagnosis of prostate tumors. PMID:19179604

  14. The cell biology of bone growth.

    PubMed

    Price, J S; Oyajobi, B O; Russell, R G

    1994-02-01

    The field of bone cell biology is clearly of relevance to the problem of stunting in children, as in the final analysis the cells of the growing long bone are the ultimate 'regulators'. It is the alterations in the functions of these cells that manifests as a reduction in height. Normal longitudinal growth is achieved by the coordinated recruitment, proliferation, differentiation, maturation and eventual death of the cells of growth plate and bone. Cellular activity is closely regulated by endocrine factors acting directly or indirectly, with factors produced locally and stored within the bone and cartilage microenvironment having a critical role in intercellular communication. Disruption of any of these processes can lead to growth disturbances, since it only requires a defect in a single gene to have profound effects. Studies in recent years have shed light on the biochemical and molecular effects of cytokines and growth factors and have shown that these regulatory molecules may mediate the effects of certain hormones important in controlling growth. However, the complex interrelationship of these molecules is still not clear. Notwithstanding, understanding of the mechanisms involved in bone remodelling is increasing, as this area attracts much research because of the high incidence of metabolic bone disease in Western society. Although studies of adult bone remodelling are of relevance, there is a requirement for increased research directed specifically at the mechanisms of endochondral ossification and its regulation. Longitudinal bone growth is a challenge to the cell biologist, since it is an accelerated cycle of cellular division and differentiation, within which it is not easy to separate events temporally and spatially. In addition, different regulatory mechanisms are probably important at different stages of growth. Another difficulty impeding progress in this field is the lack of appropriate animal models for research. Much information has come from

  15. Monocarboxylate transporter 8 in neuronal cell growth.

    PubMed

    James, S R; Franklyn, J A; Reaves, B J; Smith, V E; Chan, S Y; Barrett, T G; Kilby, M D; McCabe, C J

    2009-04-01

    Thyroid hormones are essential for the normal growth and development of the fetus, and even small alterations in maternal thyroid hormone status during early pregnancy may be associated with neurodevelopmental abnormalities in childhood. Mutations in the novel and specific thyroid hormone transporter monocarboxylate transporter 8 (MCT8) have been associated with severe neurodevelopmental impairment. However, the mechanism by which MCT8 influences neural development remains poorly defined. We have therefore investigated the effect of wild-type (WT) MCT8, and the previously reported L471P mutant, on the growth and function of human neuronal precursor NT2 cells as well as MCT8-null JEG-3 cells. HA-tagged WT MCT8 correctly localized to the plasma membrane in NT2 cells and increased T(3) uptake in both cell types. In contrast, L471P MCT8 was largely retained in the endoplasmic reticulum and displayed no T(3) transport activity. Transient overexpression of WT and mutant MCT8 proteins failed to induce endoplasmic reticular stress or apoptosis. However, MCT8 overexpression significantly repressed cell proliferation in each cell type in both the presence and absence of the active thyroid hormone T(3) and in a dose-dependent manner. In contrast, L471P MCT8 showed no such influence. Finally, small interfering RNA depletion of endogenous MCT8 resulted in increased cell survival and decreased T(3) uptake. Given that T(3) stimulated proliferation in embryonic neuronal NT2 cells, whereas MCT8 repressed cell growth, these data suggest an entirely novel role for MCT8 in addition to T(3) transport, mediated through the modulation of cell proliferation in the developing brain.

  16. Cell growth and proteolytic activity of Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus delbrueckii ssp. bulgaricus, and Streptococcus thermophilus in milk as affected by supplementation with peptide fractions.

    PubMed

    Gandhi, Akanksha; Shah, Nagendra P

    2014-12-01

    The present investigation examined the effects of supplementation of milk peptide fractions produced by enzymatic hydrolysis on the fermentation of reconstituted skim milk (RSM). Changes in pH, cell growth, proteolytic activity, and angiotensin-converting enzyme (ACE)-inhibitory activity were monitored during fermentation of RSM by pure cultures of Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus delbrueckii ssp. bulgaricus, and Streptococcus thermophilus. The study showed that supplementation with peptide fractions of different molecular weights did not significantly affect the bacterial growth in RSM. All bacteria showed an increased proteolytic activity in RSM supplemented with large peptides (>10 kDa), and L. helveticus in general exhibited the highest proteolytic activity among the bacteria studied. The ACE-inhibitory activity was observed to be the maximum in RSM supplemented with larger peptides (>10 kDa) for all bacteria. The results suggest that proteolysis by bacteria leads to increased production of ACE-inhibitory peptides compared to the supplemented peptides produced by enzymatic hydrolysis.

  17. trans activation of nerve growth factor in transgenic mice containing the human T-cell lymphotropic virus type I tax gene.

    PubMed

    Green, J E

    1991-09-01

    Three lines of transgenic mice containing the human T-cell lymphotropic virus type I (HTLV-I) tax gene develop neurofibromas composed of perineural fibroblasts (S. H. Hinrichs, M. Nerenberg, R. K. Reynolds, G. Khoury, and G. Jay, Science 237:1340-1343, 1987; M. Nerenberg, S. H. Hinrichs, R. K. Reynolds, G. Khoury, and G. Jay, Science 237:1324-1327, 1987). Tumors and tumor cell lines derived from these mice produce neurite outgrowth from PC-12 cells and nerve growth factor (NGF), as determined by RNA (Northern) blot analysis and enzyme-linked immunosorbent assays. In vitro cotransfection studies demonstrate that Tax is able to trans activate the NGF promoter in NIH 3T3 fibroblast cells. The major cis-acting tax-responsive element in the NGF promoter (AGGGTGTGACGA) has 92% homology with a tax-responsive element contained within the 21-bp repeats of the HTLV-I long terminal repeat. The receptor for NGF is also expressed in the transgenic tumor cells, suggesting that Tax may activate an autocrine mechanism through the upregulation of NGF.

  18. Depletion of hepatoma-derived growth factor-related protein-3 induces apoptotic sensitization of radioresistant A549 cells via reactive oxygen species-dependent p53 activation

    SciTech Connect

    Yun, Hong Shik; Hong, Eun-Hee; Lee, Su-Jae; Baek, Jeong-Hwa; Lee, Chang-Woo; Yim, Ji-Hye; Um, Hong-Duck; Hwang, Sang-Gu

    2013-09-27

    Highlights: •HRP-3 is a radiation- and anticancer drug-responsive protein in A549 cells. •Depletion of HRP-3 induces apoptosis of radio- and chemoresistant A549 cells. •Depletion of HRP-3 promotes ROS generation via inhibition of the Nrf2/HO-1 pathway. •Depletion of HRP-3 enhances ROS-dependent p53 activation and PUMA expression. -- Abstract: Biomarkers based on functional signaling have the potential to provide greater insight into the pathogenesis of cancer and may offer additional targets for anticancer therapeutics. Here, we identified hepatoma-derived growth factor-related protein-3 (HRP-3) as a radioresistance-related gene and characterized the molecular mechanism by which its encoded protein regulates the radio- and chemoresistant phenotype of lung cancer-derived A549 cells. Knockdown of HRP-3 promoted apoptosis of A549 cells and potentiated the apoptosis-inducing action of radio- and chemotherapy. This increase in apoptosis was associated with a substantial generation of reactive oxygen species (ROS) that was attributable to inhibition of the Nrf2/HO-1 antioxidant pathway and resulted in enhanced ROS-dependent p53 activation and p53-dependent expression of PUMA (p53 upregulated modulator of apoptosis). Therefore, the HRP-3/Nrf2/HO-1/ROS/p53/PUMA cascade is an essential feature of the A549 cell phenotype and a potential radiotherapy target, extending the range of targets in multimodal therapies against lung cancer.

  19. Rhamnogalacturonan II is a Toll-like receptor 4 agonist that inhibits tumor growth by activating dendritic cell-mediated CD8+ T cells.

    PubMed

    Park, Sung Nam; Noh, Kyung Tae; Jeong, Young-Il; Jung, In Duk; Kang, Hyun Kyu; Cha, Gil Sun; Lee, Su Jung; Seo, Jong Keun; Kang, Dae Hwan; Hwang, Tae-Ho; Lee, Eun Kyung; Kwon, Byungsuk; Park, Yeong-Min

    2013-02-08

    We evaluated the effectiveness of rhamnogalacturonan II (RG-II)-stimulated bone marrow-derived dendritic cells (BMDCs) vaccination on the induction of antitumor immunity in a mouse lymphoma model using EG7-lymphoma cells expressing ovalbumin (OVA). BMDCs treated with RG-II had an activated phenotype. RG-II induced interleukin (IL)-12, IL-1β, tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) production during dendritic cell (DC) maturation. BMDCs stimulated with RG-II facilitate the proliferation of CD8+ T cells. Using BMDCs from the mice deficient in Toll-like receptors (TLRs), we revealed that RG-II activity is dependent on TLR4. RG-II showed a preventive effect of immunization with OVA-pulsed BMDCs against EG7 lymphoma. These results suggested that RG-II expedites the DC-based immune response through the TLR4 signaling pathway.

  20. The epidermal growth factor receptor regulates cofilin activity and promotes transmissible gastroenteritis virus entry into intestinal epithelial cells

    PubMed Central

    Hu, Weiwei; Zhu, Liqi; Yang, Xing; Lin, Jian; Yang, Qian

    2016-01-01

    Transmissible gastroenteritis virus (TGEV), a coronavirus, causes severe diarrhea and high mortality in newborn piglets. The porcine intestinal epithelium is the target of TGEV infection, but the mechanisms that TGEV disrupts the actin cytoskeleton and invades the host epithelium remain largely unknown. We not only found that TGEV infection stimulates F-actin to gather at the cell membrane but the disruption of F-actin inhibits TGEV entry as well. Cofilin is involved in F-actin reorganization and TGEV entry. The TGEV spike protein is capable of binding with EGFR, activating the downstream phosphoinositide-3 kinase (PI3K), then causing the phosphorylation of cofilin and F-actin polymerization via Rac1/Cdc42 GTPases. Inhibition of EGFR and PI3K decreases the entry of TGEV. EGFR is also the upstream activator of mitogen-activated protein kinase (MAPK) signaling pathways that is involved in F-actin reorganization. Additionally, lipid rafts act as signal platforms for the EGFR-associated signaling cascade and correlate with the adhesion of TGEV. In conlusion, these results provide valuable data of the mechanisms which are responsible for the TGEV pathogenesis and may lead to the development of new methods about controlling TGEV. PMID:26933809

  1. A low-cost non-toxic post-growth activation step for CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Major, J. D.; Treharne, R. E.; Phillips, L. J.; Durose, K.

    2014-07-01

    Cadmium telluride, CdTe, is now firmly established as the basis for the market-leading thin-film solar-cell technology. With laboratory efficiencies approaching 20 per cent, the research and development targets for CdTe are to reduce the cost of power generation further to less than half a US dollar per watt (ref. 2) and to minimize the environmental impact. A central part of the manufacturing process involves doping the polycrystalline thin-film CdTe with CdCl2. This acts to form the photovoltaic junction at the CdTe/CdS interface and to passivate the grain boundaries, making it essential in achieving high device efficiencies. However, although such doping has been almost ubiquitous since the development of this processing route over 25 years ago, CdCl2 has two severe disadvantages; it is both expensive (about 30 cents per gram) and a water-soluble source of toxic cadmium ions, presenting a risk to both operators and the environment during manufacture. Here we demonstrate that solar cells prepared using MgCl2, which is non-toxic and costs less than a cent per gram, have efficiencies (around 13%) identical to those of a CdCl2-processed control group. They have similar hole densities in the active layer (9 × 1014 cm-3) and comparable impurity profiles for Cl and O, these elements being important p-type dopants for CdTe thin films. Contrary to expectation, CdCl2-processed and MgCl2-processed solar cells contain similar concentrations of Mg; this is because of Mg out-diffusion from the soda-lime glass substrates and is not disadvantageous to device performance. However, treatment with other low-cost chlorides such as NaCl, KCl and MnCl2 leads to the introduction of electrically active impurities that do compromise device performance. Our results demonstrate that CdCl2 may simply be replaced directly with MgCl2 in the existing fabrication process, thus both minimizing the environmental risk and reducing the cost of CdTe solar-cell production.

  2. Nerve growth factor enhances voltage-gated Na+ channel activity and Transwell migration in Mat-LyLu rat prostate cancer cell line.

    PubMed

    Brackenbury, William J; Djamgoz, Mustafa B A

    2007-03-01

    The highly dynamic nature of voltage-gated Na+ channel (VGSC) expression and its controlling mechanism(s) are not well understood. In this study, we investigated the possible involvement of nerve growth factor (NGF) in regulating VGSC activity in the strongly metastatic Mat-LyLu cell model of rat prostate cancer (PCa). NGF increased peak VGSC current density in a time- and dose-dependent manner. NGF also shifted voltage to peak and the half-activation voltage to more positive potentials, and produced currents with faster kinetics of activation; sensitivity to the VGSC blocker tetrodotoxin (TTX) was not affected. The NGF-induced increase in peak VGSC current density was suppressed by both the pan-trk antagonist K252a, and the protein kinase A (PKA) inhibitor KT5720. NGF did not affect the Nav1.7 mRNA level, but the total VGSC alpha-subunit protein level was upregulated. NGF potentiated the cells' migration in Transwell assays, and this was not affected by TTX. We concluded that NGF upregulated functional VGSC expression in Mat-LyLu cells, with PKA as a signaling intermediate, but enhancement of migration by NGF was independent of VGSC activity.

  3. Activation of MAPK overrides the termination of myelin growth and replaces Nrg1/ErbB3 signals during Schwann cell development and myelination

    PubMed Central

    Sheean, Maria E.; McShane, Erik; Cheret, Cyril; Walcher, Jan; Müller, Thomas; Wulf-Goldenberg, Annika; Hoelper, Soraya; Garratt, Alistair N.; Krüger, Markus; Rajewsky, Klaus; Meijer, Dies; Birchmeier, Walter; Lewin, Gary R.; Selbach, Matthias; Birchmeier, Carmen

    2014-01-01

    Myelination depends on the synthesis of large amounts of myelin transcripts and proteins and is controlled by Nrg1/ErbB/Shp2 signaling. We developed a novel pulse labeling strategy based on stable isotope labeling with amino acids in cell culture (SILAC) to measure the dynamics of myelin protein production in mice. We found that protein synthesis is dampened in the maturing postnatal peripheral nervous system, and myelination then slows down. Remarkably, sustained activation of MAPK signaling by expression of the Mek1DD allele in mice overcomes the signals that end myelination, resulting in continuous myelin growth. MAPK activation leads to minor changes in transcript levels but massively up-regulates protein production. Pharmacological interference in vivo demonstrates that the effects of activated MAPK signaling on translation are mediated by mTOR-independent mechanisms but in part also by mTOR-dependent mechanisms. Previous work demonstrated that loss of ErbB3/Shp2 signaling impairs Schwann cell development and disrupts the myelination program. We found that activated MAPK signaling strikingly compensates for the absence of ErbB3 or Shp2 during Schwann cell development and myelination. PMID:24493648

  4. A Noncanonical Autophagy Pathway Restricts Toxoplasma gondii Growth in a Strain-Specific Manner in IFN-γ-Activated Human Cells

    PubMed Central

    Selleck, Elizabeth M.; Orchard, Robert C.; Lassen, Kara G.; Beatty, Wandy L.; Xavier, Ramnik J.; Levine, Beth; Virgin, Herbert W.

    2015-01-01

    ABSTRACT A core set of autophagy proteins is required for gamma interferon (IFN-γ)-mediated clearance of Toxoplasma gondii in the mouse because of their control of several downstream effectors, including immunity-related GTPases (IRGs) and guanylate-binding proteins (GBPs). However, these effectors are absent (i.e., IRGs) from or nonessential (i.e., GBPs) in IFN-γ-activated human cells, raising the question of how these cells control parasite replication. Here, we define a novel role for ubiquitination and recruitment of autophagy adaptors in the strain-specific control of T. gondii replication in IFN-γ-activated human cells. Vacuoles containing susceptible strains of T. gondii became ubiquitinated, recruited the adaptors p62 and NDP52, and were decorated with LC3. Parasites within LC3-positive vacuoles became enclosed in multiple layers of host membranes, resulting in stunting of parasite replication. However, LC3-positive T. gondii-containing vacuoles did not fuse with endosomes and lysosomes, indicating that this process is fundamentally different from xenophagy, a form of autophagy involved in the control of intracellular bacterial pathogens. Genetic knockout of ATG16L or ATG7 reverted the membrane encapsulation and restored parasite replication, indicating that core autophagy proteins involved in LC3 conjugation are important in the control of parasite growth. Despite a role for the core autophagy machinery in this process, upstream activation through Beclin 1 was not sufficient to enhance the ubiquitination of T. gondii-containing vacuoles, suggesting a lack of reliance on canonical autophagy. These findings demonstrate a new mechanism for IFN-γ-dependent control of T. gondii in human cells that depends on ubiquitination and core autophagy proteins that mediate membrane engulfment and restricted growth. PMID:26350966

  5. Homozygous deletion of ATC1 and NTC1 genes in Candida parapsilosis abolishes trehalase activity and affects cell growth, sugar metabolism, stress resistance, infectivity and biofilm formation.

    PubMed

    Sánchez-Fresneda, Ruth; Guirao-Abad, José P; Martinez-Esparza, María; Maicas, Sergi; Valentín, Eulogio; Argüelles, Juan-Carlos

    2015-12-01

    A double homozygous atc1Δ/atc1Δ/ntc1Δ/ntc1Δ mutant (atc1Δ/ntc1Δ KO) was constructed in the pathogen opportunistic yeast Candida parapsilosis by disruption of the two chromosomal alleles coding for NTC1 gene (encoding a neutral trehalase) in a Cpatc1Δ/atc1Δ background (atc1Δ KO strain, deficient in acid trehalase). The Cpatc1Δ/ntc1Δ KO mutant failed to counteract the inability of Cpatc1Δ cells to metabolize exogenous trehalose and showed a similar growth pattern on several monosaccharides and disaccharides. However, upon prolonged incubation in either rich medium (YPD) or nutrient-starved medium the viability of Cpatc1Δ cells exhibited a sensitive phenotype, which was augmented by further CpNTC1/NTC1 disruption. Furthermore, Cpatc1Δ/ntc1Δ KO cells had difficulty in resuming active growth in fresh YPD. This homozygous mutant also lacked any in vitro measurable trehalase activity, whether acid or neutral, suggesting that a single gene codes for each enzyme. By contrast, in Cpatc1Δ/ntc1Δ KO strain the resistance to oxidative and heat stress displayed by atc1Δ mutant was suppressed. Cpatc1Δ/ntc1Δ KO cells showed a significant decrease in virulence as well as in the capacity to form biofilms. These results point to a major role for acid trehalase (Atc1p) in the pathobiology of C. parapsilosis, whereas the activity of neutral trehalase can only partially counteract Atc1p deficiency. They also support the use of ATC1 and NTC1 genes as interesting antifungal targets.

  6. Cyclooxygenase-2 induction and prostaglandin E2 accumulation in squamous cell carcinoma as a consequence of epidermal growth factor receptor activation by imatinib mesylate.

    PubMed

    Johnson, Faye M; Yang, Peiying; Newman, Robert A; Donato, Nicholas J

    2004-12-01

    Imatinib mesylate is a novel anti-tumor agent useful in the clinical management of chronic myelogenous leukemia and gastrointestinal stromal tumors with minimal toxicity relative to other forms of cancer therapy. Its clinical activity and minimal toxicity are related to specific inhibition of cellular targets including BCR-ABL, platelet-derived growth factor receptor and c-kit kinases, resulting in the collapse of downstream signaling cascades important for transformation. In some patients, unexpected toxicities arise that are not associated with inhibition of any known cellular imatinib target. In this report, we investigated the effects of imatinib on squamous carcinoma cell signaling. Imatinib induced expression of COX-2 in a dose-dependent manner with concomitant accumulation of prostaglandin E2. COX-2 induction by imatinib was initiated through epidermal growth factor (EGF) receptor kinase activation and downstream signaling through mitogenic-activated protein kinase. COX-2 induction by imatinib was blocked by MEK1 or EGF receptor inhibition. Imatinib did not activate stressor cytokine-signaling pathways (p38 kinase, nuclear factor-kB nuclear translocation) or affect COX-1 expression. Imatinib failed to activate EGF receptor signals in other tumor types, suggesting that COX-2 induction in imatinib-treated cells is mediated through release of autocrine factors expressed or activated in squamous tumors. COX-2 induction by imatinib in squamous tumors derived from the head and neck region is unique with respect to other target-specific agents and may represent one of the unintended toxic effects of imatinib described in some patients.

  7. Cumulin, an Oocyte-secreted Heterodimer of the Transforming Growth Factor-β Family, Is a Potent Activator of Granulosa Cells and Improves Oocyte Quality*

    PubMed Central

    Mottershead, David G.; Sugimura, Satoshi; Al-Musawi, Sara L.; Li, Jing-Jie; Richani, Dulama; White, Melissa A.; Martin, Georgia A.; Trotta, Andrew P.; Ritter, Lesley J.; Shi, Junyan; Mueller, Thomas D.; Harrison, Craig A.; Gilchrist, Robert B.

    2015-01-01

    Growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) are oocyte-specific growth factors with central roles in mammalian reproduction, regulating species-specific fecundity, ovarian follicular somatic cell differentiation, and oocyte quality. In the human, GDF9 is produced in a latent form, the mechanism of activation being an open question. Here, we produced a range of recombinant GDF9 and BMP15 variants, examined their in silico and physical interactions and their effects on ovarian granulosa cells (GC) and oocytes. We found that the potent synergistic actions of GDF9 and BMP15 on GC can be attributed to the formation of a heterodimer, which we have termed cumulin. Structural modeling of cumulin revealed a dimerization interface identical to homodimeric GDF9 and BMP15, indicating likely formation of a stable complex. This was confirmed by generation of recombinant heterodimeric complexes of pro/mature domains (pro-cumulin) and covalent mature domains (cumulin). Both pro-cumulin and cumulin exhibited highly potent bioactivity on GC, activating both SMAD2/3 and SMAD1/5/8 signaling pathways and promoting proliferation and expression of a set of genes associated with oocyte-regulated GC differentiation. Cumulin was more potent than pro-cumulin, pro-GDF9, pro-BMP15, or the two combined on GC. However, on cumulus-oocyte complexes, pro-cumulin was more effective than all other growth factors at notably improving oocyte quality as assessed by subsequent day 7 embryo development. Our results support a model of activation for human GDF9 dependent on cumulin formation through heterodimerization with BMP15. Oocyte-secreted cumulin is likely to be a central regulator of fertility in mono-ovular mammals. PMID:26254468

  8. Triiodothyronine regulates cell growth and survival in renal cell cancer.

    PubMed

    Czarnecka, Anna M; Matak, Damian; Szymanski, Lukasz; Czarnecka, Karolina H; Lewicki, Slawomir; Zdanowski, Robert; Brzezianska-Lasota, Ewa; Szczylik, Cezary

    2016-10-01

    Triiodothyronine plays an important role in the regulation of kidney cell growth, differentiation and metabolism. Patients with renal cell cancer who develop hypothyreosis during tyrosine kinase inhibitor (TKI) treatment have statistically longer survival. In this study, we developed cell based model of triiodothyronine (T3) analysis in RCC and we show the different effects of T3 on renal cell cancer (RCC) cell growth response and expression of the thyroid hormone receptor in human renal cell cancer cell lines from primary and metastatic tumors along with human kidney cancer stem cells. Wild-type thyroid hormone receptor is ubiquitously expressed in human renal cancer cell lines, but normalized against healthy renal proximal tube cell expression its level is upregulated in Caki-2, RCC6, SKRC-42, SKRC-45 cell lines. On the contrary the mRNA level in the 769-P, ACHN, HKCSC, and HEK293 cells is significantly decreased. The TRβ protein was abundant in the cytoplasm of the 786-O, Caki-2, RCC6, and SKRC-45 cells and in the nucleus of SKRC-42, ACHN, 769-P and cancer stem cells. T3 has promoting effect on the cell proliferation of HKCSC, Caki-2, ASE, ACHN, SK-RC-42, SMKT-R2, Caki-1, 786-0, and SK-RC-45 cells. Tyrosine kinase inhibitor, sunitinib, directly inhibits proliferation of RCC cells, while thyroid hormone receptor antagonist 1-850 (CAS 251310‑57-3) has less significant inhibitory impact. T3 stimulation does not abrogate inhibitory effect of sunitinib. Renal cancer tumor cells hypostimulated with T3 may be more responsive to tyrosine kinase inhibition. Moreover, some tumors may be considered as T3-independent and present aggressive phenotype with thyroid hormone receptor activated independently from the ligand. On the contrary proliferation induced by deregulated VHL and or c-Met pathways may transgress normal T3 mediated regulation of the cell cycle.

  9. Oxidatively modified LDL contains phospholipids with platelet-activating factor-like activity and stimulates the growth of smooth muscle cells.

    PubMed Central

    Heery, J M; Kozak, M; Stafforini, D M; Jones, D A; Zimmerman, G A; McIntyre, T M; Prescott, S M

    1995-01-01

    Oxidative modification of lipoproteins is believed to be important in the genesis of atherosclerosis. We established cultures of smooth muscle cells (SMC) and exposed them to native LDL or oxidized LDL. Oxidized LDL, but not native LDL, was mitogenic as measured by incorporation of [3H]-thymidine into DNA. This effect was concentration dependent, averaged 288% of control, and was blocked by a platelet-activating factor (PAF) receptor antagonist. We hypothesized that phospholipids with PAF-like activity were generated during the oxidation of LDL. To test this hypothesis we extracted phospholipids from copper-oxidized LDL and assayed for PAF-like activity. Phospholipids extracted from oxidized LDL and purified by HPLC induced neutrophil adhesion equivalent to PAF (10 nM) and were mitogenic for smooth muscle cells. These effects were not seen with phospholipids extracted from native LDL and were blocked by two structurally different, competitive antagonists of the PAF receptor. The effects of these lipids were also abolished by pretreating them with PAF acetylhydrolase. Finally, we used Chinese hamster ovary cells that had seen stably transfected with a cDNA for the PAF receptor to confirm that phospholipids from oxidized LDL act via this receptor. We found that PAF (control) and the oxidized phospholipids each induced release of arachidonic acid from the transfected cells, but had no effect on wildtype Chinese hamster ovary cells, which lack the PAF receptor. This effect was also blocked by a PAF receptor antagonist. Thus, phospholipids generated during oxidative modification of LDL may participate in atherosclerosis by stimulating SMC proliferation and leukocyte activation. Images PMID:7593619

  10. Transcriptional activation of insulin-like growth factor binding protein 6 by 17beta-estradiol in SaOS-2 cells.

    PubMed

    Zhao, Yu-yan; Guo, Lei; Zhao, Xiao-juan; Liu, Hong; Lei, Tian; Ma, Dong-jie; Gao, Xiao-yu

    2009-07-31

    Osteoblasts can synthesize the insulin-like growth factors (IGFs) and the IGF-binding proteins (IGFBPs), which may either enhance or attenuate IGF-stimulated bone cell proliferation. Since estrogen induced osteoblastic differentiation and proliferation through an estrogen-responsive gene in target cells, we investigated the effects of estrogen on IGFBP-6 expression in the human osteoblastic-like cell line SaOS-2. Expressions of IGFBP-6 protein and mRNA increased 2.8 and 2-fold, respectively, in the presence of 17-beta-estradiol (E2) (0.01 to 1 micronM) and estrogen receptor (ER) in SaOS-2 cells. On the other hand, E2 induced a 2-fold increase in SaOS-2 cell proliferation. To identify genomic sequences associated with estrogen responsiveness, the 5'-promoter region (-44 to +118) of the IGFBP-6 gene was cloned into a chloramphenicol acetyltransferase (CAT) reporter vector. E2 induced a 3-fold increase in CAT activity in SaOS-2 cells transiently transfected with this construct. Identification of the estrogen-responsive element (ERE) [5-CCTTCA CCTG-3] (-9 to +1) in this IGFBP-6 gene promoter region was confirmed using electromobility shift assays and deletion analysis. This functional ERE was important for E2-induced trans-activation of the IGFBP-6 gene. These results demonstrate that E2 exhibits a positive effect on IGFBP-6 gene transcription through estrogen-liganded ER binding to the functional ERE in the IGFBP-6 gene promoter in SaOS-2 cells.

  11. QTLs for cell wall-bound phenolics in relation to the photosynthetic apparatus activity and leaf water status under drought stress at different growth stages of triticale.

    PubMed

    Hura, Tomasz; Tyrka, Mirosław; Hura, Katarzyna; Ostrowska, Agnieszka; Dziurka, Kinga

    2017-04-01

    The present study aimed at identifying the regions of triticale genome responsible for cell wall saturation with phenolic compounds under drought stress during vegetative and generative growth. Moreover, the loci determining the activity of the photosynthetic apparatus, leaf water content (LWC) and osmotic potential (Ψ o) were identified, as leaf hydration and functioning of the photosynthetic apparatus under drought are associated with the content of cell wall-bound phenolics (CWPh). Compared with LWC and Ψ o, CWPh fluctuations were more strongly associated with changes in chlorophyll fluorescence. At the vegetative stage, CWPh fluctuations were due to the activity of three loci, of which only QCWPh.4B was also related to changes in F v/F m and ABS/CSm. In the other QTLs (QCWPh.6R.2 and QCWPh.6R.3), the genes of these loci determined also the changes in majority of chlorophyll fluorescence parameters. At the generative stage, the changes in CWPh in loci QCWPh.4B, QCWPh.3R and QCWPh.6R.1 corresponded to those in DIo/CSm. The locus QCWPh.6R.3, active at V stage, controlled majority of chlorophyll fluorescence parameters. This is the first study on mapping quantitative traits in triticale plants exposed to drought at different stages of development, and the first to present the loci for cell wall-bound phenolics.

  12. Nod-like receptor protein 3 inflammasome activation by Escherichia coli RNA induces transforming growth factor beta 1 secretion in hepatic stellate cells

    PubMed Central

    Wang, Hui; Liu, Shu; Wang, Ying; Chang, Bing; Wang, Bingyuan

    2016-01-01

    Nod-like receptor protein 3 (NLRP3) inflammasome has been implicated in alcoholic liver disease. Chronic alcohol consumption enhances gut permeability and causes microbial translocation. The present study explored the activation of the NLRP3 inflammasome by Escherichia coli RNA in hepatic stellate cells (HSCs), and the potential role of NLRP3 inflammasome in hepatic fibrosis. E. coli RNA transfection induced HSC-T6 cells to secrete and express mature interleukin-1 beta (IL-1β), which was abolished by NLRP3 siRNA pretreatment. In addition, E. coli RNA transfection enhanced caspase-1 expression, whereas reduced caspase-1 precursor (pro-caspase-1) expression. E. coli RNA-stimulated transforming growth factor beta 1 (TGF-β1) overproduction in HSC-T6 cells, which was blocked by recombinant IL-1 receptor antagonist (rIL-1Ra) or nuclear factor κB inhibitor BAY 11-7082. Furthermore, E. coli RNA-induced overexpression of pro-fibrogenic factors was suppressed by rIL-1Ra or TGF-β receptor inhibitor A83-01. These results demonstrate that E. coli RNA can stimulate NLRP3 inflammasome activation, which leads to excessive production of pro-fibrogenic factors, suggesting that NLRP3 inflammasome activation in HSCs may play a role in hepatic fibrosis. PMID:26773180

  13. Synergistic anti-proliferative and pro-apoptotic activity of combined therapy with bortezomib, a proteasome inhibitor, with anti-epidermal growth factor receptor (EGFR) drugs in human cancer cells.

    PubMed

    Cascone, Tina; Morelli, Maria Pia; Morgillo, Floriana; Kim, Woo-Young; Rodolico, Gabriella; Pepe, Stefano; Tortora, Giampaolo; Berrino, Liberato; Lee, Ho-Young; Heymach, John V; Ciardiello, Fortunato

    2008-09-01

    The proteasome plays a pivotal role in the turnover of regulatory transduction proteins induced by activated cell membrane growth factor receptors. The epidermal growth factor receptor (EGFR) pathway is crucial in the development and progression of human epithelial cancers. Proteasome inhibition may sensitize human cancer cell lines to EGFR inhibitors. We investigated the growth inhibitory and pro-apoptotic effects of the proteasome inhibitor bortezomib in combination with anti-EGFR drugs, such as gefitinib, vandetanib, and cetuximab in EGFR-expressing human cancer cell lines. Bortezomib determined dose-dependent growth inhibition in a nine cancer cell line panel (IC(50) values, range 6-42 nM). A significant synergistic growth inhibitory effect was observed with the combination of bortezomib and each EGFR inhibitor in all cell lines (combination index, CI, range 0.10-0.55), which was accompanied by a significant induction in apoptosis by the combined treatment with bortezomib, cetuximab and vandetanib. In HCT-116 colon cancer and A549 lung adenocarcinoma cells, bortezomib plus EGFR inhibitor treatment induced a more effective inhibition of EGFR-activated down-stream signals, including a marked suppression in activated, phosphorylated Akt (P-Akt). In contrast, overexpression of a constitutively active P-Akt protected A549 cells by cell growth inhibition and apoptosis following treatment with bortezomib and EGFR inhibitors. The combined treatment with bortezomib and EGFR inhibitors has a synergistic growth inhibitory and pro-apoptotic activity in different human cancer cells which possess a functional EGFR-dependent autocrine growth pathway through to a more efficient and sustained inhibition of Akt.

  14. Silibinin and its 2,3-dehydro-derivative inhibit basal cell carcinoma growth via suppression of mitogenic signaling and transcription factors activation.

    PubMed

    Tilley, Cynthia; Deep, Gagan; Agarwal, Chapla; Wempe, Michael F; Biedermann, David; Valentová, Kateřina; Kren, Vladimir; Agarwal, Rajesh

    2016-01-01

    Basal cell carcinoma (BCC) is the most common cancer worldwide, and its current treatment options are insufficient and toxic. Surprisingly, unlike several other malignancies, chemopreventive efforts against BCC are almost lacking. Silibinin, a natural agent from milk thistle seeds, has shown strong efficacy against several cancers including ultraviolet radiation-induced skin (squamous) cancer; however, its potential activity against BCC is not yet examined. Herein, for the first time, we report the efficacy of silibinin and its oxidation product 2,3-dehydrosilibinin (DHS) against BCC both in vitro and in vivo using ASZ (p53 mutated) and BSZ (p53 deleted) cell lines derived from murine BCC tumors. Both silibinin and DHS significantly inhibited cell growth and clonogenicity while inducing apoptosis in a dose- and time-dependent manner, with DHS showing higher activity at lower concentrations. Both agents also inhibited the mitogenic signaling by reducing EGFR, ERK1/2, Akt, and STAT3 phosphorylation and suppressed the activation of transcription factors NF-κB and AP-1. More importantly, in an ectopic allograft model, oral administration of silibinin and DHS (200 mg/kg body weight) strongly inhibited the ASZ tumor growth by 44% and 71% (P < 0.05), respectively, and decreased the expression of proliferation biomarkers (PCNA and cyclin D1) as well as NF-κB p50 and c-Fos in the tumor tissues. Taken together, these results provide the first evidence for the efficacy and usefulness of silibinin and its derivative DHS against BCC, and suggest the need for additional studies with these agents in pre-clinical and clinical BCC chemoprevention and therapy models.

  15. Dacarbazine-mediated upregulation of NKG2D ligands on tumor cells activates NK and CD8 T cells and restrains melanoma growth.

    PubMed

    Hervieu, Alice; Rébé, Cédric; Végran, Frédérique; Chalmin, Fanny; Bruchard, Mélanie; Vabres, Pierre; Apetoh, Lionel; Ghiringhelli, François; Mignot, Grégoire

    2013-02-01

    Dacarbazine (DTIC) is a cytotoxic drug widely used for melanoma treatment. However, the putative contribution of anticancer immune responses in the efficacy of DTIC has not been evaluated. By testing how DTIC affects host immune responses to cancer in a mouse model of melanoma, we unexpectedly found that both natural killer (NK) and CD8(+) T cells were indispensable for DTIC therapeutic effect. Although DTIC did not directly affect immune cells, it triggered the upregulation of NKG2D ligands on tumor cells, leading to NK cell activation and IFNγ secretion in mice and humans. NK cell-derived IFNγ subsequently favored upregulation of major histocompatibility complex class I molecules on tumor cells, rendering them sensitive to cytotoxic CD8(+) T cells. Accordingly, DTIC markedly enhanced cytotoxic T lymphocyte antigen 4 inhibition efficacy in vivo in an NK-dependent manner. These results underscore the immunogenic properties of DTIC and provide a rationale to combine DTIC with immunotherapeutic agents that relieve immunosuppression in vivo.

  16. Comparative study of the growth-inhibitory and apoptosis-inducing activities of black tea theaflavins and green tea catechin on murine myeloid leukemia cells.

    PubMed

    Lung, Hong-Lok; Ip, Wai-Ki; Chen, Zhen-Yu; Mak, Nai-Ki; Leung, Kwok-Nam

    2004-03-01

    Among the black tea polyphenols, theaflavins are generally considered to be the more effective components for the inhibition of carcinogenesis. In this study, we attempted to compare the growth-inhibitory and apoptosis-inducing activities of the four black tea theaflavins (TF-1, TF-2A, TF-2B and TF-3) with the major green tea catechin epigallocatechin-3-gallate (EGCG) on the murine myeloid leukemia WEHI-3B JCS cells. All the four black tea theaflavins were shown to exert potent anti-proliferative and cytotoxic effects on the leukemia WEHI-3B JCS cells in a dose-dependent manner. The observed anti-proliferative and cytotoxic effects were in the following order of potency: EGCG > TF-2B > TF-3 > TF-2A > TF-1. In addition, all theaflavins were capable of inducing apoptosis in the leukemia WEHI-3B JCS cells. Among the four theaflavins tested, TF-2B and TF-3 were found to be slightly more potent in inducing apoptosis of the WEHI-3B JCS cells than that of TF-2A and TF-1 but were comparable to the major green tea epicatechin EGCG. More interestingly, both TF-2B and TF-3 were found to be much more effective than TF-1 and TF-2B in reducing both the in vitro clonogenicity and in vivo tumorigenicity of the WEHI-3B JCS cells, suggesting that these two black tea theaflavins might represent potential candidates for the treatment of some forms of leukemia.

  17. Exogenous hydrogen sulfide promotes C6 glioma cell growth through activation of the p38 MAPK/ERK1/2-COX-2 pathways.

    PubMed

    Zhen, Yulan; Zhang, Wei; Liu, Chujie; He, Jing; Lu, Yun; Guo, Ruixian; Feng, Jianqiang; Zhang, Ying; Chen, Jingfu

    2015-11-01

    Hydrogen sulfide (H2S) participates in multifarious physiological and pathophysiologic progresses of cancer both in vitro and in vivo. We have previously demonstrated that exogenous H2S promoted liver cancer cells proliferation/anti‑apoptosis/angiogenesis/migration effects via amplifying the activation of NF-κB pathway. However, the effects of H2S on cancer cell proliferation and apoptosis are controversial and remain unclear in C6 glioma cells. The present study investigated the effects of exogenous H2S on cancer cells growth via activating p38 MAPK/ERK1/2-COX-2 pathways in C6 glioma cells. C6 glioma cells were treated with 400 µmol/l NaHS (a donor of H2S) for 24 h. The expression levels of phosphorylated (p)-p38 MAPK, total (t)-p38 MAPK, p-ERK1/2, t-ERK1/2, cyclooxygenase-2 (COX-2) and caspase-3 were measured by western blotting assay. Cell viability was detected by Cell Counting Kit-8 (CCK-8). Apoptotic cells were observed by Hoechst 33258 staining assay. Cell proliferation was directly detected under fully automatic inverted microscope. Exposure of C6 glioma cells to NaHS resulted in cell proliferation, as evidenced by an increase in cell viability. In addition, NaHS treatment reduced apoptosis, as indicated by the decreased apoptotic percentage and the cleaved caspase-3 expression. Importantly, exposure of the cells to NaHS increased the expression levels of p-p38 MAPK, p-ERK1/2 and COX-2. Notably, co-treatment of C6 glioma cells with 400 µmol/l NaHS and AOAA (an inhibitor of CBS) largely suppressed the above NaHS-induced effects. Combined treatment with NaHS and SB203580 (an inhibitor of p38 MAPK) or PD-98059 (an inhibitor of ERK1/2) resulted in the synergistic reduction of COX-2 expression and increase of caspase-3 expression, a decreased number of apoptotic cells, along with decreased cell viability. Combined treatment with NS-398 (an inhibitor of COX-2) and NaHS also resulted in the synergistic increase of caspase-3, a decreased in the

  18. Selective blockade of cancer cell proliferation and anchorage-independent growth by Plk1 activity-dependent suicidal inhibition of its polo-box domain.

    PubMed

    Park, Jung-Eun; Kim, Tae-Sung; Kim, Bo Yeon; Lee, Kyung S

    2015-01-01

    Polo-like kinase 1 (Plk1) plays a critical role in proper M-phase progression and cell proliferation. Plk1 is overexpressed in a broad spectrum of human cancers and is considered an attractive anticancer drug target. Although a large number of inhibitors targeting the catalytic domain of Plk1 have been developed, these inhibitors commonly exhibit a substantial level of cross-reactivity with other structurally related kinases, thus narrowing their applicable dose for patient treatment. Plk1 contains a C-terminal polo-box domain (PBD) that is essentially required for interacting with its binding targets. However, largely due to the lack of both specific and membrane-permeable inhibitors, whether PBD serves as an alternative target for the development of anticancer therapeutics has not been rigorously examined. Here, we used an intracellularly expressed 29-mer-long PBIP1-derived peptide (i.e., PBIPtide), which can be converted into a "suicidal" PBD inhibitor via Plk1-dependent self-priming and binding. Using this highly specific and potent system, we showed that Plk1 PBD inhibition alone is sufficient for inducing mitotic arrest and apoptotic cell death in cancer cells but not in normal cells, and that cancer cell-selective killing can occur regardless of the presence or absence of oncogenic RAS mutation. Intriguingly, PBD inhibition also effectively prevented anchorage-independent growth of malignant cancer cells. Thus, targeting PBD represents an appealing strategy for anti-Plk1 inhibitor development. Additionally, PBD inhibition-induced cancer cell-selective killing may not simply stem from activated RAS alone but, rather, from multiple altered biochemical and physiological mechanisms, which may have collectively contributed to Plk1 addiction in cancer cells.

  19. Molecular Mechanisms Underlying the Antitumor Activity of 3-Aminopropanamide Irreversible Inhibitors of the Epidermal Growth Factor Receptor in Non-Small Cell Lung Cancer1 2

    PubMed Central

    Galvani, Elena; Giovannetti, Elisa; Saccani, Francesca; Cavazzoni, Andrea; Leon, Leticia G; Dekker, Henk; Alfieri, Roberta; Carmi, Caterina; Mor, Marco; Ardizzoni, Andrea; Petronini, Pier Giorgio; Peters, Godefridus J

    2013-01-01

    Overcoming the emergence of acquired resistance to clinically approved epidermal growth factor receptor (EGFR) inhibitors is a major challenge in the treatment of advanced non-small cell lung cancer (NSCLC). The aim of this study was to investigate the effects of a series of novel compounds affecting viability of NSCLC NCI-H1975 cells (carrying the EGFR T790M mutation). The inhibition of the autophosphorylation of EGFR occurred at nanomolar concentrations and both UPR1282 and UPR1268 caused a significant induction of apoptosis. Targeting of EGFR and downstream pathways was confirmed by a peptide substrate array, which highlighted the inhibition of other kinases involved in NSCLC cell aggressive behavior. Accordingly, the drugs inhibited migration (about 30% vs. control), which could be, in part, explained also by the increase of E-cadherin expression. Additionally, we observed a contraction of the volume of H1975 spheroids, associated with the reduction of the cancer stem-like cell hallmark CD133. The activity of UPR1282 was retained in H1975 xenograft models where it determined tumor shrinkage (P < .05) and resulted well tolerated compared to canertinib. Of note, the kinase activity profile of UPR1282 on xenograft tumor tissues showed overlapping results with respect to the activity in H1975 cells, unraveling the inhibition of kinases involved in pivotal proliferation and invasive signaling pathways. In conclusion, UPR1282 and UPR1268 are effective against various processes involved in malignancy transformation and progression and may be promising compounds for the future treatment of gefitinib-resistant NSCLCs. PMID:23359111

  20. The cell-penetrating peptide domain from human heparin-binding epidermal growth factor-like growth factor (HB-EGF) has anti-inflammatory activity in vitro and in vivo

    SciTech Connect

    Lee, Jue-Yeon; Seo, Yoo-Na; Park, Hyun-Jung; Park, Yoon-Jeong; Chung, Chong-Pyoung

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer HBP sequence identified from HB-EGF has cell penetration activity. Black-Right-Pointing-Pointer HBP inhibits the NF-{kappa}B dependent inflammatory responses. Black-Right-Pointing-Pointer HBP directly blocks phosphorylation and degradation of I{kappa}B{alpha}. Black-Right-Pointing-Pointer HBP inhibits nuclear translocation of NF-{kappa}B p65 subunit. -- Abstract: A heparin-binding peptide (HBP) sequence from human heparin-binding epidermal growth factor-like growth factor (HB-EGF) was identified and was shown to exhibit cell penetration activity. This cell penetration induced an anti-inflammatory reaction in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. HBP penetrated the cell membrane during the 10 min treatment and reduced the LPS-induced production of nitric oxide (NO), inducible nitric oxide synthase (iNOS), and cytokines (TNF-{alpha} and IL-6) in a concentration-dependent manner. Additionally, HBP inhibited the LPS-induced upregulation of cytokines, including TNF-{alpha} and IL-6, and decreased the interstitial infiltration of polymorphonuclear leukocytes in a lung inflammation model. HBP inhibited NF-{kappa}B-dependent inflammatory responses by directly blocking the phosphorylation and degradation of I{kappa}B{alpha} and by subsequently inhibiting the nuclear translocation of the p65 subunit of NF-{kappa}B. Taken together, this novel HBP may be potentially useful candidate for anti-inflammatory treatments and can be combined with other drugs of interest to transport attached molecules into cells.

  1. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    SciTech Connect

    Varga, Nora; Vereb, Zoltan; Rajnavoelgyi, Eva; Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs; Apati, Agota

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  2. Insulin-like growth factor I activates the invasion suppressor function of E-cadherin in MCF-7 human mammary carcinoma cells in vitro.

    PubMed Central

    Bracke, M. E.; Vyncke, B. M.; Bruyneel, E. A.; Vermeulen, S. J.; De Bruyne, G. K.; Van Larebeke, N. A.; Vleminckx, K.; Van Roy, F. M.; Mareel, M. M.

    1993-01-01

    The calcium-dependent cell-cell adhesion molecule E-cadherin has been shown to counteract invasion of epithelial neoplastic cells. Using three monoclonal antibodies, we have demonstrated the presence of E-cadherin at the surface of human MCF-7/6 mammary carcinoma cells by indirect immunofluorescence coupled to flow cytometry and by immunocytochemistry. Nevertheless, MCF-7/6 cells failed to aggregate in a medium containing 1.25 mM CaCl2, and they were invasive after confrontation with embryonic chick heart fragments in organ culture. Treatment of MCF-7/6 cells with 0.5 microgram ml-1 insulin-like growth factor I (IGF-I) led to homotypic aggregation within 5 to 10 min and inhibited invasion in vitro during at least 8 days. The effect of IGF-I on cellular aggregation was insensitive to cycloheximide. However, monoclonal antibodies that interfered with the function of either the IGF-I receptor (alpha IR3) or E-cadherin (HECD-1, MB2) blocked the effect of IGF-I on aggregation. The effects of IGF-I on aggregation and on invasion could be mimicked by 1 microgram ml-1 insulin, but not by 0.5 microgram ml-1 IGF-II. The insulin effects were presumably not mediated by the IGF-I receptor, since they could not be blocked by an antibody against this receptor (alpha IR3). Our results indicate that IGF-I activates the invasion suppressor role of E-cadherin in MCF-7/6 cells. Images Figure 1 Figure 3 Figure 4 Figure 7 Figure 8 Figure 10 PMID:8347483

  3. Analysis of thymic stromal cell subpopulations grown in vitro on extracellular matrix in defined medium. III. Growth conditions of human thymic epithelial cells and immunomodulatory activities in their culture supernatant.

    PubMed Central

    Schreiber, L; Eshel, I; Meilin, A; Sharabi, Y; Shoham, J

    1991-01-01

    We report here on a new approach to the cultivation of human thymic epithelial (HTE) cells, which apparently allows more faithful preservation of cell function. This approach, previously developed by us for mouse thymic epithelial (MTE) cells, is based on the use of culture plates coated with extracellular matrix (ECM), and on the use of serum-free, growth factor-supplemented medium. The nutritional requirements of HTE and MTE are somewhat different. Although both are critically dependent on ECM and insulin, they differ in their dependency on other growth factors: selenium and transferrin are much more important for HTE cells, whereas epidermal growth factor and hydrocortisone play a more essential role in MTE cultures. The epithelial nature of the cultured cells is indicated by positive staining with anti-keratin antibodies and by the presence of desmosomes and tonofilaments. The ultrastructural appearance of the cells further suggests high metabolic and secretory activities, not usually found in corresponding cell lines. The culture supernatant (CS) of HTE cells exhibited a strong enhancing effect on thymocyte response to Con A stimulation, as measured by cell proliferation and lymphokine production. The effect was observed on both human and mouse thymocytes, but was much stronger in the homologous combination. Thymic factors tested in parallel did not have such a differential effect. The dose-effect relationships were in the form of a bell-shaped curve, with fivefold enhancement of response at the peak and a measurable effect even with 1:1000 dilution, when human thymocytes were used. The responding thymocytes were those which do not bind peanut agglutinin and are resistant to hydrocortisone. The culture system described here may have advantages for the in vitro study of thymic stromal cell function. Images Figure 1 Figure 3 Figure 4 PMID:1783421

  4. Fe(III) and Fe(II) ions different effects on Enterococcus hirae cell growth and membrane-associated ATPase activity

    SciTech Connect

    Vardanyan, Zaruhi; Trchounian, Armen

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Fe{sup 3+} stimulates but Fe{sup 2+} suppresses Enterococcus hirae wild-type and atpD mutant growth. Black-Right-Pointing-Pointer Fe ions change oxidation-reduction potential drop during cell growth. Black-Right-Pointing-Pointer Fe{sup 3+} and Fe{sup 2+} have opposite effects on a membrane-associated ATPase activity. Black-Right-Pointing-Pointer These effects are either in the presence of F{sub 0}F{sub 1} inhibitor or non-functional F{sub 0}F{sub 1}. Black-Right-Pointing-Pointer Fe ions decrease protons and coupled potassium ions fluxes across the membrane. -- Abstract: Enterococcus hirae is able to grow under anaerobic conditions during glucose fermentation (pH 8.0) which is accompanied by acidification of the medium and drop in its oxidation-reduction potential (E{sub h}) from positive values to negative ones (down to {approx}-200 mV). In this study, iron (III) ions (Fe{sup 3+}) have been shown to affect bacterial growth in a concentration-dependent manner (within the range of 0.05-2 mM) by decreasing lag phase duration and increasing specific growth rate. While iron(II) ions (Fe{sup 2+}) had opposite effects which were reflected by suppressing bacterial growth. These ions also affected the changes in E{sub h} values during bacterial growth. It was revealed that ATPase activity with and without N,N Prime -dicyclohexylcarbodiimide (DCCD), an inhibitor of the F{sub 0}F{sub 1}-ATPase, increased in the presence of even low Fe{sup 3+} concentration (0.05 mM) but decreased in the presence of Fe{sup 2+}. It was established that Fe{sup 3+} and Fe{sup 2+} both significantly inhibited the proton-potassium exchange of bacteria, but stronger effects were in the case of Fe{sup 2+} with DCCD. Such results were observed with both wild-type ATCC9790 and atpD mutant (with defective F{sub 0}F{sub 1}) MS116 strains but they were different with Fe{sup 3+} and Fe{sup 2+}. It is suggested that the effects of Fe{sup 3+} might be due to

  5. Dihydroartemisinin inhibits vascular endothelial growth factor-induced endothelial cell migration by a p38 mitogen-activated protein kinase-independent pathway.

    PubMed

    Guo, Ling; Dong, Fengyun; Hou, Yinglong; Cai, Weidong; Zhou, Xia; Huang, Ai-Ling; Yang, Min; Allen, Thaddeus D; Liu, Ju

    2014-12-01

    Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin, has been demonstrated to possess a strong antiangiogenic activity. However, the molecular mechanisms underlying this effect remain unclear. Endothelial cell (EC) migration is an essential component of angiogenesis, and the p38 mitogen-activated protein kinase (MAPK) signaling pathway plays a key role in the regulation of migration induced by vascular endothelial growth factor (VEGF). The aim of the present study was to investigate the effects of DHA on EC migration and the p38 MAPK signaling pathway. Human umbilical vein ECs (HUVECs) were treated with DHA and VEGF-induced migration was analyzed. The activation of p38 MAPK was detected by western blot analysis, and the migration assays were performed with a p38-specific inhibitor, SB203850. It was revealed that 20 μM DHA significantly reduced EC migration in the transwell migration assay, wound healing assay and electrical cell-substrate impedance sensing real-time analysis. However, DHA did not affect p38 MAPK phosphorylation or expression. In the absence or presence of SB203850, DHA induced a similar proportional reduction of EC migration in the three migration assays. Therefore, the present study demonstrated that DHA inhibits VEGF-induced EC migration via a p38 MAPK-independent pathway.

  6. Risk Assessment via Metabolism and Cell Growth Inhibition in a HepG2/C3A Cell Line Upon Treatment with Arpadol and its Active Component Harpagoside.

    PubMed

    Biazi, Bruna Isabela; D'Epiro, Gláucia Fernanda Rocha; Zanetti, Thalita Alves; de Oliveira, Marcelo Tempesta; Ribeiro, Lucia Regina; Mantovani, Mário Sérgio

    2017-03-01

    Harpagophytum procumbens (Hp) has been used as antiinflammatory and analgesic agent for the treatment of rheumatic diseases. The principal active component of Hp is harpagoside (HA). We tested the toxicity of this new therapeutic agent in a hepatic cell line (HepG2/C3A). Hp was found to be cytotoxic, and HA was found to decrease the number of cells in S phase, increase the number of cells in G2/M phase and induce apoptosis. Neither Hp nor HA was genotoxic. The expression of CDK6 and CTP3A4 was reduced by Hp, and both HA and Hp caused a significant reduction of CYP1A2 and CYP3A4 expression. It is possible that the cytotoxicity caused by HA and Hp does not involve transcriptional regulation of the cyclins and CDKs tested but is instead related to the inhibition of metabolism. This is evidenced by the results of an MTT assay and changes in the expression of genes related to drug metabolism, leading to cell death. Indeed, the cells exhibited decreased proliferation upon exposure to Hp and HA. The data show that treatment with either Hp or HA can be cytotoxic, and this should be taken into consideration when balancing the risks and benefits of treatments for rheumatic diseases. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Transcriptional activation of mouse mast cell Protease-7 by activin and transforming growth factor-beta is inhibited by microphthalmia-associated transcription factor.

    PubMed

    Funaba, Masayuki; Ikeda, Teruo; Murakami, Masaru; Ogawa, Kenji; Tsuchida, Kunihiro; Sugino, Hiromu; Abe, Matanobu

    2003-12-26

    Previous studies have revealed that activin A and transforming growth factor-beta1 (TGF-beta1) induced migration and morphological changes toward differentiation in bone marrow-derived cultured mast cell progenitors (BMCMCs). Here we show up-regulation of mouse mast cell protease-7 (mMCP-7), which is expressed in differentiated mast cells, by activin A and TGF-beta1 in BMCMCs, and the molecular mechanism of the gene induction of mmcp-7. Smad3, a signal mediator of the activin/TGF-beta pathway, transcriptionally activated mmcp-7. Microphthalmia-associated transcription factor (MITF), a tissue-specific transcription factor predominantly expressed in mast cells, melanocytes, and heart and skeletal muscle, inhibited Smad3-mediated mmcp-7 transcription. MITF associated with Smad3, and the C terminus of MITF and the MH1 and linker region of Smad3 were required for this association. Complex formation between Smad3 and MITF was neither necessary nor sufficient for the inhibition of Smad3 signaling by MITF. MITF inhibited the transcriptional activation induced by the MH2 domain of Smad3. In addition, MITF-truncated N-terminal amino acids could associate with Smad3 but did not inhibit Smad3-mediated transcription. The level of Smad3 was decreased by co-expression of MITF but not of dominant-negative MITF, which resulted from proteasomal protein degradation. The changes in the level of Smad3 protein were paralleled by those in Smad3-mediated signaling activity. These findings suggest that MITF negatively regulates Smad-dependent activin/TGF-beta signaling in a tissue-specific manner.

  8. Structure-activity relationships of hybrid annonaceous acetogenins: powerful growth inhibitory effects of their connecting groups between heterocycle and hydrophobic carbon chain bearing THF ring on human cancer cell lines.

    PubMed

    Kojima, Naoto; Fushimi, Tetsuya; Tatsukawa, Takahiro; Yoshimitsu, Takehiko; Tanaka, Tetsuaki; Yamori, Takao; Dan, Shingo; Iwasaki, Hiroki; Yamashita, Masayuki

    2013-05-01

    Five novel hybrid molecules of annonaceous acetogenins and insecticides targeting mitochondrial complex I were synthesized and their growth inhibitory activities against 39 human cancer cell lines were investigated. It was revealed that the connecting group between the N-methylpyrazole part and the hydrophobic alkyl chain bearing the THF ring influenced their biological activities significantly. Amide-connected analog 2, in particular, showed selective and very potent activity (<10 nM) against some cancer cell lines.

  9. Combined treatment with vitamin C and methotrexate inhibits triple-negative breast cancer cell growth by increasing H2O2 accumulation and activating caspase-3 and p38 pathways.

    PubMed

    Wu, Ching-Wen; Liu, Hsiao-Chun; Yu, Yung-Luen; Hung, Yu-Ting; Wei, Chyou-Wei; Yiang, Giou-Teng

    2017-04-01

    Methotrexate (MTX) is widely used as both an anticancer and anti-rheumatoid arthritis drug. Although MTX has been used to inhibit the growth of many cancer cells, it cannot effectively inhibit growth of triple-negative breast cancer cells (TNBC cells). Vitamin C is an antioxidant that can prevent oxidative stress. In addition, vitamin C has been applied as adjunct treatment for growth inhibition of cancer cells. Recent studies indicated that combined treatment with vitamin C and MTX may inhibit MCF-7 and MDA-MB-231 breast cancer cell growth through G2/M elongation. However, the mechanisms remain unknown. The aim of the present study was to determine whether combined treatment with low-dose vitamin C and MTX inhibits TNBC cell growth and to investigate the mechanisms of vitamin C/MTX-induced cytotoxicity. Neither low-dose vitamin C alone nor MTX alone inhibited TNBC cell growth. However, combined low-dose vitamin C and MTX had synergistic anti-proliferative/cytotoxic effects on TNBC cells. In addition, co-treatment increased H2O2 levels and activated both caspase-3 and p38 cell death pathways.

  10. Mitogen-activated protein kinase 6 controls root growth in Arabidopsis by modulating Ca2+ -based Na+ flux in root cell under salt stress.

    PubMed

    Han, Shuan; Wang, Chi-wen; Wang, Wen-le; Jiang, Jing

    2014-03-01

    Little is known about the role of mitogen-activated protein kinase 6 (MPK6) in Na(+) toxicity and inhibition of root growth in Arabidopsis under NaCl stress. In this study, we found that root elongation in seedlings of the loss-of-function mutants mpk6-2 and mpk6-3 was less sensitive to NaCl or Na-glutamate, but not to KCl or mannitol, as compared with that of wild-type (WT) seedlings. The less sensitive characteristic was eliminated by adding the Ca(2+) chelator EGTA or the Ca(2+) channel inhibitor LaCl3, but not the Ca(2+) ionophore A23187. This suggested that the tolerance of mpk6 to Na(+) toxicity was Ca(2+)-dependent. We measured plasma membrane (PM) Na(+)-conducted currents (NCCs) in root cells. Increased concentrations of NaCl increased the inward NCCs while decreased the outward NCCs in WT root cells, attended by a positive shift in membrane potential. In mpk6 root cells, NaCl significantly increased outward but not inward NCCs, accompanied by a negative shift in membrane potential. That is, mpk6 decreased NaCl-induced the Na(+) accumulation by modifying PM Na(+) flux in root cells. Observations of aequorin luminescence revealed a NaCl-induced increase of cytosolic Ca(2+) in mpk6 root cells, resulting from PM Ca(2+) influx. An increase of cytosolic Ca(2+) was required to alleviate the NaCl-increased Na(+) content and Na(+)/K(+) ratio in mpk6 roots. Together, these results show that mpk6 accumulated less Na(+) in response to NaCl because of the increased cytosolic Ca(2+) level in root cells; thus, its root elongation was less inhibited than that of WT by NaCl.

  11. Apple Polyphenol Phloretin Inhibits Colorectal Cancer Cell Growth via Inhibition of the Type 2 Glucose Transporter and Activation of p53-Mediated Signaling.

    PubMed

    Lin, Sheng-Tsai; Tu, Shih-Hsin; Yang, Po-Sheng; Hsu, Sung-Po; Lee, Wei-Hwa; Ho, Chi-Tang; Wu, Chih-Hsiung; Lai, Yu-Hsin; Chen, Ming-Yao; Chen, Li-Ching

    2016-09-14

    Glucose transporters (GLUTs) are required for glucose uptake in malignant cells, and they can be used as molecular targets for cancer therapy. An RT-PCR analysis was performed to investigate the mRNA levels of 14 subtypes of GLUTs in human colorectal cancer (COLO 205 and HT-29) and normal (FHC) cells. RT-PCR (n = 27) was used to assess the differences in paired tissue samples (tumor vs normal) isolated from colorectal cancer patients. GLUT2 was detected in all tested cells. The average GLUT2 mRNA level in 12 of 27 (44.4%) cases was 2.4-fold higher in tumor compared to normal tissues (*, p = 0.027). Higher GLUT2 mRNA expression was preferentially detected in advanced-stage tumors (stage 0 vs 3 = 16.38-fold, 95% CI = 9.22-26.54-fold; *, p = 0.029). The apple polyphenol phloretin (Ph) and siRNA methods were used to inhibit GLUT2 protein expression. Ph (0-100 μM, for 24 h) induced COLO 205 cell growth cycle arrest in a p53-dependent manner, which was confirmed by pretreatment of the cells with a p53-specific dominant negative expression vector. Hepatocyte nuclear factor 6 (HNF6), which was previously reported to be a transcription factor that activates GLUT2 and p53, was also induced by Ph (0-100 μM, for 24 h). The antitumor effect of Ph (25 mg/kg or DMSO twice a week for 6 weeks) was demonstrated in vivo using BALB/c nude mice bearing COLO 205 tumor xenografts. In conclusion, targeting GLUT2 could potentially suppress colorectal tumor cell invasiveness.

  12. Translation of CUG- but not AUG-initiated forms of human fibroblast growth factor 2 is activated in transformed and stressed cells

    PubMed Central

    1996-01-01

    Four isoforms of the human fibroblast growth factor 2 (FGF-2), with different intracellular localizations and distinct effects on cell phenotype, result from alternative initiations of translation at three CUG and one AUG start codons. We showed here by Western immunoblotting and immunoprecipitation that the CUG-initiated forms of FGF-2 were synthesized in transformed cells, whereas "normal" cells almost exclusively produced the AUG-initiated form. CUG-initiated FGF-2 was induced in primary skin fibroblasts in response to heat shock and oxidative stress. In transformed cells and in stressed fibroblasts, CUG expression was dependent on cis-elements within the 5' region of FGF-2 mRNA and was not correlated to mRNA level, indicating a translational regulation. UV cross-linking experiments revealed that CUG expression was linked to the binding of several cellular proteins to FGF-2 mRNA 5' region. Since translation of FGF-2 mRNA was previously shown to occur by internal ribosome entry, a nonclassical mechanism already described for picornaviruses, the cross-linking patterns of FGF-2 and picornavirus mRNAs were compared. Comigration of several proteins, including a p60, was observed. However, this p60 was shown to be different from the p57/PTB internal entry factor, suggesting a specificity towards FGF-2 mRNA. We report here a process of translational activation of the FGF-2 CUG-initiated forms in direct relation with trans-acting factors specific to transformed and stressed cells. These data favor a critical role of CUG-initiated FGF-2 in cell transformation and in the stress response. PMID:8947560

  13. Aptamer-Drug Conjugates of Active Metabolites of Nucleoside Analogs and Cytotoxic Agents Inhibit Pancreatic Tumor Cell Growth.

    PubMed

    Yoon, Sorah; Huang, Kai-Wen; Reebye, Vikash; Spalding, Duncan; Przytycka, Teresa M; Wang, Yijie; Swiderski, Piotr; Li, Lin; Armstrong, Brian; Reccia, Isabella; Zacharoulis, Dimitris; Dimas, Konstantinos; Kusano, Tomokazu; Shively, John; Habib, Nagy; Rossi, John J

    2017-03-17

    Aptamer-drug conjugates (ApDCs) have the potential to improve the therapeutic index of traditional chemotherapeutic agents due to their ability to deliver cytotoxic drugs specifically to cancer cells while sparing normal cells. This study reports on the conjugation of cytotoxic drugs to an aptamer previously described by our group, the pancreatic cancer RNA aptamer P19. To this end, P19 was incorporated with gemcitabine and 5-fluorouracil (5-FU), or conjugated to monomethyl auristatin E (MMAE) and derivative of maytansine 1 (DM1). The ApDCs P19-dFdCMP and P19-5FdUMP were shown to induce the phosphorylation of histone H2AX on Ser139 (γ-H2AX) and significantly inhibited cell proliferation by 51%-53% in PANC-1 and by 54%-34% in the gemcitabine-resistant pancreatic cancer cell line AsPC-1 (p ≤ 0.0001). P19-MMAE and P19-DM1 caused mitotic G2/M phase arrest and inhibited cell proliferation by up to 56% in a dose-dependent manner when compared to the control group (p ≤ 0.001). In addition, the cytotoxicity of P19-MMAE and P19-DM1 in normal cells and the control human breast cancer cell line MCF7 was minimal. These results suggest that this approach may be useful in decreasing cytotoxic side effects in non-tumoral tissue.

  14. Oxytocin- and vasopressin-induced growth of human small-cell lung cancer is mediated by the mitogen-activated protein kinase pathway.

    PubMed

    Péqueux, C; Keegan, B P; Hagelstein, M-T; Geenen, V; Legros, J-J; North, W G

    2004-12-01

    Malignant growth of small-cell lung carcinoma is promoted by various neuroendocrine autocrine/paracrine loops. Therefore, to interfere with this mitogenic process, it is crucial to elucidate the mechanisms involved. It is known that the oxytocin (OT) and vasopressin (VP) genes, normally transcriptionally restricted in their expression, are activated in small-cell lung cancer (SCLC), concomitantly with expression of their receptors (OTR, V1aR, V1bR/V3R and V2R). The aim of the present study was to characterize, in concentrations close to physiological and pharmacological conditions, intracellular signalling events triggered by OT and VP binding to their specific receptors in SCLC cells and to identify factors mediating OT- and VP-induced mitogenic effects on SCLC. Known agonists for OTR ([Thr4,Gly7]OT) and V1aR (F180), in addition to OT and VP, were able to elicit increases in cytosolic Ca2+ levels and this effect could be blocked using an OTR antagonist (OVTA) or a V1aR antagonist (SR49059) respectively. There was no activation of the cAMP pathway detected after VP, dDAVP (a V2R agonist), or OT treatment. Stimulation of SCLC cells with OT and VP led to an increase of extracellular signal-regulated kinase (ERK) 1/2 phosphorylation, maximal at 5 min, and the subsequent phosphorylation of its downstream target p90 ribosomal S6 kinase (p90RSK). Pre-incubation with OVTA and SR49059, and with inhibitors of phospholipase C (PLC), protein kinase C (PKC), mitogen-activated protein kinase/ERK kinase (MEK) 1/2 and a Ca2+ chelator significantly reduced OT- and VP-induced ERK1/2 phosphorylations. OVTA, SR49059 as well as MEK1/2 and PKC inhibitors also downregulated OT- and VP-induced p90RSK phosphorylation. In [3H]thymidine-uptake experiments, we subsequently observed that PLC, Ca2+, PKC and ERK1/2 are absolutely required for the OT- and VP-stimulated SCLC cellular growth process. In conclusion, the results presented here indicate that OT- and VP-induced mitogenic effects on

  15. Preparation of Black Hoof medicinal mushroom Phellinus linteus (Berk. et M.A. Curt.) Teng (Aphyllophoromycetideae) beta-glucan sulfate and in vitro tumor cell growth inhibitory activity.

    PubMed

    Bae, In Young; Shin, Ji-Yoon; Lee, Hyeon Gyu

    2011-01-01

    Polysaccharide beta-glucans were extracted from the medicinal mushroom Phellinus linteus (Hymenochaetaceae, Aphyllophoromycetideae) and subjected to sulfation. Chemical modification of the beta-glucan was confirmed by structural analysis, and its biological properties were compared with those of native beta-glucan. The results of Fourier transform infrared spectroscopy and elemental analysis indicated that successive preparation of the sulfated derivative yielded a degree of substitution of 0.47. Nitric oxide production measured by the bronchoalveolar lavage (BAL) experiments increased 1.5-fold after sulfation. In addition, the introduction of sulfate groups into the beta-glucan chains improved in vitro growth inhibitory activity against SNU-C2A cells. Therefore, sulfated beta-glucan extracted from Ph. linteus may be beneficial for immune support due to its incorporation of functional groups into its polymer structure.

  16. The effect of clinorotation on structural and functional organization of assimilative tissues, cells and growth regulator activity in orchids of different age

    NASA Astrophysics Data System (ADS)

    Cherevchenko, T.; Zaimenko, N.; Sitnyanska, N.; Majko, T.; Grishko, M. M.

    Ultrastructural analyses of assimilative tissues of the orchids, Cymbidium hybridum and Doritis pulcherrima, show that, in plants of different age, chloroplasts differ in structure and stage of membrane system development. Variability was found in the number, size and electron density of plastoglobuli, and in the orientation and length of thylakoid membranes. We consider significant the increase of the plastoglobuli which completely fill the stroma of chloroplasts in cells of old leaves and, under conditions of clinorotation (using a horizontal clinostat at 3 r.p.m.), are able to block membrane function. In the early stages of orchid plant development, the content of substances with auxin-like activity (as judged by bioassay) in the leaves was low, but increased with age. Clinorotation resulted in a sharp decrease of their content. There was a concomitant increase in the content of growth inhibitors of a phenolic nature.

  17. Interplay between cell growth and cell cycle in plants.

    PubMed

    Sablowski, Robert; Carnier Dornelas, Marcelo

    2014-06-01

    The growth of organs and whole plants depends on both cell growth and cell-cycle progression, but the interaction between both processes is poorly understood. In plants, the balance between growth and cell-cycle progression requires coordinated regulation of four different processes: macromolecular synthesis (cytoplasmic growth), turgor-driven cell-wall extension, mitotic cycle, and endocycle. Potential feedbacks between these processes include a cell-size checkpoint operating before DNA synthesis and a link between DNA contents and maximum cell size. In addition, key intercellular signals and growth regulatory genes appear to target at the same time cell-cycle and cell-growth functions. For example, auxin, gibberellin, and brassinosteroid all have parallel links to cell-cycle progression (through S-phase Cyclin D-CDK and the anaphase-promoting complex) and cell-wall functions (through cell-wall extensibility or microtubule dynamics). Another intercellular signal mediated by microtubule dynamics is the mechanical stress caused by growth of interconnected cells. Superimposed on developmental controls, sugar signalling through the TOR pathway has recently emerged as a central control point linking cytoplasmic growth, cell-cycle and cell-wall functions. Recent progress in quantitative imaging and computational modelling will facilitate analysis of the multiple interconnections between plant cell growth and cell cycle and ultimately will be required for the predictive manipulation of plant growth.

  18. Stimulation with monochromatic green light during incubation alters satellite cell mitotic activity and gene expression in relation to embryonic and posthatch muscle growth of broiler chickens.

    PubMed

    Zhang, L; Zhang, H J; Wang, J; Wu, S G; Qiao, X; Yue, H Y; Yao, J H; Qi, G H

    2014-01-01

    Previous studies showed that monochromatic green light stimuli during embryogenesis accelerated posthatch body weight (BW) and pectoral muscle growth of broilers. In this experiment, we further investigated the morphological and molecular basis of this phenomenon. Fertile broiler eggs (Arbor Acres, n=880) were pre-weighed and randomly assigned to 1 of the 2 incubation treatment groups: (1) dark condition (control group), and (2) monochromatic green light group (560 nm). The monochromatic lighting systems sourced from light-emitting diode lamps and were equalized at the intensity of 15 lx at eggshell level. The dark condition was set as a commercial control from day 1 until hatching. After hatch, 120 male 1-day-old chicks from each group were housed under incandescent white light with an intensity of 30 lx at bird-head level. No effects of light stimuli during embryogenesis on hatching time, hatchability, hatching weight and bird mortality during the feeding trial period were observed in the present study. Compared with the dark condition, the BW, pectoral muscle weight and myofiber cross-sectional areas were significantly greater on 7-day-old chicks incubated under green light. Green light also increased the satellite cell mitotic activity of pectoral muscle on 1- and 3-day-old birds. In addition, green light upregulated MyoD, myogenin and myostatin mRNA expression in late embryos and/ or newly hatched chicks. These data suggest that stimulation with monochromatic green light during incubation promote muscle growth by enhancing proliferation and differentiation of satellite cells in late embryonic and newly hatched stages. Higher expression of myostatin may ultimately help prevent excessive proliferation and differentiation of satellite cells in birds incubated under green light.

  19. The glucose-dependent insulinotropic polypeptide receptor is overexpressed amongst GNAS1 mutation-negative somatotropinomas and drives growth hormone (GH)-promoter activity in GH3 cells.

    PubMed

    Occhi, G; Losa, M; Albiger, N; Trivellin, G; Regazzo, D; Scanarini, M; Monteserin-Garcia, J L; Fröhlich, B; Ferasin, S; Terreni, M R; Fassina, A; Vitiello, L; Stalla, G; Mantero, F; Scaroni, C

    2011-07-01

    Somatic mutations in the GNAS1 gene, encoding the α-subunit of the heterotrimeric stimulatory G protein (Gαs), occur in approximately 40% of growth hormone (GH)-secreting pituitary tumours. By altering the adenylate cyclase-cAMP-protein kinase A pathway, they unequivocally give somatotroph cells a growth advantage. Hence, the pathogenesis of somatotropinomas could be linked to anomalies in receptors coupled to the cAMP second-messenger cascade. Among them, the glucose-dependent insulinotropic polypeptide receptor (GIPR) is already known to play a primary role in the impaired cAMP-dependent cortisol secretion in patients affected by food-dependent Cushing's syndrome. In the present study, 43 somatotropinomas and 12 normal pituitary glands were investigated for GIPR expression by quantitative reverse transcriptase-polymerase chain reaction, western blotting and immunohistochemistry. Tumoural specimens were also evaluated for GNAS1 mutational status. The effect of GIPR overexpression on cAMP levels and GH transcription was evaluated in an in vitro model of somatotropinomas, the GH-secreting pituitary cell line GH3. GIPR was expressed at higher levels compared to normal pituitaries in 13 GNAS1 mutation-negative somatotropinomas. GIP stimulated adenylyl cyclase and GH-promoter activity in GIPR-transfected GH3 cells, confirming a correct coupling of GIPR to Gαs. In a proportion of acromegalic patients, GIPR overexpression appeared to be associated with a paradoxical increase in GH after an oral glucose tolerance test. Whether GIPR overexpression in acromegalic patients may be associated with this paradoxical response or more generally involved in the pathogenesis of acromegaly, as suggested by the mutually exclusive high GIPR levels and GNAS1 mutations, remains an open question.

  20. Thrombospondins selectively activate one of the two latent forms of transforming growth factor-beta present in adrenocortical cell-conditioned medium.

    PubMed

    Souchelnitskiy, S; Chambaz, E M; Feige, J J

    1995-11-01

    Transforming growth factor-beta (TGF beta) has been shown previously to be a potent inhibitor of bovine adrenocortical cell steroidogenic functions. However, it is present in the culture medium of these cells in a latent form. In this study, we analyzed in detail the biochemical composition of this latent TGF beta. Two distinct complexes could be separated chromatographically by gel filtration on Sephacryl S-300, and their composition was studied using immunochemical methods. The results indicate that one form (peak I) is a complex between alpha 2-macroglobulin (alpha 2M) and either the unprocessed TGF beta precursor or the mature form of TGF beta. In a major fraction of this complex, TGF beta is covalently linked to alpha 2 M, whereas in a minor fraction, it is noncovalently bound and, therefore, activatable. The second form of latent TGF beta (peak II) is a complex among latent TGF beta-binding protein (LTBP), latency-associated protein, and mature TGF beta and a complex between LTBP and unprocessed TGF beta. We investigated the ability of thrombospondins (TSP1 and TSP2) to activate these latent forms of TGF beta. TSP1 and TSP2 were equally potent at activating the LTBP-latency-associated protein-TGF beta complex in the absence of cell contact, but were ineffective on the alpha 2M-TGF beta complex. Therefore, TGF beta may act as an autocrine regulator of adrenocortical steroidogenic functions. Its activity appears to be controlled by TSPs, the local production of which is regulated by systemic ACTH.

  1. Proteolytic Processing Regulates Placental Growth Factor Activities*

    PubMed Central

    Hoffmann, Daniel C.; Willenborg, Sebastian; Koch, Manuel; Zwolanek, Daniela; Müller, Stefan; Becker, Ann-Kathrin A.; Metzger, Stephanie; Ehrbar, Martin; Kurschat, Peter; Hellmich, Martin; Hubbell, Jeffrey A.; Eming, Sabine A.

    2013-01-01

    Placental growth factor (PlGF) is a critical mediator of blood vessel formation, yet mechanisms of its action and regulation are incompletely understood. Here we demonstrate that proteolytic processing regulates the biological activity of PlGF. Specifically, we show that plasmin processing of PlGF-2 yields a protease-resistant core fragment comprising the vascular endothelial growth factor receptor-1 binding site but lacking the carboxyl-terminal domain encoding the heparin-binding domain and an 8-amino acid peptide encoded by exon 7. We have identified plasmin cleavage sites, generated a truncated PlGF118 isoform mimicking plasmin-processed PlGF, and explored its biological function in comparison with that of PlGF-1 and -2. The angiogenic responses induced by the diverse PlGF forms were distinct. Whereas PlGF-2 increased endothelial cell chemotaxis, vascular sprouting, and granulation tissue formation upon skin injury, these activities were abrogated following plasmin digestion. Investigation of PlGF/Neuropilin-1 binding and function suggests a critical role for heparin-binding domain/Neuropilin-1 interaction and its regulation by plasmin processing. Collectively, here we provide new mechanistic insights into the regulation of PlGF-2/Neuropilin-1-mediated tissue vascularization and growth. PMID:23645683

  2. Resistin and interleukin-6 exhibit racially-disparate expression in breast cancer patients, display molecular association and promote growth and aggressiveness of tumor cells through STAT3 activation.

    PubMed

    Deshmukh, Sachin K; Srivastava, Sanjeev K; Bhardwaj, Arun; Singh, Ajay P; Tyagi, Nikhil; Marimuthu, Saravanakumar; Dyess, Donna L; Dal Zotto, Valeria; Carter, James E; Singh, Seema

    2015-05-10

    African-American (AA) women with breast cancer (BC) are diagnosed with more aggressive disease, have higher risk of recurrence and poorer prognosis as compared to Caucasian American (CA) women. Therefore, it is imperative to define the factors associated with such disparities to reduce the unequal burden of cancer. Emerging data suggest that inherent differences exist in the tumor microenvironment of AA and CA BC patients, however, its molecular bases and functional impact have remained poorly understood. Here, we conducted cytokine profiling in serum samples from AA and CA BC patients and identified resistin and IL-6 to be the most differentially-expressed cytokines with relative greater expression in AA patients. Resistin and IL-6 exhibited positive correlation in serum levels and treatment of BC cells with resistin led to enhanced production of IL-6. Moreover, resistin also enhanced the expression and phosphorylation of STAT3, and treatment of BC cells with IL-6-neutralizing antibody prior to resistin stimulation abolished STAT3 phosphorylation. In addition, resistin promoted growth and aggressiveness of BC cells, and these effects were mediated through STAT3 activation. Together, these findings suggest a crucial role of resistin, IL-6 and STAT3 in BC racial disparity.

  3. Androgen receptor promotes sex-independent angiogenesis in response to ischemia and is required for activation of vascular endothelial cell growth factor receptor signaling

    PubMed Central

    Yoshida, Sumiko; Aihara, Ken-ichi; Ikeda, Yasumasa; Sumitomo-Ueda, Yuka; Uemoto, Ryoko; Ishikawa, Kazue; Ise, Takayuki; Yagi, Shusuke; Iwase, Takashi; Mouri, Yasuhiro; Sakari, Matomo; Matsumoto, Takahiro; Takeyama, Ken-ichi; Akaike, Masashi; Matsumoto, Mitsuru; Sata, Masataka; Walsh, Kenneth; Kato, Shigeaki; Matsumoto, Toshio

    2014-01-01

    Background Hypoandrogenemia is associated with an increased risk of ischemic diseases. Since actions of androgens are exerted through androgen receptor (AR) activation, we studied hind limb ischemia in AR knockout (KO) mice to elucidate the role of AR in response to ischemia. Methods and Results Both male and female ARKO mice exhibited impaired blood flow recovery, more cellular apoptosis and a higher incidence of autoamputation after ischemia. In ex vivo and in vivo angiogenesis studies, AR-deficient vascular endothelial cells showed reduced angiogenic capability. In ischemic limbs of ARKO mice, reductions in the phosphorylation of the Akt protein kinase and endothelial nitric oxide synthase (eNOS) were observed despite a robust increase in hypoxia-inducible factor 1α and vascular endothelial cell growth factor (VEGF) gene expression. In in vitro studies, siRNA-mediated ablation of AR in vascular endothelial cells blunted VEGF-stimulated phosphorylation of Akt and eNOS. Immunoprecipitation experiments documented an association between AR and kinase insert domain protein receptor (KDR) that promoted the recruitment of downstream signaling components. Conclusion These results document a physiological role of AR in gender-independent angiogenic potency and provide evidence for a novel cross-talk between androgen/AR signaling and VEGF/KDR signaling pathways. PMID:23723256

  4. Resistin and interleukin-6 exhibit racially-disparate expression in breast cancer patients, display molecular association and promote growth and aggressiveness of tumor cells through STAT3 activation

    PubMed Central

    Bhardwaj, Arun; Singh, Ajay P.; Tyagi, Nikhil; Marimuthu, Saravanakumar; Dyess, Donna L.; Zotto, Valeria Dal; Carter, James E.; Singh, Seema

    2015-01-01

    African-American (AA) women with breast cancer (BC) are diagnosed with more aggressive disease, have higher risk of recurrence and poorer prognosis as compared to Caucasian American (CA) women. Therefore, it is imperative to define the factors associated with such disparities to reduce the unequal burden of cancer. Emerging data suggest that inherent differences exist in the tumor microenvironment of AA and CA BC patients, however, its molecular bases and functional impact have remained poorly understood. Here, we conducted cytokine profiling in serum samples from AA and CA BC patients and identified resistin and IL-6 to be the most differentially-expressed cytokines with relative greater expression in AA patients. Resistin and IL-6 exhibited positive correlation in serum levels and treatment of BC cells with resistin led to enhanced production of IL-6. Moreover, resistin also enhanced the expression and phosphorylation of STAT3, and treatment of BC cells with IL-6-neutralizing antibody prior to resistin stimulation abolished STAT3 phosphorylation. In addition, resistin promoted growth and aggressiveness of BC cells, and these effects were mediated through STAT3 activation. Together, these findings suggest a crucial role of resistin, IL-6 and STAT3 in BC racial disparity. PMID:25868978

  5. Fighting arboviral diseases: low toxicity on mammalian cells, dengue growth inhibition (in vitro), and mosquitocidal activity of Centroceras clavulatum-synthesized silver nanoparticles.

    PubMed

    Murugan, Kadarkarai; Aruna, Palanimuthu; Panneerselvam, Chellasamy; Madhiyazhagan, Pari; Paulpandi, Manickam; Subramaniam, Jayapal; Rajaganesh, Rajapandian; Wei, Hui; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Nicoletti, Marcello; Syuhei, Ban; Canale, Angelo; Benelli, Giovanni

    2016-02-01

    Dengue is a mosquito-borne viral disease that has rapidly spread in all regions of the world in recent years. Female mosquitoes, mainly Aedes aegypti, transmit dengue. Approximately 3,900 million people, in 128 countries, are at risk of dengue infection. Recently, a focus has been provided on the potential of green-synthesized nanoparticles as inhibitors of the production of dengue viral envelope (E) protein in Vero cells and downregulators of the expression of dengue viral E gene. Algae are an outstanding reservoir of novel compounds, which may help in the fight against mosquito-borne diseases. In this research, silver nanoparticles (AgNP) were rapidly synthesized using a cheap extract of the alga Centroceras clavulatum. AgNP were characterized by UV–vis spectrophotometry, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). In mosquitocidal assays, LC50 values of C. clavulatum extract against A. aegypti larvae and pupae were 269.361 ppm (larva I), 309.698 ppm (larva II), 348.325 ppm (larva III), 387.637 ppm (larva IV), and 446.262 ppm (pupa). C. clavulatum extract also exhibited moderate antioxidant activity, both in 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) radical scavenging assays. LC50 values of C. clavulatum-synthesized AgNP were 21.460 ppm (larva I), 23.579 ppm (larva II), 25.912 ppm (larva III), 29.155 ppm (larva IV), and 33.877 ppm (pupa). Furthermore, C. clavulatum-synthesized AgNP inhibited dengue (serotype dengue virus type-2 (DEN-2)) viral replication in Vero cells. Notably, 50 μg/ml of green-synthesized AgNP showed no cytotoxicity on Vero cells while reduced DEN-2 viral growth of more than 80%; 12.5 μg/ml inhibited viral growth of more than 50%. Cellular internalization assays highlighted that untreated infected cells showed high intensity of fluorescence emission, which denotes high level of viral internalization. Conversely

  6. Metformin inhibits advanced glycation end products (AGEs)-induced growth and VEGF expression in MCF-7 breast cancer cells by suppressing AGEs receptor expression via AMP-activated protein kinase.

    PubMed

    Ishibashi, Y; Matsui, T; Takeuchi, M; Yamagishi, S

    2013-05-01

    Metformin use has been reported to decrease breast cancer incidence and mortality in diabetic patients. We have previously shown that advanced glycation end products (AGEs) and their receptor (RAGE) interaction stimulate growth and/or migration of pancreatic cancer and melanoma cells. However, effects of metformin on AGEs-RAGE axis in breast cancers remain unknown. We examined here whether and how metformin could block the AGEs-induced growth and vascular endothelial growth factor (VEGF) expression in MCF-7 breast cancer cells. Cell proliferation was measured with an electron coupling reagent WST-1 based colorimetric assay. Gene expression level was evaluated by real-time reverse-transcription polymerase chain reactions. AGEs significantly increased cell proliferation of MCF-7 cells, which was completely prevented by the treatment with 0.01 or 0.1 mM metformin or anti-RAGE antibodies. Furthermore, metformin at 0.01 mM completely suppressed the AGEs-induced upregulation of RAGE and VEGF mRNA levels in MCF-7 cells. An inhibitor of AMP-activated protein kinase, compound C significantly blocked the growth-inhibitory and RAGE and VEGF suppressing effects of metformin in AGEs-exposed MCF-7 cells. Our present study suggests that metformin could inhibit the AGEs-induced growth and VEGF expression in MCF-7 breast cancer cells by suppressing RAGE gene expression via AMP-activated protein kinase pathway. Metformin may protect against breast cancer expansion in diabetic patients by blocking the AGEs-RAGE axis.

  7. A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice

    PubMed Central

    Holland, Eric C.; Hively, Wendy P.; DePinho, Ronald A.; Varmus, Harold E.

    1998-01-01

    The epidermal growth factor receptor (EGFR) gene is amplified or mutated in 30%–50% of human gliobastoma multiforme (GBM). These mutations are associated usually with deletions of the INK4a–ARF locus, which encodes two gene products (p16INK4a and p19ARF) involved in cell-cycle arrest and apoptosis. We have investigated the role of EGFR mutation in gliomagenesis, using avian retroviral vectors to transfer a mutant EGFR gene to glial precursors and astrocytes in transgenic mice expressing tv-a, a gene encoding the retrovirus receptor. TVA, under control of brain cell type-specific promoters. We demonstrate that expression of a constitutively active, mutant form of EGFR in cells in the glial lineage can induce lesions with many similarities to human gliomas. These lesions occur more frequently with gene transfer to mice expressing tv-a from the progenitor-specific nestin promoter than to mice expressing tv-a from the astrocyte-specific glial fibrillary acidic protein (GFAP) promoter, suggesting that tumors arise more efficiently from immature cells in the glial lineage. Furthermore, EGFR-induced gliomagenesis appears to require additional mutations in genes encoding proteins involved in cell-cycle arrest pathways. We have produced these combinations by simultaneously infecting tv-a transgenic mice with vectors carrying cdk4 and EGFR or by infecting tv-a transgenic mice bearing a disrupted INK4a–ARF locus with the EGFR-carrying vector alone. Moreover, EGFR-induced gliomagenesis does not occur in conjunction with p53 deficiency, unless the mice are also infected with a vector carrying cdk4. The gliomagenic combinations of genetic lesions required in mice are similar to those found in human gliomas. PMID:9851974

  8. Insulin-like growth factor I and protein kinase C activation stimulate pulmonary artery smooth muscle cell proliferation through separate but synergistic pathways.

    PubMed

    Dempsey, E C; Stenmark, K R; McMurtry, I F; O'Brien, R F; Voelkel, N F; Badesch, D B

    1990-07-01

    Smooth muscle cell (SMC) hyperplasia is an important component of vascular remodeling in chronic hypoxic pulmonary hypertension. The mechanisms underlying SMC proliferation in the remodeling process are poorly understood, but may involve insulin-like growth factor I (IGF-I). This study investigates the potential proliferative effects of IGF-I on SMC cultured from the pulmonary arteries (PA) of neonatal calves. We hypothesized that IGF-I stimulates PA SMC proliferation through a protein kinase C (PKC)-independent pathway, but that PKC activation would augment this proliferative response. Incorporation of 3H-thymidine was used as an index of cellular proliferation, and was correlated with subsequent changes in cell counts. Under serum-free conditions, IGF-I (100 ng/ml) induced a 6-fold increase in thymidine incorporation by quiescent PA SMC. This stimulation was not blocked by dihydrosphingosine, an inhibitor of PKC activation. Phorbol myristate acetate (PMA) (1 nM), a membrane-permeable PKC activator, induced a 12-fold increase in thymidine incorporation which was 70% inhibited by dihydrosphingosine. Co-incubation with IGF-I and PMA caused a 60-fold increase in thymidine incorporation, which was 30% inhibited by dihydrosphingosine. This synergistic increase in thymidine incorporation was associated with a subsequent significant increase in cell number. PKC-downregulated cells (1,000 nM PMA x 30 hr) proliferated in response to IGF-I but not PMA, and did not demonstrate synergism with the combination of IGF-I and PMA. The threshold concentrations of IGF-I and PMA for synergism were approximately 1 ng/ml and 1 pM, respectively. We conclude that IGF-I stimulates neonatal PA SMC proliferation via a PKC-independent pathway, and that trace amounts of PKC activators are capable of synergistically augmenting this response. We speculate that the synergistic stimulation of SMC proliferation by IGF-I and PKC activators may play an important role in hypertensive pulmonary

  9. Mucin1 mediates autocrine transforming growth factor beta signaling through activating the c-Jun N-terminal kinase/activator protein 1 pathway in human hepatocellular carcinoma cells.

    PubMed

    Li, Qiongshu; Liu, Guomu; Shao, Dan; Wang, Juan; Yuan, Hongyan; Chen, Tanxiu; Zhai, Ruiping; Ni, Weihua; Tai, Guixiang

    2015-02-01

    In a previous study, we observed by global gene expression analysis that oncogene mucin1 (MUC1) silencing decreased transforming growth factor beta (TGF-β) signaling in the human hepatocellular carcinoma (HCC) cell line SMMC-7721. In this study, we report that MUC1 overexpression enhanced the levels of phosphorylated Smad3 linker region (p-Smad3L) (Ser-213) and its target gene MMP-9 in HCC cells, suggesting that MUC1 mediates TGF-β signaling. To investigate the effect of MUC1 on TGF-β signaling, we determined TGF-β secretion in MUC1 gene silencing and overexpressing cell lines. MUC1 expression enhanced not only TGF-β1 expression at the mRNA and protein levels but also luciferase activity driven by a TGF-β promoter, as well as elevated the activation of c-Jun N-terminal kinase (JNK) and c-Jun, a member of the activation protein 1 (AP-1) transcription factor family. Furthermore, pharmacological reduction of TGF-β receptor (TβR), JNK and c-Jun activity inhibited MUC1-induced autocrine TGF-β signaling. Moreover, a co-immunoprecipitation assay showed that MUC1 directly bound and activated JNK. In addition, both MUC1-induced TGF-β secretion and exogenous TGF-β1 significantly increased Smad signaling and cell migration, which were markedly inhibited by either TβR inhibitor or small interfering RNA silencing of TGF-β1 gene in HCC cells. The high correlation between MUC1 and TGF-β1 or p-Smad3L (Ser-213) expression was shown in tumor tissues from HCC patients by immunohistochemical staining analysis. Collectively, these results indicate that MUC1 mediates autocrine TGF-β signaling by activating the JNK/AP-1 pathway in HCC cells. Therefore, MUC1 plays a key role in HCC progression and could serve as an attractive target for HCC therapy.

  10. Dual control of cell growth by somatomedins and platelet-derived growth factor.

    PubMed Central

    Stiles, C D; Capone, G T; Scher, C D; Antoniades, H N; Van Wyk, J J; Pledger, W J

    1979-01-01

    Quiescent BALB/c 3T3 cells exposed briefly to a platelet-derived growth factor (PDGF) become "competent" to replicate their DNA but do not "progress" into S phase unless incubated with growth factors contained in platelet-poor plasma. Plasma from hypophysectomized rats is deficient in progression activity; it does not stimulate PDGF-treated competent cells to synthesize DNA, demonstrating that somatomedin C is required for progression. Various growth factors were tested for progression activity and competence activity by using BALB/c 3T3 tissue culture assays. Multiplication stimulating activity and other members of the somatomedin family of growth factors are (like somatomedin C) potent mediators of progression. Other mitogenic agents, such as fibroblast growth factor, are (like PDGF) potent inducers of competence. Growth factors with potent progression activity have little or no competence activity and vice versa. In contrast, simian virus 40 provides both competence and progression activity. Coordinate control of BALB/c 3T3 cell growth in vitro by competence factors and somatomedins may be a specific example of a common pattern of growth regulation in animal tissues. PMID:312500

  11. An inhibitor of the EGF receptor family blocks myeloma cell growth factor activity of HB-EGF and potentiates dexamethasone or anti-IL-6 antibody-induced apoptosis.

    PubMed

    Mahtouk, Karène; Jourdan, Michel; De Vos, John; Hertogh, Catherine; Fiol, Geneviève; Jourdan, Eric; Rossi, Jean-François; Klein, Bernard

    2004-03-01

    We previously found that some myeloma cell lines express the heparin-binding epidermal growth factor-like growth factor (HB-EGF) gene. As the proteoglycan syndecan-1 is an HB-EGF coreceptor as well as a hallmark of plasma cell differentiation and a marker of myeloma cells, we studied the role of HB-EGF on myeloma cell growth. The HB-EGF gene was expressed by bone marrow mononuclear cells in 8 of 8 patients with myeloma, particularly by monocytes and stromal cells, but not by purified primary myeloma cells. Six of 9 myeloma cell lines and 9 of 9 purified primary myeloma cells expressed ErbB1 or ErbB4 genes coding for HB-EGF receptor. In the presence of a low interleukin-6 (IL-6) concentration, HB-EGF stimulated the proliferation of the 6 ErbB1+ or ErbB4+ cell lines, through the phosphatidylinositol 3-kinase/AKT (PI-3K/AKT) pathway. A pan-ErbB inhibitor blocked the myeloma cell growth factor activity and the signaling induced by HB-EGF. This inhibitor induced apoptosis of patients'myeloma cells cultured with their tumor environment. It also increased patients' myeloma cell apoptosis induced by an anti-IL-6 antibody or dexamethasone. The ErbB inhibitor had no effect on the interaction between multiple myeloma cells and stromal cells. It was not toxic for nonmyeloma cells present in patients' bone marrow cultures or for the growth of hematopoietic progenitors. Altogether, these data identify ErbB receptors as putative therapeutic targets in multiple myeloma.

  12. Differential control of growth, apoptotic activity and gene expression in human colon cancer cells by extracts derived from medicinal herbs, Rhazya stricta and Zingiber officinale and their combination

    PubMed Central

    Elkady, Ayman I; Hussein, Rania Abd El Hamid; Abu-Zinadah, Osama A

    2014-01-01

    AIM: To investigate the effects of extracts from Rhazya stricta (R. stricta) and Zingiber officinale (Z. officinale) on human colorectal cancer cells. METHODS: Human colorectal cancer cells (HCT116) were subjected to increasing doses of crude alkaloid extracts from R. stricta (CAERS) and crude flavonoid extracts from Z. officinale (CFEZO). Cells were then harvested after 24, 48 or 72 h and cell viability was examined by trypan blue exclusion dye test; clonogenicity and soft agar colony-forming assays were also carried out. Nuclear stain (Hoechst 33342), acridine orange/ethidium bromide double staining, agarose gel electrophoresis and comet assays were performed to assess pro-apoptotic potentiality of the extracts. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR), using gene-specific primers and Western blot analyses were performed to assess the impact of CAERS and CFEZO on the expression levels of key regulatory proteins in HCT116 cells. RESULTS: Treatment with a combination of CAERS and CFEZO synergistically suppressed the proliferation, colony formation and anchorage-independent growth of HCT116 cells. Calculated IC50, after 24, 48 and 72 h, were 70, 90 and 130 μg/mL for CAERS, 65, 85 and 120 μg/mL for CFEZO and 20, 25 and 45 μg/mL for both agents, respectively. CAERS- and CFEZO-treated cells exhibited morphologic and biochemical features of apoptotic cell death. The induction of apoptosis was associated with the release of mitochondrial cytochrome c, an increase in the Bax/Bcl-2 ratio, activation of caspases 3 and 9 and cleavage of poly ADP-ribose polymerase. CAERS and CFEZO treatments downregulated expression levels of anti-apoptotic proteins including Bcl-2, Bcl-X, Mcl-1, survivin and XIAP, and upregulated expression levels of proapoptotic proteins such as Bad and Noxa. CAERS and CFEZO treatments elevated expression levels of the oncosuppressor proteins, p53, p21 and p27, and reduced levels of the oncoproteins, cyclin D1, cyclin

  13. FNC efficiently inhibits mantle cell lymphoma growth.

    PubMed

    Zhang, Yan; Zhang, Rong; Ding, Xixi; Peng, Bangan; Wang, Ning; Ma, Fang; Peng, Youmei; Wang, Qingduan; Chang, Junbiao

    2017-01-01

    FNC, 2'-deoxy-2'-β-fluoro-4'-azidocytidine, is a novel cytidine analogue, that has shown strong antiproliferative activity in human lymphoma, lung adenocarcinoma and acute myeloid leukemia. In this study, we investigated the effects of FNC on mantle cell lymphoma (MCL) and the underlying mechanisms. In in vitro experiments, cell viability was detected by the CCK8 assay, and cell cycle progression and apoptosis were assessed by flow cytometry, and the expression of relative apoptosis proteins were detected by Western Blot. The in vivo antitumor effect of FNC was investigated in a SCID xenograft model. Finally, the mechanisms of action of FNC were assessed using a whole human genome expression profile chip. The data showed that FNC inhibited cell growth in a dose- and time-dependent manner, and FNC could induce apoptosis by the death recepter pathways in JeKo-1 cells and arrest the cell cycle in the G1/S or G2/M phase. Notably, FNC showed in vivo efficacy in mice bearing JeKo-1 xenograft tumors. Gene expression profile analysis revealed that the differentially expressed genes were mainly focused on the immune system process, cellular process and death. These findings implied that FNC may be a valuable therapeutic in mantle cell lymphoma and provided an experimental basis for the early clinical application of FNC.

  14. FNC efficiently inhibits mantle cell lymphoma growth

    PubMed Central

    Ding, Xixi; Peng, Bangan; Wang, Ning; Ma, Fang; Peng, Youmei; Wang, Qingduan; Chang, Junbiao

    2017-01-01

    FNC, 2'-deoxy-2'-β-fluoro-4'-azidocytidine, is a novel cytidine analogue, that has shown strong antiproliferative activity in human lymphoma, lung adenocarcinoma and acute myeloid leukemia. In this study, we investigated the effects of FNC on mantle cell lymphoma (MCL) and the underlying mechanisms. In in vitro experiments, cell viability was detected by the CCK8 assay, and cell cycle progression and apoptosis were assessed by flow cytometry, and the expression of relative apoptosis proteins were detected by Western Blot. The in vivo antitumor effect of FNC was investigated in a SCID xenograft model. Finally, the mechanisms of action of FNC were assessed using a whole human genome expression profile chip. The data showed that FNC inhibited cell growth in a dose- and time-dependent manner, and FNC could induce apoptosis by the death recepter pathways in JeKo-1 cells and arrest the cell cycle in the G1/S or G2/M phase. Notably, FNC showed in vivo efficacy in mice bearing JeKo-1 xenograft tumors. Gene expression profile analysis revealed that the differentially expressed genes were mainly focused on the immune system process, cellular process and death. These findings implied that FNC may be a valuable therapeutic in mantle cell lymphoma and provided an experimental basis for the early clinical application of FNC. PMID:28333959

  15. Bestatin inhibits cell growth, cell division, and spore cell differentiation in Dictyostelium discoideum.

    PubMed

    Poloz, Yekaterina; Catalano, Andrew; O'Day, Danton H

    2012-04-01

    Bestatin methyl ester (BME) is an inhibitor of Zn(2+)-binding aminopeptidases that inhibits cell proliferation and induces apoptosis in normal and cancer cells. We have used Dictyostelium as a model organism to study the effects of BME. Only two Zn(2+)-binding aminopeptidases have been identified in Dictyostelium to date, puromycin-sensitive aminopeptidase A and B (PsaA and PsaB). PSA from other organisms is known to regulate cell division and differentiation. Here we show that PsaA is differentially expressed throughout growth and development of Dictyostelium, and its expression is regulated by developmental morphogens. We present evidence that BME specifically interacts with PsaA and inhibits its aminopeptidase activity. Treatment of cells with BME inhibited the rate of cell growth and the frequency of cell division in growing cells and inhibited spore cell differentiation during late development. Overexpression of PsaA-GFP (where GFP is green fluorescent protein) also inhibited spore cell differentiation but did not affect growth. Using chimeras, we have identified that nuclear versus cytoplasmic localization of PsaA affects the choice between stalk or spore cell differentiation pathway. Cells that overexpressed PsaA-GFP (primarily nuclear) differentiated into stalk cells, while cells that overexpressed PsaAΔNLS2-GFP (cytoplasmic) differentiated into spores. In conclusion, we have identified that BME inhibits cell growth, division, and differentiation in Dictyostelium likely through inhibition of PsaA.

  16. Oligomerization of epidermal growth factor receptors on A431 cells studied by time-resolved fluorescence imaging microscopy. A stereochemical model for tyrosine kinase receptor activation

    PubMed Central

    1995-01-01

    The aggregation states of the epidermal growth factor receptor (EGFR) on single A431 human epidermoid carcinoma cells were assessed with two new techniques for determining fluorescence resonance energy transfer: donor photobleaching fluorescence resonance energy transfer (pbFRET) microscopy and fluorescence lifetime imaging microscopy (FLIM). Fluorescein-(donor) and rhodamine-(acceptor) labeled EGF were bound to the cells and the extent of oligomerization was monitored by the spatially resolved FRET efficiency as a function of the donor/acceptor ratio and treatment conditions. An average FRET efficiency of 5% was determined after a low temperature (4 degrees C) incubation with the fluorescent EGF analogs for 40 min. A subsequent elevation of the temperature for 5 min caused a substantial increase of the average FRET efficiency to 14% at 20 degrees C and 31% at 37 degrees C. In the context of a two-state (monomer/dimer) model for the EGFR, these FRET efficiencies were consistent with minimal average receptor dimerizations of 13, 36, and 69% at 4, 20, and 37 degrees C, respectively. A431 cells were pretreated with the monoclonal antibody mAb 2E9 that specifically blocks EGF binding to the predominant population of low affinity EGFR (15). The average FRET efficiency increased dramatically to 28% at 4 degrees C, indicative of a minimal receptor dimerization of 65% for the subpopulation of high affinity receptors. These results are in accordance with prior studies indicating that binding of EGF leads to a fast and temperature- dependent microclustering of EGFR, but suggest in addition that the high affinity functional subclass of receptors on quiescent A431 cells are present in a predimerized or oligomerized state. We propose that the transmission of the external ligand-binding signal to the cytoplasmic domain is effected by a concerted relative rotational rearrangement of the monomeric units comprising the dimeric receptor, thereby potentiating a mutual activation of

  17. Transforming growth factor β-activated kinase 1 negatively regulates interleukin-1α-induced stromal-derived factor-1 expression in vascular smooth muscle cells

    SciTech Connect

    Yang, Bin; Li, Wei; Zheng, Qichang; Qin, Tao; Wang, Kun; Li, Jinjin; Guo, Bing; Yu, Qihong; Wu, Yuzhe; Gao, Yang; Cheng, Xiang; Hu, Shaobo; Kumar, Stanley Naveen; Liu, Sanguang; Song, Zifang

    2015-07-17

    Stromal-derived Factor-1 (SDF-1) derived from vascular smooth muscle cells (VSMCs) contributes to vascular repair and remodeling in various vascular diseases. In this study, the mechanism underlying regulation of SDF-1 expression by interleukin-1α (IL-1α) was investigated in primary rat VSMCs. We found IL-1α promotes SDF-1 expression by up-regulating CCAAT-enhancer-binding protein β (C/EBPβ) in an IκB kinase β (IKKβ) signaling-dependent manner. Moreover, IL-1α-induced expression of C/EBPβ and SDF-1 was significantly potentiated by knockdown of transforming growth factor β-activated kinase 1 (TAK1), an upstream activator of IKKβ signaling. In addition, we also demonstrated that TAK1/p38 mitogen-activated protein kinase (p38 MAPK) signaling exerted negative effect on IL-1α-induced expression of C/EBPβ and SDF-1 through counteracting ROS-dependent up-regulation of nuclear factor erythroid 2-related factor 2 (NRF2). In conclusion, TAK1 acts as an important regulator of IL-1α-induced SDF-1 expression in VSMCs, and modulating activity of TAK1 may serve as a potential strategy for modulating vascular repair and remodeling. - Highlights: • IL-1α induces IKKβ signaling-dependent SDF-1 expression by up-regulating C/EBPβ. • Activation of TAK1 by IL-1α negatively regulates C/EBPβ-dependent SDF-1 expression. • IL-1α-induced TAK1/p38 MAPK signaling counteracts ROS-dependent SDF-1 expression. • TAK1 counteracts IL-1α-induced SDF-1 expression by attenuating NRF2 up-regulation.

  18. In-situ growth of antimony sulfide in carbon nanoparticle matrix: Enhanced electrocatalytic activity as counter electrode in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Sun, Panpan; Zhang, Ming; Ai, Changzhi; Wu, Zhixin; Lu, Shuang; Zhang, Xintong; Huang, Niu; Sun, Yihua; Sun, Xiaohua

    2016-07-01

    Considering the undesirable electrocatalytic activity toward I-/I3- redox system of prinstine antimony sulfide (Sb2S3) fabricated with the existing conditions, a mesoporous carbon nanoparticle film (CNP) is introduced here for in-situ growth of Sb2S3 to construct a Sb2S3@CNP hybrid catalyst. Based on a Sb-thiourea precursor solution, in-situ growth of Sb2S3 can be achieved via solution deposition (denoted as Sb2S3@CNP-S) as well as atmospheric pressure thermal evaporation (denoted as Sb2S3@CNP-T) in CNP matrix. Structural characterizations indicate that Sb2S3 particles have well dispersed in the pores of CNP matrix. Because of the introduction of porous and conductive CNP matrix to support Sb2S3, the hybrid catalyst exhibits lower charge transfer resistance at the catalyst/electrolyte interface and higher electrocatalytic activity. When used as counter electrode (CE) for dye-sensitized solar cells (DSSCs), devices using Sb2S3@CNP hybrid catalyst as CE produce fill factor of 67.6% and 66.3%, which is significantly higher than that using pristine Sb2S3 fabricated in our previous work (52.8%). Finally, the corresponding power conversion efficiencies reach 6.69% (Sb2S3@CNP-S) and 6.24% (Sb2S3@CNP-T), respectively, which are comparable to that using Pt CE measured under the same conditions (6.74%).

  19. Stochastic Gompertz model of tumour cell growth.

    PubMed

    Lo, C F

    2007-09-21

    In this communication, based upon the deterministic Gompertz law of cell growth, a stochastic model in tumour growth is proposed. This model takes account of both cell fission and mortality too. The corresponding density function of the size of the tumour cells obeys a functional Fokker--Planck equation which can be solved analytically. It is found that the density function exhibits an interesting "multi-peak" structure generated by cell fission as time evolves. Within this framework the action of therapy is also examined by simply incorporating a therapy term into the deterministic cell growth term.

  20. c-Kit-kinase induces a cascade of protein tyrosine phosphorylation in normal human melanocytes in response to mast cell growth factor and stimulates mitogen-activated protein kinase but is down-regulated in melanomas.

    PubMed Central

    Funasaka, Y; Boulton, T; Cobb, M; Yarden, Y; Fan, B; Lyman, S D; Williams, D E; Anderson, D M; Zakut, R; Mishima, Y

    1992-01-01

    The proto-oncogene c-Kit, a transmembrane receptor tyrosine kinase, is an important regulator of cell growth whose constitutively active oncogenic counterpart, v-kit, induces sarcomas in cats. Mutations in murine c-kit that reduce the receptor tyrosine kinase activity cause deficiencies in the migration and proliferation of melanoblasts, hematopoietic stem cells, and primordial germ cells. We therefore investigated whether c-Kit regulates normal human melanocyte proliferation and plays a role in melanomas. We show that normal human melanocytes respond to mast cell growth factor (MGF), the Kit-ligand that stimulates phosphorylation of tyrosyl residues in c-Kit and induces sequential phosphorylation of tyrosyl residues in several other proteins. One of the phosphorylated intermediates in the signal transduction pathway was identified as an early response kinase (mitogen-activated protein [MAP] kinase). Dephosphorylation of a prominent 180-kDa protein suggests that MGF also activates a phosphotyrosine phosphatase. In contrast, MGF did not induce proliferation, the cascade of protein phosphorylations, or MAP kinase activation in the majority of cells cultured from primary nodular and metastatic melanomas that grow independently of exogenous factors. In the five out of eight human melanoma lines expressing c-kit mRNAs, c-Kit was not constitutively activated. Therefore, although c-Kit-kinase is a potent growth regulator of normal human melanocytes, its activity is not positively associated with malignant transformation. Images PMID:1372524

  1. Effect of vitamin D status improvement with 25-hydroxycholecalciferol on skeletal muscle growth characteristics and satellite cell activity in broiler chickens.

    PubMed

    Hutton, K C; Vaughn, M A; Litta, G; Turner, B J; Starkey, J D

    2014-08-01

    Skeletal muscle satellite cells (SC) play a critical role in the hypertrophic growth of postnatal muscle. Increases in breast meat yield have been consistently observed in broiler chickens fed 25-hydroxycholecalciferol (25OHD3), but it is unclear whether this effect is mediated by SC. Thus, our objective was to determine the effect of vitamin D status improvement by replacing the majority of dietary vitamin D3 (D3) with 25OHD3 on SC activity and muscle growth characteristics in the pectoralis major (PM) and the biceps femoris (BF) muscles. Day-old, male Ross 708 broiler chickens (n = 150) were fed 1 of 2 corn and soybean meal-based diets for 49 d. The control diet (CTL) contained 5,000 IU D3 per kg of diet and the experimental diet (25OHD3) contained 2,240 IU D3 per kg of diet + 2,760 IU 25OHD3 per kg of diet. Ten birds per treatment were harvested every 7 d. Two hours before harvest, birds were injected intraperitoneally with 5'-bromo-2'deoxyuridine (BrdU) to label mitotically active cells. Blood was collected from each bird at harvest to measure circulating concentrations of 25OHD3, a marker of vitamin D status. The PM and BF muscles were weighed and processed for cryohistological determination of skeletal muscle fiber cross-sectional area, enumeration of Myf-5+ and Pax7+ SC, and mitotically active (BrdU+) SC using immunofluorescence microscopy. Circulating 25OHD3 concentrations were greater in 25OHD3-fed birds on d 7, 14, 21, 28, 35, 42, and 49 when compared with CTL (P < 0.001). Growth performance and feed efficiency did not differ among dietary treatments (P > 0.10). Improved vitamin D status as a result of feeding 25OHD3 increased the number of mitotically active (Pax7+;BrdU+) SC (P = 0.01) and tended to increase the density of Pax7+ SC (P = 0.07) in the PM muscles of broilers on d 21 and 35, respectively. Broiler chickens fed 25OHD3 also tended to have greater Myf-5+ SC density (P = 0.09) on d 14, greater total nuclear density (P = 0.05) on d 28, and a

  2. Ligustrazine attenuates oxidative stress-induced activation of hepatic stellate cells by interrupting platelet-derived growth factor-β receptor-mediated ERK and p38 pathways

    SciTech Connect

    Zhang, Feng; Ni, Chunyan; Kong, Desong; Zhang, Xiaoping; Zhu, Xiaojing; Chen, Li; Lu, Yin; Zheng, Shizhong

    2012-11-15

    Hepatic fibrosis represents a frequent event following chronic insult to trigger wound healing reactions with accumulation of extracellular matrix (ECM) in the liver. Activation of hepatic stellate cells (HSCs) is the pivotal event during liver fibrogenesis. Compelling evidence indicates that oxidative stress is concomitant with liver fibrosis irrespective of the underlying etiology. Natural antioxidant ligustrazine exhibits potent antifibrotic activities, but the mechanisms are poorly understood. Our studies were to investigate the ligustrazine effects on HSC activation stimulated by hydrogen peroxide (H{sub 2}O{sub 2}), an in vitro model mimicking the oxidative stress in liver fibrogenesis, and to elucidate the possible mechanisms. Our results demonstrated that H{sub 2}O{sub 2} at 5 μM significantly stimulated HSC proliferation and expression of marker genes of HSC activation; whereas ligustrazine dose-dependently suppressed proliferation and induced apoptosis in H{sub 2}O{sub 2}-activated HSCs, and attenuated expression of fibrotic marker genes. Mechanistic investigations revealed that ligustrazine reduced platelet-derived growth factor-β receptor (PDGF-βR) expression and blocked the phosphorylation of extracellular regulated protein kinase (ERK) and p38 kinase, two downstream effectors of PDGF-βR. Further molecular evidence suggested that ligustrazine interruption of ERK and p38 pathways was dependent on the blockade of PDGF-βR and might be involved in ligustrazine reduction of fibrotic marker gene expression under H{sub 2}O{sub 2} stimulation. Furthermore, ligustrazine modulated some proteins critical for HSC activation and ECM homeostasis in H{sub 2}O{sub 2}-stimulated HSCs. These data collectively indicated that ligustrazine could attenuate HSC activation caused by oxidative stress, providing novel insights into ligustrazine as a therapeutic option for hepatic fibrosis. Highlights: ► Ligustrazine inhibits oxidative stress-induced HSC activation.

  3. HMGCR positively regulated the growth and migration of glioblastoma cells.

    PubMed

    Qiu, Zhihua; Yuan, Wen; Chen, Tao; Zhou, Chenzhi; Liu, Chao; Huang, Yongkai; Han, Deqing; Huang, Qinghui

    2016-01-15

    The metabolic program of cancer cells is significant different from the normal cells, which makes it possible to develop novel strategies targeting cancer cells. Mevalonate pathway and its rate-limiting enzyme HMG-CoA reductase (HMGCR) have shown important roles in the progression of several cancer types. However, their roles in glioblastoma cells remain unknown. In this study, up-regulation of HMGCR in the clinical glioblastoma samples was observed. Forced expression of HMGCR promoted the growth and migration of U251 and U373 cells, while knocking down the expression of HMGCR inhibited the growth, migration and metastasis of glioblastoma cells. Molecular mechanism studies revealed that HMGCR positively regulated the expression of TAZ, an important mediator of Hippo pathway, and the downstream target gene connective tissue growth factor (CTGF), suggesting HMGCR might activate Hippo pathway in glioblastoma cells. Taken together, our study demonstrated the oncogenic roles of HMGCR in glioblastoma cells and HMGCR might be a promising therapeutic target.

  4. Thiazolidinediones enhance vascular endothelial growth factor expression and induce cell growth inhibition in non-small-cell lung cancer cells

    PubMed Central

    2010-01-01

    Background It is known that thiazolidinediones are involved in regulating the expression of various genes, including the vascular endothelial growth factor (VEGF) gene via peroxisome proliferator-activated receptor γ (PPARγ); VEGF is a prognostic biomarker for non-small-cell lung cancer (NSCLC). Methods In this study, we investigated the effects of troglitazone and ciglitazone on the mRNA expression of VEGF and its receptors in human NSCLC cell lines, RERF-LC-AI, SK-MES-1, PC-14, and A549. These mRNA expressions were evaluated by quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) analysis. We also studied the effect of Je-11, a VEGF inhibitor, on the growth of these cells. Results In NSCLC cells, thiazolidinediones increased the mRNA expression of VEGF and neuropilin-1, but not that of other receptors such as fms-like tyrosine kinase and kinase insert domain receptor-1. Furthermore, the PPARγ antagonist GW9662 completely reversed this thiazolidinedione-induced increase in VEGF expression. Furthermore, the addition of VEGF inhibitors into the culture medium resulted in the reversal of thiazolidinedione-induced growth inhibition. Conclusions Our results indicated that thiazolidinediones enhance VEGF and neuropilin-1 expression and induce the inhibition of cell growth. We propose the existence of a pathway for arresting cell growth that involves the interaction of thiazolidinedione-induced VEGF and neuropilin-1 in NSCLC. PMID:20214829

  5. Gibberellic acid and dwarfism effects on the growth dynamics of B73 maize (Zea mays L.) leaf blades: a transient increase in apoplastic peroxidase activity precedes cessation of cell elongation.

    PubMed

    de Souza, I R; MacAdam, J W

    2001-08-01

    The relationship between apoplastic peroxidase (EC 1.11.1.7) activity and cessation of growth in maize (Zea mays L.) leaf blades was investigated by altering elongation zone length. Apoplastic peroxidase activity in the elongation and secondary cell wall deposition zones of elongating leaf blades of the maize inbred line B73 was used as a control and compared to leaves of the dwarf mutant D8-81127, a near-isogenic line of B73 unresponsive to gibberellins, and to leaves of B73 plants to which gibberellic acid (GA(3)) had been applied via root uptake. Elongation zone length was increased by treatment with GA(3) through an increase in cell number as well as increased final cell length. The shorter elongation zone of dwarf leaves occurred primarily through reduced final cell length. Although elongation zone length differed among dwarf, control, and GA(3)-treated leaf blades, in all three treatments a transient increase in apoplastic peroxidase activity preceded a reduction in the segmental elongation rate in leaves. A peroxidase isoenzyme with pI 7.0 occurred in the leaf elongation zone during growth deceleration in all three treatments, and its activity decreased as growth displaced tissue into the region of secondary cell wall deposition. Growth cessation for all treatments coincided with the first appearance of peroxidase isozymes with pIs of 5.6 and 5.7. Based on the activity of particular isozymes relative to growth and differentiation, the pI 7.0 isoenzyme is most likely to be involved in cessation of cell elongation, while isozymes with pIs 5.6 and 5.7 are likely to be active in lignification.

  6. Effect of light wavelength on cell growth, content of phenolic compounds and antioxidant activity in cell suspension cultures of Thevetia peruviana.

    PubMed

    Arias, J P; Zapata, K; Rojano, B; Arias, M

    2016-10-01

    Thevetia peruviana (T. peruviana) has been considered as a potentially important plant for industrial and pharmacological application. Among the number of compounds which are produced by T. peruviana, antioxidants and polyphenols are of particular interest due to their benefits on human health. Cell suspension cultures of T. peruviana were established under different conditions: 1) constant illumination (24h/day) at different light wavelengths (red, green, blue, yellow and white), 2) darkness and 3) control (12h/12h: day light/dark) to investigate their biomass, substrate uptake, polyphenols production and oxidizing activity. The results showed biomass concentrations between 17.1g dry weight (DW)/l (green light) and 18.2g DW/l (control) after 13days. The cultures that grew under green light conditions consumed completely all substrates after 10days, while other cultures required at least 13days or more. The total phenolic content was between 7.21 and 9.46mg gallic acid (GA)/g DW for all light conditions. In addition the ferric reducing antioxidant power and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid antioxidant activity ranged from 5.41-6.58mg ascorbic acid (AA)/g DW and 82.93-110.39μmol Trolox/g DW, respectively. Interestingly, the samples which grew under the darkness presented a higher phenolic content and antioxidant capacity when compared to the light conditions. All together, these results demonstrate the extraordinary effect of different lighting conditions on polyphenols production and antioxidant compounds by T. peruviana.

  7. Fibroblast growth factor 8 increases breast cancer cell growth by promoting cell cycle progression and by protecting against cell death

    SciTech Connect

    Nilsson, Emeli M.; Brokken, Leon J.S.; Haerkoenen, Pirkko L.

    2010-03-10

    Fibroblast growth factor 8 (FGF-8) is expressed in a large proportion of breast cancers, whereas its level in normal mammary gland epithelium is low. Previous studies have shown that FGF-8b stimulates breast cancer cell growth in vitro and in vivo. To explore the mechanisms by which FGF-8b promotes growth, we studied its effects on cell cycle regulatory proteins and signalling pathways in mouse S115 and human MCF-7 breast cancer cells. We also studied the effect of FGF-8b on cell survival. FGF-8b induced cell cycle progression and up-regulated particularly cyclin D1 mRNA and protein in S115 cells. Silencing cyclin D1 with siRNA inhibited most but not all FGF-8b-induced proliferation. Inhibition of the FGF-8b-activated ERK/MAPK pathway decreased FGF-8b-stimulated proliferation. Blocking the constitutively active PI3K/Akt and p38 MAPK pathways also lowered FGF-8b-induced cyclin D1 expression and proliferation. Corresponding results were obtained in MCF-7 cells. In S115 and MCF-7 mouse tumours, FGF-8b increased cyclin D1 and Ki67 levels. Moreover, FGF-8b opposed staurosporine-induced S115 cell death which effect was blocked by inhibiting the PI3K/Akt pathway but not the ERK/MAPK pathway. In conclusion, our results suggest that FGF-8b increases breast cancer cell growth both by stimulating cell cycle progression and by protecting against cell death.

  8. Monoclonal Antibodies against Epidermal Growth Factor Receptor Acquire an Ability To Kill Tumor Cells through Complement Activation by Mutations That Selectively Facilitate the Hexamerization of IgG on Opsonized Cells.

    PubMed

    Tammen, Annalina; Derer, Stefanie; Schwanbeck, Ralf; Rösner, Thies; Kretschmer, Anna; Beurskens, Frank J; Schuurman, Janine; Parren, Paul W H I; Valerius, Thomas

    2017-02-15

    Triggering of the complement cascade induces tumor cell lysis via complement-dependent cytotoxicity (CDC) and attracts and activates cytotoxic cells. It therefore represents an attractive mechanism for mAb in cancer immunotherapy development. The classical complement pathway is initiated by IgG molecules that have assembled into ordered hexamers after binding their Ag on the tumor cell surface. The requirements for CDC are further impacted by factors such as Ab epitope, valency, and affinity. Thus, mAb against well-validated solid tumor targets, such as the epidermal growth factor receptor (EGFR) that effectively induces complement activation and CDC, are highly sought after. The potency of complement activation by IgG Abs can be increased via several strategies. We identified single-point mutations in the Fc domain (e.g., E345K or E430G) enhancing Fc:Fc interactions, hexamer formation, and CDC after Ab binds cell-surface Ag. We show that EGFR Abs directed against clinically relevant epitopes can be converted into mAb with unprecedented CDC activity. Alternative strategies rely on increasing the affinity of monomeric IgG for C1q by introduction of a quadruple mutation at the C1q binding site or via generation of an IgG1/IgG3 chimera. In this study we show that selective enhancement of C1q binding via avidity modulation is superior to the unattended increase in C1q binding via affinity approaches, particularly for target cells with reduced EGFR expression levels. Improving Fc:Fc interactions of Ag-bound IgG therefore represents a highly promising and novel approach for potentiating the anti-tumor activity of therapeutic mAb against EGFR and potentially other tumor targets.

  9. Pumpkin seed extract: Cell growth inhibition of hyperplastic and cancer cells, independent of steroid hormone receptors.

    PubMed

    Medjakovic, Svjetlana; Hobiger, Stefanie; Ardjomand-Woel