Sample records for activity coefficients calculated

  1. On the adequacy of modeling the concentration dependences of the activity coefficients for the components of solutions

    NASA Astrophysics Data System (ADS)

    Sergievskii, V. V.; Rudakov, A. M.

    2006-11-01

    An analysis of the accepted methods for calculating the activity coefficients for the components of binary aqueous solutions was performed. It was demonstrated that the use of the osmotic coefficients in auxiliary calculations decreases the accuracy of estimates of the activity coefficients. The possibility of calculating the activity coefficient of the solute from the concentration dependence of the water activity was examined. It was established that, for weak electrolytes, the interpretation of data on heterogeneous equilibria within the framework of the standard assumption that the dissociation is complete encounters serious difficulties.

  2. A computer program incorporating Pitzer's equations for calculation of geochemical reactions in brines

    USGS Publications Warehouse

    Plummer, Niel; Parkhurst, D.L.; Fleming, G.W.; Dunkle, S.A.

    1988-01-01

    The program named PHRQPITZ is a computer code capable of making geochemical calculations in brines and other electrolyte solutions to high concentrations using the Pitzer virial-coefficient approach for activity-coefficient corrections. Reaction-modeling capabilities include calculation of (1) aqueous speciation and mineral-saturation index, (2) mineral solubility, (3) mixing and titration of aqueous solutions, (4) irreversible reactions and mineral water mass transfer, and (5) reaction path. The computed results for each aqueous solution include the osmotic coefficient, water activity , mineral saturation indices, mean activity coefficients, total activity coefficients, and scale-dependent values of pH, individual-ion activities and individual-ion activity coeffients , and scale-dependent values of pH, individual-ion activities and individual-ion activity coefficients. A data base of Pitzer interaction parameters is provided at 25 C for the system: Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O, and extended to include largely untested literature data for Fe(II), Mn(II), Sr, Ba, Li, and Br with provision for calculations at temperatures other than 25C. An extensive literature review of published Pitzer interaction parameters for many inorganic salts is given. Also described is an interactive input code for PHRQPITZ called PITZINPT. (USGS)

  3. Calculation of activities of ions in molten salts with potential application to the pyroprocessing of nuclear waste.

    PubMed

    Salanne, Mathieu; Simon, Christian; Turq, Pierre; Madden, Paul A

    2008-01-31

    The ability to separate fission products by electrodeposition from molten salts depends, in part, on differences between the interactions of the different fission product cations with the ions present in the molten salt "solvent". These differences may be expressed as ratios of activity coefficients, which depend on the identity of the solvent and other factors. Here, we demonstrate the ability to calculate these activity coefficient ratios using molecular dynamics simulations with sufficient precision to guide the choice of suitable solvent systems in practical applications. We use polarizable ion interaction potentials which have previously been shown to give excellent agreement with structural, transport, and spectroscopic information of the molten salts, and the activity coefficients calculated in this work agree well with experimental data. The activity coefficients are shown to vary systematically with cation size for a set of trivalent cations.

  4. Predicting Salt Permeability Coefficients in Highly Swollen, Highly Charged Ion Exchange Membranes.

    PubMed

    Kamcev, Jovan; Paul, Donald R; Manning, Gerald S; Freeman, Benny D

    2017-02-01

    This study presents a framework for predicting salt permeability coefficients in ion exchange membranes in contact with an aqueous salt solution. The model, based on the solution-diffusion mechanism, was tested using experimental salt permeability data for a series of commercial ion exchange membranes. Equilibrium salt partition coefficients were calculated using a thermodynamic framework (i.e., Donnan theory), incorporating Manning's counterion condensation theory to calculate ion activity coefficients in the membrane phase and the Pitzer model to calculate ion activity coefficients in the solution phase. The model predicted NaCl partition coefficients in a cation exchange membrane and two anion exchange membranes, as well as MgCl 2 partition coefficients in a cation exchange membrane, remarkably well at higher external salt concentrations (>0.1 M) and reasonably well at lower external salt concentrations (<0.1 M) with no adjustable parameters. Membrane ion diffusion coefficients were calculated using a combination of the Mackie and Meares model, which assumes ion diffusion in water-swollen polymers is affected by a tortuosity factor, and a model developed by Manning to account for electrostatic effects. Agreement between experimental and predicted salt diffusion coefficients was good with no adjustable parameters. Calculated salt partition and diffusion coefficients were combined within the framework of the solution-diffusion model to predict salt permeability coefficients. Agreement between model and experimental data was remarkably good. Additionally, a simplified version of the model was used to elucidate connections between membrane structure (e.g., fixed charge group concentration) and salt transport properties.

  5. Simulating Osmotic Equilibria: A New Tool for Calculating Activity Coefficients in Concentrated Aqueous Salt Solutions.

    PubMed

    Bley, Michael; Duvail, Magali; Guilbaud, Philippe; Dufrêche, Jean-François

    2017-10-19

    Herein, a new theoretical method is presented for predicting osmotic equilibria and activities, where a bulk liquid and its corresponding vapor phase are simulated by means of molecular dynamics using explicit polarization. Calculated time-averaged number density profiles provide the amount of evaporated molecules present in the vapor phase and consequently the vapor-phase density. The activity of the solvent and the corresponding osmotic coefficient are determined by the vapor density at different solute concentrations with respect to the reference vapor density of the pure solvent. With the extended Debye-Hückel equation for the activity coefficient along with the corresponding Gibbs-Duhem relation, the activity coefficients of the solutes are calculated by fitting the osmotic coefficients. A simple model based on the combination of Poisson processes and Maxwell-Boltzmann velocity distributions is introduced to interpret statistical phenomena observed during the simulations, which are related to evaporation and recondensation. This method is applied to aqueous dysprosium nitrate [Dy(NO 3 ) 3 ] solutions at different concentrations. The obtained densities of the liquid bulk and the osmotic and activity coefficients are in good agreement with the experimental results for concentrated and saturated solutions. Density profiles of the liquid-vapor interface at different concentrations provide detailed insight into the spatial distributions of all compounds.

  6. Coefficients of productivity for Yellowstone's grizzly bear habitat

    USGS Publications Warehouse

    Mattson, David John; Barber, Kim; Maw, Ralene; Renkin, Roy

    2004-01-01

    This report describes methods for calculating coefficients used to depict habitat productivity for grizzly bears in the Yellowstone ecosystem. Calculations based on these coefficients are used in the Yellowstone Grizzly Bear Cumulative Effects Model to map the distribution of habitat productivity and account for the impacts of human facilities. The coefficients of habitat productivity incorporate detailed information that was collected over a 20-year period (1977-96) on the foraging behavior of Yellowstone's bears and include records of what bears were feeding on, when and where they fed, the extent of that feeding activity, and relative measures of the quantity consumed. The coefficients also incorporate information, collected primarily from 1986 to 1992, on the nutrient content of foods that were consumed, their digestibility, characteristic bite sizes, and the energy required to extract and handle each food. Coefficients were calculated for different time periods and different habitat types, specific to different parts of the Yellowstone ecosystem. Stratifications included four seasons of bear activity (spring, estrus, early hyperphagia, late hyperphagia), years when ungulate carrion and whitebark pine seed crops were abundant versus not, areas adjacent to (< 100 m) or far away from forest/nonforest edges, and areas inside or outside of ungulate winter ranges. Densities of bear activity in each region, habitat type, and time period were incorporated into calculations, controlling for the effects of proximity to human facilities. The coefficients described in this report and associated estimates of grizzly bear habitat productivity are unique among many efforts to model the conditions of bear habitat because calculations include information on energetics derived from the observed behavior of radio-marked bears.

  7. Removing the barrier to the calculation of activation energies: Diffusion coefficients and reorientation times in liquid water.

    PubMed

    Piskulich, Zeke A; Mesele, Oluwaseun O; Thompson, Ward H

    2017-10-07

    General approaches for directly calculating the temperature dependence of dynamical quantities from simulations at a single temperature are presented. The method is demonstrated for self-diffusion and OH reorientation in liquid water. For quantities which possess an activation energy, e.g., the diffusion coefficient and the reorientation time, the results from the direct calculation are in excellent agreement with those obtained from an Arrhenius plot. However, additional information is obtained, including the decomposition of the contributions to the activation energy. These results are discussed along with prospects for additional applications of the direct approach.

  8. A program for calculating load coefficient matrices utilizing the force summation method, L218 (LOADS). Volume 2: Supplemental system design and maintenance document

    NASA Technical Reports Server (NTRS)

    Anderson, L. R.; Miller, R. D.

    1979-01-01

    The LOADS computer program L218 which calculates dynamic load coefficient matrices utilizing the force summation method is described. The load equations are derived for a flight vehicle in straight and level flight and excited by gusts and/or control motions. In addition, sensor equations are calculated for use with an active control system. The load coefficient matrices are calculated for the following types of loads: (1) translational and rotational accelerations, velocities, and displacements; (2) panel aerodynamic forces; (3) net panel forces; and (4) shears, bending moments, and torsions.

  9. Rapid Acute Dose Assessment Using MCNP6

    NASA Astrophysics Data System (ADS)

    Owens, Andrew Steven

    Acute radiation doses due to physical contact with a high-activity radioactive source have proven to be an occupational hazard. Multiple radiation injuries have been reported due to manipulating a radioactive source with bare hands or by placing a radioactive source inside a shirt or pants pocket. An effort to reconstruct the radiation dose must be performed to properly assess and medically manage the potential biological effects from such doses. Using the reference computational phantoms defined by the International Commission on Radiological Protection (ICRP) and the Monte Carlo N-Particle transport code (MCNP6), dose rate coefficients are calculated to assess doses for common acute doses due to beta and photon radiation sources. The research investigates doses due to having a radioactive source in either a breast pocket or pants back pocket. The dose rate coefficients are calculated for discrete energies and can be used to interpolate for any given energy of photon or beta emission. The dose rate coefficients allow for quick calculation of whole-body dose, organ dose, and/or skin dose if the source, activity, and time of exposure are known. Doses are calculated with the dose rate coefficients and compared to results from the International Atomic Energy Agency (IAEA) reports from accidents that occurred in Gilan, Iran and Yanango, Peru. Skin and organ doses calculated with the dose rate coefficients appear to agree, but there is a large discrepancy when comparing whole-body doses assessed using biodosimetry and whole-body doses assessed using the dose rate coefficients.

  10. Partitioning and lipophilicity in quantitative structure-activity relationships.

    PubMed Central

    Dearden, J C

    1985-01-01

    The history of the relationship of biological activity to partition coefficient and related properties is briefly reviewed. The dominance of partition coefficient in quantitation of structure-activity relationships is emphasized, although the importance of other factors is also demonstrated. Various mathematical models of in vivo transport and binding are discussed; most of these involve partitioning as the primary mechanism of transport. The models describe observed quantitative structure-activity relationships (QSARs) well on the whole, confirming that partitioning is of key importance in in vivo behavior of a xenobiotic. The partition coefficient is shown to correlate with numerous other parameters representing bulk, such as molecular weight, volume and surface area, parachor and calculated indices such as molecular connectivity; this is especially so for apolar molecules, because for polar molecules lipophilicity factors into both bulk and polar or hydrogen bonding components. The relationship of partition coefficient to chromatographic parameters is discussed, and it is shown that such parameters, which are often readily obtainable experimentally, can successfully supplant partition coefficient in QSARs. The relationship of aqueous solubility with partition coefficient is examined in detail. Correlations are observed, even with solid compounds, and these can be used to predict solubility. The additive/constitutive nature of partition coefficient is discussed extensively, as are the available schemes for the calculation of partition coefficient. Finally the use of partition coefficient to provide structural information is considered. It is shown that partition coefficient can be a valuable structural tool, especially if the enthalpy and entropy of partitioning are available. PMID:3905374

  11. Activation volumes of oxygen self-diffusion in fluorite structured oxides

    DOE PAGES

    Christopoulos, S-R G.; Kordatos, A.; Cooper, Michael William D.; ...

    2016-10-27

    In this study, fluorite structured oxides are used in numerous applications and as such it is necessary to determine their materials properties over a range of conditions. In the present study we employ molecular dynamics calculations to calculate the elastic and expansivity data, which are then used in a thermodynamic model (the cBΩ model) to calculate the activation volumes of oxygen self-diffusion coefficient in ThO 2, UO 2 and PuO 2 fluorite structured oxides over a wide temperature range. We present relations to calculate the activation volumes of oxygen self-diffusion coefficient in ThO 2, UO 2 and PuO 2 formore » a wide range of temperature (300–1700 K) and pressure (–7.5 to 7.5 GPa).« less

  12. Dietary intakes assessed by 24-h recalls in peri-urban African adolescents: validity of energy intake compared with estimated energy expenditure.

    PubMed

    Rankin, D; Ellis, S M; Macintyre, U E; Hanekom, S M; Wright, H H

    2011-08-01

    The objective of this study is to determine the relative validity of reported energy intake (EI) derived from multiple 24-h recalls against estimated energy expenditure (EE(est)). Basal metabolic rate (BMR) equations and physical activity factors were incorporated to calculate EE(est). This analysis was nested in the multidisciplinary PhysicaL Activity in the Young study with a prospective study design. Peri-urban black South African adolescents were investigated in a subsample of 131 learners (87 girls and 44 boys) from the parent study sample of 369 (211 girls and 158 boys) who had all measurements taken. Pearson correlation coefficients and Bland-Altman plots were calculated to identify the most accurate published equations to estimate BMR (P<0.05 statistically significant). EE(est) was estimated using BMR equations and estimated physical activity factors derived from Previous Day Physical Activity Recall questionnaires. After calculation of EE(est), the relative validity of reported energy intake (EI(rep)) derived from multiple 24-h recalls was tested for three data subsets using Pearson correlation coefficients. Goldberg's formula identified cut points (CPs) for under and over reporting of EI. Pearson correlation coefficients between calculated BMRs ranged from 0.97 to 0.99. Bland-Altman analyses showed acceptable agreement (two equations for each gender). One equation for each gender was used to calculate EE(est). Pearson correlation coefficients between EI(rep) and EE(est) for three data sets were weak, indicating poor agreement. CPs for physical activity groups showed under reporting in 87% boys and 95% girls. The 24-h recalls measured at five measurements over 2 years offered poor validity between EI(rep) and EE(est).

  13. Activity coefficients from molecular simulations using the OPAS method

    NASA Astrophysics Data System (ADS)

    Kohns, Maximilian; Horsch, Martin; Hasse, Hans

    2017-10-01

    A method for determining activity coefficients by molecular dynamics simulations is presented. It is an extension of the OPAS (osmotic pressure for the activity of the solvent) method in previous work for studying the solvent activity in electrolyte solutions. That method is extended here to study activities of all components in mixtures of molecular species. As an example, activity coefficients in liquid mixtures of water and methanol are calculated for 298.15 K and 323.15 K at 1 bar using molecular models from the literature. These dense and strongly interacting mixtures pose a significant challenge to existing methods for determining activity coefficients by molecular simulation. It is shown that the new method yields accurate results for the activity coefficients which are in agreement with results obtained with a thermodynamic integration technique. As the partial molar volumes are needed in the proposed method, the molar excess volume of the system water + methanol is also investigated.

  14. Predicting the Activity Coefficients of Free-Solvent for Concentrated Globular Protein Solutions Using Independently Determined Physical Parameters

    PubMed Central

    McBride, Devin W.; Rodgers, Victor G. J.

    2013-01-01

    The activity coefficient is largely considered an empirical parameter that was traditionally introduced to correct the non-ideality observed in thermodynamic systems such as osmotic pressure. Here, the activity coefficient of free-solvent is related to physically realistic parameters and a mathematical expression is developed to directly predict the activity coefficients of free-solvent, for aqueous protein solutions up to near-saturation concentrations. The model is based on the free-solvent model, which has previously been shown to provide excellent prediction of the osmotic pressure of concentrated and crowded globular proteins in aqueous solutions up to near-saturation concentrations. Thus, this model uses only the independently determined, physically realizable quantities: mole fraction, solvent accessible surface area, and ion binding, in its prediction. Predictions are presented for the activity coefficients of free-solvent for near-saturated protein solutions containing either bovine serum albumin or hemoglobin. As a verification step, the predictability of the model for the activity coefficient of sucrose solutions was evaluated. The predicted activity coefficients of free-solvent are compared to the calculated activity coefficients of free-solvent based on osmotic pressure data. It is observed that the predicted activity coefficients are increasingly dependent on the solute-solvent parameters as the protein concentration increases to near-saturation concentrations. PMID:24324733

  15. Predicting cyclohexane/water distribution coefficients for the SAMPL5 challenge using MOSCED and the SMD solvation model.

    PubMed

    Diaz-Rodriguez, Sebastian; Bozada, Samantha M; Phifer, Jeremy R; Paluch, Andrew S

    2016-11-01

    We present blind predictions using the solubility parameter based method MOSCED submitted for the SAMPL5 challenge on calculating cyclohexane/water distribution coefficients at 298 K. Reference data to parameterize MOSCED was generated with knowledge only of chemical structure by performing solvation free energy calculations using electronic structure calculations in the SMD continuum solvent. To maintain simplicity and use only a single method, we approximate the distribution coefficient with the partition coefficient of the neutral species. Over the final SAMPL5 set of 53 compounds, we achieved an average unsigned error of [Formula: see text] log units (ranking 15 out of 62 entries), the correlation coefficient (R) was [Formula: see text] (ranking 35), and [Formula: see text] of the predictions had the correct sign (ranking 30). While used here to predict cyclohexane/water distribution coefficients at 298 K, MOSCED is broadly applicable, allowing one to predict temperature dependent infinite dilution activity coefficients in any solvent for which parameters exist, and provides a means by which an excess Gibbs free energy model may be parameterized to predict composition dependent phase-equilibrium.

  16. A program for calculating load coefficient matrices utilizing the force summation method, L218 (LOADS). Volume 1: Engineering and usage

    NASA Technical Reports Server (NTRS)

    Miller, R. D.; Anderson, L. R.

    1979-01-01

    The LOADS program L218, a digital computer program that calculates dynamic load coefficient matrices utilizing the force summation method, is described. The load equations are derived for a flight vehicle in straight and level flight and excited by gusts and/or control motions. In addition, sensor equations are calculated for use with an active control system. The load coefficient matrices are calculated for the following types of loads: translational and rotational accelerations, velocities, and displacements; panel aerodynamic forces; net panel forces; shears and moments. Program usage and a brief description of the analysis used are presented. A description of the design and structure of the program to aid those who will maintain and/or modify the program in the future is included.

  17. Method Of Characterizing An Electrode Binder

    DOEpatents

    Cocciantelli, Jean-Michel; Coco, Isabelle; Villenave, Jean-Jacques

    1999-05-11

    In a method of characterizing a polymer binder for cell electrodes in contact with an electrolyte and including a current collector and a paste containing an electrochemically active material and said binder, a spreading coefficient of the binder on the active material is calculated from the measured angle of contact between standard liquids and the active material and the binder, respectively. An interaction energy of the binder with the electrolyte is calculated from the measured angle of contact between the electrolyte and the binder. The binder is selected such that the spreading coefficient is less than zero and the interaction energy is at least 60 mJ/m.sup.2.

  18. Investigation of concentration-dependence of thermodynamic properties of lanthanum, yttrium, scandium and terbium in eutectic LiCl-KCl molten salt

    NASA Astrophysics Data System (ADS)

    Wang, Yafei; Zhou, Wentao; Zhang, Jinsuo

    2016-09-01

    Thermodynamic properties of rare earth metals in LiCl-KCl molten salt electrolyte are crucial to the development of electrochemical separation for the treatment of used nuclear fuels. In the present study, activity coefficient, apparent potential, and diffusion coefficient of lanthanum, yttrium, scandium, and terbium in the molten salt (58 at% LiCl and 42 at% KCl) were calculated by the method of molecular dynamics simulation up to a concentration around 3 at% at temperatures of 723 K and 773 K. It was found that the activity coefficient and the apparent potential increase with the species concentration while diffusion coefficient shows a trend of increase followed by decrease. The calculated results were validated by available measurement data of dilution cases. This research extends the range of data to a wide component and would provide further insight to the pyroprocessing design and safeguards.

  19. Application of the compensated Arrhenius formalism to self-diffusion: implications for ionic conductivity and dielectric relaxation.

    PubMed

    Petrowsky, Matt; Frech, Roger

    2010-07-08

    Self-diffusion coefficients are measured from -5 to 80 degrees C in a series of linear alcohols using pulsed field gradient NMR. The temperature dependence of these data is studied using a compensated Arrhenius formalism that assumes an Arrhenius-like expression for the diffusion coefficient; however, this expression includes a dielectric constant dependence in the exponential prefactor. Scaling temperature-dependent diffusion coefficients to isothermal diffusion coefficients so that the exponential prefactors cancel results in calculated energies of activation E(a). The exponential prefactor is determined by dividing the temperature-dependent diffusion coefficients by the Boltzmann term exp(-E(a)/RT). Plotting the prefactors versus the dielectric constant places the data on a single master curve. This procedure is identical to that previously used to study the temperature dependence of ionic conductivities and dielectric relaxation rate constants. The energies of activation determined from self-diffusion coefficients in the series of alcohols are strikingly similar to those calculated for the same series of alcohols from both dielectric relaxation rate constants and ionic conductivities of dilute electrolytes. The experimental results are described in terms of an activated transport mechanism that is mediated by relaxation of the solution molecules. This microscopic picture of transport is postulated to be common to diffusion, dielectric relaxation, and ionic transport.

  20. In situ calibration of neutron activation system on the large helical device

    NASA Astrophysics Data System (ADS)

    Pu, N.; Nishitani, T.; Isobe, M.; Ogawa, K.; Kawase, H.; Tanaka, T.; Li, S. Y.; Yoshihashi, S.; Uritani, A.

    2017-11-01

    In situ calibration of the neutron activation system on the Large Helical Device (LHD) was performed by using an intense 252Cf neutron source. To simulate a ring-shaped neutron source, we installed a railway inside the LHD vacuum vessel and made a train loaded with the 252Cf source run along a typical magnetic axis position. Three activation capsules loaded with thirty pieces of indium foils stacked with total mass of approximately 18 g were prepared. Each capsule was irradiated over 15 h while the train was circulating. The activation response coefficient (9.4 ± 1.2) × 10-8 of 115In(n, n')115mIn reaction obtained from the experiment is in good agreement with results from three-dimensional neutron transport calculations using the Monte Carlo neutron transport simulation code 6. The activation response coefficients of 2.45 MeV birth neutron and secondary 14.1 MeV neutron from deuterium plasma were evaluated from the activation response coefficient obtained in this calibration experiment with results from three-dimensional neutron calculations using the Monte Carlo neutron transport simulation code 6.

  1. First-principles multiple-barrier diffusion theory. The case study of interstitial diffusion in CdTe

    DOE PAGES

    Yang, Ji -Hui; Park, Ji -Sang; Kang, Joongoo; ...

    2015-02-17

    The diffusion of particles in solid-state materials generally involves several sequential thermal-activation processes. However, presently, diffusion coefficient theory only deals with a single barrier, i.e., it lacks an accurate description to deal with multiple-barrier diffusion. Here, we develop a general diffusion coefficient theory for multiple-barrier diffusion. Using our diffusion theory and first-principles calculated hopping rates for each barrier, we calculate the diffusion coefficients of Cd, Cu, Te, and Cl interstitials in CdTe for their full multiple-barrier diffusion pathways. As a result, we found that the calculated diffusivity agrees well with the experimental measurement, thus justifying our theory, which is generalmore » for many other systems.« less

  2. The temperature-dependent diffusion coefficient of helium in zirconium carbide studied with first-principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiao-Yong; Lu, Yong; Zhang, Ping, E-mail: zhang-ping@iapcm.ac.cn

    2015-04-28

    The temperature-dependent diffusion coefficient of interstitial helium in zirconium carbide (ZrC) matrix is calculated based on the transition state theory. The microscopic parameters in the activation energy and prefactor are obtained from first-principles total energy and phonon frequency calculations including the all atoms. The obtained activation energy is 0.78 eV, consistent with experimental value. Besides, we evaluated the influence of C and Zr vacancies as the perturbation on helium diffusion, and found the C vacancy seems to confine the mobility of helium and the Zr vacancy promotes helium diffusion in some extent. These results provide a good reference to understand themore » behavior of helium in ZrC matrix.« less

  3. Predicting cyclohexane/water distribution coefficients for the SAMPL5 challenge using MOSCED and the SMD solvation model

    NASA Astrophysics Data System (ADS)

    Diaz-Rodriguez, Sebastian; Bozada, Samantha M.; Phifer, Jeremy R.; Paluch, Andrew S.

    2016-11-01

    We present blind predictions using the solubility parameter based method MOSCED submitted for the SAMPL5 challenge on calculating cyclohexane/water distribution coefficients at 298 K. Reference data to parameterize MOSCED was generated with knowledge only of chemical structure by performing solvation free energy calculations using electronic structure calculations in the SMD continuum solvent. To maintain simplicity and use only a single method, we approximate the distribution coefficient with the partition coefficient of the neutral species. Over the final SAMPL5 set of 53 compounds, we achieved an average unsigned error of 2.2± 0.2 log units (ranking 15 out of 62 entries), the correlation coefficient ( R) was 0.6± 0.1 (ranking 35), and 72± 6 % of the predictions had the correct sign (ranking 30). While used here to predict cyclohexane/water distribution coefficients at 298 K, MOSCED is broadly applicable, allowing one to predict temperature dependent infinite dilution activity coefficients in any solvent for which parameters exist, and provides a means by which an excess Gibbs free energy model may be parameterized to predict composition dependent phase-equilibrium.

  4. Determination of 210Pb concentration in NORM waste - An application of the transmission method for self-attenuation corrections for gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Bonczyk, Michal

    2018-07-01

    This article deals with the problem of the self-attenuation of low-energy gamma-rays from the isotope of lead 210Pb (46.5 keV) in industrial waste. The 167 samples of industrial waste, belonging to nine categories, were tested by means of gamma spectrometry in order to determine 210Pb activity concentration. The experimental method for self-attenuation corrections for gamma rays emitted by lead isotope was applied. Mass attenuation coefficients were determined for energy of 46.5 keV. Correction factors were calculated based on mass attenuation coefficients, sample density and thickness. A mathematical formula for correction calculation was evaluated. The 210Pb activity concentration obtained varied in the range from several Bq·kg-1 up to 19,810 Bq kg-1. The mass attenuation coefficients varied across the range of 0.19-4.42 cm2·g-1. However, the variation of mass attenuation coefficient within some categories of waste was relatively small. The calculated corrections for self-attenuation were 0.98 - 6.97. The high value of correction factors must not be neglect in radiation risk assessment.

  5. Interdiffusion and Intrinsic Diffusion in the Mg-Al System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brennan, Sarah; Bermudez, Katrina; Sohn, Yong Ho

    2012-01-01

    Solid-to-solid diffusion couples were assembled and annealed to examine the diffusion between pure Mg (99.96%) and Al (99.999%). Diffusion anneals were carried out at 300 , 350 , and 400 C for 720, 360, and 240 hours, respectively. Optical and scanning electron microscopes were utilized to identify the formation of the intermetallic phases, -Al12Mg17 and -Al3Mg2 and absence of the -phase in the diffusion couples. Thicknesses of the -Al12Mg17 and -Al3Mg2 phases were measured and the parabolic growth constants were calculated to determine the activation energies for the growth, 165 and 86 KJ/mole, respectively. Concentration profiles were determined with electronmore » microprobe analysis using pure elemental standards. Composition-dependent interdiffusion coefficients in Mg-solid solution, -Al12Mg17 and - Al3Mg2 and Al-solid solutions were calculated based on the Boltzmann-Matano analysis. Average effective interdiffusion coefficients for each phase were also calculated, and the magnitude was the highest for the -Al3Mg2 phase, followed by -Al12Mg17, Al-solid solution and Mg-solid solution. Intrinsic diffusion coefficients based on Huemann s analysis (e.g., marker plane) were determined for the ~38 at.% Mg in the -Al3Mg2 phase. Activation energies and the pre-exponential factors for the inter- and intrinsic diffusion coefficients were calculated for the temperature range examined. The -Al3Mg2 phase was found to have the lowest activation energies for growth and interdiffusion among all four phases studied. At the marker location in the -Al3Mg2 phase, the intrinsic diffusion of Al was found to be faster than that of Mg. Extrapolations of the impurity diffusion coefficients in the terminal solid solutions were made and compared to the available self- and impurity diffusion data from literature. Thermodynamic factor, tracer diffusion coefficients and atomic mobilities at the marker plane composition were approximated using available literature values of Mg activity in the -Al3Mg2 phase.« less

  6. Mean ionic activity coefficients in aqueous NaCl solutions from molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mester, Zoltan; Panagiotopoulos, Athanassios Z., E-mail: azp@princeton.edu

    The mean ionic activity coefficients of aqueous NaCl solutions of varying concentrations at 298.15 K and 1 bar have been obtained from molecular dynamics simulations by gradually turning on the interactions of an ion pair inserted into the solution. Several common non-polarizable water and ion models have been used in the simulations. Gibbs-Duhem equation calculations of the thermodynamic activity of water are used to confirm the thermodynamic consistency of the mean ionic activity coefficients. While the majority of model combinations predict the correct trends in mean ionic activity coefficients, they overestimate their values at high salt concentrations. The solubility predictionsmore » also suffer from inaccuracies, with all models underpredicting the experimental values, some by large factors. These results point to the need for further ion and water model development.« less

  7. Development of a generalized perturbation theory method for sensitivity analysis using continuous-energy Monte Carlo methods

    DOE PAGES

    Perfetti, Christopher M.; Rearden, Bradley T.

    2016-03-01

    The sensitivity and uncertainty analysis tools of the ORNL SCALE nuclear modeling and simulation code system that have been developed over the last decade have proven indispensable for numerous application and design studies for nuclear criticality safety and reactor physics. SCALE contains tools for analyzing the uncertainty in the eigenvalue of critical systems, but cannot quantify uncertainty in important neutronic parameters such as multigroup cross sections, fuel fission rates, activation rates, and neutron fluence rates with realistic three-dimensional Monte Carlo simulations. A more complete understanding of the sources of uncertainty in these design-limiting parameters could lead to improvements in processmore » optimization, reactor safety, and help inform regulators when setting operational safety margins. A novel approach for calculating eigenvalue sensitivity coefficients, known as the CLUTCH method, was recently explored as academic research and has been found to accurately and rapidly calculate sensitivity coefficients in criticality safety applications. The work presented here describes a new method, known as the GEAR-MC method, which extends the CLUTCH theory for calculating eigenvalue sensitivity coefficients to enable sensitivity coefficient calculations and uncertainty analysis for a generalized set of neutronic responses using high-fidelity continuous-energy Monte Carlo calculations. Here, several criticality safety systems were examined to demonstrate proof of principle for the GEAR-MC method, and GEAR-MC was seen to produce response sensitivity coefficients that agreed well with reference direct perturbation sensitivity coefficients.« less

  8. The influence of pressure on the activity coefficients of the solutes and on the solubility of minerals in the system Na-Ca-Cl-SO 4-H 2O to 200°C and 1 kbar and to high NaCl concentration

    NASA Astrophysics Data System (ADS)

    Monnin, Christophe

    1990-12-01

    A model is presented which is used to calculate the effect of pressure on activity coefficients of aqueous solutes in the system Na-Ca-Cl-SO 4-H 2O to 200°C. Literature data for the density and compressibility of aqueous binary solutions of Na 2SO 4 and CaCl 2 to 200°C are used to calculate the first and second pressure derivatives of Pitzer's ion interaction model parameters, as well as the standard molal compressibility and volume of these two salts. Empirical correlations between the apparent molal volume and compressibility of the aqueous electrolytes are used to guide the choice of the temperature dependent expressions used for the numerical representation of the derivatives of Pitzer's parameters with respect to pressure. For sodium sulfate solutions, such correlations are used to extrapolate compressibilities to 200°C. The change in the thermodynamic properties of the-CaSO 04 ion pair with pressure is taken into account by the variation of its dissociation constant. The volumetric properties (partial molal volumes and compressibilities) of multicomponent solutions in the Na-Ca-Cl-SO 4-H 2O system can be predicted from the information generated here and the volumetric equations of ROGERS and PITZER (1982) for NaCl. This model is then combined with the high temperature model of MOLLER (1988) of the same system in order to calculate activity coefficients at high pressures to 200°C. The resulting model is validated by comparing calculated and measured solubilities of anhydrite and gypsum in pure water and in NaCl solutions up to 6 M. The agreement between the calculated and measured solubilities of the calcium sulfates is typically better than 10% up to 200°C and 1 kbar. The relevance of temperature and pressure corrections to the activity coefficients of aqueous solutes is discussed in regard to the assumed accuracy with which geochemical models are able to calculate mineral solubilities.

  9. Diffusion and mobility of atomic particles in a liquid

    NASA Astrophysics Data System (ADS)

    Smirnov, B. M.; Son, E. E.; Tereshonok, D. V.

    2017-11-01

    The diffusion coefficient of a test atom or molecule in a liquid is determined for the mechanism where the displacement of the test molecule results from the vibrations and motion of liquid molecules surrounding the test molecule and of the test particle itself. This leads to a random change in the coordinate of the test molecule, which eventually results in the diffusion motion of the test particle in space. Two models parameters of interaction of a particle and a liquid are used to find the activation energy of the diffusion process under consideration: the gas-kinetic cross section for scattering of test molecules in the parent gas and the Wigner-Seitz radius for test molecules. In the context of this approach, we have calculated the diffusion coefficient of atoms and molecules in water, where based on experimental data, we have constructed the dependence of the activation energy for the diffusion of test molecules in water on the interaction parameter and the temperature dependence for diffusion coefficient of atoms or molecules in water within the models considered. The statistically averaged difference of the activation energies for the diffusion coefficients of different test molecules in water that we have calculated based on each of the presented models does not exceed 10% of the diffusion coefficient itself. We have considered the diffusion of clusters in water and present the dependence of the diffusion coefficient on the cluster size. The accuracy of the presented formulas for the diffusion coefficient of atomic particles in water is estimated to be 50%.

  10. MBSSAS: A code for the computation of margules parameters and equilibrium relations in binary solid-solution aqueous-solution systems

    USGS Publications Warehouse

    Glynn, P.D.

    1991-01-01

    The computer code MBSSAS uses two-parameter Margules-type excess-free-energy of mixing equations to calculate thermodynamic equilibrium, pure-phase saturation, and stoichiometric saturation states in binary solid-solution aqueous-solution (SSAS) systems. Lippmann phase diagrams, Roozeboom diagrams, and distribution-coefficient diagrams can be constructed from the output data files, and also can be displayed by MBSSAS (on IBM-PC compatible computers). MBSSAS also will calculate accessory information, such as the location of miscibility gaps, spinodal gaps, critical-mixing points, alyotropic extrema, Henry's law solid-phase activity coefficients, and limiting distribution coefficients. Alternatively, MBSSAS can use such information (instead of the Margules, Guggenheim, or Thompson and Waldbaum excess-free-energy parameters) to calculate the appropriate excess-free-energy of mixing equation for any given SSAS system. ?? 1991.

  11. The effect of concentration- and temperature-dependent dielectric constant on the activity coefficient of NaCl electrolyte solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valiskó, Mónika; Boda, Dezső, E-mail: boda@almos.vein.hu

    2014-06-21

    Our implicit-solvent model for the estimation of the excess chemical potential (or, equivalently, the activity coefficient) of electrolytes is based on using a dielectric constant that depends on the thermodynamic state, namely, the temperature and concentration of the electrolyte, ε(c, T). As a consequence, the excess chemical potential is split into two terms corresponding to ion-ion (II) and ion-water (IW) interactions. The II term is obtained from computer simulation using the Primitive Model of electrolytes, while the IW term is estimated from the Born treatment. In our previous work [J. Vincze, M. Valiskó, and D. Boda, “The nonmonotonic concentration dependencemore » of the mean activity coefficient of electrolytes is a result of a balance between solvation and ion-ion correlations,” J. Chem. Phys. 133, 154507 (2010)], we showed that the nonmonotonic concentration dependence of the activity coefficient can be reproduced qualitatively with this II+IW model without using any adjustable parameter. The Pauling radii were used in the calculation of the II term, while experimental solvation free energies were used in the calculation of the IW term. In this work, we analyze the effect of the parameters (dielectric constant, ionic radii, solvation free energy) on the concentration and temperature dependence of the mean activity coefficient of NaCl. We conclude that the II+IW model can explain the experimental behavior using a concentration-dependent dielectric constant and that we do not need the artificial concept of “solvated ionic radius” assumed by earlier studies.« less

  12. Effect of the porous structure of activated carbon on the adsorption kinetics of gold(I) cyanide complex

    NASA Astrophysics Data System (ADS)

    Ibragimova, P. I.; Grebennikov, S. F.; Gur'yanov, V. V.; Fedyukevich, V. A.; Vorob'ev-Desyatovskii, N. V.

    2014-06-01

    The effect the porous structure of activated carbons obtained from furfural and coconut shells has on the kinetics of [Au(CN)2]- ion adsorption is studied. Effective diffusion coefficients for [Au(CN)2]- anions in transport and adsorbing pores and mass transfer coefficients in a transport system of the pores and in microporous zones are calculated using the statistical moments of the kinetic curve.

  13. Effectively parameterizing dissipative particle dynamics using COSMO-SAC: A partition coefficient study

    NASA Astrophysics Data System (ADS)

    Saathoff, Jonathan

    2018-04-01

    Dissipative Particle Dynamics (DPD) provides a tool for studying phase behavior and interfacial phenomena for complex mixtures and macromolecules. Methods to quickly and automatically parameterize DPD greatly increase its effectiveness. One such method is to map predicted activity coefficients derived from COSMO-SAC onto DPD parameter sets. However, there are serious limitations to the accuracy of this mapping, including the inability of single DPD beads to reproduce asymmetric infinite dilution activity coefficients, the loss of precision when reusing parameters for different molecular fragments, and the error due to bonding beads together. This report describes these effects in quantitative detail and provides methods to mitigate much of their deleterious effects. This includes a novel approach to remove errors caused by bonding DPD beads together. Using these methods, logarithm hexane/water partition coefficients were calculated for 61 molecules. The root mean-squared error for these calculations was determined to be 0.14—a very low value—with respect to the final mapping procedure. Cognizance of the above limitations can greatly enhance the predictive power of DPD.

  14. Response functions for computing absorbed dose to skeletal tissues from photon irradiation—an update

    NASA Astrophysics Data System (ADS)

    Johnson, Perry B.; Bahadori, Amir A.; Eckerman, Keith F.; Lee, Choonsik; Bolch, Wesley E.

    2011-04-01

    A comprehensive set of photon fluence-to-dose response functions (DRFs) is presented for two radiosensitive skeletal tissues—active and total shallow marrow—within 15 and 32 bone sites, respectively, of the ICRP reference adult male. The functions were developed using fractional skeletal masses and associated electron-absorbed fractions as reported for the UF hybrid adult male phantom, which in turn is based upon micro-CT images of trabecular spongiosa taken from a 40 year male cadaver. The new DRFs expand upon both the original set of seven functions produced in 1985, and a 2007 update calculated under the assumption of secondary electron escape from spongiosa. In this study, it is assumed that photon irradiation of the skeleton will yield charged particle equilibrium across all spongiosa regions at energies exceeding 200 keV. Kerma coefficients for active marrow, inactive marrow, trabecular bone and spongiosa at higher energies are calculated using the DRF algorithm setting the electron-absorbed fraction for self-irradiation to unity. By comparing kerma coefficients and DRF functions, dose enhancement factors and mass energy-absorption coefficient (MEAC) ratios for active marrow to spongiosa were derived. These MEAC ratios compared well with those provided by the NIST Physical Reference Data Library (mean difference of 0.8%), and the dose enhancement factors for active marrow compared favorably with values calculated in the well-known study published by King and Spiers (1985 Br. J. Radiol. 58 345-56) (mean absolute difference of 1.9 percentage points). Additionally, dose enhancement factors for active marrow were shown to correlate well with the shallow marrow volume fraction (R2 = 0.91). Dose enhancement factors for the total shallow marrow were also calculated for 32 bone sites representing the first such derivation for this target tissue.

  15. Response functions for computing absorbed dose to skeletal tissues from photon irradiation--an update.

    PubMed

    Johnson, Perry B; Bahadori, Amir A; Eckerman, Keith F; Lee, Choonsik; Bolch, Wesley E

    2011-04-21

    A comprehensive set of photon fluence-to-dose response functions (DRFs) is presented for two radiosensitive skeletal tissues-active and total shallow marrow-within 15 and 32 bone sites, respectively, of the ICRP reference adult male. The functions were developed using fractional skeletal masses and associated electron-absorbed fractions as reported for the UF hybrid adult male phantom, which in turn is based upon micro-CT images of trabecular spongiosa taken from a 40 year male cadaver. The new DRFs expand upon both the original set of seven functions produced in 1985, and a 2007 update calculated under the assumption of secondary electron escape from spongiosa. In this study, it is assumed that photon irradiation of the skeleton will yield charged particle equilibrium across all spongiosa regions at energies exceeding 200 keV. Kerma coefficients for active marrow, inactive marrow, trabecular bone and spongiosa at higher energies are calculated using the DRF algorithm setting the electron-absorbed fraction for self-irradiation to unity. By comparing kerma coefficients and DRF functions, dose enhancement factors and mass energy-absorption coefficient (MEAC) ratios for active marrow to spongiosa were derived. These MEAC ratios compared well with those provided by the NIST Physical Reference Data Library (mean difference of 0.8%), and the dose enhancement factors for active marrow compared favorably with values calculated in the well-known study published by King and Spiers (1985 Br. J. Radiol. 58 345-56) (mean absolute difference of 1.9 percentage points). Additionally, dose enhancement factors for active marrow were shown to correlate well with the shallow marrow volume fraction (R(2) = 0.91). Dose enhancement factors for the total shallow marrow were also calculated for 32 bone sites representing the first such derivation for this target tissue.

  16. Accelerating activity coefficient calculations using multicore platforms, and profiling the energy use resulting from such calculations.

    NASA Astrophysics Data System (ADS)

    Topping, David; Alibay, Irfan; Bane, Michael

    2017-04-01

    To predict the evolving concentration, chemical composition and ability of aerosol particles to act as cloud droplets, we rely on numerical modeling. Mechanistic models attempt to account for the movement of compounds between the gaseous and condensed phases at a molecular level. This 'bottom up' approach is designed to increase our fundamental understanding. However, such models rely on predicting the properties of molecules and subsequent mixtures. For partitioning between the gaseous and condensed phases this includes: saturation vapour pressures; Henrys law coefficients; activity coefficients; diffusion coefficients and reaction rates. Current gas phase chemical mechanisms predict the existence of potentially millions of individual species. Within a dynamic ensemble model, this can often be used as justification for neglecting computationally expensive process descriptions. Indeed, on whether we can quantify the true sensitivity to uncertainties in molecular properties, even at the single aerosol particle level it has been impossible to embed fully coupled representations of process level knowledge with all possible compounds, typically relying on heavily parameterised descriptions. Relying on emerging numerical frameworks, and designed for the changing landscape of high-performance computing (HPC), in this study we focus specifically on the ability to capture activity coefficients in liquid solutions using the UNIFAC method. Activity coefficients are often neglected with the largely untested hypothesis that they are simply too computationally expensive to include in dynamic frameworks. We present results demonstrating increased computational efficiency for a range of typical scenarios, including a profiling of the energy use resulting from reliance on such computations. As the landscape of HPC changes, the latter aspect is important to consider in future applications.

  17. Thermophysical Properties of Ionic Liquid, 1-Pentyl-3-methylimidazolium Chloride in Water at Different Temperatures

    NASA Astrophysics Data System (ADS)

    Shekaari, Hemayat; Mousavi, Sedighehnaz S.; Mansoori, Yagoub

    2009-04-01

    Osmotic coefficients, {φ}, electrical conductance data, Λ, and refractive indices, n D, of aqueous solutions of the ionic liquid, 1-pentyl-3-methylimidazolium chloride [PnMIm]Cl have been measured at T = (298.15, 308.15, 318.15, and 328.15) K. Measurements of osmotic coefficients were carried out by the vapor-pressure osmometry method (VPO). Osmotic coefficient values show that ion-solvent interactions are stronger at lower temperature. The osmotic coefficients were correlated to the Pitzer-ion interaction and modified NRTL (MNRTL) models. From these data, mean molal activity coefficients, γ±, and excess Gibbs free energies, G E, have been calculated. Electrical conductance data have been applied for determination of association constants, K a, and limiting molar conductances, Λ 0, using the low concentration chemical model (lcCM). Calculated ion-association constant, K a, values show that ion-association effects increase at high temperatures which is in agreement with osmotic coefficient results. Experimental results of refractive indices for the binary system are reported, and have been fitted by a polynomial expansion.

  18. A kinetic and thermochemical database for organic sulfur and oxygen compounds.

    PubMed

    Class, Caleb A; Aguilera-Iparraguirre, Jorge; Green, William H

    2015-05-28

    Potential energy surfaces and reaction kinetics were calculated for 40 reactions involving sulfur and oxygen. This includes 11 H2O addition, 8 H2S addition, 11 hydrogen abstraction, 7 beta scission, and 3 elementary tautomerization reactions, which are potentially relevant in the combustion and desulfurization of sulfur compounds found in various fuel sources. Geometry optimizations and frequencies were calculated for reactants and transition states using B3LYP/CBSB7, and potential energies were calculated using CBS-QB3 and CCSD(T)-F12a/VTZ-F12. Rate coefficients were calculated using conventional transition state theory, with corrections for internal rotations and tunneling. Additionally, thermochemical parameters were calculated for each of the compounds involved in these reactions. With few exceptions, rate parameters calculated using the two potential energy methods agreed reasonably, with calculated activation energies differing by less than 5 kJ mol(-1). The computed rate coefficients and thermochemical parameters are expected to be useful for kinetic modeling.

  19. GPU Accelerated Chemical Similarity Calculation for Compound Library Comparison

    PubMed Central

    Ma, Chao; Wang, Lirong; Xie, Xiang-Qun

    2012-01-01

    Chemical similarity calculation plays an important role in compound library design, virtual screening, and “lead” optimization. In this manuscript, we present a novel GPU-accelerated algorithm for all-vs-all Tanimoto matrix calculation and nearest neighbor search. By taking advantage of multi-core GPU architecture and CUDA parallel programming technology, the algorithm is up to 39 times superior to the existing commercial software that runs on CPUs. Because of the utilization of intrinsic GPU instructions, this approach is nearly 10 times faster than existing GPU-accelerated sparse vector algorithm, when Unity fingerprints are used for Tanimoto calculation. The GPU program that implements this new method takes about 20 minutes to complete the calculation of Tanimoto coefficients between 32M PubChem compounds and 10K Active Probes compounds, i.e., 324G Tanimoto coefficients, on a 128-CUDA-core GPU. PMID:21692447

  20. Theory and simulation of electrolyte mixtures

    NASA Astrophysics Data System (ADS)

    Lee, B. Hribar; Vlachy, V.; Bhuiyan, L. B.; Outhwaite, C. W.; Molero, M.

    Monte Carlo simulation and theoretical results on some aspects of thermodynamics of mixtures of electrolytes with a common species are presented. Both charge symmetric mixtures, where ions differ only in size, and charge asymmetric but size symmetric mixtures at ionic strength ranging generally from I = 10-4 to 1.0 M, and in a few cases up to I = M, are examined. The theoretical methods explored are: (i) the symmetric Poisson-Boltzmann theory, (ii) the modified Poisson-Boltzmann theory and (iii) the hypernetted-chain integral equation. The first two electrolyte mixing coefficients w0 and w1 of the various mixtures are calculated from an accurate determination of their osmotic pressure data. The theories are seen to be consistent among themselves, and with certain limiting laws in the literature, in predicting the trends of the mixing coefficients with respect to ionic strength. Some selected relevant experimental data have been analysed and compared with the theoretical and simulation trends. In addition the mean activity coefficients for a model mimicking the mixture of KCl and KF electrolytes are calculated and hence the Harned coefficients obtained for this system. These calculations are compared with the experimental data and Monte Carlo results available in the literature. The theoretically predicted Harned coefficients are in good agreement with the simulation results for the model KCl-KF mixture.

  1. Analytical scheme calculations of angular momentum coupling and recoupling coefficients

    NASA Astrophysics Data System (ADS)

    Deveikis, A.; Kuznecovas, A.

    2007-03-01

    We investigate the Scheme programming language opportunities to analytically calculate the Clebsch-Gordan coefficients, Wigner 6j and 9j symbols, and general recoupling coefficients that are used in the quantum theory of angular momentum. The considered coefficients are calculated by a direct evaluation of the sum formulas. The calculation results for large values of quantum angular momenta were compared with analogous calculations with FORTRAN and Java programming languages.

  2. Energy dissipation in slipping biological pumps.

    PubMed

    Kjelstrup, Signe; Rubi, J Miguel; Bedeaux, Dick

    2005-12-07

    We describe active transport in slipping biological pumps, using mesoscopic nonequilibrium thermodynamics. The pump operation is characterised by its stochastic nature and energy dissipation. We show how heating as well as cooling effects can be associated with pump operation. We use as an example the well studied active transport of Ca2+ across a biological membrane by means of its ATPase, and use published data to find values for the transport coefficients of the pump under various conditions. Most of the transport coefficients of the pump, including those that relate ATP hydrolysis or synthesis to thermal effects, are estimated. This can give a quantitative description of thermogenesis. We show by calculation that all of these coupling coefficients are significant.

  3. Expanding the calculation of activation volumes: Self-diffusion in liquid water

    NASA Astrophysics Data System (ADS)

    Piskulich, Zeke A.; Mesele, Oluwaseun O.; Thompson, Ward H.

    2018-04-01

    A general method for calculating the dependence of dynamical time scales on macroscopic thermodynamic variables from a single set of simulations is presented. The approach is applied to the pressure dependence of the self-diffusion coefficient of liquid water as a particularly useful illustration. It is shown how the activation volume associated with diffusion can be obtained directly from simulations at a single pressure, avoiding approximations that are typically invoked.

  4. The Hildebrand solubility parameters of ionic liquids-part 2.

    PubMed

    Marciniak, Andrzej

    2011-01-01

    The Hildebrand solubility parameters have been calculated for eight ionic liquids. Retention data from the inverse gas chromatography measurements of the activity coefficients at infinite dilution were used for the calculation. From the solubility parameters, the enthalpies of vaporization of ionic liquids were estimated. Results are compared with solubility parameters estimated by different methods.

  5. Optical changes in cortical tissue during seizure activity using optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ornelas, Danielle; Hasan, Md.; Gonzalez, Oscar; Krishnan, Giri; Szu, Jenny I.; Myers, Timothy; Hirota, Koji; Bazhenov, Maxim; Binder, Devin K.; Park, Boris H.

    2017-02-01

    Epilepsy is a chronic neurological disorder characterized by recurrent and unpredictable seizures. Electrophysiology has remained the gold standard of neural activity detection but its resolution and high susceptibility to noise and motion artifact limit its efficiency. Optical imaging techniques, including fMRI, intrinsic optical imaging, and diffuse optical imaging, have also been used to detect neural activity yet these techniques rely on the indirect measurement of changes in blood flow. A more direct optical imaging technique is optical coherence tomography (OCT), a label-free, high resolution, and minimally invasive imaging technique that can produce depth-resolved cross-sectional and 3D images. In this study, OCT was used to detect non-vascular depth-dependent optical changes in cortical tissue during 4-aminopyridine (4-AP) induced seizure onset. Calculations of localized optical attenuation coefficient (µ) allow for the assessment of depth-resolved volumetric optical changes in seizure induced cortical tissue. By utilizing the depth-dependency of the attenuation coefficient, we demonstrate the ability to locate and remove the optical effects of vasculature within the upper regions of the cortex on the attenuation calculations of cortical tissue in vivo. The results of this study reveal a significant depth-dependent decrease in attenuation coefficient of nonvascular cortical tissue both ex vivo and in vivo. Regions exhibiting decreased attenuation coefficient show significant temporal correlation to regions of increased electrical activity during seizure onset and progression. This study allows for a more thorough and biologically relevant analysis of the optical signature of seizure activity in vivo using OCT.

  6. Molecular radiotherapy: the NUKFIT software for calculating the time-integrated activity coefficient.

    PubMed

    Kletting, P; Schimmel, S; Kestler, H A; Hänscheid, H; Luster, M; Fernández, M; Bröer, J H; Nosske, D; Lassmann, M; Glatting, G

    2013-10-01

    Calculation of the time-integrated activity coefficient (residence time) is a crucial step in dosimetry for molecular radiotherapy. However, available software is deficient in that it is either not tailored for the use in molecular radiotherapy and/or does not include all required estimation methods. The aim of this work was therefore the development and programming of an algorithm which allows for an objective and reproducible determination of the time-integrated activity coefficient and its standard error. The algorithm includes the selection of a set of fitting functions from predefined sums of exponentials and the choice of an error model for the used data. To estimate the values of the adjustable parameters an objective function, depending on the data, the parameters of the error model, the fitting function and (if required and available) Bayesian information, is minimized. To increase reproducibility and user-friendliness the starting values are automatically determined using a combination of curve stripping and random search. Visual inspection, the coefficient of determination, the standard error of the fitted parameters, and the correlation matrix are provided to evaluate the quality of the fit. The functions which are most supported by the data are determined using the corrected Akaike information criterion. The time-integrated activity coefficient is estimated by analytically integrating the fitted functions. Its standard error is determined assuming Gaussian error propagation. The software was implemented using MATLAB. To validate the proper implementation of the objective function and the fit functions, the results of NUKFIT and SAAM numerical, a commercially available software tool, were compared. The automatic search for starting values was successfully tested for reproducibility. The quality criteria applied in conjunction with the Akaike information criterion allowed the selection of suitable functions. Function fit parameters and their standard error estimated by using SAAM numerical and NUKFIT showed differences of <1%. The differences for the time-integrated activity coefficients were also <1% (standard error between 0.4% and 3%). In general, the application of the software is user-friendly and the results are mathematically correct and reproducible. An application of NUKFIT is presented for three different clinical examples. The software tool with its underlying methodology can be employed to objectively and reproducibly estimate the time integrated activity coefficient and its standard error for most time activity data in molecular radiotherapy.

  7. Aqueous Binary Lanthanide(III) Nitrate Ln(NO3)3 Electrolytes Revisited: Extended Pitzer and Bromley Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Sayandev; Campbell, Emily L.; Neiner, Doinita

    To date, only limited thermodynamic models describing activity coefficients of the aqueous solutions of lanthanide ions are available. This work expands the existing experimental osmotic coefficient data obtained by classical isopiestic technique for the aqueous binary trivalent lanthanide nitrate Ln(NO3)3 solutions using a combination of water activity and vapor pressure osmometry measurements. The combined osmotic coefficient database for each aqueous lanthanide nitrate at 25°C, consisting of literature available data as well as data obtained in this work, was used to test the validity of Pitzer and Bromley thermodynamic models for the accurate prediction of mean molal activity coefficients of themore » Ln(NO3)3 solutions in wide concentration ranges. The new and improved Pitzer and Bromley parameters were calculated. It was established that the Ln(NO3)3 activity coefficients in the solutions with ionic strength up to 12 mol kg-1 can be estimated by both Pitzer and single-parameter Bromley models, even though the latter provides for more accurate prediction, particularly in the lower ionic strength regime (up to 6 mol kg-1). On the other hand for the concentrated solutions, the extended three-parameter Bromley model can be employed to predict the Ln(NO3)3 activity coefficients with remarkable accuracy. The accuracy of the extended Bromley model in predicting the activity coefficients was greater than ~95% and ~90% for all solutions with the ionic strength up to 12 mol kg-1 and and 20 mol kg-1, respectively. This is the first time that the activity coefficients for concentrated lanthanide solutions have been predicted with such a remarkable accuracy.« less

  8. Ionic molal conductivities, activity coefficients, and dissociation constants of HAsO42− and H2AsO4− from 5 to 90°C and ionic strengths from 0.001 up to 3 mol kg−1 and applications in natural systems

    USGS Publications Warehouse

    Zhu, Xiangyu; Nordstrom, D. Kirk; McCleskey, R. Blaine; Wang, Rucheng

    2016-01-01

    Arsenic is known to be one of the most toxic inorganic elements, causing worldwide environmental contamination. However, many fundamental properties related to aqueous arsenic species are not well known which will inhibit our ability to understand the geochemical behavior of arsenic (e.g. speciation, transport, and solubility). Here, the electrical conductivity of Na2HAsO4 solutions has been measured over the concentration range of 0.001–1 mol kg−1 and the temperature range of 5–90°C. Ionic strength and temperature-dependent equations were derived for the molal conductivity of HAsO42−and H2AsO4− aqueous ions. Combined with speciation calculations and the approach used by McCleskey et al. (2012b), these equations can be used to calculate the electrical conductivities of arsenic-rich waters having a large range of effective ionic strengths (0.001–3 mol kg−1) and temperatures (5–90°C). Individual ion activity coefficients for HAsO42− and H2AsO4− in the form of the Hückel equation were also derived using the mean salt method and the mean activity coefficients of K2HAsO4 (0.001–1 mol kg−1) and KH2AsO4 (0.001–1.3 mol kg−1). A check on these activity coefficients was made by calculating mean activity coefficients for Na2HAsO4 and NaH2AsO4 solutions and comparing them to measured values. At the same time Na-arsenate complexes were evaluated. The NaH2AsO40 ion pair is negligible in NaH2AsO4 solutions up to 1.3 mol kg−1. The NaHAsO4− ion pair is important in NaHAsO4 solutions >0.1 mol kg−1 and the formation constant of 100.69 was confirmed. The enthalpy, entropy, free energy and heat capacity for the second and third arsenic acid dissociation reactions were calculated from pH measurements. These properties have been incorporated into a widely used geochemical calculation code WATEQ4F and applied to natural arsenic waters. For arsenic spiked water samples from Yellowstone National Park, the mean difference between the calculated and measured conductivities have been improved from −18% to −1.0% with a standard deviation of 2.4% and the mean charge balances have been improved from 28% to 0.6% with a standard deviation of 1.5%.

  9. Reliability and Validation of the International Consultation on Incontinence Questionnaire in Over Active Bladder to Persian Language.

    PubMed

    Sari Motlagh, Reza; Hajebrahimi, Sakineh; Sadeghi-Bazargani, Homayoun; Joodi Tutunsaz, Javad

    2015-05-01

    Overactive bladder syndrome is a common syndrome in the world in both men and women. Correct diagnosis and accurate measurement of symptoms severity and also quality of life of patients is necessary to ensure proper treatment and to facilitate sound relationships among patients, researchers and doctors. The International Consultation on Incontinence Questionnaire in Over Active Bladder (ICIQ-OAB) questionnaire is a concise and strong tool to evaluate the symptoms of OAB and their effects on patients' quality of life and treatment results. The objective of this study was to translate and validate a simple and strong tool that could be used in clinics and research. First, the original British English questionnaire was translated into Persian by two bilingual and originally Persian-speaking translators. Then the Persian version was back translated to English and a native English speaker studied and compared the questionnaire with the original version. At the end, the translated and corrected Persian version was finalized by a research team. Content validity of the items and ensuring that the questions could convey the main concept to readers was assessed through Modified Content Validity Index (MCVI). Reliability was calculated by Cronbach's α coefficient. Internal Consistency of the questionnaire with the calculation of Kendall correlation coefficient were evaluated by performing test-retest in 50 participants. The modified content validity index was > 0.78 for all of the questions. Cronbach's α coefficient was calculated 0.76 for all of the participants. Kendall correlation coefficient was calculated for test-re-test assessment 0.66. Both of which indicates the reliability of this questionnaire. Persian version of ICIQ-OAB questionnaire is a simple and strong tool for research, treatment and screening purposes. © 2014 Wiley Publishing Asia Pty Ltd.

  10. GEOSURF: a computer program for modeling adsorption on mineral surfaces from aqueous solution

    NASA Astrophysics Data System (ADS)

    Sahai, Nita; Sverjensky, Dimitri A.

    1998-11-01

    A new program, GEOSURF, has been developed for calculating aqueous and surface speciation consistent with the triple-layer model of surface complexation. GEOSURF is an extension of the original programs MINEQL, MICROQL and HYDRAQL. We present, here, the basic algorithm of GEOSURF along with a description of the new features implemented. GEOSURF is linked to internally consistent data bases for surface species (SURFK.DAT) and for aqueous species (AQSOL.DAT). SURFK.DAT contains properties of minerals such as site densities, and equilibrium constants for adsorption of aqueous protons and electrolyte ions on a variety of oxides and hydroxides. The Helgeson, Kirkham and Flowers version of the extended Debye-Huckel Equation for 1:1 electrolytes is implemented for calculating aqueous activity coefficients. This permits the calculation of speciation at ionic strengths greater than 0.5 M. The activity of water is computed explicitly from the osmotic coefficient of the solution, and the total amount of electrolyte cation (or anion) is adjusted to satisfy the electroneutrality condition. Finally, the use of standard symbols for chemical species rather than species identification numbers is included to facilitate use of the program. One of the main limitations of GEOSURF is that aqueous and surface speciation can only be calculated at fixed pH and at fixed concentration of total adsorbate. Thus, the program cannot perform reaction-path calculations: it cannot determine whether or not a solution is over- or under-saturated with respect to one or more solid phases. To check the proper running of GEOSURF, we have compared results generated by GEOSURF with those from two other programs, HYDRAQL and EQ3. The Davies equation and the "bdot" equation, respectively, are used in the latter two programs for calculating aqueous activity coefficients. An example of the model fit to experimental data for rutile in 0.001 M-2.0 M NaNO 3 is included.

  11. Determination of gas-liquid partition coefficients of several organic solutes in trihexyl(tetradecyl)phosphonium bromide using capillary gas chromatography columns.

    PubMed

    Ronco, Nicolás R; Menestrina, Fiorella; Romero, Lílian M; Castells, Cecilia B

    2017-06-09

    In this paper, we report gas-liquid partition constants for thirty-five volatile organic solutes in the room temperature ionic liquid trihexyl(tetradecyl)phosphonium bromide measured by gas-liquid chromatography using capillary columns. The relative contribution of gas-liquid partition and interfacial adsorption to retention was evaluated through the use of columns with different the phase ratio. Four capillary columns with exactly known phase ratios were constructed and employed to measure the solute retention factors at four temperatures between 313.15 and 343.15K. The partition coefficients were calculated from the slopes of the linear regression between solute retention factors and the reciprocal of phase ratio at a given temperature according to the gas-liquid chromatographic theory. Gas-liquid interfacial adsorption was detected for a few solutes and it has been considered for the calculations of partition coefficient. Reliable solute's infinite dilution activity coefficients can be obtained when retention data are determined by a unique partitioning mechanism. The partial molar excess enthalpies at infinite dilution have been estimated from the dependence of experimental values of solute activity coefficients with the column temperature. A thorough discussion of the uncertainties of the experimental measurements and the main advantages of the use of capillary columns to acquire the aforementioned relevant thermodynamic information was performed. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Polarographic determination of lead hydroxide formation constants at low ionic strength

    USGS Publications Warehouse

    Lind, Carol J.

    1978-01-01

    Values of formation constants for lead hydroxide at 25 ??C were calculated from normal pulse polarographic measurements of 10-6 M lead in 0.01 M sodium perchlorate. The low concentrations simulate those found in many freshwaters, permitting direct application of the values when considering distributions of lead species. The precise evaluation of species distribution in waters at other ionic strengths requires activity coefficient corrections. As opposed to much of the previously published work done at high ionic strength, the values reported here were obtained at low ionic strength, permitting use of smaller and better defined activity coefficient corrections. These values were further confirmed by differential-pulse polarography and differential-pulse anodic stripping voltammetry data. The logs of the values for ??1??? ??2???, and ??3??? were calculated to be 6.59, 10.80, and 13.63, respectively. When corrected to zero ionic strength these values were calculated to be 6.77, 11.07, and 13.89, respectively.

  13. Continuous-energy eigenvalue sensitivity coefficient calculations in TSUNAMI-3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perfetti, C. M.; Rearden, B. T.

    2013-07-01

    Two methods for calculating eigenvalue sensitivity coefficients in continuous-energy Monte Carlo applications were implemented in the KENO code within the SCALE code package. The methods were used to calculate sensitivity coefficients for several test problems and produced sensitivity coefficients that agreed well with both reference sensitivities and multigroup TSUNAMI-3D sensitivity coefficients. The newly developed CLUTCH method was observed to produce sensitivity coefficients with high figures of merit and a low memory footprint, and both continuous-energy sensitivity methods met or exceeded the accuracy of the multigroup TSUNAMI-3D calculations. (authors)

  14. Development of a SCALE Tool for Continuous-Energy Eigenvalue Sensitivity Coefficient Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perfetti, Christopher M; Rearden, Bradley T

    2013-01-01

    Two methods for calculating eigenvalue sensitivity coefficients in continuous-energy Monte Carlo applications were implemented in the KENO code within the SCALE code package. The methods were used to calculate sensitivity coefficients for several criticality safety problems and produced sensitivity coefficients that agreed well with both reference sensitivities and multigroup TSUNAMI-3D sensitivity coefficients. The newly developed CLUTCH method was observed to produce sensitivity coefficients with high figures of merit and low memory requirements, and both continuous-energy sensitivity methods met or exceeded the accuracy of the multigroup TSUNAMI-3D calculations.

  15. Gas-particle partitioning of semi-volatile organics on organic aerosols using a predictive activity coefficient model: analysis of the effects of parameter choices on model performance

    NASA Astrophysics Data System (ADS)

    Chandramouli, Bharadwaj; Jang, Myoseon; Kamens, Richard M.

    The partitioning of a diverse set of semivolatile organic compounds (SOCs) on a variety of organic aerosols was studied using smog chamber experimental data. Existing data on the partitioning of SOCs on aerosols from wood combustion, diesel combustion, and the α-pinene-O 3 reaction was augmented by carrying out smog chamber partitioning experiments on aerosols from meat cooking, and catalyzed and uncatalyzed gasoline engine exhaust. Model compositions for aerosols from meat cooking and gasoline combustion emissions were used to calculate activity coefficients for the SOCs in the organic aerosols and the Pankow absorptive gas/particle partitioning model was used to calculate the partitioning coefficient Kp and quantitate the predictive improvements of using the activity coefficient. The slope of the log K p vs. log p L0 correlation for partitioning on aerosols from meat cooking improved from -0.81 to -0.94 after incorporation of activity coefficients iγ om. A stepwise regression analysis of the partitioning model revealed that for the data set used in this study, partitioning predictions on α-pinene-O 3 secondary aerosol and wood combustion aerosol showed statistically significant improvement after incorporation of iγ om, which can be attributed to their overall polarity. The partitioning model was sensitive to changes in aerosol composition when updated compositions for α-pinene-O 3 aerosol and wood combustion aerosol were used. The octanol-air partitioning coefficient's ( KOA) effectiveness as a partitioning correlator over a variety of aerosol types was evaluated. The slope of the log K p- log K OA correlation was not constant over the aerosol types and SOCs used in the study and the use of KOA for partitioning correlations can potentially lead to significant deviations, especially for polar aerosols.

  16. Active microwave remote sensing of an anisotropic random medium layer

    NASA Technical Reports Server (NTRS)

    Lee, J. K.; Kong, J. A.

    1985-01-01

    A two-layer anisotropic random medium model has been developed to study the active remote sensing of the earth. The dyadic Green's function for a two-layer anisotropic medium is developed and used in conjunction with the first-order Born approximation to calculate the backscattering coefficients. It is shown that strong cross-polarization occurs in the single scattering process and is indispensable in the interpretation of radar measurements of sea ice at different frequencies, polarizations, and viewing angles. The effects of anisotropy on the angular responses of backscattering coefficients are also illustrated.

  17. Determination of air-loop volume and radon partition coefficient for measuring radon in water sample.

    PubMed

    Lee, Kil Yong; Burnett, William C

    A simple method for the direct determination of the air-loop volume in a RAD7 system as well as the radon partition coefficient was developed allowing for an accurate measurement of the radon activity in any type of water. The air-loop volume may be measured directly using an external radon source and an empty bottle with a precisely measured volume. The partition coefficient and activity of radon in the water sample may then be determined via the RAD7 using the determined air-loop volume. Activity ratios instead of absolute activities were used to measure the air-loop volume and the radon partition coefficient. In order to verify this approach, we measured the radon partition coefficient in deionized water in the temperature range of 10-30 °C and compared the values to those calculated from the well-known Weigel equation. The results were within 5 % variance throughout the temperature range. We also applied the approach for measurement of the radon partition coefficient in synthetic saline water (0-75 ppt salinity) as well as tap water. The radon activity of the tap water sample was determined by this method as well as the standard RAD-H 2 O and BigBottle RAD-H 2 O. The results have shown good agreement between this method and the standard methods.

  18. Construct validity and internal consistency in the Leisure Practices Scale (EPL) for adults.

    PubMed

    Andrade, Rubian Diego; Schwartz, Gisele Maria; Tavares, Giselle Helena; Pelegrini, Andreia; Teixeira, Clarissa Stefani; Felden, Érico Pereira Gomes

    2018-02-01

    This study proposes and analyzes the construct validity and internal consistency of the Leisure Practices Scale (EPL). This survey seeks to identify the preferences and involvement in in different leisure practices in adults. The instrument was formed based on the cultural leisure content (artistic, manual, physical, sports, intellectual, social, tourist, virtual and contemplation/leisure). The validation process was conducted with: a) content analysis by leisure experts, who evaluated the instrument for clarity of language and practical relevance, which allowed the calculation of the content validity coefficient (CVC); b) reproducibility test-retest with 51 subjects to calculate the temporal variation coefficient; c) internal consistency analysis with 885 participants. The evaluation presented appropriate coefficients, both with respect to language clarity (CVCt = 0.883) and practical relevance (CVCt = 0.879). The reproducibility coefficients were moderate to excellent. The scale showed adequate internal consistency (0.72). The EPL has psychometric quality and acceptable values in its structure, and can be used to investigate adult involvement in leisure activities.

  19. Calculating the thermodynamic properties of aqueous solutions of alkali metal carboxylates

    NASA Astrophysics Data System (ADS)

    Rudakov, A. M.; Sergievskii, V. V.; Zhukova, T. V.

    2014-06-01

    A modified Robinson-Stokes equation with terms that consider the formation of ionic hydrates and associates is used to describe thermodynamic properties of aqueous solutions of electrolytes. The model is used to describe data on the osmotic coefficients of aqueous solutions of alkali metal carboxylates, and to calculate the mean ionic activity coefficients of salts and excess Gibbs energies. The key contributions from ionic hydration and association to the nonideality of solutions is determined by analyzing the contributions of various factors. Relations that connect the hydration numbers of electrolytes with the parameters of the Pitzer-Mayorga equation and a modified Hückel equation are developed.

  20. A Simple Method to Calculate the Temperature Dependence of the Gibbs Energy and Chemical Equilibrium Constants

    ERIC Educational Resources Information Center

    Vargas, Francisco M.

    2014-01-01

    The temperature dependence of the Gibbs energy and important quantities such as Henry's law constants, activity coefficients, and chemical equilibrium constants is usually calculated by using the Gibbs-Helmholtz equation. Although, this is a well-known approach and traditionally covered as part of any physical chemistry course, the required…

  1. The Hildebrand Solubility Parameters of Ionic Liquids—Part 2

    PubMed Central

    Marciniak, Andrzej

    2011-01-01

    The Hildebrand solubility parameters have been calculated for eight ionic liquids. Retention data from the inverse gas chromatography measurements of the activity coefficients at infinite dilution were used for the calculation. From the solubility parameters, the enthalpies of vaporization of ionic liquids were estimated. Results are compared with solubility parameters estimated by different methods. PMID:21747694

  2. K1.33Mn8O16 as an electrocatalyst and a cathode

    NASA Astrophysics Data System (ADS)

    Jalili, Seifollah; Moharramzadeh Goliaei, Elham; Schofield, Jeremy

    2017-02-01

    Density functional theory (DFT) calculations are carried out to investigate the electronic, magnetic and thermoelectric properties of bulk and nanosheet K1.33Mn8O16 materials. The catalytic activity and cathodic performance of bulk and nanosheet structures are examined using the Tran-Blaha modified Becke-Johnson (TB-mBJ) exchange potential. Electronic structure calculations reveal an anti-ferromagnetic ground state, with a TB-mMBJ band gap in bulk K1.33Mn8O16 that is in agreement with experimental results. Density of state plots indicate a partial reduction of Mn4+ ions to Mn3+, without any obvious sign of Jahn-Teller distortion. Moreover, use of the O p-band center as a descriptor of catalytic activity suggests that the nanosheet has enhanced catalytic activity compared to the bulk structure. Thermoelectric parameters such as the Seebeck coefficient, electrical conductivity, and thermal conductivity are also calculated, and it is found that the Seebeck coefficients decrease with increasing temperature. High Seebeck coefficients for both spin-up and spin-down states are found in the nanosheet relative to their value in the bulk K1.33Mn8O16 structure, whereas the electrical and thermal conductivity are reduced relative to the bulk. In addition, figures of merit values are calculated as a function of the chemical potential and it is found that the nanosheet has a figure of merit of 1 at room temperature, compared to 0.5 for the bulk material. All results suggest that K1.33Mn8O16 nanosheets can be used both as a material in waste heat recovery and as an electrocatalyst in fuel cells and batteries.

  3. Combined active and passive microwave remote sensing of vegetated surfaces at l-band

    USDA-ARS?s Scientific Manuscript database

    In previous work the distorted Born approximation (DBA) of volume scattering was combined with the numerical solutions of Maxwell equations (NMM3D) for a rough surface to calculate the radar backscattering coefficient for the Soil Moisture Active Passive (SMAP) mission. The model results were valida...

  4. Thermodynamic properties of uranium in liquid gallium, indium and their alloys

    NASA Astrophysics Data System (ADS)

    Volkovich, V. A.; Maltsev, D. S.; Yamshchikov, L. F.; Osipenko, A. G.

    2015-09-01

    Activity, activity coefficients and solubility of uranium was determined in gallium, indium and gallium-indium alloys containing 21.8 (eutectic), 40 and 70 wt.% In. Activity was measured at 573-1073 K employing the electromotive force method, and solubility between room temperature (or the alloy melting point) and 1073 K employing direct physical measurements. Activity coefficients were obtained from the difference of experimentally determined temperature dependencies of uranium activity and solubility. Intermetallic compounds formed in the respective alloys were characterized using X-ray diffraction. Partial and excess thermodynamic functions of uranium in the studied alloys were calculated. Liquidus lines in U-Ga and U-In phase diagrams from the side rich in gallium or indium are proposed.

  5. The relationship between social capital and the way of spending leisure time, based on physical activities

    PubMed Central

    Karimian, Jahangir; Hosseini, Taghi Agha; Shekarchizadeh, Parivash; Nafchi, Sayed Morteza Mousavi

    2015-01-01

    Background: Today, social capital is a need in the society. Also, leisure time and physical activities are among the most important productive sources of social capital, which have been realized recently. This study aims to find the relationship between social capital and physical leisure time of the faculty members of Isfahan University of Medical Sciences. Materials and Methods: A descriptive correlation method was used in this study. Two questionnaires were used for data collection. Social capital questionnaire is based on SCAT Model. Also, leisure time questionnaire was made by the researcher for which face and content validity was verified by experts. Reliability coefficients by using Cronbach's alpha coefficients were calculated as 0.92 and 0.82, respectively. Sample population was calculated by Cochran's formula, and 150 people were selected as the sample using multiple cluster sampling by taking the sex and college into consideration as the variables. Findings: According to the findings, there was a direct relationship between a combination of social capital parameters (including commitment, attitude, trust, participation, mutual relationship, social norm, and unity) and the way of spending physical leisure time (R = 0.659, P = 0.000). Among the parameters, “commitment” was significant with a beta coefficient B = 0.293 and P = 0.044 and social norms was significant with a beta coefficient B = 0.196 and P = 0.047, but the rest of the factors were not significant. Conclusion: Playing sport and doing physical activities in the leisure time and also taking part in group activities and their membership provide a situation for people to respect the group interests through communication. Such activities can cause the level of social capital and its factors to be increased. PMID:27462621

  6. A procedure to find thermodynamic equilibrium constants for CO2 and CH4 adsorption on activated carbon.

    PubMed

    Trinh, T T; van Erp, T S; Bedeaux, D; Kjelstrup, S; Grande, C A

    2015-03-28

    Thermodynamic equilibrium for adsorption means that the chemical potential of gas and adsorbed phase are equal. A precise knowledge of the chemical potential is, however, often lacking, because the activity coefficient of the adsorbate is not known. Adsorption isotherms are therefore commonly fitted to ideal models such as the Langmuir, Sips or Henry models. We propose here a new procedure to find the activity coefficient and the equilibrium constant for adsorption which uses the thermodynamic factor. Instead of fitting the data to a model, we calculate the thermodynamic factor and use this to find first the activity coefficient. We show, using published molecular simulation data, how this procedure gives the thermodynamic equilibrium constant and enthalpies of adsorption for CO2(g) on graphite. We also use published experimental data to find similar thermodynamic properties of CO2(g) and of CH4(g) adsorbed on activated carbon. The procedure gives a higher accuracy in the determination of enthalpies of adsorption than ideal models do.

  7. Reactivity Coefficient Calculation for AP1000 Reactor Using the NODAL3 Code

    NASA Astrophysics Data System (ADS)

    Pinem, Surian; Malem Sembiring, Tagor; Tukiran; Deswandri; Sunaryo, Geni Rina

    2018-02-01

    The reactivity coefficient is a very important parameter for inherent safety and stability of nuclear reactors operation. To provide the safety analysis of the reactor, the calculation of changes in reactivity caused by temperature is necessary because it is related to the reactor operation. In this paper, the temperature reactivity coefficients of fuel and moderator of the AP1000 core are calculated, as well as the moderator density and boron concentration. All of these coefficients are calculated at the hot full power condition (HFP). All neutron diffusion constant as a function of temperature, water density and boron concentration were generated by the SRAC2006 code. The core calculations for determination of the reactivity coefficient parameter are done by using NODAL3 code. The calculation results show that the fuel temperature, moderator temperature and boron reactivity coefficients are in the range between -2.613 pcm/°C to -4.657pcm/°C, -1.00518 pcm/°C to 1.00649 pcm/°C and -9.11361 pcm/ppm to -8.0751 pcm/ppm, respectively. For the water density reactivity coefficients, the positive reactivity occurs at the water temperature less than 190 °C. The calculation results show that the reactivity coefficients are accurate because the results have a very good agreement with the design value.

  8. The Solubility Parameters of Ionic Liquids

    PubMed Central

    Marciniak, Andrzej

    2010-01-01

    The Hildebrand’s solubility parameters have been calculated for 18 ionic liquids from the inverse gas chromatography measurements of the activity coefficients at infinite dilution. Retention data were used for the calculation. The solubility parameters are helpful for the prediction of the solubility in the binary solvent mixtures. From the solubility parameters, the standard enthalpies of vaporization of ionic liquids were estimated. PMID:20559495

  9. PHYSICAL EFFECTS OCCURRING DURING GENERATION AND AMPLIFICATION OF LASER RADIATION: Ultimate values of the gain of solid-state rod amplifiers operating under inversion storage conditions

    NASA Astrophysics Data System (ADS)

    Bayanov, V. I.; Vinokurov, G. N.; Zhulin, V. I.; Yashin, V. E.

    1989-02-01

    A numerical calculation is reported of an inversion conservation coefficient of cylindrical rod solid-state amplifiers with the active element diameter from 1.5 to 15 cm operated under continuous pumping conditions. It is shown that the ultimate gain, limited only by superluminescence, exceeds considerably the value usually obtained in experiments. Various methods of eliminating parasitic effects, which limit the gain of real amplifiers, are considered. The degree of influence of these effects on the inversion conservation coefficient is discussed. The results are given of an experimental determination of the gain close to the ultimate value (0.18 cm- 1 for an active element 3 cm in diameter). Calculations are reported of the angular distributions of superluminescence and parasitic modes demonstrating that the latter can be suppressed by spatial filtering.

  10. Stability of physical activity, fitness components and diet quality indices.

    PubMed

    Mertens, E; Clarys, P; Mullie, P; Lefevre, J; Charlier, R; Knaeps, S; Huybrechts, I; Deforche, B

    2017-04-01

    Regular physical activity (PA), a high level of fitness and a high diet quality are positively associated with health. However, information about stability of fitness components and diet quality indices is limited. This study aimed to evaluate stability of those parameters. This study includes 652 adults (men=57.56 (10.28) years; women=55.90 (8.34) years at follow-up) who participated in 2002-2004 and returned for follow-up at the Policy Research Centre Leuven in 2012-2014. Minutes sport per day and Physical activity level (PAL) were calculated from the Flemish Physical Activity Computerized Questionnaire. Cardiorespiratory fitness (CRF), morphological fitness (MORF; body mass index and waist circumference) and metabolic fitness (METF) (blood cholesterol and triglycerides) were used as fitness components. Diet quality indices (Healthy Eating Index-2010 (HEI), Diet Quality Index (DQI), Mediterranean Diet Score (MDS)) were calculated from a diet record. Tracking coefficients were calculated using Pearson/Spearman correlation coefficients (r Pearson ) and intra-class correlation coefficients (r ICC ). In both men (r Pearson&ICC =0.51) and women (r Pearson =0.62 and r ICC =0.60) PAL showed good stability, while minutes sport remained stable in women (r Pearson&ICC =0.57) but less in men (r Pearson&ICC =0.45). Most fitness components remained stable (r⩾0.50) except some METF components in women. In general the diet quality indices and their components were unstable (r<0.50). PAL and the majority of the fitness components remained stable, while diet quality was unstable over 10 years. For unstable parameters such as diet quality measurements are needed at both time points in prospective research.

  11. [Influence of human activities on groundwater environment based on coefficient variation method].

    PubMed

    Zhao, Wei; Lin, Jian; Wang, Shu-Fang; Liu, Ji-Lai; Chen, Zhong-Rong; Kou, Wen-Jie

    2013-04-01

    Groundwater system in the plain area of Beijing can be divided into six subsystems. Due to the different hydrogeological conditions of the subsystems, the degrees to which human activities affect the subsystems are also diverse. In order to evaluate the influence of human activities on each subsystem, the first and second aquifer with relatively poor water quality were chosen to be the evaluating positions, based on the data of groundwater sampled in September, 2011. With respect to human activities affect index such as total hardness, TDS, sulfate and ammonium, variation coefficient methods were used to calculate the weight of each index. Then scores were obtained for each index with national standard as reference, and superposition calculations were used to gain comprehensive scores, finally the groundwater quality conditions were evaluated. Contrast analyses were used to evaluate the incidence of human activities with groundwater subsystems as evaluation unit and water quality partitions as evaluation factors. The results indicate that the influence of human activities on the first aquifer is greater than that of the second aquifer, the Yongding river groundwater subsystems and the Chaobai river groundwater subsystems are affected more than other groundwater subsystems.

  12. Measurements of radon activity concentration in mouse tissues and organs.

    PubMed

    Ishimori, Yuu; Tanaka, Hiroshi; Sakoda, Akihiro; Kataoka, Takahiro; Yamaoka, Kiyonori; Mitsunobu, Fumihiro

    2017-05-01

    The purpose of this study is to investigate the biokinetics of inhaled radon, radon activity concentrations in mouse tissues and organs were determined after mice had been exposed to about 1 MBq/m 3 of radon in air. Radon activity concentrations in mouse blood and in other tissues and organs were measured with a liquid scintillation counter and with a well-type HP Ge detector, respectively. Radon activity concentration in mouse blood was 0.410 ± 0.016 Bq/g when saturated with 1 MBq/m 3 of radon activity concentration in air. In addition, average partition coefficients obtained were 0.74 ± 0.19 for liver, 0.46 ± 0.13 for muscle, 9.09 ± 0.49 for adipose tissue, and 0.22 ± 0.04 for other organs. With these results, a value of 0.414 for the blood-to-air partition coefficient was calculated by means of our physiologically based pharmacokinetic model. The time variation of radon activity concentration in mouse blood during exposure to radon was also calculated. All results are compared in detail with those found in the literature.

  13. On the validity of the Arrhenius equation for electron attachment rate coefficients.

    PubMed

    Fabrikant, Ilya I; Hotop, Hartmut

    2008-03-28

    The validity of the Arrhenius equation for dissociative electron attachment rate coefficients is investigated. A general analysis allows us to obtain estimates of the upper temperature bound for the range of validity of the Arrhenius equation in the endothermic case and both lower and upper bounds in the exothermic case with a reaction barrier. The results of the general discussion are illustrated by numerical examples whereby the rate coefficient, as a function of temperature for dissociative electron attachment, is calculated using the resonance R-matrix theory. In the endothermic case, the activation energy in the Arrhenius equation is close to the threshold energy, whereas in the case of exothermic reactions with an intermediate barrier, the activation energy is found to be substantially lower than the barrier height.

  14. Determination of octanol-air partition coefficients and supercooled liquid vapor pressures of PAHs as a function of temperature: Application to gas-particle partitioning in an urban atmosphere

    NASA Astrophysics Data System (ADS)

    Odabasi, Mustafa; Cetin, Eylem; Sofuoglu, Aysun

    Octanol-air partition coefficients ( KOA) for 14 polycyclic aromatic hydrocarbons (PAHs) were determined as a function of temperature using the gas chromatographic retention time method. log KOA values at 25° ranged over six orders of magnitude, between 6.34 (acenaphthylene) and 12.59 (dibenz[ a,h]anthracene). The determined KOA values were within factor of 0.7 (dibenz[ a,h]anthracene) to 15.1 (benz[ a]anthracene) of values calculated as the ratio of octanol-water partition coefficient to dimensionless Henry's law constant. Supercooled liquid vapor pressures ( PL) of 13 PAHs were also determined using the gas chromatographic retention time technique. Activity coefficients in octanol calculated using KOA and PL ranged between 3.2 and 6.2 indicating near-ideal solution behavior. Atmospheric concentrations measured in this study in Izmir, Turkey were used to investigate the partitioning of PAHs between particle and gas-phases. Experimental gas-particle partition coefficients ( Kp) were compared to the predictions of KOA absorption and KSA (soot-air partition coefficient) models. Octanol-based absorptive partitioning model predicted lower partition coefficients especially for relatively volatile PAHs. Ratios of measured/modeled partition coefficients ranged between 1.1 and 15.5 (4.5±6.0, average±SD) for KOA model. KSA model predictions were relatively better and measured to modeled ratios ranged between 0.6 and 5.6 (2.3±2.7, average±SD).

  15. Investigation of oxygen self-diffusion in PuO 2 by combining molecular dynamics with thermodynamic calculations

    DOE PAGES

    Saltas, V.; Chroneos, A.; Cooper, Michael William D.; ...

    2016-01-01

    In the present work, the defect properties of oxygen self-diffusion in PuO 2 are investigated over a wide temperature (300–1900 K) and pressure (0–10 GPa) range, by combining molecular dynamics simulations and thermodynamic calculations. Based on the well-established cBΩ thermodynamic model which connects the activation Gibbs free energy of diffusion with the bulk elastic and expansion properties, various point defect parameters such as activation enthalpy, activation entropy, and activation volume were calculated as a function of T and P. Molecular dynamics calculations provided the necessary bulk properties for the proper implementation of the thermodynamic model, in the lack of anymore » relevant experimental data. The estimated compressibility and the thermal expansion coefficient of activation volume are found to be more than one order of magnitude greater than the corresponding values of the bulk plutonia. As a result, the diffusion mechanism is discussed in the context of the temperature and pressure dependence of the activation volume.« less

  16. Predicting adsorption isotherms for aqueous organic micropollutants from activated carbon and pollutant properties.

    PubMed

    Li, Lei; Quinlivan, Patricia A; Knappe, Detlef R U

    2005-05-01

    A method based on the Polanyi-Dubinin-Manes (PDM) model is presented to predict adsorption isotherms of aqueous organic contaminants on activated carbons. It was assumed that trace organic compound adsorption from aqueous solution is primarily controlled by nonspecific dispersive interactions while water adsorption is controlled by specific interactions with oxygen-containing functional groups on the activated carbon surface. Coefficients describing the affinity of water for the activated carbon surface were derived from aqueous-phase methyl tertiary-butyl ether (MTBE) and trichloroethene (TCE) adsorption isotherm data that were collected with 12 well-characterized activated carbons. Over the range of oxygen contents covered by the adsorbents (approximately 0.8-10 mmol O/g dry, ash-free activated carbon), a linear relationship between water affinity coefficients and adsorbent oxygen content was obtained. Incorporating water affinity coefficients calculated from the developed relationship into the PDM model, isotherm predictions resulted that agreed well with experimental data for three adsorbents and two adsorbates [tetrachloroethene (PCE), cis-1,2-dichloroethene (DCE)] that were not used to calibrate the model.

  17. Computer Control and Activation of Six-Degree-of-Freedom Simulator

    DTIC Science & Technology

    1983-01-01

    Evaluation of Matrices 54 Calculation of Linear Coefficients 54 Off-Line Calculations for Aircraft 59 Off-Line Calculations for Combat Vehicle 61 Table...468 in. 59 Physical concept tail-boom control system 203 Vlll 60 Tail-boom control system block diagram 204 61 Block diagram for position...configuration. Now, since Z must be diagonal, it follows that the principal elements of Z are given by 13 where and a) = ^11 ^12’ 2 2 ^21 ^22 ’ 61

  18. Calculations on the rate of the ion-molecule reaction between NH3(+) and H2

    NASA Technical Reports Server (NTRS)

    Herbst, Eric; Defrees, D. J.; Talbi, D.; Pauzat, F.; Koch, W.

    1991-01-01

    The rate coefficient for the ion-molecule reaction NH3(+) + H2 yields NH4(+) + H has been calculated as a function of temperature with the use of the statistical phase space approach. The potential surface and reaction complex and transition state parameters used in the calculation have been taken from ab initio quantum chemical calculations. The calculated rate coefficient has been found to mimic the unusual temperature dependence measured in the laboratory, in which the rate coefficient decreases with decreasing temperature until 50-100 K and then increases at still lower temperatures. Quantitative agreement between experimental and theoretical rate coefficients is satisfactory given the uncertainties in the ab initio results and in the dynamics calculations. The rate coefficient for the unusual three-body process NH3(+) + H2 + He yields NH4(+) + H + He has also been calculated as a function of temperature and the result found to agree well with a previous laboratory determination.

  19. Interactions of satellite-speed helium atoms with satellite surfaces. 3: Drag coefficients from spatial and energy distributions of reflected helium atoms

    NASA Technical Reports Server (NTRS)

    Sharma, P. K.; Knuth, E. L.

    1977-01-01

    Spatial and energy distributions of helium atoms scattered from an anodized 1235-0 aluminum surface as well as the tangential and normal momentum accommodation coefficients calculated from these distributions are reported. A procedure for calculating drag coefficients from measured values of spatial and energy distributions is given. The drag coefficient calculated for a 6061 T-6 aluminum sphere is included.

  20. Calculation of Drug Solubilities by Pharmacy Students.

    ERIC Educational Resources Information Center

    Cates, Lindley A.

    1981-01-01

    A method of estimating the solubilities of drugs in water is reported that is based on a principle applied in quantitative structure-activity relationships. This procedure involves correlation of partition coefficient values using the octanol/water system and aqueous solubility. (Author/MLW)

  1. Concurrent Solution and Adsorption of Hydrocarbons in Gas Chromatographic Columns Packed with Different Loadings of 3-Methylsydnone on Chromosorb P

    PubMed

    Castells; Romero; Nardillo

    1997-08-01

    Thermodynamic properties of solution in 3-methylsydnone (3MS) and of adsorption at the nitrogen/3MS interface were gas chromatographically measured for a group of fifteen hydrocarbons at infinite dilution conditions. Retention volumes were measured at five temperatures within the range 37-52°C in six columns containing different loadings of 3MS on Chromosorb P AW. Partition and adsorption coefficients were calculated and from their temperature dependence the corresponding enthalpies were obtained, although with considerable error; infinite dilution activity coefficients of the hydrocarbons in the bulk and in the surface phases demonstrated a strong correlation. Bulk activity coefficients in 3MS were very much smaller than those previously measured for the same solutes in formamide (FA) and in ethyleneglycol (EG), and were also smaller than what could be predicted on account of 3MS cohesive energy density as estimated from the quotient sigma/v1/3 (sigma, surface tension; v, molar volume). There was not such a large difference between the surface activity coefficients in the three solvents; furthermore, the quotients (surface activity coefficient/bulk activity coefficient) for a given solute in 3MS were twice as large as in FA and about three times larger than in EG. These results make evident the difficulties inherent in the prediction of surface phase properties from those in the bulk and cast doubts on the pertinency of employing the surface tension to compare cohesive energy densities of polar solvents with important chemical differences.

  2. A new scale for the assessment of performance and capacity of hand function in children with hemiplegic cerebral palsy: reliability and validity studies.

    PubMed

    Rosa-Rizzotto, M; Visonà Dalla Pozza, L; Corlatti, A; Luparia, A; Marchi, A; Molteni, F; Facchin, P; Pagliano, E; Fedrizzi, E

    2014-10-01

    In hemiplegic children, the recognition of the activity limitation pattern and the possibility of grading its severity are relevant for clinicians while planning interventions, monitoring results, predicting outcomes. Aim of the study is to examine the reliability and validity of Besta Scale, an instrument used to measure in hemiplegic children from 18 months to 12 years of age both grasp on request (capacity) and spontaneous use of upper limb (performance) in bimanual play activities and in ADL. Psychometric analysis of reliability and of validity of the Besta scale was performed. Outpatient study sample Reliability study: A sample of 39 patients was enrolled. The administration of Besta scale was video-recorded in a standardized manner. All videos were scored by 20 independent raters on subsequent viewing. 3 raters randomly selected from the 20-raters group rescored the same video two years later for intra-rater reliability. Intra and inter-rater reliability were calculated using Intraclass Correlation Coefficient (ICC) and Kendall's coefficient (K), respectively. Internal consistency reliability was assessed using Alpha's Chronbach coefficient. Validity study: a sample of 105 children was assessed 5 times (at t0 and 2, 3, 6 and 12 months later) by 20 independent raters. Each patient underwent at the same time to QUEST and Besta scale administration and assessment. Criterion validity was calculated using rho-Pearson coefficient. Reliability study: The inter-rater reliability calculated with Kendall's coefficient resulted moderate K=0.47. The intra-rater (or test-retest) reliability for 3 raters was excellent (ICC=0.927). The Cronbach's alpha for internal consistency was 0.972. Validity study: Besta scale showed a good criterion validity compared to QUEST increasing by age and severity of impairment. Rho Pearson's correlation coefficient r was 0.81 (P<0.0001). Limitations. Besta scales in infants finds hard to distinguish between mild to moderately impaired hand function. Besta scale scoring system is a valid and reliable tool, utilizable in a clinical setting to monitor evolution of unimanual and bimanual manipulation and to distinguish hand's capacity from performance.

  3. Solute-solvent interactions in solutions of 2-hydroxy-5-chloro-3-nitroacetophenone isonicotinoylhydrazone in N, N-dimethylformamide at 298-313 K according to ultrasonic and viscometric data

    NASA Astrophysics Data System (ADS)

    Dikkar, A. B.; Pethe, G. B.; Aswar, A. S.

    2015-12-01

    Density (ρ), speed of sound ( u), and viscosity (η), measurements have been carried on 2-hydroxy- 5-chloro-3-nitroacetophenone isonicotinoylhydrazone (HCNAIH) in N, N-dimethylformamide at 298.15, 303.15, 308.15, and 313.15 K. Adiabatic compressibility (βs), intermolecular free length ( L f), acoustic impedance ( Z), internal pressure ( P int), the apparent molar volume ( V w), limiting apparent molar volume ( V w 0), partial molar expansibility (wE 0), apparent molar adiabatic compressibility ( K w), limiting apparent molar adiabatic compressibility ( K w 0), viscosity B coefficients of Jones-Dole equation have been calculated. The activation free energy (Δμ 2 0 *) for viscous flow in solution have been calculated from B coefficient and partial molar volume data. The calculated parameters are used to interpret the solute-solvent interactions and structure forming/breaking ability of solute in DMF.

  4. Influence of diffuse reflectance measurement accuracy on the scattering coefficient in determination of optical properties with integrating sphere optics (a secondary publication).

    PubMed

    Horibe, Takuro; Ishii, Katsunori; Fukutomi, Daichi; Awazu, Kunio

    2015-12-30

    An estimation error of the scattering coefficient of hemoglobin in the high absorption wavelength range has been observed in optical property calculations of blood-rich tissues. In this study, the relationship between the accuracy of diffuse reflectance measurement in the integrating sphere and calculated scattering coefficient was evaluated with a system to calculate optical properties combined with an integrating sphere setup and the inverse Monte Carlo simulation. Diffuse reflectance was measured with the integrating sphere using a small incident port diameter and optical properties were calculated. As a result, the estimation error of the scattering coefficient was improved by accurate measurement of diffuse reflectance. In the high absorption wavelength range, the accuracy of diffuse reflectance measurement has an effect on the calculated scattering coefficient.

  5. Description of a Computer Program Written for Approach and Landing Test Post Flight Data Extraction of Proximity Separation Aerodynamic Coefficients and Aerodynamic Data Base Verification

    NASA Technical Reports Server (NTRS)

    Homan, D. J.

    1977-01-01

    A computer program written to calculate the proximity aerodynamic force and moment coefficients of the Orbiter/Shuttle Carrier Aircraft (SCA) vehicles based on flight instrumentation is described. The ground reduced aerodynamic coefficients and instrumentation errors (GRACIE) program was developed as a tool to aid in flight test verification of the Orbiter/SCA separation aerodynamic data base. The program calculates the force and moment coefficients of each vehicle in proximity to the other, using the load measurement system data, flight instrumentation data and the vehicle mass properties. The uncertainty in each coefficient is determined, based on the quoted instrumentation accuracies. A subroutine manipulates the Orbiter/747 Carrier Separation Aerodynamic Data Book to calculate a comparable set of predicted coefficients for comparison to the calculated flight test data.

  6. Repeatable noninvasive measurement of mouse myocardial glucose uptake with 18F-FDG: evaluation of tracer kinetics in a type 1 diabetes model.

    PubMed

    Thorn, Stephanie L; deKemp, Robert A; Dumouchel, Tyler; Klein, Ran; Renaud, Jennifer M; Wells, R Glenn; Gollob, Michael H; Beanlands, Rob S; DaSilva, Jean N

    2013-09-01

    A noninvasive and repeatable method for assessing mouse myocardial glucose uptake with (18)F-FDG PET and Patlak kinetic analysis was systematically assessed using the vena cava image-derived blood input function (IDIF). Contrast CT and computer modeling was used to determine the vena cava recovery coefficient. Vena cava IDIF (n = 7) was compared with the left ventricular cavity IDIF, with blood and liver activity measured ex vivo at 60 min. The test-retest repeatability (n = 9) of Patlak influx constant K(i) at 10-40 min was assessed quantitatively using Bland-Altman analysis. Myocardial glucose uptake rates (rMGU) using the vena cava IDIF were calculated at baseline (n = 8), after induction of type 1 diabetes (streptozotocin [50 mg/kg] intraperitoneally, 5 d), and after acute insulin stimulation (0.08 mU/kg of body weight intraperitoneally). These changes were analyzed with a standardized uptake value calculation at 20 and 40 min after injection to correlate to the Patlak time interval. The proximal mouse vena cava diameter was 2.54 ± 0.30 mm. The estimated recovery coefficient, calculated using nonlinear image reconstruction, decreased from 0.76 initially (time 0 to peak activity) to 0.61 for the duration of the scan. There was a 17% difference in the image-derived vena cava blood activity at 60 min, compared with the ex vivo blood activity measured in the γ-counter. The coefficient of variability for Patlak K(i) values between mice was found to be 23% with the proposed method, compared with 51% when using the left ventricular cavity IDIF (P < 0.05). No significant bias in K(i) was found between repeated scans with a coefficient of repeatability of 0.16 mL/min/g. Calculated rMGU values were reduced by 60% in type 1 diabetic mice from baseline scans (P < 0.03, ANOVA), with a subsequent increase of 40% to a level not significantly different from baseline after acute insulin treatment. These results were confirmed with a standardized uptake value measured at 20 and 40 min. The mouse vena cava IDIF provides repeatable assessment of the blood time-activity curve for Patlak kinetic modeling of rMGU. An expected significant reduction in myocardial glucose uptake was demonstrated in a type 1 diabetic mouse model, with significant recovery after acute insulin treatment, using a mouse vena cava IDIF approach.

  7. Electrochemical Behavior of Sulfur in Aqueous Alkaline Solutions

    NASA Astrophysics Data System (ADS)

    Mamyrbekova, Aigul; Mamitova, A. D.; Mamyrbekova, Aizhan

    2018-03-01

    The kinetics and mechanism of the electrode oxidation-reduction of sulfur on an electrically conductive sulfur-graphite electrode in an alkaline solution was studied by the potentiodynamic method. To examine the mechanism of electrode processes occurring during AC polarization on a sulfur-graphite electrode, the cyclic polarization in both directions and anodic polarization curves were recorded. The kinetic parameters: charge transfer coefficients (α), diffusion coefficients ( D), heterogeneous rate constants of electrode process ( k s), and effective activation energies of the process ( E a) were calculated from the results of polarization measurements. An analysis of the results and calculated kinetic parameters of electrode processes showed that discharge ionization of sulfur in alkaline solutions occurs as a sequence of two stages and is a quasireversible process.

  8. Hydrodynamic effects on phase transition in active matter

    NASA Astrophysics Data System (ADS)

    Gidituri, Harinadha; Akella, V. S.; Panchagnula, Mahesh; Vedantam, Srikanth; Multiphase flow physics lab Team

    2017-11-01

    Organized motion of active (self-propelled) objects are ubiquitous in nature. The objective of this study to investigate the effect of hydrodynamics on the coherent structures in active and passive particle mixtures. We use a mesoscopic method Dissipative Particle Dynamics (DPD). The system shows three different states viz. meso-turbulent (disordered state), polar flock and vortical (ordered state) for different values of activity and volume fraction of active particles. From our numerical simulations we construct a phase diagram between activity co-efficient, volume fraction and viscosity of the passive fluid. Transition from vortical to polar is triggered by increasing the viscosity of passive fluid which causes strong short-range hydrodynamic interactions. However, as the viscosity of the fluid decreases, both vortical and meso-turbulent states transition to polar flock phase. We also calculated the diffusion co-efficients via mean square displacement (MSD) for passive and active particles. We observe ballistic and diffusive regimes in the present system.

  9. Drag Coefficient Estimation in Orbit Determination

    NASA Astrophysics Data System (ADS)

    McLaughlin, Craig A.; Manee, Steve; Lichtenberg, Travis

    2011-07-01

    Drag modeling is the greatest uncertainty in the dynamics of low Earth satellite orbits where ballistic coefficient and density errors dominate drag errors. This paper examines fitted drag coefficients found as part of a precision orbit determination process for Stella, Starlette, and the GEOSAT Follow-On satellites from 2000 to 2005. The drag coefficients for the spherical Stella and Starlette satellites are assumed to be highly correlated with density model error. The results using MSIS-86, NRLMSISE-00, and NRLMSISE-00 with dynamic calibration of the atmosphere (DCA) density corrections are compared. The DCA corrections were formulated for altitudes of 200-600 km and are found to be inappropriate when applied at 800 km. The yearly mean fitted drag coefficients are calculated for each satellite for each year studied. The yearly mean drag coefficients are higher for Starlette than Stella, where Starlette is at a higher altitude. The yearly mean fitted drag coefficients for all three satellites decrease as solar activity decreases after solar maximum.

  10. Solar cells based on particulate structure of active layer: Investigation of light absorption by an ordered system of spherical submicron silicon particles

    NASA Astrophysics Data System (ADS)

    Miskevich, Alexander A.; Loiko, Valery A.

    2015-12-01

    Enhancement of the performance of photovoltaic cells through increasing light absorption due to optimization of an active layer is considered. The optimization consists in creation of particulate structure of active layer. The ordered monolayers and multilayers of submicron crystalline silicon (c-Si) spherical particles are examined. The quasicrystalline approximation (QCA) and the transfer matrix method (TMM) are used to calculate light absorption in the wavelength range from 0.28 μm to 1.12 μm. The integrated over the terrestial solar spectral irradiance "Global tilt" ASTM G173-03 absorption coefficient is calculated. In the wavelength range of small absorption index of c-Si (0.8-1.12 μm) the integral absorption coefficient of monolayer can be more than 20 times higher than the one of the plane-parallel plate of the equivalent volume of material. In the overall considered range (0.28-1.12 μm) the enhancement factor up to ~1.45 for individual monolayer is observed. Maximum value of the spectral absorption coefficient approaches unity for multilayers consisting of large amount of sparse monolayers of small particles. Multilayers with variable concentration and size of particles in the monolayer sequences are considered. Absorption increasing by such gradient multilayers as compared to the non-gradient ones is illustrated. The considered structures are promising for creation of high efficiency thin-film solar cells.

  11. Equilibrium unfolding studies of the rat liver methionine adenosyltransferase III, a dimeric enzyme with intersubunit active sites.

    PubMed Central

    Gasset, María; Alfonso, Carlos; Neira, José L; Rivas, Germán; Pajares, María A

    2002-01-01

    The reversible unfolding of rat liver methionine adenosyltransferase dimer by urea under equilibrium conditions has been monitored by fluorescence spectroscopy, CD, size-exclusion chromatography, analytical ultracentrifugation and enzyme activity measurements. The results obtained indicate that unfolding takes place through a three-state mechanism, involving an inactive monomeric intermediate. This intermediate has a 70% native secondary structure, binds less 8-anilinonaphthalene-1-sulphonic acid than the native dimer and has a sedimentation coefficient of 4.24+/-0.15. The variations of free energy in the absence of denaturant [DeltaG(H(2)O)] and its coefficients of urea dependence (m), calculated by the linear extrapolation model, were 36.15+/-2.3 kJ.mol(-1) and 19.87+/-0.71 kJ.mol(-1).M(-1) for the dissociation of the native dimer and 14.77+/-1.63 kJ.mol(-1) and 5.23+/-0.21 kJ.mol(-1).M(-1) for the unfolding of the monomeric intermediate respectively. Thus the global free energy change in the absence of denaturant and the m coefficient were calculated to be 65.69 kJ.mol(-1) and 30.33 kJ.mol(-1).M(-1) respectively. Analysis of the calculated thermodynamical parameters indicate the instability of the dimer in the presence of denaturant, and that the major exposure to the solvent is due to dimer dissociation. Finally, a minimum-folding mechanism for methionine adenosyltransferase III is established. PMID:11772402

  12. Impact of reclamation treatment on the biological activity of soils of the solonetz complex in Western Siberia

    NASA Astrophysics Data System (ADS)

    Berezin, L. V.; Khamova, O. F.; Paderina, E. V.; Gindemit, A. M.

    2014-11-01

    The abundance and activity of the soil microflora were studied in a field experiment with the use of green manure crops to assess the impact of reclamation measures on the biological activity of soils of the solonetz complex. The number of microorganisms in the plow soil horizon increased in the background of the green fallows as compared to the black ones. Coefficients of mineralization, immobilization, and transformation of organic compounds were calculated for different variants of the soil treatment. The value of the mineralization coefficient indicates the intense decomposition of the green manure that entered the soil. In the first year, peas were actively decomposed, while oats, in the second year (aftereffect). The activity of the soil enzymes (invertase, urease, and catalase) was determined. A close relationship between the catalase activity and the intensity of the microbiological processes in the soils was revealed.

  13. Standard Gibbs energy of metabolic reactions: II. Glucose-6-phosphatase reaction and ATP hydrolysis.

    PubMed

    Meurer, Florian; Do, Hoang Tam; Sadowski, Gabriele; Held, Christoph

    2017-04-01

    ATP (adenosine triphosphate) is a key reaction for metabolism. Tools from systems biology require standard reaction data in order to predict metabolic pathways accurately. However, literature values for standard Gibbs energy of ATP hydrolysis are highly uncertain and differ strongly from each other. Further, such data usually neglect the activity coefficients of reacting agents, and published data like this is apparent (condition-dependent) data instead of activity-based standard data. In this work a consistent value for the standard Gibbs energy of ATP hydrolysis was determined. The activity coefficients of reacting agents were modeled with electrolyte Perturbed-Chain Statistical Associating Fluid Theory (ePC-SAFT). The Gibbs energy of ATP hydrolysis was calculated by combining the standard Gibbs energies of hexokinase reaction and of glucose-6-phosphate hydrolysis. While the standard Gibbs energy of hexokinase reaction was taken from previous work, standard Gibbs energy of glucose-6-phosphate hydrolysis reaction was determined in this work. For this purpose, reaction equilibrium molalities of reacting agents were measured at pH7 and pH8 at 298.15K at varying initial reacting agent molalities. The corresponding activity coefficients at experimental equilibrium molalities were predicted with ePC-SAFT yielding the Gibbs energy of glucose-6-phosphate hydrolysis of -13.72±0.75kJ·mol -1 . Combined with the value for hexokinase, the standard Gibbs energy of ATP hydrolysis was finally found to be -31.55±1.27kJ·mol -1 . For both, ATP hydrolysis and glucose-6-phosphate hydrolysis, a good agreement with own and literature values were obtained when influences of pH, temperature, and activity coefficients were explicitly taken into account in order to calculate standard Gibbs energy at pH7, 298.15K and standard state. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Splay fault slip in a subduction margin, a new model of evolution

    NASA Astrophysics Data System (ADS)

    Conin, Marianne; Henry, Pierre; Godard, Vincent; Bourlange, Sylvain

    2012-08-01

    In subduction zones, major thrusts called splay faults are thought to slip coseismically during large earthquakes affecting the main plate interface. We propose an analytical condition for the activation of a splay fault based on force balance calculations and suggest thrusting along the splay fault is generally conditioned by the growth of the accretionary wedge, or by the erosion of the hanging wall. In theory, normal slip on the splay fault may occur when the décollement has a very low friction coefficient seaward. Such a low friction also implies an unstable extensional state within the outer wedge. Finite element elasto-plastic calculations with a geometry based on the Nankai Kumano section were performed and confirm that this analytical condition is a valid approximation. Furthermore, localized extension at a shallow level in the splay hanging wall is observed in models for a wide range of friction coefficients (from ∼0 to the value of internal friction coefficient of the rock, here equals to 0.4). The timing of slip established for the splay fault branch drilled on Nankai Kumano transect suggests a phase of concurrent splay and accretionary wedge growth ≈2 Ma to ≈1.5 Ma, followed by a locking of the splay ≈1.3 Ma. Active extension is observed in the hanging wall. This evolution can be explained by the activation of a deeper and weaker décollement, followed by an interruption of accretion. Activation of a splay as a normal fault, as hypothesized in the case of the Tohoku 2011 earthquake, can be achieved only if the friction coefficient on the décollement drops to near zero. We conclude that the tectonic stress state largely determines long-term variations of tightly related splay fault and outer décollement activity and thus influences where and how coseismic rupture ends, but that occurrence of normal slip on a splay fault requires coseismic friction reduction.

  15. Calculation of hydraulic friction losses in dc motors filled with liquid dielectric

    NASA Astrophysics Data System (ADS)

    Morozkin, V. P.

    1984-06-01

    Hydraulic friction during rotation of the armature in a dc motor filled with liquid dielectric is a major source of power loss, up to 40% of all power losses in such a motor. These losses are usually reduced by impregnating the end turns of armature coils with a compound and smoothing their outside surfaces. Hydraulic losses are best determined experimentally on a model armature and then calculated according to the theory of similarity for any other motor. This was with the armatures of DPK-8-3000, DPK-08-1000 small motors and P-42, Mu-52 large motors as test models. For subsequent calculations the armature is treated as a structure consisting of three cylinders: (1) slotted wound active core rotating inside a stationary cylinder with a radial gap between them; (2) end turns of coils rotating in free space; and (3) slotted commutator rotating in free space. The back plate of the armature constitutes a rotating disk. Considering that the hydraulic drag coefficient is a function of the Reynolds number only, it is calculated for each component of the armature on the basis of semiempirical relations with length and radius, gap width between stator (field) bore and active rotor core, angular velocity or rpm, and density of the dielectric as parameters. The resultant hydraulic drag coefficient is found by weighted combining of the four partial ones, with use of diameter ratios and a length-to-diameter ratio for the active core.

  16. Function-Space-Based Solution Scheme for the Size-Modified Poisson-Boltzmann Equation in Full-Potential DFT.

    PubMed

    Ringe, Stefan; Oberhofer, Harald; Hille, Christoph; Matera, Sebastian; Reuter, Karsten

    2016-08-09

    The size-modified Poisson-Boltzmann (MPB) equation is an efficient implicit solvation model which also captures electrolytic solvent effects. It combines an account of the dielectric solvent response with a mean-field description of solvated finite-sized ions. We present a general solution scheme for the MPB equation based on a fast function-space-oriented Newton method and a Green's function preconditioned iterative linear solver. In contrast to popular multigrid solvers, this approach allows us to fully exploit specialized integration grids and optimized integration schemes. We describe a corresponding numerically efficient implementation for the full-potential density-functional theory (DFT) code FHI-aims. We show that together with an additional Stern layer correction the DFT+MPB approach can describe the mean activity coefficient of a KCl aqueous solution over a wide range of concentrations. The high sensitivity of the calculated activity coefficient on the employed ionic parameters thereby suggests to use extensively tabulated experimental activity coefficients of salt solutions for a systematic parametrization protocol.

  17. 40 CFR Table F-1 to Subpart F of... - Slope and Overvoltage Coefficients for the Calculation of PFC Emissions From Aluminum Production

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Slope and Overvoltage Coefficients for the Calculation of PFC Emissions From Aluminum Production F Table F-1 to Subpart F of Part 98...—Slope and Overvoltage Coefficients for the Calculation of PFC Emissions From Aluminum Production...

  18. 40 CFR Table F-1 to Subpart F of... - Slope and Overvoltage Coefficients for the Calculation of PFC Emissions From Aluminum Production

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Slope and Overvoltage Coefficients for the Calculation of PFC Emissions From Aluminum Production F Table F-1 to Subpart F of Part 98...—Slope and Overvoltage Coefficients for the Calculation of PFC Emissions From Aluminum Production...

  19. 40 CFR Table F-1 to Subpart F of... - Slope and Overvoltage Coefficients for the Calculation of PFC Emissions From Aluminum Production

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Slope and Overvoltage Coefficients for the Calculation of PFC Emissions From Aluminum Production F Table F-1 to Subpart F of Part 98...—Slope and Overvoltage Coefficients for the Calculation of PFC Emissions From Aluminum Production...

  20. 40 CFR Table F-1 to Subpart F of... - Slope and Overvoltage Coefficients for the Calculation of PFC Emissions From Aluminum Production

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Slope and Overvoltage Coefficients for the Calculation of PFC Emissions From Aluminum Production F Table F-1 to Subpart F of Part 98...—Slope and Overvoltage Coefficients for the Calculation of PFC Emissions From Aluminum Production...

  1. Relationship between the percentage of body fat and surrogate indices of fatness in male and female Polish active and sedentary students.

    PubMed

    Lutoslawska, Grażyna; Malara, Marzena; Tomaszewski, Paweł; Mazurek, Krzysztof; Czajkowska, Anna; Kęska, Anna; Tkaczyk, Joanna

    2014-05-13

    Limited data have indicated that body mass index (BMI), waist circumference (WC), waist to hip ratio (WHR) and waist to height ratio (WHtR) of athletes and young adults provide misleading results concerning body fat content. This study was aimed at the evaluation of the relationship between different surrogate indices of fatness (BMI, WC, WHR, WHtR and body adiposity index (BAI)) with the percentage of body fat in Polish students with respect to their sex and physical activity. A total of 272 students volunteered to participate in the study. Of these students, 177 physical education students (90 males and 87 females) were accepted as active (physical activity of 7 to 9 hours/week); and 95 students of other specializations (49 males and 46 females) were accepted as sedentary (physical activity of 1.5 hours/week). Weight, height, waist and hip circumferences were measured, and BMI, WHR, WHtR and BAI were calculated. Body fat percentage was assessed using four skinfold measurements. Classification of fatness according to the BMI and the percentage of body fat have indicated that BMI overestimates fatness in lean subjects (active men and women, sedentary men), but underestimates body fat in obese subjects (sedentary women). In all groups, BMI, WHR, WHtR and BAI were significantly correlated with the percentage of body fat (with the exception of WHR and hip circumference in active and sedentary women, respectively). However, coefficients of determination not exceeding 50% and Lin's concordance correlation coefficients lower than 0.9 indicated no relationship between measured and calculated body fat. The findings in the present study support the concept that irrespective of physical activity and sex none of the calculated indices of fatness are useful in the determination of body fat in young adults. Thus, it seems that easily calculated indices may contribute to distorted body image and unhealthy dietary habits observed in many young adults in Western countries, but also in female athletes.

  2. Analysis of Orbital Lifetime Prediction Parameters in Preparation for Post-Mission Disposal

    NASA Astrophysics Data System (ADS)

    Choi, Ha-Yeon; Kim, Hae-Dong; Seong, Jae-Dong

    2015-12-01

    Atmospheric drag force is an important source of perturbation of Low Earth Orbit (LEO) orbit satellites, and solar activity is a major factor for changes in atmospheric density. In particular, the orbital lifetime of a satellite varies with changes in solar activity, so care must be taken in predicting the remaining orbital lifetime during preparation for post-mission disposal. In this paper, the System Tool Kit (STK®) Long-term Orbit Propagator is used to analyze the changes in orbital lifetime predictions with respect to solar activity. In addition, the STK® Lifetime tool is used to analyze the change in orbital lifetime with respect to solar flux data generation, which is needed for the orbital lifetime calculation, and its control on the drag coefficient control. Analysis showed that the application of the most recent solar flux file within the Lifetime tool gives a predicted trend that is closest to the actual orbit. We also examine the effect of the drag coefficient, by performing a comparative analysis between varying and constant coefficients in terms of solar activity intensities.

  3. Diffusion coefficients of nitric oxide in water: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Pokharel, Sunil; Pantha, Nurapati; Adhikari, N. P.

    2016-09-01

    Self-diffusion coefficients along with the mutual diffusion coefficients of nitric oxide (NO) and SPC/E water (H2O) as solute and solvent of the mixture, have been studied within the framework of classical molecular dynamics level of calculations using GROMACS package. The radial distribution function (RDF) of the constituent compounds are calculated to study solute-solute, solute-solvent and solvent-solvent molecular interactions as a function of temperature. A dilute solution of five NO molecules (mole fraction 0.018) and 280 H2O molecules (mole fraction 0.982) has been taken as the sample. The self-diffusion coefficient of the solvent is calculated by using mean square displacement (MSD) where as that for solute (NO) is calculated by using MSD and velocity auto-correlation function (VACF). The results are then compared with the available experimental values. The results from the present work for water come in good agreement, very precise at low temperatures, with the experimental values. The diffusion coefficients of NO, on the other hands, agree well with the available theoretical studies, and also with experiment at low temperatures (up to 310 K). The results at the higher temperatures (up to 333 K), however, deviate significantly with the experimental observations. Also, the mutual diffusion coefficients of NO in water have been calculated by using Darken’s relation. The temperature dependence of the calculated diffusion coefficients follow the Arrhenius behavior.

  4. Atomic oxygen recombination on quartz at high temperature: experiments and molecular dynamics simulation.

    PubMed

    Bedra, L; Rutigliano, M; Balat-Pichelin, M; Cacciatore, M

    2006-08-15

    A joint experimental and theoretical approach has been developed to study oxygen atom recombination on a beta-quartz surface. The experimental MESOX setup has been applied for the direct measurement of the atomic oxygen recombination coefficient gamma at T(S) = 1000 K. The time evolution of the relative atomic oxygen concentration in the cell is described by the diffusion equation because the mean free path of the atoms is less than the characteristic dimension of the reactor. The recombination coefficient gamma is then calculated from the concentration profile obtained by visible spectroscopy. We get an experimental value of gamma = 0.008, which is a factor of about 3 less than the gamma value reported for O recombination over beta-cristobalite. The experimental results are discussed and compared with the semiclassical collision dynamics calculations performed on the same catalytic system aimed at determining the basic features of the surface catalytic activity. Agreement, both qualitative and quantitative, between the experimental and the theoretical recombination coefficients has been found that supports the Eley-Rideal recombination mechanism and gives more evidence of the impact that surface crystallographic variation has on catalytic activity. Also, several interesting aspects concerning the energetics and the mechanism of the surface processes involving the oxygen atoms are pointed out and discussed.

  5. Extinction coefficients of CC and CC bands in ethyne and ethene molecules interacting with Cu+ and Ag+ in zeolites--IR studies and quantumchemical DFT calculations.

    PubMed

    Kozyra, Paweł; Góra-Marek, Kinga; Datka, Jerzy

    2015-02-05

    The values of extinction coefficients of CC and CC IR bands of ethyne and ethene interacting with Cu+ and Ag+ in zeolites were determined in quantitative IR experiments and also by quantumchemical DFT calculations with QM/MM method. Both experimental and calculated values were in very good agreement validating the reliability of calculations. The values of extinction coefficients of ethyne and ethene interacting with bare cations and cations embedded in zeolite-like clusters were calculated. The interaction of organic molecules with Cu+ and Ag+ in zeolites ZSM-5 and especially charge transfers between molecule, cation and zeolite framework was also discussed in relation to the values of extinction coefficients. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Analysis of China department water consumption efficiency

    NASA Astrophysics Data System (ADS)

    Li, Wei; Wang, Xi-Feng; Liu, Jia-Hong

    2018-03-01

    The water comparable non-competitive input-out model of China in 2002, 2007 and 2012 is established to calculate the department water consumption efficiency. The water direct and complete consumption coefficients of 38 departments are analysed. Agriculture and Electricity and steam supply have the highest water consumption coefficients and utilize water resource mainly by the direct way. Manufacture of food products and tobacco products, Manufacture of textiles, Manufacture of wearing apparel and leather products and Information service activities have high water complete consumption coefficients and affect water consumption mainly by the indirect way. Water complete consumption efficiency measures the efficiency from the view of final product, which reflected the department water use driving force more precisely.

  7. Active latent heat storage with a screw heat exchanger - experimental results for heat transfer and concept for high pressure steam

    NASA Astrophysics Data System (ADS)

    Zipf, Verena; Willert, Daniel; Neuhäuser, Anton

    2016-05-01

    An innovative active latent heat storage concept was invented and developed at Fraunhofer ISE. It uses a screw heat exchanger (SHE) for the phase change during the transport of a phase change material (PCM) from a cold to a hot tank or vice versa. This separates heat transfer and storage tank in comparison to existing concepts. A test rig has been built in order to investigate the heat transfer coefficients of the SHE during melting and crystallization of the PCM. The knowledge of these characteristics is crucial in order to assess the performance of the latent heat storage in a thermal system. The test rig contains a double shafted SHE, which is heated or cooled with thermal oil. The overall heat transfer coefficient U and the convective heat transfer coefficient on the PCM side hPCM both for charging and discharging have been calculated based on the measured data. For charging, the overall heat transfer coefficient in the tested SHE was Uch = 308 W/m2K and for discharging Udis = 210 W/m2K. Based on the values for hPCM the overall heat transfer coefficients for a larger SHE with steam as heat transfer fluid and an optimized geometry were calculated with Uch = 320 W/m2K for charging and Udis = 243 W/m2K for discharging. For pressures as high as p = 100 bar, an SHE concept has been developed, which uses an organic fluid inside the flight of the SHE as working media. With this concept, the SHE can also be deployed for very high pressure, e.g. as storage in solar thermal power plants.

  8. Computed rate coefficients and product yields for c-C5H5 + CH3 --> products.

    PubMed

    Sharma, Sandeep; Green, William H

    2009-08-06

    Using quantum chemical methods, we have explored the region of the C6H8 potential energy surface that is relevant in predicting the rate coefficients of various wells and major product channels following the reaction between cyclopentadienyl radical and methyl radical, c-C5H5 + CH3. Variational transition state theory is used to calculate the high-pressure-limit rate coefficient for all of the barrierless reactions. RRKM theory and the master equation are used to calculate the pressure dependent rate coefficients for 12 reactions. The calculated results are compared with the limited experimental data available in the literature and the agreement between the two is quite good. All of the rate coefficients calculated in this work are tabulated and can be used in building detailed chemical kinetic models.

  9. Assessment of Areal Recharge to the Spokane Valley-Rathdrum Prairie Aquifer, Spokane County, Washington, and Bonner and Kootenai Counties, Idaho

    USGS Publications Warehouse

    Bartolino, James R.

    2007-01-01

    A numerical flow model of the Spokane Valley-Rathdrum Prairie aquifer currently (2007) being developed requires the input of values for areally-distributed recharge, a parameter that is often the most uncertain component of water budgets and ground-water flow models because it is virtually impossible to measure over large areas. Data from six active weather stations in and near the study area were used in four recharge-calculation techniques or approaches; the Langbein method, in which recharge is estimated on the basis of empirical data from other basins; a method developed by the U.S. Department of Agriculture (USDA), in which crop consumptive use and effective precipitation are first calculated and then subtracted from actual precipitation to yield an estimate of recharge; an approach developed as part of the Eastern Snake Plain Aquifer Model (ESPAM) Enhancement Project in which recharge is calculated on the basis of precipitation-recharge relations from other basins; and an approach in which reference evapotranspiration is calculated by the Food and Agriculture Organization (FAO) Penman-Monteith equation, crop consumptive use is determined (using a single or dual coefficient approach), and recharge is calculated. Annual recharge calculated by the Langbein method for the six weather stations was 4 percent of annual mean precipitation, yielding the lowest values of the methods discussed in this report, however, the Langbein method can be only applied to annual time periods. Mean monthly recharge calculated by the USDA method ranged from 53 to 73 percent of mean monthly precipitation. Mean annual recharge ranged from 64 to 69 percent of mean annual precipitation. Separate mean monthly recharge calculations were made with the ESPAM method using initial input parameters to represent thin-soil, thick-soil, and lava-rock conditions. The lava-rock parameters yielded the highest recharge values and the thick-soil parameters the lowest. For thin-soil parameters, calculated monthly recharge ranged from 10 to 29 percent of mean monthly precipitation and annual recharge ranged from 16 to 23 percent of mean annual precipitation. For thick-soil parameters, calculated monthly recharge ranged from 1 to 5 percent of mean monthly precipitation and mean annual recharge ranged from 2 to 4 percent of mean annual precipitation. For lava-rock parameters, calculated mean monthly recharge ranged from 37 to 57 percent of mean monthly precipitation and mean annual recharge ranged from 45 to 52 percent of mean annual precipitation. Single-coefficient (crop coefficient) FAO Penman-Monteith mean monthly recharge values were calculated for Spokane Weather Service Office (WSO) Airport, the only station for which the necessary meteorological data were available. Grass-referenced values of mean monthly recharge ranged from 0 to 81 percent of mean monthly precipitation and mean annual recharge was 21 percent of mean annual precipitation; alfalfa-referenced values of mean monthly recharge ranged from 0 to 85 percent of mean monthly precipitation and mean annual recharge was 24 percent of mean annual precipitation. Single-coefficient FAO Penman-Monteith calculations yielded a mean monthly recharge of zero during the eight warmest and driest months of the year (March-October). In order to refine the mean monthly recharge estimates, dual-coefficient (basal crop and soil evaporation coefficients) FAO Penman-Monteith dual-crop evapotranspiration and deep-percolation calculations were applied to daily values from the Spokane WSO Airport for January 1990 through December 2005. The resultant monthly totals display a temporal variability that is absent from the mean monthly values and demonstrate that the daily amount and timing of precipitation dramatically affect calculated recharge. The dual-coefficient FAO Penman-Monteith calculations were made for the remaining five stations using wind-speed values for Spokane WSO Airport and other assumptions regarding

  10. Mutagenicity, anticancer activity and blood brain barrier: similarity and dissimilarity of molecular alerts.

    PubMed

    Toropov, Andrey A; Toropova, Alla P; Benfenati, Emilio; Salmona, Mario

    2018-06-01

    The aim of the present work is an attempt to define computable measure of similarity between different endpoints. The similarity of structural alerts of different biochemical endpoints can be used to solve tasks of medicinal chemistry. Optimal descriptors are a tool to build up models for different endpoints. The optimal descriptor is calculated with simplified molecular input-line entry system (SMILES). A group of elements (single symbol or pair of symbols) can represent any SMILES. Each element of SMILES can be represented by so-called correlation weight i.e. coefficient that should be used to calculate descriptor. Numerical data on the correlation weights are calculated by the Monte Carlo method, i.e. by optimization procedure, which gives maximal correlation coefficient between the optimal descriptor and endpoint for the training set. Statistically stable correlation weights observed in several runs of the optimization can be examined as structural alerts, which are promoters of the increase or the decrease of a biochemical activity of a substance. Having data on several runs of the optimization correlation weights, one can extract list of promoters of increase and list of promoters of decrease for an endpoint. The study of similarity and dissimilarity of the above lists has been carried out for the following pairs of endpoints: (i) mutagenicity and anticancer activity; (ii) mutagenicity and blood brain barrier; and (iii) blood brain barrier and anticancer activity. The computational experiment confirms that similarity and dissimilarity for pairs of endpoints can be measured.

  11. Note on use of slope diffraction coefficients for aperture antennas on finite ground planes

    NASA Technical Reports Server (NTRS)

    Cockrell, C. R.; Beck, F. B.

    1995-01-01

    The use of slope diffraction coefficients along with regular diffraction coefficients for calculating the radiation patterns of aperture antennas in a finite ground plane is investigated. Explicit expressions for regular diffraction coefficients and slope diffraction coefficients are presented. The expressions for the incident magnetic field in terms of the magnetic current in the aperture are given. The slope of the incident magnetic field is calculated and closed form expressions are presented.

  12. Prediction of distribution coefficient from structure. 1. Estimation method.

    PubMed

    Csizmadia, F; Tsantili-Kakoulidou, A; Panderi, I; Darvas, F

    1997-07-01

    A method has been developed for the estimation of the distribution coefficient (D), which considers the microspecies of a compound. D is calculated from the microscopic dissociation constants (microconstants), the partition coefficients of the microspecies, and the counterion concentration. A general equation for the calculation of D at a given pH is presented. The microconstants are calculated from the structure using Hammett and Taft equations. The partition coefficients of the ionic microspecies are predicted by empirical equations using the dissociation constants and the partition coefficient of the uncharged species, which are estimated from the structure by a Linear Free Energy Relationship method. The algorithm is implemented in a program module called PrologD.

  13. The CPA Equation of State and an Activity Coefficient Model for Accurate Molar Enthalpy Calculations of Mixtures with Carbon Dioxide and Water/Brine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myint, P. C.; Hao, Y.; Firoozabadi, A.

    2015-03-27

    Thermodynamic property calculations of mixtures containing carbon dioxide (CO 2) and water, including brines, are essential in theoretical models of many natural and industrial processes. The properties of greatest practical interest are density, solubility, and enthalpy. Many models for density and solubility calculations have been presented in the literature, but there exists only one study, by Spycher and Pruess, that has compared theoretical molar enthalpy predictions with experimental data [1]. In this report, we recommend two different models for enthalpy calculations: the CPA equation of state by Li and Firoozabadi [2], and the CO 2 activity coefficient model by Duanmore » and Sun [3]. We show that the CPA equation of state, which has been demonstrated to provide good agreement with density and solubility data, also accurately calculates molar enthalpies of pure CO 2, pure water, and both CO 2-rich and aqueous (H 2O-rich) mixtures of the two species. It is applicable to a wider range of conditions than the Spycher and Pruess model. In aqueous sodium chloride (NaCl) mixtures, we show that Duan and Sun’s model yields accurate results for the partial molar enthalpy of CO 2. It can be combined with another model for the brine enthalpy to calculate the molar enthalpy of H 2O-CO 2-NaCl mixtures. We conclude by explaining how the CPA equation of state may be modified to further improve agreement with experiments. This generalized CPA is the basis of our future work on this topic.« less

  14. Calculation of NaCl, KCl and LiCl Salts Activity Coefficients in Polyethylene Glycol (PEG4000)-Water System Using Modified PHSC Equation of State, Extended Debye-Hückel Model and Pitzer Model

    NASA Astrophysics Data System (ADS)

    Marjani, Azam

    2016-07-01

    For biomolecules and cell particles purification and separation in biological engineering, besides the chromatography as mostly applied process, aqueous two-phase systems (ATPS) are of the most favorable separation processes that are worth to be investigated in thermodynamic theoretically. In recent years, thermodynamic calculation of ATPS properties has attracted much attention due to their great applications in chemical industries such as separation processes. These phase calculations of ATPS have inherent complexity due to the presence of ions and polymers in aqueous solution. In this work, for target ternary systems of polyethylene glycol (PEG4000)-salt-water, thermodynamic investigation for constituent systems with three salts (NaCl, KCl and LiCl) has been carried out as PEG is the most favorable polymer in ATPS. The modified perturbed hard sphere chain (PHSC) equation of state (EOS), extended Debye-Hückel and Pitzer models were employed for calculation of activity coefficients for the considered systems. Four additional statistical parameters were considered to ensure the consistency of correlations and introduced as objective functions in the particle swarm optimization algorithm. The results showed desirable agreement to the available experimental data, and the order of recommendation of studied models is PHSC EOS > extended Debye-Hückel > Pitzer. The concluding remark is that the all the employed models are reliable in such calculations and can be used for thermodynamic correlation/predictions; however, by using an ion-based parameter calculation method, the PHSC EOS reveals both reliability and universality of applications.

  15. Non-Ideality in Solvent Extraction Systems: PNNL FY 2014 Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levitskaia, Tatiana G.; Chatterjee, Sayandev; Pence, Natasha K.

    The overall objective of this project is to develop predictive modeling capabilities for advanced fuel cycle separation processes by gaining a fundamental quantitative understanding of non-ideality effects and speciation in relevant aqueous and organic solutions. Aqueous solutions containing actinides and lanthanides encountered during nuclear fuel reprocessing have high ionic strength and do not behave as ideal solutions. Activity coefficients must be calculated to take into account the deviation from ideality and predict their behavior. In FY 2012-2013, a convenient method for determining activity effects in aqueous electrolyte solutions was developed. Our initial experiments demonstrated that water activity and osmotic coefficientsmore » of the electrolyte solutions can be accurately measured by the combination of two techniques, a Water Activity Meter and Vapor Pressure Osmometry (VPO). The water activity measurements have been conducted for binary lanthanide solutions in wide concentration range for all lanthanides (La-Lu with the exception of Pm). The osmotic coefficients and Pitzer parameters for each binary system were obtained by the least squares fitting of the water activity data. However, application of Pitzer model for the quantitative evaluation of the activity effects in the multicomponent mixtures is difficult due to the large number of the required interaction parameters. In FY 2014, the applicability of the Bromley model for the determination of the Ln(NO 3) 3 activity coefficients was evaluated. The new Bromley parameters for the binary Ln(NO 3) 3 electrolytes were obtained based on the available literature and our experimental data. This allowed for the accurate prediction of the Ln(NO 3) 3 activity coefficients for the binary Ln(NO 3) 3 electrolytes. This model was then successfully implemented for the determination of the Ln(NO 3) 3 activity coefficients in the ternary Nd(NO 3) 3/HNO 3/H2O, Eu(NO 3) 3/HNO 3/H 2O, and Eu(NO 3) 3/NaNO 3/H 2O systems. The main achievement of this work is the verified pathway for the estimation of the activity coefficients in the multicomponent aqueous electrolyte systems. The accurate Bromley electrolytes contributions obtained in this work for the entire series of lanthanide(III) nitrates (except Pm) can be applied for predicting activity coefficients and non-ideality effects for multi-component systems containing these species. This work also provides the proof-of-principle of extending the model to more complex multicomponent systems. Moreover, this approach can also be applied to actinide-containing electrolyte systems, for determination of the activity coefficients in concentrated radioactive solutions.« less

  16. Modeling brine-rock interactions in an enhanced geothermal systemdeep fractured reservoir at Soultz-Sous-Forets (France): a joint approachusing two geochemical codes: frachem and toughreact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andre, Laurent; Spycher, Nicolas; Xu, Tianfu

    The modeling of coupled thermal, hydrological, and chemical (THC) processes in geothermal systems is complicated by reservoir conditions such as high temperatures, elevated pressures and sometimes the high salinity of the formation fluid. Coupled THC models have been developed and applied to the study of enhanced geothermal systems (EGS) to forecast the long-term evolution of reservoir properties and to determine how fluid circulation within a fractured reservoir can modify its rock properties. In this study, two simulators, FRACHEM and TOUGHREACT, specifically developed to investigate EGS, were applied to model the same geothermal reservoir and to forecast reservoir evolution using theirmore » respective thermodynamic and kinetic input data. First, we report the specifics of each of these two codes regarding the calculation of activity coefficients, equilibrium constants and mineral reaction rates. Comparisons of simulation results are then made for a Soultz-type geothermal fluid (ionic strength {approx}1.8 molal), with a recent (unreleased) version of TOUGHREACT using either an extended Debye-Hueckel or Pitzer model for calculating activity coefficients, and FRACHEM using the Pitzer model as well. Despite somewhat different calculation approaches and methodologies, we observe a reasonably good agreement for most of the investigated factors. Differences in the calculation schemes typically produce less difference in model outputs than differences in input thermodynamic and kinetic data, with model results being particularly sensitive to differences in ion-interaction parameters for activity coefficient models. Differences in input thermodynamic equilibrium constants, activity coefficients, and kinetics data yield differences in calculated pH and in predicted mineral precipitation behavior and reservoir-porosity evolution. When numerically cooling a Soultz-type geothermal fluid from 200 C (initially equilibrated with calcite at pH 4.9) to 20 C and suppressing mineral precipitation, pH values calculated with FRACHEM and TOUGHREACT/Debye-Hueckel decrease by up to half a pH unit, whereas pH values calculated with TOUGHREACT/Pitzer increase by a similar amount. As a result of these differences, calcite solubilities computed using the Pitzer formalism (the more accurate approach) are up to about 1.5 orders of magnitude lower. Because of differences in Pitzer ion-interaction parameters, the calcite solubility computed with TOUGHREACT/Pitzer is also typically about 0.5 orders of magnitude lower than that computed with FRACHEM, with the latter expected to be most accurate. In a second part of this investigation, both models were applied to model the evolution of a Soultz-type geothermal reservoir under high pressure and temperature conditions. By specifying initial conditions reflecting a reservoir fluid saturated with respect to calcite (a reasonable assumption based on field data), we found that THC reservoir simulations with the three models yield similar results, including similar trends and amounts of reservoir porosity decrease over time, thus pointing to the importance of model conceptualization. This study also highlights the critical effect of input thermodynamic data on the results of reactive transport simulations, most particularly for systems involving brines.« less

  17. Ridge: a computer program for calculating ridge regression estimates

    Treesearch

    Donald E. Hilt; Donald W. Seegrist

    1977-01-01

    Least-squares coefficients for multiple-regression models may be unstable when the independent variables are highly correlated. Ridge regression is a biased estimation procedure that produces stable estimates of the coefficients. Ridge regression is discussed, and a computer program for calculating the ridge coefficients is presented.

  18. Adaption of the temporal correlation coefficient calculation for temporal networks (applied to a real-world pig trade network).

    PubMed

    Büttner, Kathrin; Salau, Jennifer; Krieter, Joachim

    2016-01-01

    The average topological overlap of two graphs of two consecutive time steps measures the amount of changes in the edge configuration between the two snapshots. This value has to be zero if the edge configuration changes completely and one if the two consecutive graphs are identical. Current methods depend on the number of nodes in the network or on the maximal number of connected nodes in the consecutive time steps. In the first case, this methodology breaks down if there are nodes with no edges. In the second case, it fails if the maximal number of active nodes is larger than the maximal number of connected nodes. In the following, an adaption of the calculation of the temporal correlation coefficient and of the topological overlap of the graph between two consecutive time steps is presented, which shows the expected behaviour mentioned above. The newly proposed adaption uses the maximal number of active nodes, i.e. the number of nodes with at least one edge, for the calculation of the topological overlap. The three methods were compared with the help of vivid example networks to reveal the differences between the proposed notations. Furthermore, these three calculation methods were applied to a real-world network of animal movements in order to detect influences of the network structure on the outcome of the different methods.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, H.; Chang, C.; Cheng, H. H., E-mail: hhcheng@ntu.edu.tw

    We report an investigation on the absorption mechanism of a GeSn photodetector with 2.4% Sn composition in the active region. Responsivity is measured and absorption coefficient is calculated. Square root of absorption coefficient linearly depends on photon energy indicating an indirect transition. However, the absorption coefficient is found to be at least one order of magnitude higher than that of most other indirect materials, suggesting that the indirect optical absorption transition cannot be assisted only by phonon. Our analysis of absorption measurements by other groups on the same material system showed the values of absorption coefficient on the same ordermore » of magnitude. Our study reveals that the strong enhancement of absorption for the indirect optical transition is the result of alloy disorder from the incorporation of the much larger Sn atoms into the Ge lattice that are randomly distributed.« less

  20. Modeling solubility, acid-base properties and activity coefficients of amoxicillin, ampicillin and (+)6-aminopenicillanic acid, in NaCl(aq) at different ionic strengths and temperatures.

    PubMed

    Crea, Francesco; Cucinotta, Daniela; De Stefano, Concetta; Milea, Demetrio; Sammartano, Silvio; Vianelli, Giuseppina

    2012-11-20

    The total solubility of three penicillin derivatives was determined, in pure water and NaCl aqueous solutions at different salt concentrations (from ∼0.15 to 1.0 mol L(-1) for ampicillin and amoxicillin, and from ∼0.05 to 2.0 mol L(-1) for (+)6-aminopenicillanic acid), using the shake-flask method for generating the saturated solutions, followed by potentiometric analysis. The knowledge of the pH of solubilization and of the protonation constants determined in the same experimental conditions, allowed us to calculate, by means of the mass balance equations, the solubility of the neutral species at different ionic strength values, to model its dependence on the salt concentration and to determine the corresponding values at infinite dilution. The salting parameter and the activity coefficients of the neutral species were calculated by the Setschenow equation. The protonation constants of ampicillin and amoxicillin, determined at different temperatures (from T=288.15 to 318.15K), from potentiometric and spectrophotometric measurements, were used to calculate, by means of the Van't Hoff equation, the temperature coefficients at different ionic strength values and the corresponding protonation entropies. The protonation enthalpies of the (+)6-aminopenicillanic acid were determined by isoperibol calorimetric titrations at T=298.15K and up to I=2.0 mol L(-1). The dependence of the protonation constants on ionic strength was modeled by means of the Debye-Hückel and SIT (Specific ion Interaction Theory) approaches, and the specific interaction parameters of the ionic species were determined. The hydrolysis of the β-lactam ring was studied by spectrophotometric and H NMR investigations as a function of pH, ionic strength and time. Potentiometric measurements carried out on the hydrolyzed (+)6-aminopenicillanic acid allowed us to highlight that the opened and the closed β-lactam forms of the (+)6-aminopenicillanic acid have quite different acid-base properties. An analysis of literature solubility, protonation constants, enthalpies and activity coefficients is reported too. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Study of the influence of surfactants on the activity coefficients and mass transfer coefficients of methanol in aqueous mixtures by reversed-flow gas chromatography.

    PubMed

    Kotsalos, Efthimios; Brezovska, Boryana; Sevastos, Dimitrios; Vagena, Artemis; Koliadima, Athanasia; Kapolos, John; Karaiskakis, George

    2017-11-17

    This work focuses on the influences of surfactants on the activity coefficients, γ, of methanol in binary mixtures with water, as well as on the mass transfer coefficients, k c , for the evaporation of methanol, which is a ubiquitous component in the troposphere, from mixtures of methanol with water at various surfactant's and methanol's concentrations. The technique used is the Reversed-Flow Gas Chromatography (R.F.G.C.), a version of Inverse Gas Chromatography, which allows determining both parameters by performing only one experiment for the k c parameter and two experiments for the γ parameter. The k c and γ values decrease in the presence of the three surfactants used (CTAB, SDS, TRITON X-100) at all methanol's and surfactant's concentrations. The decrease in the methanol's molar fraction, at constant number of surfactant films leads to a decrease in the k c and γ values, while the decrease in the surfactant's concentration, at constant methanol's molar fraction leads to an increase in both the k c and γ parameters. Mass transfer coefficients for the evaporation of methanol at the surfactant films, are also calculated which are approximately between 4 and 5 orders of magnitude larger than the corresponding mass transfer coefficients at the liquid films. Finally, thicknesses of the boundary layer of methanol in the mixtures of methanol with water were determined. The quantities found are compared with those given in the literature or calculated theoretically using various empirical equations. The precision of the R.F.G.C. method for measuring γ and k c parameters is approximately high (94.3-98.0%), showing that R.F.G.C. can be used with success not only for the thermodynamic study of solutions, but also for the interphase transport. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Solubility of non-polar gases in electrolyte solutions

    NASA Technical Reports Server (NTRS)

    Walker, R. L., Jr.

    1970-01-01

    Solubility theory describes the effects of both concentration and temperature on solute activity coefficients. It predicts the salting-out effect and the decrease in solubility of non-polar gases with increased electrolyte concentration, and can be used to calculate heats of solution, entropies, and partial molal volumes of dissolved gases

  3. Chemical Potentials, Activity Coefficients, and Solubility in Aqueous NaCl Solutions: Prediction by Polarizable Force Fields.

    PubMed

    Moučka, Filip; Nezbeda, Ivo; Smith, William R

    2015-04-14

    We describe a computationally efficient molecular simulation methodology for calculating the concentration dependence of the chemical potentials of both solute and solvent in aqueous electrolyte solutions, based on simulations of the salt chemical potential alone. We use our approach to study the predictions for aqueous NaCl solutions at ambient conditions of these properties by the recently developed polarizable force fields (FFs) AH/BK3 of Kiss and Baranyai (J. Chem. Phys. 2013, 138, 204507) and AH/SWM4-DP of Lamoureux and Roux (J. Phys. Chem. B 2006, 110, 3308 - 3322) and by the nonpolarizable JC FF of Joung and Cheatham tailored to SPC/E water (J. Phys. Chem. B 2008, 112, 9020 - 9041). We also consider their predictions of the concentration dependence of the electrolyte activity coefficient, the crystalline solid chemical potential, the electrolyte solubility, and the solution specific volume. We first highlight the disagreement in the literature concerning calculations of solubility by means of molecular simulation in the case of the JC FF and provide strong evidence of the correctness of our methodology based on recent independently obtained results for this important test case. We then compare the predictions of the three FFs with each other and with experiment and draw conclusions concerning their relative merits, with particular emphasis on the salt chemical potential and activity coefficient vs concentration curves and their derivatives. The latter curves have only previously been available from Kirkwood-Buff integrals, which require approximate numerical integrations over system pair correlation functions at each concentration. Unlike the case of the other FFs, the AH/BK3 curves are nearly parallel to the corresponding experimental curves at moderate and higher concentrations. This leads to an excellent prediction of the water chemical potential via the Gibbs-Duhem equation and enables the activity coefficient curve to be brought into excellent agreement with experiment by incorporating an appropriate value of the standard state chemical potential in the Henry Law convention.

  4. The informativeness of coefficients a and b of the soil line for the analysis of remote sensing materials

    NASA Astrophysics Data System (ADS)

    Rukhovich, D. I.; Rukhovich, A. D.; Rukhovich, D. D.; Simakova, M. S.; Kulyanitsa, A. L.; Bryzzhev, A. V.; Koroleva, P. V.

    2016-08-01

    The coefficients of the soil line are often taken into account in calculations of vegetation indices. These coefficients are usually calculated for the entire satellite image, or are taken as constants without any calculations. In both cases, the informativeness of these coefficients is low and insufficient for the needs of soil mapping. In our study, we calculated soil line coefficients at 8000 lattice points for the territory of Plavsk, Arsen'evsk, and Chern districts of Tula oblast on the basis of 34 Landsat 5, 7, and 8 images obtained in 1985-2014. In order to distinguish between the soil line calculated for a given image and the soil line calculated for lattice points on the basis of dozens of multitemporal images, we suggest that the latter can be referred to as the temporal soil line. The temporal soil line is described by a classical equation: NIR = RED a + b, where a is its slope relative to the horizontal axis (RED), and b is the Y-axis (NIR) intercept. Both coefficients were used to create soil maps. The verification of the maps was performed with the use of data on 1985 soil pits. The informativeness of these coefficients appeared to be sufficient for delineation of eight groups of soils of different taxonomic levels: soddy moderately podzolic soils, soddy slightly podzolic soils, soddy-podzolic soils, light gray forest soils, gray forest soils, dark gray forest soils, podzolized chernozems, and leached chernozems. The b coefficient proved to be more informative, as it allowed us to create the soil map precisely on its basis. In order to create the soil map on the basis of the a coefficient, we had to apply some threshold values of the b coefficient. The bare soil on each of Landsat scenes was separated with the help of the mask of agricultural fields and the notion of the spectral neighborhood of soil line (SNSL).

  5. Effect of Atomic Charges on Octanol-Water Partition Coefficient Using Alchemical Free Energy Calculation.

    PubMed

    Ogata, Koji; Hatakeyama, Makoto; Nakamura, Shinichiro

    2018-02-15

    The octanol-water partition coefficient (log P ow ) is an important index for measuring solubility, membrane permeability, and bioavailability in the drug discovery field. In this paper, the log P ow values of 58 compounds were predicted by alchemical free energy calculation using molecular dynamics simulation. In free energy calculations, the atomic charges of the compounds are always fixed. However, they must be recalculated for each solvent. Therefore, three different sets of atomic charges were tested using quantum chemical calculations, taking into account vacuum, octanol, and water environments. The calculated atomic charges in the different environments do not necessarily influence the correlation between calculated and experimentally measured ∆ G water values. The largest correlation coefficient values of the solvation free energy in water and octanol were 0.93 and 0.90, respectively. On the other hand, the correlation coefficient of log P ow values calculated from free energies, the largest of which was 0.92, was sensitive to the combination of the solvation free energies calculated from the calculated atomic charges. These results reveal that the solvent assumed in the atomic charge calculation is an important factor determining the accuracy of predicted log P ow values.

  6. Interdiffusion, Intrinsic Diffusion, Atomic Mobility, and Vacancy Wind Effect in γ(bcc) Uranium-Molybdenum Alloy

    NASA Astrophysics Data System (ADS)

    Huang, Ke; Keiser, Dennis D.; Sohn, Yongho

    2013-02-01

    U-Mo alloys are being developed as low enrichment uranium fuels under the Reduced Enrichment for Research and Test Reactor (RERTR) Program. In order to understand the fundamental diffusion behavior of this system, solid-to-solid pure U vs Mo diffusion couples were assembled and annealed at 923 K, 973 K, 1073 K, 1173 K, and 1273 K (650 °C, 700 °C, 800 °C, 900 °C, and 1000 °C) for various times. The interdiffusion microstructures and concentration profiles were examined via scanning electron microscopy and electron probe microanalysis, respectively. As the Mo concentration increased from 2 to 26 at. pct, the interdiffusion coefficient decreased, while the activation energy increased. A Kirkendall marker plane was clearly identified in each diffusion couple and utilized to determine intrinsic diffusion coefficients. Uranium intrinsically diffused 5-10 times faster than Mo. Molar excess Gibbs free energy of U-Mo alloy was applied to calculate the thermodynamic factor using ideal, regular, and subregular solution models. Based on the intrinsic diffusion coefficients and thermodynamic factors, Manning's formalism was used to calculate the tracer diffusion coefficients, atomic mobilities, and vacancy wind parameters of U and Mo at the marker composition. The tracer diffusion coefficients and atomic mobilities of U were about five times larger than those of Mo, and the vacancy wind effect increased the intrinsic flux of U by approximately 30 pct.

  7. Calculation of thermal expansion coefficient of glasses based on topological constraint theory

    NASA Astrophysics Data System (ADS)

    Zeng, Huidan; Ye, Feng; Li, Xiang; Wang, Ling; Yang, Bin; Chen, Jianding; Zhang, Xianghua; Sun, Luyi

    2016-10-01

    In this work, the thermal expansion behavior and the structure configuration evolution of glasses were studied. Degree of freedom based on the topological constraint theory is correlated with configuration evolution; considering the chemical composition and the configuration change, the analytical equation for calculating the thermal expansion coefficient of glasses from degree of freedom was derived. The thermal expansion of typical silicate and chalcogenide glasses was examined by calculating their thermal expansion coefficients (TEC) using the approach stated above. The results showed that this approach was energetically favorable for glass materials and revealed the corresponding underlying essence from viewpoint of configuration entropy. This work establishes a configuration-based methodology to calculate the thermal expansion coefficient of glasses that, lack periodic order.

  8. An Improved Method of Predicting Extinction Coefficients for the Determination of Protein Concentration.

    PubMed

    Hilario, Eric C; Stern, Alan; Wang, Charlie H; Vargas, Yenny W; Morgan, Charles J; Swartz, Trevor E; Patapoff, Thomas W

    2017-01-01

    Concentration determination is an important method of protein characterization required in the development of protein therapeutics. There are many known methods for determining the concentration of a protein solution, but the easiest to implement in a manufacturing setting is absorption spectroscopy in the ultraviolet region. For typical proteins composed of the standard amino acids, absorption at wavelengths near 280 nm is due to the three amino acid chromophores tryptophan, tyrosine, and phenylalanine in addition to a contribution from disulfide bonds. According to the Beer-Lambert law, absorbance is proportional to concentration and path length, with the proportionality constant being the extinction coefficient. Typically the extinction coefficient of proteins is experimentally determined by measuring a solution absorbance then experimentally determining the concentration, a measurement with some inherent variability depending on the method used. In this study, extinction coefficients were calculated based on the measured absorbance of model compounds of the four amino acid chromophores. These calculated values for an unfolded protein were then compared with an experimental concentration determination based on enzymatic digestion of proteins. The experimentally determined extinction coefficient for the native proteins was consistently found to be 1.05 times the calculated value for the unfolded proteins for a wide range of proteins with good accuracy and precision under well-controlled experimental conditions. The value of 1.05 times the calculated value was termed the predicted extinction coefficient. Statistical analysis shows that the differences between predicted and experimentally determined coefficients are scattered randomly, indicating no systematic bias between the values among the proteins measured. The predicted extinction coefficient was found to be accurate and not subject to the inherent variability of experimental methods. We propose the use of a predicted extinction coefficient for determining the protein concentration of therapeutic proteins starting from early development through the lifecycle of the product. LAY ABSTRACT: Knowing the concentration of a protein in a pharmaceutical solution is important to the drug's development and posology. There are many ways to determine the concentration, but the easiest one to use in a testing lab employs absorption spectroscopy. Absorbance of ultraviolet light by a protein solution is proportional to its concentration and path length; the proportionality constant is the extinction coefficient. The extinction coefficient of a protein therapeutic is usually determined experimentally during early product development and has some inherent method variability. In this study, extinction coefficients of several proteins were calculated based on the measured absorbance of model compounds. These calculated values for an unfolded protein were then compared with experimental concentration determinations based on enzymatic digestion of the proteins. The experimentally determined extinction coefficient for the native protein was 1.05 times the calculated value for the unfolded protein with good accuracy and precision under controlled experimental conditions, so the value of 1.05 times the calculated coefficient was called the predicted extinction coefficient. Comparison of predicted and measured extinction coefficients indicated that the predicted value was very close to the experimentally determined values for the proteins. The predicted extinction coefficient was accurate and removed the variability inherent in experimental methods. © PDA, Inc. 2017.

  9. CONTINUOUS-ENERGY MONTE CARLO METHODS FOR CALCULATING GENERALIZED RESPONSE SENSITIVITIES USING TSUNAMI-3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perfetti, Christopher M; Rearden, Bradley T

    2014-01-01

    This work introduces a new approach for calculating sensitivity coefficients for generalized neutronic responses to nuclear data uncertainties using continuous-energy Monte Carlo methods. The approach presented in this paper, known as the GEAR-MC method, allows for the calculation of generalized sensitivity coefficients for multiple responses in a single Monte Carlo calculation with no nuclear data perturbations or knowledge of nuclear covariance data. The theory behind the GEAR-MC method is presented here, and proof of principle is demonstrated by using the GEAR-MC method to calculate sensitivity coefficients for responses in several 3D, continuous-energy Monte Carlo applications.

  10. Numerical study of centrifugal compressor stage vaneless diffusers

    NASA Astrophysics Data System (ADS)

    Galerkin, Y.; Soldatova, K.; Solovieva, O.

    2015-08-01

    The authors analyzed CFD calculations of flow in vaneless diffusers with relative width in range from 0.014 to 0.100 at inlet flow angles in range from 100 to 450 with different inlet velocity coefficients, Reynolds numbers and surface roughness. The aim is to simulate calculated performances by simple algebraic equations. The friction coefficient that represents head losses as friction losses is proposed for simulation. The friction coefficient and loss coefficient are directly connected by simple equation. The advantage is that friction coefficient changes comparatively little in range of studied parameters. Simple equations for this coefficient are proposed by the authors. The simulation accuracy is sufficient for practical calculations. To create the complete algebraic model of the vaneless diffuser the authors plan to widen this method of modeling to diffusers with different relative length and for wider range of Reynolds numbers.

  11. PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients.

    PubMed

    Burger, C; Goerres, G; Schoenes, S; Buck, A; Lonn, A H R; Von Schulthess, G K

    2002-07-01

    The CT data acquired in combined PET/CT studies provide a fast and essentially noiseless source for the correction of photon attenuation in PET emission data. To this end, the CT values relating to attenuation of photons in the range of 40-140 keV must be transformed into linear attenuation coefficients at the PET energy of 511 keV. As attenuation depends on photon energy and the absorbing material, an accurate theoretical relation cannot be devised. The transformation implemented in the Discovery LS PET/CT scanner (GE Medical Systems, Milwaukee, Wis.) uses a bilinear function based on the attenuation of water and cortical bone at the CT and PET energies. The purpose of this study was to compare this transformation with experimental CT values and corresponding PET attenuation coefficients. In 14 patients, quantitative PET attenuation maps were calculated from germanium-68 transmission scans, and resolution-matched CT images were generated. A total of 114 volumes of interest were defined and the average PET attenuation coefficients and CT values measured. From the CT values the predicted PET attenuation coefficients were calculated using the bilinear transformation. When the transformation was based on the narrow-beam attenuation coefficient of water at 511 keV (0.096 cm(-1)), the predicted attenuation coefficients were higher in soft tissue than the measured values. This bias was reduced by replacing 0.096 cm(-1) in the transformation by the linear attenuation coefficient of 0.093 cm(-1) obtained from germanium-68 transmission scans. An analysis of the corrected emission activities shows that the resulting transformation is essentially equivalent to the transmission-based attenuation correction for human tissue. For non-human material, however, it may assign inaccurate attenuation coefficients which will also affect the correction in neighbouring tissue.

  12. UManSysProp: An online and open-source facility for molecular property prediction and atmospheric aerosol calculations

    NASA Astrophysics Data System (ADS)

    Topping, David; Barley, Mark; McFiggans, Gordon; Aumont, Bernard

    2016-04-01

    The many thousands of individual aerosol components ensure that explicit manual calculation of properties that influence their environmental impacts is laborious and time-consuming. The emergence of explicit automatic mechanism generation techniques, including up to many millions of individual gas phase products as aerosol precursors, renders manual calculations impossible and automation is necessary. It can be difficult to establish what factors are responsible for the outcome of a model prediction. This is particularly true when the number of components might be high in, for example, SOA mass partitioning simulations. It then becomes difficult for others in the community to assess the results presented. This might be complicated by the need to include pure component vapour pressures or activity coefficient predictions for a wide range of highly multifunctional compounds. It isn't clear to what extent replication of results is ever achieved for a range of aerosol simulations. Whilst this might also be an issue with results from instrumentation, the development of community driven software at least enables modellers to tackle this problem directly. Here we describe the development and application of a new web based facility, UManSysProp, to tackle such issues. Current facilities include: pure component vapour pressures, critical properties and sub-cooled densities of organic molecules; activity coefficient predictions for mixed inorganic-organic liquid systems; hygroscopic growth factors and CCN activation potential of mixed inorganic/organic aerosol particles with associated Kappa-Kohler values; absorptive partitioning calculations with/without a treatment of non-ideality. The website can be found here: http://umansysprop.seaes.manchester.ac.uk/

  13. The General Formulation and Practical Calculation of the Diffusion Coefficient in a Lattice Containing Cavities; FORMULATION GENERALE ET CALCUL PRATIQUE DU COEFFICIENT DE DIFFUSION DANS UN RESEAU COMPORTANT DES CAVITES (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benoist, P.

    The calculation of diffusion coefficients in a lattice necessitates the knowledge of a correct method of weighting the free paths of the different constituents. An unambiguous definition of this weighting method is given here, based on the calculation of leakages from a zone of a reactor. The formulation obtained, which is both simple and general, reduces the calculation of diffusion coefficients to that of collision probabilities in the different media; it reveals in the expression for the radial coefficient the series of the terms of angular correlation (cross terms) recently shown by several authors. This formulation is then used tomore » calculate the practical case of a classical type of lattice composed of a moderator and a fuel element surrounded by an empty space. Analytical and numerical comparison of the expressions obtained with those inferred from the theory of BEHRENS shows up the importance of several new terms some of which are linked with the transparency of the fuel element. Cross terms up to the second order are evaluated. A practical formulary is given at the end of the paper. (author) [French] Le calcul des coefficients de diffusion dans un reseau suppose la connaissance d'un mode de ponderation correct des libres parcours des differents constituants. On definit ici sans ambiguite ce mode de ponderation a partir du calcul des fuites hors d'une zone de reacteur. La formulation obtenue, simple et generale, ramene le calcul des coefficients de diffusion a celui des probabilites de collision dans les differents milieux; elle fait apparaitre dans l'expression du coefficient radial la serie des termes de correlation angulaire (termes rectangles), mis en evidence recemment par plusieurs auteurs. Cette formulation est ensuite appliquee au calcul pratique d'un reseau classique, compose d'un moderateur et d'un element combustible entoure d'une cavite; la comparaison analytique et numerique des expressions obtenues avec celles deduites de la theorie de BEHRENS fait apparaitre l'importance de plusieurs termes nouveaux, dont certains sont lies a la transparence de l'element combustible; les termes rectangles sont calcules jusqu'a l'ordre 2. Un formulaire pratique est donne a la fin de cette etude. (auteur)« less

  14. Thermodynamic calculations for the liquid systems NaK, KCs and LiPb

    NASA Astrophysics Data System (ADS)

    Alblas, B. P.; Van Der Lugt, W.; Visser, E. G.; De Hosson, J. Th. M.

    1982-06-01

    The semi-empirical model for the calculation of the Gibbs free energy of mixing via the entropy of mixing, proposed by Visser et al. [1], is used to determine the activity coefficients and the long-wavelength limit of the structure factor, SCC(0). For the liquid alloys systems NaK and KCs the method leads to fairly accurate results, indicating almost ideal behaviour. For the compound-forming liquid alloys systems LiPb the agreement with experiment is less favourable, but the calculations clearly demonstrate the important influence of the volume contraction on the entropy.

  15. Nonlinear ARMA models for the D(st) index and their physical interpretation

    NASA Technical Reports Server (NTRS)

    Vassiliadis, D.; Klimas, A. J.; Baker, D. N.

    1996-01-01

    Time series models successfully reproduce or predict geomagnetic activity indices from solar wind parameters. A method is presented that converts a type of nonlinear filter, the nonlinear Autoregressive Moving Average (ARMA) model to the nonlinear damped oscillator physical model. The oscillator parameters, the growth and decay, the oscillation frequencies and the coupling strength to the input are derived from the filter coefficients. Mathematical methods are derived to obtain unique and consistent filter coefficients while keeping the prediction error low. These methods are applied to an oscillator model for the Dst geomagnetic index driven by the solar wind input. A data set is examined in two ways: the model parameters are calculated as averages over short time intervals, and a nonlinear ARMA model is calculated and the model parameters are derived as a function of the phase space.

  16. [Validating the Spanish version of the Nursing Activities Score].

    PubMed

    Sánchez-Sánchez, M M; Arias-Rivera, S; Fraile-Gamo, M P; Thuissard-Vasallo, I J; Frutos-Vivar, F

    2015-01-01

    Validating workload scores ensures that they are appropriate for the purpose for which they were developed. To validate the Nursing Activities Score (NAS) Spanish version. Observational and prospective study. 1,045 patients who were admitted to a medical-surgical unit and a serious burns unit in 2006 were included. The nurse in charge assessed patient workloads by Nine Equivalent of Nursing Manpower use Score and NAS. To assess the internal consistency of the measurements of NAS, item-test correlations, Cronbach's α and Cronbach's α corrected by omitting each of the items were calculated. The intraobserver and interobserver reliability were assessed with the intraclass correlation coefficient by viewing recordings and Kappa (interobserver reliability) was estimated. For the analysis of internal validity, a factorial principal components analysis was performed. Convergent validity was assessed using the Spearman correlation coefficient values obtained from the Nine Equivalent of Nursing Manpower use Score and Spanish-NAS scales. For internal consistency, 164 questionnaires were analysed and a Cronbach's α of 0.373 was calculated. The intraclass correlation coefficient for intraobserver reliability estimate was 0.837 (95% IC: 0.466-0.950) and 0.662 (95% IC: 0.033-0.882) for interobserver reliability. The estimated kappa was 0.371. For internal validity, exploratory factor analysis showed that the first item explained 58.9% of the variance of the questionnaire. For convergent validity 1006 questionnaires were included and a Spearman correlation coefficient of 0.746 was observed. The psychometric properties of Spanish-NAS are acceptable. Copyright © 2014 Elsevier España, S.L.U. y SEEIUC. All rights reserved.

  17. Binding of basic amphipathic peptides to neutral phospholipid membranes: a thermodynamic study applied to dansyl-labeled melittin and substance P analogues.

    PubMed

    Pérez-Payá, E; Porcar, I; Gómez, C M; Pedrós, J; Campos, A; Abad, C

    1997-08-01

    A thermodynamic approach is proposed to quantitatively analyze the binding isotherms of peptides to model membranes as a function of one adjustable parameter, the actual peptide charge in solution z(p)+. The main features of this approach are a theoretical expression for the partition coefficient calculated from the molar free energies of the peptide in the aqueous and lipid phases, an equation proposed by S. Stankowski [(1991) Biophysical Journal, Vol. 60, p. 341] to evaluate the activity coefficient of the peptide in the lipid phase, and the Debye-Hückel equation that quantifies the activity coefficient of the peptide in the aqueous phase. To assess the validity of this approach we have studied, by means of steady-state fluorescence spectroscopy, the interaction of basic amphipathic peptides such as melittin and its dansylcadaverine analogue (DNC-melittin), as well as a new fluorescent analogue of substance P, SP (DNC-SP) with neutral phospholipid membranes. A consistent quantitative analysis of each binding curve was achieved. The z(p)+ values obtained were always found to be lower than the physical charge of the peptide. These z(p)+ values can be rationalized by considering that the peptide charged groups are strongly associated with counterions in buffer solution at a given ionic strength. The partition coefficients theoretically derived using the z(p)+ values were in agreement with those deduced from the Gouy-Chapman formalism. Ultimately, from the z(p)+ values the molar free energies for the free and lipid-bound states of the peptides have been calculated.

  18. RESPONSE FUNCTIONS FOR COMPUTING ABSORBED DOSE TO SKELETAL TISSUES FROM NEUTRON IRRADIATION

    PubMed Central

    Bahadori, Amir A.; Johnson, Perry; Jokisch, Derek W.; Eckerman, Keith F.; Bolch, Wesley E.

    2016-01-01

    Spongiosa in the adult human skeleton consists of three tissues - active marrow (AM), inactive marrow (IM), and trabecularized mineral bone (TB). Active marrow is considered to be the target tissue for assessment of both long-term leukemia risk and acute marrow toxicity following radiation exposure. The total shallow marrow (TM50), defined as all tissues laying within the first 50 μm the bone surfaces, is considered to be the radiation target tissue of relevance for radiogenic bone cancer induction. For irradiation by sources external to the body, kerma to homogeneous spongiosa has been used as a surrogate for absorbed dose to both of these tissues, as direct dose calculations are not possible using computational phantoms with homogenized spongiosa. Recent microCT imaging of a 40-year-old male cadaver has allowed for the accurate modeling of the fine microscopic structure of spongiosa in many regions of the adult skeleton [Hough et al PMB (2011)]. This microstructure, along with associated masses and tissue compositions, was used to compute specific absorbed fractions (SAF) values for protons originating in axial and appendicular bone sites [Jokisch et al PMB (submitted)]. These proton SAFs, bone masses, tissue compositions, and proton production cross-sections, were subsequently used to construct neutron dose response functions (DRFs) for both AM and TM50 targets in each bone of the reference adult male. Kerma conditions were assumed for other resultant charged particles. For comparison, active marrow, total shallow marrow, and spongiosa kerma coefficients were also calculated. At low incident neutron energies, AM kerma coefficients for neutrons correlate well with values of the AM DRF, while total marrow (TM) kerma coefficients correlate well with values of the TM50 DRF. At high incident neutron energies, all kerma coefficients and DRFs tend to converge as charged particle equilibrium (CPE) is established across the bone site. In the range of 10 eV to 100 MeV, substantial differences are observed among the kerma coefficients and DRF. As a result, it is recommended that the AM kerma coefficient be used to estimate the AM DRF, and that the TM kerma coefficient be used to estimate the TM50 DRF below 10 eV. Between 10 eV and 100 MeV, the appropriate DRF should be used as presented in this study. Above 100 MeV, spongiosa kerma coefficients apply well for estimating skeletal tissue doses. DRF values for each bone site as a function of energy are provided in an electronic annex to this article. PMID:21983525

  19. Calculation of Distribution Coefficients of Cobalt and Copper in Matte and Slag Phases in Reduction-Vulcanization Process of Copper Converter Slag

    NASA Astrophysics Data System (ADS)

    Du, Ke; Li, Hongxu; Zhang, Mingming

    2017-11-01

    Copper and cobalt are two of the most valuable metals that can be recovered from copper converter slag. In the reduction-vulcanization process, copper is reduced before cobalt, while FeS vulcanizes Cu2O into Cu2S and forms the matte phase. The matte phase can dissolve the reduced metals as solvent. In this study, the distribution coefficient of cobalt between metallic cobalt in matte and CoO in slag, namely L Co, was calculated to be 5000-8500 at the reaction temperature of 1600-1700 K, while the distribution coefficient between CoS and CoO, namely L_{Co}^{{^' } }}, was calculated to be between 6 and 8. The distribution coefficient of copper between metallic copper in matte and Cu2O in slag, namely L Cu, was calculated to be in the range of 7500-8500, while the coefficient between Cu2S and Cu2O, namely L_{Cu}^{{^' } }}, was calculated to be in the range of 60,000-75,000.

  20. VizieR Online Data Catalog: Rate coefficients for H2(v,j)+H2(v',j'

    NASA Astrophysics Data System (ADS)

    Mandy, M. E.

    2016-11-01

    State-specific rate coefficients for the dissociation of H2 result of collisions with H2 were calculated for all combinations of (v,j) with an internal energy below 1eV. Full-dimensional quasiclassical trajectories were calculated using the BMKP2 interaction potential with a minimum of 80000 trajectories at each translational energy. Additional large batches of trajectories were carried out to calculate the cross sections near the threshold to dissociation to attain the desired precision of the rate coefficients. A piecewise linear excitation function was used to calculate the rate coefficient between 100 and 100000K. The resulting state-specific rate coefficients, γ, were parametrized as a function of temperature over the range 600-10000K using: log10γ(t)=a+bz+cz2-d(1/t-1) where t=T/4500K and z=log10t. The values of the resulting rate coefficients were sensitive to the internal energy of both molecules, with initial vibrational energy having a slightly greater effect than rotational energy. This effect diminished as temperature increased. (15 data files).

  1. Complex Equilibrium Calculations of Nonideal Multiphase Systems (CEC- NMS) and Applications to Liquid Metal Fuel Combustion

    DTIC Science & Technology

    1989-03-15

    3. F 2(g) -Li(L) 4. SF 6(g)-Li(L ) - vii - Several different modeling techniques are used to accurately estimate the activity coefficients of the...electrolytes with molecular species. The gas phase of the electrolytic solution is modeled using a pressure-explicit second order virial equation. The pure...calculated using the van Laar model . - viii - ACKNOWLEDGMENT This research was sponsored by the Office of Naval Research, Contract No. N00014-85--k

  2. ppcor: An R Package for a Fast Calculation to Semi-partial Correlation Coefficients.

    PubMed

    Kim, Seongho

    2015-11-01

    Lack of a general matrix formula hampers implementation of the semi-partial correlation, also known as part correlation, to the higher-order coefficient. This is because the higher-order semi-partial correlation calculation using a recursive formula requires an enormous number of recursive calculations to obtain the correlation coefficients. To resolve this difficulty, we derive a general matrix formula of the semi-partial correlation for fast computation. The semi-partial correlations are then implemented on an R package ppcor along with the partial correlation. Owing to the general matrix formulas, users can readily calculate the coefficients of both partial and semi-partial correlations without computational burden. The package ppcor further provides users with the level of the statistical significance with its test statistic.

  3. Calculation of gyrotropy coefficients in media with low-pitch helical structures

    NASA Astrophysics Data System (ADS)

    Dhaouadi, H.; Trabelsi, F.; Riahi, O.; Othman, T.

    2018-04-01

    Chiral smectic liquid crystals are known for their huge optical activity due to the precession of the anisotropic dielectric tensor around the helicoidal axis. For an oblique direction of the propagating wave, the helix acts as a grating which splits an incident beam in different directions as long as the pitch is not too small with respect to the light wavelength. When the pitch of the helix is smaller than the wavelength, the effect of the helix is a renormalization of the gyrotropic coefficients (g⊥ and g∥) of the resulting uniaxial medium. We report here on a method to compute these coefficients in that limit. Resolution of the Maxwell equations, using a perturbative approach, gives expressions for g⊥ and g∥ as a power development of the ratio (p/λ ) . The various terms of these developments coincide with the approximate expressions of these coefficients known in the literature.

  4. Microscopic Structure and Solubility Predictions of Multifunctional Solids in Supercritical Carbon Dioxide: A Molecular Simulation Study.

    PubMed

    Noroozi, Javad; Paluch, Andrew S

    2017-02-23

    Molecular dynamics simulations were employed to both estimate the solubility of nonelectrolyte solids, such as acetanilide, acetaminophen, phenacetin, methylparaben, and lidocaine, in supercritical carbon dioxide and understand the underlying molecular-level driving forces. The solubility calculations involve the estimation of the solute's limiting activity coefficient, which may be computed using conventional staged free-energy calculations. For the case of lidocaine, wherein the infinite dilution approximation is not appropriate, we demonstrate how the activity coefficient at finite concentrations may be estimated without additional effort using the dilute solution approximation and how this may be used to further understand the solvation process. Combining with experimental pure-solid properties, namely, the normal melting point and enthalpy of fusion, solubilities were estimated. The results are in good quantitative agreement with available experimental data, suggesting that molecular simulations may be a powerful tool for understanding supercritical processes and the design of carbon dioxide-philic molecular systems. Structural analyses were performed to shed light on the microscopic details of the solvation of different functional groups by carbon dioxide and the observed solubility trends.

  5. On the relation between the activation energy for electron attachment reactions and the size of their thermal rate coefficients.

    PubMed

    Hotop, H; Ruf, M-W; Kopyra, J; Miller, T M; Fabrikant, I I

    2011-02-14

    Rate coefficients k(T) for dissociative electron attachment (DEA) to molecules in many cases exhibit a more or less strong rise with increasing temperature T (the electron temperature T(e) and the molecular temperature T(G) are assumed to be in thermal equilibrium, i.e., T = T(e) = T(G)). This rise is frequently modeled by the Arrhenius equation k(T) = k(A) exp[-E(a)∕(k(B)T)], and an activation energy E(a) is deduced from fits to the experimental data k(T). This behavior reflects the presence of an energy barrier for the anion on its path to the dissociated products. In a recent paper [J. Kopyra, J. Wnorowska, M. Foryś, and I. Szamrej, Int. J. Mass Spectrom. 268, 60 (2007)] it was suggested that the size of the rate coefficients for DEA reactions at room temperature exhibits an exponential dependence on the activation energy, i.e., k(E(a); T ≈ 300 K) = k(1) exp[-E(a)∕E(0)]. More recent experimental data for molecules with high barriers [T. M. Miller, J. F. Friedman, L. C. Schaffer, and A. A. Viggiano, J. Chem. Phys. 131, 084302 (2009)] are compatible with such a correlation. We investigate the validity and the possible origin of this dependence by analyzing the results of R-matrix calculations for temperature-dependent rate coefficients of exothermic DEA processes with intermediate barrier toward dissociation. These include results for model systems with systematically varied barrier height as well as results of molecule-specific calculations for CH(3)Cl, CH(3)Br, CF(3)Cl, and CH(2)Cl(2) (activation energies above 0.2 eV) involving appropriate molecular parameters. A comparison of the experimental and theoretical results for the considered class of molecules (halogenated alkanes) supports the idea that the exponential dependence of k(T = 300 K) on the activation energy reflects a general phenomenon associated with Franck-Condon factors for getting from the initial neutral vibrational levels to the dissociating final anion state in a direct DEA process. Cases are discussed for which the proposed relation does not apply.

  6. Theoretical calculation of CH3F/N2-broadening coefficients and their temperature dependence

    NASA Astrophysics Data System (ADS)

    Jellali, C.; Maaroufi, N.; Aroui, H.

    2018-07-01

    Using Robert and Bonamy formalism (with parabolic and exact trajectories) based on the semi-classical impact theory, N2-broadening coefficients of methyl fluoride CH3F were calculated for transitions belonging to the PP-, PQ-, PR-, RP-, RQ- and RR- sub-branches of the ν6 perpendicular band near 8.5 μm. The calculations showed the predominance of the dipole-quadruple interaction. The J and K rotational quantum numbers dependencies of the computed coefficients that are consistent with previous measurements were clearly observed in this study. For a fixed value of J, we noticed a decrease in the broadening coefficients, which was more significant at lower J values. In order to deduce the temperature exponent, the N2-broadening coefficients of CH3F were calculated at various temperatures of atmospheric interest between 183 and 296 K with J ≤ 60 and K ≤ 10. These exponents were, in general, J-dependent and K-independent, except for K close to J.

  7. Effective dose rate coefficients for exposure to contaminated soil

    DOE PAGES

    Veinot, Kenneth G.; Eckerman, Keith F.; Bellamy, Michael B.; ...

    2017-05-10

    The Oak Ridge National Laboratory Center for Radiation Protection Knowledge has undertaken calculations related to various environmental exposure scenarios. A previous paper reported the results for submersion in radioactive air and immersion in water using age-specific mathematical phantoms. This paper presents age-specific effective dose rate coefficients derived using stylized mathematical phantoms for exposure to contaminated soils. Dose rate coefficients for photon, electron, and positrons of discrete energies were calculated and folded with emissions of 1252 radionuclides addressed in ICRP Publication 107 to determine equivalent and effective dose rate coefficients. The MCNP6 radiation transport code was used for organ dose ratemore » calculations for photons and the contribution of electrons to skin dose rate was derived using point-kernels. Bremsstrahlung and annihilation photons of positron emission were evaluated as discrete photons. As a result, the coefficients calculated in this work compare favorably to those reported in the US Federal Guidance Report 12 as well as by other authors who employed voxel phantoms for similar exposure scenarios.« less

  8. Effective dose rate coefficients for exposure to contaminated soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veinot, Kenneth G.; Eckerman, Keith F.; Bellamy, Michael B.

    The Oak Ridge National Laboratory Center for Radiation Protection Knowledge has undertaken calculations related to various environmental exposure scenarios. A previous paper reported the results for submersion in radioactive air and immersion in water using age-specific mathematical phantoms. This paper presents age-specific effective dose rate coefficients derived using stylized mathematical phantoms for exposure to contaminated soils. Dose rate coefficients for photon, electron, and positrons of discrete energies were calculated and folded with emissions of 1252 radionuclides addressed in ICRP Publication 107 to determine equivalent and effective dose rate coefficients. The MCNP6 radiation transport code was used for organ dose ratemore » calculations for photons and the contribution of electrons to skin dose rate was derived using point-kernels. Bremsstrahlung and annihilation photons of positron emission were evaluated as discrete photons. As a result, the coefficients calculated in this work compare favorably to those reported in the US Federal Guidance Report 12 as well as by other authors who employed voxel phantoms for similar exposure scenarios.« less

  9. Measurements of fusion neutron yields by neutron activation technique: Uncertainty due to the uncertainty on activation cross-sections

    NASA Astrophysics Data System (ADS)

    Stankunas, Gediminas; Batistoni, Paola; Sjöstrand, Henrik; Conroy, Sean; JET Contributors

    2015-07-01

    The neutron activation technique is routinely used in fusion experiments to measure the neutron yields. This paper investigates the uncertainty on these measurements as due to the uncertainties on dosimetry and activation reactions. For this purpose, activation cross-sections were taken from the International Reactor Dosimetry and Fusion File (IRDFF-v1.05) in 640 groups ENDF-6 format for several reactions of interest for both 2.5 and 14 MeV neutrons. Activation coefficients (reaction rates) have been calculated using the neutron flux spectra at JET vacuum vessel, both for DD and DT plasmas, calculated by MCNP in the required 640-energy group format. The related uncertainties for the JET neutron spectra are evaluated as well using the covariance data available in the library. These uncertainties are in general small, but not negligible when high accuracy is required in the determination of the fusion neutron yields.

  10. Effect of concentration dependence of the diffusion coefficient on homogenization kinetics in multiphase binary alloy systems

    NASA Technical Reports Server (NTRS)

    Tenney, D. R.; Unnam, J.

    1978-01-01

    Diffusion calculations were performed to establish the conditions under which concentration dependence of the diffusion coefficient was important in single, two, and three phase binary alloy systems. Finite-difference solutions were obtained for each type of system using diffusion coefficient variations typical of those observed in real alloy systems. Solutions were also obtained using average diffusion coefficients determined by taking a logarithmic average of each diffusion coefficient variation considered. The constant diffusion coefficient solutions were used as reference in assessing diffusion coefficient variation effects. Calculations were performed for planar, cylindrical, and spherical geometries in order to compare the effect of diffusion coefficient variations with the effect of interface geometries. In most of the cases considered, the diffusion coefficient of the major-alloy phase was the key parameter that controlled the kinetics of interdiffusion.

  11. Determination of krypton diffusion coefficients in uranium dioxide using atomic scale calculations

    DOE PAGES

    Vathonne, Emerson; Andersson, David Ragnar Anders; Freyss, Michel; ...

    2016-12-16

    We present a study of the diffusion of krypton in UO 2 using atomic scale calculations combined with diffusion models adapted to the system studied. The migration barriers of the elementary mechanisms for interstitial or vacancy assisted migration are calculated in the DFT + U framework using the nudged elastic band method. The attempt frequencies are obtained from the phonon modes of the defect at the initial and saddle points using empirical potential methods. The diffusion coefficients of Kr in UO 2 are then calculated by combining this data with diffusion models accounting for the concentration of vacancies and themore » interaction of vacancies with Kr atoms. We determined the preferred mechanism for Kr migration and the corresponding diffusion coefficient as a function of the oxygen chemical potential μ O or nonstoichiometry. For very hypostoichiometric (or U-rich) conditions, the most favorable mechanism is interstitial migration. For hypostoichiometric UO 2, migration is assisted by the bound Schottky defect and the charged uranium vacancy, V U 4–. Around stoichiometry, migration assisted by the charged uranium–oxygen divacancy (V UO 2–) and V U 4– is the favored mechanism. Finally, for hyperstoichiometric or O-rich conditions, the migration assisted by two V U 4– dominates. Kr migration is enhanced at higher μ O, and in this regime, the activation energy will be between 4.09 and 0.73 eV depending on nonstoichiometry. The experimental values available are in the latter interval. Since it is very probable that these values were obtained for at least slightly hyperstoichiometric samples, our activation energies are consistent with the experimental data, even if further experiments with precisely controlled stoichiometry are needed to confirm these results. Finally, the mechanisms and trends with nonstoichiometry established for Kr are similar to those found in previous studies of Xe.« less

  12. The thermoelectric properties of bulk crystalline n- and p-type Mg2Si prepared by the vertical Bridgman method

    NASA Astrophysics Data System (ADS)

    Akasaka, Masayasu; Iida, Tsutomu; Matsumoto, Atsunobu; Yamanaka, Kohei; Takanashi, Yoshifumi; Imai, Tomohiro; Hamada, Noriaki

    2008-07-01

    Bulk Mg2Si crystals were grown using the vertical Bridgman melt growth method. The n-type and p-type dopants, bismuth (Bi) and silver (Ag), respectively, were incorporated during the growth. X-ray powder diffraction analysis revealed clear peaks of Mg2Si with no peaks associated with the metallic Mg and Si phases. Residual impurities and process induced contaminants were investigated by using glow discharge mass spectrometry (GDMS). A comparison between the results of GDMS and Hall effect measurements indicated that electrical activation of the Bi doping in the Mg2Si was sufficient, while activation of the Ag doping was relatively smaller. It was shown that an undoped n-type specimen contained a certain amount of aluminum (Al), which was due either to residual impurities in the Mg source or the incorporation of process-induced impurities. Thermoelectric properties such as the Seebeck coefficient and the electrical and thermal conductivities were measured as a function of temperature up to 850 K. The dimensionless figures of merit for Bi-doped and Ag-doped samples were 0.65 at 840 K and 0.1 at 566 K, respectively. Temperature dependence of the observed Seebeck coefficient was fitted well by the two-carrier model. The first-principles calculations were carried out by using the all-electron band-structure calculation package (ABCAP) in which the full-potential linearized augmented-plane-wave method was employed. The ABCAP calculation adequately presents characteristics of the Seebeck coefficients for the undoped and heavily Bi-doped samples over the whole measured temperature range from room temperature to 850 K. The agreement between the theory and the experiment is poorer for the Ag-doped p-type samples.

  13. Atomic Data and Spectral Line Intensities for Ne III

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Thomas, R. J.; Landi, E.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Electron impact collision strengths, energy levels, oscillator strengths and spontaneous radiative decay rates are calculated for Ne III. The configurations used are 2s(sup 2) 2p(sup 4),2s2p(sup 5),2s(sup 2) 2p(sup 3)3s, and 2s(sup 2)3p(sup 3)3d giving rise to 57 fine-structure levels in intermediate coupling. Collision strengths are calculated at five incident energies, 5, 10, 15, 20, and 25 Ry. Excitation rate coefficients are calculated by assuming a Maxwellian electron velocity distribution at an electron temperature of logT,(K)=5.0, corresponding to maximum abundance of Ne III. Using the excitation rate coefficients and the radiative transition rates, statistical equilibrium equations for level populations are solved at electron densities covering the range of 10(exp 8)-10(exp 14) per cubic centimeter. Relative spectral line intensities are calculated. Proton excitation rates between the lowest three levels have been included in the statistical equilibrium equations. The predicted Ne III line intensities are compared with SERTS rocket measurements of a solar active region and of a laboratory EUV light source.

  14. Solute-solvent interactions in 2,4-dihydroxyacetophenone isonicotinoylhydrazone solutions in N, N-dimethylformamide and dimethyl sulfoxide at 298-313 K on ultrasonic and viscometric data

    NASA Astrophysics Data System (ADS)

    Dikkar, A. B.; Pethe, G. B.; Aswar, A. S.

    2016-02-01

    The speed of sound ( u), density (ρ), and viscosity (η) of 2,4-dihydroxyacetophenone isonicotinoylhydrazone (DHAIH) have been measured in N, N-dimethyl formamide and dimethyl sulfoxide at equidistance temperatures 298.15, 303.15, 308.15, and 313.15 K. These data were used to calculate some important ultrasonic and thermodynamic parameters such as apparent molar volume ( V ϕ s st ), apparent molar compressibility ( K ϕ), partial molar volume ( V ϕ 0 ) and partial molar compressibility ( K ϕ 0 ), were estimated by using the values of ( V ϕ 0 ) and ( K ϕ), at infinite dilution. Partial molar expansion at infinite dilution, (ϕ E 0 ) has also been calculated from temperature dependence of partial molar volume V ϕ 0 . The viscosity data have been analyzed using the Jones-Dole equation, and the viscosity, B coefficients are calculated. The activation free energy has been calculated from B coefficients and partial molar volume data. The results have been discussed in the term of solute-solvent interaction occurring in solutions and it was found that DHAIH acts as a structure maker in present systems.

  15. Emission coefficients of low temperature thermal iron plasma

    NASA Astrophysics Data System (ADS)

    Mościcki, T.; Hoffman, J.; Szymański, Z.

    2004-03-01

    Iron plasma appears during material processing with laser, electric are etc., and has considerable influence on the processing conditions. In this paper emission coefficients of low temperature thermal iron plasma at atmospheric pressure are presented. Net emission coefficients ɛ N have been calculated for pure iron plasma as well as for Fe-Ar and Fe-He plasma mixtures. To calculate the recombination radiation the knowledge of the Biberman factors ξ {fb/z}( T e, λ) is necessary and they have been calculated from the iron photo-ionization cross sections. The calculations allow estimation of energy losses, energy radiated by plasma plume and its comparison with the energy absorbed from laser beam.

  16. Calculated spanwise lift distributions, influence functions, and influence coefficients for unswept wings in subsonic flow

    NASA Technical Reports Server (NTRS)

    Diederich, Franklin W; Zlotnick, Martin

    1955-01-01

    Spanwise lift distributions have been calculated for nineteen unswept wings with various aspect ratios and taper ratios and with a variety of angle-of-attack or twist distributions, including flap and aileron deflections, by means of the Weissinger method with eight control points on the semispan. Also calculated were aerodynamic influence coefficients which pertain to a certain definite set of stations along the span, and several methods are presented for calculating aerodynamic influence functions and coefficients for stations other than those stipulated. The information presented in this report can be used in the analysis of untwisted wings or wings with known twist distributions, as well as in aeroelastic calculations involving initially unknown twist distributions.

  17. The SSME HPFTP interstage seals: Analysis and experiments for leakage and reaction-force coefficients

    NASA Technical Reports Server (NTRS)

    Childs, D. W.

    1983-01-01

    An improved theory for the prediction of the rotordynamic coefficients of turbulent annular seals was developed. Predictions from the theory are compared to the experimental results and an approach for the direct calculation of empirical turbulent coefficients from test data are introduced. An improved short seal solution is shown to do a better job of calculating effective stiffness and damping coefficients than either the original short seal solution or a finite length solution. However, the original short seal solution does a much better job of predicting equivalent added mass coefficient.

  18. Calculation of equivalent friction coefficient for castor seed by single screw press

    NASA Astrophysics Data System (ADS)

    Liu, R.; Xiao, Z.; Li, C.; Zhang, L.; Li, P.; Li, H.; Zhang, A.; Tang, S.; Sun, F.

    2017-08-01

    Based on the traction angle and transportation rate equation, castor beans were pressed by application of single screw under different cake diameter and different screw speed. The results showed that the greater the cake diameter and screw rotation speed, the greater the actual transmission rate was. The equivalent friction coefficient was defined and calculated as 0.4136, and the friction coefficients between press material and screw, bar cage were less than the equivalent friction coefficient value.

  19. As-built design specification for the CLASFYG program

    NASA Technical Reports Server (NTRS)

    Horton, C. L. (Principal Investigator)

    1981-01-01

    This program produces a file with a Universal-formatted header and data records in a nonstandard format. Trajectory coefficients are calculated from 5 to 8 acquisitions of radiance values in the training field corresponding to an agricultural product. These coefficients are then used to calculate a time of emergence and corresponding trajectory coefficients for each pixel in the test field. The time of emergence, two of the coefficients, and the sigma value for each pixel are written to the file.

  20. Air pollution forecasting in Ankara, Turkey using air pollution index and its relation to assimilative capacity of the atmosphere.

    PubMed

    Genc, D Deniz; Yesilyurt, Canan; Tuncel, Gurdal

    2010-07-01

    Spatial and temporal variations in concentrations of CO, NO, NO(2), SO(2), and PM(10), measured between 1999 and 2000, at traffic-impacted and residential stations in Ankara were investigated. Air quality in residential areas was found to be influenced by traffic activities in the city. Pollutant ratios were proven to be reliable tracers to differentiate between different sources. Air pollution index (API) of the whole city was calculated to evaluate the level of air quality in Ankara. Multiple linear regression model was developed for forecasting API in Ankara. The correlation coefficients were found to be 0.79 and 0.63 for different time periods. The assimilative capacity of Ankara atmosphere was calculated in terms of ventilation coefficient (VC). The relation between API and VC was investigated and found that the air quality in Ankara was determined by meteorology rather than emissions.

  1. Weak hamiltonian Wilson Coefficients from Lattice QCD

    NASA Astrophysics Data System (ADS)

    Bruno, Mattia

    2018-03-01

    n this work we present a calculation of the Wilson Coefficients C1 and C2 of the Effective Weak Hamiltonian to all-orders in αs, using lattice simulations. Given the current availability of lattice spacings we restrict our calculation to unphysically light W bosons around 2 GeV and we study the systematic uncertainties of the two Wilson Coefficients.

  2. [A correlation between respiration and synthesis of ATP in mitochondria at different degree of uncoupling of oxidative phosphorylation].

    PubMed

    Samartsev, V N; Kozhina, O V; Polishchuk, L S

    2005-01-01

    It is known that mitochondrial respiration in state 3 is due to three simultaneous and independent processes: synthesis of ATP (1), endogenous passive proton leakage (2), and proton leakage by protonophoric uncoupler (3). The total rate of processes (2) and (3) is equal to the product of respiration rate in state 4 and coefficient KR, which is defined as the ratio of the deltamuH+ value in state 3 to that in state 4. It is shown that it is possible to calculate both the rates of processes (1), (2) and (3) separately and the protonophoric activity of uncoupler using the coefficient KR and other coefficients, which are determined as the ratio of deltamuH+ values in state 3 or in state 4 to its maximal value. Simple methods of determination of these coefficients were developed, which are based on the study of the dependence of respiration rate in states 3 and 4 on the concentration of protonophoric uncoupler. It was found that the uncoupling action of palmitate, a natural uncoupler of oxidative phosphorylation, unlike classic uncoupler-protonophores DNP and FCCP, depends not only on its protonophoric activity but also on the inhibition of the process (1).

  3. Efficient calculation of atomic rate coefficients in dense plasmas

    NASA Astrophysics Data System (ADS)

    Aslanyan, Valentin; Tallents, Greg J.

    2017-03-01

    Modelling electron statistics in a cold, dense plasma by the Fermi-Dirac distribution leads to complications in the calculations of atomic rate coefficients. The Pauli exclusion principle slows down the rate of collisions as electrons must find unoccupied quantum states and adds a further computational cost. Methods to calculate these coefficients by direct numerical integration with a high degree of parallelism are presented. This degree of optimization allows the effects of degeneracy to be incorporated into a time-dependent collisional-radiative model. Example results from such a model are presented.

  4. The influence of hydrogen bonding on partition coefficients

    NASA Astrophysics Data System (ADS)

    Borges, Nádia Melo; Kenny, Peter W.; Montanari, Carlos A.; Prokopczyk, Igor M.; Ribeiro, Jean F. R.; Rocha, Josmar R.; Sartori, Geraldo Rodrigues

    2017-02-01

    This Perspective explores how consideration of hydrogen bonding can be used to both predict and better understand partition coefficients. It is shown how polarity of both compounds and substructures can be estimated from measured alkane/water partition coefficients. When polarity is defined in this manner, hydrogen bond donors are typically less polar than hydrogen bond acceptors. Analysis of alkane/water partition coefficients in conjunction with molecular electrostatic potential calculations suggests that aromatic chloro substituents may be less lipophilic than is generally believed and that some of the effect of chloro-substitution stems from making the aromatic π-cloud less available to hydrogen bond donors. Relationships between polarity and calculated hydrogen bond basicity are derived for aromatic nitrogen and carbonyl oxygen. Aligned hydrogen bond acceptors appear to present special challenges for prediction of alkane/water partition coefficients and this may reflect `frustration' of solvation resulting from overlapping hydration spheres. It is also shown how calculated hydrogen bond basicity can be used to model the effect of aromatic aza-substitution on octanol/water partition coefficients.

  5. Transmission Loss Calculation using A and B Loss Coefficients in Dynamic Economic Dispatch Problem

    NASA Astrophysics Data System (ADS)

    Jethmalani, C. H. Ram; Dumpa, Poornima; Simon, Sishaj P.; Sundareswaran, K.

    2016-04-01

    This paper analyzes the performance of A-loss coefficients while evaluating transmission losses in a Dynamic Economic Dispatch (DED) Problem. The performance analysis is carried out by comparing the losses computed using nominal A loss coefficients and nominal B loss coefficients in reference with load flow solution obtained by standard Newton-Raphson (NR) method. Density based clustering method based on connected regions with sufficiently high density (DBSCAN) is employed in identifying the best regions of A and B loss coefficients. Based on the results obtained through cluster analysis, a novel approach in improving the accuracy of network loss calculation is proposed. Here, based on the change in per unit load values between the load intervals, loss coefficients are updated for calculating the transmission losses. The proposed algorithm is tested and validated on IEEE 6 bus system, IEEE 14 bus, system IEEE 30 bus system and IEEE 118 bus system. All simulations are carried out using SCILAB 5.4 (www.scilab.org) which is an open source software.

  6. The Physical Significance of the Synthetic Running Correlation Coefficient and Its Applications in Oceanic and Atmospheric Studies

    NASA Astrophysics Data System (ADS)

    Zhao, Jinping; Cao, Yong; Wang, Xin

    2018-06-01

    In order to study the temporal variations of correlations between two time series, a running correlation coefficient (RCC) could be used. An RCC is calculated for a given time window, and the window is then moved sequentially through time. The current calculation method for RCCs is based on the general definition of the Pearson product-moment correlation coefficient, calculated with the data within the time window, which we call the local running correlation coefficient (LRCC). The LRCC is calculated via the two anomalies corresponding to the two local means, meanwhile, the local means also vary. It is cleared up that the LRCC reflects only the correlation between the two anomalies within the time window but fails to exhibit the contributions of the two varying means. To address this problem, two unchanged means obtained from all available data are adopted to calculate an RCC, which is called the synthetic running correlation coefficient (SRCC). When the anomaly variations are dominant, the two RCCs are similar. However, when the variations of the means are dominant, the difference between the two RCCs becomes obvious. The SRCC reflects the correlations of both the anomaly variations and the variations of the means. Therefore, the SRCCs from different time points are intercomparable. A criterion for the superiority of the RCC algorithm is that the average value of the RCC should be close to the global correlation coefficient calculated using all data. The SRCC always meets this criterion, while the LRCC sometimes fails. Therefore, the SRCC is better than the LRCC for running correlations. We suggest using the SRCC to calculate the RCCs.

  7. Efficient computation of kinship and identity coefficients on large pedigrees.

    PubMed

    Cheng, En; Elliott, Brendan; Ozsoyoglu, Z Meral

    2009-06-01

    With the rapidly expanding field of medical genetics and genetic counseling, genealogy information is becoming increasingly abundant. An important computation on pedigree data is the calculation of identity coefficients, which provide a complete description of the degree of relatedness of a pair of individuals. The areas of application of identity coefficients are numerous and diverse, from genetic counseling to disease tracking, and thus, the computation of identity coefficients merits special attention. However, the computation of identity coefficients is not done directly, but rather as the final step after computing a set of generalized kinship coefficients. In this paper, we first propose a novel Path-Counting Formula for calculating generalized kinship coefficients, which is motivated by Wright's path-counting method for computing inbreeding coefficient. We then present an efficient and scalable scheme for calculating generalized kinship coefficients on large pedigrees using NodeCodes, a special encoding scheme for expediting the evaluation of queries on pedigree graph structures. Furthermore, we propose an improved scheme using Family NodeCodes for the computation of generalized kinship coefficients, which is motivated by the significant improvement of using Family NodeCodes for inbreeding coefficient over the use of NodeCodes. We also perform experiments for evaluating the efficiency of our method, and compare it with the performance of the traditional recursive algorithm for three individuals. Experimental results demonstrate that the resulting scheme is more scalable and efficient than the traditional recursive methods for computing generalized kinship coefficients.

  8. Simulation of adsorbed hydrogen on tungsten surface

    NASA Astrophysics Data System (ADS)

    Degtyarenko, N. N.; Pisarev, A. A.

    2017-12-01

    Calculations of the energy of the H-W system were performed using DFT method based on plane waves. Adsorption energies, equilibrium states, vibration spectra, saddle points, activation energies of jumps, and diffusion paths have been analyzed for H atom on W(100) and W(110). Diffusion coefficient for H on W(110) agrees very well with experimental data.

  9. Measurements and calculations of H2-broadening and shift parameters of water vapour transitions of the ν1 + ν2 + ν3 band

    NASA Astrophysics Data System (ADS)

    Petrova, T. M.; Solodov, A. M.; Solodov, A. A.; Deichuli, V. M.; Starikov, V. I.

    2018-05-01

    The water vapour line broadening and shifting for 97 lines in the ν1 + ν2 + ν3 band induced by hydrogen pressure are measured with Bruker IFS 125 HR FTIR spectrometer. The measurements were performed at room temperature, at the spectral resolution of 0.01 cm-1 and in a wide pressure range of H2. The calculations of the broadening γ and shift δ coefficients were performed in the semi-classical method framework with use of an effective vibrationally depended interaction potential. Two potential parameters were optimised to improve the quality of calculations. Good agreements with measured broadening coefficients were achieved. The comparison of calculated broadening coefficients γ with the previous measurements is discussed. The analytical expressions that reproduce these coefficients for rotational, ν2, ν1, and ν3 vibrational bands are presented.

  10. Transport coefficients in nonequilibrium gas-mixture flows with electronic excitation.

    PubMed

    Kustova, E V; Puzyreva, L A

    2009-10-01

    In the present paper, a one-temperature model of transport properties in chemically nonequilibrium neutral gas-mixture flows with electronic excitation is developed. The closed set of governing equations for the macroscopic parameters taking into account electronic degrees of freedom of both molecules and atoms is derived using the generalized Chapman-Enskog method. The transport algorithms for the calculation of the thermal-conductivity, diffusion, and viscosity coefficients are proposed. The developed theoretical model is applied for the calculation of the transport coefficients in the electronically excited N/N(2) mixture. The specific heats and transport coefficients are calculated in the temperature range 50-50,000 K. Two sets of data for the collision integrals are applied for the calculations. An important contribution of the excited electronic states to the heat transfer is shown. The Prandtl number of atomic species is found to be substantially nonconstant.

  11. The calculation of mass attenuation coefficients of well-known thermoluminescent dosimetric compounds at wide energy range

    NASA Astrophysics Data System (ADS)

    Ermis, Elif Ebru

    2017-02-01

    The photon mass attenuation coefficients of LiF, BaSO4, CaCO3 and CaSO4 thermoluminescent dosimetric compounds at 100; 300; 500; 600; 800; 1,000; 1,500; 2,000; 3,000 and 5,000 keV gamma-ray energies were calculated. For this purpose, FLUKA Monte Carlo (MC) program which is one of the well-known MC codes was used in this study. Furthermore, obtained results were analyzed by means of ROOT program. National Institute of Standards and Technology (NIST) values were also used to compare the obtained theoretical values because the mass attenuation values of the used compounds could not found in the literature. Calculated mass attenuation coefficients were highly in accordance with the NIST values. As a consequence, FLUKA was successful in calculating the mass attenuation coefficients of the most used thermoluminescent compound.

  12. [Measurement of physical activity in older adults. Correlation between the PRISCUS-PAQ and accelerometry].

    PubMed

    Trampisch, U S; Platen, P; Moschny, A; Wilm, S; Thiem, U; Hinrichs, T

    2012-04-01

    The German questionnaire PRISCUS-PAQ was developed to measure actual physical activity of older adults in a telephone interview. PRISCUS-PAQ consists of ten main questions to assess the time spend in domestic activities (e.g., housework, gardening), sporting activities (e.g., riding a bicycle), and inactivity (e.g., sedentary activity, sleeping during the day) during the prior week. By assessing the number of days for each activity and the mean duration of performing this activity, a total score can be calculated. The total score corresponds to the energy consumption for 1 week. The aim of this study is to estimate the correlation of the PRISCUS-PAQ total score and accelerometry as an objective measurement method for the assessment of physical activity. A total of 114 participants (58% women) with a mean age of 76 years participated in the study. PRISCUS-PAQ was initially analyzed descriptively. To assess the validity of PRISCUS-PAQ, the correlation (correlation coefficient of Spearman) was calculated between the total score of the questionnaire PRISCUS-PAQ and the 95% trimmed sum of an accelerometer with a measurement period of 1 week. The correlation coefficient for the association of the PRISCUS-PAQ total score and the 95% trimmed sum of the acceleration values was r = 0.28 (95% confidence interval 0.10–0.44). Activities of daily life like cleaning and other domestic activities highly contributed to the weekly energy consumption of the participants. The association between the PRISCUS-PAQ questionnaire and accelerometry measured physical activity is comparable to other validated and established international questionnaires. The PRISCUS-PAQ is the first German questionnaire that allows the measurement of physical activity of older adults in a telephone interview.

  13. SAMPL5: 3D-RISM partition coefficient calculations with partial molar volume corrections and solute conformational sampling.

    PubMed

    Luchko, Tyler; Blinov, Nikolay; Limon, Garrett C; Joyce, Kevin P; Kovalenko, Andriy

    2016-11-01

    Implicit solvent methods for classical molecular modeling are frequently used to provide fast, physics-based hydration free energies of macromolecules. Less commonly considered is the transferability of these methods to other solvents. The Statistical Assessment of Modeling of Proteins and Ligands 5 (SAMPL5) distribution coefficient dataset and the accompanying explicit solvent partition coefficient reference calculations provide a direct test of solvent model transferability. Here we use the 3D reference interaction site model (3D-RISM) statistical-mechanical solvation theory, with a well tested water model and a new united atom cyclohexane model, to calculate partition coefficients for the SAMPL5 dataset. The cyclohexane model performed well in training and testing ([Formula: see text] for amino acid neutral side chain analogues) but only if a parameterized solvation free energy correction was used. In contrast, the same protocol, using single solute conformations, performed poorly on the SAMPL5 dataset, obtaining [Formula: see text] compared to the reference partition coefficients, likely due to the much larger solute sizes. Including solute conformational sampling through molecular dynamics coupled with 3D-RISM (MD/3D-RISM) improved agreement with the reference calculation to [Formula: see text]. Since our initial calculations only considered partition coefficients and not distribution coefficients, solute sampling provided little benefit comparing against experiment, where ionized and tautomer states are more important. Applying a simple [Formula: see text] correction improved agreement with experiment from [Formula: see text] to [Formula: see text], despite a small number of outliers. Better agreement is possible by accounting for tautomers and improving the ionization correction.

  14. SAMPL5: 3D-RISM partition coefficient calculations with partial molar volume corrections and solute conformational sampling

    NASA Astrophysics Data System (ADS)

    Luchko, Tyler; Blinov, Nikolay; Limon, Garrett C.; Joyce, Kevin P.; Kovalenko, Andriy

    2016-11-01

    Implicit solvent methods for classical molecular modeling are frequently used to provide fast, physics-based hydration free energies of macromolecules. Less commonly considered is the transferability of these methods to other solvents. The Statistical Assessment of Modeling of Proteins and Ligands 5 (SAMPL5) distribution coefficient dataset and the accompanying explicit solvent partition coefficient reference calculations provide a direct test of solvent model transferability. Here we use the 3D reference interaction site model (3D-RISM) statistical-mechanical solvation theory, with a well tested water model and a new united atom cyclohexane model, to calculate partition coefficients for the SAMPL5 dataset. The cyclohexane model performed well in training and testing (R=0.98 for amino acid neutral side chain analogues) but only if a parameterized solvation free energy correction was used. In contrast, the same protocol, using single solute conformations, performed poorly on the SAMPL5 dataset, obtaining R=0.73 compared to the reference partition coefficients, likely due to the much larger solute sizes. Including solute conformational sampling through molecular dynamics coupled with 3D-RISM (MD/3D-RISM) improved agreement with the reference calculation to R=0.93. Since our initial calculations only considered partition coefficients and not distribution coefficients, solute sampling provided little benefit comparing against experiment, where ionized and tautomer states are more important. Applying a simple pK_{ {a}} correction improved agreement with experiment from R=0.54 to R=0.66, despite a small number of outliers. Better agreement is possible by accounting for tautomers and improving the ionization correction.

  15. Development and Validation of a New Fallout Transport Method Using Variable Spectral Winds

    NASA Astrophysics Data System (ADS)

    Hopkins, Arthur Thomas

    A new method has been developed to incorporate variable winds into fallout transport calculations. The method uses spectral coefficients derived by the National Meteorological Center. Wind vector components are computed with the coefficients along the trajectories of falling particles. Spectral winds are used in the two-step method to compute dose rate on the ground, downwind of a nuclear cloud. First, the hotline is located by computing trajectories of particles from an initial, stabilized cloud, through spectral winds, to the ground. The connection of particle landing points is the hotline. Second, dose rate on and around the hotline is computed by analytically smearing the falling cloud's activity along the ground. The feasibility of using specgtral winds for fallout particle transport was validated by computing Mount St. Helens ashfall locations and comparing calculations to fallout data. In addition, an ashfall equation was derived for computing volcanic ash mass/area on the ground. Ashfall data and the ashfall equation were used to back-calculate an aggregated particle size distribution for the Mount St. Helens eruption cloud. Further validation was performed by comparing computed and actual trajectories of a high explosive dust cloud (DIRECT COURSE). Using an error propagation formula, it was determined that uncertainties in spectral wind components produce less than four percent of the total dose rate variance. In summary, this research demonstrated the feasibility of using spectral coefficients for fallout transport calculations, developed a two-step smearing model to treat variable winds, and showed that uncertainties in spectral winds do not contribute significantly to the error in computed dose rate.

  16. Neutronic safety parameters and transient analyses for Poland's MARIA research reactor.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bretscher, M. M.; Hanan, N. A.; Matos, J. E.

    1999-09-27

    Reactor kinetic parameters, reactivity feedback coefficients, and control rod reactivity worths have been calculated for the MARIA Research Reactor (Swierk, Poland) for M6-type fuel assemblies with {sup 235}U enrichments of 80% and 19.7%. Kinetic parameters were evaluated for family-dependent effective delayed neutron fractions, decay constants, and prompt neutron lifetimes and neutron generation times. Reactivity feedback coefficients were determined for fuel Doppler coefficients, coolant (H{sub 2}O) void and temperature coefficients, and for in-core and ex-core beryllium temperature coefficients. Total and differential control rod worths and safety rod worths were calculated for each fuel type. These parameters were used to calculate genericmore » transients for fast and slow reactivity insertions with both HEU and LEU fuels. The analyses show that the HEU and LEU cores have very similar responses to these transients.« less

  17. Computation of thermodynamic and transport properties to predict thermophoretic effects in an argon-krypton mixture

    NASA Astrophysics Data System (ADS)

    Miller, Nicholas A. T.; Daivis, Peter J.; Snook, Ian K.; Todd, B. D.

    2013-10-01

    Thermophoresis is the movement of molecules caused by a temperature gradient. Here we report the results of a study of thermophoresis using non-equilibrium molecular dynamics simulations of a confined argon-krypton fluid subject to two different temperatures at thermostated walls. The resulting temperature profile between the walls is used along with the Soret coefficient to predict the concentration profile that develops across the channel. We obtain the Soret coefficient by calculating the mutual diffusion and thermal diffusion coefficients. We report an appropriate method for calculating the transport coefficients for binary systems, using the Green-Kubo integrals and radial distribution functions obtained from equilibrium molecular dynamics simulations of the bulk fluid. Our method has the unique advantage of separating the mutual diffusion and thermal diffusion coefficients, and calculating the sign and magnitude of their individual contributions to thermophoresis in binary mixtures.

  18. An economic prediction of the finer resolution level wavelet coefficients in electronic structure calculations.

    PubMed

    Nagy, Szilvia; Pipek, János

    2015-12-21

    In wavelet based electronic structure calculations, introducing a new, finer resolution level is usually an expensive task, this is why often a two-level approximation is used with very fine starting resolution level. This process results in large matrices to calculate with and a large number of coefficients to be stored. In our previous work we have developed an adaptively refined solution scheme that determines the indices, where the refined basis functions are to be included, and later a method for predicting the next, finer resolution coefficients in a very economic way. In the present contribution, we would like to determine whether the method can be applied for predicting not only the first, but also the other, higher resolution level coefficients. Also the energy expectation values of the predicted wave functions are studied, as well as the scaling behaviour of the coefficients in the fine resolution limit.

  19. Rapid evaluation for dielectronic recombination rate coefficients of the H-like isoelectronic sequence.

    NASA Astrophysics Data System (ADS)

    Teng, H.; Xu, Z.

    1996-09-01

    The authors present a set of accurate formulae for the rapid calculation of dielectronic recombination rate coefficients of H-like ions from Ne (Z = 10) to Ni (Z = 29) with an electron temperature range from 0.6 to 10 keV. This set of formulae are obtained by fitting directly the dielectronic recombination rate coefficients calculated on the basis of the intermediate - coupling multi - configuration Hartree-Fock model made by Karim and Bhalla (1988). The dielectronic recombination rate coefficients from these formulae are in close agreement with the original results of Karim et al. The errors are generally less than 0.1%. The results are also compared with the ones obtained by a set of new rate formulae developed by Hahn. These formulae can be used for generating dielectronic recombination rate coefficients of some H-like ions where the explicit calculations are unavailable. The detailed results are tabulated and discussed.

  20. A generalized theory for eccentric and misalignment effects in high-pressure annular seals

    NASA Technical Reports Server (NTRS)

    Chen, W. C.; Jackson, E. D.

    1986-01-01

    High-pressure annular seal leakage and dynamic coefficients vary with eccentricity and misalignment. Recent seal leakage data with both concentric and fully eccentric alignments support the seal leakage model with surface roughness and eccentricity effects included. In this paper, the seal dynamic coefficient calculation has been generalized and allows direct calculation of the seal dynamic coefficients at any circumferential location. The generalized solution agrees with the results obtained by using the calculated values of an earlier paper and performing a coordinate transformation. The analysis results coincide with the measured data in showing that the stiffness and damping matrices of seal coefficients are not skew symmetric, and the main diagonal seal coefficients are not equal. The measured direct stiffnesses were found higher than predicted by the concentric seal theory, but this may be explained by the presence of eccentricity in the test operating mode.

  1. DIFF--A 7090 Fortran Program to Determine Neutron Diffusion Constants Relating to a Six-Group Calculation; DIFF--UN PROGRAMME FOR TRAN 7090 POUR DETERMINER LES CONSTANTES DE DIFFUSION NEUTRONIQUE RELATIVES A UN CALCUL A SIX GROUPES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plelnevaux, C.

    The computer program DIFF, in Fortran for the IBM 7090, for calculating the neutron diffusion coefficients and attenuation areas (L/sup 2/) necessary for multigroup diffusion calculations for reactor shielding is described. Diffusion coefficients and values of the inverse attenuation length are given for a six group calculation for several interesting shielding materials. (D.C.W.)

  2. Absorption coefficients of silicon: A theoretical treatment

    NASA Astrophysics Data System (ADS)

    Tsai, Chin-Yi

    2018-05-01

    A theoretical model with explicit formulas for calculating the optical absorption and gain coefficients of silicon is presented. It incorporates direct and indirect interband transitions and considers the effects of occupied/unoccupied carrier states. The indirect interband transition is calculated from the second-order time-independent perturbation theory of quantum mechanics by incorporating all eight possible routes of absorption or emission of photons and phonons. Absorption coefficients of silicon are calculated from these formulas. The agreements and discrepancies among the calculated results, the Rajkanan-Singh-Shewchun (RSS) formula, and Green's data are investigated and discussed. For example, the RSS formula tends to overestimate the contributions of indirect transitions for cases with high photon energy. The results show that the state occupied/unoccupied effect is almost negligible for silicon absorption coefficients up to the onset of the optical gain condition where the energy separation of Quasi-Femi levels between electrons and holes is larger than the band-gap energy. The usefulness of using the physics-based formulas, rather than semi-empirical fitting ones, for absorption coefficients in theoretical studies of photovoltaic devices is also discussed.

  3. Banded Structures in Electron Pitch Angle Diffusion Coefficients from Resonant Wave Particle Interactions

    NASA Technical Reports Server (NTRS)

    Tripathi, A. K.; Singhal, R. P.; Khazanov, G. V.; Avanov, L. A.

    2016-01-01

    Electron pitch angle (D (alpha)) and momentum (D(pp)) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L = 4.6 and 6.8 for electron energies 10 keV. Landau (n = 0) resonance and cyclotron harmonic resonances n = +/-1, +/-2,...+/-5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (alpha) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusion coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n = +1 and n = +2. A major contribution to momentum diffusion coefficients appears from n = +2. However, the banded structures in D alpha and Dpp coefficients appear only in the profile of diffusion coefficients for n = +2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The Dpp diffusion coefficient for ECH waves is one to two orders smaller than D alpha coefficients. For chorus waves, Dpp coefficients are about an order of magnitude smaller than D alpha coefficients for the case n does not = 0. In case of Landau resonance, the values of Dpp coefficient are generally larger than the values of D alpha coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89 deg and harmonic resonances n = +1, +2, and +3, whereas for whistler mode waves, the frequencies have been calculated for angle 10 deg and Landau resonance. Further, in ECH waves, the banded structures appear for electron energies (is) greater than1 keV, and for whistler mode chorus waves, structures appear for energies greater than 2 keV at L = 4.6 and above 200 eV for L = 6.8. The results obtained in the present work will be helpful in the study of diffusion curves and will have important consequences for diffuse aurora and pancake distributions.

  4. Banded Structures in Electron Pitch Angle Diffusion Coefficients from Resonant Wave-Particle Interactions

    NASA Technical Reports Server (NTRS)

    Tripathi, A. K.; Singhal, R. P.; Khazanov, G. V.; Avanov, L. A.

    2016-01-01

    Electron pitch angle (D(sub (alpha alpha))) and momentum (D(sub pp)) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L=4.6 and 6.8 for electron energies less than or equal to 10 keV. Landau (n=0) resonance and cyclotron harmonic resonances n= +/- 1, +/-2, ... +/-5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (alpha) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusion coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n=+1 and n=+2. A major contribution to momentum diffusion coefficients appears from n=+2. However, the banded structures in D(sub alpha alpha) and D(sub pp) coefficients appear only in the profile of diffusion coefficients for n=+2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The D(sub pp) diffusion coefficient for ECH waves is one to two orders smaller than D(sub alpha alpha) coefficients. For chorus waves, D(sub pp) coefficients are about an order of magnitude smaller than D(sub alpha alpha) coefficients for the case n does not equal 0. In case of Landau resonance, the values of D(sub pp) coefficient are generally larger than the values of D(sub alpha alpha) coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89 deg and harmonic resonances n= +1, +2, and +3, whereas for whistler mode waves, the frequencies have been calculated for angle 10 deg and Landau resonance. Further, in ECH waves, the banded structures appear for electron energies 1 greater than or equal to keV, and for whistler mode chorus waves, structures appear for energies greater than 2 keV at L=4.6 and above 200 eV for L=6.8. The results obtained in the present work will be helpful in the study of diffusion curves and will have important consequences for diffuse aurora and pancake distributions.

  5. Fluence-to-dose conversion coefficients for heavy ions calculated using the PHITS code and the ICRP/ICRU adult reference computational phantoms.

    PubMed

    Sato, Tatsuhiko; Endo, Akira; Niita, Koji

    2010-04-21

    The fluence to organ-absorbed-dose and effective-dose conversion coefficients for heavy ions with atomic numbers up to 28 and energies from 1 MeV/nucleon to 100 GeV/nucleon were calculated using the PHITS code coupled to the ICRP/ICRU adult reference computational phantoms, following the instruction given in ICRP Publication 103 (2007 (Oxford: Pergamon)). The conversion coefficients for effective dose equivalents derived using the radiation quality factors of both Q(L) and Q(y) relationships were also estimated, utilizing the functions for calculating the probability densities of absorbed dose in terms of LET (L) and lineal energy (y), respectively, implemented in PHITS. The calculation results indicate that the effective dose can generally give a conservative estimation of the effective dose equivalent for heavy-ion exposure, although it is occasionally too conservative especially for high-energy lighter-ion irradiations. It is also found from the calculation that the conversion coefficients for the Q(y)-based effective dose equivalents are generally smaller than the corresponding Q(L)-based values because of the conceptual difference between LET and y as well as the numerical incompatibility between the Q(L) and Q(y) relationships. The calculated data of these dose conversion coefficients are very useful for the dose estimation of astronauts due to cosmic-ray exposure.

  6. Thermodynamic properties of potassium chloride aqueous solutions

    NASA Astrophysics Data System (ADS)

    Zezin, Denis; Driesner, Thomas

    2017-04-01

    Potassium chloride is a ubiquitous salt in natural fluids, being the second most abundant dissolved salt in many geological aqueous solutions after sodium chloride. It is a simple solute and strong electrolyte easily dissociating in water, however the thermodynamic properties of KCl aqueous solutions were never correlated with sufficient accuracy for a wide range of physicochemical conditions. In this communication we propose a set of parameters for a Pitzer-type model which allows calculation of all necessary thermodynamic properties of KCl solution, namely excess Gibbs free energy and derived activity coefficient, apparent molar enthalpy, heat capacity and volume, as well as osmotic coefficient and activity of water in solutions. The system KCl-water is one of the best studied aqueous systems containing electrolytes. Although extensive experimental data were collected for thermodynamic properties of these solutions over the years, the accurate volumetric data became available only recently, thus making possible a complete thermodynamic formulation including a pressure dependence of excess Gibbs free energy and derived properties of the KCl-water liquids. Our proposed model is intended for calculation of major thermodynamic properties of KCl aqueous solutions at temperatures ranging from freezing point of a solution to 623 K, pressures ranging from saturated water vapor up to 150 MPa, and concentrations up to the salt saturation. This parameterized model will be further implemented in geochemical software packages and can facilitate the calculation of aqueous equilibrium for reactive transport codes.

  7. Resolved shear stress intensity coefficient and fatigue crack growth in large crystals

    NASA Technical Reports Server (NTRS)

    Chen, QI; Liu, Hao-Wen

    1988-01-01

    Fatigue crack growth in large grain Al alloy was studied. Fatigue crack growth is caused primarily by shear decohesion due to dislocation motion in the crack tip region. The crack paths in the large crystals are very irregular and zigzag. The crack planes are often inclined to the loading axis both in the inplane direction and the thickness direction. The stress intensity factors of such inclined cracks are approximated from the two dimensional finite element calculations. The plastic deformation in a large crystal is highly anisotropic, and dislocation motion in such crystals are driven by the resolved shear stress. The resolved shear stress intensity coefficient in a crack solid, RSSIC, is defined, and the coefficients for the slip systems at a crack tip are evaluated from the calculated stress intensity factors. The orientations of the crack planes are closely related to the slip planes with the high RSSIC values. If a single slip system has a much higher RSSIC than all the others, the crack will follow the slip plane, and the slip plane becomes the crack plane. If two or more slip systems have a high RSSIC, the crack plane is the result of the decohesion processes on these active slip planes.

  8. Horizontal mixing coefficients for two-dimensional chemical models calculated from National Meteorological Center Data

    NASA Technical Reports Server (NTRS)

    Newman, P. A.; Schoeberl, M. R.; Plumb, R. A.

    1986-01-01

    Calculations of the two-dimensional, species-independent mixing coefficients for two-dimensional chemical models for the troposphere and stratosphere are performed using quasi-geostrophic potential vorticity fluxes and gradients from 4 years of National Meteorological Center data for the four seasons in both hemispheres. Results show that the horizontal mixing coefficient values for the winter lower stratosphere are broadly consistent with those currently employed in two-dimensional models, but the horizontal mixing coefficient values in the northern winter upper stratosphere are much larger than those usually used.

  9. Shear Viscosity Coefficient of 5d Liquid Transition Metals

    NASA Astrophysics Data System (ADS)

    Thakor, P. B.; Sonvane, Y. A.; Gajjar, P. N.; Jani, A. R.

    2011-07-01

    In the present paper we have calculated shear viscosity coefficient (η) of 5 d liquid transition metals. To calculate effective pair potential ν(r) and pair distribution function g(r) we have used our own newly constructed model potential and Percus- Yevick hard sphere (PYHS) structure factor S(q) respectively. We have also investigated the effect of different correction function like Hartree (H), Taylor (T) and Sarkar et al. (S) on shear viscosity coefficient (η). Our newly constructed model potential successfully explains the shear viscosity coefficient (η) of 5 d liquid transition metals.

  10. Metabolic control analysis using transient metabolite concentrations. Determination of metabolite concentration control coefficients.

    PubMed Central

    Delgado, J; Liao, J C

    1992-01-01

    The methodology previously developed for determining the Flux Control Coefficients [Delgado & Liao (1992) Biochem. J. 282, 919-927] is extended to the calculation of metabolite Concentration Control Coefficients. It is shown that the transient metabolite concentrations are related by a few algebraic equations, attributed to mass balance, stoichiometric constraints, quasi-equilibrium or quasi-steady states, and kinetic regulations. The coefficients in these relations can be estimated using linear regression, and can be used to calculate the Control Coefficients. The theoretical basis and two examples are discussed. Although the methodology is derived based on the linear approximation of enzyme kinetics, it yields reasonably good estimates of the Control Coefficients for systems with non-linear kinetics. PMID:1497632

  11. Accuracy and optimal timing of activity measurements in estimating the absorbed dose of radioiodine in the treatment of Graves' disease

    NASA Astrophysics Data System (ADS)

    Merrill, S.; Horowitz, J.; Traino, A. C.; Chipkin, S. R.; Hollot, C. V.; Chait, Y.

    2011-02-01

    Calculation of the therapeutic activity of radioiodine 131I for individualized dosimetry in the treatment of Graves' disease requires an accurate estimate of the thyroid absorbed radiation dose based on a tracer activity administration of 131I. Common approaches (Marinelli-Quimby formula, MIRD algorithm) use, respectively, the effective half-life of radioiodine in the thyroid and the time-integrated activity. Many physicians perform one, two, or at most three tracer dose activity measurements at various times and calculate the required therapeutic activity by ad hoc methods. In this paper, we study the accuracy of estimates of four 'target variables': time-integrated activity coefficient, time of maximum activity, maximum activity, and effective half-life in the gland. Clinical data from 41 patients who underwent 131I therapy for Graves' disease at the University Hospital in Pisa, Italy, are used for analysis. The radioiodine kinetics are described using a nonlinear mixed-effects model. The distributions of the target variables in the patient population are characterized. Using minimum root mean squared error as the criterion, optimal 1-, 2-, and 3-point sampling schedules are determined for estimation of the target variables, and probabilistic bounds are given for the errors under the optimal times. An algorithm is developed for computing the optimal 1-, 2-, and 3-point sampling schedules for the target variables. This algorithm is implemented in a freely available software tool. Taking into consideration 131I effective half-life in the thyroid and measurement noise, the optimal 1-point time for time-integrated activity coefficient is a measurement 1 week following the tracer dose. Additional measurements give only a slight improvement in accuracy.

  12. 40 CFR 51.301 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... impairment. A deciview is a haze index derived from calculated light extinction, such that uniform changes in... (for the purposes of calculating deciview, the atmospheric light extinction coefficient must be... light extinction coefficient, expressed in inverse megameters (Mm−1). Existing stationary facility means...

  13. 40 CFR 51.301 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... impairment. A deciview is a haze index derived from calculated light extinction, such that uniform changes in... (for the purposes of calculating deciview, the atmospheric light extinction coefficient must be... light extinction coefficient, expressed in inverse megameters (Mm−1). Existing stationary facility means...

  14. 40 CFR 51.301 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... impairment. A deciview is a haze index derived from calculated light extinction, such that uniform changes in... (for the purposes of calculating deciview, the atmospheric light extinction coefficient must be... light extinction coefficient, expressed in inverse megameters (Mm−1). Existing stationary facility means...

  15. 40 CFR 51.301 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... impairment. A deciview is a haze index derived from calculated light extinction, such that uniform changes in... (for the purposes of calculating deciview, the atmospheric light extinction coefficient must be... light extinction coefficient, expressed in inverse megameters (Mm−1). Existing stationary facility means...

  16. Determination of drying kinetics and convective heat transfer coefficients of ginger slices

    NASA Astrophysics Data System (ADS)

    Akpinar, Ebru Kavak; Toraman, Seda

    2016-10-01

    In the present work, the effects of some parametric values on convective heat transfer coefficients and the thin layer drying process of ginger slices were investigated. Drying was done in the laboratory by using cyclone type convective dryer. The drying air temperature was varied as 40, 50, 60 and 70 °C and the air velocity is 0.8, 1.5 and 3 m/s. All drying experiments had only falling rate period. The drying data were fitted to the twelve mathematical models and performance of these models was investigated by comparing the determination of coefficient ( R 2), reduced Chi-square ( χ 2) and root mean square error between the observed and predicted moisture ratios. The effective moisture diffusivity and activation energy were calculated using an infinite series solution of Fick's diffusion equation. The average effective moisture diffusivity values and activation energy values varied from 2.807 × 10-10 to 6.977 × 10-10 m2/s and 19.313-22.722 kJ/mol over the drying air temperature and velocity range, respectively. Experimental data was used to evaluate the values of constants in Nusselt number expression by using linear regression analysis and consequently, convective heat transfer coefficients were determined in forced convection mode. Convective heat transfer coefficient of ginger slices showed changes in ranges 0.33-2.11 W/m2 °C.

  17. An Ab Initio and Kinetic Monte Carlo Simulation Study of Lithium Ion Diffusion on Graphene

    PubMed Central

    Zhong, Kehua; Yang, Yanmin; Xu, Guigui; Zhang, Jian-Min; Huang, Zhigao

    2017-01-01

    The Li+ diffusion coefficients in Li+-adsorbed graphene systems were determined by combining first-principle calculations based on density functional theory with Kinetic Monte Carlo simulations. The calculated results indicate that the interactions between Li ions have a very important influence on lithium diffusion. Based on energy barriers directly obtained from first-principle calculations for single-Li+ and two-Li+ adsorbed systems, a new equation predicting energy barriers with more than two Li ions was deduced. Furthermore, it is found that the temperature dependence of Li+ diffusion coefficients fits well to the Arrhenius equation, rather than meeting the equation from electrochemical impedance spectroscopy applied to estimate experimental diffusion coefficients. Moreover, the calculated results also reveal that Li+ concentration dependence of diffusion coefficients roughly fits to the equation from electrochemical impedance spectroscopy in a low concentration region; however, it seriously deviates from the equation in a high concentration region. So, the equation from electrochemical impedance spectroscopy technique could not be simply used to estimate the Li+ diffusion coefficient for all Li+-adsorbed graphene systems with various Li+ concentrations. Our work suggests that interactions between Li ions, and among Li ion and host atoms will influence the Li+ diffusion, which determines that the Li+ intercalation dependence of Li+ diffusion coefficient should be changed and complex. PMID:28773122

  18. Potential energy and dipole moment surfaces of the triplet states of the O2(X3Σg-) - O2(X3Σg-,a1Δg,b1Σg+) complex

    NASA Astrophysics Data System (ADS)

    Karman, Tijs; van der Avoird, Ad; Groenenboom, Gerrit C.

    2017-08-01

    We compute four-dimensional diabatic potential energy surfaces and transition dipole moment surfaces of O2-O2, relevant for the theoretical description of collision-induced absorption in the forbidden X3Σg- → a1Δg and X3Σg- → b1Σg+ bands at 7883 cm-1 and 13 122 cm-1, respectively. We compute potentials at the multi-reference configuration interaction (MRCI) level and dipole surfaces at the MRCI and complete active space self-consistent field (CASSCF) levels of theory. Potentials and dipole surfaces are transformed to a diabatic basis using a recent multiple-property-based diabatization algorithm. We discuss the angular expansion of these surfaces, derive the symmetry constraints on the expansion coefficients, and present working equations for determining the expansion coefficients by numerical integration over the angles. We also present an interpolation scheme with exponential extrapolation to both short and large separations, which is used for representing the O2-O2 distance dependence of the angular expansion coefficients. For the triplet ground state of the complex, the potential energy surface is in reasonable agreement with previous calculations, whereas global excited state potentials are reported here for the first time. The transition dipole moment surfaces are strongly dependent on the level of theory at which they are calculated, as is also shown here by benchmark calculations at high symmetry geometries. Therefore, ab initio calculations of the collision-induced absorption spectra cannot become quantitatively predictive unless more accurate transition dipole surfaces can be computed. This is left as an open question for method development in electronic structure theory. The calculated potential energy and transition dipole moment surfaces are employed in quantum dynamical calculations of collision-induced absorption spectra reported in Paper II [T. Karman et al., J. Chem. Phys. 147, 084307 (2017)].

  19. Potential energy and dipole moment surfaces of the triplet states of the O2(X3Σg-) - O2(X3Σg-,a1Δg,b1Σg+) complex.

    PubMed

    Karman, Tijs; van der Avoird, Ad; Groenenboom, Gerrit C

    2017-08-28

    We compute four-dimensional diabatic potential energy surfaces and transition dipole moment surfaces of O 2 -O 2 , relevant for the theoretical description of collision-induced absorption in the forbidden X 3 Σ g -  → a 1 Δ g and X 3 Σ g -  → b 1 Σ g + bands at 7883 cm -1 and 13 122 cm -1 , respectively. We compute potentials at the multi-reference configuration interaction (MRCI) level and dipole surfaces at the MRCI and complete active space self-consistent field (CASSCF) levels of theory. Potentials and dipole surfaces are transformed to a diabatic basis using a recent multiple-property-based diabatization algorithm. We discuss the angular expansion of these surfaces, derive the symmetry constraints on the expansion coefficients, and present working equations for determining the expansion coefficients by numerical integration over the angles. We also present an interpolation scheme with exponential extrapolation to both short and large separations, which is used for representing the O 2 -O 2 distance dependence of the angular expansion coefficients. For the triplet ground state of the complex, the potential energy surface is in reasonable agreement with previous calculations, whereas global excited state potentials are reported here for the first time. The transition dipole moment surfaces are strongly dependent on the level of theory at which they are calculated, as is also shown here by benchmark calculations at high symmetry geometries. Therefore, ab initio calculations of the collision-induced absorption spectra cannot become quantitatively predictive unless more accurate transition dipole surfaces can be computed. This is left as an open question for method development in electronic structure theory. The calculated potential energy and transition dipole moment surfaces are employed in quantum dynamical calculations of collision-induced absorption spectra reported in Paper II [T. Karman et al., J. Chem. Phys. 147, 084307 (2017)].

  20. Organ and effective dose rate coefficients for submersion exposure in occupational settings

    DOE PAGES

    Veinot, K. G.; Y-12 National Security Complex, Oak Ridge, TN; Dewji, S. A.; ...

    2017-08-24

    External dose coefficients for environmental exposure scenarios are often computed using assumption on infinite or semi-infinite radiation sources. For example, in the case of a person standing on contaminated ground, the source is assumed to be distributed at a given depth (or between various depths) and extending outwards to an essentially infinite distance. In the case of exposure to contaminated air, the person is modeled as standing within a cloud of infinite, or semi-infinite, source distribution. However, these scenarios do not mimic common workplace environments where scatter off walls and ceilings may significantly alter the energy spectrum and dose coefficients.more » In this study, dose rate coefficients were calculated using the International Commission on Radiological Protection (ICRP) reference voxel phantoms positioned in rooms of three sizes representing an office, laboratory, and warehouse. For each room size calculations using the reference phantoms were performed for photons, electrons, and positrons as the source particles to derive mono-energetic dose rate coefficients. Since the voxel phantoms lack the resolution to perform dose calculations at the sensitive depth for the skin, a mathematical phantom was developed and calculations were performed in each room size with the three source particle types. Coefficients for the noble gas radionuclides of ICRP Publication 107 (e.g., Ne, Ar, Kr, Xe, and Rn) were generated by folding the corresponding photon, electron, and positron emissions over the mono-energetic dose rate coefficients. Finally, results indicate that the smaller room sizes have a significant impact on the dose rate per unit air concentration compared to the semi-infinite cloud case. For example, for Kr-85 the warehouse dose rate coefficient is 7% higher than the office dose rate coefficient while it is 71% higher for Xe-133.« less

  1. Comparison of rotational temperature derived from ground-based OH airglow observations with TIMED/SABER to evaluate the Einstein Coefficients

    NASA Astrophysics Data System (ADS)

    Liu, W.; Xu, J.; Smith, A. K.; Yuan, W.

    2017-12-01

    Ground-based observations of the OH(9-4, 8-3, 6-2, 5-1, 3-0) band airglows over Xinglong, China (40°24'N, 117°35'E) from December 2011 to 2014 are used to calculate rotational temperatures. The temperatures are calculated using five commonly used Einstein coefficient datasets. The kinetic temperature from TIMED/SABER is completely independent of the OH rotational temperature. SABER temperatures are weighted vertically by weighting functions calculated for each emitting vibrational state from two SABER OH volume emission rate profiles. By comparing the ground-based OH rotational temperature with SABER's, five Einstein coefficient datasets are evaluated. The results show that temporal variations of the rotational temperatures are well correlated with SABER's; the linear correlation coefficients are higher than 0.72, but the slopes of the fit between the SABER and rotational temperatures are not equal to 1. The rotational temperatures calculated using each set of Einstein coefficients produce a different bias with respect to SABER; these are evaluated over each of vibrational levels to assess the best match. It is concluded that rotational temperatures determined using any of the available Einstein coefficient datasets have systematic errors. However, of the five sets of coefficients, the rotational temperature derived with the Langhoff et al.'s (1986) set is most consistent with SABER. In order to get a set of optimal Einstein coefficients for rotational temperature derivation, we derive the relative values from ground-based OH spectra and SABER temperatures statistically using three year data. The use of a standard set of Einstein coefficients will be beneficial for comparing rotational temperatures observed at different sites.

  2. Organ and effective dose rate coefficients for submersion exposure in occupational settings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veinot, K. G.; Y-12 National Security Complex, Oak Ridge, TN; Dewji, S. A.

    External dose coefficients for environmental exposure scenarios are often computed using assumption on infinite or semi-infinite radiation sources. For example, in the case of a person standing on contaminated ground, the source is assumed to be distributed at a given depth (or between various depths) and extending outwards to an essentially infinite distance. In the case of exposure to contaminated air, the person is modeled as standing within a cloud of infinite, or semi-infinite, source distribution. However, these scenarios do not mimic common workplace environments where scatter off walls and ceilings may significantly alter the energy spectrum and dose coefficients.more » In this study, dose rate coefficients were calculated using the International Commission on Radiological Protection (ICRP) reference voxel phantoms positioned in rooms of three sizes representing an office, laboratory, and warehouse. For each room size calculations using the reference phantoms were performed for photons, electrons, and positrons as the source particles to derive mono-energetic dose rate coefficients. Since the voxel phantoms lack the resolution to perform dose calculations at the sensitive depth for the skin, a mathematical phantom was developed and calculations were performed in each room size with the three source particle types. Coefficients for the noble gas radionuclides of ICRP Publication 107 (e.g., Ne, Ar, Kr, Xe, and Rn) were generated by folding the corresponding photon, electron, and positron emissions over the mono-energetic dose rate coefficients. Finally, results indicate that the smaller room sizes have a significant impact on the dose rate per unit air concentration compared to the semi-infinite cloud case. For example, for Kr-85 the warehouse dose rate coefficient is 7% higher than the office dose rate coefficient while it is 71% higher for Xe-133.« less

  3. Cascade flutter analysis with transient response aerodynamics

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Mahajan, Aparajit J.; Keith, Theo G., Jr.; Stefko, George L.

    1991-01-01

    Two methods for calculating linear frequency domain aerodynamic coefficients from a time marching Full Potential cascade solver are developed and verified. In the first method, the Influence Coefficient, solutions to elemental problems are superposed to obtain the solutions for a cascade in which all blades are vibrating with a constant interblade phase angle. The elemental problem consists of a single blade in the cascade oscillating while the other blades remain stationary. In the second method, the Pulse Response, the response to the transient motion of a blade is used to calculate influence coefficients. This is done by calculating the Fourier Transforms of the blade motion and the response. Both methods are validated by comparison with the Harmonic Oscillation method and give accurate results. The aerodynamic coefficients obtained from these methods are used for frequency domain flutter calculations involving a typical section blade structural model. An eigenvalue problem is solved for each interblade phase angle mode and the eigenvalues are used to determine aeroelastic stability. Flutter calculations are performed for two examples over a range of subsonic Mach numbers.

  4. Theory and Performance of AIMS for Active Interrogation

    NASA Astrophysics Data System (ADS)

    Walters, William J.; Royston, Katherine E. K.; Haghighat, Alireza

    2014-06-01

    A hybrid Monte Carlo and deterministic methodology has been developed for application to active interrogation systems. The methodology consists of four steps: i) determination of neutron flux distribution due to neutron source transport and subcritical multiplication; ii) generation of gamma source distribution from (n, γ) interactions; iii) determination of gamma current at a detector window; iv) detection of gammas by the detector. This paper discusses the theory and results of the first three steps for the case of a cargo container with a sphere of HEU in third-density water. In the first step, a response-function formulation has been developed to calculate the subcritical multiplication and neutron flux distribution. Response coefficients are pre-calculated using the MCNP5 Monte Carlo code. The second step uses the calculated neutron flux distribution and Bugle-96 (n, γ) cross sections to find the resulting gamma source distribution. Finally, in the third step the gamma source distribution is coupled with a pre-calculated adjoint function to determine the gamma flux at a detector window. A code, AIMS (Active Interrogation for Monitoring Special-Nuclear-materials), has been written to output the gamma current for an source-detector assembly scanning across the cargo using the pre-calculated values and takes significantly less time than a reference MCNP5 calculation.

  5. 40 CFR 51.301 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... impairment. A deciview is a haze index derived from calculated light extinction, such that uniform changes in... (for the purposes of calculating deciview, the atmospheric light extinction coefficient must be... extinction coefficient, expressed in inverse megameters (Mm−1). Existing stationary facility means any of the...

  6. Einstein coefficients and oscillator strengths for low lying state of CO molecules

    NASA Astrophysics Data System (ADS)

    Swer, S.; Syiemiong, A.; Ram, M.; Jha, A. K.; Saxena, A.

    2018-04-01

    Einstein Coefficients and Oscillator Strengths for different state of CO molecule have been calculated using LEROY'S LEVEL program and MOLCAS ab initio code. Using the wave function derived from Morse potential and transition dipole moment obtained from ab initio calculation, The potential energy functions were computed for these states using the spectroscopic constants. The Morse potential of these states and electronic transition dipole moment of the transition calculated in a recent ab initio study have been used in LEVEL program to produce transition dipole matrix element for a large number of bands. Einstein Coefficients have also been used to compute the radiative lifetimes of several vibrational levels and the calculated values are compared with other theoretical results and experimental values.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, D. J.

    The activity coefficient of carbon in nickel, nickel-titanium, nickel-titanium-chromium, nickel-titanium-molybdenum and nickel-titanium-molybdenum-chromium alloys has been measured at 900, 1100 and 1215/sup 0/C. The results indicate that carbon obeys Henry's Law over the range studied (0 to 2 at. percent). The literature for the nickel-carbon and iron-carbon systems are reviewed and corrected. For the activity of carbon in iron as a function of composition, a new relationship based on re-evaluation of the thermodynamics of the CO/CO/sub 2/ equilibrium is proposed. Calculations using this relationship reproduce the data to within 2.5 percent, but the accuracy of the calibrating standards used by manymore » investigators to analyze for carbon is at best 5 percent. This explains the lack of agreement between the many precise sets of data. The values of the activity coefficient of carbon in the various solid solutions are used to calculate a set of parameters for the Kohler-Kaufman equation. The calculations indicate that binary interaction energies are not sufficient to describe the thermodynamics of carbon in some of the nickel-based solid solutions. The results of previous workers for carbon in nickel-iron alloys are completely described by inclusion of ternary terms in the Kohler-Kaufman equation. Most of the carbon solid solution at high temperatures in nickel and nickel-titantium alloys precipitates from solution on quenching in water. The precipitate is composed of very small particles (greater than 2.5 nm) of elemental carbon. The results of some preliminary thermomigration experiments are discussed and recommendations for further work are presented.« less

  8. Liquid-vapor phase equilibria of three-component systems of propanol-2-propanoic acid esters

    NASA Astrophysics Data System (ADS)

    Suntsov, Yu. K.; Goryunov, V. A.; Chuikov, A. M.

    2017-12-01

    The boiling points of solutions of three-component systems formed by propanol-2 and propanoic acid esters are measured at different pressures by means of ebulliometry. The coefficients of the activity of the solutions' components are measured using Wilson and nonrandom two-liquid (NRTL) equations. The results from calculations are in line with the experimental data.

  9. Optical coefficient measurements using bulk living tissue by an optical fiber puncture with FOV change

    NASA Astrophysics Data System (ADS)

    Nakazawa, Haruna; Doi, Marika; Ogawa, Emiyu; Arai, Tsunenori

    2018-02-01

    To avoid an instability of the optical coefficient measurement using sliced tissue preparation, we proposed the combination of light intensity measurement through an optical fiber puncturing into a bulk tissue varying field of view (FOV) and ray tracing calculation using Monte-Carlo method. The optical coefficients of myocardium such as absorption coefficient μa, scattering coefficient μs, and anisotropic parameter g are used in the myocardium optical propagation. Since optical coefficients obtained using thin sliced tissue could be instable because they are affected by dehydration and intracellular fluid effusion on the sample surface, variety of coefficients have been reported over individual optical differences of living samples. The proposed method which combined the experiment using the bulk tissue with ray tracing calculation were performed. In this method, a 200 μmΦ high-NA silica fiber installed in a 21G needle was punctured up to the bottom of the myocardial bulk tissue over 3 cm in thickness to measure light intensity changing the fiber-tip depth and FOV. We found that the measured attenuation coefficients decreased as the FOV increased. The ray trace calculation represented the same FOV dependence in above mentioned experimental result. We think our particular fiber punctured measurement using bulk tissue varying FOV with Inverse Monte-Carlo method might be useful to obtain the optical coefficients to avoid sample preparation instabilities.

  10. Quantum chemistry and TST study of the mechanism and kinetics of the butadiene and isoprene reactions with mercapto radicals

    NASA Astrophysics Data System (ADS)

    Francisco-Márquez, Misaela; Alvarez-Idaboy, J. Raul; Galano, Annia; Vivier-Bunge, Annik

    2008-03-01

    The reactions of isoprene and butadiene with SH rad radicals have been investigated by density functional theory and ab initio molecular orbital theories. We report the thermodynamics and kinetics of four different pathways, involving addition of SH rad radicals to all double-bonded carbon atoms. Calculations have been performed on all stationary points using BHandHLYP functional, Moller-Plesset perturbation theory to second-order (MP2) and the composite CBS-QB3 method at the MP2 optimized geometries and frequencies. Pre-reactive complexes have been identified. The apparent activation energies are negative for SH rad addition at the terminal carbon atoms and are slightly smaller than those for OH rad addition at the same positions. The calculated overall rate coefficient for butadiene + SH rad reaction at 298 K is in excellent agreement with the only available experimentally measured value. Activation energies and overall rate coefficients at different temperatures are predicted for the first time for butadiene + SH rad and isoprene + SH rad reactions. The reactions of butadiene and isoprene with SH rad radicals were found to be about four times faster than with OH rad radicals.

  11. Solubility calculations of branched and linear amino acids using lattice cluster theory

    NASA Astrophysics Data System (ADS)

    Fischlschweiger, Michael; Enders, Sabine; Zeiner, Tim

    2014-09-01

    In this work, the activity coefficients and the solubility of amino acids in water were calculated using the lattice cluster theory (LCT) combined with the extended chemical association lattice model allowing self-association as well as cross-association. This permits the study of the influence of the amino acids structure on the thermodynamic properties for the first time. By the used model, the activity coefficient and solubilities of the investigated fourteen amino acids (glycine, alanine, γ-aminobutyric acid, dl-valine, dl-threonine, dl-methionine, l-leucine, l-glutamic acid, l-proline, hydroxyproline, histidine, l-arginine, α-amino valeric acid) could be described in good accordance with experimental data. In the case of different α-amino acids, but different hydrocarbon chains, the same interaction energy parameter can be used within the LCT. All studied amino acids could be modelled using the same parameter for the description of the amino acid association properties. The formed cross-associates contain more amino acids than expressed by the overall mole fraction of the solution. Moreover, the composition of the cross-associates depends on temperature, where the amount of amino acids increases with increasing temperature.

  12. Vicinal fluorine-fluorine coupling constants: Fourier analysis.

    PubMed

    San Fabián, J; Westra Hoekzema, A J A

    2004-10-01

    Stereochemical dependences of vicinal fluorine-fluorine nuclear magnetic resonance coupling constants (3JFF) have been studied with the multiconfigurational self-consistent field in the restricted active space approach, with the second-order polarization propagator approximation (SOPPA), and with density functional theory. The SOPPA results show the best overall agreement with experimental couplings. The relationship with the dihedral angle between the coupled fluorines has been studied by Fourier analysis, the result is very different from that of proton-proton couplings. The Fourier coefficients do not resemble those of a typical Karplus equation. The four nonrelativistic contributions to the coupling constants of 1,2-difluoroethane configurations have been studied separately showing that up to six Fourier coefficients are required to reproduce the calculated values satisfactorily. Comparison with Fourier coefficients for matching hydrogen fluoride dimer configurations suggests that the higher order Fourier coefficients (Cn> or =3) originate mainly from through-space Fermi contact interaction. The through-space interaction is the main reason 3JFF do not follow the Karplus equation. (c) 2004 American Institute of Physics

  13. Vicinal fluorine-fluorine coupling constants: Fourier analysis

    NASA Astrophysics Data System (ADS)

    San Fabián, J.; Westra Hoekzema, A. J. A.

    2004-10-01

    Stereochemical dependences of vicinal fluorine-fluorine nuclear magnetic resonance coupling constants (3JFF) have been studied with the multiconfigurational self-consistent field in the restricted active space approach, with the second-order polarization propagator approximation (SOPPA), and with density functional theory. The SOPPA results show the best overall agreement with experimental couplings. The relationship with the dihedral angle between the coupled fluorines has been studied by Fourier analysis, the result is very different from that of proton-proton couplings. The Fourier coefficients do not resemble those of a typical Karplus equation. The four nonrelativistic contributions to the coupling constants of 1,2-difluoroethane configurations have been studied separately showing that up to six Fourier coefficients are required to reproduce the calculated values satisfactorily. Comparison with Fourier coefficients for matching hydrogen fluoride dimer configurations suggests that the higher order Fourier coefficients (Cn⩾3) originate mainly from through-space Fermi contact interaction. The through-space interaction is the main reason 3JFF do not follow the Karplus equation.

  14. Insight into the structural requirements of proton pump inhibitors based on CoMFA and CoMSIA studies.

    PubMed

    Nayana, M Ravi Shashi; Sekhar, Y Nataraja; Nandyala, Haritha; Muttineni, Ravikumar; Bairy, Santosh Kumar; Singh, Kriti; Mahmood, S K

    2008-10-01

    In the present study, a series of 179 quinoline and quinazoline heterocyclic analogues exhibiting inhibitory activity against Gastric (H+/K+)-ATPase were investigated using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices (CoMSIA) methods. Both the models exhibited good correlation between the calculated 3D-QSAR fields and the observed biological activity for the respective training set compounds. The most optimal CoMFA and CoMSIA models yielded significant leave-one-out cross-validation coefficient, q(2) of 0.777, 0.744 and conventional cross-validation coefficient, r(2) of 0.927, 0.914 respectively. The predictive ability of generated models was tested on a set of 52 compounds having broad range of activity. CoMFA and CoMSIA yielded predicted activities for test set compounds with r(pred)(2) of 0.893 and 0.917 respectively. These validation tests not only revealed the robustness of the models but also demonstrated that for our models r(pred)(2) based on the mean activity of test set compounds can accurately estimate external predictivity. The factors affecting activity were analyzed carefully according to standard coefficient contour maps of steric, electrostatic, hydrophobic, acceptor and donor fields derived from the CoMFA and CoMSIA. These contour plots identified several key features which explain the wide range of activities. The results obtained from models offer important structural insight into designing novel peptic-ulcer inhibitors prior to their synthesis.

  15. Thermodynamic properties of gadolinium in Ga-Sn and Ga-Zn eutectic based alloys

    NASA Astrophysics Data System (ADS)

    Maltsev, Dmitry S.; Volkovich, Vladimir A.; Yamshchikov, Leonid F.; Chukin, Andrey V.

    2016-09-01

    Thermodynamic properties of gadolinium in Ga-Sn and Ga-Zn eutectic based alloys were studied. Temperature dependences of gadolinium activity in the studied alloys were determined at 573-1073 K employing the EMF method. Solubility of gadolinium in the Ga-Sn and Ga-Zn alloys was measured at 462-1073 K using IMCs sedimentation method. Activity coefficients as well as partial and excess thermodynamic functions of gadolinium in the studied alloys were calculated on the basis of the obtained experimental data.

  16. Relations among pure-tone sound stimuli, neural activity, and the loudness sensation

    NASA Technical Reports Server (NTRS)

    Howes, W. L.

    1972-01-01

    Both the physiological and psychological responses to pure-tone sound stimuli are used to derive formulas which: (1) relate the loudness, loudness level, and sound-pressure level of pure tones; (2) apply continuously over most of the acoustic regime, including the loudness threshold; and (3) contain no undetermined coefficients. Some of the formulas are fundamental for calculating the loudness of any sound. Power-law formulas relating the pure-tone sound stimulus, neural activity, and loudness are derived from published data.

  17. Optical mapping of prefrontal brain connectivity and activation during emotion anticipation.

    PubMed

    Wang, Meng-Yun; Lu, Feng-Mei; Hu, Zhishan; Zhang, Juan; Yuan, Zhen

    2018-09-17

    Accumulated neuroimaging evidence shows that the dorsal lateral prefrontal cortex (dlPFC) is activated during emotion anticipation. The aim of this work is to examine the brain connectivity and activation differences in dlPFC between the positive, neutral and negative emotion anticipation by using functional near-infrared spectroscopy (fNIRS). The hemodynamic responses were first assessed for all subjects during the performance of various emotion anticipation tasks. And then small-world analysis was performed, in which the small-world network indicators including the clustering coefficient, average path length, average node degree, and measure of small-world index were calculated for the functional brain networks associated with the positive, neutral and negative emotion anticipation, respectively. We discovered that compared to negative and neutral emotion anticipation, the positive one exhibited enhanced brain activation in the left dlPFC. Although the functional brain networks for the three emotion anticipation cases manifested the small-world properties regarding the clustering coefficient, average path length, average node degree, and measure of small-world index, the positive one showed significantly higher clustering coefficient and shorter average path length than those from the neutral and negative cases. Consequently, the small-world network indicators and brain activation in dlPPC were able to distinguish well between the positive, neutral and negative emotion anticipation. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Dose conversion coefficients based on the Chinese mathematical phantom and MCNP code for external photon irradiation.

    PubMed

    Qiu, Rui; Li, Junli; Zhang, Zhan; Liu, Liye; Bi, Lei; Ren, Li

    2009-02-01

    A set of conversion coefficients from kerma free-in-air to the organ-absorbed dose are presented for external monoenergetic photon beams from 10 keV to 10 MeV based on the Chinese mathematical phantom, a whole-body mathematical phantom model. The model was developed based on the methods of the Oak Ridge National Laboratory mathematical phantom series and data from the Chinese Reference Man and the Reference Asian Man. This work is carried out to obtain the conversion coefficients based on this model, which represents the characteristics of the Chinese population, as the anatomical parameters of the Chinese are different from those of Caucasians. Monte Carlo simulation with MCNP code is carried out to calculate the organ dose conversion coefficients. Before the calculation, the effects from the physics model and tally type are investigated, considering both the calculation efficiency and precision. In the calculation irradiation conditions include anterior-posterior, posterior-anterior, right lateral, left lateral, rotational and isotropic geometries. Conversion coefficients from this study are compared with those recommended in the Publication 74 of International Commission on Radiological Protection (ICRP74) since both the sets of data are calculated with mathematical phantoms. Overall, consistency between the two sets of data is observed and the difference for more than 60% of the data is below 10%. However, significant deviations are also found, mainly for the superficial organs (up to 65.9%) and bone surface (up to 66%). The big difference of the dose conversion coefficients for the superficial organs at high photon energy could be ascribed to kerma approximation for the data in ICRP74. Both anatomical variations between races and the calculation method contribute to the difference of the data for bone surface.

  19. A fluid-solid coupling simulation method for convection heat transfer coefficient considering the under-vehicle condition

    NASA Astrophysics Data System (ADS)

    Tian, C.; Weng, J.; Liu, Y.

    2017-11-01

    The convection heat transfer coefficient is one of the evaluation indexes of the brake disc performance. The method used in this paper to calculate the convection heat transfer coefficient is a fluid-solid coupling simulation method, because the calculation results through the empirical formula method have great differences. The model, including a brake disc, a car body, a bogie and flow field, was built, meshed and simulated in the software FLUENT. The calculation models were K-epsilon Standard model and Energy model. The working condition of the brake disc was considered. The coefficient of various parts can be obtained through the method in this paper. The simulation result shows that, under 160 km/h speed, the radiating ribs have the maximum convection heat transfer coefficient and the value is 129.6W/(m2·K), the average coefficient of the whole disc is 100.4W/(m2·K), the windward of ribs is positive-pressure area and the leeward of ribs is negative-pressure area, the maximum pressure is 2663.53Pa.

  20. JADA: a graphical user interface for comprehensive internal dose assessment in nuclear medicine.

    PubMed

    Grimes, Joshua; Uribe, Carlos; Celler, Anna

    2013-07-01

    The main objective of this work was to design a comprehensive dosimetry package that would keep all aspects of internal dose calculation within the framework of a single software environment and that would be applicable for a variety of dose calculation approaches. Our MATLAB-based graphical user interface (GUI) can be used for processing data obtained using pure planar, pure SPECT, or hybrid planar/SPECT imaging. Time-activity data for source regions are obtained using a set of tools that allow the user to reconstruct SPECT images, load images, coregister a series of planar images, and to perform two-dimensional and three-dimensional image segmentation. Curve fits are applied to the acquired time-activity data to construct time-activity curves, which are then integrated to obtain time-integrated activity coefficients. Subsequently, dose estimates are made using one of three methods. The organ level dose calculation subGUI calculates mean organ doses that are equivalent to dose assessment performed by OLINDA/EXM. Voxelized dose calculation options, which include the voxel S value approach and Monte Carlo simulation using the EGSnrc user code DOSXYZnrc, are available within the process 3D image data subGUI. The developed internal dosimetry software package provides an assortment of tools for every step in the dose calculation process, eliminating the need for manual data transfer between programs. This saves times and minimizes user errors, while offering a versatility that can be used to efficiently perform patient-specific internal dose calculations in a variety of clinical situations.

  1. Transport Coefficients from Large Deviation Functions

    NASA Astrophysics Data System (ADS)

    Gao, Chloe; Limmer, David

    2017-10-01

    We describe a method for computing transport coefficients from the direct evaluation of large deviation function. This method is general, relying on only equilibrium fluctuations, and is statistically efficient, employing trajectory based importance sampling. Equilibrium fluctuations of molecular currents are characterized by their large deviation functions, which is a scaled cumulant generating function analogous to the free energy. A diffusion Monte Carlo algorithm is used to evaluate the large deviation functions, from which arbitrary transport coefficients are derivable. We find significant statistical improvement over traditional Green-Kubo based calculations. The systematic and statistical errors of this method are analyzed in the context of specific transport coefficient calculations, including the shear viscosity, interfacial friction coefficient, and thermal conductivity.

  2. Comparison of bi-exponential and mono-exponential models of diffusion-weighted imaging for detecting active sacroiliitis in ankylosing spondylitis.

    PubMed

    Sun, Haitao; Liu, Kai; Liu, Hao; Ji, Zongfei; Yan, Yan; Jiang, Lindi; Zhou, Jianjun

    2018-04-01

    Background There has been a growing need for a sensitive and effective imaging method for the differentiation of the activity of ankylosing spondylitis (AS). Purpose To compare the performances of intravoxel incoherent motion (IVIM)-derived parameters and the apparent diffusion coefficient (ADC) for distinguishing AS-activity. Material and Methods One hundred patients with AS were divided into active (n = 51) and non-active groups (n = 49) and 21 healthy volunteers were included as control. The ADC, diffusion coefficient ( D), pseudodiffusion coefficient ( D*), and perfusion fraction ( f) were calculated for all groups. Kruskal-Wallis tests and receiver operator characteristic (ROC) curve analysis were performed for all parameters. Results There was good reproducibility of ADC /D and relatively poor reproducibility of D*/f. ADC, D, and f were significantly higher in the active group than in the non-active and control groups (all P < 0.0001, respectively). D* was slightly but significant lower in the active group than in the non-active and control group ( P = 0.0064, 0.0215). There was no significant difference in any parameter between the non-active group and the control group (all P > 0.050). In the ROC analysis, ADC had the largest AUC for distinguishing between the active group and the non-active group (0.988) and between the active and control groups (0.990). Multivariate logistic regression analysis models showed no diagnostic improvement. Conclusion ADC provided better diagnostic performance than IVIM-derived parameters in differentiating AS activity. Therefore, a straightforward and effective mono-exponential model of diffusion-weighted imaging may be sufficient for differentiating AS activity in the clinic.

  3. CFD study of leakage flows in shroud cavities of a compressor impeller

    NASA Astrophysics Data System (ADS)

    Soldatova, K.

    2017-08-01

    The flow character in a gap between shroud disc of an impeller and a stator surface (shroud cavity) influences disc friction loss, labyrinth seal loss (parasitic losses) and thrust force. Flow calculations inside the shroud cavity of a model of centrifugal compressor stage and its labyrinth seal in a range of flow rates and axial width and radial gap are presented. The results are presented in terms of non-dimensional coefficients of flow, disc friction and seal leakage losses coefficients and pressure coefficient. The distributions meridional and tangential flow velocities correspond to the continuity and equilibrium equations - flow radial circulation exists in wide cavity and is absent in narrow cavities. The radial pressure distributions as measured and calculated are not fully comparable. The possible reason is that CFD-calculated leakage coefficient is less than calculated by A.Stodola formula. The influence of a cavity width on the losses and the thrust force requires a balanced design.

  4. Thermodynamic Properties and Transport Coefficients of Nitrogen, Hydrogen and Helium Plasma Mixed with Silver Vapor

    NASA Astrophysics Data System (ADS)

    Zhou, Xue; Cui, Xinglei; Chen, Mo; Zhai, Guofu

    2016-05-01

    Species composites of Ag-N2, Ag-H2 and Ag-He plasmas in the temperature range of 3,000-20,000 K and at 1 atmospheric pressure were calculated by using the minimization of Gibbs free energy. Thermodynamic properties and transport coefficients of nitrogen, hydrogen and helium plasmas mixed with a variety of silver vapor were then calculated based on the equilibrium composites and collision integral data. The calculation procedure was verified by comparing the results obtained in this paper with the published transport coefficients on the case of pure nitrogen plasma. The influences of the silver vapor concentration on composites, thermodynamic properties and transport coefficients were finally analyzed and summarized for all the three types of plasmas. Those physical properties were important for theoretical study and numerical calculation on arc plasma generated by silver-based electrodes in those gases in sealed electromagnetic relays and contacts. supported by National Natural Science Foundation of China (Nos. 51277038 and 51307030)

  5. Simplified methods for calculating photodissociation rates

    NASA Technical Reports Server (NTRS)

    Shimazaki, T.; Ogawa, T.; Farrell, B. C.

    1977-01-01

    Simplified methods for calculating the transmission of solar UV radiation and the dissociation coefficients of various molecules are compared. A significant difference sometimes appears in calculations of the individual band, but the total transmission and the total dissociation coefficients integrated over the entire SR (solar radiation) band region agree well between the methods. The ambiguities in the solar flux data affect the calculated dissociation coefficients more strongly than does the method. A simpler method is developed for the purpose of reducing the computation time and computer memory size necessary for storing coefficients of the equations. The new method can reduce the computation time by a factor of more than 3 and the memory size by a factor of more than 50 compared with the Hudson-Mahle method, and yet the result agrees within 10 percent (in most cases much less) with the original Hudson-Mahle results, except for H2O and CO2. A revised method is necessary for these two molecules, whose absorption cross sections change very rapidly over the SR band spectral range.

  6. Rate Constants for Fine-Structure Excitations in O - H Collisions with Error Bars Obtained by Machine Learning

    NASA Astrophysics Data System (ADS)

    Vieira, Daniel; Krems, Roman

    2017-04-01

    Fine-structure transitions in collisions of O(3Pj) with atomic hydrogen are an important cooling mechanism in the interstellar medium; knowledge of the rate coefficients for these transitions has a wide range of astrophysical applications. The accuracy of the theoretical calculation is limited by inaccuracy in the ab initio interaction potentials used in the coupled-channel quantum scattering calculations from which the rate coefficients can be obtained. In this work we use the latest ab initio results for the O(3Pj) + H interaction potentials to improve on previous calculations of the rate coefficients. We further present a machine-learning technique based on Gaussian Process regression to determine the sensitivity of the rate coefficients to variations of the underlying adiabatic interaction potentials. To account for the inaccuracy inherent in the ab initio calculations we compute error bars for the rate coefficients corresponding to 20% variation in each of the interaction potentials. We obtain these error bars by fitting a Gaussian Process model to a data set of potential curves and rate constants. We use the fitted model to do sensitivity analysis, determining the relative importance of individual adiabatic potential curves to a given fine-structure transition. NSERC.

  7. Banded structures in electron pitch angle diffusion coefficients from resonant wave-particle interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, A. K., E-mail: aktrip2001@yahoo.co.in; Singhal, R. P., E-mail: rpsiitbhu@yahoo.com; Khazanov, G. V., E-mail: George.V.Khazanov@nasa.gov

    2016-04-15

    Electron pitch angle (D{sub αα}) and momentum (D{sub pp}) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L = 4.6 and 6.8 for electron energies ≤10 keV. Landau (n = 0) resonance and cyclotron harmonic resonances n = ±1, ±2, … ±5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (α) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusionmore » coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n = +1 and n = +2. A major contribution to momentum diffusion coefficients appears from n = +2. However, the banded structures in D{sub αα} and D{sub pp} coefficients appear only in the profile of diffusion coefficients for n = +2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The D{sub pp} diffusion coefficient for ECH waves is one to two orders smaller than D{sub αα} coefficients. For chorus waves, D{sub pp} coefficients are about an order of magnitude smaller than D{sub αα} coefficients for the case n ≠ 0. In case of Landau resonance, the values of D{sub pp} coefficient are generally larger than the values of D{sub αα} coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89° and harmonic resonances n = +1, +2, and +3, whereas for whistler mode waves, the frequencies have been calculated for angle 10° and Landau resonance. Further, in ECH waves, the banded structures appear for electron energies ≥1 keV, and for whistler mode chorus waves, structures appear for energies >2 keV at L = 4.6 and above 200 eV for L = 6.8. The results obtained in the present work will be helpful in the study of diffusion curves and will have important consequences for diffuse aurora and pancake distributions.« less

  8. Virial Coefficients for the Liquid Argon

    NASA Astrophysics Data System (ADS)

    Korth, Micheal; Kim, Saesun

    2014-03-01

    We begin with a geometric model of hard colliding spheres and calculate probability densities in an iterative sequence of calculations that lead to the pair correlation function. The model is based on a kinetic theory approach developed by Shinomoto, to which we added an interatomic potential for argon based on the model from Aziz. From values of the pair correlation function at various values of density, we were able to find viral coefficients of liquid argon. The low order coefficients are in good agreement with theoretical hard sphere coefficients, but appropriate data for argon to which these results might be compared is difficult to find.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamedov, Bahtiyar A.; Somuncu, Elif; Askerov, Iskender M.

    In this work, a new theoretical approach is proposed for calculating fourth virial coefficient with Lennard-Jones potential. The established algorithm can be used to evaluate the thermodynamics properties and the intermolecular interaction potentials of liquids and gases with an improved accuracy. Note that the evaluation of the high-order virial coefficients is very valuable for accurate calculation of thermodynamic parameters. By using the suggested method, the fourth virial coefficient of CH{sub 4}, Ar, C{sub 2}H{sub 6} and SF{sub 6} molecules are evaluated. The calculation results are useful for accurate interpretation of the experimental data and of the determination of related physicalmore » properties.« less

  10. A method for determination mass absorption coefficient of gamma rays by Compton scattering.

    PubMed

    El Abd, A

    2014-12-01

    A method was proposed for determination mass absorption coefficient of gamma rays for compounds, alloys and mixtures. It is based on simulating interaction processes of gamma rays with target elements having atomic numbers from Z=1 to Z=92 using the MCSHAPE software. Intensities of Compton scattered gamma rays at saturation thicknesses and at a scattering angle of 90° were calculated for incident gamma rays of different energies. The obtained results showed that the intensity of Compton scattered gamma rays at saturations and mass absorption coefficients can be described by mathematical formulas. These were used to determine mass absorption coefficients for compound, alloys and mixtures with the knowledge of their Compton scattered intensities. The method was tested by calculating mass absorption coefficients for some compounds, alloys and mixtures. There is a good agreement between obtained results and calculated ones using WinXom software. The advantages and limitations of the method were discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. CAP: A Computer Code for Generating Tabular Thermodynamic Functions from NASA Lewis Coefficients. Revised

    NASA Technical Reports Server (NTRS)

    Zehe, Michael J.; Gordon, Sanford; McBride, Bonnie J.

    2002-01-01

    For several decades the NASA Glenn Research Center has been providing a file of thermodynamic data for use in several computer programs. These data are in the form of least-squares coefficients that have been calculated from tabular thermodynamic data by means of the NASA Properties and Coefficients (PAC) program. The source thermodynamic data are obtained from the literature or from standard compilations. Most gas-phase thermodynamic functions are calculated by the authors from molecular constant data using ideal gas partition functions. The Coefficients and Properties (CAP) program described in this report permits the generation of tabulated thermodynamic functions from the NASA least-squares coefficients. CAP provides considerable flexibility in the output format, the number of temperatures to be tabulated, and the energy units of the calculated properties. This report provides a detailed description of input preparation, examples of input and output for several species, and a listing of all species in the current NASA Glenn thermodynamic data file.

  12. CAP: A Computer Code for Generating Tabular Thermodynamic Functions from NASA Lewis Coefficients

    NASA Technical Reports Server (NTRS)

    Zehe, Michael J.; Gordon, Sanford; McBride, Bonnie J.

    2001-01-01

    For several decades the NASA Glenn Research Center has been providing a file of thermodynamic data for use in several computer programs. These data are in the form of least-squares coefficients that have been calculated from tabular thermodynamic data by means of the NASA Properties and Coefficients (PAC) program. The source thermodynamic data are obtained from the literature or from standard compilations. Most gas-phase thermodynamic functions are calculated by the authors from molecular constant data using ideal gas partition functions. The Coefficients and Properties (CAP) program described in this report permits the generation of tabulated thermodynamic functions from the NASA least-squares coefficients. CAP provides considerable flexibility in the output format, the number of temperatures to be tabulated, and the energy units of the calculated properties. This report provides a detailed description of input preparation, examples of input and output for several species, and a listing of all species in the current NASA Glenn thermodynamic data file.

  13. Solubility Measurements and Predictions of Gypsum, Anhydrite, and Calcite Over Wide Ranges of Temperature, Pressure, and Ionic Strength with Mixed Electrolytes

    NASA Astrophysics Data System (ADS)

    Dai, Zhaoyi; Kan, Amy T.; Shi, Wei; Zhang, Nan; Zhang, Fangfu; Yan, Fei; Bhandari, Narayan; Zhang, Zhang; Liu, Ya; Ruan, Gedeng; Tomson, Mason B.

    2017-02-01

    Today's oil and gas production from deep reservoirs permits exploitation of more oil and gas reserves but increases risks due to conditions of high temperature and high pressure. Predicting mineral solubility under such extreme conditions is critical for mitigating scaling risks, a common and costly problem. Solubility predictions use solubility products and activity coefficients, commonly from Pitzer theory virial coefficients. However, inaccurate activity coefficients and solubility data have limited accurate mineral solubility predictions and applications of the Pitzer theory. This study measured gypsum solubility under its stable phase conditions up to 1400 bar; it also confirmed the anhydrite solubility reported in the literature. Using a novel method, the virial coefficients for Ca2+ and {{SO}}4^{2 - } (i.e., β_{{{{CaSO}}4 }}^{(0)} ,β_{{{{CaSO}}4 }}^{(2)} ,C_{{{{CaSO}}4 }}^{φ }) were calculated over wide ranges of temperature and pressure (0-250 °C and 1-1400 bar). The determination of this set of virial coefficients widely extends the applicable temperature and pressure ranges of the Pitzer theory in Ca2+ and SO 4 2- systems. These coefficients can be applied to improve the prediction of calcite solubility in the presence of high concentrations of Ca2+ and SO 4 2- ions. These new virial coefficients can also be used to predict the solubilities of gypsum and anhydrite accurately. Moreover, based on the derived β_{{{{CaSO}}4 }}^{(2)} values in this study, the association constants of {{CaSO}}4^{( 0 )} at 1 bar and 25 °C can be estimated by K_{{assoc}} = - 2β_{{{{CaSO}}4 }}^{(2)}. These values match very well with those reported in the literature based on other methods.

  14. Knee joint stiffness in individuals with and without knee osteoarthritis: a preliminary study.

    PubMed

    Oatis, Carol A; Wolff, Edward F; Lennon, Sandra K

    2006-12-01

    Descriptive, case-matched comparison. To compare the knee joint stiffness and damping coefficients of individuals with knee osteoarthritis (KOA) to those of age- and gender-matched individuals without KOA. A secondary purpose was to investigate relationships between these coefficients and complaints of stiffness in individuals with KOA. KOA is a leading cause of disability, and stiffness is a common complaint in individuals with KOA. Yet the most common method of assessing knee joint stiffness is through a self-report questionnaire. Stiffness and damping coefficients at the knee were calculated in 10 volunteers (mean age +/- SD, 64.1+/-15.5 years) with KOA and compared to coefficients from age-and gender-matched individuals without KOA, collected in a previous study (mean age +/- SD, 62.1+/-13.9 years). Stiffness and damping coefficients were calculated from the angular motion of the knee during a relaxed oscillation. Spearman correlation coefficients were calculated between stiffness and damping coefficients and WOMAC (Western Ontario and McMaster Universities Osteoarthritis Index) scores for subjects with KOA. Independent 2-tailed t tests revealed significantly larger damping coefficients (P = .035) among those with KOA (95% CI, 0.10-2.32 Nm s/rad). Spearman rank correlations revealed a significant positive relationship (r = .85, P = .003) between the damping coefficient and the stiffness subscore of the WOMAC. This study offers preliminary data demonstrating the feasibility of measuring stiffness and damping coefficients in individuals with KOA. Additionally, the damping coefficient is increased in people with KOA when compared to age- and gender-matched individuals without KOA. The damping coefficient appears to be associated with the complaints of stiffness reported by the WOMAC.

  15. Turbulent MHD transport coefficients - An attempt at self-consistency

    NASA Technical Reports Server (NTRS)

    Chen, H.; Montgomery, D.

    1987-01-01

    In this paper, some multiple scale perturbation calculations of turbulent MHD transport coefficients begun in earlier papers are first completed. These generalize 'alpha effect' calculations by treating the velocity field and magnetic field on the same footing. Then the problem of rendering such calculations self-consistent is addressed, generalizing an eddy-viscosity hypothesis similar to that of Heisenberg for the Navier-Stokes case. The method also borrows from Kraichnan's direct interaction approximation. The output is a set of integral equations relating the spectra and the turbulent transport coefficients. Previous 'alpha effect' and 'beta effect' coefficients emerge as limiting cases. A treatment of the inertial range can also be given, consistent with a -5/3 energy spectrum power law. In the Navier-Stokes limit, a value of 1.72 is extracted for the Kolmogorov constant. Further applications to MHD are possible.

  16. Calculation of conversion coefficients for clinical photon spectra using the MCNP code.

    PubMed

    Lima, M A F; Silva, A X; Crispim, V R

    2004-01-01

    In this work, the MCNP4B code has been employed to calculate conversion coefficients from air kerma to the ambient dose equivalent, H*(10)/Ka, for monoenergetic photon energies from 10 keV to 50 MeV, assuming the kerma approximation. Also estimated are the H*(10)/Ka for photon beams produced by linear accelerators, such as Clinac-4 and Clinac-2500, after transmission through primary barriers of radiotherapy treatment rooms. The results for the conversion coefficients for monoenergetic photon energies, with statistical uncertainty <2%, are compared with those in ICRP publication 74 and good agreements were obtained. The conversion coefficients calculated for real clinic spectra transmitted through walls of concrete of 1, 1.5 and 2 m thick, are in the range of 1.06-1.12 Sv Gy(-1).

  17. Towards a nonperturbative calculation of weak Hamiltonian Wilson coefficients

    DOE PAGES

    Bruno, Mattia; Lehner, Christoph; Soni, Amarjit

    2018-04-20

    Here, we propose a method to compute the Wilson coefficients of the weak effective Hamiltonian to all orders in the strong coupling constant using Lattice QCD simulations. We perform our calculations adopting an unphysically light weak boson mass of around 2 GeV. We demonstrate that systematic errors for the Wilson coefficients C 1 and C 2, related to the current-current four-quark operators, can be controlled and present a path towards precise determinations in subsequent works.

  18. Towards a nonperturbative calculation of weak Hamiltonian Wilson coefficients

    NASA Astrophysics Data System (ADS)

    Bruno, Mattia; Lehner, Christoph; Soni, Amarjit; Rbc; Ukqcd Collaborations

    2018-04-01

    We propose a method to compute the Wilson coefficients of the weak effective Hamiltonian to all orders in the strong coupling constant using Lattice QCD simulations. We perform our calculations adopting an unphysically light weak boson mass of around 2 GeV. We demonstrate that systematic errors for the Wilson coefficients C1 and C2 , related to the current-current four-quark operators, can be controlled and present a path towards precise determinations in subsequent works.

  19. Towards a nonperturbative calculation of weak Hamiltonian Wilson coefficients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruno, Mattia; Lehner, Christoph; Soni, Amarjit

    Here, we propose a method to compute the Wilson coefficients of the weak effective Hamiltonian to all orders in the strong coupling constant using Lattice QCD simulations. We perform our calculations adopting an unphysically light weak boson mass of around 2 GeV. We demonstrate that systematic errors for the Wilson coefficients C 1 and C 2, related to the current-current four-quark operators, can be controlled and present a path towards precise determinations in subsequent works.

  20. An indirect approach to the extensive calculation of relationship coefficients

    PubMed Central

    Colleau, Jean-Jacques

    2002-01-01

    A method was described for calculating population statistics on relationship coefficients without using corresponding individual data. It relied on the structure of the inverse of the numerator relationship matrix between individuals under investigation and ancestors. Computation times were observed on simulated populations and were compared to those incurred with a conventional direct approach. The indirect approach turned out to be very efficient for multiplying the relationship matrix corresponding to planned matings (full design) by any vector. Efficiency was generally still good or very good for calculating statistics on these simulated populations. An extreme implementation of the method is the calculation of inbreeding coefficients themselves. Relative performances of the indirect method were good except when many full-sibs during many generations existed in the population. PMID:12270102

  1. Factor Scores, Structure Coefficients, and Communality Coefficients

    ERIC Educational Resources Information Center

    Goodwyn, Fara

    2012-01-01

    This paper presents heuristic explanations of factor scores, structure coefficients, and communality coefficients. Common misconceptions regarding these topics are clarified. In addition, (a) the regression (b) Bartlett, (c) Anderson-Rubin, and (d) Thompson methods for calculating factor scores are reviewed. Syntax necessary to execute all four…

  2. CALCULATION OF COOLING TOWERS AND INJECTION COOLERS BY MEANS OF AN EVAPORATION METHOD (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spangemacher, K.

    1958-05-01

    Calculation and evaluation of cooling towers, as recommended by Merkel, are critically examined. The usual methods of practical calculation are explained as well as a new procedure which combines great accuracy with brevity. Merkel's method is extended to injection coolers for gas and compressed air. It was discussed whether the dimensionless ''evaporation coefficient'' should be called the''Merkel coefficient.'' (tr-auth)

  3. Validity and reliability of the Miller Forensic Assessment of Symptoms Test (M-FAST): comment on Veazey, et al. (2005).

    PubMed

    Charter, Richard A

    2005-12-01

    Confidence intervals are provided for the validity coefficients calculated by Veazey, et al. for the M-FAST. Two coefficients alpha are also presented along with suggestions for different approaches to calculating the M-FAST internal consistency reliability.

  4. A Simple Method for Calculating Clebsch-Gordan Coefficients

    ERIC Educational Resources Information Center

    Klink, W. H.; Wickramasekara, S.

    2010-01-01

    This paper presents a simple method for calculating Clebsch-Gordan coefficients for the tensor product of two unitary irreducible representations (UIRs) of the rotation group. The method also works for multiplicity-free irreducible representations appearing in the tensor product of any number of UIRs of the rotation group. The generalization to…

  5. Sorption of biodegradation end products of nonylphenol polyethoxylates onto activated sludge.

    PubMed

    Hung, Nguyen Viet; Tateda, Masafumi; Ike, Michihiko; Fujita, Masanori; Tsunoi, Shinji; Tanaka, Minoru

    2004-01-01

    Nonylphenol(NP), nonylphenoxy acetic acid (NP1EC), nonylphenol monoethoxy acetic acid (NP2EC), nonylphenol monoethoxylate (NP1EO) and nonylphenol diethoxylate (NP2EO) are biodegradation end products (BEPs) of nonionic surfactant nonylphenolpolyethoxylates (NPnEO). In this research, sorption of these compounds onto model activated sludge was characterized. Sorption equilibrium experiments showed that NP, NP1EO and NP2EO reached equilibrium in about 12 h, while equilibrium of NP1EC and NP2EC were reached earlier, in about 4 h. In sorption isotherm experiments, obtained equilibrium data at 28 degrees C fitted well to Freundlich sorption model for all investigated compounds. For NP1EC, in addition to Freundlich, equilibrium data also fitted well to Langmuir model. Linear sorption model was also tried, and equilibrium data of all NP, NP1EO, NP2EO and NP2EC except NP1EC fitted well to this model. Calculated Freundlich coefficient (K(F)) and linear sorption coefficient (K(D)) showed that sorption capacity of the investigated compounds were in order NP > NP2EO > NP1EO > NP1EC approximately NP2EC. For NP, NP1EO and NP2EO, high values of calculated K(F) and K(D) indicated an easy uptake of these compounds from aqueous phase onto activated sludge. Whereas, NP1EC and NP2EC with low values of K(F) and K(D) absorbed weakly to activated sludge and tended to preferably remain in aqueous phase.

  6. A New Global Potential Energy Surface for the Hydroperoxyl Radical, HO2: Reaction Coefficients for H + O2 and Vibrational Splittings for H Atom Transfer

    NASA Technical Reports Server (NTRS)

    Dateo, Christopher E.; Arnold, James O. (Technical Monitor)

    1994-01-01

    A new analytic global potential energy surface describing the hydroperoxyl radical system H((sup 2)S) + O2(X (sup 3)Sigma((sup -)(sub g))) (reversible reaction) HO2 ((X-tilde) (sup 2)A'') (reversible reaction) O((sup 3)P) + O H (X (sup 2)Pi) has been fitted using the ab initio complete active space SCF (self-consistent-field)/externally contracted configuration interaction (CASSCF/CCI) energy calculations of Walch and Duchovic. Results of quasiclassical trajectory studies to determine the rate coefficients of the forward and reverse reactions at combustion temperatures will be presented. In addition, vibrational energy levels were calculated using the quantum DVR-DGB (discrete variable representation-distributed Gaussian basis) method and the splitting due to H atom migration is investigated. The material of the proposed presentation was reviewed and the technical content will not reveal any information not already in the public domain and will not give any foreign industry or government a competitive advantage.

  7. Sensitivity Analysis of Nuclide Importance to One-Group Neutron Cross Sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sekimoto, Hiroshi; Nemoto, Atsushi; Yoshimura, Yoshikane

    The importance of nuclides is useful when investigating nuclide characteristics in a given neutron spectrum. However, it is derived using one-group microscopic cross sections, which may contain large errors or uncertainties. The sensitivity coefficient shows the effect of these errors or uncertainties on the importance.The equations for calculating sensitivity coefficients of importance to one-group nuclear constants are derived using the perturbation method. Numerical values are also evaluated for some important cases for fast and thermal reactor systems.Many characteristics of the sensitivity coefficients are derived from the derived equations and numerical results. The matrix of sensitivity coefficients seems diagonally dominant. However,more » it is not always satisfied in a detailed structure. The detailed structure of the matrix and the characteristics of coefficients are given.By using the obtained sensitivity coefficients, some demonstration calculations have been performed. The effects of error and uncertainty of nuclear data and of the change of one-group cross-section input caused by fuel design changes through the neutron spectrum are investigated. These calculations show that the sensitivity coefficient is useful when evaluating error or uncertainty of nuclide importance caused by the cross-section data error or uncertainty and when checking effectiveness of fuel cell or core design change for improving neutron economy.« less

  8. Mathematical Model for a Simplified Calculation of the Input Momentum Coefficient for AFC Purposes

    NASA Astrophysics Data System (ADS)

    Hirsch, Damian; Gharib, Morteza

    2016-11-01

    Active Flow Control (AFC) is an emerging technology which aims at enhancing the aerodynamic performance of flight vehicles (i.e., to save fuel). A viable AFC system must consider the limited resources available on a plane for attaining performance goals. A higher performance goal (i.e., airplane incremental lift) demands a higher input fluidic requirement (i.e., mass flow rate). Therefore, the key requirement for a successful and practical design is to minimize power input while maximizing performance to achieve design targets. One of the most used design parameters is the input momentum coefficient Cμ. The difficulty associated with Cμ lies in obtaining the parameters for its calculation. In the literature two main approaches can be found, which both have their own disadvantages (assumptions, difficult measurements). A new, much simpler calculation approach will be presented that is based on a mathematical model that can be applied to most jet designs (i.e., steady or sweeping jets). The model-incorporated assumptions will be justified theoretically as well as experimentally. Furthermore, the model's capabilities are exploited to give new insight to the AFC technology and its physical limitations. Supported by Boeing.

  9. Fluence-to-dose conversion coefficients for neutrons and protons calculated using the PHITS code and ICRP/ICRU adult reference computational phantoms.

    PubMed

    Sato, Tatsuhiko; Endo, Akira; Zankl, Maria; Petoussi-Henss, Nina; Niita, Koji

    2009-04-07

    The fluence to organ-dose and effective-dose conversion coefficients for neutrons and protons with energies up to 100 GeV was calculated using the PHITS code coupled to male and female adult reference computational phantoms, which are to be released as a common ICRP/ICRU publication. For the calculation, the radiation and tissue weighting factors, w(R) and w(T), respectively, as revised in ICRP Publication 103 were employed. The conversion coefficients for effective dose equivalents derived using the radiation quality factors of both Q(L) and Q(y) relationships were also estimated, utilizing the functions for calculating the probability densities of the absorbed dose in terms of LET (L) and lineal energy (y), respectively, implemented in PHITS. By comparing these data with the corresponding data for the effective dose, we found that the numerical compatibilities of the revised w(R) with the Q(L) and Q(y) relationships are fairly established. The calculated data of these dose conversion coefficients are indispensable for constructing the radiation protection systems based on the new recommendations given in ICRP103 for aircrews and astronauts, as well as for workers in accelerators and nuclear facilities.

  10. Impedance computed tomography using an adaptive smoothing coefficient algorithm.

    PubMed

    Suzuki, A; Uchiyama, A

    2001-01-01

    In impedance computed tomography, a fixed coefficient regularization algorithm has been frequently used to improve the ill-conditioning problem of the Newton-Raphson algorithm. However, a lot of experimental data and a long period of computation time are needed to determine a good smoothing coefficient because a good smoothing coefficient has to be manually chosen from a number of coefficients and is a constant for each iteration calculation. Thus, sometimes the fixed coefficient regularization algorithm distorts the information or fails to obtain any effect. In this paper, a new adaptive smoothing coefficient algorithm is proposed. This algorithm automatically calculates the smoothing coefficient from the eigenvalue of the ill-conditioned matrix. Therefore, the effective images can be obtained within a short computation time. Also the smoothing coefficient is automatically adjusted by the information related to the real resistivity distribution and the data collection method. In our impedance system, we have reconstructed the resistivity distributions of two phantoms using this algorithm. As a result, this algorithm only needs one-fifth the computation time compared to the fixed coefficient regularization algorithm. When compared to the fixed coefficient regularization algorithm, it shows that the image is obtained more rapidly and applicable in real-time monitoring of the blood vessel.

  11. Correlation between mass transfer coefficient kLa and relevant operating parameters in cylindrical disposable shaken bioreactors on a bench-to-pilot scale

    PubMed Central

    2013-01-01

    Background Among disposable bioreactor systems, cylindrical orbitally shaken bioreactors show important advantages. They provide a well-defined hydrodynamic flow combined with excellent mixing and oxygen transfer for mammalian and plant cell cultivations. Since there is no known universal correlation between the volumetric mass transfer coefficient for oxygen kLa and relevant operating parameters in such bioreactor systems, the aim of this current study is to experimentally determine a universal kLa correlation. Results A Respiration Activity Monitoring System (RAMOS) was used to measure kLa values in cylindrical disposable shaken bioreactors and Buckingham’s π-Theorem was applied to define a dimensionless equation for kLa. In this way, a scale- and volume-independent kLa correlation was developed and validated in bioreactors with volumes from 2 L to 200 L. The final correlation was used to calculate cultivation parameters at different scales to allow a sufficient oxygen supply of tobacco BY-2 cell suspension cultures. Conclusion The resulting equation can be universally applied to calculate the mass transfer coefficient for any of seven relevant cultivation parameters such as the reactor diameter, the shaking frequency, the filling volume, the viscosity, the oxygen diffusion coefficient, the gravitational acceleration or the shaking diameter within an accuracy range of +/− 30%. To our knowledge, this is the first kLa correlation that has been defined and validated for the cited bioreactor system on a bench-to-pilot scale. PMID:24289110

  12. Correlation between mass transfer coefficient kLa and relevant operating parameters in cylindrical disposable shaken bioreactors on a bench-to-pilot scale.

    PubMed

    Klöckner, Wolf; Gacem, Riad; Anderlei, Tibor; Raven, Nicole; Schillberg, Stefan; Lattermann, Clemens; Büchs, Jochen

    2013-12-02

    Among disposable bioreactor systems, cylindrical orbitally shaken bioreactors show important advantages. They provide a well-defined hydrodynamic flow combined with excellent mixing and oxygen transfer for mammalian and plant cell cultivations. Since there is no known universal correlation between the volumetric mass transfer coefficient for oxygen kLa and relevant operating parameters in such bioreactor systems, the aim of this current study is to experimentally determine a universal kLa correlation. A Respiration Activity Monitoring System (RAMOS) was used to measure kLa values in cylindrical disposable shaken bioreactors and Buckingham's π-Theorem was applied to define a dimensionless equation for kLa. In this way, a scale- and volume-independent kLa correlation was developed and validated in bioreactors with volumes from 2 L to 200 L. The final correlation was used to calculate cultivation parameters at different scales to allow a sufficient oxygen supply of tobacco BY-2 cell suspension cultures. The resulting equation can be universally applied to calculate the mass transfer coefficient for any of seven relevant cultivation parameters such as the reactor diameter, the shaking frequency, the filling volume, the viscosity, the oxygen diffusion coefficient, the gravitational acceleration or the shaking diameter within an accuracy range of +/- 30%. To our knowledge, this is the first kLa correlation that has been defined and validated for the cited bioreactor system on a bench-to-pilot scale.

  13. Interaction of flavonoids, the naturally occurring antioxidants with different media: A UV-visible spectroscopic study

    NASA Astrophysics Data System (ADS)

    Naseem, Bushra; Shah, S. W. H.; Hasan, Aurangzeb; Sakhawat Shah, S.

    2010-04-01

    Quantitative parameters for interaction of flavonoids—the naturally occurring antioxidants, with solvents and surfactants are determined using UV-visible absorption spectroscopy. The availability of flavonoids; kaempferol, apigenin, kaempferide and rhamnetin in micelles of sodium dodecyl sulfate (SDS) is reflected in terms of partition coefficient, Kc. Thermodynamic calculations show that the process of transfer of flavonoid molecules to anionic micelles of SDS is energy efficient. A distortion in flavonoid's morphology occurs in case of kaempferol and apigenin in surfactant and water, exhibited in terms of a new band in the UV region of electronic spectra of these flavonoids. The partition coefficients of structurally related flavonoids are correlated with their antioxidant activities.

  14. Dielectronic and Trielectronic Recombination Rate Coefficients of Be-like Ar14+

    NASA Astrophysics Data System (ADS)

    Huang, Z. K.; Wen, W. Q.; Xu, X.; Mahmood, S.; Wang, S. X.; Wang, H. B.; Dou, L. J.; Khan, N.; Badnell, N. R.; Preval, S. P.; Schippers, S.; Xu, T. H.; Yang, Y.; Yao, K.; Xu, W. Q.; Chuai, X. Y.; Zhu, X. L.; Zhao, D. M.; Mao, L. J.; Ma, X. M.; Li, J.; Mao, R. S.; Yuan, Y. J.; Wu, B.; Sheng, L. N.; Yang, J. C.; Xu, H. S.; Zhu, L. F.; Ma, X.

    2018-03-01

    Electron–ion recombination of Be-like 40Ar14+ has been measured by employing the electron–ion merged-beams method at the cooler storage ring CSRm. The measured absolute recombination rate coefficients for collision energies from 0 to 60 eV are presented, covering all dielectronic recombination (DR) resonances associated with 2s 2 → 2s2p core transitions. In addition, strong trielectronic recombination (TR) resonances associated with 2s 2 → 2p 2 core transitions were observed. Both DR and TR processes lead to series of peaks in the measured recombination spectrum, which have been identified by the Rydberg formula. Theoretical calculations of recombination rate coefficients were performed using the state-of-the-art multi-configuration Breit–Pauli atomic structure code AUTOSTRUCTURE to compare with the experimental results. The plasma rate coefficients for DR+TR of Ar14+ were deduced from the measured electron–ion recombination rate coefficients in the temperature range from 103 to 107 K, and compared with calculated data from the literature. The experimentally derived plasma rate coefficients are 60% larger and 30% lower than the previously recommended atomic data for the temperature ranges of photoionized plasmas and collisionally ionized plasmas, respectively. However, good agreement was found between experimental results and the calculations by Gu and Colgan et al. The plasma rate coefficients deduced from experiment and calculated by the current AUTOSTRUCTURE code show agreement that is better than 30% from 104 to 107 K. The present results constitute a set of benchmark data for use in astrophysical modeling.

  15. Thermodynamic studies of drug-alpha-cyclodextrin interactions in water at 298.15 K: promazine hydrochloride/chlorpromazine hydrochloride + alpha-cyclodextrin + H(2)O systems.

    PubMed

    Terdale, Santosh S; Dagade, Dilip H; Patil, Kesharsingh J

    2007-12-06

    Data on osmotic coefficients have been obtained for a binary aqueous solution of two drugs, namely, promazine hydrochloride (PZ) and chlorpromazine hydrochloride (CPZ) using a vapor pressure osmometer at 298.15 K. The observed critical micelle concentration (cmc) agrees excellently with the available literature data. The measurements are extended to aqueous ternary solutions containing fixed a concentration of alpha-cyclodextrin (alpha-CD) of 0.1 mol kg(-1) and varied concentrations (approximately 0.005-0.2 mol kg(-1)) of drugs at 298.15 K. It has been found that the cmc values increase by the addition of alpha-CD. The mean molal activity coefficients of the ions and the activity coefficient of alpha-CD in binary as well as ternary solutions were obtained, which have been further used to calculate the excess Gibbs free energies and transfer Gibbs free energies. The lowering of the activity coefficients of ions and of alpha-CD is attributed to the existence of host-guest (inclusion)-type complex equilibria. It is suggested that CPZ forms 2:1 and 1:1 complexed species with alpha-CD, while PZ forms only 1:1 complexed species. The salting constant (ks) values are determined at 298.15 K for promazine-alpha-CD and chlorpromazine-alpha-CD complexes, respectively, by following the method based on the application of the McMillan-Mayer theory of virial coefficients to transfer free energy data. It is noted that the presence of chlorine in the drug molecule imparts better complexing capacity, the effect of which gets attenuated as a result of hydrophobic interaction. The results are discussed from the point of view of associative equilibria before the cmc and complexed equilibria for binary and ternary solutions, respectively.

  16. Confined Li ion migration in the silicon-graphene complex system: An ab initio investigation

    NASA Astrophysics Data System (ADS)

    Wang, Guoqing; Xu, Bo; Shi, Jing; Lei, Xueling; Ouyang, Chuying

    2018-04-01

    Silicon-Carbon complex systems play an important role in enhancing the performance of Si-based anode materials for Li ion batteries. In this work, the Li migration property of the Silicon-Graphene (Si-Gr) complex systems are investigated by using first-principles calculations. Especially, the effects of graphene coating on the migration of Li ions are discussed in detail. The distance between Si surface and graphene in the Si-Gr system significantly affects the lateral migration of Li ions. With the decrease of the distance from 4.715 to 3.844 Å, the energy barrier of Li ion migration also decreases from 0.115 to 0.067 eV, which are all lower than that of the case without graphene d(0.135 eV). However, smaller distance (3.586 Å) brings the high energy barrier (0.237 eV). Through AIMD calculations, it is found that the graphene coating in the Si-Gr complex system would result in the larger intercalation depths, more uniform distributions, and higher migration coefficients of Li ions. Further calculations of migration coefficients of Li ions at different temperature are used to obtained the activation energy for Li ions migration in the Si-Gr system, which is as low as 0.028 eV. This low activation energy shows that it is easy for Li ions migrating in the Si-Gr system. Our study provided the basically information to understand the migration mechanism of Li ions in Si-C system.

  17. Study of activation of metal samples from LDEF-1 and Spacelab-2

    NASA Technical Reports Server (NTRS)

    Laird, C. E.

    1991-01-01

    The activation of metal samples and other material orbited onboard the Long Duration Exposure Facility (LDEF) and Spacelab-2 were studied. Measurements of the radioactivities of spacecraft materials were made, and corrections for self-absorption and efficiency were calculated. Activation cross sections for specific metal samples were updated while cross sections for other materials were tabulated from the scientific literature. Activation cross sections for 200 MeV neutrons were experimentally determined. Linear absorption coefficients, half lives, branching ratios and other pertinent technical data needed for LDEF sample analyses were tabulated. The status of the sample counting at low background facilities at national laboratories is reported.

  18. On the emission coefficient of uranium plasmas.

    NASA Technical Reports Server (NTRS)

    Schneider, R. T.; Campbell, H. D.; Mack, J. M.

    1973-01-01

    The emission coefficient for uranium plasmas (temperature: 8000 K) was measured for the wavelength range from 1200 to 6000 A. The results were compared to theoretical calculations and other measurements. Reasonable agreement between theoretical predictions and our measurements was found in the region from 1200 to 2000 A. Although it was difficult to make absolute comparisons among the different reported measurements, considerable disagreement was found for the higher wavelength region. A short discussion regarding the overall comparisons is given, and final suggestions are made as to the most appropriate emission coefficient values to be used in future design calculations. The absorption coefficient for the same wavelength interval is also reported.

  19. Antibacterial activity, thermal stability and ab initio study of copolymer containing sulfobetaine and carboxybetaine groups

    NASA Astrophysics Data System (ADS)

    Tarannum, Nazia; Singh, Meenakshi; Yadav, Anil K.

    2017-10-01

    Here, we have explored the antibacterial activity, thermal stability and theoretical study of two copolymers that contain sulfobetaine and carboetaine moiety. Copolymers were synthesized based on Schiff base chemistry with generation of zwitterionic centres by nucleophilic addition of sultone/lactone. To predict and confirm the molecular structure of zwitterionic polyelectrolyte molecule, the theoretical study of structural features and other thermodynamic characteristics of copolymer constituents was obtained by ab initio calculations. Various parameters such as geometry optimization, energy calculations, frequency calculations and intrinsic reaction coefficient (IRC) are simulated using Hartree Fock (HF) method. The geometry optimizations are analyzed at HF/3-21 G default level of theory. The vibrational frequency is calculated via density functional theory (DFT)/B3LYP 6-31G*(d) level whose values are in accord with the experimental observed frequency. Both copolymers have been successfully assessed for antibacterial activity against Staphylococcus aureus and Pseudomonas aeuroginosa bacterial strains by disc diffusion method. The antibacterial study helped in evaluating zone of inhibition, minimum inhibitory concentration and minimum bactericidal concentration. Sulfobetaine copolymer is found to be more effective in curtailing the infection caused by bacteria as compared to carbobetaine.

  20. Adjustment of activity coefficients as a function of changes in temperature, using the specific interaction theory

    NASA Astrophysics Data System (ADS)

    Giffaut, Eric; Vitorge, Pierre; Capdevila, Helene

    1994-10-01

    The aim of this work is to propose and to check approximations to calculate from only a few experimental measurements, ionic strength I and temperature T, influences on Gibbs' energy G, formal redox potential E and standard equilibrium constant K. Series expansions vs. T are first used: S and C(sub p)/2T (sup o) are typically the first- and second-order terms in -G. In the same way, -Delta H and T(exp 2) Delta C(sub p)/2 are the first- and second-order terms ofR ln K expansions vs. 1/T. This type of approximation is discussed for E of the M(4+)/M(3+), MO2(2+)/MO2(+) and MO2(CO3)3(4+)/MO2(CO3)3(4-)/MO2(CO3)3(4-) couples (M equivalent to U or Pu) measured from 5 to 70 C, for the standard Delta G of some solid U compounds, calculated from 17 to 117 C, and for Delta C(sub p), Delta G and log K of the CO2(aq)/HCO3(-) equilibrium from 0 to 150 C. Excess functions X(sup ex) are then calculated from activity coefficients gamma: enthalpy H or heat capacity C(sub p) adjustment as a function of I changes is needed only when the gamma adjustment as a function of T changes is needed. The variations in the specific interaction theory coefficient epsilon with T are small and roughly linear for the above redox equilibria and for the mean gamma of chloride electrolytes: first-order expansion seems enough to deduce epsilon, and then the excess functions G(sup ex), S(sup ex) and H(sup ex), in this T range; but second-order expansion is more consistent for estimation of C(sub p)(sup ex).

  1. SteamTables: An approach of multiple variable sets

    NASA Astrophysics Data System (ADS)

    Verma, Mahendra P.

    2009-10-01

    Using the IAPWS-95 formulation, an ActiveX component SteamTablesIIE in Visual Basic 6.0 is developed to calculate thermodynamic properties of pure water as a function of two independent intensive variables: (1) temperature ( T) or pressure ( P) and (2) T, P, volume ( V), internal energy ( U), enthalpy ( H), entropy ( S) or Gibbs free energy ( G). The second variable cannot be the same as variable 1. Additionally, it calculates the properties along the separation boundaries (i.e., sublimation, saturation, critical isochor, ice I melting, ice III to ice IIV melting and minimum volume curves) considering the input parameter as T or P for the variable 1. SteamTablesIIE is an extension of the ActiveX component SteamTables implemented earlier considering T (190 to 2000 K) and P (3.23×10 -8 to 10000 MPa) as independent variables. It takes into account the following 27 intensive properties: temperature ( T), pressure ( P), fraction, state, volume ( V), density ( Den), compressibility factor ( Z0), internal energy ( U), enthalpy ( H), Gibbs free energy ( G), Helmholtz free energy ( A), entropy ( S), heat capacity at constant pressure ( C p), heat capacity at constant volume ( C v), coefficient of thermal expansion ( CTE), isothermal compressibility ( Z iso), speed of sound ( VelS), partial derivative of P with T at constant V ( dPdT), partial derivative of T with V at constant P ( dTdV), partial derivative of V with P at constant T ( dVdP), Joule-Thomson coefficient ( JTC), isothermal throttling coefficient ( IJTC), viscosity ( Vis), thermal conductivity ( ThrmCond), surface tension ( SurfTen), Prandtl number ( PrdNum) and dielectric constant ( DielCons).

  2. Melting properties of Pt and its transport coefficients in liquid states under high pressures

    NASA Astrophysics Data System (ADS)

    Wang, Pan-Pan; Shao, Ju-Xiang; Cao, Qi-Long

    2016-11-01

    Molecular dynamics (MD) simulations of the melting and transport properties in liquid states of platinum for the pressure range (50-200 GPa) are reported. The melting curve of platinum is consistent with previous ab initio MD simulation results and the first-principles melting curve. Calculated results for the pressure dependence of fusion entropy and fusion volume show that the fusion entropy and the fusion volume decrease with increasing pressure, and the ratio of the fusion volume to fusion entropy roughly reproduces the melting slope, which has a moderate decrease along the melting line. The Arrhenius law well describes the temperature dependence of self-diffusion coefficients and viscosity under high pressure, and the diffusion activation energy decreases with increasing pressure, while the viscosity activation energy increases with increasing pressure. In addition, the entropy-scaling law, proposed by Rosenfeld under ambient pressure, still holds well for liquid Pt under high pressure conditions.

  3. Effects Of Suspension-Line Damping On LADT #3 And Supersonic BLDT Parachute Inflation Dynamics

    NASA Technical Reports Server (NTRS)

    Poole, Lamont R.

    1972-01-01

    A two-body computerized mathematical model is used to calculate planar dynamics of the LADT #3 and supersonic BLDT parachute inflations. Results indicate that the calculated loads and motions of the LADT #3 inflation are not affected appreciably by variation in the suspension-line damping coefficient. However, variation of the coefficient results in significant changes in the calculated loads and strain rates of the supersonic BLDT inflation.

  4. Einstein coefficients for rotational lines of the (0,0) band of the NO A2sigma(+)-X2Pi system

    NASA Technical Reports Server (NTRS)

    Reisel, John R.; Carter, Campbell D.; Laurendeau, Normand M.

    1992-01-01

    A summary of the spectroscopic equations necessary for prediction of the molecular transition energies and the Einstein A and B coefficients for rovibronic lines of the gamma(0,0) band of nitric oxide (NO) is presented. The calculated molecular transition energies are all within 0.57/cm of published experimental values; in addition, over 95 percent of the calculated energies give agreement with measured results within 0.25/cm. Einstein coefficients are calculated from the band A00 value and the known Hoenl-London factors and are tabulated for individual rovibronic transitions in the NO A2sigma(+)-X2Pi(0,0) band.

  5. Calculation of the Ionization Coefficient in the Townsend Discharge in the Mixture of Argon and Mercury Vapors with Temperature-Dependent Composition

    NASA Astrophysics Data System (ADS)

    Bondarenko, G. G.; Dubinina, M. S.; Fisher, M. R.; Kristya, V. I.

    2018-04-01

    For a hybrid model of the low-current discharge considering, along with direct ionization of the mixture components by electrons, the Penning ionization of mercury atoms by metastable argon atoms, the ionization coefficient in the argon-mercury mixture used in illuminating lamps is calculated. The analytical approximation formula describing the dependence of the ionization coefficient of the mixture on the reduced electric field strength and temperature is obtained for sufficiently wide ranges of their variations, and its accuracy is estimated. It is demonstrated that the discharge ignition voltage calculated using this formula is in agreement with the results of simulation and the available experimental data.

  6. Comparison of monoenergetic photon organ dose rate coefficients for stylized and voxel phantoms submerged in air

    DOE PAGES

    Bellamy, Michael B.; Hiller, Mauritius M.; Dewji, Shaheen A.; ...

    2016-02-01

    As part of a broader effort to calculate effective dose rate coefficients for external exposure to photons and electrons emitted by radionuclides distributed in air, soil or water, age-specific stylized phantoms have been employed to determine dose coefficients relating dose rate to organs and tissues in the body. In this article, dose rate coefficients computed using the International Commission on Radiological Protection reference adult male voxel phantom are compared with values computed using the Oak Ridge National Laboratory adult male stylized phantom in an air submersion exposure geometry. Monte Carlo calculations for both phantoms were performed for monoenergetic source photonsmore » in the range of 30 keV to 5 MeV. Furthermore, these calculations largely result in differences under 10 % for photon energies above 50 keV, and it can be expected that both models show comparable results for the environmental sources of radionuclides.« less

  7. Comparison of monoenergetic photon organ dose rate coefficients for stylized and voxel phantoms submerged in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellamy, Michael B.; Hiller, Mauritius M.; Dewji, Shaheen A.

    As part of a broader effort to calculate effective dose rate coefficients for external exposure to photons and electrons emitted by radionuclides distributed in air, soil or water, age-specific stylized phantoms have been employed to determine dose coefficients relating dose rate to organs and tissues in the body. In this article, dose rate coefficients computed using the International Commission on Radiological Protection reference adult male voxel phantom are compared with values computed using the Oak Ridge National Laboratory adult male stylized phantom in an air submersion exposure geometry. Monte Carlo calculations for both phantoms were performed for monoenergetic source photonsmore » in the range of 30 keV to 5 MeV. Furthermore, these calculations largely result in differences under 10 % for photon energies above 50 keV, and it can be expected that both models show comparable results for the environmental sources of radionuclides.« less

  8. Rapid analysis of dissolved methane, ethylene, acetylene and ethane using partition coefficients and headspace-gas chromatography.

    PubMed

    Lomond, Jasmine S; Tong, Anthony Z

    2011-01-01

    Analysis of dissolved methane, ethylene, acetylene, and ethane in water is crucial in evaluating anaerobic activity and investigating the sources of hydrocarbon contamination in aquatic environments. A rapid chromatographic method based on phase equilibrium between water and its headspace is developed for these analytes. The new method requires minimal sample preparation and no special apparatus except those associated with gas chromatography. Instead of Henry's Law used in similar previous studies, partition coefficients are used for the first time to calculate concentrations of dissolved hydrocarbon gases, which considerably simplifies the calculation involved. Partition coefficients are determined to be 128, 27.9, 1.28, and 96.3 at 30°C for methane, ethylene, acetylene, and ethane, respectively. It was discovered that the volume ratio of gas-to-liquid phase is critical to the accuracy of the measurements. The method performance can be readily improved by reducing the volume ratio of the two phases. Method validation shows less than 6% variation in accuracy and precision except at low levels of methane where interferences occur in ambient air. Method detection limits are determined to be in the low ng/L range for all analytes. The performance of the method is further tested using environmental samples collected from various sites in Nova Scotia.

  9. OLIFE: Tight Binding Code for Transmission Coefficient Calculation

    NASA Astrophysics Data System (ADS)

    Mijbil, Zainelabideen Yousif

    2018-05-01

    A new and human friendly transport calculation code has been developed. It requires a simple tight binding Hamiltonian as the only input file and uses a convenient graphical user interface to control calculations. The effect of magnetic field on junction has also been included. Furthermore the transmission coefficient can be calculated between any two points on the scatterer which ensures high flexibility to check the system. Therefore Olife can highly be recommended as an essential tool for pretesting studying and teaching electron transport in molecular devices that saves a lot of time and effort.

  10. Use of Subsonic Kernel Function in an Influence-Coefficient Method of Aeroelastic Analysis and some Comparisons with Experiment

    NASA Technical Reports Server (NTRS)

    Sewall, John L.; Herr, Robert W.; Watkins, Charles E.

    1960-01-01

    This paper illustrates the development and application of an influence-coefficient method of analysis for calculating the response of a flexible wing in an airstream to an oscillating disturbing force and for treating such aeroelastic instabilities as flutter and divergence. Aerodynamic coefficients are derived on the basis of lifting - surface theory for subsonic compressible flow by use of the method presented in NASA Technical Report R-48. Application of the analysis is made to a uniform cantilever wing- tip tank configuration for which responses to a sinusoidal disturbing force and flutter speeds were measured over a range of subsonic Mach numbers and densities. Calculated responses and flutter speeds based on flexibility influence coefficients measured at nine stations are in good agreement with experiment, provided the aerodynamic load is distributed over the wing so that local centers of pressure very nearly coincide with these nine influence stations. The use of experimental values of bending and torsional structural damping coefficients in the analysis generally improved the agreement between calculated and experimental responses. Some calculations were made to study the effects on density on responses near the flutter conditions, and linear response trends were obtained over a wide range of densities.

  11. Capture and dissociation in the complex-forming CH + H2 → CH2 + H, CH + H2 reactions.

    PubMed

    González, Miguel; Saracibar, Amaia; Garcia, Ernesto

    2011-02-28

    The rate coefficients for the capture process CH + H(2)→ CH(3) and the reactions CH + H(2)→ CH(2) + H (abstraction), CH + H(2) (exchange) have been calculated in the 200-800 K temperature range, using the quasiclassical trajectory (QCT) method and the most recent global potential energy surface. The reactions, which are of interest in combustion and in astrochemistry, proceed via the formation of long-lived CH(3) collision complexes, and the three H atoms become equivalent. QCT rate coefficients for capture are in quite good agreement with experiments. However, an important zero point energy (ZPE) leakage problem occurs in the QCT calculations for the abstraction, exchange and inelastic exit channels. To account for this issue, a pragmatic but accurate approach has been applied, leading to a good agreement with experimental abstraction rate coefficients. Exchange rate coefficients have also been calculated using this approach. Finally, calculations employing QCT capture/phase space theory (PST) models have been carried out, leading to similar values for the abstraction rate coefficients as the QCT and previous quantum mechanical capture/PST methods. This suggests that QCT capture/PST models are a good alternative to the QCT method for this and similar systems.

  12. Development and application of a hybrid transport methodology for active interrogation systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Royston, K.; Walters, W.; Haghighat, A.

    A hybrid Monte Carlo and deterministic methodology has been developed for application to active interrogation systems. The methodology consists of four steps: i) neutron flux distribution due to neutron source transport and subcritical multiplication; ii) generation of gamma source distribution from (n, 7) interactions; iii) determination of gamma current at a detector window; iv) detection of gammas by the detector. This paper discusses the theory and results of the first three steps for the case of a cargo container with a sphere of HEU in third-density water cargo. To complete the first step, a response-function formulation has been developed tomore » calculate the subcritical multiplication and neutron flux distribution. Response coefficients are pre-calculated using the MCNP5 Monte Carlo code. The second step uses the calculated neutron flux distribution and Bugle-96 (n, 7) cross sections to find the resulting gamma source distribution. In the third step the gamma source distribution is coupled with a pre-calculated adjoint function to determine the gamma current at a detector window. The AIMS (Active Interrogation for Monitoring Special-Nuclear-Materials) software has been written to output the gamma current for a source-detector assembly scanning across a cargo container using the pre-calculated values and taking significantly less time than a reference MCNP5 calculation. (authors)« less

  13. Morphology, Structural and Dielectric Properties of Vacuum Evaporated V2O5 Thin Films

    NASA Astrophysics Data System (ADS)

    Sengodan, R.; Shekar, B. Chandar; Sathish, S.

    Vanadium pentoxide (V2O5) thin films were deposited on well cleaned glass substrate using evaporation technique under the pressure of 10-5 Torr. The thickness of the films was measured by the multiple beam interferometry technique and cross checked by using capacitance method. Metal-Insulator-Metal (MIM) structure was fabricated by using suitable masks to study dielectric properties. The dielectric properties were studied by employing LCR meter in the frequency range 12 Hz to 100 kHz for various temperatures. The temperature co- efficient of permittivity (TCP), temperature co-efficient of capacitance (TCC) and dielectric constant (ɛ) were calculated. The activation energy was calculated and found to be very low. The activation energy was found to be increasing with increase in frequency. The obtained low value of activation energy suggested that the hopping conduction may be due to electrons rather than ions.

  14. Drying behaviour, effective diffusivity and energy of activation of olive leaves dried by microwave, vacuum and oven drying methods

    NASA Astrophysics Data System (ADS)

    Elhussein, Elaf Abdelillah Ali; Şahin, Selin

    2018-07-01

    Drying is the crucial food processing for bioactive components from plant materials before strating extraction in addition to preservation of raw plant materials during storage period. Olive leaves were dried by various methods such as microwave drying (MD), oven drying (OD) and vacuum drying (VD) at several temperature values in the present study. Mathematical models allow to develop, design and control the processes. 14 emprical equations were used to estimate the drying behaviour and the time required for drying. Convenience of the models were evaluated according to the correlation coefficient ( R 2 ), varience ( S 2 ) and root mean square deviation ( D RMS ). On the other hand, the effective diffusion coefficient and energy for activation were also calculated. Effects of the drying methods on the total phenolic (TPC), flavonoid (TFC) and oleuropein contents and free radical scavenging activity (FRSA) of the olive leaves were also investigated to take into considiration the quality of the dried product. MD has proved to be the fastest drying method having the highest effective diffusivity and the lowest activation energy with a more qualitive product.

  15. Drying behaviour, effective diffusivity and energy of activation of olive leaves dried by microwave, vacuum and oven drying methods

    NASA Astrophysics Data System (ADS)

    Elhussein, Elaf Abdelillah Ali; Şahin, Selin

    2018-01-01

    Drying is the crucial food processing for bioactive components from plant materials before strating extraction in addition to preservation of raw plant materials during storage period. Olive leaves were dried by various methods such as microwave drying (MD), oven drying (OD) and vacuum drying (VD) at several temperature values in the present study. Mathematical models allow to develop, design and control the processes. 14 emprical equations were used to estimate the drying behaviour and the time required for drying. Convenience of the models were evaluated according to the correlation coefficient (R 2 ), varience (S 2 ) and root mean square deviation (D RMS ). On the other hand, the effective diffusion coefficient and energy for activation were also calculated. Effects of the drying methods on the total phenolic (TPC), flavonoid (TFC) and oleuropein contents and free radical scavenging activity (FRSA) of the olive leaves were also investigated to take into considiration the quality of the dried product. MD has proved to be the fastest drying method having the highest effective diffusivity and the lowest activation energy with a more qualitive product.

  16. Comparison of aerodynamic coefficients obtained from theoretical calculations wind tunnel tests and flight tests data reduction for the alpha jet aircraft

    NASA Technical Reports Server (NTRS)

    Guiot, R.; Wunnenberg, H.

    1980-01-01

    The methods by which aerodynamic coefficients are determined and discussed. These include: calculations, wind tunnel experiments and experiments in flight for various prototypes of the Alpha Jet. A comparison of obtained results shows good correlation between expectations and in-flight test results.

  17. Quantum close coupling calculation of transport and relaxation properties for Hg-H2 system

    NASA Astrophysics Data System (ADS)

    Nemati-Kande, Ebrahim; Maghari, Ali

    2016-11-01

    Quantum mechanical close coupling calculation of the state-to-state transport and relaxation cross sections have been done for Hg-H2 molecular system using a high-level ab initio potential energy surface. Rotationally averaged cross sections were also calculated to obtain the energy dependent Senftleben-Beenakker cross sections at the energy range of 0.005-25,000 cm-1. Boltzmann averaging of the energy dependent Senftleben-Beenakker cross sections showed the temperature dependency over a wide temperature range of 50-2500 K. Interaction viscosity and diffusion coefficients were also calculated using close coupling cross sections and full classical Mason-Monchick approximation. The results were compared with each other and with the available experimental data. It was found that Mason-Monchick approximation for viscosity is more reliable than diffusion coefficient. Furthermore, from the comparison of the experimental diffusion coefficients with the result of the close coupling and Mason-Monchick approximation, it was found that the Hg-H2 potential energy surface used in this work can reliably predict diffusion coefficient data.

  18. Dose estimation for astronauts using dose conversion coefficients calculated with the PHITS code and the ICRP/ICRU adult reference computational phantoms.

    PubMed

    Sato, Tatsuhiko; Endo, Akira; Sihver, Lembit; Niita, Koji

    2011-03-01

    Absorbed-dose and dose-equivalent rates for astronauts were estimated by multiplying fluence-to-dose conversion coefficients in the units of Gy.cm(2) and Sv.cm(2), respectively, and cosmic-ray fluxes around spacecrafts in the unit of cm(-2) s(-1). The dose conversion coefficients employed in the calculation were evaluated using the general-purpose particle and heavy ion transport code system PHITS coupled to the male and female adult reference computational phantoms, which were released as a common ICRP/ICRU publication. The cosmic-ray fluxes inside and near to spacecrafts were also calculated by PHITS, using simplified geometries. The accuracy of the obtained absorbed-dose and dose-equivalent rates was verified by various experimental data measured both inside and outside spacecrafts. The calculations quantitatively show that the effective doses for astronauts are significantly greater than their corresponding effective dose equivalents, because of the numerical incompatibility between the radiation quality factors and the radiation weighting factors. These results demonstrate the usefulness of dose conversion coefficients in space dosimetry. © Springer-Verlag 2010

  19. Measurement of the mass energy-absorption coefficient of air for x-rays in the range from 3 to 60 keV.

    PubMed

    Buhr, H; Büermann, L; Gerlach, M; Krumrey, M; Rabus, H

    2012-12-21

    For the first time the absolute photon mass energy-absorption coefficient of air in the energy range of 10 to 60 keV has been measured with relative standard uncertainties below 1%, considerably smaller than those of up to 2% assumed for calculated data. For monochromatized synchrotron radiation from the electron storage ring BESSY II both the radiant power and the fraction of power deposited in dry air were measured using a cryogenic electrical substitution radiometer and a free air ionization chamber, respectively. The measured absorption coefficients were compared with state-of-the art calculations and showed an average deviation of 2% from calculations by Seltzer. However, they agree within 1% with data calculated earlier by Hubbell. In the course of this work, an improvement of the data analysis of a previous experimental determination of the mass energy-absorption coefficient of air in the range of 3 to 10 keV was found to be possible and corrected values of this preceding study are given.

  20. Impact of the new nuclear decay data of ICRP publication 107 on inhalation dose coefficients for workers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manabe, K.; Endo, Akira; Eckerman, Keith F

    2010-03-01

    The impact a revision of nuclear decay data had on dose coefficients was studied using data newly published in ICRP Publication 107 (ICRP 107) and existing data from ICRP Publication 38 (ICRP 38). Committed effective dose coefficients for occupational inhalation of radionuclides were calculated using two sets of decay data with the dose and risk calculation software DCAL for 90 elements, 774 nuclides and 1572 cases. The dose coefficients based on ICRP 107 increased by over 10 % compared with those based on ICRP 38 in 98 cases, and decreased by over 10 % in 54 cases. It was foundmore » that the differences in dose coefficients mainly originated from changes in the radiation energy emitted per nuclear transformation. In addition, revisions of the half-lives, radiation types and decay modes also resulted in changes in the dose coefficients.« less

  1. Data on inelastic processes in low-energy potassium-hydrogen and rubidium-hydrogen collisions

    NASA Astrophysics Data System (ADS)

    Yakovleva, S. A.; Barklem, P. S.; Belyaev, A. K.

    2018-01-01

    Two sets of rate coefficients for low-energy inelastic potassium-hydrogen and rubidium-hydrogen collisions were computed for each collisional system based on two model electronic structure calculations, performed by the quantum asymptotic semi-empirical and the quantum asymptotic linear combinations of atomic orbitals (LCAO) approaches, followed by quantum multichannel calculations for the non-adiabatic nuclear dynamics. The rate coefficients for the charge transfer (mutual neutralization, ion-pair formation), excitation and de-excitation processes are calculated for all transitions between the five lowest lying covalent states and the ionic states for each collisional system for the temperature range 1000-10 000 K. The processes involving higher lying states have extremely low rate coefficients and, hence, are neglected. The two model calculations both single out the same partial processes as having large and moderate rate coefficients. The largest rate coefficients correspond to the mutual neutralization processes into the K(5s 2S) and Rb(4d 2D) final states and at temperature 6000 K have values exceeding 3 × 10-8 cm3 s-1 and 4 × 10-8 cm3 s-1, respectively. It is shown that both the semi-empirical and the LCAO approaches perform equally well on average and that both sets of atomic data have roughly the same accuracy. The processes with large and moderate rate coefficients are likely to be important for non-LTE modelling in atmospheres of F, G and K-stars, especially metal-poor stars.

  2. Polarizability calculations on water, hydrogen, oxygen, and carbon dioxide

    NASA Technical Reports Server (NTRS)

    Nir, S.; Adams, S.; Rein, R.

    1973-01-01

    A semiclassical model of damped oscillators is used as a basis for the calculation of the dispersion of the refractive index, polarizability, and dielectric permeability in water, hydrogen, and oxygen in liquid and gaseous states, and in gaseous carbon dioxide. The absorption coefficient and the imaginary part of the refractive index are also calculated at corresponding wavelengths. A good agreement is obtained between the observed and calculated values of refractive indices, and between those of absorption coefficients in the region of absorption bands. The calculated values of oscillator strengths and damping factors are also discussed. The value of the polarizability of liquid water was about 2.8 times that of previous calculations.

  3. Seasonal variations in tuberculosis diagnosis among HIV-positive individuals in Southern Africa: analysis of cohort studies at antiretroviral treatment programmes

    PubMed Central

    Ballif, Marie; Zürcher, Kathrin; Reid, Stewart E; Boulle, Andrew; Fox, Matthew P; Prozesky, Hans W; Chimbetete, Cleophas; Egger, Matthias; Fenner, Lukas

    2018-01-01

    Objectives Seasonal variations in tuberculosis diagnoses have been attributed to seasonal climatic changes and indoor crowding during colder winter months. We investigated trends in pulmonary tuberculosis (PTB) diagnosis at antiretroviral therapy (ART) programmes in Southern Africa. Setting Five ART programmes participating in the International Epidemiology Database to Evaluate AIDS in South Africa, Zambia and Zimbabwe. Participants We analysed data of 331 634 HIV-positive adults (>15 years), who initiated ART between January 2004 and December 2014. Primary outcome measure We calculated aggregated averages in monthly counts of PTB diagnoses and ART initiations. To account for time trends, we compared deviations of monthly event counts to yearly averages, and calculated correlation coefficients. We used multivariable regressions to assess associations between deviations of monthly ART initiation and PTB diagnosis counts from yearly averages, adjusted for monthly air temperatures and geographical latitude. As controls, we used Kaposi sarcoma and extrapulmonary tuberculosis (EPTB) diagnoses. Results All programmes showed monthly variations in PTB diagnoses that paralleled fluctuations in ART initiations, with recurrent patterns across 2004–2014. The strongest drops in PTB diagnoses occurred in December, followed by April–May in Zimbabwe and South Africa. This corresponded to holiday seasons, when clinical activities are reduced. We observed little monthly variation in ART initiations and PTB diagnoses in Zambia. Correlation coefficients supported parallel trends in ART initiations and PTB diagnoses (correlation coefficient: 0.28, 95% CI 0.21 to 0.35, P<0.001). Monthly temperatures and latitude did not substantially change regression coefficients between ART initiations and PTB diagnoses. Trends in Kaposi sarcoma and EPTB diagnoses similarly followed changes in ART initiations throughout the year. Conclusions Monthly variations in PTB diagnosis at ART programmes in Southern Africa likely occurred regardless of seasonal variations in temperatures or latitude and reflected fluctuations in clinical activities and changes in health-seeking behaviour throughout the year, rather than climatic factors. PMID:29330173

  4. Boron diffusion in bcc-Fe studied by first-principles calculations

    NASA Astrophysics Data System (ADS)

    Xianglong, Li; Ping, Wu; Ruijie, Yang; Dan, Yan; Sen, Chen; Shiping, Zhang; Ning, Chen

    2016-03-01

    The diffusion mechanism of boron in bcc-Fe has been studied by first-principles calculations. The diffusion coefficients of the interstitial mechanism, the B-monovacancy complex mechanism, and the B-divacancy complex mechanism have been calculated. The calculated diffusion coefficient of the interstitial mechanism is D0 = 1.05 × 10-7 exp (-0.75 eV/kT) m2 · s-1, while the diffusion coefficients of the B-monovacancy and the B-divacancy complex mechanisms are D1 = 1.22 × 10-6 f1 exp (-2.27 eV/kT) m2 · s-1 and D2 ≈ 8.36 × 10-6 exp (-4.81 eV/kT) m2 · s-1, respectively. The results indicate that the dominant diffusion mechanism in bcc-Fe is the interstitial mechanism through an octahedral interstitial site instead of the complex mechanism. The calculated diffusion coefficient is in accordance with the reported experiment results measured in Fe-3%Si-B alloy (bcc structure). Since the non-equilibrium segregation of boron is based on the diffusion of the complexes as suggested by the theory, our calculation reasonably explains why the non-equilibrium segregation of boron is not observed in bcc-Fe in experiments. Project supported by the National Natural Science Foundation of China (Grant No. 51276016) and the National Basic Research Program of China (Grant No. 2012CB720406).

  5. Active video games and physical activity recommendations: a comparison of the Gamercize Stepper, XBOX Kinect and XaviX J-Mat.

    PubMed

    Mellecker, R R; McManus, A M

    2014-05-01

    The current study was designed to evaluate the intensity levels of three exergames and determine the association with physical activity recommendations that correspond to specific outcomes. The variation in cardiovascular responses between the three exergames was also examined. We employed a cross-sectional laboratory design. We recruited 18 girls to participate in a peak VO2 test and to play Gamercize, Kinect River Rush, XaviX J-Mat at three separate exergaming sessions. Linear regression equations of heart rate and percentage of peak VO2 were calculated for each participant to determine the intensity of exergame play. Differences in intensity between the three exergames and time spent in the recommended moderate (heart rate at ≥ 55% peak VO2) and vigorous (heart rate at ≥ 75% peak VO2) intensity levels were analyzed. We calculated the coefficient of variation for the mean heart rate to determine the difference in variance in heart rate values for the three exergames. When playing Gamercize and Kinect the girls did not play at recommended moderate or vigorous levels. Although the girls did not play at vigorous levels when playing XaviX J-Mat, our results showed that when playing XaviX J-Mat they did play at moderate intensity levels. No significant differences in the coefficient of variation between the three exergames were apparent. If active gaming is to be used to increase physical activity levels then individual differences in levels of exertion and specific activity recommendations need to be taken into consideration. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  6. Estimating inelastic heavy-particle - hydrogen collision data. II. Simplified model for ionic collisions and application to barium-hydrogen ionic collisions

    NASA Astrophysics Data System (ADS)

    Belyaev, Andrey K.; Yakovleva, Svetlana A.

    2017-12-01

    Aims: A simplified model is derived for estimating rate coefficients for inelastic processes in low-energy collisions of heavy particles with hydrogen, in particular, the rate coefficients with high and moderate values. Such processes are important for non-local thermodynamic equilibrium modeling of cool stellar atmospheres. Methods: The derived method is based on the asymptotic approach for electronic structure calculations and the Landau-Zener model for nonadiabatic transition probability determination. Results: It is found that the rate coefficients are expressed via statistical probabilities and reduced rate coefficients. It is shown that the reduced rate coefficients for neutralization and ion-pair formation processes depend on single electronic bound energies of an atomic particle, while the reduced rate coefficients for excitation and de-excitation processes depend on two electronic bound energies. The reduced rate coefficients are calculated and tabulated as functions of electronic bound energies. The derived model is applied to barium-hydrogen ionic collisions. For the first time, rate coefficients are evaluated for inelastic processes in Ba+ + H and Ba2+ + H- collisions for all transitions between the states from the ground and up to and including the ionic state. Tables with calculated data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/608/A33

  7. Estimating inelastic heavy-particle-hydrogen collision data. I. Simplified model and application to potassium-hydrogen collisions

    NASA Astrophysics Data System (ADS)

    Belyaev, Andrey K.; Yakovleva, Svetlana A.

    2017-10-01

    Aims: We derive a simplified model for estimating atomic data on inelastic processes in low-energy collisions of heavy-particles with hydrogen, in particular for the inelastic processes with high and moderate rate coefficients. It is known that these processes are important for non-LTE modeling of cool stellar atmospheres. Methods: Rate coefficients are evaluated using a derived method, which is a simplified version of a recently proposed approach based on the asymptotic method for electronic structure calculations and the Landau-Zener model for nonadiabatic transition probability determination. Results: The rate coefficients are found to be expressed via statistical probabilities and reduced rate coefficients. It turns out that the reduced rate coefficients for mutual neutralization and ion-pair formation processes depend on single electronic bound energies of an atom, while the reduced rate coefficients for excitation and de-excitation processes depend on two electronic bound energies. The reduced rate coefficients are calculated and tabulated as functions of electronic bound energies. The derived model is applied to potassium-hydrogen collisions. For the first time, rate coefficients are evaluated for inelastic processes in K+H and K++H- collisions for all transitions from ground states up to and including ionic states. Tables with calculated data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A147

  8. On the methods for determining the transverse dispersion coefficient in river mixing

    NASA Astrophysics Data System (ADS)

    Baek, Kyong Oh; Seo, Il Won

    2016-04-01

    In this study, the strengths and weaknesses of existing methods for determining the dispersion coefficient in the two-dimensional river mixing model were assessed based on hydraulic and tracer data sets acquired from experiments conducted on either laboratory channels or natural rivers. From the results of this study, it can be concluded that, when the longitudinal dispersion coefficient as well as the transverse dispersion coefficients must be determined in the transient concentration situation, the two-dimensional routing procedures, 2D RP and 2D STRP, can be employed to calculate dispersion coefficients among the observation methods. For the steady concentration situation, the STRP can be applied to calculate the transverse dispersion coefficient. When the tracer data are not available, either theoretical or empirical equations by the estimation method can be used to calculate the dispersion coefficient using the geometric and hydraulic data sets. Application of the theoretical and empirical equations to the laboratory channel showed that equations by Baek and Seo [[3], 2011] predicted reasonable values while equations by Fischer [23] and Boxwall and Guymer (2003) overestimated by factors of ten to one hundred. Among existing empirical equations, those by Jeon et al. [28] and Baek and Seo [6] gave the agreeable values of the transverse dispersion coefficient for most cases of natural rivers. Further, the theoretical equation by Baek and Seo [5] has the potential to be broadly applied to both laboratory and natural channels.

  9. Translation, Cross-Cultural Adaptation, and Validation of the Activity Rating Scale for Disorders of the Knee.

    PubMed

    Flosadottir, Vala; Roos, Ewa M; Ageberg, Eva

    2017-09-01

    The Activity Rating Scale (ARS) for disorders of the knee evaluates the level of activity by the frequency of participation in 4 separate activities with high demands on knee function, with a score ranging from 0 (none) to 16 (pivoting activities 4 times/wk). To translate and cross-culturally adapt the ARS into Swedish and to assess measurement properties of the Swedish version of the ARS. Cohort study (diagnosis); Level of evidence, 2. The COSMIN guidelines were followed. Participants (N = 100 [55 women]; mean age, 27 years) who were undergoing rehabilitation for a knee injury completed the ARS twice for test-retest reliability. The Knee injury and Osteoarthritis Outcome Score (KOOS), Tegner Activity Scale (TAS), and modernized Saltin-Grimby Physical Activity Level Scale (SGPALS) were administered at baseline to validate the ARS. Construct validity and responsiveness of the ARS were evaluated by testing predefined hypotheses regarding correlations between the ARS, KOOS, TAS, and SGPALS. The Cronbach alpha, intraclass correlation coefficients, absolute reliability, standard error of measurement, smallest detectable change, and Spearman rank-order correlation coefficients were calculated. The ARS showed good internal consistency (α ≈ 0.96), good test-retest reliability (intraclass correlation coefficient >0.9), and no systematic bias between measurements. The standard error of measurement was less than 2 points, and the smallest detectable change was less than 1 point at the group level and less than 5 points at the individual level. More than 75% of the hypotheses were confirmed, indicating good construct validity and good responsiveness of the ARS. The Swedish version of the ARS is valid, reliable, and responsive for evaluating the level of activity based on the frequency of participation in high-demand knee sports activities in young adults with a knee injury.

  10. Calculating the Effect of External Shading on the Solar Heat Gain Coefficient of Windows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohler, Christian; Shukla, Yash; Rawal, Rajan

    Current prescriptive building codes have limited ways to account for the effect of solar shading, such as overhangs and awnings, on window solar heat gains. We propose two new indicators, the adjusted Solar Heat Gain Coefficient (aSHGC) which accounts for external shading while calculating the SHGC of a window, and a weighted SHGC (SHGCw) which provides a seasonal SHGC weighted by solar intensity. We demonstrate a method to calculate these indices using existing tools combined with additional calculations. The method is demonstrated by calculating the effect of an awning on a clear double glazing in New Delhi.

  11. Self-diffusion and conductivity in an ultracold strongly coupled plasma: Calculation by the method of molecular dynamics

    NASA Astrophysics Data System (ADS)

    Zelener, B. B.; Zelener, B. V.; Manykin, E. A.; Bronin, S. Ya; Bobrov, A. A.; Khikhlukha, D. R.

    2018-01-01

    We present results of calculations by the method of molecular dynamics of self-diffusion and conductivity of electron and ion components of ultracold plasma in a comparison with available theoretical and experimental data. For the ion self-diffusion coefficient, good agreement was obtained with experiments on ultracold plasma. The results of the calculation of self-diffusion also agree well with other calculations performed for the same values of the coupling parameter, but at high temperatures. The difference in the results of the conductivity calculations on the basis of the current autocorrelation function and on the basis of the diffusion coefficient is discussed.

  12. Computation of Phase Equilibria, State Diagrams and Gas/Particle Partitioning of Mixed Organic-Inorganic Aerosols

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Marcolli, C.; Peter, T.

    2009-04-01

    The chemical composition of organic-inorganic aerosols is linked to several processes and specific topics in the field of atmospheric aerosol science. Photochemical oxidation of organics in the gas phase lowers the volatility of semi-volatile compounds and contributes to the particulate matter by gas/particle partitioning. Heterogeneous chemistry and changes in the ambient relative humidity influence the aerosol composition as well. Molecular interactions between condensed phase species show typically non-ideal thermodynamic behavior. Liquid-liquid phase separations into a mainly polar, aqueous and a less polar, organic phase may considerably influence the gas/particle partitioning of semi-volatile organics and inorganics (Erdakos and Pankow, 2004; Chang and Pankow, 2006). Moreover, the phases present in the aerosol particles feed back on the heterogeneous, multi-phase chemistry, influence the scattering and absorption of radiation and affect the CCN ability of the particles. Non-ideal thermodynamic behavior in mixtures is usually described by an expression for the excess Gibbs energy, enabling the calculation of activity coefficients. We use the group-contribution model AIOMFAC (Zuend et al., 2008) to calculate activity coefficients, chemical potentials and the total Gibbs energy of mixed organic-inorganic systems. This thermodynamic model was combined with a robust global optimization module to compute potential liquid-liquid (LLE) and vapor-liquid-liquid equilibria (VLLE) as a function of particle composition at room temperature. And related to that, the gas/particle partitioning of semi-volatile components. Furthermore, we compute the thermodynamic stability (spinodal limits) of single-phase solutions, which provides information on the process type and kinetics of a phase separation. References Chang, E. I. and Pankow, J. F.: Prediction of activity coefficients in liquid aerosol particles containing organic compounds, dissolved inorganic salts, and water - Part 2: Consideration of phase separation effects by an XUNIFAC model, Atmos. Environ., 40, 6422-6436, 2006. Erdakos, G. B. and Pankow, J. F.: Gas/particle partitioning of neutral and ionizing compounds to single- and multi-phase aerosol particles. 2. Phase separation in liquid particulate matter containing both polar and low-polarity organic compounds, Atmos. Environ., 38, 1005-1013, 2004. Zuend, A., Marcolli, C., Luo, B. P., and Peter, T.: A thermodynamic model of mixed organic-inorganic aerosols to predict activity coefficients, Atmos. Chem. Phys., 8, 4559-4593, 2008.

  13. Mercado/Robb/Buchdahl coefficients: an update of 243 common glasses

    NASA Astrophysics Data System (ADS)

    Bolser, Michael

    2002-12-01

    The 1983 Mercado/Robb listing of Buchdahl chromatic coordinate coefficients is supplemented with glasses from the Schott and O'Hara catalogues. The coefficients were calculated by using Buchdahl's cubic model. Appropriately selected materials yield a superachromat.

  14. Development of a web-based CT dose calculator: WAZA-ARI.

    PubMed

    Ban, N; Takahashi, F; Sato, K; Endo, A; Ono, K; Hasegawa, T; Yoshitake, T; Katsunuma, Y; Kai, M

    2011-09-01

    A web-based computed tomography (CT) dose calculation system (WAZA-ARI) is being developed based on the modern techniques for the radiation transport simulation and for software implementation. Dose coefficients were calculated in a voxel-type Japanese adult male phantom (JM phantom), using the Particle and Heavy Ion Transport code System. In the Monte Carlo simulation, the phantom was irradiated with a 5-mm-thick, fan-shaped photon beam rotating in a plane normal to the body axis. The dose coefficients were integrated into the system, which runs as Java servlets within Apache Tomcat. Output of WAZA-ARI for GE LightSpeed 16 was compared with the dose values calculated similarly using MIRD and ICRP Adult Male phantoms. There are some differences due to the phantom configuration, demonstrating the significance of the dose calculation with appropriate phantoms. While the dose coefficients are currently available only for limited CT scanner models and scanning options, WAZA-ARI will be a useful tool in clinical practice when development is finalised.

  15. Calculating the permeability coefficients of mixed matrix membranes of polydimethylsiloxane and silicalite crystals to various ethanol-water solutions using molecular simulations.

    EPA Science Inventory

    The permeability coefficients of mixed matrix membranes of polydimethylsiloxane (PDMS) and silicalite crystal are taken as the sum of the permeability coefficients of membrane components each weighted by their associated mass fraction. The permeability coefficient of a membrane c...

  16. Aspects of nonviral gene therapy: correlation of molecular parameters with lipoplex structure and transfection efficacy in pyridinium-based cationic lipids.

    PubMed

    Parvizi, Paria; Jubeli, Emile; Raju, Liji; Khalique, Nada Abdul; Almeer, Ahmed; Allam, Hebatalla; Manaa, Maryem Al; Larsen, Helge; Nicholson, David; Pungente, Michael D; Fyles, Thomas M

    2014-01-30

    This study seeks correlations between the molecular structures of cationic and neutral lipids, the lipid phase behavior of the mixed-lipid lipoplexes they form with plasmid DNA, and the transfection efficacy of the lipoplexes. Synthetic cationic pyridinium lipids were co-formulated (1:1) with the cationic lipid 1,2-dimyristoyl-sn-glycero-3-ethylphosphocholine (EPC), and these lipids were co-formulated (3:2) with the neutral lipids 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) or cholesterol. All lipoplex formulations exhibited plasmid DNA binding and a level of protection from DNase I degradation. Composition-dependent transfection (beta-galactosidase and GFP) and cytotoxicity was observed in Chinese hamster ovarian-K1 cells. The most active formulations containing the pyridinium lipids were less cytotoxic but of comparable activity to a Lipofectamine 2000™ control. Molecular structure parameters and partition coefficients were calculated for all lipids using fragment additive methods. The derived shape parameter values correctly correlated with observed hexagonal lipid phase behavior of lipoplexes as derived from small-angle X-ray scattering experiments. A transfection index applicable to hexagonal phase lipoplexes derived from calculated parameters of the lipid mixture (partition coefficient, shape parameter, lipoplex packing) produced a direct correlation with transfection efficiency. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. The solubility and activity coefficient of oxygen in salt solutions and brines

    NASA Astrophysics Data System (ADS)

    Clegg, Simon L.; Brimblecombe, Peter

    1990-12-01

    Molal oxygen activity coefficients ( γO2) in aqueous salt solutions from 0-100°C have been calculated from O 2 solubility data and established Henry's law constants. Pitzer specific interaction model parameters λO2c, λO2a and ζO2ca have been determined for the following ions: H +, NH +4 Li +, Na +, Rb +, Cs +, Mg 2+, Ca 2+, Ba 2+, Al 3+, OH -, Cl -, Br -, I -, NO -3, SO 2-3, SO 2-4, HCO 3-, CO 32- and PO 3-4. Results confirm that the effect of individual ions on In ( γO2) is additive. Model calculations of γO2 in seawater agree with experimentally derived values at normal salinities to within 0.2% at 298 K and 0.65% at 273 K. Additional data for brines of seawater composition enable the model to be used to represent γO2 empirically to a salinity of 255 S%. The model has thus far only been parameterised from measurements for single salt solutions. Comparisons with experimental data for brines suggest that additional model parameters, obtained from ternary solution data, will be required for accurate representation of γO2 in mixed salt solutions above about 5 mol kg -1 total ion concentration.

  18. Investigating the Effect of Ligand Amount and Injected Therapeutic Activity: A Simulation Study for 177Lu-Labeled PSMA-Targeting Peptides

    PubMed Central

    Schuchardt, Christiane; Kulkarni, Harshad R.; Shahinfar, Mostafa; Singh, Aviral; Glatting, Gerhard; Baum, Richard P.; Beer, Ambros J.

    2016-01-01

    In molecular radiotherapy with 177Lu-labeled prostate specific membrane antigen (PSMA) peptides, kidney and/or salivary glands doses limit the activity which can be administered. The aim of this work was to investigate the effect of the ligand amount and injected activity on the tumor-to-normal tissue biologically effective dose (BED) ratio for 177Lu-labeled PSMA peptides. For this retrospective study, a recently developed physiologically based pharmacokinetic model was adapted for PSMA targeting peptides. General physiological parameters were taken from the literature. Individual parameters were fitted to planar gamma camera measurements (177Lu-PSMA I&T) of five patients with metastasizing prostate cancer. Based on the estimated parameters, the pharmacokinetics of tumor, salivary glands, kidneys, total body and red marrow was simulated and time-integrated activity coefficients were calculated for different peptide amounts. Based on these simulations, the absorbed doses and BEDs for normal tissue and tumor were calculated for all activities leading to a maximal tolerable kidney BED of 10 Gy2.5/cycle, a maximal salivary gland absorbed dose of 7.5 Gy/cycle and a maximal red marrow BED of 0.25 Gy15/cycle. The fits yielded coefficients of determination > 0.85, acceptable relative standard errors and low parameter correlations. All estimated parameters were in a physiologically reasonable range. The amounts (for 25−29 nmol) and pertaining activities leading to a maximal tumor dose, considering the defined maximal tolerable doses to organs of risk, were calculated to be 272±253 nmol (452±420 μg) and 7.3±5.1 GBq. Using the actually injected amount (235±155 μg) and the same maximal tolerable doses, the potential improvement for the tumor BED was 1–3 fold. The results suggest that currently given amounts for therapy are in the appropriate order of magnitude for many lesions. However, for lesions with high binding site density or lower perfusion, optimizing the peptide amount and activity might improve the tumor-to-kidney and tumor-to-salivary glands BED ratio considerably. PMID:27611841

  19. Investigating the Effect of Ligand Amount and Injected Therapeutic Activity: A Simulation Study for 177Lu-Labeled PSMA-Targeting Peptides.

    PubMed

    Kletting, Peter; Schuchardt, Christiane; Kulkarni, Harshad R; Shahinfar, Mostafa; Singh, Aviral; Glatting, Gerhard; Baum, Richard P; Beer, Ambros J

    2016-01-01

    In molecular radiotherapy with 177Lu-labeled prostate specific membrane antigen (PSMA) peptides, kidney and/or salivary glands doses limit the activity which can be administered. The aim of this work was to investigate the effect of the ligand amount and injected activity on the tumor-to-normal tissue biologically effective dose (BED) ratio for 177Lu-labeled PSMA peptides. For this retrospective study, a recently developed physiologically based pharmacokinetic model was adapted for PSMA targeting peptides. General physiological parameters were taken from the literature. Individual parameters were fitted to planar gamma camera measurements (177Lu-PSMA I&T) of five patients with metastasizing prostate cancer. Based on the estimated parameters, the pharmacokinetics of tumor, salivary glands, kidneys, total body and red marrow was simulated and time-integrated activity coefficients were calculated for different peptide amounts. Based on these simulations, the absorbed doses and BEDs for normal tissue and tumor were calculated for all activities leading to a maximal tolerable kidney BED of 10 Gy2.5/cycle, a maximal salivary gland absorbed dose of 7.5 Gy/cycle and a maximal red marrow BED of 0.25 Gy15/cycle. The fits yielded coefficients of determination > 0.85, acceptable relative standard errors and low parameter correlations. All estimated parameters were in a physiologically reasonable range. The amounts (for 25-29 nmol) and pertaining activities leading to a maximal tumor dose, considering the defined maximal tolerable doses to organs of risk, were calculated to be 272±253 nmol (452±420 μg) and 7.3±5.1 GBq. Using the actually injected amount (235±155 μg) and the same maximal tolerable doses, the potential improvement for the tumor BED was 1-3 fold. The results suggest that currently given amounts for therapy are in the appropriate order of magnitude for many lesions. However, for lesions with high binding site density or lower perfusion, optimizing the peptide amount and activity might improve the tumor-to-kidney and tumor-to-salivary glands BED ratio considerably.

  20. Condensation and dissociation rates for gas phase metal clusters from molecular dynamics trajectory calculations

    DOE PAGES

    Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.

    2018-04-24

    In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-Molecular Dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients; we use this approach to examine atomic condensation onto 6-56 atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity ( v) between atom and cluster andmore » the initial impact parameter ( b). In all cases there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms, and for 14 atom and 28 atom Mg clusters, as cluster equilibration temperature increases the condensation rate coefficient drops to values below the hard sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (> 1000 m s -1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). In conclusion, the presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.« less

  1. Condensation and dissociation rates for gas phase metal clusters from molecular dynamics trajectory calculations.

    PubMed

    Yang, Huan; Goudeli, Eirini; Hogan, Christopher J

    2018-04-28

    In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard-sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-molecular dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients. We use this approach to examine atomic condensation onto 6-56-atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity (v) between atom and cluster and the initial impact parameter (b). In all cases, there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard-sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms and for 14- and 28-atom Mg clusters, as cluster equilibration temperature increases, the condensation rate coefficient drops to values below the hard-sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (>1000 m s -1 ) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). The presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.

  2. Condensation and dissociation rates for gas phase metal clusters from molecular dynamics trajectory calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.

    In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-Molecular Dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients; we use this approach to examine atomic condensation onto 6-56 atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity ( v) between atom and cluster andmore » the initial impact parameter ( b). In all cases there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms, and for 14 atom and 28 atom Mg clusters, as cluster equilibration temperature increases the condensation rate coefficient drops to values below the hard sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (> 1000 m s -1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). In conclusion, the presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.« less

  3. Condensation and dissociation rates for gas phase metal clusters from molecular dynamics trajectory calculations

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.

    2018-04-01

    In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard-sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-molecular dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients. We use this approach to examine atomic condensation onto 6-56-atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity (v) between atom and cluster and the initial impact parameter (b). In all cases, there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard-sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms and for 14- and 28-atom Mg clusters, as cluster equilibration temperature increases, the condensation rate coefficient drops to values below the hard-sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (>1000 m s-1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). The presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.

  4. Improved method for calculating neoclassical transport coefficients in the banana regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taguchi, M., E-mail: taguchi.masayoshi@nihon-u.ac.jp

    The conventional neoclassical moment method in the banana regime is improved by increasing the accuracy of approximation to the linearized Fokker-Planck collision operator. This improved method is formulated for a multiple ion plasma in general tokamak equilibria. The explicit computation in a model magnetic field shows that the neoclassical transport coefficients can be accurately calculated in the full range of aspect ratio by the improved method. The some neoclassical transport coefficients for the intermediate aspect ratio are found to appreciably deviate from those obtained by the conventional moment method. The differences between the transport coefficients with these two methods aremore » up to about 20%.« less

  5. Validation of DRAGON4/DONJON4 simulation methodology for a typical MNSR by calculating reactivity feedback coefficient and neutron flux

    NASA Astrophysics Data System (ADS)

    Al Zain, Jamal; El Hajjaji, O.; El Bardouni, T.; Boukhal, H.; Jaï, Otman

    2018-06-01

    The MNSR is a pool type research reactor, which is difficult to model because of the importance of neutron leakage. The aim of this study is to evaluate a 2-D transport model for the reactor compatible with the latest release of the DRAGON code and 3-D diffusion of the DONJON code. DRAGON code is then used to generate the group macroscopic cross sections needed for full core diffusion calculations. The diffusion DONJON code, is then used to compute the effective multiplication factor (keff), the feedback reactivity coefficients and neutron flux which account for variation in fuel and moderator temperatures as well as the void coefficient have been calculated using the DRAGON and DONJON codes for the MNSR research reactor. The cross sections of all the reactor components at different temperatures were generated using the DRAGON code. These group constants were used then in the DONJON code to calculate the multiplication factor and the neutron spectrum at different water and fuel temperatures using 69 energy groups. Only one parameter was changed where all other parameters were kept constant. Finally, Good agreements between the calculated and measured have been obtained for every of the feedback reactivity coefficients and neutron flux.

  6. Use of Navier-Stokes methods for the calculation of high-speed nozzle flow fields

    NASA Technical Reports Server (NTRS)

    Georgiadis, Nicholas J.; Yoder, Dennis A.

    1994-01-01

    Flows through three reference nozzles have been calculated to determine the capabilities and limitations of the widely used Navier-Stokes solver, PARC. The nozzles examined have similar dominant flow characteristics as those considered for supersonic transport programs. Flows from an inverted velocity profile (IVP) nozzle, an under expanded nozzle, and an ejector nozzle were examined. PARC calculations were obtained with its standard algebraic turbulence model, Thomas, and the two-equation turbulence model, Chien k-epsilon. The Thomas model was run with the default coefficient of mixing set at both 0.09 and a larger value of 0.13 to improve the mixing prediction. Calculations using the default value substantially underpredicted the mixing for all three flows. The calculations obtained with the higher mixing coefficient better predicted mixing in the IVP and underexpanded nozzle flows but adversely affected PARC's convergence characteristics for the IVP nozzle case. The ejector nozzle case did not converge with the Thomas model and the higher mixing coefficient. The Chien k-epsilon results were in better agreement with the experimental data overall than were those of the Thomas run with the default mixing coefficient, but the default boundary conditions for k and epsilon underestimated the levels of mixing near the nozzle exits.

  7. Sample Size Calculation for Estimating or Testing a Nonzero Squared Multiple Correlation Coefficient

    ERIC Educational Resources Information Center

    Krishnamoorthy, K.; Xia, Yanping

    2008-01-01

    The problems of hypothesis testing and interval estimation of the squared multiple correlation coefficient of a multivariate normal distribution are considered. It is shown that available one-sided tests are uniformly most powerful, and the one-sided confidence intervals are uniformly most accurate. An exact method of calculating sample size to…

  8. Nonperturbative renormalization of quark bilinear operators and B{sub K} using domain wall fermions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoki, Y.; Dawson, C.; Brookhaven National Laboratory, Upton, New York 11973

    2008-09-01

    We present a calculation of the renormalization coefficients of the quark bilinear operators and the K-K mixing parameter B{sub K}. The coefficients relating the bare lattice operators to those in the RI/MOM scheme are computed nonperturbatively and then matched perturbatively to the MS scheme. The coefficients are calculated on the RBC/UKQCD 2+1 flavor dynamical lattice configurations. Specifically we use a 16{sup 3}x32 lattice volume, the Iwasaki gauge action at {beta}=2.13 and domain wall fermions with L{sub s}=16.

  9. Shear viscosity coefficient of liquid lanthanides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, H. P., E-mail: patel.harshal2@gmail.com; Thakor, P. B., E-mail: pbthakore@rediffmail.com; Prajapati, A. V., E-mail: anand0prajapati@gmail.com

    2015-05-15

    Present paper deals with the computation of shear viscosity coefficient (η) of liquid lanthanides. The effective pair potential v(r) is calculated through our newly constructed model potential. The Pair distribution function g(r) is calculated from PYHS reference system. To see the influence of local field correction function, Hartree (H), Tailor (T) and Sarkar et al (S) local field correction function are used. Present results are compared with available experimental as well as theoretical data. Lastly, we found that our newly constructed model potential successfully explains the shear viscosity coefficient (η) of liquid lanthanides.

  10. Shear viscosity coefficient of liquid lanthanides

    NASA Astrophysics Data System (ADS)

    Patel, H. P.; Sonvane, Y. A.; Thakor, P. B.; Prajapati, A. V.

    2015-05-01

    Present paper deals with the computation of shear viscosity coefficient (η) of liquid lanthanides. The effective pair potential v(r) is calculated through our newly constructed model potential. The Pair distribution function g(r) is calculated from PYHS reference system. To see the influence of local field correction function, Hartree (H), Tailor (T) and Sarkar et al (S) local field correction function are used. Present results are compared with available experimental as well as theoretical data. Lastly, we found that our newly constructed model potential successfully explains the shear viscosity coefficient (η) of liquid lanthanides.

  11. Evaluation of jamming efficiency for the protection of a single ground object

    NASA Astrophysics Data System (ADS)

    Matuszewski, Jan

    2018-04-01

    The electronic countermeasures (ECM) include methods to completely prevent or restrict the effective use of the electromagnetic spectrum by the opponent. The most widespread means of disorganizing the operation of electronic devices is to create active and passive radio-electronic jamming. The paper presents the way of jamming efficiency calculations for protecting ground objects against the radars mounted on the airborne platforms. The basic mathematical formulas for calculating the efficiency of active radar jamming are presented. The numerical calculations for ground object protection are made for two different electronic warfare scenarios: the jammer is placed very closely and in a determined distance from the protecting object. The results of these calculations are presented in the appropriate figures showing the minimal distance of effective jamming. The realization of effective radar jamming in electronic warfare systems depends mainly on the precise knowledge of radar and the jammer's technical parameters, the distance between them, the assumed value of the degradation coefficient, the conditions of electromagnetic energy propagation and the applied jamming method. The conclusions from these calculations facilitate making a decision regarding how jamming should be conducted to achieve high efficiency during the electronic warfare training.

  12. Evaluating linear response in active systems with no perturbing field: Application to the calculation of an effective temperature

    NASA Astrophysics Data System (ADS)

    Szamel, Grzegorz

    We present a method for the evaluation of time-dependent linear response functions for systems of active particles propelled by a persistent (colored) noise from unperturbed simulations. The method is inspired by the Malliavin weights sampling method proposed earlier for systems of (passive) Brownian particles. We illustrate our method by evaluating a linear response function for a single active particle in an external harmonic potential. As an application, we calculate the time-dependent mobility function and an effective temperature, defined through the Einstein relation between the self-diffusion and mobility coefficients, for a system of active particles interacting via a screened-Coulomb potential. We find that this effective temperature decreases with increasing persistence time of the self-propulsion. Initially, for not too large persistence times, it changes rather slowly, but then it decreases markedly when the persistence length of the self-propelled motion becomes comparable with the particle size. Supported by NSF and ERC.

  13. Phase relations in the system NaCl-KCl-H2O: V. Thermodynamic-PTX analysis of solid-liquid equilibria at high temperatures and pressures

    USGS Publications Warehouse

    Sterner, S.M.; Chou, I.-Ming; Downs, R.T.; Pitzer, Kenneth S.

    1992-01-01

    The Gibbs energies of mixing for NaCl-KCl binary solids and liquids and solid-saturated NaCl-KCl-H2O ternary liquids were modeled using asymmetric Margules treatments. The coefficients of the expressions were calibrated using an extensive array of binary solvus and solidus data, and both binary and ternary liquidus data. Over the PTX range considered, the system exhibits complete liquid miscibility among all three components and extensive solid solution along the anhydrous binary. Solid-liquid and solid-solid phase equilibria were calculated by using the resulting equations and invoking the equality of chemical potentials of NaCl and KCl between appropriate phases at equilibrium. The equations reproduce the ternary liquidus and predict activity coefficients for NaCl and KCl components in the aqueous liquid under solid-saturation conditions between 673 and 1200 K from vapor saturation up to 5 kbar. In the NaCl-KCl anhydrous binary system, the equations describe phase equilibria and predict activity coefficients of the salt components for all stable compositions of solid and liquid phases between room temperature and 1200 K and from 1 bar to 5 kbar. ?? 1992.

  14. Thermodynamic properties of gases dissolved in electrolyte solutions.

    NASA Technical Reports Server (NTRS)

    Tiepel, E. W.; Gubbins, K. E.

    1973-01-01

    A method based on perturbation theory for mixtures is applied to the prediction of thermodynamic properties of gases dissolved in electrolyte solutions. The theory is compared with experimental data for the dependence of the solute activity coefficient on concentration, temperature, and pressure; calculations are included for partial molal enthalpy and volume of the dissolved gas. The theory is also compared with previous theories for salt effects and found to be superior. The calculations are best for salting-out systems. The qualitative feature of salting-in is predicted by the theory, but quantitative predictions are not satisfactory for such systems; this is attributed to approximations made in evaluating the perturbation terms.

  15. Theoretical study of dissociative recombination of Cl{sub 2}{sup +}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Mingwu; Graduate School of Chinese Academy of Sciences, Beijing 100039; Department of Physics, Stockholm University, S-106 91 Stockholm

    Theoretical studies of low-energy electron collisions with Cl{sub 2}{sup +} leading to direct dissociative recombination are presented. The relevant potential energy curves and autoionization widths are calculated by combining electron scattering calculations using the complex Kohn variational method with multireference configuration interaction structure calculations. The dynamics on the four lowest resonant states of all symmetries is studied by the solution of a driven Schroedinger equation. The thermal rate coefficient for dissociative recombination of Cl{sub 2}{sup +} is calculated and the influence on the thermal rate coefficient from vibrational excited target ions is investigated.

  16. Reduced Variance using ADVANTG in Monte Carlo Calculations of Dose Coefficients to Stylized Phantoms

    NASA Astrophysics Data System (ADS)

    Hiller, Mauritius; Bellamy, Michael; Eckerman, Keith; Hertel, Nolan

    2017-09-01

    The estimation of dose coefficients of external radiation sources to the organs in phantoms becomes increasingly difficult for lower photon source energies. This study focus on the estimation of photon emitters around the phantom. The computer time needed to calculate a result within a certain precision can be lowered by several orders of magnitude using ADVANTG compared to a standard run. Using ADVANTG which employs the DENOVO adjoint calculation package enables the user to create a fully populated set of weight windows and source biasing instructions for an MCNP calculation.

  17. Temporal correlation coefficient for directed networks.

    PubMed

    Büttner, Kathrin; Salau, Jennifer; Krieter, Joachim

    2016-01-01

    Previous studies dealing with network theory focused mainly on the static aggregation of edges over specific time window lengths. Thus, most of the dynamic information gets lost. To assess the quality of such a static aggregation the temporal correlation coefficient can be calculated. It measures the overall possibility for an edge to persist between two consecutive snapshots. Up to now, this measure is only defined for undirected networks. Therefore, we introduce the adaption of the temporal correlation coefficient to directed networks. This new methodology enables the distinction between ingoing and outgoing edges. Besides a small example network presenting the single calculation steps, we also calculated the proposed measurements for a real pig trade network to emphasize the importance of considering the edge direction. The farm types at the beginning of the pork supply chain showed clearly higher values for the outgoing temporal correlation coefficient compared to the farm types at the end of the pork supply chain. These farm types showed higher values for the ingoing temporal correlation coefficient. The temporal correlation coefficient is a valuable tool to understand the structural dynamics of these systems, as it assesses the consistency of the edge configuration. The adaption of this measure for directed networks may help to preserve meaningful additional information about the investigated network that might get lost if the edge directions are ignored.

  18. Calculation of electronic transport coefficients of Ag and Au plasma.

    PubMed

    Apfelbaum, E M

    2011-12-01

    The thermoelectric transport coefficients of silver and gold plasma have been calculated within the relaxation-time approximation. We considered temperatures of 10-100 kK and densities of ρ

  19. Properties of solid and gaseous hydrogen, based upon anisotropic pair interactions

    NASA Technical Reports Server (NTRS)

    Etters, R. D.; Danilowicz, R.; England, W.

    1975-01-01

    Properties of H2 are studied on the basis of an analytic anisotropic potential deduced from atomic orbital and perturbation calculations. The low-pressure solid results are based on a spherical average of the anisotropic potential. The ground state energy and the pressure-volume relation are calculated. The metal-insulator phase transition pressure is predicted. Second virial coefficients are calculated for H2 and D2, as is the difference in second virial coefficients between ortho and para H2 and D2.

  20. Data files for ab initio calculations of the lattice parameter and elastic stiffness coefficients of bcc Fe with solutes

    DOE PAGES

    Fellinger, Michael R.; Hector, Jr., Louis G.; Trinkle, Dallas R.

    2016-11-29

    Here, we present computed datasets on changes in the lattice parameter and elastic stiffness coefficients of BCC Fe due to substitutional Al, B, Cu, Mn, and Si solutes, and octahedral interstitial C and N solutes. The data is calculated using the methodology based on density functional theory (DFT). All the DFT calculations were performed using the Vienna Ab initio Simulations Package (VASP). The data is stored in the NIST dSpace repository.

  1. Hyperfine excitation of C2H in collisions with ortho- and para-H2

    NASA Astrophysics Data System (ADS)

    Dagdigian, Paul J.

    2018-06-01

    Accurate estimation of the abundance of the ethynyl (C2H) radical requires accurate radiative and collisional rate coefficients. Hyperfine-resolved rate coefficients for (de-)excitation of C2H in collisions with ortho- and para-H2 are presented in this work. These rate coefficients were computed in time-independent close-coupling quantum scattering calculations that employed a potential energy surface recently computed at the coupled-clusters level of theory that describes the interaction of C2H with H2. Rate coefficients for temperatures from 10 to 300 K were computed for all transitions among the first 40 hyperfine energy levels of C2H in collisions with ortho- and para-H2. These rate coefficients were employed in simple radiative transfer calculations to simulate the excitation of C2H in typical molecular clouds.

  2. Determination of the Peltier Coefficient of Germanium in a Vertical Bridgeman-Stockbarger Furnace

    NASA Technical Reports Server (NTRS)

    Weigel, Michaela E. K.; Matthiesen, David H.

    1997-01-01

    The Peltier effect is the fundamental mechanism that makes interface demarcation through current pulsing possible. If a method for calculating the necessary current density for effective demarcation is to be developed, it will be necessary to know the value of the Peltier coefficient. This study determined experimentally the value of the Peltier coefficient for gallium-doped germanium by comparing the change in average growth rates between current-on and current-off periods. Current-on and current-off layer thickness measurements were made using differential interference contrast microscopy and atomic force microscopy. It was found that the Joule and Thomson effects could not be neglected. Peltier coefficients calculated from the experimental data with an analysis that accounts for Joule, Thomson, and Peltier effects yielded an average value for the Peltier coefficient of 0.076 +/- 0.015 V.

  3. Interaction of flavonoids, the naturally occurring antioxidants with different media: a UV-visible spectroscopic study.

    PubMed

    Naseem, Bushra; Shah, S W H; Hasan, Aurangzeb; Sakhawat Shah, S

    2010-04-01

    Quantitative parameters for interaction of flavonoids-the naturally occurring antioxidants, with solvents and surfactants are determined using UV-visible absorption spectroscopy. The availability of flavonoids; kaempferol, apigenin, kaempferide and rhamnetin in micelles of sodium dodecyl sulfate (SDS) is reflected in terms of partition coefficient, K(c). Thermodynamic calculations show that the process of transfer of flavonoid molecules to anionic micelles of SDS is energy efficient. A distortion in flavonoid's morphology occurs in case of kaempferol and apigenin in surfactant and water, exhibited in terms of a new band in the UV region of electronic spectra of these flavonoids. The partition coefficients of structurally related flavonoids are correlated with their antioxidant activities. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Diffusion of Magnesium in Led Structures with InGaN/GaN Quantum Wells at True Growth Temperatures 860-980°C of p-GaN

    NASA Astrophysics Data System (ADS)

    Romanov, I. S.; Prudaev, I. A.; Brudnyi, V. N.

    2018-05-01

    The results of an investigation of Mg diffusion in blue LED structures with InGaN/GaN quantum wells are presented for various growth temperatures of the p-GaN layer. The values of the diffusion coefficient estimated for true growth temperatures of 860, 910, and 980°C were 7.5·10-17, 2.8·10-16, and 1.2·10-15 cm2/s, respectively. The temperature values given in the work were measured on the surface of the growing layer in situ using a pyrometer. The calculated activation energy for the temperature dependence of the diffusion coefficient was 2.8 eV.

  5. Aroma volatility from aqueous sucrose solutions at low and subzero temperatures.

    PubMed

    Covarrubias-Cervantes, Marco; Champion, Dominique; Debeaufort, Frédéric; Voilley, Andrée

    2004-11-17

    The gas-liquid partition coefficients of ethyl acetate and ethyl hexanoate have been measured in water and aqueous sucrose solutions from 25 to -10 degrees C by dynamic headspace. Experiments were carried out on sucrose solutions at temperatures where no ice formation was possible. Results showed that when sucrose concentration increased, aroma volatility increased except for ethyl hexanoate and in the highest sucrose concentration solution (57.5%). A quasi-linear temperature decrease on aroma volatility was observed in sucrose solutions from 25 to around 4 and 0 degrees C. Then, from 0 to -10 degrees C, aroma volatility did not decrease: ethyl acetate volatility remained constant but that of ethyl hexanoate increased. Enthalpy of vaporization and activity coefficients of the aroma compounds were calculated.

  6. Predicting solute partitioning in lipid bilayers: Free energies and partition coefficients from molecular dynamics simulations and COSMOmic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakobtorweihen, S., E-mail: jakobtorweihen@tuhh.de; Ingram, T.; Gerlach, T.

    2014-07-28

    Quantitative predictions of biomembrane/water partition coefficients are important, as they are a key property in pharmaceutical applications and toxicological studies. Molecular dynamics (MD) simulations are used to calculate free energy profiles for different solutes in lipid bilayers. How to calculate partition coefficients from these profiles is discussed in detail and different definitions of partition coefficients are compared. Importantly, it is shown that the calculated coefficients are in quantitative agreement with experimental results. Furthermore, we compare free energy profiles from MD simulations to profiles obtained by the recent method COSMOmic, which is an extension of the conductor-like screening model for realisticmore » solvation to micelles and biomembranes. The free energy profiles from these molecular methods are in good agreement. Additionally, solute orientations calculated with MD and COSMOmic are compared and again a good agreement is found. Four different solutes are investigated in detail: 4-ethylphenol, propanol, 5-phenylvaleric acid, and dibenz[a,h]anthracene, whereby the latter belongs to the class of polycyclic aromatic hydrocarbons. The convergence of the free energy profiles from biased MD simulations is discussed and the results are shown to be comparable to equilibrium MD simulations. For 5-phenylvaleric acid the influence of the carboxyl group dihedral angle on free energy profiles is analyzed with MD simulations.« less

  7. Warming of Monolithic Structures in Winter

    NASA Astrophysics Data System (ADS)

    Pikus, G. A.; Lebed, A. R.

    2017-11-01

    The present work attempts to develop a mathematical model for calculating the heat transfer coefficient of the fence of monolithic structures erected in winter. The urgency and, at the same time, the practical significance of the research lies in the fact that to date no simple, effective tool has been developed to ensure the elimination of the unfavorable thermally stressed state of a structure’s concrete from maximum equalization of temperatures across its cross-section. The main problem for concrete is a high temperature which leads to a sharp decrease in the quality of erected structures due to developing cracks. This paper based on the well-known Newton’s law and its differential equation demonstrates the formula of concrete cooling and the analysis of its proportionality coefficient. Based on the literature analysis, it is established that the proportionality coefficient is determined by the thermophysical properties of concrete, the size and shape of the structure, and the intensity of its heat exchange with the surrounding medium. A limitation was used on the temperature gradient over the section of the monolithic structure to derive a formula for calculating the reduced heat transfer coefficient of a concrete fence. All mathematical calculations are given for cooling monolithic constructions in the form of plates. At the end of the work an example is given for the calculation of the required reduced heat transfer coefficient for the fence ensuring compliance with the permissible concrete temperature gradient.

  8. Detecting severity of delamination in a lap joint using S-parameters

    NASA Astrophysics Data System (ADS)

    Islam, M. M.; Huang, H.

    2018-03-01

    The scattering parameters (S-parameters) represent the frequency response of a two-port linear time-invariant network. Treating a lap joint structure instrumented with two piezoelectric wafer active transducers (PWaTs) as such a network, this paper investigates the application of the S-parameters for detecting the severity of delamination in the lap joint. The pulse-echo signal calculated from the reflection coefficients, namely the S 11 and S 22-parameters, can be divided into three signals, i.e. the excitation, resonant, and echo signals, based on their respective time spans. Analyzing the effects of the delamination on the resonant signal enables us to identify the resonance at which the resonant characteristics of the PWaTs are least sensitive to the delamination. Only at this resonance, we found that the reflection coefficients and the amplitude of the first arrival echo signal changed monotonously with the increase of the delamination length. This discovery is further validated by the time-domain pitch-catch signal calculated from the transmission coefficient (i.e. the S 21-parameter). In addition, comparing the pulse-echo signals obtained from both PWaTs enables us to determine the side of the lap joint that the delamination is located at. This work establishes the S-parameters as an effective tool to evaluate the effects of damage on the PWaT resonant characteristics, based on which the PWaT resonance can be selected judiciously for damage severity detection. Correlating the reflection and transmission coefficients also provide addition validations that increase the detection confidence.

  9. The calculation of thermophysical properties of nickel plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apfelbaum, E. M.

    2015-09-15

    The thermophysical properties of Nickel plasma have been calculated for the temperatures 10–60 kK and densities less than 1 g/cm{sup 3}. These properties are the pressure, internal energy, heat capacity, and the electronic transport coefficients (electrical conductivity, thermal conductivity, and thermal power). The thermodynamic values have been calculated by means of the chemical model, which also allows one to obtain the ionic composition of considered plasma. The composition has been used to calculate the electronic transport coefficients within the relaxation time approximation. The results of the present investigation have been compared with the calculations of other researchers and available data ofmore » measurements.« less

  10. A classical mechanics model for the interpretation of piezoelectric property data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, Andrew J., E-mail: a.j.bell@leeds.ac.uk

    2015-12-14

    In order to provide a means of understanding, the relationship between the primary electromechanical coefficients and simple crystal chemistry parameters for piezoelectric materials, a static analysis of a 3 atom, dipolar molecule has been undertaken to derive relationships for elastic compliance s{sup E}, dielectric permittivity ε{sup X}, and piezoelectric charge coefficient d in terms of an effective ionic charge and two inter-atomic force constants. The relationships demonstrate the mutual interdependence of the three coefficients, in keeping with experimental evidence from a large dataset of commercial piezoelectric materials. It is shown that the electromechanical coupling coefficient k is purely an expressionmore » of the asymmetry in the two force constants or bond compliances. The treatment is extended to show that the quadratic electrostriction relation between strain and polarization, in both centrosymmetric and non-centrosymmetric systems, is due to the presence of a non-zero 2nd order term in the bond compliance. Comparison with experimental data explains the counter-intuitive, positive correlation of k with s{sup E} and ε{sup X} and supports the proposition that high piezoelectric activity in single crystals is dominated by large compliance coupled with asymmetry in the sub-cell force constants. However, the analysis also shows that in polycrystalline materials, the dielectric anisotropy of the constituent crystals can be more important for attaining large charge coefficients. The model provides a completely new methodology for the interpretation of piezoelectric and electrostrictive property data and suggests methods for rapid screening for high activity in candidate piezoelectric materials, both experimentally and by novel interrogation of ab initio calculations.« less

  11. Mutual influence of molecular diffusion in gas and surface phases

    NASA Astrophysics Data System (ADS)

    Hori, Takuma; Kamino, Takafumi; Yoshimoto, Yuta; Takagi, Shu; Kinefuchi, Ikuya

    2018-01-01

    We develop molecular transport simulation methods that simultaneously deal with gas- and surface-phase diffusions to determine the effect of surface diffusion on the overall diffusion coefficients. The phenomenon of surface diffusion is incorporated into the test particle method and the mean square displacement method, which are typically employed only for gas-phase transport. It is found that for a simple cylindrical pore, the diffusion coefficients in the presence of surface diffusion calculated by these two methods show good agreement. We also confirm that both methods reproduce the analytical solution. Then, the diffusion coefficients for ink-bottle-shaped pores are calculated using the developed method. Our results show that surface diffusion assists molecular transport in the gas phase. Moreover, the surface tortuosity factor, which is known to be uniquely determined by physical structure, is influenced by the presence of gas-phase diffusion. This mutual influence of gas-phase diffusion and surface diffusion indicates that their simultaneous calculation is necessary for an accurate evaluation of the diffusion coefficients.

  12. Multi-charge-state molecular dynamics and self-diffusion coefficient in the warm dense matter regime

    NASA Astrophysics Data System (ADS)

    Fu, Yongsheng; Hou, Yong; Kang, Dongdong; Gao, Cheng; Jin, Fengtao; Yuan, Jianmin

    2018-01-01

    We present a multi-ion molecular dynamics (MIMD) simulation and apply it to calculating the self-diffusion coefficients of ions with different charge-states in the warm dense matter (WDM) regime. First, the method is used for the self-consistent calculation of electron structures of different charge-state ions in the ion sphere, with the ion-sphere radii being determined by the plasma density and the ion charges. The ionic fraction is then obtained by solving the Saha equation, taking account of interactions among different charge-state ions in the system, and ion-ion pair potentials are computed using the modified Gordon-Kim method in the framework of temperature-dependent density functional theory on the basis of the electron structures. Finally, MIMD is used to calculate ionic self-diffusion coefficients from the velocity correlation function according to the Green-Kubo relation. A comparison with the results of the average-atom model shows that different statistical processes will influence the ionic diffusion coefficient in the WDM regime.

  13. Communication: rate coefficients from quasiclassical trajectory calculations from the reverse reaction: The Mu + H2 reaction re-visited.

    PubMed

    Homayoon, Zahra; Jambrina, Pablo G; Aoiz, F Javier; Bowman, Joel M

    2012-07-14

    In a previous paper [P. G. Jambrina et al., J. Chem. Phys. 135, 034310 (2011)] various calculations of the rate coefficient for the Mu + H(2) → MuH + H reaction were presented and compared to experiment. The widely used standard quasiclassical trajectory (QCT) method was shown to overestimate the rate coefficients by several orders of magnitude over the temperature range 200-1000 K. This was attributed to a major failure of that method to describe the correct threshold for the reaction owing to the large difference in zero-point energies (ZPE) of the reactant H(2) and product MuH (∼0.32 eV). In this Communication we show that by performing standard QCT calculations for the reverse reaction and then applying detailed balance, the resulting rate coefficient is in very good agreement with the other computational results that respect the ZPE, (as well as with the experiment) but which are more demanding computationally.

  14. Communication: Rate coefficients from quasiclassical trajectory calculations from the reverse reaction: The Mu + H2 reaction re-visited

    NASA Astrophysics Data System (ADS)

    Homayoon, Zahra; Jambrina, Pablo G.; Aoiz, F. Javier; Bowman, Joel M.

    2012-07-01

    In a previous paper [P. G. Jambrina et al., J. Chem. Phys. 135, 034310 (2011), 10.1063/1.3611400] various calculations of the rate coefficient for the Mu + H2 → MuH + H reaction were presented and compared to experiment. The widely used standard quasiclassical trajectory (QCT) method was shown to overestimate the rate coefficients by several orders of magnitude over the temperature range 200-1000 K. This was attributed to a major failure of that method to describe the correct threshold for the reaction owing to the large difference in zero-point energies (ZPE) of the reactant H2 and product MuH (˜0.32 eV). In this Communication we show that by performing standard QCT calculations for the reverse reaction and then applying detailed balance, the resulting rate coefficient is in very good agreement with the other computational results that respect the ZPE, (as well as with the experiment) but which are more demanding computationally.

  15. K{sub 1.33}Mn{sub 8}O{sub 16} as an electrocatalyst and a cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jalili, Seifollah, E-mail: sjalili@kntu.ac.ir; Computational Physical Sciences Research Laboratory, School of Nano-Science, Institute for Research in Fundamental Sciences; Moharramzadeh Goliaei, Elham

    Density functional theory (DFT) calculations are carried out to investigate the electronic, magnetic and thermoelectric properties of bulk and nanosheet K{sub 1.33}Mn{sub 8}O{sub 16} materials. The catalytic activity and cathodic performance of bulk and nanosheet structures are examined using the Tran-Blaha modified Becke-Johnson (TB-mBJ) exchange potential. Electronic structure calculations reveal an anti-ferromagnetic ground state, with a TB-mMBJ band gap in bulk K{sub 1.33}Mn{sub 8}O{sub 16} that is in agreement with experimental results. Density of state plots indicate a partial reduction of Mn{sup 4+} ions to Mn{sup 3+}, without any obvious sign of Jahn-Teller distortion. Moreover, use of the O p-bandmore » center as a descriptor of catalytic activity suggests that the nanosheet has enhanced catalytic activity compared to the bulk structure. Thermoelectric parameters such as the Seebeck coefficient, electrical conductivity, and thermal conductivity are also calculated, and it is found that the Seebeck coefficients decrease with increasing temperature. High Seebeck coefficients for both spin-up and spin-down states are found in the nanosheet relative to their value in the bulk K{sub 1.33}Mn{sub 8}O{sub 16} structure, whereas the electrical and thermal conductivity are reduced relative to the bulk. In addition, figures of merit values are calculated as a function of the chemical potential and it is found that the nanosheet has a figure of merit of ~1 at room temperature, compared to 0.5 for the bulk material. All results suggest that K{sub 1.33}Mn{sub 8}O{sub 16} nanosheets can be used both as a material in waste heat recovery and as an electrocatalyst in fuel cells and batteries. - Graphical abstract: K{sub 1.33}Mn{sub 8}O{sub 16}: bulk and nanosheet. - Highlights: • Electronic properties of bulk and nanosheet forms of K{sub 1.33}Mn{sub 8}O{sub 16} have been studied. • The K{sub 1.33}Mn{sub 8}O{sub 16} nanosheet is a semiconductor while the bulk is a metal. • K{sub 1.33}Mn{sub 8}O{sub 16} Nanosheet is a more efficient electrocatalyst than bulk K{sub 1.33}Mn{sub 8}O{sub 16}. • High figure of merit of K{sub 1.33}Mn{sub 8}O{sub 16} nanosheet makes it an efficient cathode.« less

  16. A numerical algorithm for the explicit calculation of SU(N) and SL(N,C) Clebsch-Gordan coefficients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alex, Arne; Delft, Jan von; Kalus, Matthias

    2011-02-15

    We present an algorithm for the explicit numerical calculation of SU(N) and SL(N,C) Clebsch-Gordan coefficients, based on the Gelfand-Tsetlin pattern calculus. Our algorithm is well suited for numerical implementation; we include a computer code in an appendix. Our exposition presumes only familiarity with the representation theory of SU(2).

  17. Direct calculation of 1-octanol-water partition coefficients from adaptive biasing force molecular dynamics simulations.

    PubMed

    Bhatnagar, Navendu; Kamath, Ganesh; Chelst, Issac; Potoff, Jeffrey J

    2012-07-07

    The 1-octanol-water partition coefficient log K(ow) of a solute is a key parameter used in the prediction of a wide variety of complex phenomena such as drug availability and bioaccumulation potential of trace contaminants. In this work, adaptive biasing force molecular dynamics simulations are used to determine absolute free energies of hydration, solvation, and 1-octanol-water partition coefficients for n-alkanes from methane to octane. Two approaches are evaluated; the direct transfer of the solute from 1-octanol to water phase, and separate transfers of the solute from the water or 1-octanol phase to vacuum, with both methods yielding statistically indistinguishable results. Calculations performed with the TIP4P and SPC∕E water models and the TraPPE united-atom force field for n-alkanes show that the choice of water model has a negligible effect on predicted free energies of transfer and partition coefficients for n-alkanes. A comparison of calculations using wet and dry octanol phases shows that the predictions for log K(ow) using wet octanol are 0.2-0.4 log units lower than for dry octanol, although this is within the statistical uncertainty of the calculation.

  18. An orientation sensitive approach in biomolecule interaction quantitative structure-activity relationship modeling and its application in ion-exchange chromatography.

    PubMed

    Kittelmann, Jörg; Lang, Katharina M H; Ottens, Marcel; Hubbuch, Jürgen

    2017-01-27

    Quantitative structure-activity relationship (QSAR) modeling for prediction of biomolecule parameters has become an established technique in chromatographic purification process design. Unfortunately available descriptor sets fail to describe the orientation of biomolecules and the effects of ionic strength in the mobile phase on the interaction with the stationary phase. The literature describes several special descriptors used for chromatographic retention modeling, all of these do not describe the screening of electrostatic potential by the mobile phase in use. In this work we introduce two new approaches of descriptor calculations, namely surface patches and plane projection, which capture an oriented binding to charged surfaces and steric hindrance of the interaction with chromatographic ligands with regard to electrostatic potential screening by mobile phase ions. We present the use of the developed descriptor sets for predictive modeling of Langmuir isotherms for proteins at different pH values between pH 5 and 10 and varying ionic strength in the range of 10-100mM. The resulting model has a high correlation of calculated descriptors and experimental results, with a coefficient of determination of 0.82 and a predictive coefficient of determination of 0.92 for unknown molecular structures and conditions. The agreement of calculated molecular interaction orientations with both, experimental results as well as molecular dynamic simulations from literature is shown. The developed descriptors provide the means for improved QSAR models of chromatographic processes, as they reflect the complex interactions of biomolecules with chromatographic phases. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Zonal and tesseral harmonic coefficients for the geopotential function, from zero to 18th order

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, J. C.

    1976-01-01

    Zonal and tesseral harmonic coefficients for the geopotential function are usually tabulated in normalized form to provide immediate information as to the relative significance of the coefficients in the gravity model. The normalized form of the geopotential coefficients cannot be used for computational purposes unless the gravity model has been modified to receive them. This modification is usually not done because the absolute or unnormalized form of the coefficients can be obtained from the simple mathematical relationship that relates the two forms. This computation can be quite tedious for hand calculation, especially for the higher order terms, and can be costly in terms of storage and execution time for machine computation. In this report, zonal and tesseral harmonic coefficients for the geopotential function are tabulated in absolute or unnormalized form. The report is designed to be used as a ready reference for both hand and machine calculation to save the user time and effort.

  20. Entrance loss coefficients and exit coefficients for a physical model of the glottis with convergent angles

    PubMed Central

    Fulcher, Lewis P.; Scherer, Ronald C.; Anderson, Nicholas V.

    2014-01-01

    Pressure distributions were obtained for 5°, 10°, and 20° convergent angles with a static physical model (M5) of the glottis. Measurements were made for minimal glottal diameters from d = 0.005–0.32 cm with a range of transglottal pressures of interest for phonation. Entrance loss coefficients were calculated at the glottal entrance for each minimal diameter and transglottal pressure to measure how far the flows in this region deviate from Bernoulli flow. Exit coefficients were also calculated to determine the presence and magnitude of pressure recovery near the glottal exit. The entrance loss coefficients for the three convergent angles vary from values near 2.3–3.4 for d = 0.005 cm to values near 0.6 for d = 0.32 cm. These coefficients extend the tables of entrance loss and exit coefficients obtained for the uniform glottis according to Fulcher, Scherer, and Powell [J. Acoust. Soc. Am. 129, 1548–1553 (2011)]. PMID:25190404

  1. Estimation of Infiltration Parameters and the Irrigation Coefficients with the Surface Irrigation Advance Distance

    PubMed Central

    Beibei, Zhou; Quanjiu, Wang; Shuai, Tan

    2014-01-01

    A theory based on Manning roughness equation, Philip equation and water balance equation was developed which only employed the advance distance in the calculation of the infiltration parameters and irrigation coefficients in both the border irrigation and the surge irrigation. The improved procedure was validated with both the border irrigation and surge irrigation experiments. The main results are shown as follows. Infiltration parameters of the Philip equation could be calculated accurately only using water advance distance in the irrigation process comparing to the experimental data. With the calculated parameters and the water balance equation, the irrigation coefficients were also estimated. The water advance velocity should be measured at about 0.5 m to 1.0 m far from the water advance in the experimental corn fields. PMID:25061664

  2. Consider a non-spherical elephant: computational fluid dynamics simulations of heat transfer coefficients and drag verified using wind tunnel experiments.

    PubMed

    Dudley, Peter N; Bonazza, Riccardo; Porter, Warren P

    2013-07-01

    Animal momentum and heat transfer analysis has historically used direct animal measurements or approximations to calculate drag and heat transfer coefficients. Research can now use modern 3D rendering and computational fluid dynamics software to simulate animal-fluid interactions. Key questions are the level of agreement between simulations and experiments and how superior they are to classical approximations. In this paper we compared experimental and simulated heat transfer and drag calculations on a scale model solid aluminum African elephant casting. We found good agreement between experimental and simulated data and large differences from classical approximations. We used the simulation results to calculate coefficients for heat transfer and drag of the elephant geometry. Copyright © 2013 Wiley Periodicals, Inc.

  3. Collisional excitation of HC3N by para- and ortho-H2

    NASA Astrophysics Data System (ADS)

    Faure, Alexandre; Lique, François; Wiesenfeld, Laurent

    2016-08-01

    New calculations for rotational excitation of cyanoacetylene by collisions with hydrogen molecules are performed to include the lowest 38 rotational levels of HC3N and kinetic temperatures to 300 K. Calculations are based on the interaction potential of Wernli et al. whose accuracy is checked against spectroscopic measurements of the HC3N-H2 complex. The quantum coupled-channel approach is employed and complemented by quasi-classical trajectory calculations. Rate coefficients for ortho-H2 are provided for the first time. Hyperfine resolved rate coefficients are also deduced. Collisional propensity rules are discussed and comparisons between quantum and classical rate coefficients are presented. This collisional data should prove useful in interpreting HC3N observations in the cold and warm ISM, as well as in protoplanetary discs.

  4. Study of the amplified spontaneous emission spectral width and gain coefficient for a KrF laser in unsaturated and saturated conditions

    NASA Astrophysics Data System (ADS)

    Hariri, A.; Sarikhani, S.

    2014-01-01

    On the basis of a model of a geometrically dependent gain coefficient, the amplified spontaneous emission (ASE) spectral width was calculated analytically for the nearly resonant transition of ν ˜ ν0, and also numerically for a wide range of transition frequencies. For this purpose, the intensity rate equation was used under unsaturated and saturated conditions. For verifying the proposed model, reported measurements of the ASE energy versus the excitation length for a KrF laser were used. For the excitation length of l = 84 cm corresponding to single-path propagation, the ASE spectral width for the homogeneously broadened transition was calculated to be 6.28 Å, to be compared with the measured 4.1 Å spectral width reported for a KrF oscillator utilizing a two-mirror resonator. With the gain parameters obtained from the ASE energy measurements, the unsaturated and saturated gain coefficients for l = 84 cm were calculated to be 0.042 cm-1 and 0.014 cm-1, respectively. These values of the gain coefficient are comparable to but slightly lower than the measured gain coefficient for laser systems of 80-100 cm excitation lengths reported from different laboratories.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spiegel, G.W.

    The kinetic solvent isotope effect, KSIE, (k/sub H/sub 2/O//k/sub D/sub 2/O/), at 25.0/sup 0/C and ionic strength, I, equal to 0.20 +- 0.02 M was measured for the nucleophilic displacement of iodine ion from iodomethane, iodoacetamide, and iodoacetate ion, thiophene from S-Methylthiophenium ion, and tosylate ion from methyl tosylate by bromide ion, chloride ion, acetate ion, hydroxide ion, water, ammonia, ethylenediamine, n-butylamine, piperazine, piperidine, quinuclidine, and 1,4-Diazabicyclo(2.2.2)octane (DABCO), and the monoprotonated cations of ethylenediamine, piperazine, and DABCO. By means of solvent partition measurements at 25.0/sup 0/C and I = 0.02 M between H/sub 2/O and D/sub 2/O and a commonmore » immiscible organic solvent, the ground state activity coefficients in D/sub 2/O, the solution in H/sub 2/O being chosen as the reference state, were determined for the nitrogen-containing nucleophiles (except ammonia) and the substrates methyl tosylate, iodoacetamide, and iodoacetic acid. The solubilities at 25.0/sup 0/C of the picrate and tetraphenylborate salts of the monoprotonated cationic forms of ethylenediamine, piperazine, and DABCO were measured to determine the activity coefficients in D/sub 2/O of these ions relative to an H/sub 2/O reference state. Applying the Eyring equation, the activity coefficients of the transition states in D/sub 2/O, reference state H/sub 2/O, were calculated.« less

  6. Ultrasonic speed, densities and viscosities of xylitol in water and in aqueous tyrosine and phenylalanine solutions at different temperatures

    NASA Astrophysics Data System (ADS)

    Ali, A.; Bidhuri, P.; Uzair, S.

    2014-07-01

    Ultrasonic speed u, densities ρ and viscosities η of xylitol in water and in 0.001 m aqueous l-tyrosine (Tyr) and l-phenylalanine (Phe) have been measured at different temperatures. From the density and ultrasonic speed measurements apparent molar isentropic compression κ_{φ}, apparent molar isentropic compressions at infinite dilution κ_{{S,φ}}0 , experimental slope S K , hydration number n H , transfer partial molar isentropic compressibility Δ_{tr} κ_{{S,φ}}0 of xylitol from water to aqueous Tyr and Phe have been obtained. From the viscosity data, B-coefficient and B-coefficient of transfer Δ tr B of xylitol from water to aqueous Phe and Tyr at different temperatures have also been estimated. Gibbs free energies of activation of viscous flow per mole of solvent Δ μ 1 0# and per mole of solute Δ μ 2 0# have been calculated by using Feakins transition state theory for the studied systems. The calculated parameters have been interpreted in terms of solute-solute and solute-solvent interactions and hydration behavior of xylitol.

  7. Calculation and measurement of the influence of flow parameters on rotordynamic coefficients in labyrinth seals

    NASA Technical Reports Server (NTRS)

    Kwanka, K.; Ortinger, W.; Steckel, J.

    1994-01-01

    First experimental investigations performed on a new test rig are presented. For a staggered labyrinth seal with fourteen cavities the stiffness coefficient and the leakage flow are measured. The experimental results are compared to calculated results which are obtained by a one-volume bulk-flow theory. A perturbation analysis is made for seven terms. It is found out that the friction factors have great impact on the dynamic coefficients. They are obtained by turbulent flow computation by a finite-volume model with the Reynolds equations used as basic equations.

  8. A subtle calculation method for nanoparticle’s molar extinction coefficient: The gift from discrete protein-nanoparticle system on agarose gel electrophoresis

    NASA Astrophysics Data System (ADS)

    Zhong, Ruibo; Yuan, Ming; Gao, Haiyang; Bai, Zhijun; Guo, Jun; Zhao, Xinmin; Zhang, Feng

    2016-03-01

    Discrete biomolecule-nanoparticle (NP) conjugates play paramount roles in nanofabrication, in which the key is to get the precise molar extinction coefficient of NPs. By making best use of the gift from a specific separation phenomenon of agarose gel electrophoresis (GE), amphiphilic polymer coated NP with exact number of bovine serum albumin (BSA) proteins can be extracted and further experimentally employed to precisely calculate the molar extinction coefficient of the NPs. This method could further benefit the evaluation and extraction of any other dual-component NP-containing bio-conjugates.

  9. Mechanical Safety Subcommittee Guideline for Design of Thin Windows Regarding Roark’s Edge Condition Coefficient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ader, C.; Voirin, E.; McGee, M.

    An error was found in an edge stress coefficient used to calculate stresses in thin windows. This error is present in “Roark’s Formulas for Stress and Strain” 7th and 8th Edition. The 6th Edition is correct. This guideline specially discusses a major difference in regards to a coefficient used in calculating the edge stress in “Roark’s Formulas for Stress and Strain” 6th Edition compared to the 7th and 8th Editions. In Chapter 10: Flat Plates under “Circular plates under distributed load producing large deflections,” Case 3, which is “Fixed and held. Uniform pressure q over entire plate.” The coefficient formore » a fixed edge condition in the 6th Edition1 K4 = 0.476 while in the 7th and 8th Edition2, the coefficient is 1.73 which is significant difference.« less

  10. Experimental rig to estimate the coefficient of friction between tire and surface in airplane touchdown simulations.

    PubMed

    Li, Chengwei; Zhan, Liwei

    2015-08-01

    To estimate the coefficient of friction between tire and runway surface during airplane touchdowns, we designed an experimental rig to simulate such events and to record the impact and friction forces being executed. Because of noise in the measured signals, we developed a filtering method that is based on the ensemble empirical mode decomposition and the bandwidth of probability density function of each intrinsic mode function to extract friction and impact force signals. We can quantify the coefficient of friction by calculating the maximum values of the filtered force signals. Signal measurements are recorded for different drop heights and tire rotational speeds, and the corresponding coefficient of friction is calculated. The result shows that the values of the coefficient of friction change only slightly. The random noise and experimental artifact are the major reason of the change.

  11. Modeling visibility in the Paso del Norte (PDN) Region

    NASA Astrophysics Data System (ADS)

    Medina Calderon, Richard

    Poor visibility is a subject of growing public concern throughout the U.S, and an active area of research. Its societal impacts on air quality, aviation transport and traffic are significant. Aerosols play a fundamental role in the attenuation of solar radiation, and also affect visibility. The scattering and extinction coefficients of aerosol particles in the Paso del Norte Region have been calculated using the T- matrix model in conjunction with a laser particle counter. Inter-comparison of the model's results of the scattering and absorption coefficients against the corresponding data from a Photoacustic extinctiometer instrument (which measures in-situ absorption and scattering coefficients of aerosol particles) shows excellent agreement. In addition, the volume-weighted method is used to determine the composite index of refraction which is representative of the aerosols for the Paso del Norte Region to obtain information of the type of aerosol particles present in the Region. The Single Scattering Albedo has also been retrieved using this methodology to obtain further insight into the type of aerosols present on a given day. Finally, the Koschmieder equation has been used to calculate the visual range or visibility, and was correlated with the PM2.5 and PM10 particle concentration present in the Region. Our methodology will allow a better understanding of the size and type of aerosol particles that are most detrimental to the visibility for the Paso Del Norte Region.

  12. Initial Ship Design Using a Pearson Correlation Coefficient and Artificial Intelligence Techniques

    NASA Astrophysics Data System (ADS)

    Moon, Byung Young; Kim, Soo Young; Kang, Gyung Ju

    In this paper we analyzed correlation between geometrical character and resistance, and effective horse power by using Pearson correlation coefficient which is one of the data mining methods. Also we made input data to ship's geometrical character which has strong correlation with output data. We calculated effective horse power and resistance by using Neuro-Fuzzy system. To verify the calculation, 9 of 11 container ships' data were improved as data of Neuro-Fuzzy system and the others were improved as verification data. After analyzing rate of error between existing data and calculation data, we concluded that calculation data have sound agreement with existing data.

  13. Transport properties in mixtures involving carbon dioxide at low and moderate density: test of several intermolecular potential energies and comparison with experiment

    NASA Astrophysics Data System (ADS)

    Moghadasi, Jalil; Yousefi, Fakhri; Papari, Mohammad Mehdi; Faghihi, Mohammad Ali; Mohsenipour, Ali Asghar

    2009-09-01

    It is the purpose of this paper to extract unlike intermolecular potential energies of five carbon dioxide-based binary gas mixtures including CO2-He, CO2-Ne, CO2-Ar, CO2-Kr, and CO2-Xe from viscosity data and compare the calculated potentials with other models potential energy reported in literature. Then, dilute transport properties consisting of viscosity, diffusion coefficient, thermal diffusion factor, and thermal conductivity of aforementioned mixtures are calculated from the calculated potential energies and compared with literature data. Rather accurate correlations for the viscosity coefficient of afore-cited mixtures embracing the temperature range 200 K < T < 3273.15 K is reproduced from the present unlike intermolecular potentials energy. Our estimated accuracies for the viscosity are to within ±2%. In addition, the calculated potential energies are used to present smooth correlations for other transport properties. The accuracies of the binary diffusion coefficients are of the order of ±3%. Finally, the unlike interaction energy and the calculated low density viscosity have been employed to calculate high density viscosities using Vesovic-Wakeham method.

  14. Thermodynamic properties of α-uranium

    NASA Astrophysics Data System (ADS)

    Ren, Zhiyong; Wu, Jun; Ma, Rong; Hu, Guichao; Luo, Chao

    2016-11-01

    The lattice constants and equilibrium atomic volume of α-uranium were calculated by Density Functional Theory (DFT). The first principles calculation results of the lattice for α-uranium are in agreement with the experimental results well. The thermodynamic properties of α-uranium from 0 to 900 K and 0-100 GPa were calculated with the quasi-harmonic Debye model. Volume, bulk modulus, entropy, Debye temperature, thermal expansion coefficient and the heat capacity of α-uranium were calculated. The calculated results show that the bulk modulus and Debye temperature increase with the increasing pressure at a given temperature while decreasing with the increasing temperature at a given pressure. Volume, entropy, thermal expansion coefficient and the heat capacity decrease with the increasing pressure while increasing with the increasing temperature. The theoretical results of entropy, Debye temperature, thermal expansion coefficient and the heat capacity show good agreement with the general trends of the experimental values. The constant-volume heat capacity shows typical Debye T3 power-law behavior at low temperature limit and approaches to the classical asymptotic Dulong-Petit limit at high temperature limit.

  15. Electronic Structure, Optical and Transport Properties of Double Perovskite La2NbMnO6: A Theoretical Understanding from DFT Calculations

    NASA Astrophysics Data System (ADS)

    Parrey, Khursheed Ahmad; Khandy, Shakeel Ahmad; Islam, Ishtihadah; Laref, Amel; Gupta, Dinesh C.; Niazi, Asad; Aziz, Anver; Ansari, S. G.; Khenata, R.; Rubab, Seemin

    2018-03-01

    Double perovskite La2NbMnO6 was systematically studied using the first-principles calculations. The structural, electronic, optical and transport properties of this compound were calculated. Spin resolved band structure predicted this material as a half-metal with an energy gap of 3.75 eV in spin down state. The optical coefficients including optical conductivity, reflectivity and electron energy loss are calculated for photon energy up to 30.00 eV to understand the optical response of this perovskite. The strong absorption of all the ultraviolet and infrared frequencies of the spectrum by this material may suggest the potential application of this material for the optoelectronic devices in ultraviolet and infra-red region. Also, the thermoelectric properties with a speculation from the half-metallic electronic structure are reported. Subsequently, the Seebeck coefficient, electrical and thermal conductivity coefficients are calculated to predict the thermoelectric figure of merit (zT), the maximum of which is found out to be 0.14 at 800 K.

  16. Validity and reliability of Nintendo Wii Fit balance scores.

    PubMed

    Wikstrom, Erik A

    2012-01-01

    Interactive gaming systems have the potential to help rehabilitate patients with musculoskeletal conditions. The Nintendo Wii Balance Board, which is part of the Wii Fit game, could be an effective tool to monitor progress during rehabilitation because the board and game can provide objective measures of balance. However, the validity and reliability of Wii Fit balance scores remain unknown. To determine the concurrent validity of balance scores produced by the Wii Fit game and the intrasession and intersession reliability of Wii Fit balance scores. Descriptive laboratory study. Sports medicine research laboratory. Forty-five recreationally active participants (age = 27.0 ± 9.8 years, height = 170.9 ± 9.2 cm, mass = 72.4 ± 11.8 kg) with a heterogeneous history of lower extremity injury. Participants completed a single-limb-stance task on a force plate and the Star Excursion Balance Test (SEBT) during the first test session. Twelve Wii Fit balance activities were completed during 2 test sessions separated by 1 week. Postural sway in the anteroposterior (AP) and mediolateral (ML) directions and the AP, ML, and resultant center-of-pressure (COP) excursions were calculated from the single-limb stance. The normalized reach distance was recorded for the anterior, posteromedial, and posterolateral directions of the SEBT. Wii Fit balance scores that the game software generated also were recorded. All 96 of the calculated correlation coefficients among Wii Fit activity outcomes and established balance outcomes were interpreted as poor (r < 0.50). Intrasession reliability for Wii Fit balance activity scores ranged from good (intraclass correlation coefficient [ICC] = 0.80) to poor (ICC = 0.39), with 8 activities having poor intrasession reliability. Similarly, 11 of the 12 Wii Fit balance activity scores demonstrated poor intersession reliability, with scores ranging from fair (ICC = 0.74) to poor (ICC = 0.29). Wii Fit balance activity scores had poor concurrent validity relative to COP outcomes and SEBT reach distances. In addition, the included Wii Fit balance activity scores generally had poor intrasession and intersession reliability.

  17. Continuous Diffusion Model for Concentration Dependence of Nitroxide EPR Parameters in Normal and Supercooled Water.

    PubMed

    Merunka, Dalibor; Peric, Miroslav

    2017-05-25

    Electron paramagnetic resonance (EPR) spectra of radicals in solution depend on their relative motion, which modulates the Heisenberg spin exchange and dipole-dipole interactions between them. To gain information on radical diffusion from EPR spectra demands both reliable spectral fitting to find the concentration coefficients of EPR parameters and valid expressions between the concentration and diffusion coefficients. Here, we measured EPR spectra of the 14 N- and 15 N-labeled perdeuterated TEMPONE radicals in normal and supercooled water at various concentrations. By fitting the EPR spectra to the functions based on the modified Bloch equations, we obtained the concentration coefficients for the spin dephasing, coherence transfer, and hyperfine splitting parameters. Assuming the continuous diffusion model for radical motion, the diffusion coefficients of radicals were calculated from the concentration coefficients using the standard relations and the relations derived from the kinetic equations for the spin evolution of a radical pair. The latter relations give better agreement between the diffusion coefficients calculated from different concentration coefficients. The diffusion coefficients are similar for both radicals, which supports the presented method. They decrease with lowering temperature slower than is predicted by the Stokes-Einstein relation and slower than the rotational diffusion coefficients, which is similar to the diffusion of water molecules in supercooled water.

  18. Impact of interpatient variability on organ dose estimates according to MIRD schema: Uncertainty and variance-based sensitivity analysis.

    PubMed

    Zvereva, Alexandra; Kamp, Florian; Schlattl, Helmut; Zankl, Maria; Parodi, Katia

    2018-05-17

    Variance-based sensitivity analysis (SA) is described and applied to the radiation dosimetry model proposed by the Committee on Medical Internal Radiation Dose (MIRD) for the organ-level absorbed dose calculations in nuclear medicine. The uncertainties in the dose coefficients thus calculated are also evaluated. A Monte Carlo approach was used to compute first-order and total-effect SA indices, which rank the input factors according to their influence on the uncertainty in the output organ doses. These methods were applied to the radiopharmaceutical (S)-4-(3- 18 F-fluoropropyl)-L-glutamic acid ( 18 F-FSPG) as an example. Since 18 F-FSPG has 11 notable source regions, a 22-dimensional model was considered here, where 11 input factors are the time-integrated activity coefficients (TIACs) in the source regions and 11 input factors correspond to the sets of the specific absorbed fractions (SAFs) employed in the dose calculation. The SA was restricted to the foregoing 22 input factors. The distributions of the input factors were built based on TIACs of five individuals to whom the radiopharmaceutical 18 F-FSPG was administered and six anatomical models, representing two reference, two overweight, and two slim individuals. The self-absorption SAFs were mass-scaled to correspond to the reference organ masses. The estimated relative uncertainties were in the range 10%-30%, with a minimum and a maximum for absorbed dose coefficients for urinary bladder wall and heart wall, respectively. The applied global variance-based SA enabled us to identify the input factors that have the highest influence on the uncertainty in the organ doses. With the applied mass-scaling of the self-absorption SAFs, these factors included the TIACs for absorbed dose coefficients in the source regions and the SAFs from blood as source region for absorbed dose coefficients in highly vascularized target regions. For some combinations of proximal target and source regions, the corresponding cross-fire SAFs were found to have an impact. Global variance-based SA has been for the first time applied to the MIRD schema for internal dose calculation. Our findings suggest that uncertainties in computed organ doses can be substantially reduced by performing an accurate determination of TIACs in the source regions, accompanied by the estimation of individual source region masses along with the usage of an appropriate blood distribution in a patient's body and, in a few cases, the cross-fire SAFs from proximal source regions. © 2018 American Association of Physicists in Medicine.

  19. Electrochemical reduction of carbon fluorine bond in 4-fluorobenzonitrile Mechanistic analysis employing Marcus Hush quadratic activation-driving force relation

    NASA Astrophysics Data System (ADS)

    Muthukrishnan, A.; Sangaranarayanan, M. V.

    2007-10-01

    The reduction of carbon-fluorine bond in 4-fluorobenzonitrile in acetonitrile as the solvent, is analyzed using convolution potential sweep voltammetry and the dependence of the transfer coefficient on potential is investigated within the framework of Marcus-Hush quadratic activation-driving force theory. The validity of stepwise mechanism is inferred from solvent reorganization energy estimates as well as bond length calculations using B3LYP/6-31g(d) method. A novel method of estimating the standard reduction potential of the 4-fluorobenzonitrile in acetonitrile is proposed.

  20. A preliminary analysis on the dependence of the human diseases on the relative number of sunspot.

    NASA Astrophysics Data System (ADS)

    Ma, Yuehua; Song, Yi

    1996-03-01

    On the basis of the solar-terrestrial relations point of view, the paper investigates the influences of solar activities upon the human race. According to the data of Nanjing Hospital for Infectious Diseases, both the curve of the occurrence of various diseases and the relative number of sunspots with time are drawn, and their related coefficients are calculated. The preliminary results show that the incidences of typhus and scarlet fever keep in step with the 11-year cycle of solar activities, they get the maximum at the same year, while other diseases are not definite.

  1. A new method for the preparation of a [Sn2(H2PO2)3]Br SHG-active polar crystal via surfactant-induced strategy.

    PubMed

    Xie, Jie-Ling; Zhou, Yu-Hua; Li, Long-Hua; Zhang, Jian-Han; Song, Jun-Ling

    2017-07-25

    Herein, unprecedented NLO-brominated tin hypophosphites, namely [Sn 2 (H 2 PO 2 ) 3 ]Br, were discovered via a facile surfactant-induced method, which displayed a moderate powder SHG intensity (3.0 × KDP) in type - I phase matching behavior. This complex has high chemical and thermal stability at room temperature. DFT calculations and SHG coefficient analyses revealed that the alignment of the SHG-active-units SnO 3 trigonal pyramids and Br - anions in its structure mainly contribute to the macroscopical SHG behaviors.

  2. On the Decrease of the Oceanic Drag Coefficient in High Winds

    NASA Astrophysics Data System (ADS)

    Donelan, Mark A.

    2018-02-01

    The sheltering coefficient - prefixing Jeffreys' concept of the exponential wave growth rate at a gas-liquid interface - is shown to be Reynolds number dependent from laboratory measurements of waves and Reynolds stresses. There are two turbulent flow regimes: wind speed range of 2.5 to 30 m/s where the drag coefficients increase with wind speed, and wind speed range of 30 to 50 m/s where sheltering/drag coefficients decrease/saturate with wind speed. By comparing model calculations of drag coefficients - using a fixed sheltering coefficient - with ocean observations over a wind speed range of 1 to 50 m/s a similar Reynolds number dependence of the oceanic sheltering coefficient is revealed. In consequence the drag coefficient is a function of Reynolds number and wave age, and not just wind speed as frequently assumed. The resulting decreasing drag coefficient above 30 m/s is shown to be critical in explaining the rapid intensification so prominent in the climatology of Atlantic hurricanes. The Reynolds number dependence of the sheltering coefficient, when employed in coupled models, should lead to significant improvements in the prediction of intensification and decay of tropical cyclones. A calculation of curvature at the wave crest suggests that at wind speeds above 56.15 m/s all waves-breaking or not-induce steady flow separation leading to a minimum in the drag coefficient. This is further evidence of the veracity of the observations of the oceanic drag coefficient at high winds.

  3. Validity of retrospective disease activity assessment in systemic lupus erythematosus.

    PubMed

    Arce-Salinas, A; Cardiel, M H; Guzmán, J; Alcocer-Varela, J

    1996-05-01

    To evaluate the validity of retrospective disease activity assessment derived from clinical charts. We prospectively evaluated 37 patients with systemic lupus erythematosus (SLE) in 90 visits using the SLE Disease Activity Index (SLEDAI), the Mexican SLEDAI (Mex-SLEDAI), and the Lupus Activity Criteria Count (LACC) indices. Routine clinical observations were written by rheumatologists blind to index scores. These notes were reviewed 2 years later to obtain retrospective index scores and their validity was assessed using prospective scores as the standard. Statistical analysis was by Spearman's rank correlation coefficient (rs), Wilcoxon matched pairs test, kappa statistic, and intraclass correlation coefficient (ri). We calculated the sensitivity and specificity of retrospective indices to detect active disease. Median retrospective scores were lower in all indices: SLEDAI (4 VS 2, p =0.004, RS = 0.68, ri = 0.30); Mex-SLEDAI (2 vs 1, p < 0.0003, rs = 0.79, ri = 0.31); and LACC (1 vs 1, p = 0.007, rs = 0.65, ri = 0.21). Used to detect active SLE, the retrospective SLEDAI had a sensitivity of 0.68 and a specificity of 0.86; corresponding values for the Mex-SLEDAI were 0.72 and 0.91, and for the LACC, 0.77 and 0.76. Retrospective disease activity indices tended to provide lower scores than prospective evaluations. They often missed patients with mildly active disease, but when positive they were good predictors of disease activity.

  4. Estimation of excess energies and activity coefficients for the penternary Ni-Cr-Co-Al-Mo system and its subsystems

    NASA Astrophysics Data System (ADS)

    Dogan, A.; Arslan, H.; Dogan, T.

    2015-06-01

    Using different prediction methods, such as the General Solution Model of Kohler and Muggianu, the excess energy and activities of molybdenum for the sections of the phase diagram for the penternary Ni-Cr-Co-Al-Mo system with mole ratios xNi/ xMo = 1, xCr/ xMo = 1, xCo/ xMo = 1, and xAl/ xMo = r = 0.5 and 1, were thermodynamically investigated at a temperature of 2000 K, whereas the excess energy and activities of Bi for the section corresponding to the ternary Bi-Ga-Sb system with mole ratio xGa/ xSb = 1/9 were thermodynamically investigated at a temperature of 1073 K. In the case of r = 0.5 and 1 in the alloys Ni-Cr-Co-Al-Mo, a positive deviation in the activity coefficient was revealed, as molybdenum content increased. Moreover, in the calculations performed in Chou's GSM model, the obtained values for excess Gibbs energies are negative in the whole concentration range of bismuth at 1073 K and exhibit the minimum of about -2.2 kJ/mol at the mole ratio xGa/ xSb = 1/9 in the alloy Bi-Ga-Sb.

  5. Translation of Bernstein Coefficients Under an Affine Mapping of the Unit Interval

    NASA Technical Reports Server (NTRS)

    Alford, John A., II

    2012-01-01

    We derive an expression connecting the coefficients of a polynomial expanded in the Bernstein basis to the coefficients of an equivalent expansion of the polynomial under an affine mapping of the domain. The expression may be useful in the calculation of bounds for multi-variate polynomials.

  6. Calculation of binary magnetic properties and potential energy curve in xenon dimer: second virial coefficient of (129)Xe nuclear shielding.

    PubMed

    Hanni, Matti; Lantto, Perttu; Runeberg, Nino; Jokisaari, Jukka; Vaara, Juha

    2004-09-22

    Quantum chemical calculations of the nuclear shielding tensor, the nuclear quadrupole coupling tensor, and the spin-rotation tensor are reported for the Xe dimer using ab initio quantum chemical methods. The binary chemical shift delta, the anisotropy of the shielding tensor Delta sigma, the nuclear quadrupole coupling tensor component along the internuclear axis chi( parallel ), and the spin-rotation constant C( perpendicular ) are presented as a function of internuclear distance. The basis set superposition error is approximately corrected for by using the counterpoise correction (CP) method. Electron correlation effects are systematically studied via the Hartree-Fock, complete active space self-consistent field, second-order Møller-Plesset many-body perturbation, and coupled-cluster singles and doubles (CCSD) theories, the last one without and with noniterative triples, at the nonrelativistic all-electron level. We also report a high-quality theoretical interatomic potential for the Xe dimer, gained using the relativistic effective potential/core polarization potential scheme. These calculations used valence basis set of cc-pVQZ quality supplemented with a set of midbond functions. The second virial coefficient of Xe nuclear shielding, which is probably the experimentally best-characterized intermolecular interaction effect in nuclear magnetic resonance spectroscopy, is computed as a function of temperature, and compared to experiment and earlier theoretical results. The best results for the second virial coefficient, obtained using the CCSD(CP) binary chemical shift curve and either our best theoretical potential or the empirical potentials from the literature, are in good agreement with experiment. Zero-point vibrational corrections of delta, Delta sigma, chi (parallel), and C (perpendicular) in the nu=0, J=0 rovibrational ground state of the xenon dimer are also reported.

  7. Molecular dynamics calculation of rotational diffusion coefficient of a carbon nanotube in fluid.

    PubMed

    Cao, Bing-Yang; Dong, Ruo-Yu

    2014-01-21

    Rotational diffusion processes are correlated with nanoparticle visualization and manipulation techniques, widely used in nanocomposites, nanofluids, bioscience, and so on. However, a systematical methodology of deriving this diffusivity is still lacking. In the current work, three molecular dynamics (MD) schemes, including equilibrium (Green-Kubo formula and Einstein relation) and nonequilibrium (Einstein-Smoluchowski relation) methods, are developed to calculate the rotational diffusion coefficient, taking a single rigid carbon nanotube in fluid argon as a case. We can conclude that the three methods produce same results on the basis of plenty of data with variation of the calculation parameters (tube length, diameter, fluid temperature, density, and viscosity), indicative of the validity and accuracy of the MD simulations. However, these results have a non-negligible deviation from the theoretical predictions of Tirado et al. [J. Chem. Phys. 81, 2047 (1984)], which may come from several unrevealed factors of the theory. The three MD methods proposed in this paper can also be applied to other situations of calculating rotational diffusion coefficient.

  8. Enhancements in Deriving Smoke Emission Coefficients from Fire Radiative Power Measurements

    NASA Technical Reports Server (NTRS)

    Ellison, Luke; Ichoku, Charles

    2011-01-01

    Smoke emissions have long been quantified after-the-fact by simple multiplication of burned area, biomass density, fraction of above-ground biomass, and burn efficiency. A new algorithm has been suggested, as described in Ichoku & Kaufman (2005), for use in calculating smoke emissions directly from fire radiative power (FRP) measurements such that the latency and uncertainty associated with the previously listed variables are avoided. Application of this new, simpler and more direct algorithm is automatic, based only on a fire's FRP measurement and a predetermined coefficient of smoke emission for a given location. Attaining accurate coefficients of smoke emission is therefore critical to the success of this algorithm. In the aforementioned paper, an initial effort was made to derive coefficients of smoke emission for different large regions of interest using calculations of smoke emission rates from MODIS FRP and aerosol optical depth (AOD) measurements. Further work had resulted in a first draft of a 1 1 resolution map of these coefficients. This poster will present the work done to refine this algorithm toward the first production of global smoke emission coefficients. Main updates in the algorithm include: 1) inclusion of wind vectors to help refine several parameters, 2) defining new methods for calculating the fire-emitted AOD fractions, and 3) calculating smoke emission rates on a per-pixel basis and aggregating to grid cells instead of doing so later on in the process. In addition to a presentation of the methodology used to derive this product, maps displaying preliminary results as well as an outline of the future application of such a product into specific research opportunities will be shown.

  9. Improved AIOMFAC model parameterisation of the temperature dependence of activity coefficients for aqueous organic mixtures

    NASA Astrophysics Data System (ADS)

    Ganbavale, G.; Zuend, A.; Marcolli, C.; Peter, T.

    2015-01-01

    This study presents a new, improved parameterisation of the temperature dependence of activity coefficients in the AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients) model applicable for aqueous as well as water-free organic solutions. For electrolyte-free organic and organic-water mixtures the AIOMFAC model uses a group-contribution approach based on UNIFAC (UNIversal quasi-chemical Functional-group Activity Coefficients). This group-contribution approach explicitly accounts for interactions among organic functional groups and between organic functional groups and water. The previous AIOMFAC version uses a simple parameterisation of the temperature dependence of activity coefficients, aimed to be applicable in the temperature range from ~ 275 to ~ 400 K. With the goal to improve the description of a wide variety of organic compounds found in atmospheric aerosols, we extend the AIOMFAC parameterisation for the functional groups carboxyl, hydroxyl, ketone, aldehyde, ether, ester, alkyl, aromatic carbon-alcohol, and aromatic hydrocarbon to atmospherically relevant low temperatures. To this end we introduce a new parameterisation for the temperature dependence. The improved temperature dependence parameterisation is derived from classical thermodynamic theory by describing effects from changes in molar enthalpy and heat capacity of a multi-component system. Thermodynamic equilibrium data of aqueous organic and water-free organic mixtures from the literature are carefully assessed and complemented with new measurements to establish a comprehensive database, covering a wide temperature range (~ 190 to ~ 440 K) for many of the functional group combinations considered. Different experimental data types and their processing for the estimation of AIOMFAC model parameters are discussed. The new AIOMFAC parameterisation for the temperature dependence of activity coefficients from low to high temperatures shows an overall improvement of 28% in comparison to the previous model version, when both versions are compared to our database of experimentally determined activity coefficients and related thermodynamic data. When comparing the previous and new AIOMFAC model parameterisations to the subsets of experimental data with all temperatures below 274 K or all temperatures above 322 K (i.e. outside a 25 K margin of the reference temperature of 298 K), applying the new parameterisation leads to 37% improvement in each of the two temperature ranges considered. The new parameterisation of AIOMFAC agrees well with a large number of experimental data sets. Larger model-measurement discrepancies were found particularly for some of the systems containing multi-functional organic compounds. The affected systems were typically also poorly represented at room temperature and further improvements will be necessary to achieve better performance of AIOMFAC in these cases (assuming the experimental data are reliable). The performance of the AIOMFAC parameterisation is typically better for systems containing relatively small organic compounds and larger deviations may occur in mixtures where molecules of high structural complexity such as highly oxygenated compounds or molecules of high molecular mass (e.g. oligomers) prevail. Nevertheless, the new parameterisation enables the calculation of activity coefficients for a wide variety of different aqueous/water-free organic solutions down to the low temperatures present in the upper troposphere.

  10. Resolved shear stress intensity coefficient and fatigue crack growth in large crystals

    NASA Technical Reports Server (NTRS)

    Chen, Q.; Liu, H. W.

    1988-01-01

    Fatigue crack growth tests were carried out on large-grain Al 7029 aluminum alloy and the finite element method was used to calculate the stress field near the tip of a zigzag crack. The resolved shear stresses on all 12 slip systems were computed, and the resolved shear stress intensity coefficient (RSSIC) was defined. The RSSIC was used to analyze the irregular crack path and was correlated with the rate of single-slip-plane shear crack growth. Fatigue crack growth was found to be caused primarily by shear decohesion at a crack tip. When the RSSIC on a single-slip system was much larger than all the others, the crack followed a single-slip plane. When the RSSICs on two conjugate slip systems were comparable, a crack grew in a zigzag manner on these planes and the macrocrack-plane bisected the two active slip planes. The maximum RSSIC on the most active slip system is proposed as a parameter to correlate with the shear fatigue crack growth rate in large crystals.

  11. The electric double layer at a metal electrode in pure water

    NASA Astrophysics Data System (ADS)

    Brüesch, Peter; Christen, Thomas

    2004-03-01

    Pure water is a weak electrolyte that dissociates into hydronium ions and hydroxide ions. In contact with a charged electrode a double layer forms for which neither experimental nor theoretical studies exist, in contrast to electrolytes containing extrinsic ions like acids, bases, and solute salts. Starting from a self-consistent solution of the one-dimensional modified Poisson-Boltzmann equation, which takes into account activity coefficients of point-like ions, we explore the properties of the electric double layer by successive incorporation of various correction terms like finite ion size, polarization, image charge, and field dissociation. We also discuss the effect of the usual approximation of an average potential as required for the one-dimensional Poisson-Boltzmann equation, and conclude that the one-dimensional approximation underestimates the ion density. We calculate the electric potential, the ion distributions, the pH-values, the ion-size corrected activity coefficients, and the dissociation constants close to the electric double layer and compare the results for the various model corrections.

  12. Anomalous thermoelectric phenomena in lattice models of multi-Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Gorbar, E. V.; Miransky, V. A.; Shovkovy, I. A.; Sukhachov, P. O.

    2017-10-01

    The thermoelectric transport coefficients are calculated in a generic lattice model of multi-Weyl semimetals with a broken time-reversal symmetry by using the Kubo's linear response theory. The contributions connected with the Berry curvature-induced electromagnetic orbital and heat magnetizations are systematically taken into account. It is shown that the thermoelectric transport is profoundly affected by the nontrivial topology of multi-Weyl semimetals. In particular, the calculation reveals a number of thermal coefficients of the topological origin which describe the anomalous Nernst and thermal Hall effects in the absence of background magnetic fields. Similarly to the anomalous Hall effect, all anomalous thermoelectric coefficients are proportional to the integer topological charge of the Weyl nodes. The dependence of the thermoelectric coefficients on the chemical potential and temperature is also studied.

  13. Modified free volume theory of self-diffusion and molecular theory of shear viscosity of liquid carbon dioxide.

    PubMed

    Nasrabad, Afshin Eskandari; Laghaei, Rozita; Eu, Byung Chan

    2005-04-28

    In previous work on the density fluctuation theory of transport coefficients of liquids, it was necessary to use empirical self-diffusion coefficients to calculate the transport coefficients (e.g., shear viscosity of carbon dioxide). In this work, the necessity of empirical input of the self-diffusion coefficients in the calculation of shear viscosity is removed, and the theory is thus made a self-contained molecular theory of transport coefficients of liquids, albeit it contains an empirical parameter in the subcritical regime. The required self-diffusion coefficients of liquid carbon dioxide are calculated by using the modified free volume theory for which the generic van der Waals equation of state and Monte Carlo simulations are combined to accurately compute the mean free volume by means of statistical mechanics. They have been computed as a function of density along four different isotherms and isobars. A Lennard-Jones site-site interaction potential was used to model the molecular carbon dioxide interaction. The density and temperature dependence of the theoretical self-diffusion coefficients are shown to be in excellent agreement with experimental data when the minimum critical free volume is identified with the molecular volume. The self-diffusion coefficients thus computed are then used to compute the density and temperature dependence of the shear viscosity of liquid carbon dioxide by employing the density fluctuation theory formula for shear viscosity as reported in an earlier paper (J. Chem. Phys. 2000, 112, 7118). The theoretical shear viscosity is shown to be robust and yields excellent density and temperature dependence for carbon dioxide. The pair correlation function appearing in the theory has been computed by Monte Carlo simulations.

  14. On the Ageing of High Energy Lithium-Ion Batteries—Comprehensive Electrochemical Diffusivity Studies of Harvested Nickel Manganese Cobalt Electrodes

    PubMed Central

    Jaguemont, Joris; Van Den Bossche, Peter; Omar, Noshin; Van Mierlo, Joeri

    2018-01-01

    This paper examines the impact of the characterisation technique considered for the determination of the Li+ solid state diffusion coefficient in uncycled as in cycled Nickel Manganese Cobalt oxide (NMC) electrodes. As major characterisation techniques, Cyclic Voltammetry (CV), Galvanostatic Intermittent Titration Technique (GITT) and Electrochemical Impedance Spectroscopy (EIS) were systematically investigated. Li+ diffusion coefficients during the lithiation process of the uncycled and cycled electrodes determined by CV at 3.71 V are shown to be equal to 3.48×10−10 cm2·s−1 and 1.56×10−10 cm2·s−1 , respectively. The dependency of the Li+ diffusion with the lithium content in the electrodes is further studied in this paper with GITT and EIS. Diffusion coefficients calculated by GITT and EIS characterisations are shown to be in the range between 1.76×10−15 cm2·s−1 and 4.06×10−12 cm2·s−1, while demonstrating the same decreasing trend with the lithiation process of the electrodes. For both electrode types, diffusion coefficients calculated by CV show greater values compared to those determined by GITT and EIS. With ageing, CV and EIS techniques lead to diffusion coefficients in the electrodes at 3.71 V that are decreasing, in contrast to GITT for which results indicate increasing diffusion coefficient. After long-term cycling, ratios of the diffusion coefficients determined by GITT compared to CV become more significant with an increase about 1 order of magnitude, while no significant variation is seen between the diffusion coefficients calculated from EIS in comparison to CV. PMID:29360787

  15. On the Ageing of High Energy Lithium-Ion Batteries-Comprehensive Electrochemical Diffusivity Studies of Harvested Nickel Manganese Cobalt Electrodes.

    PubMed

    Capron, Odile; Gopalakrishnan, Rahul; Jaguemont, Joris; Van Den Bossche, Peter; Omar, Noshin; Van Mierlo, Joeri

    2018-01-23

    This paper examines the impact of the characterisation technique considered for the determination of the L i + solid state diffusion coefficient in uncycled as in cycled Nickel Manganese Cobalt oxide (NMC) electrodes. As major characterisation techniques, Cyclic Voltammetry (CV), Galvanostatic Intermittent Titration Technique (GITT) and Electrochemical Impedance Spectroscopy (EIS) were systematically investigated. L i + diffusion coefficients during the lithiation process of the uncycled and cycled electrodes determined by CV at 3.71 V are shown to be equal to 3 . 48 × 10 - 10 cm 2 ·s - 1 and 1 . 56 × 10 - 10 cm 2 ·s - 1 , respectively. The dependency of the L i + diffusion with the lithium content in the electrodes is further studied in this paper with GITT and EIS. Diffusion coefficients calculated by GITT and EIS characterisations are shown to be in the range between 1 . 76 × 10 - 15 cm 2 ·s - 1 and 4 . 06 × 10 - 12 cm 2 ·s - 1 , while demonstrating the same decreasing trend with the lithiation process of the electrodes. For both electrode types, diffusion coefficients calculated by CV show greater values compared to those determined by GITT and EIS. With ageing, CV and EIS techniques lead to diffusion coefficients in the electrodes at 3.71 V that are decreasing, in contrast to GITT for which results indicate increasing diffusion coefficient. After long-term cycling, ratios of the diffusion coefficients determined by GITT compared to CV become more significant with an increase about 1 order of magnitude, while no significant variation is seen between the diffusion coefficients calculated from EIS in comparison to CV.

  16. Heat activation of Phycomyces blakesleeanus spores: theromdynamics and effect of alcohols, furfural, and high pressure.

    PubMed

    Thevelein, J M; Van Assche, J A; Carlier, A R; Heremans, K

    1979-08-01

    The thermodynamic parameters for the heat activation of the sporangiospores of Phycomyces blakesleeanus were determined. For the apparent activation enthalpy (DeltaH(#)) a value of 1,151 kJ/mol was found, whereas a value of 3,644 J./ degrees K.mol was calculated for the apparent activation entropy (DeltaS(#)). n-Alcohols (from methanol to octanol), phenethyl alcohol, and furfural lowered the activation temperature of P. blakesleeanus spores. The heat resistance of the spores was lowered concomitantly. The effect of the alcohols was a linear function of the concentration in the range that could be applied. When the log of the concentration needed to produce an equal shift of the activation temperature was plotted for each alochol against the log of the octanol/water partition coefficient, a straight line was obtained. The free energy of adsorption of the n-alcohols to their active sites was calculated to be -2,487 J/mol of CH(2) groups. Although still inconclusive, this points toward an involvement of protein in the activation process. The effect of phenethyl alcohol was similar to the effect of n-alcohols, but furfural produced a greater shift than would be expected from the value of its partition coefficient. When the heat activation of the spores was performed under high pressure, the activation temperature was raised by 2 to 4 degrees K/1,000 atm. However, with pressures higher than 1,000 atm (1.013 x 10(5) kPa) the activation temperature was lowered until the pressure became lethal (more than 2,500 atm). It is known that membrane phase transition temperatures are shifted upward by about 20 degrees K/1,000 atm and that protein conformational changes are shifted upward by 2 to 6 degrees K/1,000 atm. Consequently, heat activation of fungal spores seems to be triggered by a protein conformational change and not by a membrane phase transition. Activation volumes of -54.1 cm(3)/mol at 38 degrees C and -79.3 cm(2)/mol at 40 degrees C were found for the lowering effect of high pressure on the heat activation temperature.

  17. Heat Activation of Phycomyces blakesleeanus Spores: Thermodynamics and Effect of Alcohols, Furfural, and High Pressure

    PubMed Central

    Thevelein, Johan M.; Van Assche, Jozef A.; Carlier, Albert R.; Heremans, Karel

    1979-01-01

    The thermodynamic parameters for the heat activation of the sporangiospores of Phycomyces blakesleeanus were determined. For the apparent activation enthalpy (ΔH#) a value of 1,151 kJ/mol was found, whereas a value of 3,644 J./°K·mol was calculated for the apparent activation entropy (ΔS#). n-Alcohols (from methanol to octanol), phenethyl alcohol, and furfural lowered the activation temperature of P. blakesleeanus spores. The heat resistance of the spores was lowered concomitantly. The effect of the alcohols was a linear function of the concentration in the range that could be applied. When the log of the concentration needed to produce an equal shift of the activation temperature was plotted for each alochol against the log of the octanol/water partition coefficient, a straight line was obtained. The free energy of adsorption of the n-alcohols to their active sites was calculated to be −2,487 J/mol of CH2 groups. Although still inconclusive, this points toward an involvement of protein in the activation process. The effect of phenethyl alcohol was similar to the effect of n-alcohols, but furfural produced a greater shift than would be expected from the value of its partition coefficient. When the heat activation of the spores was performed under high pressure, the activation temperature was raised by 2 to 4°K/1,000 atm. However, with pressures higher than 1,000 atm (1.013 × 105 kPa) the activation temperature was lowered until the pressure became lethal (more than 2,500 atm). It is known that membrane phase transition temperatures are shifted upward by about 20°K/1,000 atm and that protein conformational changes are shifted upward by 2 to 6°K/1,000 atm. Consequently, heat activation of fungal spores seems to be triggered by a protein conformational change and not by a membrane phase transition. Activation volumes of −54.1 cm3/mol at 38°C and −79.3 cm2/mol at 40°C were found for the lowering effect of high pressure on the heat activation temperature. PMID:88438

  18. Hyperfine excitation of CH in collisions with atomic and molecular hydrogen

    NASA Astrophysics Data System (ADS)

    Dagdigian, Paul J.

    2018-04-01

    We investigate here the excitation of methylidene (CH) induced by collisions with atomic and molecular hydrogen (H and H2). The hyperfine-resolved rate coefficients were obtained from close coupling nuclear-spin-free scattering calculations. The calculations are based upon recent, high-accuracy calculations of the CH(X2Π)-H(2S) and CH(X2Π)-H2 potential energy surfaces. Cross-sections and rate coefficients for collisions with atomic H, para-H2, and ortho-H2 were computed for all transitions between the 32 hyperfine levels for CH(X2Π) involving the n ≤ 4 rotational levels for temperatures between 10 and 300 K. These rate coefficients should significantly aid in the interpretation of astronomical observations of CH spectra. As a first application, the excitation of CH is simulated for conditions in typical molecular clouds.

  19. Mass attenuation coefficient of binderless, pre-treated and tannin-based Rhizophora spp. particleboards using 16.59 - 25.26 keV photon energy range

    NASA Astrophysics Data System (ADS)

    Mohd Yusof, Mohd Fahmi; Hamid, Puteri Nor Khatijah Abdul; Bauk, Sabar; Hashim, Rokiah; Tajuddin, Abdul Aziz

    2015-04-01

    The Rhizophora spp. particleboards were fabricated using ≤ 104 µm particle size at three different fabrication methods; binderless, steam pre-treated and tannin-added. The mass attenuation coefficient of Rhizophora spp. particleboards were measured using x-ray fluorescent (XRF) photon from niobium, molybdenum, palladium, silver and tin metal plates that provided photon energy between 16.59 to 25.26 keV. The results were compared to theoretical values for water calculated using photon cross-section database (XCOM).The results showed that all Rhizophora spp. particleboards having mass attenuation coefficient close to calculated XCOM for water. Tannin-added Rizophora spp. particleboard was nearest to calculated XCOM for water with χ2 value of 13.008 followed by binderless Rizophora spp. (25.859) and pre-treated Rizophora spp. (91.941).

  20. Ionic and electronic transport properties in dense plasmas by orbital-free density functional theory

    DOE PAGES

    Sjostrom, Travis; Daligault, Jérôme

    2015-12-09

    We validate the application of our recent orbital-free density functional theory (DFT) approach, [Phys. Rev. Lett. 113, 155006 (2014)], for the calculation of ionic and electronic transport properties of dense plasmas. To this end, we calculate the self-diffusion coefficient, the viscosity coefficient, the electrical and thermal conductivities, and the reflectivity coefficient of hydrogen and aluminum plasmas. Very good agreement is found with orbital-based Kohn-Sham DFT calculations at lower temperatures. Because the computational costs of the method do not increase with temperature, we can produce results at much higher temperatures than is accessible by the Kohn-Sham method. Our results for warmmore » dense aluminum at solid density are inconsistent with the recent experimental results reported by Sperling et al. [Phys. Rev. Lett. 115, 115001 (2015)].« less

  1. Development and evaluation of die and container materials

    NASA Technical Reports Server (NTRS)

    Wills, R. R.

    1978-01-01

    Commercial high purity ultrafine Si3N4, Al2O3, and SiO2 powders were vacuum dried and stored under nitrogen in sealed containers. Extensive analysis of the chemical, physical, and morphological characteristics of these powders was performed. The interaction of molten silicon with fused quartz was examined in a Knudsen cell using a mass spectrometer. The solubility of oxygen at the melting point of silicon was calculated to be 1.78 times 10 to the 18th power atoms/cu cm, and the activity coefficients of oxygen and silicon monoxide, the major vapor species, were calculated to be 4.83 times 10 to the minus 24th power and 0.0000701, respectively.

  2. ms 2: A molecular simulation tool for thermodynamic properties, release 3.0

    NASA Astrophysics Data System (ADS)

    Rutkai, Gábor; Köster, Andreas; Guevara-Carrion, Gabriela; Janzen, Tatjana; Schappals, Michael; Glass, Colin W.; Bernreuther, Martin; Wafai, Amer; Stephan, Simon; Kohns, Maximilian; Reiser, Steffen; Deublein, Stephan; Horsch, Martin; Hasse, Hans; Vrabec, Jadran

    2017-12-01

    A new version release (3.0) of the molecular simulation tool ms 2 (Deublein et al., 2011; Glass et al. 2014) is presented. Version 3.0 of ms 2 features two additional ensembles, i.e. microcanonical (NVE) and isobaric-isoenthalpic (NpH), various Helmholtz energy derivatives in the NVE ensemble, thermodynamic integration as a method for calculating the chemical potential, the osmotic pressure for calculating the activity of solvents, the six Maxwell-Stefan diffusion coefficients of quaternary mixtures, statistics for sampling hydrogen bonds, smooth-particle mesh Ewald summation as well as the ability to carry out molecular dynamics runs for an arbitrary number of state points in a single program execution.

  3. Diffusion in thorium carbide: A first-principles study

    NASA Astrophysics Data System (ADS)

    Pérez Daroca, D.; Llois, A. M.; Mosca, H. O.

    2015-12-01

    The prediction of the behavior of Th compounds under irradiation is an important issue for the upcoming Generation-IV nuclear reactors. The study of self-diffusion and hetero-diffusion is a central key to fulfill this goal. As a first approach, we obtained, by means of first-principles methods, migration and activation energies of Th and C atoms self-diffusion and diffusion of He atoms in ThC. We also calculate diffusion coefficients as a function of temperature.

  4. Simulations on false gain in recombination-pumped soft-X-ray lasers

    NASA Astrophysics Data System (ADS)

    Ozaki, T.; Kuroda, H.

    1997-10-01

    Numerical investigations are performed on false gain due to axial plasma expansion, which is expected to be important in initial proof-of-principle studies of recombination-pumped soft-X-ray lasers with extended capabilities. Modelling calculations of experiments with slab boron nitride targets reveal large false gain coefficients approaching 20 cm-1 in the case of plasmas with short active medium lengths. The false gain in the case of fiber targets is found to be of equal magnitude to that for slabs in the case of plasmas with less than 0.1 cm active medium lengths. Calculations for slab targets predict that adopting a tolerance of ǃ cm-1 for gain will severely restrict the time and the active medium length of the plasma that can be used for error-free observations, while those for fiber targets are found to be considerably relaxed. The effects of false gain in the 54.2 + Na Balmer ! laser is also investigated, again revealing the importance of this phenomena under optimum gain conditions.

  5. Juvenile-onset localized scleroderma activity detection by infrared thermography.

    PubMed

    Martini, G; Murray, K J; Howell, K J; Harper, J; Atherton, D; Woo, P; Zulian, F; Black, C M

    2002-10-01

    The aim of this study was to define the clinical utility of infrared thermography in disease activity detection in localized scleroderma (LS). We retrospectively reviewed 130 thermal images of 40 children with LS and calculated the sensitivity and specificity of thermography, comparing clinical descriptions of the lesions and contemporary thermographs. The reproducibility of thermography was calculated by using the weighted kappa coefficient to determine the level of agreement between two clinicians who reviewed the thermographs independently. The sensitivity of thermography was 92% and specificity was 68%. Full concordance between the two clinicians was observed in 91% of lesions, with a kappa score of 0.82, implying very high reproducibility of this technique. Our results demonstrate that thermography is a promising diagnostic tool when associated with clinical examination in discriminating disease activity, as long as it is applied to lesions without severe atrophy of the skin and subcutaneous fat. Further evaluation is needed to determine whether thermography can predict the future progression of lesions.

  6. Parallel computation safety analysis irradiation targets fission product molybdenum in neutronic aspect using the successive over-relaxation algorithm

    NASA Astrophysics Data System (ADS)

    Susmikanti, Mike; Dewayatna, Winter; Sulistyo, Yos

    2014-09-01

    One of the research activities in support of commercial radioisotope production program is a safety research on target FPM (Fission Product Molybdenum) irradiation. FPM targets form a tube made of stainless steel which contains nuclear-grade high-enrichment uranium. The FPM irradiation tube is intended to obtain fission products. Fission materials such as Mo99 used widely the form of kits in the medical world. The neutronics problem is solved using first-order perturbation theory derived from the diffusion equation for four groups. In contrast, Mo isotopes have longer half-lives, about 3 days (66 hours), so the delivery of radioisotopes to consumer centers and storage is possible though still limited. The production of this isotope potentially gives significant economic value. The criticality and flux in multigroup diffusion model was calculated for various irradiation positions and uranium contents. This model involves complex computation, with large and sparse matrix system. Several parallel algorithms have been developed for the sparse and large matrix solution. In this paper, a successive over-relaxation (SOR) algorithm was implemented for the calculation of reactivity coefficients which can be done in parallel. Previous works performed reactivity calculations serially with Gauss-Seidel iteratives. The parallel method can be used to solve multigroup diffusion equation system and calculate the criticality and reactivity coefficients. In this research a computer code was developed to exploit parallel processing to perform reactivity calculations which were to be used in safety analysis. The parallel processing in the multicore computer system allows the calculation to be performed more quickly. This code was applied for the safety limits calculation of irradiated FPM targets containing highly enriched uranium. The results of calculations neutron show that for uranium contents of 1.7676 g and 6.1866 g (× 106 cm-1) in a tube, their delta reactivities are the still within safety limits; however, for 7.9542 g and 8.838 g (× 106 cm-1) the limits were exceeded.

  7. Diffusion of Magnesium in Led Structures with InGaN/GaN Quantum Wells at True Growth Temperatures 860–980°C of p-GaN

    NASA Astrophysics Data System (ADS)

    Romanov, I. S.; Prudaev, I. A.; Brudnyi, V. N.

    2018-05-01

    The results of an investigation of Mg diffusion in blue LED structures with InGaN/GaN quantum wells are presented for various growth temperatures of the p-GaN layer. The values of the diffusion coefficient estimated for true growth temperatures of 860, 910, and 980°C were 7.5·10-17, 2.8·10-16, and 1.2·10-15 cm2/s, respectively. The temperature values given in the work were measured on the surface of the growing layer in situ using a pyrometer. The calculated activation energy for the temperature dependence of the diffusion coefficient was 2.8 eV.

  8. [Correlations of bile acids in the bile of rats in conditions of alloxan induced diabetes melitus].

    PubMed

    Danchenko, N M; Vesel'skyĭ, S P; Tsudzevych, B O

    2014-01-01

    The ratio of bile acids in the bile of rats with alloxan diabetes was investigated using the method of thin-layer chromatography. Changes of coefficients of conjugation and hydroxylation of bile acids were calculated and analyzed in half-hour samples of bile obtained during the 3-hour experiment. It has been found that the processes of conjugation of cholic acid with glycine and taurine are inhibited in alloxan diabetes. At the same time a significant increase of free threehydroxycholic and dixydroxycholic bile acids and conjugates of the latter ones with taurine has been registered. Coefficients of hydroxylation in alloxan diabetes show the domination of "acidic" pathway in bile acid biosynthesis that is tightly connected with the activity of mitochondrial enzymes.

  9. Standard state thermodynamic properties of completely ionized aqueous sodium sulfate using high dilution calorimetry up to 598.15 K.

    PubMed

    Djamali, Essmaiil; Chen, Keith; Cobble, James W

    2009-08-27

    Pabalan and Pitzer (Geochim. Cosmochim. Acta 1988, 52, 2393-2404) reported a comprehensive set of thermodynamic properties of aqueous solutions of sodium sulfate without using ion association or hydrolysis. However, there is now ample evidence available indicating that the ion association cannot be ignored at temperatures T>or=373 K. For example, even at the lowest concentration of their studies (m>or=0.05) and at 573.15 K, less than 20% of SO4(2-)(aq) is available as free ions. In the present study, the integral heats of solution of sodium sulfate were measured to very low concentrations (10(-4) m) up to 573.16 K. The data were analyzed correcting for the hydrolysis of SO4(2-)(aq) and the association of Na+(aq) with SO4(2-)(aq) and NaSO4-(aq) in order to obtain the final standard state thermodynamic properties of completely ionized aqueous sodium sulfate, Na2SO4(aq). From these and the available solubility data, the stoichiometric activity coefficients of saturated aqueous solutions of sodium sulfate were calculated up to 573.15 K and compared with literature data. The stoichiometric activity coefficients of aqueous solutions of sodium sulfate, as a function of temperature at all concentrations (0

  10. Empirical molecular-dynamics study of diffusion in liquid semiconductors

    NASA Astrophysics Data System (ADS)

    Yu, W.; Wang, Z. Q.; Stroud, D.

    1996-11-01

    We report the results of an extensive molecular-dynamics study of diffusion in liquid Si and Ge (l-Si and l-Ge) and of impurities in l-Ge, using empirical Stillinger-Weber (SW) potentials with several choices of parameters. We use a numerical algorithm in which the three-body part of the SW potential is decomposed into products of two-body potentials, thereby permitting the study of large systems. One choice of SW parameters agrees very well with the observed l-Ge structure factors. The diffusion coefficients D(T) at melting are found to be approximately 6.4×10-5 cm2/s for l-Si, in good agreement with previous calculations, and about 4.2×10-5 and 4.6×10-5 cm2/s for two models of l-Ge. In all cases, D(T) can be fitted to an activated temperature dependence, with activation energies Ed of about 0.42 eV for l-Si, and 0.32 or 0.26 eV for two models of l-Ge, as calculated from either the Einstein relation or from a Green-Kubo-type integration of the velocity autocorrelation function. D(T) for Si impurities in l-Ge is found to be very similar to the self-diffusion coefficient of l-Ge. We briefly discuss possible reasons why the SW potentials give D(T)'s substantially lower than ab initio predictions.

  11. Model of electron lifetimes inside the plasmasphere calculated using a CRRES derived hiss wave amplitude model

    NASA Astrophysics Data System (ADS)

    Orlova, Ksenia; Spasojevic, Maria; Shprits, Yuri

    Particle populations in the inner magnetosphere can change by orders of magnitude on very short time scales. For the last decade observations and theoretical computations showed that resonant interaction of electrons with various plasma waves plays an important role in acceleration and loss mechanisms. Using data from the CRRES plasma wave experiment, we develop quadratic fits to the mean of the wave amplitude squared for plasmaspheric hiss as a function of geomagnetic activity (Kp) and magnetic latitude (lambda) for the dayside (6

  12. Calculation of the octanol-water partition coefficient of armchair polyhex BN nanotubes

    NASA Astrophysics Data System (ADS)

    Mohammadinasab, E.; Pérez-Sánchez, H.; Goodarzi, M.

    2017-12-01

    A predictive model for determination partition coefficient (log P) of armchair polyhex BN nanotubes by using simple descriptors was built. The relationship between the octanol-water log P and quantum chemical descriptors, electric moments, and topological indices of some armchair polyhex BN nanotubes with various lengths and fixed circumference are represented. Based on density functional theory electric moments and physico-chemical properties of those nanotubes are calculated.

  13. Use of the Priestley-Taylor evaporation equation for soil water limited conditions in a small forest clearcut

    USGS Publications Warehouse

    Flint, A.L.; Childs, S.W.

    1991-01-01

    The Priestley-Taylor equation, a simplification of the Penman equation, was used to allow calculations of evapotranspiration under conditions where soil water supply limits evapotranspiration. The Priestley-Taylor coefficient, ??, was calculated to incorporate an exponential decrease in evapotranspiration as soil water content decreases. The method is appropriate for use when detailed meteorological measurements are not available. The data required to determine the parameter for the ?? coefficient are net radiation, soil heat flux, average air temperature, and soil water content. These values can be obtained from measurements or models. The dataset used in this report pertains to a partially vegetated clearcut forest site in southwest Oregon with soil depths ranging from 0.48 to 0.70 m and weathered bedrock below that. Evapotranspiration was estimated using the Bowen ratio method, and the calculated Priestley-Taylor coefficient was fitted to these estimates by nonlinear regression. The calculated Priestley-Taylor coefficient (?????) was found to be approximately 0.9 when the soil was near field capacity (0.225 cm3 cm-3). It was not until soil water content was less than 0.14 cm3 cm-3 that soil water supply limited evapotranspiration. The soil reached a final residual water content near 0.05 cm3 cm-3 at the end of the growing season. ?? 1991.

  14. Effect of double-layer polarization on the forces that act on a nanosized cylindrical particle in an ac electrical field.

    PubMed

    Zhao, Hui; Bau, Haim H

    2008-06-17

    The polarization of, the forces acting on, and the electroosmotic flow field around a cylindrical particle of radius a* and uniform zeta potential zeta* submerged in an electrolyte solution and subjected to alternating electric fields are computed by solving the Poisson-Nernst-Planck (PNP) equations (the standard model). The dipole coefficient and the electrostatic and hydrodynamic forces are calculated as functions of the electric field's frequency, the solute concentration, and the particle's surface charge. The calculations are not restricted to small Debye screening lengths (lambdaD*). At relatively low frequencies, the polarization coefficient is nearly frequency-independent. As the frequency increases above D*/a*(2), where D* is the effective diffusion coefficient, the polarization coefficient initially increases, attains a maximum, and then decreases to an asymptotic value (when the frequency exceeds (1+Du)D*/lambdaD(*2), where Du is the Dukhin number). At low frequencies, when (lambdaD*/a*)(2)e(|zeta*F*/(2R*T*)|) < 1, the PNP calculations are in excellent agreement with the predictions of the Dukhin-Shilov (DS) low-frequency theory. At high frequencies, when lambda D*/a* < 1, the PNP calculations are in excellent agreement with the Maxwell-Wagner-O'Konski (MWO) theory.

  15. Use of SCALE Continuous-Energy Monte Carlo Tools for Eigenvalue Sensitivity Coefficient Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perfetti, Christopher M; Rearden, Bradley T

    2013-01-01

    The TSUNAMI code within the SCALE code system makes use of eigenvalue sensitivity coefficients for an extensive number of criticality safety applications, such as quantifying the data-induced uncertainty in the eigenvalue of critical systems, assessing the neutronic similarity between different critical systems, and guiding nuclear data adjustment studies. The need to model geometrically complex systems with improved fidelity and the desire to extend TSUNAMI analysis to advanced applications has motivated the development of a methodology for calculating sensitivity coefficients in continuous-energy (CE) Monte Carlo applications. The CLUTCH and Iterated Fission Probability (IFP) eigenvalue sensitivity methods were recently implemented in themore » CE KENO framework to generate the capability for TSUNAMI-3D to perform eigenvalue sensitivity calculations in continuous-energy applications. This work explores the improvements in accuracy that can be gained in eigenvalue and eigenvalue sensitivity calculations through the use of the SCALE CE KENO and CE TSUNAMI continuous-energy Monte Carlo tools as compared to multigroup tools. The CE KENO and CE TSUNAMI tools were used to analyze two difficult models of critical benchmarks, and produced eigenvalue and eigenvalue sensitivity coefficient results that showed a marked improvement in accuracy. The CLUTCH sensitivity method in particular excelled in terms of efficiency and computational memory requirements.« less

  16. Internal dosimetry of inhaled iodine-131.

    PubMed

    Kiani Nasab, Mitra; Rafat Motavalli, Laleh; Miri Hakimabad, Hashem

    2018-01-01

    In this paper, the dose assessment for the iodine inhalation exposure in 19 aerosol sizes and three gas/vapor forms at three levels of thyroid uptake, was performed. Two different modes of work (light vs. heavy) and breathing (nose vs. mouth) for aerosol inhalation were investigated. In order to calculate the cumulated activities per unit of inhaled activity, a combined model which included the latest models of both human respiratory and alimentary tract was developed. The S values for 131 I were computed based on the ICRP adult male and female reference voxel phantoms by the Monte Carlo method. Then, the committed equivalent and committed effective dose coefficients were obtained (The data are available at http://www.um.ac.ir/∼mirihakim). In general, for the nonzero thyroid uptakes, the maximum cumulated activity was found in the thyroid. When the thyroid is blocked, however, the maximum depends on the work and breathing mode and radioisotope form. Overall, the maximum CED coefficient was evaluated for the inhalation of elemental iodine at thyroid uptake of ∼27% (2.8 × 10 -8 Sv/Bq). As for the particle inhalation per se, mouth breathing of 0.6 nm and 0.2 μm AMTD particles showed to have the maximum (2.8 × 10 -8 Sv/Bq) and minimum (6.4 × 10 -9 Sv/Bq) CED coefficients, respectively. Compared to the reference CED coefficients, the authors found an increase of about 58% for inhalation of the aerosols with AMAD of 1 μm and 70% for 5 μm. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. First-Principles Calculation of the Third Virial Coefficient of Helium

    PubMed Central

    Garberoglio, Giovanni; Harvey, Allan H.

    2009-01-01

    Knowledge of the pair and three-body potential-energy surfaces of helium is now sufficient to allow calculation of the third density virial coefficient, C(T), with significantly smaller uncertainty than that of existing experimental data. In this work, we employ the best available pair and three-body potentials for helium and calculate C(T) with path-integral Monte Carlo (PIMC) calculations supplemented by semiclassical calculations. The values of C(T) presented extend from 24.5561 K to 10 000 K. In the important metrological range of temperatures near 273.16 K, our uncertainties are smaller than the best experimental results by approximately an order of magnitude, and the reduction in uncertainty at other temperatures is at least as great. For convenience in calculation of C(T) and its derivatives, a simple correlating equation is presented. PMID:27504226

  18. Thermodynamic derivation of open circuit voltage in vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Pavelka, Michal; Wandschneider, Frank; Mazur, Petr

    2015-10-01

    Open circuit voltage of vanadium redox flow batteries is carefully calculated using equilibrium thermodynamics. This analysis reveals some terms in the Nernst relation which are usually omitted in literature. Due to the careful thermodynamic treatment, all uncertainties about the form of Nernst relation are removed except for uncertainties in activity coefficients of particular species. Moreover, it is shown (based again on equilibrium thermodynamics) that batteries with anion-exchange membranes follow different Nernst relation than batteries with cation-exchange membranes. The difference is calculated, and it is verified experimentally that the formula for anion-exchange membranes describes experiments with anion-exchange membranes better than the corresponding formula for cation-exchange membranes. In summary, careful thermodynamic calculation of open circuit voltage of vanadium redox flow batteries is presented, and the difference between voltage for anion-exchange and cation-exchange membranes is revealed.

  19. Incorporation of measured photosynthetic rate in a mathematical model for calculation of non-structural saccharide concentration

    NASA Technical Reports Server (NTRS)

    Lim, J. T.; Raper, C. D. Jr; Gold, H. J.; Wilkerson, G. G.; Raper CD, J. r. (Principal Investigator)

    1989-01-01

    A simple mathematical model for calculating the concentration of mobile carbon skeletons in the shoot of soya bean plants [Glycine max (L.) Merrill cv. Ransom] was built to examine the suitability of measured net photosynthetic rates (PN) for calculation of saccharide flux into the plant. The results suggest that either measurement of instantaneous PN overestimated saccharide influx or respiration rates utilized in the model were underestimated. If neither of these is the case, end-product inhibition of photosynthesis or waste respiration through the alternative pathway should be included in modelling of CH2O influx or efflux; and even if either of these is the case, the model output at a low coefficient of leaf activity indicates that PN still may be controlled by either end-product inhibition or alternative respiration.

  20. Surface hopping, transition state theory and decoherence. I. Scattering theory and time-reversibility

    NASA Astrophysics Data System (ADS)

    Jain, Amber; Herman, Michael F.; Ouyang, Wenjun; Subotnik, Joseph E.

    2015-10-01

    We provide an in-depth investigation of transmission coefficients as computed using the augmented-fewest switches surface hopping algorithm in the low energy regime. Empirically, microscopic reversibility is shown to hold approximately. Furthermore, we show that, in some circumstances, including decoherence on top of surface hopping calculations can help recover (as opposed to destroy) oscillations in the transmission coefficient as a function of energy; these oscillations can be studied analytically with semiclassical scattering theory. Finally, in the spirit of transition state theory, we also show that transmission coefficients can be calculated rather accurately starting from the curve crossing point and running trajectories forwards and backwards.

  1. A new statistical method for transfer coefficient calculations in the framework of the general multiple-compartment model of transport for radionuclides in biological systems.

    PubMed

    Garcia, F; Arruda-Neto, J D; Manso, M V; Helene, O M; Vanin, V R; Rodriguez, O; Mesa, J; Likhachev, V P; Filho, J W; Deppman, A; Perez, G; Guzman, F; de Camargo, S P

    1999-10-01

    A new and simple statistical procedure (STATFLUX) for the calculation of transfer coefficients of radionuclide transport to animals and plants is proposed. The method is based on the general multiple-compartment model, which uses a system of linear equations involving geometrical volume considerations. By using experimentally available curves of radionuclide concentrations versus time, for each animal compartment (organs), flow parameters were estimated by employing a least-squares procedure, whose consistency is tested. Some numerical results are presented in order to compare the STATFLUX transfer coefficients with those from other works and experimental data.

  2. Magnetic field dependence of Sommerfeld coefficient and penetration depth in NdFeAsO1-XFX single crystal

    NASA Astrophysics Data System (ADS)

    Purohit, Geetanjali; Pattanaik, Anup; Nayak, Pratibindhya

    2018-05-01

    Anisotropic properties of Sommerfeld coefficient and penetration depth for single crystal NdFeAsO1-xFx has been studied by using modified phenomenological Ginzburg-Landau (GL) theory. In the above two-band superconducting system, the calculated value of Sommerfeld coefficient shows very close proximity with the experimental result as reported by Welp. Further, anisotropic ratio of penetration depth also calculated and reported for this system. The results of anisotropic properties of the above superconducting system implied that modified GL-theory in the form presented here can be applicable to the above superconducting system.

  3. Incorporation of detailed eye model into polygon-mesh versions of ICRP-110 reference phantoms

    NASA Astrophysics Data System (ADS)

    Tat Nguyen, Thang; Yeom, Yeon Soo; Kim, Han Sung; Wang, Zhao Jun; Han, Min Cheol; Kim, Chan Hyeong; Lee, Jai Ki; Zankl, Maria; Petoussi-Henss, Nina; Bolch, Wesley E.; Lee, Choonsik; Chung, Beom Sun

    2015-11-01

    The dose coefficients for the eye lens reported in ICRP 2010 Publication 116 were calculated using both a stylized model and the ICRP-110 reference phantoms, according to the type of radiation, energy, and irradiation geometry. To maintain consistency of lens dose assessment, in the present study we incorporated the ICRP-116 detailed eye model into the converted polygon-mesh (PM) version of the ICRP-110 reference phantoms. After the incorporation, the dose coefficients for the eye lens were calculated and compared with those of the ICRP-116 data. The results showed generally a good agreement between the newly calculated lens dose coefficients and the values of ICRP 2010 Publication 116. Significant differences were found for some irradiation cases due mainly to the use of different types of phantoms. Considering that the PM version of the ICRP-110 reference phantoms preserve the original topology of the ICRP-110 reference phantoms, it is believed that the PM version phantoms, along with the detailed eye model, provide more reliable and consistent dose coefficients for the eye lens.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Haitao, E-mail: liaoht@cae.ac.cn

    The direct differentiation and improved least squares shadowing methods are both developed for accurately and efficiently calculating the sensitivity coefficients of time averaged quantities for chaotic dynamical systems. The key idea is to recast the time averaged integration term in the form of differential equation before applying the sensitivity analysis method. An additional constraint-based equation which forms the augmented equations of motion is proposed to calculate the time averaged integration variable and the sensitivity coefficients are obtained as a result of solving the augmented differential equations. The application of the least squares shadowing formulation to the augmented equations results inmore » an explicit expression for the sensitivity coefficient which is dependent on the final state of the Lagrange multipliers. The LU factorization technique to calculate the Lagrange multipliers leads to a better performance for the convergence problem and the computational expense. Numerical experiments on a set of problems selected from the literature are presented to illustrate the developed methods. The numerical results demonstrate the correctness and effectiveness of the present approaches and some short impulsive sensitivity coefficients are observed by using the direct differentiation sensitivity analysis method.« less

  5. Rotationally inelastic scattering of PN by para-H2(j = 0) at low/moderate temperature

    NASA Astrophysics Data System (ADS)

    Najar, F.; Naouai, M.; Hanini, H. El; Jaidane, N.

    2017-12-01

    Calculation of the collisional rate coefficients with the most abundant species has been motivated by the desire to interpret observations of molecules in the interstellar medium. This paper will be concerned with rotational excitation of the phosphorus nitride (PN) molecule in its ground vibrational state by collisions with para-H2(j = 0). Ab intio potential energy surface for the PN-H2 van der Waals system, considering both molecules as rigid rotors, was computed via CCSD(T) method using the aug-cc-pVTZ basis sets, augmented by a bond functions placed at midway between the PN and H2 centres of mass. Cross-sections among the 40 first rotational levels of PN in collisions with para-H2(j = 0) were obtained using close coupling and coupled states calculations, for total energies up to 3000 cm- 1. Rate coefficients are presented for temperatures ranging from 5 to 300 K. A strong propensity favouring even Δj transitions is found. The comparison of the new PN-H2 rate coefficients with previously calculated PN-He rate coefficients shows that significant differences exist.

  6. Efficient sensitivity analysis method for chaotic dynamical systems

    NASA Astrophysics Data System (ADS)

    Liao, Haitao

    2016-05-01

    The direct differentiation and improved least squares shadowing methods are both developed for accurately and efficiently calculating the sensitivity coefficients of time averaged quantities for chaotic dynamical systems. The key idea is to recast the time averaged integration term in the form of differential equation before applying the sensitivity analysis method. An additional constraint-based equation which forms the augmented equations of motion is proposed to calculate the time averaged integration variable and the sensitivity coefficients are obtained as a result of solving the augmented differential equations. The application of the least squares shadowing formulation to the augmented equations results in an explicit expression for the sensitivity coefficient which is dependent on the final state of the Lagrange multipliers. The LU factorization technique to calculate the Lagrange multipliers leads to a better performance for the convergence problem and the computational expense. Numerical experiments on a set of problems selected from the literature are presented to illustrate the developed methods. The numerical results demonstrate the correctness and effectiveness of the present approaches and some short impulsive sensitivity coefficients are observed by using the direct differentiation sensitivity analysis method.

  7. Auxiliary basis expansions for large-scale electronic structure calculations.

    PubMed

    Jung, Yousung; Sodt, Alex; Gill, Peter M W; Head-Gordon, Martin

    2005-05-10

    One way to reduce the computational cost of electronic structure calculations is to use auxiliary basis expansions to approximate four-center integrals in terms of two- and three-center integrals, usually by using the variationally optimum Coulomb metric to determine the expansion coefficients. However, the long-range decay behavior of the auxiliary basis expansion coefficients has not been characterized. We find that this decay can be surprisingly slow. Numerical experiments on linear alkanes and a toy model both show that the decay can be as slow as 1/r in the distance between the auxiliary function and the fitted charge distribution. The Coulomb metric fitting equations also involve divergent matrix elements for extended systems treated with periodic boundary conditions. An attenuated Coulomb metric that is short-range can eliminate these oddities without substantially degrading calculated relative energies. The sparsity of the fit coefficients is assessed on simple hydrocarbon molecules and shows quite early onset of linear growth in the number of significant coefficients with system size using the attenuated Coulomb metric. Hence it is possible to design linear scaling auxiliary basis methods without additional approximations to treat large systems.

  8. A Method for Approximating the Bivariate Normal Correlation Coefficient.

    ERIC Educational Resources Information Center

    Kirk, David B.

    Improvements of the Gaussian quadrature in conjunction with the Newton-Raphson iteration technique (TM 000 789) are discussed as effective methods of calculating the bivariate normal correlation coefficient. (CK)

  9. GASP- General Aviation Synthesis Program. Volume 3: Aerodynamics

    NASA Technical Reports Server (NTRS)

    Hague, D.

    1978-01-01

    Aerodynamics calculations are treated in routines which concern moments as they vary with flight conditions and attitude. The subroutines discussed: (1) compute component equivalent flat plate and wetted areas and profile drag; (2) print and plot low and high speed drag polars; (3) determine life coefficient or angle of attack; (4) determine drag coefficient; (5) determine maximum lift coefficient and drag increment for various flap types and flap settings; and (6) determine required lift coefficient and drag coefficient in cruise flight.

  10. The excitation of OH by H2 revisited - I: fine-structure resolved rate coefficients

    NASA Astrophysics Data System (ADS)

    Kłos, J.; Ma, Q.; Dagdigian, P. J.; Alexander, M. H.; Faure, A.; Lique, F.

    2017-11-01

    Observations of OH in molecular clouds provide crucial constraints on both the physical conditions and the oxygen and water chemistry in these clouds. Accurate modelling of the OH emission spectra requires the calculation of rate coefficients for excitation of OH by collisions with the most abundant collisional partner in the molecular clouds, namely the H2 molecule. We report here theoretical calculations for the fine-structure excitation of OH by H2 (both para- and ortho-H2) using a recently developed highly accurate potential energy surface. Full quantum close coupling rate coefficients are provided for temperatures ranging from 10 to 150 K. Propensity rules are discussed and the new OH-H2 rate coefficients are compared to the earlier values that are currently used in astrophysical modelling. Significant differences were found: the new rate coefficients are significantly larger. As a first application, we simulate the excitation of OH in typical cold molecular clouds and star-forming regions. The new rate coefficients predict substantially larger line intensities. As a consequence, OH abundances derived from observations will be reduced from the values predicted by the earlier rate coefficients.

  11. Quantitative prediction of ionization effect on human skin permeability.

    PubMed

    Baba, Hiromi; Ueno, Yusuke; Hashida, Mitsuru; Yamashita, Fumiyoshi

    2017-04-30

    Although skin permeability of an active ingredient can be severely affected by its ionization in a dose solution, most of the existing prediction models cannot predict such impacts. To provide reliable predictors, we curated a novel large dataset of in vitro human skin permeability coefficients for 322 entries comprising chemically diverse permeants whose ionization fractions can be calculated. Subsequently, we generated thousands of computational descriptors, including LogD (octanol-water distribution coefficient at a specific pH), and analyzed the dataset using nonlinear support vector regression (SVR) and Gaussian process regression (GPR) combined with greedy descriptor selection. The SVR model was slightly superior to the GPR model, with externally validated squared correlation coefficient, root mean square error, and mean absolute error values of 0.94, 0.29, and 0.21, respectively. These models indicate that Log D is effective for a comprehensive prediction of ionization effects on skin permeability. In addition, the proposed models satisfied the statistical criteria endorsed in recent model validation studies. These models can evaluate virtually generated compounds at any pH; therefore, they can be used for high-throughput evaluations of numerous active ingredients and optimization of their skin permeability with respect to permeant ionization. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. ULF wave analysis and radial diffusion calculation using a global MHD model for the 17 March 2013 and 2015 storms

    NASA Astrophysics Data System (ADS)

    Li, Zhao; Hudson, Mary; Patel, Maulik; Wiltberger, Michael; Boyd, Alex; Turner, Drew

    2017-07-01

    The 17 March 2015 St. Patrick's Day Storm is the largest geomagnetic storm to date of Solar Cycle 24, with a Dst of -223 nT. The magnetopause moved inside geosynchronous orbit under high solar wind dynamic pressure and strong southward interplanetary magnetic field Bz causing loss; however, a subsequent drop in pressure allowed for rapid rebuilding of the radiation belts. The 17 March 2013 storm also shows similar effects on outer zone electrons: first, a rapid dropout due to inward motion of the magnetopause followed by rapid increase in flux above the prestorm level early in the recovery phase and a slow increase over the next 12 days. These phases can be seen in temporal evolution of the electron phase space density measured by the Energetic Particle, Composition, and Thermal Plasma Suite (ECT) instruments on Van Allen Probes. Using the Lyon-Fedder-Mobarry global MHD model driven by upstream solar wind measurements, we simulated both St. Patrick's Day 2013 and 2015 events, analyzing Lyon-Fedder-Mobarry electric and magnetic fields to calculate radial diffusion coefficients. These coefficients have been implemented in a radial diffusion code, using the measured electron phase space density following the local heating as the initial radial profile and outer boundary condition for subsequent temporal evolution over the next 12 days, beginning 18 March. Agreement with electron phase space density at 1000 MeV/G measured by the MagEIS component of the ECT instrument suite on Van Allen Probes was much improved using radial diffusion coefficients from the MHD simulations relative to coefficients parameterized by a global geomagnetic activity index.

  13. Estimation of black carbon content for biomass burning aerosols from multi-channel Raman lidar data

    NASA Astrophysics Data System (ADS)

    Talianu, Camelia; Marmureanu, Luminita; Nicolae, Doina

    2015-04-01

    Biomass burning due to natural processes (forest fires) or anthropical activities (agriculture, thermal power stations, domestic heating) is an important source of aerosols with a high content of carbon components (black carbon and organic carbon). Multi-channel Raman lidars provide information on the spectral dependence of the backscatter and extinction coefficients, embedding information on the black carbon content. Aerosols with a high content of black carbon have large extinction coefficients and small backscatter coefficients (strong absorption), while aerosols with high content of organic carbon have large backscatter coefficients (weak absorption). This paper presents a method based on radiative calculations to estimate the black carbon content of biomass burning aerosols from 3b+2a+1d lidar signals. Data is collected at Magurele, Romania, at the cross-road of air masses coming from Ukraine, Russia and Greece, where burning events are frequent during both cold and hot seasons. Aerosols are transported in the free troposphere, generally in the 2-4 km altitude range, and reaches the lidar location after 2-3 days. Optical data are collected between 2011-2012 by a multi-channel Raman lidar and follows the quality assurance program of EARLINET. Radiative calculations are made with libRadTran, an open source radiative model developed by ESA. Validation of the retrievals is made by comparison to a co-located C-ToF Aerosol Mass Spectrometer. Keywords: Lidar, aerosols, biomass burning, radiative model, black carbon Acknowledgment: This work has been supported by grants of the Romanian National Authority for Scientific Research, Programme for Research- Space Technology and Advanced Research - STAR, project no. 39/2012 - SIAFIM, and by Romanian Partnerships in priority areas PNII implemented with MEN-UEFISCDI support, project no. 309/2014 - MOBBE

  14. ULF Wave Analysis and Radial Diffusion Calculation Using a Global MHD Model for the 17 March 2015 Storm and Comparison with the 17 March 2013 Storm

    NASA Astrophysics Data System (ADS)

    Li, Z.; Hudson, M.; Paral, J.; Wiltberger, M. J.; Boyd, A. J.; Turner, D. L.

    2016-12-01

    The 17 March 2015 `St. Patrick's Day Storm' is the largest geomagnetic storm to date of Solar Cycle 24, with a Dst of -223 nT. The magnetopause moved inside geosynchronous orbit under high solar wind dynamic pressure and strong southward IMF Bz causing loss, however a subsequent drop in pressure allowed for rapid rebuilding of the radiation belts. Local heating has been modeled by other groups for this and the 17 March 2013 storm, only slightly weaker and showing a similar effect on electrons: first a rapid dropout due to inward motion of the magnetopause followed by rapid increase in flux above the pre-storm level and an even greater slow increase likely due to radial diffusion. The latter can be seen in temporal evolution of the electron phase space density measured by the Energetic Particle, Composition, and Thermal Plasma Suite (ECT) instrument on Van Allen Probes. Using the Lyon-Fedder-Mobarry global MHD model driven by upstream solar wind measurements with the Magneotsphere-Ionosphere Coupler (MIX), we have simulated both `St. Patrick's Day'events, analyzing LFM electric and magnetic fields to calculate radial diffusion coefficients. These coefficients have been implemented in a radial diffusion code using the measured electron phase space density profile following the local heating and as the outer boundary condition for subsequent temporally evolution over the next 12 days, beginning 18 March 2015. Agreement with electron phase space density at 1000 MeV/G measured by the MagEIS component of the ECT instrument on Van Allen Probes (30 keV - 4 MeV) was much improved using radial diffusion coefficients from the MHD simulations relative to coefficients parametrized by a global geomagnetic activity index.

  15. Using measured octanol-air partition coefficients to explain environmental partitioning of organochlorine pesticides.

    PubMed

    Shoeib, Mahiba; Harner, Tom

    2002-05-01

    Octanol-air partition coefficients (Koa) were measured directly for 19 organochlorine (OC) pesticides over the temperature range of 5 to 35 degrees C. Values of log Koa at 25 degrees C ranged over three orders of magnitude, from 7.4 for hexachlorobenzene to 10.1 for 1,1-dichloro-2,2-bis(p-chlorophenyl) ethane. Measured values were compared to values calculated as KowRT/H (where R is the ideal gas constant [8.314 J mol(-1) K(-1)], T is absolute temperature, and H is Henry's law constant) were, in general, larger. Discrepancies of up to three orders of magnitude were observed, highlighting the need for direct measurements of Koa. Plots of Koa versus inverse absolute temperature exhibited a log-linear correlation. Enthalpies of phase transition between octanol and air (deltaHoa) were determined from the temperature slopes and were in the range of 56 to 105 kJ mol(-1) K(-1). Activity coefficients in octanol (gamma(o)) were determined from Koa and reported supercooled liquid vapor pressures (pL(o)), and these were in the range of 0.3 to 12, indicating near-ideal solution behavior. Differences in Koa values for structural isomers of hexachlorocyclohexane were also explored. A Koa-based model was described for predicting the partitioning of OC pesticides to aerosols and used to calculate particulate fractions at 25 and -10 degrees C. The model also agreed well with experimental results for several OC pesticides that were equilibrated with urban aerosols in the laboratory. A log-log regression of the particle-gas partition coefficient versus Koa had a slope near unity, indicating that octanol is a good surrogate for the aerosol organic matter.

  16. Collision cross sections and transport coefficients of O-, O2 -, O3 - and O4 - negative ions in O2, N2 and dry air for non-thermal plasmas modelling

    NASA Astrophysics Data System (ADS)

    Hennad, Ali; Yousfi, Mohammed

    2018-02-01

    The ions interaction data such as interaction potential parameters, elastic and inelastic collision cross sections and the transport coefficients (reduced mobility and diffusion coefficients) have been determined and analyzed in the case of the main negative oxygen ions (O-, O2 -, O3 - and O4 -) present in low temperature plasma at atmospheric pressure when colliding O2, N2 and dry air. The ion transport has been determined from an optimized Monte Carlo simulation using calculated elastic and experimentally fitted inelastic collision cross sections. The elastic momentum transfer collision cross sections have been calculated from a semi-classical JWKB approximation based on a ( n-4) rigid core interaction potential model. The cross sections sets involving elastic and inelastic processes were then validated using measured reduced mobility data and also diffusion coefficient whenever available in the literature. From the sets of elastic and inelastic collision cross sections thus obtained for the first time for O3-/O2, O2 -/N2, O3 -/N2, and O4 -/N2 systems, the ion transport coefficients were calculated in pure gases and dry air over a wide range of the density reduced electric field E/N.

  17. SCALE Continuous-Energy Eigenvalue Sensitivity Coefficient Calculations

    DOE PAGES

    Perfetti, Christopher M.; Rearden, Bradley T.; Martin, William R.

    2016-02-25

    Sensitivity coefficients describe the fractional change in a system response that is induced by changes to system parameters and nuclear data. The Tools for Sensitivity and UNcertainty Analysis Methodology Implementation (TSUNAMI) code within the SCALE code system makes use of eigenvalue sensitivity coefficients for an extensive number of criticality safety applications, including quantifying the data-induced uncertainty in the eigenvalue of critical systems, assessing the neutronic similarity between different critical systems, and guiding nuclear data adjustment studies. The need to model geometrically complex systems with improved fidelity and the desire to extend TSUNAMI analysis to advanced applications has motivated the developmentmore » of a methodology for calculating sensitivity coefficients in continuous-energy (CE) Monte Carlo applications. The Contributon-Linked eigenvalue sensitivity/Uncertainty estimation via Tracklength importance CHaracterization (CLUTCH) and Iterated Fission Probability (IFP) eigenvalue sensitivity methods were recently implemented in the CE-KENO framework of the SCALE code system to enable TSUNAMI-3D to perform eigenvalue sensitivity calculations using continuous-energy Monte Carlo methods. This work provides a detailed description of the theory behind the CLUTCH method and describes in detail its implementation. This work explores the improvements in eigenvalue sensitivity coefficient accuracy that can be gained through the use of continuous-energy sensitivity methods and also compares several sensitivity methods in terms of computational efficiency and memory requirements.« less

  18. Full-dimensional Quantum Calculations of Rovibrational Transitions in CS induced by H2

    NASA Astrophysics Data System (ADS)

    Yang, Benhui; Zhang, Peng; Stancil, Phillip; Bowman, J.; Balakrishnan, N.; Forrey, R.

    2017-04-01

    Carbon monosulfide (CS), the sulfur analogue of carbon monoxide, has been widely observed in a variety interstellar regions. An accurate prediction of its abundance requires collisional rate coefficients with ambient gases. However, the collisional rate coefficients are largely unknown and primarily rely on theoretical scattering calculations. In interstellar clouds, the dominant collision partner is H2. Rate coefficient data on CS-H2 collisions are limited to pure rotational transitions and no data exist for rovibrational transitions. In this work we evaluate the first full-dimensional potential energy surface for the CS-H2 system using high-level electronic structure theory and perform explicit quantum close-coupling calculations of rovibrational transitions in CS induced by H2 collisions. Cross sections and rate coefficients for rotational transitions are compared with previous theoretical results obtained within a rigid-rotor model. For rovibrational transitions, state-to-state rate coefficients are evaluated for several low-lying rotational levels in the first excited vibrational level of CS. Results are presented for both para-H2 and ortho-H2 collision partners. Work at UGA and Emory are supported by NASA Grant No. NNX16AF09G, at UNLV by NSF Grant No. PHY-1505557, and at Penn State by NSF Grant No. PHY-1503615.

  19. Properties of air-aluminum thermal plasmas

    NASA Astrophysics Data System (ADS)

    Cressault, Y.; Gleizes, A.; Riquel, G.

    2012-07-01

    We present the calculation and the main results of the properties of air-aluminum thermal plasmas, useful for complete modelling of arc systems involving aluminum contacts. The properties are calculated assuming thermal equilibrium and correspond to the equilibrium composition, thermodynamic functions, transport coefficients including diffusion coefficients and net emission coefficient representing the divergence of the radiative flux in the hottest plasma regions. The calculation is developed in the temperature range between 2000 and 30 000 K, for a pressure range from 0.1 to 1 bar and for several metal mass proportions. As in the case of other metals, the presence of aluminum vapours has a strong influence on three properties at intermediate temperatures: the electron number density, the electrical conductivity and the net emission coefficient. Some comparisons with other metal vapour (Cu, Fe and Ag) properties are made and show the original behaviour for Al-containing mixtures: mass density at high temperatures is low due to the low Al atomic mass; high electrical conductivity at T < 10 000 K due to low ionization potential (around 2 V less for Al than for the other metals); very strong self-absorption of ionized aluminum lines, leading to a net emission coefficient lower than that of pure air when T > 10 000 K, in contrast to copper or iron radiation.

  20. Dynamic subfilter-scale stress model for large-eddy simulations

    NASA Astrophysics Data System (ADS)

    Rouhi, A.; Piomelli, U.; Geurts, B. J.

    2016-08-01

    We present a modification of the integral length-scale approximation (ILSA) model originally proposed by Piomelli et al. [Piomelli et al., J. Fluid Mech. 766, 499 (2015), 10.1017/jfm.2015.29] and apply it to plane channel flow and a backward-facing step. In the ILSA models the length scale is expressed in terms of the integral length scale of turbulence and is determined by the flow characteristics, decoupled from the simulation grid. In the original formulation the model coefficient was constant, determined by requiring a desired global contribution of the unresolved subfilter scales (SFSs) to the dissipation rate, known as SFS activity; its value was found by a set of coarse-grid calculations. Here we develop two modifications. We de-fine a measure of SFS activity (based on turbulent stresses), which adds to the robustness of the model, particularly at high Reynolds numbers, and removes the need for the prior coarse-grid calculations: The model coefficient can be computed dynamically and adapt to large-scale unsteadiness. Furthermore, the desired level of SFS activity is now enforced locally (and not integrated over the entire volume, as in the original model), providing better control over model activity and also improving the near-wall behavior of the model. Application of the local ILSA to channel flow and a backward-facing step and comparison with the original ILSA and with the dynamic model of Germano et al. [Germano et al., Phys. Fluids A 3, 1760 (1991), 10.1063/1.857955] show better control over the model contribution in the local ILSA, while the positive properties of the original formulation (including its higher accuracy compared to the dynamic model on coarse grids) are maintained. The backward-facing step also highlights the advantage of the decoupling of the model length scale from the mesh.

  1. Metal and anion composition of two biopolymeric chemical stabilizers and toxicity risk implication for the environment.

    PubMed

    Ndibewu, P P; Mgangira, M B; Cingo, N; McCrindle, R I

    2010-01-01

    The objective of this study was to (1) measure the concentration of four anions (Cl(-), F(-), [image omitted], and [image omitted]) and nine other elements (Al, Ba, Ca, K, Mg, Mn, Fe, Ni, and Si) in two nontraditional biopolymeric chemical stabilizers (EBCS1 and EBCS2), (2) investigate consequent environmental toxicity risk implications, and (3) create awareness regarding environmental health issues associated with metal concentration levels in enzyme-based chemical stabilizers that are now gaining widespread application in road construction and other concrete materials. Potential ecotoxicity impacts were studied on aqueous extracts of EBCS1 and EBCS2 using two thermodynamic properties models: the Pitzer-Mayorga model (calculation of the electrolyte activity coefficients) and the Millero-Pitzer model (calculation of the ionic activity coefficients). Results showed not only high concentrations of a variety of metal ions and inorganic anions, but also a significant variation between two chemical stabilizing mixtures. The mixture (EBCS2) with the lower pH value was richer in all the cationic and anionic species than (EBCS1). Sulfate (SO(2-)(4)) concentrations were found to be higher in EBCS2 than in EBCS1. There was no correlation between electrolyte activity and presence of the ionic species, which may be linked to a possible high ionic environmental activity. The concentrations of trace metals found (Mn, Fe, and Ni) were low compared to those of earth metals (Ba, Ca, K, and Mg). The metal concentrations were higher in EBCS1 than in EBCS2. Data suggest that specific studies are needed to establish "zero" permissible metal ecotoxicity values for elements and anions in any such strong polyelectrolytic enzyme-based chemical stabilizers.

  2. Quantitative structure-activity relationship for the partition coefficient of hydrophobic compounds between silicone oil and air.

    PubMed

    Qu, Yanfei; Ma, Yongwen; Wan, Jinquan; Wang, Yan

    2018-06-01

    The silicon oil-air partition coefficients (K SiO/A ) of hydrophobic compounds are vital parameters for applying silicone oil as non-aqueous-phase liquid in partitioning bioreactors. Due to the limited number of K SiO/A values determined by experiment for hydrophobic compounds, there is an urgent need to model the K SiO/A values for unknown chemicals. In the present study, we developed a universal quantitative structure-activity relationship (QSAR) model using a sequential approach with macro-constitutional and micromolecular descriptors for silicone oil-air partition coefficients (K SiO/A ) of hydrophobic compounds with large structural variance. The geometry optimization and vibrational frequencies of each chemical were calculated using the hybrid density functional theory at the B3LYP/6-311G** level. Several quantum chemical parameters that reflect various intermolecular interactions as well as hydrophobicity were selected to develop QSAR model. The result indicates that a regression model derived from logK SiO/A , the number of non-hydrogen atoms (#nonHatoms) and energy gap of E LUMO and E HOMO (E LUMO -E HOMO ) could explain the partitioning mechanism of hydrophobic compounds between silicone oil and air. The correlation coefficient R 2 of the model is 0.922, and the internal and external validation coefficient, Q 2 LOO and Q 2 ext , are 0.91 and 0.89 respectively, implying that the model has satisfactory goodness-of-fit, robustness, and predictive ability and thus provides a robust predictive tool to estimate the logK SiO/A values for chemicals in application domain. The applicability domain of the model was visualized by the Williams plot.

  3. Assessment of the Maximal Split-Half Coefficient to Estimate Reliability

    ERIC Educational Resources Information Center

    Thompson, Barry L.; Green, Samuel B.; Yang, Yanyun

    2010-01-01

    The maximal split-half coefficient is computed by calculating all possible split-half reliability estimates for a scale and then choosing the maximal value as the reliability estimate. Osburn compared the maximal split-half coefficient with 10 other internal consistency estimates of reliability and concluded that it yielded the most consistently…

  4. Confidence bounds for normal and lognormal distribution coefficients of variation

    Treesearch

    Steve Verrill

    2003-01-01

    This paper compares the so-called exact approach for obtaining confidence intervals on normal distribution coefficients of variation to approximate methods. Approximate approaches were found to perform less well than the exact approach for large coefficients of variation and small sample sizes. Web-based computer programs are described for calculating confidence...

  5. Assessing the Reliability of Student Evaluations of Teaching: Choosing the Right Coefficient

    ERIC Educational Resources Information Center

    Morley, Donald

    2014-01-01

    Many of the studies used to support the claim that student evaluations of teaching are reliable measures of teaching effectiveness have frequently calculated inappropriate reliability coefficients. This paper points to three coefficients that would be appropriate depending on if student evaluations were used for formative or summative purposes.…

  6. Approximation method for determining the static stability of a monoplane glider

    NASA Technical Reports Server (NTRS)

    Lippisch, A

    1927-01-01

    The calculations in this paper afford an approximate solution of the static stability. A derivation of the formulas for moment coefficient of a wing, moment coefficient of elevator, and the total moment of the combined wing and elevator and the moment coefficient with reference to the center of gravity are provided.

  7. Preliminary Investigation of the Role that DMS (Dimethyl Sulfide) and Cloud Cycles Play in the Formation of the Aerosol Size Distribution.

    DTIC Science & Technology

    1987-07-29

    Osmotic and Activity Coefficients for Aqueous Methane Sulfonic Acid Solutions at 25 deg C," J. Chem. and Eng. Data 18... osmotic coefficient and MSA activity coefficient have been measured by Coving- ton et al. (1973). The water vapor pressure of the solution can be obtained...from f2L(M) M_ (7)6.5 x 10" where -f is the activity coefficient . Values of the osmotic coefficient and activity coefficient (from

  8. Fuel-conservation evaluation of US Army helicopters. Part 6. Performance calculator evaluation. Final report for period ending January 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dominick, F.; Lockwood, R.A.

    1986-07-01

    The US Army Aviation Engineering Flight Activity conducted an evaluation of Flight Management Calculator for the UH-1H. The calculator was a Hewlett-Packard HP-41CV. The performance calculator was evaluated for flight planning and in-flight use during 14 mission flights simulating operational conditions. The calculator was much easier to use in-flight than the operator's manual data. The calculator program needs improvement in the areas of pre-flight planning and execution speed. The mission flights demonstrated a 19% fuel saving using optimum over normal flight profiles in warm temperatures (15/sup 0/C above standard). Savings would be greater at colder temperatures because of increasing compressibilitymore » effects. Acceptable accuracy for individual aircraft under operational conditions may require a regressive analog model in which individual aircraft data are used to update the program. The performance data base for the UH-1H was expanded with level flight and hover data to thrust coefficients and Mach numbers to the practical limits of aircraft operation.« less

  9. Generalized method calculating the effective diffusion coefficient in periodic channels.

    PubMed

    Kalinay, Pavol

    2015-01-07

    The method calculating the effective diffusion coefficient in an arbitrary periodic two-dimensional channel, presented in our previous paper [P. Kalinay, J. Chem. Phys. 141, 144101 (2014)], is generalized to 3D channels of cylindrical symmetry, as well as to 2D or 3D channels with particles driven by a constant longitudinal external driving force. The next possible extensions are also indicated. The former calculation was based on calculus in the complex plane, suitable for the stationary diffusion in 2D domains. The method is reformulated here using standard tools of functional analysis, enabling the generalization.

  10. The NUKDOS software for treatment planning in molecular radiotherapy.

    PubMed

    Kletting, Peter; Schimmel, Sebastian; Hänscheid, Heribert; Luster, Markus; Fernández, Maria; Nosske, Dietmar; Lassmann, Michael; Glatting, Gerhard

    2015-09-01

    The aim of this work was the development of a software tool for treatment planning prior to molecular radiotherapy, which comprises all functionality to objectively determine the activity to administer and the pertaining absorbed doses (including the corresponding error) based on a series of gamma camera images and one SPECT/CT or probe data. NUKDOS was developed in MATLAB. The workflow is based on the MIRD formalism For determination of the tissue or organ pharmacokinetics, gamma camera images as well as probe, urine, serum and blood activity data can be processed. To estimate the time-integrated activity coefficients (TIAC), sums of exponentials are fitted to the time activity data and integrated analytically. To obtain the TIAC on the voxel level, the voxel activity distribution from the quantitative 3D SPECT/CT (or PET/CT) is used for scaling and weighting the TIAC derived from the 2D organ data. The voxel S-values are automatically calculated based on the voxel-size of the image and the therapeutic nuclide ((90)Y, (131)I or (177)Lu). The absorbed dose coefficients are computed by convolution of the voxel TIAC and the voxel S-values. The activity to administer and the pertaining absorbed doses are determined by entering the absorbed dose for the organ at risk. The overall error of the calculated absorbed doses is determined by Gaussian error propagation. NUKDOS was tested for the operation systems Windows(®) 7 (64 Bit) and 8 (64 Bit). The results of each working step were compared to commercially available (SAAMII, OLINDA/EXM) and in-house (UlmDOS) software. The application of the software is demonstrated using examples form peptide receptor radionuclide therapy (PRRT) and from radioiodine therapy of benign thyroid diseases. For the example from PRRT, the calculated activity to administer differed by 4% comparing NUKDOS and the final result using UlmDos, SAAMII and OLINDA/EXM sequentially. The absorbed dose for the spleen and tumour differed by 7% and 8%, respectively. The results from the example from radioiodine therapy of benign thyroid diseases and the example given in the latest corresponding SOP were identical. The implemented, objective methods facilitate accurate and reproducible results. The software is freely available. Copyright © 2015. Published by Elsevier GmbH.

  11. Comparison of Polar Cap (PC) index calculations.

    NASA Astrophysics Data System (ADS)

    Stauning, P.

    2012-04-01

    The Polar Cap (PC) index introduced by Troshichev and Andrezen (1985) is derived from polar magnetic variations and is mainly a measure of the intensity of the transpolar ionospheric currents. These currents relate to the polar cap antisunward ionospheric plasma convection driven by the dawn-dusk electric field, which in turn is generated by the interaction of the solar wind with the Earth's magnetosphere. Coefficients to calculate PCN and PCS index values from polar magnetic variations recorded at Thule and Vostok, respectively, have been derived by several different procedures in the past. The first published set of coefficients for Thule was derived by Vennerstrøm, 1991 and is still in use for calculations of PCN index values by DTU Space. Errors in the program used to calculate index values were corrected in 1999 and again in 2001. In 2005 DMI adopted a unified procedure proposed by Troshichev for calculations of the PCN index. Thus there exists 4 different series of PCN index values. Similarly, at AARI three different sets of coefficients have been used to calculate PCS indices in the past. The presentation discusses the principal differences between the various PC index procedures and provides comparisons between index values derived from the same magnetic data sets using the different procedures. Examples from published papers are examined to illustrate the differences.

  12. Application of the two-film model to the volatilization of acetone and t-butyl alcohol from water as a function of temperature

    USGS Publications Warehouse

    Rathbun, R.E.; Tai, D.Y.

    1988-01-01

    The two-film model is often used to describe the volatilization of organic substances from water. This model assumes uniformly mixed water and air phases separated by thin films of water and air in which mass transfer is by molecular diffusion. Mass-transfer coefficients for the films, commonly called film coefficients, are related through the Henry's law constant and the model equation to the overall mass-transfer coefficient for volatilization. The films are modeled as two resistances in series, resulting in additive resistances. The two-film model and the concept of additivity of resistances were applied to experimental data for acetone and t-butyl alcohol. Overall mass-transfer coefficients for the volatilization of acetone and t-butyl alcohol from water were measured in the laboratory in a stirred constant-temperature bath. Measurements were completed for six water temperatures, each at three water mixing conditions. Wind-speed was constant at about 0.1 meter per second for all experiments. Oxygen absorption coefficients were measured simultaneously with the measurement of the acetone and t-butyl alcohol mass-transfer coefficients. Gas-film coefficients for acetone, t-butyl alcohol, and water were determined by measuring the volatilization fluxes of the pure substances over a range of temperatures. Henry's law constants were estimated from data from the literature. The combination of high resistance in the gas film for solutes with low values of the Henry's law constants has not been studied previously. Calculation of the liquid-film coefficients for acetone and t-butyl alcohol from measured overall mass-transfer and gas-film coefficients, estimated Henry's law constants, and the two-film model equation resulted in physically unrealistic, negative liquid-film coefficients for most of the experiments at the medium and high water mixing conditions. An analysis of the two-film model equation showed that when the percentage resistance in the gas film is large and the gas-film resistance approaches the overall resistance in value, the calculated liquid-film coefficient becomes extremely sensitive to errors in the Henry's law constant. The negative coefficients were attributed to this sensitivity and to errors in the estimated Henry's law constants. Liquid-film coefficients for the absorption of oxygen were correlated with the stirrer Reynolds number and the Schmidt number. Application of this correlation with the experimental conditions and a molecular-diffusion coefficient adjustment resulted in values of the liquid-film coefficients for both acetone and t-butyl alcohol within the range expected for all three mixing conditions. Comparison of Henry's law constants calculated from these film coefficients and the experimental data with the constants calculated from literature data showed that the differences were small relative to the errors reported in the literature as typical for the measurement or estimation of Henry's law constants for hydrophilic compounds such as ketones and alcohols. Temperature dependence of the mass-transfer coefficients was expressed in two forms. The first, based on thermodynamics, assumed the coefficients varied as the exponential of the reciprocal absolute temperature. The second empirical approach assumed the coefficients varied as the exponential of the absolute temperature. Both of these forms predicted the temperature dependence of the experimental mass-transfer coefficients with little error for most of the water temperature range likely to be found in streams and rivers. Liquid-film and gas-film coefficients for acetone and t-butyl alcohol were similar in value. However, depending on water mixing conditions, overall mass-transfer coefficients for acetone were from two to four times larger than the coefficients for t-butyl alcohol. This difference in behavior of the coefficients resulted because the Henry's law constant for acetone was about three times larger than that of

  13. NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species

    NASA Technical Reports Server (NTRS)

    McBride, Bonnie J.; Zehe, Michael J.; Gordon, Sanford

    2002-01-01

    This report documents the library of thermodynamic data used with the NASA Glenn computer program CEA (Chemical Equilibrium with Applications). This library, containing data for over 2000 solid, liquid, and gaseous chemical species for temperatures ranging from 200 to 20,000 K, is available for use with other computer codes as well. The data are expressed as least-squares coefficients to a seven-term functional form for C((sup o)(sub p)) (T) / R with integration constants for H (sup o) (T) / RT and S(sup o) (T) / R. The NASA Glenn computer program PAC (Properties and Coefficients) was used to calculate thermodynamic functions and to generate the least-squares coefficients. PAC input was taken from a variety of sources. A complete listing of the database is given along with a summary of thermodynamic properties at 0 and 298.15 K.

  14. Determining organ dose conversion coefficients for external neutron irradiation by using a voxel mouse model

    PubMed Central

    Zhang, Xiaomin; Xie, Xiangdong; Qu, Decheng; Ning, Jing; Zhou, Hongmei; Pan, Jie; Yang, Guoshan

    2016-01-01

    A set of fluence-to-dose conversion coefficients has been calculated for neutrons with energies <20 MeV using a developed voxel mouse model and Monte Carlo N-particle code (MCNP), for the purpose of neutron radiation effect evaluation. The calculation used 37 monodirectional monoenergetic neutron beams in the energy range 10−9 MeV to 20 MeV, under five different source irradiation configurations: left lateral, right lateral, dorsal–ventral, ventral–dorsal, and isotropic. Neutron fluence-to-dose conversion coefficients for selected organs of the body were presented in the paper, and the effect of irradiation geometry conditions, neutron energy and the organ location on the organ dose was discussed. The results indicated that neutron dose conversion coefficients clearly show sensitivity to irradiation geometry at neutron energy below 1 MeV. PMID:26661852

  15. Correction factors for on-line microprobe analysis of multielement alloy systems

    NASA Technical Reports Server (NTRS)

    Unnam, J.; Tenney, D. R.; Brewer, W. D.

    1977-01-01

    An on-line correction technique was developed for the conversion of electron probe X-ray intensities into concentrations of emitting elements. This technique consisted of off-line calculation and representation of binary interaction data which were read into an on-line minicomputer to calculate variable correction coefficients. These coefficients were used to correct the X-ray data without significantly increasing computer core requirements. The binary interaction data were obtained by running Colby's MAGIC 4 program in the reverse mode. The data for each binary interaction were represented by polynomial coefficients obtained by least-squares fitting a third-order polynomial. Polynomial coefficients were generated for most of the common binary interactions at different accelerating potentials and are included. Results are presented for the analyses of several alloy standards to demonstrate the applicability of this correction procedure.

  16. Use of the Budyko Framework to Estimate the Virtual Water Content in Shijiazhuang Plain, North China

    NASA Astrophysics Data System (ADS)

    Zhang, E.; Yin, X.

    2017-12-01

    One of the most challenging steps in implementing analysis of virtual water content (VWC) of agricultural crops is how to properly assess the volume of consumptive water use (CWU) for crop production. In practice, CWU is considered equivalent to the crop evapotranspiration (ETc). Following the crop coefficient method, ETc can be calculated under standard or non-standard conditions by multiplying the reference evapotranspiration (ET0) by one or a few coefficients. However, when current crop growing conditions deviate from standard conditions, accurately determining the coefficients under non-standard conditions remains to be a complicated process and requires lots of field experimental data. Based on regional surface water-energy balance, this research integrates the Budyko framework into the traditional crop coefficient approach to simplify the coefficients determination. This new method enables us to assess the volume of agricultural VWC only based on some hydrometeorological data and agricultural statistic data in regional scale. To demonstrate the new method, we apply it to the Shijiazhuang Plain, which is an agricultural irrigation area in the North China Plain. The VWC of winter wheat and summer maize is calculated and we further subdivide VWC into blue and green water components. Compared with previous studies in this study area, VWC calculated by the Budyko-based crop coefficient approach uses less data and agrees well with some of the previous research. It shows that this new method may serve as a more convenient tool for assessing VWC.

  17. Assessment of furcal perforations in the vicinity of different root canal sealers using a cone beam computed tomography system with and without the application of artifact reduction mode: an ex vivo investigation on extracted human teeth.

    PubMed

    Kamburoğlu, Kıvanç; Yılmaz, Funda; Yeta, Elif Naz; Özen, Doĝukan

    2016-06-01

    To investigate observer ability to diagnose ex vivo simulated endodontic furcal perforations in root-filled teeth from cone beam computed tomography (CBCT) images using different artifact reduction algorithms. Our study consisted of 135 first maxillary molar teeth. In 89 teeth, furcation perforations were created using dental burs. Forty-six teeth without artificial perforations were used as controls. MTA Fillapex, Activ GP, and AH Plus were used with or without metal posts. All teeth were imaged using Planmeca ProMax 3-D Max CBCT, and four image modes were obtained as without artifact reduction and with artifact reduction in low, medium, and high modes. Images were evaluated by three observers for the presence or absence of furcation perforation using a five-point scale. Weighted kappa coefficients were calculated to assess observer agreement. Receiver operating characteristic analysis was performed. Areas under the curve (AUCs) were calculated for each image mode, observer, treatment group, and reading and were compared using Χ(2) tests, with a significance level of α = 0.05. The effects on diagnosis were calculated using analysis of variance (ANOVA). Intraobserver agreements for all observers ranged from 0.857 to 0.945. Kappa coefficients among different observers ranged from 0.673 to 0.763. AUC values ranged from 0.83 to 0.92, and there were no statistically significant differences (P > .05) between different CBCT image modes. Ratings in Activ GP treatment groups with or without posts showed statistically significant differences (P < .001). All CBCT image modes performed similarly in detecting furcal perforations near different root canal sealers with or without posts. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Concurrent validity and interrater reliability of a new smartphone application to assess 3D active cervical range of motion in patients with neck pain.

    PubMed

    Stenneberg, Martijn S; Busstra, Harm; Eskes, Michel; van Trijffel, Emiel; Cattrysse, Erik; Scholten-Peeters, Gwendolijne G M; de Bie, Rob A

    2018-04-01

    There is a lack of valid, reliable, and feasible instruments for measuring planar active cervical range of motion (aCROM) and associated 3D coupling motions in patients with neck pain. Smartphones have advanced sensors and appear to be suitable for these measurements. To estimate the concurrent validity and interrater reliability of a new iPhone application for assessing planar aCROM and associated 3D coupling motions in patients with neck pain, using an electromagnetic tracking device as a reference test. Cross-sectional study. Two samples of neck pain patients were recruited; 30 patients for the validity study and 26 patients for the reliability study. Validity was estimated using intraclass correlation coefficients (ICCs), and by calculating 95% limits of agreement (LoA). To estimate interrater reliability, ICCs were calculated. Cervical 3D coupling motions were analyzed by calculating the cross-correlation coefficients and ratio between the main motions and coupled motions for both instruments. ICCs for concurrent validity and interrater reliability ranged from 0.90 to 0.99. The width of the 95% LoA ranged from about 5° for right lateral bending to 11° for total rotation. No significant differences were found between both devices for associated coupling motion analysis. The iPhone application appears to be a useful discriminative tool for the measurement of planar aCROM and associated coupling motions in patients with neck pain. It fulfills the need for a valid, reliable, and feasible instrument in clinical practice and research. Therapists and researchers should consider measurement error when interpreting scores. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Characterizations of the radioactive waste by the remotely-controlled collimated spectrometric system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stepanov, Vyacheslav E.; Potapov, Victor N.; Smirnov, Sergey V.

    Decontamination and decommissioning of the research reactors MR (Testing Reactor) and RFT (Reactor of Physics and Technology) has recently been initiated in the National Research Center (NRC) 'Kurchatov institute', Moscow. In the building, neighboring to the reactor, the storage of HLRW is located. The storage is made of monolithic concrete in which steel cells depth 4 m are located. In cells of storage the HLRW packed into cases are placed. These the radioactive waste are also subject to export on long storage in the specialized organization. For characterization of the radioactive waste in cases the remote-controlled collimated spectrometer system wasmore » used. The system consists of a spectrometric collimated gamma-ray detector, a color video camera and a control unit, mounted on a rotator, which are mounted on a tripod with the host computer. For determination of specific activity of radionuclides in cases, it is developed programs of calculation of coefficients of proportionality of specific activity to the corresponding speeds of the account in peaks of full absorption at single specific activity of radionuclides in cases. For determination of these coefficients the mathematical model of spectrometer system based on the Monte-Carlo method was used. Dependences of calibration coefficients for various radionuclides from distance between the detector and a case at various values of the radioactive waste density in cases are given. Measurements of specific activity in cases are taken and are discussed. By results of measurements decisions on the appeal of the radioactive waste being in cases are made. (authors)« less

  20. Translation, Cross-Cultural Adaptation, and Validation of the Activity Rating Scale for Disorders of the Knee

    PubMed Central

    Flosadottir, Vala; Roos, Ewa M.; Ageberg, Eva

    2017-01-01

    Background: The Activity Rating Scale (ARS) for disorders of the knee evaluates the level of activity by the frequency of participation in 4 separate activities with high demands on knee function, with a score ranging from 0 (none) to 16 (pivoting activities 4 times/wk). Purpose: To translate and cross-culturally adapt the ARS into Swedish and to assess measurement properties of the Swedish version of the ARS. Study Design: Cohort study (diagnosis); Level of evidence, 2. Methods: The COSMIN guidelines were followed. Participants (N = 100 [55 women]; mean age, 27 years) who were undergoing rehabilitation for a knee injury completed the ARS twice for test-retest reliability. The Knee injury and Osteoarthritis Outcome Score (KOOS), Tegner Activity Scale (TAS), and modernized Saltin-Grimby Physical Activity Level Scale (SGPALS) were administered at baseline to validate the ARS. Construct validity and responsiveness of the ARS were evaluated by testing predefined hypotheses regarding correlations between the ARS, KOOS, TAS, and SGPALS. The Cronbach alpha, intraclass correlation coefficients, absolute reliability, standard error of measurement, smallest detectable change, and Spearman rank-order correlation coefficients were calculated. Results: The ARS showed good internal consistency (α ≈ 0.96), good test-retest reliability (intraclass correlation coefficient >0.9), and no systematic bias between measurements. The standard error of measurement was less than 2 points, and the smallest detectable change was less than 1 point at the group level and less than 5 points at the individual level. More than 75% of the hypotheses were confirmed, indicating good construct validity and good responsiveness of the ARS. Conclusion: The Swedish version of the ARS is valid, reliable, and responsive for evaluating the level of activity based on the frequency of participation in high-demand knee sports activities in young adults with a knee injury. PMID:28979920

  1. Ionised concentrations in calcium and magnesium buffers: Standards and precise measurement are mandatory.

    PubMed

    McGuigan, John A S; Kay, James W; Elder, Hugh Y

    2016-09-01

    In Ca(2+) and Mg(2+) buffer solutions the ionised concentrations ([X(2+)]) are either calculated or measured. Calculated values vary by up to a factor of seven due to the following four problems: 1) There is no agreement amongst the tabulated constants in the literature. These constants have usually to be corrected for ionic strength and temperature. 2) The ionic strength correction entails the calculation of the single ion activity coefficient, which involves non-thermodynamic assumptions; the data for temperature correction is not always available. 3) Measured pH is in terms of activity i.e. pHa. pHa measurements are complicated by the change in the liquid junction potentials at the reference electrode making an accurate conversion from H(+) activity to H(+) concentration uncertain. 4) Ligands such as EGTA bind water and are not 100% pure. Ligand purity has to be measured, even when the [X(2+)] are calculated. The calculated [X(2+)] in buffers are so inconsistent that calculation is not an option. Until standards are available, the [X(2+)] in the buffers must be measured. The Ligand Optimisation Method is an accurate and independently verified method of doing this (McGuigan & Stumpff, Anal. Biochem. 436, 29, 2013). Lack of standards means it is not possible to compare the published [Ca(2+)] in the nmolar range, and the apparent constant (K(/)) values for Ca(2+) and Mg(2+) binding to intracellular ligands amongst different laboratories. Standardisation of Ca(2+)/Mg(2+) buffers is now essential. The parameters to achieve this are proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Trace metal speciation in natural waters: Computational vs. analytical

    USGS Publications Warehouse

    Nordstrom, D. Kirk

    1996-01-01

    Improvements in the field sampling, preservation, and determination of trace metals in natural waters have made many analyses more reliable and less affected by contamination. The speciation of trace metals, however, remains controversial. Chemical model speciation calculations do not necessarily agree with voltammetric, ion exchange, potentiometric, or other analytical speciation techniques. When metal-organic complexes are important, model calculations are not usually helpful and on-site analytical separations are essential. Many analytical speciation techniques have serious interferences and only work well for a limited subset of water types and compositions. A combined approach to the evaluation of speciation could greatly reduce these uncertainties. The approach proposed would be to (1) compare and contrast different analytical techniques with each other and with computed speciation, (2) compare computed trace metal speciation with reliable measurements of solubility, potentiometry, and mean activity coefficients, and (3) compare different model calculations with each other for the same set of water analyses, especially where supplementary data on speciation already exist. A comparison and critique of analytical with chemical model speciation for a range of water samples would delineate the useful range and limitations of these different approaches to speciation. Both model calculations and analytical determinations have useful and different constraints on the range of possible speciation such that they can provide much better insight into speciation when used together. Major discrepancies in the thermodynamic databases of speciation models can be evaluated with the aid of analytical speciation, and when the thermodynamic models are highly consistent and reliable, the sources of error in the analytical speciation can be evaluated. Major thermodynamic discrepancies also can be evaluated by simulating solubility and activity coefficient data and testing various chemical models for their range of applicability. Until a comparative approach such as this is taken, trace metal speciation will remain highly uncertain and controversial.

  3. Validation of the new code package APOLLO2.8 for accurate PWR neutronics calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santamarina, A.; Bernard, D.; Blaise, P.

    2013-07-01

    This paper summarizes the Qualification work performed to demonstrate the accuracy of the new APOLLO2.S/SHEM-MOC package based on JEFF3.1.1 nuclear data file for the prediction of PWR neutronics parameters. This experimental validation is based on PWR mock-up critical experiments performed in the EOLE/MINERVE zero-power reactors and on P.I. Es on spent fuel assemblies from the French PWRs. The Calculation-Experiment comparison for the main design parameters is presented: reactivity of UOX and MOX lattices, depletion calculation and fuel inventory, reactivity loss with burnup, pin-by-pin power maps, Doppler coefficient, Moderator Temperature Coefficient, Void coefficient, UO{sub 2}-Gd{sub 2}O{sub 3} poisoning worth, Efficiency ofmore » Ag-In-Cd and B4C control rods, Reflector Saving for both standard 2-cm baffle and GEN3 advanced thick SS reflector. From this qualification process, calculation biases and associated uncertainties are derived. This code package APOLLO2.8 is already implemented in the ARCADIA new AREVA calculation chain for core physics and is currently under implementation in the future neutronics package of the French utility Electricite de France. (authors)« less

  4. Exact Fourier expansion in cylindrical coordinates for the three-dimensional Helmholtz Green function

    NASA Astrophysics Data System (ADS)

    Conway, John T.; Cohl, Howard S.

    2010-06-01

    A new method is presented for Fourier decomposition of the Helmholtz Green function in cylindrical coordinates, which is equivalent to obtaining the solution of the Helmholtz equation for a general ring source. The Fourier coefficients of the Green function are split into their half advanced + half retarded and half advanced-half retarded components, and closed form solutions for these components are then obtained in terms of a Horn function and a Kampé de Fériet function respectively. Series solutions for the Fourier coefficients are given in terms of associated Legendre functions, Bessel and Hankel functions and a hypergeometric function. These series are derived either from the closed form 2-dimensional hypergeometric solutions or from an integral representation, or from both. A simple closed form far-field solution for the general Fourier coefficient is derived from the Hankel series. Numerical calculations comparing different methods of calculating the Fourier coefficients are presented. Fourth order ordinary differential equations for the Fourier coefficients are also given and discussed briefly.

  5. LIMB-DARKENING COEFFICIENTS FOR ECLIPSING WHITE DWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gianninas, A.; Strickland, B. D.; Kilic, Mukremin

    2013-03-20

    We present extensive calculations of linear and nonlinear limb-darkening coefficients as well as complete intensity profiles appropriate for modeling the light-curves of eclipsing white dwarfs. We compute limb-darkening coefficients in the Johnson-Kron-Cousins UBVRI photometric system as well as the Large Synoptic Survey Telescope (LSST) ugrizy system using the most up to date model atmospheres available. In all, we provide the coefficients for seven different limb-darkening laws. We describe the variations of these coefficients as a function of the atmospheric parameters, including the effects of convection at low effective temperatures. Finally, we discuss the importance of having readily available limb-darkening coefficientsmore » in the context of present and future photometric surveys like the LSST, Palomar Transient Factory, and the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS). The LSST, for example, may find {approx}10{sup 5} eclipsing white dwarfs. The limb-darkening calculations presented here will be an essential part of the detailed analysis of all of these systems.« less

  6. New potential energy surface for the HCS{sup +}–He system and inelastic rate coefficients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubernet, Marie-Lise; Quintas-Sánchez, Ernesto; Tuckey, Philip

    2015-07-28

    A new high quality potential energy surface is calculated at a coupled-cluster single double triple level with an aug-cc-pV5Z basis set for the HCS{sup +}–He system. This potential energy surface is used in low energy quantum scattering calculations to provide a set of (de)-excitation cross sections and rate coefficients among the first 20 rotational levels of HCS{sup +} by He in the range of temperature from 5 K to 100 K. The paper discusses the impact of the new ab initio potential energy surface on the cross sections at low energy and provides a comparison with the HCO{sup +}–He system.more » The HCS{sup +}–He rate coefficients for the strongest transitions differ by factors of up to 2.5 from previous rate coefficients; thus, analysis of astrophysical spectra should be reconsidered with the new rate coefficients.« less

  7. Dynamic absorption coefficients of chemically amplified resists and nonchemically amplified resists at extreme ultraviolet

    NASA Astrophysics Data System (ADS)

    Fallica, Roberto; Stowers, Jason K.; Grenville, Andrew; Frommhold, Andreas; Robinson, Alex P. G.; Ekinci, Yasin

    2016-07-01

    The dynamic absorption coefficients of several chemically amplified resists (CAR) and non-CAR extreme ultraviolet (EUV) photoresists are measured experimentally using a specifically developed setup in transmission mode at the x-ray interference lithography beamline of the Swiss Light Source. The absorption coefficient α and the Dill parameters ABC were measured with unprecedented accuracy. In general, the α of resists match very closely with the theoretical value calculated from elemental densities and absorption coefficients, whereas exceptions are observed. In addition, through the direct measurements of the absorption coefficients and dose-to-clear values, we introduce a new figure of merit called chemical sensitivity to account for all the postabsorption chemical reaction ongoing in the resist, which also predicts a quantitative clearing volume and clearing radius, due to the photon absorption in the resist. These parameters may help provide deeper insight into the underlying mechanisms of the EUV concepts of clearing volume and clearing radius, which are then defined and quantitatively calculated.

  8. Mass attenuation coefficient of binderless, pre-treated and tannin-based Rhizophora spp. particleboards using 16.59 – 25.26 keV photon energy range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohd Yusof, Mohd Fahmi, E-mail: mfahmi@usm.my; Hamid, Puteri Nor Khatijah Abdul; Tajuddin, Abdul Aziz

    2015-04-29

    The Rhizophora spp. particleboards were fabricated using ≤ 104 µm particle size at three different fabrication methods; binderless, steam pre-treated and tannin-added. The mass attenuation coefficient of Rhizophora spp. particleboards were measured using x-ray fluorescent (XRF) photon from niobium, molybdenum, palladium, silver and tin metal plates that provided photon energy between 16.59 to 25.26 keV. The results were compared to theoretical values for water calculated using photon cross-section database (XCOM).The results showed that all Rhizophora spp. particleboards having mass attenuation coefficient close to calculated XCOM for water. Tannin-added Rizophora spp. particleboard was nearest to calculated XCOM for water with χ2 valuemore » of 13.008 followed by binderless Rizophora spp. (25.859) and pre-treated Rizophora spp. (91.941)« less

  9. Structure, thermal expansion coefficient and phase stability of La2(Zr0.7Ce0.3)2O7 studied by molecular dynamic simulation and experiment

    NASA Astrophysics Data System (ADS)

    Che, JunWei; Liu, XiangYang; Wang, XueZhi; Liang, GongYing

    2018-04-01

    This paper presents structure, thermal expansion coefficient and phase stability of La2(Zr0.7Ce0.3)2O7 (LZ7C3) ceramic by both theoretical and experimental results. It was found out that LZ7C3 powders had a pyrochlore structure after being heat-treated at temperatures higher than 1473 K or higher according to XRD and TEM results. The calculated average thermal expansion coefficient (TEC) was 7.12 × 10-6 K-1, which is a little smaller than experiment result, but changes of calculated average TECs of LZ, YSZ and LZ7C3 had the same trend with experimental results. Finally, the radial distribution function (RDF) was calculated to study the phase stability of LZ7C3.

  10. REVIEWS OF TOPICAL PROBLEMS: Particle kinetics in highly turbulent plasmas (renormalization and self-consistent field methods)

    NASA Astrophysics Data System (ADS)

    Bykov, Andrei M.; Toptygin, Igor'N.

    1993-11-01

    This review presents methods available for calculating transport coefficients for impurity particles in plasmas with strong long-wave MHD-type velocity and magnetic-field fluctuations, and random ensembles of strong shock fronts. The renormalization of the coefficients of the mean-field equation of turbulent dynamo theory is also considered. Particular attention is devoted to the renormalization method developed by the authors in which the renormalized transport coefficients are calculated from a nonlinear transcendental equation (or a set of such equations) and are expressed in the form of explicit functions of pair correlation tensors describing turbulence. Numerical calculations are reproduced for different turbulence spectra. Spatial transport in a magnetic field and particle acceleration by strong turbulence are investigated. The theory can be used in a wide range of practical problems in plasma physics, atmospheric physics, ocean physics, astrophysics, cosmic-ray physics, and so on.

  11. Finite-element analysis of vibrational modes in piezoelectric ceramic disks.

    PubMed

    Kunkel, H A; Locke, S; Pikeroen, B

    1990-01-01

    The natural vibrational modes of axially symmetric piezoelectric ceramic disks have been calculated by the finite-element method. The disks are of the type used as active elements in compressional wave ultrasonic transducers, and are electrically polarized in thickness with full electrodes on the disk's major faces. To optimize disk geometry for ultrasonic transducer application, the dependence of the vibrational modes on the disk diameter-to-thickness ratio for ratios from 0.2 (a tall cylinder) to 10.0 (a thin disk) has been studied. Series and parallel resonance frequencies for each of the modes are determined through an eigenfrequency analysis, and effective electromechanical coupling coefficients are calculated. The modal displacement fields in the disk are calculated to determine the physical nature of each mode. An analysis of the complete spectrum of piezoelectrically active modes as a function of diameter-thickness ratio is presented for the ceramic PZT-5H, including and identification of radial, edge, length expander, thickness shear, and thickness extensional vibrations. From this analysis, optimal diameter-to-thickness ratios for good transducer performance are discussed.

  12. Theoretical investigation of exchange and recombination reactions in O(3P)+NO(2Π) collisions

    NASA Astrophysics Data System (ADS)

    Ivanov, M. V.; Zhu, H.; Schinke, R.

    2007-02-01

    We present a detailed dynamical study of the kinetics of O(P3)+NO(Π2) collisions including O atom exchange reactions and the recombination of NO2. The classical trajectory calculations are performed on the lowest A'2 and A″2 potential energy surfaces, which were calculated by ab initio methods. The calculated room temperature exchange reaction rate coefficient, kex, is in very good agreement with the measured one. The high-pressure recombination rate coefficient, which is given by the formation rate coefficient and to a good approximation equals 2kex, overestimates the experimental data by merely 20%. The pressure dependence of the recombination rate, kr, is described within the strong-collision model by assigning a stabilization probability to each individual trajectory. The measured falloff curve is well reproduced over five orders of magnitude by a single parameter, i.e., the strong-collision stabilization frequency. The calculations also yield the correct temperature dependence, kr∝T-1.5, of the low-pressure recombination rate coefficient. The dependence of the rate coefficients on the oxygen isotopes are investigated by incorporating the difference of the zero-point energies between the reactant and product NO radicals, ΔZPE, into the potential energy surface. Similar isotope effects as for ozone are predicted for both the exchange reaction and the recombination. Finally, we estimate that the chaperon mechanism is not important for the recombination of NO2, which is in accord with the overall T-1.4 dependence of the measured recombination rate even in the low temperature range.

  13. DOPPLER CALCULATIONS FOR LARGE FAST CERAMIC REACTORS--EFFECTS OF IMPROVED METHODS AND RECENT CROSS SECTION INFORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greebler, P.; Goldman, E.

    1962-12-19

    Doppler calculations for large fast ceramic reactors (FCR), using recent cross section information and improved methods, are described. Cross sections of U/sup 238/, Pu/sup 239/, and Pu/sup 210/ with fuel temperature variations needed for perturbation calculations of Doppler reactivity changes are tabulated as a function of potential scattering cross section per absorber isotope at energies below 400 kev. These may be used in Doppler calculations for anv fast reactor. Results of Doppler calculations on a large fast ceramic reactor are given to show the effects of the improved calculation methods and of recent cross secrion data on the calculated Dopplermore » coefficient. The updated methods and cross sections used yield a somewhat harder spectrum and accordingly a somewhat smaller Doppler coefficient for a given FCR core size and composition than calculated in earlier work, but they support the essential conclusion derived earlier that the Doppler effect provides an important safety advantage in a large FCR. 28 references. (auth)« less

  14. Collisional Ionization Equilibrium for Optically Thin Plasmas

    NASA Technical Reports Server (NTRS)

    Bryans, P.; Mitthumsiri, W.; Savin, D. W.; Badnell, N. R.; Gorczyca, T. W.; Laming, J. M.

    2006-01-01

    Reliably interpreting spectra from electron-ionized cosmic plasmas requires accurate ionization balance calculations for the plasma in question. However, much of the atomic data needed for these calculations have not been generated using modern theoretical methods and their reliability are often highly suspect. We have utilized state-of-the-art calculations of dielectronic recombination (DR) rate coefficients for the hydrogenic through Na-like ions of all elements from He to Zn. We have also utilized state-of-the-art radiative recombination (RR) rate coefficient calculations for the bare through Na-like ions of all elements from H to Zn. Using our data and the recommended electron impact ionization data of Mazzotta et al. (1998), we have calculated improved collisional ionization equilibrium calculations. We compare our calculated fractional ionic abundances using these data with those presented by Mazzotta et al. (1998) for all elements from H to Ni, and with the fractional abundances derived from the modern DR and RR calculations of Gu (2003a,b, 2004) for Mg, Si, S, Ar, Ca, Fe, and Ni.

  15. Distribution coefficients of rare earth ions in cubic zirconium dioxide

    NASA Astrophysics Data System (ADS)

    Romer, H.; Luther, K.-D.; Assmus, W.

    1994-08-01

    Cubic zirconium dioxide crystals are grown with the skull melting technique. The effective distribution coefficients for Nd(exp 3+), Sm(exp 3+) and Er(sup 3+) as dopants are determined experimentally as a function of the crystal growth velocity. With the Burton-Prim-Slichter theory, the equilibrium distribution coefficients can be calculated. The distribution coefficients of all other trivalent rare earth ions can be estimated by applying the correlation towards the ionic radii.

  16. Interference phenomena in the refraction of a surface polariton by vertical dielectric barriers

    NASA Technical Reports Server (NTRS)

    Shen, T. P.; Wallis, R. F.; Maradudin, A. A.; Stegeman, G. I.

    1984-01-01

    A normal mode analysis is used to calculate the transmission and reflection coefficients for a surface polariton propagating along the interface between a surface active medium and a dielectric and incident normally on a vertical dielectric barrier of finite thickness or a thin dielectric film of finite length. The efficiencies of conversion of the surface polariton into transmitted and reflected bulk waves are also determined. The radiation patterns associated with the latter waves are presented.

  17. Diffusion of Chromium in Alpha Cobalt-Chromium Solid Solutions

    NASA Technical Reports Server (NTRS)

    Weeton, John W

    1951-01-01

    Diffusion of chromium in cobalt-chromium solid solutions was investigated in the range 0 to 40 atomic percent at temperatures of 1360 degrees, 1300 degrees, 1150 degrees, and 10000 degrees c. The diffusion coefficients were found to be relatively constant within the composition range covered by each specimen. The activation heat of diffusion was determined to be 63,000 calories per mole. This value agrees closely with the value of 63,400 calories per mole calculated by means of the Dushman-Langmuir equation.

  18. Direct quantitation of thoracic gallium-67 uptake in sarcoidosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourguet, P.; Delaval, P.; Herry, J.Y.

    1986-10-01

    A method of direct quantitation of /sup 67/Ga uptake in the lung is described. The attenuation coefficient requires calculation and is obtained simply for each patient by transmission using a planar radionuclide source. The validity of the method was tested with a phantom (error less than 10%). Forty-three patients with pulmonary and/or mediastinal sarcoidosis were classified. The different groups of patients as defined clinically and radiographically (controls, nonactive, and active sarcoidosis) were well-differentiated (p less than 0.001).

  19. Influence of slice overlap on positron emission tomography image quality

    NASA Astrophysics Data System (ADS)

    McKeown, Clare; Gillen, Gerry; Dempsey, Mary Frances; Findlay, Caroline

    2016-02-01

    PET scans use overlapping acquisition beds to correct for reduced sensitivity at bed edges. The optimum overlap size for the General Electric (GE) Discovery 690 has not been established. This study assesses how image quality is affected by slice overlap. Efficacy of 23% overlaps (recommended by GE) and 49% overlaps (maximum possible overlap) were specifically assessed. European Association of Nuclear Medicine (EANM) guidelines for calculating minimum injected activities based on overlap size were also reviewed. A uniform flood phantom was used to assess noise (coefficient of variation, (COV)) and voxel accuracy (activity concentrations, Bq ml-1). A NEMA (National Electrical Manufacturers Association) body phantom with hot/cold spheres in a background activity was used to assess contrast recovery coefficients (CRCs) and signal to noise ratios (SNR). Different overlap sizes and sphere-to-background ratios were assessed. COVs for 49% and 23% overlaps were 9% and 13% respectively. This increased noise was difficult to visualise on the 23% overlap images. Mean voxel activity concentrations were not affected by overlap size. No clinically significant differences in CRCs were observed. However, visibility and SNR of small, low contrast spheres (⩽13 mm diameter, 2:1 sphere to background ratio) may be affected by overlap size in low count studies if they are located in the overlap area. There was minimal detectable influence on image quality in terms of noise, mean activity concentrations or mean CRCs when comparing 23% overlap with 49% overlap. Detectability of small, low contrast lesions may be affected in low count studies—however, this is a worst-case scenario. The marginal benefits of increasing overlap from 23% to 49% are likely to be offset by increased patient scan times. A 23% overlap is therefore appropriate for clinical use. An amendment to EANM guidelines for calculating injected activities is also proposed which better reflects the effect overlap size has on image noise.

  20. Understanding the impact of the central atom on the ionic liquid behavior: phosphonium vs ammonium cations.

    PubMed

    Carvalho, Pedro J; Ventura, Sónia P M; Batista, Marta L S; Schröder, Bernd; Gonçalves, Fernando; Esperança, José; Mutelet, Fabrice; Coutinho, João A P

    2014-02-14

    The influence of the cation's central atom in the behavior of pairs of ammonium- and phosphonium-based ionic liquids was investigated through the measurement of densities, viscosities, melting temperatures, activity coefficients at infinite dilution, refractive indices, and toxicity against Vibrio fischeri. All the properties investigated are affected by the cation's central atom nature, with ammonium-based ionic liquids presenting higher densities, viscosities, melting temperatures, and enthalpies. Activity coefficients at infinite dilution show the ammonium-based ionic liquids to present slightly higher infinite dilution activity coefficients for non-polar solvents, becoming slightly lower for polar solvents, suggesting that the ammonium-based ionic liquids present somewhat higher polarities. In good agreement these compounds present lower toxicities than the phosphonium congeners. To explain this behavior quantum chemical gas phase DFT calculations were performed on isolated ion pairs at the BP-TZVP level of theory. Electronic density results were used to derive electrostatic potentials of the identified minimum conformers. Electrostatic potential-derived CHelpG and Natural Population Analysis charges show the P atom of the tetraalkylphosphonium-based ionic liquids cation to be more positively charged than the N atom in the tetraalkylammonium-based analogous IL cation, and a noticeable charge delocalization occurring in the tetraalkylammonium cation, when compared with the respective phosphonium congener. It is argued that this charge delocalization is responsible for the enhanced polarity observed on the ammonium based ionic liquids explaining the changes in the thermophysical properties observed.

  1. Understanding the impact of the central atom on the ionic liquid behavior: Phosphonium vs ammonium cations

    NASA Astrophysics Data System (ADS)

    Carvalho, Pedro J.; Ventura, Sónia P. M.; Batista, Marta L. S.; Schröder, Bernd; Gonçalves, Fernando; Esperança, José; Mutelet, Fabrice; Coutinho, João A. P.

    2014-02-01

    The influence of the cation's central atom in the behavior of pairs of ammonium- and phosphonium-based ionic liquids was investigated through the measurement of densities, viscosities, melting temperatures, activity coefficients at infinite dilution, refractive indices, and toxicity against Vibrio fischeri. All the properties investigated are affected by the cation's central atom nature, with ammonium-based ionic liquids presenting higher densities, viscosities, melting temperatures, and enthalpies. Activity coefficients at infinite dilution show the ammonium-based ionic liquids to present slightly higher infinite dilution activity coefficients for non-polar solvents, becoming slightly lower for polar solvents, suggesting that the ammonium-based ionic liquids present somewhat higher polarities. In good agreement these compounds present lower toxicities than the phosphonium congeners. To explain this behavior quantum chemical gas phase DFT calculations were performed on isolated ion pairs at the BP-TZVP level of theory. Electronic density results were used to derive electrostatic potentials of the identified minimum conformers. Electrostatic potential-derived CHelpG and Natural Population Analysis charges show the P atom of the tetraalkylphosphonium-based ionic liquids cation to be more positively charged than the N atom in the tetraalkylammonium-based analogous IL cation, and a noticeable charge delocalization occurring in the tetraalkylammonium cation, when compared with the respective phosphonium congener. It is argued that this charge delocalization is responsible for the enhanced polarity observed on the ammonium based ionic liquids explaining the changes in the thermophysical properties observed.

  2. Sedimentation Coefficient, Frictional Coefficient, and Molecular Weight: A Preparative Ultracentrifuge Experiment for the Advanced Undergraduate Laboratory.

    ERIC Educational Resources Information Center

    Halsall, H. B.; Wermeling, J. R.

    1982-01-01

    Describes an experiment using a high-speed preparative centrifuge and calculator to demonstrate effects of the frictional coefficient of a macromolecule on its rate of transport in a force field and to estimate molecular weight of the macromolecule using an empirical relationship. Background information, procedures, and discussion of results are…

  3. Experimental Evaluation of the Drag Coefficient of Water Rockets by a Simple Free-Fall Test

    ERIC Educational Resources Information Center

    Barrio-Perotti, R.; Blanco-Marigorta, E. Arguelles-Diaz, K.; Fernandez-Oro, J.

    2009-01-01

    The flight trajectory of a water rocket can be reasonably calculated if the magnitude of the drag coefficient is known. The experimental determination of this coefficient with enough precision is usually quite difficult, but in this paper we propose a simple free-fall experiment for undergraduate students to reasonably estimate the drag…

  4. Iodine intake by adult residents of a farming area in Iwate Prefecture, Japan, and the accuracy of estimated iodine intake calculated using the Standard Tables of Food Composition in Japan.

    PubMed

    Nakatsuka, Haruo; Chiba, Keiko; Watanabe, Takao; Sawatari, Hideyuki; Seki, Takako

    2016-11-01

    Iodine intake by adults in farming districts in Northeastern Japan was evaluated by two methods: (1) government-approved food composition tables based calculation and (2) instrumental measurement. The correlation between these two values and a regression model for the calibration of calculated values was presented. Iodine intake was calculated, using the values in the Japan Standard Tables of Food Composition (FCT), through the analysis of duplicate samples of complete 24-h food consumption for 90 adult subjects. In cases where the value for iodine content was not available in the FCT, it was assumed to be zero for that food item (calculated values). Iodine content was also measured by ICP-MS (measured values). Calculated and measured values rendered geometric means (GM) of 336 and 279 μg/day, respectively. There was no statistically significant (p > 0.05) difference between calculated and measured values. The correlation coefficient was 0.646 (p < 0.05). With this high correlation coefficient, a simple regression line can be applied to estimate measured value from calculated value. A survey of the literature suggests that the values in this study were similar to values that have been reported to date for Japan, and higher than those for other countries in Asia. Iodine intake of Japanese adults was 336 μg/day (GM, calculated) and 279 μg/day (GM, measured). Both values correlated so well, with a correlation coefficient of 0.646, that a regression model (Y = 130.8 + 1.9479X, where X and Y are measured and calculated values, respectively) could be used to calibrate calculated values.

  5. A novel method for measuring polymer-water partition coefficients.

    PubMed

    Zhu, Tengyi; Jafvert, Chad T; Fu, Dafang; Hu, Yue

    2015-11-01

    Low density polyethylene (LDPE) often is used as the sorbent material in passive sampling devices to estimate the average temporal chemical concentration in water bodies or sediment pore water. To calculate water phase chemical concentrations from LDPE concentrations accurately, it is necessary to know the LDPE-water partition coefficients (KPE-w) of the chemicals of interest. However, even moderately hydrophobic chemicals have large KPE-w values, making direct measurement experimentally difficult. In this study we evaluated a simple three phase system from which KPE-w can be determined easily and accurately. In the method, chemical equilibrium distribution between LDPE and a surfactant micelle pseudo-phase is measured, with the ratio of these concentrations equal to the LDPE-micelle partition coefficient (KPE-mic). By employing sufficient mass of polymer and surfactant (Brij 30), the mass of chemical in the water phase remains negligible, albeit in equilibrium. In parallel, the micelle-water partition coefficient (Kmic-w) is determined experimentally. KPE-w is the product of KPE-mic and Kmic-w. The method was applied to measure values of KPE-w for 17 polycyclic aromatic hydrocarbons, 37 polychlorinated biphenyls, and 9 polybrominated diphenylethers. These values were compared to literature values. Mass fraction-based chemical activity coefficients (γ) were determined in each phase and showed that for each chemical, the micelles and LDPE had nearly identical affinity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Lipophilicity, antifungal and antioxidant properties of persilben.

    PubMed

    Smolarz, Helena D; Kosikowska, Urszula; Baraniak, Barbara; Malm, Anna; Persona, Andrzej

    2005-01-01

    The lipophilicity of persilben, an important parameter influencing the penetration of the compound through biological membranes, was determined experimentally by dynamic method and was theoretically calculated according to the fragmentation methods introduced by Crippen, Broto and Viswanadhan. The higher value of partition coefficient (log P = 3.89) obtained for persilben than that for resveratrol points to potentially higher ease of penetration of persilben into cells of living organism. Antimicrobial and antioxidant activities of persilben were tested. The obtained data suggest that this compound possesses some antioxidant activity. Persilben appears to have also some inhibitory effect against some species of dermatophytes from Tnichophyton genus but only at high concentrations.

  7. Study on the Equilibrium Between Liquid Iron and Calcium Vapor

    NASA Astrophysics Data System (ADS)

    Berg, Martin; Lee, Jaewoo; Sichen, Du

    2017-06-01

    The solubility of calcium in liquid iron at 1823 K and 1873 K (1550 °C and 1600 °C) as a function of calcium potential was studied experimentally. The measurements were performed using a closed molybdenum holder in which liquid calcium and liquid iron were held at different temperatures. The results indicate a linear relationship between the activity of calcium, relative to pure liquid calcium, and the mole fraction of dissolved calcium in liquid iron, with a negligible temperature dependency in the ranges studied. The activity coefficient of calcium in liquid iron at infinite dilution, γ_{Ca(l0°, was calculated as 1551.

  8. Improving atmospheric CO2 retrievals using line mixing and speed-dependence when fitting high-resolution ground-based solar spectra

    NASA Astrophysics Data System (ADS)

    Mendonca, J.; Strong, K.; Toon, G. C.; Wunch, D.; Sung, K.; Deutscher, N. M.; Griffith, D. W. T.; Franklin, J. E.

    2016-05-01

    A quadratic speed-dependent Voigt spectral line shape with line mixing (qSDV + LM) has been included in atmospheric trace-gas retrievals to improve the accuracy of the calculated CO2 absorption coefficients. CO2 laboratory spectra were used to validate absorption coefficient calculations for three bands: the strong 20013 ← 00001 band centered at 4850 cm-1, and the weak 30013 ← 00001 and 30012 ← 00001 bands centered at 6220 cm-1 and 6340 cm-1 respectively, and referred to below as bands 1 and 2. Several different line lists were tested. Laboratory spectra were best reproduced for the strong CO2 band when using HITRAN 2008 spectroscopic data with air-broadened widths divided by 0.985, self-broadened widths divided by 0.978, line mixing coefficients calculated using the exponential power gap (EPG) law, and a speed-dependent parameter of 0.11 used for all lines. For the weak CO2 bands, laboratory spectra were best reproduced using spectroscopic parameters from the studies by Devi et al. in 2007 coupled with line mixing coefficients calculated using the EPG law. A total of 132,598 high-resolution ground-based solar absorption spectra were fitted using qSDV + LM to calculate CO2 absorption coefficients and compared to fits that used the Voigt line shape. For the strong CO2 band, the average root mean square (RMS) residual is 0.49 ± 0.22% when using qSDV + LM to calculate the absorption coefficients. This is an improvement over the results with the Voigt line shape, which had an average RMS residual of 0.60 ± 0.21%. When using the qSDV + LM to fit the two weak CO2 bands, the average RMS residual is 0.47 ± 0.19% and 0.51 ± 0.20% for bands 1 and 2, respectively. These values are identical to those obtained with the Voigt line shape. Finally, we find that using the qSDV + LM decreases the airmass dependence of the column averaged dry air mole fraction of CO2 retrieved from the strong and both weak CO2 bands when compared to the retrievals obtained using the Voigt line shape.

  9. The Uhlenbeck-Ford model: Exact virial coefficients and application as a reference system in fluid-phase free-energy calculations

    NASA Astrophysics Data System (ADS)

    Paula Leite, Rodolfo; Freitas, Rodrigo; Azevedo, Rodolfo; de Koning, Maurice

    2016-11-01

    The Uhlenbeck-Ford (UF) model was originally proposed for the theoretical study of imperfect gases, given that all its virial coefficients can be evaluated exactly, in principle. Here, in addition to computing the previously unknown coefficients B11 through B13, we assess its applicability as a reference system in fluid-phase free-energy calculations using molecular simulation techniques. Our results demonstrate that, although the UF model itself is too soft, appropriately scaled Uhlenbeck-Ford (sUF) models provide robust reference systems that allow accurate fluid-phase free-energy calculations without the need for an intermediate reference model. Indeed, in addition to the accuracy with which their free energies are known and their convenient scaling properties, the fluid is the only thermodynamically stable phase for a wide range of sUF models. This set of favorable properties may potentially put the sUF fluid-phase reference systems on par with the standard role that harmonic and Einstein solids play as reference systems for solid-phase free-energy calculations.

  10. Improved spectral absorption coefficient grouping strategy of wide band k-distribution model used for calculation of infrared remote sensing signal of hot exhaust systems

    NASA Astrophysics Data System (ADS)

    Hu, Haiyang; Wang, Qiang

    2018-07-01

    A new strategy for grouping spectral absorption coefficients, considering the influences of both temperature and species mole ratio inhomogeneities on correlated-k characteristics of the spectra of gas mixtures, has been deduced to match the calculation method of spectral overlap parameter used in multiscale multigroup wide band k-distribution model. By comparison with current spectral absorption coefficient grouping strategies, for which only the influence of temperature inhomogeneity on the correlated-k characteristics of spectra of single species was considered, the improvements in calculation accuracies resulting from the new grouping strategy were evaluated using a series of 0D cases in which radiance under 3-5-μm wave band emitted by hot combustion gas of hydrocarbon fuel was attenuated by atmosphere with quite different temperature and mole ratios of water vapor and carbon monoxide to carbon dioxide. Finally, evaluations are presented on the calculation of remote sensing thermal images of transonic hot jet exhausted from a chevron ejecting nozzle with solid wall cooling system.

  11. Size and shape dependent optical properties of InAs quantum dots

    NASA Astrophysics Data System (ADS)

    Imran, Ali; Jiang, Jianliang; Eric, Deborah; Yousaf, Muhammad

    2018-01-01

    In this study Electronic states and optical properties of self assembled InAs quantum dots embedded in GaAs matrix have been investigated. Their carrier confinement energies for single quantum dot are calculated by time-independent Schrödinger equation in which hamiltonianian of the system is based on effective mass approximation and position dependent electron momentum. Transition energy, absorption coefficient, refractive index and high frequency dielectric constant for spherical, cylindrical and conical quantum dots with different sizes in different dimensions are calculated. Comparative studies have revealed that size and shape greatly affect the electronic transition energies and absorption coefficient. Peaks of absorption coefficients have been found to be highly shape dependent.

  12. Transfer coefficients in ultracold strongly coupled plasma

    NASA Astrophysics Data System (ADS)

    Bobrov, A. A.; Vorob'ev, V. S.; Zelener, B. V.

    2018-03-01

    We use both analytical and molecular dynamic methods for electron transfer coefficients in an ultracold plasma when its temperature is small and the coupling parameter characterizing the interaction of electrons and ions exceeds unity. For these conditions, we use the approach of nearest neighbor to determine the average electron (ion) diffusion coefficient and to calculate other electron transfer coefficients (viscosity and electrical and thermal conductivities). Molecular dynamics simulations produce electronic and ionic diffusion coefficients, confirming the reliability of these results. The results compare favorably with experimental and numerical data from earlier studies.

  13. A Solution for Laminar Flow Past a Rotating Cylinder in Crossflow

    DTIC Science & Technology

    1975-08-01

    UMlarl\\ good agreement with experiment was obtained for ratios equal lo > r less tluin O.l.S. The calculated drag coefficients varied at...study, the lift and drag coefficients are calculated as a function of the ratio of the cylinder’s tangential velocity to the velocity of the free streaa ...ahead of separation was in good agree- ment with experimental measurements. These results suggested the 22. H. S. Bluston and B, W. Paulson, nA

  14. Radiometric Cross-calibration of KOMPSAT-3A with Landsat-8

    NASA Astrophysics Data System (ADS)

    Shin, D. Y.; Ahn, H. Y.; Lee, S. G.; Choi, C. U.; Kim, J. S.

    2016-06-01

    In this study, Cross calibration was conducted at the Libya 4 PICS site on 2015 using Landsat-8 and KOMPSAT-3A. Ideally a cross calibration should be calculated for each individual scene pair because on any given date the TOA spectral profile is influenced by sun and satellite view geometry and the atmospheric conditions. However, using the near-simultaneous images minimizes this effect because the sensors are viewing the same atmosphere. For the cross calibration, the calibration coefficient was calculated by comparing the at sensor spectral radiance for the same location calculated using the Landsat-8 calibration parameters in metadata and the DN of KOMPSAT-3A for the regions of interest (ROI). Cross calibration can be conducted because the satellite sensors used for overpass have a similar bandwidth. However, not all satellites have the same color filter transmittance and sensor reactivity, even though the purpose is to observe the visible bands. Therefore, the differences in the RSR should be corrected. For the cross-calibration, a calibration coefficient was calculated using the TOA radiance and KOMPSAT-3 DN of the Landsat-8 OLI overpassed at the Libya 4 Site, As a result, the accuracy of the calibration coefficient at the site was assumed to be ± 1.0%. In terms of the results, the radiometric calibration coefficients suggested here are thought to be useful for maintaining the optical quality of the KOMPSAT-3A.

  15. Atomic data on inelastic processes in low-energy manganese-hydrogen collisions

    NASA Astrophysics Data System (ADS)

    Belyaev, Andrey K.; Voronov, Yaroslav V.

    2017-10-01

    Aims: The aim of this paper is to calculate cross sections and rate coefficients for inelastic processes in low-energy Mn + H and Mn+ + H- collisions, especially, for processes with high and moderate rate coefficients. These processes are required for non-local thermodynamic equilibrium (non-LTE) modeling of manganese spectra in cool stellar atmospheres, and in particular, for metal-poor stars. Methods: The calculations of the cross sections and the rate coefficients were performed by means of the quantum model approach within the framework of the Born-Oppenheimer formalism, that is, the asymptotic semi-empirical method for the electronic MnH molecular structure calculation followed by the nonadiabatic nuclear dynamical calculation by means of the multichannel analytic formulas. Results: The cross sections and the rate coefficients for low-energy inelastic processes in manganese-hydrogen collisions are calculated for all transitions between 21 low-lying covalent states and one ionic state. We show that the highest values of the cross sections and the rate coefficients correspond to the mutual neutralization processes into the final atomic states Mn(3d54s(7S)5s e 6S), Mn(3d54s(7S)5p y 8P°), Mn(3d54s(7S)5s e 8S), Mn(3d54s(7S)4d e 8D) [the first group], the processes with the rate coefficients (at temperature T = 6000 K) of the values 4.38 × 10-8, 2.72 × 10-8, 1.98 × 10-8, and 1.59 × 10-8 cm3/ s, respectively, that is, with the rate coefficients exceeding 10-8 cm3/ s. The processes with moderate rate coefficients, that is, with values between 10-10 and 10-8 cm3/ s include many excitation, de-excitation, mutual neutralization and ion-pair formation processes. In addition to other processes involving the atomic states from the first group, the processes from the second group include those involving the following atomic states: Mn(3d5(6S)4s4p (1P°) y 6P°), Mn(3d54s(7S)4d e 6D), Mn(3d54s(7S)5p w 6P°), Mn(3d5(4P)4s4p (3P°) y 6D°), Mn(3d5(4G)4s4p (3P°) y 6F°). The processes with the highest and moderate rate coefficients are expected to be important for non-LTE modeling of manganese spectra in stellar atmospheres. Rate coefficients Kif(T) for the excitation, de-excitation, mutual neutralization, and ion-pair formation processes in manganese-hydrogen collisions are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A106

  16. Atomic Data for the CHIANTI Database

    NASA Technical Reports Server (NTRS)

    Bhatia, Anand K.; Landi, E.

    2012-01-01

    The CHIANTI spectral code consists of an atomic database and a suite of computer programs to calculate the optically thin spectrum of astrophysical objects and to carry out spectroscopic plasma diagnostics. The database includes atomic energy levels, wavelengths, radiative transition rates, collisional excitation, ionization and recombination rate coefficients, as well as data to calculate free-free, free-bound and two-photon continuum emission. In recent years, we have been pursuing a program to calculate atomic data for ions whose lines have been observed in astrophysical spectra but have been neglected in the literature, and to provide CHIANTI with all the data necessary to predict line intensities. There are two types of such ions: those for which calculations are available for low-energy configurations but not for high-energy configurations (i.e., C-like, N-like, O-like systems), and ions that have never or only seldom been studied. This poster will summarize the current status of this project and indicate the future activities .

  17. Excitation and charge transfer in low-energy hydrogen atom collisions with neutral iron

    NASA Astrophysics Data System (ADS)

    Barklem, P. S.

    2018-05-01

    Data for inelastic processes due to hydrogen atom collisions with iron are needed for accurate modelling of the iron spectrum in late-type stars. Excitation and charge transfer in low-energy Fe+H collisions is studied theoretically using a previously presented method based on an asymptotic two-electron linear combination of atomic orbitals model of ionic-covalent interactions in the neutral atom-hydrogen-atom system, together with the multi-channel Landau-Zener model. An extensive calculation including 166 covalent states and 25 ionic states is presented and rate coefficients are calculated for temperatures in the range 1000-20 000 K. The largest rates are found for charge transfer processes to and from two clusters of states around 6.3 and 6.6 eV excitation, corresponding in both cases to active 4d and 5p electrons undergoing transfer. Excitation and de-excitation processes among these two sets of states are also significant. Full Tables and rate coefficient data are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A90

  18. Dentinal permeation modeling

    NASA Astrophysics Data System (ADS)

    Trunina, Natalia; Derbov, Vladimir; Tuchin, Valery; Altshuler, Gregory

    2008-06-01

    Dentinal permeation is of interest in a wide context of tooth care and treatment, in particular, tooth color improvement using combination of chemical whitening agents and light activation. A simple model of dentinal permeation accounting for the morphology of human tooth dentine and including dentinal tubules, more dense and homogeneous peritubular dentine, and less dense and less homogeneous intertubular dentin is proposed. Calculation of permeability of dentine layer is carried out for H IIO and H IIO II versus the tubule diameter and tubule density taken from the microphotograph analysis. This opens the possibility to calculate the distribution of permeability over the tooth surface taking into account the variations of tubule diameter and density as well as those of the diffusion coefficients and layer thickness

  19. Novel surface diffusion characteristics for a robust pentacene derivative on Au(1 1 1) surfaces

    NASA Astrophysics Data System (ADS)

    Miller, Ryan A.; Larson, Amanda; Pohl, Karsten

    2017-06-01

    Molecular dynamics simulations have been performed in both the ab initio and classical mechanics frameworks of 5,6,7-trithiapentacene-13-one (TTPO) molecules on flat Au(1 1 1) surfaces. Results show new surface diffusion characteristics including a strong preference for the molecule to align its long axis parallel to the sixfold Au(1 1 1) symmetry directions and subsequently diffuse along these close-packed directions, and a calculated activation energy for diffusion of 0.142 eV, about four times larger than that for pure pentacene on Au. The temperature-dependent diffusion coefficients were calculated to help quantify the molecular mobility during the experimentally observed process of forming self-assembled monolayers on gold electrodes.

  20. Parameterization of planetary wave breaking in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Garcia, Rolando R.

    1991-01-01

    A parameterization of planetary wave breaking in the middle atmosphere has been developed and tested in a numerical model which includes governing equations for a single wave and the zonal-mean state. The parameterization is based on the assumption that wave breaking represents a steady-state equilibrium between the flux of wave activity and its dissipation by nonlinear processes, and that the latter can be represented as linear damping of the primary wave. With this and the additional assumption that the effect of breaking is to prevent further amplitude growth, the required dissipation rate is readily obtained from the steady-state equation for wave activity; diffusivity coefficients then follow from the dissipation rate. The assumptions made in the derivation are equivalent to those commonly used in parameterizations for gravity wave breaking, but the formulation in terms of wave activity helps highlight the central role of the wave group velocity in determining the dissipation rate. Comparison of model results with nonlinear calculations of wave breaking and with diagnostic determinations of stratospheric diffusion coefficients reveals remarkably good agreement, and suggests that the parameterization could be useful for simulating inexpensively, but realistically, the effects of planetary wave transport.

  1. The interdependence of profile drag and lift with Joukowski type and related airfoils

    NASA Technical Reports Server (NTRS)

    Muttray, H

    1935-01-01

    On the basis of a systematic investigation of Gottingen wind-tunnel data on Joukowski type and related airfoils, it is shown in what manner the profile drag coefficient is dependent on the lift coefficient. The individual factors for the construction of the profile drag polars are given. They afford a more accurate calculation of the performance coefficients of airplane designs than otherwise attainable with the conventional assumption of constant drag coefficient.

  2. Diffusion coefficients in systems with inclusion compounds. 1. alpha. -Cyclodextrin-L-phenylalanine-water at 25 degree C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paduano, L.; Sartorio, R.; Vitagliano, V.

    Diffusion coefficients in the ternary system {alpha}-cyclodextrin (at one concentration)-L-phenylalanine (at four concentrations)-water have been measured by using the Gouy interferometric technique. The effect of the inclusion equilibrium on the cross-term diffusion coefficients was observed. The measured diffusion coefficients in the ternary systems were used to calculate values of the binding constants. These values are in good agreement with the value obtained from calorimetric studies.

  3. Calculation of open and closed system elastic coefficients for multicomponent solids

    NASA Astrophysics Data System (ADS)

    Mishin, Y.

    2015-06-01

    Thermodynamic equilibrium in multicomponent solids subject to mechanical stresses is a complex nonlinear problem whose exact solution requires extensive computations. A few decades ago, Larché and Cahn proposed a linearized solution of the mechanochemical equilibrium problem by introducing the concept of open system elastic coefficients [Acta Metall. 21, 1051 (1973), 10.1016/0001-6160(73)90021-7]. Using the Ni-Al solid solution as a model system, we demonstrate that open system elastic coefficients can be readily computed by semigrand canonical Monte Carlo simulations in conjunction with the shape fluctuation approach. Such coefficients can be derived from a single simulation run, together with other thermodynamic properties needed for prediction of compositional fields in solid solutions containing defects. The proposed calculation approach enables streamlined solutions of mechanochemical equilibrium problems in complex alloys. Second order corrections to the linear theory are extended to multicomponent systems.

  4. Quantitative analysis of spatial variability of geotechnical parameters

    NASA Astrophysics Data System (ADS)

    Fang, Xing

    2018-04-01

    Geotechnical parameters are the basic parameters of geotechnical engineering design, while the geotechnical parameters have strong regional characteristics. At the same time, the spatial variability of geotechnical parameters has been recognized. It is gradually introduced into the reliability analysis of geotechnical engineering. Based on the statistical theory of geostatistical spatial information, the spatial variability of geotechnical parameters is quantitatively analyzed. At the same time, the evaluation of geotechnical parameters and the correlation coefficient between geotechnical parameters are calculated. A residential district of Tianjin Survey Institute was selected as the research object. There are 68 boreholes in this area and 9 layers of mechanical stratification. The parameters are water content, natural gravity, void ratio, liquid limit, plasticity index, liquidity index, compressibility coefficient, compressive modulus, internal friction angle, cohesion and SP index. According to the principle of statistical correlation, the correlation coefficient of geotechnical parameters is calculated. According to the correlation coefficient, the law of geotechnical parameters is obtained.

  5. Correlation Between the Field Line and Particle Diffusion Coefficients in the Stochastic Fields of a Tokamak

    NASA Astrophysics Data System (ADS)

    Calvin, Mark; Punjabi, Alkesh

    1996-11-01

    We use the method of quasi-magnetic surfaces to calculate the correlation between the field line and particle diffusion coefficients. The magnetic topology of a tokamak is perturbed by a spectrum of neighboring resonant resistive modes. The Hamiltonian equations of motion for the field line are integrated numerically. Poincare plots of the quasi-magnetic surfaces are generated initially and after the field line has traversed a considerable distance. From the areas of the quasi-magnetic surfaces and the field line distance, we estimate the field line diffusion coefficient. We start plasma particles on the initial quasi-surface, and calculate the particle diffusion coefficient from our Monte Carlo method (Punjabi A., Boozer A., Lam M., Kim H. and Burke K., J. Plasma Phys.), 44, 405 (1990). We then estimate the correlation between the particle and field diffusion as the strength of the resistive modes is varied.

  6. Quantum Tunneling in Testosterone 6β-Hydroxylation by Cytochrome P450: Reaction Dynamics Calculations Employing Multiconfiguration Molecular-Mechanical Potential Energy Surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Lin, Hai

    2009-05-01

    Testosterone hydroxylation is a prototypical reaction of human cytochrome P450 3A4, which metabolizes about 50% of oral drugs on the market. Reaction dynamics calculations were carried out for the testosterone 6β-hydrogen abstraction and the 6β-d1-testosterone 6β-duterium abstraction employing a model that consists of the substrate and the active oxidant compound I. The calculations were performed at the level of canonical variational transition state theory with multidimensional tunneling and were based on a semiglobal full-dimensional potential energy surface generated by the multiconfiguration molecular mechanics technique. The tunneling coefficients were found to be around 3, indicating substantial contributions by quantum tunneling. However, the tunneling made only modest contributions to the kinetic isotope effects. The kinetic isotope effects were computed to be about 2 in the doublet spin state and about 5 in the quartet spin state.

  7. Flash Points of Secondary Alcohol and n-Alkane Mixtures.

    PubMed

    Esina, Zoya N; Miroshnikov, Alexander M; Korchuganova, Margarita R

    2015-11-19

    The flash point is one of the most important characteristics used to assess the ignition hazard of mixtures of flammable liquids. To determine the flash points of mixtures of secondary alcohols with n-alkanes, it is necessary to calculate the activity coefficients. In this paper, we use a model that allows us to obtain enthalpy of fusion and enthalpy of vaporization data of the pure components to calculate the liquid-solid equilibrium (LSE) and vapor-liquid equilibrium (VLE). Enthalpy of fusion and enthalpy of vaporization data of secondary alcohols in the literature are limited; thus, the prediction of these characteristics was performed using the method of thermodynamic similarity. Additionally, the empirical models provided the critical temperatures and boiling temperatures of the secondary alcohols. The modeled melting enthalpy and enthalpy of vaporization as well as the calculated LSE and VLE flash points were determined for the secondary alcohol and n-alkane mixtures.

  8. Conical Euler analysis and active roll suppression for unsteady vortical flows about rolling delta wings

    NASA Technical Reports Server (NTRS)

    Lee-Rausch, Elizabeth M.; Batina, John T.

    1993-01-01

    A conical Euler code was developed to study unsteady vortex-dominated flows about rolling, highly swept delta wings undergoing either forced motions or free-to-roll motions that include active roll suppression. The flow solver of the code involves a multistage, Runge-Kutta time-stepping scheme that uses a cell-centered, finite-volume, spatial discretization of the Euler equations on an unstructured grid of triangles. The code allows for the additional analysis of the free to-roll case by simultaneously integrating in time the rigid-body equation of motion with the governing flow equations. Results are presented for a delta wing with a 75 deg swept, sharp leading edge at a free-stream Mach number of 1.2 and at 10 deg, 20 deg, and 30 deg angle of attack alpha. At the lower angles of attack (10 and 20 deg), forced-harmonic analyses indicate that the rolling-moment coefficients provide a positive damping, which is verified by free-to-roll calculations. In contrast, at the higher angle of attack (30 deg), a forced-harmonic analysis indicates that the rolling-moment coefficient provides negative damping at the small roll amplitudes. A free-to-roll calculation for this case produces an initially divergent response, but as the amplitude of motion grows with time, the response transitions to a wing-rock type of limit cycle oscillation, which is characteristic of highly swept delta wings. This limit cycle oscillation may be actively suppressed through the use of a rate-feedback control law and antisymmetrically deflected leading-edge flaps. Descriptions of the conical Euler flow solver and the free-to roll analysis are included in this report. Results are presented that demonstrate how the systematic analysis of the forced response of the delta wing can be used to predict the stable, neutrally stable, and unstable free response of the delta wing. These results also give insight into the flow physics associated with unsteady vortical flows about delta wings undergoing forced motions and free-to-roll motions, including the active suppression of the wing-rock type phenomenon. The conical Euler methodology developed is directly extend able to three-dimensional calculations.

  9. The use of computational thermodynamics for the determination of surface tension and Gibbs-Thomson coefficient of multicomponent alloys

    NASA Astrophysics Data System (ADS)

    Ferreira, D. J. S.; Bezerra, B. N.; Collyer, M. N.; Garcia, A.; Ferreira, I. L.

    2018-04-01

    The simulation of casting processes demands accurate information on the thermophysical properties of the alloy; however, such information is scarce in the literature for multicomponent alloys. Generally, metallic alloys applied in industry have more than three solute components. In the present study, a general solution of Butler's formulation for surface tension is presented for multicomponent alloys and is applied in quaternary Al-Cu-Si-Fe alloys, thus permitting the Gibbs-Thomson coefficient to be determined. Such coefficient is a determining factor to the reliability of predictions furnished by microstructure growth models and by numerical computations of solidification thermal parameters, which will depend on the thermophysical properties assumed in the calculations. The Gibbs-Thomson coefficient for ternary and quaternary alloys is seldom reported in the literature. A numerical model based on Powell's hybrid algorithm and a finite difference Jacobian approximation has been coupled to a Thermo-Calc TCAPI interface to assess the excess Gibbs energy of the liquid phase, permitting liquidus temperature, latent heat, alloy density, surface tension and Gibbs-Thomson coefficient for Al-Cu-Si-Fe hypoeutectic alloys to be calculated, as an example of calculation capabilities for multicomponent alloys of the proposed method. The computed results are compared with thermophysical properties of binary Al-Cu and ternary Al-Cu-Si alloys found in the literature and presented as a function of the Cu solute composition.

  10. Calculation extinction cross sections and molar attenuation coefficient of small gold nanoparticles and experimental observation of their UV-vis spectral properties

    NASA Astrophysics Data System (ADS)

    Tang, Junqi; Gao, Kunpeng; Ou, Quanhong; Fu, Xuewen; Man, Shi-Qing; Guo, Jie; Liu, Yingkai

    2018-02-01

    Gold nanoparticles (AuNPs) have been researched extensively, such as applied in various biosensors, biomedical imaging and diagnosis, catalysis and physico-chemical analysis. These applications usually required to know the nanoparticle size or concentration. Researchers have been studying a simply and quick way to estimate the concentration or size of nanoparticles from their optical spectra and SPR feature for several years. The extinction cross-sections and the molar attenuation coefficient were one of the key parameters. In this study, we calculated the extinction cross-sections and molar attenuation coefficient (decadic molar extinction coefficient) of small gold nanoparticles by dipole approximation method and modified Beer-Lambert law. The theoretical result showed that the surface plasmon resonance peak of small gold nanoparticles was blueshift with an increase size. Moreover, small AuNPs (sub-10 nm) were prepared by using of dextran or trisodium citrate as reducing agent and capping agent. The experimental synthesized AuNPs was also shows a blueshift as increasing particle size in a certain range. And the concentration of AuNPs was calculated based on the obtained molar attenuation coefficient. For small nanoparticles, the size of nanoparticles and surface plasmon resonance property was not showed a positive correlation compared to larger nanoparticles. These results suggested that SPR peak depended not only on the nanoparticle size and shape but also on the nanoparticles environment.

  11. Electron Transport Coefficients and Effective Ionization Coefficients in SF6-O2 and SF6-Air Mixtures Using Boltzmann Analysis

    NASA Astrophysics Data System (ADS)

    Wei, Linsheng; Xu, Min; Yuan, Dingkun; Zhang, Yafang; Hu, Zhaoji; Tan, Zhihong

    2014-10-01

    The electron drift velocity, electron energy distribution function (EEDF), density-normalized effective ionization coefficient and density-normalized longitudinal diffusion velocity are calculated in SF6-O2 and SF6-Air mixtures. The experimental results from a pulsed Townsend discharge are plotted for comparison with the numerical results. The reduced field strength varies from 40 Td to 500 Td (1 Townsend=10-17 V·cm2) and the SF6 concentration ranges from 10% to 100%. A Boltzmann equation associated with the two-term spherical harmonic expansion approximation is utilized to gain the swarm parameters in steady-state Townsend. Results show that the accuracy of the Boltzmann solution with a two-term expansion in calculating the electron drift velocity, electron energy distribution function, and density-normalized effective ionization coefficient is acceptable. The effective ionization coefficient presents a distinct relationship with the SF6 content in the mixtures. Moreover, the E/Ncr values in SF6-Air mixtures are higher than those in SF6-O2 mixtures and the calculated value E/Ncr in SF6-O2 and SF6-Air mixtures is lower than the measured value in SF6-N2. Parametric studies conducted on these parameters using the Boltzmann analysis offer substantial insight into the plasma physics, as well as a basis to explore the ozone generation process.

  12. Eccentricity and misalignment effects on the performance of high-pressure annular seals

    NASA Technical Reports Server (NTRS)

    Chen, W. C.; Jackson, E. D.

    1985-01-01

    Annular pressure seals act as powerful hydrostatic bearings and influence the dynamic characteristics of rotating machinery. This work, using the existing concentric seal theories, provides a simple approximate method for calculation of both seal leakage and the dynamic coefficients for short seals with large eccentricity and/or misalignment of the shaft. Rotation and surface roughness effects are included for leakage and dynamic force calculation. The leakage calculations for both laminar and turbulent flow are compared with experimental results. The dynamic coefficients are compared with analytical results. Excellent agreement between the present work and published results have been observed up to the eccentricitiy ratio of 0.8.

  13. An alternative method for centrifugal compressor loading factor modelling

    NASA Astrophysics Data System (ADS)

    Galerkin, Y.; Drozdov, A.; Rekstin, A.; Soldatova, K.

    2017-08-01

    The loading factor at design point is calculated by one or other empirical formula in classical design methods. Performance modelling as a whole is out of consideration. Test data of compressor stages demonstrates that loading factor versus flow coefficient at the impeller exit has a linear character independent of compressibility. Known Universal Modelling Method exploits this fact. Two points define the function - loading factor at design point and at zero flow rate. The proper formulae include empirical coefficients. A good modelling result is possible if the choice of coefficients is based on experience and close analogs. Earlier Y. Galerkin and K. Soldatova had proposed to define loading factor performance by the angle of its inclination to the ordinate axis and by the loading factor at zero flow rate. Simple and definite equations with four geometry parameters were proposed for loading factor performance calculated for inviscid flow. The authors of this publication have studied the test performance of thirteen stages of different types. The equations are proposed with universal empirical coefficients. The calculation error lies in the range of plus to minus 1,5%. The alternative model of a loading factor performance modelling is included in new versions of the Universal Modelling Method.

  14. Auxiliary basis expansions for large-scale electronic structure calculations

    PubMed Central

    Jung, Yousung; Sodt, Alex; Gill, Peter M. W.; Head-Gordon, Martin

    2005-01-01

    One way to reduce the computational cost of electronic structure calculations is to use auxiliary basis expansions to approximate four-center integrals in terms of two- and three-center integrals, usually by using the variationally optimum Coulomb metric to determine the expansion coefficients. However, the long-range decay behavior of the auxiliary basis expansion coefficients has not been characterized. We find that this decay can be surprisingly slow. Numerical experiments on linear alkanes and a toy model both show that the decay can be as slow as 1/r in the distance between the auxiliary function and the fitted charge distribution. The Coulomb metric fitting equations also involve divergent matrix elements for extended systems treated with periodic boundary conditions. An attenuated Coulomb metric that is short-range can eliminate these oddities without substantially degrading calculated relative energies. The sparsity of the fit coefficients is assessed on simple hydrocarbon molecules and shows quite early onset of linear growth in the number of significant coefficients with system size using the attenuated Coulomb metric. Hence it is possible to design linear scaling auxiliary basis methods without additional approximations to treat large systems. PMID:15845767

  15. Kinetics of adsorption of dyes from aqueous solution using activated carbon prepared from waste apricot.

    PubMed

    Onal, Yunus

    2006-10-11

    Adsorbent (WA11Zn5) has been prepared from waste apricot by chemical activation with ZnCl(2). Pore properties of the activated carbon such as BET surface area, pore volume, pore size distribution, and pore diameter were characterized by N(2) adsorption and DFT plus software. Adsorption of three dyes, namely, Methylene Blue (MB), Malachite Green (MG), Crystal Violet (CV), onto activated carbon in aqueous solution was studied in a batch system with respect to contact time, temperature. The kinetics of adsorption of MB, MG and CV have been discussed using six kinetic models, i.e., the pseudo-first-order model, the pseudo-second-order model, the Elovich equation, the intraparticle diffusion model, the Bangham equation, the modified Freundlich equation. Kinetic parameters and correlation coefficients were determined. It was shown that the second-order kinetic equation could describe the adsorption kinetics for three dyes. The dyes uptake process was found to be controlled by external mass transfer at earlier stages (before 5 min) and by intraparticle diffusion at later stages (after 5 min). Thermodynamic parameters, such as DeltaG, DeltaH and DeltaS, have been calculated by using the thermodynamic equilibrium coefficient obtained at different temperatures and concentrations. The thermodynamics of dyes-WA11Zn5 system indicates endothermic process.

  16. Experimental determination of water activity for binary aqueous cerium(III) ionic solutions: application to an assessment of the predictive capability of the binding mean spherical approximation model.

    PubMed

    Ruas, Alexandre; Simonin, Jean-Pierre; Turq, Pierre; Moisy, Philippe

    2005-12-08

    This work is aimed at a description of the thermodynamic properties of actinide salt solutions at high concentration. The predictive capability of the binding mean spherical approximation (BIMSA) theory to describe the thermodynamic properties of electrolytes is assessed in the case of aqueous solutions of lanthanide(III) nitrate and chloride salts. Osmotic coefficients of cerium(III) nitrate and chloride were calculated from other lanthanide(III) salts properties. In parallel, concentrated binary solutions of cerium nitrate were prepared in order to measure experimentally its water activity and density as a function of concentration, at 25 degrees C. Water activities of several binary solutions of cerium chloride were also measured to check existing data on this salt. Then, the properties of cerium chloride and cerium nitrate solutions were compared within the BIMSA model. Osmotic coefficient values for promethium nitrate and promethium chloride given by this theory are proposed. Finally, water activity measurements were made to examine the fact that the ternary system Ce(NO3)3/HNO3/H2O and the quaternary system Ce(NO3)3/HNO3/N2H5NO3/H2O may be regarded as "simple solutions" (in the sense of Zdanovskii and Mikulin).

  17. Confined active Brownian particles: theoretical description of propulsion-induced accumulation

    NASA Astrophysics Data System (ADS)

    Das, Shibananda; Gompper, Gerhard; Winkler, Roland G.

    2018-01-01

    The stationary-state distribution function of confined active Brownian particles (ABPs) is analyzed by computer simulations and analytical calculations. We consider a radial harmonic as well as an anharmonic confinement potential. In the simulations, the ABP is propelled with a prescribed velocity along a body-fixed direction, which is changing in a diffusive manner. For the analytical approach, the Cartesian components of the propulsion velocity are assumed to change independently; active Ornstein-Uhlenbeck particle (AOUP). This results in very different velocity distribution functions. The analytical solution of the Fokker-Planck equation for an AOUP in a harmonic potential is presented and a conditional distribution function is provided for the radial particle distribution at a given magnitude of the propulsion velocity. This conditional probability distribution facilitates the description of the coupling of the spatial coordinate and propulsion, which yields activity-induced accumulation of particles. For the anharmonic potential, a probability distribution function is derived within the unified colored noise approximation. The comparison of the simulation results with theoretical predictions yields good agreement for large rotational diffusion coefficients, e.g. due to tumbling, even for large propulsion velocities (Péclet numbers). However, we find significant deviations already for moderate Péclet number, when the rotational diffusion coefficient is on the order of the thermal one.

  18. Determining and understanding the control of flux. An illustration in submitochondrial particles of how to validate schemes of metabolic control.

    PubMed

    Moreno-Sánchez, R; Bravo, C; Westerhoff, H V

    1999-09-01

    Two complementary methods were used to determine how the rate of respiration and that of ATP hydrolysis were controlled in rat liver submitochondrial particles. In the first, 'direct control analysis' method, respiration was titrated with malonate, antimycin or cyanide at 20, 30 and 37 degrees C, to determine the flux control exerted by succinate dehydrogenase, cytochrome bc1 complex and cytochrome c oxidase, respectively. Together, the three respiratory complexes only controlled the flux by about 50%, leaving the other 50% of flux control to the H+ leak. In the second, 'elasticity based' method, the elasticity coefficients of the respiratory chain or the H+-ATPase and the H+ leak towards the H+ gradient were determined. Then, the flux control coefficients were calculated using the connectivity and summation laws of metabolic control theory. The correspondence between the flux control coefficients determined in the two ways validated the two methods. This allowed us to use the second method to analyse what was the kinetic origin of the observed distribution of control. Control of ATP hydrolysis by the ATPase decreased with increasing ATPase activity; hence, the control exerted by the H+ leak increased with increasing ATPase activity, due to a diminishing elasticity towards the H+ gradient. Reverse electron transport was mainly controlled by the ATPase; the sum of flux control coefficients of succinate dehydrogenase, NADH-CoQ oxidoreductase, and H+-ATPase yielded a value greater than one, indicating that the H+ leak exerted a significant negative control on this pathway.

  19. Fifty-fifth Christmas Bird Count. 159. Ocean City, Md

    USGS Publications Warehouse

    Robbins, C.S.

    1955-01-01

    The distribution of dynamic pressure behind a Harris' hawk's wing was sampled using a wake rake consisting of 15 pitot tubes and one static tube. The hawk was holding on to a perch, but at an air speed and gliding angle at which it was capable of gliding. The perch was instrumented, so that the lift developed by the wing was known and the lift coefficient could be calculated. The mean of 92 estimates of profile drag coefficient was 0.0207, with standard deviation 0.0079. Lift coefficients ranged from 0.51 to 1.08. Reynolds numbers were nearly all in the range 143000-194000. The estimates of profile drag coefficient were reconcilable with previous estimates of the wing profile drag of the same bird, obtained by the subtractive method, and also with values predicted by the ?Airfoil-ii? program for designing aerofoils, based on a digitized wing profile from the ulnar region of the wing. The thickness of the wake suggested that the boundary layer was mostly or fully turbulent in most observations and separated in some, possibly as an active means of creating drag for control purposes. It appears that the bird could momentarily either increase or decrease the profile drag of specific parts of the wing, by active changes of shape, and it appeared to use the carpo-metacarpal region especially for such control movements. Further investigation in a low turbulence wind tunnel would help to resolve doubts about the possible influence of airstream turbulence on the behaviour of the boundary layer.

  20. Fifty-fifth Christmas Bird Count. 159. Ocean City, Md

    USGS Publications Warehouse

    Pennycuick, C.J.; Heine, C.E.; Kirkpatrick, S.J.; Fuller, M.R.

    1992-01-01

    The distribution of dynamic pressure behind a Harris' hawk's wing was sampled using a wake rake consisting of 15 pitot tubes and one static tube. The hawk was holding on to a perch, but at an air speed and gliding angle at which it was capable of gliding. The perch was instrumented, so that the lift developed by the wing was known and the lift coefficient could be calculated. The mean of 92 estimates of profile drag coefficient was 0.0207, with standard deviation 0.0079. Lift coefficients ranged from 0.51 to 1.08. Reynolds numbers were nearly all in the range 143000-194000. The estimates of profile drag coefficient were reconcilable with previous estimates of the wing profile drag of the same bird, obtained by the subtractive method, and also with values predicted by the `Airfoil-ii? program for designing aerofoils, based on a digitized wing profile from the ulnar region of the wing. The thickness of the wake suggested that the boundary layer was mostly or fully turbulent in most observations and separated in some, possibly as an active means of creating drag for control purposes. It appears that the bird could momentarily either increase or decrease the profile drag of specific parts of the wing, by active changes of shape, and it appeared to use the carpo-metacarpal region especially for such control movements. Further investigation in a low turbulence wind tunnel would help to resolve doubts about the possible influence of airstream turbulence on the behaviour of the boundary layer.

Top