Science.gov

Sample records for activity coefficients calculated

  1. Molecular radiotherapy: The NUKFIT software for calculating the time-integrated activity coefficient

    SciTech Connect

    Kletting, P.; Schimmel, S.; Luster, M.; Kestler, H. A.; Hänscheid, H.; Fernández, M.; Lassmann, M.; Bröer, J. H.; Nosske, D.; Glatting, G.

    2013-10-15

    Purpose: Calculation of the time-integrated activity coefficient (residence time) is a crucial step in dosimetry for molecular radiotherapy. However, available software is deficient in that it is either not tailored for the use in molecular radiotherapy and/or does not include all required estimation methods. The aim of this work was therefore the development and programming of an algorithm which allows for an objective and reproducible determination of the time-integrated activity coefficient and its standard error.Methods: The algorithm includes the selection of a set of fitting functions from predefined sums of exponentials and the choice of an error model for the used data. To estimate the values of the adjustable parameters an objective function, depending on the data, the parameters of the error model, the fitting function and (if required and available) Bayesian information, is minimized. To increase reproducibility and user-friendliness the starting values are automatically determined using a combination of curve stripping and random search. Visual inspection, the coefficient of determination, the standard error of the fitted parameters, and the correlation matrix are provided to evaluate the quality of the fit. The functions which are most supported by the data are determined using the corrected Akaike information criterion. The time-integrated activity coefficient is estimated by analytically integrating the fitted functions. Its standard error is determined assuming Gaussian error propagation. The software was implemented using MATLAB.Results: To validate the proper implementation of the objective function and the fit functions, the results of NUKFIT and SAAM numerical, a commercially available software tool, were compared. The automatic search for starting values was successfully tested for reproducibility. The quality criteria applied in conjunction with the Akaike information criterion allowed the selection of suitable functions. Function fit

  2. Calculator program set up for film coefficients

    SciTech Connect

    Gracey, J.O.; Teter, D.L.

    1982-11-15

    Describes a mechanized computation scheme for the film coefficients used in heat transfer calculations designed for the Texas Instruments TI-59 programmable calculator. Presents tables showing application conditions (small diagram included) and the corresponding heat transfer equations for 10 heat flow situations; symbols used; user instructions, a complete film coefficient program; and storage assignments. Example problem and corresponding printout are given.

  3. Code System to Calculate Correlation & Regression Coefficients.

    1999-11-23

    Version 00 PCC/SRC is designed for use in conjunction with sensitivity analyses of complex computer models. PCC/SRC calculates the partial correlation coefficients (PCC) and the standardized regression coefficients (SRC) from the multivariate input to, and output from, a computer model.

  4. Calculation of self-diffusion coefficients in iron

    SciTech Connect

    Zhang, Baohua

    2014-01-15

    On the basis of available P-V-T equation of state of iron, the temperature and pressure dependence of self-diffusion coefficients in iron polymorphs (α, δ, γ and ε phases) have been successfully reproduced in terms of the bulk elastic and expansivity data by means of a thermodynamical model that interconnects point defects parameters with bulk properties. The calculated diffusion parameters, such as self-diffusion coefficient, activation energy and activation volume over a broad temperature range (500-2500 K) and pressure range (0-100 GPa), compare favorably well with experimental or theoretical ones when the uncertainties are considered.

  5. The CPA Equation of State and an Activity Coefficient Model for Accurate Molar Enthalpy Calculations of Mixtures with Carbon Dioxide and Water/Brine

    SciTech Connect

    Myint, P. C.; Hao, Y.; Firoozabadi, A.

    2015-03-27

    Thermodynamic property calculations of mixtures containing carbon dioxide (CO2) and water, including brines, are essential in theoretical models of many natural and industrial processes. The properties of greatest practical interest are density, solubility, and enthalpy. Many models for density and solubility calculations have been presented in the literature, but there exists only one study, by Spycher and Pruess, that has compared theoretical molar enthalpy predictions with experimental data [1]. In this report, we recommend two different models for enthalpy calculations: the CPA equation of state by Li and Firoozabadi [2], and the CO2 activity coefficient model by Duan and Sun [3]. We show that the CPA equation of state, which has been demonstrated to provide good agreement with density and solubility data, also accurately calculates molar enthalpies of pure CO2, pure water, and both CO2-rich and aqueous (H2O-rich) mixtures of the two species. It is applicable to a wider range of conditions than the Spycher and Pruess model. In aqueous sodium chloride (NaCl) mixtures, we show that Duan and Sun’s model yields accurate results for the partial molar enthalpy of CO2. It can be combined with another model for the brine enthalpy to calculate the molar enthalpy of H2O-CO2-NaCl mixtures. We conclude by explaining how the CPA equation of state may be modified to further improve agreement with experiments. This generalized CPA is the basis of our future work on this topic.

  6. A Computer for Calculating Kendall's Rank Correlation Coefficients

    ERIC Educational Resources Information Center

    Roberge, James J.

    1970-01-01

    A program for calculating Kendall's tau-a, tau-b, partial tau, coefficient of concordance, coefficient of consistence, and coefficient of agreement is presented. In addition, the program provides tests of significance for each of the coefficients except partial tau. (DG)

  7. In Silico Calculation of Infinite Dilution Activity Coefficients of Molecular Solutes in Ionic Liquids: Critical Review of Current Methods and New Models Based on Three Machine Learning Algorithms.

    PubMed

    Paduszyński, Kamil

    2016-08-22

    The aim of the paper is to address all the disadvantages of currently available models for calculating infinite dilution activity coefficients (γ(∞)) of molecular solutes in ionic liquids (ILs)-a relevant property from the point of view of many applications of ILs, particularly in separations. Three new models are proposed, each of them based on distinct machine learning algorithm: stepwise multiple linear regression (SWMLR), feed-forward artificial neural network (FFANN), and least-squares support vector machine (LSSVM). The models were established based on the most comprehensive γ(∞) data bank reported so far (>34 000 data points for 188 ILs and 128 solutes). Following the paper published previously [J. Chem. Inf. Model 2014, 54, 1311-1324], the ILs were treated in terms of group contributions, whereas the Abraham solvation parameters were used to quantify an impact of solute structure. Temperature is also included in the input data of the models so that they can be utilized to obtain temperature-dependent data and thus related thermodynamic functions. Both internal and external validation techniques were applied to assess the statistical significance and explanatory power of the final correlations. A comparative study of the overall performance of the investigated SWMLR/FFANN/LSSVM approaches is presented in terms of root-mean-square error and average absolute relative deviation between calculated and experimental γ(∞), evaluated for different families of ILs and solutes, as well as between calculated and experimental infinite dilution selectivity for separation problems benzene from n-hexane and thiophene from n-heptane. LSSVM is shown to be a method with the lowest values of both training and generalization errors. It is finally demonstrated that the established models exhibit an improved accuracy compared to the state-of-the-art model, namely, temperature-dependent group contribution linear solvation energy relationship, published in 2011 [J. Chem

  8. Calculation of fusion product angular correlation coefficients for fusion plasmas

    SciTech Connect

    Murphy, T.J.

    1987-08-01

    The angular correlation coefficients for fusion products are calculated in the cases of Maxwellian and beam-target plasmas. Measurement of these coefficients as a localized ion temperature or fast-ion diagnostic is discussed. 8 refs., 7 figs., 1 tab.

  9. Calculation of Thermal Conductivity Coefficients for Magnetized Neutron Star

    NASA Astrophysics Data System (ADS)

    Glushikhina, M. V.; Bisnovatyi-Kogan, G. S.

    2015-01-01

    The coefficients that determine the electron heat transfer and diffusion in the crust of neutron stars are calculated on the basis of a solution of the Boltzmann equation with allowance for degeneracy.

  10. Calculation of the standard partial molal thermodynamic properties of KCl{sup 0} and activity coefficients of aqueous KCl at temperatures and pressures to 1000{degree}C and 5 kbar

    SciTech Connect

    Pokrovskii, V.A.; Helgeson, H.C.

    1997-06-01

    Regression of experimental activity coefficient and dissociation constant data reported in the literature with the Hueckel and Setchenow equations and the revised HKF equations of state generated parameters and thermodynamic properties of dissociated KCl and KCl{sup 0} at 25{degrees}C and bar that can be used to calculate the standard partial molal thermodynamic properties of KCl{sup 0} and the activity coefficients of KCl at temperatures and pressures to 1000{degrees}C and 5 kbar. 46 refs., 6 figs., 4 tabs.

  11. Calculation and application of combined diffusion coefficients in thermal plasmas.

    PubMed

    Murphy, Anthony B

    2014-01-01

    The combined diffusion coefficient method is widely used to treat the mixing and demixing of different plasma gases and vapours in thermal plasmas, such as welding arcs and plasma jets. It greatly simplifies the treatment of diffusion for many gas mixtures without sacrificing accuracy. Here, three subjects that are important in the implementation of the combined diffusion coefficient method are considered. First, it is shown that different expressions for the combined diffusion coefficients, arising from different definitions for the stoichiometric coefficients that assign the electrons to the two gases, are equivalent. Second, an approach is presented for calculating certain partial differential terms in the combined temperature and pressure diffusion coefficients that can cause difficulties. Finally, a method for applying the combined diffusion coefficients in computational models, which typically require diffusion to be expressed in terms of mass fraction gradients, is given. PMID:24603457

  12. Calculation and application of combined diffusion coefficients in thermal plasmas

    PubMed Central

    Murphy, Anthony B.

    2014-01-01

    The combined diffusion coefficient method is widely used to treat the mixing and demixing of different plasma gases and vapours in thermal plasmas, such as welding arcs and plasma jets. It greatly simplifies the treatment of diffusion for many gas mixtures without sacrificing accuracy. Here, three subjects that are important in the implementation of the combined diffusion coefficient method are considered. First, it is shown that different expressions for the combined diffusion coefficients, arising from different definitions for the stoichiometric coefficients that assign the electrons to the two gases, are equivalent. Second, an approach is presented for calculating certain partial differential terms in the combined temperature and pressure diffusion coefficients that can cause difficulties. Finally, a method for applying the combined diffusion coefficients in computational models, which typically require diffusion to be expressed in terms of mass fraction gradients, is given. PMID:24603457

  13. Finding All Coefficients of a Polynomial with One Calculation.

    ERIC Educational Resources Information Center

    Satianov, Pavel

    2003-01-01

    The values of a polynomial with integer coefficients can be computed using a graphing calculator, but it is impossible to see the formula itself. Suggests finding this formula from numerical data and describes the unusual way to solve this problem with one calculation only. (Author/NB)

  14. Calculating rotordynamic coefficients of seals by finite-difference techniques

    NASA Technical Reports Server (NTRS)

    Dietzen, F. J.; Nordmann, R.

    1987-01-01

    For modelling the turbulent flow in a seal the Navier-Stokes equations in connection with a turbulence (kappa-epsilon) model are solved by a finite-difference method. A motion of the shaft round the centered position is assumed. After calculating the corresponding flow field and the pressure distribution, the rotor-dynamic coefficients of the seal can be determined. These coefficients are compared with results obtained by using the bulk flow theory of Childs and with experimental results.

  15. A Simple Method for Calculating Clebsch-Gordan Coefficients

    ERIC Educational Resources Information Center

    Klink, W. H.; Wickramasekara, S.

    2010-01-01

    This paper presents a simple method for calculating Clebsch-Gordan coefficients for the tensor product of two unitary irreducible representations (UIRs) of the rotation group. The method also works for multiplicity-free irreducible representations appearing in the tensor product of any number of UIRs of the rotation group. The generalization to…

  16. NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species

    NASA Technical Reports Server (NTRS)

    McBride, Bonnie J.; Zehe, Michael J.; Gordon, Sanford

    2002-01-01

    This report documents the library of thermodynamic data used with the NASA Glenn computer program CEA (Chemical Equilibrium with Applications). This library, containing data for over 2000 solid, liquid, and gaseous chemical species for temperatures ranging from 200 to 20,000 K, is available for use with other computer codes as well. The data are expressed as least-squares coefficients to a seven-term functional form for C((sup o)(sub p)) (T) / R with integration constants for H (sup o) (T) / RT and S(sup o) (T) / R. The NASA Glenn computer program PAC (Properties and Coefficients) was used to calculate thermodynamic functions and to generate the least-squares coefficients. PAC input was taken from a variety of sources. A complete listing of the database is given along with a summary of thermodynamic properties at 0 and 298.15 K.

  17. Calculations of accommodation coefficients for diatomic molecular gases.

    PubMed

    Ambaye, Hailemariam; Manson, J R

    2006-03-01

    A theoretical study of energy and momentum accommodation coefficients and reduced force coefficients for molecular gases exchanging energy with surfaces has been carried out. The theoretical model uses classical mechanics for describing translational and rotational motions while internal molecular vibrational modes are treated quantum mechanically. Calculations for diatomic molecular gases are compared with recent measurements using hypersonic beams of N2 incident on SiO2 layers deposited on Kapton substrates. The theory gives good qualitative predictions of the behavior of the various accommodation coefficients as functions of the available experimentally controllable parameters such as incident translational energy, incident beam angle, molecular and surface masses, and surface temperature. Quantitative comparisons with measurements for energy and normal momentum accommodation indicate that these experiments can be used to obtain basic physical information about the molecule-surface interaction such as the physisorption potential well depth and the extent of surface roughness. PMID:16605510

  18. SCALE Continuous-Energy Eigenvalue Sensitivity Coefficient Calculations

    DOE PAGESBeta

    Perfetti, Christopher M.; Rearden, Bradley T.; Martin, William R.

    2016-02-25

    Sensitivity coefficients describe the fractional change in a system response that is induced by changes to system parameters and nuclear data. The Tools for Sensitivity and UNcertainty Analysis Methodology Implementation (TSUNAMI) code within the SCALE code system makes use of eigenvalue sensitivity coefficients for an extensive number of criticality safety applications, including quantifying the data-induced uncertainty in the eigenvalue of critical systems, assessing the neutronic similarity between different critical systems, and guiding nuclear data adjustment studies. The need to model geometrically complex systems with improved fidelity and the desire to extend TSUNAMI analysis to advanced applications has motivated the developmentmore » of a methodology for calculating sensitivity coefficients in continuous-energy (CE) Monte Carlo applications. The Contributon-Linked eigenvalue sensitivity/Uncertainty estimation via Tracklength importance CHaracterization (CLUTCH) and Iterated Fission Probability (IFP) eigenvalue sensitivity methods were recently implemented in the CE-KENO framework of the SCALE code system to enable TSUNAMI-3D to perform eigenvalue sensitivity calculations using continuous-energy Monte Carlo methods. This work provides a detailed description of the theory behind the CLUTCH method and describes in detail its implementation. This work explores the improvements in eigenvalue sensitivity coefficient accuracy that can be gained through the use of continuous-energy sensitivity methods and also compares several sensitivity methods in terms of computational efficiency and memory requirements.« less

  19. Calculation of Diffusion Coefficients from Bounce Resonance with Magnetosonic Waves

    NASA Astrophysics Data System (ADS)

    Tao, X.; Li, X.; Lu, Q.; Dai, L.

    2015-12-01

    Theoretical bounce resonance diffusion coefficients for interactions between electrons and magnetosonic waves are calculated and validated using guiding-center test particle simulations. First, we compare the theoretical diffusion coefficients of Roberts and Schulz with test particle simulations and find perfect agreement. However, the theoretical diffusion coefficients of Roberts and Schulz assume waves to be present on the whole trajectories of particles; therefore, they are not directly applicable to magnetosonic waves, which are found to be confined to equatorial regions from observations. Second, we derive a new set of bounce-resonance diffusion coefficients, taking into consideration the equatorial confinement of magnetosonic waves. These new diffusion coefficients are also validated by test particle simulations. Using a previously published magnetosonic wave model, our results demonstrate that bounce-resonance diffusion mainly results in strong pitch angle scattering of energetic electrons even with a moderate wave amplitude of 50 pT. We conclude that bounce-resonance diffusion plays an important role in relativistic electron dynamics and should be incorporated into global radiation belt modeling.

  20. New calculations of neutron kerma coefficients and dose equivalent.

    PubMed

    Liu, Zhenzhou; Chen, Jinxiang

    2008-06-01

    For neutron energies ranging from 1 keV to 20 MeV, the kerma coefficients for elements H, C, N, O, light water, and ICRU tissue were deduced respectively from microscopic cross sections and Monte Carlo simulation (MCNP code). The results are consistent within admitted uncertainties with values evaluated by an international group (Chadwick et al 1999 Med. Phys. 26 974-91). The ambient dose equivalent generated in the ISO-recommended neutron field for an Am-Be neutron source (ISO 8529-1: 2001(E)) was obtained from the kerma coefficients and Monte Carlo calculation. In addition, it was calculated directly by multiplying the neutron fluence by the fluence-to-ambient dose conversion coefficients recommended by ICRP (ICRP 1996 ICRP Publication 74 (Oxford: Pergamon)). The two results agree well with each other. The main feature of this work is our Monte Carlo simulation design and the treatments differing from the work of others in the calculation of neutron energy transfer in non-elastic processes. PMID:18495982

  1. Transport coefficients in diamond from ab-initio calculations

    NASA Astrophysics Data System (ADS)

    Löfâs, Henrik; Grigoriev, Anton; Isberg, Jan; Ahuja, Rajeev

    2013-03-01

    By combining the Boltzmann transport equation with ab-initio electronic structure calculations, we obtain transport coefficients for boron-doped diamond. We find the temperature dependence of the resistivity and the hall coefficients in good agreement with experimental measurements. Doping in the samples is treated via the rigid band approximation and scattering is treated in the relaxation time approximation. In contrast to previous results, the acoustic phonon scattering is the dominating scattering mechanism for the considered doping range. At room temperature, we find the thermopower, S, in the range 1-1.6 mV/K and the power factor, S2σ, in the range 0.004-0.16 μW /cm K2.

  2. TI-73 Calculator Activities

    ERIC Educational Resources Information Center

    Phillips-Bey, Carol K.

    2004-01-01

    This article describes TI-73 calculator activities appropriate for middle school students. It was found that the use of the calculator allowed for higher-level thinking and a richer exploration of mathematical ideas by students. [Included with this article are "Dice Roll Worksheet" and "Transforming Tree Worksheet".] (Contains 9 figures.)

  3. Program for calculating SU(4) Clebsch Gordan coefficients

    NASA Astrophysics Data System (ADS)

    Kuhn, Markus; Walliser, Hans

    2008-11-01

    The SU(4) Clebsch-Gordan coefficients of the decomposition {N}⊗{N}→{N} are calculated for arbitrary irreducible representations {N}, {N} and {N}. They are efficiently computed for the group chain SU(4) ⊃ SU(3)×U(1) ⊃ SU(2)×U(1) ⊃ U(1) using the eigenfunction method along with recurrence relations. Program summaryProgram title: CGSU4 Catalogue identifier: AEBL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBL_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2847 No. of bytes in distributed program, including test data, etc.: 23 794 Distribution format: tar.gz Programming language: Fortran 95 Computer: Personal computer Operating system: Linux, Windows RAM: 2 MB Classification: 4.2 Subprograms used: ACRM_v1_0; Title: SU(3) [1] Nature of problem: The SU(4) Clebsch-Gordan coefficients according to the group chain SU(4) ⊃ SU(3) × U(1) ⊃ SU(2) × U(1) ⊃ U(1) are calculated for arbitrary couplings. Solution method: The eigenfunctions method in combination with recurrence relations is used to generate tables of the SU(4) ⊃ SU(3) × U(1) isoscalar factors for the decomposition {N}⊗{N}→{ with the multiplicity label γ. The SU(4) Clebsch-Gordan coefficients are then composed by these isoscalar factors and SU(3) Clebsch-Gordan coefficients according to the Racah factorization lemma. Restrictions: The dimensions of the involved representations are limited by the size of the arrays defined in the program. Additional comments: If many Clebsch-Gordan coefficients are needed for the same decomposition {N}⊗{N}→{, the running time is significantly reduced if the table of isoscalar factors is calculated only once. The SU(3) code [1] and the code for eigen, a matrix diagonalization program (IBM scientific subroutine package) are included in the

  4. Calculations of effective recombination coefficients for nebular astrophysics

    NASA Astrophysics Data System (ADS)

    Fang, Xuan; Liu, Xiaowei; Storey, Pete J.

    2015-08-01

    In the seemingly well established field of nebular astrophysics, there has been a long-standing dichotomy in plasma diagnostics and heavy elemental abundance determinations using the traditional method based on collisionally excited lines on the one hand, and optical recombination lines/continua, on the other. Several mechanisms have been proposed to explain this fundamental problem. Deep spectroscopy and recombination line analysis of emission line nebulae (planetary nebulae and H II regions) in the past decade have pointed to the existence of another previously unknown component of cold, H-deficient material as the culprit. Better constraints are needed on the physical conditions (electron temperature and density), chemical composition, mass, and spatial distribution of the postulated H-deficient inclusions in order to unravel their astrophysical origins. This requires knowledge of the relevant atomic parameters, most importantly the effective recombination coefficients of abundant heavy element ions, such as C II, O II, N II, and Ne II, appropriate for the physical conditions prevailing in those cold inclusions (e.g., electron temperature Te < 1000 K).In this contribution, I will introduce the creation of new effective recombination coefficients for the heavy element optical recombination lines, and review the recent progress in nebular astrophysics since the availability of new and high-quality atomic data. I will also present our new calculations of the effective recombination coefficients for the Ne II recombination line spectrum.

  5. Calculation of NaCl, KCl and LiCl Salts Activity Coefficients in Polyethylene Glycol (PEG4000)-Water System Using Modified PHSC Equation of State, Extended Debye-Hückel Model and Pitzer Model

    NASA Astrophysics Data System (ADS)

    Marjani, Azam

    2016-07-01

    For biomolecules and cell particles purification and separation in biological engineering, besides the chromatography as mostly applied process, aqueous two-phase systems (ATPS) are of the most favorable separation processes that are worth to be investigated in thermodynamic theoretically. In recent years, thermodynamic calculation of ATPS properties has attracted much attention due to their great applications in chemical industries such as separation processes. These phase calculations of ATPS have inherent complexity due to the presence of ions and polymers in aqueous solution. In this work, for target ternary systems of polyethylene glycol (PEG4000)-salt-water, thermodynamic investigation for constituent systems with three salts (NaCl, KCl and LiCl) has been carried out as PEG is the most favorable polymer in ATPS. The modified perturbed hard sphere chain (PHSC) equation of state (EOS), extended Debye-Hückel and Pitzer models were employed for calculation of activity coefficients for the considered systems. Four additional statistical parameters were considered to ensure the consistency of correlations and introduced as objective functions in the particle swarm optimization algorithm. The results showed desirable agreement to the available experimental data, and the order of recommendation of studied models is PHSC EOS > extended Debye-Hückel > Pitzer. The concluding remark is that the all the employed models are reliable in such calculations and can be used for thermodynamic correlation/predictions; however, by using an ion-based parameter calculation method, the PHSC EOS reveals both reliability and universality of applications.

  6. Photolysis Rate Coefficient Calculations in Support of SOLVE II

    NASA Technical Reports Server (NTRS)

    Swartz, William H.

    2005-01-01

    A quantitative understanding of photolysis rate coefficients (or "j-values") is essential to determining the photochemical reaction rates that define ozone loss and other crucial processes in the atmosphere. j-Values can be calculated with radiative transfer models, derived from actinic flux observations, or inferred from trace gas measurements. The primary objective of the present effort was the accurate calculation of j-values in the Arctic twilight along NASA DC-8 flight tracks during the second SAGE III Ozone Loss and Validation Experiment (SOLVE II), based in Kiruna, Sweden (68 degrees N, 20 degrees E) during January-February 2003. The JHU/APL radiative transfer model was utilized to produce a large suite of j-values for photolysis processes (over 70 reactions) relevant to the upper troposphere and lower stratosphere. The calculations take into account the actual changes in ozone abundance and apparent albedo of clouds and the Earth surface along the aircraft flight tracks as observed by in situ and remote sensing platforms (e.g., EP-TOMS). A secondary objective was to analyze solar irradiance data from NCAR s Direct beam Irradiance Atmospheric Spectrometer (DIAS) on-board the NASA DC-8 and to start the development of a flexible, multi-species spectral fitting technique for the independent retrieval of O3,O2.02, and aerosol optical properties.

  7. Fuel temperature reactivity coefficient calculation by Monte Carlo perturbation techniques

    SciTech Connect

    Shim, H. J.; Kim, C. H.

    2013-07-01

    We present an efficient method to estimate the fuel temperature reactivity coefficient (FTC) by the Monte Carlo adjoint-weighted correlated sampling method. In this method, a fuel temperature change is regarded as variations of the microscopic cross sections and the temperature in the free gas model which is adopted to correct the asymptotic double differential scattering kernel. The effectiveness of the new method is examined through the continuous energy MC neutronics calculations for PWR pin cell problems. The isotope-wise and reaction-type-wise contributions to the FTCs are investigated for two free gas models - the constant scattering cross section model and the exact model. It is shown that the proposed method can efficiently predict the reactivity change due to the fuel temperature variation. (authors)

  8. Calculation of distribution coefficients for radionuclides in soils and sediments

    SciTech Connect

    Puigdomenech, I.; Bergstroem, U.

    1995-01-01

    The turnover of radionuclides in parts of the biosphere is usually modeled by use of a sorption distribution coefficient, K{sub d}. Its value has a large influence on calculated concentrations of long-lived radionuclides found in reservoirs, which are important for doses to humans. Sorption is due to several processes and a variety of physical and chemical interactions. In the commonly used K{sub d}-methodology. however, these processes were usually not considered explicitly. Additionally, many K{sub d} values were obtained from laboratory experiments from the geosphere, the conditions of which differ from those prevailing in the biosphere. The main objective of this work was to extend the knowledge about the theoretical background for calculation of K{sub d} values. To achieve this objective, theoretical models for ion exchange and surface complexation were adapted to simulation under biospheric conditions. Elements studied were Cs, Ra, Np, U, and Pu. The results show that a triple-layer surface complexation model may be used to estimate K{sub d} values for actinides as functions of some chemical parameters, such as pH and the redox potential (E{sub H}). An area of application is performance assessment of radioactive waste repositories. 59 refs., 7 figs., 3 tabs.

  9. Calculation of distribution coefficients for Radionuclides in soils and sediments

    SciTech Connect

    Puigdomenech, I.; Bergstrom, U.

    1995-10-01

    The turnover of radionuclides in parts of the biosphere is usually modeled by use of a sorption distribution coefficient, K{sub a}. Its value has a large influence on calculated concentrations of long-lived radionuclides found in reservoirs, which are important for doses to humans. Sorption is due to several processes and a variety of physical and chemical interactions (e.g., surface complexation and ion exchange). In the commonly used K{sub d}-methodology, however, these processes were usually not considered explicitly. Additionally, many K{sub d} values were obtained from laboratory experiments or from the geosphere, the conditions of which differ from those prevailing in the biosphere. The main objective of this work was to extend the knowledge about the theoretical background for calculation of K{sub d} values. To achieve this objective, theoretical models for ion exchange and surface complexation were adapted to simulation under biospheric conditions. Elements studied were Cs, Ra, Np, U and Pu. The results show that a triple-layer surface complexation model may be used to estimate K{sub d} values for actinides as functions of some chemical parameters, such as pH and the redox potential (E{sub H}). An area of application is performance assessment of radioactive waste repositories.

  10. New and extended parameterization of the thermodynamic model AIOMFAC: calculation of activity coefficients for organic-inorganic mixtures containing carboxyl, hydroxyl, carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional groups

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Marcolli, C.; Booth, A. M.; Lienhard, D. M.; Soonsin, V.; Krieger, U. K.; Topping, D. O.; McFiggans, G.; Peter, T.; Seinfeld, J. H.

    2011-09-01

    We present a new and considerably extended parameterization of the thermodynamic activity coefficient model AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients) at room temperature. AIOMFAC combines a Pitzer-like electrolyte solution model with a UNIFAC-based group-contribution approach and explicitly accounts for interactions between organic functional groups and inorganic ions. Such interactions constitute the salt-effect, may cause liquid-liquid phase separation, and affect the gas-particle partitioning of aerosols. The previous AIOMFAC version was parameterized for alkyl and hydroxyl functional groups of alcohols and polyols. With the goal to describe a wide variety of organic compounds found in atmospheric aerosols, we extend here the parameterization of AIOMFAC to include the functional groups carboxyl, hydroxyl, ketone, aldehyde, ether, ester, alkenyl, alkyl, aromatic carbon-alcohol, and aromatic hydrocarbon. Thermodynamic equilibrium data of organic-inorganic systems from the literature are critically assessed and complemented with new measurements to establish a comprehensive database. The database is used to determine simultaneously the AIOMFAC parameters describing interactions of organic functional groups with the ions H+, Li+, Na+, K+, NH4+, Mg2+, Ca2+, Cl-, Br-, NO3-, HSO4-, and SO42-. Detailed descriptions of different types of thermodynamic data, such as vapor-liquid, solid-liquid, and liquid-liquid equilibria, and their use for the model parameterization are provided. Issues regarding deficiencies of the database, types and uncertainties of experimental data, and limitations of the model, are discussed. The challenging parameter optimization problem is solved with a novel combination of powerful global minimization algorithms. A number of exemplary calculations for systems containing atmospherically relevant aerosol components are shown. Amongst others, we discuss aqueous mixtures of ammonium sulfate with

  11. New and extended parameterization of the thermodynamic model AIOMFAC: calculation of activity coefficients for organic-inorganic mixtures containing carboxyl, hydroxyl, carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional groups

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Marcolli, C.; Booth, A. M.; Lienhard, D. M.; Soonsin, V.; Krieger, U. K.; Topping, D. O.; McFiggans, G.; Peter, T.; Seinfeld, J. H.

    2011-05-01

    We present a new and considerably extended parameterization of the thermodynamic activity coefficient model AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients) at room temperature. AIOMFAC combines a Pitzer-like electrolyte solution model with a UNIFAC-based group-contribution approach and explicitly accounts for interactions between organic functional groups and inorganic ions. Such interactions constitute the salt-effect, may cause liquid-liquid phase separation, and affect the gas-particle partitioning of aerosols. The previous AIOMFAC version was parameterized for alkyl and hydroxyl functional groups of alcohols and polyols. With the goal to describe a wide variety of organic compounds found in atmospheric aerosols, we extend here the parameterization of AIOMFAC to include the functional groups carboxyl, hydroxyl, ketone, aldehyde, ether, ester, alkenyl, alkyl, aromatic carbon-alcohol, and aromatic hydrocarbon. Thermodynamic equilibrium data of organic-inorganic systems from the literature are critically assessed and complemented with new measurements to establish a comprehensive database. The database is used to determine simultaneously the AIOMFAC parameters describing interactions of organic functional groups with the ions H+, Li+, Na+, K+, NH4+, Mg2+, Ca2+, Cl-, Br-, NO3-, HSO4-, and SO42-. Detailed descriptions of different types of thermodynamic data, such as vapor-liquid, solid-liquid, and liquid-liquid equilibria, and their use for the model parameterization are provided. Issues regarding deficiencies of the database, types and uncertainties of experimental data, and limitations of the model, are discussed. The challenging parameter optimization problem is solved with a novel combination of powerful global minimization algorithms. A number of exemplary calculations for systems containing atmospherically relevant aerosol components are shown. Amongst others, we discuss aqueous mixtures of ammonium sulfate with

  12. Coefficients for calculating thermodynamic and transport properties of individual species

    NASA Technical Reports Server (NTRS)

    Mcbride, Bonnie J.; Gordon, Sanford; Reno, Martin A.

    1993-01-01

    Libraries of thermodynamic data and transport properties are given for individual species in the form of least-squares coefficients. Values of C(sup 0)(sub p)(T), H(sup 0)(T), and S(sup 0)(T) are available for 1130 solid, liquid, and gaseous species. Viscosity and thermal conductivity data are given for 155 gases. The original C(sup 0)(sub p)(T) values were fit to a fourth-order polynomial with integration constants for H(sup 0)(T) and S(sup 0)(T). For each species the integration constant for H(sup 0)(T) includes the heat of formation. Transport properties have a different functional form. The temperature range for most of the data is 300 to 5000 K, although some of the newer thermodynamic data have a range of 200 to 6000 K. Because the species are mainly possible products of reaction, the data are useful for chemical equilibrium and kinetics computer codes. Much of the data has been distributed for several years with the NASA Lewis equilibrium program CET89. The thermodynamic properties of the reference elements were updated along with about 175 species that involve the elements carbon, hydrogen, oxygen, and nitrogen. These sets of data will be distributed with the NASA Lewis personal computer program for calculating chemical equilibria, CETPC.

  13. Photolysis Rate Coefficient Calculations in Support of SOLVE Campaign

    NASA Technical Reports Server (NTRS)

    Lloyd, Steven A.; Swartz, William H.

    2001-01-01

    The objectives for this SOLVE project were 3-fold. First, we sought to calculate a complete set of photolysis rate coefficients (j-values) for the campaign along the ER-2 and DC-8 flight tracks. En route to this goal, it would be necessary to develop a comprehensive set of input geophysical conditions (e.g., ozone profiles), derived from various climatological, aircraft, and remotely sensed datasets, in order to model the radiative transfer of the atmosphere accurately. These j-values would then need validation by comparison with flux-derived j-value measurements. The second objective was to analyze chemistry along back trajectories using the NASA/Goddard chemistry trajectory model initialized with measurements of trace atmospheric constituents. This modeling effort would provide insight into the completeness of current measurements and the chemistry of Arctic wintertime ozone loss. Finally, we sought to coordinate stellar occultation measurements of ozone (and thus ozone loss) during SOLVE using the MSX/UVISI satellite instrument. Such measurements would determine ozone loss during the Arctic polar night and represent the first significant science application of space-based stellar occultation in the Earth's atmosphere.

  14. Photolysis Rate Coefficient Calculations in Support of SOLVE Campaign

    NASA Technical Reports Server (NTRS)

    Lloyd, Steven A.; Swartz, William H.

    2001-01-01

    The objectives for this SOLVE project were 3-fold. First, we sought to calculate a complete set of photolysis rate coefficients (j-values) for the campaign along the ER-2 and DC-8 flight tracks. En route to this goal, it would be necessary to develop a comprehensive set of input geophysical conditions (e.g., ozone profiles), derived from various climatological, aircraft, and remotely sensed datasets, in order to model the radiative transfer of the atmosphere accurately. These j-values would then need validation by comparison with flux-derived j-value measurements. The second objective was to analyze chemistry along back trajectories using the NASA/Goddard chemistry trajectory model initialized with measurements of trace atmospheric constituents. This modeling effort would provide insight into the completeness of current measurements and the chemistry of Arctic wintertime ozone loss. Finally, we sought to coordinate stellar occultation measurements of ozone (and thus ozone loss) during SOLVE using the Midcourse Space Experiment(MSX)/Ultraviolet and Visible Imagers and Spectrographic Imagers (UVISI) satellite instrument. Such measurements would determine ozone loss during the Arctic polar night and represent the first significant science application of space-based stellar occultation in the Earth's atmosphere.

  15. Activity coefficient of aqueous sodium bicarbonate

    SciTech Connect

    Pitzer, Kenneth S.; Peiper, J. Christopher

    1980-09-01

    The determination of the activity coefficient and related properties of sodium bicarbonate presents special problems because of the appreciable vapor pressure of CO2 above such solutions. With the development of reliable equations for the thermodynamic properties of mixed electrolytes, it is possible to determine the parameters for NaHCO3 from cell measurements or NaCl-NaHCO3 mixtures. Literature data are analyzed to illustrate the method and provide interim values, hoever it is noted that further measurements over a wider range of concentrations would yield more definitive results. Lastly, an estimate is also given for the activity coefficient of KHCO3.

  16. Calculation of coupling coefficients for equations of multipoint kinetics

    NASA Astrophysics Data System (ADS)

    Ioannisian, M. V.

    2013-12-01

    The multipoint kinetics equations for fission reaction rate are developed. The algorithm for computation of coupling coefficients is implemented within the MCU-5 code. Results from approbation of the method using the model problem and experimental data are presented.

  17. First principles calculations of alloying element diffusion coefficients in Ni using the five-frequency model

    NASA Astrophysics Data System (ADS)

    Wu, Qiong; Li, Shu-Suo; Ma, Yue; Gong, Sheng-Kai

    2012-10-01

    The diffusion coefficients of several alloying elements (Al, Mo, Co, Ta, Ru, W, Cr, Re) in Ni are directly calculated using the five-frequency model and the first principles density functional theory. The correlation factors provided by the five-frequency model are explicitly calculated. The calculated diffusion coefficients show their excellent agreement with the available experimental data. Both the diffusion pre-factor (D0) and the activation energy (Q) of impurity diffusion are obtained. The diffusion coefficients above 700 K are sorted in the following order: DAl > DCr > DCo > DTa > DMo > DRu > DW > DRe. It is found that there is a positive correlation between the atomic radius of the solute and the jump energy of Ni that results in the rotation of the solute-vacancy pair (E1). The value of E2-E1 (E2 is the solute diffusion energy) and the correlation factor each also show a positive correlation. The larger atoms in the same series have lower diffusion activation energies and faster diffusion coefficients.

  18. Calculations of radar backscattering coefficient of vegetation-covered soils

    NASA Technical Reports Server (NTRS)

    Mo, T.; Schmugge, T. J.; Jackson, T. J. (Principal Investigator)

    1983-01-01

    A model for simulating the measured backscattering coefficient of vegetation-covered soil surfaces includes both coherent and incoherent components of the backscattered radar pulses from a rough sil surface. The effect of vegetation canopy scattering is also incorporated into the model by making the radar pulse subject to two-way attenuation and volume scattering when it passes through the vegetation layer. Model results agree well with the measured angular distributions of the radar backscattering coefficient for HH polarization at the 1.6 GHz and 4.75 GHz frequencies over grass-covered fields. It was found that the coherent scattering component is very important at angles near nadir, while the vegetation volume scattering is dominant at incident angles 30 degrees.

  19. GYutsis: heuristic based calculation of general recoupling coefficients

    NASA Astrophysics Data System (ADS)

    Van Dyck, D.; Fack, V.

    2003-08-01

    General angular momentum recoupling coefficients can be expressed as a summation formula over products of 6- j coefficients. Yutsis, Levinson and Vanagas developed graphical techniques for representing the general recoupling coefficient as a cubic graph and they describe a set of reduction rules allowing a stepwise generation of the corresponding summation formula. This paper is a follow up to [Van Dyck and Fack, Comput. Phys. Comm. 151 (2003) 353-368] where we described a heuristic algorithm based on these techniques. In this article we separate the heuristic from the algorithm and describe some new heuristic approaches which can be plugged into the generic algorithm. We show that these new heuristics lead to good results: in many cases we get a more efficient summation formula than our previous approach, in particular for problems of higher order. In addition the new features and the use of our program GYutsis, which implements these techniques, is described both for end users and application programmers. Program summaryTitle of program: CycleCostAlgorithm, GYutsis Catalogue number: ADSA Program Summary URL:http://cpc.cs.qub.ac.uk/summaries/ADSA Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland. Users may obtain the program also by downloading either the compressed tar file gyutsis.tgz (for Unix and Linux) or the zip file gyutsis.zip (for Windows) from our website ( http://caagt.rug.ac.be/yutsis/). An applet version of the program is also available on our website and can be run in a web browser from the URL http://caagt.rug.ac.be/yutsis/GYutsisApplet.html. Licensing provisions: none Computers for which the program is designed: any computer with Sun's Java Runtime Environment 1.4 or higher installed. Programming language used: Java 1.2 (Compiler: Sun's SDK 1.4.0) No. of lines in program: approximately 9400 No. of bytes in distributed program, including test data, etc.: 544 117 Distribution format: tar gzip file Nature of

  20. Continuous-energy eigenvalue sensitivity coefficient calculations in TSUNAMI-3D

    SciTech Connect

    Perfetti, C. M.; Rearden, B. T.

    2013-07-01

    Two methods for calculating eigenvalue sensitivity coefficients in continuous-energy Monte Carlo applications were implemented in the KENO code within the SCALE code package. The methods were used to calculate sensitivity coefficients for several test problems and produced sensitivity coefficients that agreed well with both reference sensitivities and multigroup TSUNAMI-3D sensitivity coefficients. The newly developed CLUTCH method was observed to produce sensitivity coefficients with high figures of merit and a low memory footprint, and both continuous-energy sensitivity methods met or exceeded the accuracy of the multigroup TSUNAMI-3D calculations. (authors)

  1. Development of a SCALE Tool for Continuous-Energy Eigenvalue Sensitivity Coefficient Calculations

    SciTech Connect

    Perfetti, Christopher M; Rearden, Bradley T

    2013-01-01

    Two methods for calculating eigenvalue sensitivity coefficients in continuous-energy Monte Carlo applications were implemented in the KENO code within the SCALE code package. The methods were used to calculate sensitivity coefficients for several criticality safety problems and produced sensitivity coefficients that agreed well with both reference sensitivities and multigroup TSUNAMI-3D sensitivity coefficients. The newly developed CLUTCH method was observed to produce sensitivity coefficients with high figures of merit and low memory requirements, and both continuous-energy sensitivity methods met or exceeded the accuracy of the multigroup TSUNAMI-3D calculations.

  2. Development of a SCALE Tool for Continuous-Energy Eigenvalue Sensitivity Coefficient Calculations

    NASA Astrophysics Data System (ADS)

    Perfetti, Christopher M.; Rearden, Bradley T.

    2014-06-01

    Two methods for calculating eigenvalue sensitivity coefficients in continuous-energy Monte Carlo applications were implemented in the KENO code within the SCALE code package. The methods were used to calculate sensitivity coefficients for several criticality safety problems and produced sensitivity coefficients that agreed well with both reference sensitivities and multigroup TSUNAMI-3D sensitivity coefficients. The newly developed CLUTCH method was observed to produce sensitivity coefficients with high figures of merit and low memory requirements, and both continuous-energy sensitivity methods met or exceeded the accuracy of the multigroup TSUNAMI-3D calculations.

  3. Activities: More Calculator Capers.

    ERIC Educational Resources Information Center

    Schmalz, Rosemary

    1983-01-01

    Provided is an activity designed to give grades 7-12 students opportunities to discover numerical patterns and to derive general conclusions from observing data. The activity focuses attention on patterns in products such as 33x34, 333x334, and 3333x3334. Three worksheets and answers are included. (JN)

  4. Development of Continuous-Energy Eigenvalue Sensitivity Coefficient Calculation Methods in the Shift Monte Carlo Code

    SciTech Connect

    Perfetti, Christopher M; Martin, William R; Rearden, Bradley T; Williams, Mark L

    2012-01-01

    Three methods for calculating continuous-energy eigenvalue sensitivity coefficients were developed and implemented into the SHIFT Monte Carlo code within the Scale code package. The methods were used for several simple test problems and were evaluated in terms of speed, accuracy, efficiency, and memory requirements. A promising new method for calculating eigenvalue sensitivity coefficients, known as the CLUTCH method, was developed and produced accurate sensitivity coefficients with figures of merit that were several orders of magnitude larger than those from existing methods.

  5. Mass attenuation coefficient calculations of different detector crystals by means of FLUKA Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Ebru Ermis, Elif; Celiktas, Cuneyt

    2015-07-01

    Calculations of gamma-ray mass attenuation coefficients of various detector materials (crystals) were carried out by means of FLUKA Monte Carlo (MC) method at different gamma-ray energies. NaI, PVT, GSO, GaAs and CdWO4 detector materials were chosen in the calculations. Calculated coefficients were also compared with the National Institute of Standards and Technology (NIST) values. Obtained results through this method were highly in accordance with those of the NIST values. It was concluded from the study that FLUKA MC method can be an alternative way to calculate the gamma-ray mass attenuation coefficients of the detector materials.

  6. Calculation of combined diffusion coefficients in SF{sub 6}-Cu mixtures

    SciTech Connect

    Zhong, Linlin; Wang, Xiaohua Rong, Mingzhe Wu, Yi; Murphy, Anthony B.

    2014-10-15

    Diffusion coefficients play an important role in the description of the transport of metal vapours in gas mixtures. This paper is devoted to the calculation of four combined diffusion coefficients, namely, the combined ordinary diffusion coefficient, combined electric field diffusion coefficient, combined temperature diffusion coefficient, and combined pressure diffusion coefficient in SF{sub 6}-Cu mixtures at temperatures up to 30 000 K. These four coefficients describe diffusion due to composition gradients, applied electric fields, temperature gradients, and pressure gradients, respectively. The influence of copper fluoride and sulfide species on the diffusion coefficients is shown to be negligible. The effect of copper proportion and gas pressures on these diffusion coefficients is investigated. It is shown that increasing the proportion of copper generally increases the magnitude of the four diffusion coefficients, except for copper mole fractions of 90% or more. It is further found that increasing the pressure reduces the magnitude of the coefficients, except for the combined temperature diffusion coefficient, and shifts the maximum of all four coefficients towards higher temperatures. The results presented in this paper can be applied to the simulation of high-voltage circuit breaker arcs.

  7. Calculation of stiffness and damping coefficients for elastically supported gas foil bearings

    NASA Technical Reports Server (NTRS)

    Peng, J.-P.; Carpino, M.

    1993-01-01

    The stiffness and damping coefficients of an elastically supported gas foil bearing are calculated. A perfect gas is used as the lubricant, and its behavior is described by the Reynolds equation. The structural model consists only of an elastic foundation. The fluid equations and the structural equations are coupled. A perturbation method is used to obtain the linearized dynamic coefficient equations. A finite difference formulation has been developed to solve for the four stiffness and the four damping coefficients. The effect of the bearing compliance on the dynamic coefficients is discussed in this paper.

  8. Development of continuous-energy eigenvalue sensitivity coefficient calculation methods in the shift Monte Carlo Code

    SciTech Connect

    Perfetti, C.; Martin, W.; Rearden, B.; Williams, M.

    2012-07-01

    Three methods for calculating continuous-energy eigenvalue sensitivity coefficients were developed and implemented into the Shift Monte Carlo code within the SCALE code package. The methods were used for two small-scale test problems and were evaluated in terms of speed, accuracy, efficiency, and memory requirements. A promising new method for calculating eigenvalue sensitivity coefficients, known as the CLUTCH method, was developed and produced accurate sensitivity coefficients with figures of merit that were several orders of magnitude larger than those from existing methods. (authors)

  9. Method for calculating the three-dimensional water concentration coefficients and its industrial applications

    NASA Astrophysics Data System (ADS)

    Prel, P.

    1991-12-01

    A three dimensional method for calculating the concentration coefficients of water droplets, its general principles, as well as the details of the calculating computer programs that were used, are described. The applications are presented for locating probes on the Airbus 340 and ATR 72 airplanes, mainly showing the effect of the drop diameter on the measured concentration.

  10. Dependence of the osmotic coefficients and average ionic activity coefficients on hydrophobic hydration in solutions

    NASA Astrophysics Data System (ADS)

    Sergievskii, V. V.; Rudakov, A. M.

    2016-08-01

    The model that considers the nonideality of aqueous solutions of electrolytes with allowance for independent contributions of hydration of ions of various types and electrostatic interactions was substantiated using the cluster ion model. The empirical parameters in the model equations were found to be the hydrophilic and hydrophobic hydration numbers of ions in the standard state and the dispersion of their distribution over the stoichiometric coefficients. A mathematically adequate description of the concentration dependences of the osmotic coefficients and average ion activity coefficients of electrolytes was given for several systems. The difference in the rate of the decrease in the hydrophilic and hydrophobic hydration numbers of ions leads to extremum concentration dependences of the osmotic coefficients, which were determined by other authors from isopiestic data for many electrolytes and did not find explanation.

  11. A method for calculating neoclassical transport coefficients with momentum conserving collision operator

    SciTech Connect

    Taguchi, M. )

    1992-11-01

    A method for calculating the neoclassical transport coefficients in a nonaxisymmetric multispecies plasma is developed by employing a momentum conserving collision operator. In this method, the parallel current, and the radial particle and heat fluxes are expressed in terms of the transport coefficients which can be obtained by solving the drift kinetic equations with the pitch-angle scattering collision operator. These expressions can be easily incorporated into the existing numerical codes including the pitch-angle scattering collisions only.

  12. Improved method for calculating neoclassical transport coefficients in the banana regime

    SciTech Connect

    Taguchi, M.

    2014-05-15

    The conventional neoclassical moment method in the banana regime is improved by increasing the accuracy of approximation to the linearized Fokker-Planck collision operator. This improved method is formulated for a multiple ion plasma in general tokamak equilibria. The explicit computation in a model magnetic field shows that the neoclassical transport coefficients can be accurately calculated in the full range of aspect ratio by the improved method. The some neoclassical transport coefficients for the intermediate aspect ratio are found to appreciably deviate from those obtained by the conventional moment method. The differences between the transport coefficients with these two methods are up to about 20%.

  13. Comparison of ICRF-Induced Ion Diffusion Coefficients Calculated with the DC and AORSA Codes

    SciTech Connect

    Harvey, R. W.; Petrov, Yu.; Jaeger, E. F.; Berry, L. A.; Batchelor, D. B.; Bonoli, P. T.; Wright, J. C.

    2009-11-26

    The DC (Diffusion Coefficient) code obtains RF diffusion coefficients by direct numerical integration of the Lorentz force equation for ion motion in the combined equilibrium fields and the RF full wave EM fields from the AORSA full-wave code. Suitable averaging over initial gyro- and toroidal-angle of coordinate 'kicks' after a bounce-period, gives noise-free bounce-averaged diffusion coefficients. For direct comparison with zero-banana-width coefficients from AORSA, perpendicular-drift terms in the Lorentz equation are subtracted off the integration. The DC code has been coupled to the CQL3D Fokker-Planck code. For a C-Mod minority ion ICRF heating test case, the total power absorption using the diffusion coefficients agree well, and the profiles are similarly close. This supports the DC calculation and the Kennel-Engelmann-based, no-correlations, coefficient calculation in AORSA. However, resonance correlations cause large differences in the pitch angle variations of the diffusion coefficients, and in the resulting evolution of the ion distribution functions.

  14. Online application for the barometric coefficient calculation of the NMDB stations

    NASA Astrophysics Data System (ADS)

    Paschalis, P.; Mavromichalaki, H.; Yanke, V.; Belov, A.; Eroshenko, E.; Gerontidou, M.; Koutroumpi, I.

    2013-02-01

    The primary processing of the neutron monitor data includes all the necessary actions and procedures that each cosmic ray station follows in order to provide the worldwide neutron monitor network with good quality data. One of the main corrections of the primary data is the pressure correction due to the barometric effect. The barometric effect induces variations to the measured data of the neutron monitors which are related to the variations of the local atmospheric pressure of the stations. This correction requires the definition of the barometric coefficient which is calculated experimentally. The accurate calculation of the coefficient is a prerequisite for the quality of the data. This paper presents the implementation of an online tool which calculates the barometric coefficient of a cosmic ray station, by taking advantage of the fact that most stations publish their data on the Neutron Monitor Data Base.

  15. Calculation of the coefficient and dynamics of water diffusion in graphite joints

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Liu, Wen-Bin

    2006-06-01

    The coefficient and dynamics of water diffusion in adhesive-graphite joints were calculated insitu with energy dispersive X-ray (EDX) analysis, a method that is significantly simpler than elemental analysis. Water diffusion coefficient and dynamics of adhesive-graphite joints treated by different surface treatment menthods were also investigated. Calculation results indicated that the water diffusion rate in adhesive-graphite joints treated by sandpaper was higher than that treated by chemical oxidation or by silane couple agent. Also the durability of graphite joints treated by coupling agent is superior to that treated by chemical oxidation or sandpaper burnishing.

  16. A New Method for the Calculation of Diffusion Coefficients with Monte Carlo

    NASA Astrophysics Data System (ADS)

    Dorval, Eric

    2014-06-01

    This paper presents a new Monte Carlo-based method for the calculation of diffusion coefficients. One distinctive feature of this method is that it does not resort to the computation of transport cross sections directly, although their functional form is retained. Instead, a special type of tally derived from a deterministic estimate of Fick's Law is used for tallying the total cross section, which is then combined with a set of other standard Monte Carlo tallies. Some properties of this method are presented by means of numerical examples for a multi-group 1-D implementation. Calculated diffusion coefficients are in general good agreement with values obtained by other methods.

  17. A 3-dimensional finite-difference method for calculating the dynamic coefficients of seals

    NASA Technical Reports Server (NTRS)

    Dietzen, F. J.; Nordmann, R.

    1989-01-01

    A method to calculate the dynamic coefficients of seals with arbitrary geometry is presented. The Navier-Stokes equations are used in conjunction with the k-e turbulence model to describe the turbulent flow. These equations are solved by a full 3-dimensional finite-difference procedure instead of the normally used perturbation analysis. The time dependence of the equations is introduced by working with a coordinate system rotating with the precession frequency of the shaft. The results of this theory are compared with coefficients calculated by a perturbation analysis and with experimental results.

  18. The analytical Scheme calculator for angular momentum coupling and recoupling coefficients

    NASA Astrophysics Data System (ADS)

    Deveikis, A.; Kuznecovas, A.

    2005-10-01

    We describe a Scheme implementation of the interactive environment to calculate analytically the Clebsch-Gordan coefficients, Wigner 6 j and 9 j symbols, and general recoupling coefficients that are used in the quantum theory of angular momentum. The orthogonality conditions for considered coefficients are implemented. The program provides a fast and exact calculation of the coefficients for large values of quantum angular momenta. Program summaryTitle of program:Scheme2Clebsch Catalogue number:ADWC Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWC Program obtainable from:CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions:none Computer for which the program is designed:Any Scheme-capable platform Operating systems under which the program has been tested: Windows 2000 Programming language used:Scheme Memory required to execute with typical data:50 MB (≈ size of DrScheme, version 204) No. of lines in distributed program, including test data, etc.: 2872 No. of bytes in distributed program, including test data, etc.: 109 396 Distribution format:tar.gz Nature of physical problem:The accurate and fast calculation of the angular momentum coupling and recoupling coefficients is required in various branches of quantum many-particle physics. The presented code provides a fast and exact calculation of the angular momentum coupling and recoupling coefficients for large values of quantum angular momenta and is based on the GNU Library General Public License PLT software http://www.plt-scheme.org/. Method of solution:A direct evaluation of sum formulas. A general angular momentum recoupling coefficient for an arbitrary number of (integer or half-integer) angular momenta is expressed as a sum over products of the Clebsch-Gordan coefficients. Restrictions on the complexity of the problem:Limited only by the DrScheme implementation used to run the program. No limitation inherent in the code. Typical running time:The Clebsch

  19. FORTRAN 77 program and user's guide for the calculation of partial correlation and standardized regression coefficients

    SciTech Connect

    Iman, R.L.; Shortencarier, M.J.; Johnson, J.D.

    1985-06-01

    This document is for users of a computer program developed by the authors at Sandia National Laboratories. The computer program is designed to be used in conjunction with sensitivity analyses of complex computer models. In particular, this program is most useful in analyzing input-output relationships when the input has been selected using the Latin hypercube sampling program developed at Sandia (Iman and Shortencarier, 1984). The present computer program calculates the partial correlation coefficients and/or the standardized regression coefficients from the multivariate input to, and output from, a computer model. These coefficients can be calculated on either the original observations or on the ranks of the original observations. The coefficients provide alternative measures of the relative contribution (importance) of each of the various inputs to the observed output variations. Relationships between the coefficients and differences in their interpretations are identified. If the computer model output has an associated time or spatial history then the computer program will generate a graph of the coefficients over time or space for each input-variable, output-variable combination of interest, thus indicating the importance of each input over time or space. The computer program is user-friendly and written in FORTRAN 77 to facilitate portability.

  20. Calculating Partition Coefficients of Small Molecules in Octanol/Water and Cyclohexane/Water.

    PubMed

    Bannan, Caitlin C; Calabró, Gaetano; Kyu, Daisy Y; Mobley, David L

    2016-08-01

    Partition coefficients describe how a solute is distributed between two immiscible solvents. They are used in drug design as a measure of a solute's hydrophobicity and a proxy for its membrane permeability. We calculate partition coefficients from transfer free energies using molecular dynamics simulations in explicit solvent. Setup is done by our new Solvation Toolkit which automates the process of creating input files for any combination of solutes and solvents for many popular molecular dynamics software packages. We calculate partition coefficients between octanol/water and cyclohexane/water with the Generalized AMBER Force Field (GAFF) and the Dielectric Corrected GAFF (GAFF-DC). With similar methods in the past we found a root-mean-squared error (RMSE) of 6.3 kJ/mol in hydration free energies which would correspond to an error of around 1.6 log units in partition coefficients if solvation free energies in both solvents were estimated with comparable accuracy. Here we find an overall RMSE of about 1.2 log units with both force fields. Results from GAFF and GAFF-DC seem to exhibit systematic biases in opposite directions for calculated cyclohexane/water partition coefficients. PMID:27434695

  1. Improved First-Principles Calculation of the Third Virial Coefficient of Helium

    PubMed Central

    Garberoglio, Giovanni; Moldover, Michael R.; Harvey, Allan H.

    2011-01-01

    We employ state-of-the-art pair and three-body potentials with path-integral Monte Carlo (PIMC) methods to calculate the third density virial coefficient C(T) for helium. The uncertainties are much smaller than those of the best experimental results, and approximately one-fourth the uncertainty of our previous work. We have extended our results in temperature down to 2.6 K, incorporating the effect of spin statistics that become important below approximately 7 K. Results are given for both the 3He and 4He isotopes. We have also performed PIMC calculations of the third acoustic virial coefficient γa; our calculated values compare well with the limited experimental data available. A correlating equation for C(T) of 4He is presented; differentiation of this equation provides a reliable and simpler way of calculating γa. PMID:26989595

  2. On the Calculation of Anisotropic Extinction Coefficients for Rigid Fibrous Ceramic Insulations

    NASA Technical Reports Server (NTRS)

    Marshall, Jochen; Milos, Frank

    1995-01-01

    The specific anisotropic extinction coefficient e* couples the effective Radiative properties of a fibrous insulation into the radiation diffusion equation. This coefficient can be calculated using Mie scattering theory if fiber diameters, refractive indices and fiber orientation distributions are known. In general, fiber orientation distributions are not readily accessible and past calculations have considered fibers as either randomly distributed or normal to the heat flow direction. In certain rigid fibrous ceramic insulations neither of these cases apply well and a simple procedure is described for approximating e* from values calculated for the random and normal orientation cases. The intrinsic error associated with this scaling procedure is investigated. Numerical computations for several test structures and fiber materials show the average error to be less than 5% for net heat flux and radiation conductivity calculations.

  3. Calculated spanwise lift distributions, influence functions, and influence coefficients for unswept wings in subsonic flow

    NASA Technical Reports Server (NTRS)

    Diederich, Franklin W; Zlotnick, Martin

    1955-01-01

    Spanwise lift distributions have been calculated for nineteen unswept wings with various aspect ratios and taper ratios and with a variety of angle-of-attack or twist distributions, including flap and aileron deflections, by means of the Weissinger method with eight control points on the semispan. Also calculated were aerodynamic influence coefficients which pertain to a certain definite set of stations along the span, and several methods are presented for calculating aerodynamic influence functions and coefficients for stations other than those stipulated. The information presented in this report can be used in the analysis of untwisted wings or wings with known twist distributions, as well as in aeroelastic calculations involving initially unknown twist distributions.

  4. A program for calculating load coefficient matrices utilizing the force summation method, L218 (LOADS). Volume 1: Engineering and usage

    NASA Technical Reports Server (NTRS)

    Miller, R. D.; Anderson, L. R.

    1979-01-01

    The LOADS program L218, a digital computer program that calculates dynamic load coefficient matrices utilizing the force summation method, is described. The load equations are derived for a flight vehicle in straight and level flight and excited by gusts and/or control motions. In addition, sensor equations are calculated for use with an active control system. The load coefficient matrices are calculated for the following types of loads: translational and rotational accelerations, velocities, and displacements; panel aerodynamic forces; net panel forces; shears and moments. Program usage and a brief description of the analysis used are presented. A description of the design and structure of the program to aid those who will maintain and/or modify the program in the future is included.

  5. A New Model to Calculate Friction Coefficients and Shear Stresses in Thermal Drilling

    SciTech Connect

    Qu, Jun; Blau, Peter Julian

    2008-01-01

    A new analytical model for thermal drilling (also known as friction drilling) has been developed. The model distinguishes itself from recent work of other investigators by improving on two aspects: (1) the new model defines material plastic flow in terms of the yield in shear rather than the yield in compression, and (2) it uses a single, variable friction coefficient instead of assuming two unrelated friction coefficients in fixed values. The time dependence of the shear stress and friction coefficient at the hole walls, which cannot be measured directly in thermal drilling, can be calculated using this model from experimentally-measured values of the instantaneous thrust force and torque. Good matches between the calculated shear strengths and the handbook values for thermally drilling low carbon steel confirm the model's validity.

  6. Calculation of Phonon Conductivity and Seebeck Coefficient in Cu-Ni Alloy

    NASA Astrophysics Data System (ADS)

    Konishi, Yusuke; Asai, Yoshihiro

    2015-03-01

    In recent years, thermoelectric materials have been attracting a lot of attention because they are expected to be applied for utilization of waste heat. Many kinds of materials are studied for this purpose; semiconductors, alloys, organic materials, etc. In 2010, a giant Peltier effect was observed in a Cu-Ni/Au junction. It is considered that this giant Peltier effect is caused by nano-scale phase separation formed in the sputtering process. Although this material is a great candidate for a thermoelectric material, we need to find the condition for a large thermoelectric coefficient that requires a large Seebeck coefficient, large electric conductivity, and small phonon conductivity. We calculated phonon conductivity in Cu-Ni alloy by using nonequilibrium molecular dynamics simulation and calculated Seebeck coefficients via ab-initio methods.

  7. Calculation of conversion coefficients for clinical photon spectra using the MCNP code.

    PubMed

    Lima, M A F; Silva, A X; Crispim, V R

    2004-01-01

    In this work, the MCNP4B code has been employed to calculate conversion coefficients from air kerma to the ambient dose equivalent, H*(10)/Ka, for monoenergetic photon energies from 10 keV to 50 MeV, assuming the kerma approximation. Also estimated are the H*(10)/Ka for photon beams produced by linear accelerators, such as Clinac-4 and Clinac-2500, after transmission through primary barriers of radiotherapy treatment rooms. The results for the conversion coefficients for monoenergetic photon energies, with statistical uncertainty <2%, are compared with those in ICRP publication 74 and good agreements were obtained. The conversion coefficients calculated for real clinic spectra transmitted through walls of concrete of 1, 1.5 and 2 m thick, are in the range of 1.06-1.12 Sv Gy(-1). PMID:15367760

  8. Calculation of Mass Transfer Coefficients in a Crystal Growth Chamber through Heat Transfer Measurements

    SciTech Connect

    Bell, J H; Hand, L A

    2005-04-21

    The growth rate of a crystal in a supersaturated solution is limited by both reaction kinetics and the local concentration of solute. If the local mass transfer coefficient is too low, concentration of solute at the crystal-solution interface will drop below saturation, leading to a defect in the growing crystal. Here, mass transfer coefficients are calculated for a rotating crystal growing in a supersaturated solution of potassium diphosphate (KDP) in water. Since mass transfer is difficult to measure directly, the heat transfer coefficient of a scale model crystal in water is measured using temperature-sensitive paint (TSP). To the authors' knowledge this is the first use of TSP to measure temperatures in water. The corresponding mass transfer coefficient is then calculated using the Chilton- Colburn analogy. Measurements were made for three crystal sizes at two running conditions each. Running conditions include periodic reversals of rotation direction. Heat transfer coefficients were found to vary significantly both across the crystal faces and over the course of a rotation cycle, but not from one face to another. Mean heat transfer coefficients increased with both crystal size and rotation rate. Computed mass transfer coefficients were broadly in line with expectations from the full-scale crystal growth experiments. Additional experiments show that continuous rotation of the crystal results in about a 30% lower heat transfer compared to rotation with periodic reversals. The continuous rotation case also shows a periodic variation in heat transfer coefficient of about 15%, with a period about 1/20th of the rotation rate.

  9. Sample Size Calculation for Estimating or Testing a Nonzero Squared Multiple Correlation Coefficient

    ERIC Educational Resources Information Center

    Krishnamoorthy, K.; Xia, Yanping

    2008-01-01

    The problems of hypothesis testing and interval estimation of the squared multiple correlation coefficient of a multivariate normal distribution are considered. It is shown that available one-sided tests are uniformly most powerful, and the one-sided confidence intervals are uniformly most accurate. An exact method of calculating sample size to…

  10. Invariant-theoretic method for calculating Clebsch-Gordan coefficients for space groups

    SciTech Connect

    Aizenberg, A.Ya.; Gufan, Yu.M.

    1995-03-01

    A new invariant-theoretic method to directly calculate Clebsch-Gordan coefficients for space and point groups representations is proposed. The method is exemplified with the space groups O{sub h}{sup 5} and D{sub 6h}{sup 1}. 34 refs.

  11. Calculation of the mass transfer coefficient for the combustion of a carbon particle

    SciTech Connect

    Scala, Fabrizio

    2010-01-15

    In this paper we address the calculation of the mass transfer coefficient around a burning carbon particle in an atmosphere of O{sub 2}, N{sub 2}, CO{sub 2}, CO, and H{sub 2}O. The complete set of Stefan-Maxwell equations is analytically solved under the assumption of no homogeneous reaction in the boundary layer. An expression linking the oxygen concentration and the oxygen flux at the particle surface (as a function of the bulk gas composition) is derived which can be used to calculate the mass transfer coefficient. A very simple approximate explicit expression is also given for the mass transfer coefficient, that is shown to be valid in the low oxygen flux limit or when the primary combustion product is CO{sub 2}. The results are given in terms of a correction factor to the equimolar counter-diffusion mass transfer coefficient, which is typically available in the literature for specific geometries and/or fluid-dynamic conditions. The significance of the correction factor and the accuracy of the different available expressions is illustrated for several cases of practical interest. Results show that under typical combustion conditions the use of the equimolar counter-diffusion mass transfer coefficient can lead to errors up to 10%. Larger errors are possible in oxygen-enriched conditions, while the error is generally low in oxy-combustion. (author)

  12. Transmission Loss Calculation using A and B Loss Coefficients in Dynamic Economic Dispatch Problem

    NASA Astrophysics Data System (ADS)

    Jethmalani, C. H. Ram; Dumpa, Poornima; Simon, Sishaj P.; Sundareswaran, K.

    2016-04-01

    This paper analyzes the performance of A-loss coefficients while evaluating transmission losses in a Dynamic Economic Dispatch (DED) Problem. The performance analysis is carried out by comparing the losses computed using nominal A loss coefficients and nominal B loss coefficients in reference with load flow solution obtained by standard Newton-Raphson (NR) method. Density based clustering method based on connected regions with sufficiently high density (DBSCAN) is employed in identifying the best regions of A and B loss coefficients. Based on the results obtained through cluster analysis, a novel approach in improving the accuracy of network loss calculation is proposed. Here, based on the change in per unit load values between the load intervals, loss coefficients are updated for calculating the transmission losses. The proposed algorithm is tested and validated on IEEE 6 bus system, IEEE 14 bus, system IEEE 30 bus system and IEEE 118 bus system. All simulations are carried out using SCILAB 5.4 (www.scilab.org) which is an open source software.

  13. Calculation of heat transfer coefficients at the ingot surface during DC casting

    SciTech Connect

    Kuwana, K.; Viswanathan, S.; Clark, John A, III; Sabau, A.; Hassan, M.; Saito, K.; Das, S.

    2005-02-01

    Surface heat transfer coefficients representing the various regimes of water cooling during the Direct Chill (DC) casting of aluminum 3004 alloy ingots have been calculated using the inverse heat transfer technique. ProCAST, a commercial casting simulation package, which includes heat transfer, fluid flow, solidification, and inverse heat transfer, was used for this effort. Thermocouple data from an experimental casting run, and temperature-dependent thermophysical properties of the alloy were used in the calculation. The use of a structured vs. unstructured mesh was evaluated. The calculated effective heat transfer coefficient, which is a function of temperature and time, covers three water cooling regimes, i.e., convection, nucleate boiling, and film boiling, and the change of water flow rate with time.

  14. New features of the IC(4) code and comparison of internal conversion coefficient calculations.

    PubMed

    Gorozhankin, V M; Coursol, N; Yakushev, E A; Vylov, Ts; Briançon, C

    2002-01-01

    The IC(4) software developed to compare calculated internal conversion coefficients (ICC) has been enhanced by adding new features through the use of Borland Delphi and TeeChart. Particularly, the 3D-graph option enhances the possibilities of analyzing calculated ICC values. For example, the comparison between the results given by three sets of theoretical ICC tables for any arbitrary pair of calculated ICC can be presented in a much clearer manner. Their differences can be displayed as energy vs. atomic number surfaces. Results from the analyses of K-shell and total ICCs for E2, E3, M2, M3, and M4 multipolarity are discussed. PMID:11839014

  15. Quantum Calculation of Inelastic CO Collisions with H. III. Rate Coefficients for Ro-vibrational Transitions

    NASA Astrophysics Data System (ADS)

    Song, L.; Balakrishnan, N.; Walker, K. M.; Stancil, P. C.; Thi, W. F.; Kamp, I.; van der Avoird, A.; Groenenboom, G. C.

    2015-11-01

    We present calculated rate coefficients for ro-vibrational transitions of CO in collisions with H atoms for a gas temperature range of 10 K ≤ T ≤ 3000 K, based on the recent three-dimensional ab initio H-CO interaction potential of Song et al. Rate coefficients for ro-vibrational v=1,j=0-30\\to v\\prime =0,j\\prime transitions were obtained from scattering cross sections previously computed with the close-coupling (CC) method by Song et al. Combining these with the rate coefficients for vibrational v=1-5\\to v\\prime \\lt v quenching obtained with the infinite-order sudden approximation, we propose a new extrapolation scheme that yields the rate coefficients for ro-vibrational v=2-5,j=0-30\\to v\\prime ,j\\prime de-excitation. Cross sections and rate coefficients for ro-vibrational v=2,j=0-30\\to v\\prime =1,j\\prime transitions calculated with the CC method confirm the effectiveness of this extrapolation scheme. Our calculated and extrapolated rates are very different from those that have been adopted in the modeling of many astrophysical environments. The current work provides the most comprehensive and accurate set of ro-vibrational de-excitation rate coefficients for the astrophysical modeling of the H-CO collision system. The application of the previously available and new data sets in astrophysical slab models shows that the line fluxes typically change by 20%-70% in high temperature environments (800 K) with an H/H2 ratio of 1; larger changes occur for lower temperatures.

  16. Calculation and measurement of the influence of flow parameters on rotordynamic coefficients in labyrinth seals

    NASA Technical Reports Server (NTRS)

    Kwanka, K.; Ortinger, W.; Steckel, J.

    1994-01-01

    First experimental investigations performed on a new test rig are presented. For a staggered labyrinth seal with fourteen cavities the stiffness coefficient and the leakage flow are measured. The experimental results are compared to calculated results which are obtained by a one-volume bulk-flow theory. A perturbation analysis is made for seven terms. It is found out that the friction factors have great impact on the dynamic coefficients. They are obtained by turbulent flow computation by a finite-volume model with the Reynolds equations used as basic equations.

  17. Path-integral calculation of the third virial coefficient of quantum gases at low temperatures

    SciTech Connect

    Garberoglio, Giovanni; Harvey, Allan H.

    2011-04-07

    We derive path-integral expressions for the second and third virial coefficients of monatomic quantum gases. Unlike previous work that considered only Boltzmann statistics, we include exchange effects (Bose-Einstein or Fermi-Dirac statistics). We use state-of-the-art pair and three-body potentials to calculate the third virial coefficient of {sup 3}He and {sup 4}He in the temperature range 2.6-24.5561 K. We obtain uncertainties smaller than those of the limited experimental data. Inclusion of exchange effects is necessary to obtain accurate results below about 7 K.

  18. First-Principles Calculation of the Third Virial Coefficient of Helium

    PubMed Central

    Garberoglio, Giovanni; Harvey, Allan H.

    2009-01-01

    Knowledge of the pair and three-body potential-energy surfaces of helium is now sufficient to allow calculation of the third density virial coefficient, C(T), with significantly smaller uncertainty than that of existing experimental data. In this work, we employ the best available pair and three-body potentials for helium and calculate C(T) with path-integral Monte Carlo (PIMC) calculations supplemented by semiclassical calculations. The values of C(T) presented extend from 24.5561 K to 10 000 K. In the important metrological range of temperatures near 273.16 K, our uncertainties are smaller than the best experimental results by approximately an order of magnitude, and the reduction in uncertainty at other temperatures is at least as great. For convenience in calculation of C(T) and its derivatives, a simple correlating equation is presented.

  19. Calculation of open and closed system elastic coefficients for multicomponent solids

    NASA Astrophysics Data System (ADS)

    Mishin, Y.

    2015-06-01

    Thermodynamic equilibrium in multicomponent solids subject to mechanical stresses is a complex nonlinear problem whose exact solution requires extensive computations. A few decades ago, Larché and Cahn proposed a linearized solution of the mechanochemical equilibrium problem by introducing the concept of open system elastic coefficients [Acta Metall. 21, 1051 (1973), 10.1016/0001-6160(73)90021-7]. Using the Ni-Al solid solution as a model system, we demonstrate that open system elastic coefficients can be readily computed by semigrand canonical Monte Carlo simulations in conjunction with the shape fluctuation approach. Such coefficients can be derived from a single simulation run, together with other thermodynamic properties needed for prediction of compositional fields in solid solutions containing defects. The proposed calculation approach enables streamlined solutions of mechanochemical equilibrium problems in complex alloys. Second order corrections to the linear theory are extended to multicomponent systems.

  20. Protein partition coefficients can be estimated efficiently by hybrid shortcut calculations.

    PubMed

    Kress, Christian; Sadowski, Gabriele; Brandenbusch, Christoph

    2016-09-10

    The extraction of therapeutic proteins like monoclonal antibodies in aqueous two-phase systems (ATPS) is a suitable alternative to common cost intensive chromatographic purification steps within the downstream processing. Thereby the protein partitioning can be selectively changed using a displacement agent (additional salt) in order to allow for a successful purification of the target protein. Within this work a new shortcut strategy for the calculation of protein partition coefficients in polymer-salt ATPS is presented. The required protein-solute (phase-forming component, displacement agent) interactions are covered by the cross virial coefficient B23 measured by composition gradient multi-angle light scattering (CG-MALS). Using this shortcut calculation allows for an efficient determination of the partition coefficients of the target protein immunoglobulin G (IgG) and the impurity human serum albumin (HSA) within PEG-citrate and PEG-phosphate ATPS independently on the protein concentration. We demonstrate that the selection of a suitable displacement agent allowing for a selective purification of IgG from HSA is accessible by B23. Based on the determination of the protein-protein interactions via CG-MALS covered by the second osmotic virial coefficient B22 a further optimization of ATPS preventing protein precipitation is enabled. The results show that our approach contributes to an efficient downstream processing development. PMID:27388598

  1. Calculation of high-order virial coefficients for the square-well potential.

    PubMed

    Do, Hainam; Feng, Chao; Schultz, Andrew J; Kofke, David A; Wheatley, Richard J

    2016-07-01

    Accurate virial coefficients B_{N}(λ,ɛ) (where ɛ is the well depth) for the three-dimensional square-well and square-step potentials are calculated for orders N=5-9 and well widths λ=1.1-2.0 using a very fast recursive method. The efficiency of the algorithm is enhanced significantly by exploiting permutation symmetry and by storing integrands for reuse during the calculation. For N=9 the storage requirements become sufficiently large that a parallel algorithm is developed. The methodology is general and is applicable to other discrete potentials. The computed coefficients are precise even near the critical temperature, and thus open up possibilities for analysis of criticality of the system, which is currently not accessible by any other means. PMID:27575230

  2. Calculation of high-order virial coefficients for the square-well potential

    NASA Astrophysics Data System (ADS)

    Do, Hainam; Feng, Chao; Schultz, Andrew J.; Kofke, David A.; Wheatley, Richard J.

    2016-07-01

    Accurate virial coefficients BN(λ ,ɛ ) (where ɛ is the well depth) for the three-dimensional square-well and square-step potentials are calculated for orders N = 5 - 9 and well widths λ =1.1 -2.0 using a very fast recursive method. The efficiency of the algorithm is enhanced significantly by exploiting permutation symmetry and by storing integrands for reuse during the calculation. For N = 9 the storage requirements become sufficiently large that a parallel algorithm is developed. The methodology is general and is applicable to other discrete potentials. The computed coefficients are precise even near the critical temperature, and thus open up possibilities for analysis of criticality of the system, which is currently not accessible by any other means.

  3. Variational Calculation of Neoclassical Transport Coefficients by Using Full Fokker-Planck Collision Operator

    NASA Astrophysics Data System (ADS)

    Taguchi, Masayoshi

    1982-05-01

    The neoclassical transport coefficients from the plateau regime to the Pfirsch-Schlüter regime are calculated by using the linearized full Fokker-Planck collision operator. The inverse aspect ratio is assumed to be small and the mass ratio of the electron to the ion is much less than unity. The lowest-order terms of these ratios are retained in this calculation. The results obtained give correction to those of Rawls et al. who employed a model collision operator. In the Pfirsch-Schlüter regime, the results of this paper agree fairly well with those given by Hazeltine and Hinton.

  4. Calculation of a plasma HgDyI{sub 3} transport coefficients

    SciTech Connect

    Hajji, S.; HadjSalah, S.; Benhalima, A.; Charrada, K.; Zissis, G.

    2015-05-15

    This work is devoted to the calculation of the chemical composition and transport coefficients of HgDyI{sub 3} plasmas in thermal equilibrium. These calculations are performed for pressures equal to 2MP and for temperatures varying from 1000 to 10 000 K. The thermal and electrical conductivity as well as viscosity have been computed as a function of temperature at different atomic ratios. The computational method proposed by Devoto from the classical formalism described by Hirschfelder et al. [Molecular Theory of Gases and Liquids (John Wiley and Sons, New York, 1954)] is used.

  5. Electron range-energy relationships for calculating backscattering coefficients in elemental and compound semiconductors

    NASA Astrophysics Data System (ADS)

    Rouabah, Z.; Bouzid, A.; Champion, C.; Bouarissa, N.

    2011-06-01

    Backscattering coefficients for electrons normally impinging on Si, Ge, GaN, GaAs and InSb targets have been calculated by using the Vicanek and Urbassek theory [M. Vicanek, H.M. Urbassek, Phys. Rev. B 44 (1991) 7234] for incident energies ≤5 keV. Electron range has been calculated from various semi-empirical analytical expressions. The cross-sections used to describe the electron transport are determined via the appropriate analytical expression given by Jablonski [A. Jablonski, Phys. Rev. B 58 (1998) 16470] whose new improved version has been recently reported by Rouabah et al. [Z. Rouabah, N. Bouarissa, C. Champion, N. Bouaouadja, Appl. Surf. Sci. 255 (2009) 6217]. The results may be seen as the first predictions for low-energy electron backscattering coefficients impinging on GaN, GaAs and InSb semiconductors. The models used in the calculation of the electron range affect both the accuracy and behaviour of the electron backscattering coefficients.

  6. Use of SCALE Continuous-Energy Monte Carlo Tools for Eigenvalue Sensitivity Coefficient Calculations

    SciTech Connect

    Perfetti, Christopher M; Rearden, Bradley T

    2013-01-01

    The TSUNAMI code within the SCALE code system makes use of eigenvalue sensitivity coefficients for an extensive number of criticality safety applications, such as quantifying the data-induced uncertainty in the eigenvalue of critical systems, assessing the neutronic similarity between different critical systems, and guiding nuclear data adjustment studies. The need to model geometrically complex systems with improved fidelity and the desire to extend TSUNAMI analysis to advanced applications has motivated the development of a methodology for calculating sensitivity coefficients in continuous-energy (CE) Monte Carlo applications. The CLUTCH and Iterated Fission Probability (IFP) eigenvalue sensitivity methods were recently implemented in the CE KENO framework to generate the capability for TSUNAMI-3D to perform eigenvalue sensitivity calculations in continuous-energy applications. This work explores the improvements in accuracy that can be gained in eigenvalue and eigenvalue sensitivity calculations through the use of the SCALE CE KENO and CE TSUNAMI continuous-energy Monte Carlo tools as compared to multigroup tools. The CE KENO and CE TSUNAMI tools were used to analyze two difficult models of critical benchmarks, and produced eigenvalue and eigenvalue sensitivity coefficient results that showed a marked improvement in accuracy. The CLUTCH sensitivity method in particular excelled in terms of efficiency and computational memory requirements.

  7. Activity coefficients of chlorophenols in water at infinite dilution

    SciTech Connect

    Tabai, S.; Rogalski, M.; Solimando, R.; Malanowski, S.K.

    1997-11-01

    The total pressure of aqueous solutions of chlorophenols was determined by a ebulliometric total pressure method for the aqueous solutions of phenol, 2-chlorophenol, 3-chlorophenol, 4-chlorophenol, and 2,4-dichlorophenol in the temperature range from 40 to 90 C. The activity coefficients at infinite dilution and the Henry constants were derived.

  8. Calculation of radiation attenuation coefficients, effective atomic numbers and electron densities for some building materials.

    PubMed

    Damla, N; Baltas, H; Celik, A; Kiris, E; Cevik, U

    2012-07-01

    Some building materials, regularly used in Turkey, such as sand, cement, gas concrete (lightweight, aerated concrete), tile and brick, have been investigated in terms of mass attenuation coefficient (μ/ρ), effective atomic, numbers (Z(eff)), effective electron densities (N(e)) and photon interaction cross section (σ(a)) at 14 different energies from 81- to 1332-keV gamma-ray energies. The gamma rays were detected by using gamma-ray spectroscopy, a High Purity Germanium (HPGe) detector. The elemental compositions of samples were analysed using an energy dispersive X-ray fluorescence spectrometer. Mass attenuation coefficients of these samples have been compared with tabulations based upon the results of WinXcom. The theoretical mass attenuation coefficients were estimated using the mixture rule and the experimental values of investigated parameters were compared with the calculated values. The agreement of measured values of mass attenuation coefficient, effective atomic numbers, effective electron densities and photon interaction cross section with the theory has been found to be quite satisfactory. PMID:22128356

  9. 'Bottleneck' calculation of ion-electron recombination coefficients for lithium-like ions

    NASA Technical Reports Server (NTRS)

    Kastner, S. O.

    1980-01-01

    The ion-electron recombination coefficients for the lithium-like ions C IV, O VI, Ne VIII, Si XII and Ar XVI are computed by the bottleneck method of Byron et al. (1962). In this method, the minimum rate of transitions down the ladder of energy level is taken as the limiting recombination rate, and the particular energy level corresponding to the minimum transition rate is found. The partial collisional radiative recombination coefficient is obtained in terms of the equilibrium population, the rate of collisional de-excitation, the mean radiative transition probability from the bottleneck level and the total transition probability from a level above the bottleneck level to all levels below it. The full collisional-radiative recombination is then obtained by the addition of the values of the radiative recombination coefficient and the three-body recombination coefficient to the ground level. Results of the calculation are shown to be in good agreement with those of Drawin and Emard (1975) for the case of hydrogen. It is also noted that the process of dielectronic recombination, which is not accounted for here, may be significant at lower densities.

  10. Analysis of ONEDANT code package for the calculation of the Doppler coefficient of reactivity

    SciTech Connect

    Soares, I. ); Miller, W.F.; Perry, R.T. )

    1993-06-01

    The viability of the use of the ONEDANT discrete ordinates code for the calculation of the Doppler coefficient of reactivity for a pressurized water reactor is investigated. The ONEDANT results are compared with benchmark results from a Monte Carlo code, MCNP-3A. A comparison with the results obtained using the CELL-2 and WIMS-AECL codes is also included. The influences of certain variables, such as spatial mesh, S[sub N] angular quadrature order, interaction convergence criterion, boundary conditions, P[sub N] order, and number of energy groups, are analyzed. An alternative benchmark calculation to the Monte Carlo result is attempted to provide some feel for the approximate accuracy of the Monte Carlo calculation. Such an alternative answer is important when less approximate methods are compared with these results.

  11. Topology of calculating pressure and friction coefficients for time-dependent human hip joint lubrication.

    PubMed

    Wierzcholski, Krzysztof

    2011-01-01

    The paper deals with the calculations of the unsteady, impulsive pressure distributions, carrying capacities and friction forces under unsteady conditions in a super-thin layer of biological synovial fluid inside the slide biobearing gap limited by a spherical bone head. Unsteady and random flow conditions for the biobearing lubrication are given. Moreover, the numerical topology of pressure calculation for a difference method is applied. From a mathematical viewpoint the present method for the solution of the modified Reynolds equation allows this problem to be resolved by the partial recurrence nonhomogeneous equation of the second order with variable coefficients. To the best of the author knowledge, an adaptation of the known numerical difference method to the spherical boundary conditions applied during the pressure calculations for a human hip bonehead seems to be decisive. PMID:21500763

  12. Improved Coefficient Calculator for the California Energy Commission 6 Parameter Photovoltaic Module Model

    SciTech Connect

    Dobos, A. P.

    2012-05-01

    This paper describes an improved algorithm for calculating the six parameters required by the California Energy Commission (CEC) photovoltaic (PV) Calculator module model. Rebate applications in California require results from the CEC PV model, and thus depend on an up-to-date database of module characteristics. Currently, adding new modules to the database requires calculating operational coefficients using a general purpose equation solver - a cumbersome process for the 300+ modules added on average every month. The combination of empirical regressions and heuristic methods presented herein achieve automated convergence for 99.87% of the 5487 modules in the CEC database and greatly enhance the accuracy and efficiency by which new modules can be characterized and approved for use. The added robustness also permits general purpose use of the CEC/6 parameter module model by modelers and system analysts when standard module specifications are known, even if the module does not exist in a preprocessed database.

  13. A finite-volume numerical method to calculate fluid forces and rotordynamic coefficients in seals

    NASA Technical Reports Server (NTRS)

    Athavale, M. M.; Przekwas, A. J.; Hendricks, R. C.

    1992-01-01

    A numerical method to calculate rotordynamic coefficients of seals is presented. The flow in a seal is solved by using a finite-volume formulation of the full Navier-Stokes equations with appropriate turbulence models. The seal rotor is perturbed along a diameter such that the position of the rotor is a sinusoidal function of time. The resulting flow domain changes with time, and the time-dependent flow in the seal is solved using a space conserving moving grid formulation. The time-varying fluid pressure reaction forces are then linked with the rotor center displacement, velocity and acceleration to yield the rotordynamic coefficients. Results for an annular seal are presented, and compared with experimental data and other more simplified numerical methods.

  14. Electron swarm transport coefficients in H2O - He mixtures: Experiment and calculations

    NASA Astrophysics Data System (ADS)

    de Urquijo, J.; Juárez, A. M.; Hernández-Ávila, J. L.; Basurto, E. E.; Ness, K. F.; Robson, R. E.; White, Ron; Brunger, M. J.

    2013-09-01

    In this presentation we report recent measurements of electron swarm transport coefficients using the pulsed-Townsend technique for mixtures of water and helium over the range of applied fields E/N from 0-200Td. Comparison is made with transport coefficients calculated using a multi-term Boltzmann equation solution and recently proposed electron-water cross-section sets. This represents a new and more discriminative test on the accuracy and consistency of such sets. Negative differential conductivity is observed for a small window of mixture ratios, even though the pure gases themselves do not demonstrate NDC. Similar interesting effects are observed in the ionization rates as a function of the mixture ratios. The origin of these behaviours will be discussed. Work supported by the Australian Research Council (DP and COE schemes) and by PAPIIT-UNAM IN 116111.

  15. N2-broadening coefficients of methyl chloride: Measurements at room temperature and calculations at atmospheric temperatures

    NASA Astrophysics Data System (ADS)

    Barbouchi Ramchani, A.; Jacquemart, D.; Dhib, M.; Aroui, H.

    2014-11-01

    Infrared spectroscopic study on methyl chloride is the first step for its accurate detection in the atmosphere. In our previous work [Barbouchi Ramchani et al. J Quant Spectrosc Radiat Transfer 2013;120:1-15], line positions, intensities and self-broadening coefficients of both 12CH335Cl and 12CH337Cl isotopologues have been studied in the 6.9 μm spectral region. The present work is focused on measurements of N2-broadening coefficients for transitions of 12CH335Cl and 12CH337Cl around 6.9 μm. For that, high-resolution Fourier transform spectra of CH3Cl-N2 mixtures have been recorded at room temperature using a rapid scan Bruker IFS 120 HR interferometer at LADIR. The N2-broadening coefficients have been retrieved using a Voigt profile and a multispectrum fitting procedure. The average accuracy of the N2-broadening obtained in this work has been estimated to be between 5% and 10% depending on the transitions. The rotational J- and K-dependences of the N2-broadening coefficients have been clearly observed and modeled using empirical polynomial expansions. The 12CH335Cl-N2 line-widths of the ν5 band have also been computed using a semi-classical approach for the PR, RR and QR sub-branches. A global comparison with the experimental data from this work but also existing in the literature was then performed. Similar J- and K-rotational dependences have been observed while no clear evidence of any vibrational or isotopic dependence has been pointed out. Finally, performing theoretical calculations of the N2-broadening coefficients at various temperatures of atmospheric interest between 200 and 296 K allowed deducing the temperature exponent of the 12CH335Cl-N2 line-widths.

  16. Molecular dynamics calculation of rotational diffusion coefficient of a carbon nanotube in fluid.

    PubMed

    Cao, Bing-Yang; Dong, Ruo-Yu

    2014-01-21

    Rotational diffusion processes are correlated with nanoparticle visualization and manipulation techniques, widely used in nanocomposites, nanofluids, bioscience, and so on. However, a systematical methodology of deriving this diffusivity is still lacking. In the current work, three molecular dynamics (MD) schemes, including equilibrium (Green-Kubo formula and Einstein relation) and nonequilibrium (Einstein-Smoluchowski relation) methods, are developed to calculate the rotational diffusion coefficient, taking a single rigid carbon nanotube in fluid argon as a case. We can conclude that the three methods produce same results on the basis of plenty of data with variation of the calculation parameters (tube length, diameter, fluid temperature, density, and viscosity), indicative of the validity and accuracy of the MD simulations. However, these results have a non-negligible deviation from the theoretical predictions of Tirado et al. [J. Chem. Phys. 81, 2047 (1984)], which may come from several unrevealed factors of the theory. The three MD methods proposed in this paper can also be applied to other situations of calculating rotational diffusion coefficient. PMID:25669403

  17. Ab initio calculation of oxygen self-diffusion coefficient in uranium dioxide UO2

    NASA Astrophysics Data System (ADS)

    Dorado, Boris; Garcia, Philippe; Torrent, Marc

    Uranium dioxide UO2 is the most widely used nuclear fuel worldwide and its atomic transport properties are relevant to practically all engineering aspects of the material. Although transport properties have already been studied in UO2 by means of first-principles calculations, the ab initio determination of self-diffusion coefficients has up to now remained unreachable because the relevant computational tools were neither available or adapted. The present work reports our results related to the ab initio calculation of the oxygen self-diffusion coefficient in UO2. We first determine the Gibbs free energies of formation of oxygen charged defects by calculating both the electronic and vibrational (hence entropic) contributions. Then, we use the transition state theory in order to compute the effective jump frequency of the defects, which in turn provides us with the value of the pre-exponential factor. The results are compared to self-diffusion data obtained experimentally with a careful monitoring of the relevant thermodynamic conditions (oxygen partial pressure, temperature, impurity content).

  18. Molecular dynamics calculation of rotational diffusion coefficient of a carbon nanotube in fluid

    NASA Astrophysics Data System (ADS)

    Cao, Bing-Yang; Dong, Ruo-Yu

    2014-01-01

    Rotational diffusion processes are correlated with nanoparticle visualization and manipulation techniques, widely used in nanocomposites, nanofluids, bioscience, and so on. However, a systematical methodology of deriving this diffusivity is still lacking. In the current work, three molecular dynamics (MD) schemes, including equilibrium (Green-Kubo formula and Einstein relation) and nonequilibrium (Einstein-Smoluchowski relation) methods, are developed to calculate the rotational diffusion coefficient, taking a single rigid carbon nanotube in fluid argon as a case. We can conclude that the three methods produce same results on the basis of plenty of data with variation of the calculation parameters (tube length, diameter, fluid temperature, density, and viscosity), indicative of the validity and accuracy of the MD simulations. However, these results have a non-negligible deviation from the theoretical predictions of Tirado et al. [J. Chem. Phys. 81, 2047 (1984)], which may come from several unrevealed factors of the theory. The three MD methods proposed in this paper can also be applied to other situations of calculating rotational diffusion coefficient.

  19. Optimised geometry to calculate dose rate conversion coefficient for external exposure to photons.

    PubMed

    Askri, B; Manai, K; Trabelsi, A; Baccari, B

    2008-01-01

    A single-parameter geometry to describe soil is achieved for Monte Carlo calculation of absorbed dose rate in air for photon emitters from natural radionuclides. This optimised geometry based on physical assumptions consists of the soil part whose emitted radiation has a given minimum probability to reach the detector. This geometry was implemented in Geant4 toolkit and a significant reduction in computation time was achieved. Simulation tests have shown that for soil represented by a cylinder of 40 m radius and 1 m deep, >98% of the calculated dose rate conversion coefficients in air at 1 m above the ground is generated by only 6% of the soil volume in the case of uniform distribution of radioactivity, and >99.2% of the calculated dose rate for an exponential distribution. When the soil is represented by the entire optimised geometry, 99% of the conversion coefficients values are reached for a soil depth of 1 m and 100% for that of approximately 2 m. PMID:17959610

  20. On the calculation of electric diffusion coefficient of radiation belt electrons with in situ electric field measurements by THEMIS

    NASA Astrophysics Data System (ADS)

    Liu, Wenlong; Tu, Weichao; Li, Xinlin; Sarris, Theodore; Khotyaintsev, Yuri; Fu, Huishan; Zhang, Hui; Shi, Quanqi

    2016-02-01

    Based on 7 years' observations from Time History of Events and Macroscale Interactions during Substorms (THEMIS), we investigate the statistical distribution of electric field Pc5 ULF wave power under different geomagnetic activities and calculate the radial diffusion coefficient due to electric field, , for outer radiation belt electrons. A simple empirical expression of is also derived. Subsequently, we compare to previous DLL models and find similar Kp dependence with the model, which is also based on in situ electric field measurements. The absolute value of is constantly higher than , probably due to the limited orbital coverage of CRRES. The differences between and the commonly used and models are significant, especially in Kp dependence and energy dependence. Possible reasons for these differences and their implications are discussed. The diffusion coefficient provided in this paper, which also has energy dependence, will be an important contributor to quantify the radial diffusion process of radiation belt electrons.

  1. Mean ionic activity coefficients in aqueous NaCl solutions from molecular dynamics simulations.

    PubMed

    Mester, Zoltan; Panagiotopoulos, Athanassios Z

    2015-01-28

    The mean ionic activity coefficients of aqueous NaCl solutions of varying concentrations at 298.15 K and 1 bar have been obtained from molecular dynamics simulations by gradually turning on the interactions of an ion pair inserted into the solution. Several common non-polarizable water and ion models have been used in the simulations. Gibbs-Duhem equation calculations of the thermodynamic activity of water are used to confirm the thermodynamic consistency of the mean ionic activity coefficients. While the majority of model combinations predict the correct trends in mean ionic activity coefficients, they overestimate their values at high salt concentrations. The solubility predictions also suffer from inaccuracies, with all models underpredicting the experimental values, some by large factors. These results point to the need for further ion and water model development. PMID:25637995

  2. Mean ionic activity coefficients in aqueous NaCl solutions from molecular dynamics simulations

    SciTech Connect

    Mester, Zoltan; Panagiotopoulos, Athanassios Z.

    2015-01-28

    The mean ionic activity coefficients of aqueous NaCl solutions of varying concentrations at 298.15 K and 1 bar have been obtained from molecular dynamics simulations by gradually turning on the interactions of an ion pair inserted into the solution. Several common non-polarizable water and ion models have been used in the simulations. Gibbs-Duhem equation calculations of the thermodynamic activity of water are used to confirm the thermodynamic consistency of the mean ionic activity coefficients. While the majority of model combinations predict the correct trends in mean ionic activity coefficients, they overestimate their values at high salt concentrations. The solubility predictions also suffer from inaccuracies, with all models underpredicting the experimental values, some by large factors. These results point to the need for further ion and water model development.

  3. Path-integral calculation of the second virial coefficient including intramolecular flexibility effects

    SciTech Connect

    Garberoglio, Giovanni; Jankowski, Piotr; Szalewicz, Krzysztof; Harvey, Allan H.

    2014-07-28

    We present a path-integral Monte Carlo procedure for the fully quantum calculation of the second molecular virial coefficient accounting for intramolecular flexibility. This method is applied to molecular hydrogen (H{sub 2}) and deuterium (D{sub 2}) in the temperature range 15–2000 K, showing that the effect of molecular flexibility is not negligible. Our results are in good agreement with experimental data, as well as with virials given by recent empirical equations of state, although some discrepancies are observed for H{sub 2} between 100 and 200 K.

  4. Calculation of an axial temperature distribution using the reflection coefficient of an acoustic wave.

    PubMed

    Červenka, Milan; Bednařík, Michal

    2015-10-01

    This work verifies the idea that in principle it is possible to reconstruct axial temperature distribution of fluid employing reflection or transmission of acoustic waves. It is assumed that the fluid is dissipationless and its density and speed of sound vary along the wave propagation direction because of the fluid temperature distribution. A numerical algorithm is proposed allowing for calculation of the temperature distribution on the basis of known frequency characteristics of reflection coefficient modulus. Functionality of the algorithm is illustrated on a few examples, its properties are discussed. PMID:26520344

  5. An economic prediction of refinement coefficients in wavelet-based adaptive methods for electron structure calculations.

    PubMed

    Pipek, János; Nagy, Szilvia

    2013-03-01

    The wave function of a many electron system contains inhomogeneously distributed spatial details, which allows to reduce the number of fine detail wavelets in multiresolution analysis approximations. Finding a method for decimating the unnecessary basis functions plays an essential role in avoiding an exponential increase of computational demand in wavelet-based calculations. We describe an effective prediction algorithm for the next resolution level wavelet coefficients, based on the approximate wave function expanded up to a given level. The prediction results in a reasonable approximation of the wave function and allows to sort out the unnecessary wavelets with a great reliability. PMID:23115109

  6. Calculation of the gain coefficient in cryogenically cooled Yb : YAG disks at high heat generation rates

    SciTech Connect

    Vadimova, O L; Mukhin, I B; Kuznetsov, I I; Palashov, O V; Perevezentsev, E A; Khazanov, Efim A

    2013-03-31

    We have calculated the stored energy and gain coefficient in disk gain elements cooled to cryogenic temperatures. The problem has been solved with allowance for intense heat generation, amplified spontaneous emission and parasitic lasing, without averaging over any spatial coordinate. The numerical simulation results agree well with experimental data, in particular at high heat generation rates. Experimental data and theoretical analysis indicate that composite disk gain elements containing an undoped region can store considerably more energy due to suppression of amplified spontaneous emission and parasitic lasing. (extreme light fields and their applications)

  7. The temperature-dependent diffusion coefficient of helium in zirconium carbide studied with first-principles calculations

    SciTech Connect

    Yang, Xiao-Yong; Lu, Yong; Zhang, Ping

    2015-04-28

    The temperature-dependent diffusion coefficient of interstitial helium in zirconium carbide (ZrC) matrix is calculated based on the transition state theory. The microscopic parameters in the activation energy and prefactor are obtained from first-principles total energy and phonon frequency calculations including the all atoms. The obtained activation energy is 0.78 eV, consistent with experimental value. Besides, we evaluated the influence of C and Zr vacancies as the perturbation on helium diffusion, and found the C vacancy seems to confine the mobility of helium and the Zr vacancy promotes helium diffusion in some extent. These results provide a good reference to understand the behavior of helium in ZrC matrix.

  8. Activity coefficients of microquantities of lanthanides and actinides in nitric acid solutions

    SciTech Connect

    Vlasov, V.S.; Rozen, A.M.

    1988-09-01

    We carried out calculations on the basis of the Zdanovskii-Mikulin rule. The radii of the ions of the actinides americium and curium(III) (0.099 nm) are closest to the radius of the neodymium ion (0.0995 nm), and the radius of the californium ion (0.0976 nm) is closest to the radius of the promethium ion (0.0979 nm). It may accordingly be assumed that the activity coefficients of americium and curium are approximately equal to the activity coefficients of neodymium and that the values for californium are approximately equal to the values for promethium.

  9. A MATLAB program to calculate translational and rotational diffusion coefficients of a single particle

    NASA Astrophysics Data System (ADS)

    Charsooghi, Mohammad A.; Akhlaghi, Ehsan A.; Tavaddod, Sharareh; Khalesifard, H. R.

    2011-02-01

    We developed a graphical user interface, MATLAB based program to calculate the translational diffusion coefficients in three dimensions for a single diffusing particle, suspended inside a fluid. When the particles are not spherical, in addition to their translational motion also a rotational freedom is considered for them and in addition to the previous translational diffusion coefficients a planar rotational diffusion coefficient can be calculated in this program. Time averaging and ensemble averaging over the particle displacements are taken to calculate the mean square displacement variations in time and so the diffusion coefficients. To monitor the random motion of non-spherical particles a reference frame is used that the particle just have translational motion in it. We call it the body frame that is just like the particle rotates about the z-axis of the lab frame. Some statistical analysis, such as velocity autocorrelation function and histogram of displacements for the particle either in the lab or body frames, are available in the program. Program also calculates theoretical values of the diffusion coefficients for particles of some basic geometrical shapes; sphere, spheroid and cylinder, when other diffusion parameters like temperature and fluid viscosity coefficient can be adjusted. Program summaryProgram title: KOJA Catalogue identifier: AEHK_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHK_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 48 021 No. of bytes in distributed program, including test data, etc.: 1 310 320 Distribution format: tar.gz Programming language: MatLab (MathWorks Inc.) version 7.6 or higher. Statistics Toolbox and Curve Fitting Toolbox required. Computer: Tested on windows and linux, but generally it would work on any

  10. Method for Calculating the Optical Diffuse Reflection Coefficient for the Ocular Fundus

    NASA Astrophysics Data System (ADS)

    Lisenko, S. A.; Kugeiko, M. M.

    2016-07-01

    We have developed a method for calculating the optical diffuse reflection coefficient for the ocular fundus, taking into account multiple scattering of light in its layers (retina, epithelium, choroid) and multiple refl ection of light between layers. The method is based on the formulas for optical "combination" of the layers of the medium, in which the optical parameters of the layers (absorption and scattering coefficients) are replaced by some effective values, different for cases of directional and diffuse illumination of the layer. Coefficients relating the effective optical parameters of the layers and the actual values were established based on the results of a Monte Carlo numerical simulation of radiation transport in the medium. We estimate the uncertainties in retrieval of the structural and morphological parameters for the fundus from its diffuse reflectance spectrum using our method. We show that the simulated spectra correspond to the experimental data and that the estimates of the fundus parameters obtained as a result of solving the inverse problem are reasonable.

  11. Photon fluence-to-effective dose conversion coefficients calculated from a Saudi population-based phantom

    NASA Astrophysics Data System (ADS)

    Ma, A. K.; Altaher, K.; Hussein, M. A.; Amer, M.; Farid, K. Y.; Alghamdi, A. A.

    2014-02-01

    In this work we will present a new set of photon fluence-to-effective dose conversion coefficients using the Saudi population-based voxel phantom developed recently by our group. The phantom corresponds to an average Saudi male of 173 cm tall weighing 77 kg. There are over 125 million voxels in the phantom each of which is 1.37×1.37×1.00 mm3. Of the 27 organs and tissues of radiological interest specified in the recommendations of ICRP Publication 103, all but the oral mucosa, extrathoracic tissue and the lymph nodes were identified in the current version of the phantom. The bone surface (endosteum) is too thin to be identifiable; it is about 10 μm thick. The dose to the endosteum was therefore approximated by the dose to the bones. Irradiation geometries included anterior-posterior (AP), left (LLAT) and rotational (ROT). The simulations were carried out with the MCNPX code version 2.5.0. The fluence in free air and the energy depositions in each organ were calculated for monoenergetic photon beams from 10 keV to 10 MeV to obtain the conversion coefficients. The radiation and tissue weighting factors were taken from ICRP Publication 60 and 103. The results from this study will also be compared with the conversion coefficients in ICRP Publication 116.

  12. Moment-equation methods for calculating neoclassical transport coefficients in general toroidal plasmas

    SciTech Connect

    Sugama, H.; Nishimura, S.

    2008-04-15

    A detailed comparison is made between moment-equation methods presented by H. Sugama and S. Nishimura [Phys. Plasmas 9, 4637 (2002)] and by M. Taguchi [Phys. Fluids B 4, 3638 (1992)] for calculating neoclassical transport coefficients in general toroidal plasmas including nonsymmetric systems. It is shown that these methods can be derived from the drift kinetic equation with the same collision model used for correctly taking account of collisional momentum conservation. In both methods, the Laguerre polynomials of the energy variable are employed to expand the guiding-center distribution function and to obtain the moment equations, by which the radial neoclassical transport fluxes and the parallel flows are related to the thermodynamic forces. The methods are given here in the forms applicable for an arbitrary truncation number of the Laguerre-polynomial expansion so that their accuracies can be improved by increasing the truncation number. Differences between results from the two methods appear when the Laguerre-polynomial expansion is truncated up to a finite order because different weight functions are used in them to derive the moment equations. At each order of the truncation, the neoclassical transport coefficients obtained from the Sugama-Nishimura method show the Onsager symmetry and satisfy the ambipolar-diffusion condition intrinsically for symmetric systems. Also, numerical examples are given to show how the transport coefficients converge with the truncation number increased for the two methods.

  13. Analytic calculation of the edge components of the angular Fock coefficients

    NASA Astrophysics Data System (ADS)

    Liverts, Evgeny Z.

    2016-08-01

    The present paper constitutes a development of our previous work devoted to calculations of the angular Fock coefficients ψk ,p(α ,θ ) . Explicit analytic representations for the edge components ψk,0 (0 ) and ψk,0 (k ) with k ≤8 are derived. The methods developed enable such a calculation for arbitrary k . The single-series representation for subcomponent ψ3,0 (2 e ) missed in the author's previous paper is developed. It is also shown how to express some of the complicated subcomponents through hypergeometric and elementary functions. Using the operator FindSequenceFunction of Wolfram's Mathematica, simple explicit representations for some complicated mathematical expressions under consideration have been obtained.

  14. First-principles calculation of the second-harmonic-generation coefficients of borate crystals

    NASA Astrophysics Data System (ADS)

    Duan, Chun-Gang; Li, Jun; Gu, Zong-Quan; Wang, Ding-Sheng

    1999-10-01

    We report the calculation of the second-harmonic-generation (SHG) coefficients of LiB3O5 (LBO), CsB3O5 (CBO), and BaB2O4 (BBO) using the linearized augmented plane-wave band method in the local-density approximation with a scissors operator that includes the renormalization of the momentum operator. The analysis that is based on the spectral and spatial decomposition of the calculated results reveals that, for the large component of SHG coefficients, the dominant source of the optical nonlinearities for these borate crystals is the nonlinear response of the high-lying 2p electrons of oxygen atoms, while the cations play a minor role even in the heavier Cs and Ba cases, though they dominate the conduction-band minimum. But for the small SHG component, the role of the cation became important, particularly when the isolated anionic group has little contribution due to the restriction of the symmetry. In the case of LBO and CBO, due to the linkage of anionic groups, the contributions of off-ring O atoms are almost the same as those of in-ring O atoms. Yet for BBO where there is no such linkage, the off-ring O atom plays a much more important role than the in-ring O atom does. We also find that the contribution of the virtual-hole process cannot be ignored as is usually done in the semiconductors case.

  15. Molecular Dynamics Calculation of Carbon/Hydrocarbon Reflection Coefficients on a Graphite Surface Employing Distributed Computing

    NASA Astrophysics Data System (ADS)

    Alman, D. A.; Ruzic, D. N.; Brooks, J. N.

    2001-10-01

    Reflection coefficients of carbon and hydrocarbon molecules have been calculated with a molecular dynamics code. The code uses the Brenner hydrocarbon potential, an empirical many-body potential that can model the chemical bonding in small hydrocarbon molecules and graphite surfaces. A variety of incident energies and angles have been studied. Typical results for carbon show reflection coefficients 0.4 at thermal energy, decreasing to a minimum of 0.15 at 10-20 eV, and then increasing again. Distributed computing is used to distribute the work among 10-20 desktop PCs in the laboratory. The system consists of a client application run on all of the PCs and a single server machine that distributes work and compiles the results sent back from the clients. The client-server software is written in Java and requires no commercial software packages. Thus, the MD code benefits from multiprocessor-like speed-up at no additional cost by using the idle CPU cycles that would otherwise be wasted. These calculations represent an important improvement to the WBC code, which has been used to model surface erosion, core plasma contamination, and tritium codeposition in many fusion design studies and experiments.

  16. Use of radial symmetry for the calculation of cylindrical absorption coefficients and optimal capillary loadings

    SciTech Connect

    Khalifah, Peter

    2015-02-01

    The problem of numerically evaluating absorption correction factors for cylindrical samples has been revisited using a treatment that fully takes advantage of the sample symmetry. It is shown that the path lengths for all points within the sample at all possible diffraction angles can be trivially determined once the angle-dependent distance distribution for a single line of points is calculated. This provides advantages in both computational efficiency and in gaining an intuitive understanding of the effects of absorption on diffraction data. A matrix of absorption coefficients calculated for µR products between 0 and 20 for diffraction angles θD of 0° to 90° were used to examine the influence of (1) capillary diameter and of (2) sample density on the overall scattered intensity as a function of diffraction angle, where µ is the linear absorption coefficient for the sample and R is the capillary radius. Based on this analysis, the optimal sample loading for a capillary experiment to maximize diffraction at angles of 0 – 50° is in general expected to be achieved when the maximum radius capillary compatible with the beam is used, and when the sample density is adjusted to be 3/(4µR) of its original density.

  17. Use of radial symmetry for the calculation of cylindrical absorption coefficients and optimal capillary loadings

    DOE PAGESBeta

    Khalifah, Peter

    2015-02-01

    The problem of numerically evaluating absorption correction factors for cylindrical samples has been revisited using a treatment that fully takes advantage of the sample symmetry. It is shown that the path lengths for all points within the sample at all possible diffraction angles can be trivially determined once the angle-dependent distance distribution for a single line of points is calculated. This provides advantages in both computational efficiency and in gaining an intuitive understanding of the effects of absorption on diffraction data. A matrix of absorption coefficients calculated for µR products between 0 and 20 for diffraction angles θD of 0°more » to 90° were used to examine the influence of (1) capillary diameter and of (2) sample density on the overall scattered intensity as a function of diffraction angle, where µ is the linear absorption coefficient for the sample and R is the capillary radius. Based on this analysis, the optimal sample loading for a capillary experiment to maximize diffraction at angles of 0 – 50° is in general expected to be achieved when the maximum radius capillary compatible with the beam is used, and when the sample density is adjusted to be 3/(4µR) of its original density.« less

  18. A program for calculating load coefficient matrices utilizing the force summation method, L218 (LOADS). Volume 2: Supplemental system design and maintenance document

    NASA Technical Reports Server (NTRS)

    Anderson, L. R.; Miller, R. D.

    1979-01-01

    The LOADS computer program L218 which calculates dynamic load coefficient matrices utilizing the force summation method is described. The load equations are derived for a flight vehicle in straight and level flight and excited by gusts and/or control motions. In addition, sensor equations are calculated for use with an active control system. The load coefficient matrices are calculated for the following types of loads: (1) translational and rotational accelerations, velocities, and displacements; (2) panel aerodynamic forces; (3) net panel forces; and (4) shears, bending moments, and torsions.

  19. A program for calculating and plotting soft-X-ray optical interaction coefficients for molecules

    NASA Astrophysics Data System (ADS)

    Thomas, M. M.; Davis, J. C.; Jacobsen, C. J.; Perera, R. C. C.

    1990-05-01

    Comprehensive tables for atomic scattering factor components f1 and f2 were compiled by Henke et al. for the extended photon region of 350-10000 eV. Accurate calculations of optical interaction coefficients for absorption, reflection and scattering by material systems (e.g. filters, multi-layers, etc.), which have widespread application, can be based simply upon the atomic scattering factors for the elements comprising the material, except near the absorption threshold energies. These calculations based upon the weighted sum of f1 and f2 for each atomic species present can be very tedious if done by hand. This led us to develop Optical Constants Grapher (OCG), a user-friendly program to perform these calculations on an IBM PC or compatible computer. By entering the chemical formula, density and thickness of up to six molecules, values of f1, f2, mass absorption, transmission efficiencies, attenuation lengths, mirror reflectivities and complex indices of refraction can be calculated and plotted as a function of energy or wavelength. This program and its user's manual are available from the authors.

  20. Potential energy surface and second virial coefficient of methane-water from ab initio calculations

    NASA Astrophysics Data System (ADS)

    Akin-Ojo, Omololu; Szalewicz, Krzysztof

    2005-10-01

    Six-dimensional intermolecular potential energy surfaces (PESs) for the interaction of CH4 with H2O are presented, obtained from ab initio calculations using symmetry-adapted perturbation theory (SAPT) at two different levels of intramonomer correlation and the supermolecular approach at three different levels of electron correlation. Both CH4 and H2O are assumed to be rigid molecules with interatomic distances and angles fixed at the average values in the ground-state vibration. A physically motivated analytical expression for each PES has been developed as a sum of site-site functions. The PES of the CH4-H2O dimer has only two symmetry-distinct minima. From the SAPT calculations, the global minimum has an energy of -1.03kcal /mol at a geometry where H2O is the proton donor, HO -H⋯CH4, with the O-H-C angle of 165°, while the secondary minimum, with an energy of -0.72kcal/mol, has CH4 in the role of the proton donor (H3C -H⋯OH2). We estimated the complete basis set limit of the SAPT interaction energy at the global minimum to be -1.06kcal/mol. The classical cross second virial coefficient B12(T) has been calculated for the temperature range 298-653K. Our best results agree well with some experiments, allowing an evaluation of the quality of experimental results.

  1. Test Suite for Nuclear Data I: Deterministic Calculations for Critical Assemblies and Replacement Coefficients

    SciTech Connect

    Pruet, J; Brown, D A; Descalle, M

    2006-05-22

    The authors describe tools developed by the Computational Nuclear Physics group for testing the quality of internally developed nuclear data and the fidelity of translations from ENDF formatted data to ENDL formatted data used by Livermore. These tests include S{sub n} calculations for the effective k value characterizing critical assemblies and for replacement coefficients of different materials embedded in the Godiva and Jezebel critical assemblies. For those assemblies and replacement materials for which reliable experimental information is available, these calculations provide an integral check on the quality of data. Because members of the ENDF and reactor communities use calculations for these same assemblies in their validation process, a comparison between their results with ENDF formatted data and their results with data translated into the ENDL format provides a strong check on the accuracy of translations. As a first application of the test suite they present a study comparing ENDL 99 and ENDF/B-V. They also consider the quality of the ENDF/B-V translation previously done by the Computational Nuclear Physics group. No significant errors are found.

  2. Calculating Hot Spring/Atmospheric Coupling Using the Coefficient of Convective Heat Transfer

    NASA Astrophysics Data System (ADS)

    Lindsey, C.; Price, A. N.; Fairley, J. P., Jr.; Larson, P. B.

    2015-12-01

    We calculated the correlation between discharge temperature and wind speed for multiple hydrothermal springs, both in the Alvord Basin of southeast Oregon and our primary field location in Yellowstone National Park, using spring temperatures, wind speeds, and air temperatures logged at three minute intervals for multiple days. We find that some hydrothermal springs exhibit strong coupling with wind speed and/or air temperatures. The three springs described in this work display this strong coupling, with correlations between wind speed and spring temperature as high as 70 percent; as a result, we can use the changes in spring temperature as a proxy for changes in the coefficient of convective heat transfer (h) between the springs and the atmosphere. The coefficient of convective heat transfer is a complex parameter to measure, but is a necessary input to many heat and mass flux analyses. The results of this study provide a way to estimate h for springs with strong atmospheric coupling, which is a critical component of a total energy balance for hydrothermal discharge areas.

  3. Comparison of calculated and measured heat transfer coefficients for transonic and supersonic boundary-layer flows

    SciTech Connect

    Huerst, C.; Schulz, A.; Wittig, S.

    1995-04-01

    The present study compares measured and computed heat transfer coefficients for high-speed boundary layer nozzle flows under engine Reynolds number conditions (U{sub {infinity}} = 230 {divided_by} 880 m/s, Re* = 0.37 {divided_by} 1.07 {times} 10{sup 6}). Experimental data have been obtained by heat transfer measurements in a two-dimensional, nonsymmetric, convergent-divergent nozzle. The nozzle wall is convectively cooled using water passages. The coolant heat transfer data and nozzle surface temperatures are used as boundary conditions for a three-dimensional finite-element code, which is employed to calculate the temperature distribution inside the nozzle wall. Heat transfer coefficients along the hot gas nozzle wall are derived from the temperature gradients normal to the surface. The results are compared with numerical heat transfer predictions using the low-Reynolds-number {kappa}-{epsilon} turbulence model by Lam and Bremhorst. Influence of compressibility in the transport equations for the turbulence properties is taken into account by using the local averaged density. The results confirm that this simplification leads to good results for transonic and low supersonic flows.

  4. The neutron dose conversion coefficients calculation in human tooth enamel in an anthropomorphic phantom.

    PubMed

    Khailov, A M; Ivannikov, A I; Skvortsov, V G; Stepanenko, V F; Tsyb, A F; Trompier, F; Hoshi, M

    2010-02-01

    In the present study, MCNP4B simulation code is used to simulate neutron and photon transport. It gives the conversion coefficients that relate neutron fluence to the dose in tooth enamel (molars and pre-molars only) for 20 energy groups of monoenergetic neutrons with energies from 10-9 to 20 MeV for five different irradiation geometries. The data presented are intended to provide the basis for connection between EPR dose values and standard protection quantities defined in ICRP Publication 74. The results of the calculations for critical organs were found to be consistent with ICRP data, with discrepancies generally less than 10% for the fast neutrons. The absorbed dose in enamel was found to depend strongly on the incident neutron energy for neutrons over 10 keV. The dependence of the data on the irradiation geometry is also shown. Lower bound estimates of enamel radiation sensitivity to neutrons were made using obtained coefficients for the secondary photons. Depending on neutron energy, tooth enamel was shown to register 10-120% of the total neutron dose in the human body in the case of pure neutron exposure and AP irradiation geometry. PMID:20065707

  5. Octanol-water partition coefficient of benzo(a)pyrene: measurement, calculation, and environmental implications

    SciTech Connect

    Mallon, B.J.; Harrison, F.L.

    1984-03-01

    Benzo(a)pyrene (BaP) is a potent carcinogen produced in significant quantities during pyrolysis of such substances as coal, wood, and cigarettes. Several researchers have shown that the lipophilic storage and soil sediment accumulation of many organic solutes is proportional to the partitioning between octanol-1 and water. The octanol-water partition coefficient (P) is defined as P = C/sub o//C/sub w/, where C/sub o/ and C/sub w/ are the concentration of the solute in n-octanol and water. Considerable data are available demonstrating that P values measured in the laboratory can be used to predict the environmental behavior of organic pollutants. Literature searches reveal that calculated, but not measured, log P values are reported for BaP. This laboratory study was initiated to define better the log P of BaP.

  6. Comparison of experimental and Dirac-Fock calculated high-multipole-order internal conversion coefficients

    NASA Astrophysics Data System (ADS)

    Németh, Zsolt

    1992-02-01

    A large set of accurately measured E3, M3, E4 and M4 internal conversion coefficients (ICCs) has been compared with various theoretical values. ICCs calculated by considering Dirac-Fock wave functions are found in best agreement with the experimental values, although dependence of their discrepancies on transition energy, multipolarity and parity, as well as on nuclear charge and shell, has been revealed. The ICCs of Rösel et al., after the adjustment of Németh and Veres, proved to be the most successful in reproducing the experimental values. The adjusted ICCs of Rösel et al. are recommended and revision of the ICCs and γ-emission probabilities of isomeric transitions in evaluated data compilations such as Nuclear Data Sheets is suggested. Selection from the contradicting K and total ICCs of the 661.66 keV transition of 137Ba is proposed.

  7. Pressure-induced absorption coefficients for radiative transfer calculations in Titan's atmosphere

    NASA Technical Reports Server (NTRS)

    Courtin, Regis

    1988-01-01

    The semiempirical theory of Birnbaum and Cohen (1976) is used to calculate the FIR pressure-induced absorption (PIA) spectra of N2, CH4, N2 + Ar, N2 + CH4, and N2 + H2 under conditions like those in the Titan troposphere. The results are presented graphically and compared with published data from laboratory measurements of PIA in the same gases and mixtures (Dagg et al., 1986; Dore et al., 1986). Good agreement is obtained, with only a slight underestimation of PIA at 300-400/cm in the case of CH4. The absorption coefficients are presented in tables, and it is suggested that the present findings are of value for evaluating the effects of tropospheric clouds on the Titan FIR spectrum and studying the greenhouse effect near the Titan surface.

  8. Ultraviolet radiation dose calculation for algal suspensions using UVA and UVB extinction coefficients.

    PubMed

    Navarro, Enrique; Muñiz, Selene; Korkaric, Muris; Wagner, Bettina; de Cáceres, Miquel; Behra, Renata

    2014-03-01

    Although the biological importance of ultraviolet light (UVR) attenuation has been recognised in marine and freshwater environments, it is not generally considered in in vitro ecotoxicological studies using algal cell suspensions. In this study, UVA and UVB extinction were determined for cultures of algae with varying cell densities, and the data were used to calculate the corresponding extinction coefficients for both UVA and UVB wavelength ranges. Integrating the Beer-Lambert equation to account for changes in the radiation intensity reaching each depth, from the surface until the bottom of the experimental vessel, we obtained the average UVA and UVB intensity to which the cultured algal cells were exposed. We found that UVR intensity measured at the surface of Chlamydomonas reinhardtii cultures lead to a overestimation of the UVR dose received by the algae by 2-40 times. The approach used in this study allowed for a more accurate estimation of UVA and UVB doses. PMID:24607609

  9. Theoretical calculations of nonlinear refraction and absorption coefficients of doped graphene

    NASA Astrophysics Data System (ADS)

    Margulis, Vl A.; Muryumin, E. E.; Gaiduk, E. A.

    2014-12-01

    In this study, we present the first theoretical predictions concerning the nonlinear refractive and absorptive properties of the doped graphene in which the Fermi energy {{E}F} of charge carriers (noninteracting massless Dirac fermions) is controlled by an external gate voltage. We base our study on the original perturbation theory technique developed by Genkin and Mednis (1968 Sov. Phys. JETP 27 609) for calculating the nonlinear-optical (NLO) response coefficients of bulk crystalline semiconductors with partially filled bands. Using a simple tight-binding model for the π-electron energy bands of graphene, we obtain analytic expressions for the nonlinear refractive index {{n}2}(ω ) and the nonlinear absorption coefficient {{α }2}(ω ) of the doped graphene at photon energies above twice the value of the Fermi energy (\\hbar ω \\gt 2{{E}F}). We show that in this spectral region, both the nonlinear refraction ant the nonlinear absorption are determined predominantly by the combined processes which simultaneously involve intraband and interband motion of π-electrons. Our calculations indicate that extremely large negative values of n2 (of the order of -{{10}-6} cm2 W-1) can be achieved in the graphene at a relatively low doping level (of about 1012 cm-2) provided that the excitation frequency slightly exceeds the threshold frequency corresponding to the onset of interband transitions. With a further increase of the radiation frequency, the {{n}2}(ω ) becomes positive and begins to decrease in its absolute magnitude. The peculiar frequency dispersion of n2 and a negative sign of the {{α }2} (absorption bleaching), as predicted by our theory, suggest that the doped graphene is a prospective NLO material to be used in practical optical switching applications.

  10. Code System for Calculating the Radial and Axial Neutron Diffusion Coefficients in One-Group and Multigroup Theory.

    1985-10-10

    MARCOPOLO calculates the radial and axial diffusion coefficients in one-group and multi-group theory for a cylinderized cell (Wigner-Seitz theory) with several concentric zones according to the isotropic shock or linear anisotropic shock hypotheses.

  11. Mathematical Creative Activity and the Graphic Calculator

    ERIC Educational Resources Information Center

    Duda, Janina

    2011-01-01

    Teaching mathematics using graphic calculators has been an issue of didactic discussions for years. Finding ways in which graphic calculators can enrich the development process of creative activity in mathematically gifted students between the ages of 16-17 is the focus of this article. Research was conducted using graphic calculators with…

  12. Determination of Rotordynamic Coefficients for Labyrinth Seals and Application to Rotordynamic Design Calculations

    NASA Technical Reports Server (NTRS)

    Weiser, P.; Nordmann, R.

    1991-01-01

    In today's rotordynamic calculations, the input parameters for a finite element analysis (FEA) determine very much the reliability of eigenvalue and eigenmode predictions. While modeling of an elastic structure by means of beam elements etc. is relatively straightforward to perform and the input data for journal bearings are usually known exactly enough, the determination of stiffness and damping for labyrinth seals is still the subject of many investigations. Therefore, the rotordynamic influence of labyrinths is often not included in FEA for rotating machinery because of a lack of computer programs to calculate these parameters. This circumstance can give rise to severe vibration problems especially for high performance turbines or compressors, resulting in remarkable economic losses. The forces generated in labyrinths can be described for small motions around the seal center with a linearized force-motion relationship. Several years ago, we started with the development of computer codes for the determination of rotordynamic seal coefficients. Our different approaches to evaluate the dynamic fluid forces generated by turbulent, compressible seal flow are introduced.

  13. Preliminary studies on neutron conversion coefficients calculated with MCNPX in NORMAN voxel phantom.

    PubMed

    Gualdrini, G; Ferrari, P

    2007-01-01

    Effective dose is the main radiation protection quantity. Progresses in radiation studies brought ICRP to revise ICRP 60 recommendations. A new publication, already circulated in form of draft, is expected to change some aspects of effective dose evaluation method. The organ absorbed doses for neutrons at various energies and incidence angles, necessary to estimate the effective dose, have been published in ICRU 57 and ICRP 74 reports for ADAM and EVA analytical male and female phantoms and similar calculations were also performed, based on the MCNP code, for VIP-MAN voxel phantom. The NORMAN voxel phantom, developed on the basis of magnetic resonance data of an adult male at HPA (formerly NRPB), is an accurate model (with a voxel element of approximately 8 mm(3)), which well approximates the standard man and has been already employed for radiation protection studies with photons. In the present paper, a modified version, called NORMAN-05, including a new organ, the salivary glands (as suggested in the mentioned ICRP draft), and a more detailed skeletal description, especially devoted to red bone marrow dose evaluation, has been employed with the Monte Carlo code MCNPX to calculate neutron conversion coefficients from thermal energies to 20 MeV. Some preliminary results, for antero-posterior and postero-anterior irradiation conditions, are presented and compared with the available published data. PMID:17502319

  14. Improved AIOMFAC model parameterisation of the temperature dependence of activity coefficients for aqueous organic mixtures

    NASA Astrophysics Data System (ADS)

    Ganbavale, G.; Zuend, A.; Marcolli, C.; Peter, T.

    2014-06-01

    the previous model version. The new parameterisation of AIOMFAC agrees well with a large number of experimental datasets and enables the calculation of activity coefficients of a wide variety of different aqueous/water-free organic solutions down to the low temperatures present in the upper troposphere.

  15. On the neural network calculation of the Lamé coefficients through eigenvalues of the elasticity operator

    NASA Astrophysics Data System (ADS)

    Ossandón, Sebastián; Reyes, Camilo

    2016-02-01

    A new numerical method is presented with the purpose to calculate the Lamé coefficients, associated with an elastic material, through eigenvalues of the elasticity operator. The finite element method is used to solve repeatedly, using different Lamé coefficients values, the direct problem by training a direct radial basis neural network. A map of eigenvalues, as a function of the Lamé constants, is then obtained. This relationship is later inverted and refined by training an inverse radial basis neural network, allowing calculation of mentioned coefficients. A numerical example is presented to prove the effectiveness of this novel method.

  16. Adaption of the temporal correlation coefficient calculation for temporal networks (applied to a real-world pig trade network).

    PubMed

    Büttner, Kathrin; Salau, Jennifer; Krieter, Joachim

    2016-01-01

    The average topological overlap of two graphs of two consecutive time steps measures the amount of changes in the edge configuration between the two snapshots. This value has to be zero if the edge configuration changes completely and one if the two consecutive graphs are identical. Current methods depend on the number of nodes in the network or on the maximal number of connected nodes in the consecutive time steps. In the first case, this methodology breaks down if there are nodes with no edges. In the second case, it fails if the maximal number of active nodes is larger than the maximal number of connected nodes. In the following, an adaption of the calculation of the temporal correlation coefficient and of the topological overlap of the graph between two consecutive time steps is presented, which shows the expected behaviour mentioned above. The newly proposed adaption uses the maximal number of active nodes, i.e. the number of nodes with at least one edge, for the calculation of the topological overlap. The three methods were compared with the help of vivid example networks to reveal the differences between the proposed notations. Furthermore, these three calculation methods were applied to a real-world network of animal movements in order to detect influences of the network structure on the outcome of the different methods. PMID:27026862

  17. Calculation of Modulated Transport Coefficients for Recovery of ECH Deposition Profiles

    NASA Astrophysics Data System (ADS)

    Brookman, M. W.; Austin, M. E.; Horton, C. W.; Petty, C. C.

    2015-11-01

    Ray tracing of ECRF power through fixed plasma profiles may significantly underestimate the ECH and ECCD deposition profile width. Density fluctuations present in tokamak plasmas modify the path of radiation on a fluctuation timescale, spreading the heating power over a wide area. Deposition is hard to measure as transport quickly spreads power, and transport effects are difficult to separate from a truly broadened profile. While the total power deposited should be unchanged in an ITER-like scenario, tearing mode suppression is sensitive to the alignment and width of the ECCD profile. A novel integral method for calculating thermal transport coefficients based on ECE measurements of Te is presented and applied to DIII-D data. These are compared with computational predictions of broadening from the ray tracing code C3PO and distribution code LUKE. This work will provide the analytical framework for measuring fluctuation broadening in a future DIII-D experiment. Supported by the US DOE under DE-FG03-97ER54415 & DE-FG02-04ER54761.

  18. Neutron and deuteron activation calculations for IFMIF

    NASA Astrophysics Data System (ADS)

    Forrest, R. A.; Loughlin, M. J.

    2007-08-01

    The materials for future fusion devices such as DEMO require testing to high neutron fluence. Such testing is planned to be carried out in IFMIF, an accelerator based facility where the neutrons will have maximum energy of about 55 MeV, but with a broad peak near 14 MeV. In order that activation calculations for IFMIF can be carried out, the nuclear data must contain cross sections covering a similar energy range. A description of the EASY-2005 system is given and it is noted that a new library has been added to EASY to cover another significant source of activation from deuteron-induced reactions. Calculations of the neutron activation of materials in many regions of IFMIF have been carried out. These calculations are reported, and the contribution of neutrons above 20 MeV to the activation is discussed. Preliminary calculations using the deuteron library have been made and the activation from deuterons is discussed.

  19. A thermodynamic model of mixed organic-inorganic aerosols to predict activity coefficients

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Marcolli, C.; Luo, B. P.; Peter, T.

    2008-08-01

    Tropospheric aerosols contain mixtures of inorganic salts, acids, water, and a large variety of organic compounds. Interactions between these substances in liquid mixtures lead to discrepancies from ideal thermodynamic behaviour. By means of activity coefficients, non-ideal behaviour can be taken into account. We present here a thermodynamic model named AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients) that is able to calculate activity coefficients covering inorganic, organic, and organic-inorganic interactions in aqueous solutions over a wide concentration range. This model is based on the activity coefficient model LIFAC by Yan et al. (1999) that we modified and reparametrised to better describe atmospherically relevant conditions and mixture compositions. Focusing on atmospheric applications we considered H+, Li+, Na+, K+, NH+4, Mg2+, Ca2+, Cl-, Br-, NO-3, HSO-4, and SO2-4 as cations and anions and a wide range of alcohols/polyols composed of the functional groups CHn and OH as organic compounds. With AIOMFAC, the activities of the components within an aqueous electrolyte solution are well represented up to high ionic strength. Most notably, a semi-empirical middle-range parametrisation of direct organic-inorganic interactions in alcohol+water+salt solutions strongly improves the agreement between experimental and modelled activity coefficients. At room temperature, this novel thermodynamic model offers the possibility to compute equilibrium relative humidities, gas/particle partitioning and liquid-liquid phase separations with high accuracy. In further studies, other organic functional groups will be introduced. The model framework is not restricted to specific ions or organic compounds and is therefore also applicable for other research topics.

  20. A thermodynamic model of mixed organic-inorganic aerosols to predict activity coefficients

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Marcolli, C.; Luo, B. P.; Peter, Th.

    2008-03-01

    Tropospheric aerosols contain mixtures of inorganic salts, acids, water, and a large variety of organic compounds. Interactions between these substances in liquid mixtures lead to discrepancies from ideal thermodynamic behaviour. By means of activity coefficients, non-ideal behaviour can be taken into account. We present here a thermodynamic model named AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients) that is able to calculate activity coefficients covering inorganic, organic, and organic-inorganic interactions in aqueous solutions over a wide concentration range. This model is based on the activity coefficient model LIFAC by Yan et al. (1999) that we modified and reparametrised to better describe atmospherically relevant conditions and mixture compositions. Focusing on atmospheric applications we considered H+, Li+, Na+, K+, NH4+, Mg2+, Ca2+, Cl-, Br-, NO3-, HSO4-, and SO42- as cations and anions and a wide range of alcohols/polyols composed of the functional groups CHn and OH as organic compounds. With AIOMFAC, the activities of the components within an aqueous electrolyte solution are well represented up to high ionic strength. Most notably, a semi-empirical middle-range parametrisation of direct organic-inorganic interactions in alcohol + water + salt solutions strongly improves the agreement between experimental and modelled activity coefficients. At room temperature, this novel thermodynamic model offers the possibility to compute equilibrium relative humidities, gas/particle partitioning and liquid-liquid phase separations with high accuracy. In further studies, other organic functional groups will be introduced. The model framework is not restricted to specific ions or organic compounds and is therefore also applicable for other research topics.

  1. Recombination of W19 + ions with electrons: Absolute rate coefficients from a storage-ring experiment and from theoretical calculations

    NASA Astrophysics Data System (ADS)

    Badnell, N. R.; Spruck, K.; Krantz, C.; Novotný, O.; Becker, A.; Bernhardt, D.; Grieser, M.; Hahn, M.; Repnow, R.; Savin, D. W.; Wolf, A.; Müller, A.; Schippers, S.

    2016-05-01

    Experimentally measured and theoretically calculated rate coefficients for the recombination of W19 +([Kr ] 4 d10 4 f9 ) ions with free electrons (forming W18 +) are presented. At low electron-ion collision energies, the merged-beam rate coefficient is dominated by strong, mutually overlapping, recombination resonances as already found previously for the neighboring charge-state ions W18 + and W20 +. In the temperature range where W19 + is expected to form in a collisionally ionized plasma, the experimentally derived recombination rate coefficient deviates by up to a factor of about 20 from the theoretical rate coefficient obtained from the Atomic Data and Analysis Structure database. The present calculations, which employ a Breit-Wigner redistributive partitioning of autoionizing widths for dielectronic recombination via multi-electron resonances, reproduce the experimental findings over the entire temperature range.

  2. Transfer having a coupling coefficient higher than its active material

    NASA Technical Reports Server (NTRS)

    Lesieutre, George A. (Inventor); Davis, Christopher L. (Inventor)

    2001-01-01

    A coupling coefficient is a measure of the effectiveness with which a shape-changing material (or a device employing such a material) converts the energy in an imposed signal to useful mechanical energy. Device coupling coefficients are properties of the device and, although related to the material coupling coefficients, are generally different from them. This invention describes a class of devices wherein the apparent coupling coefficient can, in principle, approach 1.0, corresponding to perfect electromechanical energy conversion. The key feature of this class of devices is the use of destabilizing mechanical pre-loads to counter inherent stiffness. The approach is illustrated for piezoelectric and thermoelectrically actuated devices. The invention provides a way to simultaneously increase both displacement and force, distinguishing it from alternatives such as motion amplification, and allows transducer designers to achieve substantial performance gains for actuator and sensor devices.

  3. A numerical algorithm for the explicit calculation of SU(N) and SL(N,C) Clebsch-Gordan coefficients

    SciTech Connect

    Alex, Arne; Delft, Jan von; Kalus, Matthias; Huckleberry, Alan

    2011-02-15

    We present an algorithm for the explicit numerical calculation of SU(N) and SL(N,C) Clebsch-Gordan coefficients, based on the Gelfand-Tsetlin pattern calculus. Our algorithm is well suited for numerical implementation; we include a computer code in an appendix. Our exposition presumes only familiarity with the representation theory of SU(2).

  4. A New Method for Multicomponent Activity Coefficients of Electrolytes in Aqueous Atmospheric Aerosols

    SciTech Connect

    Zaveri, Rahul A.; Easter, Richard C.; Wexler, Anthony S.

    2005-01-21

    Three-dimensional models of atmospheric inorganic aerosols need an accurate yet computationally efficient parameterization of activity coefficients of various electrolytes in multicomponent aqueous solutions. This paper describes the development and application of a new mixing rule for calculating activity coefficients of electrolytes typically found in atmospheric aerosol systems containing H+, NH4+, Na+, Ca2+ SO42-, HSO4-, NO3-, and Cl- ions. The new mixing rule, called MTEM (Multicomponent Taylor Expansion Model), estimates the mean activity coefficient of an electrolyte in a multicomponent solution based on its values in binary solutions of all the electrolytes present in the mixture at the solution water activity aw, assuming aw is equal to the ambient relative humidity. The aerosol water content is calculated using the Zdanovskii-Stokes-Robinson method. For self-consistency, most of the MTEM and Zdanovskii-Stokes-Robinson parameters are derived using the comprehensive Pitzer-Simonson-Clegg model at 298.15 K. MTEM is evaluated for several multicomponent systems representing various continental and marine aerosols, and is contrasted against the mixing rule of Kusik and Meissner and the newer approach of Metzger et al. [2002]. Predictions of MTEM are found to be generally within a factor of 0.8 to 1.25 of the comprehensive Pitzer-Simonson-Clegg model, and are shown to be significantly more accurate than predictions of the other two methods. MTEM also yields a non-iterative solution of the bisulfate ion dissociation in sulfate-rich systems – a major computational advantage over other iterative methods. CPU time requirements of MTEM relative to other methods for sulfate-poor and sulfate-rich systems are also discussed.

  5. CALCULATION OF SOIL-WATER AND BENTHIC SEDIMENT PARTITION COEFFICIENTS FOR MERCURY

    EPA Science Inventory

    To accurately model mercury transport to water bodies, an assessment of this pollutant's behavior in the watershed is critical. Partition coefficients, defined as an estimate of the ratio of the pollutant concentration sorbed onto soil/sediment particles to the pollutant concentr...

  6. A Tutorial on Calculating and Interpreting Regression Coefficients in Health Behavior Research

    ERIC Educational Resources Information Center

    Stellefson, Michael L.; Hanik, Bruce W.; Chaney, Beth H.; Chaney, J. Don

    2008-01-01

    Regression analyses are frequently employed by health educators who conduct empirical research examining a variety of health behaviors. Within regression, there are a variety of coefficients produced, which are not always easily understood and/or articulated by health education researchers. It is important to not only understand what these…

  7. Calculation of Thermal Expansion Coefficients of Pure Elements and their Alloys

    NASA Technical Reports Server (NTRS)

    Abel, Phillip; Bozzolo, Guillermo; Huff, Dennis (Technical Monitor)

    2002-01-01

    A simple algorithm for computing the coefficient of thermal expansion of pure elements and their alloys, based on features of the binding energy curve, is introduced. The BFS method for alloys is used to determine the binding energy curves of intermetallic alloys and Ni-base superalloys.

  8. Calculation of water activation for the LHC

    NASA Astrophysics Data System (ADS)

    Vollaire, Joachim; Brugger, Markus; Forkel-Wirth, Doris; Roesler, Stefan; Vojtyla, Pavol

    2006-06-01

    The management of activated water in the Large Hadron Collider (LHC) at CERN is a key concern for radiation protection. For this reason, the induced radioactivity of the different water circuits is calculated using the Monte-Carlo (MC) code FLUKA. The results lead to the definition of procedures to be taken into account during the repair and maintenance of the machine, as well as to measures being necessary for a release of water into the environment. In order to assess the validity of the applied methods, a benchmark experiment was carried out at the CERN-EU High Energy Reference Field (CERF) facility, where a hadron beam (120 GeV) is impinging on a copper target. Four samples of water, as used at the LHC, and different in their chemical compositions, were irradiated near the copper target. In addition to the tritium activity measured with a liquid scintillation counter, the samples were also analyzed using gamma spectroscopy in order to determine the activity of the gamma emitting isotopes such as Be7 and Na24. While for the latter an excellent agreement between simulation and measurement was found, for the calculation of tritium a correction factor is derived to be applied for future LHC calculations in which the activity is calculated by direct scoring of produced nuclei. A simplified geometry representing the LHC Arc sections is then used to evaluate the different calculation methods with FLUKA. By comparing these methods and by taking into account the benchmark results, a strategy for the environmental calculations can be defined.

  9. A Computationally Efficient Model for Multicomponent Activity Coefficients in Aqueous Solutions

    SciTech Connect

    Zaveri, Rahul A.; Easter, Richard C.; Wexler, Anthony S.

    2004-10-04

    Three-dimensional models of atmospheric inorganic aerosols need an accurate yet computationally efficient parameterization of activity coefficients, which are repeatedly updated in aerosol phase equilibrium and gas-aerosol partitioning calculations. In this paper, we describe the development and evaluation of a new mixing rule for estimating multicomponent activity coefficients of electrolytes typically found in atmospheric aerosol systems containing H(+), NH4(+), Na(+), Ca(2+), SO4(2-), HSO4(-), NO3(-), and Cl(-) ions. The new mixing rule, called MTEM (Multicomponent Taylor Expansion Model), estimates the mean activity coefficient of an electrolyte A in a multicomponent solution from a linear combination of its values in ternary solutions of A-A-H2O, A-B-H2O, A-C-H2O, etc., as the amount of A approaches zero in the mixture at the solution water activity, aw, assuming aw is equal to the ambient relative humidity. Predictions from MTEM are found to be within a factor of 0.8 to 1.25 of the comprehensive Pitzer-Simonson-Clegg (PSC) model over a wide range of water activities, and are shown to be significantly more accurate than the widely used Kusik and Meissner (KM) mixing rule, especially for electrolytes in sulfate-rich aerosol systems and for relatively minor but important aerosol components such as HNO3 and HCl acids. Because the ternary activity coefficient polynomials are parameterized as a function of aw, they have to be computed only once at every grid point at the beginning of every 3-D model time step as opposed to repeated evaluations of the ionic strength dependent binary activity coefficient polynomials in the KM method. Additionally, MTEM also yields a non-iterative solution of the bisulfate ion dissociation in sulfate-rich systems, which is a major computational advantage over other iterative methods as will be shown by a comparison of the CPU time requirements of MTEM for both sulfate-poor and sulfate-rich systems relative to other methods.

  10. A Novel Multi-objective Genetic Algorithms-Based Calculation of Hill's Coefficients

    NASA Astrophysics Data System (ADS)

    Hariharan, Krishnaswamy; Chakraborti, Nirupam; Barlat, Frédéric; Lee, Myoung-Gyu

    2014-06-01

    The anisotropic coefficients of Hill's yield criterion are determined through a novel genetic algorithms-based multi-objective optimization approach. The classical method of determining anisotropic coefficients is sensitive to the effective plastic strain. In the present procedure, that limitation is overcome using a genetically evolved meta-model of the entire stress strain curve, obtained from uniaxial tension tests conducted in the rolling direction and transverse directions, and biaxial tension. Then, an effective strain that causes the least error in terms of two theoretically derived objective functions is chosen. The anisotropic constants evolved through genetic algorithms correlate very well with the classical results. This approach is expected to be successful for more complex constitutive equations as well.

  11. Measurement and calculation of the sound absorption coefficient of pine wood charcoal

    NASA Astrophysics Data System (ADS)

    Suh, Jae Gap; Baik, Kyung min; Kim, Yong Tae; Jung, Sung Soo

    2013-10-01

    Although charcoal has been widely utilized for physical therapy and as a deodorant, water purifier, etc. due to its porous features, research on its role as a sound-absorbing material is rarely found. Thus, the sound absorption coefficients of pine wood charcoal were measured using an impedance tube and were compared with the theoretical predictions in the frequency range of 500˜ 5000 Hz. The theory developed in the current study only considers the lowest possible mode propagating along the air channels of the charcoal and shows good agreements with the measurements. As the frequency is increased, the sound absorption coefficients of pine wood charcoals also increase, but are lower than those of other commonly-used sound-absorbing materials.

  12. Turbulent Transfer Coefficients and Calculation of Air Temperature inside Tall Grass Canopies in Land Atmosphere Schemes for Environmental Modeling.

    NASA Astrophysics Data System (ADS)

    Mihailovic, D. T.; Alapaty, K.; Lalic, B.; Arsenic, I.; Rajkovic, B.; Malinovic, S.

    2004-10-01

    A method for estimating profiles of turbulent transfer coefficients inside a vegetation canopy and their use in calculating the air temperature inside tall grass canopies in land surface schemes for environmental modeling is presented. The proposed method, based on K theory, is assessed using data measured in a maize canopy. The air temperature inside the canopy is determined diagnostically by a method based on detailed consideration of 1) calculations of turbulent fluxes, 2) the shape of the wind and turbulent transfer coefficient profiles, and 3) calculation of the aerodynamic resistances inside tall grass canopies. An expression for calculating the turbulent transfer coefficient inside sparse tall grass canopies is also suggested, including modification of the corresponding equation for the wind profile inside the canopy. The proposed calculations of K-theory parameters are tested using the Land Air Parameterization Scheme (LAPS). Model outputs of air temperature inside the canopy for 8 17 July 2002 are compared with micrometeorological measurements inside a sunflower field at the Rimski Sancevi experimental site (Serbia). To demonstrate how changes in the specification of canopy density affect the simulation of air temperature inside tall grass canopies and, thus, alter the growth of PBL height, numerical experiments are performed with LAPS coupled with a one-dimensional PBL model over a sunflower field. To examine how the turbulent transfer coefficient inside tall grass canopies over a large domain represents the influence of the underlying surface on the air layer above, sensitivity tests are performed using a coupled system consisting of the NCEP Nonhydrostatic Mesoscale Model and LAPS.


  13. Theoretical calculations of the self-reflection coefficients for some species of ions

    NASA Astrophysics Data System (ADS)

    Luo, Z. M.; Gou, C.; Hou, Q.

    2002-06-01

    The bipartition model of ion transport has been applied to study the self-reflection coefficients of some species of ion beams which are normally incident to a surface. The computational results has been compared with the results taken from Eckstein and Biersack and the compilation data given by Thomas, Janev and Smith. It was found that there are in reasonable agreement between the results given by the bipartition model and the results given by Monte Carlo method.

  14. The case for using the repeatability coefficient when calculating test-retest reliability.

    PubMed

    Vaz, Sharmila; Falkmer, Torbjörn; Passmore, Anne Elizabeth; Parsons, Richard; Andreou, Pantelis

    2013-01-01

    The use of standardised tools is an essential component of evidence-based practice. Reliance on standardised tools places demands on clinicians to understand their properties, strengths, and weaknesses, in order to interpret results and make clinical decisions. This paper makes a case for clinicians to consider measurement error (ME) indices Coefficient of Repeatability (CR) or the Smallest Real Difference (SRD) over relative reliability coefficients like the Pearson's (r) and the Intraclass Correlation Coefficient (ICC), while selecting tools to measure change and inferring change as true. The authors present statistical methods that are part of the current approach to evaluate test-retest reliability of assessment tools and outcome measurements. Selected examples from a previous test-retest study are used to elucidate the added advantages of knowledge of the ME of an assessment tool in clinical decision making. The CR is computed in the same units as the assessment tool and sets the boundary of the minimal detectable true change that can be measured by the tool. PMID:24040139

  15. Calculations of the time-averaged local heat transfer coefficients in circulating fluidized bed

    SciTech Connect

    Dai, T.H.; Qian, R.Z.; Ai, Y.F.

    1999-04-01

    The great potential to burn a wide variety of fuels and the reduced emission of pollutant gases mainly SO{sub x} and NO{sub x} have inspired the investigators to conduct research at a brisk pace all around the world on circulating fluidized bed (CFB) technology. An accurate understanding of heat transfer to bed walls is required for proper design of CFB boilers. To develop an optimum economic design of the boiler, it is also necessary to know how the heat transfer coefficient depends on different design and operating parameters. It is impossible to do the experiments under all operating conditions. Thus, the mathematical model prediction is a valuable method instead. Based on the cluster renewal theory of heat transfer in circulating fluidized beds, a mathematical model for predicting the time-averaged local bed-to-wall heat transfer coefficients is developed. The effects of the axial distribution of the bed density on the time-average local heat transfer coefficients are taken into account via dividing the bed into a series of sections along its height. The assumptions are made about the formation and falling process of clusters on the wall. The model predictions are in an acceptable agreement with the published data.

  16. Properties And Coefficient Program For The Calculation Of Thermodynamic Data (PAC2)

    NASA Technical Reports Server (NTRS)

    Mcbride, B. J.

    1989-01-01

    Program calculates ideal gas thermodynamic properties for any species for which molecular constant data available, and offers user choice of methodologies for performing thermodynamic calculations. PAC2 updated to PAC4. Improvements include increased user friendliness and ability to extrapolate thermodynamic properties for gases to higher temperatures using Wilhoit's formulas.

  17. Magnetotransport properties and calculation of the stability of GMR coefficients in CoNi/Cu multilayer quasi-one-dimensional structures

    NASA Astrophysics Data System (ADS)

    Trukhanov, A. V.; Grabchikov, S. S.; Sharko, S. A.; Trukhanov, S. V.; Trukhanova, K. L.; Volkova, O. S.; Shakin, A.

    2016-06-01

    The article describes a method for producing ferromagnetic/diamagnetic quasi-one-dimensional multilayer structures (CoNi/Cu nanowires within the pores of anodic aluminum oxide (AAO) matrices) and the results of the investigation of their magnetotransport properties. Dependences of the magnetoresistive factor were determined as a function of the thickness of diamagnetic layers, the geometrical ratio «length/thickness» of nanowires, the temperature and the external magnetic field. The principal possibility of the application of these systems as the active elements of magnetic field sensors is shown. The article also describes the proposed method of calculating the stability of giant magnetoresistance (GMR) coefficients in multilayer metal structures. This method is based on the calculation and analysis of time-temperature dependences of the interdiffusion coefficient. It determined the state of the ferromagnetic/diamagnetic interfaces where the spin-dependent scattering of charge carriers takes place.

  18. An efficient nonclassical quadrature for the calculation of nonresonant nuclear fusion reaction rate coefficients from cross section data

    NASA Astrophysics Data System (ADS)

    Shizgal, Bernie D.

    2016-08-01

    Nonclassical quadratures based on a new set of half-range polynomials, Tn(x) , orthogonal with respect to w(x) =e - x - b /√{ x } for x ∈ [ 0 , ∞) are employed in the efficient calculation of the nuclear fusion reaction rate coefficients from cross section data. The parameter b = B /√{kB T } in the weight function is temperature dependent and B is the Gamow factor. The polynomials Tn(x) satisfy a three term recurrence relation defined by two sets of recurrence coefficients, αn and βn. These recurrence coefficients define in turn the tridiagonal Jacobi matrix whose eigenvalues are the quadrature points and the weights are calculated from the first components of the eigenfunctions. For nonresonant nuclear reactions for which the astrophysical function can be expressed as a lower order polynomial in the relative energy, the convergence of the thermal average of the reactive cross section with this nonclassical quadrature is extremely rapid requiring in many cases 2-4 quadrature points. The results are compared with other libraries of nuclear reaction rate coefficient data reported in the literature.

  19. A three volume bulk flow model for the calculation of rotordynamic coefficients of look-through labyrinths

    NASA Astrophysics Data System (ADS)

    Nordmann, R.; Weiser, P.

    To describe the compressible, turbulent flow in a labyrinth seal, a three volume bulk flow model is presented. The conservation equations for mass, momentum and energy are established in every control volume. A perturbation analysis is performed, yielding zeroth order equations for centric rotor position and first order equations describing the flow field for small rotor motions around the seal center. The equations are integrated numerically. From perturbation pressure, the forces on the shaft and the dynamic coefficients are calculated.

  20. Choosing the averaging interval when calculating primary reflection coefficients from well logs

    SciTech Connect

    Walden, A.T.; Hosken, J.W.J.

    1988-11-01

    Most seismic data is processed using a sample interval of 4 ms two-way time (twt). The study of the statistical properties of primary reflection coefficients showed that the power spectrum of primaries can change noticeably when the logs are averaged over blocks of 0.5, 1 and 2 ms twt (block-averaging). What is a suitable block-averaging interval for producing broadband synthetics, and in particular how should the power spectrum of primaries be constructed when it is to be used to correct 4 ms sampled deconvolved seismic data for the effects of coloured primary reflectivity. In this paper the authors show that for a typical sonic log, a block-averaging interval of 1 ms twt should satisfy some important requirements. Firstly, it is demonstrated that if the reflection coefficients in an interval are not too large the effect of all the reflection impulses can be represented by another much sparser set at intervals of ..delta..t twt. The coefficient amplitudes are given by the differences in the logarithmic acoustic impedances, thus justifying block-averaging. However, a condition for this to hold up to the aliasing (Nyquist) frequency is that ..delta..t takes a maximum value of about 1 ms twt. Secondly, an event on a log should be represented in the seismic data. For this the acoustic impedance contrast must have sufficient lateral extent or continuity. By making some tentative suggestions on the relation between continuity and bed-thickness, a bed-thickness requirement of 0.15 m or more is obtained. Combining this requirement with the maximum number of beds allowable in an interval in order that multiple reflections do not contribute significantly to the reflections in the interval, again suggests a value of about 1 ms for the block-averaging interval.

  1. Theoretical calculations of pressure broadening coefficients for H2O perturbed by hydrogen or helium gas

    NASA Technical Reports Server (NTRS)

    Gamache, Robert R.; Pollack, James B.

    1995-01-01

    Halfwidths were calculated for H2O with H2 as a broadening gas and were estimated for He as the broadening species. The calculations used the model of Robert and Bonamy with parabolic trajectories and all relevant terms in the interaction potential. The calculations investigated the dependence of the halfwidth on the order of the atom-atom expansion, the rotational states, and the temperature in the range 200 to 400K. Finally, calculations were performed for many transitions of interest in the 5 micrometer window region of the spectrum. The resulting data will be supplied to Dr. R. Freedman for extracting accurate water mixing ratios from the analysis of the thermal channels for the Net Flux experiment on the Galileo probe.

  2. Rotordynamic coefficients for labyrinth seals calculated by means of a finite difference technique

    NASA Technical Reports Server (NTRS)

    Nordmann, R.; Weiser, P.

    1989-01-01

    The compressible, turbulent, time dependent and three dimensional flow in a labyrinth seal can be described by the Navier-Stokes equations in conjunction with a turbulence model. Additionally, equations for mass and energy conservation and an equation of state are required. To solve these equations, a perturbation analysis is performed yielding zeroth order equations for centric shaft position and first order equations describing the flow field for small motions around the seal center. For numerical solution a finite difference method is applied to the zeroth and first order equations resulting in leakage and dynamic seal coefficients respectively.

  3. Rouse-Bueche Theory and The Calculation of The Monomeric Friction Coefficient in a Filled System

    NASA Astrophysics Data System (ADS)

    Martinetti, Luca; Macosko, Christopher; Bates, Frank

    According to flexible chain theories of viscoelasticity, all relaxation and retardation times of a polymer melt (hence, any dynamic property such as the diffusion coefficient) depend on the monomeric friction coefficient, ζ0, i.e. the average drag force per monomer per unit velocity encountered by a Gaussian submolecule moving through its free-draining surroundings. Direct experimental access to ζ0 relies on the availability of a suitable polymer dynamics model. Thus far, no method has been suggested that is applicable to filled systems, such as filled rubbers or microphase-segregated A-B-A thermoplastic elastomers at temperatures where one of the blocks is glassy. Building upon the procedure proposed by Ferry for entangled and unfilled polymer melts, the Rouse-Bueche theory is applied to an undiluted triblock copolymer to extract ζ0 from the linear viscoelastic behavior in the rubber-glass transition region, and to estimate the size of Gaussian submolecules. At iso-free volume conditions, the so-obtained matrix monomeric friction factor is consistent with the corresponding value for the homopolymer melt. In addition, the characteristic Rouse dimensions are in good agreement with independent estimates based on the Kratky-Porod worm-like chain model. These results seem to validate the proposed approach for estimating ζ0 in a filled system. Although preliminary tested on a thermoplastic elastomer of the A-B-A type, the method may be extended and applied to filled homopolymers as well.

  4. An assessment of transport coefficient approximations used in galactic heavy ion shielding calculations

    NASA Technical Reports Server (NTRS)

    Townsend, Lawrence W.; Wilson, John W.

    1986-01-01

    An energy-dependent, perturbation expansion solution for heavy ion transport in one dimension is used to perform depth-dose calculations for 670/MeV nucleon Ne-20 beams incident upon a thick water target. Comparisons of predictions obtained by using typical energy-independent approximations and those obtained with fully energy-dependent input parameters are made. It is found that the calculated doses are underestimated when the energy-independent input approximations are used. The major source of error, however, is the lack of charge and mass conservation in the Silberberg-Tsao fragmentation parameters.

  5. Calculation of the relative uniformity coefficient on the green composites reinforced with cotton and hemp fabric

    NASA Astrophysics Data System (ADS)

    Baciu, Florin; Hadǎr, Anton; Sava, Mihaela; Marinel, Stǎnescu Marius; Bolcu, Dumitru

    2016-06-01

    In this paper it is studied the influence of discontinuities on elastic and mechanical properties of green composite materials (reinforced with fabric of cotton or hemp). In addition, it is studied the way variations of the volume f the reinforcement influences the elasticity modulus and the tensile strength for the studied composite materials. In order to appreciate the difference in properties between different areas of the composite material, and also the dimensions of the defective areas, we have introduced a relative uniformity coefficient with which the mechanical behavior of the studied composite is compared with a reference composite. To validate the theoretical results we have obtained we made some experiments, using green composites reinforced with fabric, with different imperfection introduced special by cutting the fabric.

  6. Improved AIOMFAC model parameterisation of the temperature dependence of activity coefficients for aqueous organic mixtures

    NASA Astrophysics Data System (ADS)

    Ganbavale, G.; Zuend, A.; Marcolli, C.; Peter, T.

    2015-01-01

    comparison to the previous model version, when both versions are compared to our database of experimentally determined activity coefficients and related thermodynamic data. When comparing the previous and new AIOMFAC model parameterisations to the subsets of experimental data with all temperatures below 274 K or all temperatures above 322 K (i.e. outside a 25 K margin of the reference temperature of 298 K), applying the new parameterisation leads to 37% improvement in each of the two temperature ranges considered. The new parameterisation of AIOMFAC agrees well with a large number of experimental data sets. Larger model-measurement discrepancies were found particularly for some of the systems containing multi-functional organic compounds. The affected systems were typically also poorly represented at room temperature and further improvements will be necessary to achieve better performance of AIOMFAC in these cases (assuming the experimental data are reliable). The performance of the AIOMFAC parameterisation is typically better for systems containing relatively small organic compounds and larger deviations may occur in mixtures where molecules of high structural complexity such as highly oxygenated compounds or molecules of high molecular mass (e.g. oligomers) prevail. Nevertheless, the new parameterisation enables the calculation of activity coefficients for a wide variety of different aqueous/water-free organic solutions down to the low temperatures present in the upper troposphere.

  7. Manufactured Homes Acquisition Program : Heat Loss Assumptions and Calculations, Heat Loss Coefficient Tables.

    SciTech Connect

    Davis, Bob; Baylon, David.

    1992-05-01

    This manual is intended to assist builders of manufactured homes in assessing the thermal performance of structural components used in the Manufactured Housing Acquisition Program (MAP) sponsored by the Bonneville Power Administration (BPA). U-factors for these components are calculated using the ASHRAE (1989) parallel heat loss method, with adaptations made for the construction practices found in the Pacific Northwest manufactured home industry. This report is divided into two parts. The first part describes the general assumptions and calculation procedures used to develop U-factors and R-values for specific materials used in the construction industry, overall U-factors for component sections, and the impact of complex framing and thermal configurations on various components` heat loss rates. The individual components of manufactured homes are reviewed in terms of overall thermal conductivity. The second part contains tables showing the results of heat loss calculations expressed as U-factors for various configurations of the major building components: floor systems, ceiling systems, wall systems, windows, doors and skylights. These values can be used to establish compliance with the MAP specifications and thermal performance criteria or to compare manufactured homes built to different standards.

  8. Manufactured Homes Acquisition Program : Heat Loss Assumptions and Calculations, Heat Loss Coefficient Tables.

    SciTech Connect

    Davis, Bob; Baylon, David

    1992-05-01

    This manual is intended to assist builders of manufactured homes in assessing the thermal performance of structural components used in the Manufactured Housing Acquisition Program (MAP) sponsored by the Bonneville Power Administration (BPA). U-factors for these components are calculated using the ASHRAE (1989) parallel heat loss method, with adaptations made for the construction practices found in the Pacific Northwest manufactured home industry. This report is divided into two parts. The first part describes the general assumptions and calculation procedures used to develop U-factors and R-values for specific materials used in the construction industry, overall U-factors for component sections, and the impact of complex framing and thermal configurations on various components' heat loss rates. The individual components of manufactured homes are reviewed in terms of overall thermal conductivity. The second part contains tables showing the results of heat loss calculations expressed as U-factors for various configurations of the major building components: floor systems, ceiling systems, wall systems, windows, doors and skylights. These values can be used to establish compliance with the MAP specifications and thermal performance criteria or to compare manufactured homes built to different standards.

  9. NICIL: A Stand Alone Library to Self-Consistently Calculate Non-Ideal Magnetohydrodynamic Coefficients in Molecular Cloud Cores

    NASA Astrophysics Data System (ADS)

    Wurster, James

    2016-09-01

    In this paper, we introduce Nicil: Non-Ideal magnetohydrodynamics Coefficients and Ionisation Library. Nicil is a stand-alone Fortran90 module that calculates the ionisation values and the coefficients of the non-ideal magnetohydrodynamics terms of Ohmic resistivity, the Hall effect, and ambipolar diffusion. The module is fully parameterised such that the user can decide which processes to include and decide upon the values of the free parameters, making this a versatile and customisable code. The module includes both cosmic ray and thermal ionisation; the former includes two ion species and three species of dust grains (positively charged, negatively charged, and neutral), and the latter includes five elements which can be doubly ionised. We demonstrate tests of the module, and then describe how to implement it into an existing numerical code.

  10. Automated calculation of the evapotranspiration and crop coefficients for a large number of peatland sites using diurnal groundwater table fluctuations

    NASA Astrophysics Data System (ADS)

    Maurer, Eike; Bechtold, Michel; Dettmann, Ullrich; Tiemeyer, Bärbel

    2014-05-01

    Evapotranspiration is one of the main processes controlling peatland hydrology. Greenhouse gas (GHG) emissions from peatlands are in turn strongly controlled by the groundwater table. Through the increasing political and scientific interest to reduce GHG emissions, monitoring and modelling strategies to optimize re-wetting strategies and to quantify GHG emissions are needed. To achieve these aims, an accurate determination of the evapotranspiration as an essential part of the water balance is required. Many different approaches are known to determine the evapotranspiration. They are mostly either expensive or hard to parameterize. Plant specific crop coefficients (Kc-values) are an option to calculate plant-specific evapotranspiration but due to the lack of Kc-values for typical peatland vegetation types more data on evapotranspiration from peatlands in the temperate zone are required. Furthermore, simple methods to estimate evapotranspiration are needed especially for monitoring projects. Diurnal groundwater table fluctuations caused by root water uptake and groundwater inflow can be used to calculate daily evapotranspiration rates. This approach was first described by White (1932) who compared groundwater recovery rates at night to the decline during daytime. Besides the groundwater table data only the specific yield (Sy) is needed to calculate evapotranspiration. However, the method has some limitations because not all days can be evaluated which leads to data gaps during rainy and very dry or very wet periods. This study presents an automated method to calculate the specific yield, evapotranspiration and crop coefficients for a large number of sites covering all major peatland types and their typical land uses in Germany. As an input for our method, only groundwater level, precipitation and grass reference evapotranspiration (ET0) data is required. In a first step, the groundwater level data was smoothed by a LOESS function. In a second step, site-specific SY

  11. Convergence of Chapman-Enskog calculation of transport coefficients of magnetized argon plasma

    SciTech Connect

    Bruno, D.; Catalfamo, C.; Laricchiuta, A.; Giordano, D.; Capitelli, M.

    2006-07-15

    Convergence properties of the Chapman-Enskog method in the presence of a magnetic field for the calculation of the transport properties of nonequilibrium partially ionized argon have been studied emphasizing the role of the different collision integrals. In particular, the Ramsauer minimum of electron-argon cross sections affects the convergence of the Chapman-Enskog method at low temperature, while Coulomb collisions affect the results at higher temperatures. The presence of an applied magnetic field mitigates the slow convergence for the components affected by the field.

  12. Calcul des coefficients aerodynamiques d'un avion complet par la methode rans

    NASA Astrophysics Data System (ADS)

    Lux, Quentin

    The evaluation of stability derivatives within the entire flight domain through the use of Computational Fluids Dynamics is one of the next challenges of numerical external aerodynamics. To remain competitive, aircraft manufacturers are increasingly turning to CFD to provide aerodynamic data in an effort to increase the quality of their products while reducing the development turnaround time and costs. However, the numerical analysis need to evolve to insure a higher fidelity and meets the need of the aircraft manufacturers and decrease wind-tunnel experiments. The present study aims to estimate the potential of a high-fidelity 3D CFD analysis in the determination of the aerodynamic behavior of an airplane in incidence and yaw. The complete methodology to obtain the static stability coefficients will be developed and the results compared with the experimental data. All the phases of the methodology will be presented including: the treatment of the geometry, the meshing process and the flow solving by a commercial CFD software. Important points to obtain a high-fidelity will also be developed as well as the verification and validation phase. The results will be presented as raw as well as with an error metric in order to estimate the accuracy of the current method. First, it will be applied on a validation case from the literature: the Drag Prediction Workshop II with the study of the DLR-F6. The test cases including a study at fixed CL as well as an incidence sweeping will be recreated. Then, the methodology will be applied to a Bombardier Research Aircraft. The various associations of components on the fuselage including the wing, the nacelle and the tail will be studied in incidence and yaw sweepings. The study concludes on the potential of such study with regard to its development costs in the cases presented here.

  13. Extinction coefficients of CC and CC bands in ethyne and ethene molecules interacting with Cu+ and Ag+ in zeolites--IR studies and quantumchemical DFT calculations.

    PubMed

    Kozyra, Paweł; Góra-Marek, Kinga; Datka, Jerzy

    2015-02-01

    The values of extinction coefficients of CC and CC IR bands of ethyne and ethene interacting with Cu+ and Ag+ in zeolites were determined in quantitative IR experiments and also by quantumchemical DFT calculations with QM/MM method. Both experimental and calculated values were in very good agreement validating the reliability of calculations. The values of extinction coefficients of ethyne and ethene interacting with bare cations and cations embedded in zeolite-like clusters were calculated. The interaction of organic molecules with Cu+ and Ag+ in zeolites ZSM-5 and especially charge transfers between molecule, cation and zeolite framework was also discussed in relation to the values of extinction coefficients. PMID:25307963

  14. Using the Monte Carlo technique to calculate dose conversion coefficients for medical professionals in interventional radiology

    NASA Astrophysics Data System (ADS)

    Santos, W. S.; Carvalho, A. B., Jr.; Hunt, J. G.; Maia, A. F.

    2014-02-01

    The objective of this study was to estimate doses in the physician and the nurse assistant at different positions during interventional radiology procedures. In this study, effective doses obtained for the physician and at points occupied by other workers were normalised by air kerma-area product (KAP). The simulations were performed for two X-ray spectra (70 kVp and 87 kVp) using the radiation transport code MCNPX (version 2.7.0), and a pair of anthropomorphic voxel phantoms (MASH/FASH) used to represent both the patient and the medical professional at positions from 7 cm to 47 cm from the patient. The X-ray tube was represented by a point source positioned in the anterior posterior (AP) and posterior anterior (PA) projections. The CC can be useful to calculate effective doses, which in turn are related to stochastic effects. With the knowledge of the values of CCs and KAP measured in an X-ray equipment, at a similar exposure, medical professionals will be able to know their own effective dose.

  15. Computation of infinite dilute activity coefficients of binary liquid alloys using complex formation model

    NASA Astrophysics Data System (ADS)

    Awe, O. E.; Oshakuade, O. M.

    2016-04-01

    A new method for calculating Infinite Dilute Activity Coefficients (γ∞s) of binary liquid alloys has been developed. This method is basically computing γ∞s from experimental thermodynamic integral free energy of mixing data using Complex formation model. The new method was first used to theoretically compute the γ∞s of 10 binary alloys whose γ∞s have been determined by experiments. The significant agreement between the computed values and the available experimental values served as impetus for applying the new method to 22 selected binary liquid alloys whose γ∞s are either nonexistent or incomplete. In order to verify the reliability of the computed γ∞s of the 22 selected alloys, we recomputed the γ∞s using three other existing methods of computing or estimating γ∞s and then used the γ∞s obtained from each of the four methods (the new method inclusive) to compute thermodynamic activities of components of each of the binary systems. The computed activities were compared with available experimental activities. It is observed that the results from the method being proposed, in most of the selected alloys, showed better agreement with experimental activity data. Thus, the new method is an alternative and in certain instances, more reliable approach of computing γ∞s of binary liquid alloys.

  16. Calculation of gamma-ray mass attenuation coefficients of some Egyptian soil samples using Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Medhat, M. E.; Demir, Nilgun; Akar Tarim, Urkiye; Gurler, Orhan

    2014-08-01

    Monte Carlo simulations, FLUKA and Geant4, were performed to study mass attenuation for various types of soil at 59.5, 356.5, 661.6, 1173.2 and 1332.5 keV photon energies. Appreciable variations are noted for all parameters by changing the photon energy and the chemical composition of the sample. The simulations parameters were compared with experimental data and the XCOM program. The simulations show that the calculated mass attenuation coefficient values were closer to experimental values better than those obtained theoretically using the XCOM database for the same soil samples. The results indicate that Geant4 and FLUKA can be applied to estimate mass attenuation for various biological materials at different energies. The Monte Carlo method may be employed to make additional calculations on the photon attenuation characteristics of different soil samples collected from other places.

  17. Partition coefficients and phase behavior for non-toxic ice inhibitors from quantum mechanical calculations and molecular dynamics simulations

    SciTech Connect

    Trohalaki, S.; Pachter, R.

    1996-10-01

    In our continuing efforts to design new anti-icing compounds for jet fuel, aircraft wings, and runways, we report values of the water-hexadecane partition coefficient calculated using AMSOL and COSMO and compare with experimental results whenever possible. In addition, we present phase-behavior results as predicted from the so-called mean-field lattice-gas Flory-Huggins (FH) theory. The FH interaction parameter, related to the cohesive energy density and the Hildebrand solubility parameter, was obtained from equilibrium molecular dynamics (NM) trajectories of mixed and de-mixed systems. Radial distribution functions for intermolecular oxygen-oxygen separations for hydrogen-bond donors and acceptors were also calculated from the MD trajectories. Integration over the peak indicative of hydrogen bonding yields the average number of nearest-neighbor water molecules, which correlates with the anti-icing performance.

  18. Absorption of laser radiation in a H-He plasma. I - Theoretical calculation of the absorption coefficient

    NASA Technical Reports Server (NTRS)

    Stallcop, J. R.

    1974-01-01

    The theory for calculating the absorption of laser radiation by hydrogen is outlined for the temperatures and pressures of common laboratory plasmas. Nonhydrogenic corrections for determining the absorption by helium are also included. The coefficients for the absorption of He-Ne laser radiation at the wavelengths of 0.633, 1.15, and 3.39 microns in a H plasma is presented for temperatures in the range from 10,000 to 40,000 K and electron number densities in the range from 10 to the 15th power to 10 to the 18th power per cu cm. The total absorption of a H-He plasma calculated from this theory is compared with the measured absorption. The theoretical composition of the H-He absorption is analyzed with respect to the significant absorption processes, inverse bremsstrahlung, photoionization, resonance excitation, and photodetachment.

  19. Direct measurement and theoretical calculation of the rate coefficient for Cl + CH3 from T = 202 - 298 K.

    SciTech Connect

    Payne, Walter A.; Harding, Lawrence B.; Stief, Louis J.; Parker, James F. , 1925-; Klippenstein, Stephen J.; Nesbitt, Fred L.; Cody, Regina J.

    2004-10-01

    The rate coefficient has been measured under pseudo-first-order conditions for the Cl + CH{sub 3} association reaction at T = 202, 250, and 298 K and P = 0.3-2.0 Torr helium using the technique of discharge-flow mass spectrometry with low-energy (12-eV) electron-impact ionization and collision-free sampling. Cl and CH{sub 3} were generated rapidly and simultaneously by reaction of F with HCl and CH{sub 4}, respectively. Fluorine atoms were produced by microwave discharge in an approximately 1% mixture of F{sub 2} in He. The decay of CH{sub 3} was monitored under pseudo-first-order conditions with the Cl-atom concentration in large excess over the CH{sub 3} concentration ([Cl]{sub 0}/[CH{sub 3}]{sub 0} = 9-67). Small corrections were made for both axial and radial diffusion and minor secondary chemistry. The rate coefficient was found to be in the falloff regime over the range of pressures studied. For example, at T = 202 K, the rate coefficient increases from 8.4 x 10{sup -12} at P = 0.30 Torr He to 1.8 x 10{sup -11} at P = 2.00 Torr He, both in units of cm{sup 3} molecule{sup -1} s{sup -1}. A combination of ab initio quantum chemistry, variational transition-state theory, and master-equation simulations was employed in developing a theoretical model for the temperature and pressure dependence of the rate coefficient. Reasonable empirical representations of energy transfer and of the effect of spin-orbit interactions yield a temperature- and pressure-dependent rate coefficient that is in excellent agreement with the present experimental results. The high-pressure limiting rate coefficient from the RRKM calculations is k{sub 2} = 6.0 x 10{sup -11} cm{sup 3} molecule{sup -1} s{sup -1}, independent of temperature in the range from 200 to 300 K.

  20. Limiting activity coefficients of some aromatic and aliphatic nitro compounds in water

    SciTech Connect

    Benes, M.; Dohnal, V.

    1999-09-01

    Limiting activity coefficients of nine nitroaromatic compounds and four nitroalkanes in water were determined in the range of environmentally related temperatures by measuring suitable phase equilibria. For liquid and solid nitroaromatics (nitrobenzene, 2-nitrotoluene, 3-nitrotoluene, 4-nitrotoluene, 2-nitrophenol, 3-nitrophenol, 4-nitrophenol, 1-chloro-2-nitrobenzene, and 1-chloro-4-nitrobenzene) the aqueous solubilities were measured by a conventional batch contacting method with UV spectrophotometric analysis, while for nitroalkanes (nitromethane, nitroethane, 1-nitropropane, and 2-nitropropane) the air-water partitioning (Henry`s law constant H{sub 12} or air-water partition coefficient K{sub aw}) was determined by the inert gas stripping method employing gas chromatography. Whenever possible, results were compared to literature values. Calculation of H{sub 12} or K{sub aw} for nitroaromatics from the measured solubilities is hindered by the lack of reliable vapor pressure data. On the basis of the temperature dependences of the solubilities measured, the enthalpies of solution at infinite dilution for the nitroaromatics in water were evaluated.

  1. Calculation of the second self-diffusion and viscosity virial coefficients of Lennard-Jones fluid by equilibrium molecular dynamics simulations.

    PubMed

    Oderji, Hassan Yousefi; Ding, Hongbin; Behnejad, Hassan

    2011-06-01

    The second self-diffusion and viscosity virial coefficients of the Lennard-Jones (LJ) fluid were calculated by a detailed evaluation of the velocity and shear-stress autocorrelation functions using equilibrium molecular dynamics simulations at low and moderate densities. Accurate calculation of these coefficients requires corresponding transport coefficient values with low degrees of uncertainty. These were obtained via very long simulations by increasing the number of particles and by using the knowledge of correlation functions in the Green-Kubo method in conjunction with their corresponding generalized Einstein relations. The values of the self-diffusion and shear viscosity coefficients have been evaluated for systems with reduced densities between 0.0005 and 0.05 and reduced temperatures from 0.7 to 30.0. This provides a new insight into the transport coefficients beyond what can be offered by the Rainwater-Friend theory, which has not been developed for the self-diffusion coefficient. PMID:21797351

  2. Comparisons of polymer/gas partition coefficients calculated from responses of thickness shear mode and surface acoustic wave vapor sensors.

    PubMed

    Grate, J W; Kaganove, S N; Bhethanabotla, V R

    1998-01-01

    Apparent partition coefficients, K, for the sorption of toluene by four different polymer thin films on thickness shear mode (TSM) and surface acoustic wave (SAW) devices are compared. The polymers examined were poly(isobutylene) (PIB), poly(epichlorohydrin) (PECH), poly(butadiene) (PBD), and poly(dimethylsiloxane) (PDMS). Independent data on partition coefficients for toluene in these polymers were compiled for comparison, and TSM sensor measurements were made using both oscillator and impedance analysis methods. K values from SAW sensor measurements were about twice those calculated from TSM sensor measurements when the polymers were PIB and PECH, and they were also at least twice the values of the independent partition coefficient data, which is interpreted as indicating that the SAW sensor responds to polymer modulus changes as well as to mass changes. K values from SAW and TSM measurements were in agreement with each other and with independent data when the polymer was PBD. Similarly, K values from the PDMS-coated SAW sensor were not much larger than values from independent measurements. These results indicate that modulus effects were not contributing to the SAW sensor responses in the cases of PBD and PDMS. However, K values from the PDMS-coated TSM device were larger than the values from the SAW device or independent measurements, and the impedance analyzer results indicated that this sensor using our sample of PDMS at the applied thickness did not behave as a simple mass sensor. Differences in behavior among the test polymers on SAW devices are interpreted in terms of their differing viscoelastic properties. PMID:21644612

  3. The unusual importance of activity coefficients for micelle solutions illustrated by an osmometry study of aqueous sodium decanoate and aqueous sodium decanoate + sodium chloride solutions.

    PubMed

    Sharma, Poonam; MacNeil, Jennifer A; Bowles, Justine; Leaist, Derek G

    2011-12-28

    Freezing-point and vapor-pressure osmometry data are reported for aqueous sodium decanoate (NaD) solutions and aqueous NaD + NaCl solutions. The derived osmotic coefficients are analyzed with a mass-action model based on the micelle formation reaction qNa(+) + nD(-) = (Na(q)D(n))(q-n) and Guggenheim equations for the micelle and ionic activity coefficients. Stoichiometric activity coefficients of the NaD and NaCl components and the equilibrium constant for micelle formation are evaluated. Illustrating the remarkable but not widely appreciated nonideal behavior of ionic surfactant solutions, the micelle activity coefficient drops to astonishingly low values, below 10(-7) (relative to unity for ideal solutions). The activity coefficients of the Na(+) and D(-) ions, raised to large powers of q and n, reduce calculated extents of micelle formation by up to 15 orders of magnitude. Activity coefficients, frequently omitted from the Gibbs equation, are found to increase the calculated surface excess concentration of NaD by up to an order of magnitude. Inflection points in the extent of micelle formation, used to calculate critical micelle concentration (cmc) lowering caused by added salt, provide unexpected thermodynamic evidence for the elusive second cmc. PMID:22037556

  4. ACTIVE: a program to calculate and plot reaction rates from ANISN calculated fluxes

    SciTech Connect

    Judd, J.L.

    1981-12-01

    The ACTIVE code calculates spatial heating rates, tritium production rates, neutron reaction rates, and energy spectra from particle fluxes calculated by ANISN. ACTIVE has a variety of input options including the capability to plot all calculated spatial distributions. The code was primarily designed for use with fusion first wall/blanket systems, but could be applied to any one-dimensional problem.

  5. A Programmable Calculator Activity, x = 1/x + 1.

    ERIC Educational Resources Information Center

    Snover, Stephen L.; Spikell, Mark A.

    An activity for secondary schools is presented and discussed which may be explored with a programmable calculator. The activity is non-standard and could not be easily explored without the use of a programmable calculator. Related activities are also discussed. Flow charts and programs for different programmable calculators are presented. (MP)

  6. Calculating concentration of inhaled radiolabeled particles from external gamma counting: External counting efficiency and attenuation coefficient of thorax

    SciTech Connect

    Langenback, E.G.; Foster, W.M.; Bergofsky, E.H.

    1989-01-01

    We determined the overall external counting efficiency of radiolabeled particles deposited in the sheep lung. This efficiency permits the noninvasive calculation of the number of particles and microcuries from gamma-scintillation lung images of the live sheep. Additionally, we have calculated the attenuation of gamma radiation (120 keV) by the posterior chest wall and the gamma-scintillation camera collection efficiency of radiation emitted from the lung. Four methods were employed in our experiments: (1) by light microscopic counting of discrete carbonized polystyrene particles with a count median diameter (CMD) of 2.85 microns and tagged with cobalt-57, we delineated a linear relationship between the number of particles and the emitted counts per minute (cpm) detected by well scintillation counting; (2) from this conversion relationship we determined the number of particles inhaled and deposited in the lungs by scintillation counting fragments of dissected lung at autopsy; (3) we defined a linear association between the number of particles or microcuries contained in the lung and the emitted radiation as cpm detected by a gamma scintillation camera in the live sheep prior to autopsy; and (4) we compared the emitted radiation from the lungs of the live sheep to that of whole excised lungs in order to calculate the attenuation coefficient (ac) of the chest wall. The mean external counting efficiency was 4.00 X 10(4) particles/cpm (5.1 X 10(-3) microCi/cpm), the camera collection efficiency was 1 cpm/10(4) disintegrations per minute (dpm), and the ac had a mean of 0.178/cm. The external counting efficiency remained relatively constant over a range of particles and microcuries, permitting a more general use of this ratio to estimate number of particles or microcuries depositing after inhalation in a large mammalian lung if a similarly collimated gamma camera system is used.

  7. The effect of concentration- and temperature-dependent dielectric constant on the activity coefficient of NaCl electrolyte solutions

    SciTech Connect

    Valiskó, Mónika; Boda, Dezső

    2014-06-21

    Our implicit-solvent model for the estimation of the excess chemical potential (or, equivalently, the activity coefficient) of electrolytes is based on using a dielectric constant that depends on the thermodynamic state, namely, the temperature and concentration of the electrolyte, ε(c, T). As a consequence, the excess chemical potential is split into two terms corresponding to ion-ion (II) and ion-water (IW) interactions. The II term is obtained from computer simulation using the Primitive Model of electrolytes, while the IW term is estimated from the Born treatment. In our previous work [J. Vincze, M. Valiskó, and D. Boda, “The nonmonotonic concentration dependence of the mean activity coefficient of electrolytes is a result of a balance between solvation and ion-ion correlations,” J. Chem. Phys. 133, 154507 (2010)], we showed that the nonmonotonic concentration dependence of the activity coefficient can be reproduced qualitatively with this II+IW model without using any adjustable parameter. The Pauling radii were used in the calculation of the II term, while experimental solvation free energies were used in the calculation of the IW term. In this work, we analyze the effect of the parameters (dielectric constant, ionic radii, solvation free energy) on the concentration and temperature dependence of the mean activity coefficient of NaCl. We conclude that the II+IW model can explain the experimental behavior using a concentration-dependent dielectric constant and that we do not need the artificial concept of “solvated ionic radius” assumed by earlier studies.

  8. Estimation of air concentrations and profiles for polychlorinated dibenzo-p-dioxins and dibenzofurans from calculated vegetation-air partition coefficients

    SciTech Connect

    Kjeller, L.O.; Rappe, C.; Jones, K.C.

    1995-12-31

    Air concentrations of vapor and particulate phase polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) are predicted by use of calculated plant-air partition coefficients. The plant-air interaction is reduced to an octanol-air distribution at equilibrium. Partition coefficients are deduced from the fugacity approach and calculated from congener group average data of solubility, vapor pressure and octanol-water partition coefficient. Calculated partition coefficients were used for prediction of the PCDD/F levels and congener profile in air from archived herbage collected pre- and post-1940. Before 1940 the air had a fly ash or combustion derived PCDD/F composition. After 1940 Hp and OCDD/F are superimposed on the combustion pattern, reflection of their release from the extensive use of polychlorinated compounds, notably penta chlorophenol, but also related compounds.

  9. Confidence Intervals, Power Calculation, and Sample Size Estimation for the Squared Multiple Correlation Coefficient under the Fixed and Random Regression Models: A Computer Program and Useful Standard Tables.

    ERIC Educational Resources Information Center

    Mendoza, Jorge L.; Stafford, Karen L.

    2001-01-01

    Introduces a computer package written for Mathematica, the purpose of which is to perform a number of difficult iterative functions with respect to the squared multiple correlation coefficient under the fixed and random models. These functions include computation of the confidence interval upper and lower bounds, power calculation, calculation of…

  10. 40 CFR Table F-1 to Subpart F of... - Slope and Overvoltage Coefficients for the Calculation of PFC Emissions From Aluminum Production

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the Calculation of PFC Emissions From Aluminum Production F Table F-1 to Subpart F of Part 98... GREENHOUSE GAS REPORTING Aluminum Production Pt. 98, Subpt. F, Table F-1 Table F-1 to Subpart F of Part 98—Slope and Overvoltage Coefficients for the Calculation of PFC Emissions From Aluminum...

  11. 40 CFR Table F-1 to Subpart F of... - Slope and Overvoltage Coefficients for the Calculation of PFC Emissions From Aluminum Production

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the Calculation of PFC Emissions From Aluminum Production F Table F-1 to Subpart F of Part 98... GREENHOUSE GAS REPORTING Aluminum Production Pt. 98, Subpt. F, Table F-1 Table F-1 to Subpart F of Part 98—Slope and Overvoltage Coefficients for the Calculation of PFC Emissions From Aluminum...

  12. 40 CFR Table F-1 to Subpart F of... - Slope and Overvoltage Coefficients for the Calculation of PFC Emissions From Aluminum Production

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the Calculation of PFC Emissions From Aluminum Production F Table F-1 to Subpart F of Part 98... GREENHOUSE GAS REPORTING Aluminum Production Pt. 98, Subpt. F, Table F-1 Table F-1 to Subpart F of Part 98—Slope and Overvoltage Coefficients for the Calculation of PFC Emissions From Aluminum...

  13. 40 CFR Table F-1 to Subpart F of... - Slope and Overvoltage Coefficients for the Calculation of PFC Emissions From Aluminum Production

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the Calculation of PFC Emissions From Aluminum Production F Table F-1 to Subpart F of Part 98... GREENHOUSE GAS REPORTING Aluminum Production Pt. 98, Subpt. F, Table F-1 Table F-1 to Subpart F of Part 98—Slope and Overvoltage Coefficients for the Calculation of PFC Emissions From Aluminum...

  14. Effect of Colloids on the Calculation of Distribution Coefficients in Studies of Metal Sorption on Organic Matter

    NASA Astrophysics Data System (ADS)

    Straka, A. M.; Schijf, J.

    2010-12-01

    For proper calculation of distribution coefficients in metal sorption studies it is essential to fully separate dissolved from particulate metal. This is typically done via membrane filtration whereby the cutoff between dissolved and particulate fractions is somewhat arbitrarily set at 0.22 μm, dictated by available pore sizes. However, the pH-dependent formation of colloid-bound metal, able to bypass this procedure, can lead to analytical artifacts by adding an unknown and variable amount of particulate metal to the mechanically defined ‘dissolved’ pool, especially for organic substrates. We investigated this phenomenon in the context of yttrium and rare earth element (YREE) sorption on the marine macroalga Ulva lactuca (sea lettuce). U. lactuca is a suitable model for marine organic matter as it has a simple morphology, is ubiquitous throughout the world’s oceans, and readily sorbs a great variety of trace metals. Solutions containing all YREEs were equilibrated for 6-12 hours with dehydrated, powdered U. lactuca tissue over a wide pH range (3.0-8.5) at three ionic strengths (0.05, 0.5 and 5.0 M NaCl), after which aliquots were filtered through 0.22 μm membranes. The resulting filtrates were further separated into >30 kDa and >3 kDa colloidal fractions by sequential centrifugation in Amicon® ultrafiltration tubes. In all three experiments, YREEs are truly dissolved (<3 kDa) at low pH but almost entirely colloidal (>30 kDa) at high pH with a sharp transition in between, suggesting pH-dependent YREE complexation with large organic ligands released by the algal cells. The fraction of small colloids (3-30 kDa) is generally negligible. The same sorption edge emerged for fresh algal tissue, implying that the release of organic ligands is not caused by pervasive cell rupture. In 0.5 and 5.0 M NaCl solutions the sorption edge is centered around pH 6-8, but in 0.05 M NaCl it occurs around pH 4-6 whence more than 80% of dissolved YREEs is actually bound to

  15. Groundwater activation calculations for E872

    SciTech Connect

    Freeman, W.S.; E872 Collaboration

    1995-08-01

    The E872 beam dump geometry has been modeled in CASIM and calculations have been done to determine the annual limits for protons n target. Results are presented using both the single resident well model (SRWM) and the newly-approved concentration model (CM). The conclusion is that the target/dump design is adequate for the maximum number of protons on target requested by the experiment, which is >1 {times} 10{sup 18} protons per year at 800 GeV.

  16. Determination of equilibrium electron temperature and times using an electron swarm model with BOLSIG+ calculated collision frequencies and rate coefficients

    DOE PAGESBeta

    Pusateri, Elise N.; Morris, Heidi E.; Nelson, Eric M.; Ji, Wei

    2015-08-04

    Electromagnetic pulse (EMP) events produce low-energy conduction electrons from Compton electron or photoelectron ionizations with air. It is important to understand how conduction electrons interact with air in order to accurately predict EMP evolution and propagation. An electron swarm model can be used to monitor the time evolution of conduction electrons in an environment characterized by electric field and pressure. Here a swarm model is developed that is based on the coupled ordinary differential equations (ODEs) described by Higgins et al. (1973), hereinafter HLO. The ODEs characterize the swarm electric field, electron temperature, electron number density, and drift velocity. Importantmore » swarm parameters, the momentum transfer collision frequency, energy transfer collision frequency, and ionization rate, are calculated and compared to the previously reported fitted functions given in HLO. These swarm parameters are found using BOLSIG+, a two term Boltzmann solver developed by Hagelaar and Pitchford (2005), which utilizes updated cross sections from the LXcat website created by Pancheshnyi et al. (2012). We validate the swarm model by comparing to experimental effective ionization coefficient data in Dutton (1975) and drift velocity data in Ruiz-Vargas et al. (2010). In addition, we report on electron equilibrium temperatures and times for a uniform electric field of 1 StatV/cm for atmospheric heights from 0 to 40 km. We show that the equilibrium temperature and time are sensitive to the modifications in the collision frequencies and ionization rate based on the updated electron interaction cross sections.« less

  17. Determination of equilibrium electron temperature and times using an electron swarm model with BOLSIG+ calculated collision frequencies and rate coefficients

    NASA Astrophysics Data System (ADS)

    Pusateri, Elise N.; Morris, Heidi E.; Nelson, Eric M.; Ji, Wei

    2015-08-01

    Electromagnetic pulse (EMP) events produce low-energy conduction electrons from Compton electron or photoelectron ionizations with air. It is important to understand how conduction electrons interact with air in order to accurately predict EMP evolution and propagation. An electron swarm model can be used to monitor the time evolution of conduction electrons in an environment characterized by electric field and pressure. Here a swarm model is developed that is based on the coupled ordinary differential equations (ODEs) described by Higgins et al. (1973), hereinafter HLO. The ODEs characterize the swarm electric field, electron temperature, electron number density, and drift velocity. Important swarm parameters, the momentum transfer collision frequency, energy transfer collision frequency, and ionization rate, are calculated and compared to the previously reported fitted functions given in HLO. These swarm parameters are found using BOLSIG+, a two term Boltzmann solver developed by Hagelaar and Pitchford (2005), which utilizes updated cross sections from the LXcat website created by Pancheshnyi et al. (2012). We validate the swarm model by comparing to experimental effective ionization coefficient data in Dutton (1975) and drift velocity data in Ruiz-Vargas et al. (2010). In addition, we report on electron equilibrium temperatures and times for a uniform electric field of 1 StatV/cm for atmospheric heights from 0 to 40 km. It is shown that the equilibrium temperature and time are sensitive to the modifications in the collision frequencies and ionization rate based on the updated electron interaction cross sections.

  18. Determination of equilibrium electron temperature and times using an electron swarm model with BOLSIG+ calculated collision frequencies and rate coefficients

    SciTech Connect

    Pusateri, Elise N.; Morris, Heidi E.; Nelson, Eric M.; Ji, Wei

    2015-08-04

    Electromagnetic pulse (EMP) events produce low-energy conduction electrons from Compton electron or photoelectron ionizations with air. It is important to understand how conduction electrons interact with air in order to accurately predict EMP evolution and propagation. An electron swarm model can be used to monitor the time evolution of conduction electrons in an environment characterized by electric field and pressure. Here a swarm model is developed that is based on the coupled ordinary differential equations (ODEs) described by Higgins et al. (1973), hereinafter HLO. The ODEs characterize the swarm electric field, electron temperature, electron number density, and drift velocity. Important swarm parameters, the momentum transfer collision frequency, energy transfer collision frequency, and ionization rate, are calculated and compared to the previously reported fitted functions given in HLO. These swarm parameters are found using BOLSIG+, a two term Boltzmann solver developed by Hagelaar and Pitchford (2005), which utilizes updated cross sections from the LXcat website created by Pancheshnyi et al. (2012). We validate the swarm model by comparing to experimental effective ionization coefficient data in Dutton (1975) and drift velocity data in Ruiz-Vargas et al. (2010). In addition, we report on electron equilibrium temperatures and times for a uniform electric field of 1 StatV/cm for atmospheric heights from 0 to 40 km. We show that the equilibrium temperature and time are sensitive to the modifications in the collision frequencies and ionization rate based on the updated electron interaction cross sections.

  19. Heteroleptic diimine copper(I) complexes with large extinction coefficients: synthesis, quantum chemistry calculations and physico-chemical properties.

    PubMed

    Sandroni, Martina; Kayanuma, Megumi; Rebarz, Mateusz; Akdas-Kilig, Huriye; Pellegrin, Yann; Blart, Errol; Le Bozec, Hubert; Daniel, Chantal; Odobel, Fabrice

    2013-10-28

    Using the HETPHEN approach, five new heteroleptic copper(I) complexes composed of a push-pull 4,4'-styryl-6,6'-dimethyl-2,2'-bipyridine ligand and a bulky bis[(2-diphenylphosphino)phenyl]-ether (DPEphos) or a bis2,9-mesityl phenanthroline (Mes2Phen) were prepared and characterized by electronic absorption spectroscopy, electrochemistry, and TD-DFT calculations. These complexes exhibit very intense absorption bands in the visible region with extinction coefficient in the range of 5-7 × 10(4) M(-1) cm(-1). The analysis of the position, intensity and band shape indicates a strong contribution from an intra-ligand charge-transfer transition centered on the styrylbipyridine ligand along with MLCT transitions. These new complexes experimentally demonstrate that good light harvesting properties with bis-diimine copper(I) complexes are a reality if one chooses suitable ligands in the coordination sphere. This constitutes a milestone towards using bis-diimine copper(I) complexes for solar energy conversion (artificial photosynthesis and solar cells). PMID:23986261

  20. Measurement and calculation of second-harmonic generation in single-crystal spheres: application to d coefficients of D-mannitol, ?

    NASA Astrophysics Data System (ADS)

    Kaminsky, W.; Fitzmaurice, A. J.; Glazer, A. M.

    1998-04-01

    The measurement of d coefficients from second-harmonic efficiencies in crystal spheres is studied. 0022-3727/31/7/003/img2 is used as a reference for measurements in spheres and with the Maker-fringes technique. As an example, unknown d coefficients in an orthorhombic mannitol, 0022-3727/31/7/003/img3, in which large coefficients of optical rotation have recently been measured, are determined as 0022-3727/31/7/003/img4 and compared with a calculation performed with a dipole-dipole interaction model in which the effect of the electric field of a light wave on the crystal structure is applied. Modelling of the basic parameters in the calculation gives good agreement with the experimentally derived values. The accuracy in determining the d coefficients, achievable with spheres is limited to 20%.

  1. Temperature-dependent solubilities and mean ionic activity coefficients of alkali halides in water from molecular dynamics simulations.

    PubMed

    Mester, Zoltan; Panagiotopoulos, Athanassios Z

    2015-07-28

    The mean ionic activity coefficients of aqueous KCl, NaF, NaI, and NaCl solutions of varying concentrations have been obtained from molecular dynamics simulations following a recently developed methodology based on gradual insertions of salt molecules [Z. Mester and A. Z. Panagiotopoulos, J. Chem. Phys. 142, 044507 (2015)]. The non-polarizable ion models of Weerasinghe and Smith [J. Chem. Phys. 119, 11342 (2003)], Gee et al. [J. Chem. Theory Comput. 7, 1369 (2011)], Reiser et al. [J. Chem. Phys. 140, 044504 (2014)], and Joung and Cheatham [J. Phys. Chem. B 112, 9020 (2008)] were used along with the extended simple point charge (SPC/E) water model [Berendsen et al., J. Phys. Chem. 91, 6269 (1987)] in the simulations. In addition to the chemical potentials in solution used to obtain the activity coefficients, we also calculated the chemical potentials of salt crystals and used them to obtain the solubility of these alkali halide models in SPC/E water. The models of Weerasinghe and Smith [J. Chem. Phys. 119, 11342 (2003)] and Gee et al. [J. Chem. Theory Comput. 7, 1369 (2011)] provide excellent predictions of the mean ionic activity coefficients at 298.15 K and 1 bar, but significantly underpredict or overpredict the solubilities. The other two models generally predicted the mean ionic activity coefficients only qualitatively. With the exception of NaF for which the solubility is significantly overpredicted, the model of Joung and Cheatham predicts salt solubilities that are approximately 40%-60% of the experimental values. The models of Reiser et al. [J. Chem. Phys. 140, 044504 (2014)] make good predictions for the NaCl and NaI solubilities, but significantly underpredict the solubilities for KCl and NaF. We also tested the transferability of the models to temperatures much higher than were used to parametrize them by performing simulations for NaCl at 373.15 K and 1 bar, and at 473.15 K and 15.5 bar. All models overpredict the drop in the values of mean ionic

  2. Temperature-dependent solubilities and mean ionic activity coefficients of alkali halides in water from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Mester, Zoltan; Panagiotopoulos, Athanassios Z.

    2015-07-01

    The mean ionic activity coefficients of aqueous KCl, NaF, NaI, and NaCl solutions of varying concentrations have been obtained from molecular dynamics simulations following a recently developed methodology based on gradual insertions of salt molecules [Z. Mester and A. Z. Panagiotopoulos, J. Chem. Phys. 142, 044507 (2015)]. The non-polarizable ion models of Weerasinghe and Smith [J. Chem. Phys. 119, 11342 (2003)], Gee et al. [J. Chem. Theory Comput. 7, 1369 (2011)], Reiser et al. [J. Chem. Phys. 140, 044504 (2014)], and Joung and Cheatham [J. Phys. Chem. B 112, 9020 (2008)] were used along with the extended simple point charge (SPC/E) water model [Berendsen et al., J. Phys. Chem. 91, 6269 (1987)] in the simulations. In addition to the chemical potentials in solution used to obtain the activity coefficients, we also calculated the chemical potentials of salt crystals and used them to obtain the solubility of these alkali halide models in SPC/E water. The models of Weerasinghe and Smith [J. Chem. Phys. 119, 11342 (2003)] and Gee et al. [J. Chem. Theory Comput. 7, 1369 (2011)] provide excellent predictions of the mean ionic activity coefficients at 298.15 K and 1 bar, but significantly underpredict or overpredict the solubilities. The other two models generally predicted the mean ionic activity coefficients only qualitatively. With the exception of NaF for which the solubility is significantly overpredicted, the model of Joung and Cheatham predicts salt solubilities that are approximately 40%-60% of the experimental values. The models of Reiser et al. [J. Chem. Phys. 140, 044504 (2014)] make good predictions for the NaCl and NaI solubilities, but significantly underpredict the solubilities for KCl and NaF. We also tested the transferability of the models to temperatures much higher than were used to parametrize them by performing simulations for NaCl at 373.15 K and 1 bar, and at 473.15 K and 15.5 bar. All models overpredict the drop in the values of mean ionic

  3. Calculating activation energies for temperature compensation in circadian rhythms

    NASA Astrophysics Data System (ADS)

    Bodenstein, C.; Heiland, I.; Schuster, S.

    2011-10-01

    Many biological species possess a circadian clock, which helps them anticipate daily variations in the environment. In the absence of external stimuli, the rhythm persists autonomously with a period of approximately 24 h. However, single pulses of light, nutrients, chemicals or temperature can shift the clock phase. In the case of light- and temperature-cycles, this allows entrainment of the clock to cycles of exactly 24 h. Circadian clocks have the remarkable property of temperature compensation, that is, the period of the circadian rhythm remains relatively constant within a physiological range of temperatures. For several organisms, temperature-regulated processes within the circadian clock have been identified in recent years. However, how these processes contribute to temperature compensation is not fully understood. Here, we theoretically investigate temperature compensation in general oscillatory systems. It is known that every oscillator can be locally temperature compensated around a reference temperature, if reactions are appropriately balanced. A balancing is always possible if the control coefficient with respect to the oscillation period of at least one reaction in the oscillator network is positive. However, for global temperature compensation, the whole physiological temperature range is relevant. Here, we use an approach which leads to an optimization problem subject to the local balancing principle. We use this approach to analyse different circadian clock models proposed in the literature and calculate activation energies that lead to temperature compensation.

  4. Extending the Diffuse Layer Model of Surface Acidity Behavior: III. Estimating Bound Site Activity Coefficients

    EPA Science Inventory

    Although detailed thermodynamic analyses of the 2-pK diffuse layer surface complexation model generally specify bound site activity coefficients for the purpose of accounting for those non-ideal excess free energies contributing to bound site electrochemical potentials, in applic...

  5. Activity Coefficients of Acetone-Chloroform Solutions: An Undergraduate Experiment. Undergraduate Experiment.

    ERIC Educational Resources Information Center

    Ozog, J. Z.; Morrison, J. A.

    1983-01-01

    Presents information, laboratory procedures, and results of an undergraduate experiment in which activity coefficients for a two-component liquid-vapor system are determined. Working in pairs, students can perform the experiment with 10 solutions in a given three-hour laboratory period. (Author/JN)

  6. Chemical Potentials, Activity Coefficients, and Solubility in Aqueous NaCl Solutions: Prediction by Polarizable Force Fields.

    PubMed

    Moučka, Filip; Nezbeda, Ivo; Smith, William R

    2015-04-14

    We describe a computationally efficient molecular simulation methodology for calculating the concentration dependence of the chemical potentials of both solute and solvent in aqueous electrolyte solutions, based on simulations of the salt chemical potential alone. We use our approach to study the predictions for aqueous NaCl solutions at ambient conditions of these properties by the recently developed polarizable force fields (FFs) AH/BK3 of Kiss and Baranyai (J. Chem. Phys. 2013, 138, 204507) and AH/SWM4-DP of Lamoureux and Roux (J. Phys. Chem. B 2006, 110, 3308 - 3322) and by the nonpolarizable JC FF of Joung and Cheatham tailored to SPC/E water (J. Phys. Chem. B 2008, 112, 9020 - 9041). We also consider their predictions of the concentration dependence of the electrolyte activity coefficient, the crystalline solid chemical potential, the electrolyte solubility, and the solution specific volume. We first highlight the disagreement in the literature concerning calculations of solubility by means of molecular simulation in the case of the JC FF and provide strong evidence of the correctness of our methodology based on recent independently obtained results for this important test case. We then compare the predictions of the three FFs with each other and with experiment and draw conclusions concerning their relative merits, with particular emphasis on the salt chemical potential and activity coefficient vs concentration curves and their derivatives. The latter curves have only previously been available from Kirkwood-Buff integrals, which require approximate numerical integrations over system pair correlation functions at each concentration. Unlike the case of the other FFs, the AH/BK3 curves are nearly parallel to the corresponding experimental curves at moderate and higher concentrations. This leads to an excellent prediction of the water chemical potential via the Gibbs-Duhem equation and enables the activity coefficient curve to be brought into excellent agreement

  7. The effect of NPS calculation method on power-law coefficient estimation accuracy in breast texture modeling

    NASA Astrophysics Data System (ADS)

    Li, Zhijin; Carton, Ann-Katherine; Muller, Serge; Iordache, Rǎzvan; Desolneux, Agnès.

    2015-03-01

    In breast X-ray imaging, breast texture has been characterized by a radial noise power spectrum (NPS) that has an inverse power-law shape with exponent β. The technique to estimate the radial power-law coefficient β is typically based on averaging 2-dimensional noise power spectra (NPS), calculated from partly overlapping image regions each weighted by a suitable window function. The linear regression applied over a selected frequency range to the logarithm of the 1- dimensional NPS as a function of the logarithm of the radial frequencies, gives β. For each step in this process, several alternative techniques have been proposed. This paper investigates the effect of image region of interest (ROI) size, image data windowing and alternative ways to determine radial frequency in terms of bias, variance and root mean square error (RMSE) in the estimated β. The effects of these three factors were analytically derived and evaluated using synthetic images with known β varying from 1 to 4 to cover the range of textures encountered in 2D and 3D breast X-ray imaging. Our results indicate that the RMSE in estimated β is smallest when the ROIs are multiplied with an appropriate window function and either no radial averaging or radial averaging with small frequency bins is applied. The ROI size yielding the smallest RMSE depends on several factors and needs to be validated with numerical simulations. In clinical practice however, there might be a need to compromise in the choice of the ROI size to balance between the RMSE magnitudes inherent to the applied β estimation technique and encompass the breast texture range so as to obtain an accurate shape of the NPS. When using 2.56 cm x 2.56 cm ROI sizes, applying a 2D Hann window and no radial frequency averaging, the RMSE in the estimated β ranges from 0.04 to 0.1 for true β values equal to 1 and 4. While many subtleties in real images were not modeled to simplify the mathematics in deriving our results, this work is

  8. Comparison of aerodynamic coefficients obtained from theoretical calculations wind tunnel tests and flight tests data reduction for the alpha jet aircraft

    NASA Technical Reports Server (NTRS)

    Guiot, R.; Wunnenberg, H.

    1980-01-01

    The methods by which aerodynamic coefficients are determined and discussed. These include: calculations, wind tunnel experiments and experiments in flight for various prototypes of the Alpha Jet. A comparison of obtained results shows good correlation between expectations and in-flight test results.

  9. Modeling Secondary Organic Aerosols over Europe: Impact of Activity Coefficients and Viscosity

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Sartelet, K.; Couvidat, F.

    2014-12-01

    Semi-volatile organic species (SVOC) can condense on suspended particulate materials (PM) in the atmosphere. The modeling of condensation/evaporation of SVOC often assumes that gas-phase and particle-phase concentrations are at equilibrium. However, recent studies show that secondary organic aerosols (SOA) may not be accurately represented by an equilibrium approach between the gas and particle phases, because organic aerosols in the particle phase may be very viscous. The condensation in the viscous liquid phase is limited by the diffusion from the surface of PM to its core. Using a surrogate approach to represent SVOC, depending on the user's choice, the secondary organic aerosol processor (SOAP) may assume equilibrium or model dynamically the condensation/evaporation between the gas and particle phases to take into account the viscosity of organic aerosols. The model is implemented in the three-dimensional chemistry-transport model of POLYPHEMUS. In SOAP, activity coefficients for organic mixtures can be computed using UNIFAC for short-range interactions between molecules and AIOMFAC to also take into account the effect of inorganic species on activity coefficients. Simulations over Europe are performed and POLYPHEMUS/SOAP is compared to POLYPHEMUS/H2O, which was previously used to model SOA using the equilibrium approach with activity coefficients from UNIFAC. Impacts of the dynamic approach on modeling SOA over Europe are evaluated. The concentrations of SOA using the dynamic approach are compared with those using the equilibrium approach. The increase of computational cost is also evaluated.

  10. Calculation of dose coefficients for radionuclides produced in a spallation neutron source utilizing NUBASE and the evaluated nuclear structure data file databases.

    PubMed

    Shanahan, J; Eckerman, K; Arndt, A; Gold, C; Patton, P; Rudin, M; Brey, R; Gesell, T; Rusetski, V; Pagava, S

    2006-01-01

    Based on a mercury spallation neutron source target, the UNLV Transmutation Research Program has identified 72 radionuclides with a half-life greater than or equal to a minute as lacking an appropriate reference for a published dose coefficient according to existing radiation safety dose coefficient databases. A method was developed to compare the nuclear data presented in the ENSDF and NUBASE databases for these 72 radionuclides. Due to conflicting or lacking nuclear data in one or more of the databases, internal and external dose coefficient values have been calculated for only 14 radionuclides, which are not currently presented in Federal Guidance Reports Nos. 11, 12, and 13 or Publications 68 and 72 of the International Commission on Radiological Protection. Internal dose coefficient values are reported for inhalation and ingestion of 1 microm and 5 microm AMAD particulates along with the f1 values and absorption types for the adult worker. Internal dose coefficient values are also reported for inhalation and ingestion of 1 microm AMAD particulates as well as the f1 values and absorption types for members of the public. Additionally, external dose coefficient values for air submersion, exposure to contaminated ground surface, and exposure to soil contaminated to an infinite depth are also presented. PMID:16340608

  11. Effect of absorption parameters on calculation of the dose coefficient: example of classification of industrial uranium compounds.

    PubMed

    Chazel, V; Houpert, P; Paquet, F; Ansoborlo, E

    2001-01-01

    In the Human Respiratory Tract Model (HRTM) described in ICRP Publication 66, time-dependent dissolution is described by three parameters: the fraction dissolved rapidly, fr, and the rapid and slow dissolution rates sr and ss. The effect of these parameters on the dose coefficient has been studied. A theoretical analysis was carried out to determine the sensitivity of the dose coefficient to variations in the values of these absorption parameters. Experimental values of the absorption parameters and the doses per unit intake (DPUI) were obtained from in vitro dissolution tests, or from in vivo experiments with rats, for five industrial uranium compounds UO2, U3O8, UO4, UF4 and a mixture of uranium oxides. These compounds were classified in terms of absorption types (F, M or S) according to ICRP. The overall result was that the factor which has the greatest influence on the dose coefficient was the slow dissolution rate ss. This was verified experimentally, with a variation of 20% to 55% for the DPUI according to the absorption type of the compound. In contrast, the rapid dissolution rate sr had little effect on the dose coefficient, excepted for Type F compounds. PMID:11487809

  12. Variations in Soil Properties and Herbicide Sorption Coefficients with Depth in Relation to PRZM (Pesticide Root Zone Model) Calculations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are few experimental data available on how herbicide sorption coefficients change across small increments within soil profiles. Soil profiles were obtained from three landform elements (eroded upper slope, deposition zone, and eroded waterway) in a strongly eroded agricultural field and segmen...

  13. A subtle calculation method for nanoparticle’s molar extinction coefficient: The gift from discrete protein-nanoparticle system on agarose gel electrophoresis

    NASA Astrophysics Data System (ADS)

    Zhong, Ruibo; Yuan, Ming; Gao, Haiyang; Bai, Zhijun; Guo, Jun; Zhao, Xinmin; Zhang, Feng

    2016-03-01

    Discrete biomolecule-nanoparticle (NP) conjugates play paramount roles in nanofabrication, in which the key is to get the precise molar extinction coefficient of NPs. By making best use of the gift from a specific separation phenomenon of agarose gel electrophoresis (GE), amphiphilic polymer coated NP with exact number of bovine serum albumin (BSA) proteins can be extracted and further experimentally employed to precisely calculate the molar extinction coefficient of the NPs. This method could further benefit the evaluation and extraction of any other dual-component NP-containing bio-conjugates.

  14. Improved estimation of solubility and partitioning through correction of UNIFAC-derived activity coefficients

    SciTech Connect

    Banerjee, S.; Howard, P.H.

    1988-07-01

    Octanol-water partition coefficients (K/sub ow/) of 75 compounds ranging over 9 orders of magnitude are correlated by log K/sub ow/ = -0.40 + 0.73 log (..gamma../sub W/)/sub U/ -0.39 log (..gamma../sub 0/)/sub U/ (r = 0.98), where (..gamma..//sub W/)/sub U/ and (..gamma../sub 0/)/sub U/ are UNIFAC-derived activity coefficients in water and octanol, respectively. The constants 0.73 and -0.39 are obtained empirically and are intended to compensate for group nonadditivity. Correction factors of similar magnitude are obtained in independent correlations of water solubility with (..gamma../sub W/)/sub U/ and of octanol solubility with (..gamma../sub 0/)/sub U/, thereby confirming the validity of the approach.

  15. SAS and SPSS macros to calculate standardized Cronbach's alpha using the upper bound of the phi coefficient for dichotomous items.

    PubMed

    Sun, Wei; Chou, Chih-Ping; Stacy, Alan W; Ma, Huiyan; Unger, Jennifer; Gallaher, Peggy

    2007-02-01

    Cronbach's a is widely used in social science research to estimate the internal consistency of reliability of a measurement scale. However, when items are not strictly parallel, the Cronbach's a coefficient provides a lower-bound estimate of true reliability, and this estimate may be further biased downward when items are dichotomous. The estimation of standardized Cronbach's a for a scale with dichotomous items can be improved by using the upper bound of coefficient phi. SAS and SPSS macros have been developed in this article to obtain standardized Cronbach's a via this method. The simulation analysis showed that Cronbach's a from upper-bound phi might be appropriate for estimating the real reliability when standardized Cronbach's a is problematic. PMID:17552473

  16. Efficiency and accuracy of the perturbation response coefficient generation method for whole core comet calculations in BWR and CANDU configurations

    SciTech Connect

    Zhang, D.; Rahnema, F.

    2013-07-01

    The coarse mesh transport method (COMET) is a highly accurate and efficient computational tool which predicts whole-core neutronics behaviors for heterogeneous reactor cores via a pre-computed eigenvalue-dependent response coefficient (function) library. Recently, a high order perturbation method was developed to significantly improve the efficiency of the library generation method. In that work, the method's accuracy and efficiency was tested in a small PWR benchmark problem. This paper extends the application of the perturbation method to include problems typical of the other water reactor cores such as BWR and CANDU bundles. It is found that the response coefficients predicted by the perturbation method for typical BWR bundles agree very well with those directly computed by the Monte Carlo method. The average and maximum relative errors in the surface-to-surface response coefficients are 0.02%-0.05% and 0.06%-0.25%, respectively. For CANDU bundles, the corresponding quantities are 0.01%-0.05% and 0.04% -0.15%. It is concluded that the perturbation method is highly accurate and efficient with a wide range of applicability. (authors)

  17. Calculation of friction coefficient and analysis of fluid flow in a stepped micro-channel for wide range of Knudsen number using Lattice Boltzmann (MRT) method

    NASA Astrophysics Data System (ADS)

    Bakhshan, Younes; Omidvar, Alireza

    2015-12-01

    Micro scale gas flows have attracted significant research interest in the last two decades. In this research, the fluid flow of gases in a stepped micro-channel has been conducted. Wide range of Knudsen number has been implemented using the Lattice Boltzmann (MRT) method in this study. A modified second-order slip boundary condition and a Bosanquet-type effective viscosity are used to consider the velocity slip at the boundaries and to cover the slip and transition regimes of flow to obtain an accurate simulation of rarefied gases. The flow specifications such as pressure loss, velocity profile, stream lines and friction coefficient at different conditions have been presented. The results show, good agreement with available experimental data. The calculation shows, that the friction coefficient decreases with increasing the Knudsen number and stepping the micro-channel has an inverse effect on the friction coefficient value. Furthermore, a new correlation is suggested for calculation of the friction coefficient in the stepped micro-channel flows as below;

  18. Solubility parameter and activity coefficient of HDEHP dimer in select organic diluents by vapor pressure osmometry

    SciTech Connect

    Gray, M.; Nilsson, M.; Zalupski, P.

    2013-07-01

    A thorough understanding of the non-ideal behavior of the chemical components utilized in solvent extraction contributes to the success of any large-scale spent nuclear fuel treatment. To address this, our current work uses vapor pressure osmometry to characterize the non-ideal behavior of the solvent extraction agent di-(2-ethylhexyl) phosphoric acid (HDEHP), a common extractant in proposed separation schemes. Solubility parameters were fit to data on HDEHP at four temperatures using models based on Scatchard Hildebrand regular solution theory with Flory Huggins entropic corrections. The results are comparable but not identical to the activity coefficients from prior slope analysis in the literature. (authors)

  19. Experimental Solubility Approach to Determine PDMS-Water Partition Constants and PDMS Activity Coefficients.

    PubMed

    Grant, Sharon; Schacht, Veronika J; Escher, Beate I; Hawker, Darryl W; Gaus, Caroline

    2016-03-15

    Freely dissolved aqueous concentration and chemical activity are important determinants of contaminant transport, fate, and toxic potential. Both parameters are commonly quantified using Solid Phase Micro-Extraction (SPME) based on a sorptive polymer such as polydimethylsiloxane (PDMS). This method requires the PDMS-water partition constants, KPDMSw, or activity coefficient to be known. For superhydrophobic contaminants (log KOW >6), application of existing methods to measure these parameters is challenging, and independent measures to validate KPDMSw values would be beneficial. We developed a simple, rapid method to directly measure PDMS solubilities of solid contaminants, SPDMS(S), which together with literature thermodynamic properties was then used to estimate KPDMSw and activity coefficients in PDMS. PDMS solubility for the test compounds (log KOW 7.2-8.3) ranged over 3 orders of magnitude (4.1-5700 μM), and was dependent on compound class. For polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins (PCDDs), solubility-derived KPDMSw increased linearly with hydrophobicity, consistent with trends previously reported for less chlorinated congeners. In contrast, subcooled liquid PDMS solubilities, SPDMS(L), were approximately constant within a compound class. SPDMS(S) and KPDMSw can therefore be predicted for a compound class with reasonable robustness based solely on the class-specific SPDMS(L) and a particular congener's entropy of fusion, melting point, and aqueous solubility. PMID:26881312

  20. Predicting passive and active tissue:plasma partition coefficients: interindividual and interspecies variability.

    PubMed

    Ruark, Christopher D; Hack, C Eric; Robinson, Peter J; Mahle, Deirdre A; Gearhart, Jeffery M

    2014-07-01

    A mechanistic tissue composition model incorporating passive and active transport for the prediction of steady-state tissue:plasma partition coefficients (K(t:pl)) of chemicals in multiple mammalian species was used to assess interindividual and interspecies variability. This approach predicts K(t:pl) using chemical lipophilicity, pKa, phospholipid membrane binding, and the unbound plasma fraction, together with tissue fractions of water, neutral lipids, neutral and acidic phospholipids, proteins, and pH. Active transport K(t:pl) is predicted using Michaelis-Menten transport parameters. Species-specific biological properties were identified from 126 peer reviewed journal articles, listed in the Supporting Information, for mouse, rat, guinea pig, rabbit, beagle dog, pig, monkey, and human species. Means and coefficients of variation for biological properties were used in a Monte Carlo analysis to assess variability. The results show K(t:pl) interspecies variability for the brain, fat, heart, kidney, liver, lung, muscle, red blood cell, skin, and spleen, but uncertainty in the estimates obscured some differences. Compounds undergoing active transport are shown to have concentration-dependent K(t:pl). This tissue composition-based mechanistic model can be used to predict K(t:pl) for organic chemicals across eight species and 10 tissues, and can be an important component in drug development when scaling K(t:pl) from animal models to humans. PMID:24832575

  1. Relative effectiveness coefficient: a quality characteristic of toothpastes containing active components.

    PubMed

    Borissova, R; Kirova, E

    1996-12-01

    It has been proposed that the parameter of relative effectiveness coefficient (REC) be used for the qualitative assessment of toothpastes containing active ingredients. REC is the ratio between the concentration of the active component in water eluates obtained after three minutes and adequately prolonged (up to the reaching of equilibrium state) dispersion of the toothpaste in distilled water at a 1:4 ratio (condition simulating the use of toothpaste in the oral cavity). The change in REC after storage following its production, as well as testing the toothpaste stability at high and low temperatures, provides an evidence for deviations in its quality. REC was applied for the assessment of toothpastes containing 0.5% zinc citrate as an active ingredient. PMID:8996867

  2. A program for calculating photonic band structures, Green's functions and transmission/reflection coefficients using a non-orthogonal FDTD method

    NASA Astrophysics Data System (ADS)

    Ward, A. J.; Pendry, J. B.

    2000-06-01

    In this paper we present an updated version of our ONYX program for calculating photonic band structures using a non-orthogonal finite difference time domain method. This new version employs the same transparent formalism as the first version with the same capabilities for calculating photonic band structures or causal Green's functions but also includes extra subroutines for the calculation of transmission and reflection coefficients. Both the electric and magnetic fields are placed onto a discrete lattice by approximating the spacial and temporal derivatives with finite differences. This results in discrete versions of Maxwell's equations which can be used to integrate the fields forwards in time. The time required for a calculation using this method scales linearly with the number of real space points used in the discretization so the technique is ideally suited to handling systems with large and complicated unit cells.

  3. Direct measurement and theoretical calculation of the rate coefficient for Cl+CH3 in the range from T=202-298 K.

    PubMed

    Parker, James K; Payne, Walter A; Cody, Regina J; Nesbitt, Fred L; Stief, Louis J; Klippenstein, Stephen J; Harding, Lawrence B

    2007-02-15

    The rate coefficient has been measured under pseudo-first-order conditions for the Cl+CH3 association reaction at T=202, 250, and 298 K and P=0.3-2.0 Torr helium using the technique of discharge-flow mass spectrometry with low-energy (12-eV) electron-impact ionization and collision-free sampling. Cl and CH3 were generated rapidly and simultaneously by reaction of F with HCl and CH4, respectively. Fluorine atoms were produced by microwave discharge in an approximately 1% mixture of F2 in He. The decay of CH3 was monitored under pseudo-first-order conditions with the Cl-atom concentration in large excess over the CH3 concentration ([Cl]0/[CH3]0=9-67). Small corrections were made for both axial and radial diffusion and minor secondary chemistry. The rate coefficient was found to be in the falloff regime over the range of pressures studied. For example, at T=202 K, the rate coefficient increases from 8.4x10(-12) at P=0.30 Torr He to 1.8x10(-11) at P=2.00 Torr He, both in units of cm3 molecule-1 s-1. A combination of ab initio quantum chemistry, variational transition-state theory, and master-equation simulations was employed in developing a theoretical model for the temperature and pressure dependence of the rate coefficient. Reasonable empirical representations of energy transfer and of the effect of spin-orbit interactions yield a temperature- and pressure-dependent rate coefficient that is in excellent agreement with the present experimental results. The high-pressure limiting rate coefficient from the RRKM calculations is k2=6.0x10(-11) cm3 molecule-1 s-1, independent of temperature in the range from 200 to 300 K. PMID:17253663

  4. Measurements and Theoretical Calculations of N2-broadening and N2-shift Coefficients in the v2 band of CH3D

    NASA Technical Reports Server (NTRS)

    Predoi-Cross, A.; Hambrook, Kyle; Brawley-Tremblay, Marco; Bouanich, J. P.; Smith, Mary Ann H.

    2006-01-01

    In this paper, we report measured Lorentz N2-broadening and N2-induced pressure-shift coefficients of CH3D in the v2 fundamental band using a multispectrum fitting technique. These measurements were made by analyzing 11 laboratory absorption spectra recorded at 0.0056 cm(exp -1) resolution using the McMath-Pierce Fourier transform spectrometer located at the National Solar Observatory on Kitt Peak, Arizona. The spectra were obtained using two absorption cells with path lengths of 10.2 and 25 cm. The total sample pressures ranged from 0.98 to 402.25 Torr with CH3D volume mixing ratios of 0.01 in nitrogen. We have been able to determine the N2 pressure- broadening coefficients of 368 v2 transitions with quantum numbers as high as J"= 20 and K = 16, where K" = K' equivalent to K (for a parallel band). The measured N2-broadening coefficients range from 0.0248 to 0.0742 cm(exp -1) atm(exp -1) at 296 K. All the measured pressure-shifts are negative. The reported N2-induced pressure-shift coefficients vary from about 0.0003 to 0.0094 cm(exp -1) atm(exp -1). We have examined the dependence of the measured broadening and shift parameters on the J", and K quantum numbers and also developed empirical expressions to describe the broadening coefficients in terms of m (m = -J", J", and J" + 1 in the (sup Q)P-, (sup Q)Q-, and (sup Q)R-branch, respectively) and K. On average, the empirical expressions reproduce the measured broadening coefficients to within 4.7%. The N2-broadening and pressureshift coefficients were calculated on the basis of a semiclassical model of interacting linear molecules performed by considering in addition to the electrostatic contributions the atom atom Lennard-Jones potential. The theoretical results of the broadening coefficients are in good overall agreement with the experimental data (8.7%). The N2-pressure shifts whose vibrational contribution is derived from parameters fitted in the (sup Q)Q-branch of self-induced shifts of CH3D, are also in

  5. Calculation of net emission coefficient of electrical discharge machining arc plasmas in mixtures of nitrogen with graphite, copper and tungsten

    NASA Astrophysics Data System (ADS)

    Adineh, V. R.; Coufal, O.; Bartlova, M.

    2015-10-01

    This work reports theoretical calculations of electrical discharge machining (EDM) radiative properties for mixture systems of N2-C, N2-Cu and N2-W arc plasmas, in the temperature range of 3000-10 000 K, and at 1 and 10 bar pressures. Radiative properties are computed for various plasma sizes as well as vapour proportions. Calculations consider line overlapping with spectrum coverage from 30 to 10 000 nm. Doppler, Natural, Van-der-Waals, Resonance and Stark broadening are taken into account as the line broadening mechanisms. Besides, continuum calculations consider bound-free and free-free emissions along with molecular bands radiation for selected molecular systems. Results show that contamination vapours of EDM electrode have strong influence on the amount of EDM plasma radiation to the surrounding environment. However, comparison of impurities from workpiece with electrode one indicates that Fe vapour has stronger impact on modifying the EDM arc plasma radiative properties, compared to the C, Cu and W species studied in this research.

  6. The calculation of quenching rate coefficients of O2 Herzberg states in collisions with CO2, CO, N2, O2 molecules

    NASA Astrophysics Data System (ADS)

    Kirillov, A. S.

    2014-01-01

    The removal rates of Herzberg states of molecular oxygen O2(cΣu-, v = 0-16), O2(AΔu, v = 0-11), O2(AΣu+, v = 0-10) in the collisions with ground-state CO2, CO, N2, O2 molecules are calculated according to analytical expressions. The study includes a consideration of intramolecular electron energy transfers without and with vibrational excitation of target molecules and intermolecular processes. The preliminary calculations show important role of electronic-vibrational energy transfer processes in the quenching O2(AΣu+, v) + CO2; O2(cΣu-, v) + CO2, CO, N2; O2(AΔu, v) + O2. Reasonable agreement of the calculated rate coefficients with data of laser experimental measurements is obtained.

  7. Calculation of Nonlinear Thermoelectric Coefficients of InAs1- x Sb x Using Monte Carlo Method

    NASA Astrophysics Data System (ADS)

    Banan Sadeghian, Ramin; Bahk, Je-Hyeong; Bian, Zhixi; Shakouri, Ali

    2012-06-01

    It was found that the nonlinear Peltier effect could take place and increase the cooling power density when a lightly doped thermoelectric material is under a large electrical field. This effect is due to the Seebeck coefficient enhancement from an electron distribution far from equilibrium. In the nonequilibrium transport regime, the solution of the Boltzmann transport equation in the relaxation-time approximation ceases to apply. The Monte Carlo method, on the other hand, proves to be a capable tool for simulation of semiconductor devices at small scales as well as thermoelectric effects with local nonequilibrium charge distribution. InAs1- x Sb x is a favorable thermoelectric material for nonlinear operation owing to its high mobility inherited from the binary compounds InSb and InAs. In this work we report simulation results on the nonlinear Peltier power of InAs1- x Sb x at low doping levels, at room temperature and at low temperatures. The thermoelectric power factor in nonlinear operation is compared with the maximum value that can be achieved with optimal doping in the linear transport regime.

  8. Calculation of Nonlinear Thermoelectric Coefficients of InAs1-xSbx Using Monte Carlo Method

    SciTech Connect

    Sadeghian, RB; Bahk, JH; Bian, ZX; Shakouri, A

    2011-12-28

    It was found that the nonlinear Peltier effect could take place and increase the cooling power density when a lightly doped thermoelectric material is under a large electrical field. This effect is due to the Seebeck coefficient enhancement from an electron distribution far from equilibrium. In the nonequilibrium transport regime, the solution of the Boltzmann transport equation in the relaxation-time approximation ceases to apply. The Monte Carlo method, on the other hand, proves to be a capable tool for simulation of semiconductor devices at small scales as well as thermoelectric effects with local nonequilibrium charge distribution. InAs1-xSb is a favorable thermoelectric material for nonlinear operation owing to its high mobility inherited from the binary compounds InSb and InAs. In this work we report simulation results on the nonlinear Peltier power of InAs1-xSb at low doping levels, at room temperature and at low temperatures. The thermoelectric power factor in nonlinear operation is compared with the maximum value that can be achieved with optimal doping in the linear transport regime.

  9. Selected organ dose conversion coefficients for external photons calculated using ICRP adult voxel phantoms and Monte Carlo code FLUKA.

    PubMed

    Patni, H K; Nadar, M Y; Akar, D K; Bhati, S; Sarkar, P K

    2011-11-01

    The adult reference male and female computational voxel phantoms recommended by ICRP are adapted into the Monte Carlo transport code FLUKA. The FLUKA code is then utilised for computation of dose conversion coefficients (DCCs) expressed in absorbed dose per air kerma free-in-air for colon, lungs, stomach wall, breast, gonads, urinary bladder, oesophagus, liver and thyroid due to a broad parallel beam of mono-energetic photons impinging in anterior-posterior and posterior-anterior directions in the energy range of 15 keV-10 MeV. The computed DCCs of colon, lungs, stomach wall and breast are found to be in good agreement with the results published in ICRP publication 110. The present work thus validates the use of FLUKA code in computation of organ DCCs for photons using ICRP adult voxel phantoms. Further, the DCCs for gonads, urinary bladder, oesophagus, liver and thyroid are evaluated and compared with results published in ICRP 74 in the above-mentioned energy range and geometries. Significant differences in DCCs are observed for breast, testis and thyroid above 1 MeV, and for most of the organs at energies below 60 keV in comparison with the results published in ICRP 74. The DCCs of female voxel phantom were found to be higher in comparison with male phantom for almost all organs in both the geometries. PMID:21147784

  10. A new coarse-grained model for E. coli cytoplasm: accurate calculation of the diffusion coefficient of proteins and observation of anomalous diffusion.

    PubMed

    Hasnain, Sabeeha; McClendon, Christopher L; Hsu, Monica T; Jacobson, Matthew P; Bandyopadhyay, Pradipta

    2014-01-01

    A new coarse-grained model of the E. coli cytoplasm is developed by describing the proteins of the cytoplasm as flexible units consisting of one or more spheres that follow Brownian dynamics (BD), with hydrodynamic interactions (HI) accounted for by a mean-field approach. Extensive BD simulations were performed to calculate the diffusion coefficients of three different proteins in the cellular environment. The results are in close agreement with experimental or previously simulated values, where available. Control simulations without HI showed that use of HI is essential to obtain accurate diffusion coefficients. Anomalous diffusion inside the crowded cellular medium was investigated with Fractional Brownian motion analysis, and found to be present in this model. By running a series of control simulations in which various forces were removed systematically, it was found that repulsive interactions (volume exclusion) are the main cause for anomalous diffusion, with a secondary contribution from HI. PMID:25180859

  11. SNS Sample Activation Calculator Flux Recommendations and Validation

    SciTech Connect

    McClanahan, Tucker C.; Gallmeier, Franz X.; Iverson, Erik B.; Lu, Wei

    2015-02-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) uses the Sample Activation Calculator (SAC) to calculate the activation of a sample after the sample has been exposed to the neutron beam in one of the SNS beamlines. The SAC webpage takes user inputs (choice of beamline, the mass, composition and area of the sample, irradiation time, decay time, etc.) and calculates the activation for the sample. In recent years, the SAC has been incorporated into the user proposal and sample handling process, and instrument teams and users have noticed discrepancies in the predicted activation of their samples. The Neutronics Analysis Team validated SAC by performing measurements on select beamlines and confirmed the discrepancies seen by the instrument teams and users. The conclusions were that the discrepancies were a result of a combination of faulty neutron flux spectra for the instruments, improper inputs supplied by SAC (1.12), and a mishandling of cross section data in the Sample Activation Program for Easy Use (SAPEU) (1.1.2). This report focuses on the conclusion that the SAPEU (1.1.2) beamline neutron flux spectra have errors and are a significant contributor to the activation discrepancies. The results of the analysis of the SAPEU (1.1.2) flux spectra for all beamlines will be discussed in detail. The recommendations for the implementation of improved neutron flux spectra in SAPEU (1.1.3) are also discussed.

  12. Electron swarm transport coefficients in mixtures of H2O with He and Ar: Experiment and Boltzmann equation calculations

    NASA Astrophysics Data System (ADS)

    de Urquijo, Jaime; Basurto, E.; Juarez, A. M.; Ness, Kevin; Robson, Robert; Brunger, Michael; White, Ron

    2014-10-01

    The drift velocity of electrons in mixtures of gaseous water with helium and argon are measured over the range of reduced electric fields from 0--300 Td using a pulsed-Townsend technique. Small admixtures of water to both helium and argon are found to produce negative differential conductivity (NDC), despite NDC being absent from the pure gases. Comparison of the measured drift velocities with those calculated from a multi-term solution of Boltzmann's equation provides a further discriminative assessment on the accuracy and completeness of electron water vapour cross-sections. Funding acknowledgements: ARC, Mexican govt (PAPIIT IN 111014).

  13. Estimation of excess energies and activity coefficients for the penternary Ni-Cr-Co-Al-Mo system and its subsystems

    NASA Astrophysics Data System (ADS)

    Dogan, A.; Arslan, H.; Dogan, T.

    2015-06-01

    Using different prediction methods, such as the General Solution Model of Kohler and Muggianu, the excess energy and activities of molybdenum for the sections of the phase diagram for the penternary Ni-Cr-Co-Al-Mo system with mole ratios xNi/ xMo = 1, xCr/ xMo = 1, xCo/ xMo = 1, and xAl/ xMo = r = 0.5 and 1, were thermodynamically investigated at a temperature of 2000 K, whereas the excess energy and activities of Bi for the section corresponding to the ternary Bi-Ga-Sb system with mole ratio xGa/ xSb = 1/9 were thermodynamically investigated at a temperature of 1073 K. In the case of r = 0.5 and 1 in the alloys Ni-Cr-Co-Al-Mo, a positive deviation in the activity coefficient was revealed, as molybdenum content increased. Moreover, in the calculations performed in Chou's GSM model, the obtained values for excess Gibbs energies are negative in the whole concentration range of bismuth at 1073 K and exhibit the minimum of about -2.2 kJ/mol at the mole ratio xGa/ xSb = 1/9 in the alloy Bi-Ga-Sb.

  14. EFFECTS OF COVAPORS ON ADSORPTION RATE COEFFICIENTS OF ORGANIC VAPORS ADSORBED ONTO ACTIVATED CARBON FROM FLOWING AIR

    SciTech Connect

    G. WOOD

    2000-12-01

    Published breakthrough time, adsorption rate, and capacity data for components of organic vapor mixtures adsorbed from flows through fixed activated carbon beds have been analyzed. Capacities (as stoichiometric centers of constant pattern breakthrough curves) yielded stoichiometric times {tau}, which are useful for determining elution orders of mixture components. We also calculated adsorption rate coefficients k{sub v} of the Wheeler (or, more general Reaction Kinetic) breakthrough curve equation, when not reported, from breakthrough times and {tau}. Ninety-five k{sub v} (in mixture)/ k{sub v} (single vapor) ratios at similar vapor concentrations were calculated and averaged for elution order categories. For 43 first-eluting vapors the average ratio (1.07) was statistically no different (0.21 standard deviation) than unity, so that we recommend using the single-vapor k{sub v} for such. Forty-seven second-eluting vapor ratios averaged 0.85 (0.24 standard deviation), also not significantly different from unity; however, other evidence and considerations lead us recommend using k{sub v} (in mixture) = 0.85 k{sub v} (single vapor). Five third- and fourth-eluting vapors gave an average of 0.56 (0.16 standard deviation) for a recommended k{sub v} (in mixture) = 0.56 k{sub v} (single vapor) for such.

  15. Vapor-liquid activity coefficients for methanol and ethanol from heat of solution data: application to steam-methane reforming.

    PubMed

    Kunz, R G; Baade, W F

    2001-11-16

    This paper presents equations and curves to calculate vapor-liquid phase equilibria for methanol and ethanol in dilute aqueous solution as a function of temperature, using activity coefficients at infinite dilution. These thermodynamic functions were originally derived to assess the distribution of by-product contaminants in the process condensate and the steam-system deaerator of a hydrogen plant [Paper ENV-00-171 presented at the NPRA 2000 Environmental Conference, San Antonio, TX, 10-12 September 2000], but have general applicability to other systems as well. The functions and calculation method described here are a necessary piece of an overall prediction technique to estimate atmospheric emissions from the deaerator-vent when the process condensate is recycled as boiler feed water (BFW) make-up. Having such an estimation technique is of particular significance at this time because deaerator-vent emissions are already coming under regulatory scrutiny in California [Emissions from Hydrogen Plant Process Vents, Adopted 21 January 2000] followed closely elsewhere in the US, and eventually worldwide. The overall technique will enable a permit applicant to estimate environmental emissions to comply with upcoming regulations, and a regulatory agency to evaluate those estimates. It may also be useful to process engineers as a tool to estimate contaminant concentrations and flow rates in internal process streams such as the steam-generating system. Metallurgists and corrosion engineers might be able to use the results for materials selection. PMID:11606240

  16. Polynomial coefficients for calculating O2 Schumann-Runge cross sections at 0.5/cm resolution

    NASA Technical Reports Server (NTRS)

    Minschwaner, K.; Anderson, G. P.; Hall, L. A.; Yoshino, K.

    1992-01-01

    O2 cross sections from 49,000 to 57,000/cm have been fitted with temperature dependent polynomial expressions, providing an accurate and efficient means of determining Schumann-Runge band cross sections for temperatures between 130 and 500 K. The least squares fits were carried out on a 0.5/cm spectral grid, using cross sections obtained from a Schumann-Runge line-by-line model that incorporates the most recent spectroscopic data. The O2 cross sections do not include the underlying Herzberg continuum, but they do contain contributions from the temperature dependent Schumann-Runge continuum. The cross sections are suitable for use in UV transmission calculations at high spectral resolution. They should also prove useful for updating existing parameterizations of ultraviolet transmission and O2 photolysis.

  17. Relativistic calculations of radiative properties and fine structure constant varying sensitivity coefficients in the astrophysically relevant Zn II, Si IV and Ti IV ions

    NASA Astrophysics Data System (ADS)

    Nandy, D. K.; Sahoo, B. K.

    2015-03-01

    We have carried out calculations of the relativistic sensitivity coefficients, oscillator strengths, transition probabilities, lifetimes and magnetic dipole hyperfine structure constants for a number of low-lying states in the Zn II, Si IV and Ti IV ions which are abundant in the distant quasars and various stellar plasmas. These spectroscopic data will be very useful for probing temporal variation of the fine structure constant (αe) and in the diagnostic processes of some of the astrophysical plasmas. We have employed all-order perturbative methods in the relativistic coupled-cluster framework using the Dirac-Coulomb Hamiltonian to calculate the atomic wavefunctions of the considered ions. Reference states are constructed with the VN-1 and VN+1 potentials and then the electron-electron correlation effects are taken into account by constructing all possible singly and doubly excited configurations, involving both the core and valence electrons, from the respective reference states. We have also determined one electron affinities and ionization potentials of many excited states in these Zn II, Si IV and Ti IV ions. Except for a few states we have attained accuracies within 1 per cent for the energies compared with their experimental values. Our calculated sensitivity coefficients are estimated to have similar accuracies as of the calculated energies. Furthermore, combining our calculated transition matrix elements with the experimental wavelengths we evaluate transition probabilities, oscillator strengths and lifetimes of some of the excited states in these ions. These results are compared with the available data in a few cases and found to be in very good agreement among themselves. Using our reported hyperfine structure constants due to the dominant magnetic dipole interaction, it is possible to determine hyperfine splittings approximately in the above considered ions.

  18. Recommended Distribution Coefficients, Kd Values, for Special Analysis Risk Calculations Related to Waste Disposal and Tank Closure on the Savannah River Site

    SciTech Connect

    Kaplan, D

    2005-08-31

    The purpose of this document is to provide a technically defensible list of distribution coefficients, or Kd values, for use in performance assessment (PA) and special analysis (SA) calculations on the SRS. Only Kd values for radionuclides that have new information related to them or that have recently been recognized as being important are discussed in this report. Some 150 Kd values are provided in this report for various waste-disposal or tank-closure environments: soil, corrosion in grout, oxidizing grout waste, gravel, clay, and reducing concrete environments. Documentation and justification for the selection of each Kd value is provided.

  19. Bias in Dobson total ozone measurements at high latitudes due to approximations in calculations of ozone absorption coefficients and air mass

    NASA Astrophysics Data System (ADS)

    Bernhard, G.; Evans, R. D.; Labow, G. J.; Oltmans, S. J.

    2005-05-01

    The Dobson spectrophotometer is the primary standard instrument for ground-based measurements of total column ozone. The accuracy of its data depends on the knowledge of ozone absorption coefficients used for data reduction. We document an error in the calculations that led to the set of absorption coefficients currently recommended by the World Meteorological Organisation (WMO). This error has little effect because an empirical adjustment was applied to the original calculations before the coefficients were adopted by WMO. We provide evidence that this adjustment was physically sound. The coefficients recommended by WMO are applied in the Dobson network without correction for the temperature dependence of the ozone absorption cross sections. On the basis of data measured by Dobson numbers 80 and 82, which were operated by the National Oceanic and Atmospheric Administration (NOAA) Climate Monitoring and Diagnostics Laboratory at the South Pole, we find that omission of temperature corrections may lead to systematic errors in Dobson ozone data of up to 4%. The standard Dobson ozone retrieval method further assumes that the ozone layer is located at a fixed height. This approximation leads to errors in air mass calculations, which are particularly relevant at high latitudes where ozone measurements are performed at large solar zenith angles (SZA). At the South Pole, systematic errors caused by this approximation may exceed 2% for SZAs larger than 80°. The bias is largest when the vertical ozone distribution is distorted by the "ozone hole" and may lead to underestimation of total ozone by 4% at SZA = 85° (air mass 9). Dobson measurements at the South Pole were compared with ozone data from a collocated SUV-100 UV spectroradiometer and Version 8 overpass data from NASA's Total Ozone Mapping Spectrometer (TOMS). Uncorrected Dobson ozone values tend to be lower than data from the two other instruments when total ozone is below 170 Dobson units or SZAs are larger than

  20. Osmotic and Activity Coefficients of the {xZnCl2 + (1 - x)ZnSO4}(aq) System at 298.15 K

    SciTech Connect

    Ninkovic, R; Miladinovic, J; Todorovic, M; Grujic, S; Rard, J A

    2006-06-27

    Isopiestic vapor pressure measurements were made for (xZnCl{sub 2} + (1 - x)ZnSO{sub 4})(aq) solutions with ZnCl{sub 2} molality fractions of x = (0, 0.3062, 0.5730, 0.7969, and 1) at the temperature 298.15 K, using KCl(aq) as the reference standard. These measurements cover the water activity range 0.901-0.919 {le} a{sub w} {le} 0.978. The experimental osmotic coefficients were used to evaluate the parameters of an extended ion-interaction (Pitzer) model for these mixed electrolyte solutions. A similar analysis was made of the available activity data for ZnCl{sub 2}(aq) at 298.15 K, while assuming the presence of equilibrium amounts of ZnCl{sup +}(aq) ion-pairs, to derive the ion-interaction parameters for the hypothetical pure binary electrolytes (Zn{sup 2+}, 2Cl{sup -}) and (ZnCl{sup +},Cl{sup -}). These parameters are required for the analysis of the mixture results. Although significant concentrations of higher-order zinc chloride complexes may also be present in these solutions, it was possible to represent the osmotic coefficients accurately by explicitly including only the predominant complex ZnCl{sup +}(aq) and the completely dissociated ions. The ionic activity coefficients and osmotic coefficients were calculated over the investigated molality range using the evaluated extended Pitzer model parameters.

  1. Dynamic changes of integrated backscatter, attenuation coefficient and bubble activities during high-intensity focused ultrasound (HIFU) treatment.

    PubMed

    Zhang, Siyuan; Wan, Mingxi; Zhong, Hui; Xu, Cheng; Liao, Zhenzhong; Liu, Huanqing; Wang, Supin

    2009-11-01

    This paper simultaneously investigated the transient characteristics of integrated backscatter (IBS), attenuation coefficient and bubble activities as time traces before, during and after HIFU treatment, with different HIFU parameters (acoustic power and duty cycle) in both transparent tissue-mimicking phantoms and freshly excised bovine livers. These dynamic changes of acoustic parameters and bubble activities were correlated with the visualization of lesion development selected from photos, conventional B-mode ultrasound images and differential IBS images over the whole procedure of HIFU treatment. Two-dimensional radiofrequency (RF) data were acquired by a modified diagnostic ultrasound scanner to estimate the changes of mean IBS and attenuation coefficient averaged in the lesion region, and to construct the differential IBS images and B-mode ultrasound images simultaneously. Bubble activities over the whole procedure of HIFU treatment were investigated by the passive cavitation detection (PCD) method and the changes in subharmonic and broadband noise were correlated with the transient characteristics of IBS and attenuation coefficient. When HIFU was switched on, IBS and attenuation coefficient increased with the appearance of bubble clouds in the B-mode and differential IBS image. At the same time, the level of subharmonic and broadband noise rose abruptly. Then, there was an initial decrease in the attenuation coefficient, followed by an increase when at lower HIFU power. As the lesion appeared, IBS and attenuation coefficient both increased rapidly to a value twice that of normal. Then the changes in IBS and attenuation coefficient showed more complex patterns, but still showed a slower trend of increases with lesion development. Violent bubble activities were visible in the gel and were evident as strongly echogenic regions in the differential IBS images and B-mode images simultaneously. This was detected by a dramatic high level of subharmonic and broadband

  2. Calculating the permeability coefficients of mixed matrix membranes of polydimethylsiloxane and silicalite crystals to various ethanol-water solutions using molecular simulations.

    EPA Science Inventory

    The permeability coefficients of mixed matrix membranes of polydimethylsiloxane (PDMS) and silicalite crystal are taken as the sum of the permeability coefficients of membrane components each weighted by their associated mass fraction. The permeability coefficient of a membrane c...

  3. Biodegradation of 4-chlorophenol by acclimated and unacclimated activated sludge-Evaluation of biokinetic coefficients

    SciTech Connect

    Sahinkaya, Erkan; Dilek, Filiz B. . E-mail: fdilek@metu.edu.tr

    2005-10-01

    Unacclimated and acclimated activated sludges were examined for their ability to degrade 4-CP (4-chlorophenol) in the presence and absence of a readily growing substrate using aerobic batch reactors. The effects of 4-CP on the {mu} (specific growth rate), COD removal efficiency, Y (yield coefficient), and q (specific substrate utilization rate) were investigated. It was observed that the toxicity of 4-CP on the culture decreased remarkably after acclimation. For example, the IC{sub 50} value on the basis of {mu} was found to increase from 130 to 218mg/L with the acclimation of the culture. Although an increase in 4-CP concentration up to 300mg/L has no adverse effect on the COD removal efficiency of the acclimated culture, a considerable decrease was observed in the case of an unacclimated culture. Although 4-CP removal was not observed with an unacclimated culture, almost complete removal was achieved with the acclimated culture, up to 300mg/L. The Haldane kinetic model adequately predicted the biodegradation of 4-CP and the kinetic constants obtained were q{sub m}=41.17mg/(gMLVSSh), K{sub s}=1.104mg/L, and K{sub i}=194.4mg/L. The degradation of 4-CP led to formation of 5-chloro-2-hydroxymuconic semialdehyde, which was further metabolized, indicating complete degradation of 4-CP via a meta-cleavage pathway.

  4. Lab-scale experimental strategy for determining micropollutant partition coefficient and biodegradation constants in activated sludge.

    PubMed

    Pomiès, M; Choubert, J M; Wisniewski, C; Miège, C; Budzinski, H; Coquery, M

    2015-03-01

    The nitrifying/denitrifying activated sludge process removes several micropollutants from wastewater by sorption onto sludge and/or biodegradation. The objective of this paper is to propose and evaluate a lab-scale experimental strategy for the determination of partition coefficient and biodegradation constant for micropollutant with an objective of modelling their removal. Four pharmaceutical compounds (ibuprofen, atenolol, diclofenac and fluoxetine) covering a wide hydrophobicity range (log Kow from 0.16 to 4.51) were chosen. Dissolved and particulate concentrations were monitored for 4 days, inside two reactors working under aerobic and anoxic conditions, and under different substrate feed conditions (biodegradable carbon and nitrogen). We determined the mechanisms responsible for the removal of the target compounds: (i) ibuprofen was biodegraded, mainly under aerobic conditions by cometabolism with biodegradable carbon, whereas anoxic conditions suppressed biodegradation; (ii) atenolol was biodegraded under both aerobic and anoxic conditions (with a higher biodegradation rate under aerobic conditions), and cometabolism with biodegradable carbon was the main mechanism; (iii) diclofenac and fluoxetine were removed by sorption only. Finally, the abilities of our strategy were evaluated by testing the suitability of the parameters for simulating effluent concentrations and removal efficiency at a full-scale plant. PMID:25300180

  5. Influences of the chemical structure of entrainers on the activity coefficients in presence of biodiesel

    NASA Astrophysics Data System (ADS)

    Mäder, A.; Fleischmann, A.; Fang, Ye; Ruck, W.; Krahl, J.

    2012-05-01

    In this work we analyzed the strength of the intermolecular forces between biodiesel and the entrainer and their influence on the entrainer's ability to interact with biodiesel. Furthermore we investigated the influence of the chemical structure of an entrainer to the interaction with biodiesel. For this purpose the activity coefficients γ∞ at infinite dilution of acids, aldehydes, ketones and alcohols in biodiesel were measured with the method of headspace gas chromatography (HSGC). Short-chained acids showed the highest interaction of the analyzed entrainers caused by their ability to build hydrogen bonds with biodiesel. Increased chain length of the acids cause reduced interaction with biodiesel, which is mainly due to the higher obstruction of the acid molecule and therefore the reduced ability to build hydrogen bonds with biodiesel. Aldehydes, ketones and alcohols showed lower interaction with biodiesel compared to the acids. Longer-chained alcohols showed increased interaction with biodiesel due to the raised London Forces and an inductive +I effect of the molecule chain.

  6. Measurement and Modeling of Mean Activity Coefficients of NaCl in an Aqueous Mixed Electrolyte Solution Containing Glycine

    NASA Astrophysics Data System (ADS)

    Sheikholeslami, Paniz; Dehghani, M. R.; Safahieh, Tina

    2016-08-01

    An electrochemical cell with two ion-selective electrodes (Na+ glass) and (Cl- solid state) was used to measure the mean ionic activity coefficient of NaCl in an aqueous mixture containing NaCl, glycine, and NaNO3 at 308.15 K. The experiments were conducted at fixed molality of NaNO3 (0.1 m) and various molalities of glycine (0-1 m) and NaCl (up to 0.8 m). The experimental data were modeled using a modified version of the Pitzer equation. Finally the activity coefficient ratio of glycine was determined based on the Maxwell equation.

  7. Active neutron multiplicity analysis and Monte Carlo calculations

    NASA Astrophysics Data System (ADS)

    Krick, M. S.; Ensslin, N.; Langner, D. G.; Miller, M. C.; Siebelist, R.; Stewart, J. E.; Ceo, R. N.; May, P. K.; Collins, L. L., Jr.

    Active neutron multiplicity measurements of high-enrichment uranium metal and oxide samples have been made at Los Alamos and Y-12. The data from the measurements of standards at Los Alamos were analyzed to obtain values for neutron multiplication and source-sample coupling. These results are compared to equivalent results obtained from Monte Carlo calculations. An approximate relationship between coupling and multiplication is derived and used to correct doubles rates for multiplication and coupling. The utility of singles counting for uranium samples is also examined.

  8. Element analysis and calculation of the attenuation coefficients for gold, bronze and water matrixes using MCNP, WinXCom and experimental data

    NASA Astrophysics Data System (ADS)

    Esfandiari, M.; Shirmardi, S. P.; Medhat, M. E.

    2014-06-01

    In this study, element analysis and the mass attenuation coefficient for matrixes of gold, bronze and water with various impurities and the concentrations of heavy metals (Cu, Mn, Pb and Zn) are evaluated and calculated by the MCNP simulation code for photons emitted from Barium-133, Americium-241 and sources with energies between 1 and 100 keV. The MCNP data are compared with the experimental data and WinXCom code simulated results by Medhat. The results showed that the obtained results of bronze and gold matrix are in good agreement with the other methods for energies above 40 and 60 keV, respectively. However for water matrixes with various impurities, there is a good agreement between the three methods MCNP, WinXCom and the experimental one in low and high energies.

  9. Vapor pressure measurements on non-aqueous electrolyte solutions. Part 2. Tetraalkylammonium salts in methanol. Activity coefficients of various 1-1 electrolytes at high concentrations

    SciTech Connect

    Barthel, J.; Lauermann, G.; Neueder, R.

    1986-10-01

    Precise vapor pressure data for solutions of Et/sub 4/NBr, Bu/sub 4/NBr, Bu/sub 4/Nl, Bu/sub 4/NClO/sub 4/, and Am/sub 4/NBr in methanol at 25/sup 0/C in the concentration range 0.04 < m(mol-(kg of solvent)/sup -1/) < 1.6 are communicated and discussed. Polynomials in molalities are given which may be used for calculating precise vapor pressure depressions of these solutions. Osmotic coefficients are calculated by taking into account the second virial coefficient of methanol vapor. Discussion of the data at low concentrations is based on the chemical model of electrolyte solutions taking into account non-coulombic interactions; ion-pair association constants are compared to those of conductance measurements. Pitzer equations are used to reproduce osmotic and activity coefficient at high concentrations; the set of Pitzer parameters b = 3.2, ..cap alpha../sub 1/ = 2.0 and ..cap alpha../sub 2/ = 20.0 is proposed for methanol solutions.

  10. Factor Scores, Structure Coefficients, and Communality Coefficients

    ERIC Educational Resources Information Center

    Goodwyn, Fara

    2012-01-01

    This paper presents heuristic explanations of factor scores, structure coefficients, and communality coefficients. Common misconceptions regarding these topics are clarified. In addition, (a) the regression (b) Bartlett, (c) Anderson-Rubin, and (d) Thompson methods for calculating factor scores are reviewed. Syntax necessary to execute all four…

  11. Tables for simplifying calculations of activities produced by thermal neutrons

    USGS Publications Warehouse

    Senftle, F.E.; Champion, W.R.

    1954-01-01

    The method of calculation described is useful for the types of work of which examples are given. It is also useful in making rapid comparison of the activities that might be expected from several different elements. For instance, suppose it is desired to know which of the three elements, cobalt, nickel, or vanadium is, under similar conditions, activated to the greatest extent by thermal neutrons. If reference is made to a cross-section table only, the values may be misleading unless properly interpreted by a suitable comparison of half-lives and abundances. In this table all the variables have been combined and the desired information can be obtained directly from the values of A 3??, the activity produced per gram per second of irradiation, under the stated conditions. Hence, it is easily seen that, under similar circumstances of irradiation, vanadium is most easily activated even though the cross section of one of the cobalt isotopes is nearly five times that of vanadium and the cross section of one of the nickel isotopes is three times that of vanadium. ?? 1954 Societa?? Italiana di Fisica.

  12. Activity coefficients of aqueous sodium chloride from 15° to 50°C measured with a glass electrode

    USGS Publications Warehouse

    Truesdell, A.H.

    1968-01-01

    Values of the mean activity coefficient of sodium chloride at 15°, 25°, 38° and 50°C were determined for aqueous NaCl solutions of 0.01 to 1.0 molal from electromotive force measurements on the cell: (sodium-sensitive glass electrode, aqueous sodium chloride, silver chloride-silver).

  13. COMPUTATIONAL CHEMISTRY METHOD FOR PREDICTING VAPOR PRESSURES AND ACTIVITY COEFFICIENTS OF POLAR ORGANIC OXYGENATES IN PM2.5

    EPA Science Inventory

    Parameterizations of interactions of polar multifunctional organic oxygenates in PM2.5 must be included in aerosol chemistry models for evaluating control strategies for reducing ambient concentrations of PM2.5 compounds. Vapor pressures and activity coefficients of these compo...

  14. Soil biological activity at European scale - two calculation concepts

    NASA Astrophysics Data System (ADS)

    Krüger, Janine; Rühlmann, Jörg

    2014-05-01

    The CATCH-C project aims to identify and improve the farm-compatibility of Soil Management Practices including to promote productivity, climate change mitigation and soil quality. The focus of this work concentrates on turnover conditions for soil organic matter (SOM). SOM is fundamental for the maintenance of quality and functions of soils while SOM storage is attributed a great importance in terms of climate change mitigation. The turnover conditions depend on soil biological activity characterized by climate and soil properties. To assess the turnover conditions two model concepts are applied: (I) Biological active time (BAT) regression approach derived from CANDY model (Franko & Oelschlägel 1995) expresses the variation of air temperature, precipitation and soil texture as a timescale and an indicator of biological activity for soil organic matter (SOM) turnover. (II) Re_clim parameter within the Introductory Carbon Balance Model (Andrén & Kätterer 1997) states the soil temperature and soil water to estimate soil biological activity. The modelling includes two strategies to cover the European scale and conditions. BAT was calculated on a 20x20 km grid basis. The European data sets of precipitation and air temperature (time period 1901-2000, monthly resolution), (Mitchell et al. 2004) were used to derive long-term averages. As we focus on agricultural areas we included CORINE data (2006) to extract arable land. The resulting BATs under co-consideration of the main soil textures (clay, silt, sand and loam) were investigated per environmental zone (ENZs, Metzger et al. 2005) that represents similar conditions for precipitation, temperature and relief to identify BAT ranges and hence turnover conditions for each ENZ. Re_clim was quantified by climatic time series of more than 250 weather stations across Europe presented by Klein Tank et al. (2002). Daily temperature, precipitation and potential evapotranspiration (maximal thermal extent) were used to calculate

  15. Simulation of torrential rain as a means for assessment of surface runoff coefficients and calculation of recurrent design events in alpine catchments

    NASA Astrophysics Data System (ADS)

    Markart, Gerhard; Kohl, Bernhard; Sotier, Bernadette; Klebinder, Klaus; Schauer, Thomas; Bunza, Günther

    2010-05-01

    : http://bfw.ac.at/rz/bfwcms.web?dok=4342 (in German language). The runoff contributing areas delineated by use of the manual in the field can be compiled in digital surface runoff coefficient maps and surface roughness maps. These maps in Austria form the basis for calculation of recurrent design events by use of precipitation/runoff models (P/R-models) like ZEMOKOST (optimized runtime method after Zeller = ZEller MOdified by KOhl and STepanek) or HEC-HMS. The result is substantial information on runoff disposition in each sub-catchment and hydrographs showing peak runoff and runoff freight. The code of practice for assessment of surface runoff coefficients has become the standard procedure in Austria to derive input parameters for P/R-models in practice. Recent investigations done at the Institute of Geography at the University of Berne show that the code of practice is suitable for application in catchments at the northern edge of the Swiss Alps too.

  16. Excellence of numerical differentiation method in calculating the coefficients of high temperature series expansion of the free energy and convergence problem of the expansion

    SciTech Connect

    Zhou, S.; Solana, J. R.

    2014-12-28

    In this paper, it is shown that the numerical differentiation method in performing the coupling parameter series expansion [S. Zhou, J. Chem. Phys. 125, 144518 (2006); AIP Adv. 1, 040703 (2011)] excels at calculating the coefficients a{sub i} of hard sphere high temperature series expansion (HS-HTSE) of the free energy. Both canonical ensemble and isothermal-isobaric ensemble Monte Carlo simulations for fluid interacting through a hard sphere attractive Yukawa (HSAY) potential with extremely short ranges and at very low temperatures are performed, and the resulting two sets of data of thermodynamic properties are in excellent agreement with each other, and well qualified to be used for assessing convergence of the HS-HTSE for the HSAY fluid. Results of valuation are that (i) by referring to the results of a hard sphere square well fluid [S. Zhou, J. Chem. Phys. 139, 124111 (2013)], it is found that existence of partial sum limit of the high temperature series expansion series and consistency between the limit value and the true solution depend on both the potential shapes and temperatures considered. (ii) For the extremely short range HSAY potential, the HS-HTSE coefficients a{sub i} falls rapidly with the order i, and the HS-HTSE converges from fourth order; however, it does not converge exactly to the true solution at reduced temperatures lower than 0.5, wherein difference between the partial sum limit of the HS-HTSE series and the simulation result tends to become more evident. Something worth mentioning is that before the convergence order is reached, the preceding truncation is always improved by the succeeding one, and the fourth- and higher-order truncations give the most dependable and qualitatively always correct thermodynamic results for the HSAY fluid even at low reduced temperatures to 0.25.

  17. Efficacy Coefficients Determined Using Nail Permeability and Antifungal Activity in Keratin-Containing Media Are Useful for Predicting Clinical Efficacies of Topical Drugs for Onychomycosis

    PubMed Central

    2016-01-01

    Onychomycosis is difficult to treat topically due to the deep location of the infection under the densely keratinized nail plate. In order to obtain an in vitro index that is relevant to the clinical efficacy of topical anti-onychomycosis drugs, we profiled five topical drugs: amorolfine, ciclopirox, efinaconazole, luliconazole, and terbinafine, for their nail permeabilities, keratin affinities, and anti-dermatophytic activities in the presence of keratin. Efinaconazole and ciclopirox permeated full-thickness human nails more deeply than luliconazole. Amorolfine and terbinafine did not show any detectable permeation. The free-drug concentration of efinaconazole in a 5% human nail keratin suspension was 24.9%, which was significantly higher than those of the other drugs (1.1–3.9%). Additionally, efinaconazole was released from human nail keratin at a greater proportion than the other drugs. The MICs of the five drugs for Trichophyton rubrum were determined at various concentrations of keratin (0–20%) in RPMI 1640 medium. The MICs of ciclopirox were not affected by keratin, whereas those of efinaconazole were slightly increased and those of luliconazole and terbinafine were markedly increased in the presence of 20% keratin. Efficacy coefficients were calculated using the nail permeation flux and MIC in media without or with keratin. Efinaconazole showed the highest efficacy coefficient, which was determined using MIC in media with keratin. The order of efficacy coefficients determined using MIC in keratin-containing media rather than keratin-free media was consistent with that of complete cure rates in previously reported clinical trials. The present study revealed that efficacy coefficients determined using MIC in keratin-containing media are useful for predicting the clinical efficacies of topical drugs. In order to be more effective, topical drugs have to possess higher efficacy coefficients. PMID:27441843

  18. Efficacy Coefficients Determined Using Nail Permeability and Antifungal Activity in Keratin-Containing Media Are Useful for Predicting Clinical Efficacies of Topical Drugs for Onychomycosis.

    PubMed

    Matsuda, Yoshiki; Sugiura, Keita; Hashimoto, Takashi; Ueda, Akane; Konno, Yoshihiro; Tatsumi, Yoshiyuki

    2016-01-01

    Onychomycosis is difficult to treat topically due to the deep location of the infection under the densely keratinized nail plate. In order to obtain an in vitro index that is relevant to the clinical efficacy of topical anti-onychomycosis drugs, we profiled five topical drugs: amorolfine, ciclopirox, efinaconazole, luliconazole, and terbinafine, for their nail permeabilities, keratin affinities, and anti-dermatophytic activities in the presence of keratin. Efinaconazole and ciclopirox permeated full-thickness human nails more deeply than luliconazole. Amorolfine and terbinafine did not show any detectable permeation. The free-drug concentration of efinaconazole in a 5% human nail keratin suspension was 24.9%, which was significantly higher than those of the other drugs (1.1-3.9%). Additionally, efinaconazole was released from human nail keratin at a greater proportion than the other drugs. The MICs of the five drugs for Trichophyton rubrum were determined at various concentrations of keratin (0-20%) in RPMI 1640 medium. The MICs of ciclopirox were not affected by keratin, whereas those of efinaconazole were slightly increased and those of luliconazole and terbinafine were markedly increased in the presence of 20% keratin. Efficacy coefficients were calculated using the nail permeation flux and MIC in media without or with keratin. Efinaconazole showed the highest efficacy coefficient, which was determined using MIC in media with keratin. The order of efficacy coefficients determined using MIC in keratin-containing media rather than keratin-free media was consistent with that of complete cure rates in previously reported clinical trials. The present study revealed that efficacy coefficients determined using MIC in keratin-containing media are useful for predicting the clinical efficacies of topical drugs. In order to be more effective, topical drugs have to possess higher efficacy coefficients. PMID:27441843

  19. Calculating Capstone depleted uranium aerosol concentrations from beta activity measurements.

    PubMed

    Szrom, Frances; Falo, Gerald A; Parkhurst, Mary Ann; Whicker, Jeffrey J; Alberth, David P

    2009-03-01

    Beta activity measurements were used as surrogate measurements of uranium mass in aerosol samples collected during the field testing phase of the Capstone Depleted Uranium (DU) Aerosol Study. These aerosol samples generated by the perforation of armored combat vehicles were used to characterize the DU source term for the subsequent Human Health Risk Assessment (HHRA) of Capstone aerosols. Establishing a calibration curve between beta activity measurements and uranium mass measurements is straightforward if the uranium isotopes are in equilibrium with their immediate short-lived, beta-emitting progeny. For DU samples collected during the Capstone study, it was determined that the equilibrium between the uranium isotopes and their immediate short-lived, beta-emitting progeny had been disrupted when penetrators had perforated target vehicles. Adjustments were made to account for the disrupted equilibrium and for wall losses in the aerosol samplers. Values for the equilibrium fraction ranged from 0.16 to 1, and the wall loss correction factors ranged from 1 to 1.92. This paper describes the process used and adjustments necessary to calculate uranium mass from proportional counting measurements. PMID:19204483

  20. Can we better use existing and emerging computing hardware to embed activity coefficient predictions in complex atmospheric aerosol models?

    NASA Astrophysics Data System (ADS)

    Topping, David; Alibay, Irfan; Ruske, Simon; Hindriksen, Vincent; Noisternig, Michael

    2016-04-01

    To predict the evolving concentration, chemical composition and ability of aerosol particles to act as cloud droplets, we rely on numerical modeling. Mechanistic models attempt to account for the movement of compounds between the gaseous and condensed phases at a molecular level. This 'bottom up' approach is designed to increase our fundamental understanding. However, such models rely on predicting the properties of molecules and subsequent mixtures. For partitioning between the gaseous and condensed phases this includes: saturation vapour pressures; Henrys law coefficients; activity coefficients; diffusion coefficients and reaction rates. Current gas phase chemical mechanisms predict the existence of potentially millions of individual species. Within a dynamic ensemble model, this can often be used as justification for neglecting computationally expensive process descriptions. Indeed, on whether we can quantify the true sensitivity to uncertainties in molecular properties, even at the single aerosol particle level it has been impossible to embed fully coupled representations of process level knowledge with all possible compounds, typically relying on heavily parameterised descriptions. Relying on emerging numerical frameworks, and designed for the changing landscape of high-performance computing (HPC), in this study we show that comprehensive microphysical models from single particle to larger scales can be developed to encompass a complete state-of-the-art knowledge of aerosol chemical and process diversity. We focus specifically on the ability to capture activity coefficients in liquid solutions using the UNIFAC method, profiling traditional coding strategies and those that exploit emerging hardware.

  1. Experimental studies, line-shape analysis and semi-empirical calculations of broadening coefficients for CH335Cl-CO2 submillimeter transitions

    NASA Astrophysics Data System (ADS)

    Dudaryonok, A. S.; Lavrentieva, N. N.; Buldyreva, J.; Margulès, L.; Motiyenko, R. A.; Rohart, F.

    2014-09-01

    Rotational transitions in CH335Cl mixed with CO2 are recorded at 296 K and total pressures up to 0.6 Torr in the frequency interval 186-901 GHz (1.6-0.3 mm) for J=6→7, 10→11, 17→18, 22→23, 31→32, 33→34 and K=0-6, using the frequency-modulation spectrometer of the Laboratory PhLAM (Lille, France). These line-shapes are analyzed with the commonly used Voigt profile as well as with more refined Speed-Dependent Voigt and Galatry models accounting for the line narrowing induced, respectively, by the speed-dependence of the relaxation parameters and by velocity-changing collisions. Due to the high line intensities, the fitting procedure involves the full implementation of the Bee-Lambert law instead of its traditional linear approximation. The experimentally deduced J- and K-dependences of the pressure-broadening coefficients are further used to obtain the model parameters of a semi-empirical approach allowing massive calculations of line-shape parameters for enlarged ranges of rotational quantum numbers requested by spectroscopic databases.

  2. Humidity coefficient correction in the calculation equations of air refractive index by He-Ne laser based on phase step interferometry.

    PubMed

    Chen, Qianghua; Liu, Jinghai; He, Yongxi; Luo, Huifu; Luo, Jun; Wang, Feng

    2015-02-10

    The refractive index of air (RIA) is an important parameter in precision measurement. The revisions to Edlen's equations by Boensch and Potulski [Metrologia 35, 133 (1998)] are mostly used to calculate the RIA at present. Since the humidity correction coefficients in the formulas were performed with four wavelengths of a Cd(114) lamp (644.0, 508.7, 480.1, and 467.9 nm) and at the temperature range of 19.6°C-20.1°C, the application is restricted when an He-Ne laser is used as the light source, which is mostly applied in optical precision measurement, and the environmental temperature is far away from 20°C as well. To solve this problem, a measurement system based on phase step interferometry for measuring the effect of the humidity to the RIA is presented, and a corresponding humidity correction equation is derived. The analysis and comparison results show that the uncertainty of the presented equation is better than that of Boensch and Potulski's. It is more suitable in present precision measurements by He-Ne laser, and the application temperature range extends to 14.6°C-24.0°C as well. PMID:25968028

  3. Calculated viscosity-distance dependence for some actively flowing lavas

    NASA Technical Reports Server (NTRS)

    Pieri, David

    1987-01-01

    The importance of viscosity as a gauge of the various energy and momentum dissipation regimes of lava flows has been realized for a long time. Nevertheless, despite its central role in lava dynamics and kinematics, it remains among the most difficult of flow physical properties to measure in situ during an eruption. Attempts at reconstructing the actual emplacement viscosities of lava flows from their solidified topographic form are difficult. Where data are available on the position of an advancing flow front as a function of time, it is possible to calculate the effective viscosity of the front as a function of distance from the vent, under the assumptions of a steady state regime. As an application and test of an equation given, relevant parameters from five recent flows on Mauna Loa and Kilauea were utilized to infer the dynamic structure of their aggregate flow front viscosity as they advanced, up to cessation. The observed form of the viscosity-distance relation for the five active Hawaiian flows examined appears to be exponential, with a rapid increase just before the flows stopped as one would expect.

  4. Theoretical model for calculation of helicity in solar active regions

    NASA Astrophysics Data System (ADS)

    Chatterjee, P.

    We (Choudhuri, Chatterjee and Nandy, 2005) calculate helicities of solar active regions based on the idea of Choudhuri (2003) that poloidal flux lines get wrapped around a toroidal flux tube rising through the convection zone, thereby giving rise to the helicity. Rough estimates based on this idea compare favourably with the observed magnitude of helicity. We use our solar dynamo model based on the Babcock--Leighton α-effect to study how helicity varies with latitude and time. At the time of solar maximum, our theoretical model gives negative helicity in the northern hemisphere and positive helicity in the south, in accordance with observed hemispheric trends. However, we find that, during a short interval at the beginning of a cycle, helicities tend to be opposite of the preferred hemispheric trends. Next we (Chatterjee, Choudhuri and Petrovay 2006) use the above idea along with the sunspot decay model of Petrovay and Moreno-Insertis, (1997) to estimate the distribution of helicity inside a flux tube as it keeps collecting more azimuthal flux during its rise through the convection zone and as turbulent diffusion keeps acting on it. By varying parameters over reasonable ranges in our simple 1-d model, we find that the azimuthal flux penetrates the flux tube to some extent instead of being confined to a narrow sheath outside.

  5. Simultaneous reconstruction of emission activity and attenuation coefficient distribution from TOF data, acquired with external transmission source

    NASA Astrophysics Data System (ADS)

    Panin, V. Y.; Aykac, M.; Casey, M. E.

    2013-06-01

    The simultaneous PET data reconstruction of emission activity and attenuation coefficient distribution is presented, where the attenuation image is constrained by exploiting an external transmission source. Data are acquired in time-of-flight (TOF) mode, allowing in principle for separation of emission and transmission data. Nevertheless, here all data are reconstructed at once, eliminating the need to trace the position of the transmission source in sinogram space. Contamination of emission data by the transmission source and vice versa is naturally modeled. Attenuated emission activity data also provide additional information about object attenuation coefficient values. The algorithm alternates between attenuation and emission activity image updates. We also proposed a method of estimation of spatial scatter distribution from the transmission source by incorporating knowledge about the expected range of attenuation map values. The reconstruction of experimental data from the Siemens mCT scanner suggests that simultaneous reconstruction improves attenuation map image quality, as compared to when data are separated. In the presented example, the attenuation map image noise was reduced and non-uniformity artifacts that occurred due to scatter estimation were suppressed. On the other hand, the use of transmission data stabilizes attenuation coefficient distribution reconstruction from TOF emission data alone. The example of improving emission images by refining a CT-based patient attenuation map is presented, revealing potential benefits of simultaneous CT and PET data reconstruction.

  6. Simultaneous reconstruction of emission activity and attenuation coefficient distribution from TOF data, acquired with external transmission source.

    PubMed

    Panin, V Y; Aykac, M; Casey, M E

    2013-06-01

    The simultaneous PET data reconstruction of emission activity and attenuation coefficient distribution is presented, where the attenuation image is constrained by exploiting an external transmission source. Data are acquired in time-of-flight (TOF) mode, allowing in principle for separation of emission and transmission data. Nevertheless, here all data are reconstructed at once, eliminating the need to trace the position of the transmission source in sinogram space. Contamination of emission data by the transmission source and vice versa is naturally modeled. Attenuated emission activity data also provide additional information about object attenuation coefficient values. The algorithm alternates between attenuation and emission activity image updates. We also proposed a method of estimation of spatial scatter distribution from the transmission source by incorporating knowledge about the expected range of attenuation map values. The reconstruction of experimental data from the Siemens mCT scanner suggests that simultaneous reconstruction improves attenuation map image quality, as compared to when data are separated. In the presented example, the attenuation map image noise was reduced and non-uniformity artifacts that occurred due to scatter estimation were suppressed. On the other hand, the use of transmission data stabilizes attenuation coefficient distribution reconstruction from TOF emission data alone. The example of improving emission images by refining a CT-based patient attenuation map is presented, revealing potential benefits of simultaneous CT and PET data reconstruction. PMID:23648397

  7. Critical Assessment of P2O5 Activity Coefficients in CaO-based Slags during Dephosphorization Process of Iron-based Melts

    NASA Astrophysics Data System (ADS)

    Yang, Xue-min; Li, Jin-yan; Chai, Guo-Ming; Duan, Dong-ping; Zhang, Jian

    2016-05-01

    According to the experimental results of hot metal dephosphorization by CaO-based slags at a commercial-scale hot metal pretreatment station, activity a_{{{{P}}_{ 2} {{O}}_{ 5} }} of P2O5 in the CaO-based slags has been determined using the calculated comprehensive mass action concentration N_{{{{Fe}}t {{O}}}}{} of iron oxides by the ion and molecule coexistence theory (IMCT) for representing the reaction ability of Fe t O, i.e., activity of a_{{{{Fe}}t {{O}}}}{} . The collected ten models from the literature for predicting activity coefficient γ_{{{{P}}_{ 2} {{O}}_{ 5} }} of P2O5 in CaO-based slags have been evaluated based on the determined activity a_{{{{P}}_{ 2} {{O}}_{ 5} }} of P2O5 by the IMCT as the criterion. The collected ten models of activity coefficient γ_{{{{P}}_{ 2} {{O}}_{ 5} }} of P2O5 in CaO-based slags can be described in the form of a linear function as log γ_{{{{P}}_{ 2} {{O}}_{ 5} }} ≡ y = c0 + c1 x , in which independent variable x represents the chemical composition of slags, intercept c0 including the constant term depicts temperature effect and other unmentioned or acquiescent thermodynamic factors, and slope c1 is regressed by the experimental results. Thus, a general approach for obtaining good prediction results of activity a_{{{{P}}_{ 2} {{O}}_{ 5} }} of P2O5 in CaO-based slags is proposed by revising the constant term in intercept c0 for the collected ten models. The better models with an ideal revising possibility or flexibility in the collected ten models have been selected and recommended.

  8. Critical Assessment of P2O5 Activity Coefficients in CaO-based Slags during Dephosphorization Process of Iron-based Melts

    NASA Astrophysics Data System (ADS)

    Yang, Xue-min; Li, Jin-yan; Chai, Guo-Ming; Duan, Dong-ping; Zhang, Jian

    2016-08-01

    According to the experimental results of hot metal dephosphorization by CaO-based slags at a commercial-scale hot metal pretreatment station, activity a_{{{{P}}_{ 2} {{O}}_{ 5} }} of P2O5 in the CaO-based slags has been determined using the calculated comprehensive mass action concentration N_{{{{Fe}}t {{O}}}}{} of iron oxides by the ion and molecule coexistence theory (IMCT) for representing the reaction ability of Fe t O, i.e., activity of a_{{{{Fe}}t {{O}}}}{} . The collected ten models from the literature for predicting activity coefficient γ_{{{{P}}_{ 2} {{O}}_{ 5} }} of P2O5 in CaO-based slags have been evaluated based on the determined activity a_{{{{P}}_{ 2} {{O}}_{ 5} }} of P2O5 by the IMCT as the criterion. The collected ten models of activity coefficient γ_{{{{P}}_{ 2} {{O}}_{ 5} }} of P2O5 in CaO-based slags can be described in the form of a linear function as log γ_{{{{P}}_{ 2} {{O}}_{ 5} }} ≡ y = c0 + c1 x , in which independent variable x represents the chemical composition of slags, intercept c0 including the constant term depicts temperature effect and other unmentioned or acquiescent thermodynamic factors, and slope c1 is regressed by the experimental results. Thus, a general approach for obtaining good prediction results of activity a_{{{{P}}_{ 2} {{O}}_{ 5} }} of P2O5 in CaO-based slags is proposed by revising the constant term in intercept c0 for the collected ten models. The better models with an ideal revising possibility or flexibility in the collected ten models have been selected and recommended.

  9. Magnetic field calculation and measurement of active magnetic bearings

    NASA Astrophysics Data System (ADS)

    Ding, Guoping; Zhou, Zude; Hu, Yefa

    2006-11-01

    Magnetic Bearings are typical devices in which electric energy and mechanical energy convert mutually. Magnetic Field indicates the relationship between 2 of the most important parameters in a magnetic bearing - current and force. This paper presents calculation and measurement of the magnetic field distribution of a self-designed magnetic bearing. Firstly, the static Maxwell's equations of the magnetic bearing are presented and a Finite Element Analysis (FEA) is found to solve the equations and get post-process results by means of ANSYS software. Secondly, to confirm the calculation results a Lakeshore460 3-channel Gaussmeter is used to measure the magnetic flux density of the magnetic bearing in X, Y, Z directions accurately. According to the measurement data the author constructs a 3D magnetic field distribution digital model by means of MATLAB software. Thirdly, the calculation results and the measurement data are compared and analyzed; the comparing result indicates that the calculation results are consistent with the measurement data in allowable dimension variation, which means that the FEA calculation method of the magnetic bearing has high precision. Finally, it is concluded that the magnetic field calculation and measurement can accurately reflect the real magnetic distribution in the magnetic bearing and the result can guide the design and analysis of the magnetic bearing effectively.

  10. Measurement of gas/water uptake coefficients for trace gases active in the marine environment

    SciTech Connect

    Davidovits, P. . Dept. of Chemistry); Worsnop, D.W.; Zahniser, M.S.; Kolb, C.E. . Center for Chemical and Environmental Physics)

    1992-02-01

    Ocean produced reduced sulfur compounds including dimethylsulfide (DMS), hydrogen sulfide (H{sub 2}S), carbon disulfide (CS{sub 2}), methyl mercaptan (CH{sub 3}CH) and carbonyl sulfide (OCS) deliver a sulfur burden to the atmosphere which is roughly equal to sulfur oxides produced by fossil fuel combustion. These species and their oxidation products dimethyl sulfoxide (DMSO), dimethyl sulfone (DMSO{sub 2}) and methane sulfonic acid (MSA) dominate aerosol and CCN production in clean marine air. Furthermore, oxidation of reduced sulfur species will be strongly influenced by NO{sub x}/O{sub 3} chemistry in marine atmospheres. The multiphase chemical processes for these species must be understood in order to study the evolving role of combustion produced sulfur oxides over the oceans. We have measured the chemical and physical parameters affecting the uptake of reduced sulfur compounds, their oxidation products, ozone, and nitrogen oxides by the ocean's surface, and marine clouds, fogs, and aerosols. These parameters include: gas/surface mass accommodation coefficients; physical and chemically modified (effective) Henry's law constants; and surface and liquid phase reaction constants. These parameters are critical to understanding both the interaction of gaseous trace species with cloud and fog droplets and the deposition of trace gaseous species to dew covered, fresh water and marine surfaces.

  11. Correction method of secondary reflection effects in measurement of electro-optic coefficient in optically active materials

    NASA Astrophysics Data System (ADS)

    Lemaire, Ph.; Georges, M.

    1992-07-01

    The propagation of light in linearly birefringent and optically active media, such as Bi 12SiO 20 crystals (BSO), has been widely studied by several workers. Various measurement methods of the electro-optic coefficient r41 have been described. One family of those methods consisting in measurement of the light polarization ellipticity after through the crystal has been analysed. Due to the high reflectivity of such crystals, we show that the effect of the secondary reflections can not be neglected. We present the theoretical description and analysis of this effect for one of these methods and we propose a corrective algorithm.

  12. On Implicit Active Constraints in Linear Semi-Infinite Programs with Unbounded Coefficients

    SciTech Connect

    Goberna, M. A.; Lancho, G. A.; Todorov, M. I.; Vera de Serio, V. N.

    2011-04-15

    The concept of implicit active constraints at a given point provides useful local information about the solution set of linear semi-infinite systems and about the optimal set in linear semi-infinite programming provided the set of gradient vectors of the constraints is bounded, commonly under the additional assumption that there exists some strong Slater point. This paper shows that the mentioned global boundedness condition can be replaced by a weaker local condition (LUB) based on locally active constraints (active in a ball of small radius whose center is some nominal point), providing geometric information about the solution set and Karush-Kuhn-Tucker type conditions for the optimal solution to be strongly unique. The maintaining of the latter property under sufficiently small perturbations of all the data is also analyzed, giving a characterization of its stability with respect to these perturbations in terms of the strong Slater condition, the so-called Extended-Nuernberger condition, and the LUB condition.

  13. Synthesis, structure, theoretical calculations and biological activity of sulfonate active ester new derivatives

    NASA Astrophysics Data System (ADS)

    Ghazzali, Mohamed; Khattab, Sherine A. N.; Elnakady, Yasser A.; Al-Mekhlafi, Fahd A.; Al-Farhan, Khalid; El-Faham, Ayman

    2013-08-01

    A series of naphthyl and tolyl sulfonate ester were synthesized and characterized by H NMR. X-ray single crystal diffraction experiments established the molecular structure of three new sulfonate esters derivatives, and spectral data agree with these in solution. The observed hydrogen bonding is discussed on the basis of crystal structural analyses and DFT/MP2 geometry optimization quantum calculations. Antimicrobial activities were screened for selected compounds against three human cancer cell lines and Mosquito Culex pipiens larvae.

  14. Out-of-field activity in the estimation of mean lung attenuation coefficient in PET/MR

    NASA Astrophysics Data System (ADS)

    Berker, Yannick; Salomon, André; Kiessling, Fabian; Schulz, Volkmar

    2014-01-01

    In clinical PET/MR, photon attenuation is a source of potentially severe image artifacts. Correction approaches include those based on MR image segmentation, in which image voxels are classified and assigned predefined attenuation coefficients to obtain an attenuation map. In whole-body imaging, however, mean lung attenuation coefficients (LAC) can vary by a factor of 2, and the choice of inappropriate mean LAC can have significant impact on PET quantification. Previously, we proposed a method combining MR image segmentation, tissue classification and Maximum Likelihood reconstruction of Attenuation and Activity (MLAA) to estimate mean LAC values. In this work, we quantify the influence of out-of-field (OOF) accidental coincidences when acquiring data in a single bed position. We therefore carried out GATE simulations of realistic, whole-body activity and attenuation distributions derived from data of three patients. A bias of 15% was found and significantly reduced by removing OOF accidentals from our data, suggesting that OOF accidentals are the major contributor to the bias. We found approximately equal contributions from OOF scatter and OOF randoms, and present results after correction of the bias by rescaling of results. Results using temporal subsets suggest that 30-second acquisitions may be sufficient for estimation mean LAC with less than 5% uncertainty if mean bias can be corrected for.

  15. Activity coefficients at infinite dilution of organic compounds in 1-(meth)acryloyloxyalkyl-3-methylimidazolium bromide using inverse gas chromatography.

    PubMed

    Mutelet, Fabrice; Jaubert, Jean-Noël; Rogalski, Marek; Harmand, Julie; Sindt, Michèle; Mieloszynski, Jean-Luc

    2008-03-27

    Activity coefficients at infinite dilution, gammainfinity, of organic compounds in two new room-temperature ionic liquids (n-methacryloyloxyhexyl-N-methylimidazolium bromide (C10H17O2MIM)(Br) at 313.15 and 323.15 K and n-acryloyloxypropyl-N-methylimidazolium bromide(C6H11O2MIM)(Br)) were determined using inverse gas chromatography. Phase loading studies of the net retention volume per gram of packing as a function of the percent phase loading were used to estimate the influence of concurrent retention mechanisms on the accuracy of activity coefficients at infinite dilution of solutes in both ionic liquids. It was found that most of the solutes were retained largely by partition with a small contribution from adsorption and that n-alkanes were retained predominantly by interfacial adsorption on ionic liquids studied in this work. The solvation characteristics of the two ionic liquids were evaluated using the Abraham solvation parameter model. PMID:18318530

  16. TU-F-18C-05: Evaluation of a Method to Calculate Patient-Oriented MGD Coefficients Using Estimates of Glandular Tissue Distribution

    SciTech Connect

    Porras-Chaverri, M; Galavis, P; Bakic, P; Vetter, J

    2014-06-15

    Purpose: Evaluate mammographic mean glandular dose (MGD) coefficients for particular known tissue distributions using a novel formalism that incorporates the effect of the heterogeneous glandular tissue distribution, by comparing them with MGD coefficients derived from the corresponding anthropomorphic computer breast phantom. Methods: MGD coefficients were obtained using MCNP5 simulations with the currently used homogeneous assumption and the heterogeneously-layered breast (HLB) geometry and compared against those from the computer phantom (ground truth). The tissue distribution for the HLB geometry was estimated using glandularity map image pairs corrected for the presence of non-glandular fibrous tissue. Heterogeneity of tissue distribution was quantified using the glandular tissue distribution index, Idist. The phantom had 5 cm compressed breast thickness (MLO and CC views) and 29% whole breast glandular percentage. Results: Differences as high as 116% were found between the MGD coefficients with the homogeneous breast core assumption and those from the corresponding ground truth. Higher differences were found for cases with more heterogeneous distribution of glandular tissue. The Idist for all cases was in the [−0.8{sup −}+0.3] range. The use of the methods presented in this work results in better agreement with ground truth with an improvement as high as 105 pp. The decrease in difference across all phantom cases was in the [9{sup −}105] pp range, dependent on the distribution of glandular tissue and was larger for the cases with the highest Idist values. Conclusion: Our results suggest that the use of corrected glandularity image pairs, as well as the HLB geometry, improves the estimates of MGD conversion coefficients by accounting for the distribution of glandular tissue within the breast. The accuracy of this approach with respect to ground truth is highly dependent on the particular glandular tissue distribution studied. Predrag Bakic discloses

  17. Calculation of the fractional interstitial component of boron diffusion and segregation coefficient of boron in Si0.8Ge0.2

    NASA Astrophysics Data System (ADS)

    Fang, Tilden T.; Fang, Wingra T. C.; Griffin, Peter B.; Plummer, James D.

    1996-02-01

    Investigation of boron diffusion in strained silicon germanium buried layers reveals a fractional interstitial component of boron diffusion (fBI) in Se0.8Ge0.2 approximately equal to the fBI value in silicon. In conjunction with computer-simulated boron profiles, the results yield an absolute lower-bound of fBI in Si0.8Ge0.2 of ˜0.8. In addition, the experimental methodology provides a unique vehicle for measuring the segregation coefficient; oxidation-enhanced diffusion is used instead of an extended, inert anneal to rapidly diffuse the dopant to equilibrium levels across the interface, allowing the segregation coefficient to be measured more quickly.

  18. Improved thrust calculations of active magnetic bearings considering fringing flux

    NASA Astrophysics Data System (ADS)

    Jang, Seok-Myeong; Kim, Kwan-Ho; Ko, Kyoung-Jin; Choi, Ji-Hwan; Sung, So-Young; Lee, Yong-Bok

    2012-04-01

    A methodology for deriving fringing permeance in axisymmetric devices such as active thrust magnetic bearings (ATMBs) is presented. The methodology is used to develop an improved equivalent magnetic circuit (EMC) for ATMBs, which considers the fringing effect. This EMC was used to characterize the force between the housing and mover and the dependence of thrust and inductance on the air gap and input current, respectively. These characteristics were validated by comparison with those obtained by the finite element method and in experiments.

  19. Calculation of skin-friction coefficients for low Reynolds number turbulent boundary layer flows. M.S. Thesis - California Univ. at Davis

    NASA Technical Reports Server (NTRS)

    Barr, P. K.

    1980-01-01

    An analysis is presented of the reliability of various generally accepted empirical expressions for the prediction of the skin-friction coefficient C/sub f/ of turbulent boundary layers at low Reynolds numbers in zero-pressure-gradient flows on a smooth flat plate. The skin-friction coefficients predicted from these expressions were compared to the skin-friction coefficients of experimental profiles that were determined from a graphical method formulated from the law of the wall. These expressions are found to predict values that are consistently different than those obtained from the graphical method over the range 600 Re/sub theta 2000. A curve-fitted empirical relationship was developed from the present data and yields a better estimated value of C/sub f/ in this range. The data, covering the range 200 Re/sub theta 7000, provide insight into the nature of transitional flows. They show that fully developed turbulent boundary layers occur at Reynolds numbers Re/sub theta/ down to 425. Below this level there appears to be a well-ordered evolutionary process from the laminar to the turbulent profiles. These profiles clearly display the development of the turbulent core region and the shrinking of the laminar sublayer with increasing values of Re/sub theta/.

  20. Determination of Activity Coefficients of di-(2-ethylhexyl) Phosphoric Acid Dimer in Select Organic Solvents Using Vapor Phase Osmometry

    SciTech Connect

    Michael F. Gray; Peter Zalupski; Mikael Nilsson

    2013-08-01

    Effective models for solvent extraction require accurate characterization of the nonideality effects for each component, including the extractants. In this study, the nonideal behavior of the industrial extractant di(2-ethylhexyl) phosphoric acid has been investigated using vapor pressure osmometry (VPO). From the osmometry data, activity coefficients for the HDEHP dimer were obtained based on a formulation of the regular solution theory of Scatchard and Hildebrand, and the Margules two- and three-suffix equations. The results show similarity with a slope-analysis based relation from previous literature, although important differences are highlighted. The work points towards VPO as a useful technique for this type of study, but care must be taken with the choice of standard and method of analysis.

  1. Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 1-(3-hydroxypropyl)pyridinium trifluorotris(perfluoroethyl)phosphate.

    PubMed

    Marciniak, Andrzej; Wlazło, Michał

    2010-05-27

    The activity coefficients at infinite dilution, gamma(13)(infinity), for 37 solutes, alkanes, alkenes, alkynes, cycloalkanes, aromatic hydrocarbons, alcohols, thiophene, ethers, ketones, and water, in the ionic liquid 1-(3-hydroxypropyl)pyridinium trifluorotris(perfluoroethyl)phosphate [N-C(3)OHPY][FAP] were determined by gas-liquid chromatography at the temperatures from 308.15 to 358.15 K. The partial molar excess enthalpies at infinite dilution values DeltaH(1)(E,infinity) were calculated from the experimental gamma(13)(infinity) values obtained over the temperature range. The selectivities for aliphatics/aromatics hydrocarbons separation problem were calculated from the gamma(13)(infinity) values and compared to the literature values for other ionic liquids, N-methylpyrrolidone (NMP) and sulfolane. It was found that the investigated [N-C(3)OHPY][FAP] ionic liquid shows much higher selectivity and capacity at infinite dilution than the generally used organic solvents such as NMP, sulfolane, and other ionic liquids. PMID:20429540

  2. Calculating Capstone Depleted Uranium Aerosol Concentrations from Beta Activity Measurements

    SciTech Connect

    Szrom, Fran; Falo, Gerald A.; Parkhurst, MaryAnn; Whicker, Jeffrey J.; Alberth, David P.

    2009-03-01

    Beta activity measurements were used as surrogate measurements of uranium mass in aerosol samples collected during the field testing phase of the Capstone Depleted Uranium (DU) Aerosol Study. These aerosol samples generated by the perforation of armored combat vehicles were used to characterize the depleted uranium (DU) source term for the subsequent human health risk assessment (HHRA) of Capstone aerosols. Establishing a calibration curve between beta activity measurements and uranium mass measurements is straightforward if the uranium isotopes are in equilibrium with their immediate short-lived, beta-emitting progeny. For DU samples collected during the Capstone study, it was determined that the equilibrium between the uranium isotopes and their immediate short lived, beta-emitting progeny had been disrupted when penetrators had perforated target vehicles. Adjustments were made to account for the disrupted equilibrium and for wall losses in the aerosol samplers. Correction factors for the disrupted equilibrium ranged from 0.16 to 1, and the wall loss correction factors ranged from 1 to 1.92.

  3. A two-parameter kinetic model based on a time-dependent activity coefficient accurately describes enzymatic cellulose digestion

    PubMed Central

    Kostylev, Maxim; Wilson, David

    2014-01-01

    Lignocellulosic biomass is a potential source of renewable, low-carbon-footprint liquid fuels. Biomass recalcitrance and enzyme cost are key challenges associated with the large-scale production of cellulosic fuel. Kinetic modeling of enzymatic cellulose digestion has been complicated by the heterogeneous nature of the substrate and by the fact that a true steady state cannot be attained. We present a two-parameter kinetic model based on the Michaelis-Menten scheme (Michaelis L and Menten ML. (1913) Biochem Z 49:333–369), but with a time-dependent activity coefficient analogous to fractal-like kinetics formulated by Kopelman (Kopelman R. (1988) Science 241:1620–1626). We provide a mathematical derivation and experimental support to show that one of the parameters is a total activity coefficient and the other is an intrinsic constant that reflects the ability of the cellulases to overcome substrate recalcitrance. The model is applicable to individual cellulases and their mixtures at low-to-medium enzyme loads. Using biomass degrading enzymes from a cellulolytic bacterium Thermobifida fusca we show that the model can be used for mechanistic studies of enzymatic cellulose digestion. We also demonstrate that it applies to the crude supernatant of the widely studied cellulolytic fungus Trichoderma reesei and can thus be used to compare cellulases from different organisms. The two parameters may serve a similar role to Vmax, KM, and kcat in classical kinetics. A similar approach may be applicable to other enzymes with heterogeneous substrates and where a steady state is not achievable. PMID:23837567

  4. Assessment of odor activity value coefficient and odor contribution based on binary interaction effects in waste disposal plant

    NASA Astrophysics Data System (ADS)

    Wu, Chuandong; Liu, Jiemin; Yan, Luchun; Chen, Haiying; Shao, Huiqi; Meng, Tian

    2015-02-01

    Odor activity value (OAV) has been widely used for the assessment of odor pollution from various sources. However, little attention has been paid to the extreme OAV variation and potential inaccuracies of odor contribution assessment caused by odor interaction effects. The objective of this study is to assess the odor interaction effect for precise assessment of odor contribution. In this paper, samples were collected from a food waste disposal plant, and analyzed by instrumental and olfactory method to conclude odorants' occurrence and OAV. Then odor activity value coefficient (γ) was first proposed to evaluate the type and the level of binary interaction effects based on determination of OAV variation. By multiplying OAV and γ, odor activity factor (OAF) was used to reflect the real OAV. Correlation between the sum of OAF and odor concentration reached 80.0 ± 5.7%, which was 10 times higher than the sum of OAV used before. Results showed that hydrogen sulfide contributed most (annual average 66.4 ± 15.8%) to odor pollution in the waste disposal plant. However, as odor intensity of samples in summer rising, odor contribution of trimethylamine increased to 48.3 ± 3.7% by the strong synergistic interaction effect, while odor contribution of phenol decreased to 0.1 ± 0.02% for the increasing antagonistic interaction effect.

  5. Full-CI calculation of imaginary frequency-dependent dipole-quadrupole polarizabilities of ground state LiH and the C 7 dispersion coefficients of LiH-LiH

    NASA Astrophysics Data System (ADS)

    Luigi Bendazzoli, Gian; Magnasco, Valerio; Figari, Giuseppe; Rui, Marina

    2002-09-01

    Full-CI calculations of frequency-dependent dipole and dipole-quadrupole polarizabilities of ground state LiH have been performed in the imaginary frequency range 0-56 a.u. using a set of 58 Gaussian type orbitals (GTOs) giving a Full-CI dimension of about 700.000 determinants in each symmetry-adapted subspace. A 16-point Gauss-Legendre quadrature of the Casimir-Polder formula over imaginary frequencies allows calculation of the dipole-quadrupole dispersion constants for the LiH-LiH homodimer, from which C 7 dispersion coefficients are derived for the first time.

  6. Inconsistencies and ambiguities in calculating enzyme activity: The case of laccase.

    PubMed

    Baltierra-Trejo, Eduardo; Márquez-Benavides, Liliana; Sánchez-Yáñez, Juan Manuel

    2015-12-01

    Laccase is a key enzyme in the degradation of lignin by fungi. Reports indicate that the activity of this enzyme ranges from 3.5 to 484,000 U L(-1). Our aim was to analyze how laccase activity is calculated in the literature, and to determine statistically whether variations in activity are due to biological properties or to inconsistencies in calculation. We found a general lack of consensus on the definition of enzyme activity, and enzymes are sometimes characterized in terms of reaction rate and specific activity. Moreover, enzyme activity is calculated using at least seven different equations. Therefore, it is critical to standardize the calculation of laccase activity in order to compare results directly. PMID:26459230

  7. Compilation and evaluation of gas-phase diffusion coefficients of reactive trace gases in the atmosphere: volume 2. Organic compounds and Knudsen numbers for gas uptake calculations

    NASA Astrophysics Data System (ADS)

    Tang, M. J.; Shiraiwa, M.; Pöschl, U.; Cox, R. A.; Kalberer, M.

    2015-02-01

    Diffusion of organic vapours to the surface of aerosol or cloud particles is an important step for the formation and transformation of atmospheric particles. So far, however, a database of gas phase diffusion coefficients for organic compounds of atmospheric interest has not been available. In this work we have compiled and evaluated gas phase diffusivities (pressure-independent diffusion coefficients) of organic compounds reported by previous experimental studies, and we compare the measurement data to estimates obtained with Fuller's semi-empirical method. The difference between measured and estimated diffusivities are mostly < 10%. With regard to gas-particle interactions, different gas molecules, including both organic and inorganic compounds, exhibit similar Knudsen numbers (Kn) although their gas phase diffusivities may vary over a wide range. Knudsen numbers of gases with unknown diffusivity can be approximated by a simple function of particle diameter and pressure and can be used to characterize the influence of diffusion on gas uptake by aerosol or cloud particles. We use a kinetic multi-layer model of gas-particle interaction to illustrate the effects of gas phase diffusion on the condensation of organic compounds with different volatilities. The results show that gas-phase diffusion can play a major role in determining the growth of secondary organic aerosol particles by condensation of low-volatility organic vapours.

  8. Activity Coefficients at Infinite Dilution of Organic Compounds in Trihexyl(tetradecyl)phophonium Bis(trifluoromethylsulfonyl)imide Using Inverse Gas Chromatography

    SciTech Connect

    Revelli, Anne-Laure; Sprunger, Laura; Gibbs, Jennifer; Acree, William; Baker, Gary A; Mutelet, Fabrice

    2009-01-01

    Activity coefficients at infinite dilution of organic compounds in the ionic liquid (IL) trihexyl(tetradecyl) phosphonium bis(trifluoromethylsulfonyl)imide were determined using inverse gas chromatography at three temperatures, T ) (302.45, 322.35, and 342.45) K. Linear free energy relationship (LFER) correlations have been obtained for describing the gas-to-IL and water-to-IL partition coefficients.

  9. Room-temperature Broadening and Pressure-shift Coefficients in the nu(exp 2) Band of CH3D-O2: Measurements and Semi-classical Calculations

    NASA Technical Reports Server (NTRS)

    Predoi-Cross, Adriana; Hambrook, Kyle; Brawley-Tremblay, Shannon; Bouanich, Jean-Pierre; Devi, V. Malathy; Smith, Mary Ann H.

    2006-01-01

    We report measured Lorentz O2-broadening and O2-induced pressure-shift coefficients of CH3D in the nu(exp 2) fundamental band. Using a multispectrum fitting technique we have analyzed 11 laboratory absorption spectra recorded at 0.011 cm(exp 1) resolution using the McMath-Pierce Fourier transform spectrometer, Kitt Peak, Arizona. Two absorption cells with path lengths of 10.2 and 25 cm were used to record the spectra. The total sample pressures ranged from 0.98 to 339.85 Torr with CH3D volume mixing ratios of 0.012 in oxygen. We report measurements for O2 pressure-broadening coefficients of 320 nu(exp 2) transitions with quantum numbers as high as J0(sup w) = 17 and K = 14, where K(sup w) = K' is equivalent to K (for a parallel band). The measured O2-broadening coefficients range from 0.0153 to 0.0645 cm(exp -1) atm(exp -1) at 296 K. All the measured pressure-shifts are negative. The reported O2-induced pressure-shift coefficients vary from about -0.0017 to -0.0068 cm(exp -1) atm(exp -1). We have examined the dependence of the measured broadening and shift parameters on the J(sup W), and K quantum numbers and also developed empirical expressions to describe the broadening coefficients in terms of m (m = -J(sup W), J(sup W), and J(sup w) + 1 in the QP-, QQ-, and QR-branch, respectively) and K. On average, the empirical expressions reproduce the measured broadening coefficients to within 4.4%. The O2-broadening and pressure shift coefficients were calculated on the basis of a semiclassical model of interacting linear molecules performed by considering in addition to the electrostatic contributions the atom-atom Lennard-Jones potential. The theoretical results of the broadening coefficients are generally larger than the experimental data. Using for the trajectory model an isotropic Lennard-Jones potential derived from molecular parameters instead of the spherical average of the atom-atom model, a better agreement is obtained with these data, especially for |m| <= 12

  10. Calculation of absorbed dose around a facility for disposing of low activity natural radioactive waste (C3-dump).

    PubMed

    Jansen, J T M; Zoetelief, J

    2005-01-01

    A C3-dump is a facility for disposing of low activity natural radioactive waste containing the uranium series 238U, the thorium series 232Th and 40K. Only the external radiation owing to gamma rays, X-rays and annihilation photons is considered in this study. For two situations--the semi-infinite slab and the tourist geometry--the conversion coefficients from specific activity to air kerma rate at 1 m above the relevant level are calculated. In the first situation the waste material is in contact with the air but in the tourist geometry it is covered with a 1.35 m thick layer. For the calculations, the Monte Carlo radiation transport code MCNP is used. The yield and photon energy for each radionuclide are according to the database of Oak Ridge National Laboratory. For the tourist situation, the depth-dose distribution through the covering layer is calculated and extrapolated to determine the exit dose. PMID:16604673

  11. Decreased-activity mutants of phosphoglucose isomerase in the cytosol and chloroplast of Clarkia xantiana. Impact on mass-action ratios and fluxes to sucrose and starch, and estimation of Flux Control Coefficients and Elasticity Coefficients.

    PubMed Central

    Kruckeberg, A L; Neuhaus, H E; Feil, R; Gottlieb, L D; Stitt, M

    1989-01-01

    1. Subcellular-compartment-specific decreased-activity mutants of phosphoglucose isomerase in Clarkia xantiana were used to analyse the control of sucrose and starch synthesis during photosynthesis. Mutants were available in which the plastid phosphoglucose isomerase complement is decreased to 75% or 50% of the wild-type level, and the cytosol complement to 64%, 36% or 18% of the wild-type level. 2. The effects on the [product]/[substrate] ratio and on fluxes to sucrose or starch and the rate of photosynthesis were studied with the use of saturating or limiting light intensity to impose a high or low flux through these pathways. 3. Removal of a small fraction of either phosphoglucose isomerase leads to a significant shift of the [product]/[substrate] ratio away, from equilibrium. We conclude that there is no 'excess' of enzyme over that needed to maintain its reactants reasonably close to equilibrium. 4. Decreased phosphoglucose isomerase activity can also alter the fluxes to starch or sucrose. However, the effect on flux does not correlate with the extent of disequilibrium, and also varies depending on the subcellular compartment and on the conditions. 5. The results were used to estimate Flux Control Coefficients for the chloroplast and cytosolic phosphoglucose isomerases. The chloroplast isoenzyme exerts control on the rate of starch synthesis and on photosynthesis in saturating light intensity and CO2, but not at low light intensity. The cytosolic enzyme only exerts significant control when its complement is decreased 3-5-fold, and differs from the plastid isoenzyme in exerting more control in low light intensity. It has a positive Control Coefficient for sucrose synthesis, and a negative Control Coefficient for starch synthesis. 6. The Elasticity Coefficients in vivo of the cytosolic phosphoglucose isomerase were estimated to lie between 5 and 8 in the wild-type. They decrease in mutants with a lowered complement of cytosolic phosphoglucose isomerase. 7. The

  12. Calculation of thermodynamic properties and transport coefficients for SF/sub 6/-N/sub 2/ mixtures in the temperature range 1,000-30,000 K

    SciTech Connect

    Gleizes, A.; Razafinimanana, M.; Vacquie, S.

    1986-03-01

    The authors have computed the equilibrium composition, the transport coefficients (viscosity and electrical and thermal conductivities), the thermodynamic properties (Gibbs and Helmholtz potentials, entropy, enthalpy, and specific heats), and the derived quantities (mass density and sound velocity) for sulfur hexafluoride-molecular nitrogen mixtures in conditions relevant to circuit-breaker arcs: temperature between 1000 and 30,000 K and pressure in the range 1-10 atm. The validity of the computation has been checked by a detailed comparison of the results with those available in the literature concerning pure sulfur hexafluoride and pure molecular nitrogen. In such mixtures the chemical reactions (dissociation and ionization) have a strong influence on thermal conduction and specific heat. the effect of sulfur hexafluoride on the properties of such mixtures is elucidated; in a mixture containing 40% sulfur hexafluoride, the amplitude of the thermal conduction peak appearing around 7500 K is reduced by a factor of four relative to that of pure molecular nitrogen. The influence of pressure on the properties of the plasma between 1 and 10 atm is relatively low.

  13. Calculating the Dose of Subcutaneous Immunoglobulin for Primary Immunodeficiency Disease in Patients Switched From Intravenous to Subcutaneous Immunoglobulin Without the Use of a Dose-Adjustment Coefficient

    PubMed Central

    Fadeyi, Michael; Tran, Tin

    2013-01-01

    Primary immunodeficiency disease (PIDD) is an inherited disorder characterized by an inadequate immune system. The most common type of PIDD is antibody deficiency. Patients with this disorder lack the ability to make functional immunoglobulin G (IgG) and require lifelong IgG replacement therapy to prevent serious bacterial infections. The current standard therapy for PIDD is intravenous immunoglobulin (IVIG) infusions, but IVIG might not be appropriate for all patients. For this reason, subcutaneous immunoglobulin (SCIG) has emerged as an alternative to IVIG. A concern for physicians is the precise SCIG dose that should be prescribed, because there are pharmacokinetic differences between IVIG and SCIG. Manufacturers of SCIG 10% and 20% liquid (immune globulin subcutaneous [human]) recommend a dose-adjustment coefficient (DAC). Both strengths are currently approved by the FDA. This DAC is to be used when patients are switched from IVIG to SCIG. In this article, we propose another dosing method that uses a higher ratio of IVIG to SCIG and an incremental adjustment based on clinical status, body weight, and the presence of concurrent diseases. PMID:24391400

  14. The Effect of Calculator-Based Ranger Activities on Students' Graphing Ability.

    ERIC Educational Resources Information Center

    Kwon, Oh Nam

    2002-01-01

    Addresses three issues of Calculator-based Ranger (CBR) activities on graphing abilities: (a) the effect of CBR activities on graphing abilities; (b) the extent to which prior knowledge about graphing skills affects graphing ability; and (c) the influence of instructional styles on students' graphing abilities. Indicates that CBR activities are…

  15. A comparison of simple and realistic eye models for calculation of fluence to dose conversion coefficients in a broad parallel beam incident of protons

    NASA Astrophysics Data System (ADS)

    Sakhaee, Mahmoud; Vejdani-Noghreiyan, Alireza; Ebrahimi-Khankook, Atiyeh

    2015-01-01

    Radiation induced cataract has been demonstrated among people who are exposed to ionizing radiation. To evaluate the deterministic effects of ionizing radiation on the eye lens, several papers dealing with the eye lens dose have been published. ICRP Publication 103 states that the lens of the eye may be more radiosensitive than previously considered. Detailed investigation of the response of the lens showed that there are strong differences in sensitivity to ionizing radiation exposure with respect to cataract induction among the tissues of the lens of the eye. This motivated several groups to look deeper into issue of the dose to a sensitive cell population within the lens, especially for radiations with low energy penetrability that have steep dose gradients inside the lens. Two sophisticated mathematical models of the eye including the inner structure have been designed for the accurate dose estimation in recent years. This study focuses on the calculations of the absorbed doses of different parts of the eye using the stylized models located in UF-ORNL phantom and comparison with the data calculated with the reference computational phantom in a broad parallel beam incident of protons with energies between 20 MeV and 10 GeV. The obtained results indicate that the total lens absorbed doses of reference phantom has good compliance with those of the more sensitive regions of stylized models. However, total eye absorbed dose of these models greatly differ with each other for lower energies.

  16. TOSPAC calculations in support of the COVE 2A benchmarking activity; Yucca Mountain Site Characterization Project

    SciTech Connect

    Gauthier, J.H.; Zieman, N.B.; Miller, W.B.

    1991-10-01

    The purpose of the the Code Verification (COVE) 2A benchmarking activity is to assess the numerical accuracy of several computer programs for the Yucca Mountain Site Characterization Project of the Department of Energy. This paper presents a brief description of the computer program TOSPAC and a discussion of the calculational effort and results generated by TOSPAC for the COVE 2A problem set. The calculations were performed twice. The initial calculations provided preliminary results for comparison with the results from other COVE 2A participants. TOSPAC was modified in response to the comparison and the final calculations included a correction and several enhancements to improve efficiency. 8 refs.

  17. Linear solvation energy relationship of the limiting partition coefficient of organic solutes between water and activated carbon

    USGS Publications Warehouse

    Luehrs, Dean C.; Hickey, James P.; Nilsen, Peter E.; Godbole, K.A.; Rogers, Tony N.

    1995-01-01

    A linear solvation energy relationship has been found for 353 values of the limiting adsorption coefficients of diverse chemicals:  log K = −0.37 + 0.0341Vi − 1.07β + D + 0.65P with R = 0.951, s = 0.51, n = 353, and F = 818.0, where Vi is the intrinsic molar volume; β is a measure of the hydrogen bond acceptor strength of the solute; D is an index parameter for the research group which includes the effects of the different types of carbon used, the temperature, and the length of time allowed for the adsorption equilibrium to be established; and P is an index parameter for the flatness of the molecule. P is defined to be unity if there is an aromatic system in the molecule or if there is a double bond or series of conjugated double bonds with no more that one non-hydrogen atom beyond the double bond and zero otherwise. A slightly better fit is obtained if the two-thirds power of Vi is used as a measure of the surface area in place of the volume term:  log K = −1.75 + 0.227V2/3 − 1.10β + D + 0.60P with R = 0.954, s = 0.49, n = 353, and F = 895.39. This is the first quantitative measure of the effect of the shape of the molecule on its tendency to be adsorbed on activated carbon.

  18. The fast neutron fluence and the activation detector activity calculations using the effective source method and the adjoint function

    SciTech Connect

    Hep, J.; Konecna, A.; Krysl, V.; Smutny, V.

    2011-07-01

    This paper describes the application of effective source in forward calculations and the adjoint method to the solution of fast neutron fluence and activation detector activities in the reactor pressure vessel (RPV) and RPV cavity of a VVER-440 reactor. Its objective is the demonstration of both methods on a practical task. The effective source method applies the Boltzmann transport operator to time integrated source data in order to obtain neutron fluence and detector activities. By weighting the source data by time dependent decay of the detector activity, the result of the calculation is the detector activity. Alternatively, if the weighting is uniform with respect to time, the result is the fluence. The approach works because of the inherent linearity of radiation transport in non-multiplying time-invariant media. Integrated in this way, the source data are referred to as the effective source. The effective source in the forward calculations method thereby enables the analyst to replace numerous intensive transport calculations with a single transport calculation in which the time dependence and magnitude of the source are correctly represented. In this work, the effective source method has been expanded slightly in the following way: neutron source data were performed with few group method calculation using the active core calculation code MOBY-DICK. The follow-up neutron transport calculation was performed using the neutron transport code TORT to perform multigroup calculations. For comparison, an alternative method of calculation has been used based upon adjoint functions of the Boltzmann transport equation. Calculation of the three-dimensional (3-D) adjoint function for each required computational outcome has been obtained using the deterministic code TORT and the cross section library BGL440. Adjoint functions appropriate to the required fast neutron flux density and neutron reaction rates have been calculated for several significant points within the RPV

  19. Application of single ion activity coefficients to determine solvent extraction mechanism for components of high level nuclear waste

    SciTech Connect

    Nunez, L.; Vandegrift, G.F.

    1995-12-31

    The TRUEX solvent extraction process is being developed to remove and concentrate transuranic (TRU) elements from high-level and TRU radioactive wastes currently stored at US Department of Energy sites. Phosphoric acid is one of the chemical species of concern at the Hanford site where bismuth phosphate was used to recover plutonium. The mechanism of phosphoric acid extraction with TRUEX-NPH solvent at 25{degrees}C was determined by phosphoric acid distribution ratios, which were measured by using phosphoric acid radiotracer and a variety of aqueous phases containing different concentrations of nitric acid and nitrate ions. A model was developed for predicting phosphoric acid distribution ratios as a function of the thermodynamic activities of nitrate ion and hydrogen ion. The Generic TRUEX Model (GTM) was used to calculate these activities based on the Bromley method. The derived model supports CMPO and TBP extraction of a phosphoric acid-nitric acid complex and a CMPO-phosphoric acid complex in TRUEX-NPH solvent.

  20. Scaling equations to model variations in operating conditions for activation calculations

    SciTech Connect

    Ho, S.K.

    1994-11-01

    A simple approximate scheme of calculating the variations of fusion activation-induced radioactive inventories with reactor operating conditions (power and time) by scaling equations is formulated. Application of the scheme to evaluate radiological dose-contributing activation products for HT-9 ferritic steel first wall shows decent agreements with numerical results.

  1. Radioactivity of Potassium Solutions: A Comparison of Calculated Activity to Measured Activity from Gross Beta Counting and Gamma Spectroscopy

    SciTech Connect

    Gaylord, R F

    2005-07-26

    In order to determine if the measured beta activity for a solution containing potassium was exactly as predicted, particularly since the CES gas counter is not calibrated specifically with K-40, an experiment was conducted to compare measured activities from two radioanalytical methods (gamma spectroscopy and gas proportional counting) to calculated activities across a range of potassium concentrations. Potassium, being ubiquitous and naturally radioactive, is a well-known and common interference in gross beta counting methods. By measuring the observed beta activity due to K-40 in potassium-containing solutions across a wide range of concentrations, it was found that the observed beta activity agrees well with the beta activity calculated from the potassium concentration measured by standard inorganic analytical techniques, such as ICP-OES, and that using the measured potassium concentration to calculate the expected beta activity, and comparing this to the observed beta activity to determine if potassium can account for all the observed activity in a sample, is a valid technique. It was also observed that gamma spectroscopy is not an effective means of measuring K-40 activity below approximately 700 pCi/L, which corresponds to a solution with approximately 833 mg/L total potassium. Gas proportional counting for gross beta activity has a much lower detection limit, typically 20-50 picoCi/L for a liquid low in total dissolved solids, which corresponds to a potassium concentration of approximately 30-70 ppm K.

  2. New limb-darkening coefficients for PHOENIX/1D model atmospheres. I. Calculations for 1500 K ≤ Teff ≤ 4800 K Kepler, CoRot, Spitzer, uvby, UBVRIJHK, Sloan, and 2MASS photometric systems

    NASA Astrophysics Data System (ADS)

    Claret, A.; Hauschildt, P. H.; Witte, S.

    2012-10-01

    Aims: The knowledge of how the specific intensity is distributed over the stellar disk is crucial for interpreting the light curves of extrasolar transiting planets, double-lined eclipsing binaries, and other astrophysical phenomena. To provide theoretical inputs for light curve modelling codes, we present new calculations of limb-darkening coefficients for the spherically symmetric phoenix models. Methods: The limb-darkening coefficients were computed by covering the transmission curves of Kepler, CoRoT, and Spitzer space missions, as well as the passbands of the Strömgren, Johnson-Cousins, Sloan, and 2MASS. These computations adopted the least-square method. In addition, we also calculated the linear and bi-parametric approximations by adopting the flux conservation method as an additional tool for estimating the theoretical error bars in the limb-darkening coefficients. Results: Six laws were used to describe the specific intensity distribution: linear, quadratic, square root, logarithmic, exponential, and a more general one with 4 terms. The computations are presented for the solar chemical composition, with log g varying between 2.5 and 5.5 and effective temperatures between 1500-4800 K. The adopted microturbulent velocity and the mixing-length parameters are 2.0 km s-1 and 2.0, respectively. Tables 2-25 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/546/A14

  3. Drag Coefficient of Hexadecane Particles

    NASA Astrophysics Data System (ADS)

    Nakao, Yoshinobu; Hishida, Makoto; Kajimoto, Sadaaki; Tanaka, Gaku

    This paper deals with the drag coefficient of solidified hexadecane particles and their free rising velocity in liquid. The drag coefficient was experimentally investigated in Reynolds number range of about 40-300. The present experimental results are summarized in the following; (1) the drag coefficient of solidified hexadecane particles formed in liquid coolant by direct contact cooling is higher than that of a smooth surface sphere, this high drag coefficient seems to be attributed to the non-smooth surface of the solidified hexadecane particles, (2) experimental correlation for the drag coefficient of the solidified hexadecane particles was proposed, (3 ) the measured rising velocity of the solidified hexadecane particle agrees well with the calculated one, (4) the drag coefficients of hexadecane particles that were made by pouring hexadecane liquid into a solid hollow sphere agreed well with the drag coefficient of smooth surface sphere.

  4. Symmetry adapted cluster-configuration interaction calculation of the photoelectron spectra of famous biological active steroids

    NASA Astrophysics Data System (ADS)

    Abyar, Fatemeh; Farrokhpour, Hossein

    2014-11-01

    The photoelectron spectra of some famous steroids, important in biology, were calculated in the gas phase. The selected steroids were 5α-androstane-3,11,17-trione, 4-androstane-3,11,17-trione, cortisol, cortisone, corticosterone, dexamethasone, estradiol and cholesterol. The calculations were performed employing symmetry-adapted cluster/configuration interaction (SAC-CI) method using the 6-311++G(2df,pd) basis set. The population ratios of conformers of each steroid were calculated and used for simulating the photoelectron spectrum of steroid. It was found that more than one conformer contribute to the photoelectron spectra of some steroids. To confirm the calculated photoelectron spectra, they compared with their corresponding experimental spectra. There were no experimental gas phase Hesbnd I photoelectron spectra for some of the steroids of this work in the literature and their calculated spectra can show a part of intrinsic characteristics of this molecules in the gas phase. The canonical molecular orbitals involved in the ionization of each steroid were calculated at the HF/6-311++g(d,p) level of theory. The spectral bands of each steroid were assigned by natural bonding orbital (NBO) calculations. Knowing the electronic structures of steroids helps us to understand their biological activities and find which sites of steroid become active when a modification is performing under a biological pathway.

  5. Personal dose-equivalent conversion coefficients for 1252 radionuclides.

    PubMed

    Otto, Thomas

    2016-01-01

    Dose conversion coefficients for radionuclides are useful for routine calculations in radiation protection in industry, medicine and research. They give a simple and often sufficient estimate of dose rates during production, handling and storage of radionuclide sources, based solely on the source's activity. The latest compilation of such conversion coefficients dates from 20 y ago, based on nuclear decay data published 30 y ago. The present publication provides radionuclide-specific conversion coefficients to personal dose based on the most recent evaluations of nuclear decay data for 1252 radionuclides and fluence-to-dose-equivalent conversion coefficients for monoenergetic radiations. It contains previously unknown conversion coefficients for >400 nuclides and corrects those conversion coefficients that were based on erroneous decay schemes. For the first time, estimates for the protection quantity Hp(3) are included. PMID:25349458

  6. MCHF calculations of isotope shifts; I program implementation and test runs II large-scale active space calculations

    SciTech Connect

    Joensson, P.; Fischer, C.F.

    1994-03-30

    A new isotope shift program, part of the MCHF atomic structure package, has been written and tested. The program calculates the isotope shift of an atomic level from MCHF or CI wave functions. The program is specially designed to be used with very large CI expansions, for which angular data cannot be stored on disk. To explore the capacity of the program, large-scale isotope shift calculations have been performed for a number of low lying levels in B I and B II. From the isotope shifts of these levels the transition isotope shift have been calculated for the resonance transitions in B I and B II. The calculated transition isotope shifts in B I are in very good agreement with experimental shifts, and compare favourably with shifts obtained from a many-body perturbation calculation.

  7. Summary report for ITER Task -- D4: Activation calculations for the stainless steel ITER design

    SciTech Connect

    Attaya, H.

    1995-02-01

    Detailed activation analysis for ITER has been performed as a part of ITER Task D4. The calculations have been performed for the shielding blanket (SS/water) and for the breeding blanket (LiN) options. The activation code RACC-P, which has been modified under IFER Task-D-10 for pulsed operation, has been used in this analysis. The spatial distributions of the radioactive inventory, decay heat, biological hazard potential, and the contact dose were calculated for the two designs for different operation modes and targeted fluences. A one-dimensional toroidal geometrical model has been utilized to determine the neutron fluxes in the two designs. The results are normalized for an inboard and outboard neutron wall loadings of 0.91 and 1.2 MW/M{sup 2}, respectively. The point-wise distributions of the decay gamma sources have been calculated everywhere in the reactor at several times after the shutdown of the two designs and are then used in the transport code ONEDANT to calculate the biological dose everywhere in the reactor. The point-wise distributions of all the responses have also been calculated. These calculations have been performed for neutron fluences of 3.0 MWa/M{sup 2}, which corresponds to the target fluence of ITER, and 0.1 MWa/M{sup 2}, which is anticipated to correspond to the beginning of an extended maintenance period.

  8. Ring-polymer molecular dynamics: Rate coefficient calculations for energetically symmetric (near thermoneutral) insertion reactions (X + H{sub 2}) → HX + H(X = C({sup 1}D), S({sup 1}D))

    SciTech Connect

    Suleimanov, Yury V.; Kong, Wendi J.; Green, William H.; Guo, Hua

    2014-12-28

    Following our previous study of prototypical insertion reactions of energetically asymmetric type with the RPMD (Ring-Polymer Molecular Dynamics) method [Y. Li, Y. Suleimanov, and H. Guo, J. Phys. Chem. Lett. 5, 700 (2014)], we extend it to two other prototypical insertion reactions with much less exothermicity (near thermoneutral), namely, X + H{sub 2} → HX + H where X = C({sup 1}D), S({sup 1}D), in order to assess the accuracy of this method for calculating thermal rate coefficients for this class of reactions. For both chemical reactions, RPMD displays remarkable accuracy and agreement with the previous quantum dynamic results that make it encouraging for the future application of the RPMD to other barrier-less, complex-forming reactions involving polyatomic reactants with any exothermicity.

  9. Oxygen exchange at gas/oxide interfaces: how the apparent activation energy of the surface exchange coefficient depends on the kinetic regime.

    PubMed

    Fielitz, Peter; Borchardt, Günter

    2016-08-10

    In the dedicated literature the oxygen surface exchange coefficient KO and the equilibrium oxygen exchange rate [Fraktur R] are considered to be directly proportional to each other regardless of the experimental circumstances. Recent experimental observations, however, contradict the consequences of this assumption. Most surprising is the finding that the apparent activation energy of KO depends dramatically on the kinetic regime in which it has been determined, i.e. surface exchange controlled vs. mixed or diffusion controlled. This work demonstrates how the diffusion boundary condition at the gas/solid interface inevitably entails a correlation between the oxygen surface exchange coefficient KO and the oxygen self-diffusion coefficient DO in the bulk ("on top" of the correlation between KO and [Fraktur R] for the pure surface exchange regime). The model can thus quantitatively explain the range of apparent activation energies measured in the different regimes: in the surface exchange regime the apparent activation energy only contains the contribution of the equilibrium exchange rate, whereas in the mixed or in the diffusion controlled regime the contribution of the oxygen self-diffusivity has also to be taken into account, which may yield significantly higher apparent activation energies and simultaneously quantifies the correlation KO ∝ DO(1/2) observed for a large number of oxides in the mixed or diffusion controlled regime, respectively. PMID:27460608

  10. Activation calculations for trapped protons below 200 MeV: Appendix

    NASA Technical Reports Server (NTRS)

    Laird, C. E.

    1991-01-01

    Tables are given displaying of the results of the activation calculations of metal samples and other material aboard the Long Duration Exposure Facility-1 (LDEF-1) and Spacelab-2 with the computer program, PTRAP4. The computer printouts give the reaction, the reactant product, the proton reaction cross sections as a function of the energy of the incident protons, and the activation as a function of distance into the sample from the exposed surface.

  11. Understanding Iron-based catalysts with efficient Oxygen reduction activity from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Hafiz, Hasnain; Barbiellini, B.; Jia, Q.; Tylus, U.; Strickland, K.; Bansil, A.; Mukerjee, S.

    2015-03-01

    Catalysts based on Fe/N/C clusters can support the oxygen-reduction reaction (ORR) without the use of expensive metals such as platinum. These systems can also prevent some poisonous species to block the active sites from the reactant. We have performed spin-polarized calculations on various Fe/N/C fragments using the Vienna Ab initio Simulation Package (VASP) code. Some results are compared to similar calculations obtained with the Gaussian code. We investigate the partial density of states (PDOS) of the 3d orbitals near the Fermi level and calculate the binding energies of several ligands. Correlations of the binding energies with the 3d electronic PDOS's are used to propose electronic descriptors of the ORR associated with the 3d states of Fe. We also suggest a structural model for the most active site with a ferrous ion (Fe2+) in the high spin state or the so-called Doublet 3 (D3).

  12. Long-lived activation products in TRIGA Mark II research reactor concrete shield: calculation and experiment

    NASA Astrophysics Data System (ADS)

    Žagar, Tomaž; Božič, Matjaž; Ravnik, Matjaž

    2004-12-01

    In this paper, a process of long-lived activity determination in research reactor concrete shielding is presented. The described process is a combination of experiment and calculations. Samples of original heavy reactor concrete containing mineral barite were irradiated inside the reactor shielding to measure its long-lived induced radioactivity. The most active long-lived (γ emitting) radioactive nuclides in the concrete were found to be 133Ba, 60Co and 152Eu. Neutron flux, activation rates and concrete activity were calculated for actual shield geometry for different irradiation and cooling times using TORT and ORIGEN codes. Experimental results of flux and activity measurements showed good agreement with the results of calculations. Volume of activated concrete waste after reactor decommissioning was estimated for particular case of Jožef Stefan Institute TRIGA reactor. It was observed that the clearance levels of some important long-lived isotopes typical for barite concrete (e.g. 133Ba, 41Ca) are not included in the IAEA and EU basic safety standards.

  13. Neutron Unfolding Code System for Calculating Neutron Flux Spectra from Activation Data of Dosimeter Foils.

    1982-04-30

    Version 00 As a part of the measurement and analysis plan for the Dosimetry Experiment at the "JOYO" experimental fast reactor, neutron flux spectral analysis is performed using the NEUPAC (Neutron Unfolding Code Package) code system. NEUPAC calculates the neutron flux spectra and other integral quantities from the activation data of the dosimeter foils.

  14. The calculation of surface orbital energies for specific types of active sites on dispersed metal catalysts

    SciTech Connect

    Augustine, R.L.; Lahanas, K.M.; Cole, F.

    1992-11-01

    An angular overlap calculation has been used to determine the s, p, and d orbital energy levels of the different types of surface sites present on dispersed metal catalysts. These data can permit a Frontier Molecular Orbital treatment of specific site activities as long as the surface orbital availability for overlap with adsorbed substrates is considered along with its energy value and symmetry.

  15. The calculation of surface orbital energies for specific types of active sites on dispersed metal catalysts

    SciTech Connect

    Augustine, R.L.; Lahanas, K.M.; Cole, F.

    1992-01-01

    An angular overlap calculation has been used to determine the s, p, and d orbital energy levels of the different types of surface sites present on dispersed metal catalysts. These data can permit a Frontier Molecular Orbital treatment of specific site activities as long as the surface orbital availability for overlap with adsorbed substrates is considered along with its energy value and symmetry.

  16. Office Occupations--Clerical--Calculators. Kit No. 75. Instructor's Manual [and] Student Learning Activity Guide.

    ERIC Educational Resources Information Center

    Stewart, Ada

    An instructor's manual and student activity guide on the clerical use of calculators are provided in this set of prevocational education materials which focuses on the vocational area of office occupations. (This set of materials is one of ninety-two prevocational education sets arranged around a cluster of seven vocational offerings: agriculture,…

  17. Operational Control Procedures for the Activated Sludge Process, Part III-A: Calculation Procedures.

    ERIC Educational Resources Information Center

    West, Alfred W.

    This is the second in a series of documents developed by the National Training and Operational Technology Center describing operational control procedures for the activated sludge process used in wastewater treatment. This document deals exclusively with the calculation procedures, including simplified mixing formulas, aeration tank…

  18. Nanoscale Properties and Stability Simulations of Alkali Activated Cement Phases from First Principle Calculations

    NASA Astrophysics Data System (ADS)

    Ozcelik, Ongun; White, Claire

    Using first principle density functional calculations, we present the nanoscale properties of interactions, local bonds, charge distributions, mechanical properties and strength of alkali activated cement phases which are the most promising alternative to the ordinary Portland cement with a much lower cost to the environment. We present results on the stability and long term durability of various alkali activated cement structures, effects of external alkali agents on their properties and ways of utilizing them for further applications. We compare the calculated properties of alkali activated cement with those of ordinary Portland cement and contribute to the formation of long term durability data of these phases. Comparison with X-ray and neutron scattering experiment results are also provided via pair distribution functions extracted from simulation results.

  19. Calculation of optical second-harmonic susceptibilities and optical activity for crystals

    SciTech Connect

    Levine, Z.H.

    1994-12-31

    A new generation of nearly first-principles calculations predicts both the linear and second-harmonic susceptibilities for a variety of insulating crystals, including GaAs, GaP, AlAs, AlP, Se, {alpha}-quartz, and c-urea. The results are typically in agreement with experimental measurements. The calculations have been extended to optical activity, with somewhat less success to date. The theory, based on a simple self-energy correction to the local density approximation, and results are reviewed herein.

  20. Comparison of Fixed versus Calculated Activity of Radioiodine for the Treatment of Graves Disease in Adults

    PubMed Central

    Dominguez, Paulette N.; Jimeno, Cecilia A.; Obaldo, Jerry M.; Ogbac, Ruben V.

    2016-01-01

    Background Radioactive iodine as a treatment modality has been shown in several studies to be a safe and effective therapy for Graves disease. However, there is still no uniformity regarding optimal dosing method. The aim of this study is to compare the efficacy of calculated and fixed dosing of radioiodine for the treatment of Graves disease. Methods A hundred twenty-two patients diagnosed with Graves disease were randomized to receive either fixed or calculated dose of radioiodine. Those randomized to fixed activity received either low fixed activity at 9.9 mCi for thyroid gland size <40 g or high fixed activity at 14.9 mCi for thyroid gland size 40 to 80 g, and those grouped to calculated activity received 160 µCi/g of thyroid tissue adjusted for 24 hours radioiodine uptake. Thyroid function tests (free thyroxine [T4] and thyroid stimulating hormone [TSH]) were monitored at 10, 16, and 24 weeks after radioactive iodine therapy. The primary outcome, treatment failure was defined as persistently elevated free T4 and low TSH. Results Of the 122 patients randomized, 56 in the fixed dose group and 56 in the calculated dose group completed the follow-up. At the end of 6 months, the percentage of treatment failure was 37.50% in the calculated dose group versus 19.64% in the fixed dose group with a relative risk of 0.53 (95% confidence interval, 0.28 to 0.98) favoring the fixed dose group. Conclusion Fixed dose radioiodine has a significantly lower incidence of persistent hyperthyroidism at 6 months post-radioactive therapy. PMID:26996425

  1. Calculation of the geometrical three-point parameter constant appearing in the second order accurate effective medium theory expression for the B-term diffusion coefficient in fully porous and porous-shell random sphere packings.

    PubMed

    Deridder, Sander; Desmet, Gert

    2012-02-01

    Using computational fluid dynamics (CFD), the effective B-term diffusion constant γ(eff) has been calculated for four different random sphere packings with different particle size distributions and packing geometries. Both fully porous and porous-shell sphere packings are considered. The obtained γ(eff)-values have subsequently been used to determine the value of the three-point geometrical constant (ζ₂) appearing in the 2nd-order accurate effective medium theory expression for γ(eff). It was found that, whereas the 1st-order accurate effective medium theory expression is accurate to within 5% over most part of the retention factor range, the 2nd-order accurate expression is accurate to within 1% when calculated with the best-fit ζ₂-value. Depending on the exact microscopic geometry, the best-fit ζ₂-values typically lie in the range of 0.20-0.30, holding over the entire range of intra-particle diffusion coefficients typically encountered for small molecules (0.1 ≤ D(pz)/D(m) ≤ 0.5). These values are in agreement with the ζ₂-value proposed by Thovert et al. for the random packing they considered. PMID:22236565

  2. A rotor unbalance response based approach to the identification of the closed-loop stiffness and damping coefficients of active magnetic bearings

    NASA Astrophysics Data System (ADS)

    Zhou, Jin; Di, Long; Cheng, Changli; Xu, Yuanping; Lin, Zongli

    2016-01-01

    The stiffness and damping coefficients of active magnetic bearings (AMBs) have direct influence on the dynamic response of a rotor bearing system, including the bending critical speeds, modes of vibrations and stability. Rotor unbalance response is informative in the identification of these bearing support parameters. In this paper, we propose a method for identifying closed-loop AMB stiffness and damping coefficients based on the rotor unbalance response. We will use a flexible rotor-AMB test rig to help describe the proposed method as well as to validate the identification results. First, based on a rigid body model of the rotor, a formula is derived that computes the nominal values of the bearing stiffness and damping coefficients at a given rotating speed from the experimentally measured rotor unbalance response at the given speed. Then, based on a finite element model of the rotor, an error response surface is constructed for each parameter to estimate the identification errors induced by the rotor flexibility. The final identified values of the stiffness and damping coefficients equal the sums of the nominal values initially computed from the unbalance response and the identification errors determined by the error response surfaces. The proposed identification method is carried out on the rotor-AMB test rig. In order to validate the identification results, the identified values of the closed-loop AMB stiffness and damping coefficients are combined with the finite element model of the rotor to form a full model of the rotor-AMB test rig, from which the model unbalance responses at various rotating speeds are determined through simulation and compared with the experimental measurements. The close agreements between the simulation results and the measurements validate the proposed identification method.

  3. Compilation and evaluation of gas phase diffusion coefficients of reactive trace gases in the atmosphere: Volume 2. Diffusivities of organic compounds, pressure-normalised mean free paths, and average Knudsen numbers for gas uptake calculations

    NASA Astrophysics Data System (ADS)

    Tang, M. J.; Shiraiwa, M.; Poschl, U.; Cox, R. A.; Kalberer, M.

    2015-05-01

    Diffusion of organic vapours to the surface of aerosol or cloud particles is an important step for the formation and transformation of atmospheric particles. So far, however, a database of gas phase diffusion coefficients for organic compounds of atmospheric interest has not been available. In this work we have compiled and evaluated gas phase diffusivities (pressure-independent diffusion coefficients) of organic compounds reported by previous experimental studies, and we compare the measurement data to estimates obtained with Fuller's semi-empirical method. The difference between measured and estimated diffusivities are mostly < 10%. With regard to gas-particle interactions, different gas molecules, including both organic and inorganic compounds, exhibit similar Knudsen numbers (Kn) although their gas phase diffusivities may vary over a wide range. This is because different trace gas molecules have similar mean free paths in air at a given pressure. Thus, we introduce the pressure-normalised mean free path, λP ~ 100 nm atm, as a near-constant generic parameter that can be used for approximate calculation of Knudsen numbers as a simple function of gas pressure and particle diameter to characterise the influence of gas phase diffusion on the uptake of gases by aerosol or cloud particles. We use a kinetic multilayer model of gas-particle interaction to illustrate the effects of gas phase diffusion on the condensation of organic compounds with different volatilities. The results show that gas phase diffusion can play a major role in determining the growth of secondary organic aerosol particles by condensation of low-volatility organic vapours.

  4. Research on the Calculated Methods of Active Control Value for Antenna Panel Deformations under Gravity

    NASA Astrophysics Data System (ADS)

    Fu, L.; Zhong, W. Y.; Qiao, H. H.; Liu, G. X.; Qian, H. L.

    2015-07-01

    The methods of ideal reflector surface, two-parameter, five-parameter, and six-parameter best-fit paraboloid are presented in this paper. Based on these methods, the adjustment values of gravity deformations are calculated for the main reflector of large-scale Cassegrain antenna. Accordingly, the positions of subreflector are corrected, and the effects of offset-focus on electric performance are also analyzed. Taking Shanghai 65 m antenna as a research object, the adjustment values of actuator and hexapod, the accuracy of the main reflector surface, and the pointing error after offsetting the focus are contrasted. As a result, the method of six-parameter best-fit paraboloid is ideal to calculate active control value for antenna panels after the effects of feed defocus have been adjusted and modified. The results offer data for the active control of antenna.

  5. A Digital Program for Calculating the Interaction Between Flexible Structures, Unsteady Aerodynamics and Active Controls

    NASA Technical Reports Server (NTRS)

    Peele, E. L.; Adams, W. M., Jr.

    1979-01-01

    A computer program, ISAC, is described which calculates the stability and response of a flexible airplane equipped with active controls. The equations of motion relative to a fixed inertial coordinate system are formulated in terms of the airplane's rigid body motion and its unrestrained normal vibration modes. Unsteady aerodynamic forces are derived from a doublet lattice lifting surface theory. The theoretical basis for the program is briefly explained together with a description of input data and output results.

  6. A new formula to calculate activity of superoxide dismutase in indirect assays.

    PubMed

    Zhang, Chen; Bruins, Marieke E; Yang, Zhi-Qiang; Liu, Shu-Tao; Rao, Ping-Fan

    2016-06-15

    To calculate superoxide dismutase (SOD) activity rapidly and accurately by indirect SOD assays, a formula based on the ratio of the catalytic speed of SOD to the reaction speed of the indicator with superoxide anion was deduced. The accuracy of this formula was compared with the conventional formula based on inhibition in five indirect SOD assays. The new formula was validated in nearly the entire SOD activity range, whereas the conventional formula was validated only during inhibition of 40-60%. This formula might also be used for the assays of other enzymes. PMID:27033009

  7. Calculation of activation energies for hydrogen-atom abstractions by radicals containing carbon triple bonds

    NASA Technical Reports Server (NTRS)

    Brown, R. L.; Laufer, A. H.

    1981-01-01

    Activation energies are calculated by the bond-energy-bond-order (BEBO) and the bond-strength-bond-length (BSBL) methods for the reactions of C2H radicals with H2, CH4, and C2H6 and for the reactions of CN radicals with H2 and CH4. The BSBL technique accurately predicts the activation energies for these reactions while the BEBO method yields energies averaging 9 kcal higher than those observed. A possible reason for the disagreement is considered.

  8. Measurement of gas/water uptake coefficients for trace gases active in the marine environment. [Annual report

    SciTech Connect

    Davidovits, P.; Worsnop, D.W.; Zahniser, M.S.; Kolb, C.E.

    1992-02-01

    Ocean produced reduced sulfur compounds including dimethylsulfide (DMS), hydrogen sulfide (H{sub 2}S), carbon disulfide (CS{sub 2}), methyl mercaptan (CH{sub 3}CH) and carbonyl sulfide (OCS) deliver a sulfur burden to the atmosphere which is roughly equal to sulfur oxides produced by fossil fuel combustion. These species and their oxidation products dimethyl sulfoxide (DMSO), dimethyl sulfone (DMSO{sub 2}) and methane sulfonic acid (MSA) dominate aerosol and CCN production in clean marine air. Furthermore, oxidation of reduced sulfur species will be strongly influenced by NO{sub x}/O{sub 3} chemistry in marine atmospheres. The multiphase chemical processes for these species must be understood in order to study the evolving role of combustion produced sulfur oxides over the oceans. We have measured the chemical and physical parameters affecting the uptake of reduced sulfur compounds, their oxidation products, ozone, and nitrogen oxides by the ocean`s surface, and marine clouds, fogs, and aerosols. These parameters include: gas/surface mass accommodation coefficients; physical and chemically modified (effective) Henry`s law constants; and surface and liquid phase reaction constants. These parameters are critical to understanding both the interaction of gaseous trace species with cloud and fog droplets and the deposition of trace gaseous species to dew covered, fresh water and marine surfaces.

  9. Systematic and practical solvent system selection strategy based on the nonrandom two-liquid segment activity coefficient model for real-life counter-current chromatography separation.

    PubMed

    Ren, Da-Bing; Yi, Lun-Zhao; Qin, Yan-Hua; Yun, Yong-Huan; Deng, Bai-Chuan; Lu, Hong-Mei; Chen, Xiao-Qing; Liang, Yi-Zeng

    2015-05-01

    Solvent system selection is the first step toward a successful counter-current chromatography (CCC) separation. This paper introduces a systematic and practical solvent system selection strategy based on the nonrandom two-liquid segment activity coefficient (NRTL-SAC) model, which is efficient in predicting the solute partition coefficient. Firstly, the application of the NRTL-SAC method was extended to the ethyl acetate/n-butanol/water and chloroform/methanol/water solvent system families. Moreover, the versatility and predictive capability of the NRTL-SAC method were investigated. The results indicate that the solute molecular parameters identified from hexane/ethyl acetate/methanol/water solvent system family are capable of predicting a large number of partition coefficients in several other different solvent system families. The NRTL-SAC strategy was further validated by successfully separating five components from Salvia plebeian R.Br. We therefore propose that NRTL-SAC is a promising high throughput method for rapid solvent system selection and highly adaptable to screen suitable solvent system for real-life CCC separation. PMID:25818557

  10. Active Control of Fan Noise: Feasibility Study. Volume 5; Numerical Computation of Acoustic Mode Reflection Coefficients for an Unflanged Cylindrical Duct

    NASA Technical Reports Server (NTRS)

    Kraft, R. E.

    1996-01-01

    A computational method to predict modal reflection coefficients in cylindrical ducts has been developed based on the work of Homicz, Lordi, and Rehm, which uses the Wiener-Hopf method to account for the boundary conditions at the termination of a thin cylindrical pipe. The purpose of this study is to develop a computational routine to predict the reflection coefficients of higher order acoustic modes impinging on the unflanged termination of a cylindrical duct. This effort was conducted wider Task Order 5 of the NASA Lewis LET Program, Active Noise Control of aircraft Engines: Feasibility Study, and will be used as part of the development of an integrated source noise, acoustic propagation, ANC actuator coupling, and control system algorithm simulation. The reflection coefficient prediction will be incorporated into an existing cylindrical duct modal analysis to account for the reflection of modes from the duct termination. This will provide a more accurate, rapid computation design tool for evaluating the effect of reflected waves on active noise control systems mounted in the duct, as well as providing a tool for the design of acoustic treatment in inlet ducts. As an active noise control system design tool, the method can be used preliminary to more accurate but more numerically intensive acoustic propagation models such as finite element methods. The resulting computer program has been shown to give reasonable results, some examples of which are presented. Reliable data to use for comparison is scarce, so complete checkout is difficult, and further checkout is needed over a wider range of system parameters. In future efforts the method will be adapted as a subroutine to the GEAE segmented cylindrical duct modal analysis program.

  11. Application of the Activity-Based Costing Method for Unit-Cost Calculation in a Hospital

    PubMed Central

    Javid, Mahdi; Hadian, Mohammad; Ghaderi, Hossein; Ghaffari, Shahram; Salehi, Masoud

    2016-01-01

    Background: Choosing an appropriate accounting system for hospital has always been a challenge for hospital managers. Traditional cost system (TCS) causes cost distortions in hospital. Activity-based costing (ABC) method is a new and more effective cost system. Objective: This study aimed to compare ABC with TCS method in calculating the unit cost of medical services and to assess its applicability in Kashani Hospital, Shahrekord City, Iran. Methods: This cross-sectional study was performed on accounting data of Kashani Hospital in 2013. Data on accounting reports of 2012 and other relevant sources at the end of 2012 were included. To apply ABC method, the hospital was divided into several cost centers and five cost categories were defined: wage, equipment, space, material, and overhead costs. Then activity centers were defined. ABC method was performed into two phases. First, the total costs of cost centers were assigned to activities by using related cost factors. Then the costs of activities were divided to cost objects by using cost drivers. After determining the cost of objects, the cost price of medical services was calculated and compared with those obtained from TCS. Results: The Kashani Hospital had 81 physicians, 306 nurses, and 328 beds with the mean occupancy rate of 67.4% during 2012. Unit cost of medical services, cost price of occupancy bed per day, and cost per outpatient service were calculated. The total unit costs by ABC and TCS were respectively 187.95 and 137.70 USD, showing 50.34 USD more unit cost by ABC method. ABC method represented more accurate information on the major cost components. Conclusion: By utilizing ABC, hospital managers have a valuable accounting system that provides a true insight into the organizational costs of their department. PMID:26234974

  12. Coefficients of Productivity for Yellowstone's Grizzly Bear Habitat

    USGS Publications Warehouse

    Mattson, David John; Barber, Kim; Maw, Ralene; Renkin, Roy

    2004-01-01

    This report describes methods for calculating coefficients used to depict habitat productivity for grizzly bears in the Yellowstone ecosystem. Calculations based on these coefficients are used in the Yellowstone Grizzly Bear Cumulative Effects Model to map the distribution of habitat productivity and account for the impacts of human facilities. The coefficients of habitat productivity incorporate detailed information that was collected over a 20-year period (1977-96) on the foraging behavior of Yellowstone's bears and include records of what bears were feeding on, when and where they fed, the extent of that feeding activity, and relative measures of the quantity consumed. The coefficients also incorporate information, collected primarily from 1986 to 1992, on the nutrient content of foods that were consumed, their digestibility, characteristic bite sizes, and the energy required to extract and handle each food. Coefficients were calculated for different time periods and different habitat types, specific to different parts of the Yellowstone ecosystem. Stratifications included four seasons of bear activity (spring, estrus, early hyperphagia, late hyperphagia), years when ungulate carrion and whitebark pine seed crops were abundant versus not, areas adjacent to (<100 m) or far away from forest/nonforest edges, and areas inside or outside of ungulate winter ranges. Densities of bear activity in each region, habitat type, and time period were incorporated into calculations, controlling for the effects of proximity to human facilities. The coefficients described in this report and associated estimates of grizzly bear habitat productivity are unique among many efforts to model the conditions of bear habitat because calculations include information on energetics derived from the observed behavior of radio-marked bears.

  13. ERRORS IN APPLYING LOW ION-STRENGTH ACTIVITY COEFFICIENT ALGORITHMS TO HIGHER IONIC-STRENGTH AQUATIC MEDIA

    EPA Science Inventory

    The toxicological and regulatory communities are currently exploring the use of free-ion-activity- models as a means of reducing uncertainties in current methods for assessing metals bioavailabi- lity from contaminated aquatic media. While most practitioners would support the des...

  14. ERRORS IN APPLYING LOW IONIC-STRENGTH ACTIVITY COEFFICIENT ALGORITHMS TO HIGHER IONIC-STRENGTH AQUATIC MEDIA

    EPA Science Inventory

    The toxicological and regulatory communities are currently exploring the use of the free-ion-activity (FIA) model both alone and in conjunction with the biotic ligand model (BLM) as a means of reducing uncertainties in current methods for assessing metals bioavailability from aqu...

  15. The electrochemical potential and ionic activity coefficients. A possible correction for Debye-Hückel and Maxwell-Boltzmann equations for dilute electrolyte equilibria.

    PubMed

    van der Weg, P B

    2009-11-15

    When the electrical contribution in the electrochemical potential of ionic species is reduced with a factor two from its traditional value, the ionic activity coefficients are closer to unity and need to account only for the short-range interactions at high concentrations. Such a change is needed to remove inconsistencies in the models and to comply with basic electrostatic principles. This will have serious implications, in many applications. For example, it will cause changes in many of the fundamental models that are used to explain measured data in the dilute range for the various disciplines that embrace classical electrochemistry. Examples are Debye-Hückel and Gouy-Chapman theories; Maxwell-Boltzmann distribution; Nernst theory; Donnan equilibrium, etc. These theories impact a wide range of observable phenomena such as activity coefficients of electrolytes, diffuse double layer capacitance, electrode potentials, membrane potentials, streaming potentials, electro-osmosis, flotation, sedimentation, corrosion, charged micellar behaviour, space-charge semiconductor behaviour, and electrical phenomena in biological tissue, e.g. membranes; cells; and nerves, etcetera. PMID:19656523

  16. Calculation of a mirror asymmetric effect in electron scattering from chiral targets. [in optically active medium

    NASA Technical Reports Server (NTRS)

    Rich, A.; Van House, J.; Hegstrom, R. A.

    1982-01-01

    A dynamical calculation is presented of the helicity induced in an initially unpolarized electron beam after elastic scattering from an optically active medium, a process analogous to the circular polarization induced in unpolarized light following Rayleigh scattering from chiral targets. The calculation is based on the bound helical electron model of a chiral molecule, according to which the major contribution to the helicity is provided by the perturbation of the electron bound state by the spin-orbit interaction of the bound electrons moving in the electric field of the molecular core. The net helicity acquired is found to depend directly on a molecular asymmetry factor and the square of the atomic number of the heaviest atom in an asymmetric environment. For the case of carbon, the induced helicity is on the order of 0.00001, which would account for its lack of observation in a recent experiment. Results may have implications for the origin of optical activity in biological molecules by the differential ionization of D and L isomers by beta-decay electrons.

  17. Kendall-Theil Robust Line (KTRLine--version 1.0)-A Visual Basic Program for Calculating and Graphing Robust Nonparametric Estimates of Linear-Regression Coefficients Between Two Continuous Variables

    USGS Publications Warehouse

    Granato, Gregory E.

    2006-01-01

    The Kendall-Theil Robust Line software (KTRLine-version 1.0) is a Visual Basic program that may be used with the Microsoft Windows operating system to calculate parameters for robust, nonparametric estimates of linear-regression coefficients between two continuous variables. The KTRLine software was developed by the U.S. Geological Survey, in cooperation with the Federal Highway Administration, for use in stochastic data modeling with local, regional, and national hydrologic data sets to develop planning-level estimates of potential effects of highway runoff on the quality of receiving waters. The Kendall-Theil robust line was selected because this robust nonparametric method is resistant to the effects of outliers and nonnormality in residuals that commonly characterize hydrologic data sets. The slope of the line is calculated as the median of all possible pairwise slopes between points. The intercept is calculated so that the line will run through the median of input data. A single-line model or a multisegment model may be specified. The program was developed to provide regression equations with an error component for stochastic data generation because nonparametric multisegment regression tools are not available with the software that is commonly used to develop regression models. The Kendall-Theil robust line is a median line and, therefore, may underestimate total mass, volume, or loads unless the error component or a bias correction factor is incorporated into the estimate. Regression statistics such as the median error, the median absolute deviation, the prediction error sum of squares, the root mean square error, the confidence interval for the slope, and the bias correction factor for median estimates are calculated by use of nonparametric methods. These statistics, however, may be used to formulate estimates of mass, volume, or total loads. The program is used to read a two- or three-column tab-delimited input file with variable names in the first row and

  18. A PHANTOM FOR DETERMINATION OF CALIBRATION COEFFICIENTS AND MINIMUM DETECTABLE ACTIVITIES USING A DUAL-HEAD GAMMA CAMERA FOR INTERNAL CONTAMINATION MONITORING FOLLOWING RADIATION EMERGENCY SITUATIONS.

    PubMed

    Ören, Ünal; Andersson, Martin; Rääf, Christopher L; Mattsson, Sören

    2016-06-01

    The purpose of this study was to derive calibration coefficients (in terms of cps kBq(-1)) and minimum detectable activities, MDA, (in terms of kBq and corresponding dose rate) for the dual head gamma camera part of an SPECT/CT-instrument when used for in vivo internal contamination measurements in radiation emergency situations. A cylindrical-conical PMMA phantom with diameters in the range of 7-30 cm was developed in order to simulate different body parts and individuals of different sizes. A series of planar gamma camera investigations were conducted using an SPECT/CT modality with the collimators removed for (131)I and (137)Cs, radionuclides potentially associated with radiation emergencies. Energy windows of 337-391 and 490-690 keV were selected for (131)I and (137)Cs, respectively. The measurements show that the calibration coefficients for (137)Cs range from 10 to 19 cps kBq(-1) with MDA values in the range of 0.29-0.55 kBq for phantom diameters of 10-30 cm. The corresponding values for (131)I are 12-37 cps kBq(-1) with MDA values of 0.08-0.26 kBq. An internal dosimetry computer program was used for the estimation of minimum detectable dose rates. A thyroid uptake of 0.1 kBq (131)I (representing MDA) corresponds to an effective dose rate of 0.6 µSv d(-1) A (137)Cs source position representing the colon with an MDA of 0.55 kBq corresponds to an effective dose rate was 1 µSv y(-1) This method using a simple phantom for the determination of calibration coefficients, and MDA levels can be implemented within the emergency preparedness plans in hospitals with nuclear medicine departments. The derived data will help to quickly estimate the internal contamination of humans following radiation emergencies. PMID:26769903

  19. Comparison of measured and calculated concrete and rebar specific activity during decommissioning of the Dalhousie SLOWPOKE-2 reactor.

    PubMed

    Smith, Philip G; Everall, Dave; Ariani, Imelda; Tsang, Kwok

    2013-07-01

    Following the defuelling and dismantling of the Dalhousie University SLOWPOKE-2 Reactor (DUSR) in 2011, the reactor pool concrete and rebar were sampled to support the unconditional free release of the material such that the facility could be classified for unrestricted use. A detailed MCNP5 model of the critical core assembly was simulated to calculate the thermal, intermediate and fast neutron flux profile below the reactor pool floor. The neutron fluxes were used to calculate the specific activity of significant radionuclides in the concrete and rebar. The calculated specific activity and consequently the calculated neutron fluxes were validated at a number of sample locations. The calculated concrete and rebar specific activity were found to be in good agreement with the measured specific activity at the sample locations. The unrestricted use of the facility was granted through the approval of the licence to abandon the facility in August 2011. PMID:23658212

  20. Bile acid structure-activity relationship: evaluation of bile acid lipophilicity using 1-octanol/water partition coefficient and reverse phase HPLC.

    PubMed

    Roda, A; Minutello, A; Angellotti, M A; Fini, A

    1990-08-01

    Two independent methods have been developed and compared to determine the lipophilicity of a representative series of naturally occurring bile acids (BA) in relation to their structure. The BA included cholic acid (CA), chenodeoxycholic acid (CDCA), ursodeoxycholic acid (UDCA), deoxycholic acid (DCA), hyodeoxycholic acid (HDCA), ursocholic acid (UCA), hyocholic acid (HCA), as well as their glycine and taurine amidates. Lipophilicity was determined using a 1-octanol/water shake-flask procedure and the experiments were performed at different pH and ionic strengths and at initial BA concentrations below their critical micellar concentrations (CMC) and the water solubility of the protonated form. The experimental data show that both the protonated (HA) and ionized (A-) forms of BA can distribute in 1-octanol, and consequently a partition coefficient for HA (logP' HA) and for A- (logP' A-) must be defined. An equation to predict a weighted apparent distribution coefficient (D) value as a function of pH and pKa has been developed and fits well with the experimental data. Differences between logP for protonated and ionized species for unconjugated BA were in the order of 1 log unit, which increased to 2 for glycine-amidate BA. The partition coefficient of the A- form increased with Na+ concentration and total ionic strength, suggesting an ion-pair mechanism for its partition into 1-octanol. Lipophilicity was also assessed using reverse phase chromatography (C-18-HPLC), and a capacity factor (K') for ionized species was determined. Despite a broad correlation with the logP data, some BA behaved differently. The logP values showed that the order of lipophilicity was DCA greater than CDCA greater than UDCA greater than HDCA greater than HCA greater than CA greater than UCA for both the protonated and ionized unconjugated and glycine-amidate BA, while the K' data showed an inversion for some BA, i.e., DCA greater than CDCA greater than CA greater than HCA greater than UDCA

  1. Density Functional Theory Calculations of Activation Energies for Carrier Capture by Defects in Semiconductors

    NASA Astrophysics Data System (ADS)

    Modine, N. A.; Wright, A. F.; Lee, S. R.

    The rate of defect-induced carrier recombination is determined by both defect levels and carrier capture cross-sections. Density functional theory (DFT) has been widely and successfully used to predict defect levels, but only recently has work begun to focus on using DFT to determine carrier capture cross-sections. Lang and Henry developed the theory of carrier-capture by multiphonon emission in the 1970s and showed that carrier-capture cross-sections differ between defects primarily due to differences in their carrier capture activation energies. We present an approach to using DFT to calculate carrier capture activation energies that does not depend on an assumed configuration coordinate and that fully accounts for anharmonic effects, which can substantially modify carrier activation energies. We demonstrate our approach for intrinisic defects in GaAs and GaN and discuss how our results depend on the choice of exchange-correlation functional and the treatment of spin polarization. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  2. A new tool for radiation exposure calculations in aircraft flights during disturbed solar activity periods

    NASA Astrophysics Data System (ADS)

    Paschalis, Pavlos; Tezari, Anastasia; Gerontidou, Maria; Mavromichalaki, Helen

    2016-04-01

    Galactic cosmic rays and solar energetic particles can penetrate the Earth's atmosphere and interact with its molecules, which can cause atmospheric showers of secondary particles that are detected by ground based neutron monitor detectors. The cascades are of great importance for the study of the radiation exposure of aircraft crews. A new Geant4 software application is presented based on DYASTIMA (Dynamic Atmospheric Shower Tracking Interactive Model Application), which calculates the effective dose that aviators may receive in different flight scenarios characterized by different altitudes and different flight routes, during quiet and disturbed solar and cosmic ray activity. The concept is based on Monte Carlo simulations by using phantoms for the aircraft and the aviator and experimenting with different shielding materials.

  3. Synthesis, crystal structure, biological activity and theoretical calculations of novel isoxazole derivatives

    NASA Astrophysics Data System (ADS)

    Jin, R. Y.; Sun, X. H.; Liu, Y. F.; Long, W.; Chen, B.; Shen, S. Q.; Ma, H. X.

    2016-01-01

    Series of isoxazole derivatives were synthesized by substituted chalcones and 2-chloro-6-fluorobenzene formaldehyde oxime with 1,3-dipolar cycloaddition. The target compounds were determined by melting point, IR, 1H NMR, elemental analyses and HRMS. The crystal structure of compound 3a was detected by X-ray diffraction and it crystallizes in the triclinic space group p2(1)/c with z = 4. The molecular geometry of compound 3a was optimized using density functional theory (DFT/B3LYP) method with the 6-31G+(d,p) basis set in the ground state. From the optimized geometry of the molecule, FT-IR, FT-Raman, HOMO-LUMO and natural bond orbital (NBO) were calculated at B3LYP/6-31G+(d,p) level. Finally, the antifungal activity of the synthetic compounds were evaluated against Pythium solani, Gibberella nicotiancola, Fusarium oxysporium f.sp. niveum and Gibberella saubinetii.

  4. Synthesis, crystal structure, biological activity and theoretical calculations of novel isoxazole derivatives.

    PubMed

    Jin, R Y; Sun, X H; Liu, Y F; Long, W; Chen, B; Shen, S Q; Ma, H X

    2016-01-01

    Series of isoxazole derivatives were synthesized by substituted chalcones and 2-chloro-6-fluorobenzene formaldehyde oxime with 1,3-dipolar cycloaddition. The target compounds were determined by melting point, IR, (1)H NMR, elemental analyses and HRMS. The crystal structure of compound 3a was detected by X-ray diffraction and it crystallizes in the triclinic space group p2(1)/c with z=4. The molecular geometry of compound 3a was optimized using density functional theory (DFT/B3LYP) method with the 6-31G+(d,p) basis set in the ground state. From the optimized geometry of the molecule, FT-IR, FT-Raman, HOMO-LUMO and natural bond orbital (NBO) were calculated at B3LYP/6-31G+(d,p) level. Finally, the antifungal activity of the synthetic compounds were evaluated against Pythium solani, Gibberella nicotiancola, Fusarium oxysporium f.sp. niveum and Gibberella saubinetii. PMID:26218917

  5. Enhanced photoelectrochemical activity for Cu and Ti doped hematite: The first principles calculations

    SciTech Connect

    Meng, X. Y.; Qin, G. W.; Li, S.; Ren, Y. P.; Pei, W. L.; Zuo, L.; Wen, X. H.

    2011-03-14

    To improve photoelectrochemical (PEC) activity of hematite, the modification of energy band by doping 3d transition metal ions Cu and Ti into {alpha}-Fe{sub 2}O{sub 3} were studied via the first-principles calculations with density function theory (DFT)+U method. The results show that the band gap of hematite is {approx}2.1 eV and n-type dopant Ti improves the electric conductivity, confirmed by recent experiments. The p-type dopant Cu enhances the utilization ratio of solar energy, shifts both valance, and conduction band edges to a higher energy level, satisfying hydrogen production in the visible light driven PEC water splitting without voltage bias.

  6. Effect of Silicon on Activity Coefficients of Siderophile Elements (P, Au, Pd, As, Ge, Sb, and In) in Liquid Fe, with Application to Core Formation

    NASA Technical Reports Server (NTRS)

    Righter, K.; Pando, K.; Danielson, L. R.; Humayun, M.; Righter, M.; Lapen, T.; Boujibar, A.

    2016-01-01

    Earth's core contains approximately 10 percent light elements that are likely a combination of S, C, Si, and O, with Si possibly being the most abundant. Si dissolved into Fe liquids can have a large effect on the magnitude of the activity coefficient of siderophile elements (SE) in Fe liquids, and thus the partitioning behavior of those elements between core and mantle. The effect of Si can be small such as for Ni and Co, or large such as for Mo, Ge, Sb, As. The effect of Si on many siderophile elements is unknown yet could be an important, and as yet unquantified, influence on the core-mantle partitioning of SE. Here we report new experiments designed to quantify the effect of Si on the partitioning of P, Au, Pd, and many other SE between metal and silicate melt. The results will be applied to Earth, for which we have excellent constraints on the mantle siderophile element concentrations.

  7. Total individual ion activity coefficients of calcium and carbonate in seawater at 25°C and 35%. salinity, and implications to the agreement between apparent and thermodynamic constants of calcite and aragonite

    USGS Publications Warehouse

    Plummer, L. Neil; Sundquist, Eric T.

    1982-01-01

    We have calculated the total individual ion activity coefficients of carbonate and calcium,  and , in seawater. Using the ratios of stoichiometric and thermodynamic constants of carbonic acid dissociation and total mean activity coefficient data measured in seawater, we have obtained values which differ significantly from those widely accepted in the literature. In seawater at 25°C and 35%. salinity the (molal) values of  and  are 0.038 ± 0.002 and 0.173 ± 0.010, respectively. These values of  and  are independent of liquid junction errors and internally consistent with the value . By defining  and  on a common scale (), the product  is independent of the assigned value of  and may be determined directly from thermodynamic measurements in seawater. Using the value  and new thermodynamic equilibrium constants for calcite and aragonite, we show that the apparent constants of calcite and aragonite are consistent with the thermodynamic equilibrium constants at 25°C and 35%. salinity. The demonstrated consistency between thermodynamic and apparent constants of calcite and aragonite does not support a hypothesis of stable Mg-calcite coatings on calcite or aragonite surfaces in seawater, and suggests that the calcite critical carbonate ion curve of Broecker and Takahashi (1978,Deep-Sea Research25, 65–95) defines the calcite equilibrium boundary in the oceans, within the uncertainty of the data.

  8. Analysis of internal conversion coefficients

    PubMed

    Coursol; Gorozhankin; Yakushev; Briancon; Vylov

    2000-03-01

    An extensive database has been assembled that contains the three most widely used sets of calculated internal conversion coefficients (ICC): [Hager R.S., Seltzer E.C., 1968. Internal conversion tables. K-, L-, M-shell Conversion coefficients for Z = 30 to Z = 103, Nucl. Data Tables A4, 1-237; Band I.M., Trzhaskovskaya M.B., 1978. Tables of gamma-ray internal conversion coefficients for the K-, L- and M-shells, 10 < or = Z < or = 104, Special Report of Leningrad Nuclear Physics Institute; Rosel F., Fries H.M., Alder K., Pauli H.C., 1978. Internal conversion coefficients for all atomic shells, At. Data Nucl. Data Tables 21, 91-289] and also includes new Dirac Fock calculations [Band I.M. and Trzhaskovskaya M.B., 1993. Internal conversion coefficients for low-energy nuclear transitions, At. Data Nucl. Data Tables 55, 43-61]. This database is linked to a computer program to plot ICCs and their combinations (sums and ratios) as a function of Z and energy, as well as relative deviations of ICC or their combinations for any pair of tabulated data. Examples of these analyses are presented for the K-shell and total ICCs of the gamma-ray standards [Hansen H.H., 1985. Evaluation of K-shell and total internal conversion coefficients for some selected nuclear transitions, Eur. Appl. Res. Rept. Nucl. Sci. Tech. 11.6 (4) 777-816] and for the K-shell and total ICCs of high multipolarity transitions (total, K-, L-, M-shells of E3 and M3 and K-shell of M4). Experimental data sets are also compared with the theoretical values of these specific calculations. PMID:10724406

  9. Seebeck coefficient of one electron

    SciTech Connect

    Durrani, Zahid A. K.

    2014-03-07

    The Seebeck coefficient of one electron, driven thermally into a semiconductor single-electron box, is investigated theoretically. With a finite temperature difference ΔT between the source and charging island, a single electron can charge the island in equilibrium, directly generating a Seebeck effect. Seebeck coefficients for small and finite ΔT are calculated and a thermally driven Coulomb staircase is predicted. Single-electron Seebeck oscillations occur with increasing ΔT, as one electron at a time charges the box. A method is proposed for experimental verification of these effects.

  10. Semi-empirical method for calculating the activation energies of the unimolecular thermal decomposition of vinyl ethers

    NASA Astrophysics Data System (ADS)

    Sargsyan, G. N.; Shakhrokh, B.; Harutyunyan, A. B.

    2015-02-01

    A semi-empirical method is proposed for calculating the activation energy of the unimolecular decomposition of complex compounds using the example of vinyl (ethyl, propyl, and butyl) ethers. The method is based on the concept of the formation of intramolecular hydrogen bonds and the possibility of calculating the energy of deformation of ether molecules upon activation, resulting in the potential surface of the transition state undergoing distortion and the transfer of a hydrogen atom from an alkyl group to a vinyl group. The energy of deformation is calculated using the Mathcad 2001i and MM2 computer programs.

  11. Molecular structure and nicotinic activity of arecoline. A gas electron diffraction study combined with theoretical calculations

    NASA Astrophysics Data System (ADS)

    Takeshima, Tsuguhide; Takeuchi, Hiroshi; Egawa, Toru; Konaka, Shigehiro

    2005-01-01

    The molecular structure of arecoline (methyl 1,2,5,6-tetrahydro-1-methylnicotinate, ? has been determined by gas electron diffraction. Diffraction patterns were taken at about 370 K. Structural constraints for the data analysis were obtained from MP2/6-31G** calculations. Vibrational mean amplitudes and shrinkage corrections were calculated from the force constants obtained from the gas-phase vibrational frequencies and the B3LYP/6-31G** calculations. The electron diffraction data were well reproduced by assuming the mixture of four conformers. The determined structural parameters ( rg (Å) and ∠ (°)) for the main conformer with 3 σ in parentheses are as follows: < rg(N-C ring)>=1.456(4); rg(N-C methyl)=1.451 (d.p.); rg(C dbnd6 C)=1.339(9); < rg(C-C)>=1.512(3); rg(O-C methyl)=1.434(5); rg(C(O)-O)=1.355 (d.p.); rg(C dbnd6 O)=1.209(4); the out-of-plane angle of the methyl group=50.3(23); ∠C ringN ringC ring=112.8(30); ∠N ringC ringC ring(H 2)=110.5(16); <∠C ringC ringC ring>=118.4(5); ∠C dbnd6 CC(O)=116.8(7); ∠CC dbnd6 O=127.6(9); ∠CC-O=109.8(8), where the angle brackets denote averaged values and d.p. denotes dependent parameters. Fixing the abundances of the minor conformers, Ax-s- cis and Ax-s- trans, at the theoretical values (13% in total), those of the Eq-s- cis and Eq-s- trans conformers were determined to be 46(16) and 41(16)%, respectively. Here Ax and Eq denote the axial and equatorial directions of the N-CH 3 bond and s- cis and s- trans show the orientation of the methoxycarbonyl group expressed by the configuration of the C dbnd6 O and C dbnd6 C bonds. The N⋯O carbonyl distances of the Eq-s- cis and Ax-s- cis conformers are 4.832(13) and 4.874(16) Å, respectively. They are close to the N⋯N distance of the most abundant conformer of nicotine, 4.885(6) Å, suggesting that the Eq-s- cis and Ax-s- cis conformers have nicotinic activity.

  12. How to Teach Mathematics Using a Calculator. Activities for Elementary and Middle School.

    ERIC Educational Resources Information Center

    Coburn, Terrence

    The National Council of Teachers of Mathematics (NCTM) has stated that mathematics programs should take full advantage of the power of calculators at all grade levels. This recommendation urges that students be provided access to calculators, and that calculator use be integrated into the core mathematics curriculum on a regular basis. This…

  13. Coefficients for Interrater Agreement.

    ERIC Educational Resources Information Center

    Zegers, Frits E.

    1991-01-01

    The degree of agreement between two raters rating several objects for a single characteristic can be expressed through an association coefficient, such as the Pearson product-moment correlation. How to select an appropriate association coefficient, and the desirable properties and uses of a class of such coefficients--the Euclidean…

  14. Copper(II) complexes with pyrazole derivatives - Synthesis, crystal structure, DFT calculations and cytotoxic activity

    NASA Astrophysics Data System (ADS)

    Kupcewicz, Bogumiła; Ciolkowski, Michal; Karwowski, Boleslaw T.; Rozalski, Marek; Krajewska, Urszula; Lorenz, Ingo-Peter; Mayer, Peter; Budzisz, Elzbieta

    2013-11-01

    The series of pyrazole derivatives (1a-4a) were used as bidentate N,N' ligands to obtain neutral Cu(II) complexes of ML2Cl2 type (1b-4b). The molecular structures of ligand 1a and Cu(II) complex 4b were determined by X-ray crystallography and theoretical DFT calculations. In this study, three functionals B3LYP, BP86 and mPW1PW91 with different basis sets and two effective core potentials Los Alamos and Stuttgart/Dresden were performed. The DFT study disclosed the usefulness of BP86 functional with SDD-ECP for Cu(II) ion and dedicated D95 basis set for other non-transition metal atoms, with the exclusion of Cl for which 6-31++G(2df,2pd) were used. The structural analysis shows that the presence of phenyl substituent in a pyrazole ring contributed to Cu-N bond elongation, which can result in different reactivity of complexes 1b and 3b. The cytotoxicity of the obtained compounds was evaluated on three cancer cells lines: HL-60, NALM-6 and WM-115. The complexes have exhibited similar moderate antiproliferative activity. All the complexes, except for 1b, were found to be more active against three cancer cell lines than uncomplexed pyrazoles. The lipophilicity and electrochemical properties of ligands and complexes was also studied. For complexes with ligand 1a and 3a only one reduction process at the metal centre occurs (Cu(II) → Cu(I)) with oxidization of Cu(I)-Cu(II) in the backward step.

  15. Groundwater Flow and Transport Calculations Supporting the Immobilized Low-Activity Waste Disposal Facility Performance Assessment

    SciTech Connect

    Bergeron, Marcel P.; Wurstner, Signe K.

    2000-12-04

    This report summarizes the Hanford Site-Wide Groundwater Model and its application to the Immobilized Low-Activity Waste (ILAW) Disposal Facility Performance Assessment (PA). The site-wide model and supporting local-scale models are used to evaluate impacts from the transport of contaminants at a hypothetical well 100 m downgradient of the disposal facilities and to evaluate regional flow conditions and transport from the ILAW disposal facilities to the Columbia River. These models were used to well-intercept factors (WIFs) or dilution factors from a given areal flux of a hypothetical contaminant released to the unconfined aquifer from the ILAW disposal facilities for two waste-disposal options: 1) a remote-handled trench concept and 2) a concrete-vault concept. The WIF is defined as the ratio of the concentration at a well location in the aquifer to the concentration of infiltrating water entering the aquifer. These WIFs are being used in conjunction with calculations of released contaminant fluxes through the vadose zone to estimate potential impacts from radiological and hazardous chemical contaminants within the ILAW disposal facility at compliance points.

  16. Transport coefficients of heavy baryons

    NASA Astrophysics Data System (ADS)

    Tolos, Laura; Torres-Rincon, Juan M.; Das, Santosh K.

    2016-08-01

    We compute the transport coefficients (drag and momentum diffusion) of the low-lying heavy baryons Λc and Λb in a medium of light mesons formed at the later stages of high-energy heavy-ion collisions. We employ the Fokker-Planck approach to obtain the transport coefficients from unitarized baryon-meson interactions based on effective field theories that respect chiral and heavy-quark symmetries. We provide the transport coefficients as a function of temperature and heavy-baryon momentum, and analyze the applicability of certain nonrelativistic estimates. Moreover we compare our outcome for the spatial diffusion coefficient to the one coming from the solution of the Boltzmann-Uehling-Uhlenbeck transport equation, and we find a very good agreement between both calculations. The transport coefficients for Λc and Λb in a thermal bath will be used in a subsequent publication as input in a Langevin evolution code for the generation and propagation of heavy particles in heavy-ion collisions at LHC and RHIC energies.

  17. Radiometer gives true absorption and emission coefficients

    NASA Technical Reports Server (NTRS)

    Fymat, A. L.

    1977-01-01

    Novel radiometer, unaffected by scattering and polarization, measures true absorption and emmission coefficients for arbitrary mixture of gases and polluting particles. It has potential astronomical, meteorological, and environmental applications, such as determination of radiative heat budget, aerosol relative concentration, and morphology of cloud, haze, and fog formations. Data and temperature can be coupled directly to small computer for online calculation of radiation coefficients.

  18. On Burnett coefficients in periodic media

    NASA Astrophysics Data System (ADS)

    Conca, Carlos; Orive, Rafael; Vanninathan, Muthusamy

    2006-03-01

    The aim of this work is to demonstrate a curious property of general periodic structures. It is well known that the corresponding homogenized matrix is positive definite. We calculate here the next order Burnett coefficients associated with such structures. We prove that these coefficients form a tensor which is negative semidefinite. We also provide some examples showing degeneracy in multidimension.

  19. THE CALCULATION OF BURNABLE POISON CORRECTION FACTORS FOR PWR FRESH FUEL ACTIVE COLLAR MEASUREMENTS

    SciTech Connect

    Croft, Stephen; Favalli, Andrea; Swinhoe, Martyn T.

    2012-06-19

    Verification of commercial low enriched uranium light water reactor fuel takes place at the fuel fabrication facility as part of the overall international nuclear safeguards solution to the civilian use of nuclear technology. The fissile mass per unit length is determined nondestructively by active neutron coincidence counting using a neutron collar. A collar comprises four slabs of high density polyethylene that surround the assembly. Three of the slabs contain {sup 3}He filled proportional counters to detect time correlated fission neutrons induced by an AmLi source placed in the fourth slab. Historically, the response of a particular collar design to a particular fuel assembly type has been established by careful cross-calibration to experimental absolute calibrations. Traceability exists to sources and materials held at Los Alamos National Laboratory for over 35 years. This simple yet powerful approach has ensured consistency of application. Since the 1980's there has been a steady improvement in fuel performance. The trend has been to higher burn up. This requires the use of both higher initial enrichment and greater concentrations of burnable poisons. The original analytical relationships to correct for varying fuel composition are consequently being challenged because the experimental basis for them made use of fuels of lower enrichment and lower poison content than is in use today and is envisioned for use in the near term. Thus a reassessment of the correction factors is needed. Experimental reassessment is expensive and time consuming given the great variation between fuel assemblies in circulation. Fortunately current modeling methods enable relative response functions to be calculated with high accuracy. Hence modeling provides a more convenient and cost effective means to derive correction factors which are fit for purpose with confidence. In this work we use the Monte Carlo code MCNPX with neutron coincidence tallies to calculate the influence of Gd

  20. Isopiestic Investigation of the Osmotic and Activity Coefficients of {yMgCl2 + (1 - y)MgSO4}(aq) and the Osmotic Coefficients of Na2SO4.MgSO4(aq) at 298.15 K

    SciTech Connect

    Miladinovic, J; Ninkovic, R; Todorovic, M; Rard, J A

    2007-06-06

    Isopiestic vapor pressure measurements were made for {l_brace}yMgCl{sub 2} + (1-y)MgSO{sub 4}{r_brace}(aq) solutions with MgCl{sub 2} ionic strength fractions of y = 0, 0.1997, 0.3989, 0.5992, 0.8008, and (1) at the temperature 298.15 K, using KCl(aq) as the reference standard. These measurements for the mixtures cover the ionic strength range I = 0.9794 to 9.4318 mol {center_dot} kg{sup -1}. In addition, isopiestic measurements were made with NaCl(aq) as reference standard for mixtures of {l_brace}xNa{sub 2}SO{sub 4} + (1-x)MgSO{sub 4}{r_brace}(aq) with the molality fraction x = 0.50000 that correspond to solutions of the evaporite mineral bloedite (astrakanite), Na{sub 2}Mg(SO{sub 4}){sub 2} {center_dot} 4H{sub 2}O(cr). The total molalities, m{sub T} = m(Na{sub 2}SO{sub 4}) + m(MgSO{sub 4}), range from m{sub T} = 1.4479 to 4.4312 mol {center_dot} kg{sup -1} (I = 5.0677 to 15.509 mol {center_dot} kg{sup -1}), where the uppermost concentration is the highest oversaturation molality that could be achieved by isothermal evaporation of the solvent at 298.15 K. The parameters of an extended ion-interaction (Pitzer) model for MgCl2(aq) at 298.15 K, which were required for an analysis of the {l_brace}yMgCl{sub 2} + (1-y)MgSO{sub 4}{r_brace}(aq) mixture results, were evaluated up to I = 12.025 mol {center_dot} kg{sup -1} from published isopiestic data together with the six new osmotic coefficients obtained in this study. Osmotic coefficients of {l_brace}yMgCl{sub 2} + (1-y)MgSO{sub 4}{r_brace}(aq) solutions from the present study, along with critically-assessed values from previous studies, were used to evaluate the mixing parameters of the extended ion-interaction model.

  1. Calculation of the magnetic field in the active zone of a hysteresis clutch

    NASA Technical Reports Server (NTRS)

    Ermilov, M. A.; Glukhov, O. M.

    1977-01-01

    The initial distribution of magnetic induction in the armature stationary was calculated relative to the polar system of a hysteresis clutch. Using several assumptions, the problem is reduced to calculating the static magnetic field in the ferromagnetic plate with finite and continuous magnetic permeability placed in the air gap between two identical, parallel semiconductors with rack fixed relative to the tooth or slot position.

  2. Calculation of State Specific Rate Coefficients for Non-Equilibrium Hypersonics Applications: from H(Psi) = E(Psi) to k(T) = A *exp(-E(sub a)/RT)

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard; Schwenke, David; Chaban, Galina; Panesi, Marco

    2014-01-01

    Development of High-Fidelity Physics-Based Models to describe hypersonic flight through the atmospheres of Earth and Mars is underway at NASA Ames Research Center. The goal is to construct chemistry models of the collisional and radiative processes that occur in the bow shock and boundary layers of spacecraft during atmospheric entry that are free of empiricism. In this talk I will discuss our philosophy and describe some of our progress. Topics to be covered include thermochemistry, internal energy relaxation, collisional dissociation and radiative emission and absorption. For this work we start by solving the Schrodinger equation to obtain accurate interaction potentials and radiative properties. Then we invoke classical mechanics to compute state-specific heavy particle collision cross sections and reaction rate coefficients. Finally, phenomenological rate coefficients and relaxation times are determined from master equation solutions.

  3. Deriving Second Osmotic Virial Coefficients from Equations of State and from Experiment.

    PubMed

    Koga, K; Holten, Vincent; Widom, B

    2015-10-22

    The osmotic virial coefficients, which are measures of the effective interactions between solute molecules in dilute solution, may be obtained from expansions of the osmotic pressure or of the solute activity in powers of the solute concentration. In these expansions, the temperature is held fixed, and one additional constraint is imposed. When the additional constraint is that of fixed chemical potential of the solvent, the coefficient of the second-order term yields directly the second osmotic virial coefficient itself. Alternative constraints, such as fixed pressure, fixed solvent density, or the specification of liquid-vapor equilibrium, yield alternative measures of the solute-solute interaction, different from but related to the osmotic virial coefficient. These relations are summarized and, where new, are derived here. The coefficient in question may be calculated from equations of state in which the parameters have been obtained by fitting to other experimental properties. Alternatively, the coefficients may be calculated from direct experimental measurements of the deviations from Henry's law based on measurements of the activity of the solute in a coexisting gas phase. It is seen for propane in water as a test case that with the latter method, even with what appear to be the best available experimental data, there are still large uncertainties in the resulting second osmotic virial coefficient. With the former method, by contrast, the coefficient may be obtained with high numerical precision but then depends for its accuracy on the quality of the equation of state from which it is derived. PMID:26378689

  4. On the emission coefficient of uranium plasmas.

    NASA Technical Reports Server (NTRS)

    Schneider, R. T.; Campbell, H. D.; Mack, J. M.

    1973-01-01

    The emission coefficient for uranium plasmas (temperature: 8000 K) was measured for the wavelength range from 1200 to 6000 A. The results were compared to theoretical calculations and other measurements. Reasonable agreement between theoretical predictions and our measurements was found in the region from 1200 to 2000 A. Although it was difficult to make absolute comparisons among the different reported measurements, considerable disagreement was found for the higher wavelength region. A short discussion regarding the overall comparisons is given, and final suggestions are made as to the most appropriate emission coefficient values to be used in future design calculations. The absorption coefficient for the same wavelength interval is also reported.

  5. Investigation of the effects of summer melt on the calculation of sea ice concentration using active and passive microwave data

    NASA Technical Reports Server (NTRS)

    Cavalieri, Donald J.; Burns, Barbara A.; Onstott, Robert G.

    1990-01-01

    The effects of ice surface melt on microwave signatures and errors in the calculation of sea ice concentration are examined, using active and passive microwave data sets from the Marginal Ice Zone Experiment aircraft flights in the Fram Strait region. Consideration is given to the possibility of using SAR to supplement passive microwave data to unambiguously discriminate between open water areas and ponded floes. Coincident active multichannel microwave radiometer and SAR measurements of individual floes are used to describe the effects of surface melt on sea ice concentration calculations.

  6. Crystal structure and theoretical calculations of Julocrotine, a natural product with antileishmanial activity

    NASA Astrophysics Data System (ADS)

    Moreira, Rafael Y. O.; Brasil, Davi S. B.; Alves, Cláudio N.; Guilhon, Giselle M. S. P.; Santos, Lourivaldo S.; Arruda, Mara S. P.; Müller, Adolfo H.; Barbosa, Patrícia S.; Abreu, Alcicley S.; Silva, Edilene O.; Rumjanek, Victor M.; Souza, Jaime, Jr.; da Silva, Albérico B. F.; Santos, Regina H. De A.

    Julocrotine, N-(2,6-dioxo-1-phenethyl-piperidin-3-yl)-2-methyl-butyramide, is a potent antiproliferative agent against the promastigote and amastigote forms of Leishmania amazonensis (L.). In this work, the crystal structure of Julocrotine was solved by X-ray diffraction, and its geometrical parameters were compared with theoretical calculations at the B3LYP and HF level of theory. IR and NMR spectra also have been obtained and compared with theoretical calculations. IR absorptions calculated with the B3LYP level of theory employed together with the 6-311G+(d,p) basis set, are close to those observed experimentally. Theoretical NMR calculations show little deviation from experimental results. The results show that the theory is in accordance with the experimental data.0

  7. Calculation of an interaction index between extractive activity and groundwater resources

    NASA Astrophysics Data System (ADS)

    Collier, Louise; Hallet, Vincent; Barthélemy, Johan; Moriamé, Marie; Cartletti, Timotéo

    2015-04-01

    There are two underground resources intensively exploited in Wallonia (the southern Region of Belgium): groundwater and rock. Groundwater production rate is about 380*106 cubic meter per year from which 80 % is used for drinking water (SPW-DGO3, 2014). Annual rock extraction is about 73*106 tons per year and 80.6% of the materials are carbonate rocks (Collier and Hallet, 2013) corresponding to the most important aquifer formations. Given the high population density and environmental pressures, lateral quarry extensions are limited and the only solution for the operators is to excavate deeper. In this context, the aquifer level of the exploited formation is often reached and dewatering systems have to be installed to depress the water table below the quarry pit bottom. This affects the regional hydrogeology and, in some cases, the productivity of the water catchments is threatened. Using simple geological and hydrogeological parameters, an interaction index was developed to assess the interaction between extractive activity and groundwater resources and, in consequence, to define how far the feasibility study should go into detailed hydrogeological investigations. The interaction index is based on the equation used in the assessment of natural hazards (Dauphiné, 2003), which gives: Interaction = F (Quarry, Aquifer). The interaction is the risk, which is equal to a function where the hazard is defined from parameters corresponding to the quarry and vulnerability from parameters related to groundwater resources. Six parameters have been determined. The parameters chosen to represent the hazard of a quarry are: the geological, the hydrogeological and the piezometric contexts. The parameters chosen to represent the vulnerability of the water resources are: the relative position between the quarry and the water catchment (well, spring, gallery, etc.) sites, the productivity of the catchment and the quality of the groundwater. Each parameter was classified into four

  8. Inversion of instantaneous equivalent absorption coefficient and its application

    SciTech Connect

    Weihua, W. )

    1992-01-01

    Absorption coefficient is an important parameter for reservoir description. The major troubles in extracting absorption coefficient from seismic data are amplitude and waveform distortions; they greatly restrict the inversion which is based on reflection amplitude variation or reflection frequency variation. This paper presents a new method which avoids amplitude and uses waveform variation gradient in wave propagation to make the inversion of absorption coefficient. Apparent absorption coefficient and pseudo absorption coefficient are adopted so as to remove the influence which the waveform distortion due to thin bed tuning brings to absorption coefficient extraction. The final instantaneous equivalent absorption coefficient, a true absorption coefficient which reflects real absorptive character of a seismic medium, can be obtained by subtracting the pseudo absorption coefficient (inversely calculated using maximum entropy) from the apparent absorption coefficient the authors have calculated.

  9. Synthesis and theoretical calculations of carbazole substituted chalcone urea derivatives and studies their polyphenol oxidase enzyme activity.

    PubMed

    Nixha, Arleta Rifati; Arslan, Mustafa; Atalay, Yusuf; Gençer, Nahit; Ergün, Adem; Arslan, Oktay

    2013-08-01

    Synthesis of carbazole substituted chalcone urea derivatives and their polyphenol oxidase enzyme activity effects on the diphenolase activity of banana tyrosinase were evaluated. Tyrosinase has been purified from banana on an affinity gel comprised of Sepharose 4B-L-tyrosine-p-aminobenzoic acid. The results showed that most of the compounds (3,4,5a,5d-h) inhibited and some of them (5c,5i-l) activated the tyrosinase enzyme activity. The molecular calculations were performed using Gaussian software for the synthesized compounds to explain the experimental results. PMID:22803668

  10. New limb-darkening coefficients for Phoenix/1d model atmospheres. II. Calculations for 5000 K ≤ Teff ≤ 10 000 K Kepler, CoRot, Spitzer, uvby, UBVRIJHK, Sloan, and 2MASS photometric systems

    NASA Astrophysics Data System (ADS)

    Claret, A.; Hauschildt, P. H.; Witte, S.

    2013-04-01

    Aims: We present an extension of our investigations on limb-darkening coefficients computed with spherical symmetrical Phoenix models. The models investigated in this paper cover the range 5000 K ≤ Teff ≤ 10 000 K and complete our previous studies of low effective temperatures computed with the same code. Methods: The limb-darkening coefficients are computed for the transmission curves of the Kepler, CoRoT, and Spitzer space missions and the Strömgren, Johnson-Cousins, Sloan, and 2MASS passbands. These computations were performed by adopting the least-squares method. Results: We have used six laws to describe the specific intensity distribution: linear, quadratic, square root, logarithmic, exponential, and a general law with four terms. The computations are presented for the solar chemical composition and cover the range 3.0 ≤ log g ≤ 5.5. The adopted microturbulent velocity and the mixing-length parameter are 2.0 km s-1 and 2.0. Tables 2-25 are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/552/A16

  11. Fluence-to-absorbed-dose conversion coefficients for neutron beams from 0.001 eV to 100 GeV calculated for a set of pregnant female and fetus models

    NASA Astrophysics Data System (ADS)

    Taranenko, Valery; Xu, X. George

    2008-03-01

    Protection of fetuses against external neutron exposure is an important task. This paper reports a set of absorbed dose conversion coefficients for fetal and maternal organs for external neutron beams using the RPI-P pregnant female models and the MCNPX code. The newly developed pregnant female models represent an adult female with a fetus including its brain and skeleton at the end of each trimester. The organ masses were adjusted to match the reference values within 1%. For the 3 mm cubic voxel size, the models consist of 10-15 million voxels for 35 organs. External monoenergetic neutron beams of six standard configurations (AP, PA, LLAT, RLAT, ROT and ISO) and source energies 0.001 eV-100 GeV were considered. The results are compared with previous data that are based on simplified anatomical models. The differences in dose depend on source geometry, energy and gestation periods: from 20% up to 140% for the whole fetus, and up to 100% for the fetal brain. Anatomical differences are primarily responsible for the discrepancies in the organ doses. For the first time, the dependence of mother organ doses upon anatomical changes during pregnancy was studied. A maximum of 220% increase in dose was observed for the placenta in the nine months model compared to three months, whereas dose to the pancreas, small and large intestines decreases by 60% for the AP source for the same models. Tabulated dose conversion coefficients for the fetus and 27 maternal organs are provided.

  12. Methods of Calculating Unit Activity and Output Costs in French Universities. Technical Report. Programme on Institutional Management in Higher Education.

    ERIC Educational Resources Information Center

    Babeau, Andre; And Others

    Proposals for calculating unit costs are advocated that are based on a body of methods common to the member universities. Production inputs and cost components in French universities are studied in terms of resources at the disposal of the university, and staffing, capital, operating, and transfer costs. Identification of activities and…

  13. LCS/CINDER`90 accelerator tunnel activation calculations for the APT 1700-MeV accelerator tunnel

    SciTech Connect

    Court, J.D.; Snow, E.C.; Wilson, W.B.; Pitcher, E.R.

    1998-09-01

    Calculations have been done to determine the amount of activation in the linac components and tunnel air for the Accelerator Production of Tritium 1700-MeV superconducting linac. Proton transport is accomplished through the use of the LAHET Code System. Particle production and depletion from proton and high-energy neutron reactions, calculated in LAHET, as well as low-energy neutron fluxes calculated by MCNP, are passed to the radionuclide production code CINDER`90 to determine the source terms at various times after irradiation. The upper limit on total air activation based on conservative assumptions, for the entire tunnel air volume, was found to be 4.77 Ci after a nine-month irradiation. This is reduced to 0.09 Ci after a 10-hour cooling off period. The total activation for the full 1-km of beamline components was found to be less than 4 kCi, with the half-lives of the highest contributors ranging from 12 years to 2 minutes. This beamline component activation calculation was done for an irradiation time of 40 years, which is the anticipated lifetime of the superconducting linac.

  14. Cross-linked enzyme aggregates (CLEAs) of selected lipases: a procedure for the proper calculation of their recovered activity

    PubMed Central

    2013-01-01

    In the last few years, synthesis of carrier-free immobilized biocatalysts by cross-linking of enzyme aggregates has appeared as a promising technique. Cross-linked enzyme aggregates (CLEAs) present several interesting advantages over carrier-bound immobilized enzymes, such as highly concentrated enzymatic activity, high stability of the produced superstructure, important production costs savings by the absence of a support, and the fact that no previous purification of the enzyme is needed. However, the published literature evidences that a) much specific non-systematic exploratory work is being done and, b) recovered activity calculations in CLEAs still need to be optimized. In this context, this contribution presents results of an optimized procedure for the calculation of the activity retained by CLEAs, based on the comparison of their specific activity relative to their free enzyme counterparts. The protocol implies determination of precipitable protein content in commercial enzyme preparations through precipitation with ammonium sulphate and a protein co-feeder. The identification of linear ranges of activity versus concentration/amount of protein in the test reaction is also required for proper specific activity determinations. By use of mass balances that involve the protein initially added to the synthesis medium, and the protein remaining in the supernatant and washing solutions (these last derived from activity measurements), the precipitable protein present in CLEAs is obtained, and their specific activity can be calculated. In the current contribution the described protocol was applied to CLEAs of Thermomyces lanuginosa lipase, which showed a recovered specific activity of 11.1% relative to native lipase. The approach described is simple and can easily be extended to other CLEAs and also to carrier-bound immobilized enzymes for accurate determination of their retained activity. PMID:23663379

  15. WATER ACTIVITY DATA ASSESSMENT TO BE USED IN HANFORD WASTE SOLUBILITY CALCULATIONS

    SciTech Connect

    DISSELKAMP RS

    2011-01-06

    The purpose of this report is to present and assess water activity versus ionic strength for six solutes:sodium nitrate, sodium nitrite, sodium chloride, sodium carbonate, sodium sulfate, and potassium nitrate. Water activity is given versus molality (e.g., ionic strength) and temperature. Water activity is used to estimate Hanford crystal hydrate solubility present in the waste.

  16. Evaluation of time-resolved multi-distance methods to retrieve absorption and reduced scattering coefficients of adult heads in vivo: Optical parameters dependences on geometrical structures of the models used to calculate reflectance

    NASA Astrophysics Data System (ADS)

    Tanifuji, T.

    2016-03-01

    Time-resolved multi-distance measurements are studied to retrieve absorption and reduced scattering coefficients of adult heads, which have enough depth sensitivity to determine the optical parameters in superficial tissues and brain separately. Measurements were performed by putting the injection and collection fibers on the left semi-sphere of the forehead, with the injection fiber placed toward the temporal region, and by moving the collection fiber between 10 and 60 mm from the central sulcus. It became clear that optical parameters of the forehead at all collection fibers were reasonably determined by selecting the appropriate visibility length of the geometrical head models, which is related to head surface curvature at each position.

  17. Atmospheric chemistry of CF3CF═CH2 and (Z)-CF3CF═CHF: Cl and NO3 rate coefficients, Cl reaction product yields, and thermochemical calculations.

    PubMed

    Papadimitriou, Vassileios C; Lazarou, Yannis G; Talukdar, Ranajit K; Burkholder, James B

    2011-01-20

    Rate coefficients, k, for the gas-phase reactions of Cl atoms and NO(3) radicals with 2,3,3,3-tetrafluoropropene, CF(3)CF═CH(2) (HFO-1234yf), and 1,2,3,3,3-pentafluoropropene, (Z)-CF(3)CF═CHF (HFO-1225ye), are reported. Cl-atom rate coefficients were measured in the fall-off region as a function of temperature (220-380 K) and pressure (50-630 Torr; N(2), O(2), and synthetic air) using a relative rate method. The measured rate coefficients are well represented by the fall-off parameters k(0)(T) = 6.5 × 10(-28) (T/300)(-6.9) cm(6) molecule(-2) s(-1) and k(∞)(T) = 7.7 × 10(-11) (T/300)(-0.65) cm(3) molecule(-1) s(-1) for CF(3)CF═CH(2) and k(0)(T) = 3 × 10(-27) (T/300)(-6.5) cm(6) molecule(-2) s(-1) and k(∞)(T) = 4.15 × 10(-11) (T/300)(-0.5) cm(3) molecule(-1) s(-1) for (Z)-CF(3)C═CHF with F(c) = 0.6. Reaction product yields were measured in the presence of O(2) to be (98 ± 7)% for CF(3)C(O)F and (61 ± 4)% for HC(O)Cl in the CF(3)CF═CH(2) reaction and (108 ± 8)% for CF(3)C(O)F and (112 ± 8)% for HC(O)F in the (Z)-CF(3)CF═CHF reaction, where the quoted uncertainties are 2σ (95% confidence level) and include estimated systematic errors. NO(3) reaction rate coefficients were determined using absolute and relative rate methods. Absolute measurements yielded upper limits for both reactions between 233 and 353 K, while the relative rate measurements yielded k(3)(295 K) = (2.6 ± 0.25) × 10(-17) cm(3) molecule(-1) s(-1) and k(4)(295 K) = (4.2 ± 0.5) × 10(-18) cm(3) molecule(-1) s(-1) for CF(3)CF═CH(2) and (Z)-CF(3)CF═CHF, respectively. The Cl-atom reaction with CF(3)CF═CH(2) and (Z)-CF(3)CF═CHF leads to decreases in their atmospheric lifetimes and global warming potentials and formation of a chlorine-containing product, HC(O)Cl, for CF(3)CF═CH(2). The NO(3) reaction has been shown to have a negligible impact on the atmospheric lifetimes of CF(3)CF═CH(2) and (Z)-CF(3)CF═CHF. The energetics for the reaction of Cl, NO(3), and OH with CF

  18. Widely available active sites on Ni2P for electrochemical hydrogen evolution--insights from first principles calculations.

    PubMed

    Hansen, Martin H; Stern, Lucas-Alexandre; Feng, Ligang; Rossmeisl, Jan; Hu, Xile

    2015-04-28

    We present insights into the mechanism and the active site for hydrogen evolution on nickel phosphide (Ni2P). Ni2P was recently discovered to be a very active non-precious hydrogen evolution catalyst. Current literature attributes the activity of Ni2P to a particular site on the (0001) facet. In the present study, using Density Functional Theory (DFT) calculations, we show that several widely available low index crystal facets on Ni2P have better properties for a high catalytic activity. DFT calculations were used to identify moderately bonding nickel bridge sites and nickel hollow sites for hydrogen adsorption and to calculate barriers for the Tafel pathway. The investigated surfaces in this study were the (101̅0), (1̅1̅20), (112̅0), (112̅1) and (0001) facets of the hexagonal Ni2P crystal. In addition to the DFT results, we present experiments on Ni2P nanowires growing along the 〈0001〉 direction, which are shown as efficient hydrogen evolution catalysts. The experimental results add these nanowires to a variety of different morphologies of Ni2P, which are all active for HER. PMID:25812670

  19. Coefficients of Effective Length.

    ERIC Educational Resources Information Center

    Edwards, Roger H.

    1981-01-01

    Under certain conditions, a validity Coefficient of Effective Length (CEL) can produce highly misleading results. A modified coefficent is suggested for use when empirical studies indicate that underlying assumptions have been violated. (Author/BW)

  20. Calculating Transition Energy Barriers and Characterizing Activation States for Steps of Fusion.

    PubMed

    Ryham, Rolf J; Klotz, Thomas S; Yao, Lihan; Cohen, Fredric S

    2016-03-01

    We use continuum mechanics to calculate an entire least energy pathway of membrane fusion, from stalk formation, to pore creation, and through fusion pore enlargement. The model assumes that each structure in the pathway is axially symmetric. The static continuum stalk structure agrees quantitatively with experimental stalk architecture. Calculations show that in a stalk, the distal monolayer is stretched and the stored stretching energy is significantly less than the tilt energy of an unstretched distal monolayer. The string method is used to determine the energy of the transition barriers that separate intermediate states and the dynamics of two bilayers as they pass through them. Hemifusion requires a small amount of energy independently of lipid composition, while direct transition from a stalk to a fusion pore without a hemifusion intermediate is highly improbable. Hemifusion diaphragm expansion is spontaneous for distal monolayers containing at least two lipid components, given sufficiently negative diaphragm spontaneous curvature. Conversely, diaphragms formed from single-component distal monolayers do not expand without the continual injection of energy. We identify a diaphragm radius, below which central pore expansion is spontaneous. For larger diaphragms, prior studies have shown that pore expansion is not axisymmetric, and here our calculations supply an upper bound for the energy of the barrier against pore formation. The major energy-requiring deformations in the steps of fusion are: widening of a hydrophobic fissure in bilayers for stalk formation, splay within the expanding hemifusion diaphragm, and fissure widening initiating pore formation in a hemifusion diaphragm. PMID:26958888

  1. Ferrocenyl-substituted dinuclear Cu(II) complex: Synthesis, spectroscopy, electrochemistry, DFT calculations and catecholase activity

    NASA Astrophysics Data System (ADS)

    Emirik, Mustafa; Karaoğlu, Kaan; Serbest, Kerim; Menteşe, Emre; Yilmaz, Ismail

    2016-02-01

    A new ferrocenyl-substituted heterocyclic hydrazide ligand and its Cu(II) complex were prepared. The DFT calculations were performed to determine the electronic and molecular structures of the title compounds. The electronic spectra were calculated by using time-dependent DFT method, and the transitions were correlated with the molecular orbitals of the compounds. The bands assignments of IR spectra were achieved in the light of the theoretical vibrational spectral data and total energy distribution values calculated at DFT/B3LYP/6-311++G(d,p) level. The redox behaviors of the ferrocene derivatives were investigated by cyclic voltammetry. The compounds show reversible redox couple assignable to Fc+/Fc couple. The copper(II) complex behaves as an effective catalyst towards oxidation of 3,5-di-tert-butylcatechol to its corresponding quinone derivative in DMF saturated with O2. The reaction follows Michaelis-Menten enzymatic reaction kinetics with turnover numbers 2.32 × 103.

  2. Development of the activation analysis calculational methodology for the Spallation Neutron Source (SNS)

    SciTech Connect

    Odano, N.; Johnson, J.O.; Charton, L.A.; Barnes, J.M.

    1998-03-01

    For the design of the proposed Spallation Neutron Source (SNS), activation analyses are required to determine the radioactive waste streams, on-line material processing requirements remote handling/maintenance requirements, potential site contamination and background radiation levels. For the conceptual design of the SNS, the activation analyses were carried out using the high-energy transport code HETC96 coupled with MCNP to generate the required nuclide production rates for the ORIHET95 isotope generation code. ORIHET95 utilizes a matrix-exponential method to study the buildup and decay of activities for any system for which the nuclide production rates are known. In this paper, details of the developed methodology adopted for the activation analyses in the conceptual design of the SNS are presented along with some typical results of the analyses.

  3. Ionization coefficients in gas mixtures

    NASA Astrophysics Data System (ADS)

    Marić, D.; Šašić, O.; Jovanović, J.; Radmilović-Rađenović, M.; Petrović, Z. Lj.

    2007-03-01

    We have tested the application of the common E/N ( E—electric field, N—gas number density) or Wieland approximation [Van Brunt, R.J., 1987. Common parametrizations of electron transport, collision cross section, and dielectric strength data for binary gas mixtures. J. Appl. Phys. 61 (5), 1773-1787.] and the common mean energy (CME) combination of the data for pure gases to obtain ionization coefficients for mixtures. Test calculations were made for Ar-CH4, Ar-N2, He-Xe and CH4-N2 mixtures. Standard combination procedure gives poor results in general, due to the fact that the electron energy distribution is considerably different in mixtures and in individual gases at the same values of E/N. The CME method may be used for mixtures of gases with ionization coefficients that do not differ by more than two orders of magnitude which is better than any other technique that was proposed [Marić, D., Radmilović-Rađenović, M., Petrović, Z.Lj., 2005. On parametrization and mixture laws for electron ionization coefficients. Eur. Phys. J. D 35, 313-321.].

  4. On computing Laplace's coefficients and their derivatives.

    NASA Astrophysics Data System (ADS)

    Gerasimov, I. A.; Vinnikov, E. L.

    The algorithm of computing Laplace's coefficients and their derivatives is proposed with application of recurrent relations. The A.G.M.-method is used for the calculation of values L0(0), L0(1). The FORTRAN-program corresponding to the algorithm is given. The precision control was provided with numerical integrating by Simpsons method. The behavior of Laplace's coefficients and their third derivatives whith varying indices K, n for fixed values of the α-parameter is presented graphically.

  5. Calculations of ADS with deep subcritical uranium active cores - comparison with experiments and predictions

    NASA Astrophysics Data System (ADS)

    Zhivkov, P.; Furman, W.; Stoyanov, Ch

    2014-09-01

    The main characteristics of the neutron field formed within the massive (512 kg) natural uranium target assembly (TA) QUINTA irradiated by deuteron beam of JINR Nuclotron with energies 1,2,4, and 8 GeV as well as the spatial distributions and the integral numbers of (n,f), (n,γ) and (n,xn)- reactions were calculated and compared with experimental data [1] . The MCNPX 27e code with ISABEL/ABLA/FLUKA and INCL4/ABLA models of intra-nuclear cascade (INC) and experimental cross-sections of the corresponding reactions were used. Special attention was paid to the elucidation of the role of charged particles (protons and pions) in the fission of natural uranium of TA QUINTA. Extensive calculations have been done for quasi-infinite (with very small neutron leakage) depleted uranium TA BURAN having mass about 20 t which are intended to be used in experiments at Nuclotron in 2014-2016. As in the case of TA QUINTA which really models the central zone of TA BURAN the total numbers of fissions, produced 239Pu nuclei and total neutron multiplicities are predicted to be proportional to proton or deuteron energy up to 12 GeV. But obtained values of beam power gain are practically constant in studied incident energy range and are approximately four. These values are in contradiction with the experimental result [2] obtained for the depleted uranium core weighting three tons at incident proton energy 0.66 GeV.

  6. Regional patterns of hydrothermal alteration of sediments as interpreted from seafloor reflection coefficients, Middle Valley, Juan De Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Rohr, Kristin M. M.; Schmidt, Ulrike; Groschel-Becker, Henrike

    1993-09-01

    Reflection coefficients of the seafloor have been calculated from three multi-channel seismic reflection profiles across Middle Valley of the Juan de Fuca ridge. Seafloor reflection coefficients in this sedimented rift valley are high over an active hydrothermal vent and adjacent to major offset faults. Comparison of our measurements to drilling results from Leg 139 shows that high reflection coefficients over an active vent mound are produced by cemented sediments. Large reflection coefficients adjacent to major faults may have a similar origin and indicate that ongoing faulting creates pathways for hydrothermal fluids which alter the sediments and result in higher densities and velocities. Since 30 Hz seismic energy responds to the top 50 m of sediments, we are looking at the integrated response of hydrothermal alteration over tens of thousands of years. This is the first time seafloor reflection coefficients have been used to identify highly altered sediments in a region of deep-water hydrothermal activity.

  7. Spreading coefficients of aliphatic hydrocarbons on water

    SciTech Connect

    Takii, Taichi; Mori, Y.H. . Dept. of Mechanical Engineering)

    1993-11-01

    Experiments have been performed to determine the equilibrium spreading coefficients of some aliphatic hydrocarbons (C[sub 6]C[sub 10]) on water. The thickness of a discrete lens of each hydrocarbon sample floating on a stagnant water pool was measured interferometrically and used to calculate the spreading coefficient of the hydrocarbon with the aid of Langmuir's capillarity theory. The dependences of the spreading coefficient, thus observed, on temperature (0--50 C) and on the number of carbon atoms in the hydrocarbon molecule are in qualitative agreement with the predictions based on the Lifshitz theory of van der Waals forces.

  8. Diffuse reflection coefficient of a stratified sea.

    PubMed

    Haltrin, V I

    1999-02-20

    A differential equation of a Riccati type for the diffuse reflection coefficient of a stratified sea is proposed. For a homogeneous sea with arbitrary inherent optical properties this equation is solved analytically. For an inhomogeneous sea it is solved approximately for any arbitrary stratification. The resulting equation expresses the diffuse reflection coefficient of the sea through vertical profiles of absorption and backscattering coefficients, bottom albedo, and sea depth. The results of calculations with this equation are compared with Monte Carlo computations. It was found that the precision of this approach is in the range of 15%. PMID:18305694

  9. Calculating Non-Potentiality in Solar Active Regions Using SDO/HMI Vector Magnetic Field Data

    NASA Astrophysics Data System (ADS)

    Bobra, M.; Hoeksema, J. T.

    2010-12-01

    Non-potential magnetic fields in solar active regions are thought to be associated with flare occurrence. In this study, we parametrize the non-potentiality of several active regions, using data from the Helioseismic and Magnetic Imager (HMI) aboard the Solar Dynamics Observatory (SDO), and correlate these parameters with flare occurrence. In particular, we focus on a parameter that we call the Gradient-Weighted Inversion Line Length (GWILL). Using data from SOHO/MDI, Mason et al. found that GWILL generally tends to increase before a solar flare. We investigate whether extending the analysis of Mason et. al. to a three-dimensional field enables us to derive better near real-time indicators of flare occurrence. Before HMI, the availability of vector magnetograms was sparse at best. HMI provides continuous vector magnetogram data at a 12-minute cadence. As such, this study represents the first parametrization of non-potentiality in solar active regions using continuous vector magnetic field data.

  10. Binary Mutual Diffusion Coefficients of Polymer/Solvent Systems Using Compressible Regular Solutions Theory and Free Volume Theory

    NASA Astrophysics Data System (ADS)

    Farajnezhad, Arsalan; Asef Afshar, Orang; Asgarpour Khansary, Milad; Shirazian, Saeed

    2016-07-01

    The free volume theory has found practical application for prediction of diffusional behavior of polymer/solvent systems. In this paper, reviewing free volume theory, binary mutual diffusion coefficients in some polymer/solvent systems have been systematically presented through chemical thermodynamic modeling in terms of both activity coefficients and fugacity coefficients models. Here chemical thermodynamic model of compressible regular solution (CRS) was used for evaluation of diffusion coefficients calculations as the pure component properties would be required only. Four binary polymeric solutions of cyclohexane/polyisobutylene, n-pentane/polyisobutylene, toluene/polyisobutylene and chloroform/polyisobutylene were considered. The agreement between calculated data and the experimentally collected data was desirable and no considerable error propagation in approximating mutual diffusion coefficients has been observed.

  11. Infrared spectra of obscuring dust tori around active galactic nuclei. I - Calculational method and basic trends

    NASA Technical Reports Server (NTRS)

    Pier, Edward A.; Krolik, Julian H.

    1992-01-01

    Using a new 2D radiative transfer algorithm, we have calculated the thermally reradiated infrared spectra of the compact dust tori which are thought to surround many AGN. These tori radiate anisotropically. Face-on tori may be from one-half to a few orders of magnitude brighter than edge-on tori throughout the infrared. Their spectra at nearly all viewing angles are basically 'bumps' which are about 50 percent wider than blackbodies and peak in the mid-infrared at a wavelength determined mainly by the flux of nuclear radiation on the inner edge of the torus. The infrared color temperatures are hotter for face-on tori than edge-on tori by about 100 K. The 10 micron silicate feature often associated with dust can appear in absorption, emission, or not at all. There is a rough tendency for absorption features to be more prominent for edge-on tori than for face-on tori.

  12. Using an Active Sensor to Calculate Site-Specific Nitrogen Sidedress Recommendations for Corn in Pennsylvania

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Active sensors mounted on typical agricultural equipment could potentially be used to improve N (nitrogen) fertilizer recommendations and minimize nitrate losses to the environment, if N status and Economic Optimum N Rate (EONR) can be accurately determined for corn (Zea mays L). This study examine...

  13. Unorthodox method of calculating the activation of groundwater by routine SSC (Superconducting Super Collider) operations

    SciTech Connect

    Cossairt, J.D.

    1987-04-01

    A novel method for estimating the groundwater activation in the environs of the SSC collider ring tunnel is developed. This method, based on the Moyer model, may provide a simpler approach to such estimates and also a check for existing methods. One such method is compared. (LSP)

  14. Measuring Seebeck Coefficient

    NASA Technical Reports Server (NTRS)

    Snyder, G. Jeffrey (Inventor)

    2015-01-01

    A high temperature Seebeck coefficient measurement apparatus and method with various features to minimize typical sources of errors is described. Common sources of temperature and voltage measurement errors which may impact accurate measurement are identified and reduced. Applying the identified principles, a high temperature Seebeck measurement apparatus and method employing a uniaxial, four-point geometry is described to operate from room temperature up to 1300K. These techniques for non-destructive Seebeck coefficient measurements are simple to operate, and are suitable for bulk samples with a broad range of physical types and shapes.

  15. Diffusion coefficients of several aqueous alkanolamine solutions

    SciTech Connect

    Snijder, E.D.; Riele, M.J.M. te; Versteeg, G.F.; Swaaij, W.P.M. van . Dept. of Chemical Engineering)

    1993-07-01

    In absorption processes of acid gases (H[sub 2]S, CO[sub 2], COS) in alkanolamine solutions, diffusion coefficients are used for the calculation of the mass transfer rate. The Taylor dispersion technique was applied for the determination of diffusion coefficients of various systems. Experiments with the system KCl in water showed that the experimental setup provides accurate data. For the alkanolamines monoethanolamine (MEA), diethanolamine (DEA), methyldiethanolamine (MDEA), and di-2-propanolamine (DIPA), correlations for the diffusion coefficient as a function of temperature at different concentrations are given. A single relation for every amine has been derived which correlates the diffusion coefficients as a function of temperature and concentration. The temperature was varied between 298 and 348 K, and the concentration between 0 and 4000-5000 mol/m[sup 3]. Furthermore, a modified Stokes-Einstein relation is presented for the prediction of the diffusion coefficients in the alkanolamines in relation to the viscosity of the solvent and the diffusion coefficient at infinite dilution. The diffusion coefficients at low concentrations are compared with some available relations for the estimation of diffusion coefficients at infinite dilution, and it appears that the agreement is fairly good.

  16. DFT calculations, spectroscopy and antioxidant activity studies on (E)-2-nitro-4-[(phenylimino)methyl]phenol

    NASA Astrophysics Data System (ADS)

    Temel, Ersin; Alaşalvar, Can; Gökçe, Halil; Güder, Aytaç; Albayrak, Çiğdem; Alpaslan, Yelda Bingöl; Alpaslan, Gökhan; Dilek, Nefise

    2015-02-01

    We have reported synthesis and characterization of (E)-2-nitro-4-[(phenylimino)methyl]phenol by using X-ray crystallographic method, FT-IR and UV-vis spectroscopies and density functional theory (DFT). Optimized geometry and vibrational frequencies of the title compound in the ground state have been computed by using B3LYP with the 6-311G+(d,p) basis set. HOMO-LUMO energy gap, Non-linear optical properties and NBO analysis of the compound are performed at B3LYP/6-311G+(d,p) level. Additionally, as remarkable properties, antioxidant activity of the title compound (CMPD) has been determined by using different antioxidant test methods i.e. ferric reducing antioxidant power (FRAP), hydrogen peroxide scavenging (HPSA), free radical scavenging (FRSA) and ferrous ion chelating activities (FICA). When compared with standards (BHA, BHT, and α-tocopherol), we have concluded that CPMD has effective FRAP, HPSA, FRSA and FICA.

  17. Shear viscosity coefficient of liquid lanthanides

    SciTech Connect

    Patel, H. P. Thakor, P. B. Prajapati, A. V.; Sonvane, Y. A.

    2015-05-15

    Present paper deals with the computation of shear viscosity coefficient (η) of liquid lanthanides. The effective pair potential v(r) is calculated through our newly constructed model potential. The Pair distribution function g(r) is calculated from PYHS reference system. To see the influence of local field correction function, Hartree (H), Tailor (T) and Sarkar et al (S) local field correction function are used. Present results are compared with available experimental as well as theoretical data. Lastly, we found that our newly constructed model potential successfully explains the shear viscosity coefficient (η) of liquid lanthanides.

  18. Structure investigation of three hydrazones Schiff's bases by spectroscopic, thermal and molecular orbital calculations and their biological activities

    NASA Astrophysics Data System (ADS)

    Belal, Arafa A. M.; Zayed, M. A.; El-Desawy, M.; Rakha, Sh. M. A. H.

    2015-03-01

    Three Schiff's bases AI (2(1-hydrazonoethyl)phenol), AII (2, 4-dibromo 6-(hydrazonomethyl)phenol) and AIII (2(hydrazonomethyl)phenol) were prepared as new hydrazone compounds via condensation reactions with molar ratio (1:1) of reactants. Firstly by reaction of 2-hydroxy acetophenone solution and hydrazine hydrate; it gives AI. Secondly condensation between 3,5-dibromo-salicylaldehyde and hydrazine hydrate gives AII. Thirdly condensation between salicylaldehyde and hydrazine hydrate gives AIII. The structures of AI-AIII were characterized by elemental analysis (EA), mass (MS), FT-IR and 1H NMR spectra, and thermal analyses (TG, DTG, and DTA). The activation thermodynamic parameters, such as, ΔE∗, ΔH∗, ΔS∗ and ΔG∗ were calculated from the TG curves using Coats-Redfern method. It is important to investigate their molecular structures to know the active groups and weak bond responsible for their biological activities. Consequently in the present work, the obtained thermal (TA) and mass (MS) practical results are confirmed by semi-empirical MO-calculations (MOCS) using PM3 procedure. Their biological activities have been tested in vitro against Escherichia coli, Proteus vulgaris, Bacillissubtilies and Staphylococcus aurous bacteria in order to assess their anti-microbial potential.

  19. Structure investigation of three hydrazones Schiff's bases by spectroscopic, thermal and molecular orbital calculations and their biological activities.

    PubMed

    Belal, Arafa A M; Zayed, M A; El-Desawy, M; Rakha, Sh M A H

    2015-03-01

    Three Schiff's bases AI (2(1-hydrazonoethyl)phenol), AII (2, 4-dibromo 6-(hydrazonomethyl)phenol) and AIII (2(hydrazonomethyl)phenol) were prepared as new hydrazone compounds via condensation reactions with molar ratio (1:1) of reactants. Firstly by reaction of 2-hydroxy acetophenone solution and hydrazine hydrate; it gives AI. Secondly condensation between 3,5-dibromo-salicylaldehyde and hydrazine hydrate gives AII. Thirdly condensation between salicylaldehyde and hydrazine hydrate gives AIII. The structures of AI-AIII were characterized by elemental analysis (EA), mass (MS), FT-IR and (1)H NMR spectra, and thermal analyses (TG, DTG, and DTA). The activation thermodynamic parameters, such as, ΔE(∗), ΔH(∗), ΔS(∗) and ΔG(∗) were calculated from the TG curves using Coats-Redfern method. It is important to investigate their molecular structures to know the active groups and weak bond responsible for their biological activities. Consequently in the present work, the obtained thermal (TA) and mass (MS) practical results are confirmed by semi-empirical MO-calculations (MOCS) using PM3 procedure. Their biological activities have been tested in vitro against Escherichia coli, Proteus vulgaris, Bacillissubtilies and Staphylococcus aurous bacteria in order to assess their anti-microbial potential. PMID:25437844

  20. Bounding the Bogoliubov coefficients

    SciTech Connect

    Boonserm, Petarpa; Visser, Matt

    2008-11-15

    While over the last century or more considerable effort has been put into the problem of finding approximate solutions for wave equations in general, and quantum mechanical problems in particular, it appears that as yet relatively little work seems to have been put into the complementary problem of establishing rigourous bounds on the exact solutions. We have in mind either bounds on parametric amplification and the related quantum phenomenon of particle production (as encoded in the Bogoliubov coefficients), or bounds on transmission and reflection coefficients. Modifying and streamlining an approach developed by one of the present authors [M. Visser, Phys. Rev. A 59 (1999) 427-438, (arXiv:quant-ph/9901030)], we investigate this question by developing a formal but exact solution for the appropriate second-order linear ODE in terms of a time-ordered exponential of 2x2 matrices, then relating the Bogoliubov coefficients to certain invariants of this matrix. By bounding the matrix in an appropriate manner, we can thereby bound the Bogoliubov coefficients.

  1. Comparison of attenuation coefficients for VVER-440 and VVER-1000 pressure vessels

    SciTech Connect

    Marek, M.; Rataj, J.; Vandlik, S.

    2011-07-01

    The paper summarizes the attenuation coefficient of the neutron fluence with E > 0.5 MeV through a reactor pressure vessel for vodo-vodyanoi energetichesky reactor (VVER) reactor types measured and/or calculated for mock-up experiments, as well as for operated nuclear power plant (NPP) units. The attenuation coefficient is possible to evaluate directly only by using the retro-dosimetry, based on a combination of the measured activities from the weld sample and concurrent ex-vessel measurement. The available neutron fluence attenuation coefficients (E > 0.5 MeV), calculated and measured at a mock-up experiment simulating the VVER-440-unit conditions, vary from 3.5 to 6.15. A similar situation is used for the calculations and mock-up experiment measurements for the VVER-1000 RPV, where the attenuation coefficient of the neutron fluence varies from 5.99 to 8.85. Because of the difference in calculations for the real units and the mock-up experiments, the necessity to design and perform calculation benchmarks both for VVER-440 and VVER-1000 would be meaningful if the calculation model is designed adequately to a given unit. (authors)

  2. Coupling hydrodynamics and radiation calculations for star-jet interactions in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    de la Cita, V. M.; Bosch-Ramon, V.; Paredes-Fortuny, X.; Khangulyan, D.; Perucho, M.

    2016-06-01

    Context. Stars and their winds can contribute to the non-thermal emission in extragalactic jets. Because of the complexity of jet-star interactions, the properties of the resulting emission are closely linked to those of the emitting flows. Aims: We simulate the interaction between a stellar wind and a relativistic extragalactic jet and use the hydrodynamic results to compute the non-thermal emission under different conditions. Methods: We performed relativistic axisymmetric hydrodynamical simulations of a relativistic jet interacting with a supersonic, non-relativistic stellar wind. We computed the corresponding streamlines out of the simulation results and calculated the injection, evolution, and emission of non-thermal particles accelerated in the jet shock, focusing on electrons or e±-pairs. Several cases were explored, considering different jet-star interaction locations, magnetic fields, and observer lines of sight. The jet luminosity and star properties were fixed, but the results are easily scalable when these parameters are changed. Results: Individual jet-star interactions produce synchrotron and inverse Compton emission that peaks from X-rays to MeV energies (depending on the magnetic field), and at ~100-1000 GeV (depending on the stellar type), respectively. The radiation spectrum is hard in the scenarios explored here as a result of non-radiative cooling dominance, as low-energy electrons are efficiently advected even under relatively high magnetic fields. Interactions of jets with cold stars lead to an even harder inverse Compton spectrum because of the Klein-Nishina effect in the cross section. Doppler boosting has a strong effect on the observer luminosity. Conclusions: The emission levels for individual interactions found here are in the line of previous, more approximate, estimates, strengthening the hypothesis that collective jet-star interactions could significantly contribute at high energies under efficient particle acceleration.

  3. Lyman-alpha line as a solar activity index for calculations of solar spectrum in the EUV region

    NASA Astrophysics Data System (ADS)

    Nusinov, Anatoliy; Kazachevskaya, Tamara; Katyushina, Valeria; Woods, Thomas

    It is investigated a possibility of retrieval of solar spectrum data using intensity observational data of the only solar spectral line L (Hydrogen Lyman-alpha, 121.6 nm).Using as an example spectra obtained by SEE instruments on TIMED satellite, it was shown, that both for lines and for continuum in the spectral range 27-105 nm, which is essential for ionization processes in the ionosphere, a correlation between their intensities and L was high. Therefore it becomes possible to use L measurements data as a natural solar activity index for calculations of EUV solar emission spectrum for solving aeronomical problems. It is noticed, that EUV model, obtained with using SEE data, does not allow to calculate correctly critical frequencies of ionospheric E-layer owing to low intensities of lines 97.7 and 102.6 nm, which produce the main part of ionization in ionospheric E-region.

  4. Measuring Furnace/Sample Heat-Transfer Coefficients

    NASA Technical Reports Server (NTRS)

    Rosch, William R.; Fripp, Archibald L., Jr.; Debnam, William J., Jr.; Woodell, Glenn A.

    1993-01-01

    Complicated, inexact calculations now unnecessary. Device called HTX used to simulate and measure transfer of heat between directional-solidification crystal-growth furnace and ampoule containing sample of crystalline to be grown. Yields measurement data used to calculate heat-transfer coefficients directly, without need for assumptions or prior knowledge of physical properties of furnace, furnace gas, or specimen. Determines not only total heat-transfer coefficients but also coefficients of transfer of heat in different modes.

  5. CALCULATING SEPARATE MAGNETIC FREE ENERGY ESTIMATES FOR ACTIVE REGIONS PRODUCING MULTIPLE FLARES: NOAA AR11158

    SciTech Connect

    Tarr, Lucas; Longcope, Dana; Millhouse, Margaret

    2013-06-10

    It is well known that photospheric flux emergence is an important process for stressing coronal fields and storing magnetic free energy, which may then be released during a flare. The Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) captured the entire emergence of NOAA AR 11158. This region emerged as two distinct bipoles, possibly connected underneath the photosphere, yet characterized by different photospheric field evolutions and fluxes. The combined active region complex produced 15 GOES C-class, two M-class, and the X2.2 Valentine's Day Flare during the four days after initial emergence on 2011 February 12. The M and X class flares are of particular interest because they are nonhomologous, involving different subregions of the active region. We use a Magnetic Charge Topology together with the Minimum Current Corona model of the coronal field to model field evolution of the complex. Combining this with observations of flare ribbons in the 1600 A channel of the Atmospheric Imaging Assembly on board SDO, we propose a minimization algorithm for estimating the amount of reconnected flux and resulting drop in magnetic free energy during a flare. For the M6.6, M2.2, and X2.2 flares, we find a flux exchange of 4.2 Multiplication-Sign 10{sup 20} Mx, 2.0 Multiplication-Sign 10{sup 20} Mx, and 21.0 Multiplication-Sign 10{sup 20} Mx, respectively, resulting in free energy drops of 3.89 Multiplication-Sign 10{sup 30} erg, 2.62 Multiplication-Sign 10{sup 30} erg, and 1.68 Multiplication-Sign 10{sup 32} erg.

  6. An in silico method for predicting Ames activities of primary aromatic amines by calculating the stabilities of nitrenium ions.

    PubMed

    Bentzien, Jörg; Hickey, Eugene R; Kemper, Raymond A; Brewer, Mark L; Dyekjaer, Jane D; East, Stephen P; Whittaker, Mark

    2010-02-22

    In this paper, we describe an in silico first principal approach to predict the mutagenic potential of primary aromatic amines. This approach is based on the so-called "nitrenium hypothesis", which was developed by Ford et al. in the early 1990s. This hypothesis asserts that the mutagenic effect for this class of molecules is mediated through the transient formation of a nitrenium ion and that the stability of this cation is correlated with the mutagenic potential. Here we use quantum mechanical calculations at different levels of theory (semiempirical AM1, ab initio HF/3-21G, HF/6-311G(d,p), and DFT/B3LYP/6-311G(d,p)) to compute the stability of nitrenium ions. When applied to a test set of 257 primary aromatic amines, we show that this method can correctly differentiate between Ames active and inactive compounds, and furthermore that it is able to rationalize and predict SAR trends within structurally related chemical series. For this test set, the AM1 nitrenium stability calculations are found to provide a good balance between speed and accuracy, resulting in an overall accuracy of 85%, and sensitivity and specificity of 91% and 72%, respectively. The nitrenium-based predictions are also compared to the commercial software packages DEREK, MULTICASE, and the MOE-Toxicophore descriptor. One advantage of the approach presented here is that the calculation of relative stabilities results in a continuous spectrum of activities and not a simple yes/no answer. This allows us to observe and rationalize subtle trends due to the different electrostatic properties of the organic molecules. Our results strongly indicate that nitrenium ion stability calculations should be used as a complementary approach to assist the medicinal chemist in prioritizing and selecting nonmutagenic primary aromatic amines during preclinical drug discovery programs. PMID:20078034

  7. Temperature-Dependent Diffusion Coefficients from ab initio Computations: Hydrogen in Nickel

    SciTech Connect

    E Wimmer; W Wolf; J Sticht; P Saxe; C Geller; R Najafabadi; G Young

    2006-03-16

    The temperature-dependent mass diffusion coefficient is computed using transition state theory. Ab initio supercell phonon calculations of the entire system provide the attempt frequency, the activation enthalpy, and the activation entropy as a function of temperature. Effects due to thermal lattice expansion are included and found to be significant. Numerical results for the case of hydrogen in nickel demonstrate a strong temperature dependence of the migration enthalpy and entropy. Trapping in local minima along the diffusion path has a pronounced effect especially at low temperatures. The computed diffusion coefficients with and without trapping bracket the available experimental values over the entire temperature range between 0 and 1400 K.

  8. Unrestricted disposal of minimal activity levels of radioactive wastes: exposure and risk calculations

    SciTech Connect

    Fields, D.E.; Emerson, C.J.

    1984-08-01

    The US Nuclear Regulatory Commission is currently considering revision of rule 10 CFR Part 20, which covers disposal of solid wastes containing minimal radioactivity. In support of these revised rules, we have evaluated the consequences of disposing of four waste streams at four types of disposal areas located in three different geographic regions. Consequences are expressed in terms of human exposures and associated health effects. Each geographic region has its own climate and geology. Example waste streams, waste disposal methods, and geographic regions chosen for this study are clearly specified. Monetary consequences of minimal activity waste disposal are briefly discussed. The PRESTO methodology was used to evaluate radionuclide transport and health effects. This methodology was developed to assess radiological impacts to a static local population for a 1000-year period following disposal. Pathways and processes of transit from the trench to exposed populations included the following considerations: groundwater transport, overland flow, erosion, surface water dilution, resuspension, atmospheric transport, deposition, inhalation, and ingestion of contaminated beef, milk, crops, and water. 12 references, 2 figures, 8 tables.

  9. Acute toxicity estimation by calculation--Tubifex assay and quantitative structure-activity relationships.

    PubMed

    Tichý, Milon; Rucki, Marian; Hanzlíková, Iveta; Roth, Zdenek

    2008-11-01

    A quantitative structure-activity relationship (QSAR) model dependent on log P(n - octanol/water), or log P(OW), was developed with acute toxicity index EC50, the median effective concentration measured as inhibition of movement of the oligochaeta Tubifex tubifex with 3 min exposure, EC50(Tt) (mol/L): log EC50(Tt) = -0.809 (+/-0.035) log P(OW) - 0.495 (+/-0.060), n=82, r=0.931, r2=0.867, residual standard deviation of the estimate 0.315. A learning series for the QSAR model with the oligochaete contained alkanols, alkenols, and alkynols; saturated and unsaturated aldehydes; aniline and chlorinated anilines; phenol and chlorinated phenols; and esters. Three cross-validation procedures proved the robustness and stability of QSAR models with respect to the chemical structure of compounds tested within a series of compounds used in the learning series. Predictive ability was described by q2 .801 (cross-validated r2; predicted variation estimated with cross-validation) in LSO (leave-a structurally series-out) cross-validation. PMID:18522479

  10. Activation Energy Calculations for the Portevin-Le Chatelier Effect in Nimonic 263 Superalloy

    NASA Astrophysics Data System (ADS)

    Han, G. M.; Tian, C. G.; Chu, Z. K.; Cui, C. Y.; Hu, Z. Q.; Sun, X. F.

    2015-10-01

    The Portevin-Le Chatelier (PLC) effect in the Nimonic 263 superalloy was investigated by tensile test in a wide temperature range, from room temperature to 1033 K (760 °C), and at strain rates between 0.1 and 4 × 10-4 s-1. Types A, B, and C serrations were observed depending upon the test temperatures and strain rates. The activation energy ( Q) for serrated flow was determined by employing various methodologies for T < 723 K (450 °C), where a normal PLC effect was observed. The value of Q was found to be independent of the method employed. The average Q value of 70 KJ/mol was found to be in agreement with that for diffusion of substitutional solutes such as Cr and Mo in a Ni matrix by pipe diffusion. At temperatures ranging from 723 K to 923 K (450 °C to 650 °C), type C serrations and an inverse PLC effect were noticed, which may be caused by unlocking process.

  11. Minior Actinide Doppler Coefficient Measurement Assessment

    SciTech Connect

    Nolan E. Hertel; Dwayne Blaylock

    2008-04-10

    The "Minor Actinide Doppler Coefficient Measurement Assessment" was a Department of Energy (DOE) U-NERI funded project intended to assess the viability of using either the FLATTOP or the COMET critical assembly to measure high temperature Doppler coefficients. The goal of the project was to calculate using the MCNP5 code the gram amounts of Np-237, Pu-238, Pu-239, Pu-241, AM-241, AM-242m, Am-243, and CM-244 needed to produce a 1E-5 in reactivity for a change in operating temperature 800C to 1000C. After determining the viability of using the assemblies and calculating the amounts of each actinide an experiment will be designed to verify the calculated results. The calculations and any doncuted experiments are designed to support the Advanced Fuel Cycle Initiative in conducting safety analysis of advanced fast reactor or acceoerator-driven transmutation systems with fuel containing high minor actinide content.

  12. Structure-activity correlations for organophosphorus ester anticholinesterases. Part 2: CNDO/2 calculations applied to ester hydrolysis rates

    NASA Technical Reports Server (NTRS)

    Johnson, H.; Kenley, R. A.; Rynard, C.; Golub, M. A.

    1984-01-01

    Quantitative structure-activity relationships are presented for the hydrolysis of organophosphorus esters, RR'P(O)X, where R and R' are alkyl and/or alkoxy groups and X is fluorine, chlorine or a phenoxy group. CNDO/2 calculations provide values for molecular parameters that correlate with alkaline hydrolysis rates. For each subset of esters with the same leaving group, X, the CNDO-derived net atomic charge at the central phosphorus atom correlates well with the alkaline hydrolysis rate constants. For the whole set of esters with different leaving groups, equations are derived that relate charge, orbital energy and bond order to the hydrolysis rate constants.

  13. Revealing the Functional States in the Active Site of BLUF Photoreceptors from Electrochromic Shift Calculations

    PubMed Central

    2014-01-01

    Photoexcitation with blue light of the flavin chromophore in BLUF photoreceptors induces a switch into a metastable signaling state that is characterized by a red-shifted absorption maximum. The red shift is due to a rearrangement in the hydrogen bond pattern around Gln63 located in the immediate proximity of the isoalloxazine ring system of the chromophore. There is a long-lasting controversy between two structural models, named Q63A and Q63J in the literature, on the local conformation of the residues Gln63 and Tyr21 in the dark state of the photoreceptor. As regards the mechanistic details of the light-activation mechanism, rotation of Gln63 is opposed by tautomerism in the Q63A and Q63J models, respectively. We provide a structure-based simulation of electrochromic shifts of the flavin chromophore in the wild type and in various site-directed mutants. The excellent overall agreement between experimental and computed data allows us to evaluate the two structural models. Compelling evidence is obtained that the Q63A model is incorrect, whereas the Q63J is fully consistent with the present computations. Finally, we confirm independently that a keto–enol tautomerization of the glutamine at position 63, which was proposed as molecular mechanism for the transition between the dark and the light-adapted state, explains the measured 10 to 15 nm red shift in flavin absorption between these two states of the protein. We believe that the accurateness of our results provides evidence that the BLUF photoreceptors absorption is fine-tuned through electrostatic interactions between the chromophore and the protein matrix, and finally that the simplicity of our theoretical model is advantageous as regards easy reproducibility and further extensions. PMID:25153778

  14. One pot synthesis of biologically active pregnane derivatives, their single crystal structures, spectroscopic characterization and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Sethi, Arun; Bhatia, Akriti; Bhatia, Gitika; Shrivastava, Atul; Prakash, Rohit

    2013-11-01

    One pot allylic oxidation of 3β-acetoxypregna-5,16-diene-20-one (2) and nucleophilic addition at C-16 position of 3β-hydroxypregna-5,16-diene-20-one (3) yielded 3β-acetoxypregna-5,16-diene-7,20-dione (4) and 3β-hydroxy-16α-(5'-hydroxypentyloxy)-pregn-5-ene-20-one (5) respectively in high yield. A detailed theoretical study supported by X-ray analysis of compounds 4 and 5 has been carried out. Conformational analysis of compounds 4 and 5 was done with the help of crystal structure, which crystallize out in orthorhombic form having P212121 space group. Structural characterization of compounds 4 and 5 was done with the aid of 1H, 13C NMR, IR, UV, ESI-MS and ESI-HRMS. The molecular geometries and vibrational frequencies for compounds 4 and 5 in the ground state were calculated using the Density functional theory (DFT) with 6-31G(d,p) basis set and compared with experimental data. 1H and 13C nuclear magnetic resonance magnetic shifts of 4 and 5 were calculated using GIAO method and compared with the experimental data. UV-Vis spectra of both the compounds were recorded and electronic properties such as HOMO-LUMO energies were calculated by time dependent TD-DFT approach. The compounds were screened for their anti-hyperlipidemic and anti-oxidant activity.

  15. MATLAB-based program for optimization of quantum cascade laser active region parameters and calculation of output characteristics in magnetic field

    NASA Astrophysics Data System (ADS)

    Smiljanić, J.; Žeželj, M.; Milanović, V.; Radovanović, J.; Stanković, I.

    2014-03-01

    supporting MATLAB version R2010a or higher. RAM: Minimum required is 1 GB. Memory usage increases for less intense magnetic fields. Classification: 15. Nature of problem: The nature of the problem is to provide an efficient numerical algorithm implementation for optimization of GaAs/AlGaAs QCL active region parameters and calculation of output properties in the magnetic field. Solution method: The optimization of the QCL laser performance at selected wavelength is performed at entire free-parameters space using simulated annealing algorithm. The scattering rates are calculated in the presence and without magnetic field and used as coefficients in rate equations. The standard MATLAB procedures were used to solve iteratively this system of equations and obtain distribution of electron densities over electronic states. Restrictions: The machine must provide the necessary main memory which decreases roughly quadratically with the increase of the magnetic field intensity. Running time: Optimization time on Intel 3 GHz processor is about 2×104 s. The calculation time of laser output properties for values set automatically in GUI is 5×104 s.

  16. Ratios of internal conversion coefficients

    SciTech Connect

    Raman, S.; Ertugrul, M.; Nestor, C.W. . E-mail: CNestorjr@aol.com; Trzhaskovskaya, M.B.

    2006-03-15

    We present here a database of available experimental ratios of internal conversion coefficients for different atomic subshells measured with an accuracy of 10% or better for a number of elements in the range 26 {<=} Z {<=} 100. The experimental set involves 414 ratios for pure and 1096 ratios for mixed-multipolarity nuclear transitions in the transition energy range from 2 to 2300 keV. We give relevant theoretical ratios calculated in the framework of the Dirac-Fock method with and without regard for the hole in the atomic subshell after conversion. For comparison, the ratios obtained within the relativistic Hartree-Fock-Slater approximation are also presented. In cases where several ratios were measured for the same transition in a given isotope in which two multipolarities were involved, we present the mixing ratio {delta} {sup 2} obtained by a least squares fit.

  17. Simple thermodynamic model of unassisted proton shuttle uncoupling and prediction of activity from calculated speciation, lipophilicity, and molecular geometry.

    PubMed

    Martineau, Louis C

    2012-06-21

    A mechanistic model of uncoupling of oxidative phosphorylation by lipophilic weak acids (i.e. proton shuttles) was developed for the purposes of predicting the relative activity of xenobiotics of widely varying structure and of guiding the design of optimized derivatives. The model is based on thermodynamic premises not formulated elsewhere that allow for the calculation of steady-state conditions and of rate of energy dissipation on the basis of acid-dissociation and permeability behavior, the later estimated from partitioning behavior and geometric considerations. Moreover, permeability of either the neutral or of the ionized species is proposed to be effectively enhanced under conditions of asymmetrical molecular distribution. Finally, special considerations were developed to accommodate multi-protic compounds. The comparison of predicted to measured activity for a diverse testset of 48 compounds of natural origin spanning a wide range of activity yielded a Spearman's rho of 0.90. The model was used to tentatively identify several novel proton shuttles, as well as to elucidate core structures particularly conducive to proton shuttle activity from which optimized derivatives can be designed. Principles of design were formulated and examples of derivatives projected to be active at concentrations on the order of 10(-7)M are proposed. Among these are di-protic compounds predicted to shuttle two protons per cycle iteration and proposed to maximally exploit the proton shuttle mechanism. This work promotes the design of highly active, yet easily-metabolized uncouplers for therapeutic applications, namely the indirect activation of AMP-kinase, as well as for various industrial applications where low persistence is desirable. PMID:22425608

  18. Restricted active space calculations of L-edge X-ray absorption spectra: From molecular orbitals to multiplet states

    SciTech Connect

    Pinjari, Rahul V.; Delcey, Mickaël G.; Guo, Meiyuan; Lundberg, Marcus; Odelius, Michael

    2014-09-28

    The metal L-edge (2p → 3d) X-ray absorption spectra are affected by a number of different interactions: electron-electron repulsion, spin-orbit coupling, and charge transfer between metal and ligands, which makes the simulation of spectra challenging. The core restricted active space (RAS) method is an accurate and flexible approach that can be used to calculate X-ray spectra of a wide range of medium-sized systems without any symmetry constraints. Here, the applicability of the method is tested in detail by simulating three ferric (3d{sup 5}) model systems with well-known electronic structure, viz., atomic Fe{sup 3+}, high-spin [FeCl{sub 6}]{sup 3−} with ligand donor bonding, and low-spin [Fe(CN){sub 6}]{sup 3−} that also has metal backbonding. For these systems, the performance of the core RAS method, which does not require any system-dependent parameters, is comparable to that of the commonly used semi-empirical charge-transfer multiplet model. It handles orbitally degenerate ground states, accurately describes metal-ligand interactions, and includes both single and multiple excitations. The results are sensitive to the choice of orbitals in the active space and this sensitivity can be used to assign spectral features. A method has also been developed to analyze the calculated X-ray spectra using a chemically intuitive molecular orbital picture.

  19. Activation Energy Calculations for Formamide–TiO2 and Formamide–Pt Interactions in the Presence of Water

    PubMed Central

    Dushanov, E; Kholmurodov, Kh; Yasuoka, K

    2013-01-01

    Formamide contains the four elements (C, H, O, and N) most required for life and it is attractive as a potential prebiotic starting material for nucleobase synthesis. In the presence of catalysts (for example, TiO2) and with moderate heating, formamide can pass surface energy barriers, yielding a complete set of nucleic bases and acyclonucleosides, and favoring both phosphorylations and transphosphorylations necessary for life. In the reaction mechanism, interaction with water seems to be an essential factor for the formamide molecule to function. In this paper, a formamide–water solution on a TiO$_2$ (anatase) surface is simulated using the molecular dynamics method, and activation energy calculations are performed for the temperature range of T = 250 K to T = 400 K. A correlation is established between the diffusion and density profiles for the formamide and water molecules on an anatase surface. Also, the calculated activation energies of the formamide–water–anatase and formamide–water–platinum systems are compared. A comparative analysis is performed of the behavior of formamide–water and ethanol–water interaction on the same (anatase and platinum) surfaces. PMID:23802018

  20. The Role of an Active Site Mg2+ in HDV Ribozyme Self-Cleavage: Insights from QM/MM Calculations

    PubMed Central

    Mlýnský, Vojtěch; Šponer, Jiří

    2014-01-01

    The hepatitis delta virus (HDV) ribozyme is a catalytic RNA motif embedded in the human pathogenic HDV RNA. It catalyzes self-cleavage of its sugar-phosphate backbone with direct participation of the active site cytosine C75. Biochemical and structural data support a general acid role of C75. Here, we used hybrid quantum mechanical/molecular mechanical (QM/MM) calculations to probe the reaction mechanism and changes in Gibbs energy along the ribozyme's reaction pathway with an N3-protonated C75H+ in the active site, which acts as the general acid, and a partially hydrated Mg2+ ion with one deprotonated, inner-shell coordinated water molecule that acts as the general base. We followed eight reaction paths with distinct position and coordination of the catalytically important active site Mg2+ ion. For six of them, we observed feasible activation barriers ranging from 14.2 to 21.9 kcal/mol, indicating that the specific position of the Mg2+ ion in the active site is predicted to strongly affect the kinetics of self-cleavage. The deprotonation of the U-1(2′-OH) nucleophile and the nucleophilic attack of the resulting U-1(2′-O−) on the scissile phosphodiester are found to be separate steps, as deprotonation precedes the nucleophilic attack. This sequential mechanism of the HDV ribozyme differs from the concerted nucleophilic activation and attack suggested for the hairpin ribozyme. We estimated the pKa of the U-1(2′-OH) group to range from 8.8 to 11.2, suggesting that the pKa is lowered by several units from that of a free ribose, comparable to and most likely smaller than the pKa of the solvated active site Mg2+ ion. Our results thus support the notion that the structure of the HDV ribozyme, and particularly the positioning of the active site Mg2+ ion, facilitates deprotonation and activation of the 2′-OH nucleophile. PMID:25412464

  1. Diffusion coefficient of three-dimensional Yukawa liquids

    NASA Astrophysics Data System (ADS)

    Dzhumagulova, K. N.; Ramazanov, T. S.; Masheeva, R. U.

    2013-11-01

    The purpose of this work is an investigation of the diffusion coefficient of the dust component in complex plasma. The computer simulation of the Yukawa liquids was made on the basis of the Langevin equation, which takes into account the influence of buffer plasma on the dust particles dynamics. The Green-Kubo relation was used to calculate the diffusion coefficient. Calculations of the diffusion coefficient for a wide range of the system parameters were performed. Using obtained numerical data, we constructed the interpolation formula for the diffusion coefficient. We also show that the interpolation formula correctly describes experimental data obtained under microgravity conditions.

  2. Diffusion coefficient of three-dimensional Yukawa liquids

    SciTech Connect

    Dzhumagulova, K. N.; Ramazanov, T. S.; Masheeva, R. U.

    2013-11-15

    The purpose of this work is an investigation of the diffusion coefficient of the dust component in complex plasma. The computer simulation of the Yukawa liquids was made on the basis of the Langevin equation, which takes into account the influence of buffer plasma on the dust particles dynamics. The Green–Kubo relation was used to calculate the diffusion coefficient. Calculations of the diffusion coefficient for a wide range of the system parameters were performed. Using obtained numerical data, we constructed the interpolation formula for the diffusion coefficient. We also show that the interpolation formula correctly describes experimental data obtained under microgravity conditions.

  3. Experimental Mg IX photorecombination rate coefficient

    NASA Astrophysics Data System (ADS)

    Schippers, S.; Schnell, M.; Brandau, C.; Kieslich, S.; Müller, A.; Wolf, A.

    2004-07-01

    The rate coefficient for radiative and dielectronic recombination of beryllium-like magnesium ions was measured with high resolution at the Heidelberg heavy-ion storage ring TSR. In the electron-ion collision energy range 0-207 eV resonances due to 2s -> 2p (Δ N = 0) and 2s -> 3l (Δ N=1) core excitations were detected. At low energies below 0.15 eV the recombination rate coefficient is dominated by strong 1s2 (2s 2p 3P) 7l resonances with the strongest one occuring at an energy of only 21 meV. These resonances decisively influence the Mg IX recombination rate coefficient in a low temperature plasma. The experimentally derived Mg IX dielectronic recombination rate coefficient (±15% systematical uncertainty) is compared with the recommendation by Mazzotta et al. (1998, A&AS, 133, 403) and the recent calculations by Gu (2003, ApJ, 590, 1131) and by Colgan et al. (2003, A&A, 412, 597). These results deviate from the experimental rate coefficient by 130%, 82% and 25%, respectively, at the temperature where the fractional abundance of Mg IX is expected to peak in a photoionized plasma. At this temperature a theoretical uncertainty in the 1s2 (2s 2p 3P) 7l resonance positions of only 100 meV would translate into an uncertainty of the plasma rate coefficient of almost a factor 3. This finding emphasizes that an accurate theoretical calculation of the Mg IX recombination rate coefficient from first principles is challenging.

  4. Synthesis, characterization, electrochemical studies and DFT calculations of amino acids ternary complexes of copper (II) with isonitrosoacetophenone. Biological activities

    NASA Astrophysics Data System (ADS)

    Tidjani-Rahmouni, Nabila; Bensiradj, Nour el Houda; Djebbar, Safia; Benali-Baitich, Ouassini

    2014-10-01

    Three mixed complexes having formula [Cu(INAP)L(H2O)2] where INAP = deprotonated isonitrosoacetophenone and L = deprotonated amino acid such as histidine, phenylalanine and tryptophan have been synthesized. They have also been characterized using elemental analyses, molar conductance, UV-Vis, IR and ESR spectra. The value of molar conductance indicates them to be non-electrolytes. The spectral studies support the binding of the ligands with two N and two O donor sites to the copper (II) ion, giving an arrangement of N2O2 donor groups. Density Functional Theory (DFT) calculations were applied to evaluate the cis and trans coordination modes of the two water molecules. The trans form was shown to be energetically more stable than the cis one. The ESR data indicate that the covalent character of the metal-ligand bonding in the copper (II) complexes increases on going from histidine to phenylalanine to tryptophan. The electrochemical behavior of the copper (II) complexes was determined by cyclic voltammetry which shows that the chelate structure and electron donating effects of the ligands substituent are among the factors influencing the redox potentials of the complexes. The antimicrobial activities of the complexes were evaluated against several pathogenic microorganisms to assess their antimicrobial potentials. The copper complexes were found to be more active against Gram-positive than Gram-negative bacteria. Furthermore, the antioxidant efficiencies of the metal complexes were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. The antioxidant activity of the complexes indicates their moderate scavenging activity against the radical DPPH.

  5. Density-functional calculations of prefactors and activation energies for H diffusion in BaZrO3

    NASA Astrophysics Data System (ADS)

    Sundell, Per G.; Björketun, Mårten E.; Wahnström, Göran

    2007-09-01

    Density-functional calculations are used to investigate hydrogen diffusion in the solid-state proton conductor BaZrO3 . Activation energies and prefactors for the rate of proton transfer and reorientation are evaluated for a defect-free region of this simple cubic perovskite-structured oxide. Both semiclassical over-barrier jumps and phonon-assisted tunneling transitions between sites are considered. It is found that the classical barriers for the elementary transfer and reorientation steps are both of the order of 0.2eV . The quantum-mechanical zero-point motion effects are found to be sizable, to effectively reduce the barrier heights, and to make the prefactors similar for the transfer and reorientation steps. The Flynn-Stoneham model [Phys. Rev. B 1, 3966 (1970)] of phonon-assisted tunneling yields an activation energy of around 0.2eV and a very small prefactor for proton transfer, whereas the corresponding adiabatic model gives a similar activation energy but a much larger prefactor. It is suggested that the effect of other defects such as dopants has to be included for a proper description of hydrogen diffusion in this material.

  6. Density functional theory based calculations of the transfer integral in a redox-active single-molecule junction

    NASA Astrophysics Data System (ADS)

    Kastlunger, Georg; Stadler, Robert

    2014-03-01

    There are various quantum chemical approaches for an ab initio description of transfer integrals within the framework of Marcus theory in the context of electron transfer reactions. In our paper, we aim to calculate transfer integrals in redox-active single molecule junctions, where we focus on the coherent tunneling limit with the metal leads taking the position of donor and acceptor and the molecule acting as a transport mediating bridge. This setup allows us to derive a conductance, which can be directly compared with recent results from a nonequilibrium Green's function approach. Compared with purely molecular systems we face additional challenges due to the metallic nature of the leads, which rules out some of the common techniques, and due to their periodicity, which requires k-space integration. We present three different methods, all based on density functional theory, for calculating the transfer integral under these constraints, which we benchmark on molecular test systems from the relevant literature. We also discuss many-body effects and apply all three techniques to a junction with a Ruthenium complex in different oxidation states.

  7. The impact of pulsed irradiation upon neutron activation calculations for inertial and magnetic fusion energy power plants

    SciTech Connect

    Latkowski, J.F.; Sanz, J.; Vujic, J.L.

    1996-06-26

    Inertial fusion energy (IFE) and magnetic fusion energy (MFE) power plants will probably operate in a pulsed mode. The two different schemes, however, will have quite different time periods. Typical repetition rates for IFE power plants will be 1-5 Hz. MFE power plants will ramp up in current for about 1 hour, shut down for several minutes, and repeat the process. Traditionally, activation calculations for IFE and MFE power plants have assumed continuous operation and used either the ``steady state`` (SS) or ``equivalent steady state`` (ESS) approximations. It has been suggested recently that the SS and ESS methods may not yield accurate results for all radionuclides of interest. The present work expands that of Sisolak, et al. by applying their formulae to conditions which might be experienced in typical IFE and MFE power plants. In addition, complicated, multi-step reaction/decay chains are analyzed using an upgraded version of the ACAB radionuclide generation/depletion code. Our results indicate that the SS method is suitable for application to MFE power plant conditions. We also find that the ESS method generates acceptable results for radionuclides with half-lives more than a factor of three greater than the time between pulses. For components that are subject to 0.05 Hz (or more frequent) irradiation (such as coolant), use of the ESS method is recommended. For components or materials that are subject to less frequent irradiation (such as high-Z target materials), pulsed irradiation calculations should be used.

  8. A computer program incorporating Pitzer's equations for calculation of geochemical reactions in brines

    USGS Publications Warehouse

    Plummer, L.N.; Parkhurst, D.L.; Fleming, G.W.; Dunkle, S.A.

    1988-01-01

    The program named PHRQPITZ is a computer code capable of making geochemical calculations in brines and other electrolyte solutions to high concentrations using the Pitzer virial-coefficient approach for activity-coefficient corrections. Reaction-modeling capabilities include calculation of (1) aqueous speciation and mineral-saturation index, (2) mineral solubility, (3) mixing and titration of aqueous solutions, (4) irreversible reactions and mineral water mass transfer, and (5) reaction path. The computed results for each aqueous solution include the osmotic coefficient, water activity , mineral saturation indices, mean activity coefficients, total activity coefficients, and scale-dependent values of pH, individual-ion activities and individual-ion activity coeffients , and scale-dependent values of pH, individual-ion activities and individual-ion activity coefficients. A data base of Pitzer interaction parameters is provided at 25 C for the system: Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O, and extended to include largely untested literature data for Fe(II), Mn(II), Sr, Ba, Li, and Br with provision for calculations at temperatures other than 25C. An extensive literature review of published Pitzer interaction parameters for many inorganic salts is given. Also described is an interactive input code for PHRQPITZ called PITZINPT. (USGS)

  9. Design, synthesis, characterization, quantum-chemical calculations and anti-inflammatory activity of novel series of thiophene derivatives

    NASA Astrophysics Data System (ADS)

    Helal, M. H.; Salem, M. A.; Gouda, M. A.; Ahmed, N. S.; El-Sherif, A. A.

    2015-08-01

    Interaction of 1-(4-morpholinophenyl)ethanone 1 with either malononitrile or ethyl cyanoacetate 2 afforded Knoevenagel-Cope product 3. In subsequent treatment of 3 with sulfur, the 2-aminothiophene derivatives (4a, 4b) are formed under basic conditions. The solvent-free reaction of thiophene derivative 4a with ethyl cyanoacetate afforded thieno[2,3-d][1,3]oxazine derivative 6. The base catalyzed condensation of 2-aminothiophene derivative (4a) with ethyl cyanoacetate afforded N-(thieno-2-yl) cyanoacetamide derivative 7. The latter was used to synthesize different heterocyclic derivatives comprising, pyridine and coumarin rings. Also, several substituted thieno[2,3-d]pyrimidines have been prepared from reaction of 2-aminothiophene-3-carbonitrile 4b with some electrophilic reagents. The structure of the newly compounds were confirmed on the basis of elemental analysis and spectral data. The molecular modeling of the synthesized compounds has been drawn and their molecular parameters were calculated. Also, valuable information is obtained from calculation of the molecular parameters including electronegativity, net dipole moment of the compounds, total energy, electronic energy, binding energy, HOMO and LUMO energy. Evaluation of anti-inflammatory activity of the tested compounds was performed in albino rats by producing carrageenan induced paw oedema and measuring the zone of inflammation at different time intervals i.e. 1, 2, 3 and 4 h after carrageenan injection. Results indicated that most of the tested compounds showed moderate to good activity comparable to indomethacin. Also, compound 16 with additional morpholine ring beside the thiophene ring inhibits carrageenan induced paw oedema more than the standard indomethacin drug at all the time scales studied. Thus, compound 16 is considered as a promising compound for further modification to obtain clinically useful anti-inflammatory agent.

  10. Benchmark test of transport calculations of gold and nickel activation with implications for neutron kerma at Hiroshima.

    PubMed

    Hoshi, M; Hiraoka, M; Hayakawa, N; Sawada, S; Munaka, M; Kuramoto, A; Oka, T; Iwatani, K; Shizuma, K; Hasai, H

    1992-11-01

    A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a 252Cf fission neutron source to validate the use of the code for the energy spectrum analyses of Hiroshima atomic bomb neutrons. Nuclear data libraries used in the Monte Carlo neutron and photon transport code calculation were ENDF/B-III, ENDF/B-IV, LASL-SUB, and ENDL-73. The neutron moderators used were granite (the main component of which is SiO2, with a small fraction of hydrogen), Newlight [polyethylene with 3.7% boron (natural)], ammonium chloride (NH4Cl), and water (H2O). Each moderator was 65 cm thick. The neutron detectors were gold and nickel foils, which were used to detect thermal and epithermal neutrons (4.9 eV) and fast neutrons (> 0.5 MeV), respectively. Measured activity data from neutron-irradiated gold and nickel foils in these moderators decreased to about 1/1,000th or 1/10,000th, which correspond to about 1,500 m ground distance from the hypocenter in Hiroshima. For both gold and nickel detectors, the measured activities and the calculated values agreed within 10%. The slopes of the depth-yield relations in each moderator, except granite, were similar for neutrons detected by the gold and nickel foils. From the results of these studies, the Monte Carlo neutron and photon transport code was verified to be accurate enough for use with the elements hydrogen, carbon, nitrogen, oxygen, silicon, chlorine, and cadmium, and for the incident 252Cf fission spectrum neutrons. PMID:1399639

  11. Accurate Monte Carlo modeling of cyclotrons for optimization of shielding and activation calculations in the biomedical field

    NASA Astrophysics Data System (ADS)

    Infantino, Angelo; Marengo, Mario; Baschetti, Serafina; Cicoria, Gianfranco; Longo Vaschetto, Vittorio; Lucconi, Giulia; Massucci, Piera; Vichi, Sara; Zagni, Federico; Mostacci, Domiziano

    2015-11-01

    Biomedical cyclotrons for production of Positron Emission Tomography (PET) radionuclides and radiotherapy with hadrons or ions are widely diffused and established in hospitals as well as in industrial facilities and research sites. Guidelines for site planning and installation, as well as for radiation protection assessment, are given in a number of international documents; however, these well-established guides typically offer analytic methods of calculation of both shielding and materials activation, in approximate or idealized geometry set up. The availability of Monte Carlo codes with accurate and up-to-date libraries for transport and interactions of neutrons and charged particles at energies below 250 MeV, together with the continuously increasing power of nowadays computers, makes systematic use of simulations with realistic geometries possible, yielding equipment and site specific evaluation of the source terms, shielding requirements and all quantities relevant to radiation protection. In this work, the well-known Monte Carlo code FLUKA was used to simulate two representative models of cyclotron for PET radionuclides production, including their targetry; and one type of proton therapy cyclotron including the energy selection system. Simulations yield estimates of various quantities of radiological interest, including the effective dose distribution around the equipment, the effective number of neutron produced per incident proton and the activation of target materials, the structure of the cyclotron, the energy degrader, the vault walls and the soil. The model was validated against experimental measurements and comparison with well-established reference data. Neutron ambient dose equivalent H*(10) was measured around a GE PETtrace cyclotron: an average ratio between experimental measurement and simulations of 0.99±0.07 was found. Saturation yield of 18F, produced by the well-known 18O(p,n)18F reaction, was calculated and compared with the IAEA recommended

  12. Conformational effects, molecular orbitals, and reaction activities of bis(phthalocyaninato) lanthanum double-deckers: density functional theory calculations.

    PubMed

    Qi, Dongdong; Zhang, Lijuan; Wan, Liang; Zhang, Yuexing; Bian, Yongzhong; Jiang, Jianzhuang

    2011-08-01

    The conformational effects on the frontier molecular orbital energy and stability for reduced, neutral, and oxidized bis(phthalocyaninato) lanthanum double-deckers have been revealed on the basis of density functional theory calculations. Calculation results indicate that the frontier orbital coupling degree changes along with the molecular conformation of the double-decker compound, first decreasing along with the increase of rotation angle β from 0 to 20° and then increasing along with the increase of rotation angle β from 20 to 45°. In addition, the stability for the three forms of double-decker changes in the same order, but first increasing and then decreasing along with the change of the rotation angle β in the range of 0 to 45° with a rotation energy barrier of (31.3 ± 3.1) kJ mol(-1) at 20°. This reveals that the rotation of the two phthalocyanine rings for the reduced, neutral, and oxidized bis(phthalocyaninato) lanthanum double-deckers are able to occur at room temperature. Nevertheless, the superior coordination reaction activity of the neutral bis(phthalocyaninato) lanthanum double-decker complex over their reduced form in forming sandwich-type tris(phthalocyaninato) lanthanum triple-decker compounds has also been clearly clarified on the basis of comparative calculations on the Fukui function of [La(Pc)(2)] and [La(Pc)(2)](-) using the DFT method. Fukui function analysis reveals the reaction center of the 18-electron-π-conjugated core in the bis(phthalocyaninato) lanthanum double-decker molecule against both electrophilic and radical attack. Nevertheless, the larger global chemical softness (S) for the neutral [La(Pc)(2)] than the reduced form [La(Pc)(2)](-) indicates the higher reaction activity of the former form over the latter one. This explains well the experimental findings that only the neutral instead of the reduced form of bis(tetrapyrrole) rare earth double-decker complexes, containing at least one phthalocyanine ligand, could be

  13. Cost and sensitivity of restricted active-space calculations of metal L-edge X-ray absorption spectra.

    PubMed

    Pinjari, Rahul V; Delcey, Mickaël G; Guo, Meiyuan; Odelius, Michael; Lundberg, Marcus

    2016-02-15

    The restricted active-space (RAS) approach can accurately simulate metal L-edge X-ray absorption spectra of first-row transition metal complexes without the use of any fitting parameters. These characteristics provide a unique capability to identify unknown chemical species and to analyze their electronic structure. To find the best balance between cost and accuracy, the sensitivity of the simulated spectra with respect to the method variables has been tested for two models, [FeCl6 ](3-) and [Fe(CN)6 ](3-) . For these systems, the reference calculations give deviations, when compared with experiment, of ≤1 eV in peak positions, ≤30% for the relative intensity of major peaks, and ≤50% for minor peaks. When compared with these deviations, the simulated spectra are sensitive to the number of final states, the inclusion of dynamical correlation, and the ionization potential electron affinity shift, in addition to the selection of the active space. The spectra are less sensitive to the quality of the basis set and even a double-ζ basis gives reasonable results. The inclusion of dynamical correlation through second-order perturbation theory can be done efficiently using the state-specific formalism without correlating the core orbitals. Although these observations are not directly transferable to other systems, they can, together with a cost analysis, aid in the design of RAS models and help to extend the use of this powerful approach to a wider range of transition metal systems. PMID:26502979

  14. Calculation of Vibrational Shifts of Nitrile Probes in the Active Site of Ketosteroid Isomerase upon Ligand Binding

    PubMed Central

    Layfield, Joshua P.

    2012-01-01

    The vibrational Stark effect provides insight into the roles of hydrogen bonding, electrostatics, and conformational motions in enzyme catalysis. In a recent application of this approach to the enzyme ketosteroid isomerase (KSI), thiocyanate probes were introduced in site-specific positions throughout the active site. This paper implements a quantum mechanical/molecular mechanical (QM/MM) approach for calculating the vibrational shifts of nitrile (CN) probes in proteins. This methodology is shown to reproduce the experimentally measured vibrational shifts upon binding of the intermediate analog equilinen to KSI for two different nitrile probe positions. Analysis of the molecular dynamics simulations provides atomistic insight into the roles that key residues play in determining the electrostatic environment and hydrogen-bonding interactions experienced by the nitrile probe. For the M116C-CN probe, equilinen binding reorients an active site water molecule that is directly hydrogen bonded to the nitrile probe, resulting in a more linear CNH angle and increasing the CN frequency upon binding. For the F86C-CN probe, equilinen binding orients the Asp103 residue, decreasing the hydrogen-bonding distance between the Asp103 backbone and the nitrile probe and slightly increasing the CN frequency. This QM/MM methodology is applicable to a wide range of biological systems and has the potential to assist in the elucidation of the fundamental principles underlying enzyme catalysis. PMID:23210919

  15. Averaging Internal Consistency Reliability Coefficients

    ERIC Educational Resources Information Center

    Feldt, Leonard S.; Charter, Richard A.

    2006-01-01

    Seven approaches to averaging reliability coefficients are presented. Each approach starts with a unique definition of the concept of "average," and no approach is more correct than the others. Six of the approaches are applicable to internal consistency coefficients. The seventh approach is specific to alternate-forms coefficients. Although the…

  16. Microscopic formula for transport coefficients of causal hydrodynamics.

    PubMed

    Koide, T

    2007-06-01

    The Green-Kubo-Nakano formula should be modified in relativistic hydrodynamics because of the problem of acausality and the breaking of sum rules. In this Rapid Communication, we propose a formula to calculate the transport coefficients of causal hydrodynamics based on the projection operator method. As concrete examples, we derive the expressions for the diffusion coefficient, the shear viscosity coefficient, and corresponding relaxation times. PMID:17677204

  17. Activity in the fronto-parietal network indicates numerical inductive reasoning beyond calculation: An fMRI study combined with a cognitive model.

    PubMed

    Liang, Peipeng; Jia, Xiuqin; Taatgen, Niels A; Borst, Jelmer P; Li, Kuncheng

    2016-01-01

    Numerical inductive reasoning refers to the process of identifying and extrapolating the rule involved in numeric materials. It is associated with calculation, and shares the common activation of the fronto-parietal regions with calculation, which suggests that numerical inductive reasoning may correspond to a general calculation process. However, compared with calculation, rule identification is critical and unique to reasoning. Previous studies have established the central role of the fronto-parietal network for relational integration during rule identification in numerical inductive reasoning. The current question of interest is whether numerical inductive reasoning exclusively corresponds to calculation or operates beyond calculation, and whether it is possible to distinguish between them based on the activity pattern in the fronto-parietal network. To directly address this issue, three types of problems were created: numerical inductive reasoning, calculation, and perceptual judgment. Our results showed that the fronto-parietal network was more active in numerical inductive reasoning which requires more exchanges between intermediate representations and long-term declarative knowledge during rule identification. These results survived even after controlling for the covariates of response time and error rate. A computational cognitive model was developed using the cognitive architecture ACT-R to account for the behavioral results and brain activity in the fronto-parietal network. PMID:27193284

  18. Activity in the fronto-parietal network indicates numerical inductive reasoning beyond calculation: An fMRI study combined with a cognitive model

    PubMed Central

    Liang, Peipeng; Jia, Xiuqin; Taatgen, Niels A.; Borst, Jelmer P.; Li, Kuncheng

    2016-01-01

    Numerical inductive reasoning refers to the process of identifying and extrapolating the rule involved in numeric materials. It is associated with calculation, and shares the common activation of the fronto-parietal regions with calculation, which suggests that numerical inductive reasoning may correspond to a general calculation process. However, compared with calculation, rule identification is critical and unique to reasoning. Previous studies have established the central role of the fronto-parietal network for relational integration during rule identification in numerical inductive reasoning. The current question of interest is whether numerical inductive reasoning exclusively corresponds to calculation or operates beyond calculation, and whether it is possible to distinguish between them based on the activity pattern in the fronto-parietal network. To directly address this issue, three types of problems were created: numerical inductive reasoning, calculation, and perceptual judgment. Our results showed that the fronto-parietal network was more active in numerical inductive reasoning which requires more exchanges between intermediate representations and long-term declarative knowledge during rule identification. These results survived even after controlling for the covariates of response time and error rate. A computational cognitive model was developed using the cognitive architecture ACT-R to account for the behavioral results and brain activity in the fronto-parietal network. PMID:27193284

  19. Transport coefficients for electrons in Hg vapor

    NASA Astrophysics Data System (ADS)

    Dujko, Sasa; White, Ron; Petrovic, Zoran

    2012-06-01

    Transport coefficients and distribution functions are calculated for electrons in Hg vapor under swarm conditions using a multi term theory for solving the Boltzmann equation, over a range of E/N values and temperatures relevant to lamp discharges. It is shown that for higher E/N the electron distribution is non-thermal for all Hg vapor temperatures considered, and that the speed distribution function significantly deviates from a Maxwellian under these conditions. Our work has been motivated, in part, by recent suggestions that highly accurate data for transport coefficients required as input in fluid models of Hg vapor lamp discharges may significantly improve the existing models. Current models of such lamps require a knowledge of the plasma electrical conductivity, which can be calculated from the cross sections for electron scattering in Hg vapor and mobility coefficients presented in this work. The effect of metastable atoms on the swarm parameters is also discussed. The influence of a magnetic field on electron transport coefficients in Hg vapor is investigated over a range of B/N values and angles between the fields.

  20. Partition coefficients of three new anticonvulsants.

    PubMed

    Hernandez-Gallegos, Z; Lehmann, P A

    1990-11-01

    The partition coefficients of three homologous anticonvulsant phenylalkylamides [racemic alpha-hydroxy-alpha-ethyl-alpha-phenylacetamide (HEPA); beta-hydroxy-beta-ethyl-beta-phenylpropionamide (HEPP); and gamma-hydroxy-gamma-ethyl-gamma-phenylbutyramide (HEPB)] were determined by reversed-phase high-performance liquid chromatography (RP-HPLC). The system was calibrated with a series of simple amines and amides, using their published log P values. The log kw values (methanol:water, extrapolated to 100% water) were 1.260 for HEPA, 1.670 for HEPP, and 1.852 for HEPB. From these results, the partition coefficients (log P) were calculated by regression as 1.20, 1.83, and 2.11, respectively. The log P values were essentially equal to those calculated by the Leo-Hansch fragmental method. Since the potency of the three anticonvulsants is approximately the same in a variety of tests, no dependence on lipophilicity could be established. PMID:2292764

  1. HETC96/MORSE calculations of activations in KEK beam stop and room by 500-MeV protons and comparisons with experiments

    SciTech Connect

    Fu, C.Y.; Gabriel, T.A.

    1997-05-01

    The 1996 version of HETC has a pre-equilibrium reaction model to bridge the gap between the existing intranuclear-cascade and evaporation models. This code was used to calculate proton-induced activations, to calculate neutron fluxes for neutron energies above 19.6 MeV, and to write the neutron source for lower energies to be transported further by MORSE. For MORSE, the HILO cross section library was used for neutron transport for all detectors. Additionally for the {sup 197}Au(n, {gamma}) detector, the BUGLE96 library was used to study the effects of the low-lying {sup 57}Fe inelastic levels and the resonance self-shielding in iron. Neutron fluxes were obtained from the track-length estimator for detectors inside the beam stop and from the boundary-crossing estimator for detectors attached to the surfaces of the concrete walls. Activation cross sections given in JAERI-Data/Code are combined with the calculated neutron fluxes to get the saturated activities induced by neutrons. C/E values are too low (0.5) for Fe(N, {chi}){sup 54}Mn, close to unity for Cu(n, {chi}){sup 58}Co, and too high (6.0) for {sup 197}Au (n, {gamma}){sup 198}Au. It is difficult to interpret the disagreements because most of the activation cross sections are also calculated and their uncertainties are not known. However, the calculated results are in good agreement with those calculated by others using different codes. Calculated results for four of the ten activations reported here have not been done previously, and among the four, {sup 197}Au(n, {gamma}) is the most bothersome because its cross section is the most well known while the calculated activations for most detector locations are in largest disagreement with experiments.

  2. Sedimentation Coefficient, Frictional Coefficient, and Molecular Weight: A Preparative Ultracentrifuge Experiment for the Advanced Undergraduate Laboratory.

    ERIC Educational Resources Information Center

    Halsall, H. B.; Wermeling, J. R.

    1982-01-01

    Describes an experiment using a high-speed preparative centrifuge and calculator to demonstrate effects of the frictional coefficient of a macromolecule on its rate of transport in a force field and to estimate molecular weight of the macromolecule using an empirical relationship. Background information, procedures, and discussion of results are…

  3. Calculation of Relative Binding Free Energy in the Water-Filled Active Site of Oligopeptide-Binding Protein A.

    PubMed

    Maurer, Manuela; de Beer, Stephanie B A; Oostenbrink, Chris

    2016-01-01

    The periplasmic oligopeptide binding protein A (OppA) represents a well-known example of water-mediated protein-ligand interactions. Here, we perform free-energy calculations for three different ligands binding to OppA, using a thermodynamic integration approach. The tripeptide ligands share a high structural similarity (all have the sequence KXK), but their experimentally-determined binding free energies differ remarkably. Thermodynamic cycles were constructed for the ligands, and simulations conducted in the bound and (freely solvated) unbound states. In the unbound state, it was observed that the difference in conformational freedom between alanine and glycine leads to a surprisingly slow convergence, despite their chemical similarity. This could be overcome by increasing the softness parameter during alchemical transformations. Discrepancies remained in the bound state however, when comparing independent simulations of the three ligands. These difficulties could be traced to a slow relaxation of the water network within the active site. Fluctuations in the number of water molecules residing in the binding cavity occur mostly on a timescale larger than the simulation time along the alchemical path. After extensive simulations, relative binding free energies that were converged to within thermal noise could be obtained, which agree well with available experimental data. PMID:27092480

  4. Synthesis, spectroscopic, DFT calculations and biological activity studies of ruthenium carbonyl complexes with 2-picolinic acid and a secondary ligand

    NASA Astrophysics Data System (ADS)

    Shohayeb, Shahera M.; Mohamed, Rania G.; Moustafa, H.; El-Medani, Samir M.

    2016-09-01

    Thermal reaction of [Ru3(CO)12] with 2-picolinic acid (Hpic) in the absence and presence of a secondary ligand (pyridine, Py, bipyridine, Bipy, or thiourea, Tu) was investigated. Four complexes with molecular formulae: [Ru(CO)3(Hpic)], 1, [Ru2(CO)5(Hpic)(Py)], 2, [Ru2(CO)5(Hpic)(Tu)], 3 and [Ru2(CO)4(Hpic)(Bipy)], 4, were isolated. All complexes were characterized based on elemental analyses, IR, 1H NMR, magnetic studies, mass spectrometry and thermal analysis. The ligand and its complexes have been screened for antibacterial activities. Density Functional Theory (DFT) calculations at the B3LYP/6-311G (d,p)_ level of theory have been carried out to investigate the equilibrium geometry of the ligands. The optimized geometry parameters of the complexes were evaluated using B3LYP method and LANL2DZ basis set. The extent of natural charge population (core, valence and rydberg), exact electronic configuration, total Lewis and total non-Lewis are estimated and discussed in terms of natural bond orbitals (NBO) analysis.

  5. Activity concentrations of 222Rn, 220Rn, and their decay products in german dwellings, dose calculations and estimate of risk.

    PubMed

    Keller, G; Folkerts, K H; Muth, H

    1982-01-01

    Measurements of the concentrations of 222Rn, its short-lived decay products and of 212Pb - 212Bi were performed in 150 dwellings and in the open air in the Federal Republic of Germany. The concentrations of 222Rn was measured by electrostatic deposition of 218Po. The concentration of the short-lived decay products were measured by air sampling and alpha-spectroscopy. It was found that inside dwellings the average potential alpha-energy concentration of the short-lived daughters is about three times higher than in the open air. The total potential alpha-energy concentration indoors amounts to 2.6 . 10(-3) Working Level (W.L.). Direct measurements of the equilibrium factor inside dwellings gave a mean value of 0.3. A strong dependence of the potential alpha energy concentration on the ventilation rate in dwellings has been observed. These ventilation effects exceed the effects caused by differences in the activity concentrations due to different building materials. The dose calculation results in an average dose to the whole lung due to the inhalation of short-lived radon daughters of about 0.05-0.2 m/Gy/a. An estimate of risk - based on the risk factors for uranium miners - shows an average lifetime risk of about 6 . 10(-4) for the incidence of lung cancer caused by inhalation of radon and thoron daughters in dwellings in the Federal Republic of Germany. PMID:7146318

  6. Surface area coefficients for airship envelopes

    NASA Technical Reports Server (NTRS)

    Diehl, W S

    1922-01-01

    In naval architecture, it is customary to determine the wetted surface of a ship by means of some formula which involves the principal dimensions of the design and suitable constants. These formulas of naval architecture may be extended and applied to the calculation of the surface area of airship envelopes by the use of new values of the constants determined for this purpose. Surface area coefficients were calculated from the actual dimensions, surfaces, and volumes of 52 streamline bodies, which form a series covering the entire range of shapes used in the present aeronautical practice.

  7. Tracing the Construction of Mathematical Activity with an Advanced Graphing Calculator to Understand the Roles of Technology Developers, Teachers and Students

    ERIC Educational Resources Information Center

    Hillman, Thomas

    2014-01-01

    This article examines mathematical activity with digital technology by tracing it from its development through its use in classrooms. Drawing on material-semiotic approaches from the field of Science and Technology Studies, it examines the visions of mathematical activity that developers had for an advanced graphing calculator. It then follows the…

  8. Wavelength dependence of aerosol extinction coefficient for stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Yue, Glenn K.

    1986-01-01

    A simple empirical formula for the wavelength dependence of the aerosol extinction coefficient is proposed. The relationship between the constants in the formula and the variable parameter in the aerosol size distribution is explicitly expressed. Good agreement is found between the extinction coefficients calculated from the proposed formula and that calculated from Mie theory. The proposed expression is shown to be better than the Angstroem formula commonly used by atmospheric scientists.

  9. ACDOS1: a computer code to calculate dose rates from neutron activation of neutral beamlines and other fusion-reactor components

    SciTech Connect

    Keney, G.S.

    1981-08-01

    A computer code has been written to calculate neutron induced activation of neutral-beam injector components and the corresponding dose rates as a function of geometry, component composition, and time after shutdown. The code, ACDOS1, was written in FORTRAN IV to calculate both activity and dose rates for up to 30 target nuclides and 50 neutron groups. Sufficient versatility has also been incorporated into the code to make it applicable to a variety of general activation problems due to neutrons of energy less than 20 MeV.

  10. Determination of radionuclides and pathways contributing to cumulative dose. Hanford Environmental Dose Reconstruction Project: Dose code recovery activities, Calculation 004

    SciTech Connect

    Napier, B.A.

    1992-12-01

    A series of scoping calculations has been undertaken to evaluate the absolute and relative contributions of different radionuclides and exposure pathways to doses that may have been received by individuals living in the vicinity of the Hanford Site. This scoping calculation (Calculation 004) examined the contributions of numerous radionuclides to cumulative dose via environmental exposures and accumulation in foods. Addressed in this calculation were the contributions to organ and effective dose of infants and adults from (1) air submersion and groundshine external dose, (2) inhalation, (3) ingestion of soil by humans, (4) ingestion of leafy vegetables, (5) ingestion of other vegetables and fruits, (6) ingestion of meat, (7) ingestion of eggs, and (8) ingestion of cows` milk from Feeding Regime 1, as described in calculation 002. This calculation specifically addresses cumulative radiation doses to infants and adults resulting from releases occurring over the period 1945 through 1972.

  11. Determination of dose distributions and parameter sensitivity. Hanford Environmental Dose Reconstruction Project; dose code recovery activities; Calculation 005

    SciTech Connect

    Napier, B.A.; Farris, W.T.; Simpson, J.C.

    1992-12-01

    A series of scoping calculations has been undertaken to evaluate the absolute and relative contribution of different radionuclides and exposure pathways to doses that may have been received by individuals living in the vicinity of the Hanford site. This scoping calculation (Calculation 005) examined the contributions of numerous parameters to the uncertainty distribution of doses calculated for environmental exposures and accumulation in foods. This study builds on the work initiated in the first scoping study of iodine in cow`s milk and the third scoping study, which added additional pathways. Addressed in this calculation were the contributions to thyroid dose of infants from (1) air submersion and groundshine external dose, (2) inhalation, (3) ingestion of soil by humans, (4) ingestion of leafy vegetables, (5) ingestion of other vegetables and fruits, (6) ingestion of meat, (7) ingestion of eggs, and (8) ingestion of cows` milk from Feeding Regime 1 as described in Calculation 001.

  12. Fractional parentage coefficients using a restricted set of Slater determinants

    NASA Astrophysics Data System (ADS)

    Hill, Edward George

    2014-11-01

    In a previous paper a method of calculating atomic physics data, energy levels and photo- and collisional-excitation rates using a restricted set of Slater determinants was demonstrated. This paper extends that work to demonstrate the method of calculating a generalisation of coefficients of fractional parentage using a restricted, and already known, set of Slater determinants. These coefficients can be used in photoionisation, collisional ionisation and autoionisation calculations, and so allow the methods to be extended to allow all of the data required by an atomic kinetic code to be calculated using this scheme.

  13. The Evolution of Pearson's Correlation Coefficient

    ERIC Educational Resources Information Center

    Kader, Gary D.; Franklin, Christine A.

    2008-01-01

    This article describes an activity for developing the notion of association between two quantitative variables. By exploring a collection of scatter plots, the authors propose a nonstandard "intuitive" measure of association; and by examining properties of this measure, they develop the more standard measure, Pearson's Correlation Coefficient. The…

  14. Quadrature formulas for Fourier coefficients

    NASA Astrophysics Data System (ADS)

    Bojanov, Borislav; Petrova, Guergana

    2009-09-01

    We consider quadrature formulas of high degree of precision for the computation of the Fourier coefficients in expansions of functions with respect to a system of orthogonal polynomials. In particular, we show the uniqueness of a multiple node formula for the Fourier-Tchebycheff coefficients given by Micchelli and Sharma and construct new Gaussian formulas for the Fourier coefficients of a function, based on the values of the function and its derivatives.

  15. Quantum Non-Markovian Langevin Equations and Transport Coefficients

    SciTech Connect

    Sargsyan, V.V.; Antonenko, N.V.; Kanokov, Z.; Adamian, G.G.

    2005-12-01

    Quantum diffusion equations featuring explicitly time-dependent transport coefficients are derived from generalized non-Markovian Langevin equations. Generalized fluctuation-dissipation relations and analytic expressions for calculating the friction and diffusion coefficients in nuclear processes are obtained. The asymptotic behavior of the transport coefficients and correlation functions for a damped harmonic oscillator that is linearly coupled in momentum to a heat bath is studied. The coupling to a heat bath in momentum is responsible for the appearance of the diffusion coefficient in coordinate. The problem of regression of correlations in quantum dissipative systems is analyzed.

  16. Coefficient Alpha: A Reliability Coefficient for the 21st Century?

    ERIC Educational Resources Information Center

    Yang, Yanyun; Green, Samuel B.

    2011-01-01

    Coefficient alpha is almost universally applied to assess reliability of scales in psychology. We argue that researchers should consider alternatives to coefficient alpha. Our preference is for structural equation modeling (SEM) estimates of reliability because they are informative and allow for an empirical evaluation of the assumptions…

  17. Improving Hiroshima Air-Over-Ground Thermal/Epithermal Activation Calculations Using a MUSH Model to Show the Importance of Local Shielding

    SciTech Connect

    Pace, J.V.

    2002-02-14

    Achieving agreement between measured and calculated neutron activation data resulting from Hiroshima and Nagasaki A-bomb detonations has been a major problem since the early 1980's. This has been particularly true for the materials that are activated by thermal and epithermal neutrons. Since thermal and epithermal neutrons are not transported very far from the weapon, the local shielding environment around the measurement location can be very important. A set of calculations incorporating an average density local-environment material (mush) has been made to demonstrate that the local environment plays an important role in the calculation-measurement agreement process. The optimum solution would be to include the local environment in all thermal neutron response calculations.

  18. GPU Accelerated Chemical Similarity Calculation for Compound Library Comparison

    PubMed Central

    Ma, Chao; Wang, Lirong; Xie, Xiang-Qun

    2012-01-01

    Chemical similarity calculation plays an important role in compound library design, virtual screening, and “lead” optimization. In this manuscript, we present a novel GPU-accelerated algorithm for all-vs-all Tanimoto matrix calculation and nearest neighbor search. By taking advantage of multi-core GPU architecture and CUDA parallel programming technology, the algorithm is up to 39 times superior to the existing commercial software that runs on CPUs. Because of the utilization of intrinsic GPU instructions, this approach is nearly 10 times faster than existing GPU-accelerated sparse vector algorithm, when Unity fingerprints are used for Tanimoto calculation. The GPU program that implements this new method takes about 20 minutes to complete the calculation of Tanimoto coefficients between 32M PubChem compounds and 10K Active Probes compounds, i.e., 324G Tanimoto coefficients, on a 128-CUDA-core GPU. PMID:21692447

  19. Chemical-equilibrium calculations for aqueous geothermal brines

    SciTech Connect

    Kerrisk, J.F.

    1981-05-01

    Results from four chemical-equilibrium computer programs, REDEQL.EPAK, GEOCHEM, WATEQF, and SENECA2, have been compared with experimental solubility data for some simple systems of interest with geothermal brines. Seven test cases involving solubilities of CaCO/sub 3/, amorphous SiO/sub 2/, CaSO/sub 4/, and BaSO/sub 4/ at various temperatures from 25 to 300/sup 0/C and in NaCl or HCl solutions of 0 to 4 molal have been examined. Significant differences between calculated results and experimental data occurred in some cases. These differences were traced to inaccuracies in free-energy or equilibrium-constant data and in activity coefficients used by the programs. Although currently available chemical-equilibrium programs can give reasonable results for these calculations, considerable care must be taken in the selection of free-energy data and methods of calculating activity coefficients.

  20. Mercado/Robb/Buchdahl coefficients: an update of 243 common glasses

    NASA Astrophysics Data System (ADS)

    Bolser, Michael

    2002-12-01

    The 1983 Mercado/Robb listing of Buchdahl chromatic coordinate coefficients is supplemented with glasses from the Schott and O'Hara catalogues. The coefficients were calculated by using Buchdahl's cubic model. Appropriately selected materials yield a superachromat.

  1. RADIONUCLIDE RISK COEFFICIENT UNCERTAINTY REPORT

    EPA Science Inventory

    EPA has published excess cancer risk coefficients for the US population in Federal Guidance Report 13 (FGR 13). FGR 13 gives separate risk coefficients for food ingestion, water ingestion, inhalation, and external exposure for each of over 800 radionuclides. Some information on...

  2. Standardized Discriminant Coefficients: A Rejoinder.

    ERIC Educational Resources Information Center

    Mueller, Ralph O.; Cozad, James B.

    1993-01-01

    Although comments of D.J. Nordlund and R. Nagel are welcomed, their arguments are not sufficient to accept the recommendation of using total variance estimates to standardize canonical discriminant function coefficients. If standardized coefficients are used to help interpret a discriminant analysis, pooled within-group variance estimates should…

  3. Greater brain volumes are activated when performing simple calculating tasks in persons accustomed to lower altitudes than those to higher altitudes

    PubMed Central

    Jiang, Yan L; Liang, Willmann; Yao, Hong; Yew, David T

    2013-01-01

    Chronic exposure to a hypoxic environment results in a number of physiological changes such as cardiac arrhythmia and pulmonary edema. We hereby studied the variations in activation of brain areas during simple calculation tasks between individuals originating from different altitudes. Two groups of subjects, one from 1700 m above sea level (lowlanders) and the other one from at least 3000 m above sea level (highlanders), performed a simple calculation task by heart. The fMRI were taken and horizontal, sagittal, and coronal sections were analyzed to identify activated brain areas. Both lowlanders and highlanders performed the calculation task successfully. Horizontal sections revealed similar activated areas in the deep and anterior part of the right parietal lobe of both lowlanders and highlanders. In the highlanders, coronal and sagittal sections showed lower activities. Smaller brain volumes were activated in the highlanders as shown by the computer brain templates, with fewer total voxels recorded than in the lowlanders (P = 0.003). Computerized comparison of overall active brain regions between lowlanders and highlanders also revealed that smaller brain regions were activated. The results showed that while all subjects completed the task successfully, the highlanders did so using smaller brain regions than the lowlanders. PMID:24381814

  4. First-principles study of temperature-dependent diffusion coefficients: Hydrogen, deuterium, and tritium in α-Ti

    NASA Astrophysics Data System (ADS)

    Lu, Yong; Zhang, Ping

    2013-05-01

    We report the prediction of temperature-dependent diffusion coefficients of interstitial hydrogen, deuterium, and tritium atoms in α-Ti using transition state theory. The microscopic parameters in the pre-factor and activation energy of the impurity diffusion coefficients are obtained from first-principles total energy and phonon calculations including the full coupling between the vibrational modes of the diffusing atom with the host lattice. The dual occupancy case of impurity atom in the hcp matrix is considered, and four diffusion paths are combined to obtain the final diffusion coefficients. The calculated diffusion parameters show good agreement with experiments. Our numerical results indicate that the diffusions of deuterium and tritium atoms are slower than that of the hydrogen atom at temperatures above 425 K and 390 K, respectively.

  5. Solute concentration effect on osmotic reflection coefficient.

    PubMed Central

    Adamski, R P; Anderson, J L

    1983-01-01

    A theory for the effect of concentration on osmotic reflection coefficient, correct to first order, was developed at the molecular level by considering the effect of solute-solute interactions on solute concentration and the fluid stress tensor within a solvent-filled pore. The solvent was modeled as a continuous fluid and potential energies between solute molecules and the pore wall were assumed to be pairwise additive. Although the theory is more general, calculations are presented only for excluded volume effects (hard-sphere for solute, hard-wall for pore). The relationship between the first-order concentration effect and the infinite dilution value of reflection coefficient appears to be geometry independent. The theory is discussed in light of experimental studies of osmotic flow that have recently appeared in the literature. PMID:6626681

  6. RECOMBINATION RATE COEFFICIENTS OF Be-LIKE Si

    SciTech Connect

    Orban, I.; Boehm, S.; Schuch, R.; Loch, S. D.

    2010-10-01

    Recombination of Be-like Si{sup 10+} over the 0-43 eV electron-ion energy range is measured at the CRYRING electron cooler. In addition to radiative and dielectronic recombination, the recombination spectrum also shows strong contributions from trielectronic recombination. Below 100 meV, several very strong resonances associated with a spin-flip of the excited electron dominate the spectrum and also dominate the recombination in the photoionized plasma. The resonant plasma rate coefficients corrected for the experimental field ionization are in good agreement with calculated results by Gu and with AUTOSTRUCTURE calculations. All other calculations significantly underestimate the plasma rate coefficients at low temperatures.

  7. Operational Control Procedures for the Activated Sludge Process, Part III-B: Calculation Procedures for Step-Feed Process Responses and Addendum No. 1.

    ERIC Educational Resources Information Center

    West, Alfred W.

    This is the third in a series of documents developed by the National Training and Operational Technology Center describing operational control procedures for the activated sludge process used in wastewater treatment. This document deals with the calculation procedures associated with a step-feed process. Illustrations and examples are included to…

  8. Angular Fock coefficients: Refinement and further development

    NASA Astrophysics Data System (ADS)

    Liverts, Evgeny Z.; Barnea, Nir

    2015-10-01

    The angular coefficients ψk ,p(α ,θ ) of the Fock expansion characterizing the S -state wave function of the two-electron atomic system are calculated in hyperspherical angular coordinates α and θ . To solve the problem the Fock recurrence relations separated into the independent individual equations associated with definite power j of the nucleus charge Z are applied. The "pure" j components of the angular Fock coefficients, orthogonal to the hyperspherical harmonics Yk l, are found for even values of k . To this end, the specific coupling equation is proposed and applied. Effective techniques for solving the individual equations with the simplest nonseparable and separable right-hand sides are proposed. Some mistakes or misprints made earlier in representations of ψ2 ,0, are noted and corrected. All j components of ψ4 ,1 and the majority of components and subcomponents of ψ3 ,0 are calculated and presented. All calculations are carried out with the help of Wolfram Mathematica.

  9. A calibration transmission method to determine the gamma-ray linear attenuation coefficient without a collimator.

    PubMed

    Byun, Jong-In; Yun, Ju-Yong

    2015-08-01

    It is shown that the gamma-ray linear attenuation coefficient of a sample with unknown chemical composition can be determined through a systematic calibration of the correlation between the linear attenuation coefficient, gamma-ray energy and the relative degree of attenuation. For calibration, H2O, MnO2, NaCl, Na2CO3 and (NH4)2SO4 were used as reference materials. Point-like gamma-ray sources with modest activity of approximately 37kBq, along with an HPGe detector, were used in the measurements. A semi-empirical formula was derived to calculate the linear attenuation coefficients as a function of the relative count rate and the gamma-ray energy. The method was applied to the determination of the linear attenuation coefficients for K2CrO4 and SiO2 test samples in the same setup used in calibration. The experimental result agreed well with the ones calculated by elementary data. PMID:25997111

  10. Wrong Signs in Regression Coefficients

    NASA Technical Reports Server (NTRS)

    McGee, Holly

    1999-01-01

    When using parametric cost estimation, it is important to note the possibility of the regression coefficients having the wrong sign. A wrong sign is defined as a sign on the regression coefficient opposite to the researcher's intuition and experience. Some possible causes for the wrong sign discussed in this paper are a small range of x's, leverage points, missing variables, multicollinearity, and computational error. Additionally, techniques for determining the cause of the wrong sign are given.

  11. Fuel Temperature Coefficient of Reactivity

    SciTech Connect

    Loewe, W.E.

    2001-07-31

    A method for measuring the fuel temperature coefficient of reactivity in a heterogeneous nuclear reactor is presented. The method, which is used during normal operation, requires that calibrated control rods be oscillated in a special way at a high reactor power level. The value of the fuel temperature coefficient of reactivity is found from the measured flux responses to these oscillations. Application of the method in a Savannah River reactor charged with natural uranium is discussed.

  12. Application of matrix calculation 1: Design and adjustment of a tandem mass spectrometer for Collision-Activated Dissociation (CAD)

    NASA Astrophysics Data System (ADS)

    1982-02-01

    A matrix representation of the ion optics of the analyzing stage has been used in a computer model of a tandem mass spectrometer with simultaneous detection for CAD. The matrix algorithm of this model is discussed here as an elegant way of describing the ion optics in a first-order approximation. The accuracy of the calculations is illustrated by comparing calculated and measured adjustments of the instrument under normal experiment conditions. The ion-optical possibilities with respect to transmission, mass resolution influence of several ion optical parameters on the shape and position of the mass focal plane is discussed. The experimental values of mass range, mass resolution and ion transmission agree very well with the calculations. Moreover, the computer model appears to be a useful tool for giving clear insight into the operation of the rather complex ion optics of the instrument. The calculations have been further developed towards higher accuracy, making possible automatic focusing of the mass focal plane onto the detector.

  13. A computerized method to estimate friction coefficient from orientation distribution of meso-scale faults

    NASA Astrophysics Data System (ADS)

    Sato, Katsushi

    2016-08-01

    The friction coefficient controls the brittle strength of the Earth's crust for deformation recorded by faults. This study proposes a computerized method to determine the friction coefficient of meso-scale faults. The method is based on the analysis of orientation distribution of faults, and the principal stress axes and the stress ratio calculated by a stress tensor inversion technique. The method assumes that faults are activated according to the cohesionless Coulomb's failure criterion, where the fluctuations of fluid pressure and the magnitude of differential stress are assumed to induce faulting. In this case, the orientation distribution of fault planes is described by a probability density function that is visualized as linear contours on a Mohr diagram. The parametric optimization of the function for an observed fault population yields the friction coefficient. A test using an artificial fault-slip dataset successfully determines the internal friction angle (the arctangent of the friction coefficient) with its confidence interval of several degrees estimated by the bootstrap resampling technique. An application to natural faults cutting a Pleistocene forearc basin fill yields a friction coefficient around 0.7 which is experimentally predicted by the Byerlee's law.

  14. Potential Dependence of Electrochemical Barriers from ab Initio Calculations.

    PubMed

    Chan, Karen; Nørskov, Jens K

    2016-05-01

    We present a simple and computationally efficient method to determine the potential dependence of the activation energies for proton-electron transfer from a single ab initio barrier calculation. We show that the potential dependence of the activation energy is given by the partial charge transferred at the transition state. The method is evaluated against the potential dependence determined explicitly through multiple calculations at varying potential. We show that the transfer coefficient is given by the charge transferred from the initial to transition state, which has significant implications for electrochemical kinetics. PMID:27088442

  15. Friction coefficient of faults inferred from earthquake focal mechanisms

    NASA Astrophysics Data System (ADS)

    Viganò, Alfio; Ranalli, Giorgio; Andreis, Daniele; Martin, Silvana; Rigon, Riccardo

    2013-04-01

    In earthquake mechanics and structural geology the static friction coefficient is usually assumed to have the laboratory value (μ = 0.6-0.8) according to the Coulomb-Byerlee's law. Estimates from deep boreholes and/or natural faults generally confirm this hypothesis but in some cases friction coefficients can be significantly lower, suggesting the existence of weak faults able to be activated by lower effective stress than theoretically expected. We apply a modified version of the method proposed by Yin and Ranalli (1995, Journal of Structural Geology, vol. 17, pp. 1327-1335), where the average friction coefficient of a set of n faults is estimated. This method is based on minimization of the sum of squares of the misfit ratios, where the misfit ratio of each fault is given dividing the misfit stress difference (i.e. the misfit between normalized stress difference and average normalized stress difference) by the average normalized stress difference. The normalized stress difference is defined as the critical stress difference divided by the effective overburden pressure, while the average stress difference is obtained considering the entire fault dataset. Input data are (i) the orientation of faults, (ii) the stress field orientation, and (iii) the stress ratio. The latter two must be independently estimated. A uniform stress field and a similar normalized critical stress difference for the fault dataset are assumed. The procedure has been extended to apply to fault plane solutions by considering both nodal planes of a set of n focal mechanisms and estimating the range of acceptable average friction coefficients from all possible combination of planes (2n number of combinations). The amount of calculation can be considerably reduced if independent information makes it possible to select which one of the nodal planes of each focal mechanism is the true fault plane (for example when aftershocks delineate the fault geometry at depth), resulting in only n combinations

  16. Elastic-Stiffness Coefficients of Titanium Diboride

    PubMed Central

    Ledbetter, Hassel; Tanaka, Takaho

    2009-01-01

    Using resonance ultrasound spectroscopy, we measured the monocrystal elastic-stiffness coefficients, the Voigt Cij, of TiB2. With hexagonal symmetry, TiB2 exhibits five independent Cij: C11, C33, C44, C12, C13. Using Voigt-Reuss-Hill averaging, we converted these monocrystal values to quasiisotropic (polycrystal) elastic stiffnesses. Briefly, we comment on effects of voids. From the Cij, we calculated the Debye characteristic temperature, the Grüneisen parameter, and various sound velocities. Our study resolves the enormous differences between two previous reports of TiB2’s Cij.

  17. Modeling canopy reflectance and microwave backscattering coefficient

    NASA Technical Reports Server (NTRS)

    Goel, N. S.

    1985-01-01

    Various approaches to model canopy reflectance (CR) in the visible/infrared region and backscattering coefficient (BSC) in the microwave region are compared and contrasted. It is noted that BSC can be related to CR in the source direction (the 'hot spot' direction). By assuming a frequency dependent leaf reflectance and transmittance it is shown that the observed dependence of BSC on leaf area index, leaf angle distribution, angle of incidence, soil moisture content, and frequency can be simulated by a CR model. Thus both BSC and CR can, in principle, be calculated using a single model which has essentially the same parameters as many CR models do.

  18. Isopiestic Determination of the Osmotic and Activity Coefficients of NaCl + SrCl2 + H2O at 298.15 K, and Representation with an Extended Ion-Interaction Model

    SciTech Connect

    Clegg, S L; Rard, J A; Miller, D G

    2004-11-09

    Isopiestic vapor-pressure measurements were made at 298.15 K for aqueous NaCl + SrCl{sub 2} solutions, using NaCl(aq) as the reference standard. The measurements for these ternary solutions were made at NaCl ionic strength fractions of y{sub 1} = 0.17066, 0.47366, and 0.82682 for the water activity range 0.9835 {ge} a{sub w} {ge} 0.8710. Our results, and those from two previous isopiestic studies, were combined and used with previously determined parameters for NaCl(aq) and those for SrCl{sub 2}(aq) determined here to evaluate the mixing parameters{sup S}{Theta}{sub Na,Sr} = (0.0562 {+-} 0.0007) kg {center_dot} mol{sup -1} and {Psi}{sub Na,Sr,Cl} = -(0.00705 {+-} 0.00017) kg{sup 2} {center_dot} mol{sup -2} for an extended form of Pitzer's ion-interaction model. These model parameters are valid for ionic strengths of I {le} 7.0 mol {center_dot} kg{sup -1}, where higher-order electrostatic effects have been included in the mixture model. If the fitting range is extended to the saturated solution molalities, then {sup S}{Theta}{sub Na,Sr} = (0.07885 {+-} 0.00195) kg {center_dot} mol{sup -1} and {Psi}{sub Na,Sr,Cl} = -(0.01230 {+-} 0.00033) kg{sup 2} {center_dot} mol{sup -2}. The extended ion-interaction model parameters obtained from available isopiestic data for SrCl{sub 2}(aq) at 298.15 K yield recommended values of the water activities and osmotic and activity coefficients.

  19. X-ray Single Crystal Structure, DFT Calculations and Biological Activity of 2-(3-Methyl-5-(pyridin-2'-yl)-1H-pyrazol-1-yl) Ethanol.

    PubMed

    Radi, Smaail; Attayibat, Ahmed; El-Massaoudi, Mohamed; Salhi, Amin; Eddike, Driss; Tillard, Monique; Mabkhot, Yahia N

    2016-01-01

    A pyridylpyrazole bearing a hydroxyethyl substituent group has been synthesized by condensation of (Z)-4-hydroxy-4-(pyridin-2-yl)but-3-en-2-one with 2-hydroxyethylhydrazine. The compound was well characterized and its structure confirmed by single crystal X-ray diffraction. Density functional calculations have been performed using DFT method with 6-31G* basis set. The HOMO-LUMO energy gap, binding energies and electron deformation densities are calculated at the DFT (BLYP, PW91, PWC) level. The electrophilic f(-) and nucleophilic f(+) Fukui functions and also the electrophilic and nucleophilic Parr functions are well adapted to find the electrophile and nucleophile centers in the molecule. The title compound has been tested for its DPPH radical scavenging activity which is involved in aging processes, anti-inflammatory, anticancer and wound healing activity. Compound is also found with a significant antioxidant activity, probably due to the ability to donate a hydrogen atom to the DPPH radical. PMID:27527141

  20. Extended active space CASSCF/MRSD CI calculations of the barrier height for the reaction O + H2 yields OH + H

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1987-01-01

    The convergence of the barrier height for the O + H2 yields OH + H reaction is studied as a function of the size of the active space in the CASSCF calculation and the size of the basis set. The basis set employed in this study is described. The sources of the differences between the POL-CI and MRSD-CI calculations for barrier height are examined. It is observed that the barrier height is rapidly convergent with respect to the expansion of the active space. The effects of adding active orbitals on the barrier height are investigated. The barrier height estimated from corrected MRSD-CI data is 12.4 kcal/mol.

  1. Calculation of activation energies for transport and recombination in mesoporous TiO2/dye/electrolyte films--taking into account surface charge shifts with temperature.

    PubMed

    O'Regan, Brian C; Durrant, James R

    2006-05-01

    Transient photovoltage and photocurrent measurements have been employed to determine the recombination and transport kinetics in operating dye-sensitized photovoltaic cells as a function of potential and temperature. Photocurrent transients have been taken at the open circuit potential, as opposed to the standard measurement at short circuit. Kinetic results have been used to calculate the activation energy as function of the Fermi level position in the TiO(2). In the calculation of activation energies, we have explicitly taken into account the temperature dependence of the offset between the electrolyte redox potential and the conduction band edge. This new method gives activation energies that decrease linearly as the Fermi level position moves toward the conduction band edge, as expected, but not found in previous studies. The results are consistent with the presence of a distribution of traps below the TiO(2) conduction band, the detrapping from which limits both the transport and the recombination of electrons. PMID:16640403

  2. How can activity-based costing methodology be performed as a powerful tool to calculate costs and secure appropriate patient care?

    PubMed

    Lin, Blossom Yen-Ju; Chao, Te-Hsin; Yao, Yuh; Tu, Shu-Min; Wu, Chun-Ching; Chern, Jin-Yuan; Chao, Shiu-Hsiung; Shaw, Keh-Yuong

    2007-04-01

    Previous studies have shown the advantages of using activity-based costing (ABC) methodology in the health care industry. The potential values of ABC methodology in health care are derived from the more accurate cost calculation compared to the traditional step-down costing, and the potentials to evaluate quality or effectiveness of health care based on health care activities. This project used ABC methodology to profile the cost structure of inpatients with surgical procedures at the Department of Colorectal Surgery in a public teaching hospital, and to identify the missing or inappropriate clinical procedures. We found that ABC methodology was able to accurately calculate costs and to identify several missing pre- and post-surgical nursing education activities in the course of treatment. PMID:17489499

  3. Fluid/Melt Partition Coefficients Of Halogens In Basaltic Melt

    NASA Astrophysics Data System (ADS)

    Alletti, M.; Baker, D.; Scaillet, B.; Aiuppa, A.; Moretti, R.; Ottolini, L.

    2007-12-01

    Despite the importance of halogens (F, Cl) in volcanic degassing, solubility and fluid/melt partitioning of these elements have not been comprehensively studied in natural basaltic melts. Experimental determinations of halogen solubility in Mount Etna melts are lacking, despite this volcano being one of the most active and intensively monitored on Earth with an estimated output of thousands tonnes of halogens per day. In order to better understand halogen degassing, we present the results of a series of halogen partitioning experiments performed at different pressures (1-200 MPa), redox conditions (from Δ NNO = + 2 to Δ NNO = - 0.3) and fluid compositions. Experiments used a hawaiitic, glassy, alkaline basalt with Mg# = 0.59, sampled during the July 2001 eruption of Mount Etna. A series of experiments were conducted using H2O-NaCl or H2O-NaF solutions. The effect of CO2 in multi-component fluid H2O-CO2-NaCl or H2O-CO2-NaF was also investigated. The experimental run products were mostly glasses, but a few run products contained less than 10% crystals. The concentration of halogens in the fluid phase after the experiment was calculated from mass balance, and the partition coefficients for both Cl and F at the studied conditions determined. Using these measurements and thermodynamical models, the dependence of these partition coefficients on the fugacities of various gaseous species was investigated.

  4. Unlimited full configuration interaction calculations

    NASA Astrophysics Data System (ADS)

    Knowles, Peter J.; Handy, Nicholas C.

    1989-08-01

    In very large full configuration interaction (full CI), nearly all of the CI coefficients are very small. Calculations, using a newly developed algorithm which exploits this fact, on NH3 with a DZP basis are reported, involving 2×108 Slater determinants. Such calculations are impossible with other existing full CI codes. The new algorithm opens up the opportunity of full CI calculations which are unlimited in size.

  5. Discharge Coefficients for Axisymmetric Supersonic Nozzles

    NASA Technical Reports Server (NTRS)

    Ahmad, Rashid A.; McCool, A. A. (Technical Monitor)

    2000-01-01

    Computational Fluid Dynamics (CFD) analysis was used to compute effective nozzle discharge coefficients for subscale sharp-edged converging/diverging nozzles, with a variety of convergence half-angles, motor operating conditions, and two propellants with different ballistics. Convergence half-angles ranged from 0 to 80 deg. Analysis was conducted at total temperatures from 2946K (5303R) to 3346K (6023R) and over total pressures ranged from 2.72 MPa (395 psia) to 20.68 MPa (3000 psia). Area ratios (A(sub e)/A*) ranged from 7.43 to 9.39. Ratio of specific heats (gamma) ranged from 1.13 to 1.18. Throat and exit Reynolds numbers were calculated to be 8.26 x 10(exp 5) and 5.51 x 10(exp 5), respectively. Present results of nozzle discharge coefficients are reported and correlated as a function of nozzle convergence half-angle (theta(sub c)) and area ratios (A(sub e)/A*) for a constant divergence half-angle (theta(sub d)) of 15 deg. Computed discharge coefficients ranged from 0.88 to 0.97. They are compared with theory and experimental data available in literature. Available turbulence models with respect to grid refinements and heat transfer are discussed.

  6. Experimental Excitation Rate Coefficients for Ne VIII Ions

    NASA Astrophysics Data System (ADS)

    Chang, C. C.; Greve, P.; Kolk, K.-H.; Kunze, H.-J.

    1984-02-01

    From the line emission of a pure neon plasma produced in a theta pinch discharge rate coefficients for the excitation of the n = 3 and 4 levels in Ne VIII ions are derived and compared with theoretical calculations and previous measurements. The general agreement between theory and all measurements is rather satisfactory for the excitation to the n = 3 levels, the measured rate coefficients to the 4p and 4d levels, however, being consistently too low.

  7. Spectroscopic characteristic (FT-IR, FT-Raman, UV, 1H and 13C NMR), theoretical calculations and biological activity of alkali metal homovanillates

    NASA Astrophysics Data System (ADS)

    Samsonowicz, M.; Kowczyk-Sadowy, M.; Piekut, J.; Regulska, E.; Lewandowski, W.

    2016-04-01

    The structural and vibrational properties of lithium, sodium, potassium, rubidium and cesium homovanillates were investigated in this paper. Supplementary molecular spectroscopic methods such as: FT-IR, FT-Raman in the solid phase, UV and NMR were applied. The geometrical parameters and energies were obtained from density functional theory (DFT) B3LYP method with 6-311++G** basis set calculations. The geometry of the molecule was fully optimized, vibrational spectra were calculated and fundamental vibrations were assigned. Geometric and magnetic aromaticity indices, atomic charges, dipole moments, HOMO and LUMO energies were also calculated. The microbial activity of investigated compounds was tested against Bacillus subtilis (BS), Pseudomonas aeruginosa (PA), Escherichia coli (EC), Staphylococcus aureus (SA) and Candida albicans (CA). The relationship between the molecular structure of tested compounds and their antimicrobial activity was studied. The principal component analysis (PCA) was applied in order to attempt to distinguish the biological activities of these compounds according to selected band wavenumbers. Obtained data show that the FT-IR spectra can be a rapid and reliable analytical tool and a good source of information for the quantitative analysis of the relationship between the molecular structure of the compound and its biological activity.

  8. Combined diffusion coefficients for a mixture of three ionized gases

    NASA Astrophysics Data System (ADS)

    Zhang, X. N.; Murphy, A. B.; Li, H. P.; Xia, W. D.

    2014-12-01

    The combined diffusion coefficient method has been demonstrated to greatly simplify the treatment of diffusion in the modelling of thermal plasmas in gas mixtures without loss of accuracy. In this paper, an extension of this method to allow treatment of diffusion of a three-gas mixture has been achieved, provided that the gases are homonuclear and do not react with each other, and satisfy local chemical equilibrium. Formulas for the combined diffusion coefficients are presented, and combined diffusion coefficients for different mixtures of helium, argon and carbon at temperatures up to 30 000 K and at atmosphere pressure are calculated as an example.

  9. Isopiestic Determination of the Osmotic and Activity Coefficients of Li2SO4(aq) at T = 298.15 and 323.15 K, and Representation with an Extended Ion-interaction (Pitzer) model

    SciTech Connect

    Rard, J A; Clegg, S L; Palmer, D A

    2007-01-03

    Isopiestic vapor-pressure measurements were made for Li{sub 2}SO{sub 4}(aq) from 0.1069 to 2.8190 mol {center_dot} kg{sup -1} at 298.15 K, and from 0.1148 to 2.7969 mol {center_dot} kg{sup -1} at 323.15 K, with NaCl(aq) as the reference standard. Published thermodynamic data for this system were reviewed, recalculated for consistency, and critically assessed. The present results and the more reliable published results were used to evaluate the parameters of an extended version of Pitzer's ion-interaction model with an ionic-strength dependent third virial coefficient, as well as those of the standard Pitzer model, for the osmotic and activity coefficients at both temperatures. Published enthalpies of dilution at 298.15 K were also analyzed to yield the parameters of the ion-interaction models for the relative apparent molar enthalpies of dilution. The resulting models at 298.15 K are valid to the saturated solution molality of the thermodynamically stable phase Li{sub 2}SO{sub 4} {center_dot} H{sub 2}O(cr). Solubilities of Li{sub 2}SO{sub 4} {center_dot} H{sub 2}O(cr) at 298.15 K were assessed, and the selected value of m(sat.) = 3.13 {+-} 0.04 mol {center_dot} kg{sup -1} was used to evaluate the thermodynamic solubility product K{sub s}(Li{sub 2}SO{sub 4} {center_dot} H{sub 2}O, cr, 298.15 K) = (2.62 {+-} 0.19) and a CODATA-compatible standard molar Gibbs energy of formation {Delta}{sub f}G{sub m}{sup o} (Li{sub 2}SO{sub 4} {center_dot} H{sub 2}O, cr, 298.15 K) = -(1564.6 {+-} 0.5) kJ {center_dot} mol{sup -1}.

  10. An analytical solution for quantum size effects on Seebeck coefficient

    NASA Astrophysics Data System (ADS)

    Karabetoglu, S.; Sisman, A.; Ozturk, Z. F.

    2016-03-01

    There are numerous experimental and numerical studies about quantum size effects on Seebeck coefficient. In contrast, in this study, we obtain analytical expressions for Seebeck coefficient under quantum size effects. Seebeck coefficient of a Fermi gas confined in a rectangular domain is considered. Analytical expressions, which represent the size dependency of Seebeck coefficient explicitly, are derived in terms of confinement parameters. A fundamental form of Seebeck coefficient based on infinite summations is used under relaxation time approximation. To obtain analytical results, summations are calculated using the first two terms of Poisson summation formula. It is shown that they are in good agreement with the exact results based on direct calculation of summations as long as confinement parameters are less than unity. The analytical results are also in good agreement with experimental and numerical ones in literature. Maximum relative errors of analytical expressions are less than 3% and 4% for 2D and 1D cases, respectively. Dimensional transitions of Seebeck coefficient are also examined. Furthermore, a detailed physical explanation for the oscillations in Seebeck coefficient is proposed by considering the relative standard deviation of total variance of particle number in Fermi shell.

  11. Determination of drying kinetics and convective heat transfer coefficients of ginger slices

    NASA Astrophysics Data System (ADS)

    Akpinar, Ebru Kavak; Toraman, Seda

    2015-12-01

    In the present work, the effects of some parametric values on convective heat transfer coefficients and the thin layer drying process of ginger slices were investigated. Drying was done in the laboratory by using cyclone type convective dryer. The drying air temperature was varied as 40, 50, 60 and 70 °C and the air velocity is 0.8, 1.5 and 3 m/s. All drying experiments had only falling rate period. The drying data were fitted to the twelve mathematical models and performance of these models was investigated by comparing the determination of coefficient (R 2), reduced Chi-square (χ 2) and root mean square error between the observed and predicted moisture ratios. The effective moisture diffusivity and activation energy were calculated using an infinite series solution of Fick's diffusion equation. The average effective moisture diffusivity values and activation energy values varied from 2.807 × 10-10 to 6.977 × 10-10 m2/s and 19.313-22.722 kJ/mol over the drying air temperature and velocity range, respectively. Experimental data was used to evaluate the values of constants in Nusselt number expression by using linear regression analysis and consequently, convective heat transfer coefficients were determined in forced convection mode. Convective heat transfer coefficient of ginger slices showed changes in ranges 0.33-2.11 W/m2 °C.

  12. Benchmark test of neutron transport calculations: indium, nickel, gold, europium, and cobalt activation with and without energy moderated fission neutrons by iron simulating the Hiroshima atomic bomb casing.

    PubMed

    Iwatani, K; Hoshi, M; Shizuma, K; Hiraoka, M; Hayakawa, N; Oka, T; Hasai, H

    1994-10-01

    A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a bare- and energy-moderated 252Cf fission neutron source which was obtained by transmission through 10-cm-thick iron. An iron plate was used to simulate the effect of the Hiroshima atomic bomb casing. This test includes the activation of indium and nickel for fast neutrons and gold, europium, and cobalt for thermal and epithermal neutrons, which were inserted in the moderators. The latter two activations are also to validate 152Eu and 60Co activity data obtained from the atomic bomb-exposed specimens collected at Hiroshima and Nagasaki, Japan. The neutron moderators used were Lucite and Nylon 6 and the total thickness of each moderator was 60 cm or 65 cm. Measured activity data (reaction yield) of the neutron-irradiated detectors in these moderators decreased to about 1/1,000th or 1/10,000th, which corresponds to about 1,500 m ground distance from the hypocenter in Hiroshima. For all of the indium, nickel, and gold activity data, the measured and calculated values agreed within 25%, and the corresponding values for europium and cobalt were within 40%. From this study, the MCNP code was found to be accurate enough for the bare- and energy-moderated 252Cf neutron activation calculations of these elements using moderators containing hydrogen, carbon, nitrogen, and oxygen. PMID:8083048

  13. Benchmark test of neutron transport calculations: Indium, nickel, gold, europium, and cobalt activation with and without energy moderated fission neutrons by iron simulating the Hiroshima atomic bomb casing

    SciTech Connect

    Iwatani, Kazuo; Shizuma, Kiyoshi; Hasai, Hiromi; Hoshi, Masaharu; Hiraoka, Masayuki; Hayakawa, Norihiko; Oka, Takamitsu

    1994-10-01

    A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a bare- and energy-moderated {sup 252}Cf fission neutron source which was obtained by transmission through 10-cm-thick iron. An iron plate was used to simulate the effect of the Hiroshima atomic bomb casing. This test includes the activation of indium and nickel for fast neutrons and gold, europium, and cobalt for thermal and epithermal neutrons, which were inserted in the moderators. The latter two activations are also to validate {sup 152}Eu and {sup 60}Co activity data obtained from the atomic bomb-exposed specimens collected at Hiroshima and Nagasaki, Japan. The neutron moderators used were Lucite and Nylon 6 and the total thickness of each moderator was 60 cm or 65 cm. Measured activity data (reaction yield) of the neutron-irradiated detectors in these moderators decreased to about 1/1,000th or 1/10,000th, which corresponds to about 1,500 m ground distance from the hypocenter in Hiroshima. For all of the indium, nickel, and gold activity data, the measured and calculated values agreed within 25%, and the corresponding values for europium and cobalt were within 40%. From this study, the MCNP code was found to be accurate enough for the bare- and energy-moderated {sup 252}Cf neutron activation calculations of these elements using moderators containing hydrogen, carbon, nitrogen, and oxygen. 18 refs., 10 figs., 4 tabs.

  14. Transport coefficients of He(+) ions in helium.

    PubMed

    Viehland, Larry A; Johnsen, Rainer; Gray, Benjamin R; Wright, Timothy G

    2016-02-21

    This paper demonstrates that the transport coefficients of (4)He(+) in (4)He can be calculated over wide ranges of E/N, the ratio of the electrostatic field strength to the gas number density, with the same level of precision as can be obtained experimentally if sufficiently accurate potential energy curves are available for the X(2)Σu (+) and A(2)Σg (+) states and one takes into account resonant charge transfer. We start by computing new potential energy curves for these states and testing their accuracy by calculating spectroscopic values for the separate states. It is established that the potentials obtained by extrapolation of results from d-aug-cc-pVXZ (X = 6, 7) basis sets using the CASSCF+MRCISD approach are each in exceptionally close agreement with the best potentials available and with experiment. The potentials are then used in a new computer program to determine the semi-classical phase shifts and the transport cross sections, and from these the gaseous ion transport coefficients are determined. In addition, new experimental values are reported for the mobilities of (4)He(+) in (4)He at 298.7 K, as a function of E/N, where careful consideration is given to minimizing various sources of uncertainty. Comparison with previously measured values establishes that only one set of previous data is reliable. Finally, the experimental and theoretical ion transport coefficients are shown to be in very good to excellent agreement, once corrections are applied to account for quantum-mechanical effects. PMID:26896985

  15. Transport coefficients of He+ ions in helium

    NASA Astrophysics Data System (ADS)

    Viehland, Larry A.; Johnsen, Rainer; Gray, Benjamin R.; Wright, Timothy G.

    2016-02-01

    This paper demonstrates that the transport coefficients of 4He+ in 4He can be calculated over wide ranges of E/N, the ratio of the electrostatic field strength to the gas number density, with the same level of precision as can be obtained experimentally if sufficiently accurate potential energy curves are available for the X2Σu+ and A2Σg+ states and one takes into account resonant charge transfer. We start by computing new potential energy curves for these states and testing their accuracy by calculating spectroscopic values for the separate states. It is established that the potentials obtained by extrapolation of results from d-aug-cc-pVXZ (X = 6, 7) basis sets using the CASSCF+MRCISD approach are each in exceptionally close agreement with the best potentials available and with experiment. The potentials are then used in a new computer program to determine the semi-classical phase shifts and the transport cross sections, and from these the gaseous ion transport coefficients are determined. In addition, new experimental values are reported for the mobilities of 4He+ in 4He at 298.7 K, as a function of E/N, where careful consideration is given to minimizing various sources of uncertainty. Comparison with previously measured values establishes that only one set of previous data is reliable. Finally, the experimental and theoretical ion transport coefficients are shown to be in very good to excellent agreement, once corrections are applied to account for quantum-mechanical effects.

  16. Visible Light Absorption of N-Doped TiO2 Rutile Using (LR/RT)-TDDFT and Active Space EOMCCSD Calculations

    SciTech Connect

    Govind, Niranjan; Lopata, Kenneth A.; Rousseau, Roger J.; Andersen, Amity; Kowalski, Karol

    2011-11-03

    We have performed detailed ground and excited state calculations of pure and N-doped TiO2 rutile to model and analyze the experimentally observed UV/Vis spectrum. Using our embedding model we have performed both linear-response (LR) and real-time (RT) TDDFT calculations of the excited states of the pure and N-doped systems. We have also studied the lowest excitations using high-level active space equation-of-motion coupled cluster (EOMCC) approaches involving all single and inter-band double excitations. We compare and contrast the nature of the excitations in detail for the pure and doped systems and also provide an analysis of the excited-state density using our RT-TDDFT calculations. Our calculations indicate a lowering of the band gap and verify the role of the N3- states on the observed spectrum of N-doped TiO2 rutile as suggested by experimental findings. Both RT-TDDFT and EOMCC calculations show that the excitations in pure TiO2 are more delocalized compared with the N-doped system.

  17. Enhancement of antioxidant activity of green tea epicatechins in β-cyclodextrin cavity: Single-crystal X-ray analysis, DFT calculation and DPPH assay.

    PubMed

    Aree, Thammarat; Jongrungruangchok, Suchada

    2016-10-20

    Green tea catechins are potent antioxidant for prevention of various free radical-related diseases. Their antioxidant properties can be improved by encapsulation in cyclodextrins (CDs). Four inclusion complexes of β-CD with (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECG) and (-)-epigallocatechin gallate (EGCG) have been investigated using single-crystal X-ray diffraction analysis combined with full geometry optimization by DFT/B3LYP calculation and the DPPH assay, aiming to deepen the understanding on their structure-antioxidant activity relationship. Scrutinizing the inclusion structures and conformational changes of the four encapsulated epicatechins reveals the common host-guest stabilization scheme and the epicatechin conformational flexibility facilitating the enhancement of activity. Thermodynamic stability order derived from DFT calculation in vacuum fairly agrees with the order of improved antioxidant capacity deduced from the DPPH assay, β-CD-EGCG>β-CD-ECG>β-CD-EGC≈β-CD-EC. PMID:27474665

  18. Quantum mechanical calculation of electric fields and vibrational Stark shifts at active site of human aldose reductase.

    PubMed

    Wang, Xianwei; Zhang, John Z H; He, Xiao

    2015-11-14

    Recent advance in biophysics has made it possible to directly measure site-specific electric field at internal sites of proteins using molecular probes with C = O or C≡N groups in the context of vibrational Stark effect. These measurements directly probe changes of electric field at specific protein sites due to, e.g., mutation and are very useful in protein design. Computational simulation of the Stark effect based on force fields such as AMBER and OPLS, while providing good insight, shows large errors in comparison to experimental measurement due to inherent difficulties associated with point charge based representation of force fields. In this study, quantum mechanical calculation of protein's internal electrostatic properties and vibrational Stark shifts was carried out by using electrostatically embedded generalized molecular fractionation with conjugate caps method. Quantum calculated change of mutation-induced electric field and vibrational Stark shift is reported at the internal probing site of enzyme human aldose reductase. The quantum result is in much better agreement with experimental data than those predicted by force fields, underscoring the deficiency of traditional point charge models describing intra-protein electrostatic properties. PMID:26567650

  19. Quantum mechanical calculation of electric fields and vibrational Stark shifts at active site of human aldose reductase

    NASA Astrophysics Data System (ADS)

    Wang, Xianwei; Zhang, John Z. H.; He, Xiao

    2015-11-01

    Recent advance in biophysics has made it possible to directly measure site-specific electric field at internal sites of proteins using molecular probes with C = O or C≡N groups in the context of vibrational Stark effect. These measurements directly probe changes of electric field at specific protein sites due to, e.g., mutation and are very useful in protein design. Computational simulation of the Stark effect based on force fields such as AMBER and OPLS, while providing good insight, shows large errors in comparison to experimental measurement due to inherent difficulties associated with point charge based representation of force fields. In this study, quantum mechanical calculation of protein's internal electrostatic properties and vibrational Stark shifts was carried out by using electrostatically embedded generalized molecular fractionation with conjugate caps method. Quantum calculated change of mutation-induced electric field and vibrational Stark shift is reported at the internal probing site of enzyme human aldose reductase. The quantum result is in much better agreement with experimental data than those predicted by force fields, underscoring the deficiency of traditional point charge models describing intra-protein electrostatic properties.

  20. Quantum mechanical calculation of electric fields and vibrational Stark shifts at active site of human aldose reductase

    SciTech Connect

    Wang, Xianwei; Zhang, John Z. H.; He, Xiao

    2015-11-14

    Recent advance in biophysics has made it possible to directly measure site-specific electric field at internal sites of proteins using molecular probes with C = O or C≡N groups in the context of vibrational Stark effect. These measurements directly probe changes of electric field at specific protein sites due to, e.g., mutation and are very useful in protein design. Computational simulation of the Stark effect based on force fields such as AMBER and OPLS, while providing good insight, shows large errors in comparison to experimental measurement due to inherent difficulties associated with point charge based representation of force fields. In this study, quantum mechanical calculation of protein’s internal electrostatic properties and vibrational Stark shifts was carried out by using electrostatically embedded generalized molecular fractionation with conjugate caps method. Quantum calculated change of mutation-induced electric field and vibrational Stark shift is reported at the internal probing site of enzyme human aldose reductase. The quantum result is in much better agreement with experimental data than those predicted by force fields, underscoring the deficiency of traditional point charge models describing intra-protein electrostatic properties.