Science.gov

Sample records for activity concentration measurement

  1. The influence of thoron on instruments measuring radon activity concentration.

    PubMed

    Michielsen, N; Bondiguel, S

    2015-11-01

    Thoron, the isotope 220 of radon, is a radionuclide whose concentration may influence the measurement of the activity concentration of (222)Rn in the air. If in the case of continuous and active sampling measuring instruments, using a pump for example, the influence of thoron on radon measurement is obvious and is taken into account in the apparatus, it is often assumed that in the case of a passive sampling, by diffusion through a filter for example, this thoron influence is negligible. This is due to the very short radioactive half-life of thoron, 55.6 s (3.82 d for (222)Rn), and the assumption that the diffusion time of thoron in the detection chamber is long enough beside that of the thoron half-life. The objective of this study is to check whether this assumption is true or not for different kinds of commercial electronic apparatus used to measure radon activity concentration from soil to dwellings. First of all, the devices were calibrated in activity concentration of radon, and then they were exposed to a controlled thoron atmosphere. The experiments concerning the thoron aimed to investigate the sensitivity to thoron in the radon measuring mode of the apparatus. Results of these experiments show that all devices have a very quick answer to thoron atmosphere, even though the sensitivities vary from one instrument to another. Results clearly show that this influence on radon measurement due to the thoron is observed also after the exposition because of the decay of (212)Pb and its progenies. In conclusion, the sensitivity to thoron in the radon measuring mode depends strongly on the type of instruments. The results of the present investigation show that for some apparatus, the influence of thoron cannot be disregarded especially when measuring radon in soil.

  2. The active titration method for measuring local hydroxyl radical concentration

    NASA Technical Reports Server (NTRS)

    Sprengnether, Michele; Prinn, Ronald G.

    1994-01-01

    We are developing a method for measuring ambient OH by monitoring its rate of reaction with a chemical species. Our technique involves the local, instantaneous release of a mixture of saturated cyclic hydrocarbons (titrants) and perfluorocarbons (dispersants). These species must not normally be present in ambient air above the part per trillion concentration. We then track the mixture downwind using a real-time portable ECD tracer instrument. We collect air samples in canisters every few minutes for roughly one hour. We then return to the laboratory and analyze our air samples to determine the ratios of the titrant to dispersant concentrations. The trends in these ratios give us the ambient OH concentration from the relation: dlnR/dt = -k(OH). A successful measurement of OH requires that the trends in these ratios be measureable. We must not perturb ambient OH concentrations. The titrant to dispersant ratio must be spatially invariant. Finally, heterogeneous reactions of our titrant and dispersant species must be negligible relative to the titrant reaction with OH. We have conducted laboratory studies of our ability to measure the titrant to dispersant ratios as a function of concentration down to the few part per trillion concentration. We have subsequently used these results in a gaussian puff model to estimate our expected uncertainty in a field measurement of OH. Our results indicate that under a range of atmospheric conditions we expect to be able to measure OH with a sensitivity of 3x10(exp 5) cm(exp -3). In our most optimistic scenarios, we obtain a sensitivity of 1x10(exp 5) cm(exp -3). These sensitivity values reflect our anticipated ability to measure the ratio trends. However, because we are also using a rate constant to obtain our (OH) from this ratio trend, our accuracy cannot be better than that of the rate constant, which we expect to be about 20 percent.

  3. Three-Dimensional Concentration Measurements around Actively Tracking Blue Crabs

    NASA Astrophysics Data System (ADS)

    Dickman, B. D.; Jackson, J. L.; Weissburg, M. J.; Webster, D. R.

    2006-11-01

    Many aquatic arthropods locate food, suitable habitats, and mates solely through information extracted by chemical signals in their environment. Chemical plumes detected by larger animals are influenced by turbulence that creates an intermittent and unpredictable chemical stimulus environment. To link the stimulus pattern to behavior, we have developed a measurement system to quantify the instantaneous odor concentration surrounding a freely tracking blue crab through three-dimensional laser-induced fluorescence (3DLIF). A blue crab receives chemical stimulus at several locations, including the antennules near the mouth region and the distal tips of the legs and claws. Hence, three-dimensional measurements of the concentration field are required to link behavior to plume structure. During trials, crabs began their search 150 cm downstream of a source, and walking kinematics were recording simultaneously. The crabs were reversibly ``blindfolded'' during tracking to prevent aversive reactions to the intense laser light. Our experiments allow us to examine how hypothesized navigational cues, such as concentration bursts at the antennules and spatial asymmetry in concentration at the distributed chemosensory organs on the legs and claws, results in particular decisions during navigation.

  4. Calculating Capstone depleted uranium aerosol concentrations from beta activity measurements.

    PubMed

    Szrom, Frances; Falo, Gerald A; Parkhurst, Mary Ann; Whicker, Jeffrey J; Alberth, David P

    2009-03-01

    Beta activity measurements were used as surrogate measurements of uranium mass in aerosol samples collected during the field testing phase of the Capstone Depleted Uranium (DU) Aerosol Study. These aerosol samples generated by the perforation of armored combat vehicles were used to characterize the DU source term for the subsequent Human Health Risk Assessment (HHRA) of Capstone aerosols. Establishing a calibration curve between beta activity measurements and uranium mass measurements is straightforward if the uranium isotopes are in equilibrium with their immediate short-lived, beta-emitting progeny. For DU samples collected during the Capstone study, it was determined that the equilibrium between the uranium isotopes and their immediate short-lived, beta-emitting progeny had been disrupted when penetrators had perforated target vehicles. Adjustments were made to account for the disrupted equilibrium and for wall losses in the aerosol samplers. Values for the equilibrium fraction ranged from 0.16 to 1, and the wall loss correction factors ranged from 1 to 1.92. This paper describes the process used and adjustments necessary to calculate uranium mass from proportional counting measurements.

  5. On the calculation of activity concentrations and nuclide ratios from measurements of atmospheric radioactivity.

    PubMed

    Axelsson, A; Ringbom, A

    2014-09-01

    Motivated by the need for consistent use of concepts central to the reporting of results from measurements of atmospheric radioactivity, we discuss some properties of the methods commonly used. Different expressions for decay correction of the activity concentration for parent-daughter decay pairs are presented, and it is suggested that this correction should be performed assuming parent-daughter ingrowth in the sample during the entire measurement process. We note that, as has already been suggested by others, activities rather than activity concentrations should be used when nuclide ratios are calculated. In addition, expressions that can be used to transform activity concentrations to activity ratios are presented. Finally we note that statistical uncertainties for nuclide ratios can be properly calculated using the exact solution to the problem of confidence intervals for a ratio of two jointly normally distributed variables, the so-called Fieller׳s theorem.

  6. Sedimentology models from activity concentration measurements: application to the "Bay of Cadiz" Natural Park (SW Spain).

    PubMed

    Ligero, R A; Vidal, J; Meléndez, M J; Hamani, M; Casas-Ruiz, M

    2009-03-01

    A previous study on seabed sediments of the Bay of Cadiz (SW of Spain) enabled us to identify several relations between sedimentological variables and activity concentrations of environmental radionuclides such as (137)Cs, (226)Ra, (232)Th and (40)K. In this paper the study has been extended to a large neighbouring inter-tidal area in order to establish if the above mentioned models can be generalized. As a result we have determined that the measured activity concentrations are closely to the values predicted by the theoretical models (correlation coefficient range=0.85-0.93). Furthermore, the proposal model for granulometric facies as a function of activity concentrations of the abovementioned radionuclides provides for the sediments distribution a representation which agrees with the values of the tidal energy distribution obtained using numeric models calibrated with experimental data from current meters and water level recorders.

  7. Validation of an immunoassay to measure plasminogen-activator inhibitor-1 concentrations in human saliva

    PubMed Central

    Zhang, Xi; Dimeski, Goce; Punyadeera, Chamindie

    2014-01-01

    Introduction: We have previously shown that the concentrations of D-dimer are significantly elevated in saliva compared with plasma. Saliva offers several advantages compared with blood analysis. We hypothesised that human saliva contains plasminogen activator inhibitor-1 (PAI-1) and that the concentrations are not affected by the time of saliva collection. The aim was to adopt and validate an immunoassay to quantify PAI-1 concentrations in saliva and to determine whether saliva collection time has an influence in the measurement. Materials and methods: Two saliva samples (morning and afternoon) from the same day were collected from healthy subjects (N = 40) who have had no underlying heart conditions. A customized AlphaLISA® immunoassay (PerkinElmer®, MA, USA) was adopted and used to quantify PAI-1 concentrations. We validated the analytical performance of the customized immunoassay by calculating recovery of known amount of analyte spiked in saliva. Results: The recovery (95.03%), intra- (8.59%) and inter-assay (7.52%) variations were within the acceptable ranges. The median salivary PAI-1 concentrations were 394 pg/mL (interquartile ranges (IQR) 243.4–833.1 pg/mL) in the morning and 376 (129.1–615.4) pg/mL in the afternoon and the plasma concentration was 59,000 (24,000–110,000) pg/mL. Salivary PAI-1 did not correlate with plasma (P = 0.812). Conclusions: The adopted immunoassay produced acceptable assay sensitivity and specificity. The data demonstrated that saliva contains PAI-1 and that its concentration is not affected by the time of saliva collection. There is no correlation between salivary and plasma PAI-1 concentrations. Further studies are required to demonstrate the utility of salivary PAI-1 in CVD risk factor studies. PMID:24969919

  8. Measurements of 222Rn activity concentration in domestic water sources in Penang, northern peninsular Malaysia.

    PubMed

    Muhammad, B G; Jaafar, M S; Azhar, A R; Akpa, T C

    2012-04-01

    Measurements of (222)Rn activity concentration were carried out in 39 samples collected from the domestic and drinking water sources used in the island and mainland of Penang, northern peninsular, Malaysia. The measured activity concentrations ranged from 7.49 to 26.25 Bq l(-1), 0.49 to 9.72 Bq l(-1) and 0.58 to 2.54 Bq l(-1) in the raw, treated and bottled water samples collected, respectively. This indicated relatively high radon concentrations compared with that from other parts of the world, which still falls below the WHO recommended treatment level of 100 Bq l(-1). From this data, the age-dependent associated committed effective doses due to the ingestion of (222)Rn as a consequence of direct consumption of drinking water were calculated. The committed effective doses from (222)Rn resulting from 1 y's consumption of these water were estimated to range from 0.003 to 0.048, 0.001 to 0.018 and 0.002 to 0.023 mSv y(-1), for age groups 0-1, 2-16 and >16 y, respectively.

  9. A novel method for measuring aromatase activity in tissue samples by determining estradiol concentrations.

    PubMed

    Tinwell, H; Rascle, J B; Colombel, S; Al Khansa, I; Freyberger, A; Bars, R

    2011-07-01

    Increasing scrutiny of endocrine disrupters has led to changes to European pesticide and biocide legislation and to the introduction of the Endocrine Disrupter Screening Program by the US EPA. One element of endocrine disrupter identification is to determine its effects on aromatase, but most available assays are limited as they depend on tritiated water production to indicate enzyme activity. Whilst acceptable for determining aromatase effects using a cell-free approach, this method is unreliable for cell or tissue-based investigations as other cytochrome P-450 isoenzyme activities can similarly produce tritiated water and consequently confound interpretation of the aromatase data. To address this lack of specificity an assay directly measuring the final estrogen product by incubating rat tissue protein with testosterone and measuring the resultant estradiol concentration was developed. Using this approach we demonstrated marked increases in enzyme activity in pregnant rat ovary samples and dose-related inhibitions when incubating non-pregnant rat ovary samples with known aromatase inhibitors. Hepatic aromatase activity was investigated using our method and by tritiated water production with microsomes from rats dosed with the antiandrogen 1,1-dichloro-2,2-bis(4 chlorophenyl)ethane. Additional cytochrome P-450s were also measured. Treatment-related increased tritiated water production and general hepatic enzyme activity were recorded but estradiol was not increased, indicating that the increased tritiated water was due to general enzyme activity and not aromatase activity. A simple and specific method has been developed that can detect aromatase inhibition and induction, which when applied to tissue samples, provides a means of generating relevant animal data concerning chemical effects on the aromatase enzyme.

  10. A comparison of barley malt osmolyte concentrations and standard malt quality measurements as indicators of barley malt amylolytic enzyme activities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to test the hypothesis that barley malt osmolyte concentrations (OC) would correlate better with malt a-amylase, ß-amylase, and limit dextrinase activities than do the standard malt quality measurements (malt extract [ME], diastatic power [DP], ASBC a-amylase activity, solub...

  11. Activity concentration measurements using a conjugate gradient (Siemens xSPECT) reconstruction algorithm in SPECT/CT.

    PubMed

    Armstrong, Ian S; Hoffmann, Sandra A

    2016-11-01

    The interest in quantitative single photon emission computer tomography (SPECT) shows potential in a number of clinical applications and now several vendors are providing software and hardware solutions to allow 'SUV-SPECT' to mirror metrics used in PET imaging. This brief technical report assesses the accuracy of activity concentration measurements using a new algorithm 'xSPECT' from Siemens Healthcare. SPECT/CT data were acquired from a uniform cylinder with 5, 10, 15 and 20 s/projection and NEMA image quality phantom with 25 s/projection. The NEMA phantom had hot spheres filled with an 8 : 1 activity concentration relative to the background compartment. Reconstructions were performed using parameters defined by manufacturer presets available with the algorithm. The accuracy of activity concentration measurements was assessed. A dose calibrator-camera cross-calibration factor (CCF) was derived from the uniform phantom data. In uniform phantom images, a positive bias was observed, ranging from ∼6% in the lower count images to ∼4% in the higher-count images. On the basis of the higher-count data, a CCF of 0.96 was derived. As expected, considerable negative bias was measured in the NEMA spheres using region mean values whereas positive bias was measured in the four largest NEMA spheres. Nonmonotonically increasing recovery curves for the hot spheres suggested the presence of Gibbs edge enhancement from resolution modelling. Sufficiently accurate activity concentration measurements can easily be measured on images reconstructed with the xSPECT algorithm without a CCF. However, the use of a CCF is likely to improve accuracy further. A manual conversion of voxel values into SUV should be possible, provided that the patient weight, injected activity and time between injection and imaging are all known accurately.

  12. Simultaneous electroencephalography, real-time measurement of lactate concentration and optogenetic manipulation of neuronal activity in the rodent cerebral cortex.

    PubMed

    Clegern, William C; Moore, Michele E; Schmidt, Michelle A; Wisor, Jonathan

    2012-12-19

    -iridium electrode surrounded by a layer of lactate oxidase molecules. Metabolism of lactate by lactate oxidase produces hydrogen peroxide, which produces a current in the platinum-iridium electrode. So a ramping up of cerebral glycolysis provides an increase in the concentration of substrate for lactate oxidase, which then is reflected in increased current at the sensing electrode. It was additionally necessary to measure these variables while manipulating the excitability of the cerebral cortex, in order to isolate this variable from other facets of NREMS. We devised an experimental system for simultaneous measurement of neuronal activity via the elecetroencephalogram, measurement of glycolytic flux via a lactate biosensor, and manipulation of cerebral cortical neuronal activity via optogenetic activation of pyramidal neurons. We have utilized this system to document the relationship between sleep-related electroencephalographic waveforms and the moment-to-moment dynamics of lactate concentration in the cerebral cortex. The protocol may be useful for any individual interested in studying, in freely behaving rodents, the relationship between neuronal activity measured at the electroencephalographic level and cellular energetics within the brain.

  13. Use of near-infrared for quantitative measurement of viscosity and concentration of active ingredient in pharmaceutical gel.

    PubMed

    Donoso, M; Ghaly, E S

    2006-01-01

    Near infrared (NIR) spectroscopy is gaining worldwide interest as an analytical tool for quality control of raw materials, intermediate products, and final dosage forms. This technique can be used without sample preparation, therefore, avoiding the need for reagents and solvents. Quantitative NIR analyses involve calibration by sophisticated mathematical techniques that have been used extensively since the advent of microcomputing and chemometrics. The main objective of this investigation was to use transmission near-Infrared spectroscopy to measure the potency of an active ingredient in a topical gel preparation. A second objective was to evaluate the effect of gel viscosity on the NIR reflectance spectra. Four gel formulations with different ibuprofen concentrations were used for quantitative determination of the active ingredient, and five gel formulations with different viscosity values were used for the evaluation of the effect of viscosity change on the near-infrared reflectance spectra. The laboratory ibuprofen quantitative determination was compared to near-infrared transmission data using linear, quadratic, cubic and partial least square techniques to determine the relationship between ultraviolet (UV) determination and near-infrared spectra. For viscosity, the laboratory data were compared to near-infrared diffuse reflectance data using the same techniques used to determine the relationship between Brookfield viscometer determination and near-infrared spectra. The results demonstrated that an increase in ibuprofen concentration and viscosity produced an increase in near-infrared absorbance. Series of model equations were developed from the calibration of laboratory vs. the near-infrared data for each formulation. The near-infrared spectroscopy method is an alternative method that does not require sample pretreatment for quantitative measurement of active ingredient and viscosity of pharmaceutical gel.

  14. Measuring Hydrogen Concentrations in Metals

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1985-01-01

    Commercial corrosion-measurement system adapted to electrochemical determination of hydrogen concentrations in metals. New technique based on diffusion of hydrogen through foil specimen of metal. In sample holder, hydrogen produced on one side of foil, either by corrosion reaction or by cathodic current. Hydrogen diffused through foil removed on other side by constant anode potential, which leads to oxidation of hydrogen to water. Anode current is measure of concentration of hydrogen diffusing through foil. System used to study hydrogen uptake, hydrogen elimination by baking, effect of heat treatment, and effect of electroplating on high-strength steels.

  15. Accelerator mass spectrometry measurement of intracellular concentrations of active drug metabolites in human target cells in vivo.

    PubMed

    Chen, J; Garner, R C; Lee, L S; Seymour, M; Fuchs, E J; Hubbard, W C; Parsons, T L; Pakes, G E; Fletcher, C V; Flexner, C

    2010-12-01

    Accelerator mass spectrometry (AMS) is an ultrasensitive technique to detect radiolabeled compounds. We administered a microdose (100 µg) of (14)C-labeled zidovudine (ZDV) with or without a standard unlabeled dose (300 mg) to healthy volunteers. Intracellular ZDV-triphosphate (ZDV-TP) concentration was measured using AMS and liquid chromatography-tandem mass spectrometry (LC/MS/MS). AMS analysis yielded excellent concordance with LC/MS/MS and was 30,000-fold more sensitive. The kinetics of intracellular ZDV-TP formation changed several-fold over the dose range studied (100 µg-300 mg). AMS holds promise as a tool for quantifying intracellular drug metabolites and other biomediators in vivo.

  16. A non-invasive method of measuring concentrations of rubidium in rat skeletal muscle in vivo by 87Rb nuclear magnetic resonance spectroscopy: implications for the measurement of cation transport activity in vivo.

    PubMed

    Syme, P D; Dixon, R M; Allis, J L; Aronson, J K; Grahame-Smith, D G; Radda, G K

    1990-03-01

    1. We have used n.m.r. spectroscopy to measure rubidium concentrations in the skeletal muscle of live intact rats. Using a 1.9 T superconducting magnet and an ear-phone coil tuned to both protons (1H) and rubidium (87Rb), it was possible to make measurements of both tissue rubidium content and water content, and from these measurements to obtain the rubidium concentration. 2. The n.m.r. estimate of rubidium concentration in muscle in vivo was found to be a constant 31% (SEM 4%) of that estimated by flame atomic absorption spectroscopy in an extract of excised muscle. This is close to the predicted theoretical n.m.r. visibility of 33%. The visibility was constant for muscle rubidium concentrations ranging between 10 and 34 mmol/l. 3. Rubidium concentration measurement by this method is unaffected by variations in sample geometry, sample volume, tissue conductivity, coil tuning and amplifier gain. 4. By using this method to measure changes in tissue rubidium concentration with time in the same animal, it should now be possible to assess the activity of ion transport systems, such as sodium- and potassium-activated adenosine triphosphatase in vivo, by measuring the rates of change of tissue rubidium concentrations during the administration of rubidium salts. 5. This method could also be used to measure the absolute concentration of any n.m.r.-visible nucleus and could be applied to man.

  17. SiC Schottky Diode Detectors for Measurement of Actinide Concentrations from Alpha Activities in Molten Salt Electrolyte

    SciTech Connect

    Windl, Wolfgang; Blue, Thomas

    2013-01-28

    In this project, we have designed a 4H-SiC Schottky diode detector device in order to monitor actinide concentrations in extreme environments, such as present in pyroprocessing of spent fuel. For the first time, we have demonstrated high temperature operation of such a device up to 500 °C in successfully detecting alpha particles. We have used Am-241 as an alpha source for our laboratory experiments. Along with the experiments, we have developed a multiscale model to study the phenomena controlling the device behavior and to be able to predict the device performance. Our multiscale model consists of ab initio modeling to understand defect energetics and their effect on electronic structure and carrier mobility in the material. Further, we have developed the basis for a damage evolution model incorporating the outputs from ab initio model in order to predict respective defect concentrations in the device material. Finally, a fully equipped TCAD-based device model has been developed to study the phenomena controlling the device behavior. Using this model, we have proven our concept that the detector is capable of performing alpha detection in a salt bath with the mixtures of actinides present in a pyroprocessing environment.

  18. Quantitative Measurement of cAMP Concentration Using an Exchange Protein Directly Activated by a cAMP-Based FRET-Sensor

    PubMed Central

    Salonikidis, Petrus S.; Zeug, André; Kobe, Fritz; Ponimaskin, Evgeni; Richter, Diethelm W.

    2008-01-01

    Förster resonance energy transfer (FRET)-based biosensors for the quantitative analysis of intracellular signaling, including sensors for monitoring cyclic adenosine monophosphate (cAMP), are of increasing interest. The measurement of the donor/acceptor emission ratio in tandem biosensors excited at the donor excitation wavelength is a commonly used technique. A general problem, however, is that this ratio varies not only with the changes in cAMP concentration but also with the changes of the ionic environment or other factors affecting the folding probability of the fluorophores. Here, we use a spectral FRET analysis on the basis of two excitation wavelengths to obtain a reliable measure of the absolute cAMP concentrations with high temporal and spatial resolution by using an “exchange protein directly activated by cAMP”. In this approach, FRET analysis is simplified and does not require additional calibration routines. The change in FRET efficiency (E) of the biosensor caused by [cAMP] changes was determined as ΔE = 15%, whereas E varies between 35% at low and 20% at high [cAMP], allowing quantitative measurement of cAMP concentration in the range from 150 nM to 15 μM. The method described is also suitable for other FRET-based biosensors with a 1:1 donor/acceptor stoichiometry. As a proof of principle, we measured the specially resolved cAMP concentration within living cells and determined the dynamic changes of cAMP levels after stimulation of the Gs-coupled serotonin receptor subtype 7 (5-HT7). PMID:18708470

  19. Accelerator Mass Spectrometric (AMS) Measurements of Plutonium Activity Concentrations and 240Pu/239Pu Atom Ratios In Soil Extracts Supplied by the Carlsbad Environmental Monitoring & Research Center

    SciTech Connect

    Hamilton, T F; Brown, T A; Marchetti, A A; Martinelli, R E; Kehl, S R

    2005-02-28

    Plutonium-239 ({sup 239}Pu) and plutonium-239+240 ({sup 239+240}Pu) activities concentrations and {sup 240}Pu/{sup 239}Pu atom ratios are reported for a series of chemically purified soil extracts received from the Carlsbad Environmental Monitoring & Research Center (CEMRC) in New Mexico. Samples were analyzed without further purification at the Lawrence Livermore National Laboratory (LLNL) using accelerator mass spectrometry (AMS). This report also includes a brief description of the AMS system and internal laboratory procedures used to ensure the quality and reliability of the measurement data.

  20. IFCC primary reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 °C. Part 9: reference procedure for the measurement of catalytic concentration of alkaline phosphatase International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) Scientific Division, Committee on Reference Systems of Enzymes (C-RSE) (1)).

    PubMed

    Schumann, Gerhard; Klauke, Rainer; Canalias, Francesca; Bossert-Reuther, Steffen; Franck, Paul F H; Gella, F-Javier; Jørgensen, Poul J; Kang, Dongchon; Lessinger, Jean-Marc; Panteghini, Mauro; Ceriotti, Ferruccio

    2011-09-01

    Abstract This paper is the ninth in a series dealing with reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 °C and the certification of reference preparations. Other parts deal with: Part 1. The concept of reference procedures for the measurement of catalytic activity concentrations of enzymes; Part 2. Reference procedure for the measurement of catalytic concentration of creatine kinase; Part 3. Reference procedure for the measurement of catalytic concentration of lactate dehydrogenase; Part 4. Reference procedure for the measurement of catalytic concentration of alanine aminotransferase; Part 5. Reference procedure for the measurement of catalytic concentration of aspartate aminotransferase; Part 6. Reference procedure for the measurement of catalytic concentration of γ-glutamyltransferase; Part 7. Certification of four reference materials for the determination of enzymatic activity of γ-glutamyltransferase, lactate dehydrogenase, alanine aminotransferase and creatine kinase at 37 °C; Part 8. Reference procedure for the measurement of catalytic concentration of α-amylase. The procedure described here is derived from the previously described 30 °C IFCC reference method. Differences are tabulated and commented on in Appendix 1.

  1. Electrets to measure ion concentration in air.

    PubMed

    Kotrappa, P

    2005-08-01

    Positive and negative ions are produced in air, mainly due to radon and terrestrial/cosmic radiation sources. Measuring ion concentration in air indirectly provides a measure of these sources. Electrets (electrically charged pieces of Teflon), when exposed in the environment, collect ions of opposite sign leading to a measurable decrease in charge, depending upon the exposure time and ion concentration. This work describes a method of correlating electret discharge rate to the ion concentration as measured by a calibrated ion density meter. Once calibrated, electrets can then be used to measure ion concentration of either sign. The ion concentration in ambient air was measured to be about 200 ions mL(-1), measured over several hours. Both positive and negative ion concentrations were similar. In a typical room, negative ion concentration was about 3,500 ions mL(-1), and, surprisingly, there were no positive ions at all in that room. Being an integrating passive device, the method provides the unique possibility of measuring low or high concentrations of positive or negative ions over extended periods, which is difficult to do with other ion concentration measuring instruments.

  2. Annual ovarian activity monitored by the noninvasive measurement of fecal concentrations of progesterone and 17β-estradiol metabolites in rusa deer (Rusa timorensis)

    PubMed Central

    SUDSUKH, Apichaya; TAYA, Kazuyoshi; WATANABE, Gen; WAJJWALKU, Worawidh; THONGPHAKDEE, Ampika; THONGTIP, Nikorn

    2016-01-01

    To clarify the reproductive cycle of female Rusa deer (Rusa timorensis), the fecal concentrations of progesterone and 17β-estradiol metabolites were measured. Fecal samples were collected on a weekly basis for one year (between October, 2012 and September, 2013) from five healthy adult hinds in Thailand. At the beginning of the study, three hinds were pregnant. Two hinds delivered one healthy offspring, and one hind delivered a stillborn calf. The mating period of Rusa hinds in Thailand is from November to April. In pregnant hinds, fecal progesterone metabolite concentration was high in late pregnancy and abruptly declined to the baseline around parturition, suggesting that the placenta secretes a large amount of progesterone. Fecal 17β-estradiol metabolite concentration remained elevated around the day of parturition. Both concentrations of fecal progesterone and 17β-estradiol metabolites in non-lactating hinds were significantly higher than those in lactating hinds, indicating that ovarian activity of lactating hinds is suppressed by the suckling stimulus of fawn during lactation. The present study demonstrated that monitoring of fecal steroid hormones is useful method for assessing ovarian function in this species. PMID:27570098

  3. Measurement of activity concentrations of 40K, 226Ra and 232Th for assessment of radiation hazards from soils of the southwestern region of Nigeria.

    PubMed

    Ajayi, Oladele Samuel

    2009-08-01

    Activity concentrations of the selected radionuclides (40)K, (226)Ra and (232)Th were measured in surface soil samples collected from 38 cities in the southwest region of Nigeria by means of gamma spectroscopy with a high-purity germanium detector. Measured activity concentration values of (40)K varied from 34.9 +/- 4.4 to 1,358.6 +/- 28.5 Bq kg(-1) (given on a dry mass (DM) basis) with a mean value of 286.5 +/- 308.5 Bq kg(-1); that of (226)Ra varied from 9.3 +/- 3.7 to 198.1 +/- 13.8 Bq kg(-1) with a mean value of 54.5 Bq kg(-1) and a standard deviation of 38.7 Bq kg(-1), while that of (232)Th varied from 5.4 +/- 1.1 to 502.0 +/- 16.5 Bq kg(-1) with a mean value of 91.1 Bq kg(-1) and standard deviation of 100.9 Bq kg(-1). The mean activity concentration values obtained for (226)Ra and (232)Th are greater than the world average values reported by the United Nations Scientific Committee on Effects of Atomic Radiation for areas of normal background radiation. Radiological indices were estimated for the radiation/health hazards of the natural radioactivity of all soil samples. Estimated absorbed dose rates in air varied from 12.42 +/- 2.25 to 451.33 +/- 19.06 nGy h(-1), annual outdoor effective dose rates from 0.015 +/- 0.003 to 0.554 +/- 0.023 mSv year(-1), internal hazard index from 0.10 +/- 0.03 to 3.02 +/- 0.16, external hazard index from 0.07 +/- 0.01 to 2.60 +/- 0.11, representative level index from 0.19 +/- 0.03 to 6.84 +/- 0.29, activity index from 0.09 +/- 0.02 to 3.42 +/- 0.15, and radium equivalent activity from 26.95 +/- 5.04 to 963.15 +/- 41.87 Bq kg(-1). Only the mean value of the representative level index exceeds the limit for areas of normal background radiation. All other indices show mean values that are lower than the recommended limits.

  4. One-hour upright posture is an ideal position for serum aldosterone concentration and plasma renin activity measuring on primary aldosteronism screening.

    PubMed

    Yin, G; Zhang, S; Yan, L; Wu, M; Xu, M; Li, F; Cheng, H

    2012-07-01

    The serum aldosterone concentration (SAC) to plasma renin activity (PRA) ratio (ARR) is considered a useful screening test in the differential diagnosis of essential hypertension (EH) and primary aldosteronism (PA). The purpose of this study is to investigate the variation of ARR and compare the screening efficiency of it under different postures.37 patients with PA and 92 patients with EH were recruited in this study. Blood was sampled for measuring SAC and PRA under conditions of overnight recumbency, keeping upright posture for 1 h, 2 h and 4 h. The variation and screening efficiency of ARR under these conditions were compared according to repeated measured ANOVA and ROC curve analysis.In the EH group, ARR measured under recumbency posture was higher than those measured under keeping upright posture for 1 h and 2 h. In the PA group, there is no statistical difference for ARR between any 2 postures. AUCs of ARR measured under 4 conditions were 0.976, 0.995, 0.988, and 0.974 respectively. Cutoff values were ranging from 24.75 ng/dl per ng/ml/h under keeping upright for 2 h to 69.19 ng/dl per ng/ml/h under overnight recumbercy. ARR measured under keeping upright posture for 1 h produced the best characteristic of screening efficiency.Keeping upright posture for 1 h was the ideal position for ARR measuring and using a cutoff value of 35.90 ng/dl per ng/ml/h will have a sensitivity and specificity of 100.00% and 92.30% respectively.

  5. Computed tomographic measurement of canine urine concentration.

    PubMed

    Zwingenberger, Allison L; Carrade Holt, Danielle D

    2017-02-01

    Computed tomography (CT) is able to measure the attenuation of urine in Hounsfield units (HU) on abdominal imaging studies. This study was designed to measure the correlation of urine attenuation with urine specific gravity in urine samples of 40 dogs, providing a noninvasive measure of urine concentration. The HU of urine explained 72% of the variance in measured urine specific gravity [R(2) = 0.72, F(1,38) = 95.55, P < 0.001]. This noninvasive measurement can be used to estimate urine concentration in dogs undergoing abdominal CT imaging.

  6. H2O activity in concentrated NaCl solutions at high pressures and temperatures measured by the brucite-periclase equilibrium

    NASA Astrophysics Data System (ADS)

    Aranovich, L. Y.; Newton, R. C.

    1996-10-01

    H2O activities in concentrated NaCl solutions were measured in the ranges 600° 900° C and 2 15 kbar and at NaCl concentrations up to halite saturation by depression of the brucite (Mg(OH)2) periclase (MgO) dehydration equilibrium. Experiments were made in internally heated Ar pressure apparatus at 2 and 4.2 kbar and in 1.91-cm-diameter piston-cylinder apparatus with NaCl pressure medium at 4.2, 7, 10 and 15 kbar. Fluid compositions in equilibrium with brucite and periclase were reversed to closures of less than 2 mol% by measuring weight changes after drying of punctured Pt capsules. Brucite-periclase equilibrium in the binary system was redetermined using coarsely crystalline synthetic brucite and periclase to inhibit back-reaction in quenching. These data lead to a linear expression for the standard Gibbs free energy of the brucite dehydration reaction in the experimental temperature range: ΔG° (±120J)=73418 134.95 T(K). Using this function as a baseline, the experimental dehydration points in the system MgO-H2O-NaCl lead to a simple systematic relationship of high-temperature H2O activity in NaCl solution. At low pressure and low fluid densities near 2 kbar the H2O activity is closely approximated by its mole fraction. At pressures of 10 kbar and greater, with fluid densities approaching those of condensed H2O, the H2O activity becomes nearly equal to the square of its mole fraction. Isobaric halite saturation points terminating the univariant brucite-periclase curves were determined at each experimental pressure. The five temperature-composition points in the system NaCl-H2O are in close agreement with the halite saturation curves (liquidus curves) given by existing data from differential thermal analysis to 6 kbar. Solubility of MgO in the vapor phase near halite saturation is much less than one mole percent and could not have influenced our determinations. Activity concentration relations in the experimental P-T range may be retrieved for the binary

  7. Activity concentration measurements of 137Cs, 90Sr and 40K in a wild food matrix reference material (Wild Berries) CCRI(II)-S8

    NASA Astrophysics Data System (ADS)

    Wätjen, U.; Altzitzogloa, T.; Ceccatelli, A.; Dikmen, H.; Ferreux, L.; Frechou, C.; García, L.; Gündogdu, G.; Kis-Benedek, G.; La Rosa, J.; Luca, A.; Moreno, Y.; Oropesa, P.; Pierre, S.; Schmiedel, M.; Spasova, Y.; Szücs, L.; Vasile, M.; Wershofen, H.; Yücel, Ü.

    2014-01-01

    In 2009, the CCRI approved a supplementary comparison to be organized by the IRMM as pilot laboratory for the activity concentrations of 137Cs, 90Sr and 40K in a matrix material of dried bilberries. The organization of this comparison and the material and measurement methods used are described. The supplementary comparison reference values (SCRV) for each of the three radionuclides are given together with the degrees of equivalence of each participating laboratory with the SCRV for the specific radionuclide. The results of this supplementary comparison allow the participating NMIs/designated institutes to declare calibration and measurement capabilities (CMCs) for the given radionuclides in a similar type of food matrix, an important aspect given the relatively few supplementary comparisons for activity in matrix materials organized so far. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  8. Measuring surfactant concentration in plating solutions

    DOEpatents

    Bonivert, William D.; Farmer, Joseph C.; Hachman, John T.

    1989-01-01

    An arrangement for measuring the concentration of surfactants in a electrolyte containing metal ions includes applying a DC bias voltage and a modulated voltage to a counter electrode. The phase angle between the modulated voltage and the current response to the modulated voltage at a working electrode is correlated to the surfactant concentration.

  9. Cyclic Concentration Measurements for Characterizing Pulsating Flow

    SciTech Connect

    Bamberger, Judith A.

    2013-07-07

    Slurry mixed in vessels via pulse jet mixers has a periodic, rather than steady, concentration profile. Measurements of local concentration taken at the center of the tank at a range of elevations within the mixed region were analyzed to obtain a greater understanding of how the periodic pulse jet mixing cycle affects the local concentration. Data were obtained at the critical suspension velocity, when all solids are suspended at the end of the pulse. The data at a range of solids loadings are analyzed to observe the effect of solids concentration during the suspension and settling portions of the mixing cycle.

  10. Measuring protein concentration with entangled photons

    NASA Astrophysics Data System (ADS)

    Crespi, Andrea; Lobino, Mirko; Matthews, Jonathan C. F.; Politi, Alberto; Neal, Chris R.; Ramponi, Roberta; Osellame, Roberto; O'Brien, Jeremy L.

    2012-06-01

    Optical interferometry is amongst the most sensitive techniques for precision measurement. By increasing the light intensity, a more precise measurement can usually be made. However, if the sample is light sensitive entangled states can achieve the same precision with less exposure. This concept has been demonstrated in measurements of known optical components. Here, we use two-photon entangled states to measure the concentration of a blood protein in an aqueous buffer solution. We use an opto-fluidic device that couples a waveguide interferometer with a microfluidic channel. These results point the way to practical applications of quantum metrology to light-sensitive samples.

  11. Neutral thermospheric temperature from ion concentration measurements

    NASA Technical Reports Server (NTRS)

    Breig, E. L.; Donaldson, J. S.; Hanson, W. B.; Hoffman, J. H.; Power, R. A.; Kayser, D. C.; Spencer, N. W.; Wharton, L. E.

    1981-01-01

    A technique for extracting information on neutral temperature from in situ F region measurements of O(+) and H(+) ion concentrations is analyzed and evaluated. Advantage is taken of the condition of charge-exchange equilibrium of these species in the neighborhood of 320 km to infer the associated relative abundances of neutral oxygen and hydrogen. Results are shown to be generally consistent with other concurrent in situ measurements.

  12. LOW-CONCENTRATION NOX EMISSIONS MEASUREMENT

    EPA Science Inventory

    The paper gives results of a recent series of low-concentration nitrogen oxides (NOx) emission measurements, made by Midwest Research Institute (MRI) during U.S. EPA-sponsored Environmental Technology Verification (ETV) test of a NOx control system called Xonon (TM) Cool Combust...

  13. Measurement of activity and concentration of paraoxonase 1 (PON-1) in seminal plasma and identification of PON-2 in the sperm of boar ejaculates.

    PubMed

    Barranco, Isabel; Roca, Jordi; Tvarijonaviciute, Asta; Rubér, Marie; Vicente-Carrillo, Alejandro; Atikuzzaman, Mohammad; Ceron, Jose J; Martinez, Emilio A; Rodriguez-Martinez, Heriberto

    2015-01-01

    This study revealed and characterised the presence of the antioxidant enzymes paraoxonase (PON) type 1 (PON-1, extracellular) and type 2 (PON-2, intracellular) in boar semen. To evaluate PON-1, an entire ejaculate from each of ten boars was collected and the seminal plasma was harvested after double centrifugation (1,500g for 10 min). Seminal plasma was analysed for concentration as well as enzymatic activity of PON-1 and total cholesterol levels. Seminal-plasma PON-1 concentration ranged from 0.961 to 1.670 ng/ml while its enzymatic activity ranged from 0.056 to 0.400 IU/ml, which represent individual variance. Seminal-plasma PON-1 concentration and enzymatic activity were negatively correlated (r = -0.763; P < 0.01). The activity of seminal-plasma PON-1 negatively correlated with ejaculate volume (r = -0.726, P < 0.05), but positively correlated with sperm concentration (r = 0.654, P < 0.05). Total seminal-plasma cholesterol concentration positively correlated with PON-1 activity (r = 0.773; P < 0.01), but negatively correlated with PON-1 concentration (r = -0.709; P < 0.05). The presence of intracellular PON-2 was determined via immunocytochemistry in spermatozoa derived from artificial insemination. PON-2 localised to the post-acrosomal area of the sperm head and principal piece of the tail in membrane-intact spermatozoa. In summary, PON is present in boar semen, with PON-1 at low levels in seminal plasma and PON-2 within the spermatozoa. Further studies are needed to characterise the relationship between antioxidant PONs with sperm and other seminal-plasma parameters.

  14. Measures of net oxidant concentration in seawater

    NASA Astrophysics Data System (ADS)

    Jackson, George A.; Williams, Peter M.

    1988-02-01

    Dissolved oxygen deficits in the ocean have been used as a measure of the organic matter oxidized in a volume of water. Such organic matter is usually assumed to be predominantly settled particles. Using dissolved oxygen concentration in this way has two problems: first, it does not differentiate between oxidant consumed by the pool of dissolved organic matter present near the ocean surface and oxidant consumed by organic matter contained by falling particles; second, it does not account for other oxidant sources, such as nitrate, which can be as important to organic matter decay as oxygen in low-oxygen water, such as off Peru or in the Southern California submarine basins. New parameters provide better measures of the net oxidant concentration in a water parcel. One such, NetOx, is changed only by gaseous exchange with the atmosphere, exchange with the benthos, or the production or consumption of sinking particles. A simplified version of NetOx, NetOx = [O2] + 1.25[NO3-] - [TOC], where TOC (total organic carbon), the dissolved organic carbon (DOC) plus the suspended particulate organic carbon (POC), provides an index based on the usually dominant variables. Calculation of NetOx and a second property, NetOC ([O2] - [TOC]), for data from GEOSECS and ourselves in the Atlantic and Pacific oceans using property-property graphs show differences from those from oxygen deficits alone. Comparison of NetOx and NetOC concentrations at high and low latitudes of the Pacific Ocean shows the difference in surface water oxidant concentrations is even larger than the difference in oxygen concentration. Vertical particle fluxes off Peru calculated from NetOx gradients are much greater than those calculated from oxygen gradients. The potential value of NetOx and NetOC as parameters to understand particle fluxes implies that determination of TOC should be a routine part of hydrographic measurements.

  15. Measurement of total organic concentration in water

    NASA Technical Reports Server (NTRS)

    Winkler, E.

    1978-01-01

    Instrument for determining total organic concentration in water uses no corrosive reagents or gases. Instead continuous ultraviolet photolysis process converts organic compounds to carbon dioxide (CO2). CO2 electrode is used to measure CO2 content. Only reagent necessary is oxygen, generated in situ by electrolyzing some water. In addition to application in aerospace industry, system has potential uses in pollution monitoring and in laboratory analyses.

  16. Optical measurement of drug concentrations in tissue

    SciTech Connect

    Mourant, J.R.; Bigio, I.J.; Jack, D.A.; Johnson, T.M.; Miller, H.D.

    1997-10-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The aim of this project was to develop noninvasive fiber-optic methods for measuring drug concentrations in tissue. Such a system would make possible the study of chemotherapy drug kinetics at specific, targeted locations in the body after the drug is administered. The major result of this project is the development of techniques for measuring changes in absorption of a medium with unknown scattering properties. The developed method was verified by testing on several media with scattering properties in the range typically found for tissue.

  17. Measurement and modelling of adsorption equilibrium, adsorption kinetics and breakthrough curve of toluene at very low concentrations on to activated carbon.

    PubMed

    Réguer, Anne; Sochard, Sabine; Hort, Cécile; Platel, Vincent

    2011-01-01

    Indoor air pollution, characterized by many pollutants at very low concentrations, is nowadays known as a worrying problem for human health. Among physical treatments, adsorption is a widely used process, since porous materials offer high capacity for volatile organic chemicals. However, there are few studies in the literature that deal with adsorption as an indoor air pollution treatment. The aim of this study was to investigate the adsorption of toluene on to activated carbon at characteristic indoor air concentrations. Firstly, global kinetic parameters were determined by fitting Thomas's model to experimental data obtained with batch experiments. Then, these kinetic parameters led to the determination of Henry's coefficient, which was checked with experimental data of the adsorption isotherm. Secondly, we simulated a breakthrough curve made at an inlet concentration 10 times higher than the indoor air level. Even if the kinetic parameters in this experiment are different from those in batch experiments, it can be emphasized that the Henry coefficient stays the same.

  18. Atmospheric ammonia measurements at low concentration ...

    EPA Pesticide Factsheets

    We evaluated the relative importance of dry deposition of ammonia (NH3) gas at several headwater areas of the Susquehanna River, the largest single source of nitrogen pollution to Chesapeake Bay, including three that are remote from major sources of NH3 emissions (CTH, ARN, and KEF) and one (HFD) that is near a major agricultural source. We also examined the importance of nitrogen dioxide (NO2) deposition at one of these sites. Over the past decade, increasing evidence has suggested that NH3 deposition, in particular, may be an important contributor to total nitrogen deposition and to downstream nitrogen pollution. We used Ogawa passive samplers to measure NH3 concentrations over several years (2006–2011) for CTH, and primarily in 2008 and 2009 for the other sites. NO2 was measured at CTH mainly in 2007. Chamber calibration studies for NH3 and NO2, and field comparisons with annular denuders for NH3, validated the use of these passive samplers over a range of temperatures and humidity observed in the field, if attention is given to field and laboratory blank issues. The annual mean NH3 concentrations for the forested sites were 0.41 ± 0.03, 0.41 ± 0.06 and 0.25 ± 0.08 µg NH3/m3 for CTH, ARN and KEF, respectively. NO2 passive sampler mean annual concentration was 3.19 ± 0.42 µg NO2/m3 at CTH. Direct comparison of our measured values with the widely used Community Multiscale Air Quality (CMAQ) model (v4.7.1) show reasonably good agreement. However, the mod

  19. Method for measuring lead concentrations in blood

    DOEpatents

    Nogar, Nicholas S.

    2001-01-01

    Method for measuring lead concentrations in blood. The present invention includes the use of resonant laser ablation to analyze .ltoreq.1 .mu.L (or equivalent mass) samples of blood for lead content. A typical finger prick, for example, yields about 10 .mu.L. Solid samples may also readily be analyzed by resonant laser ablation. The sample is placed on a lead-free, electrically conducting substrate and irradiated with a single, focused laser beam which simultaneously vaporizes, atomizes, and resonantly ionizes an analyte of interest in a sample. The ions are then sorted, collected and detected using a mass spectrometer.

  20. A Four-Hour Yeast Bioassay for the Direct Measure of Estrogenic Activity in Wastewater without Sample Extraction, Concentration, or Sterilization

    PubMed Central

    Balsiger, Heather A.; de la Torre, Roberto; Lee, Wen-Yee; Cox, Marc B.

    2010-01-01

    The assay described here represents an improved yeast bioassay that provides a rapid yet sensitive screening method for EDCs with very little hands-on time and without the need for sample preparation. Traditional receptor-mediated reporter assays in yeast were performed twelve to twenty four hours after ligand addition, used colorimetric substrates, and, in many cases, required high, non-physiological concentrations of ligand. With the advent of new chemiluminescent substrates a ligand-induced signal can be detected within thirty minutes using high picomolar to low nanomolar concentrations of estrogen. As a result of the sensitivity (EC50 for estradiol is ~ 0.7 nM) and the very short assay time (2-4 hours) environmental water samples can typically be assayed directly without sterilization, extraction, and concentration. Thus, these assays represent rapid and sensitive approaches for determining the presence of contaminants in environmental samples. As proof of principle, we directly assayed wastewater influent and effluent taken from a wastewater treatment plant in the El Paso, TX area for the presence of estrogenic activity. The data obtained in the four-hour yeast bioassay directly correlated with GC-mass spectrometry analysis of these same water samples. PMID:20074779

  1. A four-hour yeast bioassay for the direct measure of estrogenic activity in wastewater without sample extraction, concentration, or sterilization.

    PubMed

    Balsiger, Heather A; de la Torre, Roberto; Lee, Wen-Yee; Cox, Marc B

    2010-02-15

    The assay described here represents an improved yeast bioassay that provides a rapid yet sensitive screening method for EDCs with very little hands-on time and without the need for sample preparation. Traditional receptor-mediated reporter assays in yeast were performed twelve to twenty four hours after ligand addition, used colorimetric substrates, and, in many cases, required high, non-physiological concentrations of ligand. With the advent of new chemiluminescent substrates a ligand-induced signal can be detected within thirty minutes using high picomolar to low nanomolar concentrations of estrogen. As a result of the sensitivity (EC(50) for estradiol is approximately 0.7nM) and the very short assay time (2-4h) environmental water samples can typically be assayed directly without sterilization, extraction, and concentration. Thus, these assays represent rapid and sensitive approaches for determining the presence of contaminants in environmental samples. As proof of principle, we directly assayed wastewater influent and effluent taken from a wastewater treatment plant in the El Paso, TX area for the presence of estrogenic activity. The data obtained in the four-hour yeast bioassay directly correlated with GC-mass spectrometry analysis of these same water samples.

  2. Vapor concentration measurement with photothermal deflectometry

    NASA Technical Reports Server (NTRS)

    Banish, R. Michael; Xiao, Rong-Fu; Rosenberger, Franz

    1988-01-01

    Theoretical and experimental results for using the photothermal deflection technique to measure vapor species concentration, while minimizing the disturbance of the transport (material) parameters due to vapor heating, are developed and described. In contrast to common practice, the above constraints require using a pump-beam duty cycle of less than 50 percent. The theoretical description of the shortened heating time is based on a step-function formulation of the pumping cycle. The results are obtained as closed-form solutions of the energy equation for many chopping cycles until steady state is reached, by use of a Green's-function method. The Euler formulation of the Fermat principle is used to calculate the deflection angle. The equations are expanded to include the effects of vapor velocity on both the temperature and temperature gradient profiles. The effects of finite (unfocused) pump and probe beams and thermal (Soret) diffusion are also accounted for. Excellent agreement between theory and experiment is obtained.

  3. Application of spectral decomposition of ²²²Rn activity concentration signal series measured in Niedźwiedzia Cave to identification of mechanisms responsible for different time-period variations.

    PubMed

    Przylibski, Tadeusz Andrzej; Wyłomańska, Agnieszka; Zimroz, Radosław; Fijałkowska-Lichwa, Lidia

    2015-10-01

    The authors present an application of spectral decomposition of (222)Rn activity concentration signal series as a mathematical tool used for distinguishing processes determining temporal changes of radon concentration in cave air. The authors demonstrate that decomposition of monitored signal such as (222)Rn activity concentration in cave air facilitates characterizing the processes affecting changes in the measured concentration of this gas. Thanks to this, one can better correlate and characterize the influence of various processes on radon behaviour in cave air. Distinguishing and characterising these processes enables the understanding of radon behaviour in cave environment and it may also enable and facilitate using radon as a precursor of geodynamic phenomena in the lithosphere. Thanks to the conducted analyses, the authors confirmed the unquestionable influence of convective air exchange between the cave and the atmosphere on seasonal and short-term (diurnal) changes in (222)Rn activity concentration in cave air. Thanks to the applied methodology of signal analysis and decomposition, the authors also identified a third process affecting (222)Rn activity concentration changes in cave air. This is a deterministic process causing changes in radon concentration, with a distribution different from the Gaussian one. The authors consider these changes to be the effect of turbulent air movements caused by the movement of visitors in caves. This movement is heterogeneous in terms of the number of visitors per group and the number of groups visiting a cave per day and per year. Such a process perfectly elucidates the observed character of the registered changes in (222)Rn activity concentration in one of the decomposed components of the analysed signal. The obtained results encourage further research into precise relationships between the registered (222)Rn activity concentration changes and factors causing them, as well as into using radon as a precursor of

  4. Normalized vitamin D metabolite concentrations are better correlated to pharmacological effects than measured concentrations

    PubMed Central

    Mason, Darius; Donabella, Paul J; Nnani, Daryl; Musteata, Florin Marcel

    2015-01-01

    Background: Vitamin D deficiency has been associated with a multitude of diseases, ranging from fractures to cancer. Nearly 99% of vitamin D metabolites are bound to proteins, altering the relationship between concentration and activity. Methods & results: Normalized concentrations were calculated and validated using published data regarding the correlation of 25-hydroxyvitamin D with bone mineral density. In addition, healthy and kidney disease subjects were recruited for preliminary investigations. Use of the normalizing equations resulted in statistically significant improvements in the relationship between vitamin D metabolites and several markers of health status. Conclusion: Normalized concentrations are similar to clinically reported values and are easier to interpret than free or bioavailable concentrations, since their values match the range of measured total concentrations. PMID:28031931

  5. Determination of activity coefficient of lanthanum chloride in molten LiCl-KCl eutectic salt as a function of cesium chloride and lanthanum chloride concentrations using electromotive force measurements

    NASA Astrophysics Data System (ADS)

    Bagri, Prashant; Simpson, Michael F.

    2016-12-01

    The thermodynamic behavior of lanthanides in molten salt systems is of significant scientific interest for the spent fuel reprocessing of Generation IV reactors. In this study, the apparent standard reduction potential (apparent potential) and activity coefficient of LaCl3 were determined in a molten salt solution of eutectic LiCl-KCl as a function of concentration of LaCl3. The effect of adding up to 1.40 mol % CsCl was also investigated. These properties were determined by measuring the open circuit potential of the La-La(III) redox couple in a high temperature molten salt electrochemical cell. Both the apparent potential and activity coefficient exhibited a strong dependence on concentration. A low concentration (0.69 mol %) of CsCl had no significant effect on the measured properties, while a higher concentration (1.40 mol %) of CsCl caused an increase (become more positive) in the apparent potential and activity coefficient at the higher range of LaCl3 concentrations.

  6. 12 CFR Appendix C to Subpart A to... - Concentration Measures

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 5 2012-01-01 2012-01-01 false Concentration Measures C Appendix C to Subpart...—Concentration Measures The concentration score is the higher of the higher-risk assets to Tier 1 capital and reserves score or the growth-adjusted portfolio concentrations score. The concentration score for...

  7. Measuring Concentrations of Particulate 140La in the Air

    DOE PAGES

    Okada, Colin E.; Kernan, Warnick; Keillor, Martin; ...

    2016-01-01

    This article discusses deployment of air-samplers to measure the concentration of radioactive material in the air during the Full-Scale Radiological Dispersal Device experiments. Positioned 100-600 meters downwind of the release point, the filters were collected immediately and analyzed in a field laboratory. The article discusses quantities for total activity collected on the air filters as well as additional information to compute the average or integrated air concentrations. In the case of a public emergency, this type of information would be important for decision makers and responders.

  8. Field methods for measuring concentrated flow erosion

    NASA Astrophysics Data System (ADS)

    Castillo, C.; Pérez, R.; James, M. R.; Quinton, J. N.; Taguas, E. V.; Gómez, J. A.

    2012-04-01

    techniques (3D) for measuring erosion from concentrated flow (pole, laser profilemeter, photo-reconstruction and terrestrial LiDAR) The comparison between two- and three-dimensional methods has showed the superiority of the 3D techniques for obtaining accurate cross sectional data. The results from commonly-used 2D methods can be subject to systematic errors in areal cross section that exceed magnitudes of 10 % on average. In particular, the pole simplified method has showed a clear tendency to understimate areas. Laser profilemeter results show that further research on calibrating optical devices for a variety of soil conditions must be carried out to improve its performance. For volume estimations, photo-reconstruction results provided an excellent approximation to terrestrial laser data and demonstrate that this new remote sensing technique has a promising application field in soil erosion studies. 2D approaches involved important errors even over short measurement distances. However, as well as accuracy, the cost and time requirements of a technique must be considered.

  9. Natural activity concentrations in bottled drinking water and consequent doses.

    PubMed

    Kabadayi, Önder; Gümüs, Hasan

    2012-07-01

    The radioactivity concentrations of nuclides (238)U, (232)Th and (40)K in bottled drinking water from six different manufacturers from Turkey were measured using high-resolution gamma-ray spectrometry. The measurement was done using a coaxial high-purity germanium detector system coupled to Ortec-Dspect jr digital MCA system. The average measured activity concentrations of the nuclides (238)U, (232)Th and (40)K are found to be 0.781, 1.05 and 2.19 Bq l(-1), respectively. The measured activity concentrations have been compared with similar studies from different locations. The annual effective doses for ingestion of radionuclides in the water are found to be 0.0246 mSv for (238)U and 0.169 mSv for (232)Th.

  10. COMPARISON OF METHODS FOR MEASURING CONCENTRATIONS OF SEMIVOLATILE PARTICULATE MATTER

    EPA Science Inventory

    The paper gives results of a comparison of methods for measuring concentrations of semivolatile particulate matter (PM) from indoor-environment, small, combustion sources. Particle concentration measurements were compared for methods using filters and a small electrostatic precip...

  11. Photovoltaic concentrator assembly with optically active cover

    DOEpatents

    Plesniak, Adam P

    2014-01-21

    A photovoltaic concentrator assembly that includes a housing that defines an internal volume and includes a rim, wherein the rim defines an opening into the internal volume, a photovoltaic cell positioned in the internal volume, and an optical element that includes an optically active body and a flange extending outward from the body, wherein the flange is sealingly engaged with the rim of the housing to enclose the internal volume.

  12. Airborne particle concentrations at schools measured at different spatial scales

    NASA Astrophysics Data System (ADS)

    Buonanno, G.; Fuoco, F. C.; Morawska, L.; Stabile, L.

    2013-03-01

    Potential adverse effects on children health may result from school exposure to airborne particles. To address this issue, measurements in terms of particle number concentration, particle size distribution and black carbon (BC) concentrations were performed in three school buildings in Cassino (Italy) and its suburbs, outside and inside of the classrooms during normal occupancy and use. Additional time resolved information was gathered on ventilation condition, classroom activity, and traffic count data around the schools were obtained using a video camera. Across the three investigated school buildings, the outdoor and indoor particle number concentration monitored down to 4 nm and up to 3 μm ranged from 2.8 × 104 part cm-3 to 4.7 × 104 part cm-3 and from 2.0 × 104 part cm-3 to 3.5 × 104 part cm-3, respectively. The total particle concentrations were usually higher outdoors than indoors, because no indoor sources were detected. I/O measured was less than 1 (varying in a relatively narrow range from 0.63 to 0.74), however one school exhibited indoor concentrations higher than outdoor during the morning rush hours. Particle size distribution at the outdoor site showed high particle concentrations in different size ranges, varying during the day; in relation to the starting and finishing of school time two modes were found. BC concentrations were 5 times higher at the urban school compared with the suburban and suburban-to-urban differences were larger than the relative differences of ultrafine particle concentrations.

  13. Comparisons of barley malt amylolytic enzyme thermostabilities to wort osmolyte concentrations, malt extract, ASBC measures of malt quality, and initial enzyme activities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study the hypothesis that wort osmolyte concentration (OC) would correlate much better than malt extract (ME) with barley amylolytic enzyme thermostabilities of malts produced over several days of germination was tested. Seeds of 4 two-row and 4 six-row North American elite barley cultivars ...

  14. Measurements of radon concentrations in the lunar atmosphere

    NASA Technical Reports Server (NTRS)

    Brodzinski, R. L.; Jackson, P. O.; Langford, J. C.

    1977-01-01

    The radon concentrations in the lunar atmosphere were determined by measuring the Po-210 progeny activity in artifacts returned from the moon. Experiments performed on a section of the polished aluminum strut from Surveyor 3 and data obtained from the Apollo 16 Cosmic Ray Detector Experiment Teflon thermal shield are compared with other values of the lunar radon concentration obtained at different times and different locations and by various techniques. Possible sources and release mechanisms compatible with all of the data are discussed. An experimental procedure to determine the relative retention coefficients of various types of material for radon progeny in a simulated lunar environment is described. The results of several experiments are given, and their effect on lunar radon progeny measurements is discussed. An analytical procedure is given for the analysis of a Teflon matrix for trace constituents.

  15. BIOCHEMICAL AND ANALYTICAL CHARACTERIZATION OF ESTROGENICALLY ACTIVE WASTEWATER: COMPARISON OF FIELD EXTRAPOLATIONS TO THE MEASURED CONCENTRATION OF ESTROGENS IN SEWAGE EFFLUENT

    EPA Science Inventory

    Estrogenically active wastewater was observed at two municipal wastewater treatment plants (WWTPs) utilizing caged male channel catfish in a previous study. The focus of this investigation was to identify and characterize the compound(s) responsible for this estrogenic response. ...

  16. Athletic Activity and Hormone Concentrations in High School Female Athletes

    PubMed Central

    Wojtys, Edward M.; Jannausch, Mary L.; Kreinbrink, Jennifer L.; Harlow, Siobán D.; Sowers, MaryFran R.

    2015-01-01

    Context: Physical activity may affect the concentrations of circulating endogenous hormones in female athletes. Understanding the relationship between athletic and physical activity and circulating female hormone concentrations is critical. Objective: To test the hypotheses that (1) the estradiol-progesterone profile of high school adolescent girls participating in training, conditioning, and competition would differ from that of physically inactive, age-matched adolescent girls throughout a 3-month period; and (2) athletic training and conditioning would alter body composition (muscle, bone), leading to an increasingly greater lean–body-mass to fat–body-mass ratio with accompanying hormonal changes. Design: Cohort study. Settings: Laboratory and participants' homes. Patients or Other Participants: A total of 106 adolescent girls, ages 14–18 years, who had experienced at least 3 menstrual cycles in their lifetime. Main Outcome Measure(s): Participants were prospectively monitored throughout a 13-week period, with weekly physical activity assessments and 15 urine samples for estrogen, luteinizing hormone, creatinine, and progesterone concentrations. Each girl underwent body-composition measurements before and after the study period. Results: Seventy-four of the 98 girls (76%) who completed the study classified themselves as athletes. Body mass index, body mass, and fat measures remained stable, and 17 teenagers had no complete menstrual cycle during the observation period. Mean concentrations of log(estrogen/creatinine) were slightly greater in nonathletes who had cycles of <24 or >35 days. Mean log(progesterone/creatinine) concentrations in nonathletes were less in the first half and greater in the second half of the cycle, but the differences were not statistically significant. Conclusions: A moderate level of athletic or physical activity did not influence urine concentrations of estrogen, progesterone, or luteinizing hormones. However, none of the

  17. Concentration and temperature effects on ovostatin activity

    NASA Technical Reports Server (NTRS)

    Moriarity, Debra M.

    1994-01-01

    Light scattering experiments performed at Mississippi State University using MSFC ovostatin preparations indicated that at low ovostatin concentrations, below 0.2 mg/ml, the protein was dissociating from a tetramer into dimers. Since the proposed mechanism of action involved the tetrameric form of the protein, we hypothesized that perhaps under the conditions of our assays at various O/T ratios the ovostatin was becoming dissociated into an inactive dimer. To examine this possibility we assayed the ovostatin activity as a function of ovostatin concentration and of temperature of the assay. Data are presented that show the results of these assays at 23 C, 30 C, 37 C and 42 C respectively. The data are highly suggestive that there is a decrease in ovostatin activity as the concentration of the protein falls below 0.06 mg/ml. This may not be of any physiological importance, however, since the concentration of ovostatin in the egg is about 0.5 mg/ml. Curiously, the dissociation of the tetramer into dimers does not show a significant temperature dependence as would be expected for an equilibrium reaction. Whether this is in fact the case, or whether the differences are so small as to not be discerned from the current data remains to be seen. Another aspect to consider is that in the egg the primary role of the ovostatin may or may not be as a protease inhibitor. Although the inhibition of collagenase by ovostatin may be an important aspect of embryogenesis, it is also possible that it functions as a binding protein for some substance. In this regard, all ovostatin preparations from MSFC have shown an approximately 88,000 MW protein associated with the ovostatin. The identity of this protein is not currently known and may be the subject of future studies.

  18. Isolation of Polypeptide Sample and Measurement of Its Concentration.

    ERIC Educational Resources Information Center

    Beanan, Maureen J.

    2000-01-01

    Introduces a laboratory experiment that isolates a bacterial polypeptide sample and measures the concentration of polypeptides in the sample. Uses Escherichia coli strain MM294 and performs a bio-rad assay to determine the concentration of polypeptides. (YDS)

  19. Ozone concentration in the cabin of a Gates Learjet measured simultaneously with atmospheric ozone concentrations

    NASA Technical Reports Server (NTRS)

    Briehl, D.; Perkins, P. J.

    1978-01-01

    A Gates Learjet Model 23 was instrumented with monitors to measure simultaneously the atmospheric and the cabin concentrations of ozone at altitudes up to 13 kilometers. Six data flights were made in February 1978. Results indicated that only a small amount of the atmospheric ozone is destroyed in the cabin pressurization system. Ozone concentrations measured in the cabin near the conditioned-air outlets were only slightly lower than the atmospheric ozone concentration. For the two cabin configurations tested, the ozone retention in the cabin was 63 and 41 percent of the atmospheric ozone concentration. Maximum cabin ozone concentration measured during these flights was 410 parts per billion by volume.

  20. Measurement of Physical Activity.

    ERIC Educational Resources Information Center

    Dishman, Rod K.; Washburn, Richard A.; Schoeller, Dale A.

    2001-01-01

    Valid assessment of physical activity must be unobtrusive, practical to administer, and specific about physical activity type, frequency, duration, and intensity. Assessment methods can be categorized according to whether they provide direct or indirect (e.g., self-report) observation of physical activity, body motion, physiological response…

  1. Absolute concentration measurements inside a jet plume using video digitization

    NASA Astrophysics Data System (ADS)

    Vauquelin, O.

    An experimental system based on digitized video image analysis is used to measure the local value of the concentration inside a plume. Experiments are carried out in a wind-tunnel for a smoke-seeded turbulent jet plume illuminated with a laser beam. Each test is filmed, subsequently video images are digitized and analysed in order to determine the smoke absolute concentration corresponding to each pixel gray level. This non-intrusive measurement technique is first calibrated and different laws connecting gray level to concentration are established. As a first application, concentration measurements are made inside a turbulent jet plume and compared with measurements conducted using a classic gas analysis method. We finally present and discuss the possibilities offered for the measurements of absolute concentration fluctuations.

  2. Micelles Protect and Concentrate Activated Acetic Acid

    NASA Astrophysics Data System (ADS)

    Todd, Zoe; House, C.

    2014-01-01

    As more and more exoplanets are discovered and the habitability of such planets is considered, one can turn to searching for the origin of life on Earth in order to better understand what makes a habitable planet. Activated acetic acid, or methyl thioacetate, has been proposed to be central to the origin of life on Earth, and also as an important energy currency molecule in early cellular evolution. We have investigated the hydrolysis of methyl thioacetate under various conditions. Its uncatalyzed rate of hydrolysis is about three orders of magnitude faster (K = 0.00663 s^-1; 100°C, pH 7.5, concentration = 0.33mM) than published rates for its catalyzed production making it unlikely to accumulate under prebiotic conditions. However, we also observed that methyl thioacetate was protected from hydrolysis when inside its own hydrophobic droplets. We found that methyl thioacetate protection from hydrolysis was also possible in droplets of hexane and in the membranes of nonanoic acid micelles. Thus, the hydrophobic regions of prebiotic micelles and early cell membranes could have offered a refuge for this energetic molecule increasing its lifetime in close proximity to the reactions for which it would be needed. Methyl thioacetate could thus be important for the origin of life on Earth and perhaps for better understanding the potential habitability of other planets.

  3. Activity concentrations and dose rates from decorative granite countertops.

    PubMed

    Llope, W J

    2011-06-01

    The gamma radiation emitted from a variety of commercial decorative granites available for use in U.S. homes has been measured with portable survey meters as well as an NaI(Th) gamma spectrometer. The (40)K, U-nat, and (232)Th activity concentrations were determined using a full-spectrum analysis. The dose rates that would result from two different arrangements of decorative granite slabs as countertops were explored in simulations involving an adult anthropomorphic phantom.

  4. Time delay for aerial ammonia concentration measurements in livestock buildings.

    PubMed

    Rom, Hans Benny; Zhang, Guo-Qiang

    2010-01-01

    Correct measurements of ammonia concentration in air still present considerable challenges. The high water solubility and polarity can cause it to adsorb on surfaces in the entire sampling system, including sampling lines, filters, valves, pumps and instruments, causing substantial measuring errors and time delays. To estimate time delay characteristics of a Photo Acoustic Multi Gas Monitor 1312 and a Multi Point Sampler continuous measurement of aerial ammonia concentrations at different levels was performed. In order to obtain reproducible data, a wind tunnel was used to generate selected concentrations inside and a background concentration representing the air inlet of the tunnel. Four different concentration levels (0.8 ppm, 6.2 ppm, 9.7 ppm and 13.7 ppm) were used in the experiments, with an additional outdoor concentration level as background. The results indicated a substantial time delay when switching between the measuring positions with high and low concentration and vice versa. These properties may course serious errors for estimation of e.g. gas emissions whenever more than one measuring channel is applied. To reduce the measurement errors, some suggestions regarding design of the measurement setup and measuring strategies were presented.

  5. The concentration of criminal victimization and patterns of routine activities.

    PubMed

    Kuo, Shih-Ya; Cuvelier, Steven J; Sheu, Chuen-Jim; Zhao, Jihong Solomon

    2012-06-01

    Although many repeat victimization studies have focused on describing the prevalence of the phenomenon, this study attempted to explain variations in the concentration of victimization by applying routine activities as a theoretical model. A multivariate analysis of repeat victimization based on the 2005 Taiwan criminal victimization data supported the general applicability of the routine activity model developed in Western culture for predicting repeat victimization. Findings that diverged from Western patterns included family income to assault, gender to robbery, and marital status, family income, and major activity to larceny incidents. These disparities illustrated the importance of considering the broader sociocultural context in the association between risk predictors and the concentration of criminal victimization. The contradictory results and nonsignificant variance also reflected untapped information on respondents' biological features and psychological tendencies. Future victimization research would do well to integrate measurements that are sensitive to salient sociocultural elements of the society being studied and individuals' biological and psychological traits.

  6. Defining the smallest analyte concentration an immunoassay can measure.

    PubMed

    Brown, E N; McDermott, T J; Bloch, K J; McCollom, A D

    1996-06-01

    An immunoassay's minimal detectable concentration (MDC), the smallest analyte concentration the assay can reliably measure, is one of its most important properties. Bayes' theorem is used to unify the five current mathematical MDC definitions. The unified definition has significant implications for defining positive results for screening and diagnostic tests, setting criteria for immunoassay quality control and optimal design, reliably measuring biological substances at low concentrations, and, in general, measuring small analyte concentrations with calibrated analytic methods. As an illustration, we apply the unified definition to the microparticle capture enzyme immunoassay for prostate-specific antigen (PSA) developed for the Abbott IMx automated immunoassay system. The MDC of this assay as estimated by our unifying approach is shown to be 4.1-7.1 times greater than currently reported. As a consequence, the ability of the assay to measure reliably small concentrations of PSA to detect early recurrences of prostate cancer is probably overstated.

  7. Using broadband absorption spectroscopy to measure concentration of sulfur dioxide

    NASA Astrophysics Data System (ADS)

    Wang, H. S.; Zhang, Y. G.; Wu, S. H.; Lou, X. T.; Zhang, Z. G.; Qin, Y. K.

    2010-09-01

    A linear relationship between concentration of sulfur dioxide (SO2) and optical parameter (OP) is established using the Beer-Lambert law. The SO2 measuring system is set up to measure the concentration of sulfur dioxide in the wavelength range 275-315 nm. Experimental results indicate that the detection limit of the sulfur dioxide measuring system is below 0.2 ppm per meter of path length, and the measurement precision is better than ±1%. The proposed SO2 measuring method features limited interference from other gases and dust, and high stability and short response time.

  8. Measurement and Characterization of Concentrator Solar Cells II

    NASA Technical Reports Server (NTRS)

    Scheiman, Dave; Sater, Bernard L.; Chubb, Donald; Jenkins, Phillip; Snyder, Dave

    2005-01-01

    Concentrator solar cells are continuing to get more consideration for use in power systems. This interest is because concentrator systems can have a net lower cost per watt in solar cell materials plus ongoing improvements in sun-tracking technology. Quantitatively measuring the efficiency of solar cells under concentration is difficult. Traditionally, the light concentration on solar cells has been determined by using a ratio of the measured solar cell s short circuit current to that at one sun, this assumes that current changes proportionally with light intensity. This works well with low to moderate (<20 suns) concentration levels on "well-behaved" linear cells but does not apply when cells respond superlinearly, current increases faster than intensity, or sublinearly, current increases more slowly than intensity. This paper continues work on using view factors to determine the concentration level and linearity of the solar cell with mathematical view factor analysis and experimental results [1].

  9. Estimation of background gas concentration from differential absorption lidar measurements

    NASA Astrophysics Data System (ADS)

    Harris, Peter; Smith, Nadia; Livina, Valerie; Gardiner, Tom; Robinson, Rod; Innocenti, Fabrizio

    2016-10-01

    Approaches are considered to estimate the background concentration level of a target species in the atmosphere from an analysis of the measured data provided by the National Physical Laboratory's differential absorption lidar (DIAL) system. The estimation of the background concentration level is necessary for an accurate quantification of the concentration level of the target species within a plume, which is the quantity of interest. The focus of the paper is on methodologies for estimating the background concentration level and, in particular, contrasting the assumptions about the functional and statistical models that underpin those methodologies. An approach is described to characterise the noise in the recorded signals, which is necessary for a reliable estimate of the background concentration level. Results for measured data provided by a field measurement are presented, and ideas for future work are discussed.

  10. Atmospheric radionuclide concentrations measured by Pacific Northwest Laboratory since 1961

    SciTech Connect

    Young, J.A.; Thomas, C.W.

    1981-03-01

    The atmospheric concentrations of a wide spectrum of radionuclides produced by nuclear weapons, nuclear reactors, cosmic rays, radon and thoron decay and the SNAP-9A burn-up ({sup 238}Pu) have been measured at Richland, Washington, since 1961; at Barrow, Alaska, since 1964; and at other stations for shorter periods of time. There has been considerable concern over the health hazard presented by these radionuclides, but it has also been recognized that atmospheric mixing and deposition rates can be determined from their measurement. Therefore, Pacific Northwest Laboratory began the continuous measurement of the atmospheric concentrations of a wide spectrum of radionuclides produced by nuclear weapons, nuclear reactors, cosmic rays, and radon and thoron decay. This report will discuss the concentrations of the longer-lived radionuclides (T 1/2 > 12 days). The concentrations of shorter-lived radionuclides measured following Chinese nuclear tests since 1972 are discussed in another report.

  11. Atmospheric radionuclide concentrations measured by Pacific Northwest Laboratory since 1961

    SciTech Connect

    Young, J.A.; Thomas, C.W.

    1981-03-01

    The atmospheric concentrations of a wide spectrum of radionuclides produced by nuclear weapons, nuclear reactors, cosmic rays, radon and thoron decay and the SNAP-9A burn-up ([sup 238]Pu) have been measured at Richland, Washington, since 1961; at Barrow, Alaska, since 1964; and at other stations for shorter periods of time. There has been considerable concern over the health hazard presented by these radionuclides, but it has also been recognized that atmospheric mixing and deposition rates can be determined from their measurement. Therefore, Pacific Northwest Laboratory began the continuous measurement of the atmospheric concentrations of a wide spectrum of radionuclides produced by nuclear weapons, nuclear reactors, cosmic rays, and radon and thoron decay. This report will discuss the concentrations of the longer-lived radionuclides (T 1/2 > 12 days). The concentrations of shorter-lived radionuclides measured following Chinese nuclear tests since 1972 are discussed in another report.

  12. Laser Adaptive System for Measurement of Molecule Mass and Concentration

    NASA Astrophysics Data System (ADS)

    Romashko, R. V.; Kulchin, Y. N.; Efimov, T. A.; Sergeev, A. A.; Nepomnyashiy, A. V.

    A Laser adaptive microweighting system for measurement of molecules mass based on the principles of adaptive holog aphic interferometry is proposed and experimentally tested in task of gas concentration measurement. A sensitive element of the system is a microcantilever coated by a layer of chitosan, which can adsorb different molecules. Changes in gas concentration re ult in change in mass of molecules adsorbed in chitosan, and, as sequence, result in change in natural frequency of cantilever oscillations, which are measured by an adaptive holographic interferometer. The operation of the system has been experimentally demonstrated in measurement of water vapor concentration. The detected change in concentration of H2O molecules amounted to 125 ppm.

  13. Monitoring cell concentration and activity by multiple excitation fluorometry.

    PubMed

    Li, J K; Asali, E C; Humphrey, A E; Horvath, J J

    1991-01-01

    Four key cellular metabolic fluorophores--tryptophan, pyridoxine, NAD(P)H, and riboflavin--were monitored on-line by a multiple excitation fluorometric system (MEFS) and a modified SLM 8000C scanning spectrofluorometer in three model yeast fermentation systems--bakers' yeast growing on glucose, Candida utilis growing on ethanol, and Saccharomyces cerevisiae RTY110/pRB58 growing on glucose. The measured fluorescence signals were compared with cell concentration, protein concentration, and cellular activity. The results indicate that the behavior and fluorescence intensity of various fluorophores differ in the various fermentation systems. Tryptophan fluorescence is the best signal for the monitoring of cell concentration in bakers' yeast and C. utilis fermentations. Pyridoxine fluoresce is the best signal for the monitoring of cell concentration in the S. cerevisiae RTY110/pRB58 fermentation. In bakers' yeast fermentations the pyridoxine fluorescence signal can be used to monitor cellular activity. The NAD(P)H fluorescence signal is a good indicator of cellular activity in the C. utilis fermentation. For this fermentation NAD(P)H fluorescence can be used to control ethanol feeding in a fed-batch process.

  14. Direct measurement of surface carbon concentrations. [in lunar soil

    NASA Technical Reports Server (NTRS)

    Filleux, C.; Tombrello, T. A.; Burnett, D. S.

    1977-01-01

    Measurements of surface concentrations of carbon in lunar soils and soil breccias provide information on the origin of carbon in the regolith. The reaction C-12 (d, p sub zero) is used to measure 'surface' and 'volume' concentrations in lunar samples. This method has a depth resolution of 1 micron, which permits only a 'surface' and a 'volume' component to be measured. Three of four Apollo 16 double drive tube samples show a surface carbon concentration of about 8 by 10 to the 14th power/sq cm, whereas the fourth sample gave 4 by 10 to the 14th power/sq cm. It can be convincingly shown that the measured concentration does not originate from fluorocarbon or hydrocarbon contaminants. Surface adsorbed layers of CO or CO2 are removed by a sputter cleaning procedure using a 2-MeV F beam. It is shown that the residual C concentration of 8 by 10 to the 14th power/sq cm cannot be further reduced by increased F fluence, and it is therefore concluded that it is truly lunar. If one assumes that the measured surface C concentration is a steady-state concentration determined only by a balance between solar-wind implantation and sputtering, a sputter erosion rate of 0.1 A/yr is obtained. However, it would be more profitable to use an independently derived sputter erosion rate to test the hypothesis of a solar-wind origin of the surface carbon.

  15. Assessment of thrombogenicity of activated and non-activated prothrombin concentrates in a rat model.

    PubMed Central

    Silberman, S.; Fareed, J.; Walenga, J.

    1986-01-01

    In vitro clotting activity of rats injected with different preparations of prothrombin concentrates was measured. Animals rendered deficient in vitamin K-dependent coagulation factors by early coumadin (warfarin) pretreatment, followed by injections of concentrate preparations were also evaluated. Findings indicate a dose-related response in abnormal coagulation changes demonstrable with each preparation and lack of protection of intravascular coagulation by coumadin anticoagulation. Furthermore, a role for in vivo factor VII activation of haemostasis following concentrate administration could not be elicited. PMID:3091059

  16. Workplace aerosol mass concentration measurement using optical particle counters.

    PubMed

    Görner, Peter; Simon, Xavier; Bémer, Denis; Lidén, Göran

    2012-02-01

    Direct-reading aerosol measurement usually uses the optical properties of airborne particles to detect and measure particle concentration. In the case of occupational hygiene, mass concentration measurement is often required. Two aerosol monitoring methods are based on the principle of light scattering: optical particle counting (OPC) and photometry. The former analyses the light scattered by a single particle, the latter by a cloud of particles. Both methods need calibration to transform the quantity of scattered light detected into particle concentration. Photometers are simpler to use and can be directly calibrated to measure mass concentration. However, their response varies not only with aerosol concentration but also with particle size distribution, which frequently contributes to biased measurement. Optical particle counters directly measure the particle number concentration and particle size that allows assessment of the particle mass provided the particles are spherical and of known density. An integrating algorithm is used to calculate the mass concentration of any conventional health-related aerosol fraction. The concentrations calculated thus have been compared with simultaneous measurements by conventional gravimetric sampling to check the possibility of field OPC calibration with real workplace aerosols with a view to further monitoring particle mass concentration. Aerosol concentrations were measured in the food industry using the OPC GRIMM® 1.108 and the CIP 10-Inhalable and CIP 10-Respirable (ARELCO®) aerosol samplers while meat sausages were being brushed and coated with calcium carbonate. Previously, the original OPC inlet had been adapted to sample inhalable aerosol. A mixed aerosol of calcium carbonate and fungi spores was present in the workplace. The OPC particle-size distribution and an estimated average particle density of both aerosol components were used to calculate the mass concentration. The inhalable and respirable aerosol fractions

  17. Comparative analysis of radon, thoron and thoron progeny concentration measurements.

    PubMed

    Janik, Miroslaw; Tokonami, Shinji; Kranrod, Chutima; Sorimachi, Atsuyuki; Ishikawa, Tetsuo; Hosoda, Masahiro; McLaughlin, James; Chang, Byung-Uck; Kim, Yong Jae

    2013-07-01

    This study examined correlations between radon, thoron and thoron progeny concentrations based on surveys conducted in several different countries. For this purpose, passive detectors developed or modified by the National Institute of Radiological Sciences (NIRS) were used. Radon and thoron concentrations were measured using passive discriminative radon-thoron detectors. Thoron progeny measurements were conducted using the NIRS-modified detector, originally developed by Zhuo and Iida. Weak correlations were found between radon and thoron as well as between thoron and thoron progeny. The statistical evaluation showed that attention should be paid to the thoron equilibrium factor for calculation of thoron progeny concentrations based on thoron measurements. In addition, this evaluation indicated that radon, thoron and thoron progeny were independent parameters, so it would be difficult to estimate the concentration of one from those of the others.

  18. Device for measuring the total concentration of oxygen in gases

    DOEpatents

    Isaacs, Hugh S.; Romano, Anthony J.

    1977-01-01

    This invention provides a CO equilibrium in a device for measuring the total concentration of oxygen impurities in a fluid stream. To this end, the CO equilibrium is produced in an electrochemical measuring cell by the interaction of a carbon element in the cell with the chemically combined and uncombined oxygen in the fluid stream at an elevated temperature.

  19. Reflective measurement of water concentration using millimeter wave illumination

    NASA Astrophysics Data System (ADS)

    Sung, Shijun; Bennett, David; Taylor, Zachary; Bajwa, Neha; Tewari, Priyamvada; Maccabi, Ashkan; Culjat, Martin; Singh, Rahul; Grundfest, Warren

    2011-04-01

    THz and millimeter wave technology have shown the potential to become a valuable medical imaging tool because of its sensitivity to water and safe, non-ionizing photon energy. Using the high dielectric constant of water in these frequency bands, reflectionmode THz sensing systems can be employed to measure water content in a target with high sensitivity. This phenomenology may lead to the development of clinical systems to measure the hydration state of biological targets. Such measurements may be useful in fast and convenient diagnosis of conditions whose symptoms can be characterized by changes in water concentration such as skin burns, dehydration, or chemical exposure. To explore millimeter wave sensitivity to hydration, a reflectometry system is constructed to make water concentration measurements at 100 GHz, and the minimum detectable water concentration difference is measured. This system employs a 100 GHz Gunn diode source and Golay cell detector to perform point reflectivity measurements of a wetted polypropylene towel as it dries on a mass balance. A noise limited, minimum detectable concentration difference of less than 0.5% by mass can be detected in water concentrations ranging from 70% to 80%. This sensitivity is sufficient to detect hydration changes caused by many diseases and pathologies and may be useful in the future as a diagnostic tool for the assessment of burns and other surface pathologies.

  20. Optical fiber system for saline concentration measurement in drilling fluids

    NASA Astrophysics Data System (ADS)

    Caetano, L. A. C.; Fontoura, S. A. B.; Torres, P. I.; Valente, L. C. G.

    2001-08-01

    Laboratory setups are used to simulate real conditions in which drilling fluid and shales interact during an oil well drilling process. The present work describes the development of fiber optic systems capable of measuring the ionic diffusion in water-based fluids under high pressure. Two alternatives have been tested and calibrations are presented for both. The most successful one was tested in a real experiment in which the concentration of CaCl2 has been continuously measured during five days. Starting from pure water, the final ionic concentration measured by this method was compared with the result from chemical analysis of the fluid with very good agreement.

  1. Radiocarbon tracer measurements of atmospheric hydroxyl radical concentrations

    NASA Technical Reports Server (NTRS)

    Campbell, M. J.; Farmer, J. C.; Fitzner, C. A.; Henry, M. N.; Sheppard, J. C.

    1986-01-01

    The usefulness of the C-14 tracer in measurements of atmospheric hydroxyl radical concentration is discussed. The apparatus and the experimental conditions of three variations of a radiochemical method of atmosphere analysis are described and analyzed: the Teflon bag static reactor, the flow reactor (used in the Wallops Island tests), and the aircraft OH titration reactor. The procedure for reduction of the aircraft reactor instrument data is outlined. The problems connected with the measurement of hydroxyl radicals are discussed. It is suggested that the gas-phase radioisotope methods have considerable potential in measuring tropospheric impurities present in very low concentrations.

  2. Online measurement of urea concentration in spent dialysate during hemodialysis

    NASA Astrophysics Data System (ADS)

    Olesberg, Jonathon T.; Armitage, Ben; Arnold, Mark A.; Flanigan, Michael

    2002-05-01

    We describe on-line optical measurements of urea concentration during the regular hemodialysis treatment of several patients. The spectral measurements were performed in the effluent dialysate stream after the dialysis membrane using an FTIR spectrometer equipped with a flow-through cell. Spectra were recorded across the 5000-4000 cm-1 (2.0-2.5 micrometers at 1-minute intervals. Optically determined concentrations matched concentrations obtained from standard chemical assays with a root-mean-square error of 0.29 mM for urea (0.8 mg/dl urea nitrogen), 0.03 mM for creatinine, 0.11 mM for lactate, and 0.22 mM for glucose. The observed concentration ranges were 0-11 mM for urea, 0-0.35 mM for creatinine, 0-0.75 mM for lactate, and 9-12.5 mM for glucose.

  3. Effect of analytical techniques on measured ambient NO2 concentrations.

    PubMed

    Goyal, S K; Gavane, A G

    2005-06-01

    A study was carried out with specific reference to NO2 measurements in three countries (designated as A, B and C), which use three different manual methods; viz. Sodium Arsenite, Greiss Saltzman and TGS-ANSA for the determination of NO2 in ambient air. Significant deviation (up to 36 + %) was observed in measured NO, ion concentration when spiked samples were analyzed using these methods. Further, to make the data inter-comparable, exhaustive laboratory studies were carried out on these manual methods. Different concentration levels of NO2 were generated in the laboratory and analyzed by these methods simultaneously. The results were evaluated statistically. An interrelationship among the methods was established as method conversion factors (MCF). This would be useful in relating atmospheric concentration of NO2 among various countries, where different measurement techniques are adopted.

  4. Active-site concentrations of chemicals - are they a better predictor of effect than plasma/organ/tissue concentrations?

    PubMed

    Hammarlund-Udenaes, Margareta

    2010-03-01

    Active-site concentrations can be defined as the concentrations of unbound, pharmacologically active substances at the site of action. In contrast, the total concentrations of the drug in plasma/organ/tissue also include the protein- or tissue-bound molecules that are pharmacologically inactive. Plasma and whole tissue concentrations are used as predictors of effects and side effects because of their ease of sampling, while the concentrations of unbound drug in tissue are more difficult to measure. However, with the introduction of microdialysis and subsequently developed techniques, it has become possible to test the free drug hypothesis. The brain is an interesting organ in this regard because of the presence of the blood-brain barrier with its tight junctions and active efflux and influx transporters. We have proposed that research into brain drug delivery be divided into three main areas: the rate of delivery (PS, CL(in)), the extent of delivery (K(p,uu)) and the non-specific affinity of the drug to brain tissue, described by the volume of distribution of unbound drug in the brain (V(u,brain)). In this way, the concentration of unbound drug at the target site can be estimated from the total brain concentration and the plasma concentration after measuring the fraction of unbound drug. Results so far fully support the theory that active site concentrations are the best predictors when active transport is present. However, there is an urgent need to collect more relevant data for predicting active site concentrations in tissues with active transporters in their plasma membranes.

  5. A measure of the concentration of rare events

    PubMed Central

    Prieto Curiel, Rafael; Bishop, Steven

    2016-01-01

    We introduce here an index, which we call the Rare Event Concentration Coefficient (RECC), that is a measure of the dispersion/concentration of events which have a low frequency but tend to have a high level of concentration, such as the number of crimes suffered by a person. The Rare Event Concentration Coefficient is a metric based on a statistical mixture model, with a value closer to zero meaning that events are homogeneously distributed, and a value closer to one meaning that the events have a higher degree of concentration. This measure may be used to compare the concentration of events over different time periods and over different regions. Other traditional approaches for the dispersion/concentration of a variable tend to be blind to structural changes in the pattern of occurrence of rare events. The RECC overcomes this issue and we show here two simple applications, first by using the number of burglaries suffered in Netherlands and then by using the number of volcanic eruptions in the world. PMID:27577532

  6. Measuring concentrations of volatile organic compounds in vinyl flooring.

    PubMed

    Cox, S S; Little, J C; Hodgson, A T

    2001-08-01

    The initial solid-phase concentration of volatile organic compounds (VOCs) is a key parameter influencing the emission characteristics of many indoor materials. Solid-phase measurements are typically made using solvent extraction or thermal headspace analysis. The high temperatures and chemical solvents associated with these methods can modify the physical structure of polymeric materials and, consequently, affect mass transfer characteristics. To measure solid-phase concentrations under conditions resembling those in which the material would be installed in an indoor environment, a new technique was developed for measuring VOC concentrations in vinyl flooring (VF) and similar materials. A 0.09-m2 section of new VF was punched randomly to produce -200 0.78-cm2 disks. The disks were milled to a powder at -140 degrees C to simultaneously homogenize the material and reduce the diffusion path length without loss of VOCs. VOCs were extracted from the VF particles at room temperature by fluidized-bed desorption (FBD) and by direct thermal desorption (DTD) at elevated temperatures. The VOCs in the extraction gas from FBD and DTD were collected on sorbent tubes and analyzed by gas chromatography/mass spectrometry (GC/MS). Seven VOCs emitted by VF were quantified. Concentration measurements by FBD ranged from 5.1 microg/g VF for n-hexadecane to 130 microg/g VF for phenol. Concentrations measured by DTD were higher than concentrations measured by FBD. Differences between FBD and DTD results may be explained using free-volume and dual-mobility sorption theory, but further research is necessary to more completely characterize the complex nature of a diffusant in a polymer matrix.

  7. Rapid Ammonia Deposition Measured Near Concentrated Animal Feeding Operations

    NASA Astrophysics Data System (ADS)

    Stanton, L. G.; Pan, D.; Sun, K.; Golston, L.; Tao, L.; Zondlo, M. A.

    2014-12-01

    Concentrated animal feeding operations (CAFOs) emit massive amounts of ammonia (NH3) to the atmosphere. Current measurements of NH3 are generally conducted far away from the sources (satellites, airplanes, etc.). There is insufficient knowledge about the dry deposition rate of NH3 near the sources, which might contribute to the large discrepancies between measured concentrations at CAFOs and those from models. During the 2014 NASA DISCOVER-AQ campaign, we designed a series of tests to measure the deposition rate of NH3 by utilizing a suite of sensors, including a LICOR LI-7700 methane sensor and Princeton University's custom open path NH3 sensor, which was mounted on top of a small SUV. Our mobile sampling technique enables us to follow feedlot emission plumes to see how ambient NH3 concentration decays as gases moves away from the CAFO. The mobile platform is used to perform upwind and downwind sampling to characterize the NH3 emission source. We tracked the change of the enhancement of NH3 concentration relative to the enhancement of CH4 concentration (ΔNH3:ΔCH4), while transecting the plume of individual cattle feedlots. Measured data shows that the high concentration of NH3 seen at the source decreases quickly as one moves further downwind from it. A time constant of approximately ten minutes has been calculated from the decay of the ΔNH3:ΔCH4 ratios while moving away from the sources. We also will compare our measurements with those of NASA's P-3B aerosol measurements to show that the majority must be lost to dry deposition. This rapid deposition suggests that large amounts of NH3 are being deposited in very close proximity to these CAFOs, which is consistent with previous findings of locally high soil pH near NH3 sources. Our results will be used to better characterize nitrogen deposition from cattle feedlots and estimate NH3 lifetime.

  8. In situ refractometry for concentration measurements in refrigeration systems

    SciTech Connect

    Newell, T.A.

    1997-12-31

    An in situ refractometer was developed that is capable of measuring both the concentrations of oil in refrigerants, and the concentrations of aqueous coolant brines. A description of the technique, and example data are presented for R-134a/PAG oil, aqueous ethylene glycol, and aqueous propylene glycol solutions. The R-134a/PAG oil sensor data show a measurement sensitivity of less than 0.1% oil in the refrigerant, although error between data sets shows an uncertainty of approximately {+-}0.8%. Ethylene glycol and propylene glycol data show high signal level variations due to the large variation of the index of refraction between water and the glycols.

  9. Electrochemical concentration measurements for multianalyte mixtures in simulated electrorefiner salt

    NASA Astrophysics Data System (ADS)

    Rappleye, Devin Spencer

    The development of electroanalytical techniques in multianalyte molten salt mixtures, such as those found in used nuclear fuel electrorefiners, would enable in situ, real-time concentration measurements. Such measurements are beneficial for process monitoring, optimization and control, as well as for international safeguards and nuclear material accountancy. Electroanalytical work in molten salts has been limited to single-analyte mixtures with a few exceptions. This work builds upon the knowledge of molten salt electrochemistry by performing electrochemical measurements on molten eutectic LiCl-KCl salt mixture containing two analytes, developing techniques for quantitatively analyzing the measured signals even with an additional signal from another analyte, correlating signals to concentration and identifying improvements in experimental and analytical methodologies. (Abstract shortened by ProQuest.).

  10. Three wavelength optical oxymetry including the measurement of carboxyhemoglobin concentration

    NASA Astrophysics Data System (ADS)

    Pieralli, Christian; Devillers, Robert; Tribillon, Gilbert M.; Barthelemy, Jean-Claude; Geyssant, Andre

    1995-02-01

    The measurement of blood component concentrations is of great interest for medical applications such as anaesthetizing monitoring, heart disease evolution, respiratory insufficiency, etc. The common system is the spectroscopic analysis of blood samples. Analyzing the absorption versus wavelengths permits the determination of blood component concentrations by comparison to the theoretical extinction coefficients of the investigated components. The functional saturation rate of oxyhemoglobin HbO2 called SfO2 is therefore accessible. A new system is presented in this paper utilizing three laser diodes at wavelengths 660, 830, and 1060 nm. We have, therefore, access to a supplementary parameter which is the concentration of carboxyhemoglobin HbCO. The set-up can be portable because it utilizes small light sources, optical fibers, and integrated electrical supply and signal processing device. The performances reach a SfO2 resolution of 2% and 1% on HbCO measurement.

  11. Monensin concentrations measured in feeder cattle using enzyme immunoassay.

    PubMed

    Mount, M E; Cullor, J S; Kass, P H; Garret, W

    1996-06-01

    Thirty heifers were fed a ration containing 30 g monensin/ton. Fecal, urinary and seral samples were collected at varying intervals prior to and after initiating administration of the monensin-containing feed, and monensin concentrations were determined using a modified indirect enzyme immunoassay. Fecal samples contained measurable (micrograms/g; ppm) concentrations of monensin in most samples. The majority of sera and urine samples contained monensin at ng/ml (ppb) concentrations, which were above background levels prior to monensin feeding. Twelve head were fed monensin at 60 g/ton and 90 g/ton for 5 d with collection of similar samples. Higher concentrations of monensin were detected with increasing ration amounts in all 3 sample types. Enzyme immunoassay for monensin in these biological samples identified presence of the feed additive.

  12. Electrophotolysis oxidation system for measurement of organic concentration in water

    NASA Technical Reports Server (NTRS)

    Winkler, H. E. (Inventor)

    1981-01-01

    Methods and apparatus for determining organic carbon in aqueous solution are described. The method comprises subjecting the aqueous solution to electrolysis, for generating oxygen from water, and simultaneously to ultraviolet radiation, for oxidation of substantially all organic carbon to carbon dioxide. The carbon dioxide is measured and the value is related to the concentration of organic carbon in the aqueous solution.

  13. Measurement of particle concentrations in a dental office.

    PubMed

    Sotiriou, Maria; Ferguson, Stephen F; Davey, Mark; Wolfson, Jack M; Demokritou, Philip; Lawrence, Joy; Sax, Sonja N; Koutrakis, Petros

    2008-02-01

    Particles in a dental office can be generated by a number of instruments, such as air-turbine handpieces, low-speed handpieces, ultrasonic scalers, bicarbonate polishers, polishing cups, as well as drilling and air sprays inside the oral cavity. This study examined the generation of particles during dental drilling and measured particle size, mass, and trace elements. The air sampling techniques included both continuous and integrated methods. The following particle continuous measurements were taken every minute: (1) size-selective particle number concentration (Climet); (2) total particle number concentration (PTRAK), and; (3) particle mass concentration (DustTrak). Integrated particle samples were collected for about 5 h on each of five sampling days, using a PM(2.5) sampler (ChemComb) for elemental/organic carbon analysis, and a PM(10) sampler (Harvard Impactor) for mass and elemental analyses. There was strong evidence that these procedures result in particle concentrations above background. The dental procedures produced number concentrations of relatively small particles (<0.5 microm) that were much higher than concentrations produced for the relatively larger particles (>0.5 microm). Also, these dental procedures caused significant elevation above background of certain trace elements (measured by X-ray fluorescence) but did not cause any elevation of elemental carbon (measured by thermal optical reflectance). Dental drilling procedures aerosolize saliva and products of drilling, producing particles small enough to penetrate deep into the lungs. The potential health impacts of the exposure of dental personnel to such particles need to be evaluated. Increased ventilation and personal breathing protection could be used to minimize harmful effects.

  14. Practical considerations for measuring hydrogen concentrations in groundwater

    USGS Publications Warehouse

    Chapelle, F.H.; Vroblesky, D.A.; Woodward, J.C.; Lovley, D.R.

    1997-01-01

    Several practical considerations for measuring concentrations of dissolved molecular hydrogen (H2) in groundwater including 1 sampling methods 2 pumping methods and (3) effects of well casing materials were evaluated. Three different sampling methodologies (a downhole sampler, a gas- stripping method, and a diffusion sampler) were compared. The downhole sampler and gas-stripping methods gave similar results when applied to the same wells, the other hand, appeared to The diffusion sampler, on overestimate H2 concentrations relative to the downhole sampler. Of these methods, the gas-stripping method is better suited to field conditions because it is faster (~ 30 min for a single analysis as opposed to 2 h for the downhole sampler or 8 h for the diffusion sampler), the analysis is easier (less sample manipulation is required), and the data computations are more straightforward (H2 concentrations need not be corrected for water sample volume). Measurement of H2 using the gas-stripping method can be affected by different pumping equipment. Peristaltic, piston, and bladder pumps all gave similar results when applied to water produced from the same well. It was observed, however, that peristaltic-pumped water (which draws water under a negative pressure) enhanced the gas-stripping process and equilibrated slightly faster than either piston or bladder pumps (which push water under a positive pressure). A direct current(dc) electrically driven submersible pump was observed to produce H2 and was not suitable for measuring H2 in groundwater. Measurements from two field sites indicate that iron or steel well casings, produce H2, which masks H2 concentrations in groundwater. PVC-cased wells or wells cased with other materials that do not produce H2 are necessary for measuring H2 concentrations in groundwater.Several practical considerations for measuring concentrations of dissolved molecular hydrogen in groundwater including sampling methods, pumping methods, and effects of

  15. Reproducibility of measurements of trace gas concentrations in expired air.

    PubMed

    Strocchi, A; Ellis, C; Levitt, M D

    1991-07-01

    Measurement of the pulmonary excretion of trace gases has been used as a simple means of assessing metabolic reactions. End alveolar trace gas concentration, rather than excretory rate, is usually measured. However, the reproducibility of this measurement has received little attention. In 17 healthy subjects, duplicate collections of alveolar air were obtained within 1 minute of each other using a commercially available alveolar air sampler. The concentrations of hydrogen, methane, carbon monoxide, and carbon dioxide were measured. When the subject received no instruction on how to expire into the device, a difference of 28% +/- 19% (1SD) was found between duplicate determinations of hydrogen. Instructing the subjects to avoid hyperventilation or to inspire maximally and exhale immediately resulted in only minor reduction in variability. However, a maximal inspiration held for 15 seconds before exhalation reduced the difference to a mean of 9.6% +/- 8.0%, less than half that observed with the other expiratory techniques. Percentage difference of methane measurements with the four different expiratory techniques yielded results comparable to those obtained for hydrogen. In contrast, percentage differences for carbon monoxide measurements were similar for all expiratory techniques. When normalized to a PCO2 of 5%, the variability of hydrogen measurements with the breath-holding technique was reduced to 6.8% +/- 4.7%, a value significantly lower than that obtained with the other expiratory methods. This study suggests that attention to the expiratory technique could improve the accuracy of tests using breath hydrogen measurements.

  16. Electrochemical Evidence for Neuroglobin Activity on NO at Physiological Concentrations.

    PubMed

    Trashin, Stanislav; de Jong, Mats; Luyckx, Evi; Dewilde, Sylvia; De Wael, Karolien

    2016-09-02

    The true function of neuroglobin (Ngb) and, particularly, human Ngb (NGB) has been under debate since its discovery 15 years ago. It has been expected to play a role in oxygen binding/supply, but a variety of other functions have been put forward, including NO dioxygenase activity. However, in vitro studies that could unravel these potential roles have been hampered by the lack of an Ngb-specific reductase. In this work, we used electrochemical measurements to investigate the role of an intermittent internal disulfide bridge in determining NO oxidation kinetics at physiological NO concentrations. The use of a polarized electrode to efficiently interconvert the ferric (Fe(3+)) and ferrous (Fe(2+)) forms of an immobilized NGB showed that the disulfide bridge both defines the kinetics of NO dioxygenase activity and regulates appearance of the free ferrous deoxy-NGB, which is the redox active form of the protein in contrast to oxy-NGB. Our studies further identified a role for the distal histidine, interacting with the hexacoordinated iron atom of the heme, in oxidation kinetics. These findings may be relevant in vivo, for example, in blocking apoptosis by reduction of ferric cytochrome c, and gentle tuning of NO concentration in the tissues.

  17. Quality assured measurements of animal building emissions: odor concentrations.

    PubMed

    Jacobson, Larry D; Hetchler, Brian P; Schmidt, David R; Nicolai, Richard E; Heber, Albert J; Ni, Ji-Qin; Hoff, Steven J; Koziel, Jacek A; Zhang, Yuanhui; Beasley, David B; Parker, David B

    2008-06-01

    Standard protocols for sampling and measuring odor emissions from livestock buildings are needed to guide scientists, consultants, regulators, and policy-makers. A federally funded, multistate project has conducted field studies in six states to measure emissions of odor, coarse particulate matter (PM(10)), total suspended particulates, hydrogen sulfide, ammonia, and carbon dioxide from swine and poultry production buildings. The focus of this paper is on the intermittent measurement of odor concentrations at nearly identical pairs of buildings in each state and on protocols to minimize variations in these measurements. Air was collected from pig and poultry barns in small (10 L) Tedlar bags through a gas sampling system located in an instrument trailer housing gas and dust analyzers. The samples were analyzed within 30 hr by a dynamic dilution forced-choice olfactometer (a dilution apparatus). The olfactometers (AC'SCENT International Olfactometer, St. Croix Sensory, Inc.) used by all participating laboratories meet the olfactometry standards (American Society for Testing and Materials and European Committee for Standardization [CEN]) in the United States and Europe. Trained panelists (four to eight) at each laboratory measured odor concentrations (dilution to thresholds [DT]) from the bag samples. Odor emissions were calculated by multiplying odor concentration differences between inlet and outlet air by standardized (20 degrees C and 1 atm) building airflow rates.

  18. Long path DOAS measurements of atmospheric pollutants concentration

    NASA Astrophysics Data System (ADS)

    Geiko, Pavel P.; Smirnov, Sergey S.; Samokhvalov, Ignatii V.

    2015-11-01

    A differential optical absorption spectroscopy gas-analyzer consisted of a coaxial telescope, a spectrometer, an analyzer and retroreflector was successfully tested. A high pressure 150-W Xe arc lamp was employed as a light source. In order to record the spectra, a monochrometer with a grating and photodiode array was used. Gas analyzer spectral data bank includes more than 35 moleculas absorbed in UV spectral region. The measured absorption spectra were evaluated by using a least-squares fit to determine the average mixing ratio of each species in the atmosphere. As a result of experiments time series of concentrations of gases polluting the atmosphere were trace measured. Minimally detected concentration on pathlength 480 m is the unit of ppb at the time of accumulation of 2 min. The results of the field test measurements of pollutants in Tomsk city are presented.

  19. Boron concentration measurement in biological tissues by charged particle spectrometry.

    PubMed

    Bortolussi, S; Altieri, S

    2013-11-01

    Measurement of boron concentration in biological tissues is a fundamental aspect of boron neutron capture therapy, because the outcome of the therapy depends on the distribution of boron at a cellular level, besides on its overall concentration. This work describes a measurement technique based on the spectroscopy of the charged particles emitted in the reaction (10)B(n,α)(7)Li induced by thermal neutrons, allowing for a quantitative determination of the boron concentration in the different components that may be simultaneously present in a tissue sample, such as healthy cells, tumor cells and necrotic cells. Thin sections of tissue containing (10)B are cut at low temperatures and irradiated under vacuum in a thermal neutron field. The charged particles arising from the sample during the irradiation are collected by a thin silicon detector, and their spectrum is used to determine boron concentration through relatively easy calculations. The advantages and disadvantages of this technique are here described, and validation of the method using tissue standards with known boron concentrations is presented.

  20. Estimates of CO2 traffic emissions from mobile concentration measurements

    NASA Astrophysics Data System (ADS)

    Maness, H. L.; Thurlow, M. E.; McDonald, B. C.; Harley, R. A.

    2015-03-01

    We present data from a new mobile system intended to aid in the design of upcoming urban CO2-monitoring networks. Our collected data include GPS probe data, video-derived traffic density, and accurate CO2 concentration measurements. The method described here is economical, scalable, and self-contained, allowing for potential future deployment in locations without existing traffic infrastructure or vehicle fleet information. Using a test data set collected on California Highway 24 over a 2 week period, we observe that on-road CO2 concentrations are elevated by a factor of 2 in congestion compared to free-flow conditions. This result is found to be consistent with a model including vehicle-induced turbulence and standard engine physics. In contrast to surface concentrations, surface emissions are found to be relatively insensitive to congestion. We next use our model for CO2 concentration together with our data to independently derive vehicle emission rate parameters. Parameters scaling the leading four emission rate terms are found to be within 25% of those expected for a typical passenger car fleet, enabling us to derive instantaneous emission rates directly from our data that compare generally favorably to predictive models presented in the literature. The present results highlight the importance of high spatial and temporal resolution traffic data for interpreting on- and near-road concentration measurements. Future work will focus on transport and the integration of mobile platforms into existing stationary network designs.

  1. Measuring Substantial Reductions in Activity

    PubMed Central

    Schafer, Charles; Evans, Meredyth; Jason, Leonard A.; So, Suzanna; Brown, Abigail

    2015-01-01

    The case definitions for Myalgic Encephalomyelitis/chronic fatigue syndrome (ME/CFS), Myalgic Encephalomyelitis (ME), and chronic fatigue syndrome (CFS) each include a disability criterion requiring substantial reductions in activity in order to meet diagnostic criteria. Difficulties have been encountered in defining and operationalizing the substantial reduction disability criterion within these various illness definitions. The present study sought to relate measures of past and current activities in several domains including the SF-36, an objective measure of activity (e.g. actigraphy), a self-reported quality of life scale, and measures of symptom severity. Results of the study revealed that current work activities had the highest number of significant associations with domains such as the SF-36 subscales, actigraphy, and symptom scores. As an example, higher self-reported levels of current work activity were associated with better health. This suggests that current work related activities may provide a useful domain for helping operationalize the construct of substantial reductions in activity. PMID:25584524

  2. Intra-fuel cell stack measurements of transient concentration distributions

    NASA Astrophysics Data System (ADS)

    Partridge, W. P.; Toops, T. J.; Green, J. B.; Armstrong, T. R.

    Intra-fuel-cell measurements are required to understand detailed fuel-cell chemistry and physics, validate models, optimize system design and control, and realize enhanced efficiency regimes; in comparison, conventional integrated fuel-cell supply and effluent measurements are fundamentally limited in value. Intra-reactor measurements are needed for all fuel cell types. This paper demonstrates the ability of a capillary-inlet mass spectrometer to resolve transient species distributions within operating polymer-electrolyte-membrane (PEM) fuel cells and at temperatures typical of solid-oxide fuel cells (SOFC). This is the first such demonstration of a diagnostic that is sufficiently minimally invasive as to allow measurements throughout an operating fuel cell stack. Measurements of transient water, hydrogen, oxygen and diluent concentration dynamics associated with fuel-cell load switching suggest oxygen-limited chemistry. Intra-PEM fuel cell measurements of oxygen distribution at various fuel-cell loads are used to demonstrate concentration gradients, non-uniformities, and anomalous fuel cell operation.

  3. Measurement of photodynamic therapy drug concentrations in a tissue

    SciTech Connect

    Mourant, J.; Biglo, I.; Johnson, T.

    1996-09-01

    This is the final report of a one-year laboratory-directed research and development project at the Los Alamos National Laboratory (LANL). Photodynamic therapy (PDT) is an experimental treatment modality for cancer in which a photoactive molecule with an affinity for tumors in administered to the patient, then excited by light. Photoactivation creates singlet oxygen consequently killing the tissue. Knowledge of the concentration of the photoactive compound in the tissue is necessary for proper light dosimetry during PDT. Presently, the control of light application is problematic. If too much light is applied, damage to the surrounding tissue will occur. If insufficient light is applied, the targeted tissue volume will remain viable. The ideal implementation of PDT would use a feedback system for light delivery that incorporates the optical properties of the tissue and knowledge of the concentration of the photoactive compound. This project sought to develop a method for measuring photosensitizer concentrations in tissue phantoms that will lead to a noninvasive, endoscopically compatible, in vivo method of measuring PST drug concentrations.

  4. Range-resolved gas concentration measurements using tunable semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Lytkine, A.; Lau, B.; Lim, A.; Jäger, W.; Tulip, J.

    2008-02-01

    A method for range-resolved gas sensing using path-integrated optical systems is presented. The method involves dividing an absorption path into several measurement segments and extracting the gas concentration in each segment from two path-integrated measurements. We implemented the method with tunable lasers (a 1389-nm VCSEL and a 10.9-μm pulsed quantum cascade laser) and a group of retro reflectors (RRs) distributed along absorption paths. Using a rotating mirror with the VCSEL configuration, we could scan a group of seven tape RRs spaced by 10 cm in ˜ 9 ms to extract an H2O concentration profile. Reduced H2O concentrations were recorded in the segments purged with dry air. Hollow corner cube RRs were used in the quantum cascade laser configuration at distances up to 1.1 km from the laser. Two RRs placed at 66 m and 125 m from the laser allowed us to determine H2O concentrations in both segments. The RRs returns were separated due to the different round trip travel time of the 200-ns laser pulse. Novel instruments for range-resolved remote sensing in the atmosphere can be developed for a variety of applications, including monitoring the fluxes of atmospheric pollutants and controlling air quality in populated areas.

  5. Diode Laser Measurements of Concentration and Temperature in Microgravity Combustion

    NASA Technical Reports Server (NTRS)

    Silver, Joel A.; Kane, Daniel J.

    1999-01-01

    Diode laser absorption spectroscopy provides a direct method of determinating species concentration and local gas temperature in combustion flames. Under microgravity conditions, diode lasers are particularly suitable, given their compact size, low mass and low power requirements. The development of diode laser-based sensors for gas detection in microgravity is presented, detailing measurements of molecular oxygen. Current progress of this work and future application possibilities for these methods on the International Space Station are discussed.

  6. Converting near-bottom OBS measurements into suspended sediment concentrations

    USGS Publications Warehouse

    Xu, J. P.

    1997-01-01

    A method of estimating the mass proportion of nonhomogeneous sediment constituents in suspension is presented. This method provides a more accurate conversion of OBS measurements (volts) to suspended sediment concentrations (grams per liter). Given a set of calibration coefficients of end-members, the method allows one to obtain the spatially and temporally varying in situ coefficients that are used in the conversion. Field and/or laboratory experiments are needed to verify the method.

  7. Microscale Concentration Measurements Using Laser Light Scattering Methods

    NASA Technical Reports Server (NTRS)

    Niederhaus, Charles; Miller, Fletcher

    2004-01-01

    The development of lab-on-a-chip devices for microscale biochemical assays has led to the need for microscale concentration measurements of specific analyses. While fluorescence methods are the current choice, this method requires developing fluorophore-tagged conjugates for each analyte of interest. In addition, fluorescent imaging is also a volume-based method, and can be limiting as smaller detection regions are required.

  8. Measuring Low Concentrations of Liquid Water in Soil

    NASA Technical Reports Server (NTRS)

    Buehler, Martin

    2009-01-01

    An apparatus has been developed for measuring the low concentrations of liquid water and ice in relatively dry soil samples. Designed as a prototype of instruments for measuring the liquidwater and ice contents of Lunar and Martian soils, the apparatus could also be applied similarly to terrestrial desert soils and sands. The apparatus is a special-purpose impedance spectrometer: Its design is based on the fact that the electrical behavior of a typical soil sample is well approximated by a network of resistors and capacitors in which resistances decrease and capacitances increase (and, hence, the magnitude of impedance decreases) with increasing water content.

  9. Measuring Cytokine Concentrations Using Magnetic Spectroscopy of Nanoparticle Brownian Relaxation

    NASA Astrophysics Data System (ADS)

    Khurshid, Hafsa; Shi, Yipeng; Weaver, John

    The magnetic particle spectroscopy is a newly developed non-invasive technique for obtaining information about the nanoparticles' micro environment. In this technique the nanoparticles' magnetization, induced by an alternating magnetic field at various applied frequencies, is processed to analyze rotational freedom of nanoparticles. By analyzing average rotational freedom, it is possible to measure the nanoparticle's relaxation time, and hence get an estimate of the temperature and viscosity of the medium. In molecular concentration sensing, the rotational freedom indicates the number of nanoparticles that are bound by a selected analyte. We have developed microscopic nanoparticles probes to measure the concentration of selected molecules. The nanoparticles are targeted to bind the selected molecule and the resulting reduction in rotational freedom can be quantified remotely. Previously, sensitivity measurements has been reported to be of the factor of 200. However, with our newer perpendicular field setup (US Patent Application Serial No 61/721,378), it possible to sense cytokine concentrations as low as 5 Pico-Molar in-vitro. The excellent sensitivity of this apparatus is due to isolation of the drive field from the signal so the output can be amplified to a higher level. Dartmouth College.

  10. Complex Spontaneous Flows and Concentration Banding in Active Polar Films

    NASA Astrophysics Data System (ADS)

    Giomi, Luca; Marchetti, M. Cristina; Liverpool, Tanniemola B.

    2008-11-01

    We study the dynamical properties of active polar liquid crystalline films. Like active nematic films, active polar films undergo a dynamical transition to spontaneously flowing steady states. Spontaneous flow in polar fluids is, however, always accompanied by strong concentration inhomogeneities or “banding” not seen in nematics. In addition, a spectacular property unique to polar active films is their ability to generate spontaneously oscillating and banded flows even at low activity. The oscillatory flows become increasingly complicated for strong polarity.

  11. Concentration measurement of yeast suspensions using high frequency ultrasound backscattering.

    PubMed

    Elvira, Luis; Vera, Pedro; Cañadas, Francisco Jesús; Shukla, Shiva Kant; Montero, Francisco

    2016-01-01

    This work proposes the use of an ultrasound based technique to measure the concentration of yeasts in liquid suspension. This measurement was achieved by the detection and quantification of ultrasonic echoes backscattered by the cells. More specifically, the technique was applied to the detection and quantification of Saccharomyces cerevisiae. A theoretical approach was proposed to get the average density and sound speed of the yeasts, which were found to be 1116 kg/m(3) and 1679 m/s, respectively. These parameters were needed to model the waves backscattered by each single cell. A pulse-echo arrangement working around 50 MHz, being able to detect echoes from single yeasts was used to characterize experimentally yeast solutions from 10(2) to 10(7)cells/ml. The Non-negative Matrix Factorization denoising technique was applied for data analysis. This technique required a previous learning of the spectral patterns of the echoes reflected from yeasts in solution and the base noise from the liquid medium. Comparison between pulse correlation (without denoising) and theoretical and experimental pattern learning was made to select the best signal processing. A linear relation between ultrasound output and concentration was obtained with correlation coefficient R(2)=0.996 for the experimental learning. Concentrations from 10(4) to 10(7)cells/ml were detected above the base noise. These results show the viability of using the ultrasound backscattering technique to detect yeasts and measure their concentration in liquid cultures, improving the sensitivity obtained using spectrophotometric methods by one order of magnitude.

  12. X-ray speckle measurements of concentrated nanoemulsions under shear

    NASA Astrophysics Data System (ADS)

    Abidib, Samy; Rogers, Michael; Leheny, Robert; Chen, Kui; Mason, Thomas; Harden, James

    We present in situ X-ray Photon Correlation Spectroscopy (XPCS) measurements of a set of concentrated nanoemulsions subjected to oscillatory shear. The nanoemulsion set contained samples with varying packing fractions of oil droplets (r 20nm) above the jamming transition. In order to study their elasticity, yielding, and flow at various shear amplitudes, we employed stroboscopic coherent X-ray scattering measurements triggered at the maximums of the shear cycle. The degree of correlation between speckle in images taken a full period apart is a direct measurement of particle rearrangements during cycling. A comparison of such XPCS ``echo'' measurements with rheological measurements shows an onset of irreversible particle motion at shear strains below the crossover of the storage and loss moduli, which is typically used to indicate the transition to viscoplastic flow. Moreover, the XPCS echo measurements indicate that particle irreversibility increases rapidly with shear amplitude, in contrast to the comparably smooth transition to yielding shown in bulk rheology measurements. However, the macroscopic yield strain observed in rheology and the microscopic yield strain identified from XPCS, which were strong functions of droplet packing fraction, tracked each other closely.

  13. Detecting low concentrations of plutonium hydride with magnetization measurements

    SciTech Connect

    Kim, Jae Wook; Mun, E. D.; Baiardo, J. P.; Zapf, V. S.; Mielke, C. H.; Smith, A. I.; Richmond, S.; Mitchell, J.; Schwartz, D.

    2015-02-07

    We report the formation of plutonium hydride in 2 at. % Ga-stabilized δ-Pu, with 1 at. % H charging. We show that magnetization measurements are a sensitive, quantitative measure of ferromagnetic plutonium hydride against the nonmagnetic background of plutonium. It was previously shown that at low hydrogen concentrations, hydrogen forms super-abundant vacancy complexes with plutonium, resulting in a bulk lattice contraction. Here, we use magnetization, X-ray, and neutron diffraction measurements to show that in addition to forming vacancy complexes, at least 30% of the H atoms bond with Pu to precipitate PuH{sub x} on the surface of the sample with x ∼ 1.9. We observe magnetic hysteresis loops below 40 K with magnetic remanence, consistent with ferromagnetic PuH{sub 1.9}.

  14. Measurement of indoor and outdoor radon concentrations during Superstorm Sandy.

    PubMed

    Kotrappa, Payasada; Paul, Prateek; Stieff, Alex; Stieff, Frederick

    2013-12-01

    Superstorm Sandy affected much of the US East Coast extending over 1800 km. It passed over the test location in the State of Maryland on 29 October 2012. Being 350 km away from the regions of highest intensity the storm was of lower intensity at the test location. Continuous radon monitors and passive radon monitors were used for the measurement. The test location was the basement of a single family home representing the indoor concentration. A partially opened garage of the same test home represented the outdoor radon concentration. In 24 h, the atmospheric pressure dropped from 990 to 960 mbar and the indoor radon concentration increased from 70 to 1500 Bq m(-3) and returned to the normal of 70 Bq m(-3) at the end of the storm. Throughout the storm, the outdoor radon concentration was not significantly affected. Probable reasons for such surprisingly large changes are discussed. However, the outdoor temperature dropped from 13°C to 7°C during the radon peak.

  15. How reliable are crystalline silica dust concentration measurements?

    PubMed

    Cox, L A; Van Orden, D R; Lee, R J; Arlauckas, S M; Kautz, R A; Warzel, A L; Bailey, K F; Ranpuria, A K

    2015-10-01

    To determine how reliably commercial laboratories measure crystalline silica concentrations corresponding to OSHA's proposed limits, 105 filters were prepared with known masses of 20, 40, and 80 μg of respirable quartz corresponding to airborne silica concentrations of 25, 50, and 100 μg/m(3) and were submitted, in a blind test, to qualified commercial laboratories over a nine month period. Under these test conditions, the reported results indicated a lack of accuracy and precision needed to reliably inform regulatory compliance decisions. This was true even for filters containing only silica, without an interfering matrix. For 36 filters loaded with 20 or more micrograms of silica, the laboratories reported non-detected levels of silica. Inter-laboratory variability in this performance test program was so high that the reported results could not be used to reliably discriminate among filters prepared to reflect 8-h exposures to respirable quartz concentrations of 25, 50 and 100 μg/m(3). Moreover, even in intra-laboratory performance, there was so much variability in the reported results that 2-fold variations in exposure concentrations could not be reliably distinguished. Part of the variability and underreporting may result from the sample preparation process. The results of this study suggest that current laboratory methods and practices cannot necessarily be depended on, with high confidence, to support proposed regulatory standards with reliable data.

  16. IR spectroscopy vs. Raman scattering by measurement of glucose concentration

    NASA Astrophysics Data System (ADS)

    Abdallah, O.; Hansmann, J.; Bolz, A.; Mertsching, H.

    2010-11-01

    By developing a non-invasive device for glucose concentration measurement, two promising methods were compared for that aim. The Raman scattering using Laser at the wavelength 785 nm and the light scattering in R- and IR-range are demonstrated. An easy accessible and low-cost method for glucose concentration monitoring and management to avoid its complications will be a great help for diabetic patients. Raman Scattering is a promising method for noninvasively measuring of glucose and for the diagnostic of pathological tissue variations. Despite the power and the time of measurement can be reduced using enhanced Raman scattering, it will be difficult to develop a compatible device with low power Laser and low price for a non-invasive method for home monitoring. As using IR-spectroscopy at wavelengths slightly below 10000 nm, the absorption of glucose can be well discriminated from that of water, LED`s or LD's at these wavelengths are very expensive for this purpose. At wavelengths about 6250 and 7700 glucose has a less light absorption than water. Also slightly above 3000 nm glucose has a high absorption. There are also possibilities for the measurement in the NIR at wavelengths between 1400 nm and 1670 nm. Scattering measurements at wavelengths below 900 nm and our measurements with the wavelength about 640 nm give reproducible glucose dependence on the reflected light from a glucose solution at a constant temperature. A multi-sensor with different wavelengths and temperature sensor will be a good choice for in-vivo glucose monitoring.

  17. Daily and seasonal variations in radon activity concentration in the soil air.

    PubMed

    Műllerová, Monika; Holý, Karol; Bulko, Martin

    2014-07-01

    Radon activity concentration in the soil air in the area of Faculty of Mathematics, Physics and Informatics (FMPI) in Bratislava, Slovak Republic, has been continuously monitored since 1994. Long-term measurements at a depth of 0.8 m and short-term measurements at a depth of 0.4 m show a high variability in radon activity concentrations in the soil. The analysis of the data confirms that regular daily changes in radon activity concentration in the soil air depend on the daily changes in atmospheric pressure. It was also found that the typical annual courses of the radon activity concentration in the soil air (with summer minima and winter maxima) were disturbed by mild winter and heavy summer precipitation. Influence of precipitation on the increase in the radon activity concentration in the soil air was observed at a depth of 0.4 m and subsequently at a depth of 0.8 m.

  18. Nonionic surfactants enhancing bactericidal activity at their critical micelle concentrations.

    PubMed

    Tobe, Seiichi; Majima, Toshiaki; Tadenuma, Hirohiko; Suekuni, Tomonari; Sakai, Kenichi; Sakai, Hideki; Abe, Masahiko

    2015-01-01

    Bactericidal activities of benzalkonium chloride [also known as alkyldimethylbenzylammonium chloride (ADBAC)] containing nonionic surfactants such as methyl ester ethoxylates (MEE) with the alkyl group C8-C14 and oxyethylene (EO) group of average adduct number 3-15 were measured against Escherichia coli and Staphylococcus aureus. Sample solutions containing MEE in the vicinity of the critical micelle concentration exhibited a dramatic decrease in viable bacterial counts. MEE with an alkyl group of C12 and an oxyethylene group of lower adduct number exhibited little viable bacterial counts than those having higher EO adduct numbers. MEE with reduced EO adduct numbers increased fluorescence intensity in E. coli using the viability stain SYTO 9. Our results show that MEE molecules with low EO adduct numbers exhibited bactericidal activity by increasing the permeability of the E. coli cell membrane. Sample solution containing ADBAC and MEE molecules with lower EO adduct numbers also displayed higher zeta potentials. Moreover, ADBAC molecules incorporated into micelles of MEE with lower EO adduct numbers were adsorbed onto the surface of E. coli, which augmented bactericidal activity.

  19. Plasma drug concentrations and physiological measures in 'dance party' participants.

    PubMed

    Irvine, Rodney J; Keane, Michael; Felgate, Peter; McCann, Una D; Callaghan, Paul D; White, Jason M

    2006-02-01

    The increasing use of (+/-) 3,4-methylenedioxymethamphetamine (MDMA) in the setting of large dance parties ('raves') and clubs has been the source of some concern, because of potential acute adverse events, and because animal studies suggest that MDMA has the potential to damage brain serotonin (5-HT) neurons. However, it is not yet known whether MDMA, as used in the setting of dance parties, leads to plasma levels of MDMA that are associated with toxicity to 5-HT neurons in animals. The present study sought to address this question. Plasma MDMA concentrations, vital signs, and a variety of blood and urine measures were obtained prior to, and hours after, individuals attended a dance party. After the dance party, subjects were without clinical complaints, had measurable amounts of residual MDMA in plasma, and nearly half of the subjects also tested positive for methamphetamine, another amphetamine analog that has been shown to have 5-HT neurotoxic potential in animals. Plasma concentrations of MDMA did not correlate with self-reported use of 'ecstasy' and, in some subjects, overlapped with those that have been associated with 5-HT neurotoxicity in non-human primates. Additional subjects were likely to have had similar concentrations while at the dance party, when one considers the reported time of drug ingestion and the plasma half-life of MDMA in humans. Hematological and biochemical analyses were generally unremarkable. Moderate increases in blood pressure, heart rate and body temperature were observed in the subjects with the highest MDMA plasma concentrations. These findings are consistent with epidemiological findings that most people who use MDMA at dance parties do not develop serious clinical complications, and suggest that some of these individuals may be at risk for developing MDMA-induced toxicity to brain serotonin neurons.

  20. An evaluation of the effect of age and the peri-parturient period on bone metabolism in dairy cows as measured by serum bone-specific alkaline phosphatase activity and urinary deoxypyridinoline concentration.

    PubMed

    Sato, Reiichiro; Onda, Ken; Kato, Hajime; Ochiai, Hideharu; Kawai, Kazuhiro; Iriki, Tsunenori; Kaneko, Kazuyuki; Yamazaki, Yukio; Wada, Yasunori

    2013-08-01

    Various biochemical markers help to evaluate the state of bone turnover in humans and could be used during the peri-parturient period in dairy cows when calcium (Ca) metabolism changes dramatically. To investigate this, the peri-partum characteristics of serum bone-specific alkaline phosphatase (BAP) and urinary deoxypyridinoline (DPD) were investigated. Both serum BAP activity and urinary DPD concentrations were increased and demonstrated wide variability in younger animals, and these findings were consistent with other bone turnover markers. Around the time of parturition, serum Ca concentration and serum BAP activity in multiparous cows were significantly lower than in primiparous cows, but urinary DPD concentration was unchanged. The use of BAP as a bone formation marker appears to be valuable for evaluating bone remodelling status in cows, but the specificity of the test needs to be confirmed. The DPD/BAP ratio around parturition demonstrated a clear difference in bone turnover status between the two parity groups with multiparous cows demonstrating increased signs of bone resorption compared with primiparous cows, corresponding to the Ca requirement for milk production. In future studies, the applicability of the ratio of bone resorption marker to bone formation marker should be evaluated for bone turnover assessment.

  1. Dense gas boundary layer experiments: Visualization, pressure measurements, concentration evaluation

    SciTech Connect

    Reichenbach, H.; Neuwald, P.; Kuhl, A.L.

    1992-11-01

    This technical report describes methods that were applied to investigate turbulent boundary layers generated by inviscid, baroclinic effects. The Cranz-Schardin 24-sparks camera was used to visualize the interactions of a planar shock wave with a Freon R12-layer. The shock propagates more slowly in the Freon layer than in air because of its smaller sound speed. This causes the shock front to be curved and to be reflected between the wall and the layer interface. As a consequence of the reflection process, a series of compression and expansion waves radiate from the layer. Large fluctuations in the streamwise velocity and in pressure develop for about 1 ms. These waves strongly perturb the interface shear layer, which rapidly transitions to a turbulent boundary flow. Pressure measurements showed that the fluctuations in the Freon layer reach a peak pressure 4 times higher than in the turbulent boundary flow. To characterize the preshock Freon boundary layer, concentration measurements were performed with a differential interferometry technique. The refraction index of Freon R12 is so high that Mach-Zehnder interferometry was not successful in these experiments. The evaluation of the concentration profile is described here in detail. Method and results of corresponding LDV measurements under the same conditions are presented in a different report, EMI Report T 9/92. The authors plan to continue the dense gas layer investigations with the gas combination helium/Freon.

  2. Measurement of concentration of sugar in solutions with laser speckle decorrelation

    NASA Astrophysics Data System (ADS)

    Mahajan, Swapnil; Trivedi, Vismay; Chhaniwal, Vani; Prajapati, Mahendra; Zalevsky, Zeev; Javidi, Bahram; Anand, Arun

    2015-05-01

    Measurement of rotation of plane of polarization of linearly polarized light can provide information about the concentration of the optically active system with which it interacts. For substances containing sugar, accurate measurement of rotation of linearly polarized light can provide quantitative information about concentration of sugar in the material. Measurement of sugar concentration is important in areas ranging from blood sugar level measurement in body fluids to measurement of sugar concentrations in juices and other beverages. But in many of these cases, the changes introduced to the state of polarization considering a sample of practical proportion is low and the measurement of low optical rotations becomes necessary. So methods with higher sensitivity, accuracy and resolution need to be developed for the measurement of low optical rotations. Here we describe the development of a compact, low cost, field portable, device for rotation sensing leading to sugar concentration measurements, using speckle de-correlation technique. The developed device measures rotations by determining the changes occurring to a speckle pattern generated by a laser beam passing through the medium under investigation. The device consists of a sample chamber, a diode laser module, a ground glass diffuser and a digital sensor for recording of laser speckle patterns. The device was found to have high resolution and sensitivity.

  3. Black Carbon Concentration from Worldwide Aerosol Robotic Network (AERONET) Measurements

    NASA Technical Reports Server (NTRS)

    Schuster, Gregory L.; Dubovik, Oleg; Holben, Brent N.; Clothiaux, Eugene E.

    2006-01-01

    The carbon emissions inventories used to initialize transport models and general circulation models are highly parameterized, and created on the basis of multiple sparse datasets (such as fuel use inventories and emission factors). The resulting inventories are uncertain by at least a factor of 2, and this uncertainty is carried forward to the model output. [Bond et al., 1998, Bond et al., 2004, Cooke et al., 1999, Streets et al., 2001] Worldwide black carbon concentration measurements are needed to assess the efficacy of the carbon emissions inventory and transport model output on a continuous basis.

  4. Spectrally-resolved measurement of concentrated light distributions for Fresnel lens concentrators.

    PubMed

    Besson, P; White, P McVey; Dominguez, C; Voarino, P; Garcia-Linares, P; Lemiti, M; Schriemer, H; Hinzer, K; Baudrit, M

    2016-01-25

    A test method that measures spectrally resolved irradiance distribution for a concentrator photovoltaic (CPV) optical system is presented. In conjunction with electrical I-V curves, it is a means to visualize and characterize the effects of chromatic aberration and nonuniform flux profiles under controllable testing conditions. The indoor characterization test bench, METHOD (Measurement of Electrical, Thermal and Optical Devices), decouples the temperatures of the primary optical element (POE) and the cell allowing their respective effects on optical and electrical performance to be analysed. In varying the temperature of the POE, the effects on electrical efficiency, focal distance, spectral sensitivity, acceptance angle and multi-junction current matching profiles can be quantified. This work presents the calibration procedures to accurately image the spectral irradiance distribution of a CPV system and a study of system behavior over lens temperature.

  5. A bioassay for the measurement of insecticide concentration.

    PubMed

    Grant, R J

    2001-10-01

    A bioassay was developed to measure insecticide residues using fruit flies (Drosophila melongaster). After adding a known volume of sampling solution, the time at which 50% of the flies were dead (LT(50)) was recorded and cross-referenced to the appropriate calibration curve. Using known standards, comparable results were obtained using the bioassay and GC-MS. The bioassay allows concentrations of synthetic pyrethroids as low as 1 pg L(-1) to be measured with a variance of < 5%. The bioassay can be used reliably over a wide range of temperatures and it is tolerant to a range of pH and surface tensions of the test solution. The whole bioassay is compact, physically robust, and simple to use; hence, it could be of use in the field as a quick preliminary assessment of water contamination.

  6. Ultraviolet absorption: Experiment MA-059. [measurement of atmospheric species concentrations

    NASA Technical Reports Server (NTRS)

    Donahue, T. M.; Hudson, R. D.; Rawlins, W. T.; Anderson, J.; Kaufman, F.; Mcelroy, M. B.

    1977-01-01

    A technique devised to permit the measurement of atmospheric species concentrations is described. This technique involves the application of atomic absorption spectroscopy and the quantitative observation of resonance fluorescence in which atomic or molecular species scatter resonance radiation from a light source into a detector. A beam of atomic oxygen and atomic nitrogen resonance radiation, strong unabsorbable oxygen and nitrogen radiation, and visual radiation was sent from Apollo to Soyuz. The density of atomic oxygen and atomic nitrogen between the two spacecraft was measured by observing the amount of resonance radiation absorbed when the line joining Apollo and Soyuz was perpendicular to their velocity with respect to the ambient atmosphere. Results of postflight analysis of the resonance fluorescence data are discussed.

  7. Variability of atmospheric krypton-85 activity concentrations observed close to the ITCZ in the southern hemisphere.

    PubMed

    Bollhöfer, A; Schlosser, C; Ross, J O; Sartorius, H; Schmid, S

    2014-01-01

    Krypton-85 activity concentrations in surface air have been measured at Darwin, which is located in northern Australia and is influenced by seasonal monsoonal activity. Measurements between August 2007 and May 2010 covered three wet seasons. The mean activity concentration of krypton-85 measured during this period was 1.31±0.02Bqm(-3). A linear model fitted to the average monthly data, using month and monsoon as predictors, shows that krypton-85 activity concentration measured during the sampling period has declined by 0.01Bqm(-3) per year. Although there is no statistically significant difference in mean activity concentration of krypton-85 between wet and dry season, the model implies that activity concentration is higher by about 0.015Bqm(-3) during months influenced by the monsoon when a north westerly flow prevails. Backward dispersion runs using the Lagrangian particle dispersion model Hysplit4 highlight possible source regions during an active monsoon located deep in the northern hemisphere, and include reprocessing facilities in Japan and India. However, the contribution of these facilities to krypton-85 activity concentrations in Darwin would be less than 0.003Bqm(-3).

  8. Measurement of airborne particle concentrations near the Sunset Crater volcano, Arizona.

    PubMed

    Benke, Roland R; Hooper, Donald M; Durham, James S; Bannon, Donald R; Compton, Keith L; Necsoiu, Marius; McGinnis, Ronald N

    2009-02-01

    Direct measurements of airborne particle mass concentrations or mass loads are often used to estimate health effects from the inhalation of resuspended contaminated soil. Airborne particle mass concentrations were measured using a personal sampler under a variety of surface-disturbing activities within different depositional environments at both volcanic and nonvolcanic sites near the Sunset Crater volcano in northern Arizona. Focused field investigations were performed at this analog site to improve the understanding of natural and human-induced processes at Yucca Mountain, Nevada. The level of surface-disturbing activity was found to be the most influential factor affecting the measured airborne particle concentrations, which increased over three orders of magnitude relative to ambient conditions. As the surface-disturbing activity level increased, the particle size distribution and the majority of airborne particle mass shifted from particles with aerodynamic diameters less than 10 mum (0.00039 in) to particles with aerodynamic diameters greater than 10 mum (0.00039 in). Under ambient conditions, above average wind speeds tended to increase airborne particle concentrations. In contrast, stronger winds tended to decrease airborne particle concentrations in the breathing zone during light and heavy surface-disturbing conditions. A slight increase in the average airborne particle concentration during ambient conditions was found above older nonvolcanic deposits, which tended to be finer grained than the Sunset Crater tephra deposits. An increased airborne particle concentration was realized when walking on an extremely fine-grained deposit, but the sensitivity of airborne particle concentrations to the resuspendible fraction of near-surface grain mass was not conclusive in the field setting when human activities disturbed the bulk of near-surface material. Although the limited sample size precluded detailed statistical analysis, the differences in airborne particle

  9. Development of a continuous aerosol mass concentration measurement device.

    PubMed

    Bémer, D; Thomas, D; Contal, P; Subra, I

    2003-08-01

    A dynamic aerosol mass concentration measurement device has been developed for personal sampling. Its principle consists in sampling the aerosol on a filter and monitoring the change of pressure drop over time (Delta P). Ensuring that the linearity of the Delta P = f(mass of particles per unit area of filter) relationship has been well established, the change of concentration can be deduced. The response of the system was validated in the laboratory with a 3.5 microm alumina aerosol (mass median diameter) generated inside a 1-m(3) ventilated enclosure. As the theory predicted that the mass sensitivity of the system would vary inversely with the square of the particle diameter, only sufficiently fine aerosols were able to be measured. The system was tested in the field in a mechanical workshop in the vicinity of an arc-welding station. The aerosol produced by welding is indeed particularly well-adapted due to the sub-micronic size of the particles. The device developed, despite this limitation, has numerous advantages over other techniques: robustness, compactness, reliability of calibration, and ease of use.

  10. Fluorescence lifetime measurements of boronate derivatives to determine glucose concentration

    SciTech Connect

    Gable, J H

    2000-06-01

    A novel investigation into the fluorescence lifetimes of molecules, both established and newly designed, was performed. These molecules are the basis of a continuous, minimally invasive, glucose sensor based on fluorescence lifetime measurements. This sensor, if coupled with an automated insulin delivery device, would effectively create an artificial pancreas allowing for the constant monitoring and control of glucose levels in a person with diabetes. The proposed sensor includes a fluorescent molecule that changes its' fluorescence properties upon binding selectively and reversibly to glucose. One possible sensor molecule is N-methyl-N-(9-methylene anthryl)-2-methylenephenylboronic acid (AB). The fluorescence intensity of AB was shown to change in response to changing glucose concentrations. (James, 1994) James proposed that when glucose binds to AB the fluorescence intensity increases due to an enhancement of the N{yields}B dative bond which prevents photoinduced electron transfer (PET). PET from the amine (N) to the fluorophore (anthracene) quenches the fluorescence. The dative bond between the boron and the amine can prevent PET by involving the lone pair of electrons on the amine in interactions with the boron rather than allowing them to be transferred to the fluorophore. Results of this research show the average fluorescence lifetime of AB also changes with glucose concentration. It is proposed that fluorescence is due to two components: (1) AB with an enhanced N{yields}B interaction, and no PET, and (2) AB with a weak N{yields}B interaction, resulting in fluorescence quenching by PET. Lifetime measurements of AB as a function of both the pH of the solvent and glucose concentration in the solution were made to characterize this two component system and investigate the nature of the N{yields}B bond. Measurements of molecules similar to AB were also performed in order to isolate behavior of specific AB constituents. These molecules are 9-(Methylaminomethyl

  11. Non-invasive measurement of chemotherapy drug concentrations in tissue: preliminary demonstrations of in vivo measurements

    NASA Astrophysics Data System (ADS)

    Mourant, Judith R.; Johnson, Tamara M.; Los, Gerrit; Bigio, Irving J.

    1999-05-01

    Measurements of the tissue concentrations of two chemotherapy agents have been made in vivo on an animal tumour model. The method used is based on elastic-scattering spectroscopy (ESS) and utilizes a fibre-optic probe spectroscopic system. A broadband light source is used to acquire data over a broad range of wavelengths and, therefore, to facilitate the separation of absorptions from various chromophores. The results of the work include measurements of the time course of the drug concentrations as well as a comparison of the optical measurements with high-performance liquid chromatography (HPLC) analysis of the drug concentrations at the time of sacrifice. It is found that the optical measurements correlate linearly with HPLC measurements, but give lower absolute values.

  12. Guarded capacitance probes for measuring particle concentration and flow

    DOEpatents

    Louge, M.Y.

    1995-10-17

    Guarded capacitance probe structures are constructed with guard electrodes surrounding one or more sensor electrodes and ground electrodes or grounded surfaces surrounding the guard electrodes. In a one sensor embodiment, the probe utilizes an apertured sensor electrode and the guard electrode both surrounds the sensor electrode and fills the aperture. This embodiment is particularly useful for measuring particle concentration in a fluid suspension contained within a vessel or pipe. The portion of the guard electrode within the aperture of the sensor electrode prevents electric field lines from emanating from the sensor electrode into the fluid suspension and toward infinity. A two sensor embodiment of the probe is useful for measuring flow velocities of fluid suspensions through cross correlation of the outputs generated by each sensor. The relative dimensions of the guard and sensor electrodes are selected to provide the most accurate measurements by confining the electric lines emanating from the sensor electrode or electrodes and terminating on the surrounding grounded surfaces to a small measurement volume of the fluid suspension near the vessel or pipe wall. 14 figs.

  13. Guarded capacitance probes for measuring particle concentration and flow

    DOEpatents

    Louge, Michel Y.

    1995-01-01

    Guarded capacitance probe structures are constructed with guard electrodes surrounding one or more sensor electrodes and ground electrodes or grounded surfaces surrounding the guard electrodes. In a one sensor embodiment, the probe utilizes an apertured sensor electrode and the guard electrode both surrounds the sensor electrode and fills the aperture. This embodiment is particularly useful for measuring particle concentration in a fluid suspension contained within a vessel or pipe. The portion of the guard electrode within the aperture of the sensor electrode prevents electric field lines from emanating from the sensor electrode into the fluid suspension and toward infinity. A two sensor embodiment of the probe is useful for measuring flow velocities of fluid suspensions through cross correlation of the outputs generated by each sensor. The relative dimensions of the guard and sensor electrodes are selected to provide the most accurate measurements by confining the electric lines emanating from the sensor electrode or electrodes and terminating on the surrounding grounded surfaces to a small measurement volume of the fluid suspension near the vessel or pipe wall.

  14. Guarded capacitance probes for measuring particle concentration and flow

    DOEpatents

    Louge, Michel Y.

    1996-01-01

    Guarded capacitance probe structures are constructed with guard electrodes surrounding one or more sensor electrodes and ground electrodes or grounded surfaces surrounding the guard electrodes. In a one sensor embodiment, the probe utilizes an apertured sensor electrode and the guard electrode both surrounds the sensor electrode and fills the aperture. This embodiment is particularly useful for measuring particle concentration in a fluid suspension contained within a vessel or pipe. The portion of the guard electrode within the aperture of the sensor electrode prevents electric field lines from emanating from the sensor electrode into the fluid suspension and toward infinity. A two sensor embodiment of the probe is useful for measuring flow velocities of fluid suspensions through cross correlation of the outputs generated by each sensor. The relative dimensions of the guard and sensor electrodes are selected to provide the most accurate measurements by confining the electric lines emanating from the sensor electrode or electrodes and terminating on the surrounding grounded surfaces to a small measurement volume of the fluid suspension near the vessel or pipe wall.

  15. Guarded capacitance probes for measuring particle concentration and flow

    DOEpatents

    Louge, M.Y.

    1996-08-13

    Guarded capacitance probe structures are constructed with guard electrodes surrounding one or more sensor electrodes and ground electrodes or grounded surfaces surrounding the guard electrodes. In a one sensor embodiment, the probe utilizes an apertured sensor electrode and the guard electrode both surrounds the sensor electrode and fills the aperture. This embodiment is particularly useful for measuring particle concentration in a fluid suspension contained within a vessel or pipe. The portion of the guard electrode within the aperture of the sensor electrode prevents electric field lines from emanating from the sensor electrode into the fluid suspension and toward infinity. A two sensor embodiment of the probe is useful for measuring flow velocities of fluid suspensions through cross correlation of the outputs generated by each sensor. The relative dimensions of the guard and sensor electrodes are selected to provide the most accurate measurements by confining the electric lines emanating from the sensor electrode or electrodes and terminating on the surrounding grounded surfaces to a small measurement volume of the fluid suspension near the vessel or pipe wall. 14 figs.

  16. Variance of matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinase (TIMP) concentrations in activated, concentrated platelets from healthy male donors

    PubMed Central

    2014-01-01

    Background The use of autologous blood concentrates, such as activated, concentrated platelets, in orthopaedic clinical applications has had mixed results. Research on this topic has focused on growth factors and cytokines, with little directed towards matrix metalloproteinases (MMPs) which are involved in post-wound tissue remodeling. Methods In this study, the authors measured the levels of MMP-2, MMP-9 and a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13), in activated platelets derived from blood of healthy, male volunteers (n = 92), 19 to 60 years old. The levels of the natural inhibitors of these proteases, tissue inhibitor of metalloproteinase 1 (TIMP-1), TIMP-2 and TIMP-4 were also assessed. Results Notably, there was no significant change in concentration with age in four of six targets tested. However, TIMP-2 and TIMP-4 demonstrated a statistically significant increase in concentration for subjects older than 30 years of age compared to those 30 years and younger (P = 0.04 and P = 0.04, respectively). Conclusion TIMP-2 and TIMP-4 are global inhibitors of MMPs, including MMP-2 (Gelatinase A). MMP-2 targets native collagens, gelatin and elastin to remodel the extracellular matrix during wound healing. A decreased availability of pharmacologically active MMP-2 may diminish the effectiveness of the use of activated, concentrated platelets from older patients, and may also contribute to longer healing times in this population. PMID:24766991

  17. Laboratory Measurements of Particulate Matter Concentrations from Asphalt Pavement Abrasion

    NASA Astrophysics Data System (ADS)

    Fullová, Daša; Đurčanská, Daniela

    2016-12-01

    The issue of emissions from road traffic is compounded by the fact that the number of vehicles and driven kilometres increase each year. Road traffic is one of the main sources of particulate matter and traffic volume is still increasing and has unpleasant impact on longevity of the pavements and the environment. Vehicle motions cause mechanical wearing of the asphalt pavement surface - wearing course by vehicle tyres. The contribution deals with abrasion of bituminous wearing courses of pavements. The asphalt mixtures of wearing courses are compared in terms of mechanically separated particulate matter. The samples of asphalt mixtures were rutted in wheel tracking machine. The particulate matter measurements were performed in laboratory conditions. The experimental laboratory measurements make it possible to sample particulates without contamination from exhaust emissions, abraded particles from vehicles, resuspension of road dust and climate affects. The contribution offers partial results of measurements on six trial samples of asphalt mixtures with different composition. It presents particulate matter morphology and the comparison of rutted asphalt samples in terms of PM mass concentrations and chemical composition.

  18. Size and concentration measurement of an industrial aerosol

    SciTech Connect

    O'Brien, D.; Baron, P.; Willeke, K.

    1986-07-01

    Several real-time particle sizing instruments were evaluated for measuring the size distribution and concentration of the aerosol produced during the high speed grinding of gray iron castings. Aerosol was sampled in the airstream entrained by the motion of a spinning grinding wheel in a pilot grinding operation. Measurement methods based on differing physical principles were selected for evaluation and compared: particle inertia (aerodynamic particle sizer and quartz crystal microbalance cascade impactor); light scattering (laser aerosol spectrometer); and projected-area microscopy (scanning electron microscope). Inferences of aerodynamic diameter based on measurements by the laser aerosol spectrometer consistently undersized that determined by the aerodynamic particle sizer by a factor of 1.5. Estimates of aerodynamic diameters from projected area diameters determined by scanning electron microscopy differed from those obtained by the aerodynamic particle sizer by a factor of 2. Differences appeared to be a non-linear function of particle diameter. Estimates of respirable mass determined from mass-weighted particle size spectra varied by a factor of 6 between the largest estimate (scanning electron microscope) and the smallest estimate (laser aerosol spectrometer).

  19. Size and concentration measurement of an industrial aerosol.

    PubMed

    O'Brien, D; Baron, P; Willeke, K

    1986-07-01

    Several real-time particle sizing instruments were evaluated for measuring the size distribution and concentration of the aerosol produced during the high speed grinding of gray iron castings. Aerosol was sampled in the airstream entrained by the motion of a spinning grinding wheel in a pilot grinding operation. Measurement methods based on differing physical principles were selected for evaluation and compared: particle inertia (aerodynamic particle sizer and quartz crystal microbalance cascade impactor); light scattering (laser aerosol spectrometer); and projected-area microscopy (scanning electron microscope). Inferences of aerodynamic diameter based on measurements by the laser aerosol spectrometer consistently undersized that determined by the aerodynamic particle sizer by a factor of 1.5. Estimates of aerodynamic diameters from projected area diameters determined by scanning electron microscopy differed from those obtained by the aerodynamic particle sizer by a factor of 2. Differences appeared to be a non-linear function of particle diameter. Estimates of respirable mass determined from mass-weighted particle size spectra varied by a factor of 6 between the largest estimate (scanning electron microscope) and the smallest estimate (laser aerosol spectrometer).

  20. Partial pressure measurements with an active spectrometer

    SciTech Connect

    Brooks, N.H.; Jensen, T.H.; Colchin, R.J.; Maingi, R.; Wade, M.R.; Finkenthal, D.F.; Naumenko, N.; Tugarinov, S.

    1998-07-01

    Partial pressure neutral ga measurements have been made using a commercial Penning gauge in conjunction with an active spectrometer. In prior work utilizing bandpass filters and conventional spectrometers, trace concentrations of the hydrogen isotopes H, D, T and of the noble gases He, Ne and Ar were determined from characteristic spectral lines in the light emitted by the neutral species of these elements. For all the elements mentioned, the sensitivity was limited by spectral contamination from a pervasive background of molecular hydrogen radiation. The active spectrometer overcomes this limitations by means of a digital lock-in method and correlation with reference spectra. Preliminary measurements of an admixture containing a trace amount of neon in deuterium show better than a factor of 20 improvement in sensitivity over conventional techniques. This can be further improved by correlating the relative intensities of multiple lines to sets of reference spectra.

  1. Antiandrogenic activity of phthalate mixtures: Validity of concentration addition

    SciTech Connect

    Christen, Verena; Crettaz, Pierre; Oberli-Schrämmli, Aurelia; Fent, Karl

    2012-03-01

    Phthalates and bisphenol A have very widespread use leading to significant exposure of humans. They are suspected to interfere with the endocrine system, including the androgen, estrogen and the thyroid hormone system. Here we analyzed the antiandrogenic activity of six binary, and one ternary mixture of phthalates exhibiting complete antiandrogenic dose–response curves, and binary mixtures of phthalates and bisphenol A at equi-effective concentrations of EC{sub 10}, EC{sub 25} and EC{sub 50} in MDA-kb2 cells. Mixture activity followed the concentration addition (CA) model with a tendency to synergism at high and antagonism at low concentrations. Isoboles and the toxic unit approach (TUA) confirmed the additive to synergistic activity of the binary mixtures BBP + DBP, DBP + DEP and DEP + BPA at high concentrations. Both methods indicate a tendency to antagonism for the EC{sub 10} mixtures BBP + DBP, BBP + DEP and DBP + DEP, and the EC{sub 25} mixture of DBP + BPA. A ternary mixture revealed synergism at the EC{sub 50}, and weak antagonistic activity at the EC{sub 25} level by the TUA. A mixture of five phthalates representing a human urine composition and reflecting exposure to corresponding parent compounds showed no antiandrogenic activity. Our study demonstrates that CA is an appropriate concept to account for mixture effects of antiandrogenic phthalates and bisphenol A. The interaction indicates a departure from additivity to antagonism at low concentrations, probably due to interaction with the androgen receptor and/or cofactors. This study emphasizes that a risk assessment of phthalates should account for mixture effects by applying the CA concept. -- Highlights: ► Antiandrogenic activity of mixtures of 2 and 3 phthalates are assessed in MDA-kb2 cells. ► Mixture activities followed the concentration addition model. ► A tendency to synergism at high and antagonism at low levels occurred.

  2. The relation of seismic activity and radon concentration

    SciTech Connect

    Kulali, Feride E-mail: iskender@fef.sdu.edu.tr; Akkurt, İskender E-mail: iskender@fef.sdu.edu.tr; Vogiannis, Efstratios

    2014-10-06

    Radon, which is the largest source of natural ionizing radiation, reaches to surface as gas or dissolved form in the ground water. Emanation of radon can has a profile is disposed to increasing or decreasing depending on the effects of meteorological events or crust movements. In this work, the radon concentration in soil gas, which is transported from soil to AlphaGUARD, is continuously measured in Mytilene (Greece). A graph of radon concentration is prepared for comparison with simultaneous earthquake data. As a consequence of comparison, we determined that the radon concentration indicates anomalies before the earthquakes.

  3. Device and method for accurately measuring concentrations of airborne transuranic isotopes

    DOEpatents

    McIsaac, C.V.; Killian, E.W.; Grafwallner, E.G.; Kynaston, R.L.; Johnson, L.O.; Randolph, P.D.

    1996-09-03

    An alpha continuous air monitor (CAM) with two silicon alpha detectors and three sample collection filters is described. This alpha CAM design provides continuous sampling and also measures the cumulative transuranic (TRU), i.e., plutonium and americium, activity on the filter, and thus provides a more accurate measurement of airborne TRU concentrations than can be accomplished using a single fixed sample collection filter and a single silicon alpha detector. 7 figs.

  4. Device and method for accurately measuring concentrations of airborne transuranic isotopes

    DOEpatents

    McIsaac, Charles V.; Killian, E. Wayne; Grafwallner, Ervin G.; Kynaston, Ronnie L.; Johnson, Larry O.; Randolph, Peter D.

    1996-01-01

    An alpha continuous air monitor (CAM) with two silicon alpha detectors and three sample collection filters is described. This alpha CAM design provides continuous sampling and also measures the cumulative transuranic (TRU), i.e., plutonium and americium, activity on the filter, and thus provides a more accurate measurement of airborne TRU concentrations than can be accomplished using a single fixed sample collection filter and a single silicon alpha detector.

  5. Liver Metabolite Concentrations Measured with 1H MR Spectroscopy

    PubMed Central

    Pettigrew, Roderic I.; Gharib, Ahmed M.

    2012-01-01

    Purpose: To determine the feasibility of measuring choline and glycogen concentrations in normal human liver in vivo with proton (hydrogen 1 [1H]) magnetic resonance (MR) spectroscopy. Materials and Methods: Signed consent to participate in an institutional review board–approved and HIPAA-compliant study was obtained from 46 subjects (mean age, 46 years ± 17 [standard deviation]; 24 women) consecutively recruited during 285 days. Navigator-gated MR images were used to select 8-mL volumes for point-resolved spectroscopy (PRESS) with a 35-msec echo time. Line widths were minimized with fast breath-hold B0 field mapping and further manual shimming. Navigator-gated spectra were recorded with and without water suppression to determine metabolite concentrations with water signals as an internal reference. In three subjects, echo time was varied to determine the glycogen and choline T2. Linear regression analysis was used to examine relations between choline, hepatic lipid content, body mass index, glycogen content, and age. Results: Choline concentrations could be determined in 46 of 48 studies and was found to be 8.6 mmol per kilogram of wet weight ± 3.1 (range, 3.8–17.6; n = 44). Twenty-seven spectra in 25 individuals with narrow line widths and low lipid content were adequate for quantitation of glycogen. The glycogen (glucosyl unit) concentration was 38.1 mmol/kg wet weight ± 14.4. The T2 of combined glycogen peaks in the liver of three subjects was 36 msec ± 8. Choline levels showed a weak but significant correlation with glycogen (r2 = 0.15; P < .05) but not with lipid content. Conclusion: Navigator-gated and gradient-echo shimmed PRESS 1H MR spectroscopy may allow quantification of liver metabolites that are important for understanding and identifying disorders of glucose and lipid metabolism. © RSNA, 2012 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.12112344/-/DC1 PMID:22891360

  6. Quality-assured measurements of animal building emissions: particulate matter concentrations.

    PubMed

    Heber, Albert J; Lim, Teng-Teeh; Ni, Ji-Qin; Tao, Pei-Chun; Schmidt, Amy M; Koziel, Jacek A; Hoff, Steven J; Jacobson, Larry D; Zhang, Yuanhui; Baughman, Gerald B

    2006-12-01

    Federally funded, multistate field studies were initiated in 2002 to measure emissions of particulate matter (PM) < 10 microm (PM10) and total suspended particulate (TSP), ammonia, hydrogen sulfide, carbon dioxide, methane, nonmethane hydrocarbons, and odor from swine and poultry production buildings in the United States. This paper describes the use of a continuous PM analyzer based on the tapered element oscillating microbalance (TEOM). In these studies, the TEOM was used to measure PM emissions at identical locations in paired barns. Measuring PM concentrations in swine and poultry barns, compared with measuring PM in ambient air, required more frequent maintenance of the TEOM. External screens were used to prevent rapid plugging of the insect screen in the PM10 preseparator inlet. Minute means of mass concentrations exhibited a sinusoidal pattern that followed the variation of relative humidity, indicating that mass concentration measurements were affected by water vapor condensation onto and evaporation of moisture from the TEOM filter. Filter loading increased the humidity effect, most likely because of increased water vapor adsorption capacity of added PM. In a single layer barn study, collocated TEOMs, equipped with TSP and PM10 inlets, corresponded well when placed near the inlets of exhaust fans in a layer barn. Initial data showed that average daily mean concentrations of TSP, PM10, and PM2.5 concentrations at a layer barn were 1440 +/- 182 microg/m3 (n = 2), 553 +/- 79 microg/m3 (n = 4), and 33 +/- 75 microg/m3 (n = 1), respectively. The daily mean TSP concentration (n = 1) of a swine barn sprinkled with soybean oil was 67% lower than an untreated swine barn, which had a daily mean TSP concentration of 1143 +/- 619 microg/m3. The daily mean ambient TSP concentration (n = 1) near the swine barns was 25 +/- 8 microg/m3. Concentrations of PM inside the swine barns were correlated to pig activity.

  7. Measurements of particulate matter concentrations at a landfill site (Crete, Greece)

    SciTech Connect

    Chalvatzaki, E.; Kopanakis, I.; Kontaksakis, M.; Glytsos, T.; Kalogerakis, N.; Lazaridis, M.

    2010-11-15

    Large amounts of solid waste are disposed in landfills and the potential of particulate matter (PM) emissions into the atmosphere is significant. Particulate matter emissions in landfills are the result of resuspension from the disposed waste and other activities such as mechanical recycling and composting, waste unloading and sorting, the process of coating residues and waste transport by trucks. Measurements of ambient levels of inhalable particulate matter (PM{sub 10}) were performed in a landfill site located at Chania (Crete, Greece). Elevated PM{sub 10} concentrations were measured in the landfill site during several landfill operations. It was observed that the meteorological conditions (mainly wind velocity and temperature) influence considerably the PM{sub 10} concentrations. Comparison between the PM{sub 10} concentrations at the landfill and at a PM{sub 10} background site indicates the influence of the landfill activities on local concentrations at the landfill. No correlation was observed between the measurements at the landfill and the background sites. Finally, specific preventing measures are proposed to control the PM concentrations in landfills.

  8. Antioxidant Activities of Functional Beverage Concentrates Containing Herbal Medicine Extracts

    PubMed Central

    Park, Seon-Joo; Kim, Mi-Ok; Kim, Jung Hoan; Jeong, Sehyun; Kim, Min Hee; Yang, Su-Jin; Lee, Jongsung; Lee, Hae-Jeung

    2017-01-01

    This study investigated the antioxidant activity of functional beverage concentrates containing herbal medicine extracts (FBCH) using various antioxidant assays, such as 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging activity, and reducing power assay. The total polyphenolic content of FBCH (81.45 mg/100 g) was higher than Ssanghwa tea (SHT, 37.56 mg/100 g). The antioxidant activities of FBCH showed 52.92% DPPH and 55.18% ABTS radical scavenging activities at 100 mg/mL, respectively. FBCH showed significantly higher antioxidant activities compared to the SHT (DPPH, 23.43%; ABTS, 22.21%; reducing power optical density; 0.23, P<0.05). In addition, intracellular reactive oxygen species generation significantly decreased in a concentration-dependent manner following FBCH treatment. These results suggest that the addition of herbal medicine extract contributes to the improved functionality of beverage concentrates.

  9. Transcutaneous Measurement of Blood Analyte Concentration Using Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Barman, Ishan; Singh, Gajendra P.; Dasari, Ramachandra R.; Feld, Michael S.

    2008-11-01

    Diabetes mellitus is a chronic disorder, affecting nearly 200 million people worldwide. Acute complications, such as hypoglycemia, cardiovascular disease and retinal damage, may occur if the disease is not adequately controlled. As diabetes has no known cure, tight control of glucose levels is critical for the prevention of such complications. Given the necessity for regular monitoring of blood glucose, development of non-invasive glucose detection devices is essential to improve the quality of life in diabetic patients. The commercially available glucose sensors measure the interstitial fluid glucose by electrochemical detection. However, these sensors have severe limitations, primarily related to their invasive nature and lack of stability. This necessitates the development of a truly non-invasive glucose detection technique. NIR Raman Spectroscopy, which combines the substantial penetration depth of NIR light with the excellent chemical specificity of Raman spectroscopy, provides an excellent tool to meet the challenges involved. Additionally, it enables simultaneous determination of multiple blood analytes. Our laboratory has pioneered the use of Raman spectroscopy for blood analytes' detection in biological media. The preliminary success of our non-invasive glucose measurements both in vitro (such as in serum and blood) and in vivo has provided the foundation for the development of feasible clinical systems. However, successful application of this technology still faces a few hurdles, highlighted by the problems of tissue luminescence and selection of appropriate reference concentration. In this article we explore possible avenues to overcome these challenges so that prospective prediction accuracy of blood analytes can be brought to clinically acceptable levels.

  10. Measuring psychological engagement in youth activity involvement.

    PubMed

    Ramey, Heather L; Rose-Krasnor, Linda; Busseri, Michael A; Gadbois, Shannon; Bowker, Anne; Findlay, Leanne

    2015-12-01

    Although psychological engagement (e.g., enjoyment, concentration) may be critical in fostering positive outcomes of youth activity participation, too few studies have been conducted to establish its role in development. Furthermore, an established measurement tool is lacking. In the current study, we evaluated a brief engagement measure with two Canadian samples of youth (Sample 1, N = 290, mean age = 16.9 years, 62% female; Sample 2, N = 1827, mean age = 13.1 years, 54% female). We conducted a confirmatory factor analysis with structural equation modeling to examine the hypothesized structure of the model. We also assessed the measure's validity by testing relations between engagement and both perceived outcomes and positive features of activity settings. Psychological engagement was best captured by three latent cognitive, affective, and relational/spiritual factors and a second-order latent factor. Also, as anticipated, psychological engagement was associated with features of the activity setting and perceived impact.

  11. Stochastic evaluation of mass discharge from pointlike concentration measurements.

    PubMed

    Schwede, Ronnie L; Cirpka, Olaf A

    2010-01-15

    The contaminant mass discharge crossing a control plane is an important metric in the assessment of natural attenuation at contaminated sites. For risk-assessment purposes, the mass discharge must be estimated together with a level of uncertainty. We present a conditional Monte Carlo approach that allows estimating the statistical distribution of mass discharge. The approach is based on conditioning multiple realizations of the hydraulic conductivity field on all data available. We jointly determine a first-order decay coefficient in each realization, leading to conditional statistical distributions of all estimated parameters and the total mass discharge. The resulting statistical distribution of contaminant mass discharges can be used in the assessment of risks at the contaminated site. The method is applied to data of hypothetical test cases, which gives the opportunity to compare estimation results to the true field. As concentration data, we account for pointlike measurements obtained in multi-level sampling wells. The obtained empirical distribution of mass discharge crossing the multi-level sampling fence could be well fitted by a log-normal distribution.

  12. Global Ammonia Concentrations Seen by the 13-years AIRS Measurements

    NASA Astrophysics Data System (ADS)

    Warner, Juying; Wei, Zigang; Larrabee Strow, L.; Dickerson, Russell; Nowak, John; Wang, Yuxuan

    2016-04-01

    Ammonia is an integral part of the nitrogen cycle and is projected to be the largest single contributor to each of acidification, eutrophication and secondary particulate matter in Europe by 2020 (Sutton et al., 2008). The impacts of NH3 also include: aerosol production affecting global radiative forcing, increases in emissions of the greenhouse gases nitrous oxide (N2O) and methane (CH4), and modification of the transport and deposition patterns of SO2 and NOx. Therefore, monitoring NH3 global distribution of sources is vitally important to human health with respect to both air and water quality and climate change. We have developed new daily and global ammonia (NH3) products from AIRS hyperspectral measurements. These products add value to AIRS's existing products that have made significant contributions to weather forecasts, climate studies, and air quality monitoring. With longer than 13 years of data records, these measurements have been used not only for daily monitoring purposes but also for inter-annual variability and short-term trend studies. We will discuss the global NH3 emission sources from biogenic and anthropogenic activities over many emission regions captured by AIRS. We will focus their variability in the last 13 years.

  13. Concentration of hydrogen in titanium measured by neutron incoherent scattering

    SciTech Connect

    Chen-Mayer, H.H.; Mildner, D.F.R.; Lamaze, G.P.; Lindstrom, R.M.; Paul, R.L.; Kvardakov, V.V.; Richards, W.J.

    1998-12-31

    Mass fractions of hydrogen in titanium matrices have been measured using neutron incoherent scattering (NIS) and compared with results from prompt gamma activation analysis (PGAA). Qualitatively, NIS is a more efficient technique than PGAA which involves neutron absorption, and the former may be suitable for on-line analysis. However, for NIS the scattering contribution comes from both the hydrogen and the matrix, whereas prompt gamma emission has minimal matrix effect. To isolate the signal due to hydrogen scattering, a set of polypropylene films is used to simulate the increasing amount of hydrogen, and the scattered intensity is monitored. From this response, an unknown amount of the hydrogen can be deduced empirically. The authors have further attempted a first principle calculation of the intensity of the scattered signal from the experimental systems, and have obtained good agreement between calculation and the measurements. The study can be used as a reference for future applications of the scattering method to other hydrogen-in-metal systems.

  14. Changes in HTO and OBT activity concentrations in the Perch Lake aquatic ecosystem.

    PubMed

    Kim, S B; Farrow, F; Bredlaw, M; Stuart, M

    2016-12-01

    Perch Lake, a small shallow shield lake located on the Chalk River Laboratories (CRL) site, contains elevated levels of tritium due to inputs from a nearby nuclear waste management area. The releases have been going on for many years but tritium levels in Perch Lake have been gradually decreasing since about year 2000. Lake water, sediments, aquatic plants, clams and fish were collected during the summer and fall of 2003 and 2013 at three locations in the lake. HTO activity concentrations were measured in all samples and OBT activity concentrations were measured in sediments, plants, clams and fish. In 2003, 2013, HTO activity concentrations in lake water were roughly uniform in time and space, except close to the shoreline where concentrations were fluctuating according to stream water and groundwater tritium levels in streams entering the lake. HTO activity concentrations of biota were similar to concentrations in lake water at the site where they were collected. OBT activity concentrations in biota were not always correlating with the lake water HTO levels. OBT to HTO ratios were found to be less than 1 for aquatic plants, around 1 for clams and fish and above 1 for birds reared on the shore of the lake.

  15. Measuring Concentrations of Particulate 140La in the Air

    SciTech Connect

    Okada, Colin E.; Kernan, Warnick; Keillor, Martin; Kirkham, Randy; Sorom, Rich D.; Van Etten, Don M.

    2016-01-01

    This article discusses deployment of air-samplers to measure the concentration of radioactive material in the air during the Full-Scale Radiological Dispersal Device experiments. Positioned 100-600 meters downwind of the release point, the filters were collected immediately and analyzed in a field laboratory. The article discusses quantities for total activity collected on the air filters as well as additional information to compute the average or integrated air concentrations. In the case of a public emergency, this type of information would be important for decision makers and responders.

  16. Measurement of cortisol concentration in the tears of horses and ponies with pituitary pars intermedia dysfunction.

    PubMed

    Hart, Kelsey A; Kitchings, Kalyn M; Kimura, Shune; Norton, Natalie A; Myrna, Kathern E

    2016-11-01

    OBJECTIVE To compare tear cortisol concentrations between horses and ponies with pituitary pars intermedia dysfunction (PPID) and healthy nonaged (≤ 15 years old) and aged (≥ 20 years old) horses and to determine whether serum and tear cortisol concentrations were correlated. ANIMALS 11 horses and ponies with PPID and 20 healthy control horses and ponies (11 nonaged and 9 aged). PROCEDURES Paired tear and serum samples were obtained from PPID and control animals. All animals were free of active ocular disease. Tear and serum cortisol concentrations were measured with an ELISA and chemiluminescent assay, respectively. Groups were compared with Kruskal-Wallis and Mann-Whitney U tests, and Spearman correlation analysis was used to examine relationships between tear and serum cortisol concentrations within groups. RESULTS Median tear cortisol concentration was significantly higher in PPID animals than in aged control animals, despite comparable serum cortisol concentrations in PPID and aged control animals. Median tear-to-serum cortisol concentration ratios were also significantly higher in PPID animals than in aged control animals. Serum and tear cortisol concentrations were not significantly correlated in PPID or control animals. CONCLUSIONS AND CLINICAL RELEVANCE Some horses and ponies with PPID had increased tear cortisol concentrations, compared with concentrations in healthy aged animals. Localized cortisol production in the tear film or altered cortisol binding dynamics could have contributed to this increase. Further studies are warranted to evaluate these mechanisms and to determine whether increased tear cortisol concentrations are associated with delays in corneal wound healing in horses and ponies with and without PPID.

  17. Zinc and iron concentration and SOD activity in human semen and seminal plasma.

    PubMed

    Marzec-Wróblewska, Urszula; Kamiński, Piotr; Lakota, Paweł; Szymański, Marek; Wasilow, Karolina; Ludwikowski, Grzegorz; Kuligowska-Prusińska, Magdalena; Odrowąż-Sypniewska, Grażyna; Stuczyński, Tomasz; Michałkiewicz, Jacek

    2011-10-01

    The aim of the present study was to measure zinc (Zn) and iron (Fe) concentration in human semen and superoxide dismutase (SOD) activity in seminal plasma and correlate the results with sperm quality. Semen samples were obtained from men (N = 168) undergoing routine infertility evaluation. The study design included two groups based on the ejaculate parameters. Group I (n = 39) consisted of males with normal ejaculate (normozoospermia), and group II (n = 129) consisted of males with pathological spermiogram. Seminal Zn and Fe were measured in 162 samples (group I, n = 38; group II, n = 124) and SOD activity in 149 samples (group I, n = 37; group II, n = 112). Correlations were found between SOD activity and Fe and Zn concentration, and between Fe and Zn concentration. SOD activity was negatively associated with volume of semen and positively associated with rapid progressive motility, nonprogressive motility, and concentration. Negative correlation was stated between Fe concentration and normal morphology. Mean SOD activity in seminal plasma of semen from men of group I was higher than in seminal plasma of semen from men of group II. Fe concentration was higher in teratozoospermic males than in males with normal morphology of spermatozoa in group II. Our results suggest that Fe may influence spermatozoa morphology.

  18. Comparison of spectroscopically measured tissue alcohol concentration to blood and breath alcohol measurements

    NASA Astrophysics Data System (ADS)

    Ridder, Trent D.; Ver Steeg, Benjamin J.; Laaksonen, Bentley D.

    2009-09-01

    Alcohol testing is an expanding area of interest due to the impacts of alcohol abuse that extend well beyond drunk driving. However, existing approaches such as blood and urine assays are hampered in some testing environments by biohazard risks. A noninvasive, in vivo spectroscopic technique offers a promising alternative, as no body fluids are required. The purpose of this work is to report the results of a 36-subject clinical study designed to characterize tissue alcohol measured using near-infrared spectroscopy relative to venous blood, capillary blood, and breath alcohol. Comparison of blood and breath alcohol concentrations demonstrated significant differences in alcohol concentration [root mean square of 9.0 to 13.5 mg/dL] that were attributable to both assay accuracy and precision as well as alcohol pharmacokinetics. A first-order kinetic model was used to estimate the contribution of alcohol pharmacokinetics to the differences in concentration observed between the blood, breath, and tissue assays. All pair-wise combinations of alcohol assays were investigated, and the fraction of the alcohol concentration variance explained by pharmacokinetics ranged from 41.0% to 83.5%. Accounting for pharmacokinetic concentration differences, the accuracy and precision of the spectroscopic tissue assay were found to be comparable to those of the blood and breath assays.

  19. Analysis of the possible measurement errors for the PM10 concentration measurement at Gosan, Korea

    NASA Astrophysics Data System (ADS)

    Shin, S.; Kim, Y.; Jung, C.

    2010-12-01

    The reliability of the measurement of ambient trace species is an important issue, especially, in a background area such as Gosan in Jeju Island, Korea. In a previous episodic study in Gosan (NIER, 2006), it was found that the measured PM10 concentration by the β-ray absorption method (BAM) was higher than the gravimetric method (GMM) and the correlation between them was low. Based on the previous studies (Chang et al., 2001; Katsuyuki et al., 2008) two probable reasons for the discrepancy are identified; (1) negative measurement error by the evaporation of volatile ambient species at the filter in GMM such as nitrate, chloride, and ammonium and (2) positive error by the absorption of water vapor during measurement in BAM. There was no heater at the inlet of BAM in Gosan during the sampling period. In this study, we have analyzed negative and positive error quantitatively by using a gas/particle equilibrium model SCAPE (Simulating Composition of Atmospheric Particles at Equilibrium) for the data between May 2001 and June 2008 with the aerosol and gaseous composition data. We have estimated the degree of the evaporation at the filter in GMM by comparing the volatile ionic species concentration calculated by SCAPE at thermodynamic equilibrium state under the meteorological conditions during the sampling period and mass concentration measured by ion chromatography. Also, based on the aerosol water content calculated by SCAPE, We have estimated quantitatively the effect of ambient humidity during measurement in BAM. Subsequently, this study shows whether the discrepancy can be explained by some other factors by applying multiple regression analyses. References Chang, C. T., Tsai, C. J., Lee, C. T., Chang, S. Y., Cheng, M. T., Chein, H. M., 2001, Differences in PM10 concentrations measured by β-gauge monitor and hi-vol sampler, Atmospheric Environment, 35, 5741-5748. Katsuyuki, T. K., Hiroaki, M. R., and Kazuhiko, S. K., 2008, Examination of discrepancies between beta

  20. Altered Biomarkers of Mucosal Immunity and Reduced Vaginal Lactobacillus Concentrations in Sexually Active Female Adolescents

    PubMed Central

    Madan, Rebecca Pellett; Carpenter, Colleen; Fiedler, Tina; Kalyoussef, Sabah; McAndrew, Thomas C.; Viswanathan, Shankar; Kim, Mimi; Keller, Marla J.; Fredricks, David N.; Herold, Betsy C.

    2012-01-01

    Background Genital secretions collected from adult women exhibit in vitro activity against herpes simplex virus (HSV) and Escherichia coli (E. coli), but prior studies have not investigated this endogenous antimicrobial activity or its mediators in adolescent females. Methodology/Principal Findings Anti-HSV and anti-E.coli activity were quantified from cervicovaginal lavage (CVL) specimens collected from 20 sexually active adolescent females (15–18 years). Soluble immune mediators that may influence this activity were measured in CVL, and concentrations of Lactobacillus jensenii and crispatus were quantified by PCR from vaginal swabs. Results for adolescents were compared to those obtained from 54 healthy, premenopausal adult women. Relative to specimens collected from adults, CVL collected from adolescent subjects had significantly reduced activity against E. coli and diminished concentrations of protein, IgG, and IgA but significantly increased anti-HSV activity and concentrations of interleukin (IL)-1α, IL-6 and IL-1 receptor antagonist. Vaginal swabs collected from adolescent subjects had comparable concentrations of L. crispatus but significantly reduced concentrations of L. jensenii, relative to adult swabs. Conclusions/Significance Biomarkers of genital mucosal innate immunity may differ substantially between sexually active adolescents and adult women. These findings warrant further study and may have significant implications for prevention of sexually transmitted infections in adolescent females. PMID:22808157

  1. Vertical distribution of (137)Cs activity concentration in marine sediments at Amvrakikos Gulf, western of Greece.

    PubMed

    Tsabaris, C; Patiris, D L; Fillis-Tsirakis, E; Kapsimalis, V; Pilakouta, M; Pappa, F K; Vlastou, R

    2015-06-01

    The aim of the present work is the study of (137)Cs migration in sediment column taking into account the sedimentation rate in the Amvrakikos Gulf, at the western part of Greece. Marine core sediments were collected and the measurements were performed using the high resolution gamma-ray spectrometry method. The vertical distribution of (137)Cs activity concentration, as part of anthropogenic marine radioactivity, provided averaged sedimentation rate by identifying the depths of activity concentrations due to the Chernobyl accident and the nuclear tests signals. Furthermore, (137)Cs measurements were reproduced using the proposed one-dimensional diffusion-advection model which provides mainly as an output, the sedimentation rate and the average diffusivity of (137)Cs in the sediment column. The proposed model estimates the temporal variation of (137)Cs activity concentration from 1987 (one year after the Chernobyl accident) till today (2014).

  2. 40 CFR 761.316 - Interpreting PCB concentration measurements resulting from this sampling scheme.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Interpreting PCB concentration... § 761.79(b)(3) § 761.316 Interpreting PCB concentration measurements resulting from this sampling... concentration measured in that sample. If the sample surface concentration is not equal to or lower than...

  3. Plasma renin activities, angiotensin II concentrations, atrial natriuretic peptide concentrations and cardiopulmonary function values in dogs with severe heartworm disease.

    PubMed

    Kitagawa, H; Kitoh, K; Inoue, H; Ohba, Y; Suzuki, F; Sasaki, Y

    2000-04-01

    Relationships among plasma renin activities (PRA), plasma angiotensin II (ATII) concentrations, atrial natriuretic peptide (ANP) concentrations and cardiopulmonary function values were examined in dogs with ascitic pulmonary heartworm disease and acute- and chronic-vena caval syndrome (CS). PRA, plasma ATII concentration and plasma ANP concentration tended to be higher or were significantly higher in dogs with ascites, acute- and chronic-CS. PRA correlated significantly with plasma ATII concentration, WBC count, ALP activity, plasma concentrations of urea nitrogen, creatinine, sodium, potassium, and chloride, right ventricular endodiastolic pressure and right atrial pressure. Plasma ATII concentration correlated significantly with WBC count, plasma concentrations of urea nitrogen, sodium, and potassium, right ventricular endodiastolic pressure and right atrial pressure. Plasma ANP concentration did not correlate with PRA or ATII concentration, but correlated significantly only with pulmonary arterial pressure.

  4. Concentrating on CO2: the Scandinavian and Arctic measurements.

    PubMed

    Bohn, Maria

    2011-01-01

    This article concerns atmospheric carbon dioxide (CO2) measurements made in Scandinavia and in the Arctic region before measurements started at Mauna Loa, Hawaii, in 1958. The CO2 hypothesis of climate change was one reason to measure atmospheric CO2 in the mid-1950s. The earlier history of CO2 measurements--for instance, the work of the chemist Kurt Buch--was also influential in this period. It is unclear when the CO2 hypothesis of climate change began to provide sufficient motivation for measurements, and the measurements may relate in a nonlinear way to the growth in popularity of the hypothesis. Discussions between meteorologist Carl-Gustaf Rossby at Stockholm Högskola and scientists in America reveal how different kinds of CO2 studies varied with regard to precision.

  5. Measurements of radon concentration levels in thermal waters in the region of Konya, Turkey.

    PubMed

    Erdogan, Mehmet; Ozdemir, Fatih; Eren, Nuretdin

    2013-01-01

    (222)Rn (radon) is one of the most important sources of natural radiation to which people are exposed. It is an alpha-emitting noble gas and it can be found in various concentrations in soil, air and in different kinds of water. In this study, we present the results of radon concentration measurements in thermal waters taken from the sources in the region of Konya located in the central part of Turkey. The radon activity concentrations in 10 thermal water samples were measured by using the AlphaGUARD PQ 2000PRO radon gas analyser in spring and summer of the year 2012. We found that radon activity concentrations range from 0.60±0.11 to 70.34±3.55 kBq m(-3) and from 0.67±0.03 to 36.53±4.68 kBq m(-3) in spring and summer, respectively. We also calculated effective doses per treatment in the spas for the spring and summer seasons. It was found that the minimum and maximum effective doses per treatment are in the range of 0.09-10.13 nSv in spring and in the range of 0.1-5.26 nSv in summer.

  6. Measurements of the concentration and composition of nuclei for cirrus formation.

    PubMed

    DeMott, P J; Cziczo, D J; Prenni, A J; Murphy, D M; Kreidenweis, S M; Thomson, D S; Borys, R; Rogers, D C

    2003-12-09

    This article addresses the need for new data on indirect effects of natural and anthropogenic aerosol particles on atmospheric ice clouds. Simultaneous measurements of the concentration and composition of tropospheric aerosol particles capable of initiating ice in cold (cirrus) clouds are reported. Measurements support that cirrus formation occurs both by heterogeneous nucleation by insoluble particles and homogeneous (spontaneous) freezing of particles containing solutions. Heterogeneous ice nuclei concentrations in the cirrus regime depend on temperature, relative humidity, and the concentrations and physical and chemical properties of aerosol particles. The cirrus-active concentrations of heterogeneous nuclei measured in November over the western U.S. were <0.03 cm-3. Considering previous modeling studies, this result suggests a predominant potential impact of these nuclei on cirrus formed by slow, large-scale lifting or small cooling rates, including subvisual cirrus. The most common heterogeneous ice nuclei were identified as relatively pure mineral dusts and metallic particles, some of which may have origin through anthropogenic processes. Homogeneous freezing of large numbers of particles was detected above a critical relative humidity along with a simultaneous transition in nuclei composition toward that of the sulfate-dominated total aerosol population. The temperature and humidity conditions of the homogeneous nucleation transition were reasonably consistent with expectations based on previous theoretical and laboratory studies but were highly variable. The strong presence of certain organic pollutants was particularly noted to be associated with impedance of homogeneous freezing.

  7. Measurements of the concentration and composition of nuclei for cirrus formation

    PubMed Central

    DeMott, P. J.; Cziczo, D. J.; Prenni, A. J.; Murphy, D. M.; Kreidenweis, S. M.; Thomson, D. S.; Borys, R.; Rogers, D. C.

    2003-01-01

    This article addresses the need for new data on indirect effects of natural and anthropogenic aerosol particles on atmospheric ice clouds. Simultaneous measurements of the concentration and composition of tropospheric aerosol particles capable of initiating ice in cold (cirrus) clouds are reported. Measurements support that cirrus formation occurs both by heterogeneous nucleation by insoluble particles and homogeneous (spontaneous) freezing of particles containing solutions. Heterogeneous ice nuclei concentrations in the cirrus regime depend on temperature, relative humidity, and the concentrations and physical and chemical properties of aerosol particles. The cirrus-active concentrations of heterogeneous nuclei measured in November over the western U.S. were <0.03 cm–3. Considering previous modeling studies, this result suggests a predominant potential impact of these nuclei on cirrus formed by slow, large-scale lifting or small cooling rates, including subvisual cirrus. The most common heterogeneous ice nuclei were identified as relatively pure mineral dusts and metallic particles, some of which may have origin through anthropogenic processes. Homogeneous freezing of large numbers of particles was detected above a critical relative humidity along with a simultaneous transition in nuclei composition toward that of the sulfate-dominated total aerosol population. The temperature and humidity conditions of the homogeneous nucleation transition were reasonably consistent with expectations based on previous theoretical and laboratory studies but were highly variable. The strong presence of certain organic pollutants was particularly noted to be associated with impedance of homogeneous freezing. PMID:14657330

  8. MULTI-POLLUTANT CONCENTRATION MEASUREMENTS AROUND A CONCENTRATED SWINE PRODUCTION FACILITY USING OPEN-PATH FTIR SPECTROMETRY

    EPA Science Inventory

    Open-path Fourier transform infrared (OP/FTIR) spectrometry was used to measure the concentrations of ammonia, methane, and other atmospheric gasses around an integrated industrial swine production facility in eastern North Carolina. Several single-path measurements were made ove...

  9. Activation energy measurements of cheese

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temperature sweeps of cheeses using small amplitude oscillatory shear tests produced values for activation energy of flow (Ea) between 30 and 44 deg C. Soft goat cheese and Queso Fresco, which are high-moisture cheeses and do not flow when heated, exhibited Ea values between 30 and 60 kJ/mol. The ...

  10. Detecting kinase activities from single cell lysate using concentration-enhanced mobility shift assay.

    PubMed

    Cheow, Lih Feng; Sarkar, Aniruddh; Kolitz, Sarah; Lauffenburger, Douglas; Han, Jongyoon

    2014-08-05

    Electrokinetic preconcentration coupled with mobility shift assays can give rise to very high detection sensitivities. We describe a microfluidic device that utilizes this principle to detect cellular kinase activities by simultaneously concentrating and separating substrate peptides with different phosphorylation states. This platform is capable of reliably measuring kinase activities of single adherent cells cultured in nanoliter volume microwells. We also describe a novel method utilizing spacer peptides that significantly increase separation resolution while maintaining high concentration factors in this device. Thus, multiplexed kinase measurements can be implemented with single cell sensitivity. Multiple kinase activity profiling from single cell lysate could potentially allow us to study heterogeneous activation of signaling pathways that can lead to multiple cell fates.

  11. Dimerization in Highly Concentrated Solutions of Phosphoimidazolide Activated Monomucleotides

    NASA Astrophysics Data System (ADS)

    Kanavarioti, Anastassia

    1997-08-01

    Phosphoimidazolide activated ribomononucleotides (*pN) are useful substrates for the non-enzymatic synthesis of polynucleotides. However, dilute neutral aqueous solutions of *pN typically yield small amounts of dimers and traces of polymers; most of *pN hydrolyzes to yield nucleoside 5'-monophosphate. Here we report the self-condensation of nucleoside 5'-phosphate 2-methylimidazolide (2-MeImpN with N = cytidine, uridine or guanosine) in the presence of Mg2+ in concentrated solutions, such as might have been found in an evaporating lagoon on prebiotic Earth. The product distribution indicates that oligomerization is favored at the expense of hydrolysis. At 1.0 M, 2-MeImpU and 2-MeImpC produce about 65% of oligomers including 4% of the 3',5'-linked dimer. Examination of the product distribution of the three isomeric dimers in a self-condensation allows identification of reaction pathways that lead to dimer formation. Condensations in a concentrated mixture of all three nucleotides (U,C,G mixtures) is made possible by the enhanced solubility of 2-MeImpG in such mixtures. Although percent yield of internucleotide linked dimers is enhanced as a function of initial monomer concentration, pyrophosphate dimer yields remain practically unchanged at about 20% for 2-MeImpU, 16% for 2-MeImpC and 25% of the total pyrophosphate in the U,C,G mixtures. The efficiency by which oligomers are produced in these concentrated solutions makes the evaporating lagoon scenario a potentially interesting medium for the prebiotic synthesis of dimers and short RNAs.

  12. Dimerization in Highly Concentrated Solutions of Phosphoimidazolide Activated Mononucleotides

    NASA Technical Reports Server (NTRS)

    Kanavarioti, Anastassia

    1997-01-01

    Phosphoimidazolide activated ribomononucleotides (*pN) are useful substrates for the non-enzymatic synthesis of polynucleotides. However, dilute neutral aqueous solutions of *pN typically yield small amounts of dimers and traces of polymers; most of *pN hydrolyzes to yield nucleoside 5'-monophosphate. Here we report the self-condensation of nucleoside 5'-phosphate 2- methylimidazolide (2-MeImpN with N = cytidine, uridine or guanosine) in the presence of Mg2(+) in concentrated solutions, such as might have been found in an evaporating lagoon on prebiotic Earth. The product distribution indicates that oligomerization is favored at the expense of hydrolysis. At 1.0 M, 2-MelmpU and 2-MelmpC produce about 65% of oligomers including 4% of the 3',5'-Iinked dimer. Examination of the product distribution of the three isomeric dimers in a self-condensation allows identification of reaction pathways that lead to dimer formation. Condensations in a concentrated mixture of all three nucleotides (U,C,G mixtures) is made possible by the enhanced solubility of 2-MeImpG in such mixtures. Although percent yield of intemucleotide linked dimers is enhanced as a function of initial monomer concentration, pyrophosphate dimer yields remain practically unchanged at about 20% for 2-MelmpU, 16% for 2-MeImpC and 25% of the total pyrophosphate in the U,C,G mixtures. The efficiency by which oligomers are produced in these concentrated solutions makes the evaporating lagoon scenario a potentially interesting medium for the prebiotic synthesis of dimers and short RNAs.

  13. Acetone PLIF concentration measurements in a submerged round turbulent jet

    NASA Astrophysics Data System (ADS)

    Kravtsov, Z. D.; Chikishev, L. M.; Dulin, V. M.

    2016-10-01

    Transport of passive scalar in near-field of a submerged turbulent jet, was studied experimentally by using the planar laser-induced fluorescence technique. The jet issued from a round pipe with the inner diameter and length of 21 mm and 700 mm, respectively. Three cases of Reynolds numbers were studied: Re=3000, 6000, and 9000. Vapor of acetone, mixed to the jet flow, served as a passive fluorescent tracer. The paper describes data processing utilized to convert intensity of fluorescence images to the instantaneous concentration.

  14. Metal concentration and antioxidant activity of edible mushrooms from Turkey.

    PubMed

    Sarikurkcu, Cengiz; Tepe, Bektas; Kocak, Mehmet Sefa; Uren, Mehmet Cemil

    2015-05-15

    This study presents information on the antioxidant activity and heavy metal concentrations of Polyporus sulphureus, Macrolepiota procera, Lycoperdon perlatum and Gomphus clavatus mushrooms collected from the province of Mugla in the South-Aegean Region of Turkey. Antioxidant activities of mushroom samples were evaluated by four complementary tests. All tests showed L. perlatum and G. clavatus to possess extremely high antioxidant potential. Antioxidant activity of the samples was strongly correlated with total phenolic-flavonoid content. In terms of heavy metal content, L. perlatum exceeded the legal limits for daily intake of Pb, Fe, Mn, Cr, Ni and Co contents (0.461, 738.00, 14.52, 1.27, 1.65, 0.417 mg/day, respectively) by a 60-kg consumer. Co contents of M. procera (0.026 mg/day) and P. sulphureus (0.030 mg/day) and Cd contents of G. clavatus (0.071 mg/day) were also above the legal limits. According to these results, L. perlatum should not be consumed, despite the potentially beneficial antioxidant activity. Additionally, M. procera and G. clavatus should not be consumed daily due to their high levels of Cd and Co.

  15. The measurement of thermal neutron flux depression for determining the concentration of boron in blood.

    PubMed

    Brooke, S L; Green, S; Charles, M W; Beddoe, A H

    2001-03-01

    Boron neutron capture therapy (BNCT) is a form of targeted radiotherapy that relies on the uptake of the capture element boron by the volume to be treated. The treatment procedure requires the measurement of boron in the patient's blood. The investigation of a simple and inexpensive method for determining the concentration of the capture element 10B in blood is described here. This method, neutron flux depression measurement, involves the determination of the flux depression of thermal neutrons as they pass through a boron-containing sample. It is shown via Monte Carlo calculations and experimental verification that, for a maximum count rate of 1 x 10(4) counts/s measured by the detector, a 10 ppm 10B sample of volume 20 ml can be measured with a statistical precision of 10% in 32 +/- 2 min. For a source activity of less than 1.11 x 10(11) Bq and a maximum count rate of less than 1 x 10(4) counts/s, a 10 ppm 10B sample of volume 20 ml can be measured with a statistical precision of 10% in 58 +/- 3 min. It has also been shown that this technique can be applied to the measurement of the concentration of any element with a high thermal neutron cross section such as 157Gd.

  16. Activation of the Escherichia coli marA/soxS/rob regulon in response to transcriptional activator concentration.

    PubMed

    Martin, Robert G; Bartlett, Emily S; Rosner, Judah L; Wall, Michael E

    2008-07-04

    The paralogous transcriptional activators MarA, SoxS, and Rob activate a common set of promoters, the marA/soxS/rob regulon of Escherichia coli, by binding a cognate site (marbox) upstream of each promoter. The extent of activation varies from one promoter to another and is only poorly correlated with the in vitro affinity of the activator for the specific marbox. Here, we examine the dependence of promoter activation on the level of activator in vivo by manipulating the steady-state concentrations of MarA and SoxS in Lon protease mutants and by measuring promoter activation using lacZ transcriptional fusions. We found that: (i) the MarA concentrations needed for half-maximal stimulation varied by at least 19-fold among the 10 promoters tested; (ii) most marboxes were not saturated when there were 24,000 molecules of MarA per cell; (iii) the correlation between the MarA concentration needed for half-maximal promoter activity in vivo and marbox binding affinity in vitro was poor; and (iv) the two activators differed in their promoter activation profiles. The marRAB and sodA promoters could both be saturated by MarA and SoxS in vivo. However, saturation by MarA resulted in greater marRAB and lesser sodA transcription than did saturation by SoxS, implying that the two activators interact with RNA polymerase in different ways at the different promoters. Thus, the concentration and nature of activator determine which regulon promoters are activated, as well as the extent of their activation.

  17. Measurement of Liver Iron Concentration by MRI Is Reproducible

    PubMed Central

    Alústiza, José María; Emparanza, José I.; Castiella, Agustín; Casado, Alfonso; Aldazábal, Pablo; San Vicente, Manuel; Garcia, Nerea; Asensio, Ana Belén; Banales, Jesús; Salvador, Emma; Moyua, Aranzazu; Arozena, Xabier; Zarco, Miguel; Jauregui, Lourdes; Vicente, Ohiana

    2015-01-01

    Purpose. The objectives were (i) construction of a phantom to reproduce the behavior of iron overload in the liver by MRI and (ii) assessment of the variability of a previously validated method to quantify liver iron concentration between different MRI devices using the phantom and patients. Materials and Methods. A phantom reproducing the liver/muscle ratios of two patients with intermediate and high iron overload. Nine patients with different levels of iron overload were studied in 4 multivendor devices and 8 of them were studied twice in the machine where the model was developed. The phantom was analysed in the same equipment and 14 times in the reference machine. Results. FeCl3 solutions containing 0.3, 0.5, 0.6, and 1.2 mg Fe/mL were chosen to generate the phantom. The average of the intramachine variability for patients was 10% and for the intermachines 8%. For the phantom the intramachine coefficient of variation was always below 0.1 and the average of intermachine variability was 10% for moderate and 5% for high iron overload. Conclusion. The phantom reproduces the behavior of patients with moderate or high iron overload. The proposed method of calculating liver iron concentration is reproducible in several different 1.5 T systems. PMID:25874207

  18. Concentration evolution of pharmaceutically active compounds in raw urban and industrial wastewater.

    PubMed

    Camacho-Muñoz, Dolores; Martín, Julia; Santos, Juan Luis; Aparicio, Irene; Alonso, Esteban

    2014-09-01

    The distribution of pharmaceutically active compounds in the environment has been reported in several works in which wastewater treatment plants have been identified as the main source of these compounds to the environment. The concentrations of these compounds in influent wastewater can vary widely not only during the day but also along the year, because of the seasonal-consumption patterns of some pharmaceuticals. However, only few studies have attempted to assess the hourly variability of the concentrations of pharmaceutically active compounds in wastewater. In this work, the distribution and seasonal and hourly variability of twenty-one pharmaceuticals, belonging to seven therapeutic groups, have been investigated in urban and industrial wastewater. The highest concentrations of pharmaceutically active compounds, except salicylic acid, were found in urban wastewater, especially in the case of anti-inflammatory drugs and caffeine. The highest concentrations of salicylic acid were measured in industrial wastewater, reaching concentration levels up to 3295μgL(-)(1). The studied pharmaceutically active compounds showed different distribution patterns during winter and summer periods. Temporal variability of pharmaceutically active compounds during a 24-h period showed a distribution in concordance with their consumption and excretion patterns, in the case of urban wastewater, and with the schedule of industrial activities, in the case of industrial wastewater.

  19. Effect of active-ion concentration on holmium fibre laser efficiency

    SciTech Connect

    Kurkov, Andrei S; Sholokhov, E M; Marakulin, A V; Minashina, L A

    2010-08-03

    We have measured the fraction of holmium ions that relax nonradiatively to the ground level as a result of interaction at a metastable level in optical fibres with a silica-based core doped with holmium ions to 2 x 10{sup 19} - 2 x 10{sup 20} cm{sup -3}. The percentage of such ions has been shown to depend on the absolute active-ion concentration. The fibres have been used to make a number of 2.05-{mu}m lasers, and their slope efficiency has been measured. The laser efficiency decreases with increasing holmium concentration in the fibres (lasers)

  20. The measurement of dissolved and gaseous carbon dioxide concentration

    NASA Astrophysics Data System (ADS)

    Zosel, J.; Oelßner, W.; Decker, M.; Gerlach, G.; Guth, U.

    2011-07-01

    In this review the basic principles of carbon dioxide sensors and their manifold applications in environmental control, biotechnology, biology, medicine and food industry are reported. Electrochemical CO2 sensors based on the Severinghaus principle and solid electrolyte sensors operating at high temperatures have been manufactured and widely applied already for a long time. Besides these, nowadays infrared, non-dispersive infrared and acoustic CO2 sensors, which use physical measuring methods, are being increasingly used in some fields of application. The advantages and drawbacks of the different sensor technologies are outlined. Electrochemical sensors for the CO2 measurement in aqueous media are pointed out in more detail because of their simple setup and the resulting low costs. A detailed knowledge of the basic detection principles and the windows for their applications is necessary to find an appropriate decision on the technology to be applied for measuring dissolved CO2. In particular the pH value and the composition of the analyte matrix exert important influence on the results of the measurements.

  1. Diagnostic system for measuring temperature, pressure, CO2 concentration and H2O concentration in a fluid stream

    DOEpatents

    Partridge, Jr., William P.; Jatana, Gurneesh Singh; Yoo, Ji-Hyung; Parks, II, James E.

    2017-01-10

    A diagnostic system for measuring temperature, pressure, CO.sub.2 concentration and H.sub.2O concentration in a fluid stream is described. The system may include one or more probes that sample the fluid stream spatially, temporally and over ranges of pressure and temperature. Laser light sources are directed down pitch optical cables, through a lens and to a mirror, where the light sources are reflected back, through the lens to catch optical cables. The light travels through the catch optical cables to detectors, which provide electrical signals to a processer. The processer utilizes the signals to calculate CO.sub.2 concentration based on the temperatures derived from H.sub.2O vapor concentration. A probe for sampling CO.sub.2 and H.sub.2O vapor concentrations is also disclosed. Various mechanical features interact together to ensure the pitch and catch optical cables are properly aligned with the lens during assembly and use.

  2. Development of fast measurements of concentration of NORM U-238 by HPGe

    NASA Astrophysics Data System (ADS)

    Cha, Seokki; Kim, Siu; Kim, Geehyun

    2017-02-01

    Naturally Occureed Radioactive Material (NORM) generated from the origin of earth can be found all around us and even people who are not engaged in the work related to radiation have been exposed to unnecessary radiation. This NORM has a potential risk provided that is concentrated or transformed by artificial activities. Likewise, a development of fast measruement method of NORM is emerging to prevent the radiation exposure of the general public and person engaged in the work related to the type of business related thereto who uses the material in which NORM is concentrated or transfromed. Based on such a background, many of countries have tried to manage NORM and carried out regulatory legislation. To effienctly manage NORM, there is need for developing new measurement to quickly and accurately analyze the nuclide and concentration. In this study, development of the fast and reliable measurement was carried out. In addition to confirming the reliability of the fast measurement, we have obtained results that can suggest the possibility of developing another fast measurement. Therefore, as a follow-up, it is possible to develop another fast analytical measurement afterwards. The results of this study will be very useful for the regulatory system to manage NORM. In this study, a review of two indirect measurement methods of NORM U-238 that has used HPGe on the basis of the equilibrium theory of relationships of mother and daughter nuclide at decay-chain of NORM U-238 has been carried out. For comparative study(in order to know reliabily), direct measurement that makes use of alpha spectrometer with complicated pre-processing process was implemented.

  3. Rapid method for measuring rotenone in water at piscicidal concentrations

    USGS Publications Warehouse

    Dawson, V.K.; Harman, P.D.; Schultz, D.P.; Allen, J.L.

    1983-01-01

    A high-performance liquid chromatography (HPLC) procedure that is rapid, specific, and sensitive (limit of detection <0.005 mg/liter) was developed for monitoring application and degradation rates of rotenone. For analysis, a water sample is buffered to pH 5 and injected through a Sep Pak(R) C18 disposable cartridge. The cartridge adsorbs and retains the rotenone which then can be eluted quantitatively from the cartridge with a small volume of methanol. This step effectively concentrates the sample and provides sample cleanup. The methanol extract is analyzed directly by HPLC on an MCH 10 reverse-phase column; methanol: water (75:25, volume : volume) is the mobile phase and flow rate is 1.5 ml/minute. The rotenone is detected by ultraviolet spectrophotometry at a wavelength of 295 nm.

  4. Measured physicochemical characteristics and biosolids-borne concentrations of the antimicrobial Triclocarban (TCC).

    PubMed

    Snyder, Elizabeth Hodges; O'Connor, George A; McAvoy, Drew C

    2010-06-01

    Triclocarban (TCC) is an active ingredient in antibacterial bar soaps, a common constituent of domestic wastewater, and the subject of recent criticism by consumer advocate groups and academic researchers alike. Activated sludge treatment readily removes TCC from the liquid waste stream and concentrates the antimicrobial in the solid fraction, which is often processed to produce biosolids intended for land application. Greater than half of the biosolids generated in the US are land-applied, resulting in a systematic release of biosolids-borne TCC into the terrestrial and, potentially, the aquatic environment. Multiple data gaps in the TCC literature (including basic physicochemical properties and biosolids concentrations) prevent an accurate, quantitative risk assessment of biosolids-borne TCC. We utilized the USEPA Office of Prevention, Pesticides, and Toxic Substances (OPPTS) harmonized test guidelines to measure TCC solubility and log K(ow) values as 0.045 mg L(-1) and 3.5, respectively. The measured physicochemical 2 properties differed from computer model predictions. The mean concentration of TCC in 23 biosolids representative of multiple sludge processing methods was 19+/-11 mg kg(-1).

  5. Determination of thorium concentrations and activity ratios in silicate rocks by alpha spectrometry.

    PubMed

    dos Santos, R N; Marques, L S; Nicolai, S H A; Ribeiro, F B

    2004-01-01

    A detailed radiochemical procedure for alpha spectrometry measurements of thorium concentrations and of 230Th/232Th activity ratios in silicates is presented. The Th behaviour, during each step of the chemical process, was investigated by using a 234Th tracer, which is a gamma-ray emitter. The described chemical processing provides relatively high thorium yields, which varied between 56% and 88%, in the analysis of GB-1 (granite) and BB-1 (basalt) Brazilian geological standards. Also, the application of the established radiochemical method allowed a determination of both Th concentrations and activity ratios with high reproducibility, on the order of 2%. The estimation of the concentration result accuracy is also about 2%, which was calculated by using published data obtained from neutron activation analysis as reference values.

  6. Optimized measurement of radium-226 concentration in liquid samples with radon-222 emanation.

    PubMed

    Perrier, Frédéric; Aupiais, Jean; Girault, Frédéric; Przylibski, Tadeusz A; Bouquerel, Hélène

    2016-06-01

    Measuring radium-226 concentration in liquid samples using radon-222 emanation remains competitive with techniques such as liquid scintillation, alpha or mass spectrometry. Indeed, we show that high-precision can be obtained without air circulation, using an optimal air to liquid volume ratio and moderate heating. Cost-effective and efficient measurement of radon concentration is achieved by scintillation flasks and sufficiently long counting times for signal and background. More than 400 such measurements were performed, including 39 dilution experiments, a successful blind measurement of six reference test solutions, and more than 110 repeated measurements. Under optimal conditions, uncertainties reach 5% for an activity concentration of 100 mBq L(-1) and 10% for 10 mBq L(-1). While the theoretical detection limit predicted by Monte Carlo simulation is around 3 mBq L(-1), a conservative experimental estimate is rather 5 mBq L(-1), corresponding to 0.14 fg g(-1). The method was applied to 47 natural waters, 51 commercial waters, and 17 wine samples, illustrating that it could be an option for liquids that cannot be easily measured by other methods. Counting of scintillation flasks can be done in remote locations in absence of electricity supply, using a solar panel. Thus, this portable method, which has demonstrated sufficient accuracy for numerous natural liquids, could be useful in geological and environmental problems, with the additional benefit that it can be applied in isolated locations and in circumstances when samples cannot be transported.

  7. Measurement of (222)Rn concentration in drinking water in Sakarya, Turkey.

    PubMed

    Yakut, Hakan; Tabar, Emre; Zenginerler, Zemine; Demirci, Nilufer; Ertugral, Filiz

    2013-12-01

    In this paper, the first measurement of (222)Rn concentrations in drinking water from wells, springs and bottled waters in the city of Sakarya, Turkey was presented. The measurements were performed using RAD 7, a solid-state alpha detector, with RAD H2O (radon in water) accessory manufactured by Durridge Company, Inc. The measured activity concentrations ranged from 1.98 to 20.80 Bq l(-1) with an average value of 9.05 Bq l(-1) for well water, from 0.75 to 59.65 Bq l(-1) with an average value of 13.78 Bq l(-1) for spring water and from 0.75 to 22.8 Bq l(-1) with an average value of 5.41 Bq l(-1) for bottled water. Although these results indicated relatively high (222)Rn concentrations compared with that from other parts of the Turkey, they are still below the World Health Organization recommended level of 100 Bq l(-1) for radon. Using the measured activities of (222)Rn, the age-dependent associated committed effective doses due to the ingestion of (222)Rn as a consequence of direct consumption of drinking water were calculated. The committed effective doses from (222)Rn were estimated to range from 2.59 to 205.97 µSv y(-1), from 1.55 to 123.28 µSv y(-1) and from 1.31 to 104.48 µSv y(-1) for age groups 1-2, 8-12 and >17 y, respectively.

  8. Radon measurement and mitigation activity in Finland.

    PubMed

    Valmari, T; Arvela, H; Reisbacka, H; Holmgren, O

    2014-07-01

    Radon prevention, measurement and mitigation activities have been increasing in Finland during the 2000s. Nowadays, many municipal authorities, especially those located in high-radon areas, require radon prevention measures. This has activated radon measurements. Owners of new houses having radon piping installed under the floor slab are the most active group to measure and reduce the found high-radon values. Their radon awareness is apparently better than on the average, and the existing piping makes it easier and cheaper to reduce the radon levels. Local campaigns involving invitation flyers mailed to the residents have been a cost-effective means to activate measurements of older houses. So far 116,611 dwellings in low-rise residential buildings have been measured. At least 15% of the 16,860 dwellings found to exceed the reference level of 400 Bq m(-3) had their indoor radon level reduced below that.

  9. Measurement of elemental concentration of aerosols using spark emission spectroscopy.

    PubMed

    Diwakar, Prasoon K; Kulkarni, Pramod

    A coaxial microelectrode system has been used to collect and analyse the elemental composition of aerosol particles in near real-time using spark emission spectroscopy. The technique involves focused electrostatic deposition of charged aerosol particles onto the flat tip of a microelectrode, followed by introduction of spark discharge. A pulsed spark discharge was generated across the electrodes with input energy ranging from 50 to 300 mJ per pulse, resulting in the formation of controlled pulsed plasma. The particulate matter on the cathode tip is ablated and atomized by the spark plasma, resulting in atomic emissions which are subsequently recorded using a broadband optical spectrometer for element identification and quantification. The plasma characteristics were found to be very consistent and reproducible even after several thousands of spark discharges using the same electrode system. The spark plasma was characterized by measuring the excitation temperature (~7000 to 10 000 K), electron density (~10(16) cm(-3)), and evolution of spectral responses as a function of time. The system was calibrated using particles containing Pb, Si, Na and Cr. Absolute mass detection limits in the range 11 pg to 1.75 ng were obtained. Repeatability of spectral measurements varied from 2 to 15%. The technique offers key advantages over similar microplasma-based techniques such as laser-induced breakdown spectroscopy, as: (i) it does not require any laser beam optics and eliminates any need for beam alignment, (ii) pulse energy from dc power supply in SIBS system can be much higher compared to that from laser source of the same physical size, and (iii) it is quite conducive to compact, field-portable instrumentation.

  10. Measurement of elemental concentration of aerosols using spark emission spectroscopy†

    PubMed Central

    Diwakar, Prasoon K.

    2015-01-01

    A coaxial microelectrode system has been used to collect and analyse the elemental composition of aerosol particles in near real-time using spark emission spectroscopy. The technique involves focused electrostatic deposition of charged aerosol particles onto the flat tip of a microelectrode, followed by introduction of spark discharge. A pulsed spark discharge was generated across the electrodes with input energy ranging from 50 to 300 mJ per pulse, resulting in the formation of controlled pulsed plasma. The particulate matter on the cathode tip is ablated and atomized by the spark plasma, resulting in atomic emissions which are subsequently recorded using a broadband optical spectrometer for element identification and quantification. The plasma characteristics were found to be very consistent and reproducible even after several thousands of spark discharges using the same electrode system. The spark plasma was characterized by measuring the excitation temperature (~7000 to 10 000 K), electron density (~1016 cm−3), and evolution of spectral responses as a function of time. The system was calibrated using particles containing Pb, Si, Na and Cr. Absolute mass detection limits in the range 11 pg to 1.75 ng were obtained. Repeatability of spectral measurements varied from 2 to 15%. The technique offers key advantages over similar microplasma-based techniques such as laser-induced breakdown spectroscopy, as: (i) it does not require any laser beam optics and eliminates any need for beam alignment, (ii) pulse energy from dc power supply in SIBS system can be much higher compared to that from laser source of the same physical size, and (iii) it is quite conducive to compact, field-portable instrumentation. PMID:26491209

  11. Measuring freely dissolved water concentrations of PCBs using LDPE passive samplers and performance reference compounds (PRCs)

    EPA Science Inventory

    Low-Density polyethylene (LDPE) sheets are often used as passive samplers for aquatic environmental monitoring to measure the dissolved concentrations of hydrophobic organic contaminants (HOCs). These concentrations are then used to evaluate the potential for ecological and human...

  12. Intramuscular pressure and torque during isometric, concentric and eccentric muscular activity

    NASA Technical Reports Server (NTRS)

    Styf, J.; Ballard, R.; Aratow, M.; Crenshaw, A.; Watenpaugh, D.; Hargens, A. R.

    1995-01-01

    Intramuscular pressures, electromyography (EMG) and torque generation during isometric, concentric and eccentric maximal isokinetic muscle activity were recorded in 10 healthy volunteers. Pressure and EMG activity were continuously and simultaneously measured side by side in the tibialis anterior and soleus muscles. Ankle joint torque and position were monitored continuously by an isokinetic dynamometer during plantar flexion and dorsiflexion of the foot. The increased force generation during eccentric muscular activity, compared with other muscular activity, was not accompanied by higher intramuscular pressure. Thus, this study demonstrated that eccentric muscular activity generated higher torque values for each increment of intramuscular pressure. Intramuscular pressures during antagonistic co-activation were significantly higher in the tibilis anterior muscle (42-46% of maximal agonistic activity) compared with the soleus muscle (12-29% of maximal agonistic activity) and was largely due to active recruitment of muscle fibers. In summary, eccentric muscular activity creates higher torque values with no additional increase of the intramuscular pressure compared with concentric and isometric muscular activity.

  13. Simultaneous velocity and concentration measurements of a turbulent jet mixing flow.

    PubMed

    Hu, Hui; Saga, Tetsuo; Kobayashi, Toshio; Taniguchi, Nobuyuki

    2002-10-01

    A method for the simultaneous measurement of velocity and passive scalar concentration fields by means of particle image velocimetry (PIV) and planar laser induced florescence (PLIF) techniques is described here. An application of the combined PIV-PLIF system is demonstrated by performing simultaneous velocity and concentration measurements in the near field of a turbulent jet mixing flow. The distributions of the ensemble-averaged velocity and concentration, turbulent velocity fluctuation, concentration standard deviation, and the correlation terms between the fluctuating velocities and concentration in the near field of the turbulent jet flow are presented as the measurement results of the simultaneous PIV-PLIF system.

  14. Strontium-90 concentration measurements in human bones and teeth in Greece.

    PubMed

    Stamoulis, K C; Assimakopoulos, P A; Ioannides, K G; Johnson, E; Soucacos, P N

    1999-05-19

    Strontium-90 concentration was measured in human bones and teeth collected in Greece during the period 1992-1996. One hundred and five bone samples, mainly cancellous bone, and 108 samples, taken from a total of 896 individual teeth were processed. Samples were classified according to the age and sex of the donors. Samples were chemically pre-treated according to a specially devised method to enable extraction of 90Y, at equilibrium with 90Sr in the original sample. Subsequently, 90Y beta activity was measured with a gas proportional counter. Radiostrontium concentration in bone samples showed small variations with respect to age or sex, with an average value of 30 mBq 90Sr/g Ca. However, 90Sr concentration measurements in teeth demonstrated a pronounced structure, which clearly reflects contamination from the 1960s atmospheric nuclear weapons tests and the more recent Chernobyl accident. This difference is attributed to the different histological structure of skeletal bones and teeth, the later consisting mainly of compact bone. An age-dependent model for radiostrontium concentration in human bones and teeth is developed which is able to successfully reproduce the experimental data. Through a fitting process, the model also yielded calcium turnover rates for compact bone, as a function of age, as well as an estimate of radiostrontium contamination of foodstuffs in Greece for the past four decades. The results obtained in this study indicate that radiostrontium environmental contamination which resulted from the atmospheric nuclear weapons tests in the 1960s, exceed by far that caused by the Chernobyl accident.

  15. Platelet activating factor raises intracellular calcium ion concentration in macrophages

    PubMed Central

    1986-01-01

    Peritoneal cells from thioglycollate-stimulated mice were allowed to adhere to coverglasses for 2 h to give a dense monolayer of adherent cells greater than 95% of which were macrophages. After incubation with the tetra-acetoxymethyl ester of quin2, coverglasses were rinsed with Ca2+-free saline, oriented at a 45 degree angle in square cuvettes containing a magnetically driven stir bar, and analyzed for changes in quin2 fluorescence in a spectrofluorimeter. Such fluorescence, taken as an indication of intracellular calcium ion concentration ([Ca2+]i), increased as exogenous calcium ion concentration ([Ca2+]o) was raised to 1 mM. At [Ca2+]o approximately equal to 10 microM, [Ca2+]i = 72 +/- 14 nM (n = 26); at [Ca2+]o = 1 mM, [Ca2+]i = 140-220 nM, levels not increased by N, N, N', N'-tetrakis (2-pyridylmethyl) ethylenediamine, a membrane-permeant chelator of heavy metals than can quench quin2. Addition of mouse alpha + beta fibroblast interferon, lipopolysaccharide, thrombin, collagen, vasopressin, ADP, compound 48/80, or U46619 did not change [Ca2+]i. However, addition of platelet activating factor (PAF) (2-20 ng/ml) raised [Ca2+]i by 480 nM within 1 min if [Ca2+]o = 1 mM. In the presence of 5 mM EGTA, PAF raised [Ca2+]i by 25 nM. This suggests that PAF causes influx of exogenous Ca2+, as well as releasing some Ca2+ from intracellular stores. Consistent with these results, when PAF was added to 1 mM Ca2+ in the presence of 100 microM Cd2+ or Mn2+ to block Ca2+ influx, [Ca2+]i increased by only intermediate amounts; at the times of such dampened peak response, [Ca2+]i could be raised within 1 min to normal PAF-stimulated levels by chelation of the exogenous heavy metals with diethylenetriaminepentaacetic acid. Normal PAF responses were observed in the presence of indomethacin. The lowest dose of PAF observed to raise [Ca2+]i was 0.1 ng/ml. Response of [Ca2+]i to 2-20 ng/ml PAF was transient, and second applications had no effect. The PAF response also was seen in

  16. New Method of Online Measurement of Oil and Suspended Material Concentration In Flowing Waste Water

    NASA Astrophysics Data System (ADS)

    Liao, Hongwei; Xu, Guobing; Xu, Xinqiang; Zhou, Fangde

    2007-06-01

    At present, the most of the measurements of oil and suspended material concentration in waste water measuring are not online surveys. A new method of online measurement of oil and suspended material concentration in flowing waste water is presented. The room experiments and field tests showed that it is suitable to waste water treatment on line. After sampling, It needed to measure immediately the concentration in first time. Then let sample to be in still in 10 - 20 seconds. After that the bulk concentration was measured in second time. Because of the suspended solids having heavy density, they would be dropped from waster water. During ultrasonic operation, emulsify the oil in waster water, the oil and suspended solid would be depart. After that the third time measurement was done. In thus way the concentrations of oil and suspended solids can be measured. At present there are two on-site equipments operating in the Changqing oilfield, and the results are pretty well.

  17. Youth Physical Activity Resource Use and Activity Measured by Accelerometry

    ERIC Educational Resources Information Center

    Maslow, Andra L.; Colabianchi, Natalie

    2011-01-01

    Objectives: To examine whether use of physical activity resources (e.g., parks) was associated with daily physical activity measured by accelerometry. Methods: One hundred eleven adolescents completed a travel diary with concurrent accelerometry. The main exposure was self-reported use of a physical activity resource (none /1 resources). The main…

  18. Concentration measurement of lysosome enzymes in blood by fluorimetric analysis method

    NASA Astrophysics Data System (ADS)

    Strinadko, Marina M.; Strinadko, Elena M.

    2002-02-01

    The diagnostics of heritable disease series and sugar diabetes, myocardial infarction, collagenosis and kidney diseases widely uses the measurement of lysosomic enzymes in blood. In the present research work the definition procedure of concentration (beta) -glucuronidase with the help of fluorimetric analysis is offered, which allows using microamounts of biological fluids and samples with low enzyme activity which is especially important in paediatric practice. Due to the sharp sensibility of fluorimetric analysis and high speed of luminescent reactions the procedure gives an opportunity to obtain the result in the minimum terms as well as the use of small amounts of reaction mixture. The incubation in large dilution leads thereby to the elimination of influence of endogenic inhibitors and activators.

  19. Measurement of intracellular Ca2+ concentration in single cells using ratiometric calcium dyes.

    PubMed

    Srikanth, Sonal; Gwack, Yousang

    2013-01-01

    Measurement of intracellular Ca(2+) concentration ([Ca(2+)](i)) is useful to study the upstream and downstream events of Ca(2+) signaling. Ca(2+)-binding proteins including EF-hand-containing proteins are important downstream effector molecules after an increase of [Ca(2+)](i). Conversely, these proteins can also act as key modulators for regulation of [Ca(2+)](i) by sensing the Ca(2+) levels in the intracellular organelles and cytoplasm. Here we describe a single-cell Ca(2+) imaging technique that was used to measure the intracellular Ca(2+) levels to examine the function of Ca(2+)-binding proteins, STIM1 and Calcium release-activated Calcium channel regulator 2A (CRACR2A), using ratiometric Ca(2+) dye Fura-2 in adherent and non-adherent cells.

  20. Development of a formula for estimating plasma free cortisol concentration from a measured total cortisol concentration when elastase-cleaved and intact corticosteroid binding globulin coexist.

    PubMed

    Nguyen, Phuong T T; Lewis, John G; Sneyd, James; Lee, Rita S F; Torpy, David J; Shorten, Paul R

    2014-05-01

    Cortisol bound to corticosteroid binding globulin (CBG) contributes up to 90% of the total cortisol concentration in circulation. Therefore, changes in the binding kinetics of cortisol to CBG can potentially impact on the concentration of free cortisol, the only form that is responsible for the physiological function of the hormone. When CBG is cleaved into elastase-cleaved CBG (eCBG) by the activity of neutrophil elastase, its affinity for cortisol is reduced. Therefore, when eCBG coexists with intact CBG (iCBG) in plasma, the calculation of free cortisol concentration based on the formulae that considers only one CBG pool with the same affinity for cortisol may be inappropriate. In this study, we developed in vivo and in vitro models of cortisol partitioning which considers two CBG pools, iCBG and eCBG, with different affinities for cortisol, and deduce a new formula for calculating plasma free cortisol concentration. The formula provides better estimates of free cortisol concentration than previously used formulae when measurements of the concentrations of the two CBG forms are available. The model can also be used to estimate the affinity of CBG and albumin for cortisol in different clinical groups. We found no significant difference in the estimated affinity of CBG and albumin for cortisol in normal, sepsis and septic shock groups, although free cortisol was higher in sepsis and septic shock groups. The in vivo model also demonstrated that the concentration of interstitial free cortisol is increased locally at a site of inflammation where iCBG is cleaved to form eCBG by the activity of elastase released by neutrophils. This supports the argument that the cleavage of iCBG at sites of inflammation leads to more lower-affinity eCBG and may be a mechanism that permits the local concentration of free cortisol to increase at these sites, while allowing basal free cortisol concentrations at other sites to remain unaffected.

  1. A 2-Micron Pulsed Integrated Path Differential Absorption Lidar Development For Atmospheric CO2 Concentration Measurements

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulugeta; Reithmaier, Karl; Bai, Yingxin; Trieu, Bo C.; Refaat, Tamer F.; Kavaya, Michael J.; Singh, Upendra N.

    2012-01-01

    A 2-micron pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at NASA Langley Research Center. This instrument will provide an alternate approach to measure atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capability by having high signal-to-noise level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement.

  2. Volatile organic compound concentrations and emission rates measured over one year in a new manufactured house

    SciTech Connect

    Hodgson, Alfred T.; Nabinger, Steven J.; Persily, Andrew K.

    2004-09-01

    A study to measure indoor concentrations and emission rates of volatile organic compounds (VOCs), including formaldehyde, was conducted in a new, unoccupied manufactured house installed at the National Institute of Standards and Technology (NIST) campus. The house was instrumented to continuously monitor indoor temperature and relative humidity, heating and air conditioning system operation, and outdoor weather. It also was equipped with an automated tracer gas injection and detection system to estimate air change rates every 2 h. Another automated system measured indoor concentrations of total VOCs with a flame ionization detector every 30 min. Active samples for the analysis of VOCs and aldehydes were collected indoors and outdoors on 12 occasions from August 2002 through September 2003. Individual VOCs were quantified by thermal desorption to a gas chromatograph with a mass spectrometer detector (GC/MS). Formaldehyde and acetaldehyde were quantified by high performance liquid chromatography (HPLC). Weather conditions changed substantially across the twelve active sampling periods. Outdoor temperatures ranged from 7 C to 36 C. House air change rates ranged from 0.26 h{sup -1} to 0.60 h{sup -1}. Indoor temperature was relatively constant at 20 C to 24 C for all but one sampling event. Indoor relative humidity (RH) ranged from 21% to 70%. The predominant and persistent indoor VOCs included aldehydes (e.g., formaldehyde, acetaldehyde, pentanal, hexanal and nonanal) and terpene hydrocarbons (e.g., a-pinene, 3-carene and d-limonene), which are characteristic of wood product emissions. Other compounds of interest included phenol, naphthalene, and other aromatic hydrocarbons. VOC concentrations were generally typical of results reported for other new houses. Measurements of total VOCs were used to evaluate short-term changes in indoor VOC concentrations. Most of the VOCs probably derived from indoor sources. However, the wall cavity was an apparent source of

  3. Characterization of hydromedusan Ca(2+)-regulated photoproteins as a tool for measurement of Ca(2+)concentration.

    PubMed

    Malikova, Natalia P; Burakova, Ludmila P; Markova, Svetlana V; Vysotski, Eugene S

    2014-09-01

    Calcium ion is a ubiquitous intracellular messenger, performing this function in many eukaryotic cells. To understand calcium regulation mechanisms and how disturbances of these mechanisms are associated with disease states, it is necessary to measure calcium inside cells. Ca(2+)-regulated photoproteins have been successfully used for this purpose for many years. Here we report the results of comparative studies on the properties of recombinant aequorin from Aequorea victoria, recombinant obelins from Obelia geniculata and Obelia longissima, recombinant mitrocomin from Mitrocoma cellularia, and recombinant clytin from Clytia gregaria as intracellular calcium indicators in a set of identical in vitro and in vivo experiments. Although photoproteins reveal a high degree of identity of amino acid sequences and spatial structures, and, apparently, have a common mechanism for the bioluminescence reaction, they were found to differ in the Ca(2+) concentration detection limit, the sensitivity of bioluminescence to Mg(2+), and the rates of the rise of the luminescence signal with a sudden change of Ca(2+) concentration. In addition, the bioluminescence activities of Chinese hamster ovary cells expressing wild-type photoproteins also differed. The light signals of cells expressing mitrocomin, for example, slightly exceeded the background, suggesting that mitrocomin may be hardly used to detect intracellular Ca(2+) without modifications improving its properties. On the basis of experiments on the activation of endogenous P2Y2 receptor in Chinese hamster ovary cells by ATP, we suggest that wild-type aequorin and obelin from O. longissima are more suitable for calcium detection in cytoplasm, whereas clytin and obelin from O. geniculata can be used for calcium measurement in cell compartments with high Ca(2+) concentration.

  4. Relationships between near-surface plankton concentrations, hydrography, and satellite-measured sea surface temperature

    NASA Technical Reports Server (NTRS)

    Thomas, A. C.; Emery, W. J.

    1988-01-01

    Sea surface temperatures (SSTs) mapped by IR satellite images and in situ hydrographic measurements off the west coast of British Columbia for early-winter and midsummer periods were correlated with in situ measurements of surface chlorophyll and zooplankton concentration. Correlations between winter log(e) transformed zooplankton concentrations and SSTs demonstrated that IR satellite imagery could explain 49 percent of the sampled zooplankton concentration variance. A least-squares-fit nonlinear equation showed that satellite-measured SST patterns explained 72 percent of the log(e) transformed chlorophyll variance. However, summer zooplankton concentrations were not consistently related to satellite temperature patterns.

  5. Active cell mechanics: Measurement and theory.

    PubMed

    Ahmed, Wylie W; Fodor, Étienne; Betz, Timo

    2015-11-01

    Living cells are active mechanical systems that are able to generate forces. Their structure and shape are primarily determined by biopolymer filaments and molecular motors that form the cytoskeleton. Active force generation requires constant consumption of energy to maintain the nonequilibrium activity to drive organization and transport processes necessary for their function. To understand this activity it is necessary to develop new approaches to probe the underlying physical processes. Active cell mechanics incorporates active molecular-scale force generation into the traditional framework of mechanics of materials. This review highlights recent experimental and theoretical developments towards understanding active cell mechanics. We focus primarily on intracellular mechanical measurements and theoretical advances utilizing the Langevin framework. These developing approaches allow a quantitative understanding of nonequilibrium mechanical activity in living cells. This article is part of a Special Issue entitled: Mechanobiology.

  6. Microfabricated Collector-Generator Electrode Sensor for Measuring Absolute pH and Oxygen Concentrations.

    PubMed

    Dengler, Adam K; Wightman, R Mark; McCarty, Gregory S

    2015-10-20

    Fast-scan cyclic voltammetry (FSCV) has attracted attention for studying in vivo neurotransmission due to its subsecond temporal resolution, selectivity, and sensitivity. Traditional FSCV measurements use background subtraction to isolate changes in the local electrochemical environment, providing detailed information on fluctuations in the concentration of electroactive species. This background subtraction removes information about constant or slowly changing concentrations. However, determination of background concentrations is still important for understanding functioning brain tissue. For example, neural activity is known to consume oxygen and produce carbon dioxide which affects local levels of oxygen and pH. Here, we present a microfabricated microelectrode array which uses FSCV to detect the absolute levels of oxygen and pH in vitro. The sensor is a collector-generator electrode array with carbon microelectrodes spaced 5 μm apart. In this work, a periodic potential step is applied at the generator producing transient local changes in the electrochemical environment. The collector electrode continuously performs FSCV enabling these induced changes in concentration to be recorded with the sensitivity and selectivity of FSCV. A negative potential step applied at the generator produces a transient local pH shift at the collector. The generator-induced pH signal is detected using FSCV at the collector and correlated to absolute solution pH by postcalibration of the anodic peak position. In addition, in oxygenated solutions a negative potential step at the generator produces hydrogen peroxide by reducing oxygen. Hydrogen peroxide is detected with FSCV at the collector electrode, and the magnitude of the oxidative peak is proportional to absolute oxygen concentrations. Oxygen interference on the pH signal is minimal and can be accounted for with a postcalibration.

  7. Relationship between Physical Activity and Plasma Fibrinogen Concentrations in Adults without Chronic Diseases

    PubMed Central

    Gomez-Marcos, Manuel A.; Recio-Rodríguez, José I.; Patino-Alonso, Maria C.; Martinez-Vizcaino, Vicente; Martin-Borras, Carme; de-la-Cal-dela-Fuente, Aventina; Sauras-Llera, Ines; Sanchez-Perez, Alvaro; Agudo-Conde, Cristina; García-Ortiz, Luis

    2014-01-01

    Objective To analyze the relationship between regular physical activity, as assessed by accelerometer and 7-day physical activity recall (PAR), and plasma fibrinogen concentrations. Methods A cross-sectional study in a previously established cohort of healthy subjects was performed. This study analyzed 1284 subjects who were included in the EVIDENT study (mean age 55.0±13.6 years; 60.90% women). Fibrinogen concentrations were measured in blood plasma. Physical activity was assessed with a 7-day PAR (metabolic equivalents (METs)/hour/week) and GT3X ActiGraph accelerometer (counts/minute) for 7 days. Results Physical exercise, which was evaluated with both an accelerometer (Median: 237.28 counts/minute) and 7-day PAR (Median: 8 METs/hour/week). Physical activity was negatively correlated with plasma fibrinogen concentrations, which was evaluated by counts/min (r = −0.100; p<0.001) and METs/hour/week (r = −0.162; p<0.001). In a multiple linear regression analysis, fibrinogen concentrations of the subjects who performed more physical activity (third tertile of count/minute and METs/hour/week) respect to subjects who performed less (first tertile), maintained statistical significance after adjustments for age and others confounders (β = −0.03; p = 0.046 and β = −0.06; p<0.001, respectively). Conclusions Physical activity, as assessed by accelerometer and 7-day PAR, was negatively associated with plasma fibrinogen concentrations. This relation is maintained in subjects who performed more exercise even after adjusting for age and other confounders. PMID:24498413

  8. A New Route for Unburned Carbon Concentration Measurements Eliminating Mineral Content and Coal Rank Effects

    PubMed Central

    Liu, Dong; Duan, Yuan-Yuan; Yang, Zhen; Yu, Hai-Tong

    2014-01-01

    500 million tons of coal fly ash are produced worldwide every year with only 16% of the total amount utilized. Therefore, potential applications using fly ash have both environmental and industrial interests. Unburned carbon concentration measurements are fundamental to effective fly ash applications. Current on-line measurement accuracies are strongly affected by the mineral content and coal rank. This paper describes a char/ash particle cluster spectral emittance method for unburned carbon concentration measurements. The char/ash particle cluster spectral emittance is predicted theoretically here for various unburned carbon concentrations to show that the measurements are sensitive to unburned carbon concentration but insensitive to the mineral content and coal rank at short wavelengths. The results show that the char/ash particle cluster spectral emittance method is a novel and promising route for unburned carbon concentration on-line measurements without being influenced by mineral content or coal rank effects. PMID:24691496

  9. High concentration suspended sediment measurments using acontinuous fiber optic in-stream transmissometer

    SciTech Connect

    Campbell, Chris G.; Laycak, Danny T.; Hoppes, William; Tran,Nguyen T.; Shi, Frank G.

    2004-05-26

    Suspended sediment loads mobilized during high flow periods in rivers and streams are largely uncharacterized. In smaller and intermittent streams, a large storm may transport a majority of the annual sediment budget. Therefore monitoring techniques that can measure high suspended sediment concentrations at semi-continuous time intervals are needed. A Fiber optic In-stream Transmissometer (FIT) is presented for continuous measurement of high concentration suspended sediment in storm runoff. FIT performance and precision were demonstrated to be reasonably good for suspended sediment concentrations up to 10g/L. The FIT was compared to two commercially available turbidity devices and provided better precision and accuracy at both high and low concentrations. Both turbidity devices were unable to collect measurements at concentrations greater than 4 g/L. The FIT and turbidity measurements were sensitive to sediment particle size. Particle size dependence of transmittance and turbidity measurement poses the greatest problem for calibration to suspended sediment concentration. While the FIT was demonstrated to provide acceptable measurements of high suspended sediment concentrations, approaches to real-time suspended sediment detection need to address the particle size dependence in concentration measurements.

  10. A continuous measure of phasic electrodermal activity

    PubMed Central

    Benedek, Mathias; Kaernbach, Christian

    2010-01-01

    Electrodermal activity is characterized by the superposition of what appear to be single distinct skin conductance responses (SCRs). Classic trough-to-peak analysis of these responses is impeded by their apparent superposition. A deconvolution approach is proposed, which separates SC data into continuous signals of tonic and phasic activity. The resulting phasic activity shows a zero baseline, and overlapping SCRs are represented by predominantly distinct, compact impulses showing an average duration of less than 2 s. A time integration of the continuous measure of phasic activity is proposed as a straightforward indicator of event-related sympathetic activity. The quality and benefit of the proposed measure is demonstrated in an experiment with short interstimulus intervals as well as by means of a simulation study. The advances compared to previous decomposition methods are discussed. PMID:20451556

  11. Radon activity concentrations and effective doses in ancient Egyptian tombs of the Valley of the Kings.

    PubMed

    Hafez, A F; Hussein, A S

    2001-09-01

    Radon concentrations and equilibrium factors were measured in three pharaonic tombs during the year 1998. The tombs, which are open to the public are located in a limestone wadi on the West Bank of the River Nile at Luxor, 650 km south of Cairo. The radon activity concentration and equilibrium factor were measured monthly by two-integral nuclear track detectors (bare and diffusion detectors). Seasonal variation of radon concentrations, with summer maximum and winter minimum were observed in all tombs investigated. The yearly mean radon activity concentrations insidc the tombs ranged from 540 to 3115 Bq m(-3). The mean equilibrium factor over a year was found to be 0.25 and 0.32 inside and at the entrance, respectively. Estimated annual effective doses to tour guides ranged from 0.33 to 1.90 mSv, visitors receive doses from 0.65 to 3.80 microSv per visit. The effective dose to tomb workers did not exceed the 20 mSv yr(-1) limit.

  12. Vertical nitrogen dioxide and ozone concentrations measured from a tethered balloon in the Lower Fraser Valley

    NASA Astrophysics Data System (ADS)

    Pisano, J. T.; McKendry, I.; Steyn, D. G.; Hastie, D. R.

    A series of vertical profiles of temperature, relative humidity, NO 2 and O 3 were determined in the Lower Fraser Valley, British Columbia, as part of the PACIFIC '93 field study. Data from one day show very structured vertical distributions of all parameters in the morning, as expected from the limited vertical mixing under the nocturnal inversion. NO 2 concentrations of 20 ppbv were observed 300m above the surface, while the surface concentrations were ˜ 2 ppbv. Ozone and nitrogen oxide chemistry were observed at all altitudes throughout the PBL. Titration of O 3 by NO to produce NO 2 was observed in layers above the ground, under the influence of the NBL. An increase in odd oxygen throughout the PBL, during the morning and early afternoon, shows "smog chemistry" is occurring even though the ground-based O 3 measurements suggest this day was not particularly chemically active. However, once the NBL has dissipated, the ground-based measurements seem representative of the entire PBL.

  13. Platelet activation of platelet concentrates derived from buffy coat and apheresis methods.

    PubMed

    Ali, Soleimany Ferizhandy

    2011-02-01

    Preparation for storage may cause platelet activation. The quality of platelet concentrates plays an important role in transfusion therapy. Platelet concentrates are produced by different centrifugation methods; buffy coat (buffy coat-derived platelet concentrates-BC) and plateletpheresis (apheresis-derived platelet concentrates-APC). Their quality was assessed using the following parameters: platelet, WBC and RBC counts pH, volume, platelet factor 4 (PF4) and Annexin V. The present paper compares the quality of both platelet preparations in vitro. In this experimental study, 30 platelet concentrates were harvested with the Haemonetics MCS plus and 30 units via the buffy coat (BC) method. The percentages of Annexin V expression, PF4 levels, platelet, WBC and RBC counts, pH and volume were measure immediately after collection and after 3 days of storage. During storage for up to 3 days, BC units displayed, no significant pH or RBC, difference in comparison with apheresis preparations (p>0.05). During storage for up to 3 days, BC units displayed a significant increase in the PF4 and Annexin V expression, compared to the apheresis preparations on day three (p<0.05). The kinetics of PF4 and Annexin V levels are influenced by the method used to prepare platelets for storage. The different levels of PF4 and Annexin V in BCs and APCs clearly demonstrates a progressive activation of BC platelets exceeding that of APC. However, in vivo studies should be performed to confirm these findings.

  14. Active-passive airborne ocean color measurement. II - Applications

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.; Yungel, J. K.

    1986-01-01

    Reported here for the first time is the use of a single airborne instrument to make concurrent measurements of oceanic chlorophyll concentration by (1) laser-induced fluorescence, (2) passive upwelling radiance, and (3) solar-induced chlorophyll fluorescence. Results from field experiments conducted with the NASA airborne oceanographic lidar (AOL) in the New York Bight demonstrate the capability of a single active-passive instrument to perform new and potentially important ocean color studies related to (1) active lidar validation of passive ocean color in-water algorithms, (2) chlorophyll a in vivo fluorescence yield variability, (3) calibration of active multichannel lidar systems, (4) effect of sea state on passive and active ocean color measurements, (5) laser/solar-induced chlorophyll fluorescence investigations, and (6) subsequent improvement of satellite-borne ocean color scanners. For validation and comparison purposes a separate passive ocean color sensor was also flown along with the new active-passive sensor during these initial field trials.

  15. Measuring the Built Environment for Physical Activity

    PubMed Central

    Brownson, Ross C.; Hoehner, Christine M.; Day, Kristen; Forsyth, Ann; Sallis, James F.

    2009-01-01

    Physical inactivity is one of the most important public health issues in the U.S. and internationally. Increasingly, links are being identified between various elements of the physical—or built—environment and physical activity. To understand the impact of the built environment on physical activity, the development of high-quality measures is essential. Three categories of built environment data are being used: (1) perceived measures obtained by telephone interview or self-administered questionnaires; (2) observational measures obtained using systematic observational methods (audits); and (3) archival data sets that are often layered and analyzed with GIS. This review provides a critical assessment of these three types of built-environment measures relevant to the study of physical activity. Among perceived measures, 19 questionnaires were reviewed, ranging in length from 7 to 68 questions. Twenty audit tools were reviewed that cover community environments (i.e., neighborhoods, cities), parks, and trails. For GIS-derived measures, more than 50 studies were reviewed. A large degree of variability was found in the operationalization of common GIS measures, which include population density, land-use mix, access to recreational facilities, and street pattern. This first comprehensive examination of built-environment measures demonstrates considerable progress over the past decade, showing diverse environmental variables available that use multiple modes of assessment. Most can be considered first-generation measures, so further development is needed. In particular, further research is needed to improve the technical quality of measures, understand the relevance to various population groups, and understand the utility of measures for science and public health. PMID:19285216

  16. PGNAA system preliminary design and measurement of In-Hospital Neutron Irradiator for boron concentration measurement.

    PubMed

    Zhang, Zizhu; Chong, Yizheng; Chen, Xinru; Jin, Congjun; Yang, Lijun; Liu, Tong

    2015-12-01

    A prompt gamma neutron activation analysis (PGNAA) system has been recently developed at the 30-kW research reactor In-Hospital Neutron Irradiator (IHNI) in Beijing. Neutrons from the specially designed thermal neutron beam were used. The thermal flux of this beam is 3.08×10(6) cm(-2) s(-1) at a full reactor power of 30 kW. The PGNAA system consists of an n-type high-purity germanium (HPGe) detector of 40% efficiency, a digital spectrometer, and a shielding part. For both the detector shielding part and the neutron beam shielding part, the inner layer is composed of (6)Li2CO3 powder and the outer layer lead. The boron-10 sensitivity of the PGNAA system is approximately 2.5 cps/ppm. Two calibration curves were produced for the 1-10 ppm and 10-50 ppm samples. The measurement results of the control samples were in accordance with the inductively coupled plasma atomic emission spectroscopy (ICP-AES) results.

  17. Estimation of suspended sediment concentration from turbidity measurements for agrarian watersheds of Navarre (Spain)

    NASA Astrophysics Data System (ADS)

    Madrona, Cecilia; Campo-Bescós, Miguel A.; Giménez, Rafael

    2016-04-01

    Studies of soil erosion at watershed scales have addressed this phenomenon from a holistic perspective, linking and prioritizing the dominant influence of the different factors involved in this complex process. Thus, the pattern of sediment transport in a watershed is an excellent indicator of the type and intensity of the dominant erosion processes as well as of the relationships between precipitation, infiltration and runoff. An optimal characterization of the dynamics of sediment requires reliable measurements and recording of the suspended sediment concentration (SSC) at the watershed outlet at a small time scale (minutes) since SSC normally fluctuates rapidly during storm events. But the latter is economically feasible only through indirect measurements; for example, by using turbidimeter. In fact, turbidity is a common subrogate of suspended sediment concentration; but for this purpose it is necessary first to define a suitable (empirical) turbidity-SSC model. But this is not an easy task since the wide range of possible suspended particles of different nature and composition (e.g., silt, clay, organic matter and microorganisms) often lead to a weak association between SSC and turbidity. In Navarre (Spain), soil erosion is an important problem affecting agricultural land. For this reason, the local Government owns and maintains a network of four experimental watersheds to assess the impact on the environment of typical agrarian activities. So that, the amount of sediment and solutes evacuated at the exit of each watershed has been recorded, along with other relevant hydrological and meteorological data. Furthermore, turbidity has been measured every ten minutes. But turbidity-SSC model - determined from average daily data of SSC- currently in use is unsatisfactory, especially for spring and summer events. The aim of this study is to find an appropriate turbidity-SSC relationship for (each of) the agrarian experimental watersheds of Navarre. Regression

  18. MEASUREMENT OF RADON, THORON AND THEIR PROGENY CONCENTRATIONS IN THE DWELLINGS OF PAURI GARHWAL, UTTARAKHAND, INDIA.

    PubMed

    Joshi, Veena; Dutt, Sanjay; Yadav, Manjulata; Mishra, Rosaline; Ramola, R C

    2016-10-01

    It is well known that inhalation of radon, thoron and their progeny contributes more than 50 % of natural background radiation dose to human being. The time-integrated passive measurements of radon, thoron and their progeny concentrations were carried out in the dwellings of Pauri Garhwal, Uttarakhand, India. The measurements of radon and thoron concentrations were performed by LR-115 detector-based single-entry pin-hole dosemeter, while for the measurement of progeny concentrations, LR-115 deposition-based direct radon and thoron progeny sensors technique was used. The experimental techniques and results obtained are discussed in detail.

  19. Estimation of Na-24 activity concentration in BAEC TRIGA Research Reactor

    NASA Astrophysics Data System (ADS)

    Ajijul Hoq, M.; Malek Soner, M. A.; Salam, M. A.; Khanom, Salma; Fahad, S. M.

    The Bangladesh Atomic Energy Commission (BAEC) TRIGA Research Reactor is a unique nuclear installation of the country generally implemented for a wide variety of research applications and serves as an excellent source of neutron. During reactor operation it is necessary to measure and control the activity concentration of the pool water for fuel element failure detection and for the determination of contamination. The present study deals with the estimation of activity concentration for Na-24 present in water coolant produced as a result of 23Na (n, γ) 24Na reaction. Several governing equations have been employed to estimate the Na-24 activity concentrations theoretically at different reactor power levels including maximum reactor power of 2.4 MW. From the obtained result it is ensured that the estimated Na-24 activity of 8.83 × 10-3 μCi /cm3 is not significant enough for any radiological hazard. Thus for ensuring radiological safety issues of the research reactor the assessment performed under the present study has an implication.

  20. Very High Concentrations of Active Intracellular Phosphorylated Emtricitabine in Neonates (ANRS 12109 Trial, Step 2)▿

    PubMed Central

    Hirt, Déborah; Pruvost, Alain; Ekouévi, Didier K.; Urien, Saïk; Arrivé, Elise; Kone, Mamourou; Nerrienet, Eric; Nyati, Mandisa; Gray, Glenda; Kruy, Leang Sim; Blanche, Stéphane; Dabis, François; Tréluyer, Jean-Marc

    2011-01-01

    Our objective was to investigate neonatal emtricitabine (FTC) plasma and intracellular pharmacokinetics. The study was designed as a phase I/II prospective trial in two sequential steps evaluating the combination of tenofovir disoproxil fumarate (TDF) and FTC for the prevention of mother-to-child-transmission (PMTCT) of HIV. HIV-1-infected pregnant women received two tablets of TDF (300 mg) and FTC (200 mg) at onset of labor and then one tablet daily for 7 days postpartum. Based on the data obtained in the first part of the Tenofovir/Emtricitabine in Africa and Asia (TEmAA) Study, single doses of 2 mg/kg of FTC and 13 mg/kg of TDF were given to the neonates within 12 h after birth. A total of 540 FTC plasma concentrations and 44 active intracellular phosphorylated metabolite FTC-TP concentrations were taken from the 36 enrolled women and their neonates. Concentrations were measured by the liquid chromatography-tandem mass spectrometry (LC-MS/MS) method and analyzed by a population approach. The proposed dose obtained by simulations based on plasma drug concentrations was confirmed. However, median FTC-TP exposures were, respectively, 5.9 and 6.8 times higher in the fetus and the neonate than in the adult. High FTC-TP concentrations were observed in the four children who had serious adverse events (SAEs), but the link between FTC-TP concentrations and SAEs in children was not formally identified. The exposure to the active form of FTC was high in neonates despite plasma drug concentrations equivalent to those in adults. Our results are similar to those obtained with zidovudine or lamivudine. PMID:21464241

  1. Microbial metabolic activity in soil as measured by dehydrogenase determinations

    NASA Technical Reports Server (NTRS)

    Casida, L. E., Jr.

    1977-01-01

    The dehydrogenase technique for measuring the metabolic activity of microorganisms in soil was modified to use a 6-h, 37 C incubation with either glucose or yeast extract as the electron-donating substrate. The rate of formazan production remained constant during this time interval, and cellular multiplication apparently did not occur. The technique was used to follow changes in the overall metabolic activities of microorganisms in soil undergoing incubation with a limiting concentration of added nutrient. The sequence of events was similar to that obtained by using the Warburg respirometer to measure O2 consumption. However, the major peaks of activity occurred earlier with the respirometer. This possibly is due to the lack of atmospheric CO2 during the O2 consumption measurements.

  2. Radioactivity of Potassium Solutions: A Comparison of Calculated Activity to Measured Activity from Gross Beta Counting and Gamma Spectroscopy

    SciTech Connect

    Gaylord, R F

    2005-07-26

    In order to determine if the measured beta activity for a solution containing potassium was exactly as predicted, particularly since the CES gas counter is not calibrated specifically with K-40, an experiment was conducted to compare measured activities from two radioanalytical methods (gamma spectroscopy and gas proportional counting) to calculated activities across a range of potassium concentrations. Potassium, being ubiquitous and naturally radioactive, is a well-known and common interference in gross beta counting methods. By measuring the observed beta activity due to K-40 in potassium-containing solutions across a wide range of concentrations, it was found that the observed beta activity agrees well with the beta activity calculated from the potassium concentration measured by standard inorganic analytical techniques, such as ICP-OES, and that using the measured potassium concentration to calculate the expected beta activity, and comparing this to the observed beta activity to determine if potassium can account for all the observed activity in a sample, is a valid technique. It was also observed that gamma spectroscopy is not an effective means of measuring K-40 activity below approximately 700 pCi/L, which corresponds to a solution with approximately 833 mg/L total potassium. Gas proportional counting for gross beta activity has a much lower detection limit, typically 20-50 picoCi/L for a liquid low in total dissolved solids, which corresponds to a potassium concentration of approximately 30-70 ppm K.

  3. Accurate mass replacement method for the sediment concentration measurement with a constant volume container

    NASA Astrophysics Data System (ADS)

    Ban, Yunyun; Chen, Tianqin; Yan, Jun; Lei, Tingwu

    2017-04-01

    The measurement of sediment concentration in water is of great importance in soil erosion research and soil and water loss monitoring systems. The traditional weighing method has long been the foundation of all the other measuring methods and instrument calibration. The development of a new method to replace the traditional oven-drying method is of interest in research and practice for the quick and efficient measurement of sediment concentration, especially field measurements. A new method is advanced in this study for accurately measuring the sediment concentration based on the accurate measurement of the mass of the sediment-water mixture in the confined constant volume container (CVC). A sediment-laden water sample is put into the CVC to determine its mass before the CVC is filled with water and weighed again for the total mass of the water and sediments in the container. The known volume of the CVC, the mass of sediment-laden water, and sediment particle density are used to calculate the mass of water, which is replaced by sediments, therefore sediment concentration of the sample is calculated. The influence of water temperature was corrected by measuring water density to determine the temperature of water before measurements were conducted. The CVC was used to eliminate the surface tension effect so as to obtain the accurate volume of water and sediment mixture. Experimental results showed that the method was capable of measuring the sediment concentration from 0.5 up to 1200 kg m‑3. A good liner relationship existed between the designed and measured sediment concentrations with all the coefficients of determination greater than 0.999 and the averaged relative error less than 0.2%. All of these seem to indicate that the new method is capable of measuring a full range of sediment concentration above 0.5 kg m‑3 to replace the traditional oven-drying method as a standard method for evaluating and calibrating other methods.

  4. Concentration dependent differential activity of signalling molecules in Caenorhabditis elegans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Caenorhabditis elegans employs specific glycosides of the dideoxysugar ascarylose (the ‘ascarosides’) for monitoring population density/ dauer formation and finding mates. A synergistic blend of three ascarosides, called ascr#2, ascr#3 and ascr#4 acts as a dauer pheromone at a high concentration na...

  5. Utilizing Turbidity and Measurements of Suspended Sediment Concentrations to Better Understand Sediment Transport within Urban Streams

    NASA Astrophysics Data System (ADS)

    Elkins, T. M.; Napieralski, J. A.

    2009-12-01

    The Rouge River watershed in Southeast Michigan is an urban watershed, which has been exposed to more than 100 years of anthropogenic activities related to industrialization and urbanization. This urbanization has degraded water quality by increasing erosion and altering the transport mechanism and chemistry of bed and suspended sediments. This study aims to explore the relationship between development within the Lower Rouge watershed and watershed hydrology through an examination of USGS discharge data, stream water quality and suspended sediment loads during storm and base flow. Two YSI dataloggers are used to continuously measure water quality parameters during baseflow and storm events (varying hydrologic conditions), including: turbidity, dissolved oxygen, conductivity, salinity, total dissolved solids, and temperature. Depth-integrated sediment samples are collected and analyzed for sediment concentration using Imhoff cones and filtration methods. Correlations between discharge weighted continuous turbidity measurements and discharge weighted suspended sediment samples are used to estimate sediment loads; essentially, turbidity readings and measured sediment concentrations form a near-linear relationship. In addition, sediment samples are analyzed for inorganic heavy metal contaminants common to Southeast Michigan to characterize both suspended sediments and sediments frequently deposited on adjacent floodplains. These metals (i.e. Lead, Copper, Chromium, Nickle) are commonly known as the “Michigan Metals” and represent indicator species of mobilized and deposited contaminants associated with urbanization and industrialization. The results will provide a baseline for better understanding the transport and fate of contaminated sediments within the Rouge watershed, as well as guide ongoing development and management practices along the Rouge River.

  6. Low salt concentrations activate AMP-activated protein kinase in mouse macula densa cells.

    PubMed

    Cook, Natasha; Fraser, Scott A; Katerelos, Marina; Katsis, Frosa; Gleich, Kurt; Mount, Peter F; Steinberg, Gregory R; Levidiotis, Vicki; Kemp, Bruce E; Power, David A

    2009-04-01

    The energy-sensing kinase AMP-activated protein kinase (AMPK) is associated with the sodium-potassium-chloride cotransporter NKCC2 in the kidney and phosphorylates it on a regulatory site in vitro. To identify a potential role for AMPK in salt sensing at the macula densa, we have used the murine macula densa cell line MMDD1. In this cell line, AMPK was rapidly activated by isosmolar low-salt conditions. In contrast to the known salt-sensing pathway in the macula densa, AMPK activation occurred in the presence of either low sodium or low chloride and was unaffected by inhibition of NKCC2 with bumetanide. Assays using recombinant AMPK demonstrated activation of an upstream kinase by isosmolar low salt. The specific calcium/calmodulin-dependent kinase kinase inhibitor STO-609 failed to suppress AMPK activation, suggesting that it was not part of the signal pathway. AMPK activation was associated with increased phosphorylation of the specific substrate acetyl-CoA carboxylase (ACC) at Ser(79), as well as increased NKCC2 phosphorylation at Ser(126). AMPK activation due to low salt concentrations was inhibited by an adenovirus construct encoding a kinase dead mutant of AMPK, leading to reduced ACC Ser(79) and NKCC2 Ser(126) phosphorylation. This work demonstrates that AMPK activation in macula densa-like cells occurs via isosmolar changes in sodium or chloride concentration, leading to phosphorylation of ACC and NKCC2. Phosphorylation of these substrates in vivo is predicted to increase intracellular chloride and so reduce the effect of salt restriction on tubuloglomerular feedback and renin secretion.

  7. Estimation of annual effective dose from indoor radon/thoron concentrations and measurement of radon concentrations in soil.

    PubMed

    Mehra, Rohit; Bala, Pankaj

    2014-01-01

    Radon short-lived decay products generated from the earth is one of the serious indoor air and soil pollutants. The RAD-7 Electronic Radon Detector with a special accessory is used for the purpose of measurement. The radon and thoron concentrations in the houses of the study area are found to vary from 35±0.5 to 315.2±5.35 Bq m(-3) and 66.1±2.3 to 1710±139.36 Bq m(-3) with the average values of 98.65±1.9 and 388.19±11 Bq m(-3), respectively. From indoor air, the total annual effective dose is calculated and it varies from 0.88 to 7.94 mSv y(-1). The preliminary investigation shows that the thoron concentration is higher than the radon concentration in the houses of the study area. In general, the values of the indoor air are within the recommended action level of the International Commission on Radiological Protection, 2009.

  8. Method for sensing and measuring a concentration or partial pressure of a reactant used in a redox reaction

    DOEpatents

    Findl, E.

    1984-12-21

    A method for sensing or measuring the partial pressure or concentration of an electroactive species used in conjunction with an electrolyte, the method being characterized by providing a constant current between an anode and a cathode of an electrolyte-containing cell, while measuring changes in voltage that occur between either the anode and cathode or between a reference electrode and one of the main electrodes of the cell, thereby to determine the concentration or partial pressure of the electro-active species as a function of said measured voltage changes. The method of the invention can be practiced using either a cell having only an anode and a cathode, or using a cell having an anode and a cathode in combination with a reference electrode. Accurate measurements of small concentrations or partial pressures of electro-active species are obtainable with the method of the invention, by using constant currents of only a few microamperes between the anode and cathode of the cell, while the concentration-determining voltage is measured.

  9. Measuring Active Learning to Predict Course Quality

    ERIC Educational Resources Information Center

    Taylor, John E.; Ku, Heng-Yu

    2011-01-01

    This study investigated whether active learning within computer-based training courses can be measured and whether it serves as a predictor of learner-perceived course quality. A major corporation participated in this research, providing access to internal employee training courses, training representatives, and historical course evaluation data.…

  10. Quantitative television fluoroangiography - the optical measurement of dye concentrations and estimation of retinal blood flow

    SciTech Connect

    Greene, M.; Thomas, A.L. Jr.

    1985-06-01

    The development of a system for the measurement of dye concentrations from single retinal vessels during retinal fluorescein angiography is presented and discussed. The system uses a fundus camera modified for TV viewing. Video gating techniques define the areas of the retina to be studied, and video peak detection yields dye concentrations from retinal vessels. The time course of dye concentration is presented and blood flow into the retina is estimated by a time of transit technique.

  11. A comparison of muscle activity in concentric and counter movement maximum bench press.

    PubMed

    van den Tillaar, Roland; Ettema, Gertjan

    2013-01-01

    The purpose of this study was to compare the kinematics and muscle activation patterns of regular free-weight bench press (counter movement) with pure concentric lifts in the ascending phase of a successful one repetition maximum (1-RM) attempt in the bench press. Our aim was to evaluate if diminishing potentiation could be the cause of the sticking region. Since diminishing potentiation cannot occur in pure concentric lifts, the occurrence of a sticking region in this type of muscle actions would support the hypothesis that the sticking region is due to a poor mechanical position. Eleven male participants (age 21.9 ± 1.7 yrs, body mass 80.7 ± 10.9 kg, body height 1.79 ± 0.07 m) conducted 1-RM lifts in counter movement and in pure concentric bench presses in which kinematics and EMG activity were measured. In both conditions, a sticking region occurred. However, the start of the sticking region was different between the two bench presses. In addition, in four of six muscles, the muscle activity was higher in the counter movement bench press compared to the concentric one. Considering the findings of the muscle activity of six muscles during the maximal lifts it was concluded that the diminishing effect of force potentiation, which occurs in the counter movement bench press, in combination with a delayed muscle activation unlikely explains the existence of the sticking region in a 1-RM bench press. Most likely, the sticking region is the result of a poor mechanical force position.

  12. Airborne Lidar Measurements of Atmospheric Column CO2 Concentration to Cloud Tops

    NASA Astrophysics Data System (ADS)

    Mao, J.; Ramanathan, A. K.; Abshire, J. B.; Kawa, S. R.; Riris, H.; Allan, G. R.; Hasselbrack, W. E.

    2015-12-01

    Globally distributed atmospheric CO2 measurements with high precision, low bias and full seasonal sampling are crucial to advance carbon cycle sciences. However, two thirds of the Earth's surface is typically covered by clouds, and passive remote sensing approaches from space, e.g., OCO-2 and GOSAT, are limited to cloud-free scenes. They are unable to provide useful retrievals in cloudy areas where the photon path-length can't be well characterized. Thus, passive approaches have limited global coverage and poor sampling in cloudy regions, even though some cloudy regions have active carbon surface fluxes. NASA Goddard is developing a pulsed integrated-path, differential absorption (IPDA) lidar approach to measure atmospheric column CO2 concentrations from space as a candidate for NASA's ASCENDS mission. Measurements of time-resolved laser backscatter profiles from the atmosphere also allow this technique to estimate column CO2 and range to cloud tops in addition to those to the ground with precise knowledge of the photon path-length. This allows retrievals of column CO2 concentrations to cloud tops, providing much higher spatial coverage and some information about vertical structure of CO2. This is expected to benefit atmospheric transport process studies, carbon data assimilation in models, and global and regional carbon flux estimation. We show some preliminary results of the all-sky retrieval capability using airborne lidar measurements from the 2011, 2013 and 2014 ASCENDS airborne campaigns on the NASA DC-8. These show retrievals of atmospheric CO2 over low-level marine stratus clouds, cumulus clouds at the top of planetary boundary layer, some mid-level clouds and visually thin high-level cirrus clouds. The CO2 retrievals from the lidar are validated against in-situ measurements and compared to Goddard PCTM model simulations. Lidar cloud slicing to derive CO2 abundance in the planetary boundary layer and free troposphere also has been demonstrated. The

  13. A METHOD OF ASSESSING AIR TOXICS CONCENTRATIONS IN URBAN AREAS USING MOBILE PLATFORM MEASUREMENTS

    EPA Science Inventory

    The objective of this paper is to demonstrate an approach to characterize the spatial variability in ambient air concentrations using mobile platform measurements. This approach may be useful for air toxic assessments in Environmental Justice applications, epidemiological studies...

  14. AMBIENT POLLUTANT CONCENTRATIONS MEASURED BY A MOBILE LABORATORY IN SOUTH BRONX, NY (R827351)

    EPA Science Inventory

    The objective of this study is to characterize the ambient air quality of the South Bronx, New York City (NYC), having high concentrations of diesel trucks and waste transfer facilities. We employed a mobile laboratory for continuous measurements of concentrations of fine part...

  15. International exercise on 124Sb activity measurements.

    PubMed

    Chauvenet, B; Bé, M-M; Amiot, M-N; Bobin, C; Lépy, M-C; Branger, T; Lanièce, I; Luca, A; Sahagia, M; Wätjen, A C; Kossert, K; Ott, O; Nähle, O; Dryák, P; Sochorovà, J; Kovar, P; Auerbach, P; Altzitzoglou, T; Pommé, S; Sibbens, G; Van Ammel, R; Paepen, J; Iwahara, A; Delgado, J U; Poledna, R; da Silva, C J; Johansson, L; Stroak, A; Bailat, C; Nedjadi, Y; Spring, P

    2010-01-01

    An international exercise, registered as EUROMET project no. 907, was launched to measure both the activity of a solution of (124)Sb and the photon emission intensities of its decay. The same solution was sent by LNE-LNHB to eight participating laboratories. In order to identify possible biases, the participants were asked to use all possible activity measurement methods available in their laboratory and then to determine their reference value for comparison. Thus, measurement results from 4pibeta-gamma coincidence/anti-coincidence counting, CIEMAT/NIST liquid-scintillation counting, 4pigamma counting with well-type ionization chambers and well-type crystal detectors were given. The results are compared and show a maximum discrepancy of about 1.6%: possible explanations are proposed.

  16. Coproporphyrinogen oxidase activity and porphyrin concentrations in peripheral red blood cells in hereditary sideroblastic anaemia.

    PubMed

    Pasanen, A V; Eklöf, M; Tenhunen, R

    1985-03-01

    The activity of coproporphyrinogen oxidase and the concentrations of coproporphyrin and protoporphyrin (measured by HPLC) in peripheral red blood cells were established in 2 families with different types of hereditary sideroblastic anaemia. 2 males and 4 females were members of a family with an X-chromosome-linked and pyridoxine-responsive HSA, and 3 females were members of another family where the mode of inheritance is not clear and where pyridoxine did not produce a haematological response. Coproporphyrinogen oxidase activity was normal in 8 of 9 patients and slightly decreased only in 1 patient. All patients had normal red cell coproporphyrin concentrations, but red cell protoporphyrin concentration was decreased in 4 patients. These findings indicate that in vivo haem synthesis was not impaired at the step of coproporphyrinogen oxidase, hence enzymatic defects in earlier steps of haem synthesis are more evident. Earlier suggestions of impaired haem synthesis at this level, based on observed increased concentrations of coproporphyrin in peripheral red blood cells might be explained by the use of unspecific methods.

  17. Optical tweezing electrophoresis of single biotinylated colloidal particles for avidin concentration measurement

    NASA Astrophysics Data System (ADS)

    Brans, Toon; Strubbe, Filip; Schreuer, Caspar; Neyts, Kristiaan; Beunis, Filip

    2015-06-01

    We present a novel approach for label-free concentration measurement of a specific protein in a solution. The technique combines optical tweezers and microelectrophoresis to establish the electrophoretic mobility of a single microparticle suspended in the solution. From this mobility measurement, the amount of adsorbed protein on the particle is derived. Using this method, we determine the concentration of avidin in a buffer solution. After calibration of the setup, which accounts for electro-osmotic flow in the measurement device, the mobilities of both bare and biotinylated microspheres are measured as a function of the avidin concentration in the mixture. Two types of surface adsorption are identified: the biotinylated particles show specific adsorption, resulting from the binding of avidin molecules with biotin, at low avidin concentrations (below 0.04 μg/ml) while at concentrations of several μg/ml non-specific on both types of particles is observed. These two adsorption mechanisms are incorporated in a theoretical model describing the relation between the measured mobility and the avidin concentration in the mixture. This model describes the electrophoretic mobility of these particles accurately over four orders of magnitude of the avidin concentration.

  18. Concentration Measurements in a Cold Flow Model Annular Combustor Using Laser Induced Fluorescence

    NASA Technical Reports Server (NTRS)

    Morgan, Douglas C.

    1996-01-01

    A nonintrusive concentration measurement method is developed for determining the concentration distribution in a complex flow field. The measurement method consists of marking a liquid flow with a water soluble fluorescent dye. The dye is excited by a two dimensional sheet of laser light. The fluorescent intensity is shown to be proportional to the relative concentration level. The fluorescent field is recorded on a video cassette recorder through a video camera. The recorded images are analyzed with image processing hardware and software to obtain intensity levels. Mean and root mean square (rms) values are calculated from these intensity levels. The method is tested on a single round turbulent jet because previous concentration measurements have been made on this configuration by other investigators. The previous results were used to comparison to qualify the current method. These comparisons showed that this method provides satisfactory results. 'Me concentration measurement system was used to measure the concentrations in the complex flow field of a model gas turbine annular combustor. The model annular combustor consists of opposing primary jets and an annular jet which discharges perpendicular to the primary jets. The mixing between the different jet flows can be visualized from the calculated mean and rms profiles. Concentration field visualization images obtained from the processing provide further qualitative information about the flow field.

  19. Quantifying the 3D Odorant Concentration Field Used by Actively Tracking Blue Crabs

    NASA Astrophysics Data System (ADS)

    Webster, D. R.; Dickman, B. D.; Jackson, J. L.; Weissburg, M. J.

    2007-11-01

    Blue crabs and other aquatic organisms locate food and mates by tracking turbulent odorant plumes. The odorant concentration fluctuates unpredictably due to turbulent transport, and many characteristics of the fluctuation pattern have been hypothesized as useful cues for orienting to the odorant source. To make a direct linkage between tracking behavior and the odorant concentration signal, we developed a measurement system based the laser induced fluorescence technique to quantify the instantaneous 3D concentration field surrounding actively tracking blue crabs. The data suggest a correlation between upstream walking speed and the concentration of the odorant signal arriving at the antennule chemosensors, which are located near the mouth region. More specifically, we note an increase in upstream walking speed when high concentration bursts arrive at the antennules location. We also test hypotheses regarding the ability of blue crabs to steer relative to the plume centerline based on the signal contrast between the chemosensors located on their leg appendages. These chemosensors are located much closer to the substrate compared to the antennules and are separated by the width of the blue crab. In this case, it appears that blue crabs use the bilateral signal comparison to track along the edge of the plume.

  20. Rapid Response Concentration-Controlled Desorption of Activated Carbon to Dampen Concentration Fluctuations

    DTIC Science & Technology

    2007-01-01

    Z A E M A M I P O U R , D I E G O C E V A L L O S , A N D M A R K J . R O O D * Department of Civil & Environmental Engineering, University of...such as granular activated carbon (GAC) have been used as biofilter packing material on which biofilm was grown to assist with buffering of the...efficiencies were attributed to the thickness of the biofilm on the GAC. GAC was also used in a separate vessel to dampen the fluctuations of the

  1. Quantitative Imaging and In Situ Concentration Measurements of Quantum Dot Nanomaterials in Variably Saturated Porous Media

    DOE PAGES

    Uyuşur, Burcu; Snee, Preston T.; Li, Chunyan; ...

    2016-01-01

    Knowledge of the fate and transport of nanoparticles in the subsurface environment is limited, as techniques to monitor and visualize the transport and distribution of nanoparticles in porous media and measure their in situ concentrations are lacking. To address these issues, we have developed a light transmission and fluorescence method to visualize and measure in situ concentrations of quantum dot (QD) nanoparticles in variably saturated environments. Calibration cells filled with sand as porous medium and various known water saturation levels and QD concentrations were prepared. By measuring the intensity of the light transmitted through porous media exposed to fluorescent lightmore » and by measuring the hue of the light emitted by the QDs under UV light exposure, we obtained simultaneously in situ measurements of water saturation and QD nanoparticle concentrations with high spatial and temporal resolutions. Water saturation was directly proportional to the light intensity. A linear relationship was observed between hue-intensity ratio values and QD concentrations for constant water saturation levels. The advantages and limitations of the light transmission and fluorescence method as well as its implications for visualizing and measuring in situ concentrations of QDs nanoparticles in the subsurface environment are discussed.« less

  2. Active and passive cooling for concentrating photovoltaic arrays

    SciTech Connect

    Edenburn, M.W.

    1980-01-01

    The optimization, based on minimum energy cost, of active and passive cooling designs for point-focus Fresnel lens photovoltaic arrays and line-focus, parabolic-trough photovoltaic arrays are discussed, and the two types of cooling are compared. Passive cooling is more cost effective than active for Fresnel lens arrays while the reverse is true for parabolic trough arrays. The analysis produced several other conclusions of interest which are also discussed.

  3. Bayesian Estimation of the Active Concentration and Affinity Constants Using Surface Plasmon Resonance Technology.

    PubMed

    Feng, Feng; Kepler, Thomas B

    2015-01-01

    Surface plasmon resonance (SPR) has previously been employed to measure the active concentration of analyte in addition to the kinetic rate constants in molecular binding reactions. Those approaches, however, have a few restrictions. In this work, a Bayesian approach is developed to determine both active concentration and affinity constants using SPR technology. With the appropriate prior probabilities on the parameters and a derived likelihood function, a Markov Chain Monte Carlo (MCMC) algorithm is applied to compute the posterior probability densities of both the active concentration and kinetic rate constants based on the collected SPR data. Compared with previous approaches, ours exploits information from the duration of the process in its entirety, including both association and dissociation phases, under partial mass transport conditions; do not depend on calibration data; multiple injections of analyte at varying flow rates are not necessary. Finally the method is validated by analyzing both simulated and experimental datasets. A software package implementing our approach is developed with a user-friendly interface and made freely available.

  4. [Genetic programming used for the measurement of CO concentration based on nondispersive infrared absorption spectroscopy].

    PubMed

    Chen, Jin; Duan, Fa-jie; Tong, Ying; Gao, Qiang

    2011-07-01

    Nondispersive infrared absorption spectroscopy(NDIR) is an important method to measure CO concentration in the air. In the present study, an open-path measurement system and continuous measuring device was developed, and genetic programming was used to establish the calibration model of subjects' light intensity sampling values. Continuous measurements were carried out in 10 different concentration of CO, and 40 sampled data were acquired and analyzed. For validation set, the correlation coefficient was 0.9997. The biggest relative error of validation was 4.00%, and the average relative error was 1.11%. Results show that genetic programming can be a good method for the modeling of gas concentration measurements equipped with NDIR systems.

  5. IR detector for hydrocarbons concentration measurement in emissions during petroleum and oil products storage and transportation

    NASA Astrophysics Data System (ADS)

    Vasilyev, Andrey O.; Shemanin, Valeriy G.; Chartiy, Pavel V.

    2011-10-01

    A double beam IR detector is developed for light hydrocarbons concentration measurement in emissions from storage vessels during oil and oil products storage and transportation. It was concluded on the basis of chromatogram that main crude losses from evaporation are the share of hydrocarbons light ends from methane to decane. Detector operation is based on spectral transparency measurement in the infrared spectra absorption range. Operational wavelength of infrared radiation makes 3.4 μm. measurement principle is based on concentration calculation proceed from molecule absorption cross-section, optical path length between light emitted diode and reference and signal photodiodes as well as from value of measured signal transmitted through gaging volume. The novel of offering device is an actual paraffin hydrocarbons concentration measurement in emissions and continuous and automatic environment quality control.

  6. Concentration and velocity measurements in the flow of droplet suspensions through a tube

    NASA Astrophysics Data System (ADS)

    Kowalewski, T. A.

    1984-12-01

    Two optical methods, light absorption and LDA, are applied to measure the concentration and velocity profiles of droplet suspensions flowing through a tube. The droplet concentration is non-uniform and has two maxima, one near the tube wall and one on the tube axis. The measured velocity profiles are blunted, but a central plug-flow region is not observed. The concentration of droplets on the tube axis and the degree of velocity profile blunting depend on relative viscosity. These results can be qualitatively compared with the theory of Chan and Leal.

  7. A methodology suitable for TEM local measurements of carbon concentration in retained austenite

    SciTech Connect

    Kammouni, A.; Saikaly, W. Dumont, M.; Marteau, C.; Bano, X.; Charai, A.

    2008-09-15

    Carbon concentration in retained austenite grains is of great importance determining the mechanical properties of hot-rolled TRansformation Induced Plasticity steels. Among the different techniques available to measure such concentrations, Kikuchi lines obtained in Transmission Electron Microscopy provide a relatively easy and accurate method. The major problem however is to be able to locate an austenitic grain in the observed Transmission Electron Microscopy thin foil. Focused Ion Beam in combination with Scanning Electron Microscopy was used to successfully prepare a thin foil for Transmission Electron Microscopy and carbon concentration measurements from a 700 nm retained austenite grain.

  8. Measurements of SO2 concentration and atmospheric structure in Delta and Breton wildlife refuges

    SciTech Connect

    Hsu, S.A.

    1995-04-01

    A field program designed to measure the ambient concentrations of SO2 as well as pertinent meteorological parameters was conducted during the summer of 1993. Three stations were established in the EPA Class 1 areas of Breton and Delta Wildlife Refuges near the mouth of the Mississippi River. It was found that the SO2 concentration measured throughout the monitoring duration was only 2% of the National maximum allowable once per year. The passage of a weak cold front in September showed that the SO2 concentrations were higher when the wind blew from land to the Gulf than under normal summer conditions when the wind blew from the Gulf toward land.

  9. Use of focussed beam reflectance measurement (FBRM) for monitoring changes in biomass concentration.

    PubMed

    Whelan, Jessica; Murphy, Eilis; Pearson, Alan; Jeffers, Paul; Kieran, Patricia; McDonnell, Susan; Raposo, Sara; Lima-Costa, Ma Emília; Glennon, Brian

    2012-08-01

    The potential of focussed beam reflectance measurement (FBRM) as a tool to monitor changes in biomass concentration was investigated in a number of biological systems. The measurement technique was applied to two morphologically dissimilar plant cell suspension cultures, Morinda citrifolia and Centaurea calcitrapa, to a filamentous bacteria, Streptomyces natalensis, to high density cultures of Escherichia coli and to a murine Sp2/0 hybridoma suspension cell line, 3-2.19. In all cases, the biomass concentration proved to be correlated with total FBRM counts. The nature of the correlation varied between systems and was influenced by the concentration, nature, size and morphology of the particle under investigation.

  10. High Frequency Measurements of Methane Concentrations and Carbon Isotopes at a Marsh and Landfill

    NASA Astrophysics Data System (ADS)

    Mortazavi, B.; Wilson, B.; Chanton, J.; Eller, K.; Dong, F.; Baer, D. S.; Gupta, M.; Dzwonkowski, B.

    2012-12-01

    High frequency measurements of methane concentrations and carbon isotopes can help constrain the source strengths of methane emitted to the atmosphere. We report here methane concentrations and 13C values measured at 0.5 Hz with cavity enhanced laser absorption spectrometers (Los Gatos Research) deployed at a saltmarsh in Alabama and a landfill in Florida. Methane concentrations and 13C at the saltmarsh were monitored over a 2.5 day time period at 2 m, 0.5 m above the ground as well as from the outflow of a flow-through (2 L) chamber placed on the Spartina alterniflora dominated marsh. A typical measurement cycle included regular samples from two tanks of known methane concentrations and isotopic values and from ambient air samples. Over the 2.5-day measurement period methane concentrations and isotopic ratios at 2 m averaged 1.85 ppm and -43.57‰ (±0.34, 1 SE), respectively. The concentration and isotopic values from the chamber outflow varied from 1.92 to 5.81 ppm and -38.5 to -59.3‰, respectively. Methane flux from the marsh ranged from undetectable to 3.6 mgC m-2hr-1, with high fluxes measured during low tide. The 13δCH4 of the emitted CH4 from the marsh, determined from a mass balance equation using the chamber inflow and outflow concentration and isotopic values ranged from -62.1 to -93.9‰ and averaged -77‰ (±1.25, 1SE). At the landfill ambient methane concentrations and 13C ratios measured over multiple days varied from 4.25 to 11.91 ppm and from -58.81 to -45.12‰, respectively. At higher methane concentrations the δ13C of CH4 was more depleted consistent with previously observed relationship at this site made by more traditional techniques. Over a 30-minute measurement period CH4 concentrations at the landfill could vary by as much as 15 ppm. The high frequency continuous optical measurements with field-deployed instruments provide us with an unprecedented temporal resolution of CH4 concentrations and isotopic ratios. These measurements will

  11. Measurement of radon concentration in some water samples belonging to some adjoining areas of Pathankot, Punjab

    SciTech Connect

    Kumar, Ajay Sharma, Sumit

    2015-08-28

    The study of radon concentration was measured in some areas of Pathankot district, Punjab, India, from the health hazard point of view due to radon. The exposure to radon through drinking water is largely by inhalation and ingestion. RAD 7, an electronic solid state silicon detector (Durridgeco., USA) was used to measure the radon concentration in drinking water samples of the study area. The recorded values of radon concentration in these water samples are below the recommended limit by UNSCEAR and European commission. The recommended limit of radon concentration in water samples is 4 to 40 Bq/l given by UNSCEAR [1] and European commission has recommended the safe limit for radon concentration in water sample is 100 Bq/l [2].

  12. Measurement of radon concentration in some water samples belonging to some adjoining areas of Pathankot, Punjab

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay; Sharma, Sumit

    2015-08-01

    The study of radon concentration was measured in some areas of Pathankot district, Punjab, India, from the health hazard point of view due to radon. The exposure to radon through drinking water is largely by inhalation and ingestion. RAD 7, an electronic solid state silicon detector (Durridgeco., USA) was used to measure the radon concentration in drinking water samples of the study area. The recorded values of radon concentration in these water samples are below the recommended limit by UNSCEAR and European commission. The recommended limit of radon concentration in water samples is 4 to 40 Bq/l given by UNSCEAR [1] and European commission has recommended the safe limit for radon concentration in water sample is 100 Bq/l [2].

  13. Response of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon

    USGS Publications Warehouse

    Waldrop, M.P.; Zak, D.R.

    2006-01-01

    Recent evidence suggests that atmospheric nitrate (NO3- ) deposition can alter soil carbon (C) storage by directly affecting the activity of lignin-degrading soil fungi. In a laboratory experiment, we studied the direct influence of increasing soil NO 3- concentration on microbial C cycling in three different ecosystems: black oak-white oak (BOWO), sugar maple-red oak (SMRO), and sugar maple-basswood (SMBW). These ecosystems span a broad range of litter biochemistry and recalcitrance; the BOWO ecosystem contains the highest litter lignin content, SMRO had intermediate lignin content, and SMBW leaf litter has the lowest lignin content. We hypothesized that increasing soil solution NO 3- would reduce lignolytic activity in the BOWO ecosystem, due to a high abundance of white-rot fungi and lignin-rich leaf litter. Due to the low lignin content of litter in the SMBW, we further reasoned that the NO3- repression of lignolytic activity would be less dramatic due to a lower relative abundance of white-rot basidiomycetes; the response in the SMRO ecosystem should be intermediate. We increased soil solution NO3- concentrations in a 73-day laboratory incubation and measured microbial respiration and soil solution dissolved organic carbon (DOC) and phenolics concentrations. At the end of the incubation, we measured the activity of ??-glucosidase, N-acetyl-glucosaminidase, phenol oxidase, and peroxidase, which are extracellular enzymes involved with cellulose and lignin degradation. We quantified the fungal biomass, and we also used fungal ribosomal intergenic spacer analysis (RISA) to gain insight into fungal community composition. In the BOWO ecosystem, increasing NO 3- significantly decreased oxidative enzyme activities (-30% to -54%) and increased DOC (+32% upper limit) and phenolic (+77% upper limit) concentrations. In the SMRO ecosystem, we observed a significant decrease in phenol oxidase activity (-73% lower limit) and an increase in soluble phenolic concentrations

  14. Neonatal screening for congenital hypothyroidism by measurement of plasma thyroxine and thyroid stimulating hormone concentrations.

    PubMed Central

    Griffiths, K D; Virdi, N K; Rayner, P H; Green, A

    1985-01-01

    Neonatal screening for congenital hypothyroidism was introduced in the City of Birmingham in 1980 by measuring concentrations of both thyroid stimulating hormone and thyroxine in plasma. Over two years 30 108 babies were tested. Thirty one babies were recalled because of thyroid stimulating hormone concentrations greater than 40 mU/l, of whom 12 were treated with replacement thyroxine. Six babies were found to have low thyroxine concentrations because of reduced thyroxine binding globulin and five raised thyroxine values because of increased thyroxine binding globulin. As a result of this study screening was continued with measurement of thyroid stimulating hormone only as the primary test for congenital hypothyroidism, the thyroxine value being measured only when the concentration of thyroid stimulating hormone exceeded 20 mU/l. PMID:3926078

  15. High-concentration zeta potential measurements using light-scattering techniques.

    PubMed

    Kaszuba, Michael; Corbett, Jason; Watson, Fraser Mcneil; Jones, Andrew

    2010-09-28

    Zeta potential is the key parameter that controls electrostatic interactions in particle dispersions. Laser Doppler electrophoresis is an accepted method for the measurement of particle electrophoretic mobility and hence zeta potential of dispersions of colloidal size materials. Traditionally, samples measured by this technique have to be optically transparent. Therefore, depending upon the size and optical properties of the particles, many samples will be too concentrated and will require dilution. The ability to measure samples at or close to their neat concentration would be desirable as it would minimize any changes in the zeta potential of the sample owing to dilution. However, the ability to measure turbid samples using light-scattering techniques presents a number of challenges. This paper discusses electrophoretic mobility measurements made on turbid samples at high concentration using a novel cell with reduced path length. Results are presented on two different sample types, titanium dioxide and a polyurethane dispersion, as a function of sample concentration. For both of the sample types studied, the electrophoretic mobility results show a gradual decrease as the sample concentration increases and the possible reasons for these observations are discussed. Further, a comparison of the data against theoretical models is presented and discussed. Conclusions and recommendations are made from the zeta potential values obtained at high concentrations.

  16. Sequential Measurement of Intermodal Variability in Public Transportation PM2.5 and CO Exposure Concentrations.

    PubMed

    Che, W W; Frey, H Christopher; Lau, Alexis K H

    2016-08-16

    A sequential measurement method is demonstrated for quantifying the variability in exposure concentration during public transportation. This method was applied in Hong Kong by measuring PM2.5 and CO concentrations along a route connecting 13 transportation-related microenvironments within 3-4 h. The study design takes into account ventilation, proximity to local sources, area-wide air quality, and meteorological conditions. Portable instruments were compacted into a backpack to facilitate measurement under crowded transportation conditions and to quantify personal exposure by sampling at nose level. The route included stops next to three roadside monitors to enable comparison of fixed site and exposure concentrations. PM2.5 exposure concentrations were correlated with the roadside monitors, despite differences in averaging time, detection method, and sampling location. Although highly correlated in temporal trend, PM2.5 concentrations varied significantly among microenvironments, with mean concentration ratios versus roadside monitor ranging from 0.5 for MTR train to 1.3 for bus terminal. Measured inter-run variability provides insight regarding the sample size needed to discriminate between microenvironments with increased statistical significance. The study results illustrate the utility of sequential measurement of microenvironments and policy-relevant insights for exposure mitigation and management.

  17. The Detection and Measurement of the Activity Size Distributions

    NASA Astrophysics Data System (ADS)

    Ramamurthi, Mukund

    The infiltration of radon into the indoor environment may cause the exposure of the public to excessive amounts of radioactivity and has spurred renewed research interest over the past several years into the occurrence and properties of radon and its decay products in indoor air. The public health risks posed by the inhalation and subsequent lung deposition of the decay products of Rn-222 have particularly warranted the study of their diffusivity and attachment to molecular cluster aerosols in the ultrafine particle size range (0.5-5 nm) and to accumulation mode aerosols. In this research, a system for the detection and measurement of the activity size distributions and concentration levels of radon decay products in indoor environments has been developed. The system is microcomputer-controlled and involves a combination of multiple wire screen sampler -detector units operated in parallel. The detection of the radioactivity attached to the aerosol sampled in these units permits the determination of the radon daughter activity -weighted size distributions and concentration levels in indoor air on a semi-continuous basis. The development of the system involved the design of the detection and measurement system, its experimental characterization and testing in a radon-aerosol chamber, and numerical studies for the optimization of the design and operating parameters of the system. Several concepts of utility to aerosol size distribution measurement methods sampling the ultrafine cluster size range evolved from this study, and are discussed in various chapters of this dissertation. The optimized multiple wire screen (Graded Screen Array) system described in this dissertation is based on these concepts. The principal facet of the system is its ability to make unattended measurements of activity size distributions and concentration levels of radon decay products on a semi-continuous basis. Thus, the capability of monitoring changes in the activity concentrations and size

  18. Stable isotope and high precision concentration measurements confirm that all humans produce and exhale methane.

    PubMed

    Keppler, Frank; Schiller, Amanda; Ehehalt, Robert; Greule, Markus; Hartmann, Jan; Polag, Daniela

    2016-01-29

    Mammalian formation of methane (methanogenesis) is widely considered to occur exclusively by anaerobic microbial activity in the gastrointestinal tract. Approximately one third of humans, depending on colonization of the gut by methanogenic archaea, are considered methane producers based on the classification terminology of high and low emitters. In this study laser absorption spectroscopy was used to precisely measure concentrations and stable carbon isotope signatures of exhaled methane in breath samples from 112 volunteers with an age range from 1 to 80 years. Here we provide analytical evidence that volunteers exhaled methane levels were significantly above background (inhaled) air. Furthermore, stable carbon isotope values of the exhaled methane unambiguously confirmed that this gas was produced by all of the human subjects studied. Based on the emission and stable carbon isotope patterns of various age groups we hypothesize that next to microbial sources in the gastrointestinal tracts there might be other, as yet unidentified, processes involved in methane formation supporting the idea that humans might also produce methane endogenously in cells. Finally we suggest that stable isotope measurements of volatile organic compounds such as methane might become a useful tool in future medical research diagnostic programs.

  19. Active and passive cooling for concentrating photovoltaic arrays

    SciTech Connect

    Edenburn, M.W.

    1981-10-01

    Optimization, based on minimum energy cost, of active and passive cooling designs for point-focus Fresnel lens photovoltaic arrays and line-focus, parabolic-trough photovoltaic arrays is discussed, and the two types of cooling are compared. Passive cooling is more cost-effective for Fresnel lens arrays while the reverse is true for parabolic-trough arrays.

  20. 40 CFR 761.298 - Decisions based on PCB concentration measurements resulting from sampling.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Sampling To Verify Completion of Self-Implementing... measurements resulting from sampling. 761.298 Section 761.298 Protection of Environment ENVIRONMENTAL....61(a)(6) § 761.298 Decisions based on PCB concentration measurements resulting from sampling. (a)...

  1. 40 CFR 761.316 - Interpreting PCB concentration measurements resulting from this sampling scheme.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Sampling Non-Porous Surfaces for... measurements resulting from this sampling scheme. 761.316 Section 761.316 Protection of Environment... § 761.79(b)(3) § 761.316 Interpreting PCB concentration measurements resulting from this...

  2. Use of the SYBR Green dye for measuring helicase activity.

    PubMed

    Siddiqui, Sammer; Khan, Irfan; Zarina, Shamshad; Ali, Syed

    2013-03-05

    Here we describe a non-radioactive assay that exploits the fluorescent dye SYBR Green to measure the helicase enzyme activity. SYBR Green I emits fluorescence upon intercalation with double-stranded DNA or RNA. The fluorescence is lost proportionally as the nucleic acid is converted to single strands by a helicase, and this decrease in fluorescence intensity can be used to measure the activity of the helicase enzyme. The reaction was prepared by mixing a double-stranded substrate with the helicase enzyme, buffer, ATP and SYBR Green I. After completion, the reaction was terminated by EDTA and fluorescence was measured. Using this technique, a linear increase in substrate release was observed with increasing time and helicase concentrations. The assay described here is speedy, efficient and economical; it holds promise for use in large-scale screening of drugs that target helicases.

  3. Russian Activities in Space Photovoltaic Power Modules with Concentrators

    NASA Technical Reports Server (NTRS)

    Andreev, Vyacheslav M.; Rumyantsev, Valeri D.

    2004-01-01

    Space concentrator modules with point-and line-focus Fresnel lenses and with reflective parabolic troughs have been developed recently at Ioffe Physico-Technical Institute. PV receivers for these modules are based: on the single junction LPE and MOCVD AlGaAs/GaAs solar cells characterized by AM0 efficiencies of 23.5 - 24% at 20 - 50 suns and 24 - 24.75 at 50 - 200 suns; on the mechanically stacked tandem AlGaAs/GaAs-GaSb cells with efficiency of 27 - 28 at 20 - 100 suns. MOCVD AlGaAs/GaAs cells with internal Bragg reflector have shown a higher radiation resistance as compared to a traditional structure. Monolithic two-terminal tandems AlGaAs (top)-GaAs (bottom) for space application and GaSb (top) - InGaAsSb (bottom) for TRV application are under development as well.

  4. A multiple path photonic lab on a chip for parallel protein concentration measurements.

    PubMed

    Rodríguez-Ruiz, Isaac; Conejero-Muriel, Mayte; Ackermann, Tobias N; Gavira, José A; Llobera, Andreu

    2015-02-21

    We propose a PDMS-based photonic system for the accurate measurement of protein concentration with minute amounts of the sample. As opposed to the state of the art approach, in the multiple path photonic lab on a chip (MPHIL), analyte concentration or molar absorptivity is obtained with a single injection step, by performing simultaneous parallel optical measurements varying the optical path length. Also, as opposed to the standard calibration protocol, the MPHIL approach does not require a series of measurements at different concentrations. MPHIL has three main advantages: firstly the possibility of dynamically selecting the path length, always working in the absorbance vs. concentration linear range for each target analyte. Secondly, a dramatic reduction of the total volume of the sample required to obtain statistically reliable results. Thirdly, since only one injection is required, the measurement time is minimized, reducing both contamination and signal drifts. These characteristics are clearly advantageous when compared to commercial micro-spectrophotometers. The MPHIL concept was validated by testing three commercial proteins, lysozyme (HEWL), glucose isomerase (d-xylose-ketol-isomerase, GI) and Aspergillus sp. lipase L (BLL), as well as two proteins expressed and purified for this study, B. cereus formamidase (FASE) and dihydropyrimidinase from S. meliloti CECT41 (DHP). The use of MPHIL is also proposed for any spectrophotometric measurement in the UV-VIS range, as well as for its integration as a concentration measurement platform in more advanced photonic lab on a chip systems.

  5. Measurements of ice nuclei concentrations and compositions in the maritime tropics

    NASA Astrophysics Data System (ADS)

    McMeeking, G. R.; Danielczok, A.; Bingemer, H.; Klein, H.; Hill, T. C.; Franc, G. D.; Martinez, M.; Venero, I.; Mayol-Bracero, O. L.; Ardon-Dryer, K.; Levin, Z.; Anderson, J.; Twohy, C. H.; Toohey, D. W.; DeMott, P. J.

    2011-12-01

    Tropical maritime cumulus clouds represent an important component of the global water cycle, but the relative roles of primary and secondary ice production in these clouds are poorly understood. Heterogeneous ice nuclei (IN) are responsible for ice initiation in towering tropical cumulus clouds, so information regarding their abundance, distribution, source compositions and dependence on cloud temperature is crucial to understanding the ice production processes. Here we present recent measurements of ice nuclei (IN) concentrations measured from ground-based and airborne (NSF/NCAR C-130) platforms during the Ice in Clouds-Tropical experiment, which took place in July 2011 over the Caribbean Sea near St. Croix in the US Virgin Islands. IN measurement techniques included airborne ambient and cloud particle residual measurements using a continuous flow diffusion chamber and off-line analysis of samples collected from the aircraft and two ground sites located on the island of Puerto Rico. Off-line measurements of IN concentrations included analysis by the Frankfurt Ice Nuclei Deposition FreezinG Experiment (FRIDGE) system and drop freezing via two methods of particles collected from filter samples. The measurement period included some periods with a strong Saharan dust influence that resulted in higher IN concentrations compared to clean maritime conditions. First analysis of IN physical, chemical and biological composition, and investigation of relationships between IN concentrations and total aerosol concentrations, composition and size are also presented.

  6. Threat-related amygdala activity is associated with peripheral CRP concentrations in men but not women.

    PubMed

    Swartz, Johnna R; Prather, Aric A; Hariri, Ahmad R

    2017-04-01

    Increased levels of peripheral inflammatory markers, including C-Reactive Protein (CRP), are associated with increased risk for depression, anxiety, and suicidality. The brain mechanisms that may underlie the association between peripheral inflammation and internalizing problems remain to be determined. The present study examines associations between peripheral CRP concentrations and threat-related amygdala activity, a neural biomarker of depression and anxiety risk, in a sample of 172 young adult undergraduate students. Participants underwent functional MRI scanning while performing an emotional face matching task to obtain a measure of threat-related amygdala activity to angry and fearful faces; CRP concentrations were assayed from dried blood spots. Results indicated a significant interaction between CRP and sex: in men, but not women, higher CRP was associated with higher threat-related amygdala activity. These results add to the literature finding associations between systemic levels of inflammation and brain function and suggest that threat-related amygdala activity may serve as a potential pathway through which heightened chronic inflammation may increase risk for mood and anxiety problems.

  7. Final Report: Investigation of Polarization Spectroscopy and Degenerate Four-Wave Mixing for Quantitative Concentration Measurements

    SciTech Connect

    Robert P. Lucht

    2005-03-09

    Laser-induced polarization spectroscopy (LIPS), degenerate four-wave mixing (DFWM), and electronic-resonance-enhanced (ERE) coherent anti-Stokes Raman scattering (CARS) are techniques that shows great promise for sensitive measurements of transient gas-phase species, and diagnostic applications of these techniques are being pursued actively at laboratories throughout the world. However, significant questions remain regarding strategies for quantitative concentration measurements using these techniques. The primary objective of this research program is to develop and test strategies for quantitative concentration measurements in flames and plasmas using these nonlinear optical techniques. Theoretically, we are investigating the physics of these processes by direct numerical integration (DNI) of the time-dependent density matrix equations that describe the wave-mixing interaction. Significantly fewer restrictive assumptions are required when the density matrix equations are solved using this DNI approach compared with the assumptions required to obtain analytical solutions. For example, for LIPS calculations, the Zeeman state structure and hyperfine structure of the resonance and effects such as Doppler broadening can be included. There is no restriction on the intensity of the pump and probe beams in these nonperturbative calculations, and both the pump and probe beam intensities can be high enough to saturate the resonance. As computer processing speeds have increased, we have incorporated more complicated physical models into our DNI codes. During the last project period we developed numerical methods for nonperturbative calculations of the two-photon absorption process. Experimentally, diagnostic techniques are developed and demonstrated in gas cells and/or well-characterized flames for ease of comparison with model results. The techniques of two-photon, two-color H-atom LIPS and three-laser ERE CARS for NO and C{sub 2}H{sub 2} were demonstrated during the

  8. The current status of continuous noninvasive measurement of total, carboxy, and methemoglobin concentration.

    PubMed

    Shamir, Micha Y; Avramovich, Aharon; Smaka, Todd

    2012-05-01

    Intraoperative early detection of anemia, identifying toxic levels of carboxyhemoglobin after carbon monoxide exposure and titrating drug dosage to prevent toxic levels of methemoglobin are important goals. The pulse oximeter works by illuminating light into the tissue and sensing the amount of light absorbed. The same methodology is used by laboratory hemoglobinometers to measure hemoglobin concentration. Because both devices work in the same way, efforts were made to modify the pulse oximeter to also measure hemoglobin concentration. Currently there are 2 commercial pulse oximeters (Masimo Rainbow SET and OrSense NBM-200MP) that measure total hemoglobin concentration and one (Masimo) that also measures methemoglobin and carboxyhemoglobin. In this review, we describe the peer-reviewed literature addressing the accuracy of these monitors.

  9. Neutron and proton activation measurements from Skylab

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.

    1974-01-01

    Radioactivity induced by high-energy protons and secondary neutrons (from nuclear interactions) in various samples returned from different locations in Skylab was measured directly by gamma-ray spectroscopy measurements of decay gamma rays from the samples. Incident fluxes were derived from the activation measurements, using known nuclear cross-section. Neutron and proton flux values were found to range from 0.2 to 5 particles/sq cm-sec, depending on the energy range and location in Skylab. The thermal neutron flux was less than 0.07 neutrons/sq cm-sec. The results are useful for data analysis and planning of future high-energy astronomy experiments.

  10. Spatial concentration distribution analysis of cells in electrode-multilayered microchannel by dielectric property measurement.

    PubMed

    Yao, Jiafeng; Kodera, Tatsuya; Obara, Hiromichi; Sugawara, Michiko; Takei, Masahiro

    2015-07-01

    The spatial concentration distribution of cells in a microchannel is measured by combining the dielectric properties of cells with the specific structure of the electrode-multilayered microchannel. The dielectric properties of cells obtained with the impedance spectroscopy method includes the cell permittivity and dielectric relaxation, which corresponds to the cell concentration and structure. The electrode-multilayered microchannel is constructed by 5 cross-sections, and each cross-section contains 5 electrode-layers embedded with 16 micro electrodes. In the experiment, the dielectric properties of cell suspensions with different volume concentrations are measured with different electrode-combinations corresponding to different electric field distributions. The dielectric relaxations of different cell concentrations are compared and discussed with the Maxwell-Wagner dispersion theory, and the relaxation frequencies are analysed by a cell polarization model established based on the Hanai cell model. Moreover, a significant linear relationship with AC frequency dependency between relative permittivity and cell concentration was found, which provides a promising way to on-line estimate cell concentration in microchannel. Finally, cell distribution in 1 cross-section of the microchannel (X and Y directions) was measured with different electrode-combinations using the dielectric properties of cell suspensions, and cell concentration distribution along the microchannel (Z direction) was visualized at flowing state. The present cell spatial sensing study provides a new approach for 3 dimensional non-invasive online cell sensing for biological industry.

  11. Measurements and predictors of on-road ultrafine particle concentrations and associated pollutants in Los Angeles

    NASA Astrophysics Data System (ADS)

    Fruin, S.; Westerdahl, D.; Sax, T.; Sioutas, C.; Fine, P. M.

    Motor vehicles are the dominant source of oxides of nitrogen (NO x), particulate matter (PM), and certain air toxics (e.g., benzene, 1,3-butadiene) in urban areas. On roadways, motor vehicle-related pollutant concentrations are typically many times higher than ambient concentrations. Due to high air exchange rates typical of moving vehicles, this makes time spent in vehicles on roadways a major source of exposure. This paper presents on-road measurements for Los Angeles freeways and arterial roads taken from a zero-emission electric vehicle outfitted with real-time instruments. The objective was to characterize air pollutant concentrations on roadways and identify the factors associated with the highest concentrations. Our analysis demonstrated that on freeways, concentrations of ultrafine particles (UFPs), black carbon, nitric oxide, and PM-bound polycyclic aromatic hydrocarbons (PM-PAH) are generated primarily by diesel-powered vehicles, despite the relatively low fraction (˜6%) of diesel-powered vehicles on Los Angeles freeways. However, UFP concentrations on arterial roads appeared to be driven primarily by proximity to gasoline-powered vehicles undergoing hard accelerations. Concentrations were roughly one-third of those on freeways. By using a multiple regression model for the freeway measurements, we were able to explain 60-70% of the variability in concentrations of UFP, black carbon, nitric oxide, and PM-PAH using measures of diesel truck density and hour of day (as an indicator of wind speed). Freeway concentrations of these pollutants were also well correlated with readily available annual average daily truck counts, potentially allowing improved population exposure estimates for epidemiology studies. Based on these roadway measurements and average driving time, it appears that 33-45% of total UFP exposure for Los Angeles residents occurs due to time spent traveling in vehicles.

  12. Vertical Tracer Concentration Profiles Measured During the Joint Urban 2003 Dispersion Study

    SciTech Connect

    Flaherty, Julia E.; Lamb, Brian K.; Allwine, K Jerry; Allwine, Eugene J.

    2007-12-01

    An atmospheric tracer dispersion study known as Joint Urban 2003 was conducted in Oklahoma City, Oklahoma during the summer of 2003. As part of this field program, vertical concentration profiles were measured at approximately 1 km from downtown tracer gas release locations. These profiles indicated that the urban landscape was very effective in mixing the plume vertically. The height of the plume centerline (as determined by the maximum concentration over the depth of the measurements) for any specific 30 min period varied over the 65 m measurement range. Most of the variations in tracer concentration observed in the profile time series were related to changes in wind direction as opposed to changes in turbulence. As a simple analysis tool for emergency response, maximum normalized concentration curves were developed with 5-minute averaged measurements. These curves give the maximum concentration (normalized by the release rate) that would be observed as a function of downwind distance in an urban area. The 5-min data resulted in greater concentrations than predicted with a simple Gaussian plume model. However, the curve compared well with results from a computational fluid dynamics simulation. This dispersion dataset is a valuable asset not only for refining air quality models, but also for developing new tools for emergency response personnel in the event of a toxic release.

  13. Sodium concentration measurement during hemodialysis through ion-exchange resin and conductivity measure approach: in vitro experiments.

    PubMed

    Tura, Andrea; Sbrignadello, Stefano; Mambelli, Emanuele; Ravazzani, Paolo; Santoro, Antonio; Pacini, Giovanni

    2013-01-01

    Sodium measurement during hemodialysis treatment is important to preserve the patient from clinical events related to hypo- or hyper-natremia Usually, sodium measurement is performed through laboratory equipment which is typically expensive, and requires manual intervention. We propose a new method, based on conductivity measurement after treatment of dialysate solution through ion-exchange resin. To test this method, we performed in vitro experiments. We prepared 40 ml sodium chloride (NaCl) samples at 280, 140, 70, 35, 17.5, 8.75, 4.375 mEq/l, and some "mixed samples", i.e., with added potassium chloride (KCl) at different concentrations (4.375-17.5 mEq/l), to simulate the confounding factors in a conductivity-based sodium measurement. We measured the conductivity of all samples. Afterwards, each sample was treated for 1 min with 1 g of Dowex G-26 resin, and conductivity was measured again. On average, the difference in the conductivity between mixed samples and corresponding pure NaCl samples (at the same NaCl concentration) was 20.9%. After treatment with the exchange resin, it was 14.7%, i.e., 42% lower. Similar experiments were performed with calcium chloride and magnesium chloride as confounding factors, with similar results. We also performed some experiments on actual dialysate solution during hemodialysis sessions in 15 patients, and found that the correlation between conductivity measures and sodium concentration improved after resin treatment (R=0.839 before treatment, R=0.924 after treatment, P<0.0001). We conclude that ion-exchange resin treatment coupled with conductivity measures may improve the measurement of sodium compared to conductivity measures alone, and may become a possible simple approach for continuous and automatic sodium measurement during hemodialysis.

  14. Sodium Concentration Measurement during Hemodialysis through Ion-Exchange Resin and Conductivity Measure Approach: In Vitro Experiments

    PubMed Central

    Tura, Andrea; Sbrignadello, Stefano; Mambelli, Emanuele; Ravazzani, Paolo; Santoro, Antonio; Pacini, Giovanni

    2013-01-01

    Sodium measurement during hemodialysis treatment is important to preserve the patient from clinical events related to hypo- or hyper-natremia Usually, sodium measurement is performed through laboratory equipment which is typically expensive, and requires manual intervention. We propose a new method, based on conductivity measurement after treatment of dialysate solution through ion-exchange resin. To test this method, we performed in vitro experiments. We prepared 40 ml sodium chloride (NaCl) samples at 280, 140, 70, 35, 17.5, 8.75, 4.375 mEq/l, and some “mixed samples”, i.e., with added potassium chloride (KCl) at different concentrations (4.375-17.5 mEq/l), to simulate the confounding factors in a conductivity-based sodium measurement. We measured the conductivity of all samples. Afterwards, each sample was treated for 1 min with 1 g of Dowex G-26 resin, and conductivity was measured again. On average, the difference in the conductivity between mixed samples and corresponding pure NaCl samples (at the same NaCl concentration) was 20.9%. After treatment with the exchange resin, it was 14.7%, i.e., 42% lower. Similar experiments were performed with calcium chloride and magnesium chloride as confounding factors, with similar results. We also performed some experiments on actual dialysate solution during hemodialysis sessions in 15 patients, and found that the correlation between conductivity measures and sodium concentration improved after resin treatment (R=0.839 before treatment, R=0.924 after treatment, P<0.0001). We conclude that ion-exchange resin treatment coupled with conductivity measures may improve the measurement of sodium compared to conductivity measures alone, and may become a possible simple approach for continuous and automatic sodium measurement during hemodialysis. PMID:23844253

  15. Error in noninvasive spectrophotometric measurement of blood hemoglobin concentration under conditions of blood loss.

    PubMed

    Naftalovich, Rotem; Naftalovich, Daniel

    2011-10-01

    This paper discusses a current misinterpretation between different parameters of hemoglobin concentration measurement and its amplification under conditions of blood loss. The paper details the distinction between microcirculatory hematocrit and the hematocrit of the macrocirculation to analyze clinical use of real-time patient hemoglobin concentration measurement by noninvasive point-of-care devices such as the Rainbow Pulse CO-Oximetry™ (Masimo Corp., Irvine, CA). The hemoglobin concentration or hematocrit values have clinical significance such as for diagnosing anemia or as indicators to when a blood transfusion is needed. The device infers hemoglobin concentration from spectrophotometry of the fingertip and therefore the measured absorption is due to hemoglobin present in capillaries as well as in larger vessels, and the device accordingly reports the hemoglobin concentration as 'total hemoglobin' in a proprietary SpHb parameter. SpHb and macro hemoglobin concentration are different parameters. However, the numerical resemblance of SpHb values to values of macro hemoglobin concentrations, combined with the widely used unspecified term "Hb" in the medical setting, suggests that SpHb values are often interpreted by the clinician as macro hematocrit values. The claim of this paper is that under conditions of blood loss the portion of the SpHb total hemoglobin measure that is contributed from microcirculation increases, due to the decrease of macro hematocrit while microcirculatory hematocrit remains constant when above a critical value. The device is calibrated from phlembotomy drawn blood (from a vein in the arm), which is the gold standard in blood collection, and hence this changing contribution of microcirculatory hemoglobin to the SpHb value would distort the gap between macro hemoglobin and total hemoglobin, SpHb. The hypothesis is that if clinicians indeed interpret the SpHb values as macro hemoglobin values then there is an unreported discrepancy between

  16. Potassium permeability activated by intracellular calcium ion concentration in the pancreatic beta-cell.

    PubMed Central

    Atwater, I; Dawson, C M; Ribalet, B; Rojas, E

    1979-01-01

    1. Membrane potentials and input resistance were measured in beta-cells from mouse pancreatic islets of Langerhans in a study designed to assess the role of a K permeability specifically blocked by quinine or quinidine and activated by intracellular calcium ion concentration ([Ca2+])i-activated PK). 2. Addition of 100 microM-quinine to the perifusion medium resulted in a 10--30 mV depolarization of the membrane and an increase in the input resistance of ca. 4.10(7) omega. 3. In the absence of glucose, 100 microM-quinine induced electrical activity. 4. In the presence of glucose, 100 microM-quinine abolished the burst pattern of electrical activity and very much reduced the graded response of spike frequency normally seen with different concentrations of glucose. 5. Addition of mitochondrial inhibitors, KCN, NaN3, DNP, CCCP, FCCP, to the perifusion medium containing glucose rapidly hyperpolarized the beta-cell membrane, inducing a concomitant decrease in input resistance. 6. In the presence of glucose, these mitochondrial inhibitors reversibly blocked electrical activity; upon removal of the inhibitor, recovery of electrical activity followed a biphasic pattern. 7. The effects of mitochondrial inhibitors were partially reversed by 100 microM-quinine. 8. It is proposed that the membrane potential of the beta-cell in the absence of glucose is predominantly controlled by the [Ca2+]i-activated PK. It is further suggested that this permeability to K controls the level for glucose stimulation and leads to the generation of the burst pattern. PMID:381636

  17. Short-term temporal variations of soil gas radon concentration and comparison of measurement techniques.

    PubMed

    Neznal, Martin; Matolín, Milan; Just, Günther; Turek, Karel

    2004-01-01

    Short-term temporal variations of soil gas radon concentration have been studied using different measuring techniques--instantaneous methods (grab sampling) using Lucas cells, continuous monitors, and integral nuclear track-etch detectors. A relatively low variability appeared during a 72-h follow-up. Different temporal changes were observed by using different methods. A substantial part of these changes was probably caused by fluctuations and errors connected with measuring methods themselves and did not reflect real variations of the measured parameter.

  18. An evaluation of benthic community measures using laboratory-derived sediment effect concentrations

    SciTech Connect

    Dwyer, F.J.; Canfield, T.J.; Ingersoll, C.G.; Kemble, N.E.; Mount, D.R.

    1995-12-31

    Sediment effect concentrations (SECs) are contaminant sediment concentrations which are frequently associated with sediment toxicity. Recently, a number of different SECs have been calculated from laboratory toxicity tests with field collected sediments using Chironomus tentans, Chironomus riparius, and Hyalella azteca. Toxicity endpoints included (depending upon species) lethality, growth and sexual maturation. The authors selected the Effect Range Median (ERM) calculated for 28-d Hyalella azteca as an SEC for evaluating six different benthic community measures as indicators of contaminated sediment. The benthic measures included: taxa richness, chironomid genera richness, percent chironomid deformity, chironomid biotic index, ratio of chironomids/oligochaetes, and oligochaete biotic index. Benthic measures were obtained for 31 stations from the Great Lakes and 13 stations from Milltown Reservoir and Clark Fork River, MT. Each benthic measure was ranked from 1 to 100 and individual ranks and various combinations of ranks were plotted against the ratio of chemical concentration at the site/ERM calculated for that chemical (similar to a toxic unit approach) and the sum of the ERM ratios (sum of toxic units). Preliminary analysis indicates that, in general, benthic measures varied widely in relatively uncontaminated stations, confounding any underlying relationship that may have existed. The absence of chironomids, in areas with suitable habitat, seems to be indicative of grossly contaminated stations, but not an endpoint useful for discriminating stations with contaminant concentrations closer to the SEC. The usefulness of benthic measures as diagnostic tools for contaminated sediments and potential ways to improve these measures will be discussed.

  19. Measuring in situ methane concentrations over time at Gas Hydrate seafloor observatories

    NASA Astrophysics Data System (ADS)

    Lapham, L.; Wilson, R. M.; Chanton, J.; Higley, P.; Lutken, C.; Riedel, M.

    2011-12-01

    Since 2006, we have been working on outfitting Gas Hydrate seafloor observatories with instruments, called Pore-Fluid Arrays, to collect and measure in situ methane concentrations and other biogeochemical parameters over time. The central technology within the PFA's uses OsmoSampler instruments that use osmosis to pull fluids slowly through ports into 300 meter-long copper tubing coil. OsmoSamplers are robust, require no power, and give sample resolution on the order of days to weeks. They allow questions about the dynamics of a system, in our case, gas hydrate systems, to be asked. For example, at the Gulf of Mexico Gas Hydrate Research Consortium monitoring station, we asked "on what time scale do gas hydrates form or decompose?" A 4-month time-series from Mississippi Canyon 118 gave unexpected results showing methane dynamics from the deep-sea influenced by regional tectonic activity. In 2009, we extended this tectonic link to methane release by asking the specific question "is shallow gas released from the seafloor when regional tectonics is active, and, if so, what is the temporal variability of such release events?" To answer this, we deployed a PFA in an area of seafloor where extensive methane venting is known to occur, Northern Cascadia margin gas hydrate sites. This area has seafloor cracks with active bubble streams and thin bacterial mats suggesting shallow gas and possible pore-fluid saturation. One of these gas crack sites, informally named "bubbly gulch", was chosen to deploy a PFA for 9 months. The PFA was modified to be ROV-deployable and was made up of 4 OsmoSamplers that were each plumbed to a port along a 1-meter probe tip using small diameter tubing. Because of the high methane concentrations anticipated, in situ pressures were maintained within the coil by the addition of a high pressure valve. Water samples were collected from the overlying water, at the sediment-water interface, and 6 and 10 cm into the sediments. Bottom water temperatures

  20. Anti-tumor Effects of Plasma Activated Media and Correlation with Hydrogen Peroxide Concentration

    NASA Astrophysics Data System (ADS)

    Laroussi, Mounir; Mohades, Soheila; Barekzi, Nazir; Maruthamuthu, Venkat; Razavi, Hamid

    2016-09-01

    Plasma activated media (PAM) can induce death in cancer cells. In our research, PAM is produced by exposing liquid culture medium to a helium plasma pencil. Reactive oxygen and nitrogen species in the aqueous state are known factors in anti-tumor effects of PAM. The duration of plasma exposure determines the concentrations of reactive species produced in PAM. Stability of the plasma generated reactive species and their lifetime depend on parameters such as the chemical composition of the medium. Here, a complete cell culture medium was employed to make PAM. Later, PAM was used to treat SCaBER cancer cells either as an immediate PAM (right after exposure) or as an aged-PAM (after storage). SCaBER (ATCC®HTB-3™) is an epithelial cell line from a human bladder with the squamous carcinoma disease. A normal epithelial cell line from a kidney tissue of a dog - MDCK (ATCC®CCL-34™) - was used to analyze the selective effect of PAM. Correspondingly, we measured the concentration of hydrogen peroxide- as a stable species with biological impact on cell viability- in both immediate PAM and aged-PAM. In addition, we report on the effect of serum supplemented in PAM on the H2O2 concentration measured by Amplex red assay kit. Finally, we evaluate the effects of PAM on growth and morphological changes in MDCK cells using fluorescence microscopy.

  1. The ratios of aldosterone / plasma renin activity (ARR) versus aldosterone / direct renin concentration (ADRR).

    PubMed

    Glinicki, Piotr; Jeske, Wojciech; Bednarek-Papierska, Lucyna; Kruszyńska, Aleksandra; Gietka-Czernel, Małgorzata; Rosłonowska, Elżbieta; Słowińska-Srzednicka, Jadwiga; Kasperlik-Załuska, Anna; Zgliczyński, Wojciech

    2015-12-01

    Primary aldosteronism (PA) is estimated to occur in 5-12% of patients with hypertension. Assessment of aldosterone / plasma renin activity (PRA) ratio (ARR) has been used as a screening test in patients suspected of PA. Direct determination of renin (DRC) and calculation of aldosterone / direct renin concentration ratio (ADRR) could be similarly useful for screening patients suspected of PA. The study included 62 patients with indication for evaluation of the renin-angiotensin-aldosterone system and 35 healthy volunteers. In all participants we measured concentrations of serum aldosterone, plasma direct renin, and PRA after a night's rest and again after walking for two hours. The concentrations of aldosterone, direct renin, and PRA were measured by isotopic methods (radioimmunoassay (RIA) / immunoradiometric assay (IRMA)). Correlations of ARR with ADRR in the supine position were r = 0.9162, r(2) = 0.8165 (p < 0.01); and in the up-right position were r = 0.7765, r(2) = 0.9153 (p < 0.01). The cut-off values of ARR and ADRR ≥ 100 presented highest specificity (99%) for the diagnosis of PA; however, quite acceptable specificity and sensitivity (> 80% and 100%, respectively) appeared for the ratios ≥ 30. We suggest that for practical and economic reasons ARR can be replaced by ADRR.

  2. Establishing traceability of photometric absorbance values for accurate measurements of the haemoglobin concentration in blood

    NASA Astrophysics Data System (ADS)

    Witt, K.; Wolf, H. U.; Heuck, C.; Kammel, M.; Kummrow, A.; Neukammer, J.

    2013-10-01

    Haemoglobin concentration in blood is one of the most frequently measured analytes in laboratory medicine. Reference and routine methods for the determination of the haemoglobin concentration in blood are based on the conversion of haeme, haemoglobin and haemiglobin species into uniform end products. The total haemoglobin concentration in blood is measured using the absorbance of the reaction products. Traceable absorbance measurement values on the highest metrological level are a prerequisite for the calibration and evaluation of procedures with respect to their suitability for routine measurements and their potential as reference measurement procedures. For this purpose, we describe a procedure to establish traceability of spectral absorbance measurements for the haemiglobincyanide (HiCN) method and for the alkaline haematin detergent (AHD) method. The latter is characterized by a higher stability of the reaction product. In addition, the toxic hazard of cyanide, which binds to the iron ion of the haem group and thus inhibits the oxygen transport, is avoided. Traceability is established at different wavelengths by applying total least-squares analysis to derive the conventional quantity values for the absorbance from the measured values. Extrapolation and interpolation are applied to get access to the spectral regions required to characterize the Q-absorption bands of the HiCN and AHD methods, respectively. For absorbance values between 0.3 and 1.8, the contributions of absorbance measurements to the total expanded uncertainties (95% level of confidence) of absorbance measurements range from 1% to 0.4%.

  3. Historical Occupational Trichloroethylene Air Concentrations Based on Inspection Measurements From Shanghai, China

    PubMed Central

    Friesen, Melissa C.; Locke, Sarah J.; Chen, Yu-Cheng; Coble, Joseph B.; Stewart, Patricia A.; Ji, Bu-Tian; Bassig, Bryan; Lu, Wei; Xue, Shouzheng; Chow, Wong-Ho; Lan, Qing; Purdue, Mark P.; Rothman, Nathaniel; Vermeulen, Roel

    2015-01-01

    Purpose: Trichloroethylene (TCE) is a carcinogen that has been linked to kidney cancer and possibly other cancer sites including non-Hodgkin lymphoma. Its use in China has increased since the early 1990s with China’s growing metal, electronic, and telecommunications industries. We examined historical occupational TCE air concentration patterns in a database of TCE inspection measurements collected in Shanghai, China to identify temporal trends and broad contrasts among occupations and industries. Methods: Using a database of 932 short-term, area TCE air inspection measurements collected in Shanghai worksites from 1968 through 2000 (median year 1986), we developed mixed-effects models to evaluate job-, industry-, and time-specific TCE air concentrations. Results: Models of TCE air concentrations from Shanghai work sites predicted that exposures decreased 5–10% per year between 1968 and 2000. Measurements collected near launderers and dry cleaners had the highest predicted geometric means (GM for 1986 = 150–190mg m−3). The majority (53%) of the measurements were collected in metal treatment jobs. In a model restricted to measurements in metal treatment jobs, predicted GMs for 1986 varied 35-fold across industries, from 11mg m−3 in ‘other metal products/repair’ industries to 390mg m–3 in ‘ships/aircrafts’ industries. Conclusions: TCE workplace air concentrations appeared to have dropped over time in Shanghai, China between 1968 and 2000. Understanding differences in TCE concentrations across time, occupations, and industries may assist future epidemiologic studies in China. PMID:25180291

  4. Tracking Dissolved Methane Concentrations near Active Seeps and Gas Hydrates: Sea of Japan.

    NASA Astrophysics Data System (ADS)

    Snyder, G. T.; Aoki, S.; Matsumoto, R.; Tomaru, H.; Owari, S.; Nakajima, R.; Doolittle, D. F.; Brant, B.

    2015-12-01

    A number of regions in the Sea of Japan are known for active gas venting and for gas hydrate exposures on the sea floor. In this investigation we employed several gas sensors mounted on a ROV in order to determine the concentrations of dissolved methane in the water near these sites. Methane concentrations were determined during two-second intervals throughout each ROV deployment during the cruise. The methane sensor deployments were coupled with seawater sampling using Niskin bottles. Dissolved gas concentrations were later measured using gas chromatography in order to compare with the sensor results taken at the same time. The observed maximum dissolved methane concentrations were much lower than saturation values, even when the ROV manipulators were in contact with gas hydrate. Nonetheless, dissolved concentrations did reach several thousands of nmol/L near gas hydrate exposures and gas bubbles, more than two orders of magnitude over the instrumental detection limits. Most of the sensors tested were able to detect dissolved methane concentrations as low as 10 nmol/L which permitted detection when the ROV approached methane plume sites, even from several tens of meters above the sea floor. Despite the low detection limits, the methane sensors showed variable response times when returning to low-background seawater (~5nM). For some of the sensors, the response time necessary to return to background values occurred in a matter of minutes, while for others it took several hours. Response time, as well as detection limit, should be an important consideration when selecting methane sensors for ROV or AUV investigations. This research was made possible, in part, through funding provided by the Japanese Ministry of Economy, Trade and Industry (METI).

  5. AMPEL experiments: nitric-oxide concentration measurements in a simulated MHD combustion gas

    SciTech Connect

    Dunn, P. F.; Johnson, T. R.; Reed, C. B.

    1980-12-01

    Results are presented of recent investigations of the effect of secondary combustion on nitric oxide (NO) concentrations in an simulated magnetohydrodynamic (MHD) combustion gas. Forty-one experiments, in which NO concentration measurements were made, were conducted at the Argonne MHD Process Engineering Laboratory (AMPEL). In sixteen of those experiments, secondary air mixed with the primary combustion gas was combusted over two temperature ranges (1500-1800/sup 0/K and 1700-2000/sup 0/K). For all clean-fuel experiments conducted, the measured changes in NO concentration that resulted from secondary combustion were predicted to within 10%, using an Argonne modification of the NASA chemical kinetics code. This predictive code was extended to estimate changes in NO concentrations that would occur during secondary combustion in a larger MHD facility. It is concluded that, in addition to mixing and several other factors, the heat loss from the secondary combustion zone strongly influences the amount of NO formed during secondary combustion.

  6. Elastic Stability of Concentric Tube Robots: A Stability Measure and Design Test.

    PubMed

    Gilbert, Hunter B; Hendrick, Richard J; Webster, Robert J

    2016-02-01

    Concentric tube robots are needle-sized manipulators which have been investigated for use in minimally invasive surgeries. It was noted early in the development of these devices that elastic energy storage can lead to rapid snapping motion for designs with moderate to high tube curvatures. Substantial progress has recently been made in the concentric tube robot community in designing snap-free robots, planning stable paths, and characterizing conditions that result in snapping for specific classes of concentric tube robots. However, a general measure for how stable a given robot configuration is has yet to be proposed. In this paper, we use bifurcation and elastic stability theory to provide such a measure, as well as to produce a test for determining whether a given design is snap-free (i.e. whether snapping can occur anywhere in the unloaded robot's workspace). These results are useful in designing, planning motions for, and controlling concentric tube robots with high curvatures.

  7. Low-cost NORM concentrations measuring technique for building materials of Uzbekistan

    NASA Astrophysics Data System (ADS)

    Safarov, Akmal; Safarov, Askar; Azimov, Askarali; Darby, Iain G.

    2016-04-01

    Concentrations of natural radionuclides of building materials are important in order to estimate exposure of humans to radiation, who can spend up to 80% of their time indoors. One of the indicators of building materials' safety is the radium equivalent activity, which is regulated by national and international normative documents [1,2,3]. Materials with Ra(eq) =< 370 Bq/kg are considered to be safe [4,5]. We have studied the possibility of performing express analysis of building materials samples without ageing. Long measurement times including ageing of samples are major constraints for performing large number of analyses [6]. Typically ageing of samples and analysis is 40 days. Gamma-spectrometric analysis of brick, crushed stone, red sand, granite, white marble and concrete cubes was performed both before and after ageing of samples (10, 20, 30 and 40 days). Measurement times of samples were 1, 3, 6 and 12 hours. Samples were measured in 1 liter Marinelli beaker geometry, using NaI(Tl) spectrometers with crystal sizes 2.5 x 2.5 in and 3.1 x 3.1 in. Efficiency calibration of spectrometers was done using certified volumetric (1 liter Marinelli beaker) Ra-226, Th-232 and K-40 sources filled with silica sand and density 1,7 kg/l. Herein we present results indicating that one hour measuring may be sufficient for samples in 1 liter Marinelli beakers offering prospect of significant time and cost improvements. References: 1. NEA-OECD (1979): Exposure to radiation from natural radioactivity in building materials. Report by Group of Experts of the OECD Nuclear Energy Agency (NEA) Paris 2. STUK (Radiation and Nuclear Safety Authority) (2003): The radioactivity of building materials and ash. Regulatory Guides on Radiation Safety (ST Guides) ST 12.2 (Finland) (8 October 2003) 3. GOST 30108-94 (1995): Building materials and elements. Determination of specific activity of natural radioactive nuclei. Interstate Standard. 4. Krisiuk E.M. et al., (1971). A study on

  8. Time-course measurements of drug concentrations in hair and toenails after single administrations of pharmaceutical products.

    PubMed

    Kuwayama, Kenji; Miyaguchi, Hajime; Iwata, Yuko T; Kanamori, Tatsuyuki; Tsujikawa, Kenji; Yamamuro, Tadashi; Segawa, Hiroki; Inoue, Hiroyuki

    2017-04-01

    Hair and nails are often used to prove long-term intake of drugs in forensic drug testing. The aim of this study was to evaluate the effectiveness of drug testing using hair and nails and the feasibility of determining when drugs were ingested by measuring the time-courses of drug concentrations in hair and toenails after single administrations of various drugs. Healthy subjects ingested four pharmaceutical products containing eight active ingredients in single doses. Hair and toenails were collected at predetermined intervals, and drug concentrations in hair and nails were measured for 12 months. The administered drugs and their main metabolites were extracted using micropulverized extraction with a stainless steel bullet and were analyzed using liquid chromatography/tandem mass spectrometry. Acidic compounds such as ibuprofen and its metabolites were not detected in both specimens. Acetaminophen, a weakly acidic compound, was detected in nails more frequently than in hair. The maximum concentration of allyl isopropyl acetylurea, a neutral compound, in nails was significantly higher than in hair. Nails are an effective specimen to detect neutral and weakly acidic compounds. For fexofenadine, a zwitterionic compound, and for most basic compounds, the maximum concentrations in hair segments tended to be higher than those in nails. The hair segments showing the maximum concentrations varied between drugs, samples, and subjects. Drug concentrations in hair segments greatly depended on the selection of the hair. Careful interpretation of analytical results is required to predict the time of drug intake. Copyright © 2016 John Wiley & Sons, Ltd.

  9. sup 31 P NMR measurements of the ADP concentration in yeast cells genetically modified to express creatine kinase

    SciTech Connect

    Brindle, K.; Braddock, P.; Fulton, S. )

    1990-04-03

    Rabbit muscle creatine kinase has been introduced into the yeast Saccharomyces cerevisiae by transforming cells with a multicopy plasmid containing the coding sequence for the enzyme under the control of the yeast phosphoglycerate kinase promoter. The transformed cells showed creating kinase activities similar to those found in mammalian heart muscle. {sup 31}P NMR measurements of the near-equilibrium concentrations of phosphocreatine and cellular pH together with measurements of the total extractable concentrations of phosphocreatine and creatine allowed calculation of the free ADP/ATP ratio in the cell. The calculated ratio of approximately 2 was considerably higher than the ratio of between 0.06 and 0.1 measured directly in cell extracts.

  10. Direct Measurement of Intracellular Compound Concentration by RapidFire Mass Spectrometry Offers Insights into Cell Permeability.

    PubMed

    Gordon, Laurie J; Allen, Morven; Artursson, Per; Hann, Michael M; Leavens, Bill J; Mateus, André; Readshaw, Simon; Valko, Klara; Wayne, Gareth J; West, Andy

    2016-02-01

    One of the key challenges facing early stage drug discovery is understanding the commonly observed difference between the activity of compounds in biochemical assays and cellular assays. Traditionally, indirect or estimated cell permeability measurements such as estimations from logP or artificial membrane permeability are used to explain the differences. The missing link is a direct measurement of intracellular compound concentration in whole cells. This can, in some circumstances, be estimated from the cellular activity, but this may also be problematic if cellular activity is weak or absent. Advances in sensitivity and throughput of analytical techniques have enabled us to develop a high-throughput assay for the measurement of intracellular compound concentration for routine use to support lead optimization. The assay uses a RapidFire-MS based readout of compound concentration in HeLa cells following incubation of cells with test compound. The initial assay validation was performed by ultra-high performance liquid chromatography tandem mass spectrometry, and the assay was subsequently transferred to RapidFire tandem mass spectrometry. Further miniaturization and optimization were performed to streamline the process, increase sample throughput, and reduce cycle time. This optimization has delivered a semi-automated platform with the potential of production scale compound profiling up to 100 compounds per day.

  11. Statistical distributions of airborne PCB and pesticide concentrations measured at regional sites on the Great Lakes

    SciTech Connect

    Gatz, D.F.; Sweet, C.W.; Basu, I.; Harlin, K.S.

    1994-12-31

    The purpose of this paper is to report results of testing measured concentrations of total PCBs and ten chlorinated pesticides in air and precipitation in the Great Lakes area for goodness-of-fit to the log normal distribution. Samples were collected at sites on Lakes Superior, Michigan, Erie, and Ontario in 1991--1993. With very few exceptions, distributions of concentrations in the gas and particle phases and in precipitation were not significantly different from log normal.

  12. Measured concentrations of radioactive particles in air in the vicinity of the Anaconda Uranium Mill

    SciTech Connect

    Momeni, M H; Kisieleski, W E

    1980-02-01

    Concentrations of radioactive particles (U-238, Th-230, Ra-226, and Pb-210) in air were measured in the vicinity of the Anaconda Uranium Mill, Bluewater, New Mexico. Airborne particles were collected at three stations for about two-thirds of a year using a continuous collection method at a sampling rate of 10 L/min, and also were measured in monthly composites collected periodically at four stations using high volume air samplers at a sampling rate of 1400 L/min. The ratios of concentrations of each radionuclide to the concentrations of U-238 indicate that the concentrations of the radionuclides are influenced principally by the proximity of the major sources of emission and the direction of the wind. In all cases, the concentration of Pb-210 exceeded that of U-238. The ratio of Pb-210/U-238 was 12.3 and 13.3 for stations dominated by the emissions from the tailings and ore pads, but was only 1.6 for the station dominated by the yellowcake stack emission. The ratio of the radionuclide concentrations measured by the two methods of sample collection was between 0.8 and 1.2 for uranium, radium, and lead at station 104, but was 0.28 to 1.7 for thorium, radium, and lead at stations 101 and 102. The average concentrations calculated from the measurements made in this study suggest that releases from the Anaconda mill were made well within the existing limits of the maximum permissible concentrations for inhalation exposure of the general public.

  13. Concentration measurements of complex mixtures of broadband absorbers by widely tunable optical parametric oscillator laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Ruxton, K.; Macleod, N. A.; Weidmann, D.; Malcolm, G. P. A.; Maker, G. T.

    2012-11-01

    The ability to obtain accurate vapour parameter information from a compound's absorption spectrum is an essential data processing application in order to quantify the presence of an absorber. Concentration measurements can be required for a variety of applications including environmental monitoring, pipeline leak detection, surface contamination and breath analysis. This work demonstrates sensitive concentration measurements of complex mixtures of volatile organic compounds (VOCs) using broadly tunable mid wave infrared (MWIR) laser spectroscopy. Due to the high absorption cross-sections, the MWIR spectral region is ideal to carry out sensitive concentration measurements of VOCs by tunable laser absorption spectroscopy (TLAS) methods. Absorption spectra of mixtures of VOCs were recorded using a MWIR optical parametric oscillator (OPO), with a tuning range covering 2.5 μm to 3.7 μm. The output of the MWIR OPO was coupled to a multi-pass astigmatic Herriott gas cell, maintained at atmospheric pressure that can provide up to 210 m of absorption path length, with the transmission output from the cell being monitored by a detector. The resulting spectra were processed by a concentration retrieval algorithm derived from the optimum estimation method, taking into account both multiple broadband absorbers and interfering molecules that exhibit narrow multi-line absorption features. In order to demonstrate the feasibility of the concentration measurements and assess the capability of the spectral processor, experiments were conducted on calibrated VOCs vapour mixtures flowing through the spectroscopic cell with concentrations ranging from parts per billion (ppb) to parts per million (ppm). This work represents as a first step in an effort to develop and apply a similar concentration fitting algorithm to hyperspectral images in order to provide concentration maps of the spatial distribution of multi-species vapours. The reported functionality of the novel fitting algorithm

  14. Multifunctional Concentric FRET-Quantum Dot Probes for Tracking and Imaging of Proteolytic Activity.

    PubMed

    Massey, Melissa; Li, Jia Jun; Algar, W Russ

    2017-01-01

    Proteolysis has many important roles in physiological regulation. It is involved in numerous cell signaling processes and the pathogenesis of many diseases, including cancers. Methods of visualizing and assaying proteolytic activity are therefore in demand. Förster resonance energy transfer (FRET) probes offer several advantages in this respect. FRET supports end-point or real-time measurements, does not require washing or separation steps, and can be implemented in various assay or imaging formats. In this chapter, we describe methodology for preparing self-assembled concentric FRET (cFRET) probes for multiplexed tracking and imaging of proteolytic activity. The cFRET probe comprises a green-emitting semiconductor quantum dot (QD) conjugated with multiple copies of two different peptide substrates for two target proteases. The peptide substrates are labeled with different fluorescent dyes, Alexa Fluor 555 and Alexa Fluor 647, and FRET occurs between the QD and both dyes, as well as between the two dyes. This design enables a single QD probe to track the activity of two proteases simultaneously. Fundamental cFRET theory is presented, and procedures for using the cFRET probe for quantitative measurement of the activity of two model proteases are given, including calibration, fluorescence plate reader or microscope imaging assays, and data analysis. Sufficient detail is provided for other researchers to adapt this method to their specific requirements and proteolytic systems of interest.

  15. Fumonisin concentration and ceramide synthase inhibitory activity of corn, masa, and tortilla chips.

    PubMed

    Voss, Kenneth A; Norred, William P; Meredith, Filmore I; Riley, Ronald T; Stephen Saunders, D

    2006-07-01

    Nixtamalization removes fumonisins from corn and reduces their amounts in masa and tortilla products. Fumonisin concentrations and potential toxicity could be underestimated, however, if unknown but biologically active fumonisins are present. Therefore, the relative amounts of fumonisins in extracts of fumonisin-contaminated corn and its masa and tortilla chip nixtamalization products were determined with an in vitro ceramide synthase inhibition bioassay using increased sphinganine (Sa) and sphinganine to sphingosine ratio (Sa/So) as endpoints. African green monkey kidney cells (Vero cells ATCC CCL-81) were grown in 1-ml wells and exposed to 4 microl of the concentrated extracts for 48 h. The corn extract inhibited ceramide synthase as Sa (mean = 132 pmol/well) and Sa/So (mean = 2.24) were high compared to vehicle controls (Sa = 9 pmol/well; Sa/So = 0.10). Inhibitory activity (mean Sa = 14-24 pmol/well; mean Sa/So = 0.17-0.28) of the masa and tortilla chip extracts were reduced > or = 80% compared to the corn extract. Results were corroborated in a second experiment in which Sa and Sa/So of the wells treated with masa or tortilla chip extracts were reduced > or = 89% compared to those treated with the corn extract. Masa and tortilla chip FB1 concentrations (4-7 ppm) were reduced about 80-90% compared to the corn (30 ppm) when the materials were analyzed by high-performance liquid chromatography (HPLC). Therefore, nixtamalization reduced both the measured amount of FB1 and the ceramide synthase inhibitory activity of masa and tortilla chips extracts. The results further suggest that the masa and tortilla chip extracts did not contain significant amounts of unknown fumonisins having ceramide synthase inhibitory activity.

  16. Qualification of concentrating mirror systems with the HERMES measurement system and the HELIOS simulation program

    NASA Astrophysics Data System (ADS)

    Kleih, Juergen

    1989-08-01

    An overview of direct and indirect methods of measuring highly concentrated solar radiation is presented. The methods are used to qualify solar power plants (parabolic dishes up to tower systems). The HERMES measuring system is described. HERMES is used to examine two membrane concentrators, 17 and 7.5 m in diameter. Maximum measured values of radiant flux density are greater than 2 mw/sq m for the 17 m mirror and greater than 9 mw/sq m for the 7.5 mirror, normalized to a direct insolation of 800 w/sq m. The HELIOS computer code is used as a checking tool for the measurements. Acceptable agreement between the measurements and calculated values is found.

  17. Measuring fluid and slurry density and solids concentration non-invasively

    SciTech Connect

    Bamberger, Judith A.; Greenwood, Margaret S.

    2004-04-01

    Staff at Pacific Northwest National Laboratory have developed a highly sensitive, non-invasive, self calibrating, on-line sensor to measure the density, speed of sound, and attenuation of ultrasound for a liquid or slurry flowing through a pipeline; the approach can also be applied for measurements made in vessels. The sensor transducers are mounted directly upon the stainless steel wall and the pipeline wall becomes part of the measurement system. Multiple reflections within the stainless steel wall are used to determine the acoustic impedance of the liquid, where the acoustic impedance is defined as the product of the density and the speed of sound. The probe becomes self-calibrating because variations in the pulser voltage do not affect the measurements. This feature leads to the stability of the measurements and the instrument requires much less time and effort to calibrate. Further, the calibration remains constant in time, because it does not depend upon the pulser voltage remaining at a given value. By basing the measurement upon multiple reflections, the sensitivity of the measurement is significantly increased. For slurries with wt% solids concentration of 1% or less, high sensitivity is gained by analyzing attenuation measurements obtained from multiple paths through the slurry. For slurries with higher concentrations of solids, sufficient sensitivity is obtained by analyzing data from a simple transmission. Data are presented that show probe performance for each of these cases: very dilute and highly concentrated kaolin clay slurries.

  18. Indoor radon concentrations in Poland as determined in short-term (two-day) measurements.

    PubMed

    Zalewski, M; Mnich, Z; Karpińska, M; Kapała, J; Zalewski, P

    2001-01-01

    The aim of the present work was to obtain a pattern of 222Rn concentration distributions in typical buildings in Poland. In the investigations, the environmental passive detectors of the PICO-RAD type were used. The study encompassed buildings that were typical for Poland. The distribution of airborne 222Rn concentrations indoors is of a log-normal type. A total 1171 detectors were measured. Measurements were made in 319 basements, the remaining 852 measurements were carried out in the inhabited part of the houses. The radon concentrations in the basements in Bq x m(-3) ranged from 6 to 1300 with the arithmetic mean AM = 60, geometric mean GM = 30 and median M = 28, whereas those in the inhabited parts of the house (above the ground level) were: AM = 25, GM = 17 and M = 16 with the highest record value of 420.

  19. Direct concentration and viability measurement of yeast in corn mash using a novel imaging cytometry method.

    PubMed

    Chan, Leo L; Lyettefi, Emily J; Pirani, Alnoor; Smith, Tim; Qiu, Jean; Lin, Bo

    2011-08-01

    Worldwide awareness of fossil-fuel depletion and global warming has been increasing over the last 30 years. Numerous countries, including the USA and Brazil, have introduced large-scale industrial fermentation facilities for bioethanol, biobutanol, or biodiesel production. Most of these biofuel facilities perform fermentation using standard baker's yeasts that ferment sugar present in corn mash, sugar cane, or other glucose media. In research and development in the biofuel industry, selection of yeast strains (for higher ethanol tolerance) and fermentation conditions (yeast concentration, temperature, pH, nutrients, etc.) can be studied to optimize fermentation performance. Yeast viability measurement is needed to identify higher ethanol-tolerant yeast strains, which may prolong the fermentation cycle and increase biofuel output. In addition, yeast concentration may be optimized to improve fermentation performance. Therefore, it is important to develop a simple method for concentration and viability measurement of fermenting yeast. In this work, we demonstrate an imaging cytometry method for concentration and viability measurements of yeast in corn mash directly from operating fermenters. It employs an automated cell counter, a dilution buffer, and staining solution from Nexcelom Bioscience to perform enumeration. The proposed method enables specific fluorescence detection of viable and nonviable yeasts, which can generate precise results for concentration and viability of yeast in corn mash. This method can provide an essential tool for research and development in the biofuel industry and may be incorporated into manufacturing to monitor yeast concentration and viability efficiently during the fermentation process.

  20. Measurement of Indoor Radon-222 and Radon-220 Concentrations in Central Japan

    SciTech Connect

    Oka, Mitsuaki; Shimo, Michikuni; Tokonami, Shinji; Sorimachi, Atsuyuki; Takahashi, Hiromichi; Ishikawa, Tetsuo

    2008-08-07

    A passive-type radon/thoron detector was used for measuring indoor radon and thoron concentrations at 90 dwellings in Aichi and Gifu prefectures in central Japan during 90 days from December, 2006 to March, 2007. The radon and thoron concentrations were 21.1 Bq/m3 and 25.1 Bq/m3, respectively. The dose due to radon and thoron in dwellings was roughly evaluated as 0.7 mSv/y and 2.4 mSv/y, respectively. The examination of the geological factor and house condition having an effect on indoor radon concentration was performed.

  1. Measurement of natural and 137Cs radioactivity concentrations at Izmit Bay (Marmara Sea), Turkey

    NASA Astrophysics Data System (ADS)

    Öksüz, I.; Güray, R. T.; Özkan, N.; Yalçin, C.; Ergül, H. A.; Aksan, S.

    2016-03-01

    In order to determine the radioactivity level at Izmit Bay Marmara Sea, marine sediment samples were collected from five different locations. The radioactivity concentrations of naturally occurring 238U, 232Th and 40K isotopes and also that of an artificial isotope 137Cs were measured by using gamma-ray spectroscopy. Preliminary results show that the radioactivity concentrations of 238U and 232Th isotopes are lower than the average worldwide values while the radioactivity concentrations of the 40K are higher than the average worldwide value. A small amount of 137Cs contamination, which might be caused by the Chernobyl accident, was also detected.

  2. Temporal trends in and influence of wind on PAH concentrations measured near the Great Lakes

    SciTech Connect

    Cortes, D.R.; Basu, I.; Sweet, C.W.; Hites, R.A.

    2000-02-01

    This paper reports on temporal trends in gas- and particle-phase PAH concentrations measured at three sites in the Great Lakes' Integrated Atmospheric Deposition Network: Eagle Harbor, near Lake Superior, Sleeping Bear Dunes, near Lake Michigan, and Sturgeon Point, near Lake Erie. While gas-phase concentrations have been decreasing since 1991 at all sites, particle-phase concentrations have been decreasing only at Sleeping Bear Dunes. To determine whether these results represent trends in background levels or regional emissions, the average concentrations are compared to those found in urban and rural studies. In addition, the influence of local wind direction on PAH concentrations is investigated, with the assumption that dependence on wind direction implies regional sources. Using these two methods, it is found that PAH concentrations at Eagle Harbor and Sleeping Bear Dunes represent regional background levels but that PAH from the Buffalo Region intrude on the background levels measured at the Sturgeon Point site. At this site, wind from over Lake Erie reduces local PAH concentrations.

  3. Particle concentrations and number size distributions in the planetary boundary layer derived from airship based measurements

    NASA Astrophysics Data System (ADS)

    Tillmann, Ralf; Zhao, Defeng; Ehn, Mikael; Hofzumahaus, Andreas; Holland, Frank; Rohrer, Franz; Kiendler-Scharr, Astrid; Wahner, Andreas

    2014-05-01

    Atmospheric particles play a key role for regional and global climate due to their direct and indirect radiative forcing effects. The concentration and size of the particles are important variables to these effects. Within the continental planetary boundary layer (PBL) the particle number size distribution is influenced by meteorological parameters, local sinks and sources resulting in variable spatial distributions. However, measurements of particle number size distributions over a broad vertical range of the PBL are rare. The airship ZEPPELIN NT is an ideal platform to measure atmospheric aerosols on a regional scale within an altitude range up to 1000 m. For campaigns in the Netherlands, Northern Italy and South Finland in 2012 and 2013 the airship was deployed with a wide range of instruments, including measurements of different trace gases, short lived radicals, solar radiation, aerosols and meteorological parameters. Flights were carried out at different times of the day to investigate the influence of the diurnal evolution of the PBL on atmospheric trace gases and aerosols. During night and early morning hours the concentration and size distribution of atmospheric particles were found to be strongly influenced by the layered structure of the PBL, i.e. the nocturnal boundary layer and the residual layer. Within the residual layer particle concentrations stay relatively constant as this layer is decoupled from ground sources. The particles persist in the accumulation mode as expected for an aged aerosol. In the nocturnal boundary layer particle concentrations and size are more dynamic with higher concentrations than in the residual layer. A few hours after sunrise, the layered structure of the PBL intermixes. During daytime the PBL is well mixed and a negative concentration gradient with increasing height is observed. Several height profiles at different times of the day and at different locations in Europe were measured. The aerosol measurements will be

  4. Investigating DOC export dynamics using high-frequency instream concentration measurements

    NASA Astrophysics Data System (ADS)

    Oosterwoud, Marieke; Keller, Toralf; Musolff, Andreas; Frei, Sven; Park, Ji-Hyung; Fleckenstein, Jan H.

    2014-05-01

    Being able to monitor DOC concentrations using in-situ high frequency measurements makes it possible to better understand concentration-discharge behavior under different hydrological conditions. We developed a UV-Vis probe setup for modified/adapted use under field conditions. The quasi mobile probe setup allows a more flexible probe deployment. New or existing monitoring sites can easily be equipped for quasi-continuous monitoring or measurements can be performed at changing locations, without the need for additional infrastructure. We were able to gather high frequency data on DOC dynamics for one year in two streams in the Harz mountains in Germany. It proved that obtaining accurate DOC concentrations from the UV-Vis probes required frequent maintenance and probe calibration. The advantage of the setup over standard monitoring protocols becomes evident when comparing net exports over a year. In addition to mass improved balance calculations the high-frequency measurements can reveal intricate hysteretic relationships between discharge and concentrations that can provide valuable insights into the hydrologic dynamics and mechanisms that govern the delivery of DOC to the receiving waters. Measurements with similar probes from two additional catchments in Southern Germany and South Korea will be used to illustrate different discharge-concentration relationships and what can be learned from them about the hydrologic mechanisms that control the dynamics of DOC export.

  5. Comparison of mercury concentrations measured at several sites in the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Slemr, F.; Angot, H.; Dommergue, A.; Magand, O.; Barret, M.; Weigelt, A.; Ebinghaus, R.; Brunke, E.-G.; Pfaffhuber, K. A.; Edwards, G.; Howard, D.; Powell, J.; Keywood, M.; Wang, F.

    2015-03-01

    Our knowledge of the distribution of mercury concentrations in air of the Southern Hemisphere was until recently based mostly on intermittent measurements made during ship cruises. In the last few years continuous mercury monitoring has commenced at several sites in the Southern Hemisphere, providing new and more refined information. In this paper we compare mercury measurements at several remote sites in the Southern Hemisphere made over a period of at least 1 year at each location. Averages of monthly medians show similar although small seasonal variations at both Cape Point and Amsterdam Island. A pronounced seasonal variation at Troll research station in Antarctica is due to frequent mercury depletion events in the austral spring. Due to large scatter and large standard deviations of monthly average median mercury concentrations at Cape Grim, no systematic seasonal variation could be found there. Nevertheless, the annual average mercury concentrations at all sites during the 2007-2013 period varied only between 0.85 and 1.05 ng m-3. Part of this variability is likely due to systematic measurement uncertainties which we propose can be further reduced by improved calibration procedures. We conclude that mercury is much more uniformly distributed throughout the Southern Hemisphere than the distributions suggested by measurements made onboard ships. This finding implies that smaller trends can be detected in shorter time periods. We also report a change in the trend sign at Cape Point from decreasing mercury concentrations in 1996-2004 to increasing concentrations since 2007.

  6. Effect of altitude training on serum creatine kinase activity and serum cortisol concentration in triathletes.

    PubMed

    Wilber, R L; Drake, S D; Hesson, J L; Nelson, J A; Kearney, J T; Dallam, G M; Williams, L L

    2000-01-01

    In this investigation we evaluated the effect of a 5-week training program at 1860 m on serum creatine kinase (CK) activity and serum cortisol concentration in national-caliber triathletes for the purpose of monitoring the response to training in a hypobaric hypoxic environment. Subjects included 16 junior-level female (n = 8) and male (n = 8) triathletes who were training for the International Triathlon Union (ITU) World Championships. After an initial acclimatization period, training intensity and/or volume were increased progressively during the 5-week altitude training camp. Resting venous blood samples were drawn at 0700 hours following a 12-h overnight fast and were analyzed for serum CK activity and serum cortisol concentration. Subjects were evaluated before [7-10 days pre-altitude (SL 1)] and after [7-10 days post-altitude (SL 2)] the 5-week training camp at 1860 m. At altitude, subjects were evaluated within 24-36 h after arrival (ALT 1), 7 days after arrival (ALT 2), 18 days after arrival (ALT 3), and 24-36 h prior to leaving the altitude training camp (ALT 4). A repeated-measures analysis of variance was used to evaluate differences over time from SL 1 to SL 2. Compared to SL 1, serum CK activity increased approximately threefold (P < 0.05) within the initial 24-36 h at altitude (ALT 1), and increased by an additional 70% (P < 0.05) after the 1st week of altitude training (ALT 2). Serum CK activity remained significantly elevated over the duration of the experimental period compared to pre-altitude baseline levels. Serum cortisol concentration was increased (P < 0.05) at the end of the 5-week altitude training period (ALT 4) relative to SL 1, ALT 1 and ALT 3. These data suggest that: (1) the initial increase in serum CK activity observed in the first 24-36 h at altitude was due primarily to acute altitude exposure and was independent of increased training intensity and/or training volume, (2) the subsequent increases in serum CK activity observed over

  7. Photothermal spectral-domain optical coherence reflectometry for direct measurement of hemoglobin concentration of erythrocytes.

    PubMed

    Yim, Jinyeong; Kim, Hun; Ryu, Suho; Song, Sungwook; Kim, Hyun Ok; Hyun, Kyung-A; Jung, Hyo-Il; Joo, Chulmin

    2014-07-15

    A novel optical detection method for hemoglobin concentration is described. The hemoglobin molecules consisting mainly of iron generate heat upon their absorption of light energy at 532 nm, which subsequently changes the refractive index of the blood. We exploit this photothermal effect to determine the hemoglobin concentration of erythrocytes without any preprocessing of blood. Highly sensitive measurement of refractive index alteration of blood samples is enabled by a spectral-domain low coherence reflectometric sensor with subnanometer-level optical path-length sensitivity. The performance and validity of the sensor are presented by comparing the measured results against the reference data acquired from an automatic hematology analyzer.

  8. Measurement of the glucose concentration in human urine with optical refractometer

    NASA Astrophysics Data System (ADS)

    Wu, Rui-Yang; Hsu, Cheng-Chih; Meng, Ching-Tang; Cheng, Chih-Ching; Liao, Yu-Ching

    2015-07-01

    In this paper, a new type of human urine glucose measurement system is proposed. We measured the phase variation of human urine with/without glucose-urine mixture (to simulate diabetes mellitus). We were able to achieve high resolution with the proposed method. The relation curve between the phase difference and glucose concentration can be estimated, and the glucose concentration of a urine sample can be determined by using this relation curve. The proposed method showed that theoretical resolution is approximated of 1.47 mg/dl.

  9. A simplified CARS measurement system for rapid determination of temperature and oxygen concentration

    NASA Technical Reports Server (NTRS)

    Fujii, Shoichi

    1987-01-01

    A new spectroscopic concept for the rapid determination of temperature and oxygen concentration by CARS (Coherent Anti-Stokes Raman Spectroscopy) was described. The ratio of two spectral regions in the broadband Q-branch spectrum was detected by photomultipliers in a monochromator, which ratio depends on temperature and species concentration. The comparison of the measured data with theory was made using a flat flame burner and an electric furnace, with reasonable results. Various optical techniques for alignment were introduced including a highly efficient, stable dye oscillator. The combination of the spectroscopic concept and the optical techniques will make the CARS measurement system rapid in data processing and simple in optical parts.

  10. Evolution in the concentration of activities in lithography

    NASA Astrophysics Data System (ADS)

    Levinson, Harry J.

    2016-03-01

    From a perusal of the proceedings of the SPIE Advanced Lithography Symposium, the progression of new concepts in lithographic technology can be seen. A new idea first appears in a few papers, and over time, there is an increase in the number of papers on the same topic. Eventually the method becomes commonplace, and the number of papers on the topic declines, as the idea becomes part of our industry's working knowledge. For example, one or two papers on resolution enhancement techniques (RETs) appeared in the proceedings of the Optical Microlithography Conference in 1989 and 1990. By 1994, the total number of papers had increased to 35. Early lithographers focused on practical issues, such as adhesion promotion and resist edge bead. The introduction of simulation software brought on the next era of lithography. This was followed by a period of time in which RETs were developed and brought to maturity. The introduction of optical proximity corrections (OPC) initiated the next major era of lithography. The traditional path for scaling by using shorter wavelengths, decreasing k1 and increasing numerical aperture has given way to the current era of optical multiple patterning and lithography-design co-optimization. There has been sufficient activity in EUV lithography R and D to justify a separate EUV Lithography Conference as part of the annual Advanced Lithography Symposium. Each era builds on the cumulative knowledge gained previously. Over time, there have been parallel developments in optics, exposure tools, resist, metrology and mask technology, many of which were associated with changes in the wavelength of light used for leading-edge lithography.

  11. Laser Sounder for Global Measurement of CO2 Concentrations in the Troposphere from Space

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Riris, Haris; Kawa, S. Randy; Sun, Xiaoli; Chen, Jeffrey; Stephen, Mark A.; Collatz, G. James; Mao, Jianping; Allan, Graham

    2007-01-01

    Measurements of tropospheric CO2 abundance with global-coverage, a few hundred km spatial and monthly temporal resolution are needed to quantify processes that regulate CO2 storage by the land and oceans. The Orbiting Carbon Observatory (OCO) is the first space mission focused on atmospheric CO2 for measuring total column CO, and O2 by detecting the spectral absorption in reflected sunlight. The OCO mission is an essential step, and will yield important new information about atmospheric CO2 distributions. However there are unavoidable limitations imposed by its measurement approach. These include best accuracy only during daytime at moderate to high sun angles, interference by cloud and aerosol scattering, and limited signal from CO2 variability in the lower tropospheric CO2 column. We have been developing a new laser-based technique for the remote measurement of the tropospheric CO2 concentrations from orbit. Our initial goal is to demonstrate a lidar technique and instrument technology that will permit measurements of the CO2 column abundance in the lower troposphere from aircraft. Our final goal is to develop a space instrument and mission approach for active measurements of the CO2 mixing ratio at the 1-2 ppmv level. Our technique is much less sensitive to cloud and atmospheric scattering conditions and would allow continuous measurements of CO2 mixing ratio in the lower troposphere from orbit over land and ocean surfaces during day and night. Our approach is to use the 1570nm CO2 band and a 3-channel laser absorption spectrometer (i.e. lidar used an altimeter mode), which continuously measures at nadir from a near polar circular orbit. The approach directs the narrow co-aligned laser beams from the instrument's lasers toward nadir, and measures the energy of the laser echoes reflected from land and water surfaces. It uses several tunable fiber laser transmitters which allowing measurement of the extinction from a single selected CO2 absorption line in the 1570

  12. Photocatalytic Active Radiation Measurements and Use

    NASA Technical Reports Server (NTRS)

    Davis, Bruce A.; Underwood, Lauren W.

    2011-01-01

    Photocatalytic materials are being used to purify air, to kill microbes, and to keep surfaces clean. A wide variety of materials are being developed, many of which have different abilities to absorb various wavelengths of light. Material variability, combined with both spectral illumination intensity and spectral distribution variability, will produce a wide range of performance results. The proposed technology estimates photocatalytic active radiation (PcAR), a unit of radiation that normalizes the amount of light based on its spectral distribution and on the ability of the material to absorb that radiation. Photocatalytic reactions depend upon the number of electron-hole pairs generated at the photocatalytic surface. The number of electron-hole pairs produced depends on the number of photons per unit area per second striking the surface that can be absorbed and whose energy exceeds the bandgap of the photocatalytic material. A convenient parameter to describe the number of useful photons is the number of moles of photons striking the surface per unit area per second. The unit of micro-einsteins (or micromoles) of photons per m2 per sec is commonly used for photochemical and photoelectric-like phenomena. This type of parameter is used in photochemistry, such as in the conversion of light energy for photosynthesis. Photosynthetic response correlates with the number of photons rather than by energy because, in this photochemical process, each molecule is activated by the absorption of one photon. In photosynthesis, the number of photons absorbed in the 400 700 nm spectral range is estimated and is referred to as photosynthetic active radiation (PAR). PAR is defined in terms of the photosynthetic photon flux density measured in micro-einsteins of photons per m2 per sec. PcAR is an equivalent, similarly modeled parameter that has been defined for the photocatalytic processes. Two methods to measure the PcAR level are being proposed. In the first method, a calibrated

  13. Classical Nuclear Hormone Receptor Activity as a Mediator of Complex Concentration Response Relationships for Endocrine Active Compounds

    PubMed Central

    Cookman, Clifford J.; Belcher, Scott M.

    2014-01-01

    Nonmonotonic concentration response relationships are frequently observed for endocrine active ligands that act via nuclear receptors. The curve of best fit for nonmonotonic concentration response relationships are often inverted U-shaped with effects at intermediate concentrations that are different from effects at higher or lower concentrations. Cytotoxicity is a major mode of action responsible for inverted U-shaped concentration response relationships. However, evidence suggests that ligand selectivity, activation of multiple molecular targets, concerted regulation of multiple opposing endpoints, and multiple ligand binding sites within nuclear receptors also contribute to nonmonotonic concentration response relationships of endocrine active ligands. This review reports the current understanding of mechanisms involved in classical nuclear receptor mediated nonmonotonic concentration response relationships with a focus on studies published between 2012 and 2014. PMID:25299165

  14. Minute Concentration Measurements of Simple Hydrocarbon Species Using Supercontinuum Laser Absorption Spectroscopy.

    PubMed

    Yoo, Jihyung; Traina, Nicholas; Halloran, Michael; Lee, Tonghun

    2016-06-01

    Minute concentration measurements of simple hydrocarbon gases are demonstrated using near-infrared supercontinuum laser absorption spectroscopy. Absorption-based gas sensors, particularly when combined with optical fiber components, can significantly enhance diagnostic capabilities to unprecedented levels. However, these diagnostic techniques are subject to limitations under certain gas sensing applications where interference and harsh conditions dominate. Supercontinuum laser absorption spectroscopy is a novel laser-based diagnostic technique that can exceed the above-mentioned limitations and provide accurate and quantitative concentration measurement of simple hydrocarbon species while maintaining compatibility with telecommunications-grade optical fiber components. Supercontinuum radiation generated using a highly nonlinear photonic crystal fiber is used to probe rovibrational absorption bands of four hydrocarbon species using full-spectral absorption diagnostics. Absorption spectra of methane (CH4), acetylene (C2H2), and ethylene (C2H4) were measured in the near-infrared spectrum at various pressures and concentrations to determine the accuracy and feasibility of the diagnostic strategy. Absorption spectra of propane (C3H8) were subsequently probed between 1650 nm and 1700 nm, to demonstrate the applicability of the strategy. Measurements agreed very well with simulated spectra generated using the HITRAN database as well as with previous experimental results. Absorption spectra of CH4, C2H2, and C2H4 were then analyzed to determine their respective measurement accuracy and detection limit. Concentration measurements integrated from experimental results were in very good agreement with independent concentration measurements. Calculated detection limits of CH4, C2H2, and C2H4 at room temperature and atmospheric pressure are 0.1%, 0.09%, and 0.17%, respectively.

  15. Modeling source contributions to submicron particle number concentrations measured in Rochester, New York

    SciTech Connect

    Ogulei, D.; Hopke, P.K.; Chalupa, D.C.; Utell, M.J.

    2007-02-15

    An advanced receptor model was used to elicit source information based on ambient submicron (0.01-0.47 {mu}m) particle number concentrations, gaseous species, and meteorological variables measured at the New York State Department of Environmental Conservation central monitoring site in Rochester, NY. Four seasonal data sets (winter, spring, summer, and fall) were independently investigated. A total of ten different sources were identified, including two traffic factors, two nucleation factors, industrial emissions, residential/commercial heating, secondary nitrate, secondary sulfate, ozone-rich secondary aerosol, and regionally transported aerosol. The resolved sources were generally characterized by similar number modes for either winter, spring, summer or fall. The size distributions for nucleation were dominated by the smallest particles ({lt}10-30 nm) that gradually grew to larger sizes as could be seen by observing the volume profiles. In addition, the nucleation factors were closely linked to traffic rush hours suggesting that cooling of tail-pipe emissions may have induced nucleation activity in the vicinity of the highways. Industrial emissions were dominated by emissions from coal-fired power plants that were located to the northwest of the sampling site. These facilities represent the largest point emission sources of SO{sub 2}, and probably ultrafine ({lt}0.1 {mu}m) or submicron particles, in Rochester. Regionally transported material was characterized by accumulation mode particles. Air parcel back-trajectories showed transport of air masses from the industrial midwest.

  16. Helium-3 and boron-10 concentration and depth measurements in alloys and semiconductors using NDP

    NASA Astrophysics Data System (ADS)

    Ünlü, Kenan; Saglam, Mehmet; Wehring, Bernard W.

    1999-02-01

    Neutron Depth Profiling (NDP) is a nondestructive near surface technique that is used to measure concentration versus absolute depth of several isotopes of light mass elements in various substrates. NDP is based on absorption reaction of thermal neutrons with the isotope of interest. Charged particles and recoil atoms are generated in the reaction. The depth profiles are determined by measuring the residual energy of the charged particles or the recoil atoms. The NDP technique has became an increasingly important method to measure depth profiles of 3He and 10B in alloys and semiconductor materials. A permanent NDP facility has been installed on the tangential beam port of the University of Texas (UT) TRIGA Mark-II research reactor. One of the standard applications of the UT-NDP facility involves the determination of boron profiles of borophosphosilicate glass (BPSG) samples. NDP is also being used in combination with electron microscopy measurements to determine radiation damage and microstructural changes in stainless steel samples. This is done to study the long-term effects of high-dose alpha irradiation for weapons grade plutonium encapsulation. Measurements of implanted boron-10 concentration and depth profiles of semiconductor materials in order to calibrate commercial implanters is another application at the UT-NDP facility. The concentration and depth profiles measured with NDP and SIMS are compared with reported data given by various vendors or different implanters in order to verify implant quality of semiconductor wafers. The results of the measurements and other possible applications of NDP are presented.

  17. Isoprene concentrations over Russia: ground-based measurements and chemistry-transport modeling

    NASA Astrophysics Data System (ADS)

    Berezina, Elena; Konovalov, Igor; Berezin, Evgeny; Skorokhod, Andrey; Elansky, Nikolay; Belikov, Igor

    2016-04-01

    Near-surface isoprene concentration was measured over Russia using the proton mass spectrometry method (PTR-MS) in TROICA (TRanscontinental Observations Into the Chemistry of the Atmosphere) experiments along the Trans-Siberian railway from 21.06.08 to 04.08.08 (TROICA-12) and from 08.10.09 to 23.10.09 (TROICA-13). The highest isoprene concentration is observed in the Far East (up to 3 ppb) due to the emissions from the major isoprene source - deciduous forests. The TROICA measurements were compared to the corresponding simulations performed with the CHIMERE chemistry transport model (CTM) using the MEGAN biogenic emission inventory. Simulated and measured isoprene concentrations are highly correlated (r = 0.8), but the simulated isoprene concentration is about 4-6 times higher than the measured one. The selection of daytime and background (from isoprene/benzene ratios) isoprene concentrations don't significantly increase the experimental values; moreover, even the isoprene concentration corrected for atmospheric photochemical losses (that is, the near-source concentration) is found to be 1.5 times lower than the simulated data. Therefore, the systematic discrepancy between the measurements and simulations could not be unambiguously attributed to the representativity error. The weak exponential dependence of summer isoprene concentration on temperature both for the model (R2 = 0.3) and for the experimental data (R2 = 0.4) is observed. However, a much stronger linear correlation (r ~ 0.9) is found between the isoprene concentration and temperature in Russian regions separated according to the type of vegetation. The differences between the simulated and experimental dependences of isoprene concentration on temperature are not statistically significant. The above results prompt the conclusion that the parameterization of isoprene emissions in the CHIMERE CTM is qualitatively adequate, but the isoprene emission factors applicable for Russian forest are likely

  18. Measurement of low concentration and nano-quantity hydrogen sulfide in sera using unfunctionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wu, X. C.; Zhang, W. J.; Sammynaiken, R.; Meng, Q. H.; Wu, D. Q.; Yang, Q.; Yang, W.; Zhang, Edwin M.; Wang, R.

    2009-10-01

    Hydrogen sulfide (H2S) is produced in small amounts by certain cells in the mammalian body and has a number of biological functions. H2S gas naturally produced by the body is not simply a toxic gas; it could be a vascular dilator and play a physiological role in regulating cardiovascular functions. In order to know the effects of H2S, it is necessary to accurately know its concentrations in the body. Conventional measurement methods have their limitations concerning the small amount and low concentration of H2S in the body. A new paradigm of using carbon nanotubes in H2S measurement expresses its potential. However, the influence of proteins in the mammalian body must be studied in the measurement of H2S by carbon nanotubes. In this paper, we demonstrate a successful measurement of low concentration (20 µM) and nano-quantity (0.5 µg) H2S in the serum by using carbon nanotubes and further with the fluorescence of confocal laser scanning microscopy and the luminescence of Raman microscopy. Statistical analysis of the experimental data shows that the relationship between concentrations and intensities is linear, which thus makes the carbon nanotube sensor highly promising for the measurement of H2S in sera.

  19. Smartphone dongle for simultaneous measurement of hemoglobin concentration and detection of HIV antibodies.

    PubMed

    Guo, Tiffany; Patnaik, Ritish; Kuhlmann, Kevin; Rai, Alex J; Sia, Samuel K

    2015-09-07

    It is traditionally difficult to incorporate two classes of diagnostic tests into a single platform. In this work, we demonstrate a microfluidic-based smartphone dongle that simultaneously measures concentration of hemoglobin and detects HIV antibodies. Specifically, we demonstrate how a previously published immunoassay device, which measured optical density of silver precipitation on gold colloids, can be expanded to quantitatively measure hemoglobin concentration via a colorimetric assay. By lysing whole blood components with CHAPS detergent, we achieved highly reproducible measurement of hemoglobin concentration with the device. We tested this dual test on 38 patient samples from Columbia University Medical Center. Compared with the Hemocue Hb 201+ analyzer, hemoglobin concentrations from our device were accurate within 1.2 g dL(-1), while the HIV immunoassay (in the presence of CHAPS detergent) showed 95% sensitivity and 95% specificity, comparable to our previous studies. This work demonstrates the feasibility of integrating two classes of diagnostic tests (a colorimetric-based quantitative measurement and an immunoassay based on silver precipitation on gold colloids) into a low-cost, fast, and low-power dongle that works with smartphones, and creates a novel dual panel with clinical utility for antenatal-care settings.

  20. Measuring oxidative stress: the confounding effect of lipid concentration in measures of lipid peroxidation.

    PubMed

    Pérez-Rodríguez, Lorenzo; Romero-Haro, Ana A; Sternalski, Audrey; Muriel, Jaime; Mougeot, Francois; Gil, Diego; Alonso-Alvarez, Carlos

    2015-01-01

    Lipid peroxidation products are widely used as markers of oxidative damage in the organism. To properly interpret the information provided by these markers, it is necessary to know potential sources of bias and control confounding factors. Here, we investigated the relationship between two indicators of lipid mobilization (circulating levels of triglycerides and cholesterol) and two common markers of oxidative damage (plasma levels of malondialdehyde and hydroperoxides; the latter estimated from the d-ROMs assay kit). The following five avian species were studied: red-legged partridge (Alectoris rufa), zebra finch (Taeniopygia guttata), spotless starling (Sturnus unicolor), marsh harrier (Circus aeroginosus), and Montagu's harrier (Circus pygargus). In all cases, plasma triglyceride levels positively and significantly correlated with lipid peroxidation markers, explaining between 8% and 34% of their variability. Plasma cholesterol, in contrast, showed a significant positive relationship only among spotless starling nestlings and a marginally significant association in zebra finches. These results indicate that lipid peroxidation marker levels covary with circulating lipid levels. We discuss the potential causes and implications of this covariation and recommend that future studies that measure oxidative damage using lipid peroxidation markers report both raw and relative levels (i.e., corrected for circulating triglycerides). Whether the observed pattern also holds for other tissues and in other taxa would deserve further research.

  1. Effect of the concentration of inherent mineral elements on the adsorption capacity of coconut shell-based activated carbons.

    PubMed

    Afrane, G; Achaw, Osei-Wusu

    2008-09-01

    Coconut shells of West Africa Tall, a local variety of the coconut species Cocos nucifera L., were taken from five different geographical locations in Ghana and examined for the presence and concentration levels of some selected mineral elements using atomic absorption spectrometer. Activated carbons were subsequently made from the shells by the physical method. The iodine adsorption characteristics of the activated carbons measured showed a definite relationship to the concentration levels of potassium and other mineral elements in the precursor shell. Samples with lower total minerals content recorded higher iodine numbers. It was observed that the origin of the shells was related to the concentration levels of the analyzed mineral elements in the shells, which in turn affected the adsorption capacity of the activated carbons. The results of this study have important implications for the sourcing of coconuts whose shells are used in the manufacture of activated carbons.

  2. Combinations of parabens at concentrations measured in human breast tissue can increase proliferation of MCF-7 human breast cancer cells.

    PubMed

    Charles, Amelia K; Darbre, Philippa D

    2013-05-01

    The alkyl esters of p-hydroxybenzoic acid (parabens), which are used as preservatives in consumer products, possess oestrogenic activity and have been measured in human breast tissue. This has raised concerns for a potential involvement in the development of human breast cancer. In this paper, we have investigated the extent to which proliferation of MCF-7 human breast cancer cells can be increased by exposure to the five parabens either alone or in combination at concentrations as recently measured in 160 human breast tissue samples. Determination of no-observed-effect concentrations (NOEC), lowest-observed-effect concentrations (LOEC), EC50 and EC100 values for stimulation of proliferation of MCF-7 cells by five parabens revealed that 43/160 (27%) of the human breast tissue samples contained at least one paraben at a concentration ≥ LOEC and 64/160 (40%) > NOEC. Proliferation of MCF-7 cells could be increased by combining all five parabens at concentrations down to the 50(th) percentile (median) values measured in the tissues. For the 22 tissue samples taken at the site of ER + PR + primary cancers, 12 contained a sufficient concentration of one or more paraben to stimulate proliferation of MCF-7 cells. This demonstrates that parabens, either alone or in combination, are present in human breast tissue at concentrations sufficient to stimulate the proliferation of MCF-7 cells in vitro, and that functional consequences of the presence of paraben in human breast tissue should be assessed on the basis of all five parabens and not single parabens individually.

  3. Application of an optimized flow cytometry-based quantification of Platelet Activation (PACT): Monitoring platelet activation in platelet concentrates

    PubMed Central

    Roest, Mark; Henskens, Yvonne M. C.; de Laat, Bas; Huskens, Dana

    2017-01-01

    Background Previous studies have shown that flow cytometry is a reliable test to quantify platelet function in stored platelet concentrates (PC). It is thought that flow cytometry is laborious and hence expensive. We have optimized the flow cytometry-based quantification of agonist induced platelet activation (PACT) to a labor, time and more cost-efficient test. Currently the quality of PCs is only monitored by visual inspection, because available assays are unreliable or too laborious for use in a clinical transfusion laboratory. Therefore, the PACT was applied to monitor PC activation during storage. Study design and methods The optimized PACT was used to monitor 5 PCs during 10 days of storage. In brief, optimized PACT uses a ready-to-use reaction mix, which is stable at -20°C. When needed, a test strip is thawed and platelet activation is initiated by mixing PC with PACT. PACT was based on the following agonists: adenosine diphosphate (ADP), collagen-related peptide (CRP) and thrombin receptor-activating peptide (TRAP-6). Platelet activation was measured as P-selectin expression. Light transmission aggregometry (LTA) was performed as a reference. Results Both PACT and LTA showed platelet function decline during 10-day storage after stimulation with ADP and collagen/CRP; furthermore, PACT showed decreasing TRAP-induced activation. Major differences between the two tests are that PACT is able to measure the status of platelets in the absence of agonists, and it can differentiate between the number of activated platelets and the amount of activation, whereas LTA only measures aggregation in response to an agonist. Also, PACT is more time-efficient compared to LTA and allows high-throughput analysis. Conclusion PACT is an optimized platelet function test that can be used to monitor the activation of PCs. PACT has the same accuracy as LTA with regard to monitoring PCs, but it is superior to both LTA and conventional flow cytometry based tests with regard to labor

  4. Spindle error motion measurement using concentric circle grating and sinusoidal frequency-modulated semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Higuchi, Masato; Vu, Thanh-Tung; Aketagawa, Masato

    2016-11-01

    The conventional method of measuring the radial, axial and angular spindle motion is complicated and needs large spaces. Smaller instrument is better in terms of accurate and practical measurement. A method of measuring spindle error motion using a sinusoidal phase modulation and a concentric circle grating was described in the past. In the method, the concentric circle grating with fine pitch is attached to the spindle. Three optical sensors are fixed under grating and observe appropriate position of grating. The each optical sensor consists of a sinusoidal frequency modulated semiconductor laser as the light source, and two interferometers. One interferometer measures an axial spindle motion by detecting the interference fringe between reflected beam from fixed mirror and 0th-order diffracted beam. Another interferometer measures a radial spindle motion by detecting the interference fringe between ±2nd-order diffracted beams. With these optical sensor, 3 axial and 3 radial displacement of grating can be measured. From these measured displacements, axial, radial and angular spindle motion is calculated concurrently. In the previous experiment, concurrent measurement of the one axial and one radial spindle displacement at 4rpm was described. In this paper, the sinusoidal frequency modulation realized by modulating injection current is used instead of the sinusoidal phase modulation, which contributes simplicity of the instrument. Furthermore, concurrent measurement of the 5 axis (1 axial, 2 radial and 2 angular displacements) spindle motion at 4000rpm may be described.

  5. Extending neutron activation analysis to materials with high concentrations of neutron absorbing elements

    NASA Astrophysics Data System (ADS)

    Chilian, Cornelia

    chemical element and the sample geometrical factor. Therefore, the remaining nuclear factor, considered as a product of nuclide composite nuclear characteristics and irradiation site characteristics, led to the introduction of a so-called epithermal neutron absorption cross-sections, sigmaabs,ep. This new nuclear parameter will allow the calculation of the epithermal self-shielding for all cylindrical samples activated in all types of irradiation sites. For the 13 cases studied, the epithermal self-shielding factor, Gep, was obtained from the experimental effective self-shielding factor, Geff, by extracting the thermal neutron self-shielding factor, calculated with the sigmoid formulation. A least-squares fit of the experimental Gep values as a function of the mass of element yielded sigmaabs,ep for each activated nuclide. In addition, for all nuclides commonly used in neutron activation analysis, sigmaabs,ep was calculated with the Martinho, Salgado and Goncalves sigmoid formulation, which uses the total cross-section values at the peaks of the resonances. A comparison of the calculated sigmaabs,ep with the 13 measured values reveals that the calculated values are accurate to about 20%. Finally, for all 76 nuclides commonly used in NAA, a spreadsheet program was written to use experimental or calculated sigmaabs,ep nuclear parameters to perform iterative self-shielding corrections of concentrations measured by neutron activation analysis. The user provides the parameters f and alpha of the neutron spectrum, the sample mass and dimensions, and the measured concentrations. In a typical case with 10% thermal self-shielding and 30% epithermal self-shielding, the corrected concentrations had uncertainties varying from 2% to 3%. Keywords. Instrumental Neutron Activation Analysis, epithermal, thermal, self-shielding factors. (Abstract shortened by UMI.)

  6. Calibration method and apparatus for measuring the concentration of components in a fluid

    DOEpatents

    Durham, Michael D.; Sagan, Francis J.; Burkhardt, Mark R.

    1993-01-01

    A calibration method and apparatus for use in measuring the concentrations of components of a fluid is provided. The measurements are determined from the intensity of radiation over a selected range of radiation wavelengths using peak-to-trough calculations. The peak-to-trough calculations are simplified by compensating for radiation absorption by the apparatus. The invention also allows absorption characteristics of an interfering fluid component to be accurately determined and negated thereby facilitating analysis of the fluid.

  7. Spectrometer for measuring the concentration of components in a fluid stream and method for using same

    DOEpatents

    Durham, M.D.; Stedman, D.H.; Ebner, T.G.; Burkhardt, M.R.

    1991-12-03

    A device and method are described for measuring the concentrations of components of a fluid stream. Preferably, the fluid stream is an in-situ gas stream, such as a fossil fuel fired flue gas in a smoke stack. The measurements are determined from the intensity of radiation over a selected range of radiation wavelengths using peak-to-trough calculations. The need for a reference intensity is eliminated. 15 figures.

  8. Spectrometer for measuring the concentration of components in a fluid stream and method for using same

    DOEpatents

    Durham, Michael D.; Stedman, Donald H.; Ebner, Timothy G.; Burkhardt, Mark R.

    1991-01-01

    A device and method for measuring the concentrations of components of a fluid stream. Preferably, the fluid stream is an in situ gas stream, such as a fossil fuel fired flue gas in a smoke stack. The measurements are determined from the intensity of radiation over a selected range of radiation wavelengths using peak-to-trough calculations. The need for a reference intensity is eliminated.

  9. Calibration method and apparatus for measuring the concentration of components in a fluid

    DOEpatents

    Durham, M.D.; Sagan, F.J.; Burkhardt, M.R.

    1993-12-21

    A calibration method and apparatus for use in measuring the concentrations of components of a fluid is provided. The measurements are determined from the intensity of radiation over a selected range of radiation wavelengths using peak-to-trough calculations. The peak-to-trough calculations are simplified by compensating for radiation absorption by the apparatus. The invention also allows absorption characteristics of an interfering fluid component to be accurately determined and negated thereby facilitating analysis of the fluid. 7 figures.

  10. Application of the optical method in experimental cardiology: action potential and intracellular calcium concentration measurement.

    PubMed

    Ronzhina, M; Cmiel, V; Janoušek, O; Kolářová, J; Nováková, M; Babula, P; Provazník, I

    2013-01-01

    It has been shown that, in addition to conventional contact electrode techniques, optical methods using fluorescent dyes can be successfully used for cardiac signal measurement. In this review, the physical and technical fundamentals of the method are described, as well as the properties of the most common systems for measuring action potentials and intracellular calcium concentration. Special attention is paid to summarizing limitations and trends in developing this method.

  11. The vegetation-to-air concentration ratio in a specific activity atmospheric tritium model

    SciTech Connect

    Hamby, D.M.; Bauer, L.R.

    1994-03-01

    Specific activity models are frequently used to estimate the concentration of tritium oxide in vegetation. In such models, a single value represents the ratio (R) of the specific activity of tritium oxide in vegetation to the specific activity of atmospheric tritium oxide. Federal agencies such as the Nuclear Regulatory Commission and the Environmental Protection Agency have not established a consensus default for R. Literature on this topic suggests that a site-specific distribution of R should be developed when feasible. In this study, a distribution of R is established for the Savannah River Site. Environmental tritium concentrations in air and vegetation measured on and around the Savannah River Site over a 9-y period form the basis for the analysis. For dose assessments of chronic atmospheric tritium releases at the Savannah River Site, R is best parameterized by a normal distribution with a mean of 0.54 and one standard deviation of 0.10. The Nuclear Regulatory Commission default for R is approximately equal to the Savannah River Site site-specific estimate. Based on the results, the default value for R recognized by the Environmental Protection Agency overestimates tritium concentrations in vegetation and, therefore, doses from foodstuff consumption pathways at humid sites. For the Savannah River Site, the magnitude of the error is on the order of a factor of 2. This consideration may be important if an estimated dose approaches an as-low-as-reasonably-achievable or regulatory threshold. Conversely, without the benefit of site-specific data, ingestion doses may be underestimated in regions with dry climates. 11 refs., 1 fig., 3 tabs.

  12. The vegetation-to-air concentration ratio in a specific activity atmospheric tritium model.

    PubMed

    Hamby, D M; Bauer, L R

    1994-03-01

    Specific activity models are frequently used to estimate the concentration of tritium oxide in vegetation. In such models, a single value represents the ratio (R) of the specific activity of tritium oxide in vegetation to the specific activity of atmospheric tritium oxide. Federal agencies such as the Nuclear Regulatory Commission and the Environmental Protection Agency have not established a consensus default for R. Literature on this topic suggests that a site-specific distribution of R should be developed when feasible. In this study, a distribution of R is established for the Savannah River Site. Environmental tritium concentrations in air and vegetation measured on and around the Savannah River Site over a 9-y period form the basis for the analysis. For dose assessments of chronic atmospheric tritium releases at the Savannah River Site, R is best parameterized by a normal distribution with a mean of 0.54 and one standard deviation of 0.10. The Nuclear Regulatory Commission default for R is approximately equal to the Savannah River Site site-specific estimate. Based on the results, the default value for R recognized by the Environmental Protection Agency overestimates tritium concentrations in vegetation and, therefore, doses from foodstuff consumption pathways at humid sites. For the Savannah River Site, the magnitude of the error is on the order of a factor of 2. This consideration may be important if an estimated dose approaches an as-low-as-reasonably-achievable or regulatory threshold. Conversely, without the benefit of site-specific data, ingestion doses may be underestimated in regions with dry climates.

  13. Plasma concentration of parasite DNA as a measure of disease severity in falciparum malaria.

    PubMed

    Imwong, Mallika; Woodrow, Charles J; Hendriksen, Ilse C E; Veenemans, Jacobien; Verhoef, Hans; Faiz, M Abul; Mohanty, Sanjib; Mishra, Saroj; Mtove, George; Gesase, Samwel; Seni, Amir; Chhaganlal, Kajal D; Day, Nicholas P J; Dondorp, Arjen M; White, Nicholas J

    2015-04-01

    In malaria-endemic areas, Plasmodium falciparum parasitemia is common in apparently healthy children and severe malaria is commonly misdiagnosed in patients with incidental parasitemia. We assessed whether the plasma Plasmodium falciparum DNA concentration is a useful datum for distinguishing uncomplicated from severe malaria in African children and Asian adults. P. falciparum DNA concentrations were measured by real-time polymerase chain reaction (PCR) in 224 African children (111 with uncomplicated malaria and 113 with severe malaria) and 211 Asian adults (100 with uncomplicated malaria and 111 with severe malaria) presenting with acute falciparum malaria. The diagnostic accuracy of plasma P. falciparum DNA concentrations in identifying severe malaria was 0.834 for children and 0.788 for adults, similar to that of plasma P. falciparum HRP2 levels and substantially superior to that of parasite densities (P < .0001). The diagnostic accuracy of plasma P. falciparum DNA concentrations plus plasma P. falciparum HRP2 concentrations was significantly greater than that of plasma P. falciparum HRP2 concentrations alone (0.904 for children [P = .004] and 0.847 for adults [P = .003]). Quantitative real-time PCR measurement of parasite DNA in plasma is a useful method for diagnosing severe falciparum malaria on fresh or archived plasma samples.

  14. Design and modeling of a measuring device for a TIR-R concentrator

    NASA Astrophysics Data System (ADS)

    Calero, Daniel Pérez; Miñano, Juan Carlos; Benitez, Pablo; Hernandez, Maikel; Cvetkovic, Aleksandra

    2006-08-01

    One of the most usual procedures to measure a concentrator optical efficiency is by direct comparison between the photocurrent generated by the compound concentrator/solar cell and photocurrent that single cell would generate under identical radiation conditions. Unfortunately, such procedure can give a good idea of the generator final performance, but can not indicate the real amount of radiation that will impinge over the cell. This apparent contradiction is based on the fact that once the cell is coupled with the concentrator, rays incidence is not perpendicular, but highly oblique, with an angle that can reach 70 ° or even greater for high concentration devices. The antireflective coating of the cell does not perform well enough for the whole incidence angle and frequency ranges because low cost is other important requirement for the solar cells. In consequence, the generated photocurrent drops for large incidence angles. In our case, a 70% incidence angle could, in the worst case, mean a 34% loss on generated photocurrent. With the aim of correcting such problem a special device has been designed in the framework of a EU funded project called HAMLET. The concept of the device is to substitute the concentrator receptor by a system formed by an optical collimator that would reduce concentration and incidence angle, and a characterized solar cell. The paper gives the results of this measuring procedure.

  15. On-road measurements of pollutant concentration profiles inside Yangkou tunnel, Qingdao, China.

    PubMed

    Cong, Xiao Chun; Qu, Jing Hua; Yang, Guo Shu

    2016-10-18

    To obtain physical properties of pollutant concentrations encountered by vehicle commuters during travelling Yangkou tunnel (7.76 km) of Qingdao City, particle concentration measurements are accompanied by the measurements of gaseous species (CO and CO2). The field campaigns are on-road conducted from April 26 to September 23, 2014. Results demonstrate that the mean particle number concentrations observed within the tunnel at the normal traffic volume are 1.15 × 10(5) and 1.24 × 10(5) particles cm(-3) for the southbound and northbound trip, respectively. Furthermore, the significance level of traffic volume to particle number concentration is analyzed by multivariate regression model. And a high correlation between pollutant concentrations and traffic intensity has been demonstrated. Consequently, the fuel-based emission factors of pollutants inside the tunnel are calculated and the personal exposures are derived. In addition, the profile of particle number concentration exhibits distinct dilution features between the exit of northbound bore and the exit of southbound bore. The explanation is attributed to the different long uphill trip within the tunnel. Results in this study offer meaningful understanding to explore the nature of pollutants within long tunnels.

  16. Full-field dye concentration measurement within saturated/unsaturated thin slabs of porous media

    SciTech Connect

    Norton, D.L.; Glass, R.J.

    1992-12-31

    This paper presents a full-field dye concentration measurement technique that extends our experimental capabilities to the measurement of transient dye concentration fields within steady state flow fields under unsaturated or saturated conditions. Simple light absorption theory provides a basis for translating images into high resolution dye concentration fields. A series of dye pulse experiments that demonstrate the combined use of the full-field saturation and dye concentration techniques was conducted at four different degrees of saturation. Each of these experimental sequences was evaluated with respect to mass balance, the results being within 5% of the known dye mass input. An image windowing technique allowed us to see increased dispersion due to decreasing moisture content, tailing of concentration at the rear of the dye pulse and slight velocity changes of the dispersive front due to changes in moisture content. The exceptional resolution of dye concentration in space and time provided by this laboratory technique allows systematic experimentation for examining basic processes affecting solute transport within saturated/unsaturated porous media. Future challenges for this work will be to use these techniques to analyze more complex systems involving heterogeneities, scaling laws, and detailed investigations of the relationship between transverse and longitudinal dispersion in unsaturated media.

  17. Predicting bioavailability of PAHs and PCBs with porewater concentrations measured by solid-phase microextraction fibers.

    PubMed

    Lu, Xiaoxia; Skwarski, Alison; Drake, Brian; Reible, Danny D

    2011-05-01

    Bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) was measured in the deposit-feeding oligochaete Ilyodrilus templetoni exposed for 28 d to Anacostia River sediment (Washington, DC, USA) and to an initially uncontaminated sediment from Brown Lake (Vicksburg, MS, USA) sequentially diluted with 3 to 25% contaminated New Bedford Harbor sediment (New Bedford, MA, USA). The Anacostia River sediment studies represented exposure to a historically contaminated sediment with limited availability, whereas exposure to the other sediment included both the historically contaminated New Bedford Harbor sediment and fresh redistribution of contaminants into the Brown Lake sediments. Organism tissue concentrations did not correlate with bulk sediment concentrations in the Anacostia River sediment but did correlate with the sequentially diluted sediment. Porewater concentrations measured via disposable solid-phase microextraction fiber (SPME) with polydimethylsiloxane (PDMS), however, correlated well with organism uptake in all sediments. Bioaccumulation was predicted well by a linear relationship with the product of porewater concentration and compound octanol-water partition coefficient (Anacostia, slope = 1.08, r² = 0.76; sequentially diluted sediments, slope = 1.24, r² = 0.76). The data demonstrate that the octanol-water partition coefficient is a good indicator of the lipid-water partition coefficient and that porewater concentrations provide a more reliable indicator of bioaccumulation in the organism than sediment concentrations, even when the route of uptake is expected to be via sediment ingestion.

  18. Development of a fluorescent method for simultaneous measurement of glucose concentrations in interstitial fluid and blood

    NASA Astrophysics Data System (ADS)

    Shi, Ting; Li, Dachao; Li, Guoqing; Chen, Limin; Lin, Yuan; Xu, Kexin; Lu, Luo

    2013-12-01

    Continuous blood glucose monitoring is of great clinical significance to patients with diabetes. One of the effective methods to monitor blood glucose is to measure glucose concentrations of interstitial fluid (ISF). However, a time-delay problem exists between ISF and blood glucose concentrations, which results in difficulty in indicating real-time blood glucose concentrations. Therefore, we developed a fluorescent method to verify the accuracy and reliability of simultaneous ISF and blood glucose measurement, especially incorporating it into research on the delay relationship between blood and ISF glucose changes. This method is based on a competitive reaction among borate polymer, alizarin and glucose. When glucose molecules combine with borate polymers in alizarin-borate polymer competitively, changes in fluorescence intensity demonstrate changes in glucose concentrations. By applying the measured results to the blood and ISF glucose delay relationship, we were able to calculate the time delay as an average of 2.16 ± 2.05 min for ISF glucose changes with reference to blood glucose concentrations.

  19. Indoor and outdoor measurements of vertical concentration profiles of airborne particulate matter.

    PubMed

    Micallef, A; Deuchar, C N; Colls, J J

    1998-05-04

    Vertical concentration profiles of various particle size ranges of airborne particulate matter were measured from ground level up to 3 m, in outdoor and indoor environments. Indoor measurements were carried out in an electronics workshop, while two outdoor environments were chosen: a street canyon cutting across a town and an open field situated in a semi-rural environment. The novel measurement technique employed in this experimental work, which can also be used to determine vertical concentration gradients of pollutants other than airborne particles in different environments, is given particular attention. Analyses of the collected data for the environments considered are presented and some conclusions and plausible explanations of the profiles are discussed. The workshop and street canyon environments exhibited larger concentrations and vertical concentration gradients as compared to the sports field. This indicates that people breathing at different heights are subjected to different concentrations of airborne particulate matter, which has implications for sitting air pollution monitors intended for protection of public health and estimation of human exposure.

  20. Activity concentrations of environmental samples collected in Fukushima Prefecture immediately after the Fukushima nuclear accident

    PubMed Central

    Hosoda, Masahiro; Tokonami, Shinji; Tazoe, Hirofumi; Sorimachi, Atsuyuki; Monzen, Satoru; Osanai, Minoru; Akata, Naofumi; Kakiuchi, Hideki; Omori, Yasutaka; Ishikawa, Tetsuo; Sahoo, Sarata K.; Kovács, Tibor; Yamada, Masatoshi; Nakata, Akifumi; Yoshida, Mitsuaki; Yoshino, Hironori; Mariya, Yasushi; Kashiwakura, Ikuo

    2013-01-01

    Radionuclide concentrations in environmental samples such as surface soils, plants and water were evaluated by high purity germanium detector measurements. The contribution rate of short half-life radionuclides such as 132I to the exposure dose to residents was discussed from the measured values. The highest values of the 131I/137Cs activity ratio ranged from 49 to 70 in the environmental samples collected at Iwaki City which is located to the south of the F1-NPS. On the other hand, the 132I/131I activity ratio in the same environmental samples had the lowest values, ranging from 0.01 to 0.02. By assuming that the 132I/131I activity ratio in the atmosphere was equal to the ratio in the environmental samples, the percent contribution to the thyroid equivalent dose by 132I was estimated to be less than 2%. Moreover, the contribution to the thyroid exposure by 132I might be negligible if 132I contamination was restricted to Iwaki City. PMID:23887080

  1. Measuring homework completion in behavioral activation.

    PubMed

    Busch, Andrew M; Uebelacker, Lisa A; Kalibatseva, Zornitsa; Miller, Ivan W

    2010-07-01

    The aim of this study was to develop and validate an observer-based coding system for the characterization and completion of homework assignments during Behavioral Activation (BA). Existing measures of homework completion are generally unsophisticated, and there is no current measure of homework completion designed to capture the particularities of BA. The tested scale sought to capture the type of assignment, realm of functioning targeted, extent of completion, and assignment difficulty. Homework assignments were drawn from 12 (mean age = 48, 83% female) clients in two trials of a 10-session BA manual targeting treatment-resistant depression in primary care. The two coders demonstrated acceptable or better reliability on most codes, and unreliable codes were dropped from the proposed scale. In addition, correlations between homework completion and outcome were strong, providing some support for construct validity. Ultimately, this line of research aims to develop a user-friendly, reliable measure of BA homework completion that can be completed by a therapist during session.

  2. Laser Sounder for Global Measurement of CO2 Concentrations in the Troposphere from Space

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Riris, Haris; Kawa, S. Randy; Sun, Xiaoli; Chen, Jeffrey; Stephen, Mark A.; Collatz, G. James; Mao, Jianping; Allan, Graham

    2007-01-01

    Measurements of tropospheric CO2 abundance with global-coverage, a few hundred km spatial and monthly temporal resolution are needed to quantify processes that regulate CO2 storage by the land and oceans. The Orbiting Carbon Observatory (OCO) is the first space mission focused on atmospheric CO2 for measuring total column CO, and O2 by detecting the spectral absorption in reflected sunlight. The OCO mission is an essential step, and will yield important new information about atmospheric CO2 distributions. However there are unavoidable limitations imposed by its measurement approach. These include best accuracy only during daytime at moderate to high sun angles, interference by cloud and aerosol scattering, and limited signal from CO2 variability in the lower tropospheric CO2 column. We have been developing a new laser-based technique for the remote measurement of the tropospheric CO2 concentrations from orbit. Our initial goal is to demonstrate a lidar technique and instrument technology that will permit measurements of the CO2 column abundance in the lower troposphere from aircraft. Our final goal is to develop a space instrument and mission approach for active measurements of the CO2 mixing ratio at the 1-2 ppmv level. Our technique is much less sensitive to cloud and atmospheric scattering conditions and would allow continuous measurements of CO2 mixing ratio in the lower troposphere from orbit over land and ocean surfaces during day and night. Our approach is to use the 1570nm CO2 band and a 3-channel laser absorption spectrometer (i.e. lidar used an altimeter mode), which continuously measures at nadir from a near polar circular orbit. The approach directs the narrow co-aligned laser beams from the instrument's lasers toward nadir, and measures the energy of the laser echoes reflected from land and water surfaces. It uses several tunable fiber laser transmitters which allowing measurement of the extinction from a single selected CO2 absorption line in the 1570

  3. Development of new measuring technique using sound velocity for CO2 concentration in Cameroonian volcanic lakes

    NASA Astrophysics Data System (ADS)

    Sanemasa, M.; Saiki, K.; Kaneko, K.; Ohba, T.; Kusakabe, M.; Tanyileke, G.; Hell, J.

    2012-12-01

    1. Introduction Limnic eruptions at Lakes Monoun and Nyos in Cameroon, which are sudden degassing of magmatic CO2 dissolved in the lake water, occurred in 1984 and 1986, respectively. The disasters killed about 1800 people around the lakes. Because of ongoing CO2 accumulation in the bottom water of the lakes, tragedy of limnic eruptions will possibly occur again. To prevent from further disasters, artificial degassing of CO2 from the lake waters has been undergoing. Additionally, CO2 monitoring of the lake waters is needed. Nevertheless, CO2 measurement is done only once or twice a year because current methods of CO2 measurement, which require chemical analysis of water samples, are not suitable for frequent measurement. In engineering field, on the other hand, a method to measure salt concentration using sound velocity has been proposed (Kleis and Sanchez, 1990). This method allows us to evaluate solute concentration fast. We applied the method to dissolved CO2 and examined the correlation between sound velocity and CO2 concentration in laboratory experiment. Furthermore, using the obtained correlation, we tried to estimate the CO2 concentration of waters in the Cameroonian lakes. 2. Laboratory experiment We examined the correlation between sound velocity and CO2 concentration. A profiler (Minos X, made by AML oceanography) and pure water were packed in cylindrical stainless vessel and high-pressure CO2 gas was injected to produce carbonated water. The profiler recorded temperature, pressure and sound velocity. Change of sound velocity was defined as difference of sound velocity between carbonated water and pure water under the same temperature and pressure conditions. CO2 concentration was calculated by Henry's law. The result indicated that the change of sound velocity [m s-1] is proportional to CO2 concentration [mmol kg-1], and the coefficient is 0.021 [m kg s-1 mmol-1]. 3. Field application Depth profiles of sound velocity, pressure, and temperature of Lakes

  4. Passive sampler for measurements of atmospheric nitric acid vapor (HNO3) concentrations.

    PubMed

    Bytnerowicz, A; Padgett, P E; Arbaugh, M J; Parker, D R; Jones, D P

    2001-12-05

    Nitric acid (HNO3) vapor is an important nitrogenous air pollutant responsible for increasing saturation of forests with nitrogen and direct injury to plants. The USDA Forest Service and University of California researchers have developed a simple and inexpensive passive sampler for monitoring air concentrations of HNO3. Nitric acid is selectively absorbed on 47-mm Nylasorb nylon filters with no interference from particulate NO3-. Concentrations determined with the passive samplers closely corresponded with those measured with the co-located honeycomb annular denuder systems. The PVC protective caps of standardized dimensions protect nylon filters from rain and wind and allow for reliable measurements of ambient HNO3 concentrations. The described samplers have been successfully used in Sequoia National Park, the San Bernardino Mountains, and on Mammoth Mountain in California.

  5. Application of transcutaneous diffuse reflectance spectroscopy in the measurement of blood glucose concentration

    NASA Astrophysics Data System (ADS)

    Chen, Wenliang; Liu, Rong; Cui, Houxin; Xu, Kexin; Lv, Lina

    2004-07-01

    In this paper, the propagation characteristics of near-infrared (NIR) light in the palm tissue are analyzed, and the principle and feasibility of using transcutaneous diffuse reflectance spectroscopy for non-invasive blood glucose detection are presented. An optical probe suitable for measuring the diffuse reflectance spectrum of human palm and a non-invasive blood glucose detection system using NIR spectroscopy are designed. Based on this system, oral glucose tolerance tests are performed to measure the blood glucose concentrations of two young healthy volunteers. The partial least square calibration model is then constructed by all individual experimental data. The final result shows that correlation coefficients of the two experiments between the predicted blood glucose concentrations and the reference blood glucose concentrations are 0.9870 and 0.9854, respectively. The root mean square errors of prediction of full cross validation are 0.54 and 0.52 mmol/l, respectively.

  6. [Research on the NO2 mean concentration measurement with target differential optical absorption spectroscopy technology].

    PubMed

    Liu, Jin; Si, Fu-Qi; Zhou, Hai-Jin; Zhao, Min-Jie; Dou, Ke; Liu, Wen-Qing

    2013-04-01

    A new monitoring method of NO2 concentration near ground with the target difference absorption spectrum technology (Target DOAS) is introduced in the present paper. This method is based on the passive difference absorption spectrum technology. The instrument collects solar reflection spectrum of remote objectives, such as wall of building and mountain, and a specific reference spectrum is chosen to subtract the influence of trace gases from the target to atmospheric top, then integrated concentration of NO2 along the path between the target and instrument can be calculated through the differential absorption spectra inversion algorithm. Since the distance between the instrument and target is given, the mean concentration of NO2 can be derived. With developed Target DOAS instrument, NO2 concentration measurement was carried out in Hefei. And comparison was made between the target DOAS and long path difference absorption spectrometer. Good consistency was presented, proving the feasibility of this method.

  7. Measurements of absolute concentrations of NADH in cells using the phasor FLIM method.

    PubMed

    Ma, Ning; Digman, Michelle A; Malacrida, Leonel; Gratton, Enrico

    2016-07-01

    We propose a graphical method using the phasor representation of the fluorescence decay to derive the absolute concentration of NADH in cells. The method requires the measurement of a solution of NADH at a known concentration. The phasor representation of the fluorescence decay accounts for the differences in quantum yield of the free and bound form of NADH, pixel by pixel of an image. The concentration of NADH in every pixel in a cell is obtained after adding to each pixel in the phasor plot a given amount of unmodulated light which causes a shift of the phasor towards the origin by an amount that depends on the intensity at the pixel and the fluorescence lifetime at the pixel. The absolute concentration of NADH is obtained by comparison of the shift obtained at each pixel of an image with the shift of the calibrated solution.

  8. Measurements of absolute concentrations of NADH in cells using the phasor FLIM method

    PubMed Central

    Ma, Ning; Digman, Michelle A.; Malacrida, Leonel; Gratton, Enrico

    2016-01-01

    We propose a graphical method using the phasor representation of the fluorescence decay to derive the absolute concentration of NADH in cells. The method requires the measurement of a solution of NADH at a known concentration. The phasor representation of the fluorescence decay accounts for the differences in quantum yield of the free and bound form of NADH, pixel by pixel of an image. The concentration of NADH in every pixel in a cell is obtained after adding to each pixel in the phasor plot a given amount of unmodulated light which causes a shift of the phasor towards the origin by an amount that depends on the intensity at the pixel and the fluorescence lifetime at the pixel. The absolute concentration of NADH is obtained by comparison of the shift obtained at each pixel of an image with the shift of the calibrated solution. PMID:27446681

  9. NOTE: A haemodynamic model for the physiological interpretation of in vivo measurements of the concentration and oxygen saturation of haemoglobin

    NASA Astrophysics Data System (ADS)

    Fantini, Sergio

    2002-09-01

    We present a model that describes the effect of physiological parameters such as the speed of blood flow, local oxygen consumption, capillary recruitment, and vascular dilation/constriction on the concentration and oxygen saturation of haemoglobin in tissue. This model can be used to guide the physiological interpretation of haemodynamic and oximetric data collected in vivo with techniques such as optical imaging, near-infrared spectroscopy and functional magnetic resonance imaging. In addition to providing a formal description of well-established results (exercise-induced hyperemia, reperfusion hyperoxia, decrease in the concentration of deoxyhaemoglobin induced by brain activity, measurement of arterial saturation by pulse oximetry, etc.), this model suggests that the superposition of asynchronous contributions from the arterial, capillary and venous haemoglobin compartments may be at the origin of observed out-of-phase oscillations of the oxyhaemoglobin and deoxyhaemoglobin concentrations in tissue.

  10. Performance of the Proposed New Federal Reference Methods for Measuring Ozone Concentrations in Ambient Air

    EPA Science Inventory

    The current Federal Reference Method (FRM) for measuring concentrations of ozone in ambient air, described in EPA regulations at 40 CFR Part 50, Appendix D, is based on the dry, gas-phase, chemiluminescence reaction between ethylene (C2H4) and any ozone (O

  11. Evaluation and Comparison of Chemiluminescence and UV Photometric Methods for Measuring Ozone Concentrations in Ambient Air

    EPA Science Inventory

    The current Federal Reference Method (FRM) for measuring concentrations of ozone in ambient air is based on the dry, gas-phase, chemiluminescence reaction between ethylene (C2H4) and any ozone (O3) that may be p...

  12. ENVIRONMENTAL RESEARCH BRIEF: INNOVATIVE MEASURES FOR SUBSURFACE CHROMIUM REMEDIATION: SOURCE ZONE, CONCENTRATED PLUME, AND DILUTE PLUME.

    EPA Science Inventory

    This environmental research brief reports on innovative measures for addressing 1) the source zone soils, 2) the concentrated portion of the ground-water plume, and 3) the dilute portion of the ground-water plume. For the source zone, surfactant-enhanced chromium extraction is ev...

  13. Using a Homemade Flame Photometer to Measure Sodium Concentration in a Sports Drink

    ERIC Educational Resources Information Center

    LaFratta, Christopher N.; Jain, Swapan; Pelse, Ian; Simoska, Olja; Elvy, Karina

    2013-01-01

    The purpose of this experiment was to create a simple and inexpensive flame photometer to measure the concentration of sodium in beverages, such as Gatorade. We created a nebulizer using small tubing and sprayed the sample into the base of a Bunsen burner. Adjacent to the flame was a photodiode with a filter specific for the emission of the sodium…

  14. MEASURED CONCENTRATIONS OF HERBICIDES AND MODEL PREDICTIONS OF ATRAZINE FATE IN THE PATUXENT RIVER ESTUARY

    EPA Science Inventory

    McConnell, Laura L., Jennifer A. Harman-Fetcho and James D. Hagy, III. 2004. Measured Concentrations of Herbicides and Model Predictions of Atrazine Fate in the Patuxent River Estuary. J. Environ. Qual. 33(2):594-604. (ERL,GB X1051).

    The environmental fate of herbicides i...

  15. An improved filter pack technique for airborne measurement of low concentrations of SO2

    NASA Astrophysics Data System (ADS)

    Ferek, Ronald J.; Hegg, Dean A.; Herring, John A.; Hobbs, Peter V.

    1991-12-01

    Recent improvements to the carbonate-impregnated filter technique for measuring low-level SO2concentrations have resulted in dramatically improved performance. The improvements are (1) a better cleaning procedure for the paper filter substrates, resulting in approximately 60% reduction of their sulfate blank, (2) the use of an ion-exchange resin to remove the carbonate matrix from the sample extract, resulting in a 100% increase in the signal-to-noise ratio, (3) the use of high-purity glycerol in the filter impregnate, resulting in approximately 10% further reduction of blanks, and (4) improved Chromatographic and standardization procedures for more accurate quantification of sample peaks. Combined, these improvements allow measurements to be made of SO2 concentrations in marine background air with a 2σ uncertainty of ±6 parts per trillion by volume (pptv) and, based on this, a 3σ detection limit of 9 pptv for air volumes of 4 m3 (which can be collected in 15 min aboard our research aircraft). Measurements in polluted air show better than 95% collection efficiency, even at concentrations as high as 100 ppbv. Vertical profiles of SO2 measured during three research flights off the Washington coast (one in clean marine air) showed concentrations ranging from 15 to 86 pptv in the mixed layer and from 40 to 93 pptv in the free troposphere.

  16. 40 CFR 761.316 - Interpreting PCB concentration measurements resulting from this sampling scheme.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... composite is the measurement for the entire area. For example, when there is a composite of 10 standard wipe... composite is 20 µg/100 cm2, then the entire 9.5 square meters has a PCB surface concentration of 20 µg/100 cm2, not just the area in the 10 cm by 10 cm sampled areas. (c) For small surfaces having...

  17. 40 CFR 761.316 - Interpreting PCB concentration measurements resulting from this sampling scheme.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... composite is the measurement for the entire area. For example, when there is a composite of 10 standard wipe... composite is 20 µg/100 cm2, then the entire 9.5 square meters has a PCB surface concentration of 20 µg/100 cm2, not just the area in the 10 cm by 10 cm sampled areas. (c) For small surfaces having...

  18. 40 CFR 761.316 - Interpreting PCB concentration measurements resulting from this sampling scheme.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... composite is the measurement for the entire area. For example, when there is a composite of 10 standard wipe... composite is 20 µg/100 cm2, then the entire 9.5 square meters has a PCB surface concentration of 20 µg/100 cm2, not just the area in the 10 cm by 10 cm sampled areas. (c) For small surfaces having...

  19. Using Conductivity Measurements to Determine the Identities and Concentrations of Unknown Acids: An Inquiry Laboratory Experiment

    ERIC Educational Resources Information Center

    Smith, K. Christopher; Garza, Ariana

    2015-01-01

    This paper describes a student designed experiment using titrations involving conductivity measurements to identify unknown acids as being either HCl or H[subscript 2]SO[subscript 4], and to determine the concentrations of the acids, thereby improving the utility of standard acid-base titrations. Using an inquiry context, students gain experience…

  20. Measurement of Radon concentration by Xenon gamma-ray spectrometer for seismic monitoring of the Earth

    NASA Astrophysics Data System (ADS)

    Novikov, A.; Ulin, S.; Dmitrenko, V.; Vlasik, K.; Bychkova, O.; Petrenko, D.; Uteshev, Z.; Shustov, A.

    2016-02-01

    A method for earthquake precursors search based on variations of 222Rn concentration determined via intensity measurement of 222Rn daughter nuclei gamma ray emission lines by means of xenon gamma-ray spectrometer is discussed. The equipment description as well as the first experimental data are presented.

  1. A system for full Stokes vector measurement for low concentration glucose sensing

    NASA Astrophysics Data System (ADS)

    Phan, Quoc-Hung; Lo, Yu-Lung

    2016-03-01

    A high performance system for full Stokes vector measurements was developed. The proposed system comprised a polarization scanning generator (PSG) and a high accuracy polarization state analyzer (PSA) was proposed. The PSG generated full state of polarization of light by using voltage driven electro-optics modulator without using any mechanical moving parts. The PSA was employed to record the intensity of output polarized lights in a high speed manner. The accuracy of proposed system was 10-4 for all Stokes vector (S0, S1, S2, S3) measurements in the full state of polarization of lights. An application of proposed system for low concentration glucose in aqueous solution sensing with/without scattering effects was demonstrated. The sensitivity of the optical rotation angle of CB property to changes in the concentration of glucose sample was examined over the range from 0 to 0.5g/dl. The results confirm that the proposed system is able to detect glucose at fine concentration of 0.02g/dl. The linear variation of the optical rotation angle and different glucose concentration at different scattering effects was obtained. In general, the new measurement system proposed in this study provided a fast and reliable method to measure all Stokes vectors and its potential applications in biological sensing.

  2. Concentrations and activity ratios of uranium isotopes in groundwater from Donana National Park, South of Spain

    SciTech Connect

    Bolivar, J. P.; Olias, M.; Gonzalez-Garcia, F.; Garcia-Tenorio, R.

    2008-08-07

    The levels and distribution of natural radionuclides in groundwaters from the unconfined Almonte-Marismas aquifer, upon which Donana National Park is located, have been analysed. Most sampled points were multiple piezometers trying to study the vertical distribution of the hydrogeochemical characteristics in the aquifer. Temperature, pH, electrical conductivity, dissolved oxygen and redox potential were determined in the field. A large number of parameters, physico-chemical properties, major and minor ions, trace elements and natural radionuclides (U-isotopes, Th-isotopes, Ra-isotopes and {sup 210}Po), were also analysed. In the southern zone, where aeolian sands crop out, water composition is of the sodium chloride type, and the lower U-isotopes concentrations have been obtained. As water circulates through the aquifer, bicarbonate and calcium concentrations increase slightly, and higher radionuclides concentrations were measured. Finally, we have demonstrated that {sup 234}U/{sup 238}U activity ratios can be used as markers of the type of groundwater and bedrock, as it has been the case for old waters with marine origin confined by a marsh in the south-east part of aquifer.

  3. Elevated blood active ghrelin and normal total ghrelin and obestatin concentrations in uterine leiomyoma.

    PubMed

    Markowska, A; Ziolkowska, A; Nowinka, K; Malendowicz, L K

    2009-01-01

    Ghrelin and obestatin originate from the same peptide precursor, preproghrelin. Both peptides are secreted in the blood. We investigated serum active and total ghrelin and obestatin concentrations in women with uterine myomatosis. Serum concentrations of active ghrelin in uterine leiomyoma were significantly higher compared to women in the control group (86 +/- 3 vs 56 +/- 9 pg/ml, respectively; p < 0.02). On the other hand, serum concentrations of total ghrelin and obestatin in uterine leiomyoma did not differ from those in the control group. In the control group the ratio of active to total ghrelin concentrations amounted to 0.62, while in women with uterine myoma it was 0.95, pointing to a prevalence of the active form of ghrelin in women with uterine myoma. Also the ratio of active ghrelin concentration to obestatin concentration was higher in the latter group while the ratio of total circulating ghrelin to obestatin concentrations was similar in the two groups. The data may suggest a role of active ghrelin in the development of a myoma. Moreover, the results indicate that increased blood ratios of active to total ghrelin and to obestatin concentrations are not specific for cachexia.

  4. Heavy metals in ryegrass species versus metal concentrations in atmospheric particulate measured in an industrial area of Southern Italy.

    PubMed

    Caggiano, Rosa; d'Emilio, Mariagrazia; Macchiato, Maria; Ragosta, Maria

    2005-03-01

    The aim of this paper is to evaluate the reliability of ryegrass species as active biomonitors by assessing atmospheric metal concentrations. We show a procedure for measuring atmospheric concentrations of heavy metals by means of biomonitors and present the data collected between July 1997 and October 2000 in the industrial area of Tito Scalo (Basilicata region, Southern Italy). In particular, we discuss the reproducibility of the biomonitoring measures, the influence of plant age and the correlation between metal concentrations in plants and in atmospheric particulate. Statistical analysis of measured data suggests us that in the investigated site, Cd, Cr and Ni are suitable to be monitored by means of ryegrass species. For the other metals, their emission patterns in atmosphere make it difficult to identify the correlation structure between plants and particulate, and as a result the interpretation of the biomonitoring data is complex. On the basis of the results, we believe that for correct application of active biomonitoring procedure, a careful preliminary analysis of the monitoring site and integration of the biomonitoring and chemical-physical observation is necessary.

  5. Sub-lethal concentrations of activated complement increase rat lymphocyte glutamine utilization and oxidation while lethal concentrations cause death by a mechanism involving ATP depletion.

    PubMed

    Bacurau, R F P; O'Toole, C E; Newsholme, P; Costa Rosa, L F B P

    2002-09-01

    Nucleated cells are more resistant to complement-mediated cell death than anucleated cells such as erythrocytes. There are few reports concerning the metabolic response of nucleated cells subjected to sub-lethal complement attack. It is possible that the rate of utilization of specific metabolic fuels by the cell is increased to enhance cell defence. We have measured the maximum activity of hexokinase, citrate synthase, glucose 6-phosphate dehydrogenase and glutaminase in rat mesenteric lymphocytes exposed to sub-lethal concentrations of activated complement (present in zymosan-activated serum, ZAS). These enzymes were carefully selected as they indicate changes of flux in glycolysis, TCA cycle, pentose phosphate pathway and glutaminolysis, respectively. The only enzyme activity to change on exposure of lymphocytes to ZAS was glutaminase, which was enhanced approximately by two-fold. Although rates of both glutamine and glucose utilization were enhanced by exposure to ZAS, only the rate of oxidation of glutamine was increased. Complement kills anucleated cells by simple osmotic lysis. However, it is likely that some nucleated cells will display characteristics of an ordered death mechanism and we have demonstrated that the concentration of lymphocyte ATP is dramatically decreased by activated complement. Nevertheless, the extent of cell death could be significantly reduced by the addition of inhibitors of the nuclear enzyme poly (ADP-ribose) polymerase (PARP). We conclude that glutamine metabolism is not only important for lymphocyte proliferative responses but is also important for cell defence from sub-lethal concentrations of activated complement. The rapid rate of complement-induced lymphocyte death reported here is suggested to be a consequence of over-activation of the nuclear enzyme PARP and ATP depletion.

  6. Emission Measure Distribution and Heating of Two Active Region Cores

    NASA Technical Reports Server (NTRS)

    Tripathi, Durgesh; Klimchuk, James A.; Mason, Helen E.

    2011-01-01

    Using data from the Extreme-ultraviolet Imaging Spectrometer aboard Hinode, we have studied the coronal plasma in the core of two active regions. Concentrating on the area between opposite polarity moss, we found emission measure distributions having an approximate power-law form EM/T(exp 2.4) from log T = 5.55 up to a peak at log T = 6.57. The observations are explained extremely well by a simple nanoflare model. However, in the absence of additional constraints, the observations could possibly also be explained by steady heating.

  7. Measurements of superoxide radical concentration and decay kinetics in the Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Paul Hansard, S.; Vermilyea, Andrew W.; Voelker, Bettina M.

    2010-09-01

    Numerous laboratory studies have shown that superoxide radical ( O2-) can have a profound influence on the redox speciation of dissolved metals, especially copper, manganese, and iron. We made direct measurements of O2- concentrations and decay kinetics in seawater samples collected from the Gulf of Alaska, using the recently developed method of methyl Cypridina luciferin analog (MCLA) chemiluminescence. Concentrations ranged from <0.02 to ˜0.6 nmol L -1, with higher concentrations typically observed in the upper 1-10 m of the water column. Pseudo-first-order decay rate coefficients ranged 0.002-0.02 s -1, and confirm that even in the open ocean, uncatalyzed dismutation is not the major fate of O2-. Calculated O2- production rates varied from <1 to ˜20 nmol L -1 h -1 and appear to be primarily of biological origin. These results represent the first direct measurements of O2- concentrations in a non-tropical region, and are broadly similar to recently published findings for the eastern equatorial Pacific, suggesting that biological production of O2- may be a common feature of the ocean's surface waters. Our study was also the first to examine the reproducibility of measurements of in situO2- concentrations and decay coefficients. Subsurface samples collected using GO-FLO bottles exhibited a systematic increase in concentration and decay rate coefficient with time, a possible artifact that should be considered in future studies. In contrast, measurements conducted using "fish" samples under low or no light conditions were found to be reliably reproducible, and demonstrated substantial rates of biological O2- production.

  8. Comparing air dispersion model predictions with measured concentrations of VOCs in urban communities.

    PubMed

    Pratt, Gregory C; Wu, Chun Yi; Bock, Don; Adgate, John L; Ramachandran, Gurumurthy; Stock, Thomas H; Morandi, Maria; Sexton, Ken

    2004-04-01

    Air concentrations of nine volatile organic compounds were measured over 48-h periods at 23 locations in three communities in the Minneapolis-St. Paul metropolitan area. Concentrations at the same times and locations were modeled using a standard regulatory air dispersion model (ISCST3). The goal of the study was to evaluate model performance by comparing predictions with measurements using linear regression and estimates of bias. The modeling, done with mobile and area source emissions resolved to the census tract level and characterized as model area sources, represents an improvement over large-scale airtoxics modeling analyses done to date. Despite the resolved spatial scale, the model did not fully capture the spatial resolution in concentrations in an area with a sharp gradient in emissions. In a census tract with a major highway at one end of the tract (i.e., uneven distribution of emissions within the tract), model predictions atthe opposite end of the tract overestimated measured concentrations. This shortcoming was seen for pollutants emitted mainly by mobile sources (benzene, ethylbenzene, toluene, and xylenes). We suggest that major highways would be better characterized as line sources. The model also failed to fully capture the temporal variability in concentrations, which was expected since the emissions inventory comprised annual average values. Based on our evaluation metrics, model performance was best for pollutants emitted mainly from mobile sources and poorest for pollutants emitted mainlyfrom area sources. Important sources of error appeared to be the source characterization (especially location) and emissions quantification. We expect that enhancements in the emissions inventory would give the greatest improvement in results. As anticipated for a Gaussian plume model, performance was dramatically better when compared to measurements that were not matched in space or time. Despite the limitations of our analysis, we found thatthe regulatory

  9. Qualification of concentrating mirror systems with the Hermes measurement system and the Helios simulation program

    NASA Astrophysics Data System (ADS)

    Kleih, Juergen

    1991-02-01

    An overview of methods (direct and indirect) for measuring highly concentrated solar radiation, which were used for qualifying solar power plants (from the parabolic mirror up to the tower plant) is provided. In particular, it goes into the Hermes measuring system which was used to measure two membrane mirrors (of diameter 17 and 7.5 m respectively). Measurements were made of maximum radiant flux densities of more than 2 MW/sq m for the 17 m mirror and of more than 9 MW/sq m for the 7.5 m mirror. The HELIOS simulation program was used to check the measurement results. The agreement between measurement and calculation was satisfactory over all.

  10. Investigation of the effects of summer melt on the calculation of sea ice concentration using active and passive microwave data

    NASA Technical Reports Server (NTRS)

    Cavalieri, Donald J.; Burns, Barbara A.; Onstott, Robert G.

    1990-01-01

    The effects of ice surface melt on microwave signatures and errors in the calculation of sea ice concentration are examined, using active and passive microwave data sets from the Marginal Ice Zone Experiment aircraft flights in the Fram Strait region. Consideration is given to the possibility of using SAR to supplement passive microwave data to unambiguously discriminate between open water areas and ponded floes. Coincident active multichannel microwave radiometer and SAR measurements of individual floes are used to describe the effects of surface melt on sea ice concentration calculations.

  11. Efficiency calibration and minimum detectable activity concentration of a real-time UAV airborne sensor system with two gamma spectrometers.

    PubMed

    Tang, Xiao-Bin; Meng, Jia; Wang, Peng; Cao, Ye; Huang, Xi; Wen, Liang-Sheng; Chen, Da

    2016-04-01

    A small-sized UAV (NH-UAV) airborne system with two gamma spectrometers (LaBr3 detector and HPGe detector) was developed to monitor activity concentration in serious nuclear accidents, such as the Fukushima nuclear accident. The efficiency calibration and determination of minimum detectable activity concentration (MDAC) of the specific system were studied by MC simulations at different flight altitudes, different horizontal distances from the detection position to the source term center and different source term sizes. Both air and ground radiation were considered in the models. The results obtained may provide instructive suggestions for in-situ radioactivity measurements of NH-UAV.

  12. Association of circulating active and total ghrelin concentrations with dry matter intake, growth, and carcass characteristics of finishing beef cattle.

    PubMed

    Foote, A P; Hales, K E; Lents, C A; Freetly, H C

    2014-12-01

    Ghrelin is a gut peptide that when acylated is thought to stimulate appetite. Circulating ghrelin concentrations could potentially be used as a predictor of DMI in cattle. The objective of this experiment was to determine the association of circulating ghrelin concentrations with DMI and other production traits. Steers and heifers were fed a finishing diet, and individual intake was recorded for 84 d. Blood samples were collected via jugular venipuncture following the DMI and ADG measurement period. Plasma active ghrelin and total ghrelin were quantified using commercial RIA. Active ghrelin was not correlated to DMI (P=0.36), but when DMI was modeled using a multivariate analysis including plasma metabolites and sex, active ghrelin was shown to be positively associated with DMI (P<0.01) and accounted for 6.2% of the variation accounted for by the regression model (R2=0.33). Total ghrelin was negatively correlated to DMI (P<0.01), but was not significant in a multivariate regression analysis (P=0.13). The ratio of active:total ghrelin was positively associated with DMI (P<0.01) and accounted for 10.2% of the variation in the model (R2=0.35). Active ghrelin was positively associated with ADG (P<0.05), while total ghrelin was negatively associated with ADG (P<0.01), and the ratio of active:total ghrelin was positively associated with ADG (P<0.01). Active ghrelin was not associated with G:F (P=0.88), but total ghrelin concentrations were negatively associated with G:F (P<0.01) and accounted for 10.24% of the variation (R2=0.25). Heifers consumed less feed than steers (P<0.01), tended to have greater active ghrelin concentrations (P=0.06), and had greater total ghrelin concentrations than steers (P=0.04). Total ghrelin concentrations were not different between sire breeds (P=0.80), but active ghrelin concentrations and the ratio of active:total ghrelin differed between breeds (P<0.01), indicating that genetics have an effect on the amount and form of circulating ghrelin

  13. High Concentrations of Organic Contaminants in Air from Ship Breaking Activities in Chittagong, Bangladesh.

    PubMed

    Nøst, Therese H; Halse, Anne K; Randall, Scott; Borgen, Anders R; Schlabach, Martin; Paul, Alak; Rahman, Atiqur; Breivik, Knut

    2015-10-06

    The beaches on the coast of Chittagong in Bangladesh are one of the most intense ship breaking areas in the world. The aim of the study was to measure the concentrations of organic contaminants in the air in the city of Chittagong, including the surrounding ship breaking areas using passive air samplers (N = 25). The compounds detected in the highest amounts were the polycyclic aromatic hydrocarbons (PAHs) and short-chain chlorinated paraffins (SCCPs), whereas dichlorodiphenyltrichloroethanes (DDTs), hexachlorobenzene (HCB), and polychlorinated biphenyls (PCBs) were several orders of magnitude lower in comparison. PCBs, PAHs, and HCB were highest at sites near the ship breaking activities, whereas DDTs and SCCPs were higher in the urban areas. Ship breaking activities likely act as atmospheric emission sources of PCBs, PAHs, and HCB, thus adding to the international emphasis on responsible recycling of ships. Concentrations of PAHs, PCBs, DDTs, HCB, and SCCPs in ambient air in Chittagong are high in comparison to those found in similar studies performed in other parts of Asia. Estimated toxic equivalent quotients indicate elevated human health risks caused by inhalation of PAHs at most sites.

  14. Factors affecting 210Po and 210Pb activity concentrations in mussels and implications for environmental bio-monitoring programmes.

    PubMed

    Carvalho, Fernando P; Oliveira, João M; Alberto, G

    2011-02-01

    The activity of (210)Po and (210)Pb was determined in mussels of the same size (3.5-4.0 cm shell length) sampled monthly over a 17-month period at the Atlantic coast of Portugal. Average radionuclide concentration values in mussels were 759±277 Bq kg(-1) for (210)Po (range 460-1470 Bq kg(-1) dry weight), and 45±19 Bq kg(-1) for (210)Pb (range 23-96 Bq kg(-1) dry weight). Environmental parameters and mussel biometric parameters were monitored during the same period. Although there was no seasonal variation of radionuclide concentrations in sea water during the study period, the concentration of radionuclide activity in mussels varied seasonally displaying peaks of high concentrations in winter and low concentrations in summer. Analysis of radionuclide data in relation to the physiological Condition Index of mussels revealed that (210)Po and (210)Pb activities in the mussel (average activity per individual) remained nearly constant during the investigation period, while mussel body weight fluctuated due to fat storage/expenditure in the soft tissues. Similar variation of radionuclide concentrations was observed in mussels transplanted from the sea coast into the Tejo Estuary. However, under estuarine environmental conditions and with higher food availability throughout the year, transplanted mussel Condition Index was higher than in coastal mussels and average radionuclide concentrations were 210±75 Bq kg(-1) (dry weight) for (210)Po and 10±4 Bq kg(-1) (dry weight) for (210)Pb, therefore lower than in coastal mussels with similar shell length. It is concluded that the apparent seasonal fluctuation and inter-site difference of radionuclide concentrations were mostly caused by mussel body weight fluctuation and not by radionuclide body burden fluctuation. This interpretation can be extended to the apparent seasonal fluctuation in concentrations of lipophilic and lipophobic contaminants in mussels, and provides an explanation for occasional high concentrations of

  15. Thermodynamic correction of particle concentrations measured by underwing probes on fast flying aircraft

    NASA Astrophysics Data System (ADS)

    Weigel, R.; Spichtinger, P.; Mahnke, C.; Klingebiel, M.; Afchine, A.; Petzold, A.; Krämer, M.; Costa, A.; Molleker, S.; Jurkat, T.; Minikin, A.; Borrmann, S.

    2015-12-01

    Particle concentration measurements with underwing probes on aircraft are impacted by air compression upstream of the instrument body as a function of flight velocity. In particular for fast-flying aircraft the necessity arises to account for compression of the air sample volume. Hence, a correction procedure is needed to invert measured particle number concentrations to ambient conditions that is commonly applicable for different instruments to gain comparable results. In the compression region where the detection of particles occurs (i.e. under factual measurement conditions), pressure and temperature of the air sample are increased compared to ambient (undisturbed) conditions in certain distance away from the aircraft. Conventional procedures for scaling the measured number densities to ambient conditions presume that the particle penetration speed through the instruments' detection area equals the aircraft speed (True Air Speed, TAS). However, particle imaging instruments equipped with pitot-tubes measuring the Probe Air Speed (PAS) of each underwing probe reveal PAS values systematically below those of the TAS. We conclude that the deviation between PAS and TAS is mainly caused by the compression of the probed air sample. From measurements during two missions in 2014 with the German Gulfstream G-550 (HALO - High Altitude LOng range) research aircraft we develop a procedure to correct the measured particle concentration to ambient conditions using a thermodynamic approach. With the provided equation the corresponding concentration correction factor ξ is applicable to the high frequency measurements of each underwing probe which is equipped with its own air speed sensor (e.g. a pitot-tube). ξ-values of 1 to 0.85 are calculated for air speeds (i.e. TAS) between 60 and 260 m s-1. From HALO data it is found that ξ does not significantly vary between the different deployed instruments. Thus, for the current HALO underwing probe configuration a parameterisation of

  16. Novel multi wavelength sensor concept to measure carboxy- and methemoglobin concentration non-invasively

    NASA Astrophysics Data System (ADS)

    Timm, Ulrich; Kraitl, Jens; Gewiss, Helge; Kamysek, Svend; Brock, Beate; Ewald, Hartmut

    2016-03-01

    This paper will describe a novel multi-wavelength photometric method to measure carboxyhemoglobin (COHb) and methemoglobin (MetHb) concentration non-invasively. COHb and MetHb are so called dysfunctional hemoglobin derivatives and they are not able to carry oxygen. Standard pulse oximeters are only able to measure two derivatives, namely oxyhemoglobin (O2Hb) and deoxyhemoglobin (HHb) but the presence of other derivatives in the blood may distort the readings. The paper presents a new approach of a noninvasive sensor system to measure COHb and MetHb and the validation in vivo and in vitro.

  17. AMS measurement of 10Be concentrations in marine sediments from Chile Trench at the TANDAR laboratory

    NASA Astrophysics Data System (ADS)

    Rodrigues, D.; Arazi, A.; Fernández Niello, J. O.; Martí, G. V.; Negri, A. E.; Abriola, D.; Capurro, O. A.; Cardona, M. A.; de Barbará, E.; Gollan, F.; Hojman, D.; Pacheco, A. J.; Samsolo, N.; Togneri, M.; Villanueva, D.

    2017-03-01

    The 10Be/9Be ratios in marine sediments samples from the Southern Chile Trench have been measured using accelerator mass spectrometry (AMS). The samples were measured at the TANDAR accelerator, where the discrimination of the 10Be radionuclides was achieved by means of a passive absorber in front of an ionization chamber. This setup along with the high voltage available, provided a complete suppression of the 10B isobar interference. The obtained values for the 10Be concentrations, of the order of 109 atoms/g, are the first 10Be measurements from the Southern Chile Trench and offer an excellent tracer to quantitatively study the recycling of sediments in Andean magmas.

  18. Photoacoustic spectrometer for accurate, continuous measurements of atmospheric carbon dioxide concentration

    NASA Astrophysics Data System (ADS)

    Reed, Zachary D.; Sperling, Brent; van Zee, Roger D.; Whetstone, James R.; Gillis, Keith A.; Hodges, Joseph T.

    2014-06-01

    We have developed a portable photoacoustic spectrometer that offers routine, precise and accurate measurements of the molar concentration of atmospheric carbon. The temperature-controlled spectrometer continuously samples dried atmospheric air and employs an intensity-modulated distributed feedback laser and fiber amplifier operating near 1.57 µm. For measurements of carbon dioxide in air, we demonstrate a measurement precision (60-s averaging time) of 0.15 µmol mol-1 and achieve a standard uncertainty of 0.8 µmol mol-1 by calibrating the analyzer response in terms of certified gas mixtures. We also investigate how water vapor affects the photoacoustic signal by promoting collisional relaxation of the carbon dioxide.

  19. Validation of LIRIC aerosol concentration retrievals using airborne measurements during a biomass burning episode over Athens

    NASA Astrophysics Data System (ADS)

    Kokkalis, Panagiotis; Amiridis, Vassilis; Allan, James D.; Papayannis, Alexandros; Solomos, Stavros; Binietoglou, Ioannis; Bougiatioti, Aikaterini; Tsekeri, Alexandra; Nenes, Athanasios; Rosenberg, Philip D.; Marenco, Franco; Marinou, Eleni; Vasilescu, Jeni; Nicolae, Doina; Coe, Hugh; Bacak, Asan; Chaikovsky, Anatoli

    2017-01-01

    In this paper we validate the Lidar-Radiometer Inversion Code (LIRIC) retrievals of the aerosol concentration in the fine mode, using the airborne aerosol chemical composition dataset obtained over the Greater Athens Area (GAA) in Greece, during the ACEMED campaign. The study focuses on the 2nd of September 2011, when a long-range transported smoke layer was observed in the free troposphere over Greece, in the height range from 2 to 3 km. CIMEL sun-photometric measurements revealed high AOD ( 0.4 at 532 nm) and Ångström exponent values ( 1.7 at 440/870 nm), in agreement with coincident ground-based lidar observations. Airborne chemical composition measurements performed over the GAA, revealed increased CO volume concentration ( 110 ppbv), with 57% sulphate dominance in the PM1 fraction. For this case, we compare LIRIC retrievals of the aerosol concentration in the fine mode with the airborne Aerosol Mass Spectrometer (AMS) and Passive Cavity Aerosol Spectrometer Probe (PCASP) measurements. Our analysis shows that the remote sensing retrievals are in a good agreement with the measured airborne in-situ data from 2 to 4 km. The discrepancies observed between LIRIC and airborne measurements at the lower troposphere (below 2 km), could be explained by the spatial and temporal variability of the aerosol load within the area where the airborne data were averaged along with the different time windows of the retrievals.

  20. Hydrogen Concentration and Strain Fields Near Fatigue Cracks in Pipeline Steel Measured Via Neutron Imaging

    NASA Astrophysics Data System (ADS)

    Connolly, Matthew; Slifka, Andrew; Drexler, Elizabeth; Hydrogen Pipeline Safety Team

    Hydrogen (H2) is desirable for energy storage as it is cleaner burning and can store a larger amount of energy than an equal mass of gasoline. One problem in the development of a hydrogen economy is to find or develop materials that ensure the safe, reliable, and cost-effective flow of energy from the source to the user. It is expected steels will be needed to serve this function. However, the existing network of natural gas pipeline, for example, is constructed of ferrous materials which are susceptible to embrittlement and subsequent increased fatigue crack growth rates after exposure to hydrogen. In order to improve current modeling efforts, experimental determination of hydrogen concentration, hydrogen diffusion rates, and strain fields are required to inform and validate the model. Here we report neutron imaging measurements of the hydrogen concentration near a fatigue crack and the corresponding strain field, measured via neutron transmission Bragg edge spectroscopy. Nist Materials Measurement Laboratory, Applied Chemicals and Materials Division.

  1. An intercomparison of measurement systems for vapor and particulate phase concentrations of formic and acetic acids

    NASA Technical Reports Server (NTRS)

    Keene, William C.; Talbot, Robert W.; Andreae, Meinrat O.; Beecher, Kristene; Berresheim, Harold

    1989-01-01

    During June 1986, eight systems for measuring vapor phase and four for measuring particulate phase concentrations of formic acid (HCOOH) and acetic acid (CH3COOH) were intercompared in central Virginia. HCOOH and CH3COOH vapors were sampled by condensate, mist, Chromosorb 103 GC resin, NaOH-coated annular denuders, NaOH-impregnated quartz filters, K2CO3 and NaCO3-impregnated cellulose filters, and Nylasorb membranes. Atmospheric aerosol was collected on Teflon and Nuclepore filters using both hi-vol and lo-vol systems to measure particulate phase concentrations. Performances of the mist chamber and K2CO3-impregnated filter techniques were evaluated using zero air and ambient air spiked with HCOOH(g) and CH3COOH(g), and formaldehyde from permeation sources. The advantages and drawbacks of these methods are reported and discussed.

  2. An evaluation of electrochemical concentration Cell (ECC) sonde measurements of atmospheric ozone

    NASA Technical Reports Server (NTRS)

    Geraci, M. J.; Luers, J. K.

    1978-01-01

    Using Dobson spectrophotometer measurements of total ozone as a comparison, an analysis of the electrochemical concentration cell (ECC) ozonesonde's measurement accuracy is presented. Days of conjunctive ECC-Dobson observations (from 1970 to 1976 at Wallops Flight Center) provide a set of 123 pairs of total ozone values. Sample set statistics are generated with means and standard deviations of total ozone values and differences being noted. An in-depth study of factors such as time assumptions used in calculating residual ozone, and other possible sources of errors are examined. A study of ECC ozone profiles is also presented with an evaluation of sonde measurement of seasonal trends, altitude or peak ozone concentration, and other important ozone parameters. Short-period changes in total ozone using Dobson data during the observational period are also described.

  3. Inverse estimation of radon flux distribution for East Asia using measured atmospheric radon concentration.

    PubMed

    Hirao, S; Hayashi, R; Moriizumi, J; Yamazawa, H; Tohjima, Y; Mukai, H

    2015-11-01

    In this study, the (222)Rn flux density distribution at surface was estimated in East Asia with the Bayesian synthesis inversion using measurement data and a long-range atmospheric (222)Rn transport model. Surface atmospheric (222)Rn concentrations measured at Hateruma Island in January 2008 were used. The estimated (222)Rn flux densities were generally higher than the prior ones. The area-weighted mean (222)Rn flux density for East Asia in January 2008 was estimated to be 44.0 mBq m(-2) s(-1). The use of the estimated (222)Rn flux density improved the discrepancy of the model-calculated concentrations with the measurements at Hateruma Island.

  4. Soil gas radon concentrations measurements in terms of great soil groups.

    PubMed

    Içhedef, Mutlu; Saç, Müslim Murat; Camgöz, Berkay; Bolca, Mustafa; Harmanşah, Çoşkun

    2013-12-01

    In this study, soil gas radon concentrations were investigated according to locations, horizontal soil layers and great soil groups around Tuzla Fault, Seferihisar-İzmir. Great soil groups are a category that described the horizontal soil layers under soil classification system and distributions of radon concentration in the great soil groups are firstly determined by the present study. According to the obtained results, it has been showed that the radon concentrations in the Koluvial soil group are higher than the other soil groups in the region. Also significant differences on location in same great soil group were determined. The radon concentrations in the Koluvial soil groups were measured with respect to soil layers structures (A, B, C1, and C2). It has been observed that the values increase with depth of soil (C2>C1>B>A). The main reason may be due to the meteorological factors that have limited effect on radon escape from deep layers. Although fault lines pass thought the study area radon concentrations were varied location to location, layer to layer and great group to great group. The study shows that a detailed location description should be performed before soil radon measurements for earthquake predictions.

  5. Equilibration correction of temporal measurements for sudden 222Rn concentration changes

    NASA Astrophysics Data System (ADS)

    Tan, Y.; Tokonami, S.; Liu, H.; Kearfott, K. J.

    2016-02-01

    222Rn and 220Rn can be used as tracers of groundwater or submarine springs, and 222Rn in water also could indicate indoor radon problems in some regions. The half-life of 222Rn is long enough that its concentration may remain significant during transit over relatively long distances, while that of 220Rn is not. Prior research revealed that it took about 15 min for the radon to achieve gas equilibrium at a water flow rate of 17.5 L min-1, which is approximately equivalent to the time required for the 222Rn-218Po pair to approach radioactive equilibrium and is limiting in terms of measurements of sudden radon concentration change. In this work, an algorithm is applied to improve the continuous tracing of radon concentrations in the field environment. Results of a laboratory experiment analyzed applying the analysis method illustrated its ability to allow immediate identification of sharp concentration increases. In this paper we find that a precipitous drop in radon concentrations lead to improper corrected values as the result of measurement uncertainties prior to the drop, and a method using zero instead negative values for reducing the uncertainties under such condition also is proposed.

  6. Measurement of CO2 concentration at high-temperature based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Jiuying; Li, Chuanrong; Zhou, Mei; Liu, Jianguo; Kan, Ruifeng; Xu, Zhenyu

    2017-01-01

    A diode laser sensor based on absorption spectroscopy has been developed for sensitive measurement of CO2 concentration at high-temperature. Measurement of CO2 can provide information about the extent of combustion and mix in a combustor that may be used to improve fuel efficiency. Most methods of in-situ combustion measurement of CO2 use the spectroscopic parameters taken from database like HITEMP which is mainly derived from the theoretical calculation and remains a high degree of uncertainty in the spectroscopic parameters. A fiber-coupled diode laser system for measurement of CO2 in combustion environment by use of the high-temperature spectroscopic parameters which are obtained by experiment was proposed. Survey spectra of the R(50) line of CO2 at 5007.787 cm-1 were recorded at high-temperature and various pressures to determine line intensities. The line intensities form the theoretical foundation for future applications of this diode laser sensor system. Survey spectra of four test gas mixtures containing 5.01%CO2, 10.01%CO2, 20.08%CO2, and 49.82%CO2 were measured to verify the accuracy of the diode laser sensor system. The measured results indicate that this sensor can measure CO2 concentration with 2% uncertainty in high temperatures.

  7. Measurement and Comparison of Organic Compound Concentrations in Plasma, Whole Blood, and Dried Blood Spot Samples.

    PubMed

    Batterman, Stuart A; Chernyak, Sergey; Su, Feng-Chiao

    2016-01-01

    The preferred sampling medium for measuring human exposures of persistent organic compounds (POPs) is blood, and relevant sample types include whole blood, plasma, and dried blood spots (DBS). Because information regarding the performance and comparability of measurements across these sample types is limited, it is difficult to compare across studies. This study evaluates the performance of POP measurements in plasma, whole blood and DBS, and presents the distribution coefficients needed to convert concentrations among the three sample types. Blood samples were collected from adult volunteers, along with demographic and smoking information, and analyzed by GC/MS for organochlorine pesticides (OCPs), chlorinated hydrocarbons (CHCs), polychlorinated biphenyls (PCBs), and brominated diphenyl ethers (PBDEs). Regression models were used to evaluate the relationships between the sample types and possible effects of personal covariates. Distribution coefficients also were calculated using physically-based models. Across all compounds, concentrations in plasma were consistently the highest; concentrations in whole blood and DBS samples were comparable. Distribution coefficients for plasma to whole blood concentrations ranged from 1.74 to 2.26 for pesticides/CHCs, averaged 1.69 ± 0.06 for the PCBs, and averaged 1.65 ± 0.03 for the PBDEs. Regression models closely fit most chemicals (R (2) > 0.80), and whole blood and DBS samples generally showed very good agreement. Distribution coefficients estimated using biologically-based models were near one and did not explain the observed distribution. Among the study population, median concentrations of several pesticides/CHCs and PBDEs exceeded levels reported in the 2007-2008 National Health and Nutrition Examination Survey, while levels of other OCPs and PBDEs were comparable or lower. Race and smoking status appeared to slightly affect plasma/blood concentration ratios for several POPs. The experimentally

  8. Fluorescence (TALIF) measurement of atomic hydrogen concentration in a coplanar surface dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Mrkvičková, M.; Ráheľ, J.; Dvořák, P.; Trunec, D.; Morávek, T.

    2016-10-01

    Spatially and temporally resolved measurements of atomic hydrogen concentration above the dielectric of coplanar barrier discharge are presented for atmospheric pressure in 2.2% H2/Ar. The measurements were carried out in the afterglow phase by means of two-photon absorption laser-induced fluorescence (TALIF). The difficulties of employing the TALIF technique in close proximity to the dielectric surface wall were successfully addressed by taking measurements on a suitable convexly curved dielectric barrier, and by proper mathematical treatment of parasitic signals from laser-surface interactions. It was found that the maximum atomic hydrogen concentration is situated closest to the dielectric wall from which it gradually decays. The maximum absolute concentration was more than 1022 m-3. In the afterglow phase, the concentration of atomic hydrogen above the dielectric surface stays constant for a considerable time (10 μs-1 ms), with longer times for areas situated farther from the dielectric surface. The existence of such a temporal plateau was explained by the presented 1D model: the recombination losses of atomic hydrogen farther from the dielectric surface are compensated by the diffusion of atomic hydrogen from regions close to the dielectric surface. The fact that a temporal plateau exists even closest to the dielectric surface suggests that the dielectric surface acts as a source of atomic hydrogen in the afterglow phase.

  9. Effects of Spectral Error in Efficiency Measurements of GaInAs-Based Concentrator Solar Cells

    SciTech Connect

    Osterwald, C. R.; Wanlass, M. W.; Moriarty, T.; Steiner, M. A.; Emery, K. A.

    2014-03-01

    This technical report documents a particular error in efficiency measurements of triple-absorber concentrator solar cells caused by incorrect spectral irradiance -- specifically, one that occurs when the irradiance from unfiltered, pulsed xenon solar simulators into the GaInAs bottom subcell is too high. For cells designed so that the light-generated photocurrents in the three subcells are nearly equal, this condition can cause a large increase in the measured fill factor, which, in turn, causes a significant artificial increase in the efficiency. The error is readily apparent when the data under concentration are compared to measurements with correctly balanced photocurrents, and manifests itself as discontinuities in plots of fill factor and efficiency versus concentration ratio. In this work, we simulate the magnitudes and effects of this error with a device-level model of two concentrator cell designs, and demonstrate how a new Spectrolab, Inc., Model 460 Tunable-High Intensity Pulsed Solar Simulator (T-HIPSS) can mitigate the error.

  10. Are typical human serum BPA concentrations measurable and sufficient to be estrogenic in the general population?

    PubMed

    Teeguarden, Justin; Hanson-Drury, Sesha; Fisher, Jeffrey W; Doerge, Daniel R

    2013-12-01

    Mammalian estrogen receptors modulate many physiological processes. Chemicals with structural features similar to estrogens can interact with estrogen receptors to produce biological effects similar to those caused by endogenous estrogens in the body. Bisphenol A (BPA) is a structural analogue of estrogen that binds to estrogen receptors. Exposure to BPA in humans is virtually ubiquitous in industrialized societies, but BPA is rapidly detoxified by metabolism and does not accumulate in the body. Whether or not serum concentrations of BPA in humans are sufficiently high to disrupt normal estrogen-related biology is the subject of intense political and scientific debate. Here we show a convergence of robust methods for measuring or calculating serum concentrations of BPA in humans from 93 published studies of more than 30,000 individuals in 19 countries across all life stages. Typical serum BPA concentrations are orders of magnitude lower than levels measurable by modern analytical methods and below concentrations required to occupy more than 0.0009% of Type II Estrogen Binding Sites, GPR30, ERα or ERβ receptors. Occupancies would be higher, but ≤0.04%, for the highest affinity receptor, ERRγ. Our results show limited or no potential for estrogenicity in humans, and question reports of measurable BPA in human serum.

  11. Measurement of breath acetone concentrations by selected ion flow tube mass spectrometry in type 2 diabetes.

    PubMed

    Storer, Malina; Dummer, Jack; Lunt, Helen; Scotter, Jenny; McCartin, Fiona; Cook, Julie; Swanney, Maureen; Kendall, Deborah; Logan, Florence; Epton, Michael

    2011-12-01

    Selected ion flow tube-mass spectrometry (SIFT-MS) can measure volatile compounds in breath on-line in real time and has the potential to provide accurate breath tests for a number of inflammatory, infectious and metabolic diseases, including diabetes. Breath concentrations of acetone in type 2 diabetic subjects undertaking a long-term dietary modification programme were studied. Acetone concentrations in the breath of 38 subjects with type 2 diabetes were determined by SIFT-MS. Anthropomorphic measurements, dietary intake and medication use were recorded. Blood was analysed for beta hydroxybutyrate (a ketone body), HbA1c (glycated haemoglobin) and glucose using point-of-care capillary (fingerprick) testing. All subjects were able to undertake breath manoeuvres suitable for analysis. Breath acetone varied between 160 and 862 ppb (median 337 ppb) and was significantly higher in men (median 480 ppb versus 296 ppb, p = 0.01). In this cross-sectional study, no association was observed between breath acetone and either dietary macronutrients or point-of-care capillary blood tests. Breath analysis by SIFT-MS offers a rapid, reproducible and easily performed measurement of acetone concentration in ambulatory patients with type 2 diabetes. The high inter-individual variability in breath acetone concentration may limit its usefulness in cross-sectional studies. Breath acetone may nevertheless be useful for monitoring metabolic changes in longitudinal metabolic studies, in a variety of clinical and research settings.

  12. Effect of the active-ion concentration on the lasing dynamics of holmium fibre lasers

    SciTech Connect

    Kurkov, Andrei S; Sholokhov, E M; Marakulin, A V; Minashina, L A

    2010-12-09

    The lasing dynamics of fibre lasers with a core based on quartz glass doped with holmium ions to concentrations in the range of 10{sup 19}-10{sup 20} cm{sup -3} is investigated. It is shown that fibre lasers with a high concentration of active holmium ions generate pulses, but a decrease in the holmium concentration changes the lasing from pulsed to cw regime. At the same time, a decrease in the active-ion concentration and the corresponding increase in the fibre length in the cavity reduce the lasing efficiency. (lasers)

  13. Effects of eccentric and concentric resistance training on skeletal muscle substrates, enzyme activities and capillary supply.

    PubMed

    Tesch, P A; Thorsson, A; Colliander, E B

    1990-12-01

    This study compared the skeletal muscle metabolic adaptations in response to combined eccentric and concentric or concentric resistance training regimens. Twenty-six physically active males were assigned to either the combined eccentric and concentric group (n = 10), the concentric group (n = 10) or the control group (n = 6). The combined eccentric and concentric and the concentric groups performed four to five sets of maximal, voluntary bilateral quadriceps muscle actions at 1.05 rad s-1 using a speed-controlled dynamometer three times per week for 12 weeks. The concentric group performed 12 concentric actions per set, whereas the combined eccentric and concentric group performed six coupled eccentric and concentric actions per set. Bilateral percutaneous muscle biopsies were obtained from m. vastus lateralis at rest pre- and post-training. Tissue samples were analysed for contents of adenosine triphosphate, creatine phosphate and creatine and for enzyme activities of citrate synthase, lactate dehydrogenase, myokinase, phosphofructokinase, hexokinase and Mg2(+)-ATPase using fluorometric techniques. Histochemical staining procedures were employed to determine capillary supply. The overall increase (P less than 0.05) in muscle strength was greater (P less than 0.05) for the combined eccentric and concentric group than for the concentric group. Enzyme or substrate contents and capillary supply were unaltered after either type of training. It is suggested that substantial increases in muscle strength may occur in response to resistance training without enhancing or compromising metabolic function of skeletal muscle.

  14. Pre- and Postnatal Polychlorinated Biphenyl Concentrations and Longitudinal Measures of Thymus Volume in Infants

    PubMed Central

    Sonneborn, Dean; Palkovicova, Lubica; Kocan, Anton; Drobna, Beata; Trnovec, Tomas; Hertz-Picciotto, Irva

    2012-01-01

    Background: Previously, we reported an association between higher maternal polychlorinated biphenyl (PCB) concentrations and smaller thymus volume in newborns in a birth cohort residing in eastern Slovakia. Objective: In the present report we address whether thymus volume at later ages is influenced by prenatal and early postnatal PCB exposure. Methods: At the time of delivery, 1,134 mother–infant pairs were enrolled. Maternal and 6- and 16-month infant blood samples were collected and analyzed for 15 PCB congeners. Thymus volume was measured in infants shortly after birth and at ages 6 and 16 months using ultrasonography. Results: Higher maternal PCB concentration was associated with reduced thymus volume at birth [a 0.21 SD reduction in thymus volume for an increase in total maternal PCB concentration from the 10th to the 90th percentile; 95% confidence interval (CI): –0.37, –0.05], whereas maternal PCB concentration was not predictive of 6- and 16-month thymus volume. Six-month infant PCB concentration was associated with a 0.40 SD decrease in 6-month thymus volume (95% CI: –0.76, –0.04). There was also some suggestion that thymus volume at 16 months was positively associated with concurrent infant PCB concentration. Conclusions: The potential adverse effects of in utero PCB exposure on thymic development may extend beyond the neonatal period. Results from this highly exposed cohort provide suggestive evidence that postnatal PCB concentrations may be influential, but a smaller set of 6-month PCB measurements limited statistical power at that time point. Implications regarding impaired immunologic maturation or long-term clinical implications remain to be determined. PMID:22275729

  15. Multipoint measurements of substorm timing and activations

    NASA Astrophysics Data System (ADS)

    Zuyin, Pu; Cao, X.; Zhang, H.; Ma, Z. W.; Mishin, M. V.; Kubyshkina, M. V.; Pulkkinen, T.; Reeves, G. D.; Escoubet, C. Philippe

    Substorm timing and activations are studied based on Double Star TC1, Cluster, Polar, IM- AGE, LANL satellites and ground-based Pi2 measurements. Substorm expansion onset is found to begin in the near-Earth tail around X= -(8-9) Re, then progresses both earthward and tailward. About 8-10 minutes before aurora breakup, Cluster measured an earthward flow associated with plasma sheet thinning. A couple of minutes after the breakup, TC1 first detects plasma sheet expansion and then LANL satellites near the midnight measure energetic electron injections, or vise versus. About 20 minutes (or more) later, Cluster and Polar observe plasma sheet expansion successively. Of interest are also the following findings. Auroral bulge is found to quickly broaden and expand poleward when the open magnetic flux of the polar cap is rapidly dissipated, indicating the role of tail lobe reconnection of open field lines in the development of the expansion phase. In addition, poleward expansion of auroral bulges and tailward progression of substorm expansion are shown to be closely related. An initial dipolarization in the near-Earth eventually evolve to enable disruption of the cross-tail current in a wide range of the magnetotail, until the open magnetic flux of the polar cap reaches its minimum. Acknowledgements This work is supported by the NSFC Grants 40390152 and 40536030 and Chinese Key Research Project Grant 2006CB806300. The authors acknowledge all PIs of instruments onboard Double Star and Cluster spacecraft. We also appreciate the useful discussions with R. L. McPherron and A. T. Y. Lui.

  16. Method for measuring the self-assembly of alkanethiols on gold at femtomolar concentrations.

    PubMed

    Rijal, Kishan; Mutharasan, Raj

    2007-06-05

    We describe a cantilever-based method for measuring the self-assembly of alkanethiols on a gold surface in a flow system that permits easy step changes in concentration and acquire a continuous in situ measure of the resulting chemisorption through the change in resonance frequency. A gold-coated (2.2 mm2), piezoelectric-excited, millimeter-sized cantilever (PEMC) sensor was exposed to 1-hexadecanethiol (HDT) in ethanol at concentrations ranging from 1 fM to 1 mM, sequentially and separately. A high-order flexural mode at approximately 850 kHz was monitored during the self-assembly. The resonance frequency decreases as a result of increased mass as chemisorption occurs on the surface. We show for the first time that the chemisorption of HDT at 1 fM is readily measurable and gave a response of 220 +/- 13 Hz (n = 4). At higher concentrations (10 and 100 fM; 1, 10, and 100 pM; 1, 10, and 100 nM; 1 microM; and 1 mM), the responses were proportionately, but nonlinearly, higher. At high concentrations (1 mM), the responses to C4, C8, C11, C16, and C18 alkanethiols were linearly proportional and were complete in approximately 25 min. We report for the first time that, once the Au surface is equilibrated at 1 pM, further chemisorption at a lower HDT concentration does not take place, even though over 99% of surface adsorption sites are available. At 1 fM, the overall chemisorption rate did not increase with a 2-fold increase in the HDT flow rate, suggesting that chemisorption at 1 fM is not transport-limited. The measured overall chemisorption rate constant at 1 fM was more rapid than 0.1 min-1.

  17. Comparison of mercury concentrations measured at several sites in the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Slemr, F.; Angot, H.; Dommergue, A.; Magand, O.; Barret, M.; Weigelt, A.; Ebinghaus, R.; Brunke, E.-G.; Pfaffhuber, K.; Edwards, G.; Howard, D.; Powell, J.; Keywood, M.; Wang, F.

    2014-12-01

    Our knowledge of the distribution of mercury concentrations in air of the Southern Hemisphere was until recently based mostly on intermittent measurements made during ship cruises. In the last few years continuous mercury monitoring has commenced at several sites in the Southern Hemisphere providing new and more refined information. In this paper we compare mercury measurements at several sites in the Southern Hemisphere made over a period of at least one year at each location. Averages of monthly medians show similar although small seasonal variations at both Cape Point and Amsterdam Island. A pronounced seasonal variation at Troll Research Station in Antarctica is due to frequent mercury depletion events in the austral spring. Due to large scatter and large standard deviations of monthly average median mercury concentrations at Cape Grim no systematic seasonal variation could be found there. Nevertheless, the annual average mercury concentrations at all sites during the 2007-2013 period varied only between 0.85 and 1.05 ng m-3. Part of this variability is likely due to systematic measurement uncertainties which we propose can be further reduced by improved calibration procedures. We conclude that mercury is much more uniformly distributed throughout the Southern Hemisphere than the distributions suggested by measurements made onboard ships. This finding implies (a) that trends observed at one or a few sites in the Southern Hemisphere are likely to be representative for the whole hemisphere, and (b) that smaller trends can be detected in shorter time periods. We also report a change of the trend sign at Cape Point from decreasing mercury concentrations in 1996-2004 to increasing concentrations since 2007.

  18. In situ measurement of osmium concentrations in iron meteorites by resonance ionization of sputtered atoms

    NASA Astrophysics Data System (ADS)

    Blum, J.; Pellin, M. J.; Calaway, W. F.; Young, C. E.; Gruen, D. M.; Hutcheon, I. D.; Wasserburg, G. J.

    1990-03-01

    Resonance ionization of sputtered atoms followed by time-of-flight mass spectrometry was used for in situ quantitative measurement of Os with a spatial resolution of about 70 microns. A linear correlation between Os(+) signal intensity and the known Os concentration was observed over a range of nearly 10,000 in Os concentration with an accuracy of about + or - 10 percent, a minimum detection limit of 7 parts per billion atomic, and a useful yield of 1 percent. Resonance ionization of sputtered atoms samples the dominant neutral-fraction of sputtered atoms and utilizes multiphoton resonance ionization to achieve high sensitivity and to eliminate atomic and molecular interferences.

  19. A new method for measuring concentration of a fluorescent tracer in bubbly gas-liquid flows

    NASA Astrophysics Data System (ADS)

    Moghaddas, J. S.; Trägårdh, C.; Kovacs, T.; Östergren, K.

    2002-06-01

    A new experimental model, the two-tracer method (TTM), based on the planar laser-induced fluorescence technique (PLIF), is presented for the measurement of the local concentration of a fluorescent tracer in the liquid phase of a bubbly two-phase system. Light scattering and shading effects due to the bubbles were compensated for using the new model. The TTM results were found to give more accurate predictions of the local concentration than the normal PLIF method in a bubbly two-phase system.

  20. Specific wavelength colorimeter. [for measuring given solute concentration in test sample

    NASA Technical Reports Server (NTRS)

    Brawner, C. C.; Mcdavid, L. S.; Walsh, J. M. (Inventor)

    1974-01-01

    A self contained, specific wavelength, single beam colorimeter is described for direct spectrophotometric measurement of the concentration of a given solute in a test sample. An electrical circuit employing a photoconductive cell converts the optical output into a linear, directly readable meter output. The colorimeter is simple to operate and is adapted for use in zero gravity conditions. In a specific application, the colorimeter is designed to analyze the concentration of iodine in potable water carried aboard a space vehicle such as the 4B stage of Skylab.

  1. Effects of T-82, a new quinoline derivative, on cholinesterase activity and extracellular acetylcholine concentration in rat brain.

    PubMed

    Isoma, Kazuo; Ishikawa, Masago; Ohta, Megumi; Ogawa, Yoichiro; Hasegawa, Hiroshi; Kohda, Tadayuki; Kamei, Junzo

    2002-02-01

    The effects of T-82 (2-[2-(1-benzylpiperidin-4-yl)ethyl]-2,3-dihydro-9-methoxy-1H-pyrrolo [3,4-b]quinolin-1-one hemifumarate), a new quinoline derivative, on acetylcholinesterase (AChE) activity and acetylcholine (ACh) release were compared with those of the well-known cholinesterase inhibitors tacrine and E2020. T-82, tacrine and E2020 all concentration-dependently inhibited AChE in rat brain homogenate (IC50 = 109.4, 84.2 and 11.8 nM, respectively). In addition, although tacrine strongly inhibited butyrylcholinesterase (BuChE), T-82 and E2020 showed only weak activity on BuChE in human plasma. In ex vivo experiments, intraperitoneal administration of T-82 at a dose of 30 mg/kg inhibited AChE activity in the hippocampus, frontal cortex and parietal cortex of rats. The effect of T-82 on the extracellular ACh concentration in rat brain was measured using in vivo microdialysis. T-82 at doses of 10 and 30 mg/kg, i.p. increased the extracellular ACh concentration in the hippocampus and striatum in a dose-dependent manner. These findings suggest that T-82 activates the central cholinergic system by selectively inhibiting AChE activity, while weakly affecting peripheral BuChE activity, and that T-82 increases the extracellular ACh concentration in the brain, which is followed by inhibited AChE activity.

  2. Inter and intraindividual variations in plasma cholinesterase activity and substance concentration in employees of an organophosphorus insecticide factory.

    PubMed Central

    Brock, A

    1991-01-01

    During a period of 10 months, inter and intraindividual variations in plasma cholinesterase (ChE) activity were studied in 331 employees of an organophosphorus insecticide factory, and in 193 healthy volunteers without occupational exposure to known ChE inhibitors. Repeated (n = 6) measurements of ChE activity and ChE substance concentration were performed in 410 subjects. The study showed substantial intraindividual variations of ChE activity and ChE substance concentration (up to 40%) in the employees and in the reference group. When effects due to sex, ChE-1 phenotype, body weight, and height were considered, one subgroup of employees of the organophosphorus insecticide factory showed a significantly lower average ChE activity than other subgroups; as ChE substance concentrations were found to be proportionally decreased, it was concluded that the low ChE activity was unrelated to occupational exposure. A combined determination of ChE activity and ChE substance concentration is recommended as a rational diagnostic tool when an unexpected decrease of plasma ChE activity is registered in people joining organophosphorus insecticide health surveillance programmes. PMID:1878314

  3. Measurement of sterigmatocystin concentrations in urine for monitoring the contamination of cattle feed.

    PubMed

    Fushimi, Yasuo; Takagi, Mitsuhiro; Uno, Seiichi; Kokushi, Emiko; Nakamura, Masayuki; Hasunuma, Hiroshi; Shinya, Urara; Deguchi, Eisaburo; Fink-Gremmels, Johanna

    2014-11-04

    This study aimed (1) at determining the levels of the fungal toxin sterigmatocystin (STC) in the feed and urine of cattle and (2) at evaluating the effects of supplementing the feed with a mycotoxin adsorbent (MA) on STC concentrations in urine. Two herds of female Japanese Black cattle were used in this study. The cattle in each herd were fed a standard ration containing rice straw from different sources and a standard concentrate; two groups of cattle from each herd (n = six per group) received the commercial MA, mixed with the concentrate or given as top-dressing, whereas a third group received no supplement and served as control. Urine and feed samples were collected at various time points throughout the experiment. STC concentrations were measured using liquid chromatography-tandem mass spectrometry (LC-TMS). STC concentrations in straw were higher in Herd 1 (range 0.15-0.24 mg/kg DM) than in Herd 2 (range <0.01-0.06 mg/kg DM). In Herd 1, STC concentrations in urine significantly declined 2 weeks after replacing the contaminated feed, whereas MA supplementation had no effect. In conclusion, mycotoxins in urine samples are useful biological markers for monitoring the systemic exposure of cattle to multiple mycotoxins, as well as evaluating the effectiveness of interventions.

  4. Interpretation of Measured Tracer Concentration Fluctuations Using a Sinusoidal Meandering Plume Model.

    NASA Astrophysics Data System (ADS)

    Peterson, Holly; Lamb, Brian; Stock, David

    1990-12-01

    Simultaneous instantaneous concentration and wind velocity fluctuations were measured 100 to 752 m downwind of a point source release of SF6 tracer during two field studies conducted amid rolling wheat fields and at a flat desert site in eastern Washington. Data from stable, neutron, and unstable conditions are interpreted using a meandering plume model where the meander is defined to be sinusoidal and the instantaneous plume profile is Gaussian. A sensitivity analysis of the model shows that the characteristic concentration time scale is a direct function of the meander time scale and the receptor position relative to the meander centerline. For narrow instantaneous plumes relative to the meander amplitude, the predicted mean crosswind profiles of concentration, intermittency factor, concentration fluctuation intensity, and peak-to-mean ratios exhibit bimodal distributions. Conditional (nonzero) concentration fluctuation intensifies calculated from the model are scattered about 1.0;, the scatter is the result of receptor location, meander amplitude, period, and instantaneous plume width. The magnitude of the scatter from model runs covering different receptor locations is essentially equal to the magnitude of the matter from the tracer observations. The simple meandering plume model thus provides a straightforward explanation of very complex patterns observed in the tracer concentration fluctuation data in terms of wind meander, receptor location, and instantaneous plume width.

  5. Measured and modelled cloud condensation nuclei (CCN) concentration in São Paulo, Brazil: the importance of aerosol size-resolved chemical composition on CCNhack concentration prediction

    NASA Astrophysics Data System (ADS)

    Almeida, G. P.; Brito, J.; Morales, C. A.; Andrade, M. F.; Artaxo, P.

    2014-07-01

    Measurements of cloud condensation nuclei (CCN), aerosol size distribution and non-refractory chemical composition were performed from 16 to 31 October 2012 in the São Paulo Metropolitan Area (SPMA), Brazil. CCN measurements were performed at 0.23, 0.45, 0.68, 0.90 and 1.13% water supersaturation and were subsequently compared with the Köhler theory, considering the chemical composition. Real-time chemical composition has been obtained by deploying, for the first time in the SPMA, an aerosol chemical ionization monitor (ACSM). CCN closure analyses were performed considering internal mixtures. Average aerosol composition during the studied period yielded (arithmetic mean~± standard deviation) 4.81 ± 3.05, 3.26 ± 2.10, 0.30 ± 0.27, 0.52 ± 0.32, 0.37 ± 0.21 and 0.04 ± 0.04 μg m-3 for organics, BC, NH4, SO4, NO3 and Cl, respectively. Particle number concentration was 12 813 ± 5350 cm-3, with a dominant nucleation mode. CCN concentrations were on average 1090 ± 328 and 3570 ± 1695 cm-3 at SS = 0.23% and SS = 1.13%, respectively. Results show an increase in aerosol hygroscopicity in the afternoon as a result of aerosol photochemical processing, leading to an enhancement of both organic and inorganic secondary aerosols in the atmosphere, as well as an increase in aerosol average diameter. Considering the bulk composition alone, observed CCN concentrations were substantially overpredicted when compared with the Köhler theory (44.1 ± 47.9% at 0.23% supersaturation and 91.4 ± 40.3% at 1.13% supersaturation). Overall, the impact of composition on the calculated CCN concentration (NCCN) decreases with decreasing supersaturation, partially because using bulk composition introduces less bias for large diameters and lower critical supersaturations, defined as the supersaturation at which the cloud droplet activation will take place. Results suggest that the consideration of only inorganic fraction improves the calculated NCCN. Introducing a size-dependent chemical

  6. Concentration Effects of Polymer Electrolyte Membrane Degradation Products on Oxygen Reduction Activity for Three Platinum Catalysts

    DOE PAGES

    Christ, J. M.; Neyerlin, K. C.; Richards, R.; ...

    2014-10-04

    A rotating disk electrode (RDE) along with cyclic voltammetry (CV) and linear sweep voltammetry (LSV), were used to investigate the impact of two model compounds representing degradation products of Nafion and 3M perfluorinated sulfonic acid membranes on the electrochemical surface area (ECA) and oxygen reduction reaction (ORR) activity of polycrystalline Pt, nano-structured thin film (NSTF) Pt (3M), and Pt/Vulcan carbon (Pt/Vu) (TKK) electrodes. ORR kinetic currents (measured at 0.9 V and transport corrected) were found to decrease linearly with the log of concentration for both model compounds on all Pt surfaces studied. Ultimately, model compound adsorption effects on ECA weremore » more abstruse due to competitive organic anion adsorption on Pt surfaces superimposing with the hydrogen underpotential deposition (HUPD) region.« less

  7. Concentration Effects of Polymer Electrolyte Membrane Degradation Products on Oxygen Reduction Activity for Three Platinum Catalysts

    SciTech Connect

    Christ, J. M.; Neyerlin, K. C.; Richards, R.; Dinh, H. N.

    2014-10-04

    A rotating disk electrode (RDE) along with cyclic voltammetry (CV) and linear sweep voltammetry (LSV), were used to investigate the impact of two model compounds representing degradation products of Nafion and 3M perfluorinated sulfonic acid membranes on the electrochemical surface area (ECA) and oxygen reduction reaction (ORR) activity of polycrystalline Pt, nano-structured thin film (NSTF) Pt (3M), and Pt/Vulcan carbon (Pt/Vu) (TKK) electrodes. ORR kinetic currents (measured at 0.9 V and transport corrected) were found to decrease linearly with the log of concentration for both model compounds on all Pt surfaces studied. Ultimately, model compound adsorption effects on ECA were more abstruse due to competitive organic anion adsorption on Pt surfaces superimposing with the hydrogen underpotential deposition (HUPD) region.

  8. Measurement of Microsphere Concentration Using a Flow Cytometer with Volumetric Sample Delivery

    PubMed Central

    Wang, Lili; Zhang, Yu-Zhong; Choquette, Steven; Gaigalas, AK

    2014-01-01

    Microsphere concentrations are needed to assign equivalent reference fluorophores (ERF) units to microspheres used in quantitative flow cytometry. A flow cytometer with a syringe based sample delivery system was evaluated for the measurement of the concentration of microspheres contained in a vial of lyophilized microspheres certified by BD Biosciences to contain 50,600 microspheres. The concentration was measured by counting the number of microspheres contained in the volume delivered by the flow cytometer and dividing the number by the volume. The syringe volume was calibrated both in the delivery and draw modes, and the results of the volume calibration were summarized by two calibration lines. The delivered volume was obtained by dividing the number of recorded events by the concentration of microsphere count standard in the sample tube. The draw volume was obtained by weighting the sample tube before and after the draw. The slope of the draw volume calibration line was equal to 1.00 with an offset of −13 µL. The slope of the delivered volume calibration was 0.93 suggesting a systematic volume-dependent bias, which can be rationalized as an effect of suspension flow in capillaries. When the sample volume was set to values between 150 µL and 300 µL, both calibration curves gave similar results suggesting that a good estimate of the true delivered volume can be obtained by subtracting 13 µL from the delivered volume indicated by the syringe settings. The number of microspheres in the volume was obtained by passing the suspension contained in the volume through a laser beam and counting the number of events in which the signals from the scattering and fluorescence detectors exceeded threshold values. Measurements were performed with the lyophilized microspheres made by BD Biosciences and fluorescein microspheres (expired reference material RM 8640) in three buffers: a phosphate buffer saline (PBS), a buffer containing PBS and 0.05 % BSA (bovine serum albumin

  9. Improvable method for Halon 1301 concentration measurement based on infrared absorption

    NASA Astrophysics Data System (ADS)

    Hu, Yang; Lu, Song; Guan, Yu

    2015-09-01

    Halon 1301 has attached much interest because of its pervasive use as an effective fire suppressant agent in aircraft related fires, and the study of fire suppressant agent concentration measurement is especially of interest. In this work, a Halon 1301 concentration measurement method based on the Beer-Lambert law is developed. IR light is transmitted through mixed gas, and the light intensity with and without the agent present is measured. The intensity ratio is a function of the volume percentage of Halon 1301, and the voltage output of the detector is proportional to light intensity. As such, the relationship between the volume percentage and voltage ratio can be established. The concentration measurement system shows a relative error of the system less than ±2.50%, and a full scale error within 1.20%. This work also discusses the effect of temperature and relative humidity (RH) on the calibration. The experimental results of voltage ratio versus Halon 1301 volume percentage relationship show that the voltage ratio drops significantly as temperature rises from 25 to 100 °C, and it decreases as RH rises from 0% to 100%.

  10. Concentration and Velocity Measurements of Both Phases in Liquid-Solid Slurries

    NASA Astrophysics Data System (ADS)

    Altobelli, Stephen; Hill, Kimberly; Caprihan, Arvind

    2007-03-01

    Natural and industrial slurry flows abound. They are difficult to calculate and to measure. We demonstrate a simple technique for studying steady slurries. We previously used time-of-flight techniques to study pressure driven slurry flow in pipes. Only the continuous phase velocity and concentration fields were measured. The discrete phase concentration was inferred. In slurries composed of spherical, oil-filled pills and poly-methyl-siloxane oils, we were able to use inversion nulling to measure the concentration and velocity fields of both phases. Pills are available in 1-5mm diameter and silicone oils are available in a wide range of viscosities, so a range of flows can be studied. We demonstrated the technique in horizontal, rotating cylinder flows. We combined two tried and true methods to do these experiments. The first used the difference in T1 to select between phases. The second used gradient waveforms with controlled first moments to produce velocity dependent phase shifts. One novel processing method was developed that allows us to use static continuous phase measurements to reference both the continuous and discrete phase velocity images. ?

  11. Beryllium Concentrations at European Workplaces: Comparison of 'Total' and Inhalable Particulate Measurements.

    PubMed

    Kock, Heiko; Civic, Terence; Koch, Wolfgang

    2015-07-01

    A field study was carried out in order to derive a factor for the conversion of historic worker exposure data on airborne beryllium (Be) obtained by sampling according to the 37-mm closed faced filter cassette (CFC) 'total' particulate method into exposure concentration values to be expected when sampling using the 'Gesamtstaubprobenahmesystem' (GSP) inhalable sampling convention. Workplaces selected to represent the different copper Be work processing operations that typically occur in Germany and the EU were monitored revealing a broad spectrum of prevailing Be size distributions. In total, 39 personal samples were taken using a 37-mm CFC and a GSP worn side by side for simultaneous collection of the 'total' dust and the inhalable particulates, respectively. In addition, 20 static general area measurements were carried out using GSP, CFC, and Respicon samplers in parallel, the latter one providing information on the extra-thoracic fraction of the workplace aerosol. The study showed that there is a linear relationship between the concentrations measured with the CFC and those measured with the GSP sampler. The geometric mean value of the ratios of time-weighted average concentrations determined from GSP and CFC samples of all personal samples was 2.88. The individual values covered a range between 1 and 17 related to differences in size distributions of the Be-containing particulates. This was supported by the area measurements showing that the conversion factor increases with increasing values of the extra-thoracic fraction covering a range between 0 and 79%.

  12. Photoacoustic measurement for glucose solution concentration based on tunable pulsed laser induced ultrasound

    NASA Astrophysics Data System (ADS)

    Ren, Zhong; Liu, Guodong; Huang, Zhen; Zhao, Dengji

    2012-12-01

    Noninvasive measurement of blood glucose concentration (BGC) has become a research hotspot. BGC measurement based on photoacoustic spectroscopy (PAS) was employed to detect the photoacoustic (PA) signal of blood glucose due to the advantages of avoiding the disturbance of optical scattering. In this paper, a set of custom-built BGC measurement system based on tunable optical parametric oscillator (OPO) pulsed laser and ultrasonic transducer was established to test the PA response effect of the glucose solution. In the experiments, we successfully acquired the time resolved PA signals of distilled water and glucose aqueous solution, and the PA peak-to-peak values(PPV) were gotten under the condition of excitated pulsed laser with changed wavelength from 1340nm to 2200nm by increasing interval of 10nm, the optimal characteristic wavelengths of distilled water and glucose solution were determined. Finally, to get the concentration prediction error, we used the linear fitting of ordinary least square (OLS) algorithm to fit the PPV of 1510nm, and we got the predicted concentration error was about 0.69mmol/L via the fitted linear equation. So, this system and scheme have some values in the research of noninvasive BGC measurement.

  13. Molecular diffusion measurement in lipid bilayers over wide concentration ranges: a comparative study.

    PubMed

    Guo, Lin; Har, Jia Yi; Sankaran, Jagadish; Hong, Yimian; Kannan, Balakrishnan; Wohland, Thorsten

    2008-04-04

    Molecular diffusion in biological membranes is a determining factor in cell signaling and cell function. In the past few decades, three main fluorescence spectroscopy techniques have emerged that are capable of measuring molecular diffusion in artificial and biological membranes at very different concentration ranges and spatial resolutions. The widely used methods of fluorescence recovery after photobleaching (FRAP) and single-particle tracking (SPT) can determine absolute diffusion coefficients at high (>100 microm(-2)) and very low surface concentrations (single-molecule level), respectively. Fluorescence correlation spectroscopy (FCS), on the other hand, is well-suited for the intermediate concentration range of about 0.1-100 microm(-2). However, FCS in general requires calibration with a standard dye of known diffusion coefficient, and yields only relative measurements with respect to the calibration. A variant of FCS, z-scan FCS, is calibration-free for membrane measurements, but requires several experiments at different well-controlled focusing positions. A recently established FCS method, electron-multiplying charge-coupled-device-based total internal reflection FCS (TIR-FCS), referred to here as imaging TIR-FCS (ITIR-FCS), is also independent of calibration standards, but to our knowledge no direct comparison between these different methods has been made. Herein, we seek to establish a comparison between FRAP, SPT, FCS, and ITIR-FCS by measuring the lateral diffusion coefficients in two model systems, namely, supported lipid bilayers and giant unilamellar vesicles.

  14. Measurement of Mercury Concentrations in Marsh Drainages Over a Tidal Cycle

    NASA Astrophysics Data System (ADS)

    Henry, B.; Bigham, G. N.

    2007-12-01

    This study was undertaken to characterize short-term temporal patterns in total mercury and methylmercury concentrations that would indicate transport patterns and to determine if drainages (marsh sediment and channels) in a mercury-contaminated marsh were sources or sinks for total mercury and methylmercury. Measurements of total mercury, methylmercury, and total suspended solids were made over a tidal cycle on two separate sampling events (January and June) at three locations in the contaminated marsh and two reference locations. During the first event, samples were collected by hand from a small boat every 30 minutes from approximately two hours before to two hours after high tide, using ultra-clean techniques. During the second event, water samples were obtained with automated ISCO sampling devices programmed to collect samples every 45 minutes during a one-half (12-hour) tidal cycle. Unfiltered total mercury and methylmercury concentrations were significantly higher at the location closest to the former chlor-alkali facility (up to 4,000 ng/l and 20 ng/L, respectively) compared to the location in a separate drainage (up to 180 ng/l and 5 ng/L, respectively) but in the same marsh. Concentrations at the reference stations (up to 28 ng/L and 0.7 ng/L, respectively) were considerably lower. Total mercury and methylmercury concentrations were generally lowest at high tide while concentrations during flood and ebb were comparable. Unfiltered total mercury and methylmercury concentrations tended to correlate with suspended solids concentrations. The percent of total mercury and methylmercury in the dissolved form decreased as unfiltered concentrations increased. There was no clear evidence that the mass of total mercury or methylmercury was higher during ebb than flood, suggesting that these locations are not a definitive source of either to downstream locations. If mercury is methylated in marsh sediment during the tidal cycle, the additional mass was small compared

  15. Measured phenol concentrations in air and rain water samples collected near a wood preserving facility

    SciTech Connect

    Allen, S.K.; Allen, C.W.

    1995-12-31

    Phenol concentrations were determined in air and rain water samples collected downwind from a coal tar creosote wood preserving facility in Terre Haute, IN. Coal tar creosote is known to contain a large number of constituents and is composed chiefly of polycyclic aromatic hydrocarbons (PAH), phenols, and N-, S-, and O-heterocycles. Phenol was chosen as a marker compound for coal tar creosote emissions because it is present at a large mole fraction in coal tar creosote. Phenol was determined by HPLC with UV-Visible detection. Phenol in collected rain water samples was determined directly by HPLC after acidification and filtration. Phenol concentrations in collected air samples ranged from 4.1 to 15.7 {micro}g/m3 while rain water concentrations ranged from 7.9 to 28.2 {micro}g/L. Using a value for the thermodynamic Henry`s law constant of K{sub H} = 4.5 {times} 10{sup {minus}4} L atm/mole at 20 C for phenol and measured gas-phase phenol concentrations, even higher rain water concentrations would be expected if equilibrium was established. This indicates that the amount of phenol present in the air parcels sampled exceeded the amount that could be scavenged by rain drops under the conditions prevailing at the time of sampling. The values for phenol concentrations reported here are roughly two orders of magnitude higher than results from previous studies where phenol concentrations in air and rain water samples collected in urban areas were reported. It is likely that other more toxic constituents of coal tar creosote are also present at high concentrations in air parcels that receive emissions from wood treatment facilities.

  16. Improved installation prototype for measurement of low argon-37 activity

    NASA Astrophysics Data System (ADS)

    Pakhomov, Sergei; Dubasov, Yuri

    2015-04-01

    On-site Inspection (OSI) is a key element of verification of State Parties' compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). An on-site inspection is launched to establish whether or not a nuclear explosion has been carried out. One of the most significant evidence of n underground nuclear explosion (UNE) is detection above background concentrations of argon-37 in near surface air. Argon-37 is formed in large amounts at interaction of neutrons of UNE with the potassium which is a part of the majority of rocks. Its estimated contents for the 100th days after explosion with a energy of 1000 t of TNT near a surface can vary from 1 to 1000 mBq/m3. The background concentrations of argon-37 in subsoil air vary 1 do100 mBq/m3. Traditionally, for argon-37 activity measurement the gas-proportional counters are used. But at Khlopin Radium institute the developments of the new type of highly sensitive and low-background installation capable to provide the required range of measurements of the argon-37 concentration are conducted. The liquid scintillation method of the registration of the low-energetic argon-37 electrons is the basic installation principle and as scintillator, the itself condensed air argon sample is used. Registration of scintillations of liquid argon is made by means of system from 3 PMT which cathodes are cooled near to the temperature of liquid nitrogen together with the measuring chamber in which placed the quartz glass ampule, containing the measured sample of the liquefied argon. For converse the short wavelength photons (λ = 127 nm) of liquid argon scintillations to more long-wave, corresponding to the range of PMT sensitivity, the polymer film with tetra-phenyl-butadiene (TPB) is provided. Even the insignificant impurities of nitrogen, oxygen and others gaseous in the liquid argon samples can to cause the quenching of scintillation, especially their slow components. To account this effect and it influence on change of registration

  17. Environmentally realistic concentrations of the antibiotic Trimethoprim affect haemocyte parameters but not antioxidant enzyme activities in the clam Ruditapes philippinarum.

    PubMed

    Matozzo, Valerio; De Notaris, Chiara; Finos, Livio; Filippini, Raffaella; Piovan, Anna

    2015-11-01

    Several biomarkers were measured to evaluate the effects of Trimethoprim (TMP; 300, 600 and 900 ng/L) in the clam Ruditapes philippinarum after exposure for 1, 3 and 7 days. The actual TMP concentrations were also measured in the experimental tanks. The total haemocyte count significantly increased in 7 day-exposed clams, whereas alterations in haemocyte volume were observed after 1 and 3 days of exposure. Haemocyte proliferation was increased significantly in animals exposed for 1 and 7 days, whereas haemocyte lysate lysozyme activity decreased significantly after 1 and 3 days. In addition, TMP significantly increased haemolymph lactate dehydrogenase activity after 3 and 7 days. Regarding antioxidant enzymes, only a significant time-dependent effect on CAT activity was recorded. This study demonstrated that environmentally realistic concentrations of TMP affect haemocyte parameters in clams, suggesting that haemocytes are a useful cellular model for the assessment of the impact of TMP on bivalves.

  18. In Situ Measurements of Aerosol Mass Concentration and Spectral Absorption in Xianghe, SE of Beijing, China

    NASA Astrophysics Data System (ADS)

    Chaudhry, Z.; Martins, V.; Li, Z.

    2005-12-01

    China's rapid industrialization over the last few decades has affected air quality in many regions of China, and even the regional climate. As a part of the EAST-AIRE (East Asian Study of Tropospheric Aerosols: an International Regional Experiment) study, Nuclepore filters were collected in two size ranges (PM10 and PM2.5) at 12 hour intervals since January 2005 at Xianghe, about 70 km southeast of Beijing. Each filter was analyzed for mass concentration, aerosol scattering and absorption efficiencies. Mass concentrations during the winter months (January-March) ranged from 9 to 459 μg/m3 in the coarse mode with an average concentration of 122 μg/m3, and from 11 to 203 μg/m3 in the fine mode with an average concentration of 45 μg/m3. While some of the extreme values are likely linked to local emissions, regional air pollution episodes also played important roles. Absorption efficiency measurements at 550 nm show very high values compared to measurements performed in the United States during the CLAMS experiment. The spectral mass absorption efficiency was measured from 350 to 2500 nm and shows large differences between the absorption properties of soil dust, black carbon, and organic aerosols. The strong spectral differences observed can be related to differences in refractive indices from the several collected species and particle size effects. The absorption properties from aerosols measured in China show large absorption efficiencies, compared to aerosols measured in the US, possibly linked to different technology practices used in these countries. For organic plus black carbon aerosols, where the refractive index seems to be relatively constant, the absorption efficiency spectral dependence for fine mode aerosols falls between 1/λ and 1/λ2. The coarse mode absorption shows much less spectral dependence.

  19. Measurement of volatile concentrations in volcanic glasses using thermogravimetric analysis: comparison with micro-analytical methods

    NASA Astrophysics Data System (ADS)

    Tuffen, H.; Owen, J.; Applegarth, L. J.

    2012-04-01

    Thermogravimetric analysis-mass spectrometry (TGA-MS) is potentially a powerful tool for measurement of multi-species volatile concentrations in volcanic rock samples and characterisation of degassing patterns that relate to volatile speciation. Simultaneous differential scanning calorimetry (DSC) provides information on thermal transformations such as crystallisation or melting. However no study has addressed whether the TGA technique can be used to quantify water speciation or separate water from other volatile species such as halogens. We have carried out TGA-DSC-MS experiments on a suite of compositionally homogeneous, variably-degassed rhyolitic obsidian samples from Blahnukur, Torfajökull, Iceland[1]. Sample water contents, as measured by infra-red spectroscopy, range from 0.19-0.81 wt %; F and Cl concentrations, measured using electron microprobe, range from 0.26-0.35 and 0.18-0.22 wt % respectively. Other volatile species concentrations (e.g. CO2, S) were beneath detection limits. The TGA results show an excellent correlation between the total volatile content measured using TGA (TVCTGA) and the total volatile content (H2OT + F + Cl) measured by other techniques (TVCTGA = 0.992TVCFTIR,EPMA, with R2 = 0.94). This shows that both water and halogen species are degassed during TGA measurements, even though halogen species are not detected through MS analyses. Patterns of volatile release indicate a link between water speciation, as measured using FTIR, and the temperature of degassing, and allow identification of hydrated samples. There are strong correlations between TGA weight loss over the 250-550 ° C interval and [H2Om] concentration, and between weight loss >550 ° C and the -OH content. The total volatile loss above 550 ° C far exceeds -OH concentrations alone (TGA>550 = 1.9126 [-OH] + 0.1693), but closely matches the sum of -OH, F and Cl in glasses, with TGA>550= 1.02 [-OH+F+Cl]. This indicates that halogen release occurs at high temperatures and

  20. Utility of measuring serum concentrations of anti-TNF agents and anti-drug antibodies in inflammatory bowel disease.

    PubMed

    Guerra, Iván; Chaparro, María; Bermejo, Fernando; Gisbert, Javier P

    2011-07-01

    Tumor necrosis factor alpha (TNFα) is a cytokine with a critical role in the pathogenesis of some chronic inflammatory diseases, such as inflammatory bowel diseases. Anti-TNF agents, which neutralize the biological activity of TNFα, are widely used among the different therapeutic options for the treatment of patients with inflammatory bowel diseases. These drugs are very useful in clinical practice, but some patients experience lack and loss of response during the treatment. Drug serum concentration, antibodies against anti-TNF agents, clearance of the drug, formation of immune complexes, a more severe disease and probably other unknown factors can influence the treatment's efficacy. Nowadays, the management of patients with lack or loss of response is empirical. The measurement of drug concentrations and antibodies against anti-TNF agents might be useful for improving the selection of patients that will benefit from the maintenance treatment. In clinical practice, these methods may help us decide which strategy will be used in cases of loss of response: treatment intensification, shortening the infusion interval, increasing the dose, switching to another anti-TNF agent or to a drug with another mechanism of action. The optimal strategy in the future may be comprised of an early detection of loss of response to the treatment by assessing clinical symptoms and finding evidence of activity of the disease on endoscopic or radiological examinations when necessary, as well as a better management of anti-TNF treatment aided by measuring the serum concentration of the drug and antibodies against the drug.

  1. Simultaneous measurement of CO2 concentration and isotopic ratios in gas samples using IRMS

    NASA Astrophysics Data System (ADS)

    Yu, Eun-Ji; Lee, Dongho; Bong, Yeon-Sik; Lee, Kwang-Sik

    2014-05-01

    Isotopic methods are indispensable tools for studies on atmosphere-biosphere exchanges of CO2 and environmental monitoring such as CO2 leakage detection from subsurface carbon storages. CO2 concentration is an important variable in interpreting isotopic composition of CO2 especially in atmospheric applications (e.g., 'Keeling plot'). Optical methods such as CRDS (Cavity Ring Down Spectroscopy) are gaining attention recently because of its capability to simultaneously measure CO2 concentration and isotopic ratios with a short measurement interval (up to 1 sec.). On the other hand, IRMS (Isotope Ratio Mass Spectrometer) has been used only for isotopic measurements. In this study, we propose a method to measure CO2 concentration from gas samples along with isotopic ratios using conventional IRMS system. The system consists of Delta V Plus IRMS interfaced with GasBench II (Thermo Scientific, Germany). 12-mL vials with open top screw cap and rubber septum were used for both gas sampling and analysis. For isotopic analysis, gases in the vials were transferred into GasBench II by He carrier flow and CO2 was trapped by a single cryotrap (-180 ºC) after passing a water trap (Mg(ClO4)2). Upon release of the cryotrap, liberated CO2 was separated from N2O using gas chromatography column inside the GasBench II and introduced online into the IRMS. Isotopic ratios were measured for the masses of 44, 45 and 46, and the peak intensity (mV of mass 44 and peak area) was recorded for the concentration calculation. For the determination of CO2 concentration, a calibration curve relating the peak intensity with molar concentration of CO2 was constructed. By dissolving NaHCO3 in de-ionized water, solutions containing 0.05, 0.1, 0.25 and 0.5 µmol of inorganic carbon were prepared in 12 mL vials. Phosphoric acid was injected through rubber septum of the vials to acidify the solution and released CO2 was analyzed for the isotopic ratios and the corresponding peak intensity was recorded

  2. Ethanol-Induced ADH Activity in Zebrafish: Differential Concentration-Dependent Effects on High- Versus Low-Affinity ADH Enzymes.

    PubMed

    Tran, Steven; Nowicki, Magda; Facciol, Amanda; Chatterjee, Diptendu; Gerlai, Robert

    2016-04-01

    Zebrafish express enzymes that metabolize ethanol in a manner comparable to that of mammals, including humans. We previously demonstrated that acute ethanol exposure increases alcohol dehydrogenase (ADH) activity in an inverted U-shaped dose-dependent manner. It was hypothesized that the biphasic dose-response was due to the increased activity of a high-affinity ADH isoform following exposure to low concentrations of ethanol and increased activity of a low-affinity ADH isoform following exposure to higher concentrations of ethanol. To test this hypothesis, we exposed zebrafish to different concentrations of ethanol (0%, 0.25%, 0.5%, and 1.0% v/v) for 30 min and measured the total ADH activity in the zebrafish liver. However, we also repeated this enzyme activity assay using a low concentration of the substrate (ethanol) to determine the activity of high-affinity ADH isoforms. We found that total ADH activity in response to ethanol induces an inverted U-shaped dose-response similar to our previous study. Using a lower substrate level in our enzyme assay targeting high-affinity isozymes, we found a similar dose-response. However, the difference in activity between the high and low substrate assays (high substrate activity - low substrate activity), which provide an index of activity for low-affinity ADH isoforms, revealed no significant effect of ethanol exposure. Our results suggest that the inverted U-shaped dose-response for total ADH activity in response to ethanol is driven primarily by high-affinity isoforms of ADH.

  3. Concentration Measurements in Self-Excited Momentum Dominated Low-Density Gas Jets

    NASA Technical Reports Server (NTRS)

    Yildirim, B. S.; Pasumarthi, K. S.; Agrawal, A. K.

    2004-01-01

    Flow structure of self-excited, laminar, axisymmetric, momentum-dominated helium jets discharged vertically into ambient air was investigated using high-speed rainbow schlieren deflectometry technique. Measurements were obtained at temporal resolution of 1 ms and spatial resolution of 0.19 mm for two test cases with Richardson number of 0.034 and 0.018. Power spectra revealed that the oscillation frequency was independent of spatial coordinates, suggesting global oscillations in the flow. Abel inversion algorithm was used to reconstruct the concentration field of helium. Instantaneous concentration contours revealed changes in the flow field and evolution of vortical structures during an oscillation cycle. Temporal evolution plots of helium concentration at different axial locations provided detailed information about the instability in the flow field.

  4. Application of laser Raman spectroscopy in concentration measurements of multiple analytes in human body fluids

    NASA Astrophysics Data System (ADS)

    Qu, Jianan Y.; Suria, David; Wilson, Brian C.

    1998-05-01

    The primary goal of these studies was to demonstrate that NIR Raman spectroscopy is feasible as a rapid and reagentless analytic method for clinical diagnostics. Raman spectra were collected on human serum and urine samples using a 785 nm excitation laser and a single-stage holographic spectrometer. A partial east squares method was used to predict the analyte concentrations of interest. The actual concentrations were determined by a standard clinical chemistry. The prediction accuracy of total protein, albumin, triglyceride and glucose in human sera ranged from 1.5 percent to 5 percent which is greatly acceptable for clinical diagnostics. The concentration measurements of acetaminophen, ethanol and codeine inhuman urine have demonstrated the potential of NIR Raman technology in screening of therapeutic drugs and substances of abuse.

  5. Recent Field Measurements of Ice Nuclei Concentration Relation to Aerosol Properties

    NASA Astrophysics Data System (ADS)

    DeMott, P. J.; Sullivan, R. C.; McMeeking, G.; Prenni, A. J.; Hill, T. C.; Franc, G. D.; Sullivan, A. P.; Garcia, E.; Tobo, Y.; Prather, K. A.; Suski, K.; Cazorla, A.; Anderson, J. R.; Kreidenweis, S. M.

    2011-12-01

    It is expected that atmospheric variability of ice nuclei concentrations is governed by a variety of factors related to aerosol physical and chemical properties. Not all particles contribute equally due to the special nature of ice nuclei. The "size requirement" of ice nuclei (Pruppacher and Klett, 1997), partly related to the typical aerosol compositions known to act as ice nuclei (e.g., mineral dust particles, certain biological particles), leads to the relation of ice nuclei number concentrations to larger aerosol concentrations in some cases, but we emphasize here the additional relation to aerosol chemistry. Recent atmospheric ice nuclei measurements focused on biomass burning, mineral dust, pollution and biological particles will be discussed to highlight new assessment of their source contributions on the basis of physical, chemical and biological analysis. Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation (2nd Edition), Kluwer Academic Press, Dordrecht, 954 pp.

  6. Near-Field Nanofluid Concentration Measurement by Rayleigh Particle Scattering Bragg Grating Evanescent Wave

    NASA Astrophysics Data System (ADS)

    Huang, Xue-Feng; Li, Sheng-Ji

    2014-04-01

    We report an approach to detect near-field nanofluid concentration by scattering Bragg grating evanescent wave (EW). Since the suspended nanoparticles can enhance the scattering intensity of the EW from the thinned and tapered fiber with Bragg grating, the reflectance ratio of Bragg grating is dependent on the corresponding refractive index (RI) of the nanofluid at different nanoparticle volume fraction. A critical reflectance ratio measurement identifies the nanofluid concentration. Theory and simulation of scattering Bragg grating EW was analyzed. The scattering Bragg grating EW fiber sensing probe was designed and fabricated by the wet chemical etching method, and calibration was made by several chemical solutions without suspended nanoparticles. The example application of the nanofluid containing dispersed 40 nm SiO2 nanoparticles demonstrates the feasibility. The reflectance ratio decreases by over 3.2% with the nanofluid concentration increasing from 0.25 wt.% to 4 wt.%, while the temperature disturbance can be negligible.

  7. Improving accuracy of cell and chromophore concentration measurements using optical density

    PubMed Central

    2013-01-01

    Background UV–vis spectrophotometric optical density (OD) is the most commonly-used technique for estimating chromophore formation and cell concentration in liquid culture. OD wavelength is often chosen with little thought given to its effect on the quality of the measurement. Analysis of the contributions of absorption and scattering to the measured optical density provides a basis for understanding variability among spectrophotometers and enables a quantitative evaluation of the applicability of the Beer-Lambert law. This provides a rational approach for improving the accuracy of OD measurements used as a proxy for direct dry weight (DW), cell count, and pigment levels. Results For pigmented organisms, the choice of OD wavelength presents a tradeoff between the robustness and the sensitivity of the measurement. The OD at a robust wavelength is primarily the result of light scattering and does not vary with culture conditions; whereas, the OD at a sensitive wavelength is additionally dependent on light absorption by the organism’s pigments. Suitably robust and sensitive wavelengths are identified for a wide range of organisms by comparing their spectra to the true absorption spectra of dyes. The relative scattering contribution can be reduced either by measurement at higher OD, or by the addition of bovine serum albumin. Reduction of scattering or correlation with off-peak light attenuation provides for more accurate assessment of chromophore levels within cells. Conversion factors between DW, OD, and colony-forming unit density are tabulated for 17 diverse organisms to illustrate the scope of variability of these correlations. Finally, an inexpensive short pathlength LED-based flow cell is demonstrated for the online monitoring of growth in a bioreactor at culture concentrations greater than 5 grams dry weight per liter which would otherwise require off-line dilutions to obtain non-saturated OD measurements. Conclusions OD is most accurate as a time

  8. Measurement of tissue optical properties with optical coherence tomography: Implication for noninvasive blood glucose concentration monitoring

    NASA Astrophysics Data System (ADS)

    Larin, Kirill V.

    Approximately 14 million people in the USA and more than 140 million people worldwide suffer from diabetes mellitus. The current glucose sensing technique involves a finger puncture several times a day to obtain a droplet of blood for analysis. There have been enormous efforts by many scientific groups and companies to quantify glucose concentration noninvasively using different optical techniques. However, these techniques face limitations associated with low sensitivity, accuracy, and insufficient specificity of glucose concentrations over a physiological range. Optical coherence tomography (OCT), a new technology, is being applied for noninvasive imaging in tissues with high resolution. OCT utilizes sensitive detection of photons coherently scattered from tissue. The high resolution of this technique allows for exceptionally accurate measurement of tissue scattering from a specific layer of skin compared with other optical techniques and, therefore, may provide noninvasive and continuous monitoring of blood glucose concentration with high accuracy. In this dissertation work I experimentally and theoretically investigate feasibility of noninvasive, real-time, sensitive, and specific monitoring of blood glucose concentration using an OCT-based biosensor. The studies were performed in scattering media with stable optical properties (aqueous suspensions of polystyrene microspheres and milk), animals (New Zealand white rabbits and Yucatan micropigs), and normal subjects (during oral glucose tolerance tests). The results of these studies demonstrated: (1) capability of the OCT technique to detect changes in scattering coefficient with the accuracy of about 1.5%; (2) a sharp and linear decrease of the OCT signal slope in the dermis with the increase of blood glucose concentration; (3) the change in the OCT signal slope measured during bolus glucose injection experiments (characterized by a sharp increase of blood glucose concentration) is higher than that measured in

  9. The Influence of Atmospheric Transport Regimes on Polychlorinated Biphenyl (PCB) Concentrations Measured at Zeppelin

    NASA Astrophysics Data System (ADS)

    Ubl, S.; Scheringer, M.; Hungerbuehler, K.

    2013-12-01

    Polychlorinated biphenyls (PCBs) are persistent organic pollutants (POPs) of exclusively anthropogenic origin. PCBs are toxic, bioaccumulative and have a great potential of long-range transport. PCBs have been banned globally under the Stockholm convention on POPs since 2004. We analysed times series of 21 PCB congeners ranging from PCB 18 to PCB 187 that have been measured at Zeppelin (Spitsbergen) since 1993. Although primary PCB emissions have been steadily reduced, a strong decreasing trend is not observed in the PCB concentrations in the Arctic. In order to investigate the influence of atmospheric transport on the PCB concentrations and to identify the potential source regions of the PCBs, we calculated footprints for the Zeppelin measurement site using the Lagrangian Particle Dispersion Model FLEXPART. Footprints can be interpreted as potential source regions where PCBs may have been picked up. Based on various statistical analyses of the footprints (cluster analysis, k-medoid, silhouette), we identified the prevailing transport regimes for Zeppelin which were represented by 5 different clusters. Cluster 1 and 3 belong to transport regimes with highest residence times over Europe (cluster 1) and North-America (cluster 3); both transport regimes dominantly occur from late fall to early spring. Clusters 2 and 4 represent air masses with surface contact predominantly over the Atlantic Ocean (cluster 2), only occurring during the summer months, and the Arctic Ocean (cluster 4) mainly observed in spring and autumn, but also in summer. Cluster 5 is representative of air originating from the Pacific ocean and eastern Asia; this transport regime occurs mainly in spring and fall. We grouped the PCB concentrations measured at Zeppelin according to the 5 different clusters and calculated the median for each cluster and PCB congener. The median for medium to heavier PCBs is highest for cluster 1 and 3, which represent transport regimes over the continent, suggesting that

  10. Possibility of influence of midazolam sedation on the diagnosis of brain death: concentrations of active metabolites after cessation of midazolam.

    PubMed

    Hirata, Kiyotaka; Matsumoto, Yoshiaki; Kurokawa, Akira; Onda, Miho; Shimizu, Makiko; Fukuoka, Masamichi; Hirano, Masaaki; Yamamoto, Yasuhiro

    2003-09-01

    Midazolam and its active metabolites have a depressant effect on respiration and consciousness level, and therefore their effects should be considered in all patients for whom brain death testing is contemplated. The concentrations of midazolam and its active metabolites were measured in critically ill patients on a ventilator during and after continuous intravenous infusion of midazolam. Three days after cessation of midazolam infusion, the concentrations of midazolam and 1-hydroxymidazolam decreased to below the therapeutic range (100-1000 ng/ml) in all patients, although the concentrations of 1-hydroxymidazolam glucuronide remained extremely high in a patient who showed deteriorating renal function. The concentrations of 1-hydroxymidazolam glucuronide (19,497-29,761 ng/ml) were measured in this patient. When it is impossible to confirm factors consistent with irreversible brain death, such as the lack of cerebral blood flow, until 3 days after cessation of midazolam infusion, monitoring of the concentration of these substances should be carried out in all patients in whom suspicion exists prior to the evaluation of brain death. It is particularly imperative that monitoring of the 1-hydroxymidazolam glucuronide concentration be carried out in patients with poor renal function.

  11. Urinary Concentrations of Bisphenol A and Phthalate Metabolites Measured during Pregnancy and Risk of Preeclampsia

    PubMed Central

    Cantonwine, David E.; Meeker, John D.; Ferguson, Kelly K.; Mukherjee, Bhramar; Hauser, Russ; McElrath, Thomas F.

    2016-01-01

    Background: Preeclampsia represents a major cause of maternal mortality and morbidity worldwide. Although it is known that the placenta plays a central role in development of preeclampsia, investigation into the contribution of environmental toxicants to the risk of preeclampsia has been sparse. Objectives: In the present study we examined the relationship between longitudinally measured urinary BPA and phthalate metabolite concentrations during gestation and preeclampsia. Methods: A nested case–control study of preterm birth was performed in 2011 from women enrolled in a prospective birth cohort study at Brigham and Women’s Hospital in Boston. There were 50 cases of preeclampsia as part of this study. Urine samples were analyzed for concentrations of BPA and nine phthalate metabolites several times during pregnancy. Adjusted Cox proportional hazard models were used to calculate hazard ratios of preeclampsia in association with an interquartile range increase in BPA and phthalate concentrations and were weighted to reflect results generalizable to the base population. Results: Adjusted hazard ratios indicated that an interquartile range increase of urinary concentrations of BPA (1.53; 95% CI: 1.04, 2.25) and MEP (monoethyl phthalate) (1.72; 95% CI: 1.28, 2.30) at 10 weeks gestation was associated with onset of preeclampsia, whereas significantly elevated hazard ratios were found across gestation for all DEHP [di(2-ethylhexyl) phthalate] metabolites. These relationships differed based on infant sex. Conclusions: Urinary concentrations of BPA and several phthalate metabolites were significantly associated with increased risk of preeclampsia. If validated, these results indicate an environmental contribution of endocrine-disrupting chemicals to preeclampsia and suggest a modifiable means to reduce the mortality and morbidity associated with this condition. Citation: Cantonwine DE, Meeker JD, Ferguson KK, Mukherjee B, Hauser R, McElrath TF. 2016. Urinary

  12. Quantitative measurement of the nanoparticle size and number concentration from liquid suspensions by atomic force microscopy.

    PubMed

    Baalousha, M; Prasad, A; Lead, J R

    2014-05-01

    Microscopy techniques are indispensable to the nanoanalytical toolbox and can provide accurate information on the number size distribution and number concentration of nanoparticles (NPs) at low concentrations (ca. ppt to ppb range) and small sizes (ca. <20 nm). However, the high capabilities of microscopy techniques are limited by the traditional sample preparation based on drying a small volume of suspension of NPs on a microscopy substrate. This method is limited by low recovery of NPs (ca. <10%), formation of aggregates during the drying process, and thus, the complete misrepresentation of the NP suspensions under consideration. This paper presents a validated quantitative sampling technique for atomic force microscopy (AFM) that overcomes the above-mentioned shortcomings and allows full recovery and representativeness of the NPs under consideration by forcing the NPs into the substrate via ultracentrifugation and strongly attaches the NPs to the substrate by surface functionalization of the substrate or by adding cations to the NP suspension. The high efficiency of the analysis is demonstrated by the uniformity of the NP distribution on the substrate (that is low variability between the number of NPs counted on different images on different areas of the substrate), the high recovery of the NPs up to 71%) and the good correlation (R > 0.95) between the mass and number concentrations. Therefore, for the first time, we developed a validated quantitative sampling technique that enables the use of the full capabilities of microscopy tools to quantitatively and accurately determine the number size distribution and number concentration of NPs at environmentally relevant low concentrations (i.e. 0.34-100 ppb). This approach is of high environmental relevance and can be applied widely in environmental nanoscience and nanotoxicology for (i) measuring the number concentration dose in nanotoxicological studies and (ii) accurately measuring the number size distribution of

  13. Effect of fluorocarbons on acetylcholinesterase activity and some counter measures

    NASA Technical Reports Server (NTRS)

    Young, W.; Parker, J. A.

    1975-01-01

    An isolated vagal sympathetic heart system has been successfully used for the study of the effect of fluorocarbons (FCs) on cardiac performance and in situ enzyme activity. Dichlorodifluoromethane sensitizes this preparation to sympathetic stimulation and to exogenous epinephrine challenge. Partial and complete A-V block and even cardiac arrest have been induced by epinephrine challenge in the FC sensitized heart. Potassium chloride alone restores the rhythmicity but not the normal contractility of the heart in such a situation. Addition of glucose will, however, completely restore the normal function of the heart which is sensitized by dichlorodifluoromethane. The ED 50 values of acetylcholinesterase activity which are used as a measure of relative effectiveness of fluorocarbons are compared with the maximum permissible concentration. Kinetic studies indicate that all the fluorocarbons tested so far are noncompetitive.

  14. The effect of triton concentration on the activity of undecaprenyl pyrophosphate synthase inhibitors.

    PubMed

    Li, Hu; Huang, Jianzhong; Jiang, Xinhe; Seefeld, Mark; McQueney, Michael; Macarron, Ricardo

    2003-12-01

    Undecaprenyl pyrophosphate synthase (UPPS) catalyzes the consecutive condensation of 8 molecules of isopentenyl pyrophosphate with farnesyl pyrophosphate to yield C55-undecaprenyl pyrophosphate, which is required for bacterial cell wall synthesis. UPPS is found in both gram-positive and gram-negative bacteria, and based on the differences between bacterial variants of UPPS and their human counterpart, dolicopyrophosphate synthase, it was identified as an attractive antibacterial target. An assay, which monitors the release of Pi by coupling the UPPS catalyzed reaction with inorganic pyrophosphatase, was employed to conduct an HTS campaign using an inhouse collection of compounds. A direct assay measuring the incorporation of 14C-IPP (isopentenyl pyrophosphate) was used as a secondary assay to evaluate the high-throughput screening (HTS) hits. From the HTS campaign, a few classes of UPPS inhibitors were identified. During the process of hit evaluation by the direct assay, the authors observed that Triton, an essential factor for the enzyme activity and accurate formation of the natural product, dramatically altered the inhibitory activity of a particular class of compounds. Above its critical micellar concentration (CMC), Triton abolished the inhibitory activity of these compounds. Further research will be required to establish the biophysical phenomenon that causes this effect. Meanwhile, it can be speculated that Triton (and other detergents) above CMC may hinder the identification in screening compounds of certain classes of hits.

  15. MEASUREMENT OF RADON CONCENTRATION IN DWELLINGS IN THE REGION OF HIGHEST LUNG CANCER INCIDENCE IN INDIA.

    PubMed

    Zoliana, B; Rohmingliana, P C; Sahoo, B K; Mishra, R; Mayya, Y S

    2016-10-01

    Indoor radon/thoron concentration has been measured in Aizawl district, Mizoram, India, which has the highest lung cancer incidence rates among males and females in India. Simultaneously, radon flux emanated from the surrounding soil of the dwellings was observed in selected places. The annual average value of concentration of radon(thoron) of Aizawl district is 48.8(22.65) Bq m(-3) with a geometric standard deviation of 1.25(1.58). Measured radon flux from the soil has an average value of 22.6 mBq m(-2) s(-1) These results were found to be much below the harmful effect or action level as indicated by the World Health Organisation. On the other hand, food habit and high-level consumption of tobacco and its products in the district have been found to increase the risk of lung cancer incidence in the district.

  16. Measurement of ozone concentration in the lower stratosphere and upper troposhere

    NASA Astrophysics Data System (ADS)

    Nevzorov, A. A.; Burlakov, V. D.; Dolgii, S. I.; Nevzorov, A. V.; Romanovskii, O. A.; Gridnev, Yu. V.

    2015-11-01

    We describe an ozone lidar and consider an algorithm for retrieving the ozone concentration, taking into consideration the aerosol correction. Results of lidar measurements at wavelengths 299 and 341 nm well agree with model estimates, indicating that ozone is sensed with acceptable accuracies in the altitude range of about 6-18 km. It should be noted that the retrieved profiles of altitude distribution of ozone concentration more closely resemble those from satellite data than according to Krueger model. A lidar is developed and put into operation at Siberian Lidar Station (SLS) to measure the vertical ozone distribution (VOD) in the upper troposphere-lower stratosphere. Sensing is performed according to the method of differential absorption and scattering at wavelength pair 299/341 nm, which are respectively the first and second Stokes components of stimulated Raman scattering (SRS) conversion of the fourth harmonic of Nd:YAG laser (266 nm) in hydrogen.

  17. Spectral radiance measurements and calculated soot concentrations along the length of an experimental combustor

    NASA Technical Reports Server (NTRS)

    Norgren, C. T.; Ingebo, R. D.

    1976-01-01

    Radiometric data were obtained over a range of parametric test conditions at three positions along the length of an experimental combustor segment corresponding to the primary, intermediate, and dilution zones. The concentration of soot entrained in the combustion gases was calculated by a technique using spectral radiance measurements. Tests were conducted primarily with Jet A fuel, although limited data were taken with two fuels having higher aromatic content, diesel oil number 2 and a blend of 40 percent tetralin in Jet A fuel. Radiometric observation of the combustion gases indicated that the maximum total radiance peaked at the intermediate zone, which was located immediately upstream of the dilution holes. Soot concentrations calculated from optical measurements in the dilution zone compared favorably with those obtained by in situ gas sampling at the exhaust. The total radiance increased with the higher aromatic content fuels.

  18. Variation of molecular hydrogen tropospheric concentration over Southern Poland - results of the continuous chromatographic measurements.

    NASA Astrophysics Data System (ADS)

    Necki, J.; Chmura, L.

    2012-04-01

    Although hydrogen is one of the fundamental constituents of the earth's atmosphere its global balance is still poorly clarified. A few developed inventories diverging values for efficiency of sources and sinks of this gas. The European network for the hydrogen concentrations measurement is based on several unevenly spaced measurement points. While in 2009 MPI Jena has delivered accurate scale for hydrogen measurements and the techniques of analyses are well described, still large areas of Central Europe is uncovered by representative stations. The first measurement point, established under the EUROHYDROS EU program, on the territory of Poland was Kraków city. Different laboratory setups was tested there and compared to each other. The Kraków area has significant car traffic and its geographical location implies frequent temperature inversions in lower troposphere leading to the accumulation of trace gases in atmosphere of the city. Observations launched in 2007 revealed that the concentration of hydrogen fluctuates strongly within diurnal and seasonal timescales. Its average concentration is three times larger than this, observed at the other stations. The European "background" concentrations of hydrogen are not reflected in the Krakow record. An ideal place to carry out observation of the regional air composition for Central Europe is a research station located in the meteorological observatory at Kasprowy Wierch. Measurement point at the top of mountain peak with elevation of 2000m a.s.l. gives an access to the well mixed troposphere. The station delivers also the necessary facilities and logistics. Since year 1996 greenhouse gas measurement program has been operating at this point. The first measurements of atmospheric concentrations of hydrogen at Kasprowy Wierch were performed in year 2010, based on dedicated gas chromatograph using RGD detector installed at the station. Analysis of hydrogen content in the outside air is performed without any enrichment

  19. Absolute measurements of the uranium concentration in thick samples using fission-track detectors

    NASA Astrophysics Data System (ADS)

    Enkelmann, Eva; Jonckheere, Raymond; Ratschbacher, Lothar

    2005-04-01

    We propose an improved equation for calculating the uranium concentration in thick samples based on induced fission-track counts in an external detector that takes into consideration (1) the fission-fragment ranges in the sample and external detector, (2) the etchable track length and (3) the track counting efficiency in the external detector. The values of these parameters have been determined by calculation and experiment and are shown to have a significant effect on the calculated uranium concentrations. The new equation was tested by calculating the uranium concentrations in standard uranium glasses (CN-5; IRMM-540R) and apatite samples (Durango; horse tooth) in which the uranium content was also determined with independent methods (INAA; ENAA; TIMS). The results show that: (1) accurate measurements with the fission-track method are feasible within a broad range of uranium concentrations and (2) uranium determinations based on standards are only accurate if the standard and sample are made of the same material. Because the absolute fission-tack dating method is also based on accurate thermal neutron fluence measurements and similar correction factors for the track registration and counting efficiencies, this study provides a strong endorsement for the fact that absolute fission-track ages are accurate.

  20. Direct measurement of nutrient concentrations in freshwaters with a miniaturized analytical probe: evaluation and validation.

    PubMed

    Copetti, D; Valsecchi, L; Capodaglio, A G; Tartari, G

    2017-04-01

    This work deals with the evaluation of the aqueous concentrations of dissolved reactive phosphorus (DRP), total phosphorus (TP), and ammonium nitrogen (N-NH4) in surface water by means of direct online instrumentation. A portable, submersible, and automated analyzer designed to measure dissolved and total nutrient concentrations characterized by miniaturization of the entire analytical process was tested against laboratory methods. A total number of 36 water samples of different origin (i.e., rain, river, lake, and sewage waters) were analyzed and used in the comparison of DRP, TP, and N-NH4 data. Raw data were distributed in a broad range of concentrations: 5-299 μg P/L for DRP, 7-97 μg P/L for TP, and 11-332 μg N/L for N-NH4. Regression analysis underlined a high significant correlation between the measures of the probe and those of the laboratory (0.6 < R (2) < 0.9; p < 0.001) and pointed out the effectiveness of the new instrument in representing a broad range of nutrient concentrations.

  1. Elastic Stability of Concentric Tube Robots: A Stability Measure and Design Test

    PubMed Central

    Gilbert, Hunter B.; Hendrick, Richard J.; Webster, Robert J.

    2016-01-01

    Concentric tube robots are needle-sized manipulators which have been investigated for use in minimally invasive surgeries. It was noted early in the development of these devices that elastic energy storage can lead to rapid snapping motion for designs with moderate to high tube curvatures. Substantial progress has recently been made in the concentric tube robot community in designing snap-free robots, planning stable paths, and characterizing conditions that result in snapping for specific classes of concentric tube robots. However, a general measure for how stable a given robot configuration is has yet to be proposed. In this paper, we use bifurcation and elastic stability theory to provide such a measure, as well as to produce a test for determining whether a given design is snap-free (i.e. whether snapping can occur anywhere in the unloaded robot’s workspace). These results are useful in designing, planning motions for, and controlling concentric tube robots with high curvatures. PMID:27042170

  2. Diamagnetic measurements by concentric loops in the HL-2A tokamak.

    PubMed

    Ji, X Q; Yang, Q W; Xu, Y; Sun, T F; Yuan, B S; Feng, B B; Liu, Y; Cui, Z Y; Lu, J

    2013-08-01

    The diamagnetic concentric loop method in the HL-2A tokamak is described in this article. The system consists of two concentric poloidal loops with different areas enclosing the plasma column and a short time constant differential integrator, RC < 1 ms. The diamagnetic flux in HL-2A ranges from 1 mWb to 2 mWb for typical discharges with plasma current Ip = 100-400 kA. The integrator output ranges from 0.1 V to 0.2 V with time constant RC = 0.5 ms, and differential area ΔS∕Sout ≈ 7%. Using hybrid analog-digital compensation, the integration drift can be well compensated within 5 mV∕10 s, which can meet the requirement of the concentric loop system. In this method, the measurement of differential area ΔS is not required. The vacuum toroidal flux can be compensated by adjusting the resistance in the integration circuit for several discharges with toroidal field only, which minimizes the additional error produced by a measurement of differential area. The diamagnetic concentric loop system improved the signal to noise ratio by using the short time constant integration. The system with a resolution of ±0.2 kJ can be used to study rapid changes in plasma stored energy, such as the additional power absorbed by the plasma, and the energy loss caused by edge localized modes.

  3. Evaluation of a novel method for measurement of intracellular calcium ion concentration in fission yeast.

    PubMed

    Ogata, Fumihiko; Satoh, Ryosuke; Kita, Ayako; Sugiura, Reiko; Kawasaki, Naohito

    2017-01-01

    The distribution of metal and metalloid species in each of the cell compartments is termed as "metallome". It is important to elucidate the molecular mechanism underlying the beneficial or toxic effects exerted by a given metal or metalloid on human health. Therefore, we developed a method to measure intracellular metal ion concentration (particularly, intracellular calcium ion) in fission yeast. We evaluated the effects of nitric acid (HNO3), zymolyase, and westase treatment on cytolysis in fission yeast. Moreover, we evaluated the changes in the intracellular calcium ion concentration in fission yeast in response to treatment with/without micafungin. The fission yeast undergoes lysis when treated with 60% HNO3, which is simpler and cheaper compared to the other treatments. Additionally, the intracellular calcium ion concentration in 60% HNO3-treated fission yeast was determined by inductively coupled plasma atomic emission spectrometry. This study yields significant information pertaining to measurement of the intracellular calcium ion concentration in fission yeast, which is useful for elucidating the physiological or pathological functions of calcium ion in the biological systems. This study is the first step to obtain perspective view on the effect of the metallome in biological systems.

  4. A non-invasive photoacoustic and ultrasonic method for the measurement of glucose solution concentration

    NASA Astrophysics Data System (ADS)

    Zhao, Siwei; Tao, Wei; He, Qiaozhi; Zhao, Hui; Cao, Wenwu

    2017-03-01

    Diabetes mellitus (DM) is a chronic disease affecting nearly 400 million people worldwide. In order to manage the disease, patients need to monitor the blood glucose level by puncturing the finger several times a day, which is uncomfortable and inconvenient. We present here a potential non-invasive monitoring method based on the velocity of ultrasonic waves generated in glucose solution by the photoacoustic principal, which can recognize the glucose concentration down to 20mg/dL. In order to apply this method to warm bodies, we carefully designed the experiment and performed measurements from 30 °C to 50 °C to generate a set of calibration curves, which may be used by engineers to build devices. Most importantly, we have theoretically explained the relationship between the compressibility and the glucose concentration. Our results show that the compressibility of solution decreases with the glucose concentration, which clarified the controversy between theory and experiment results in the literature. The derived formula is generally validity, which can be used to nondestructively measure solution concentration for other types of solutions using photoacoustic principle.

  5. The relationship between measured moisture conditions and fungal concentrations in water-damaged building materials.

    PubMed

    Pasanen, A L; Rautiala, S; Kasanen, J P; Raunio, P; Rantamäki, J; Kalliokoski, P

    2000-06-01

    We determined the moisture levels, relative humidity (RH) or moisture content (MC) of materials, and concentrations of culturable fungi, actinomycetes and total spores as well as a composition of fungal flora in 122 building material samples collected from 18 moisture problem buildings. The purpose of this work was to clarify if the is any correlation between the moisture parameters and microbial levels or generic composition depending on the type of materials and the time passed after a water damage. The results showed an agreement between the concentrations of total spores and culturable fungi for the wood, wood-based and gypsum board samples (r > 0.47). The concentrations of total spores and/or culturable fungi correlated with RH of materials particularly among the wood and insulation materials (r > 0.79), but not usually with MC (r < 0.45). For the samples collected from ongoing damage, there was a correlation between RH of materials and the concentrations of total spores and culturable fungi (r > 0.51), while such a relationship could not be observed for the samples taken from dry damage. A wide range of fungal species were found in the samples from ongoing damage, whereas Penicillia and in some cases yeasts dominated the fungal flora in the dry samples. This study indicates that fungal contamination can be evaluated on the basis of moisture measurements of constructions in ongoing damage, but the measurements are not solely adequate for estimation of possible microbial growth in dry damage.

  6. Planar Laser-Induced Fluorescence fuel concentration measurements in isothermal Diesel sprays.

    PubMed

    Pastor, José; López, José; Juliá, J; Benajes, Jesús

    2002-04-08

    This paper presents a complete methodology to perform fuel concentration measurements of Diesel sprays in isothermal conditions using the Planar Laser-Induced Fluorescence (PLIF) technique. The natural fluorescence of a commercial Diesel fuel is used with an excitation wavelength of 355 nm. The correction and calibration procedures to perform accurate measurements are studied. These procedures include the study of the fluorescence characteristics of the fuel as well as the correction of the laser sheet non-homogeneities and the losses due to Mie scattering, absorption and autoabsorption. The results obtained are compared with theoretical models and other experimental techniques.

  7. Ultrasonic device for real-time sewage velocity and suspended particles concentration measurements.

    PubMed

    Abda, F; Azbaid, A; Ensminger, D; Fischer, S; François, P; Schmitt, P; Pallarès, A

    2009-01-01

    In the frame of a technological research and innovation network in water and environment technologies (RITEAU, Réseau de Recherche et d'Innovation Technologique Eau et Environnement), our research group, in collaboration with industrial partners and other research institutions, has been in charge of the development of a suitable flowmeter: an ultrasonic device measuring simultaneously the water flow and the concentration of size classes of suspended particles. Working on the pulsed ultrasound principle, our multi-frequency device (1 to 14 MHz) allows flow velocity and water height measurement and estimation of suspended solids concentration. Velocity measurements rely on the coherent Doppler principle. A self developed frequency estimator, so called Spectral Identification method, was used and compared to the classical Pulse-Pair method. Several measurements campaigns on one wastewater collector of the French city of Strasbourg gave very satisfactory results and showed smaller standard deviation values for the Doppler frequency extracted by the Spectral Identification method. A specific algorithm was also developed for the water height measurements. It relies on the water surface acoustic impedance rupture and its peak localisation and behaviour in the collected backscattering data. This algorithm was positively tested on long time measurements on the same wastewater collector. A large part of the article is devoted to the measurements of the suspended solids concentrations. Our data analysis consists in the adaptation of the well described acoustic behaviour of sand to the behaviour of wastewater particles. Both acoustic attenuation and acoustic backscattering data over multiple frequencies are analyzed for the extrapolation of size classes and respective concentrations. Under dry weather conditions, the massic backscattering coefficient and the overall size distribution showed similar evolution whatever the measurement site was and were suggesting a global

  8. Quantitative Measurements of Nitric Oxide Concentration in High-Pressure, Swirl-Stabilized Spray Flames

    NASA Technical Reports Server (NTRS)

    Cooper, Clayton S.; Laurendeau, Normand M.; Hicks, Yolanda R. (Technical Monitor)

    2000-01-01

    Lean direct-injection (LDI) spray flames offer the possibility of reducing NO(sub x) emissions from gas turbines by rapid mixing of the liquid fuel and air so as to drive the flame structure toward partially-premixed conditions. We consider the technical approaches required to utilize laser-induced fluorescence methods for quantitatively measuring NO concentrations in high-pressure LDI spray flames. In the progression from atmospheric to high-pressure measurements, the LIF method requires a shift from the saturated to the linear regime of fluorescence measurements. As such, we discuss quantitative, spatially resolved laser-saturated fluorescence (LSF), linear laser-induced fluorescence (LIF), and planar laser-induced fluorescence (PLIF) measurements of NO concentration in LDI spray flames. Spatially-resolved LIF measurements of NO concentration (ppm) are reported for preheated, LDI spray flames at pressures of two to five atmospheres. The spray is produced by a hollow-cone, pressure-atomized nozzle supplied with liquid heptane. NO is excited via the Q(sub 2)(26.5) transition of the gamma(0,0) band. Detection is performed in a two nanometer region centered on the gamma(0,1) band. A complete scheme is developed by which quantitative NO concentrations in high-pressure LDI spray flames can be measured by applying linear LIF. NO is doped into the reactants and convected through the flame with no apparent destruction, thus allowing a NO fluorescence calibration to be taken inside the flame environment. The in-situ calibration scheme is validated by comparisons to a reference flame. Quantitative NO profiles are presented and analyzed so as to better understand the operation of lean-direct injectors for gas turbine combustors. Moreover, parametric studies are provided for variations in pressure, air-preheat temperature, and equivalence ratio. Similar parametric studies are performed for lean, premixed-prevaporized flames to permit comparisons to those for LDI flames

  9. X-ray, K-edge measurement of uranium concentration in reactor fuel plates

    SciTech Connect

    Jensen, T.; Aljundi, T.; Whitmore, C.; Zhong, H.; Gray, J.N.

    1997-11-26

    Under the Characterization, Monitoring, and Sensor Technology Crosscutting Program, the authors have designed and built a K-edge heavy-metal detector that measures the level of heavy-metal content inside closed containers in a nondestructive, non-invasive way. They have applied this technique to measurement of the amount of uranium in stacks of reactor fuel plates containing nuclear materials of different enrichments and alloys. They have obtained good agreement with expected uranium concentrations ranging from 60 mg/cm{sup 2} to 3,000 mg/cm{sup 2}, and have demonstrated that the instrument can operate in a high radiation field (> 200 mR/hr).

  10. Thermodynamic correction of particle concentrations measured by underwing probes on fast-flying aircraft

    NASA Astrophysics Data System (ADS)

    Weigel, Ralf; Spichtinger, Peter; Mahnke, Christoph; Klingebiel, Marcus; Afchine, Armin; Petzold, Andreas; Krämer, Martina; Costa, Anja; Molleker, Sergej; Reutter, Philipp; Szakáll, Miklós; Port, Max; Grulich, Lucas; Jurkat, Tina; Minikin, Andreas; Borrmann, Stephan

    2016-10-01

    Particle concentration measurements with underwing probes on aircraft are impacted by air compression upstream of the instrument body as a function of flight velocity. In particular, for fast-flying aircraft the necessity arises to account for compression of the air sample volume. Hence, a correction procedure is needed to invert measured particle number concentrations to ambient conditions that is commonly applicable to different instruments to gain comparable results. In the compression region where the detection of particles occurs (i.e. under factual measurement conditions), pressure and temperature of the air sample are increased compared to ambient (undisturbed) conditions in certain distance away from the aircraft. Conventional procedures for scaling the measured number densities to ambient conditions presume that the air volume probed per time interval is determined by the aircraft speed (true air speed, TAS). However, particle imaging instruments equipped with pitot tubes measuring the probe air speed (PAS) of each underwing probe reveal PAS values systematically below those of the TAS. We conclude that the deviation between PAS and TAS is mainly caused by the compression of the probed air sample. From measurements during two missions in 2014 with the German Gulfstream G-550 (HALO - High Altitude LOng range) research aircraft we develop a procedure to correct the measured particle concentration to ambient conditions using a thermodynamic approach. With the provided equation, the corresponding concentration correction factor ξ is applicable to the high-frequency measurements of the underwing probes, each of which is equipped with its own air speed sensor (e.g. a pitot tube). ξ values of 1 to 0.85 are calculated for air speeds (i.e. TAS) between 60 and 250 m s-1. For different instruments at individual wing position the calculated ξ values exhibit strong consistency, which allows for a parameterisation of ξ as a function of TAS for the current HALO

  11. Measurement of fluorescent probes concentration ratio in the cerebrospinal fluid for early detection of Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Harbater, Osnat; Gannot, Israel

    2014-03-01

    The pathogenic process of Alzheimer's Disease (AD), characterized by amyloid plaques and neurofibrillary tangles in the brain, begins years before the clinical diagnosis. Here, we suggest a novel method which may detect AD up to nine years earlier than current exams, minimally invasive, with minimal risk, pain and side effects. The method is based on previous reports which relate the concentrations of biomarkers in the Cerebrospinal Fluid (CSF) (Aβ and Tau proteins) to the future development of AD in mild cognitive impairment patients. Our method, which uses fluorescence measurements of the relative concentrations of the CSF biomarkers, replaces the lumbar puncture process required for CSF drawing. The process uses a miniature needle coupled trough an optical fiber to a laser source and a detector. The laser radiation excites fluorescent probes which were prior injected and bond to the CSF biomarkers. Using the ratio between the fluorescence intensities emitted from the two biomarkers, which is correlated to their concentration ratio, the patient's risk of developing AD is estimated. A theoretical model was developed and validated using Monte Carlo simulations, demonstrating the relation between fluorescence emission and biomarker concentration. The method was tested using multi-layered tissue phantoms simulating the epidural fat, the CSF in the sub-arachnoid space and the bone. These phantoms were prepared with different scattering and absorption coefficients, thicknesses and fluorescence concentrations in order to simulate variations in human anatomy and in the needle location. The theoretical and in-vitro results are compared and the method's accuracy is discussed.

  12. Subaru Weak Lensing Measurements of Four Strong Lensing Clusters: Are Lensing Clusters Over-Concentrated?

    SciTech Connect

    Oguri, Masamune; Hennawi, Joseph F.; Gladders, Michael D.; Dahle, Haakon; Natarajan, Priyamvada; Dalal, Neal; Koester, Benjamin P.; Sharon, Keren; Bayliss, Matthew

    2009-01-29

    We derive radial mass profiles of four strong lensing selected clusters which show prominent giant arcs (Abell 1703, SDSS J1446+3032, SDSS J1531+3414, and SDSS J2111-0115), by combining detailed strong lens modeling with weak lensing shear measured from deep Subaru Suprime-cam images. Weak lensing signals are detected at high significance for all four clusters, whose redshifts range from z = 0.28 to 0.64. We demonstrate that adding strong lensing information with known arc redshifts significantly improves constraints on the mass density profile, compared to those obtained from weak lensing alone. While the mass profiles are well fitted by the universal form predicted in N-body simulations of the {Lambda}-dominated cold dark matter model, all four clusters appear to be slightly more centrally concentrated (the concentration parameters c{sub vir} {approx} 8) than theoretical predictions, even after accounting for the bias toward higher concentrations inherent in lensing selected samples. Our results are consistent with previous studies which similarly detected a concentration excess, and increases the total number of clusters studied with the combined strong and weak lensing technique to ten. Combining our sample with previous work, we find that clusters with larger Einstein radii are more anomalously concentrated. We also present a detailed model of the lensing cluster Abell 1703 with constraints from multiple image families, and find the dark matter inner density profile to be cuspy with the slope consistent with -1, in agreement with expectations.

  13. Low temperature measurements of state-of-the-art concentrator solar cells

    NASA Astrophysics Data System (ADS)

    Rumyantsev, Valery D.; Chekalin, Alexander V.; Malevskiy, Dmitry A.; Shvarts, Maxim Z.; Andreev, Valery M.

    2015-09-01

    Knowing the temperature behavior of the photovoltaic parameters in multi-junction (MJ) solar cells (SCs) can give information suitable for comparing different cell structures and for estimating a potential of their operation in various environmental conditions. As a rule, the cell structures are designed specifically for terrestrial (with high sunlight concentration), or space (sometimes with relatively low concentration) applications, differing in certain, but not principal, details. Structural improvements introduced in one of the cell types may highlight the effective ways for improvements applicable for another cell type. In this work, a set of the state-of-the-art concentrator triple-junction SCs were investigated to analyze the influence of temperature in a very wide range of -170 ≤ T ≤ +85°C, together with the sunlight concentration ratio variation, on the cell performance. In particular, the PV conversion efficiencies as high as 50 - 52% (AM1.5d) have been measured in the temperature range of -120 - -150°C for the sunlight concentration ratios of C = 50 - 300 suns. Such investigations may be regarded as a tool for revealing the presence of the "parasitic" built-in energy barriers at cell structure optimization.

  14. Exit plane H2O concentration measurements correlated with OH PLIF near-injector mixing measurements for scramjet flows

    NASA Technical Reports Server (NTRS)

    Parker, T. E.; Allen, Mark G.; Foutter, R. R.; Sonnenfroh, D. M.; Rawlins, W. T.

    1992-01-01

    Mixing and combusting high enthalpy flows, similar to those encountered in scramjet engines, were investigated using a shock tunnel to produce the flow in conjunction with non-intrusive optical diagnostics which monitored the performance of two injector configurations. The shock tunnel is configured to produce Mach 3 flow and stagnation enthalpies corresponding to flight equivalent Mach numbers between 7 and 11. A pulsed hydrogen injection capability and interchangeable injector blocks provide a means of examining high speed, high enthalpy reacting flows. Planar laser induced fluorescence (PLIF) of OH molecules in the near injector region produced images which show the combusting and mixing zones for the reacting flow. Line-of-sight exit plane measurement of water concentration and temperature were used to provide a unique method of monitoring exit plane products. These results demonstrated that a velocity matched axial injection system produced a fuel jet that lifted off the floor of the duct. Mixing was observed to increase for this system as a velocity mismatch was introduced. Comparison of exit plane water concentrations for a wall jet injection system and a velocity matched injection system indicated similar mixing performance but an accurate pressure measurement is necessary to further validate the result. In addition, exit plane measurements indicated an approximate steady-state condition was achieved during the 1 to 2 ms test times.

  15. High speed velocimetry and concentration measurements in a microfluidic mixer using fluorescence confocal microscopy

    NASA Astrophysics Data System (ADS)

    Inguva, Venkatesh; Perot, Blair; Kathuria, Sagar; Rothstein, Jonathan; Bilsel, Osman

    2016-11-01

    This work experimentally examines the performance of a quasi-turbulent micro-mixer that was designed to produce rapid mixing for protein-folding experiments. The original design of the mixer was performed using Direct Numerical Simulation (DNS) of the flow field and LES of the high Sc number scalar field representing the protein. The experimental work is designed to validate the DNS results. Both the velocity field and the protein concentration require validation. Different experiments were carried out to measure these two quantities. Concentration measurements are performed using a 488nm continuous wave laser coupled with a confocal microscope to measure fluorescence intensity during mixing. This is calibrated using the case where no mixing occurs. The velocity measurements use a novel high speed velocimetry technique capable of measuring speeds on the order of 10 m/s in a micro channel. The technique involves creating a pulsed confocal volume from a Ti-Sapphire laser with a pulse width of 260ns and observing the decay of fluorescence due to the fluid motion. Results from both experiments will be presented along with a comparison to the DNS results. The work is supported by NSF IDBR Award No. 1353942.

  16. Real-time measurements of suspended sediment concentration and particle size using five techniques

    NASA Astrophysics Data System (ADS)

    Felix, D.; Albayrak, I.; Abgottspon, A.; Boes, R. M.

    2016-11-01

    Fine sediments are important in the design and operation of hydropower plants (HPPs), in particular with respect to sediment management and hydro-abrasive erosion in hydraulic machines. Therefore, there is a need for reliable real-time measurements of suspended sediment mass concentration (SSC) and particle size distribution (PSD). The following instruments for SSC measurements were investigated in a field study during several years at the HPP Fieschertal in the Swiss Alps: (1) turbidimeters, (2) a Laser In-Situ Scattering and Trans- missometry instrument (LISST), (3) a Coriolis Flow and Density Meter (CFDM), (4) acoustic transducers, and (5) pressure sensors. LISST provided PSDs in addition to concentrations. Reference SSCs were obtained by gravimetrical analysis of automatically taken water samples. In contrast to widely used turbidimeters and the single-frequency acoustic method, SSCs obtained from LISST, the CFDM or the pressure sensors were less or not affected by particle size variations. The CFDM and the pressure sensors allowed measuring higher SSC than the optical or the acoustic techniques (without dilution). The CFDM and the pressure sensors were found to be suitable to measure SSC ≥ 2 g/l. In this paper, the measuring techniques, instruments, setup, methods for data treatment, and selected results are presented and discussed.

  17. 1D Measurement of Sodium Ion Flow in Hydrogel After a Bath Concentration Jump.

    PubMed

    Roos, R W; Pel, L; Huinink, H P; Huyghe, J M

    2015-07-01

    NMR is used to measure sodium flow driven by a 1D concentration gradient inside poly-acrylamid (pAA) hydrogel. A sodium concentration jump from 0.5 M NaCl to 0 M NaCl is applied at the bottom of a cylindrical pAA sample. The sodium level and hydrogen level are measured as a function of time and position inside the sample for 5 days. Then a reversed step is applied, and ion flow is measured for another 5 days. During the measurement, the cylindrical sample is radially confined and allowed to swell in the axial direction. At the same time, sodium and moisture in the sample are measured on a 1D spatial grid in the axial direction. A quadriphasic mixture model (Huyghe and Janssen in Int J Eng Sci 35:793, 1997) is used to simulate the results and estimate the diffusion coefficient of sodium and chloride. The best fit results were obtained for D[Formula: see text] cm(2)/s and D[Formula: see text] cm(2)/s, at 25 degrees centigrade. Different time constants were observed for swelling and deswelling.

  18. [The effectiveness of ultralow doses and concentrations of biologically active compounds].

    PubMed

    Ashmarin, I P; Lelekova, T V; Sanzhieva, L Ts

    1992-01-01

    Numerous data of literature are analysed on the biological activity of ultra-low (10(-12)-10(-19) M) concentrations and corresponding doses of same bioregulators. Our own data are presented on the modulation of lymphatic vessel contractility by peptides (thyroliberin, defensin, and tuftsin) in concentrations ranging from 10(-13) to 10(-16) M. Hypothetic mechanisms of these phenomena are discussed.

  19. Strontium-90 activity concentration in soil samples from the exclusion zone of the Fukushima daiichi nuclear power plant

    PubMed Central

    Sahoo, Sarata Kumar; Kavasi, Norbert; Sorimachi, Atsuyuki; Arae, Hideki; Tokonami, Shinji; Mietelski, Jerzy Wojciech; Łokas, Edyta; Yoshida, Satoshi

    2016-01-01

    The radioactive fission product 90Sr has a long biological half-life (˜18 y) in the human body. Due to its chemical similarity to calcium it accumulates in bones and irradiates the bone marrow, causing its high radio-toxicity. Assessing 90Sr is therefore extremely important in case of a nuclear disaster. In this work 16 soil samples were collected from the exclusion zone (<30 km) of the earthquake-damaged Fukushima Daiichi nuclear power plant, to measure 90Sr activity concentration using liquid scintillation counting. 137Cs activity concentration was also measured with gamma-spectroscopy in order to investigate correlation with 90Sr. The 90Sr activity concentrations ranged from 3.0 ± 0.3 to 23.3 ± 1.5 Bq kg−1 while the 137Cs from 0.7 ± 0.1 to 110.8 ± 0.3 kBq kg−1. The fact that radioactive contamination originated from the Fukushima nuclear accident was obvious due to the presence of 134Cs. However, 90Sr contamination was not confirmed in all samples although detectable amounts of 90Sr can be expected in Japanese soils, as a background, stemming from global fallout due to the atmospheric nuclear weapon tests. Correlation analysis between 90Sr and 137Cs activity concentrations provides a potentially powerful tool to discriminate background 90Sr level from its Fukushima contribution. PMID:27048779

  20. Strontium-90 activity concentration in soil samples from the exclusion zone of the Fukushima daiichi nuclear power plant.

    PubMed

    Sahoo, Sarata Kumar; Kavasi, Norbert; Sorimachi, Atsuyuki; Arae, Hideki; Tokonami, Shinji; Mietelski, Jerzy Wojciech; Łokas, Edyta; Yoshida, Satoshi

    2016-04-06

    The radioactive fission product (90)Sr has a long biological half-life (˜18 y) in the human body. Due to its chemical similarity to calcium it accumulates in bones and irradiates the bone marrow, causing its high radio-toxicity. Assessing (90)Sr is therefore extremely important in case of a nuclear disaster. In this work 16 soil samples were collected from the exclusion zone (<30 km) of the earthquake-damaged Fukushima Daiichi nuclear power plant, to measure (90)Sr activity concentration using liquid scintillation counting. (137)Cs activity concentration was also measured with gamma-spectroscopy in order to investigate correlation with (90)Sr. The (90)Sr activity concentrations ranged from 3.0 ± 0.3 to 23.3 ± 1.5 Bq kg(-1) while the (137)Cs from 0.7 ± 0.1 to 110.8 ± 0.3 kBq kg(-1). The fact that radioactive contamination originated from the Fukushima nuclear accident was obvious due to the presence of (134)Cs. However, (90)Sr contamination was not confirmed in all samples although detectable amounts of (90)Sr can be expected in Japanese soils, as a background, stemming from global fallout due to the atmospheric nuclear weapon tests. Correlation analysis between (90)Sr and (137)Cs activity concentrations provides a potentially powerful tool to discriminate background (90)Sr level from its Fukushima contribution.

  1. Strontium-90 activity concentration in soil samples from the exclusion zone of the Fukushima daiichi nuclear power plant

    NASA Astrophysics Data System (ADS)

    Sahoo, Sarata Kumar; Kavasi, Norbert; Sorimachi, Atsuyuki; Arae, Hideki; Tokonami, Shinji; Mietelski, Jerzy Wojciech; Łokas, Edyta; Yoshida, Satoshi

    2016-04-01

    The radioactive fission product 90Sr has a long biological half-life (˜18 y) in the human body. Due to its chemical similarity to calcium it accumulates in bones and irradiates the bone marrow, causing its high radio-toxicity. Assessing 90Sr is therefore extremely important in case of a nuclear disaster. In this work 16 soil samples were collected from the exclusion zone (<30 km) of the earthquake-damaged Fukushima Daiichi nuclear power plant, to measure 90Sr activity concentration using liquid scintillation counting. 137Cs activity concentration was also measured with gamma-spectroscopy in order to investigate correlation with 90Sr. The 90Sr activity concentrations ranged from 3.0 ± 0.3 to 23.3 ± 1.5 Bq kg‑1 while the 137Cs from 0.7 ± 0.1 to 110.8 ± 0.3 kBq kg‑1. The fact that radioactive contamination originated from the Fukushima nuclear accident was obvious due to the presence of 134Cs. However, 90Sr contamination was not confirmed in all samples although detectable amounts of 90Sr can be expected in Japanese soils, as a background, stemming from global fallout due to the atmospheric nuclear weapon tests. Correlation analysis between 90Sr and 137Cs activity concentrations provides a potentially powerful tool to discriminate background 90Sr level from its Fukushima contribution.

  2. Photoacoustic spectroscopy-based detector for measuring benzene and toluene concentration in gas and liquid samples

    NASA Astrophysics Data System (ADS)

    Hanyecz, Veronika; Mohácsi, Árpád; Puskás, Sándor; Vágó, Árpád; Szabó, Gábor

    2011-12-01

    Here we present a novel instrument for on-line, automatic measurement of benzene and toluene concentration in gas and liquid samples produced in the natural gas industry. Operation of the instrument is based on the collection of analytes on an adsorbent, separation using a chromatographic column and detection by near-infrared diode laser-based photoacoustic spectroscopy. Sample handling, measurement and data evaluation are carried out fully automatically, using an integrated, programmable electronic unit. The instrument was calibrated in the laboratory for natural gas, nitrogen and liquid glycol samples, and tested under field conditions at a natural gas dehydration unit of the MOL Hungarian Oil and Gas Company. Minimum detectable concentrations (3σm-1) were found to be 2.5 µg l-1 for benzene and 4 µg l-1 for toluene in gas samples, while 1.5 mg l-1 for benzene and 3 mg l-1 for toluene in liquid samples, which is suitable for measuring benzene and toluene concentration in natural gas and glycol samples occurring at natural gas dehydration plants.

  3. Characterization of a Quadrotor Unmanned Aircraft System for Aerosol-Particle-Concentration Measurements.

    PubMed

    Brady, James M; Stokes, M Dale; Bonnardel, Jim; Bertram, Timothy H

    2016-02-02

    High-spatial-resolution, near-surface vertical profiling of atmospheric chemical composition is currently limited by the availability of experimental platforms that can sample in constrained environments. As a result, measurements of near-surface gradients in trace gas and aerosol particle concentrations have been limited to studies conducted from fixed location towers or tethered balloons. Here, we explore the utility of a quadrotor unmanned aircraft system (UAS) as a sampling platform to measure vertical and horizontal concentration gradients of trace gases and aerosol particles at high spatial resolution (1 m) within the mixed layer (0-100 m). A 3D Robotics Iris+ autonomous quadrotor UAS was outfitted with a sensor package consisting of a two-channel aerosol optical particle counter and a CO2 sensor. The UAS demonstrated high precision in both vertical (±0.5 m) and horizontal positions (±1 m), highlighting the potential utility of quadrotor UAS drones for aerosol- and trace-gas measurements within complex terrain, such as the urban environment, forest canopies, and above difficult-to-access areas such as breaking surf. Vertical profiles of aerosol particle number concentrations, acquired from flights conducted along the California coastline, were used to constrain sea-spray aerosol-emission rates from coastal wave breaking.

  4. Temperature Dependent Measurement And Simulation Of Fresnel Lenses For Concentrating Photovoltaics

    NASA Astrophysics Data System (ADS)

    Hornung, Thorsten; Bachmaier, Andreas; Nitz, Peter; Gombert, Andreas

    2010-10-01

    Concentrating photovoltaics (CPV) require large areas of optical components that concentrate incident sunlight effectively onto a solar cell. Fresnel lenses are often used as primary optical component providing this concentration. When applied in the field, varying conditions during operation lead to variations in lens temperature which has a strong impact on the optical efficiency of the lenses. A setup for indoor characterization with the ability to heat lens plates allows for the assessment of the quality of Fresnel lenses by means of their irradiance profiles in the focal plane. To analyze the measured temperature dependency we simulate thermal deformations of the lens geometry with finite element method (FEM) tools and use the resulting lens geometry as an input to ray tracing simulations. We performed high accuracy measurements of the temperature and wavelength dependent refractive indices of relevant lens materials to obtain additional input data for computer simulations. A close match between computer simulations and measurements of the irradiance in the focal plane could be achieved, validating our simulation approach. This allows us to judge and optimize the temperature dependence of new lens designs before building and testing prototypes. The simulations themselves allow us to analyze and understand all superimposed effects in detail. The developed tools in combination with detailed solar resource data and knowledge of the CPV system will be the basis for future assessment of overall performance and further optimization of optics for CPV applications.

  5. Measurement of concentrations and dry surface fluxes of atmospheric nitrates in the presence of ammonia

    SciTech Connect

    Huebert, B.J.; Luke, W.T.; Delany, A.C.; Brost, R.A.

    1988-06-20

    We measured vertical gradients of nitric acid vapor and nitrate aerosol near the Boulder Atmospheric Observatory (BAO) tower, 20 km north of Dever, Colorado. This site was usually downwind of two large ammonia sources, a cattle feedlot and a chicken farm . The gradients we observed were very different from measurements at other sites: the aerosol gradient was in many cases steeper than that of the vapor, even though both experience and theory predict that aerosol dry deposition should be much slower (with a correspondingly flatter gradient) than that for nitric acid vapor. In some cases we even saw an apparent emission of nitric acid vapor, with the highest concentrations near the surface. These results are consistent with the predictions of a model which couples the evaporation of ammonium nitrate aerosol to the rapid dry deposition of nitric acid vapor. As deposition depletes the vapor near the surface, evaporation of the aerosol resupplies it. This produces a steep arerosol concentration gradient, even though the aerosol itself is not the form which is transported to the the receiving surfaces. One result of this coupling is that the traditional application of deposition velocities and measured concentrations to estimate dry nitric acid deposition may cause significant errors, since the individual species fluxes are not conserved (and may even have different signs under some conditions). The total nitrate flux is conserved, however, and may be the most predictable of the fluxes. copyright American Geophysical Union 1988

  6. Advancement of an Infra-Red Technique for Whole-Field Concentration Measurements in Fluidized Beds

    PubMed Central

    Medrano, Jose A.; de Nooijer, Niek C. A.; Gallucci, Fausto; van Sint Annaland, Martin

    2016-01-01

    For a better understanding and description of the mass transport phenomena in dense multiphase gas-solids systems such as fluidized bed reactors, detailed and quantitative experimental data on the concentration profiles is required, which demands advanced non-invasive concentration monitoring techniques with a high spatial and temporal resolution. A novel technique based on the selective detection of a gas component in a gas mixture using infra-red properties has been further developed. The first stage development was carried out using a very small sapphire reactor and CO2 as tracer gas. Although the measuring principle was demonstrated, the real application was hindered by the small reactor dimensions related to the high costs and difficult handling of large sapphire plates. In this study, a new system has been developed, that allows working at much larger scales and yet with higher resolution. In the new system, propane is used as tracer gas and quartz as reactor material. In this study, a thorough optimization and calibration of the technique is presented which is subsequently applied for whole-field measurements with high temporal resolution. The developed technique allows the use of a relatively inexpensive configuration for the measurement of detailed concentration fields and can be applied to a large variety of important chemical engineering topics. PMID:26927127

  7. Methane emission from naturally ventilated livestock buildings can be determined from gas concentration measurements.

    PubMed

    Bjerg, Bjarne; Zhang, Guoqiang; Madsen, Jørgen; Rom, Hans B

    2012-10-01

    Determination of emission of contaminant gases as ammonia, methane, or laughing gas from natural ventilated livestock buildings with large opening is a challenge due to the large variations in gas concentration and air velocity in the openings. The close relation between calculated animal heat production and the carbon dioxide production from the animals have in several cases been utilized for estimation of the ventilation air exchange rate for the estimation of ammonia and greenhouse gas emissions. Using this method, the problem of the complicated air velocity and concentration distribution in the openings is avoided; however, there are still some important issues remained unanswered: (1) the precision of the estimations, (2) the requirement for the length of measuring periods, and (3) the required measuring point number and location. The purpose of this work was to investigate how estimated average gas emission and the precision of the estimation are influenced by different calculation procedures, measuring period length, measure point locations, measure point numbers, and criteria for excluding measuring data. The analyses were based on existing data from a 6-day measuring period in a naturally ventilated, 150 milking cow building. The results showed that the methane emission can be determined with much higher precision than ammonia or laughing gas emissions, and, for methane, relatively precise estimations can be based on measure periods as short as 3 h. This result makes it feasible to investigate the influence of feed composition on methane emission in a relative large number of operating cattle buildings and consequently it can support a development towards reduced greenhouse gas emission from cattle production.

  8. Small business activity does not measure entrepreneurship.

    PubMed

    Henrekson, Magnus; Sanandaji, Tino

    2014-02-04

    Entrepreneurship policy mainly aims to promote innovative Schumpeterian entrepreneurship. However, the rate of entrepreneurship is commonly proxied using quantity-based metrics, such as small business activity, the self-employment rate, or the number of startups. We argue that those metrics give rise to misleading inferences regarding high-impact Schumpeterian entrepreneurship. To unambiguously identify high-impact entrepreneurs we focus on self-made billionaires (in US dollars) who appear on Forbes Magazine's list and who became wealthy by founding new firms. We identify 996 such billionaire entrepreneurs in 50 countries in 1996-2010, a systematic cross-country study of billionaire entrepreneurs. The rate of billionaire entrepreneurs correlates negatively with self-employment, small business ownership, and firm startup rates. Countries with higher income, higher trust, lower taxes, more venture capital investment, and lower regulatory burdens have higher billionaire entrepreneurship rates but less self-employment. Despite its limitations, the number of billionaire entrepreneurs appears to be a plausible cross-country measure of Schumpeterian entrepreneurship.

  9. Small business activity does not measure entrepreneurship

    PubMed Central

    Henrekson, Magnus; Sanandaji, Tino

    2014-01-01

    Entrepreneurship policy mainly aims to promote innovative Schumpeterian entrepreneurship. However, the rate of entrepreneurship is commonly proxied using quantity-based metrics, such as small business activity, the self-employment rate, or the number of startups. We argue that those metrics give rise to misleading inferences regarding high-impact Schumpeterian entrepreneurship. To unambiguously identify high-impact entrepreneurs we focus on self-made billionaires (in US dollars) who appear on Forbes Magazine’s list and who became wealthy by founding new firms. We identify 996 such billionaire entrepreneurs in 50 countries in 1996–2010, a systematic cross-country study of billionaire entrepreneurs. The rate of billionaire entrepreneurs correlates negatively with self-employment, small business ownership, and firm startup rates. Countries with higher income, higher trust, lower taxes, more venture capital investment, and lower regulatory burdens have higher billionaire entrepreneurship rates but less self-employment. Despite its limitations, the number of billionaire entrepreneurs appears to be a plausible cross-country measure of Schumpeterian entrepreneurship. PMID:24449873

  10. Response of soil microbial activity and biodiversity in soils polluted with different concentrations of cypermethrin insecticide.

    PubMed

    Tejada, Manuel; García, Carlos; Hernández, Teresa; Gómez, Isidoro

    2015-07-01

    We performed a laboratory study into the effect of cypermethrin insecticide applied to different concentrations on biological properties in two soils [Typic Xerofluvent (soil A) and Xerollic Calciorthid (soil B)]. Two kg of each soil were polluted with cypermethrin at a rate of 60, 300, 600, and 1,200 g ha(-1) (C1, C2, C3, and C4 treatments). A nonpolluted soil was used as a control (C0 treatment). For all treatments and each experimental soil, soil dehydrogenase, urease, β-glucosidase, phosphatase, and arylsulphatase activities and soil microbial community were analysed by phospholipid fatty acids, which were measured at six incubation times (3, 7, 15, 30, 60, and 90 days). The behavior of the enzymatic activities and microbial population were dependent on the dose of insecticide applied to the soil. Compared with the C0 treatment, in soil A, the maximum inhibition of the enzymatic activities was at 15, 30, 45, and 90 days for the C1, C2, C3, and C4 treatments, respectively. However, in soil B, the maximum inhibition occurred at 7, 15, 30, and 45 days for the C1, C2, C3, and C4 treatments, respectively. These results suggest that the cypermethrin insecticide caused a negative effect on soil enzymatic activities and microbial diversity. This negative impact was greater when a greater dose of insecticide was used; this impact was also greater in soil with lower organic matter content. For both soils, and from these respective days onward, the enzymatic activities and microbial populations progressively increased by the end of the experimental period. This is possibly due to the fact that the insecticide or its breakdown products and killed microbial cells, subsequently killed by the insecticide, are being used as a source of energy or as a carbon source for the surviving microorganisms for cell proliferation.

  11. Comparing modelled and measured ice crystal concentrations in orographic clouds during the INUPIAQ campaign

    NASA Astrophysics Data System (ADS)

    Farrington, Robert; Connolly, Paul J.; Lloyd, Gary; Bower, Keith N.; Flynn, Michael J.; Gallagher, Martin W.; Field, Paul R.; Dearden, Chris; Choularton, Thomas W.; Hoyle, Chris

    2016-04-01

    At temperatures between -35°C and 0°C, the presence of insoluble aerosols acting as ice nuclei (IN) is the only way in which ice can nucleate under atmospheric conditions. Previous field and laboratory campaigns have suggested that mineral dust present in the atmosphere act as IN at temperatures warmer than -35°C (e.g. Sassen et al. 2003); however, the cause of ice nucleation at temperatures greater than -10°C is less certain. In-situ measurements of aerosol properties and cloud micro-physical processes are required to drive the improvement of aerosol-cloud processes in numerical models. As part of the Ice NUcleation Process Investigation and Quantification (INUPIAQ) project, two field campaigns were conducted in the winters of 2013 and 2014 (Lloyd et al. 2014). Both campaigns included measurements of cloud micro-physical properties at the summit of Jungfraujoch in Switzerland (3580m asl), using cloud probes, including the Two-Dimensional Stereo Hydrometeor Spectrometer (2D-S), the Cloud Particle Imager 3V (CPI-3V) and the Cloud Aerosol Spectrometer with Depolarization (CAS-DPOL). The first two of these probes measured significantly higher ice number concentrations than those observed in clouds at similar altitudes from aircraft. In this contribution, we assess the source of the high ice number concentrations observed by comparing in-situ measurements at Jungfraujoch with WRF simulations applied to the region around Jungfraujoch. During the 2014 field campaign the model simulations regularly simulated ice particle concentrations that were 3 orders of magnitude per litre less than the observed ice number concentration, even taking into account the aerosol properties measured upwind. WRF was used to investigate a number of potential sources of the high ice crystal concentrations, including: an increased ice nucleating particle (INP) concentration, secondary ice multiplication and the advection of surface ice or snow crystals into the clouds. It was found that the

  12. 137Cs activity concentration in wild boar meat may still exceed the permitted levels

    NASA Astrophysics Data System (ADS)

    Rachubik, J.

    2012-04-01

    The radiocaesium activity concentration may still remain high in natural products such as game meat, wild mushrooms, and forest berries even more than two decades after the Chernobyl accident. The results of regular control studies of game meat conducted in Poland showed wild boars as the most contaminated game animals. It is well documented that some mushrooms, readily consumed by animals, show high ability to accumulate caesium radioisotopes. Bay bolete, one of the most wide-spread mushroom species in Poland, reveals a unique radiocaesium accumulation feature. Moreover, deer truffle, containing also particularly high levels of radiocaesium, could be another radionu-clide source for wild boars. Furthermore, animals consuming deer truffles could digest contaminated soil components. Among 94 wild boar meat samples analysed in 2008-2009, two exceeded the permitted level. Hence, some precautions should be taken in the population with an elevated intake of wild boar meat. Moreover, since each hunted wild boar is examined for the presence of Trichinella larvae, regular measurements of radiocaesium concentrations in these animals may be advisable for enhancing consumer safety.

  13. Analyzer for measurement of nitrogen oxide concentration by ozone content reduction in gas using solid state chemiluminescent sensor

    NASA Astrophysics Data System (ADS)

    Chelibanov, V. P.; Ishanin, G. G.; Isaev, L. N.

    2014-05-01

    Role of nitrogen oxide in ambient air is described and analyzed. New method of nitrogen oxide concentration measurement in gas phase is suggested based on ozone concentration measurement with titration by nitrogen oxide. Research of chemiluminescent sensor composition is carried out on experimental stand. The sensor produced on the base of solid state non-activated chemiluminescent composition is applied as ozone sensor. Composition is put on the surface of polymer matrix with developed surface. Sensor compositions includes gallic acid with addition of rodamine-6G. Model of interaction process between sensor composition and ozone has been developed, main products appeared during reaction are identified. The product determining the speed of luminescense appearance is found. This product belongs to quinone class. Then new structure of chemiluminescent composition was suggested, with absence of activation period and with high stability of operation. Experimental model of gas analyzer was constructed and operation algorithm was developed. It was demonstrated that developed NO measuring instrument would be applied for monitoring purposes of ambient air. This work was partially financially supported by Government of Russian Federation, Grant 074-U01