Science.gov

Sample records for activity crystal structures

  1. Crystal Structure of an Active Form of Human MMP-1

    PubMed Central

    Iyer, Shalini; Visse, Robert; Nagase, Hideaki; Acharya, K. Ravi

    2006-01-01

    The extracellular matrix is a dynamic environment that constantly undergoes remodelling and degradation during vital physiological processes such as angiogenesis, wound healing, and development. Unbalanced extracellular matrix breakdown is associated with many diseases such as arthritis, cancer and fibrosis. Interstitial collagen is degraded by matrix metalloproteinases with collagenolytic activity by MMP-1, MMP-8 and MMP-13, collectively known as the collagenases. Matrix metalloproteinase 1 (MMP-1) plays a pivotal role in degradation of interstitial collagen types I, II, and III. Here, we report the crystal structure of the active form of human MMP-1 at 2.67 Å resolution. This is the first MMP-1 structure that is free of inhibitor and a water molecule essential for peptide hydrolysis is observed coordinated with the active site zinc. Comparing this structure with the human proMMP-1 shows significant structural differences, mainly in the relative orientation of the hemopexin domain, between the pro form and active form of the human enzyme. PMID:16890240

  2. Crystal Structure of Human Plasma Platelet-Activating Factor Acetylhydrolase

    SciTech Connect

    Samanta, U.; Bahnson, B

    2008-01-01

    Human plasma platelet-activating factor (PAF) acetylhydrolase functions by reducing PAF levels as a general anti-inflammatory scavenger and is linked to anaphylactic shock, asthma, and allergic reactions. The enzyme has also been implicated in hydrolytic activities of other pro-inflammatory agents, such as sn-2 oxidatively fragmented phospholipids. This plasma enzyme is tightly bound to low and high density lipoprotein particles and is also referred to as lipoprotein-associated phospholipase A{sub 2}. The crystal structure of this enzyme has been solved from x-ray diffraction data collected to a resolution of 1.5{angstrom}. It has a classic lipase {alpha}/{beta}-hydrolase fold, and it contains a catalytic triad of Ser{sup 273}, His{sup 351}, and Asp{sup 296}. Two clusters of hydrophobic residues define the probable interface-binding region, and a prediction is given of how the enzyme is bound to lipoproteins. Additionally, an acidic patch of 10 carboxylate residues and a neighboring basic patch of three residues are suggested to play a role in high density lipoprotein/low density lipoprotein partitioning. A crystal structure is also presented of PAF acetylhydrolase reacted with the organophosphate compound paraoxon via its active site Ser{sup 273}. The resulting diethyl phosphoryl complex was used to model the tetrahedral intermediate of the substrate PAF to the active site. The model of interface binding begins to explain the known specificity of lipoprotein-bound substrates and how the active site can be both close to the hydrophobic-hydrophilic interface and at the same time be accessible to the aqueous phase.

  3. Crystal and molecular structure of three biologically active nitroindazoles

    NASA Astrophysics Data System (ADS)

    Cabildo, Pilar; Claramunt, Rosa M.; López, Concepción; García, M. Ángeles; Pérez-Torralba, Marta; Pinilla, Elena; Torres, M. Rosario; Alkorta, Ibon; Elguero, José

    2011-01-01

    3-Bromo-1-methyl-7-nitro-1 H-indazole ( 1), 3-bromo-2-methyl-7-nitro-2 H-indazole ( 2) and 3,7-dinitro-1(2) H-indazole ( 3) have been synthesized and characterized by X-ray diffraction, 13C and 15N NMR spectroscopy in solution and in solid-state. The dihedral angles obtained in the crystal structures are in good agreement with the molecular parameters calculated using DFT B3LYP calculations employing the 6-311++G(d,p) basis set. Compounds 1 and 2 present intermolecular halogen bonds between the bromine and the oxygen atoms of the nitro group and in compound 3 inter- and intramolecular hydrogen bonding exists.

  4. Crystal structures of Ophiostoma piceae sterol esterase: structural insights into activation mechanism and product release.

    PubMed

    Gutiérrez-Fernández, Javier; Vaquero, María Eugenia; Prieto, Alicia; Barriuso, Jorge; Martínez, María Jesús; Hermoso, Juan A

    2014-09-01

    Sterol esterases are able to efficiently hydrolyze both sterol esters and triglycerides and to carry out synthesis reactions in the presence of organic solvents. Their high versatility makes them excellent candidates for biotechnological purposes. Sterol esterase from fungus Ophiostoma piceae (OPE) belongs to the family abH03.01 of the Candida rugosa lipase-like proteins. Crystal structures of OPE were solved in this study for the closed and open conformations. Enzyme activation involves a large displacement of the conserved lid, structural rearrangements of loop α16-α17, and formation of a dimer with a large opening. Three PEG molecules are placed in the active site, mimicking chains of the triglyceride substrate, demonstrating the position of the oxyanion hole and the three pockets that accommodate the sn-1, sn-2 and sn-3 fatty acids chains. One of them is an internal tunnel, connecting the active center with the outer surface of the enzyme 30 Å far from the catalytic Ser220. Based on our structural and biochemical results we propose a mechanism by which a great variety of different substrates can be hydrolyzed in OPE paving the way for the construction of new variants to improve the catalytic properties of these enzymes and their biotechnological applications.

  5. Bismuth doping effect on crystal structure and photodegradation activity of Bi-TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Chung; Chang, Yin-Hsuan; Lin, Ting-Han

    2017-04-01

    The bismuth precursor is adopted as dopant to synthesize bismuth doped titanium dioxide nanoparticles (Bi-TiO2 NPs) with sol-gel method following by the thermal annealing treatment. We systematically developed a series of Bi-TiO2 NPs at several calcination temperatures and discovered the corresponding crystal structure by varying the bismuth doping concentration. At a certain 650 °C calcination temperature, the crystal structure of bismuth titanate (Bi2Ti2O7) is formed when the bismuth doping concentration is as high as 10.0 mol %. The photocatalytic activity of Bi-TiO2 NPs is increased by varying the doping concentration at the particular calcination temperature. By the definition X-ray diffraction (XRD) structural identification, a phase diagram of Bi-TiO2 NPs in doping concentration versus calcination temperature is provided. It can be useful for further study in the crystal structure engineering and the development of photocatalyst.

  6. Synthesis, crystal structure, and insecticidal activity of novel N-alkyloxyoxalyl derivatives of 2-arylpyrrole.

    PubMed

    Zhao, Yu; Mao, Chunhui; Li, Yongqiang; Zhang, Pengxiang; Huang, Zhiqiang; Bi, Fuchun; Huang, Runqiu; Wang, Qingmin

    2008-08-27

    Two series of novel N-alkyloxyoxalyl derivatives of 2-arylpyrrole were synthesized, and their structures were characterized by (1)H NMR spectroscopy, elemental analysis, and single-crystal X-ray diffraction analysis. The insecticidal activities of the new compounds were evaluated. The results of bioassays indicated that some of these title compounds exhibited excellent insecticidal activities, and their insecticidal activities against oriental armyworm, mosquito, and spider mite are comparable to those of the commercialized Chlorfenapyr.

  7. Crystal structure and prediction.

    PubMed

    Thakur, Tejender S; Dubey, Ritesh; Desiraju, Gautam R

    2015-04-01

    The notion of structure is central to the subject of chemistry. This review traces the development of the idea of crystal structure since the time when a crystal structure could be determined from a three-dimensional diffraction pattern and assesses the feasibility of computationally predicting an unknown crystal structure of a given molecule. Crystal structure prediction is of considerable fundamental and applied importance, and its successful execution is by no means a solved problem. The ease of crystal structure determination today has resulted in the availability of large numbers of crystal structures of higher-energy polymorphs and pseudopolymorphs. These structural libraries lead to the concept of a crystal structure landscape. A crystal structure of a compound may accordingly be taken as a data point in such a landscape.

  8. Crystal Structure and Prediction

    NASA Astrophysics Data System (ADS)

    Thakur, Tejender S.; Dubey, Ritesh; Desiraju, Gautam R.

    2015-04-01

    The notion of structure is central to the subject of chemistry. This review traces the development of the idea of crystal structure since the time when a crystal structure could be determined from a three-dimensional diffraction pattern and assesses the feasibility of computationally predicting an unknown crystal structure of a given molecule. Crystal structure prediction is of considerable fundamental and applied importance, and its successful execution is by no means a solved problem. The ease of crystal structure determination today has resulted in the availability of large numbers of crystal structures of higher-energy polymorphs and pseudopolymorphs. These structural libraries lead to the concept of a crystal structure landscape. A crystal structure of a compound may accordingly be taken as a data point in such a landscape.

  9. Synthesis, crystal structure, structure-activity relationships, and antiviral activity of a potent SARS coronavirus 3CL protease inhibitor.

    PubMed

    Yang, Syaulan; Chen, Shu-Jen; Hsu, Min-Feng; Wu, Jen-Dar; Tseng, Chien-Te K; Liu, Yu-Fan; Chen, Hua-Chien; Kuo, Chun-Wei; Wu, Chi-Shen; Chang, Li-Wen; Chen, Wen-Chang; Liao, Shao-Ying; Chang, Teng-Yuan; Hung, Hsin-Hui; Shr, Hui-Lin; Liu, Cheng-Yuan; Huang, Yu-An; Chang, Ling-Yin; Hsu, Jen-Chi; Peters, Clarence J; Wang, Andrew H-J; Hsu, Ming-Chu

    2006-08-10

    A potent SARS coronavirus (CoV) 3CL protease inhibitor (TG-0205221, Ki = 53 nM) has been developed. TG-0205221 showed remarkable activity against SARS CoV and human coronavirus (HCoV) 229E replications by reducing the viral titer by 4.7 log (at 5 microM) for SARS CoV and 5.2 log (at 1.25 microM) for HCoV 229E. The crystal structure of TG-0205221 (resolution = 1.93 A) has revealed a unique binding mode comprising a covalent bond, hydrogen bonds, and numerous hydrophobic interactions. Structural comparisons between TG-0205221 and a natural peptide substrate were also discussed. This information may be applied toward the design of other 3CL protease inhibitors.

  10. Crystal structure of the catalytic domain of human bile salt activated lipase.

    PubMed Central

    Terzyan, S.; Wang, C. S.; Downs, D.; Hunter, B.; Zhang, X. C.

    2000-01-01

    Bile-salt activated lipase (BAL) is a pancreatic enzyme that digests a variety of lipids in the small intestine. A distinct property of BAL is its dependency on bile salts in hydrolyzing substrates of long acyl chains or bulky alcoholic motifs. A crystal structure of the catalytic domain of human BAL (residues 1-538) with two surface mutations (N186D and A298D), which were introduced in attempting to facilitate crystallization, has been determined at 2.3 A resolution. The crystal form belongs to space group P2(1)2(1)2(1) with one monomer per asymmetric unit, and the protein shows an alpha/beta hydrolase fold. In the absence of bound bile salt molecules, the protein possesses a preformed catalytic triad and a functional oxyanion hole. Several surface loops around the active site are mobile, including two loops potentially involved in substrate binding (residues 115-125 and 270-285). PMID:11045623

  11. The crystal structure of the cysteine protease Xylellain from Xylella fastidiosa reveals an intriguing activation mechanism.

    PubMed

    Leite, Ney Ribeiro; Faro, Aline Regis; Dotta, Maria Amélia Oliva; Faim, Livia Maria; Gianotti, Andreia; Silva, Flavio Henrique; Oliva, Glaucius; Thiemann, Otavio Henrique

    2013-02-14

    Xylella fastidiosa is responsible for a wide range of economically important plant diseases. We report here the crystal structure and kinetic data of Xylellain, the first cysteine protease characterized from the genome of the pathogenic X. fastidiosa strain 9a5c. Xylellain has a papain-family fold, and part of the N-terminal sequence blocks the enzyme active site, thereby mediating protein activity. One novel feature identified in the structure is the presence of a ribonucleotide bound outside the active site. We show that this ribonucleotide plays an important regulatory role in Xylellain enzyme kinetics, possibly functioning as a physiological mediator.

  12. Crystal Structure of the Geobacillus stearothermophilus Carboxylesterase Est55 and Its Activation of Prodrug CPT-11

    PubMed Central

    Liu, Ping; Ewis, Hosam E.; Tai, Phang C.; Lu, Chung-Dar; Weber, Irene T.

    2007-01-01

    Several mammalian carboxylesterases were shown to activate the prodrug irinotecan (CPT-11) to produce SN-38, a topoisomerase inhibitor used in cancer therapy. However, the potential use of bacterial carboxylesterases, which have the advantage of high stability, has not been explored. We present the crystal structure of the carboxyesterase Est55 from Geobacillus stearothermophilus and evaluation of its enzyme activity on CPT-11. Crystal structures were determined at pH 6.2 and 6.8 and resolution of 2.0 and 1.58 Å, respectively. Est55 folds into three domains, a catalytic domain, an α/β domain and a regulatory domain. The structure is in an inactive form; the side chain of His409, one of the catalytic triad residues, is directed away from the other catalytic residues Ser194 and Glu310. Moreover, the adjacent Cys408 is triply oxidized and lies in the oxyanion hole, which would block the binding of substrate, suggesting a regulatory role. However, Cys408 is not essential for enzyme activity. Mutation of Cys408 showed that hydrophobic side chains were favorable, while polar serine was unfavorable for enzyme activity. Est55 was shown to hydrolyze CPT-11 into the active form SN-38. The mutant C408V provided a more stable enzyme for activation of CPT-11. Therefore, engineered thermostable Est55 is a candidate for use with irinotecan in enzyme-prodrug cancer therapy. PMID:17239398

  13. Crystal structure of Sulfolobus acidocaldarius aspartate carbamoyltransferase in complex with its allosteric activator CTP.

    PubMed

    De Vos, Dirk; Xu, Ying; Aerts, Tony; Van Petegem, Filip; Van Beeumen, Jozef J

    2008-07-18

    Aspartate carbamoyltransferase (ATCase) is a paradigm for allosteric regulation of enzyme activity. B-class ATCases display very similar homotropic allosteric behaviour, but differ extensively in their heterotropic patterns. The ATCase from the thermoacidophilic archaeon Sulfolobus acidocaldarius, for example, is strongly activated by its metabolic pathway's end product CTP, in contrast with Escherichia coli ATCase which is inhibited by CTP. To investigate the structural basis of this property, we have solved the crystal structure of the S. acidocaldarius enzyme in complex with CTP. Structure comparison reveals that effector binding does not induce similar large-scale conformational changes as observed for the E. coli ATCase. However, shifts in sedimentation coefficients upon binding of the bi-substrate analogue PALA show the existence of structurally distinct allosteric states. This suggests that the so-called "Nucleotide-Perturbation model" for explaining heterotropic allosteric behaviour, which is based on global conformational strain, is not a general mechanism of B-class ATCases.

  14. Crystal Structure of Escherichia coli Diaminopropionate Ammonia-lyase Reveals Mechanism of Enzyme Activation and Catalysis*

    PubMed Central

    Bisht, Shveta; Rajaram, Venkatesan; Bharath, Sakshibeedu R.; Kalyani, Josyula Nitya; Khan, Farida; Rao, Appaji N.; Savithri, Handanahal S.; Murthy, Mathur R. N.

    2012-01-01

    Pyridoxal 5′-phosphate (PLP)-dependent enzymes utilize the unique chemistry of a pyridine ring to carry out diverse reactions involving amino acids. Diaminopropionate (DAP) ammonia-lyase (DAPAL) is a prokaryotic PLP-dependent enzyme that catalyzes the degradation of d- and l-forms of DAP to pyruvate and ammonia. Here, we report the first crystal structure of DAPAL from Escherichia coli (EcDAPAL) in tetragonal and monoclinic forms at 2.0 and 2.2 Å resolutions, respectively. Structures of EcDAPAL soaked with substrates were also determined. EcDAPAL has a typical fold type II PLP-dependent enzyme topology consisting of a large and a small domain with the active site at the interface of the two domains. The enzyme is a homodimer with a unique biological interface not observed earlier. Structure of the enzyme in the tetragonal form had PLP bound at the active site, whereas the monoclinic structure was in the apo-form. Analysis of the apo and holo structures revealed that the region around the active site undergoes transition from a disordered to ordered state and assumes a conformation suitable for catalysis only upon PLP binding. A novel disulfide was found to occur near a channel that is likely to regulate entry of ligands to the active site. EcDAPAL soaked with dl-DAP revealed density at the active site appropriate for the reaction intermediate aminoacrylate, which is consistent with the observation that EcDAPAL has low activity under crystallization conditions. Based on the analysis of the structure and results of site-directed mutagenesis, a two-base mechanism of catalysis involving Asp120 and Lys77 is suggested. PMID:22505717

  15. Crystal structure of Escherichia coli diaminopropionate ammonia-lyase reveals mechanism of enzyme activation and catalysis.

    PubMed

    Bisht, Shveta; Rajaram, Venkatesan; Bharath, Sakshibeedu R; Kalyani, Josyula Nitya; Khan, Farida; Rao, Appaji N; Savithri, Handanahal S; Murthy, Mathur R N

    2012-06-08

    Pyridoxal 5'-phosphate (PLP)-dependent enzymes utilize the unique chemistry of a pyridine ring to carry out diverse reactions involving amino acids. Diaminopropionate (DAP) ammonia-lyase (DAPAL) is a prokaryotic PLP-dependent enzyme that catalyzes the degradation of d- and l-forms of DAP to pyruvate and ammonia. Here, we report the first crystal structure of DAPAL from Escherichia coli (EcDAPAL) in tetragonal and monoclinic forms at 2.0 and 2.2 Å resolutions, respectively. Structures of EcDAPAL soaked with substrates were also determined. EcDAPAL has a typical fold type II PLP-dependent enzyme topology consisting of a large and a small domain with the active site at the interface of the two domains. The enzyme is a homodimer with a unique biological interface not observed earlier. Structure of the enzyme in the tetragonal form had PLP bound at the active site, whereas the monoclinic structure was in the apo-form. Analysis of the apo and holo structures revealed that the region around the active site undergoes transition from a disordered to ordered state and assumes a conformation suitable for catalysis only upon PLP binding. A novel disulfide was found to occur near a channel that is likely to regulate entry of ligands to the active site. EcDAPAL soaked with dl-DAP revealed density at the active site appropriate for the reaction intermediate aminoacrylate, which is consistent with the observation that EcDAPAL has low activity under crystallization conditions. Based on the analysis of the structure and results of site-directed mutagenesis, a two-base mechanism of catalysis involving Asp(120) and Lys(77) is suggested.

  16. Analysis of crystal structure of Arabidopsis MPK6 and generation of its mutants with higher activity.

    PubMed

    Wang, Bo; Qin, Xinghua; Wu, Juan; Deng, Hongying; Li, Yuan; Yang, Hailian; Chen, Zhongzhou; Liu, Guoqin; Ren, Dongtao

    2016-05-10

    Mitogen-activated protein kinase (MAPK) cascades, which are the highly conserved signalling modules in eukaryotic organisms, have been shown to play important roles in regulating growth, development, and stress responses. The structures of various MAPKs from yeast and animal have been solved, and structure-based mutants were generated for their function analyses, however, the structures of plant MAPKs remain unsolved. Here, we report the crystal structure of Arabidopsis MPK6 at a 3.0 Å resolution. Although MPK6 is topologically similar to ERK2 and p38, the structures of the glycine-rich loop, MAPK insert, substrate binding sites, and L16 loop in MPK6 show notable differences from those of ERK2 and p38. Based on the structural comparison, we constructed MPK6 mutants and analyzed their kinase activity both in vitro and in planta. MPK6(F364L) and MPK6(F368L) mutants, in which Phe364 and Phe368 in the L16 loop were changed to Leu, respectively, acquired higher intrinsic kinase activity and retained the normal MAPKK activation property. The expression of MPK6 mutants with basal activity is sufficient to induce camalexin biosynthesis; however, to induce ethylene and leaf senescence, the expression of MPK6 mutants with higher activity is required. The results suggest that these mutants can be used to analyze the specific biological functions of MPK6.

  17. Inhibitors of the kinase IspE: structure-activity relationships and co-crystal structure analysis.

    PubMed

    Hirsch, Anna K H; Alphey, Magnus S; Lauw, Susan; Seet, Michael; Barandun, Luzi; Eisenreich, Wolfgang; Rohdich, Felix; Hunter, William N; Bacher, Adelbert; Diederich, François

    2008-08-07

    Enzymes of the non-mevalonate pathway for isoprenoid biosynthesis are therapeutic targets for the treatment of important infectious diseases. Whereas this pathway is absent in humans, it is used by plants, many eubacteria and apicomplexan protozoa, including major human pathogens such as Plasmodium falciparum and Mycobacterium tuberculosis. Herein, we report on the design, preparation and biological evaluation of a new series of ligands for IspE protein, a kinase from this pathway. These inhibitors were developed for the inhibition of IspE from Escherichia coli, using structure-based design approaches. Structure-activity relationships (SARs) and a co-crystal structure of Aquifex aeolicus IspE bound to a representative inhibitor validate the proposed binding mode. The crystal structure shows that the ligand binds in the substrate-rather than the adenosine 5'-triphosphate (ATP)-binding pocket. As predicted, a cyclopropyl substituent occupies a small cavity not used by the substrate. The optimal volume occupancy of this cavity is explored in detail. In the co-crystal structure, a diphosphate anion binds to the Gly-rich loop, which normally accepts the triphosphate moiety of ATP. This structure provides useful insights for future structure-based developments of inhibitors for the parasite enzymes.

  18. The Effect of Cellulose Crystal Structure and Solid-State Morphology on the Activity of Cellulases

    SciTech Connect

    Stipanovic, Arthur J

    2014-11-17

    Consistent with the US-DOE and USDA “Roadmap” objective of producing ethanol and chemicals from cellulosic feedstocks more efficiently, a three year research project entitled “The Effect of Cellulose Crystal Structure and Solid-State Morphology on the Activity of Cellulases” was initiated in early 2003 under DOE sponsorship (Project Number DE-FG02-02ER15356). A three year continuation was awarded in June 2005 for the period September 15, 2005 through September 14, 2008. The original goal of this project was to determine the effect of cellulose crystal structure, including allomorphic crystalline form (Cellulose I, II, III, IV and sub-allomorphs), relative degree of crystallinity and crystallite size, on the activity of different types of genetically engineered cellulase enzymes to provide insight into the mechanism and kinetics of cellulose digestion by “pure” enzymes rather than complex mixtures. We expected that such information would ultimately help enhance the accessibility of cellulose to enzymatic conversion processes thereby creating a more cost-effective commercial process yielding sugars for fermentation into ethanol and other chemical products. Perhaps the most significant finding of the initial project phase was that conversion of native bacterial cellulose (Cellulose I; BC-I) to the Cellulose II (BC-II) crystal form by aqueous NaOH “pretreatment” provided an increase in cellulase conversion rate approaching 2-4 fold depending on enzyme concentration and temperature, even when initial % crystallinity values were similar for both allomorphs.

  19. Synthesis, crystal structure, biological activity and theoretical calculations of novel isoxazole derivatives.

    PubMed

    Jin, R Y; Sun, X H; Liu, Y F; Long, W; Chen, B; Shen, S Q; Ma, H X

    2016-01-05

    Series of isoxazole derivatives were synthesized by substituted chalcones and 2-chloro-6-fluorobenzene formaldehyde oxime with 1,3-dipolar cycloaddition. The target compounds were determined by melting point, IR, (1)H NMR, elemental analyses and HRMS. The crystal structure of compound 3a was detected by X-ray diffraction and it crystallizes in the triclinic space group p2(1)/c with z=4. The molecular geometry of compound 3a was optimized using density functional theory (DFT/B3LYP) method with the 6-31G+(d,p) basis set in the ground state. From the optimized geometry of the molecule, FT-IR, FT-Raman, HOMO-LUMO and natural bond orbital (NBO) were calculated at B3LYP/6-31G+(d,p) level. Finally, the antifungal activity of the synthetic compounds were evaluated against Pythium solani, Gibberella nicotiancola, Fusarium oxysporium f.sp. niveum and Gibberella saubinetii.

  20. Tetraphenylphosphonium allyldithiocarbimates derived from Morita-Baylis-Hillman adducts: Synthesis, characterization, crystal structure and antifungal activity

    NASA Astrophysics Data System (ADS)

    Tavares, Eder C.; Rubinger, Mayura M. M.; Filho, Eclair V.; Oliveira, Marcelo R. L.; Piló-Veloso, Dorila; Ellena, Javier; Guilardi, Silvana; Souza, Rafael A. C.; Zambolim, Laércio

    2016-02-01

    Botrytis blight is a very destructive disease caused by Botrytis spp., infecting flowers, trees, vegetables and fruits. Twelve new compounds were prepared by the reaction of potassium N-aryl-sulfonyldithiocarbimates with Morita-Baylis-Hillman derivatives bearing phenyl and furyl groups. These are the first examples of allyldithiocarbimate anions and were isolated as tetraphenylphosphonium salts. The new compounds were characterized by HRMS, NMR and Infrared spectroscopy. Further, the structures of three allyldithiocarbimates were determined by single crystal X-ray diffraction. The compounds are isostructural and crystallize in the space group P21/c of the monoclinic system, and the allyldithiocarbimate anions present Z configuration. All the compounds were active against Botrytis cinerea. The best results were achieved with the tetraphenylphosphonium (Z)-3-(furan-2-yl)-2-(methoxycarbonyl)allyl-(4-chlorophenylsulfonyl)dithiocarbimate (IC50 38 μM).

  1. Synthesis, crystal structure, biological activity and theoretical calculations of novel isoxazole derivatives

    NASA Astrophysics Data System (ADS)

    Jin, R. Y.; Sun, X. H.; Liu, Y. F.; Long, W.; Chen, B.; Shen, S. Q.; Ma, H. X.

    2016-01-01

    Series of isoxazole derivatives were synthesized by substituted chalcones and 2-chloro-6-fluorobenzene formaldehyde oxime with 1,3-dipolar cycloaddition. The target compounds were determined by melting point, IR, 1H NMR, elemental analyses and HRMS. The crystal structure of compound 3a was detected by X-ray diffraction and it crystallizes in the triclinic space group p2(1)/c with z = 4. The molecular geometry of compound 3a was optimized using density functional theory (DFT/B3LYP) method with the 6-31G+(d,p) basis set in the ground state. From the optimized geometry of the molecule, FT-IR, FT-Raman, HOMO-LUMO and natural bond orbital (NBO) were calculated at B3LYP/6-31G+(d,p) level. Finally, the antifungal activity of the synthetic compounds were evaluated against Pythium solani, Gibberella nicotiancola, Fusarium oxysporium f.sp. niveum and Gibberella saubinetii.

  2. Crystal structure of an avian influenza polymerase PA[subscript N] reveals an endonuclease active site

    SciTech Connect

    Yuan, Puwei; Bartlam, Mark; Lou, Zhiyong; Chen, Shoudeng; Zhou, Jie; He, Xiaojing; Lv, Zongyang; Ge, Ruowen; Li, Xuemei; Deng, Tao; Fodor, Ervin; Rao, Zihe; Liu, Yingfang

    2009-11-10

    The heterotrimeric influenza virus polymerase, containing the PA, PB1 and PB2 proteins, catalyses viral RNA replication and transcription in the nucleus of infected cells. PB1 holds the polymerase active site and reportedly harbours endonuclease activity, whereas PB2 is responsible for cap binding. The PA amino terminus is understood to be the major functional part of the PA protein and has been implicated in several roles, including endonuclease and protease activities as well as viral RNA/complementary RNA promoter binding. Here we report the 2.2 angstrom (A) crystal structure of the N-terminal 197 residues of PA, termed PA(N), from an avian influenza H5N1 virus. The PA(N) structure has an alpha/beta architecture and reveals a bound magnesium ion coordinated by a motif similar to the (P)DX(N)(D/E)XK motif characteristic of many endonucleases. Structural comparisons and mutagenesis analysis of the motif identified in PA(N) provide further evidence that PA(N) holds an endonuclease active site. Furthermore, functional analysis with in vivo ribonucleoprotein reconstitution and direct in vitro endonuclease assays strongly suggest that PA(N) holds the endonuclease active site and has critical roles in endonuclease activity of the influenza virus polymerase, rather than PB1. The high conservation of this endonuclease active site among influenza strains indicates that PA(N) is an important target for the design of new anti-influenza therapeutics.

  3. Crystal Structures of the Adenylate Sensor from Fission Yeast AMP-Activated Protein Kinase

    SciTech Connect

    Townley,R.; Shapiro, L.

    2007-01-01

    The 5'-AMP (adenosine monophosphate)-activated protein kinase (AMPK) coordinates metabolic function with energy availability by responding to changes in intracellular adenosine triphosphate (ATP) and AMP levels. Here we report crystal structures at 2.6 and 2.9 Angstrom resolution for ATP- and AMP-bound forms of a core {alpha}{beta}{gamma} adenylate-binding domain from the fission yeast AMPK homologue. ATP and AMP bind competitively to a single site in the {gamma} subunit, with their respective phosphate groups positioned near function-impairing mutants. Surprisingly, ATP binds without counter ions, amplifying its electrostatic effects on a critical regulatory region where all three subunits converge.

  4. Crystal structure, phytochemical study and enzyme inhibition activity of Ajaconine and Delectinine

    NASA Astrophysics Data System (ADS)

    Ahmad, Shujaat; Ahmad, Hanif; Khan, Hidayat Ullah; Shahzad, Adnan; Khan, Ezzat; Ali Shah, Syed Adnan; Ali, Mumtaz; Wadud, Abdul; Ghufran, Mehreen; Naz, Humera; Ahmad, Manzoor

    2016-11-01

    The Crystal structure, comparative DFT study and phytochemical investigation of atisine type C-20 diterpenoid alkaloid ajaconine (1) and lycoctonine type C-19 diterpenoid alkaloid delectinine (2) is reported here. These compounds were isolated from Delphinium chitralense. Both the natural products 1 and 2 crystallize in orthorhombic crystal system with identical space group of P212121. The geometric parameters of both compounds were calculated with the help of DFT using B3LYP/6-31+G (p) basis set and HOMO-LUMO energies, optimized band gaps, global hardness, ionization potential, electron affinity and global electrophilicity are calculated. The compounds 1 and 2 were screened for acetyl cholinesterase and butyryl cholinesterase inhibition activities in a dose dependent manner followed by molecular docking to explore the possible inhibitory mechanism of ajaconine (1) and delectinine (2). The IC50 values of tested compounds against AChE were observed as 12.61 μM (compound 1) and 5.04 μM (compound 2). The same experiments were performed for inhibition of BChE and IC50 was observed to be 10.18 μM (1) and 9.21 μM (2). Promising inhibition activity was shown by both the compounds against AChE and BChE in comparison with standard drugs available in the market such as allanzanthane and galanthamine. The inhibition efficiency of both the natural products was determined in a dose dependent manner.

  5. Synthesis, X-ray crystal structure, antimicrobial activity and photodynamic effects of some thiabendazole complexes.

    PubMed

    Mothilal, K K; Karunakaran, Chandran; Rajendran, Ayyapan; Murugesan, Ramachandran

    2004-02-01

    An interesting series of metal complexes of thiabendazole (tbz) is synthesized and characterized by elemental analyses and spectroscopic studies. The crystal structure of the hydrogen bonded one dimensional Co(II) complex, namely [Co(tbz)(2)(NO(3))(H(2)O)](NO(3)) is solved by single crystal X-ray diffraction. The complex crystallizes in monoclinic space group P2(1)/a with unit cell parameters, a=14.366(2), b=11.459(4), c=15.942(3) A, beta=113.78(3) degrees and z=4. The unit cell packing reveals an extensive hydrogen bonding involving a water molecule, nitrate ligands and the protonated nitrogen atoms of the tbz ligands, resulting in a one dimensional hydrogen bonding pattern. The antimicrobial activity of the complexes against selected bacteria (Escherichia coli and Bacillus subtilis) and yeast (Aspergillus flavues) is estimated. The relationship between the enzymatic production of ROS and antimicrobial activity of the complexes is examined, and a good correlation between two factors is found. Photodynamic quantum yields of singlet oxygen production (RNO bleaching assay) and rate of superoxide generation (SOD inhibitable ferricytochrome c reduction assay and EPR spin trapping experiments using 5,5-dimethyl-1-pyrroline-N-oxide as spin trap) by the metal complexes have been studied.

  6. Crystal Structure of the Protein Kinase Domain of Yeast AMP-Activated Protein Kinase Snf1

    SciTech Connect

    Rudolph,M.; Amodeo, G.; Bai, Y.; Tong, L.

    2005-01-01

    AMP-activated protein kinase (AMPK) is a master metabolic regulator, and is an important target for drug development against diabetes, obesity, and other diseases. AMPK is a hetero-trimeric enzyme, with a catalytic ({alpha}) subunit, and two regulatory ({beta} and {gamma}) subunits. Here we report the crystal structure at 2.2 Angstrom resolution of the protein kinase domain (KD) of the catalytic subunit of yeast AMPK (commonly known as SNF1). The Snf1-KD structure shares strong similarity to other protein kinases, with a small N-terminal lobe and a large C-terminal lobe. Two negative surface patches in the structure may be important for the recognition of the substrates of this kinase.

  7. Synthesis, crystal structure and larvicidal activity of novel diamide derivatives against Culex pipiens

    PubMed Central

    2012-01-01

    Background Culex is an important mosquito as vectors for the transmission of serious diseases, such as filariasis, West Nile virus, dengue, yellow fever, chikungunya and other encephalitides. Nearly one billion people in the developing countries are at risk. In order to discover new bioactive molecules and pesticides acting on mosquito, we designed active amide structure and synthesized a series of novel diamide derivatives. Results A series of novel diamide derivatives were designed and synthesized. Their structures were characterized by 1 H NMR, FTIR and HRMS. The single crystal structure of compound 6n was determined to further elucidate the structure. Biological activities of these compounds were tested. Most of them exhibited higher mosquito larvicidal activity. Especially compound 6r displayed relatively good activity to reach 70% at 2 μg/mL. Conclusion A practical synthetic route to amide derivatives by the reaction of amide with another acid is presented. This study suggests that the diamide derivatives exhibited good effective against mosquito. PMID:22963735

  8. Antimicrobial profile of some novel keto esters: Synthesis, crystal structures and structure-activity relationship studies.

    PubMed

    Khan, Imtiaz; Saeed, Aamer; Arshad, Mohammad Ifzan; White, Jonathan Michael

    2016-01-01

    Rapid increase in bacterial resistance has become a major public concern by escalating alongside a lack of development of new anti-infective drugs. Novel remedies in the battle against multidrug-resistant bacterial strains are urgently needed. So, in this context, the present work is towards the investigation of antimicrobial efficacy of some novel keto ester derivatives, which are prepared by the condensation of substituted benzoic acids with various substituted phenacyl bromides in dimethylformamide at room temperature using triethylamine as a catalyst. The structural build-up of the target compounds was accomplished by spectroscopic techniques including FTIR, (1)H and (13)C NMR spectroscopy and mass spectrometry. The purity of the synthesized compounds was ascertained by elemental analysis. The molecular structures of compounds (4b) and (4l) were established by X-ray crystallographic analysis. The prepared analogues were evaluated for their antimicrobial activity against Gram-positive (Staphylococcus aureus, Micrococcus leuteus) and Gram-negative (Pseudomonas picketti, Salmonella setuball) bacteria and two fungal pathogenic strains (Aspergillus niger, Aspergillus flavus), respectively. Among the screened derivatives, several compounds were found to possess significant activity but (4b) and (4l) turned out to be lead molecules with remarkable antimicrobial efficacy. The structure-activity relationship analysis of this study also revealed that structural modifications on the basic skeleton affected the antimicrobial activity of the synthesized compounds.

  9. Crystal structures of bacterial peptidoglycan amidase AmpD and an unprecedented activation mechanism.

    PubMed

    Carrasco-López, Cesar; Rojas-Altuve, Alzoray; Zhang, Weilie; Hesek, Dusan; Lee, Mijoon; Barbe, Sophie; André, Isabelle; Ferrer, Pilar; Silva-Martin, Noella; Castro, German R; Martínez-Ripoll, Martín; Mobashery, Shahriar; Hermoso, Juan A

    2011-09-09

    AmpD is a cytoplasmic peptidoglycan (PG) amidase involved in bacterial cell-wall recycling and in induction of β-lactamase, a key enzyme of β-lactam antibiotic resistance. AmpD belongs to the amidase_2 family that includes zinc-dependent amidases and the peptidoglycan-recognition proteins (PGRPs), highly conserved pattern-recognition molecules of the immune system. Crystal structures of Citrobacter freundii AmpD were solved in this study for the apoenzyme, for the holoenzyme at two different pH values, and for the complex with the reaction products, providing insights into the PG recognition and the catalytic process. These structures are significantly different compared with the previously reported NMR structure for the same protein. The NMR structure does not possess an accessible active site and shows the protein in what is proposed herein as an inactive "closed" conformation. The transition of the protein from this inactive conformation to the active "open" conformation, as seen in the x-ray structures, was studied by targeted molecular dynamics simulations, which revealed large conformational rearrangements (as much as 17 Å) in four specific regions representing one-third of the entire protein. It is proposed that the large conformational change that would take the inactive NMR structure to the active x-ray structure represents an unprecedented mechanism for activation of AmpD. Analysis is presented to argue that this activation mechanism might be representative of a regulatory process for other intracellular members of the bacterial amidase_2 family of enzymes.

  10. Crystal Structures of Bacterial Peptidoglycan Amidase AmpD and an Unprecedented Activation Mechanism*

    PubMed Central

    Carrasco-López, Cesar; Rojas-Altuve, Alzoray; Zhang, Weilie; Hesek, Dusan; Lee, Mijoon; Barbe, Sophie; André, Isabelle; Ferrer, Pilar; Silva-Martin, Noella; Castro, German R.; Martínez-Ripoll, Martín; Mobashery, Shahriar; Hermoso, Juan A.

    2011-01-01

    AmpD is a cytoplasmic peptidoglycan (PG) amidase involved in bacterial cell-wall recycling and in induction of β-lactamase, a key enzyme of β-lactam antibiotic resistance. AmpD belongs to the amidase_2 family that includes zinc-dependent amidases and the peptidoglycan-recognition proteins (PGRPs), highly conserved pattern-recognition molecules of the immune system. Crystal structures of Citrobacter freundii AmpD were solved in this study for the apoenzyme, for the holoenzyme at two different pH values, and for the complex with the reaction products, providing insights into the PG recognition and the catalytic process. These structures are significantly different compared with the previously reported NMR structure for the same protein. The NMR structure does not possess an accessible active site and shows the protein in what is proposed herein as an inactive “closed” conformation. The transition of the protein from this inactive conformation to the active “open” conformation, as seen in the x-ray structures, was studied by targeted molecular dynamics simulations, which revealed large conformational rearrangements (as much as 17 Å) in four specific regions representing one-third of the entire protein. It is proposed that the large conformational change that would take the inactive NMR structure to the active x-ray structure represents an unprecedented mechanism for activation of AmpD. Analysis is presented to argue that this activation mechanism might be representative of a regulatory process for other intracellular members of the bacterial amidase_2 family of enzymes. PMID:21775432

  11. Crystal structure of TBC1D15 GTPase-activating protein (GAP) domain and its activity on Rab GTPases.

    PubMed

    Chen, Yan-Na; Gu, Xin; Zhou, X Edward; Wang, Weidong; Cheng, Dandan; Ge, Yinghua; Ye, Fei; Xu, H Eric; Lv, Zhengbing

    2017-04-01

    TBC1D15 belongs to the TBC (Tre-2/Bub2/Cdc16) domain family and functions as a GTPase-activating protein (GAP) for Rab GTPases. So far, the structure of TBC1D15 or the TBC1D15·Rab complex has not been determined, thus, its catalytic mechanism on Rab GTPases is still unclear. In this study, we solved the crystal structures of the Shark and Sus TBC1D15 GAP domains, to 2.8 Å and 2.5 Å resolution, respectively. Shark-TBC1D15 and Sus-TBC1D15 belong to the same subfamily of TBC domain-containing proteins, and their GAP-domain structures are highly similar. This demonstrates the evolutionary conservation of the TBC1D15 protein family. Meanwhile, the newly determined crystal structures display new variations compared to the structures of yeast Gyp1p Rab GAP domain and TBC1D1. GAP assays show that Shark and Sus GAPs both have higher catalytic activity on Rab11a·GTP than Rab7a·GTP, which differs from the previous study. We also demonstrated the importance of arginine and glutamine on the catalytic sites of Shark GAP and Sus GAP. When arginine and glutamine are changed to alanine or lysine, the activities of Shark GAP and Sus GAP are lost.

  12. Spectroscopic studies, antimicrobial activities and crystal structures of N-(2-hydroxy-3-methoxybenzalidene)1-aminonaphthalene

    NASA Astrophysics Data System (ADS)

    Ünver, Hüseyin; Yıldız, Mustafa; Dülger, Başaran; Özgen, Özen; Kendi, Engin; Durlu, Tahsin Nuri

    2005-03-01

    Schiff base N-(2-hydroxy-3-methoxybenzalidene)1-aminonaphthalene has been synthesized from the reaction of 2-hydroxy-3-methoxybenzaldehyde with 1-aminonaphthalene. The compound were characterized by elemental analysis, FT-IR, 1H NMR, 13C NMR and UV-visible techniques. The UV-visible spectra of the Schiff base were studied in polar and nonpolar solvents in acidic and basic media. The structure of the compound has been examined cyrstallographically. There are two independent molecules in the asymmetric unit. It crystallizes in the monoclinic space group P21/c, with unit cell parameters: a=14, 602(2), b=5,800(1), c=16, 899(1) Å, V=1394.4(2) Å 3, Dx=1.321 g cm -3 and Z=4. The crystal structure was solved by direct methods and refined by full-matrix least squares to a find R=0.041 of for 1179 observed reflections. The title compound's antimicrobial activities also have been studied. The antimicrobial activities of the ligand has been screened in vitro against the organisms Escherichia coli ATCC 11230, Staphylococcus aureus ATCC 6538, Klebsiella pneumoniae UC57, Micrococcus luteus La 2971, Proteus vulgaris ATCC 8427, Pseudomonas aeruginosa ATCC 27853, Mycobacterium smegmatis CCM 2067, Bacillus cereus ATCC 7064 and Listeria monocytogenes ATCC 15313, the yeast cultures Candida albicans ATCC 10231, Kluyveromyces fragilis NRRL 2415, Rhodotorula rubra DSM 70403, Debaryomyces hansenii DSM 70238 and Hanseniaspora guilliermondii DSM 3432.

  13. The crystal structure of phosphorylated MAPK13 reveals common structural features and differences in p38 MAPK family activation

    PubMed Central

    Yurtsever, Zeynep; Scheaffer, Suzanne M.; Romero, Arthur G.; Holtzman, Michael J.; Brett, Tom J.

    2015-01-01

    The p38 MAP kinases (p38 MAPKs) represent an important family centrally involved in mediating extracellular signaling. Recent studies indicate that family members such as MAPK13 (p38δ) display a selective cellular and tissue expression and are therefore involved in specific diseases. Detailed structural studies of all p38 MAPK family members are crucial for the design of specific inhibitors. In order to facilitate such ventures, the structure of MAPK13 was determined in both the inactive (unphosphorylated; MAPK13) and active (dual phosphorylated; MAPK13/pTpY) forms. Here, the first preparation, crystallization and structure determination of MAPK13/pTpY are presented and the structure is compared with the previously reported structure of MAPK13 in order to facilitate studies for structure-based drug design. A comprehensive analysis of inactive versus active structures for the p38 MAPK family is also presented. It is found that MAPK13 undergoes a larger interlobe configurational rearrangement upon activation compared with MAPK14. Surprisingly, the analysis of activated p38 MAPK structures (MAP12/pTpY, MAPK13/pTpY and MAPK14/pTpY) reveals that, despite a high degree of sequence similarity, different side chains are used to coordinate the phosphorylated residues. There are also differences in the rearrangement of the hinge region that occur in MAPK14 compared with MAPK13 which would affect inhibitor binding. A thorough examination of all of the active (phosphorylated) and inactive (unphosphorylated) p38 MAPK family member structures was performed to reveal a common structural basis of activation for the p38 MAP kinase family and to identify structural differences that may be exploited for developing family member-specific inhibitors. PMID:25849390

  14. The crystal structure of phosphorylated MAPK13 reveals common structural features and differences in p38 MAPK family activation.

    PubMed

    Yurtsever, Zeynep; Scheaffer, Suzanne M; Romero, Arthur G; Holtzman, Michael J; Brett, Tom J

    2015-04-01

    The p38 MAP kinases (p38 MAPKs) represent an important family centrally involved in mediating extracellular signaling. Recent studies indicate that family members such as MAPK13 (p38δ) display a selective cellular and tissue expression and are therefore involved in specific diseases. Detailed structural studies of all p38 MAPK family members are crucial for the design of specific inhibitors. In order to facilitate such ventures, the structure of MAPK13 was determined in both the inactive (unphosphorylated; MAPK13) and active (dual phosphorylated; MAPK13/pTpY) forms. Here, the first preparation, crystallization and structure determination of MAPK13/pTpY are presented and the structure is compared with the previously reported structure of MAPK13 in order to facilitate studies for structure-based drug design. A comprehensive analysis of inactive versus active structures for the p38 MAPK family is also presented. It is found that MAPK13 undergoes a larger interlobe configurational rearrangement upon activation compared with MAPK14. Surprisingly, the analysis of activated p38 MAPK structures (MAP12/pTpY, MAPK13/pTpY and MAPK14/pTpY) reveals that, despite a high degree of sequence similarity, different side chains are used to coordinate the phosphorylated residues. There are also differences in the rearrangement of the hinge region that occur in MAPK14 compared with MAPK13 which would affect inhibitor binding. A thorough examination of all of the active (phosphorylated) and inactive (unphosphorylated) p38 MAPK family member structures was performed to reveal a common structural basis of activation for the p38 MAP kinase family and to identify structural differences that may be exploited for developing family member-specific inhibitors.

  15. Crystal Structure of Albaflavenone Monooxygenase Containing a Moonlighting Terpene Synthase Active Site*

    PubMed Central

    Zhao, Bin; Lei, Li; Vassylyev, Dmitry G.; Lin, Xin; Cane, David E.; Kelly, Steven L.; Yuan, Hang; Lamb, David C.; Waterman, Michael R.

    2009-01-01

    Albaflavenone synthase (CYP170A1) is a monooxygenase catalyzing the final two steps in the biosynthesis of this antibiotic in the soil bacterium, Streptomyces coelicolor A3(2). Interestingly, CYP170A1 shows no stereo selection forming equal amounts of two albaflavenol epimers, each of which is oxidized in turn to albaflavenone. To explore the structural basis of the reaction mechanism, we have studied the crystal structures of both ligand-free CYP170A1 (2.6 Å) and complex of endogenous substrate (epi-isozizaene) with CYP170A1 (3.3 Å). The structure of the complex suggests that the proximal epi-isozizaene molecules may bind to the heme iron in two orientations. In addition, much to our surprise, we have found that albaflavenone synthase also has a second, completely distinct catalytic activity corresponding to the synthesis of farnesene isomers from farnesyl diphosphate. Within the cytochrome P450 α-helical domain both the primary sequence and x-ray structure indicate the presence of a novel terpene synthase active site that is moonlighting on the P450 structure. This includes signature sequences for divalent cation binding and an α-helical barrel. This barrel is unusual because it consists of only four helices rather than six found in all other terpene synthases. Mutagenesis establishes that this barrel is essential for the terpene synthase activity of CYP170A1 but not for the monooxygenase activity. This is the first bifunctional P450 discovered to have another active site moonlighting on it and the first time a terpene synthase active site is found moonlighting on another protein. PMID:19858213

  16. The crystal structure of Pseudomonas putida azoreductase - the active site revisited.

    PubMed

    Gonçalves, Ana Maria D; Mendes, Sónia; de Sanctis, Daniele; Martins, Lígia O; Bento, Isabel

    2013-12-01

    The enzymatic degradation of azo dyes begins with the reduction of the azo bond. In this article, we report the crystal structures of the native azoreductase from Pseudomonas putida MET94 (PpAzoR) (1.60 Å), of PpAzoR in complex with anthraquinone-2-sulfonate (1.50 Å), and of PpAzoR in complex with Reactive Black 5 dye (1.90 Å). These structures reveal the residues and subtle changes that accompany substrate binding and release. Such changes highlight the fine control of access to the catalytic site that is required by the ping-pong mechanism, and in turn the specificity offered by the enzyme towards different substrates. The topology surrounding the active site shows novel features of substrate recognition and binding that help to explain and differentiate the substrate specificity observed among different bacterial azoreductases.

  17. Crystal structure and activities of three biscoumarin derivatives against Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Li, Fen; Lv, Chang-wei; Zhang, Zi-dan; Li, Jing; Hou, Zheng; Yang, Xiao-hui; Li, Jiang-tao; Luo, Xiao-xing; Li, Ming-kai

    2015-10-01

    Three new biscoumarin derivatives, namely, 3,3‧-[(4-nitrophenyl)methylene]bis(4-hydroxy-2H-chromen-2-one) (NBH), 3,3‧-[(4-methoxyphenyl)methylene]bis(4-hydroxy-2H-chromen-2-one) (MBH) and 3,3‧-[(4-chloromethylphenyl)methylene]bis(4-hydroxy-2H-chromen-2-one) (CBH) were successfully synthesized and their structures were verified by single crystal X-ray crystallography. In their structures, there are two intramolecular H-bonds and the corresponding H-bond energies were calculated by DFT method. The antibacterial activities of NBH, MBH and CBH in vitro against drug-sensitive Staphylococcus aureus (ATCC 29213) and methicillin-resistant S. aureus (isolated MRSA strains) were further investigated.

  18. Crystal structure of the caseinolytic protease gene regulator, a transcriptional activator in actinomycetes.

    PubMed

    Russo, Santina; Schweitzer, Jens-Eric; Polen, Tino; Bott, Michael; Pohl, Ehmke

    2009-02-20

    Human pathogens of the genera Corynebacterium and Mycobacterium possess the transcriptional activator ClgR (clp gene regulator) which in Corynebacterium glutamicum has been shown to regulate the expression of the ClpCP protease genes. ClgR specifically binds to pseudo-palindromic operator regions upstream of clpC and clpP1P2. Here, we present the first crystal structure of a ClgR protein from C. glutamicum. The structure was determined from two different crystal forms to resolutions of 1.75 and 2.05 A, respectively. ClgR folds into a five-helix bundle with a helix-turn-helix motif typical for DNA-binding proteins. Upon dimerization the two DNA-recognition helices are arranged opposite to each other at the protein surface in a distance of approximately 30 A, which suggests that they bind into two adjacent major grooves of B-DNA in an anti-parallel manner. A binding pocket is situated at a strategic position in the dimer interface and could possess a regulatory role altering the positions of the DNA-binding helices.

  19. Crystal Structure of Human Plasma Platelet-activating Factor Acetylhydrolase: Structural Implication to Liporprotein Binding and Catalysis

    SciTech Connect

    Samanta, Uttamkumar; Bahnson, Brian J.

    2009-02-23

    Human plasma platelet-activating factor (PAF) acetylhydrolase functions by reducing PAF levels as a general anti-inflammatory scavenger and is linked to anaphylactic shock, asthma, and allergic reactions. The enzyme has also been implicated in hydrolytic activities of other pro-inflammatory agents, such as sn-2 oxidatively fragmented phospholipids. This plasma enzyme is tightly bound to low and high density lipoprotein particles and is also referred to as lipoprotein-associated phospholipase A2. The crystal structure of this enzyme has been solved from x-ray diffraction data collected to a resolution of 1.5 angstroms. It has a classic lipase alpha/beta-hydrolase fold, and it contains a catalytic triad of Ser273, His351, and Asp296. Two clusters of hydrophobic residues define the probable interface-binding region, and a prediction is given of how the enzyme is bound to lipoproteins. Additionally, an acidic patch of 10 carboxylate residues and a neighboring basic patch of three residues are suggested to play a role in high density lipoprotein/low density lipoprotein partitioning. A crystal structure is also presented of PAF acetylhydrolase reacted with the organophosphate compound paraoxon via its active site Ser273. The resulting diethyl phosphoryl complex was used to model the tetrahedral intermediate of the substrate PAF to the active site. The model of interface binding begins to explain the known specificity of lipoprotein-bound substrates and how the active site can be both close to the hydrophobic-hydrophilic interface and at the same time be accessible to the aqueous phase.

  20. Crystal structure of enteropeptidase light chain complexed with an analog of the trypsinogen activation peptide.

    PubMed

    Lu, D; Fütterer, K; Korolev, S; Zheng, X; Tan, K; Waksman, G; Sadler, J E

    1999-09-17

    Enteropeptidase is a membrane-bound serine protease that initiates the activation of pancreatic hydrolases by cleaving and activating trypsinogen. The enzyme is remarkably specific and cleaves after lysine residues of peptidyl substrates that resemble trypsinogen activation peptides such as Val-(Asp)4-Lys. To characterize the determinants of substrate specificity, we solved the crystal structure of the bovine enteropeptidase catalytic domain to 2.3 A resolution in complex with the inhibitor Val-(Asp)4-Lys-chloromethane. The catalytic mechanism and contacts with lysine at substrate position P1 are conserved with other trypsin-like serine proteases. However, the aspartyl residues at positions P2-P4 of the inhibitor interact with the enzyme surface mainly through salt bridges with the Nzeta atom of Lys99. Mutation of Lys99 to Ala, or acetylation with acetic anhydride, specifically prevented the cleavage of trypsinogen or Gly-(Asp)4-Lys-beta-naphthylamide and reduced the rate of inhibition by Val-(Asp)4-Lys-chloromethane 22 to 90-fold. For these reactions, Lys99 was calculated to account for 1.8 to 2.5 kcal mol(-1) of the free energy of transition state binding. Thus, a unique basic exosite on the enteropeptidase surface has evolved to facilitate the cleavage of its physiological substrate, trypsinogen.

  1. Additional antitumor ecteinascidins from a Caribbean tunicate: crystal structures and activities in vivo.

    PubMed Central

    Sakai, R; Rinehart, K L; Guan, Y; Wang, A H

    1992-01-01

    Ecteinascidins (Ets), isolated from the Caribbean tunicate Ecteinascidia turbinata, protect mice in vivo against P388 lymphoma, B16 melanoma, M5076 ovarian sarcoma, Lewis lung carcinoma, and the LX-1 human lung and MX-1 human mammary carcinoma xenografts. Crystal structures of two tris(tetrahydroisoquinoline) Ets were investigated with single crystals of the 21-O-methyl-N12-formyl derivative of Et 729 and the natural N12-oxide of Et 743. Representatives of an additional class of Ets, Et 722 and Et 736, isolated from the same organism, were assigned tetrahydro-beta-carboline-substituted bis(tetrahydroisoquinoline) structures by NMR and fast atom bombardment MS spectra. PMID:1454834

  2. Crystal Structure of an Activated Variant of Small Heat Shock Protein Hsp16.5

    SciTech Connect

    Mchaourab, Hassane S.; Lin, Yi-Lun; Spiller, Benjamin W.

    2013-04-17

    How does the sequence of a single small heat shock protein (sHSP) assemble into oligomers of different sizes? To gain insight into the underlying structural mechanism, we determined the crystal structure of an engineered variant of Methanocaldococcus jannaschii Hsp16.5 wherein a 14 amino acid peptide from human heat shock protein 27 (Hsp27) was inserted at the junction of the N-terminal region and the {alpha}-crystallin domain. In response to this insertion, the oligomer shell expands from 24 to 48 subunits while maintaining octahedral symmetry. Oligomer rearrangement does not alter the fold of the conserved {alpha}-crystallin domain nor does it disturb the interface holding the dimeric building block together. Rather, the flexible C-terminal tail of Hsp16.5 changes its orientation relative to the {alpha}-crystallin domain which enables alternative packing of dimers. This change in orientation preserves a peptide-in-groove interaction of the C-terminal tail with an adjacent {beta}-sandwich, thereby holding the assembly together. The interior of the expanded oligomer, where substrates presumably bind, retains its predominantly nonpolar character relative to the outside surface. New large windows in the outer shell provide increased access to these substrate-binding regions, thus accounting for the higher affinity of this variant to substrates. Oligomer polydispersity regulates sHSPs chaperone activity in vitro and has been implicated in their physiological roles. The structural mechanism of Hsp16.5 oligomer flexibility revealed here, which is likely to be highly conserved across the sHSP superfamily, explains the relationship between oligomer expansion observed in disease-linked mutants and changes in chaperone activity.

  3. Synthesis, crystal structure, superoxide scavenging activity, anticancer and docking studies of novel adamantyl nitroxide derivatives

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao-he; Sun, Jin; Wang, Shan; Bu, Wei; Yao, Min-na; Gao, Kai; Song, Ying; Zhao, Jin-yi; Lu, Cheng-tao; Zhang, En-hu; Yang, Zhi-fu; Wen, Ai-dong

    2016-03-01

    A novel adamantyl nitroxide derivatives has been synthesized and characterized by IR, ESI-MS and elemental analysis. Quantum chemical calculations have also been performed to calculate the molecular geometry using density functional theory (B3LYP) with the 6-31G (d,p) basis set. The calculated results showed that the optimized geometry can well reproduce the crystal structure. The antioxidant and antiproliferative activity were evaluated by superoxide (NBT) and MTT assay. The adamantyl nitroxide derivatives exhibited stronger scavenging ability towards O2· - radicals when compared to Vitamin C, and demonstrated a remarked anticancer activity against all the tested cell lines, especially Bel-7404 cells with IC50 of 43.3 μM, compared to the positive control Sorafenib (IC50 = 92.0 μM). The results of molecular docking within EGFR using AutoDock confirmed that the titled compound favorably fitted into the ATP binding site of EGFR and would be a potential anticancer agent.

  4. The crystal structure of a bimorphinan with highly selective kappa opioid receptor antagonist activity

    NASA Astrophysics Data System (ADS)

    Urbańczyk-Lipkowska, Zofia; Etter, Margaret C.; Lipkowski, Andrzej W.; Portoghese, Philip S.

    1987-07-01

    The crystal structure of the dihydrobromide heptahydrate of nor-binaltorphimine (17, 17'-bis(cyclopropylmethyl)-6,6',7,7'-tetrahydro-4,5α: 4',5'α-diepoxy-6,6'-imino[7,7' bimorphinan]-3,3',14,14'-tetraol)is presented. This structure is the first reported structure of a rigid bivalent opioid ligand. Two morphinan pharmacophores are connected by a rigid spacer, the pyrrole ring. The nor-binaltorphimine structure itself shows unique, high selectivity as a kappa opioid receptor antagonist. Crystal data: P3 2, Z = 3, a = b = 20.223 (4), c = 9.541(7) Å, α = β = 90°, γ = 120°; R = 0.079 (1765 reflections, Fobs > 1σ( F)).

  5. Synthesis, crystal structure, photodegradation kinetics and photocatalytic activity of novel photocatalyst ZnBiYO4.

    PubMed

    Cui, Yanbing; Luan, Jingfei

    2015-03-01

    ZnBiYO4 was synthesized by a solid-state reaction method for the first time. The structural and photocatalytic properties of ZnBiYO4 were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and UV-Vis diffuse reflectance. ZnBiYO4 crystallized with a tetragonal spinel structure with space group I41/A. The lattice parameters for ZnBiYO4 were a=b=11.176479Å and c=10.014323Å. The band gap of ZnBiYO4 was estimated to be 1.58eV. The photocatalytic activity of ZnBiYO4 was assessed by photodegradation of methyl orange under visible light irradiation. The results showed that ZnBiYO4 had higher catalytic activity compared with N-doped TiO2 under the same experimental conditions using visible light irradiation. The photocatalytic degradation of methyl orange with ZnBiYO4 or N-doped TiO2 as catalyst followed first-order reaction kinetics, and the first-order rate constant was 0.01575 and 0.00416 min(-1) for ZnBiYO4 and N-doped TiO2, respectively. After visible light irradiation for 220 min with ZnBiYO4 as catalyst, complete removal and mineralization of methyl orange were observed. The reduction of total organic carbon, formation of inorganic products, SO4(2-) and NO3-, and evolution of CO2 revealed the continuous mineralization of methyl orange during the photocatalytic process. The intermediate products were identified using liquid chromatography-mass spectrometry. The ZnBiYO4/(visible light) photocatalysis system was found to be suitable for textile industry wastewater treatment and could be used to solve other environmental chemical pollution problems.

  6. Evidence for Lipid Packaging in the Crystal Structure of the GM2-Activator Complex with Platelet Activating Factor

    SciTech Connect

    Wright, Christine S.; Mi, Li-Zhi; Rastinejad, Fraydoon

    2010-11-16

    GM2-activator protein (GM2-AP) is a lipid transfer protein that has the ability to stimulate the enzymatic processing of gangliosides as well as T-cell activation through lipid presentation. Our previous X-ray crystallographic studies of GM2-AP have revealed a large lipid binding pocket as the central overall feature of the structure with non-protein electron density within this pocket suggesting bound lipid. To extend these studies, we present here the 2 {angstrom} crystal structure of GM2-AP complexed with platelet activating factor (PAF). PAF is a potent phosphoacylglycerol whose toxic patho-physiological effects can be inhibited by GM2-AP. The structure shows an ordered arrangement of two bound lipids and a fatty acid molecule. One PAF molecule binds in an extended conformation within the hydrophobic channel that has an open and closed conformation, and was seen to contain bound phospholipid in the low pH apo structure. The second molecule is submerged inside the pocket in a U-shaped conformation with its head group near the single polar residue S141. It was refined as lyso-PAF as it lacks electron density for the sn-2 acetate group. The alkyl chains of PAF interact through van der Waals contacts, while the head groups bind in different environments with their phosphocholine moieties in contact with aromatic rings (Y137, F80). The structure has revealed further insights into the lipid binding properties of GM2-AP, suggesting an unexpected unique mode of lipid packaging that may explain the efficiency of GM2-AP in inhibiting the detrimental biological effects of PAF.

  7. Synthesis, crystal structure and biological activity of two Mn complexes with 4-acyl pyrazolone derivatives.

    PubMed

    Li, Yue; Zhao, Jing; He, Chuan-Chuan; Zhang, Li; Sun, Su-Rong; Xu, Guan-Cheng

    2015-09-01

    In order to study the biological activities of transitional metal complexes based on 4-acyl pyrazolone derivatives, two Mn complexes [Mn(HLa)(La)]·(CH3CN)1.5·H2O (1) and [Mn2(Lb)2(μ-EtO)2(EtOH)2] (2) (H2La = N-(1-phenyl-3-methyl-4-benzoyl-5-pyrazolone)-2-thiophenecarboxylic acid hydrazide, H2Lb = N-(1-phenyl-3-methyl-4-propenylidene-5-pyrazolone)-2-thiophenecarboxylic acid hydrazide) have been synthesized and characterized. Single crystal X-ray diffraction analysis indicated that 1 is a mononuclear complex and 2 exhibits a dinuclear centrosymmetric structure. Binding of the complexes with Herring Sperm DNA (HS-DNA) showed that complexes 1 and 2 could intercalate to DNA with quenching constant of 5.3×10(4) M(-1) and 4.9×10(4) M(-1), respectively. The interactions of the complexes with bovine serum albumin (BSA) indicated that complexes 1 and 2 could quench the intrinsic fluorescence of BSA in a static quenching process. Further, the inhibitory effects of the complexes on the cell population growth of the human esophageal cancer Eca-109 cells and the cervical cancer HeLa cells were determined by MTT assay, which indicated that both 1 and 2 significantly inhibited the growth of Eca-109 and HeLa cells, the inhibitory activity of complex 1 is stronger than that of 2. We further observed that complex 1 inhibited the growth of HeLa cells through inducing the apoptosis and arresting cell cycle at S phase. Our results suggested that both complexes 1 and 2 have DNA- and protein-binding capacity and antitumor activity.

  8. New dicoumarol sodium compound: crystal structure, theoretical study and tumoricidal activity against osteoblast cancer cells

    PubMed Central

    2013-01-01

    Background Enormous interest had been paid to the coordination chemistry of alkali and alkaline metal ions because of their role inside body viz; their Li+/Na+ exchange inside the cell lead to different diseases like neuropathy, hypertension, microalbuminuria, cardiac and vascular hypertrophy, obesity, and insulin resistance. It has been presumed that alkali metal ions (whether Na+ or K+) coordinated to chelating ligands can cross the hydrophobic cell membrane easily and can function effectively for depolarizing the ion difference. This unique function was utilized for bacterial cell death in which K+ has been found coordinated valinomycin (antibiotic). Results Distinct sodium adduct (1) with dicoumarol ligand, 4-Hydroxy-3-[(4-hydroxy-2-oxo-4a,8a-dihydro-2H-chromen-3-yl)-phenyl-methyl]-chromen-2-one (L) is isolated from the saturated solution of sodium methoxide. Single crystal X-ray diffraction studies of the adduct reveals that sodium is in the form of cation attached to a methoxide, methanol and a dicoumarol ligand where carbonyl functional groups of the coumarin derivative are acting as bridges. The sodium compound (1) is also characterized by IR, 1H-NMR, and 13C{1H}-NMR spectroscopic techniques. The composition is confirmed by elemental analysis. DFT study for 1 has been carried out using B3LYP/6-13G calculations which shown the theoretical confirmation of the various bond lengths and bond angles. Both the compounds were studied subsequently for the U2OS tumoricidal activity and it was found that L has LD50 value of 200 μM whereas the sodium analog cytotoxicity did not drop down below 60%. Conclusion A sodium analogue (1) with medicinally important dicoumarol ligand (L) has been reported. The crystal structure and DFT study confirm the formation of cationic sodium compound with dicoumarol. The ligand was found more active than the sodium analog attributed to the instability of 1 in solution state. Coumarin compound with sodium was observed to be less

  9. Synthesis, X-ray crystal structures and catecholase activity investigation of new chalcone ligands

    NASA Astrophysics Data System (ADS)

    Thabti, Salima; Djedouani, Amel; Rahmouni, Samra; Touzani, Rachid; Bendaas, Abderrahmen; Mousser, Hénia; Mousser, Abdelhamid

    2015-12-01

    The reaction of dehydroacetic acid DHA carboxaldehyde and RCHO derivatives (R = quinoleine-8-; indole-3-; pyrrol-2- and 4-(dimethylamino)phenyl - afforded four new chalcone ligands (4-hydroxy-6-methyl-3-[(2E)-3-quinolin-8-ylprop-2-enoyl]-2H-pyran-2-one) L1, (4-hydroxy-3-[(2E)-3-(1H-indol-3-yl)prop-2-enoyl]-6-methyl-2H-pyran-2-one) L2, (4-hydroxy-6-methyl-3-[(2E)-3-(1H-pyrrol-2-yl)prop-2-enoyl]-2H-pyran-2-one) L3, and (3-{(2E)-3-[4-(dimethylamino)phenyl]prop-2-enoyl}-4-hydroxy-6-methyl-2H-pyran-2-one) L4. L3 and L4 were characterized by X-ray crystallography. Molecules crystallize with four and two molecules in the asymmetric unit, respectively and adopt an E conformation about the Cdbnd C bond. Both structures are stabilized by an extended network O-H … O. Furthermore, N-H … O and C-H … O hydrogen bonds are observed in L3 and L4 structures, respectively. The in situ generated copper (II) complexes of the four compounds L1, L2, L3 and L4 were examined for their catalytic activities and were found to catalyze the oxidation reaction of catechol to o-quinone under atmospheric dioxygen. The rates of this oxidation depend on three parameters: ligand, ion salts and solvent nature and the combination L2[Cu (CH3COO)2] leads to the faster catalytic process.

  10. Crystal structure of the ectoine hydroxylase, a snapshot of the active site.

    PubMed

    Höppner, Astrid; Widderich, Nils; Lenders, Michael; Bremer, Erhard; Smits, Sander H J

    2014-10-24

    Ectoine and its derivative 5-hydroxyectoine are compatible solutes that are widely synthesized by bacteria to cope physiologically with osmotic stress. They also serve as chemical chaperones and maintain the functionality of macromolecules. 5-Hydroxyectoine is produced from ectoine through a stereo-specific hydroxylation, an enzymatic reaction catalyzed by the ectoine hydroxylase (EctD). The EctD protein is a member of the non-heme-containing iron(II) and 2-oxoglutarate-dependent dioxygenase superfamily and is evolutionarily well conserved. We studied the ectoine hydroxylase from the cold-adapted marine ultra-microbacterium Sphingopyxis alaskensis (Sa) and found that the purified SaEctD protein is a homodimer in solution. We determined the SaEctD crystal structure in its apo-form, complexed with the iron catalyst, and in a form that contained iron, the co-substrate 2-oxoglutarate, and the reaction product of EctD, 5-hydroxyectoine. The iron and 2-oxoglutarate ligands are bound within the EctD active site in a fashion similar to that found in other members of the dioxygenase superfamily. 5-Hydroxyectoine, however, is coordinated by EctD in manner different from that found in high affinity solute receptor proteins operating in conjunction with microbial import systems for ectoines. Our crystallographic analysis provides a detailed view into the active site of the ectoine hydroxylase and exposes an intricate network of interactions between the enzyme and its ligands that collectively ensure the hydroxylation of the ectoine substrate in a position- and stereo-specific manner.

  11. Synthesis, crystal structure, ABTS radical-scavenging activity, antimicrobial and docking studies of some novel quinoline derivatives

    NASA Astrophysics Data System (ADS)

    Tabassum, Sumaiya; Suresha Kumara, T. H.; Jasinski, Jerry P.; Millikan, Sean P.; Yathirajan, H. S.; Sujan Ganapathy, P. S.; Sowmya, H. B. V.; More, Sunil S.; Nagendrappa, Gopalpur; Kaur, Manpreet; Jose, Gilish

    2014-07-01

    In this study, a series of nine novel 2-chloroquinolin-3-yl ester derivatives have been synthesized via a two-step protocol from 2-chloroquinoline-3-carbaldehyde. The structures of all these compounds were confirmed by spectral data. The single crystal X-ray structure of two derivatives, (2-chloroquinolin-3-yl)methyl acetate [6a] and (2-chloro-6-methylquinolin-3-yl)methyl acetate [6e] have also been determined. The synthesized compounds were further evaluated for their ABTS radical-scavenging activity and antimicrobial activities. Amongst all the tested compounds, 6a exhibited maximum scavenging activity with ABTS. Concerning antibacterial and antifungal activities, compound (2-chloro-6-methoxyquinolin-3-yl)methyl 2,4-dichlorobenzoate [6i] was found to be the most active in the series against B. subtilis, S. aureus, E. coli, K. pneumonia, C. albicans and A. niger species. The structure-antimicrobial activity relationship of these derivatives were studied using Autodock.

  12. Syntheses, spectroscopic characterization, crystal structure and natural rubber vulcanization activity of new disulfides derived from sulfonyldithiocarbimates

    NASA Astrophysics Data System (ADS)

    Alves, Leandro de Carvalho; Rubinger, Mayura Marques Magalhães; Tavares, Eder do Couto; Janczak, Jan; Pacheco, Elen Beatriz Acordi Vasques; Visconte, Leila Lea Yuan; Oliveira, Marcelo Ribeiro Leite

    2013-09-01

    The compounds (Bu4N)2[(4-RC6H4SO2NCS2)2] [Bu4N = tetrabutylammonium cation; R = H (1), F (2), Cl (3) and Br (4)] and (Ph4P)2[(4-RC6H4SO2NCS2)2]ṡH2O [Ph4P = tetraphenylphosphonium cation and R = I (5)] were synthesized by the reaction of the potassium dithiocarbimates (4-RC6H4SO2NCS2K2ṡ2H2O) with I2 and Bu4NBr or Ph4PCl. The IR data were consistent with the formation of the dithiocarbimatodisulfides anions. The NMR spectra showed the expected signals for the cations and anions in a 2:1 proportion. The structures of compounds 1-5 were determined by the single crystal X-ray diffraction. The compounds 2, 3 and 4 are isostructural and crystallise in the centrosymmetric space group C2/c of the monoclinic system. Compound 1 crystallises in the monoclinic system in the space group of P21/n and the compound 5 crystallises in the centrosymmetric space group P-1 of the triclinic system. The complex anions of compounds 2, 3 and 4 exhibit similar conformations having twofold symmetry, while in 1 and 5 the anions exhibit C1 symmetry. The activity of the new compounds in the vulcanization of the natural rubber was evaluated and compared to the commercial accelerators ZDMC, TBBS and TMTD. These studies confirm that the sulfonyldithiocarbimato disulfides anions are new vulcanization accelerators, being slower than the commercial accelerators, but producing a greater degree of crosslinking, and scorch time values compatible with good processing safety for industrial applications. The mechanical properties, stress and tear resistances were determined and compared to those obtained with the commercial accelerators.

  13. X-ray crystal structure of divalent metal-activated ß-xyloisdase, RS223BX

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report the first X-ray structure of a glycoside hydrolase family 43 ß-xylosidase, RS223BX, which is strongly activated by the addition of divalent metal cations. The 2.69 Å structure reveals that the Ca2+ cation is located at the back of the active site pocket. The Ca2+ coordinates to H274 to sta...

  14. Two active site divalent ions in the crystal structure of the hammerhead ribozyme bound to a transition state analogue

    SciTech Connect

    Mir, Aamir; Golden, Barbara L.

    2015-11-09

    The crystal structure of the hammerhead ribozyme bound to the pentavalent transition state analogue vanadate reveals significant rearrangements relative to the previously determined structures. The active site contracts, bringing G10.1 closer to the cleavage site and repositioning a divalent metal ion such that it could, ultimately, interact directly with the scissile phosphate. This ion could also position a water molecule to serve as a general acid in the cleavage reaction. A second divalent ion is observed coordinated to O6 of G12. This metal ion is well-placed to help tune the pKA of G12. Finally, on the basis of this crystal structure as well as a wealth of biochemical studies, in this paper we propose a mechanism in which G12 serves as the general base and a magnesium-bound water serves as a general acid.

  15. Frustrated polymer crystal structures

    NASA Astrophysics Data System (ADS)

    Lotz, B.; Strasbourg, 67083

    1997-03-01

    Several crystal structures or polymorphs of chiral or achiral polymers and biopolymers with three fold conformation of the helix have been found to conform to a common and -with one exception(Puterman, M. et al, J. Pol. Sci., Pol. Phys. Ed., 15, 805 (1977))- hitherto unsuspected packing scheme. The trigonal unit-cell contains three isochiral helices; the azimuthal setting of one helix differs significantly from that of the other two, leading to a so-called frustrated packing scheme, in which the environment of conformationally identical helices differs. Two variants of the frustrated scheme are analyzed. Similarities with frustrated two dimensional magnetic systems are underlined. Various examples of frustration in polymer crystallography are illustrated via the elucidation or reinterpretation of crystal phases or polymorphs of polyolefins, polyesters, cellulose derivatives and polypeptides. Structural manifestations (including AFM evidence) and morphological consequences of frustration are presented, which help diagnose the existence of this original packing of polymers.(Work done with L. Cartier, D. Dorset, S. Kopp, T. Okihara, M. Schumacher, W. Stocker.)

  16. Crystal structure of α-amylase from Oryza sativa: molecular insights into enzyme activity and thermostability.

    PubMed

    Ochiai, Akihito; Sugai, Hiroshi; Harada, Kazuki; Tanaka, Seiya; Ishiyama, Yohei; Ito, Kosuke; Tanaka, Takaaki; Uchiumi, Toshio; Taniguchi, Masayuki; Mitsui, Toshiaki

    2014-01-01

    AmyI-1 is an α-amylase from Oryza sativa (rice) and plays a crucial role in degrading starch in various tissues and at various growth stages. This enzyme is a glycoprotein with an N-glycosylated carbohydrate chain, a unique characteristic among plant α-amylases. In this study, we report the first crystal structure of AmyI-1 at 2.2-Å resolution. The structure consists of a typical (β/α)8-barrel, which is well-conserved among most α-amylases in the glycoside hydrolase family-13. Structural superimposition indicated small variations in the catalytic domain and carbohydrate-binding sites between AmyI-1 and barley α-amylases. By contrast, regions around the N-linked glycosylation sites displayed lower conservation of amino acid residues, including Asn-263, Asn-265, Thr-307, Asn-342, Pro-373, and Ala-374 in AmyI-1, which are not conserved in barley α-amylases, suggesting that these residues may contribute to the construction of the structure of glycosylated AmyI-1. These results increase the depths of our understanding of the biological functions of AmyI-1.

  17. Crystal Structure and Photocatalytic Activity of Al-Doped TiO2 Nanofibers for Methylene Blue Dye Degradation.

    PubMed

    Lee, Deuk Yong; Lee, Myung-Hyun; Kim, Bae-Yeon; Cho, Nam-Ihn

    2016-05-01

    Al-TiO2 nanofibers were prepared using a sol-gel derived electrospinning by varying the Al/Ti molar ratio from 0 to 0.73 to investigate the effect of Al doping on the crystal structure and the photocatalytic activity of Al-TiO2 for methylene blue (MB) degradation. XRD results indicated that as the Al/Ti molar ratio rose, crystal structure of Al-TiO2 was changed from anatase/rutile (undoped), anatase (0.07-0.18), to amorphous phase (0.38-0.73), which was confirmed by XPS and Raman analysis. The degradation kinetic constant increased from 7.3 x 10(-4) min(-1) to 4.5 x 10(-3) min(-1) with the increase of Al/Ti molar ratios from 0 to 0.38, but decreased to 3.4 x 10(-3) min(-1) when the Al/Ti molar ratio reached 0.73. The Al-TiO2 catalyst doped with 0.38 Al/Ti molar ratio demonstrated the best MB degradation. Experimental results indicated that the Al doping in Al-TiO2 was mainly attributed to the crystal structure of TiO2 and the photocatalytic degradation of MB.

  18. Inorganic Crystal Structure Database (ICSD)

    National Institute of Standards and Technology Data Gateway

    SRD 84 FIZ/NIST Inorganic Crystal Structure Database (ICSD) (PC database for purchase)   The Inorganic Crystal Structure Database (ICSD) is produced cooperatively by the Fachinformationszentrum Karlsruhe(FIZ) and the National Institute of Standards and Technology (NIST). The ICSD is a comprehensive collection of crystal structure data of inorganic compounds containing more than 140,000 entries and covering the literature from 1915 to the present.

  19. Synthesis, crystal structure, spectroscopic properties, antibacterial activity and theoretical studies of a novel difunctional acylhydrazone

    NASA Astrophysics Data System (ADS)

    Jin, Yan-Xian; Zhong, Ai-Guo; Zhang, Yu-jian; Pan, Fu-You

    2011-09-01

    A novel difunctional acylhydrazone has been synthesized by the reaction of 5-methylisoxazole-4-carboyl hydrazine with benzaldehyde and characterized by X-ray crystallography and spectroscopy. The obtained results demonstrate the crystal belongs to triclinic, space group P1¯. Moreover, the spectroscopic properties were evaluated through density functional theory (DFT) and time-dependent density functional theory (TD DFT) calculations. The results reveal that UV-Vis absorption peaks at 194, 217.5 and 290.5 nm are mainly attributed to (p, π) → π ∗, partly (p, π) → π ∗ and partly π → π ∗, and predominantly π → π ∗, respectively, with intraligand charge-transfer transition (ILCT) character. The fluorescence emission peak at 485.96 nm should be assigned to ILCT. In addition, the results of antibacterial activities indicate the title compound has certain modest antibacterial activity as well as the broad-spectrum bacteriostasis, which can be supported by the molecular electrostatic potential (MEP). Therefore, the title compound exhibits both antibacterial activity and photoluminescent property, which has potential applications in many fields such as material science and photodynamic therapy.

  20. Activity and Crystal Structure of Arabidopsis thalianaUDP-N-Acetylglucosamine Acyltransferase

    SciTech Connect

    Joo, Sang Hoon; Chung, Hak Suk; Raetz, Christian R.H.; Garrett, Teresa A.

    2012-08-31

    The UDP-N-acetylglucosamine (UDP-GlcNAc) acyltransferase, encoded by lpxA, catalyzes the first step of lipid A biosynthesis in Gram-negative bacteria, the (R)-3-hydroxyacyl-ACP-dependent acylation of the 3-OH group of UDP-GlcNAc. Recently, we demonstrated that the Arabidopsis thaliana orthologs of six enzymes of the bacterial lipid A pathway produce lipid A precursors with structures similar to those of Escherichia coli lipid A precursors [Li, C., et al. (2011) Proc. Natl. Acad. Sci. U.S.A. 108, 11387-11392]. To build upon this finding, we have cloned, purified, and determined the crystal structure of the A. thaliana LpxA ortholog (AtLpxA) to 2.1 {angstrom} resolution. The overall structure of AtLpxA is very similar to that of E. coli LpxA (EcLpxA) with an {alpha}-helical-rich C-terminus and characteristic N-terminal left-handed parallel {beta}-helix (L{beta}H). All key catalytic and chain length-determining residues of EcLpxA are conserved in AtLpxA; however, AtLpxA has an additional coil and loop added to the L{beta}H not seen in EcLpxA. Consistent with the similarities between the two structures, purified AtLpxA catalyzes the same reaction as EcLpxA. In addition, A. thaliana lpxA complements an E. coli mutant lacking the chromosomal lpxA and promotes the synthesis of lipid A in vivo similar to the lipid A produced in the presence of E. coli lpxA. This work shows that AtLpxA is a functional UDP-GlcNAc acyltransferase that is able to catalyze the same reaction as EcLpxA and supports the hypothesis that lipid A molecules are biosynthesized in Arabidopsis and other plants.

  1. Synthesis, crystal structure, antibacterial activities, and electrochemical studies of new N,N‧-polymethylene bis-sulfonamides

    NASA Astrophysics Data System (ADS)

    Özbek, Neslihan; Alyar, Saliha; Mamaş, Serhat; Şahin, Ertan; Karacan, Nurcan

    2012-02-01

    Four disulfonamide derivatives (C2H5·SO2·NH)2(CH2)n (n = 2, 3, 4, 5) were synthesized and characterized by FTIR, 1H NMR, 13C NMR, HETCOR, LCMS and elemental analysis. Ethanesulfonamide-N,N'-pentamethylene bis was also characterized by X-ray single crystal diffraction measurement. The electrochemical characteristics of the disulfonamide derivatives were performed by cyclic voltammetry and chronoamperometry. 1H and 13C NMR chemical shifts of the compounds were calculated by using DFT/B3LYP methods with a 6-311++G (d,p) basis set. Antibacterial activity and the structural relationship of the compounds showed that activity decreases proportionately to the increasing length of the carbon chain between NH groups, log P values, hydration energy and molecular volumes. Anodic peak potentials and HOMO values do not correlate with the activity, but reduction potential and LUMO decrease weakly with increasing activity.

  2. cis-Dioxomolybdenum(VI) complexes of a new ONN chelating thiosemicarbazidato ligand; Synthesis, characterization, crystal, molecular structures and antioxidant activities

    NASA Astrophysics Data System (ADS)

    İlhan Ceylan, Berat; Deniz, Nahide Gulsah; Kahraman, Sibel; Ulkuseven, Bahri

    2015-04-01

    5-Chloro-4-methyl-2-hydroxybenzophenone S-propyl-4-phenyl-thiosemicarbazone (H2L) and its cis-dioxomolybdenum(VI) complexes, in the general formula [MoO2(L)R-OH)] (R: methyl, 1; ethyl, 2; n-propyl, 3; n-butyl, 4; n-pentyl, 5), were synthesized and characterized by micro analysis, electronic, infrared and 1H and 13C NMR spectra. The crystal structures of complexes, 1 and 3, have been solved by direct methods (SIR92) and refined to the residual indexes R1 = 0.098 and R1 = 0.052 respectively. Complexes 1 and 3 are crystallized in the triclinic space group P-1 with Z = 2. The crystal study of complex 1 showed the first example of intermolecular hydrogen bond for this type of molybdenum-thiosemicarbazone complexes. The hydrogen bond is between the hydroxyl proton of attached alcohol and an oxo oxygen (in MoO22+ unit) of another complex molecule, and its bond distance (1.767(1) Å) is shorter than from the σ-coordination bonds in complex 1. Antioxidant activities of the compounds were determined by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) method. Ligand showed 23.61% DPPH radical scavenging activity at 250 mg/L concentration. Cupric Reducing Antioxidant Capacity (CUPRAC) was also evaluated and trolox-equivalent antioxidant capacity (TEAC) values were found for ligand, 1 and 3 as 0.51, 0.33 and 0.30 respectively.

  3. Crystal Structure and Activity Studies of the C11 Cysteine Peptidase from Parabacteroides merdae in the Human Gut Microbiome*

    PubMed Central

    Das, Debanu; Godzik, Adam; Lesley, Scott A.; Deacon, Ashley M.; Coombs, Graham H.; Elsliger, Marc-André; Wilson, Ian A.

    2016-01-01

    Clan CD cysteine peptidases, a structurally related group of peptidases that include mammalian caspases, exhibit a wide range of important functions, along with a variety of specificities and activation mechanisms. However, for the clostripain family (denoted C11), little is currently known. Here, we describe the first crystal structure of a C11 protein from the human gut bacterium, Parabacteroides merdae (PmC11), determined to 1.7-Å resolution. PmC11 is a monomeric cysteine peptidase that comprises an extended caspase-like α/β/α sandwich and an unusual C-terminal domain. It shares core structural elements with clan CD cysteine peptidases but otherwise structurally differs from the other families in the clan. These studies also revealed a well ordered break in the polypeptide chain at Lys147, resulting in a large conformational rearrangement close to the active site. Biochemical and kinetic analysis revealed Lys147 to be an intramolecular processing site at which cleavage is required for full activation of the enzyme, suggesting an autoinhibitory mechanism for self-preservation. PmC11 has an acidic binding pocket and a preference for basic substrates, and accepts substrates with Arg and Lys in P1 and does not require Ca2+ for activity. Collectively, these data provide insights into the mechanism and activity of PmC11 and a detailed framework for studies on C11 peptidases from other phylogenetic kingdoms. PMID:26940874

  4. Crystal structure and activity studies of the C11 cysteine peptidase from Parabacteroides merdae in the human gut microbiome

    DOE PAGES

    McLuskey, Karen; Grewal, Jaspreet S.; Das, Debanu; ...

    2016-03-03

    Clan CD cysteine peptidases, a structurally related group of peptidases that include mammalian caspases, exhibit a wide range of important functions, along with a variety of specificities and activation mechanisms. However, for the clostripain family (denoted C11), little is currently known. Here, we describe the first crystal structure of a C11 protein from the human gut bacterium, Parabacteroides merdae (PmC11), determined to 1.7-Å resolution. PmC11 is a monomeric cysteine peptidase that comprises an extended caspase-like α/β/α sandwich and an unusual C-terminal domain. It shares core structural elements with clan CD cysteine peptidases but otherwise structurally differs from the other familiesmore » in the clan. These studies also revealed a well ordered break in the polypeptide chain at Lys147, resulting in a large conformational rearrangement close to the active site. Biochemical and kinetic analysis revealed Lys147 to be an intramolecular processing site at which cleavage is required for full activation of the enzyme, suggesting an autoinhibitory mechanism for self-preservation. PmC11 has an acidic binding pocket and a preference for basic substrates, and accepts substrates with Arg and Lys in P1 and does not require Ca2+ for activity. Altogether, these data provide insights into the mechanism and activity of PmC11 and a detailed framework for studies on C11 peptidases from other phylogenetic kingdoms.« less

  5. Structures beyond crystals

    NASA Astrophysics Data System (ADS)

    Hargittai, István

    2010-07-01

    Dan Shechtman made a seminal observation of the appearance on "non-crystallographic" symmetry in an alloy at the US National Bureau of Standards on April 8, 1982. This day has become known as the date of the discovery of quasicrystals. It was not easy to gain recognition for this discovery and the first printed report about it appeared two and a half years after the observation, which then was followed by an avalanche of publications. This was as if theoreticians and other experimentalists had only been waiting for a pioneer to come out with this revolutionary experiment. The discovery of quasicrystals just as the discovery of the structure of biological macromolecules was part of the development in which the framework of classical crystallography was crumbling and generalized crystallography—the science of structures—has emerged that had long been advanced by J. Desmond Bernal and his pupils. The discovery of quasicrystals offers some lessons about the nature of scientific discovery. This contribution presents selected aspects of the recognition of the importance of structures beyond crystals and is by far not a complete history of the areas involved.

  6. Crystal structure of the DNA cytosine deaminase APOBEC3F: the catalytically active and HIV-1 Vif-binding domain.

    PubMed

    Bohn, Markus-Frederik; Shandilya, Shivender M D; Albin, John S; Kouno, Takahide; Anderson, Brett D; McDougle, Rebecca M; Carpenter, Michael A; Rathore, Anurag; Evans, Leah; Davis, Ahkillah N; Zhang, Jingying; Lu, Yongjian; Somasundaran, Mohan; Matsuo, Hiroshi; Harris, Reuben S; Schiffer, Celia A

    2013-06-04

    Human APOBEC3F is an antiretroviral single-strand DNA cytosine deaminase, susceptible to degradation by the HIV-1 protein Vif. In this study the crystal structure of the HIV Vif binding, catalytically active, C-terminal domain of APOBEC3F (A3F-CTD) was determined. The A3F-CTD shares structural motifs with portions of APOBEC3G-CTD, APOBEC3C, and APOBEC2. Residues identified to be critical for Vif-dependent degradation of APOBEC3F all fit within a predominantly negatively charged contiguous region on the surface of A3F-CTD. Specific sequence motifs, previously shown to play a role in Vif susceptibility and virion encapsidation, are conserved across APOBEC3s and between APOBEC3s and HIV-1 Vif. In this structure these motifs pack against each other at intermolecular interfaces, providing potential insights both into APOBEC3 oligomerization and Vif interactions.

  7. Two active site divalent ions in the crystal structure of the hammerhead ribozyme bound to a transition state analogue

    DOE PAGES

    Mir, Aamir; Golden, Barbara L.

    2015-11-09

    The crystal structure of the hammerhead ribozyme bound to the pentavalent transition state analogue vanadate reveals significant rearrangements relative to the previously determined structures. The active site contracts, bringing G10.1 closer to the cleavage site and repositioning a divalent metal ion such that it could, ultimately, interact directly with the scissile phosphate. This ion could also position a water molecule to serve as a general acid in the cleavage reaction. A second divalent ion is observed coordinated to O6 of G12. This metal ion is well-placed to help tune the pKA of G12. Finally, on the basis of this crystalmore » structure as well as a wealth of biochemical studies, in this paper we propose a mechanism in which G12 serves as the general base and a magnesium-bound water serves as a general acid.« less

  8. The crystal structures of 3-TAPAP in complexes with the urokinase-type plasminogen activator and picrate.

    PubMed

    Zesławska, Ewa; Jacob, Uwe; Stürzebecher, Jörg; Oleksyn, Barbara J

    2006-01-01

    The urokinase-type plasminogen activator (uPA) is a protein involved in tissue remodeling and other biological processes. The inhibitors of uPA have been shown to prevent the spread of metastasis and tumor growth, and accordingly this enzyme is widely accepted as a promising anticancer target. In this work, we have investigated the conformation of the uPA inhibitor 3-TAPAP in two different crystalline environments of a picrate and a uPA complex. These structures were compared to the known structure of the 3-TAPAP in the complex with trypsin. In the complexes with the proteins, trypsin, and uPA, the binding mode of 3-TAPAP is similar. A larger difference in the conformation, in the comparison to these structures, has been observed by us in the 3-TAPAP picrate crystal. This observation contradicts the hypothesis that 3-TAPAP derivatives inhibit serine proteinases in preformed stable conformations.

  9. Synthesis, crystal structures, fluorescence and xanthine oxidase inhibitory activity of pyrazole-based 1,3,4-oxadiazole derivatives

    NASA Astrophysics Data System (ADS)

    Qi, De-Qiang; Yu, Chuan-Ming; You, Jin-Zong; Yang, Guang-Hui; Wang, Xue-Jie; Zhang, Yi-Ping

    2015-11-01

    A series of pyrazole-based 1,3,4-oxadiazole derivatives were rationally designed and synthesized in good yields by following a convenient route. All the newly synthesized molecules were fully characterized by IR, 1H NMR and elemental analysis. Eight compounds were structurally determined by single crystal X-ray diffraction analysis. The fluorescence properties of all the compounds were investigated in dimethyl sulfoxide media. In addition, these newly synthesized compounds were evaluated for in vitro inhibitory activity against commercial enzyme xanthine oxidase (XO) by measuring the formation of uric acid from xanthine. Among the compounds synthesized and tested, 3d and 3e were found to be moderate inhibitory activity against commercial XO with IC50 = 72.4 μM and 75.6 μM. The studies gave a new insight in further optimization of pyrazole-based 1,3,4-oxadiazole derivatives with excellent fluorescence properties and XO inhibitory activity.

  10. THE CRYSTAL STRUCTURE OF DIPHENYLTELLURIUM DIBROMIDE,

    DTIC Science & Technology

    TELLURIUM COMPOUNDS, *ORGANOMETALLIC COMPOUNDS, CRYSTAL STRUCTURE , CRYSTAL STRUCTURE , BROMIDES, SYMMETRY(CRYSTALLOGRAPHY), X RAY DIFFRACTION, FOURIER ANALYSIS, LEAST SQUARES METHOD, MOLECULAR STRUCTURE, CHEMICAL BONDS.

  11. REFINEMENT OF THE CRYSTAL STRUCTURE OF GUANIDINIUM ALUMINUM SULFATE HEXAHYDRATE.

    DTIC Science & Technology

    FERROELECTRIC CRYSTALS, * CRYSTAL STRUCTURE ), (*GUANIDINES, CRYSTAL STRUCTURE ), (*ALUMINUM COMPOUNDS, CRYSTAL STRUCTURE ), SULFATES, HYDRATES, X RAY DIFFRACTION, CHROMIUM COMPOUNDS, CRYSTAL LATTICES, CHEMICAL BONDS

  12. Synthesis, crystal structure, spectroscopic properties and potential anti-cancerous activities of four unsaturated bis-norcantharimides

    NASA Astrophysics Data System (ADS)

    Cheng, Shuang-Shuang; Shi, Yan; Ma, Xiao-Na; Xing, Dian-Xiang; Liu, Lian-Dong; Liu, Yun; Zhao, Yun-Xue; Sui, Qi-Cheng; Tan, Xue-Jie

    2016-07-01

    Four unsaturated norcantharimide (UNCI) dimers were synthesized and characterized by elemental analysis, ESI-QTOF-MS, FT/IR, UV-Vis, 1H and 13C NMR as well as single crystal X-ray diffraction. In addition, theoretical studies have been investigated to compare with the experimental findings. Introduction of various lengths of single bond link chains provides high conformational flexibility and thus unusual molecular and crystal structures for dimers. Two of the four dimers twist into helicate, but crystallize into centrosymmetric lattice; one adopts approximately centrosymmetric conformer, but packs into non-centrosymmetric polar space group (P21). Moreover, in vitro cytotoxic activities of four UNCI dimers and their corresponding saturated NCI dimers were evaluated. All four UNCI dimers are inactive and one NCI dimer shows modest cytotoxicity. These findings were compared with the relevant results in literature. It is found that the antitumor properties of UNCI/NCI dimers depend mainly on the length of link chains (the longer chain, the higher therapeutic efficacy) and have relationship with the double bond, which requires more experimental support.

  13. Demonstration of Crystal Structure.

    ERIC Educational Resources Information Center

    Neville, Joseph P.

    1985-01-01

    Describes an experiment where equal parts of copper and aluminum are heated then cooled to show extremely large crystals. Suggestions are given for changing the orientation of crystals by varying cooling rates. Students are more receptive to concepts of microstructure after seeing this experiment. (DH)

  14. Mechanistic characterization and crystal structure of a small molecule inactivator bound to plasminogen activator inhibitor-1

    PubMed Central

    Li, Shih-Hon; Reinke, Ashley A.; Sanders, Karen L.; Emal, Cory D.; Whisstock, James C.; Stuckey, Jeanne A.; Lawrence, Daniel A.

    2013-01-01

    Plasminogen activator inhibitor type-1 (PAI-1) is a member of the serine protease inhibitor (serpin) family. Excessive PAI-1 activity is associated with human disease, making it an attractive pharmaceutical target. However, like other serpins, PAI-1 has a labile structure, making it a difficult target for the development of small molecule inhibitors, and to date, there are no US Food and Drug Administration–approved small molecule inactivators of any serpins. Here we describe the mechanistic and structural characterization of a high affinity inactivator of PAI-1. This molecule binds to PAI-1 reversibly and acts through an allosteric mechanism that inhibits PAI-1 binding to proteases and to its cofactor vitronectin. The binding site is identified by X-ray crystallography and mutagenesis as a pocket at the interface of β-sheets B and C and α-helix H. A similar pocket is present on other serpins, suggesting that this site could be a common target in this structurally conserved protein family. PMID:24297881

  15. Crystal Structures and Functional Characterization of Wild Type and Active Sites Mutants of CYP101D1

    PubMed Central

    Batabyal, Dipanwita; Poulos, Thomas L.

    2014-01-01

    Although CYP101D1 and P450cam catayze the same reaction at a similar rate and share strikingly similar active site architectures, there are significance functional differences. CYP101D1 thus provides an opportunity to probe what structural and functional features must be shared and what can differ yet maintain high catalytic efficiency. Crystal structures of the cyanide complex of wild type CYP101D1 and it active site mutants, D259N and T260A, have been solved. The conformational changes in CYP101D1 upon cyanide binding are very similar to P450cam indicating a similar mechanism for proton delivery during oxygen activation using solvent assisted proton transfer. The D259N-CN− complex shows a perturbed solvent structure compared to wild type which is similar to what was observed in the oxy-complex of the corresonding D251N mutant in P450cam. As in P450cam the T260A mutant is highly uncoupled while the D259N gives barely detectable activity. Despite these similarities, CYP101D1 is able to use the P450cam redox partners while P450cam cannot use the CYP101D1 redox partners. Thus the strict requirement of P450cam for its own redox partner is relaxed in CYP101D1. Differences in the local environment of the essential Asp (Asp259 in CYP101D1) provides a strucutral basis for understanding these functional differences. PMID:24261604

  16. Crystal structures of human CtBP in complex with substrate MTOB reveal active site features useful for inhibitor design

    PubMed Central

    Hilbert, Brendan J.; Grossman, Steven R.; Schiffer, Celia A.; Royer, William E.

    2014-01-01

    The oncogenic corepressors C-terminal Binding Protein (CtBP) 1 and 2 harbor regulatory D-isomer specific 2-hydroxyacid dehydrogenase (D2-HDH) domains. 4-Methylthio 2-oxobutyric acid (MTOB) exhibits substrate inhibition and can interfere with CtBP oncogenic activity in cell culture and mice. Crystal structures of human CtBP1 and CtBP2 in complex with MTOB and NAD+ revealed two key features: a conserved tryptophan that likely contributes to substrate specificity and a hydrophilic cavity that links MTOB with an NAD+ phosphate. Neither feature is present in other D2-HDH enzymes. These structures thus offer key opportunities for the development of highly selective anti-neoplastic CtBP inhibitors. PMID:24657618

  17. Crystal structure, spectroscopic characterization and antibacterial activities of a silver complex with sulfameter

    NASA Astrophysics Data System (ADS)

    Nakahata, Douglas H.; Lustri, Wilton R.; Cuin, Alexandre; Corbi, Pedro P.

    2016-12-01

    A silver complex with the sulfonamide sulfameter, also known as sulfamethoxydiazine (SMTR), was prepared and characterized. Chemical analyses were consistent with the [Ag(C11H11N4O3S)] composition (AgSMTR), while conductivity measurements in DMSO indicated a non-electrolyte behavior of the complex in this solvent. High-resolution ESI(+)-QTOF mass spectrometric experiments revealed the presence of the [Ag(C11H11N4O3S)+H]+ and [Ag2(C11H11N4O3S)2+H]+ species in solution. Infrared and NMR spectroscopies indicated coordination of the ligand to the metal by the nitrogen atoms of the sulfonamide group and of the pyrimidine ring. The structure of AgSMTR was solved by powder X-ray diffraction technique using the Rietveld method. The solved structure confirms the formation of a dimer, where each silver ion is coordinated by one of the nitrogen atoms of the pyrimidine ring, the nitrogen of the sulfonamide group and by an oxygen atom from the sulfonyl group. An argentophilic interaction of 2.901(1) Å is present in this dimeric structure. The AgSMTR complex was assayed over Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa and Escherichia coli) bacterial strains, and it was found that the compound is 8 times more active over the Gram-negative bacteria in DMSO solution, with MIC values in the micromolar range.

  18. Bax crystal structures reveal how BH3 domains activate Bax and nucleate its oligomerization to induce apoptosis.

    PubMed

    Czabotar, Peter E; Westphal, Dana; Dewson, Grant; Ma, Stephen; Hockings, Colin; Fairlie, W Douglas; Lee, Erinna F; Yao, Shenggen; Robin, Adeline Y; Smith, Brian J; Huang, David C S; Kluck, Ruth M; Adams, Jerry M; Colman, Peter M

    2013-01-31

    In stressed cells, apoptosis ensues when Bcl-2 family members Bax or Bak oligomerize and permeabilize the mitochondrial outer membrane. Certain BH3-only relatives can directly activate them to mediate this pivotal, poorly understood step. To clarify the conformational changes that induce Bax oligomerization, we determined crystal structures of BaxΔC21 treated with detergents and BH3 peptides. The peptides bound the Bax canonical surface groove but, unlike their complexes with prosurvival relatives, dissociated Bax into two domains. The structures define the sequence signature of activator BH3 domains and reveal how they can activate Bax via its groove by favoring release of its BH3 domain. Furthermore, Bax helices α2-α5 alone adopted a symmetric homodimer structure, supporting the proposal that two Bax molecules insert their BH3 domain into each other's surface groove to nucleate oligomerization. A planar lipophilic surface on this homodimer may engage the membrane. Our results thus define critical Bax transitions toward apoptosis.

  19. Biscoumarin derivatives: Synthesis, crystal structure, theoretical studies and induced apoptosis activity on bladder urothelial cancer cell

    NASA Astrophysics Data System (ADS)

    Xin, Jia-jia; Li, Jing; Zhang, Zi-dan; Hu, Xing-bin; Li, Ming-kai

    2015-03-01

    In this study, five new biscoumarin derivatives (1-5) were synthesized and compound 4 inhibited the proliferation of the bladder urothelial cells (J82 cell line) obviously after 48 h treatment at different concentration (1, 5 and 10 μmol/L), and J82 cells were predominantly induced to apoptotic cell death after compound 4 treatment. Morphologic changes of bladder urothelial cancer cells were also observed under transmission electron microscopy (TEM) after compound 4 treatment. In addition, compound 4 had much less toxicity to human umbilical vein endothelial cells. To explore the possible anti-cancer mechanism of compound 4, two classical intramolecular Osbnd H⋯O hydrogen bonds (HBs) in their structures and the corresponding HB energies were performed with the density functional theory (DFT) [B3LYP/6-31G∗] method. Anti-bladder cancer activity of compound 4 is possible due to the intramolecular weakest HB energies.

  20. Copper(II) complexes with pyrazole derivatives - Synthesis, crystal structure, DFT calculations and cytotoxic activity

    NASA Astrophysics Data System (ADS)

    Kupcewicz, Bogumiła; Ciolkowski, Michal; Karwowski, Boleslaw T.; Rozalski, Marek; Krajewska, Urszula; Lorenz, Ingo-Peter; Mayer, Peter; Budzisz, Elzbieta

    2013-11-01

    The series of pyrazole derivatives (1a-4a) were used as bidentate N,N' ligands to obtain neutral Cu(II) complexes of ML2Cl2 type (1b-4b). The molecular structures of ligand 1a and Cu(II) complex 4b were determined by X-ray crystallography and theoretical DFT calculations. In this study, three functionals B3LYP, BP86 and mPW1PW91 with different basis sets and two effective core potentials Los Alamos and Stuttgart/Dresden were performed. The DFT study disclosed the usefulness of BP86 functional with SDD-ECP for Cu(II) ion and dedicated D95 basis set for other non-transition metal atoms, with the exclusion of Cl for which 6-31++G(2df,2pd) were used. The structural analysis shows that the presence of phenyl substituent in a pyrazole ring contributed to Cu-N bond elongation, which can result in different reactivity of complexes 1b and 3b. The cytotoxicity of the obtained compounds was evaluated on three cancer cells lines: HL-60, NALM-6 and WM-115. The complexes have exhibited similar moderate antiproliferative activity. All the complexes, except for 1b, were found to be more active against three cancer cell lines than uncomplexed pyrazoles. The lipophilicity and electrochemical properties of ligands and complexes was also studied. For complexes with ligand 1a and 3a only one reduction process at the metal centre occurs (Cu(II) → Cu(I)) with oxidization of Cu(I)-Cu(II) in the backward step.

  1. Structural units important for activity of a novel-type phosphoserine phosphatase from Hydrogenobacter thermophilus TK-6 revealed by crystal structure analysis.

    PubMed

    Chiba, Yoko; Horita, Shoichiro; Ohtsuka, Jun; Arai, Hiroyuki; Nagata, Koji; Igarashi, Yasuo; Tanokura, Masaru; Ishii, Masaharu

    2013-04-19

    Novel-type serine-synthesizing enzymes, termed metal-independent phosphoserine phosphatases (iPSPs), were recently identified and characterized from Hydrogenobacter thermophilus, a chemolithoautotrophic bacterium belonging to the order Aquificales. iPSPs are cofactor-dependent phosphoglycerate mutase (dPGM)-like phosphatases that have significant amino acid sequence similarity to dPGMs but lack phosphoglycerate mutase activity. Genes coding dPGM-like phosphatases have been identified in a broad range of organisms; however, predicting the function of the corresponding proteins based on sequence information alone is difficult due to their diverse substrate preferences. Here, we determined the crystal structure of iPSP1 from H. thermophilus in the apo-form and in complex with its substrate L-phosphoserine to find structural units important for its phosphatase activity toward L-phosphoserine. Structural and biochemical characterization of iPSP1 revealed that the side chains of His(85) and C-terminal region characteristic of iPSP1 are responsible for the PSP activity. The importance of these structural units for PSP activity was confirmed by high PSP activity observed in two novel dPGM-like proteins from Cyanobacteria and Chloroflexus in which the two structural units were conserved. We anticipate that our present findings will facilitate understanding of the serine biosynthesis pathways of organisms that lack gene(s) encoding conventional PSPs, as the structural information revealed here will help to identify iPSP from sequence databases.

  2. High-resolution crystal structure of a polyextreme GH43 glycosidase from Halothermothrix orenii with α-l-arabinofuranosidase activity

    SciTech Connect

    Hassan, Noor; Kori, Lokesh D.; Gandini, Rosaria; Patel, Bharat K. C.; Divne, Christina; Tan, Tien Chye

    2015-02-19

    The crystal structure of the H. orenii glycosidase was determined by molecular replacement and refined at 1.10 Å resolution. A gene from the heterotrophic, halothermophilic marine bacterium Halothermothrix orenii has been cloned and overexpressed in Escherichia coli. This gene encodes the only glycoside hydrolase of family 43 (GH43) produced by H. orenii. The crystal structure of the H. orenii glycosidase was determined by molecular replacement and refined at 1.10 Å resolution. As for other GH43 members, the enzyme folds as a five-bladed β-propeller. The structure features a metal-binding site on the propeller axis, near the active site. Based on thermal denaturation data, the H. orenii glycosidase depends on divalent cations in combination with high salt for optimal thermal stability against unfolding. A maximum melting temperature of 76°C was observed in the presence of 4 M NaCl and Mn{sup 2+} at pH 6.5. The gene encoding the H. orenii GH43 enzyme has previously been annotated as a putative α-l-arabinofuranosidase. Activity was detected with p-nitrophenyl-α-l-arabinofuranoside as a substrate, and therefore the name HoAraf43 was suggested for the enzyme. In agreement with the conditions for optimal thermal stability against unfolding, the highest arabinofuranosidase activity was obtained in the presence of 4 M NaCl and Mn{sup 2+} at pH 6.5, giving a specific activity of 20–36 µmol min{sup −1} mg{sup −1}. The active site is structurally distinct from those of other GH43 members, including arabinanases, arabinofuranosidases and xylanases. This probably reflects the special requirements for degrading the unique biomass available in highly saline aqueous ecosystems, such as halophilic algae and halophytes. The amino-acid distribution of HoAraf43 has similarities to those of mesophiles, thermophiles and halophiles, but also has unique features, for example more hydrophobic amino acids on the surface and fewer buried charged residues.

  3. Crystal structure of Bacillus anthracis virulence regulator AtxA and effects of phosphorylated histidines on multimerization and activity

    DOE PAGES

    Hammerstrom, Troy G.; Horton, Lori B.; Swick, Michelle C.; ...

    2014-12-30

    The Bacillus anthracis virulence regulator AtxA controls transcription of the anthrax toxin genes and capsule biosynthesis operon. AtxA activity is elevated during growth in media containing glucose and CO2/bicarbonate, and there is a positive correlation between the CO2/bicarbonate signal, AtxA activity, and homomultimerization. AtxA activity is also affected by phosphorylation at specific histidines. We show that AtxA crystallizes as a dimer. Distinct folds associated with predicted DNA-binding domains (HTH1 and HTH2) and phosphoenolpyruvate: carbohydrate phosphotransferase system-regulated domains (PRD1 and PRD2) are apparent. We tested AtxA variants containing single and double phosphomimetic (His → Asp) and phosphoablative (His → Ala) aminomore » acid changes for activity in B. anthracis cultures and for protein-protein interactions in cell lysates. Reduced activity of AtxA H199A, lack of multimerization and activity of AtxAH379D variants, and predicted structural changes associated with phosphorylation support a model for control of AtxA function. We propose that (1) in the AtxA dimer, phosphorylation of H199 in PRD1 affects HTH2 positioning, influencing DNA-binding; and (2) phosphorylation of H379 in PRD2 disrupts dimer formation. In conclusion, the AtxA structure is the first reported high-resolution full-length structure of a PRD-containing regulator and can serve as a model for proteins of this family, especially those that link virulence to bacterial metabolism.« less

  4. Crystal structure of Bacillus anthracis virulence regulator AtxA and effects of phosphorylated histidines on multimerization and activity

    SciTech Connect

    Hammerstrom, Troy G.; Horton, Lori B.; Swick, Michelle C.; Joachimiak, Andrzej; Osipiuk, Jerzy; Koehler, Theresa M.

    2014-12-30

    The Bacillus anthracis virulence regulator AtxA controls transcription of the anthrax toxin genes and capsule biosynthesis operon. AtxA activity is elevated during growth in media containing glucose and CO2/bicarbonate, and there is a positive correlation between the CO2/bicarbonate signal, AtxA activity, and homomultimerization. AtxA activity is also affected by phosphorylation at specific histidines. We show that AtxA crystallizes as a dimer. Distinct folds associated with predicted DNA-binding domains (HTH1 and HTH2) and phosphoenolpyruvate: carbohydrate phosphotransferase system-regulated domains (PRD1 and PRD2) are apparent. We tested AtxA variants containing single and double phosphomimetic (His → Asp) and phosphoablative (His → Ala) amino acid changes for activity in B. anthracis cultures and for protein-protein interactions in cell lysates. Reduced activity of AtxA H199A, lack of multimerization and activity of AtxAH379D variants, and predicted structural changes associated with phosphorylation support a model for control of AtxA function. We propose that (1) in the AtxA dimer, phosphorylation of H199 in PRD1 affects HTH2 positioning, influencing DNA-binding; and (2) phosphorylation of H379 in PRD2 disrupts dimer formation. In conclusion, the AtxA structure is the first reported high-resolution full-length structure of a PRD-containing regulator and can serve as a model for proteins of this family, especially those that link virulence to bacterial metabolism.

  5. Crystal structure of Bacillus anthracis virulence regulator AtxA and effects of phosphorylated histidines on multimerization and activity.

    PubMed

    Hammerstrom, Troy G; Horton, Lori B; Swick, Michelle C; Joachimiak, Andrzej; Osipiuk, Jerzy; Koehler, Theresa M

    2015-02-01

    The Bacillus anthracis virulence regulator AtxA controls transcription of the anthrax toxin genes and capsule biosynthetic operon. AtxA activity is elevated during growth in media containing glucose and CO(2)/bicarbonate, and there is a positive correlation between the CO(2)/bicarbonate signal, AtxA activity and homomultimerization. AtxA activity is also affected by phosphorylation at specific histidines. We show that AtxA crystallizes as a dimer. Distinct folds associated with predicted DNA-binding domains (HTH1 and HTH2) and phosphoenolpyruvate: carbohydrate phosphotransferase system-regulated domains (PRD1 and PRD2) are apparent. We tested AtxA variants containing single and double phosphomimetic (His→Asp) and phosphoablative (His→Ala) amino acid changes for activity in B. anthracis cultures and for protein-protein interactions in cell lysates. Reduced activity of AtxA H199A, lack of multimerization and activity of AtxAH379D variants, and predicted structural changes associated with phosphorylation support a model for control of AtxA function. We propose that (i) in the AtxA dimer, phosphorylation of H199 in PRD1 affects HTH2 positioning, influencing DNA-binding; and (ii) phosphorylation of H379 in PRD2 disrupts dimer formation. The AtxA structure is the first reported high-resolution full-length structure of a PRD-containing regulator, and can serve as a model for proteins of this family, especially those that link virulence to bacterial metabolism.

  6. Generation of crystal structures using known crystal structures as analogues

    PubMed Central

    Cole, Jason C.; Groom, Colin R.; Read, Murray G.; Giangreco, Ilenia; McCabe, Patrick; Reilly, Anthony M.; Shields, Gregory P.

    2016-01-01

    This analysis attempts to answer the question of whether similar molecules crystallize in a similar manner. An analysis of structures in the Cambridge Structural Database shows that the answer is yes – sometimes they do, particularly for single-component structures. However, one does need to define what we mean by similar in both cases. Building on this observation we then demonstrate how this correlation between shape similarity and packing similarity can be used to generate potential lattices for molecules with no known crystal structure. Simple intermolecular interaction potentials can be used to minimize these potential lattices. Finally we discuss the many limitations of this approach. PMID:27484374

  7. Crystal Structure of UGe 2

    NASA Astrophysics Data System (ADS)

    Oikawa, Kennichi; Kamiyama, Takashi; Asano, Hajime; Ōnuki, Yoshichika; Kohgi, Masahumi

    1996-10-01

    The crystal structure of UGe2 has been determined by the X-ray precession method and Rietveld analysis of neutron powder diffraction data. The crystal system is orthorhombic (space group Cmmm) with lattice parameters a=0.40089(1), b=1.50889(3) and c=0.40950(1) nm. The structure is isomorphic with one of the polymorphs of ThGe2.

  8. The Crystal Structure of Dehi Reveals a New A-Haloacid Dehalogenase Fold And Active Site Mechanism

    SciTech Connect

    Schmidberger, J.W.; Wilce, J.A.; Weightman, A.J.; Whisstock, J.C.; Wilce, M.C.J.

    2009-05-27

    Haloacid dehalogenases catalyse the removal of halides from organic haloacids and are of interest for bioremediation and for their potential use in the synthesis of industrial chemicals. We present the crystal structure of the homodimer DehI from Pseudomonas putida strain PP3, the first structure of a group I {alpha}-haloacid dehalogenase that can process both L- and D-substrates. The structure shows that the DehI monomer consists of two domains of {approx}130 amino acids that have {approx}16% sequence identity yet adopt virtually identical and unique folds that form a pseudo-dimer. Analysis of the active site reveals the likely binding mode of both L- and D-substrates with respect to key catalytic residues. Asp189 is predicted to activate a water molecule for nucleophilic attack of the substrate chiral centre resulting in an inversion of configuration of either L- or D-substrates in contrast to D-only enzymes. These details will assist with future bioengineering of dehalogenases.

  9. Crystal structure and nucleic acid-binding activity of the CRISPR-associated protein Csx1 of Pyrococcus furiosus.

    PubMed

    Kim, Young Kwan; Kim, Yeon-Gil; Oh, Byung-Ha

    2013-02-01

    In many prokaryotic organisms, chromosomal loci known as clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (CAS) genes comprise an acquired immune defense system against invading phages and plasmids. Although many different Cas protein families have been identified, the exact biochemical functions of most of their constituents remain to be determined. In this study, we report the crystal structure of PF1127, a Cas protein of Pyrococcus furiosus DSM 3638 that is composed of 480 amino acids and belongs to the Csx1 family. The C-terminal domain of PF1127 has a unique β-hairpin structure that protrudes out of an α-helix and contains several positively charged residues. We demonstrate that PF1127 binds double-stranded DNA and RNA and that this activity requires an intact β-hairpin and involve the homodimerization of the protein. In contrast, another Csx1 protein from Sulfolobus solfataricus P2 that is composed of 377 amino acids does not have the β-hairpin structure and exhibits no DNA-binding properties under the same experimental conditions. Notably, the C-terminal domain of these two Csx1 proteins is greatly diversified, in contrast to the conserved N-terminal domain, which appears to play a common role in the homodimerization of the protein. Thus, although P. furiosus Csx1 is identified as a nucleic acid-binding protein, other Csx1 proteins are predicted to exhibit different individual biochemical activities.

  10. NTB-A Receptor Crystal Structure: Insights into Homophilic Interactions in the Signaling Lymphocytic Activation Molecule Receptor Family

    SciTech Connect

    Cao,E.; Ramagopal, U.; Fedorov, A.; Fedorov, E.; Yan, Q.; Lary, J.; Cole, J.; Nathenson, S.; Almo, S.

    2006-01-01

    The signaling lymphocytic activation molecule (SLAM) family includes homophilic and heterophilic receptors that regulate both innate and adaptive immunity. The ectodomains of most SLAM family members are composed of an N-terminal IgV domain and a C-terminal IgC2 domain. NK-T-B-antigen (NTB-A) is a homophilic receptor that stimulates cytotoxicity in natural killer (NK) cells, regulates bactericidal activities in neutrophils, and potentiates T helper 2 (Th2) responses. The 3.0 {angstrom} crystal structure of the complete NTB-A ectodomain revealed a rod-like monomer that self-associates to form a highly kinked dimer spanning an end-to-end distance of {approx}100 {angstrom}. The NTB-A homophilic and CD2-CD58 heterophilic dimers show overall structural similarities but differ in detailed organization and physicochemical properties of their respective interfaces. The NTB-A structure suggests a mechanism responsible for binding specificity within the SLAM family and imposes physical constraints relevant to the colocalization of SLAM-family proteins with other signaling molecules in the immunological synapse.

  11. Organotin(IV) carboxylates of (E)-3-(2-nitrophenyl) propenoic acid: Synthesis, spectroscopic characterization, crystal structure and antitumor activity

    NASA Astrophysics Data System (ADS)

    Liu, Chunling; Liu, Shuangshuang; Du, Dafeng; Zhu, Dongsheng; Xu, Lin

    2011-09-01

    Two organotin(IV) carboxylates of (E)-3-(2-nitrophenyl) propenoic acid (HL), [Ph 3SnL] n ( 1) and {[Bu 2SnL] 2O} 2 ( 2), have been synthesized. All the complexes were characterized by elemental analysis, FT-IR and NMR ( 1H, 13C) spectroscopy. In addition, the molecular structures of 1 and 2 have been determined by single crystal X-ray diffraction analysis. Complex 1 consisted of a 1D chain polymer and was interconnected by C sbnd H⋯π stacking to aggregate in 2D framework. Complex 2 contained a dimeric tetraorganodistannoxane of ladder arrangement and was linked by C sbnd H⋯O hydrogen bonds to form a 1D chain. Their antitumor activities were also investigated.

  12. Synthesis, crystal structure, DFT analysis and fungicidal activity of a novel series O-substituted trifluoroatrolactamide derivatives

    NASA Astrophysics Data System (ADS)

    Yang, Hui-Hui; Cui, Can; Zhu, Cong; Li, Jian-Qiang; Wu, Rui; Tian, Lei; Zhao, Wei-Guang

    2017-01-01

    A series of O-substituted trifluoroatrolactamide derivatives has been synthesized and fully characterized by 1H NMR, 13C NMR, 19F NMR, HRMS and X-ray diffraction analyses. The fungicidal activity of these compounds was evaluated and the results showed that some of them exhibited potent in vitro fungicidal activity against Erysiphe graminis and Pyricularia oryzae. Their structure-property relationships were investigated using density functional theory calculations. The X-ray crystal structure of one of these compounds adopted a monoclinic space group with the following unit cell parameters: a = 24.285 (13) Å, b = 9.006 (5) Å, c = 9.794 (5) Å, β = 92.110 (9)º, V = 2140.6 (19) Å3 and Z = 4. A comparison of these experimental results with the theoretical values revealed that there was good agreement between the two sets of data. The subsequent biological evaluation of these compounds showed that some of them exhibited potent in vitro fungicidal activity against Erysiphe graminis and Pyricularia oryzae.

  13. High-resolution crystal structure of a polyextreme GH43 glycosidase from Halothermothrix orenii with α-L-arabinofuranosidase activity.

    PubMed

    Hassan, Noor; Kori, Lokesh D; Gandini, Rosaria; Patel, Bharat K C; Divne, Christina; Tan, Tien Chye

    2015-03-01

    A gene from the heterotrophic, halothermophilic marine bacterium Halothermothrix orenii has been cloned and overexpressed in Escherichia coli. This gene encodes the only glycoside hydrolase of family 43 (GH43) produced by H. orenii. The crystal structure of the H. orenii glycosidase was determined by molecular replacement and refined at 1.10 Å resolution. As for other GH43 members, the enzyme folds as a five-bladed β-propeller. The structure features a metal-binding site on the propeller axis, near the active site. Based on thermal denaturation data, the H. orenii glycosidase depends on divalent cations in combination with high salt for optimal thermal stability against unfolding. A maximum melting temperature of 76°C was observed in the presence of 4 M NaCl and Mn(2+) at pH 6.5. The gene encoding the H. orenii GH43 enzyme has previously been annotated as a putative α-L-arabinofuranosidase. Activity was detected with p-nitrophenyl-α-L-arabinofuranoside as a substrate, and therefore the name HoAraf43 was suggested for the enzyme. In agreement with the conditions for optimal thermal stability against unfolding, the highest arabinofuranosidase activity was obtained in the presence of 4 M NaCl and Mn(2+) at pH 6.5, giving a specific activity of 20-36 µmol min(-1) mg(-1). The active site is structurally distinct from those of other GH43 members, including arabinanases, arabinofuranosidases and xylanases. This probably reflects the special requirements for degrading the unique biomass available in highly saline aqueous ecosystems, such as halophilic algae and halophytes. The amino-acid distribution of HoAraf43 has similarities to those of mesophiles, thermophiles and halophiles, but also has unique features, for example more hydrophobic amino acids on the surface and fewer buried charged residues.

  14. Synthesis, characterization, crystal structure determination and catalytic activity in epoxidation reaction of two new oxidovanadium(IV) Schiff base complexes

    NASA Astrophysics Data System (ADS)

    Tahmasebi, Vida; Grivani, Gholamhossein; Bruno, Giuseppe

    2016-11-01

    The five coordinated vanadium(IV) Schiff base complexes of VOL1 (1) and VOL2 (2), HL1 = 2-{(E)-[2-bromoethyl)imino]methyl}-2- naphthol, HL2 = 2-{(E)-[2-chloroethyl)imino]methyl}-2- naphthol, have been synthesized and they were characterized by using single-crystal X-ray crystallography, elemental analysis (CHN) and FT-IR spectroscopy. Crystal structure determination of these complexes shows that the Schiff base ligands (L1 and L2) act as bidentate ligands with two phenolato oxygen atoms and two imine nitrogen atoms in the trans geometry. The coordination geometry around the vanadium(IV) is distorted square pyramidal in which vanadium(IV) is coordinated by two nitrogen and two oxygen atoms of two independent ligands in the basal plane and by one oxygen atom in the apical position. The catalytic activity of the Schiff base complexes of 1 and 2 in the epoxidation of alkenes were investigated using different reaction parameters such as solvent effect, oxidant, alkene/oxidant ratio and the catalyst amount. The results showed that in the presence of TBHP as oxidant in 1: 4 and 1:3 ratio of the cyclooctene/oxidant ratio, high epoxide yield was obtained for 1 (76%) and 2 (80%) with TON(= mole of substrate/mole of catalyst) of 27 and 28.5, respectively, in epoxidation of cyclooctene.

  15. Evaluation of effects of pharmaceutical processing on structural disorders of active pharmaceutical ingredient crystals using nanoindentation and high-resolution total scattering pair distribution function analysis.

    PubMed

    Chen, Shuang; Sheikh, Ahmad Y; Ho, Raimundo

    2014-12-01

    Pharmaceutical unit operations such as milling and compaction can often generate disordered regions in crystals of active pharmaceutical ingredients (APIs). This may lead to changes in a number of important pharmaceutical properties including dissolution, stability, hygroscopicity, and so on. It is therefore important for pharmaceutical industry to evaluate the effects of pharmaceutical processing on API structural orders, and to investigate and develop analytical tools that are capable of accurately detecting and assessing subtle process-induced structural disorders in pharmaceutical crystals. In this study, nanoindentation was first used to determine the intrinsic mechanical properties including hardness and Young's modulus of two API crystals, compounds 1 and 2. These crystals of different mechanical properties were then milled and compacted under various conditions. The resulting structural disorders in these crystals were subsequently evaluated using synchrotron-based high-resolution total scattering pair distribution function (TS-PDF) analysis. Furthermore, principal component analysis was applied to the PDF data to assess the relative extents of disorders in the API crystals, which showed a good correlation with the process conditions. The study demonstrates that high-resolution TS-PDF analysis coupled with nanoindentation measurement is a valuable and effective tool for detecting and assessing process-induced subtle structural disorders in API crystals.

  16. Crystal Structures of the Response Regulator DosR From Mycobacterium Tuberculosis Suggest a Helix Rearrangement Mechanism for Phosphorylation Activation

    SciTech Connect

    Wisedchaisri, G.; Wu, M.; Sherman, D.R.; Hol, W.G.J.

    2009-05-26

    The response regulator DosR is essential for promoting long-term survival of Mycobacterium tuberculosis under low oxygen conditions in a dormant state and may be responsible for latent tuberculosis in one-third of the world's population. Here, we report crystal structures of full-length unphosphorylated DosR at 2.2 {angstrom} resolution and its C-terminal DNA-binding domain at 1.7 {angstrom} resolution. The full-length DosR structure reveals several features never seen before in other response regulators. The N-terminal domain of the full-length DosR structure has an unexpected ({beta}{alpha}){sub 4} topology instead of the canonical ({beta}{alpha}){sub 5} fold observed in other response regulators. The linker region adopts a unique conformation that contains two helices forming a four-helix bundle with two helices from another subunit, resulting in dimer formation. The C-terminal domain in the full-length DosR structure displays a novel location of helix {alpha}10, which allows Gln199 to interact with the catalytic Asp54 residue of the N-terminal domain. In contrast, the structure of the DosR C-terminal domain alone displays a remarkable unstructured conformation for helix {alpha}10 residues, different from the well-defined helical conformations in all other known structures, indicating considerable flexibility within the C-terminal domain. Our structures suggest a mode of DosR activation by phosphorylation via a helix rearrangement mechanism.

  17. Crystal structure and activity of Bacillus subtilis YoaJ (EXLX1), a bacterial expansin that promotes root colonization

    PubMed Central

    Kerff, Frédéric; Amoroso, Ana; Herman, Raphaël; Sauvage, Eric; Petrella, Stéphanie; Filée, Patrice; Charlier, Paulette; Joris, Bernard; Tabuchi, Akira; Nikolaidis, Nikolas; Cosgrove, Daniel J.

    2008-01-01

    We solved the crystal structure of a secreted protein, EXLX1, encoded by the yoaJ gene of Bacillus subtilis. Its structure is remarkably similar to that of plant β-expansins (group 1 grass pollen allergens), consisting of 2 tightly packed domains (D1, D2) with a potential polysaccharide-binding surface spanning the 2 domains. Domain D1 has a double-ψ β-barrel fold with partial conservation of the catalytic site found in family 45 glycosyl hydrolases and in the MltA family of lytic transglycosylases. Domain D2 has an Ig-like fold similar to group 2/3 grass pollen allergens, with structural features similar to a type A carbohydrate-binding domain. EXLX1 bound to plant cell walls, cellulose, and peptidoglycan, but it lacked lytic activity against a variety of plant cell wall polysaccharides and peptidoglycan. EXLX1 promoted plant cell wall extension similar to, but 10 times weaker than, plant β-expansins, which synergistically enhanced EXLX1 activity. Deletion of the gene encoding EXLX1 did not affect growth or peptidoglycan composition of B. subtilis in liquid medium, but slowed lysis upon osmotic shock and greatly reduced the ability of the bacterium to colonize maize roots. The presence of EXLX1 homologs in a small but diverse set of plant pathogens further supports a role in plant–bacterial interactions. Because plant expansins have proved difficult to express in active form in heterologous systems, the discovery of a bacterial homolog opens the door for detailed structural studies of expansin function. PMID:18971341

  18. Crystal Structure of the CTP1L Endolysin Reveals How Its Activity Is Regulated by a Secondary Translation Product*

    PubMed Central

    Dunne, Matthew; Leicht, Stefan; Krichel, Boris; Thompson, Andrew; Gómez-Torres, Natalia; Garde, Sonia; Narbad, Arjan; Mayer, Melinda J.

    2016-01-01

    Bacteriophages produce endolysins, which lyse the bacterial host cell to release newly produced virions. The timing of lysis is regulated and is thought to involve the activation of a molecular switch. We present a crystal structure of the activated endolysin CTP1L that targets Clostridium tyrobutyricum, consisting of a complex between the full-length protein and an N-terminally truncated C-terminal cell wall binding domain (CBD). The truncated CBD is produced through an internal translation start site within the endolysin gene. Mutants affecting the internal translation site change the oligomeric state of the endolysin and reduce lytic activity. The activity can be modulated by reconstitution of the full-length endolysin-CBD complex with free CBD. The same oligomerization mechanism applies to the CD27L endolysin that targets Clostridium difficile and the CS74L endolysin that targets Clostridium sporogenes. When the CTP1L endolysin gene is introduced into the commensal bacterium Lactococcus lactis, the truncated CBD is also produced, showing that the alternative start codon can be used in other bacterial species. The identification of a translational switch affecting oligomerization presented here has implications for the design of effective endolysins for the treatment of bacterial infections. PMID:26683375

  19. Crystal structure of Plasmodium vivax FK506-binding protein 25 reveals conformational changes responsible for its noncanonical activity.

    PubMed

    Rajan, Sreekanth; Austin, David; Harikishore, Amaravadhi; Nguyen, Quoc Toan; Baek, Kwanghee; Yoon, Ho Sup

    2014-07-01

    The malarial parasites currently remain one of the most dreadful parasites, which show increasing trend of drug resistance to the currently available antimalarial drugs. Thus, the need to identify and characterize new protein targets in these parasites can aid to design novel therapeutic strategies to combat malaria. Recently, the conserved FK506-binding protein family members with molecular weight of 35 kDa from Plasmodium falciparum and Plasmodium vivax (referred to as PfFKBP35 and PvFKBP35, respectively) were identified for drug targeting. Further data mining revealed a 25-kDa FKBP (FKBP25) family member present in the parasites. FKBP25 belongs to a unique class of FKBP, because it is a nuclear FKBP with multiple protein-binding partners. Apart from immune regulation, it is also known for its chaperoning role in various cellular processes such as transcription regulation and trafficking. Here, we present the biochemical characterization and 1.9-Å crystal structure of an N-terminal truncated FKBP25 from P. vivax (PvFKBP25(72-209)). The protein reveals the noncanonical nature with unique structural changes observed in the loops flanking the active site, concealing the binding pocket. Further, a potential calmodulin-binding domain, which is absent in human FKBP25, is observed in this protein. Although the functional implication of Plasmodium FKBP25 in malaria still remains elusive, we speculate that the notable conformational changes in its structure might serve as an overture in understanding its molecular mechanism.

  20. Crystal Structures of Trypanosoma cruzi UDP-Galactopyranose Mutase Implicate Flexibility of the Histidine Loop in Enzyme Activation

    SciTech Connect

    Dhatwalia, Richa; Singh, Harkewal; Oppenheimer, Michelle; Sobrado, Pablo; Tanner, John J.

    2012-11-01

    Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. Here we report crystal structures of the galactofuranose biosynthetic enzyme UDP-galactopyranose mutase (UGM) from T. cruzi, which are the first structures of this enzyme from a protozoan parasite. UGM is an attractive target for drug design because galactofuranose is absent in humans but is an essential component of key glycoproteins and glycolipids in trypanosomatids. Analysis of the enzyme-UDP noncovalent interactions and sequence alignments suggests that substrate recognition is exquisitely conserved among eukaryotic UGMs and distinct from that of bacterial UGMs. This observation has implications for inhibitor design. Activation of the enzyme via reduction of the FAD induces profound conformational changes, including a 2.3 {angstrom} movement of the histidine loop (Gly60-Gly61-His62), rotation and protonation of the imidazole of His62, and cooperative movement of residues located on the si face of the FAD. Interestingly, these changes are substantially different from those described for Aspergillus fumigatus UGM, which is 45% identical to T. cruzi UGM. The importance of Gly61 and His62 for enzymatic activity was studied with the site-directed mutant enzymes G61A, G61P, and H62A. These mutations lower the catalytic efficiency by factors of 10-50, primarily by decreasing k{sub cat}. Considered together, the structural, kinetic, and sequence data suggest that the middle Gly of the histidine loop imparts flexibility that is essential for activation of eukaryotic UGMs. Our results provide new information about UGM biochemistry and suggest a unified strategy for designing inhibitors of UGMs from the eukaryotic pathogens.

  1. Crystal Structure of a Bacterial Type IB DNA Topoisomerase Reveals a Preassembled Active Site in the Absence of DNA

    SciTech Connect

    Patel, Asmita; Shuman, Stewart; Mondragon, Alfonso

    2010-03-08

    Type IB DNA topoisomerases are found in all eukarya, two families of eukaryotic viruses (poxviruses and mimivirus), and many genera of bacteria. They alter DNA topology by cleaving and resealing one strand of duplex DNA via a covalent DNA-(3-phosphotyrosyl)-enzyme intermediate. Bacterial type IB enzymes were discovered recently and are described as poxvirus-like with respect to their small size, primary structures, and bipartite domain organization. Here we report the 1.75-{angstrom} crystal structure of Deinococcus radiodurans topoisomerase IB (DraTopIB), a prototype of the bacterial clade. DraTopIB consists of an amino-terminal (N) {beta}-sheet domain (amino acids 1-90) and a predominantly {alpha}-helical carboxyl-terminal (C) domain (amino acids 91-346) that closely resemble the corresponding domains of vaccinia virus topoisomerase IB. The five amino acids of DraTopIB that comprise the catalytic pentad (Arg-137, Lys-174, Arg-239, Asn-280, and Tyr-289) are preassembled into the active site in the absence of DNA in a manner nearly identical to the pentad configuration in human topoisomerase I bound to DNA. This contrasts with the apoenzyme of vaccinia topoisomerase, in which three of the active site constituents are either displaced or disordered. The N and C domains of DraTopIB are splayed apart in an 'open' conformation, in which the surface of the catalytic domain containing the active site is exposed for DNA binding. A comparison with the human topoisomerase I-DNA cocrystal structure suggests how viral and bacterial topoisomerase IB enzymes might bind DNA circumferentially via movement of the N domain into the major groove and clamping of a disordered loop of the C domain around the helix.

  2. Development of selective DprE1 inhibitors: Design, synthesis, crystal structure and antitubercular activity of benzothiazolylpyrimidine-5-carboxamides.

    PubMed

    Chikhale, Rupesh; Menghani, Sunil; Babu, Ramavath; Bansode, Ratnadeep; Bhargavi, G; Karodia, Nazira; Rajasekharan, M V; Paradkar, Anant; Khedekar, Pramod

    2015-01-01

    Decaprenylphosphoryl-b-D-ribose 20-epimerase (DprE1) is a potential drug target for development of antitubercular agents. Structure based drug discovery approach yielded twenty novel derivatives of benzothiazolylpyrimidine-5-carboxamides (7a-t) which were synthesised by three component one pot reaction involving benzothiazolyl oxobutanamide, thiourea and substituted aromatic benzaldehydes. These derivatives were evaluated for antitubercular activity to determine MIC and compound 7a, 7e, 7f and 7o were found to be potentially active against Mycobacterium tuberculosis (H37Rv). Log P of these compounds was found to be between 2.0 and 3.0 making them suitable for oral dosing. DprE1 selectivity and pharmacokinetic studies were carried out for these compounds of which 7a and 7o were found to be highly selective and bioavailability was found to be above 52% by oral dose. Crystal structure of 7a was studied and molecular packing was determined, it exhibited a triclinic crystal lattice arrangement having hydrogen bonded dimeric arrangement. Drug receptor interactions were studied which exhibited docking in the active site of receptor with hydrogen bonding, hydrophobic interactions, vdW interactions with amino acid residues such as Cys387, Asn385, Lys418, Tyr314, Gln334 and Lys367 respectively. 3D QSAR analysis was carried out by kNN-MFA method to determine and develop theoretical model, best suitable model was found to be based on Simulated Annealing k-Neariest Neighbour Molecular Field Analysis (SA kNN-MFA). The model provided with hydrophobic descriptors in positive side indicating the need of bulky groups, steric and electronegative descriptors in negative coordinates hints with contribution by the electronegative substitutions as favourable and desirable moieties for enhancing the activity. The q(2), q(2)_se and Pred_r(2)se were found to be 0.5000, 0.6404 and 1.0094 respectively. A pharmacophore model was generated which suggested for necessity of aromatic, aliphatic

  3. Zinc(II) complexes with heterocyclic ether, acid and amide. Crystal structure, spectral, thermal and antibacterial activity studies

    NASA Astrophysics Data System (ADS)

    Jabłońska-Wawrzycka, Agnieszka; Rogala, Patrycja; Czerwonka, Grzegorz; Hodorowicz, Maciej; Stadnicka, Katarzyna

    2016-02-01

    The reaction of zinc salts with heterocyclic ether (1-ethoxymethyl-2-methylimidazole (1-ExMe-2-MeIm)), acid (pyridine-2,3-dicarboxylic acid (2,3-pydcH2)) and amide (3,5-dimethylpyrazole-1-carboxamide (3,5-DMePzCONH2)) yielded three new zinc complexes formulated as [Zn(1-ExMe-2-MeIm)2Cl2] 1, fac-[Zn(H2O)6][Zn(2,3-pydcH)3]22 and [Zn(3,5-DMePz)2(NCO)2] 3. Complexes of 1 and 3 are four-coordinated with a tetrahedron as coordination polyhedron. However, compound 2 forms an octahedral cation-anion complex. The complex 3 was prepared by eliminating of the carboxamide group from the ligand and then the 3,5-dimethylpyrazole (3,5-DMePz) and isocyanates formed were employed as new ligands. The IR and X-ray studies have confirmed a bidentate fashion of coordination of the 2,3-pydcH and monodentate fashion of coordination of the 1-ExMe-2-MeIm and 3,5-DMePz to the Zn(II) ions. The crystal packing of Zn(II) complexes are stabilized by intermolecular classical hydrogen bonds of O-H⋯O and N-H⋯O types. The most interesting feature of the supramolecular architecture of complexes is the existence of C-H⋯O, C-H⋯Cl and C-H⋯π interactions and π⋯π stacking, which also contributes to structural stabilisation. The correlation between crystal structure and thermal stability of zinc complexes is observed. In all compounds the fragments of ligands donor-atom containing go in the last steps. Additionally, antimicrobial activities of compounds were carried out against certain Gram-positive and Gram-negative bacteria and counts of CFU (colony forming units) were also determined. The achieved results confirmed a significant antibacterial activity of some tested zinc complexes. On the basis of the Δ log CFU values the antibacterial activity of zinc complexes follows the order: 3 > 2 > 1. Influence a number of N-donor atoms in zinc environment on antibacterial activity is also observed.

  4. Crystal structure of triclopyr.

    PubMed

    Cho, Seonghwa; Kim, Jineun; Jeon, Youngeun; Kim, Tae Ho

    2014-09-01

    In the title compound {systematic name: 2-[(3,5,6-tri-chloro-pyridin-2-yl)-oxy]acetic acid}, the herbicide triclopyr, C7H4Cl3NO3, the asymmetric unit comprises two independent mol-ecules in which the dihedral angles between the mean plane of the carb-oxy-lic acid group and the pyridyl ring plane are 79.3 (6) and 83.8 (5)°. In the crystal, pairs of inter-molecular O-H⋯O hydrogen bonds form dimers through an R 2 (2)(8) ring motif and are extended into chains along [100] by weak π-π inter-actions [ring centroid separations = 3.799 (4) and 3.810 (4) Å]. In addition, short inter-molecular Cl⋯Cl contacts [3.458 (2) Å] connect the chains, yielding a two-dimensional architecture extending parallel to (020). The crystal studied was found to be non-merohedrally twinned with the minor component being 0.175 (4).

  5. Crystal structure of triclopyr

    PubMed Central

    Cho, Seonghwa; Kim, Jineun; Jeon, Youngeun; Kim, Tae Ho

    2014-01-01

    In the title compound {systematic name: 2-[(3,5,6-tri­chloro­pyridin-2-yl)­oxy]acetic acid}, the herbicide triclopyr, C7H4Cl3NO3, the asymmetric unit comprises two independent mol­ecules in which the dihedral angles between the mean plane of the carb­oxy­lic acid group and the pyridyl ring plane are 79.3 (6) and 83.8 (5)°. In the crystal, pairs of inter­molecular O—H⋯O hydrogen bonds form dimers through an R 2 2(8) ring motif and are extended into chains along [100] by weak π–π inter­actions [ring centroid separations = 3.799 (4) and 3.810 (4) Å]. In addition, short inter­molecular Cl⋯Cl contacts [3.458 (2) Å] connect the chains, yielding a two-dimensional architecture extending parallel to (020). The crystal studied was found to be non-merohedrally twinned with the minor component being 0.175 (4). PMID:25309266

  6. The Crystal Structure of a Cardiovirus RNA-Dependent RNA Polymerase Reveals an Unusual Conformation of the Polymerase Active Site

    PubMed Central

    Vives-Adrian, Laia; Lujan, Celia; Oliva, Baldo; van der Linden, Lonneke; Selisko, Barbara; Coutard, Bruno; Canard, Bruno; van Kuppeveld, Frank J. M.

    2014-01-01

    ABSTRACT Encephalomyocarditis virus (EMCV) is a member of the Cardiovirus genus within the large Picornaviridae family, which includes a number of important human and animal pathogens. The RNA-dependent RNA polymerase (RdRp) 3Dpol is a key enzyme for viral genome replication. In this study, we report the X-ray structures of two different crystal forms of the EMCV RdRp determined at 2.8- and 2.15-Å resolution. The in vitro elongation and VPg uridylylation activities of the purified enzyme have also been demonstrated. Although the overall structure of EMCV 3Dpol is shown to be similar to that of the known RdRps of other members of the Picornaviridae family, structural comparisons show a large reorganization of the active-site cavity in one of the crystal forms. The rearrangement affects mainly motif A, where the conserved residue Asp240, involved in ribonucleoside triphosphate (rNTP) selection, and its neighbor residue, Phe239, move about 10 Å from their expected positions within the ribose binding pocket toward the entrance of the rNTP tunnel. This altered conformation of motif A is stabilized by a cation-π interaction established between the aromatic ring of Phe239 and the side chain of Lys56 within the finger domain. Other contacts, involving Phe239 and different residues of motif F, are also observed. The movement of motif A is connected with important conformational changes in the finger region flanked by residues 54 to 63, harboring Lys56, and in the polymerase N terminus. The structures determined in this work provide essential information for studies on the cardiovirus RNA replication process and may have important implications for the development of new antivirals targeting the altered conformation of motif A. IMPORTANCE The Picornaviridae family is one of the largest virus families known, including many important human and animal pathogens. The RNA-dependent RNA polymerase (RdRp) 3Dpol is a key enzyme for picornavirus genome replication and a validated

  7. Synthesis, crystal structure, characterization and antifungal activity of pyrazolo[1,5-a]pyrimidines derivatives

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Peng, Ju-Fang; Wang, Tao; Wang, Ping; Zhang, Zun-Ting

    2016-09-01

    Under microwave radiation, isomers 2-(pyrazolo[1,5-a]pyrimidin-5-yl)phenols (3) and 2-(pyrazolo[1,5-a]pyrimidin-7-yl)phenols (4) were simultaneously obtained by the condensation of chromones and 3-aminopyrazoles. These two isomers were fully characterized by IR, 1H NMR, 13C NMR and HRMS. In addition, a representative product 5-chloro-2-(2-methyl-pyrazolo[1,5-a] pyrimidin-5-yl)phenol (3e) was further conformed by the single crystal X-ray diffraction. The antifungal abilities of the obtained products 3 and 4 were evaluated against five phytopathogenic fungi (Cytospora sp., Colletotrichum gloeosporioides, Botrytis cinerea, Alternaria solani and Fusarium solani). The results revealed that 2-(pyrazolo[1,5-a]pyrimidin-5-yl)phenol (3a) and 4-chloro-2-(2-methylpyrazolo[1,5-a]pyrimidin-7-yl)phenol (4e) exhibited good antifungal abilities against Colletotrichum gloeosporioides with the IC50 values of 24.90 and 28.28 μg/mL, respectively.

  8. Crystal structure of enolase from Drosophila melanogaster.

    PubMed

    Sun, Congcong; Xu, Baokui; Liu, Xueyan; Zhang, Zhen; Su, Zhongliang

    2017-04-01

    Enolase is an important enzyme in glycolysis and various biological processes. Its dysfunction is closely associated with diseases. Here, the enolase from Drosophila melanogaster (DmENO) was purified and crystallized. A crystal of DmENO diffracted to 2.0 Å resolution and belonged to space group R32. The structure was solved by molecular replacement. Like most enolases, DmENO forms a homodimer with conserved residues in the dimer interface. DmENO possesses an open conformation in this structure and contains conserved elements for catalytic activity. This work provides a structural basis for further functional and evolutionary studies of enolase.

  9. Mixed ligand coordination polymers with flexible bis-imidazole linker and angular sulfonyldibenzoate: Crystal structure, photoluminescence and photocatalytic activity

    SciTech Connect

    Bisht, Kamal Kumar; Rachuri, Yadagiri; Parmar, Bhavesh; Suresh, Eringathodi

    2014-05-01

    Four ternary coordination polymers (CPs) namely, ([Ni(SDB)(BITMB)(H{sub 2}O)]·H{sub 2}O){sub n} (CP1), ([Cd(SDB)(BITMB) (H{sub 2}O)]·(THF)(H{sub 2}O)){sub n} (CP2), ([Zn{sub 2}(SDB){sub 2}(BITMB)]·(THF){sub 2}){sub n} (CP3) and ([Co{sub 2}(SDB){sub 2}(BITMB)]·(Dioxane){sub 3}){sub n} (CP4) composed of angular dicarboxylate SDB (4,4'-sulfonyldibenzoate) and N-donor BITMB (1,3-bis(imidazol-1-ylmethyl)-2,4,6-trimethyl benzene) have been synthesized by solvothermal reactions and characterized by single crystal X-ray diffraction and other physico-chemical techniques. CP1 possesses one-dimensional ribbon type metal–organic motifs glued together by H-bonds and π⋯π interactions, whereas CP2–CP4, exhibit non-interpenetrated sql networks supported by weak supramolecular interactions. Structural diversity of these CPs can be attributed to the coordination geometry adopted by the metal nodes, versatile coordination modes of SDB and conformational flexibility of BITMB. Solid state luminescence properties of CP1–CP4 were explored. Photocatalytic performance of all CPs for the decomposition of metanil yellow by dilute hydrogen peroxide in the presence of visible light was also investigated. 25–83% dye removal from aqueous solutions in the presence of CP1–CP4 was observed. - Graphical abstract: Four new ternary transition metal CPs have been hydrothermally prepared and their structural aspects as well as photocatalytic activity for decolourization of metanil yellow (MY) dye have been investigated. - Highlights: • Four ternary coordination polymers containing Ni, Cd, Zn and Co center are prepared. • Crystal structure and thermal stability of all four CPs has been described. • PL and diffuse reflectance spectra of synthesized CPs have also been examined. • Band gap values suggest semiconducting behavior of prepared CPs. • Photocatalytic activity of CPs for oxidative degradation of metanil yellow is studied.

  10. Crystal structure of fluroxypyr

    PubMed Central

    Park, Hyunjin; Choi, Myong Yong; Kwon, Eunjin; Kim, Tae Ho

    2016-01-01

    In the title pyridine herbicide {systematic name: 2-[(4-amino-3,5-di­chloro-6-fluoro­pyridin-2-yl)­oxy]acetic acid}, C7H5Cl2FN2O3, the mean plane of the carb­oxy­lic acid substituent and the pyridyl ring plane subtend a dihedral angle of 77.5 (1)°. In the crystal, pairs of O—H⋯O hydrogen bonds form inversion dimers with R 2 2(8) ring motifs. These are extended into chains along [011] by N—H⋯F hydrogen bonds. In addition, inter­molecular N—H⋯O hydrogen bonds and weak π–π inter­actions [ring centroid separation = 3.4602 (9) Å] connect these chains into a three-dimensional network. PMID:27980844

  11. Crystal structure of mandipropamid.

    PubMed

    Park, Hyunjin; Kim, Jineun; Kang, Gihaeng; Kim, Tae Ho

    2015-10-01

    In the title compound, C23H22ClNO4 (systematic name: (RS)-2-(4-chloro-phen-yl)-N-{2-[3-meth-oxy-4-(prop-2-yn-1-yl-oxy)phen-yl]eth-yl}-2-(prop-2-yn-yloxy)acetamide), an amide fungicide, the dihedral angle between the chloro-benzene and benzene rings is 65.36 (6)°. In the crystal, N-H⋯O hydrogen bonds lead to zigzag supra-molecular chains along the c axis (glide symmetry). These are connected into layers by C-H⋯O and C-H⋯π inter-actions; the layers stack along the a axis with no specific inter-molecular inter-actions between them.

  12. Crystal structure of flumioxazin

    PubMed Central

    Park, Hyunjin; Kim, Jineun; Kwon, Eunjin; Kim, Tae Ho

    2015-01-01

    The title compound {systematic name: 2-[7-fluoro-3,4-di­hydro-3-oxo-4-(prop-2-yn-1-yl)-2H-1,4-benzoxazin-6-yl]-4,5,6,7-tetra­hydro-1H-iso­indole-1,3(2H)-dione}, C19H15FN2O4, is a dicarboximide herbicide. The dihedral angle between the male­imide and benzene ring planes is 66.13 (5)°. In the crystal, C—H⋯O and C—H⋯F hydrogen bonds and weak C—H⋯π inter­actions [3.5601 (19) Å] link adjacent mol­ecules, forming two-dimensional networks extending parallel to the (110) plane. PMID:26594468

  13. Crystal structure determination of Efavirenz

    SciTech Connect

    Popeneciu, Horea Dumitru, Ristoiu; Tripon, Carmen Borodi, Gheorghe Pop, Mihaela Maria

    2015-12-23

    Needle-shaped single crystals of the title compound, C{sub 14}H{sub 9}ClF{sub 3}NO{sub 2}, were obtained from a co-crystallization experiment of Efavirenz with maleic acid in a (1:1) ratio, using methanol as solvent. Crystal structure determination at room temperature revealed a significant anisotropy of the lattice expansion compared to the previously reported low-temperature structure. In both low- and room temperature structures the cyclopropylethynyl fragment in one of the asymmetric unit molecules is disordered. While at low-temperature only one C atom exhibits positional disorder, at room temperature the disorder is present for two C atoms of the cyclopropane ring.

  14. Synthesis, crystal structure and theoretical analysis of intermolecular interactions in two biologically active derivatives of 1,2,4-triazoles

    NASA Astrophysics Data System (ADS)

    Shukla, Rahul; Mohan, T. P.; Vishalakshi, B.; Chopra, Deepak

    2017-04-01

    In the present study, we have synthesized and structurally characterized two biologically active derivatives of 1,2,4 triazoles, namely 3-(4-fluoro-3-phenoxyphenyl)-1-(piperidin-1-ylmethyl)-1H-1,2,4-triazole-5(4H)-thione (TR) and 1-((3-(4-fluoro-3-phenoxyphenyl)-5-(methylthio)-1H-1,2,4-triazol-1-yl)methyl)piperidine (TR1) via single crystal X-ray diffraction. Both the structures show the presence of various intermolecular interactions in the crystalline solid such as Csbnd H…F, Csbnd H…S, Csbnd H…N, Csbnd H…O, Csbnd H … π, and π … π intermolecular interactions. The role of these interactions in molecular packing was analyzed, and the nature of these interactions was evaluated through computational procedures using PIXEL. Hirshfeld analysis further reveals that the contribution of H…F interactions was more prominent towards packing as compared to H…N/O intermolecular interactions.

  15. Crystal structure refinement with SHELXL.

    PubMed

    Sheldrick, George M

    2015-01-01

    The improvements in the crystal structure refinement program SHELXL have been closely coupled with the development and increasing importance of the CIF (Crystallographic Information Framework) format for validating and archiving crystal structures. An important simplification is that now only one file in CIF format (for convenience, referred to simply as `a CIF') containing embedded reflection data and SHELXL instructions is needed for a complete structure archive; the program SHREDCIF can be used to extract the .hkl and .ins files required for further refinement with SHELXL. Recent developments in SHELXL facilitate refinement against neutron diffraction data, the treatment of H atoms, the determination of absolute structure, the input of partial structure factors and the refinement of twinned and disordered structures. SHELXL is available free to academics for the Windows, Linux and Mac OS X operating systems, and is particularly suitable for multiple-core processors.

  16. Crystal structure refinement with SHELXL

    SciTech Connect

    Sheldrick, George M.

    2015-01-01

    New features added to the refinement program SHELXL since 2008 are described and explained. The improvements in the crystal structure refinement program SHELXL have been closely coupled with the development and increasing importance of the CIF (Crystallographic Information Framework) format for validating and archiving crystal structures. An important simplification is that now only one file in CIF format (for convenience, referred to simply as ‘a CIF’) containing embedded reflection data and SHELXL instructions is needed for a complete structure archive; the program SHREDCIF can be used to extract the .hkl and .ins files required for further refinement with SHELXL. Recent developments in SHELXL facilitate refinement against neutron diffraction data, the treatment of H atoms, the determination of absolute structure, the input of partial structure factors and the refinement of twinned and disordered structures. SHELXL is available free to academics for the Windows, Linux and Mac OS X operating systems, and is particularly suitable for multiple-core processors.

  17. Spectroscopic characterization and biological activity of dihydrazone transition metal complexes: Crystal structure of 2,3-butanedione bis(isonicotinylhydrazone)

    NASA Astrophysics Data System (ADS)

    El-Sayed, Ahmed E. M.; Al-Fulaij, O. A.; Elaasar, A. A.; El-Defrawy, M. M.; El-Asmy, A. A.

    2015-01-01

    Metal complexes of the chloride, nitrate and acetate salts of Co(II), Ni(II) Cu(II), Zn(II), Cd(II) or Hg(II) with 2,3-butanedione bis(isonicotinylhydrazone) [BBINH] have been synthesized and structurally characterized. The crystal of BBINH was solved to crystallize as monoclinic system with space group of P121/c14. The formulae of the complexes were assigned based on the elemental analysis and mass spectra. The formation of BBINH complexes depend on the metal anion used. All complexes are nonelectrolytes except for the complexes 2, 3, 4 are (1:1) and 13 and 14 which are 1:2 electrolytes. BBINH behaves as a neutral tetradentate (N2O2) in the chloride complexes of Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II). In [Co2(BBINH)(H2O)Cl3]ClṡH2O, BBINH has the same dentate but with the two Co(II) ions. In the acetate complexes, [Ni2(BBINH-2H)(H2O)2(OAc)2]ṡ3H2O and [Cu2(BBINH-2H)(OAc)2]ṡ5H2O, BBINH acts as a binegative tetradentate with the two metal ions. The ligand in the nitrate complexes acts as a neutral bidentate via the two hydrazone azomethine Cdbnd NHy; the nitrate ions are ionic in the Cd(II) and Zn(II) complexes and covalent in the Ni(II) complex. The data are supported by NMR (1H and 13C) spectra. The magnetic moments and electronic spectra of all complexes provide tetrahedral, square planar and/or octahedral structure. The decomposition of the complexes revealed the outer and inner solvents as well as the remaining residue based on TGA. The complexes have variable activities against some bacteria and fungi. The ligand is inactive against all tested organisms. The activity of Cd(II) and Hg(II) may be related to the geometry of the complexes.

  18. Characterization of the Deoxynucleotide Triphosphate Triphosphohydrolase (dNTPase) Activity of the EF1143 Protein from Enterococcus faecalis and Crystal Structure of the Activator-Substrate Complex

    SciTech Connect

    Vorontsov, Ivan I.; Minasov, George; Kiryukhina, Olga; Brunzelle, Joseph S.; Shuvalova, Ludmilla; Anderson, Wayne F.

    2012-06-19

    The EF1143 protein from Enterococcus faecalis is a distant homolog of deoxynucleotide triphosphate triphosphohydrolases (dNTPases) from Escherichia coli and Thermus thermophilus. These dNTPases are important components in the regulation of the dNTP pool in bacteria. Biochemical assays of the EF1143 dNTPase activity demonstrated nonspecific hydrolysis of all canonical dNTPs in the presence of Mn{sup 2+}. In contrast, with Mg{sup 2+} hydrolysis required the presence of dGTP as an effector, activating the degradation of dATP and dCTP with dGTP also being consumed in the reaction with dATP. The crystal structure of EF1143 and dynamic light scattering measurements in solution revealed a tetrameric oligomer as the most probable biologically active unit. The tetramer contains four dGTP specific allosteric regulatory sites and four active sites. Examination of the active site with the dATP substrate suggests an in-line nucleophilic attack on the {alpha}-phosphate center as a possible mechanism of the hydrolysis and two highly conserved residues, His-129 and Glu-122, as an acid-base catalytic dyad. Structural differences between EF1143 apo and holo forms revealed mobility of the {alpha}3 helix that can regulate the size of the active site binding pocket and could be stabilized in the open conformation upon formation of the tetramer and dGTP effector binding.

  19. Syntheses, crystal structures, anticancer activities of three reduce Schiff base ligand based transition metal complexes

    NASA Astrophysics Data System (ADS)

    Chang, Hui-Qin; Jia, Lei; Xu, Jun; Zhu, Tao-Feng; Xu, Zhou-Qing; Chen, Ru-Hua; Ma, Tie-Liang; Wang, Yuan; Wu, Wei-Na

    2016-02-01

    Three nickel(II) complexes, [Ni2(L1)2(tren)2(H2O)](ClO4)3 (1), [NiL2(tren)2](ClO4)·2.5H2O (2), [NiL2(tren)2]I·1.5H2O·CH3OH (3) based on amino acid reduced Schiff ligands are synthesized and characterized by physico-chemical and spectroscopic methods. The results show that in all complexes, the amino acid ligand is deprotonated and acts as an anionic ligand. In the dinuclear complex 1, each Ni(II) atom has a distorted octahedron geometry while with different coordination environment. However, the complexes 2 and 3 are mononuclear, almost with the same coordination environment. Furthermore, in vitro experiments are carried out, including MTT assay, Annexin V/PI flow cytometry and western blotting, to assess whether the complexes have antitumor effect. And the results show that all the three complexes have moderate anticancer activity towards human hepatic cancer (HepG2), human cervical cancer (HeLa) and human prostate (PC3) cell lines, in a concentration dependent way. The complex 1 exhibit higher cytotoxicity than the other two complexes and can induce human hepatic cancer cell (HepG2) to cell apoptosis by activating caspase 3.

  20. Crystal structure refinement of the electron-transfer-active potassium manganese hexacyanoferrates and isomorphous potassium manganese hexacyanocobaltates

    NASA Astrophysics Data System (ADS)

    Rykov, Alexandre I.; Li, Xuning; Wang, Junhu

    2015-07-01

    We report on the crystal structure refinements in the novel electron-transfer-active Prussian Blue analogs (PBA) KMn4II [Co1-xIII FexIII (CN)6 ]3 · nH2 O (n ≃ 12). The series of novel PBA with the end members of KMn4[ Co(CN)6]3 · 11.8H2 O and KMn4[ Fe(CN)6 ]3 · 10.5H2 O have been synthesized for the first time, all showing a number of extra-reflections incompatible with ordinary face-centered cell of the Fm-3m symmetry group. We have analyzed the Rietveld patterns for x = 0 , 0.53 , 1 and found that the extra-reflections could be well fitted using several primitive (P) cell symmetries. The best fitting quality was obtained using the noncentrosymmetric space group (S.G.) P 4 bar 3 m (Z=1) with the origin of coordinate system shifted into a zeolitic site. In this structure model, the Co-CN-Mn entities are bent owing to the charge introduced by the K+ insertion that induces also the electron transfer between Mn and Fe. Using Mössbauer spectroscopy the electron transfer activity is identified with the appearance of unsplit resonance at the isomer shift of typically -0.15 mm/s evidencing the low-spin state for Fe3+ and Fe2+ species. In the same P 4 bar 3 m phases doped with 2+57Fe into the Mn site, a sequence of discrete values of quadrupole splitting (0 mm/s, 0.9 mm/s, 1.8 mm/s) is observed and attributed to different conformations of the polyhedra, in which the ground states are orbital triplet, doublet and singlet, respectively.

  1. Crystal structures of glutaminyl cyclases (QCs) from Drosophila melanogaster reveal active site conservation between insect and mammalian QCs.

    PubMed

    Koch, Birgit; Kolenko, Petr; Buchholz, Mirko; Carrillo, David Ruiz; Parthier, Christoph; Wermann, Michael; Rahfeld, Jens-Ulrich; Reuter, Gunter; Schilling, Stephan; Stubbs, Milton T; Demuth, Hans-Ulrich

    2012-09-18

    Glutaminyl cyclases (QCs), which catalyze the formation of pyroglutamic acid (pGlu) at the N-terminus of a variety of peptides and proteins, have attracted particular attention for their potential role in Alzheimer's disease. In a transgenic Drosophila melanogaster (Dm) fruit fly model, oral application of the potent competitive QC inhibitor PBD150 was shown to reduce the burden of pGlu-modified Aβ. In contrast to mammals such as humans and rodents, there are at least three DmQC species, one of which (isoDromeQC) is localized to mitochondria, whereas DromeQC and an isoDromeQC splice variant possess signal peptides for secretion. Here we present the recombinant expression, characterization, and crystal structure determination of mature DromeQC and isoDromeQC, revealing an overall fold similar to that of mammalian QCs. In the case of isoDromeQC, the putative extended substrate binding site might be affected by the proximity of the N-terminal residues. PBD150 inhibition of DromeQC is roughly 1 order of magnitude weaker than that of the human and murine QCs. The inhibitor binds to isoDromeQC in a fashion similar to that observed for human QCs, whereas it adopts alternative binding modes in a DromeQC variant lacking the conserved cysteines near the active center and shows a disordered dimethoxyphenyl moiety in wild-type DromeQC, providing an explanation for the lower affinity. Our biophysical and structural data suggest that isoDromeQC and human QC are similar with regard to functional aspects. The two Dm enzymes represent a suitable model for further in-depth analysis of the catalytic mechanism of animal QCs, and isoDromeQC might serve as a model system for the structure-based design of potential AD therapeutics.

  2. Crystal structure of guggulsterone Z

    SciTech Connect

    Gupta, V. K. Bandhoria, P.; Gupta, B. D.; Gupta, K. K.

    2006-03-15

    The crystal structure of the title compound (4,17(20)-trans-pregnadiene-3,16-dione, C{sub 21}H{sub 28}O{sub 2}) has been determined by direct methods using single-crystal X-ray diffraction data. The compound crystallizes into the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1} with the unit cell parameters a = 7.908(2) A, b = 13.611(3) A, c = 16.309(4) A, and Z = 4. The structure has been refined to R = 0.058 for 3667 observed reflections. The bond distances and angles are in good agreement with guggulsterone E and other related steroid molecules. Ring A exists in the distorted sofa conformation, while rings B and C adopt the distorted chair conformation. Five-membered ring D is intermediate between the half-chair and envelope conformations. The A/B ring junction is quasi-trans, while ring systems B/C and C/D are trans fused about the C(8)-C(9) and C(13)-C(14) bonds, respectively. The steroid nucleus has a small twist, as shown by the C(19)-C(10)...C(13)-C(18) pseudo-torsion angle of 7.2{sup o}. The crystal structure is stabilized by intra-and intermolecular C-H...O hydrogen bonds.

  3. New 7-arylpiperazinylalkyl-8-morpholin-4-yl-purine-2,6-dione derivatives with anxiolytic activity - Synthesis, crystal structure and structure-activity study

    NASA Astrophysics Data System (ADS)

    Chłoń-Rzepa, Grażyna; Żmudzki, Paweł; Pawłowski, Maciej; Wesołowska, Anna; Satała, Grzegorz; Bojarski, Andrzej J.; Jabłoński, Mateusz; Kalinowska-Tłuścik, Justyna

    2014-06-01

    On the basis of our earlier studies with serotonin (5-HT) receptor ligands in the group of long-chain arylpiperazines (LCAPs), a new series of 7-arylpiperazinylalkyl-8-morpholin-4-yl-purine-2,6-dione derivatives (5-12) has been designed, synthesised and studied in vitro for their affinity for 5-HT1A, 5-HT2A, 5-HT6 and 5-HT7 receptors. The introduction of o-OCH3 and m-Cl into the phenylpiperazinyl moiety as well as the elongation of the linker between purine-2,6-dione core and arylpiperazine fragment modified the affinity for the tested 5-HT receptors. The structures of compounds 9-11 (hydrochloride salts) were confirmed by an X-ray diffraction method. All molecules adopted a different conformation in the crystal. The strongest observed type of interaction is a charge assisted hydrogen bond N+-H⋯Cl-. Additionally, the π-π interactions between 1,3-dimethyl-3,7-dihydropurine-2,6-dione cores of the neighbouring molecules were also observed. As it is observed in the presented crystal structures, the morpholine ring (a potential donor and acceptor of the hydrogen bonds) seems to be an attractive substituent, that may support binding to the non-specific sites of 5-HT receptors. Another interesting feature is the mutual orientation of rings in the arylpiperazine fragment, with plausible influence on ligand-receptor recognition. For compound 10, with strong 5-HT1A binding affinity, the mutual orientation of rings is determined by the intramolecular weak C-H⋯O hydrogen bond. This observation may contribute to a better understanding of the more selective binding of o-OCH3 arylpiperazine derivatives to the 5-HT1A receptor.

  4. Influence of two different template removal methods on the micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres

    NASA Astrophysics Data System (ADS)

    Wang, Han; Jin, Tingting; Zheng, Xing; Jiang, Bo; Zhu, Chaosheng; Yuan, Xiangdong; Zheng, Jingtang; Wu, Mingbo

    2016-11-01

    Hollow cadmium sulfide (CdS) nanospheres of about 260 nm average diameters and about 30 nm shell thickness can be easily synthesized via a sonochemical process, in which polystyrene (PS) nanoparticles were employed as templates. In order to remove the PS templates, both etching and calcination were applied in this paper. The influence of the two different template removal methods on the surface micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres was carefully performed a comparative study. Results of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray, FT-IR, thermogravimetric analysis, Brunauer-Emmett-Teller, diffused reflectance spectra, and decolorization experiments showed that the different template removal methods exhibited a significant influence on the surface micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres. The CdS hollow nanospheres as-prepared by etching had pure cubic sphalerite structure, higher -OH content, less defects and exhibited good photocatalytic activity for rhodamine-B, Methylene Blue and methyl orange under UV-vis light irradiation. However, CdS hollow nanospheres obtained by calcination with a hexagonal crystal structure, less -OH content, more defects have shown worse photocatalytic activity. This indicated that surface micromorphology and crystalline phase were mainly factors influencing photocatalytic activity of hollow CdS nanospheres.

  5. Germinal-center kinase-like kinase co-crystal structure reveals a swapped activation loop and C-terminal extension.

    PubMed

    Marcotte, Douglas; Rushe, Mia; M Arduini, Robert; Lukacs, Christine; Atkins, Kateri; Sun, Xin; Little, Kevin; Cullivan, Michael; Paramasivam, Murugan; Patterson, Thomas A; Hesson, Thomas; D McKee, Timothy; May-Dracka, Tricia L; Xin, Zhili; Bertolotti-Ciarlet, Andrea; Bhisetti, Govinda R; Lyssikatos, Joseph P; Silvian, Laura F

    2017-02-01

    Germinal-center kinase-like kinase (GLK, Map4k3), a GCK-I family kinase, plays multiple roles in regulating apoptosis, amino acid sensing, and immune signaling. We describe here the crystal structure of an activation loop mutant of GLK kinase domain bound to an inhibitor. The structure reveals a weakly associated, activation-loop swapped dimer with more than 20 amino acids of ordered density at the carboxy-terminus. This C-terminal PEST region binds intermolecularly to the hydrophobic groove of the N-terminal domain of a neighboring molecule. Although the GLK activation loop mutant crystallized demonstrates reduced kinase activity, its structure demonstrates all the hallmarks of an "active" kinase, including the salt bridge between the C-helix glutamate and the catalytic lysine. Our compound displacement data suggests that the effect of the Ser170Ala mutation in reducing kinase activity is likely due to its effect in reducing substrate peptide binding affinity rather than reducing ATP binding or ATP turnover. This report details the first structure of GLK; comparison of its activation loop sequence and P-loop structure to that of Map4k4 suggests ideas for designing inhibitors that can distinguish between these family members to achieve selective pharmacological inhibitors.

  6. THE CRYSTAL STRUCTURE OF ANTIMONY (III) SULFOBROMIDE, SBSBR,

    DTIC Science & Technology

    ANTIMONY COMPOUNDS, *SULFUR COMPOUNDS, CRYSTAL STRUCTURE , CRYSTAL STRUCTURE , BROMIDES, SYMMETRY(CRYSTALLOGRAPHY), FOURIER ANALYSIS, MOLECULAR STRUCTURE, CRYSTAL LATTICES, CHEMICAL BONDS, X RAY DIFFRACTION.

  7. Crystal structure of full-length human collagenase 3 (MMP-13) with peptides in the active site defines exosites in the catalytic domain

    PubMed Central

    Stura, Enrico A.; Visse, Robert; Cuniasse, Philippe; Dive, Vincent; Nagase, Hideaki

    2013-01-01

    Matrix metalloproteinase (MMP)-13 is one of the mammalian collagenases that play key roles in tissue remodelling and repair and in progression of diseases such as cancer, arthritis, atherosclerosis, and aneurysm. For collagenase to cleave triple helical collagens, the triple helical structure has to be locally unwound before hydrolysis, but this process is not well understood. We report crystal structures of catalytically inactive full-length human MMP-13(E223A) in complex with peptides of 14–26 aa derived from the cleaved prodomain during activation. Peptides are bound to the active site of the enzyme by forming an extended β-strand with Glu40 or Tyr46 inserted into the S1′ specificity pocket. The structure of the N-terminal part of the peptides is variable and interacts with different parts of the catalytic domain. Those areas are designated substrate-dependent exosites, in that they accommodate different peptide structures, whereas the precise positioning of the substrate backbone is maintained in the active site. These modes of peptide-MMP-13 interactions have led us to propose how triple helical collagen strands fit into the active site cleft of the collagenase.—Stura, E. A., Visse, R., Cuniasse, P., Dive, V., Nagase, H. Crystal structure of full-length human collagenase 3 (MMP-13) with peptides in the active site defines exosites in the catalytic domain. PMID:23913860

  8. Crystal structure of a member of a novel family of dioxygenases (PF10014) reveals a conserved cupin fold and active site

    PubMed Central

    Xu, Qingping; Grant, Joanna; Chiu, Hsiu-Ju; Farr, Carol L.; Jaroszewski, Lukasz; Knuth, Mark W.; Miller, Mitchell D.; Lesley, Scott A.; Godzik, Adam; Elsliger, Marc-André; Deacon, Ashley M.; Wilson, Ian A.

    2014-01-01

    PF10014 is a novel family of 2-oxyglutarate-Fe2+-dependent dioxygenases that are involved in biosynthesis of antibiotics and regulation of biofilm formation, likely by catalyzing hydroxylation of free amino acids or other related ligands. The crystal structure of a PF10014 member from Methylibium petroleiphilum at 1.9 Å resolution shows strong structural similarity to cupin dioxygenases in overall fold and active site, despite very remote homology. However, one of the β-strands of the cupin catalytic core is replaced by a loop that displays conformational isomerism that likely regulates the active site. PMID:23852666

  9. Crystal structure of a member of a novel family of dioxygenases (PF10014) reveals a conserved cupin fold and active site.

    PubMed

    Xu, Qingping; Grant, Joanna; Chiu, Hsiu-Ju; Farr, Carol L; Jaroszewski, Lukasz; Knuth, Mark W; Miller, Mitchell D; Lesley, Scott A; Godzik, Adam; Elsliger, Marc-André; Deacon, Ashley M; Wilson, Ian A

    2014-01-01

    PF10014 is a novel family of 2-oxyglutarate-Fe(2+) -dependent dioxygenases that are involved in biosynthesis of antibiotics and regulation of biofilm formation, likely by catalyzing hydroxylation of free amino acids or other related ligands. The crystal structure of a PF10014 member from Methylibium petroleiphilum at 1.9 Å resolution shows strong structural similarity to cupin dioxygenases in overall fold and active site, despite very remote homology. However, one of the β-strands of the cupin catalytic core is replaced by a loop that displays conformational isomerism that likely regulates the active site.

  10. Crystal activation experiment MA-151

    NASA Technical Reports Server (NTRS)

    Trombka, J. I.; Eller, E. L.; Schmadebeck, R. L.; Dyer, C. S.; Reedy, R. C.; Barr, D. W.; Gilmore, J. S.; Prestwood, R. J.; Bayhurst, B. P.; Perry, D. G.

    1976-01-01

    The crystal activation experiment consisted of two sample packages that were flown in the command module and returned to earth for analysis of the radioactivity induced in them during the flight. The objective of the experiment was to define the background caused by detector activation that interferes when gamma radiation is measured in the 0.02- to 10-megaelectronvolt range from earth orbit. Preliminary results show that the activation of the NaI(Tl) crystal was a factor of 3 below that from a similar measurement on Apollo 17. The identification of certain species and the level of activation observed show an important contribution from the interactions of thermal and energetic neutrons produced as secondaries in the spacecraft. That the activation was reduced by only a factor of 3 compared with the Apollo 17 experiment, despite the geomagnetically shielded orbit, possibly indicates more efficient secondary neutron production by the more energetic cosmic rays.

  11. Crystal structure of Clostridium botulinum neurotoxin protease in a product-bound state: Evidence for noncanonical zinc protease activity.

    PubMed

    Segelke, Brent; Knapp, Mark; Kadkhodayan, Saloumeh; Balhorn, Rod; Rupp, Bernhard

    2004-05-04

    Clostridium botulinum neurotoxins (BoNTs), the most potent toxins known, disrupt neurotransmission through proteolysis of proteins involved in neuroexocytosis. The light chains of BoNTs are unique zinc proteases that have stringent substrate specificity and require exceptionally long substrates. We have determined the crystal structure of the protease domain from BoNT serotype A (BoNT/A). The structure reveals a homodimer in a product-bound state, with loop F242-V257 from each monomer deeply buried in its partner's catalytic site. The loop, which acts as a substrate, is oriented in reverse of the canonical direction for other zinc proteases. The Y249-Y250 peptide bond of the substrate loop is hydrolyzed, leaving the Y249 product carboxylate coordinated to the catalytic zinc. From the crystal structure of the BoNT/A protease, detailed models of noncanonical binding and proteolysis can be derived which we propose are also consistent with BoNT/A binding and proteolysis of natural substrate synaptosome-associated protein of 25 kDa (SNAP-25). The proposed BoNT/A substrate-binding mode and catalytic mechanism are markedly different from those previously proposed for the BoNT serotype B.

  12. Perspectives in active liquid crystals.

    PubMed

    Majumdar, Apala; Cristina, Marchetti M; Virga, Epifanio G

    2014-11-28

    Active soft matter is a young, growing field, with potential applications to a wide variety of systems. This Theme Issue explores this emerging new field by highlighting active liquid crystals. The collected contributions bridge theory to experiment, mathematical theories of passive and active nematics, spontaneous flows to defect dynamics, microscopic to continuum levels of description, spontaneous activity to biological activation. While the perspectives offered here only span a small part of this rapidly evolving field, we trust that they might provide the interested reader with a taste for this new class of non-equilibrium systems and their rich behaviour.

  13. Crystal structure of activated tobacco rubisco complexed with the reaction-intermediate analogue 2-carboxy-arabinitol 1,5-bisphosphate.

    PubMed Central

    Schreuder, H. A.; Knight, S.; Curmi, P. M.; Andersson, I.; Cascio, D.; Sweet, R. M.; Brändén, C. I.; Eisenberg, D.

    1993-01-01

    The crystal structure of activated tobacco rubisco, complexed with the reaction-intermediate analogue 2-carboxy-arabinitol 1,5-bisphosphate (CABP) has been determined by molecular replacement, using the structure of activated spinach rubisco (Knight, S., Andersson, I., & Brändén, C.-I., 1990, J. Mol. Biol. 215, 113-160) as a model. The R-factor after refinement is 21.0% for 57,855 reflections between 9.0 and 2.7 A resolution. The local fourfold axis of the rubisco hexadecamer coincides with a crystallographic twofold axis. The result is that the asymmetric unit of the crystals contains half of the L8S8 complex (molecular mass 280 kDa in the asymmetric unit). The activated form of tobacco rubisco is very similar to the activated form of spinach rubisco. The root mean square difference is 0.4 A for 587 equivalent C alpha atoms. Analysis of mutations between tobacco and spinach rubisco revealed that the vast majority of mutations concerned exposed residues. Only 7 buried residues were found to be mutated versus 54 residues at or near the surface of the protein. The crystal structure suggests that the Cys 247-Cys 247 and Cys 449-Cys 459 pairs are linked via disulfide bridges. This pattern of disulfide links differ from the pattern of disulfide links observed in crystals of unactivated tobacco rubisco (Curmi, P.M.G., et al., 1992, J. Biol. Chem. 267, 16980-16989) and is similar to the pattern observed for activated spinach tobacco. PMID:8358296

  14. Crystal Engineering: from Structure to Function

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Mark D.

    2002-03-01

    Modern crystal engineering has emerged as a rich discipline whose success requires an iterative process of synthesis, crystallography, crystal structure analysis, and computational methods. By focusing on the molecular recognition events during nucleation and growth, chemists have uncovered new ways of controlling the internal structure and symmetry of crystals and of producing materials with useful chemical and physical properties.

  15. Crystal Structure of PKG I:cGMP Complex Reveals a cGMP-Mediated Dimeric Interface that Facilitates cGMP-Induced Activation.

    PubMed

    Kim, Jeong Joo; Lorenz, Robin; Arold, Stefan T; Reger, Albert S; Sankaran, Banumathi; Casteel, Darren E; Herberg, Friedrich W; Kim, Choel

    2016-05-03

    Cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG) is a key regulator of smooth muscle and vascular tone and represents an important drug target for treating hypertensive diseases and erectile dysfunction. Despite its importance, its activation mechanism is not fully understood. To understand the activation mechanism, we determined a 2.5 Å crystal structure of the PKG I regulatory (R) domain bound with cGMP, which represents the activated state. Although we used a monomeric domain for crystallization, the structure reveals that two R domains form a symmetric dimer where the cGMP bound at high-affinity pockets provide critical dimeric contacts. Small-angle X-ray scattering and mutagenesis support this dimer model, suggesting that the dimer interface modulates kinase activation. Finally, structural comparison with the homologous cyclic AMP-dependent protein kinase reveals that PKG is drastically different from protein kinase A in its active conformation, suggesting a novel activation mechanism for PKG.

  16. Investigation of crystal structures of one-way shape memory Nitinol wire actuators for active steerable needle

    NASA Astrophysics Data System (ADS)

    Honarvar, Mohammad; Konh, Bardia; Hutapea, Parsaoran

    2015-04-01

    Due to its outstanding properties of Nitinol, known as shape memory and superelasticity, Nitinol wires have been used as actuators in many medical devices. For the medical applications, it is critical to have a consistent strain response of Nitinol wires. This work focuses on studying the effect of parameters such as biased stress, maximum temperature, and wire diameters that influence the strain response of Nitinol wires. Specifically, Nitinol phase transformations were studied from microstructural point of view. The crystal structures of one-way shape memory Nitinol wires of various diameters under different thermomechanical loading conditions were studied using X-Ray Diffraction (XRD) method. The location and intensity of characteristic peaks were determined prior and after the thermomechanical loading cycles. It was observed that Nitinol wires of diameters less than 0.19 mm exhibit unrecovered strain while heated to the range of 70ºC to 80ºC in a thermal cycle, whereas no unrecovered strains were found in larger wires. The observation was supported by the XRD patterns where the formation of R-phase crystal structure was showed in wire diameters less than 0.19 mm at room temperature.

  17. Synthesis, Biological Activity, and Crystal Structure of Potent Nonnucleoside Inhibitors of HIV-1 Reverse Transcriptase That Retain Activity against Mutant Forms of the Enzyme†

    PubMed Central

    Morningstar, Marshall L.; Roth, Thomas; Farnsworth, David W.; Smith, Marilyn Kroeger; Watson, Karen; Buckheit, Robert W.; Das, Kalyan; Zhang, Wanyi; Arnold, Eddy; Julias, John G.; Hughes, Stephen H.; Michejda, Christopher J.

    2010-01-01

    In an ongoing effort to develop novel and potent nonnucleoside HIV-1 reverse transcriptase (RT) inhibitors that are effective against the wild type (WT) virus and clinically observed mutants, 1,2-bis-substituted benzimidazoles were synthesized and tested. Optimization of the N1 and C2 positions of benzimidazole led to the development of 1-(2,6-difluorobenzyl)-2-(2,6-difluorophenyl)-4-methylbenzimidazole (1) (IC50 = 0.2 μM, EC50 = 0.44 μM, and TC50 ≥ 100 against WT). This paper describes how substitution on the benzimidazole ring profoundly affects activity. Substituents at the benzimidazole C4 dramatically enhanced potency, while at C5 or C6 substituents were generally detrimental or neutral to activity, respectively. A 7-methyl analogue did not inhibit HIV-1 RT. Determination of the crystal structure of 1 bound to RT provided the basis for accurate modeling of additional analogues, which were synthesized and tested. Several derivatives were nanomolar inhibitors of wild-type virus and were effective against clinically relevant HIV-1 mutants. PMID:17663538

  18. Microfluidic Approaches for Protein Crystal Structure Analysis.

    PubMed

    Maeki, Masatoshi; Yamaguchi, Hiroshi; Tokeshi, Manabu; Miyazaki, Masaya

    2016-01-01

    This review summarizes two microfluidic-based protein crystallization methods, protein crystallization behavior in the microfluidic devices, and their applications for X-ray crystal structure analysis. Microfluidic devices provide many advantages for protein crystallography; they require small sample volumes, provide high-throughput screening, and allow control of the protein crystallization. A droplet-based protein crystallization method is a useful technique for high-throughput screening and the formation of a single crystal without any complicated device fabrication process. Well-based microfluidic platforms also enable effective protein crystallization. This review also summarizes the protein crystal growth behavior in microfluidic devices as, is known from viewpoints of theoretical and experimental approaches. Finally, we introduce applications of microfluidic devices for on-chip crystal structure analysis.

  19. Synthesis, crystal structures, insecticidal activities, and structure--activity relationships of novel N'-tert-Butyl-N'-substituted-benzoyl-N-[di(octa)hydro]benzofuran{(2,3-dihydro)benzo[1,3]([1,4])dioxine}carbohydrazide derivatives.

    PubMed

    Huang, Zhiqiang; Liu, Yuxiu; Li, Yongqiang; Xiong, Lixia; Cui, Zhipeng; Song, Hongjian; Liu, Hongli; Zhao, Qiqi; Wang, Qingmin

    2011-01-26

    Several series of novel N'-tert-butyl-N'-substituted-benzoyl-N-[di(octa)hydro]benzofuran{(2,3-dihydro)benzo[1,3]([1,4])dioxine}carbohydrazide derivatives Ia, Ib, IIa-IIg, IIIa, IIIb, and Va-Vc were designed and synthesized. Their structures were confirmed by (1)H NMR spectra, HRMS, and X-ray single-crystal structures. The larvicidal activities against oriental armyworm, beet armyworm, diamond-back moth, and corn borer of these compounds were evaluated and contrasted with those of RH-2485, JS-118, and ANS-118. The larvicidal activities against oriental armyworm indicate that monosubstituent or multisubstituents and the substituting group position cannot promote increasing activities and that the cycle region in the general structure of IIa-IIg is much more sensitive to activity than that in the general structure of Ia and Ib. The space volume of the A ring in the structure of Va cannot be too large; if it is, the activity will be decreased significantly. Stomach toxicities against beet armyworm, diamond-back moth, and corn borer of compounds Ia, Ib and IIg indicate that benzoheterocyclic analogues of N-tert-butyl-N,N'-diacylhydrazines show significant selectivities to different lepidopterous pests.

  20. Crystal Structure and Antitumor Activity of the Novel Zwitterionic Complex of tri-n-Butyltin(IV) with 2-Thiobarbituric Acid

    PubMed Central

    Balas, Vasilios I.; Hadjikakou, Sotiris K.; Hadjiliadis, Nick; Kourkoumelis, Nikolaos; Light, Mark E.; Hursthouse, Mike; Metsios, Apostolos K.; Karkabounas, Spyros

    2008-01-01

    A novel tri-n-butyl(IV) derivative of 2-thiobarbituric acid (HTBA) of formula [(n-Bu)3Sn(TBA) H2O] (1) has been synthesized and characterized by elemental analysis and 119Sn-NMR and FT-IR spectroscopic techniques. The crystal structure of complex 1 has been determined by single crystal X-ray diffraction analysis at 120(2) K. The geometry around Sn(IV) is trigonal bipyramidal. Three n-butyl groups and one oxygen atom from a deprotonated 2-thiobarbituric ligand are bonded to the metal center. The geometry is completed with one oxygen from a water molecule. Compound 1 exhibits potent, in vitro, cytotoxicity against sarcoma cancer cells (mesenchymal tissue) from the Wistar rat, polycyclic aromatic hydrocarbons (PAH, benzo[a]pyrene) carcinogenesis. In addition, the inhibition caused by 1, in the rate of lipoxygenase (LOX) catalyzed oxidation reaction of linoleic acid to hyperoxolinoleic acid, has been also kinetically and theoretically studied. The results are compared to that of cisplatin. PMID:18401456

  1. Crystal Structures of the Reduced, Sulfenic Acid, and Mixed Disulfide Forms of SarZ, a Redox Active Global Regulator in Staphylococcus aureus

    SciTech Connect

    Poor, Catherine B.; Chen, Peng R.; Duguid, Erica; Rice, Phoebe A.; He, Chuan

    2010-01-20

    SarZ is a global transcriptional regulator that uses a single cysteine residue, Cys{sup 13}, to sense peroxide stress and control metabolic switching and virulence in Staphylococcus aureus. SarZ belongs to the single-cysteine class of OhrR-MgrA proteins that play key roles in oxidative resistance and virulence regulation in various bacteria. We present the crystal structures of the reduced form, sulfenic acid form, and mixed disulfide form of SarZ. Both the sulfenic acid and mixed disulfide forms are structurally characterized for the first time for this class of proteins. The Cys{sup 13} sulfenic acid modification is stabilized through two hydrogen bonds with surrounding residues, and the overall DNA-binding conformation is retained. A further reaction of the Cys{sup 13} sulfenic acid with an external thiol leads to formation of a mixed disulfide bond, which results in an allosteric change in the DNA-binding domains, disrupting DNA binding. Thus, the crystal structures of SarZ in three different states provide molecular level pictures delineating the mechanism by which this class of redox active regulators undergoes activation. These structures help to understand redox-mediated virulence regulation in S. aureus and activation of the MarR family proteins in general.

  2. Optically active zwitterionic lambda(5)Si,lambda(5)Si'-disilicates: syntheses, crystal structures, and behavior in aqueous solution.

    PubMed

    Theis, Bastian; Burschka, Christian; Tacke, Reinhold

    2008-01-01

    The zwitterionic lambda(5)Si,lambda(5)Si'-disilicates 1-8 were synthesized and characterized by solid-state and solution NMR spectroscopy. In addition, compounds 26 H(2)O, 32 CH(3)CN, 45/2 CH(3)CN, 6CH(3)OH, 7, and 8CH(3)OHCH(3)CN were studied by single-crystal X-ray diffraction. The optically active (Delta,Delta,R,R,R,R)-configured compounds 1-8 contain two pentacoordinate (formally negatively charged) silicon atoms and two tetracoordinate (formally positively charged) nitrogen atoms. One (ammonio)alkyl group is bound to each of the two silicon centers, and two tetradentate (R,R)-tartrato(4-) ligands bridge the silicon atoms. Although these lambda(5)Si,lambda(5)Si'-disilicates contain SiO(4)C skeletons, some of them display a remarkable stability in aqueous solution as shown by NMR spectroscopy and ESI mass spectrometry.

  3. Crystal structure of human nicotinamide riboside kinase.

    PubMed

    Khan, Javed A; Xiang, Song; Tong, Liang

    2007-08-01

    Nicotinamide riboside kinase (NRK) has an important role in the biosynthesis of NAD(+) as well as the activation of tiazofurin and other NR analogs for anticancer therapy. NRK belongs to the deoxynucleoside kinase and nucleoside monophosphate (NMP) kinase superfamily, although the degree of sequence conservation is very low. We report here the crystal structures of human NRK1 in a binary complex with the reaction product nicotinamide mononucleotide (NMN) at 1.5 A resolution and in a ternary complex with ADP and tiazofurin at 2.7 A resolution. The active site is located in a groove between the central parallel beta sheet core and the LID and NMP-binding domains. The hydroxyl groups on the ribose of NR are recognized by Asp56 and Arg129, and Asp36 is the general base of the enzyme. Mutation of residues in the active site can abolish the catalytic activity of the enzyme, confirming the structural observations.

  4. Crystal Structure of Human Nicotinamide Riboside Kinase

    SciTech Connect

    Khan,J.; Xiang, S.; Tong, L.

    2007-01-01

    Nicotinamide riboside kinase (NRK) has an important role in the biosynthesis of NAD{sup +} as well as the activation of tiazofurin and other NR analogs for anticancer therapy. NRK belongs to the deoxynucleoside kinase and nucleoside monophosphate (NMP) kinase superfamily, although the degree of sequence conservation is very low. We report here the crystal structures of human NRK1 in a binary complex with the reaction product nicotinamide mononucleotide (NMN) at 1.5 {angstrom} resolution and in a ternary complex with ADP and tiazofurin at 2.7 {angstrom} resolution. The active site is located in a groove between the central parallel {beta} sheet core and the LID and NMP-binding domains. The hydroxyl groups on the ribose of NR are recognized by Asp56 and Arg129, and Asp36 is the general base of the enzyme. Mutation of residues in the active site can abolish the catalytic activity of the enzyme, confirming the structural observations.

  5. Predicting crystal structures of organic compounds.

    PubMed

    Price, Sarah L

    2014-04-07

    Currently, organic crystal structure prediction (CSP) methods are based on searching for the most thermodynamically stable crystal structure, making various approximations in evaluating the crystal energy. The most stable (global minimum) structure provides a prediction of an experimental crystal structure. However, depending on the specific molecule, there may be other structures which are very close in energy. In this case, the other structures on the crystal energy landscape may be polymorphs, components of static or dynamic disorder in observed structures, or there may be no route to nucleating and growing these structures. A major reason for performing CSP studies is as a complement to solid form screening to see which alternative packings to the known polymorphs are thermodynamically feasible.

  6. Synthesis, characterization, crystal structures, computational studies, and antibacterial activities of two new Schiff bases derived from isophthalaldehyde

    NASA Astrophysics Data System (ADS)

    Salehi, Mehdi; Amoozadeh, Ali; Salamatmanesh, Arefe; Kubicki, Maciej; Dutkiewicz, Grzegorz; Samiee, Sepideh; Khaleghian, Ali

    2015-07-01

    Two new Schiff bases, N,N‧-(1,3-phenylenebis(methanylylidene))bis(4-bromoaniline) (1) and N,N‧-(1,3-phenylenebis(methanylylidene))bis(4-methoxyaniline) (2), have been synthesized by the reaction between isophthalaldehyde and appropriate aniline derivatives, and characterized by physico-chemical and spectroscopic methods. The structures of new compounds 1 and 2 have been characterized crystallographically. Moreover, structural optimization by DFT calculations have been performed and compared with the experimental data. The compounds were also screened for in vitro antibacterial activities against four human pathogenic bacteria and their minimum inhibitory concentrations showed moderate antibacterial activities.

  7. An unexpected Schiff base-type Ni(II) complex: synthesis, crystal structures, fluorescence, electrochemical property and SOD-like activities.

    PubMed

    Chai, Lan-Qin; Zhang, Hong-Song; Huang, Jiao-Jiao; Zhang, Yu-Li

    2015-02-25

    An unexpected Schiff base-type Ni(II) complex, [Ni(L(2))2]⋅CH3OH (HL(2) = 1-(2-{[(E)-3, 5-dibromo-2-hydroxybenzylidene]amino}phenyl)ethanone oxime), has been synthesized via complexation of Ni(II) acetate tetrahydrate with HL(1) (2-(3,5-dibromo-2-hydroxyphenyl)-4-methyl-1,2-dihydroquinazoline 3-oxide) originally. HL(1) and its corresponding Ni(II) complex were characterized by IR, (1)H NMR spectra, as well as by elemental analysis, UV-Vis and emission spectroscopy, respectively. Crystal structures of the ligand and complex have been determined by single-crystal X-ray diffraction. Each complex links two other molecules into an infinite 1-D chain via intermolecular hydrogen bonding interactions. Moreover, the electrochemical property of the nickle complex was studied by cyclic voltammetry. In addition, SOD-like activities of HL(1) and Ni(II) complex were also investigated.

  8. Uranocircite: luminescence and crystal structure

    SciTech Connect

    Matkovskiy, A.O.; Sidorenko, G.A.; Tarashchan, A.N.

    1981-01-01

    A study on the determination of the complex structure of the electron-vibration spectra and the elucidation of their relation to crystallochemical factors in uranocircite is presented. The work was performed on samples from zones of a single crystal of the same natural meta-uranocircite, differing in color, and also on other specimens from various Soviet and foreign deposits. Of the 15 meta-uranocircite specimens investigated, in 14 cases the luminescence spectra were homoypic and were a series of equidistant groups of lines of the fine structure; the spectral position of which was practically constant for all the specimens. The degree of hydration was found to have practically no influence on the luminescence of the meta-uranocircite. The investigation supports the supposition that there are marked differences in the structures of minerals of the uran-mica group, although in the authors' opinion, the mechanism itself of multi-center radiation is universal and manifested for all secondary uranium minerals. (JMT)

  9. Divalent and oxabridged neonicotinoids constructed by dialdehydes and nitromethylene analogues of imidacloprid: design, synthesis, crystal structure, and insecticidal activities.

    PubMed

    Shao, Xusheng; Fu, Hua; Xu, Xiaoyong; Xu, Xinglei; Liu, Zewen; Li, Zhong; Qian, Xuhong

    2010-03-10

    A series of divalent and oxabridged neonicotinoids were synthesized by reactions of nitromethylene analogues of imidacloprid and dialdehydes, and their structures were confirmed by (1)H NMR, (13)C NMR, high-resolution mass spectroscopy, and X-ray diffraction analysis. The bioassays indicated that some of them were endowed with excellent insecticidal activities against cowpea aphid ( Aphis craccivora ), armyworm ( Pseudaletia separata Walker), and brown planthopper ( Nilaparvata lugens ). Divalent neonicotinoid 6 and oxabridged 8a had higher activities than imidacloprid against cowpea aphids and armyworm; furthermore, the activity of 8a was 40.4-fold higher than that of imidacloprid against imidacloprid-resistant brown planthopper.

  10. The Crystal Structure of a Quercetin 2,3-Dioxygenase from Bacillus subtilis Suggests Modulation of Enzyme Activity by a Change in the Metal Ion at the Active Site(s)

    SciTech Connect

    Gopal, B.; Madan, Lalima L.; Betz, Stephen F.; Kossiakoff, Anthony A.

    2010-11-10

    Common structural motifs, such as the cupin domains, are found in enzymes performing different biochemical functions while retaining a similar active site configuration and structural scaffold. The soil bacterium Bacillus subtilis has 20 cupin genes (0.5% of the total genome) with up to 14% of its genes in the form of doublets, thus making it an attractive system for studying the effects of gene duplication. There are four bicupins in B. subtilis encoded by the genes yvrK, yoaN, yxaG, and ywfC. The gene products of yvrK and yoaN function as oxalate decarboxylases with a manganese ion at the active site(s), whereas YwfC is a bacitracin synthetase. Here we present the crystal structure of YxaG, a novel iron-containing quercetin 2,3-dioxygenase with one active site in each cupin domain. Yxag is a dimer, both in solution and in the crystal. The crystal structure shows that the coordination geometry of the Fe ion is different in the two active sites of YxaG. Replacement of the iron at the active site with other metal ions suggests modulation of enzymatic activity in accordance with the Irving-Williams observation on the stability of metal ion complexes. This observation, along with a comparison with the crystal structure of YvrK determined recently, has allowed for a detailed structure-function analysis of the active site, providing clues to the diversification of function in the bicupin family of proteins.

  11. Crystal structure and activity of protein L-isoaspartyl-O-methyltransferase from Vibrio cholerae, and the effect of AdoHcy binding.

    PubMed

    Chatterjee, Tanaya; Mukherjee, Debadrita; Banerjee, Mousumi; Chatterjee, Barun K; Chakrabarti, Pinak

    2015-10-01

    The repair enzyme Protein L-isoaspartyl-O-methyltransferase (PIMT) is widely distributed in various organisms. PIMT catalyzes S-adenosylmethionine (AdoMet) dependent methylation of abnormal L-isoaspartyl residues, formed by the deamidation of asparagines and isomerization of aspartates. We report the crystal structure of PIMT of Vibrio cholerae (VcPIMT), the aetiological agent for cholera, complexed with the demethylated cofactor S-adenosyl-L-homocysteine (AdoHcy) to 2.05 Å resolution. A stretch of residues (39-58), lining the substrate-binding site, is disordered. Urea-induced unfolding free energy for apo and VcPIMT-AdoHcy complex reveals greater stability for the cofactor-bound protein. The kinetic parameters for the methyltransferase activity of the recombinant VcPIMT was determined using a continuous spectrophotometric color-based assay using the peptide substrate [VYP(L-isoD)HA]. The enzyme exhibited activity higher than the Escherichia coli enzyme and closer to those from thermophilic bacteria and the mammalian source. The association constant for substrate binding is 2.29 × 10(6) M(-1), quite similar to that for AdoHcy. The crystal structure and the model of the peptide-bound structure indicate that the majority of the interactions used for cofactor/substrate binding are provided by the main-chain atoms. Evolutionary relationships derived based on a phylogenetic tree constructed using the PIMT sequences are in conformity with the crystal structures of nine AdoHcy-bound PIMTs.

  12. Promotion of protein crystal growth by actively switching crystal growth mode via femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Tominaga, Yusuke; Maruyama, Mihoko; Yoshimura, Masashi; Koizumi, Haruhiko; Tachibana, Masaru; Sugiyama, Shigeru; Adachi, Hiroaki; Tsukamoto, Katsuo; Matsumura, Hiroyoshi; Takano, Kazufumi; Murakami, Satoshi; Inoue, Tsuyoshi; Yoshikawa, Hiroshi Y.; Mori, Yusuke

    2016-11-01

    Large single crystals with desirable shapes are essential for various scientific and industrial fields, such as X-ray/neutron crystallography and crystalline devices. However, in the case of proteins the production of such crystals is particularly challenging, despite the efforts devoted to optimization of the environmental, chemical and physical parameters. Here we report an innovative approach for promoting the growth of protein crystals by directly modifying the local crystal structure via femtosecond laser ablation. We demonstrate that protein crystals with surfaces that are locally etched (several micrometers in diameter) by femtosecond laser ablation show enhanced growth rates without losing crystal quality. Optical phase-sensitive microscopy and X-ray topography imaging techniques reveal that the local etching induces spiral growth, which is energetically advantageous compared with the spontaneous two-dimensional nucleation growth mode. These findings prove that femtosecond laser ablation can actively switch the crystal growth mode, offering flexible control over the size and shape of protein crystals.

  13. Phonons in active microfluidic crystals

    NASA Astrophysics Data System (ADS)

    Tsang, Alan Cheng Hou; Kanso, Eva

    2016-11-01

    One-dimensional crystals of driven particles confined in quasi two-dimensional microfluidic channels have been shown to exhibit propagating sound waves in the form of 'phonons', including both transverse and longitudinal normal modes. Here, we focus on one-dimensional crystals of motile particles in uniform external flows. We study the propagation of phonons in the context of an idealized model that accounts for hydrodynamic interactions among the motile particles. We obtain a closed-form analytical expression for the dispersion relation of the phonons. In the moving frame of reference of the crystals, the traveling directions of the phonons depend on the intensity of the external flow, and are exactly opposite for the transverse and longitudinal modes. We further investigate the stability of the phonons and show that the longitudinal mode is linearly stable, whereas the transverse mode is subject to an instability arising from the activity and orientation dynamics of the motile particles. These findings are important for understanding the propagation of disturbances and instabilities in confined motile particles, and could generate practical insights into the transport of motile cells in microfluidic devices.

  14. The First Mammalian Aldehyde Oxidase Crystal Structure

    PubMed Central

    Coelho, Catarina; Mahro, Martin; Trincão, José; Carvalho, Alexandra T. P.; Ramos, Maria João; Terao, Mineko; Garattini, Enrico; Leimkühler, Silke; Romão, Maria João

    2012-01-01

    Aldehyde oxidases (AOXs) are homodimeric proteins belonging to the xanthine oxidase family of molybdenum-containing enzymes. Each 150-kDa monomer contains a FAD redox cofactor, two spectroscopically distinct [2Fe-2S] clusters, and a molybdenum cofactor located within the protein active site. AOXs are characterized by broad range substrate specificity, oxidizing different aldehydes and aromatic N-heterocycles. Despite increasing recognition of its role in the metabolism of drugs and xenobiotics, the physiological function of the protein is still largely unknown. We have crystallized and solved the crystal structure of mouse liver aldehyde oxidase 3 to 2.9 Å. This is the first mammalian AOX whose structure has been solved. The structure provides important insights into the protein active center and further evidence on the catalytic differences characterizing AOX and xanthine oxidoreductase. The mouse liver aldehyde oxidase 3 three-dimensional structure combined with kinetic, mutagenesis data, molecular docking, and molecular dynamics studies make a decisive contribution to understand the molecular basis of its rather broad substrate specificity. PMID:23019336

  15. Microwave assistant one pot synthesis, crystal structure, antifungal activities and 3D-QSAR of novel 1,2,4-triazolo[4,3-a]pyridines.

    PubMed

    Liu, Xing-Hai; Sun, Zhao-Hui; Yang, Ming-Yan; Tan, Cheng-Xia; Weng, Jian-Quan; Zhang, Yong-Gang; Ma, Yi

    2014-09-01

    A series of novel 1,2,4-triazolo[4,3-a]pyridines were synthesized, and their structures were characterized by (1) H NMR, MS, elemental analysis, and single-crystal X-ray diffraction analysis. The antifungal activities were evaluated. The antifungal activity results indicated that the compound 2b, 2g, 2p, and 2i exhibited good activities. The activity of compound 2b, 2g, 2p, and 2i can compare with the commercial pesticide. The 3D-QSAR model was developed using CoMFA method. Both the steric and electronic field distributions of CoMFA are in good agreement in this work and will be very helpful in designing a new set of analogues.

  16. Synthesis, structure, antitumor activity of novel pharmaceutical co-crystals based on bispyridyl-substituted α, β-unsaturated ketones with gallic acid

    NASA Astrophysics Data System (ADS)

    Liu, Lian-Dong; Liu, Shu-Lian; Liu, Zhi-Xian; Hou, Gui-Ge

    2016-05-01

    Three novel pharmaceutical co-crystals, (A)·(gallic acid) (1), (B)·(gallic acid) (2), and (C)·(gallic acid) (3) were generated based on 2,6-bis((pyridin-4-yl)methylene)cyclohexanone (A), N-methyl-3,5-bis((pyridin-3-yl)methylene)-4-piperidone (B), N-methyl-3,5-bis((pyridin-4-yl)methylene)-4-piperidone (C) with gallic acid, respectively. They are characterized by elemental analysis, FTIR spectroscopy, 1H NMR and single-crystal X-ray diffraction. Structural analysis reveals that two pharmaceutical ingredients link each other into H-bonding-driven 3D network in 1, 2, or 2D plane in 3. In addition, their antitumor activities against human neoplastic cell lines A549, SGC-7901, MCF-7, OVCA-433, HePG2 and cytotoxicity for HUVEC cell lines by CCK-8 method were evaluated primarily. Compared with gallic acid and free A, B and C, their antitumor activities have improved distinctly, while cytotoxicities have reduced markedly, especially for co-crystal 1. This is mainly because of the synergistic effect between pharmaceutical ingredients A, B, and C and gallic acid.

  17. Synthesis, antityrosinase activity of curcumin analogues, and crystal structure of (1 E,4 E)-1,5-bis(4-ethoxyphenyl)penta-1,4-dien-3-one

    NASA Astrophysics Data System (ADS)

    Chantrapromma, S.; Ruanwas, P.; Boonnak, N.; Chantrapromma, K.; Fun, H.-K.

    2016-12-01

    Five derivatives of curcumin analogue ( R = OCH2CH3 ( 1), R = N(CH3)2 ( 2), R = 2,4,5-OCH3 ( 3), R = 2,4,6-OCH3 ( 4), and R = 3,4,5-OCH3 ( 5)) were synthesized and characterized by 1H NMR, FT-IR and UV-Vis spectroscopy. The synthesized derivatives were screened for antityrosinase activity, and found that 4 and 5 possess such activity. The crystal structure of 1 was determined by single crystal X-ray diffraction: monoclinic, sp. gr. P21/ c, a = 17.5728(15) Å, b = 5.9121(5) Å, c = 19.8269(13) Å, β = 121.155(5)°, Z = 4. The molecule 1 is twisted with the dihedral angle between two phenyl rings being 15.68(10)°. In the crystal packing, the molecules 1 are linked into chains by C-H···π interactions and further stacked by π···π interactions with the centroid-centroid distance of 3.9311(13) Å.

  18. Design, synthesis, crystal structure, insecticidal activity, molecular docking, and QSAR studies of novel N3-substituted imidacloprid derivatives.

    PubMed

    Wang, Mei-Juan; Zhao, Xiao-Bo; Wu, Dan; Liu, Ying-Qian; Zhang, Yan; Nan, Xiang; Liu, Huanxiang; Yu, Hai-Tao; Hu, Guan-Fang; Yan, Li-Ting

    2014-06-18

    Three novel series of N3-substituted imidacloprid derivatives were designed and synthesized, and their structures were identified on the basis of satisfactory analytical and spectral ((1)H NMR, (13)C NMR, MS, elemental analysis, and X-ray) data. Preliminary bioassays indicated that all of the derivatives exhibited significant insecticidal activities against Aphis craccivora, with LC50 values ranging from 0.00895 to 0.49947 mmol/L, and the insecticidal activities of some of them were comparable to those of the control imidacloprid. Some key structural features related to their insecticidal activities were identified, and the binding modes between target compounds and nAChR model were also further explored by molecular docking. By comparing the interaction features of imidacloprid and compound 26 with highest insecticidal activity, the origin of the high insecticidal activity of compound 26 was identified. On the basis of the conformations generated by molecular docking, a satisfactory 2D-QSAR model with six selected descriptors was built using genetic algorithm-multiple linear regression (GA-MLR) method. The analysis of the built model showed the molecular size, shape, and the ability to form hydrogen bond were important for insecticidal potency. The information obtained in the study will be very helpful for the design of new derivatives with high insecticidal activities.

  19. Crystal structure and activity studies of the C11 cysteine peptidase from Parabacteroides merdae in the human gut microbiome

    SciTech Connect

    McLuskey, Karen; Grewal, Jaspreet S.; Das, Debanu; Godzik, Adam; Lesley, Scott A.; Deacon, Ashley M.; Coombs, Graham H.; Elsliger, Marc-André; Wilson, Ian A.; Mottram, Jeremy C.

    2016-03-03

    Clan CD cysteine peptidases, a structurally related group of peptidases that include mammalian caspases, exhibit a wide range of important functions, along with a variety of specificities and activation mechanisms. However, for the clostripain family (denoted C11), little is currently known. Here, we describe the first crystal structure of a C11 protein from the human gut bacterium, Parabacteroides merdae (PmC11), determined to 1.7-Å resolution. PmC11 is a monomeric cysteine peptidase that comprises an extended caspase-like α/β/α sandwich and an unusual C-terminal domain. It shares core structural elements with clan CD cysteine peptidases but otherwise structurally differs from the other families in the clan. These studies also revealed a well ordered break in the polypeptide chain at Lys147, resulting in a large conformational rearrangement close to the active site. Biochemical and kinetic analysis revealed Lys147 to be an intramolecular processing site at which cleavage is required for full activation of the enzyme, suggesting an autoinhibitory mechanism for self-preservation. PmC11 has an acidic binding pocket and a preference for basic substrates, and accepts substrates with Arg and Lys in P1 and does not require Ca2+ for activity. Altogether, these data provide insights into the mechanism and activity of PmC11 and a detailed framework for studies on C11 peptidases from other phylogenetic kingdoms.

  20. Mixed ligand coordination polymers with flexible bis-imidazole linker and angular sulfonyldibenzoate: Crystal structure, photoluminescence and photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Bisht, Kamal Kumar; Rachuri, Yadagiri; Parmar, Bhavesh; Suresh, Eringathodi

    2014-05-01

    Four ternary coordination polymers (CPs) namely, {[Ni(SDB)(BITMB)(H2O)]·H2O}n (CP1), {[Cd(SDB)(BITMB) (H2O)]·(THF)(H2O)}n (CP2), {[Zn2(SDB)2(BITMB)]·(THF)2}n (CP3) and {[Co2(SDB)2(BITMB)]·(Dioxane)3}n (CP4) composed of angular dicarboxylate SDB (4,4'-sulfonyldibenzoate) and N-donor BITMB (1,3-bis(imidazol-1-ylmethyl)-2,4,6-trimethyl benzene) have been synthesized by solvothermal reactions and characterized by single crystal X-ray diffraction and other physico-chemical techniques. CP1 possesses one-dimensional ribbon type metal-organic motifs glued together by H-bonds and π⋯π interactions, whereas CP2-CP4, exhibit non-interpenetrated sql networks supported by weak supramolecular interactions. Structural diversity of these CPs can be attributed to the coordination geometry adopted by the metal nodes, versatile coordination modes of SDB and conformational flexibility of BITMB. Solid state luminescence properties of CP1-CP4 were explored. Photocatalytic performance of all CPs for the decomposition of metanil yellow by dilute hydrogen peroxide in the presence of visible light was also investigated. 25-83% dye removal from aqueous solutions in the presence of CP1-CP4 was observed.

  1. Crystal structure analysis of intermetallic compounds

    NASA Technical Reports Server (NTRS)

    Conner, R. A., Jr.; Downey, J. W.; Dwight, A. E.

    1968-01-01

    Study concerns crystal structures and lattice parameters for a number of new intermetallic compounds. Crystal structure data have been collected on equiatomic compounds, formed between an element of the Sc, Ti, V, or Cr group and an element of the Co or Ni group. The data, obtained by conventional methods, are presented in an easily usable tabular form.

  2. Crystal Structure of the VS ribozyme

    PubMed Central

    Suslov, Nikolai B.; DasGupta, Saurja; Huang, Hao; Fuller, James R.; Lilley, David M.J.; Rice, Phoebe A.; Piccirilli, Joseph A.

    2015-01-01

    Varkud Satellite (VS) ribozyme mediates rolling circle replication of a plasmid found in the Neurospora mitochondria. We report crystal structures of this ribozyme at 3.1Å resolution, revealing an intertwined dimer formed by an exchange of substrate helices. Within each protomer, an arrangement of three-way helical junctions organizes seven helices into a global fold that creates a docking site for the substrate helix of the other protomer, resulting in the formation of two active sites in trans. This mode of RNA-RNA association resembles the process of domain swapping in proteins and has implications for RNA regulation and evolution. Within each active site, adenine and guanine nucleobases abut the scissile phosphate, poised to serve direct roles in catalysis. Similarities to the active sites of the hairpin and hammerhead ribozymes highlight the functional significance of active site features, underscore the ability of RNA to access functional architectures from distant regions of sequence space, and suggest convergent evolution. PMID:26414446

  3. Crystal structure of mammalian acid sphingomyelinase

    PubMed Central

    Gorelik, Alexei; Illes, Katalin; Heinz, Leonhard X.; Superti-Furga, Giulio; Nagar, Bhushan

    2016-01-01

    Acid sphingomyelinase (ASMase, ASM, SMPD1) converts sphingomyelin into ceramide, modulating membrane properties and signal transduction. Inactivating mutations in ASMase cause Niemann–Pick disease, and its inhibition is also beneficial in models of depression and cancer. To gain a better understanding of this critical therapeutic target, we determined crystal structures of mammalian ASMase in various conformations. The catalytic domain adopts a calcineurin-like fold with two zinc ions and a hydrophobic track leading to the active site. Strikingly, the membrane interacting saposin domain assumes either a closed globular conformation independent from the catalytic domain, or an open conformation, which establishes an interface with the catalytic domain essential for activity. Structural mapping of Niemann–Pick mutations reveals that most of them likely destabilize the protein's fold. This study sheds light on the molecular mechanism of ASMase function, and provides a platform for the rational development of ASMase inhibitors and therapeutic use of recombinant ASMase. PMID:27435900

  4. The crystal structure of a homodimeric Pseudomonas glyoxalase I enzyme reveals asymmetric metallation commensurate with half-of-sites activity.

    PubMed

    Bythell-Douglas, Rohan; Suttisansanee, Uthaiwan; Flematti, Gavin R; Challenor, Michael; Lee, Mihwa; Panjikar, Santosh; Honek, John F; Bond, Charles S

    2015-01-07

    The Zn inactive class of glyoxalase I (Glo1) metalloenzymes are typically homodimeric with two metal-dependent active sites. While the two active sites share identical amino acid composition, this class of enzyme is optimally active with only one metal per homodimer. We have determined the X-ray crystal structure of GloA2, a Zn inactive Glo1 enzyme from Pseudomonas aeruginosa. The presented structures exhibit an unprecedented metal-binding arrangement consistent with half-of-sites activity: one active site contains a single activating Ni(2+) ion, whereas the other contains two inactivating Zn(2+) ions. Enzymological experiments prompted by the binuclear Zn(2+) site identified a novel catalytic property of GloA2. The enzyme can function as a Zn(2+) /Co(2+) -dependent hydrolase, in addition to its previously determined glyoxalase I activity. The presented findings demonstrate that GloA2 can accommodate two distinct metal-binding arrangements simultaneously, each of which catalyzes a different reaction.

  5. THE CRYSTAL STRUCTURE OF ALPHA-DIMETHYLTELLURIUM DICHLORIDE,

    DTIC Science & Technology

    TELLURIUM COMPOUNDS, *ORGANOMETALLIC COMPOUNDS, CRYSTAL STRUCTURE , CRYSTAL STRUCTURE , CHLORIDES, SYMMETRY(CRYSTALLOGRAPHY), MOLECULAR STRUCTURE, CHEMICAL BONDS, X RAY DIFFRACTION, ANISOTROPY, FOURIER ANALYSIS.

  6. Crystal Structure of the Human Primase*

    PubMed Central

    Baranovskiy, Andrey G.; Zhang, Yinbo; Suwa, Yoshiaki; Babayeva, Nigar D.; Gu, Jianyou; Pavlov, Youri I.; Tahirov, Tahir H.

    2015-01-01

    DNA replication in bacteria and eukaryotes requires the activity of DNA primase, a DNA-dependent RNA polymerase that lays short RNA primers for DNA polymerases. Eukaryotic and archaeal primases are heterodimers consisting of small catalytic and large accessory subunits, both of which are necessary for RNA primer synthesis. Understanding of RNA synthesis priming in eukaryotes is currently limited due to the lack of crystal structures of the full-length primase and its complexes with substrates in initiation and elongation states. Here we report the crystal structure of the full-length human primase, revealing the precise overall organization of the enzyme, the relative positions of its functional domains, and the mode of its interaction with modeled DNA and RNA. The structure indicates that the dramatic conformational changes in primase are necessary to accomplish the initiation and then elongation of RNA synthesis. The presence of a long linker between the N- and C-terminal domains of p58 provides the structural basis for the bulk of enzyme's conformational flexibility. Deletion of most of this linker affected the initiation and elongation steps of the primer synthesis. PMID:25550159

  7. Electrode Placement for Active Tuning of Silicon-on-Insulator (SOI) Ring Resonator Structure Clad in Nematic Liquid Crystals

    DTIC Science & Technology

    2014-08-01

    their electromagnetic spectrum and find applications in optical switching, filtering, buffering , lasers, and biosensors. Photonic resonances are... coupler ring resonators [1–3]. Combining dielectric resonators with nematic liquid crystals (LC) enables easily tunable devices where the tuning is

  8. Mapping intermolecular interactions and active site conformations: from human MMP-1 crystal structure to molecular dynamics free energy calculations.

    PubMed

    Nash, Anthony; Birch, Helen L; de Leeuw, Nora H

    2017-02-01

    The zinc-dependent Matrix Metalloproteinases (MMPs) found within the extracellular matrix (ECM) of vertebrates are linked to pathological processes such as arthritis, skin ulceration and cancer. Although a general backbone proteolytic mechanism is understood, crystallographic data continue to suggest an active site that is too narrow to encompass the respective substrate. We present a fully parameterised Molecular Dynamics (MD) study of the structural properties of an MMP-1-collagen crystallographic structure (Protein Data Bank - 4AUO), followed by an exploration of the free energy surface of a collagen polypeptide chain entering the active site, using a combined meta-dynamics and umbrella sampling (MDUS) approach. We conclude that the interactions between MMP-1 and the collagen substrate are in good agreement with a number of experimental studies. As such, our unrestrained MD simulations and our MDUS results, which indicate an energetic barrier for a local uncoiling and insertion event, can inform future investigations of the collagen-peptide non-bonded association steps with the active site prior to proteolytic mechanisms. The elucidation of such free energy barriers provides a better understanding of the role of the enzyme in the ECM and is important in the design of future MMP inhibitors.

  9. Synthesis, crystal structures and antitumor activities of copper(II) complexes with a 2-acetylpyrazine isonicotinoyl hydrazone ligand

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Zhou, Tao; Xu, Zhou-Qing; Gu, Xin-Nan; Wu, Wei-Na; Chen, Hong; Wang, Yuan; Jia, Lei; Zhu, Tao-Feng; Chen, Ru-Hua

    2017-01-01

    Five complexes, [Cu(L)2]·4.5H2O (1), [Cu(HL)2](NO3)2·CH3OH (2) {[Cu2(L)2(NO3)(H2O)2]·(NO3)}n (3), [Cu2(HL)2(SO4)2]·2CH3OH (4) and [Cu4(L)4Cl4]·5H2O (5) based on HL (where HL = 2-acetylpyrazine isonicotinoyl hydrazone) have been synthesized and characterized by X-ray diffraction analyses. The counter anion and organic base during the synthesis procedure influence the structures of the complexes efficiently, which generate five complexes as mono-, bi-, tetra-nuclear and one-dimensional structures. The antitumor activities of the complexes 1-5 (except for complex 3 with the poor solubility) against the Patu8988 human pancreatic cancer, ECA109 human esophagus cancer and SGC7901 human gastric cancer cell lines are screened by MTT assay. The results indicate that the chelation of Cu(II) with the ligand is responsible for the observed high cytotoxicity of the copper(II) complexes and the 1:2 copper species 1 and 2 demonstrate lower antitumor activities than that of the 1:1 copper species 4 and 5. In addition, the in vitro apoptosis inducing activity of the copper(II) complex 5 against SGC7901 cell line is determined. And the results show that the complex can bring about apoptosis of the cancerous cells in vitro.

  10. Synthesis, crystal structure and cytotoxic activity of ruthenium(II) piano-stool complex with N,N-chelating ligand

    NASA Astrophysics Data System (ADS)

    Rogala, Patrycja; Jabłońska-Wawrzycka, Agnieszka; Kazimierczuk, Katarzyna; Borek, Agnieszka; Błażejczyk, Agnieszka; Wietrzyk, Joanna; Barszcz, Barbara

    2016-12-01

    A mononuclear compound of the general formula [(η6-p-cymene)RuIICl(2,2‧-PyBIm)]PF6 has been synthesized from a bidentate N,N-donor ligand, viz. 2,-(2‧-pyridyl)benzimidazole (2,2‧-PyBIm) and the corresponding chloro-complex [(η6-p-cymene)Ru(μ-Cl)Cl]2 (precursor). The isolated coordination compound was characterized by IR, UV-vis and 1H, 13C NMR spectroscopies. The single crystal X-ray analysis of the complex reveals that the asymmetric part of the unit cell consists of two symmetrically independent, [(η6-p-cymene)RuCl(2,2‧-PyBIm)]+ cationic complexes. Each cation exhibits a pseudo-octahedral three-legged piano-stool geometry, in which three "legs" are occupied by one chloride ion and two nitrogen donor atoms of the chelating ligand 2,2‧-PyBIm. The Hirshfeld surface analysis of obtained complex was determined, too. The ionic nature of the compound is identified by a strong band at around 830 cm-1 due to the νP-F stretching mode of the PF6- counter ion. The electronic spectrum of this monomeric complex displays high intensity bands in the ultraviolet region assignable to π→π*/n→π* transitions, as well as a band attributable to the metal-to-ligand charge transfer (MLCT) dπ(Ru)→π*(L) transition. Additionally, the complex has been screened for its cytotoxicity against three human cancer lines: non-small cell lung carcinoma (A549), colon adenocarcinoma (HT29) and breast adenocarcinoma (MCF-7) as well as normal mice fibroblast cells (BALB/3T3). The complex demonstrated a moderate antiproliferative activity against the cell lines tested.

  11. Transition metal complexes of buparvaquone as potent new antimalarial agents. 1. Synthesis, X-ray crystal-structures, electrochemistry and antimalarial activity against Plasmodium falciparum.

    PubMed

    Gokhale, Nikhil H; Padhye, Subhash B; Croft, Simon L; Kendrick, Howard D; Davies, Wendy; Anson, Christopher E; Powell, Annie K

    2003-07-01

    New Cu(II), Ni(II), Co(II), Fe(II), and Mn(II) metal complexes of buparvaquone [3-trans(4-tert.-butylcyclohexyl)methyl-2-hydroxy-1,4-naphthoquione] (L1H) have been synthesized and characterized using IR, electron paramagnetic resonance (EPR) spectroscopy, microanalytical methods and single crystal X-ray diffraction methods. The single crystal structures were determined for ligand L1H [space group P-1 with a=6.2072(14) A, b=10.379 (2) A, c=13.840 (3) A, V=878.7(3) A(3), Z=2, D(calcd.)=1.234 mg/m(3)] and copper complex [Cu(L1)(2)(C(2)H(5)OH)(2)] C1 [space group I2/a with a=17.149(14) A, b=9.4492(8) A, c=26.946(3) A, V=4335.3(7)A(3), Z=4, D(calcd.)=1.233 mg/m(3)]. All the metal complexes along with the parent ligand have been studied for their electrochemical properties using cyclic voltammetric techniques. The compounds were tested for their in vitro antimalarial activity against Plasmodium falciparum strains. A correlation between the antimalarial activity and the redox property of these complexes is presented. The copper complex C1 exhibits significantly higher growth inhibitory activity both in vitro and in vivo than the parent ligand.

  12. Crystal Structure of the Human Ubiquitin-activating Enzyme 5 (UBA5) Bound to ATP Mechanistic Insights into a Minimalistic E1 Enzyme

    SciTech Connect

    Bacik, John-Paul; Walker, John R.; Ali, Mohsin; Schimmer, Aaron D.; Dhe-Paganon, Sirano

    2010-08-30

    E1 ubiquitin-activating enzymes (UBAs) are large multidomain proteins that catalyze formation of a thioester bond between the terminal carboxylate of a ubiquitin or ubiquitin-like modifier (UBL) and a conserved cysteine in an E2 protein, producing reactive ubiquityl units for subsequent ligation to substrate lysines. Two important E1 reaction intermediates have been identified: a ubiquityl-adenylate phosphoester and a ubiquityl-enzyme thioester. However, the mechanism of thioester bond formation and its subsequent transfer to an E2 enzyme remains poorly understood. We have determined the crystal structure of the human UFM1 (ubiquitin-fold modifier 1) E1-activating enzyme UBA5, bound to ATP, revealing a structure that shares similarities with both large canonical E1 enzymes and smaller ancestral E1-like enzymes. In contrast to other E1 active site cysteines, which are in a variably sized domain that is separate and flexible relative to the adenylation domain, the catalytic cysteine of UBA5 (Cys{sup 250}) is part of the adenylation domain in an {alpha}-helical motif. The novel position of the UBA5 catalytic cysteine and conformational changes associated with ATP binding provides insight into the possible mechanisms through which the ubiquityl-enzyme thioester is formed. These studies reveal structural features that further our understanding of the UBA5 enzyme reaction mechanism and provide insight into the evolution of ubiquitin activation.

  13. Synthesis, spectral characterization, crystal structure, cytotoxicity and apoptosis-Inducing activity of two derivatives of 2-hydroxy-1,4-naphthaquinone.

    PubMed

    P R, Kavitha Rani; Fernandez, Annette; Laila, Shiny P; B, Arunkumar; C S, Sreelakshmi; V S, Vishnu

    2017-03-01

    A phenaxazone compound [5H-Benzo[a]phenoxazin-5-one (BP)] along with an aminoquinone[2-[(o-hydroxyphenyl)amino]-1,4-naphthaquinone (HAN)] derivatives were synthesized from lawsone using ultrasound irradiation technique. The structure of the compounds were characterized by elemental analysis and various spectral studies. Optoelectronic properties were studied using Schrodinger material science suit (2015). The compounds exhibit fluorescence emission in longer wave length it may find applications in photodynamic therapy. Single crystal X-ray diffraction studies reveals that the compound BP crystallizes in monoclinic space group. The antioxidant activity of HAN and BP were determined using DPPH radical scavenging assay and the results indicate that both the compounds have good antioxidant capacity, HAN having more scavenging activity than BP. Lead molecules were identified using in silico molecular docking studies as a green chemistry approach. iGEMDOCK, GOLD and Schrödinger softwares were used for these studies. The docking studies reveal that the structural modification of the parent compound gave more active compounds making them promising lead molecules. The lead molecules were subjected to in vitro studies. The cytotoxicity of BP and HAN was studied using human breast cancer (SKBR3) cell lines. The IC50 value of HAN was found to be 19.8μM while BP was found to have cell viability, less than 10% even at 25μM concentration. The chemotherapeutic agents kill the cancer cells mainly through apoptosis. HAN and BP were subjected to apoptosis studies. BP was found to more active than HAN. Thus it can be suggested that the mechanism of cell death may be through apoptosis.

  14. Synthesis, crystal structure investigation, DFT studies and DPPH radical scavenging activity of 1-(furan-2-ylmethyl)-2,4,5-triphenyl-1H-imidazole derivatives

    NASA Astrophysics Data System (ADS)

    Rajaraman, D.; Sundararajan, G.; Rajkumar, R.; Bharanidharan, S.; Krishnasamy, K.

    2016-03-01

    A new series of 1-(furan-2ylmethyl)-2,4,5-triphenyl-1H-imidazole derivatives are conveniently synthesized and characterized by IR, 1H NMR and 13C NMR spectral techniques. The compound 5a also characterized by HSQC correlation spectra. All the newly synthesized compounds were evaluated for their antioxidant activities with DPPH radical scavenging activity. The structure of 5e was also confirmed by single crystal XRD analysis and optimized bond parameters are calculated by density functional theory (DFT) method at B3LYP/6-31G (d, p) level of theory. The optimized geometrical parameters obtained by DFT calculation are in good agreement with single crystal XRD data. The experimentally observed FT-IR and FT-Raman bands were assigned to different normal modes of the molecule. The stability and charge delocalization of the molecule were also studied by natural bond orbital (NBO) analysis. The HOMO-LUMO energies describe the charge transfer takes place within the molecule. Molecular electrostatic potential has been analyzed. The reported 5e molecule used as a potential NLO material since it has high μβ0 value.

  15. The crystal structure of Erwinia amylovora levansucrase provides a snapshot of the products of sucrose hydrolysis trapped into the active site.

    PubMed

    Wuerges, Jochen; Caputi, Lorenzo; Cianci, Michele; Boivin, Stephane; Meijers, Rob; Benini, Stefano

    2015-09-01

    Levansucrases are members of the glycoside hydrolase family and catalyse both the hydrolysis of the substrate sucrose and the transfer of fructosyl units to acceptor molecules. In the presence of sufficient sucrose, this may either lead to the production of fructooligosaccharides or fructose polymers. Aim of this study is to rationalise the differences in the polymerisation properties of bacterial levansucrases and in particular to identify structural features that determine different product spectrum in the levansucrase of the Gram-negative bacterium Erwinia amylovora (Ea Lsc, EC 2.4.1.10) as compared to Gram-positive bacteria such as Bacillus subtilis levansucrase. Ea is an enterobacterial pathogen responsible for the Fire Blight disease in rosaceous plants (e.g., apple and pear) with considerable interest for the agricultural industry. The crystal structure of Ea Lsc was solved at 2.77 Å resolution and compared to those of other fructosyltransferases from Gram-positive and Gram-negative bacteria. We propose the structural features, determining the different reaction products, to reside in just a few loops at the rim of the active site funnel. Moreover we propose that loop 8 may have a role in product length determination in Gluconacetobacter diazotrophicus LsdA and Microbacterium saccharophilum FFase. The Ea Lsc structure shows for the first time the products of sucrose hydrolysis still bound in the active site.

  16. trans-Platinum(II) complex of 3-aminoflavone - synthesis, X-ray crystal structure and biological activities in vitro.

    PubMed

    Fabijańska, Małgorzata; Studzian, Kazimierz; Szmigiero, Leszek; Rybarczyk-Pirek, Agnieszka J; Pfitzner, Arno; Cebula-Obrzut, Barbara; Smolewski, Piotr; Zyner, Elżbieta; Ochocki, Justyn

    2015-01-21

    This paper describes the synthesis of trans-bis-(3-aminoflavone)dichloridoplatinum(ii) (trans-Pt(3-af)2Cl2; TCAP) for use as a potential anticancer compound, and the evaluation of its structure by elemental and spectral analyses, and X-ray crystallography. The complex demonstrated a significant cytotoxic effect against human and murine cancer cell lines, as well as weaker toxicity towards healthy cells (human peripheral blood lymphocytes) in comparison with cisplatin. Various biochemical and morphological methods confirm that the proapoptotic activity of trans-Pt(3-af)2Cl2 is markedly higher than the reference cisplatin. Our results suggest that trans-Pt(3-af)2Cl2 may have a different antitumour specificity from that of cisplatin.

  17. Synthesis, crystal structure determination and antiproliferative activity of novel 2-amino-4-aryl-4,10-dihydro[1,3,5]triazino[1,2- a]benzimidazoles

    NASA Astrophysics Data System (ADS)

    Hranjec, Marijana; Pavlović, Gordana; Karminski-Zamola, Grace

    2012-01-01

    This manuscript describes the synthesis of novel 2-amino-4-aryl-4,10-dihydro-[1,3,5]triazino[1,2- a]benzimidazoles as hydrochloride salts 4a-n and 5b which were prepared in the reaction of cyclocondensation between 2-guanidinobenzimidazole and versatile heteroaromatic aldehydes. Structures of all prepared compounds have been studied by using 1H and 13C NMR, IR and UV/Vis spectroscopy. The crystal and molecular structure of 4f was determined by X-ray diffraction on single crystals. The molecule of 2-amino-4-(4'-methylphenyl)-4,10-dihydro[1,3,5]triazino[1,2- a]benzimidazole hydrochloride 4f (C 16H 16N 5+·Cl -) exists in the solid state in one of the possible tautomeric forms, being protonated at the one of the nitrogen atoms of the 1,4-dihydrotriazine ring. The molecule is highly delocalized within the 4,10-dihydro[1,3,5]triazino[1,2- a]benzimidazole moiety with the highest deviation from the plane for the methine carbon atom and the protonated nitrogen atom of the 1,4-dihydrotriazine ring. The cations are joined via N-H⋯N hydrogen bonds into R22(8) centrosymmetric dimers. Cation dimers are further connected with Cl - ions via N-H⋯Cl and C-H⋯Cl hydrogen bonds into 2D chains spreading along the b axis. The obtained single-crystal X-ray structure determination unequivocally confirms tautomeric form of the compound present in the solid-state and can represent tantative pattern for other prepared compounds. All prepared compounds were tested on their antiproliferative activity in vitro on several human cancer cell lines. Compound 4m was the most active one (IC 50 ≈ 20 μM), while compounds 4d, 4f, 4k, 4l4m showed moderate, but non-selective, antiproliferative activity with IC 50 25-60 μM.

  18. Structural analysis of peroxide-soaked MnSOD crystals reveals side-on binding of peroxide to active-site manganese.

    PubMed

    Porta, Jason; Vahedi-Faridi, Ardeschir; Borgstahl, Gloria E O

    2010-06-11

    The superoxide dismutase (SOD) enzymes are important antioxidant agents that protect cells from reactive oxygen species. The SOD family is responsible for catalyzing the disproportionation of superoxide radical to oxygen and hydrogen peroxide. Manganese- and iron-containing SOD exhibit product inhibition whereas Cu/ZnSOD does not. Here, we report the crystal structure of Escherichia coli MnSOD with hydrogen peroxide cryotrapped in the active site. Crystallographic refinement to 1.55 A and close inspection revealed electron density for hydrogen peroxide in three of the four active sites in the asymmetric unit. The hydrogen peroxide molecules are in the position opposite His26 that is normally assumed by water in the trigonal bipyramidal resting state of the enzyme. Hydrogen peroxide is present in active sites B, C, and D and is side-on coordinated to the active-site manganese. In chains B and D, the peroxide is oriented in the plane formed by manganese and ligands Asp167 and His26. In chain C, the peroxide is bound, making a 70 degrees angle to the plane. Comparison of the peroxide-bound active site with the hydroxide-bound octahedral form shows a shifting of residue Tyr34 towards the active site when peroxide is bound. Comparison with peroxide-soaked Cu/ZnSOD indicates end-on binding of peroxide when the SOD does not exhibit inhibition by peroxide and side-on binding of peroxide in the product-inhibited state of MnSOD.

  19. "S" shaped organotin(IV) carboxylates based on amide carboxylic acids: Syntheses, crystal structures and antitumor activities

    NASA Astrophysics Data System (ADS)

    Xiao, Xiao; Li, Yan; Dong, Yuan; Li, Wenliang; Xu, Kun; Shi, Nianqiu; Liu, Xin; Xie, Jingyi; Liu, Peigen

    2017-02-01

    Three organotin carboxylates based on amide carboxylic acids: (Ph3Sn)2(L1) (1) (L1 = 3,3‧-(1,3,5,7-tetraoxo-5,7-dihydropyrrolo[3,4-f]isoindole-2,6(1H,3H)-diyl)dipropionic acid), (Ph3Sn)2(L2)·C7H8 (2) (L2 = 3,3‧-(1,3,6,8-tetraoxo-1,3,6,8-tetrahydrobenzo [lmn][3,8]phenanthroline-2,7-diyl)dipropionic acid), [(Ph3Sn)(CH3CH2O)]2(L3) (3) (L3 = 2,2‧-(1,3,5,7-tetraoxo-5,7-dihydropyrrolo[3,4-f]isoindole-2,6(1H,3H)-diyl) dibenzoic acid) were synthesized and characterized by elemental analysis, IR, 1H, 13C, 119Sn NMR spectroscopy and X-ray crystallography diffraction analyses. Complexes 1-3 are di-nuclear triphenlytin carboxylates owning "S" shaped monomer structures. Ligands in 1-3 adopt unidentate coordination. Intermolecular hydrogen bonds and Sn···O interactions help complexes 1-3 build their supramolecular structures which are discussed in detail. The preliminary antitumor activities of 1-3 against HepG2 cell lines have also been studied.

  20. The refined 1.9-A X-ray crystal structure of D-Phe-Pro-Arg chloromethylketone-inhibited human alpha-thrombin: structure analysis, overall structure, electrostatic properties, detailed active-site geometry, and structure-function relationships.

    PubMed Central

    Bode, W.; Turk, D.; Karshikov, A.

    1992-01-01

    Thrombin is a multifunctional serine proteinase that plays a key role in coagulation while exhibiting several other key cellular bioregulatory functions. The X-ray crystal structure of human alpha-thrombin was determined in its complex with the specific thrombin inhibitor D-Phe-Pro-Arg chloromethylketone (PPACK) using Patterson search methods and a search model derived from trypsinlike proteinases of known spatial structure (Bode, W., Mayr, I., Baumann, U., Huber, R., Stone, S.R., & Hofsteenge, J., 1989, EMBO J. 8, 3467-3475). The crystallographic refinement of the PPACK-thrombin model has now been completed at an R value of 0.156 (8 to 1.92 A); in particular, the amino- and the carboxy-termini of the thrombin A-chain are now defined and all side-chain atoms localized; only proline 37 was found to be in a cis-peptidyl conformation. The thrombin B-chain exhibits the characteristic polypeptide fold of trypsinlike serine proteinases; 195 residues occupy topologically equivalent positions with residues in bovine trypsin and 190 with those in bovine chymotrypsin with a root-mean-square (r.m.s.) deviation of 0.8 A for their alpha-carbon atoms. Most of the inserted residues constitute novel surface loops. A chymotrypsinogen numbering is suggested for thrombin based on the topological equivalences. The thrombin A-chain is arranged in a boomeranglike shape against the B-chain globule opposite to the active site; it resembles somewhat the propeptide of chymotrypsin(ogen) and is similarly not involved in substrate and inhibitor binding. Thrombin possesses an exceptionally large proportion of charged residues. The negatively and positively charged residues are not distributed uniformly over the whole molecule, but are clustered to form a sandwichlike electrostatic potential; in particular, two extended patches of mainly positively charged residues occur close to the carboxy-terminal B-chain helix (forming the presumed heparin-binding site) and on the surface of loop segment 70

  1. Crystal structure of riboflavin synthase

    SciTech Connect

    Liao, D.-I.; Wawrzak, Z.; Calabrese, J.C.; Viitanen, P.V.; Jordan, D.B.

    2010-03-05

    Riboflavin synthase catalyzes the dismutation of two molecules of 6,7-dimethyl-8-(1'-D-ribityl)-lumazine to yield riboflavin and 4-ribitylamino-5-amino-2,6-dihydroxypyrimidine. The homotrimer of 23 kDa subunits has no cofactor requirements for catalysis. The enzyme is nonexistent in humans and is an attractive target for antimicrobial agents of organisms whose pathogenicity depends on their ability to biosynthesize riboflavin. The first three-dimensional structure of the enzyme was determined at 2.0 {angstrom} resolution using the multiwavelength anomalous diffraction (MAD) method on the Escherichia coli protein containing selenomethionine residues. The homotrimer consists of an asymmetric assembly of monomers, each of which comprises two similar {beta} barrels and a C-terminal {alpha} helix. The similar {beta} barrels within the monomer confirm a prediction of pseudo two-fold symmetry that is inferred from the sequence similarity between the two halves of the protein. The {beta} barrels closely resemble folds found in phthalate dioxygenase reductase and other flavoproteins. The three active sites of the trimer are proposed to lie between pairs of monomers in which residues conserved among species reside, including two Asp-His-Ser triads and dyads of Cys-Ser and His-Thr. The proposed active sites are located where FMN (an analog of riboflavin) is modeled from an overlay of the {beta} barrels of phthalate dioxygenase reductase and riboflavin synthase. In the trimer, one active site is formed, and the other two active sites are wide open and exposed to solvent. The nature of the trimer configuration suggests that only one active site can be formed and be catalytically competent at a time.

  2. The 1.4 A crystal structure of the large and cold-active Vibrio sp. alkaline phosphatase.

    PubMed

    Helland, Ronny; Larsen, Renate Lie; Asgeirsson, Bjarni

    2009-02-01

    Alkaline phosphatase (AP) from the cold-adapted Vibrio strain G15-21 is among the AP variants with the highest known k(cat) value. Here the structure of the enzyme at 1.4 A resolution is reported and compared to APs from E. coli, human placenta, shrimp and the Antarctic bacterium strain TAB5. The Vibrio AP is a dimer although its monomers are without the long N-terminal helix that embraces the other subunit in many other APs. The long insertion loop, previously noted as a special feature of the Vibrio AP, serves a similar function. The surface does not have the high negative charge density as observed in shrimp AP, but a positively charged patch is observed around the active site that may be favourable for substrate binding. The dimer interface has a similar number of non-covalent interactions as other APs and the "crown"-domain is the largest observed in known APs. Part of it slopes over the catalytic site suggesting that the substrates may be small molecules. The catalytic serines are refined with multiple conformations in both monomers. One of the ligands to the catalytic zinc ion in binding site M1 is directly connected to the crown-domain and is closest to the dimer interface. Subtle movements in metal ligands may help in the release of the product and/or facilitate prior dephosphorylation of the covalent intermediate. Intersubunit interactions may be a major factor for promoting active site geometries that lead to the high catalytic activity of Vibrio AP at low temperatures.

  3. Development of 1,2,4-Oxadiazoles as Potent and Selective Inhibitors of the Human Deacetylase Sirtuin 2: Structure-Activity Relationship, X-Ray Crystal Structure and Anticancer Activity.

    PubMed

    Moniot, Sebastien; Forgione, Mariantonietta; Lucidi, Alessia; Hailu, Gebremedhin Solomon; Nebbioso, Angela; Carafa, Vincenzo; Baratta, Francesca; Altucci, Lucia; Giacchè, Nicola; Passeri, Daniela; Pellicciari, Roberto; Mai, Antonello; Steegborn, Clemens; Rotili, Dante

    2017-02-27

    Sirt2 is a target for the treatment of neurological, metabolic and age-related diseases including cancer. Here we report a series of Sirt2 inhibitors based on the 1,2,4-oxadiazole scaffold. These compounds are potent Sirt2 inhibitors active at single-digit μM level by using the Sirt2 substrate α-tubulin-acetylLys40 peptide, and inactive up to 100 μM against Sirt1, -3 and -5 (deacetylase and desuccinylase activities). Their mechanism of inhibition is uncompetitive towards both the peptide substrate and NAD+, and the crystal structure of a 1,2,4-oxadiazole analog in complex with Sirt2 and ADP-ribose reveals its orientation in a still unexplored sub cavity useful for further inhibitor development. Tested in leukemia cell lines, 35 and 39 induced apoptosis and/or showed antiproliferative effects at 10 or 25 μM after 48 h. Western blot analyses confirmed the involvement of Sirt2 inhibition for their effects in NB4 and in U937 cells. Our results provide novel Sirt2 inhibitors with a compact scaffold and structural insights for further inhibitor improvement.

  4. Crystal Structures of Respiratory Pathogen Neuraminidases

    SciTech Connect

    Hsiao, Y.; Parker, D; Ratner, A; Prince, A; Tong, L

    2009-01-01

    Currently there is pressing need to develop novel therapeutic agents for the treatment of infections by the human respiratory pathogens Pseudomonas aeruginosa and Streptococcus pneumoniae. The neuraminidases of these pathogens are important for host colonization in animal models of infection and are attractive targets for drug discovery. To aid in the development of inhibitors against these neuraminidases, we have determined the crystal structures of the P. aeruginosa enzyme NanPs and S. pneumoniae enzyme NanA at 1.6 and 1.7 {angstrom} resolution, respectively. In situ proteolysis with trypsin was essential for the crystallization of our recombinant NanA. The active site regions of the two enzymes are strikingly different. NanA contains a deep pocket that is similar to that in canonical neuraminidases, while the NanPs active site is much more open. The comparative studies suggest that NanPs may not be a classical neuraminidase, and may have distinct natural substrates and physiological functions. This work represents an important step in the development of drugs to prevent respiratory tract colonization by these two pathogens.

  5. Investigation on structural aspects of ZnO nano-crystal using radio-active ion beam and PAC

    NASA Astrophysics Data System (ADS)

    Ganguly, Bichitra Nandi; Dutta, Sreetama; Roy, Soma; Röder, Jens; Johnston, Karl; Martin, Manfred

    2015-11-01

    Nano-crystalline ZnO has been studied with perturbed angular correlation using 111mCd, implanted at ISOLDE/CERN and X-ray diffraction using Rietveld analysis. The data show a gradual increase in the crystal size and stress for a sample annealed at 600 °C, and reaching nearly properties of standard ZnO with tempering at 1000 °C. The perturbed angular correlation data show a broad frequency distribution at low annealing temperatures and small particle sizes, whereas at high annealing temperature and larger crystal sizes, results similar to bulk ZnO have been obtained. The ZnO nano-crystalline samples were initially prepared through a wet chemical route, have been examined by Fourier Transform Infrared Spectroscopy (FT-IR) and chemical purity has been confirmed with Energy Dispersive X-ray (EDAX) analysis as well as Transmission Electron Microscopy (TEM).

  6. Crystal structure of meteoritic schreibersites: determination of absolute structure

    NASA Astrophysics Data System (ADS)

    Skála, Roman; Císařová, Ivana

    Minerals of the schreibersite nickelphosphide series (Fe,Ni)3P crystallize in the non-centrosymmetric space group Ibar 4. As a consequence, they can possess two different spatial arrangements of the constituting atoms within the unit cell, related by the inversion symmetry operation. Here, we present the crystal structure refinements from single crystal X-ray diffraction data for schreibersite grains from iron meteorites Acuña, Carlton, Hex River Mts. (three different crystals), Odessa (two different crystals), Sikhote Alin, and Toluca aiming for the determination of the absolute structure of the examined crystals. The crystals studied cover the composition range from 58 mol% to 80 mol% Fe3P end-member. Unit-cell parameter a and volume of the unit cell V, as well as certain topological structural parameters tightly correlate with Fe3P content. Unit-cell parameter c, on the other hand, does not show such strong correlation. Eight of the nine crystal structure refinements allowed unambiguous absolute structure assignment. The single crystal extracted from Toluca is, however, of poor quality and consequently the structure refinement did not provide as good results as the rest of the materials. Also, this crystal has only weak inversion distinguishing power to provide unequivocal absolute structure determination. Six of the eight unambiguous absolute structure determinations indicated inverted atomic arrangement compared to that reported in earlier structure refinements (here called standard). Only two grains, one taken from Odessa iron and the other from the Hex River Mts. meteorite, reveal the dominance of standard crystal structure setting.

  7. Isolation, Co-Crystallization and Structure-Based Characterization of Anabaenopeptins as Highly Potent Inhibitors of Activated Thrombin Activatable Fibrinolysis Inhibitor (TAFIa)

    PubMed Central

    Schreuder, Herman; Liesum, Alexander; Lönze, Petra; Stump, Heike; Hoffmann, Holger; Schiell, Matthias; Kurz, Michael; Toti, Luigi; Bauer, Armin; Kallus, Christopher; Klemke-Jahn, Christine; Czech, Jörg; Kramer, Dan; Enke, Heike; Niedermeyer, Timo H. J.; Morrison, Vincent; Kumar, Vasant; Brönstrup, Mark

    2016-01-01

    Mature thrombin activatable fibrinolysis inhibitor (TAFIa) is a carboxypeptidase that stabilizes fibrin clots by removing C-terminal arginines and lysines from partially degraded fibrin. Inhibition of TAFIa stimulates the degradation of fibrin clots and may help to prevent thrombosis. Applying a lead finding approach based on literature-mining, we discovered that anabaenopeptins, cyclic peptides produced by cyanobacteria, were potent inhibitors of TAFIa with IC50 values as low as 1.5 nM. We describe the isolation and structure elucidation of 20 anabaenopeptins, including 13 novel congeners, as well as their pronounced structure-activity relationships (SAR) with respect to inhibition of TAFIa. Crystal structures of the anabaenopeptins B, C and F bound to the surrogate protease carboxypeptidase B revealed the binding modes of these large (~850 Da) compounds in detail and explained the observed SAR, i.e. the strong dependence of the potency on a basic (Arg, Lys) exocyclic residue that addressed the S1’ binding pocket, and a broad tolerance towards substitutions in the pentacyclic ring that acted as a plug of the active site. PMID:27604544

  8. Crystal structure of Helicobacter pylori neutrophil-activating protein with a di-nuclear ferroxidase center in a zinc or cadmium-bound form

    SciTech Connect

    Yokoyama, Hideshi; Tsuruta, Osamu; Akao, Naoya; Fujii, Satoshi

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Structures of a metal-bound Helicobacter pylori neutrophil-activating protein were determined. Black-Right-Pointing-Pointer Two zinc ions were tetrahedrally coordinated by ferroxidase center (FOC) residues. Black-Right-Pointing-Pointer Two cadmium ions were coordinated in a trigonal-bipyramidal and octahedral manner. Black-Right-Pointing-Pointer The second metal ion was more weakly coordinated than the first at the FOC. Black-Right-Pointing-Pointer A zinc ion was found in one negatively-charged pore suitable as an ion path. -- Abstract: Helicobacter pylori neutrophil-activating protein (HP-NAP) is a Dps-like iron storage protein forming a dodecameric shell, and promotes adhesion of neutrophils to endothelial cells. The crystal structure of HP-NAP in a Zn{sup 2+}- or Cd{sup 2+}-bound form reveals the binding of two zinc or two cadmium ions and their bridged water molecule at the ferroxidase center (FOC). The two zinc ions are coordinated in a tetrahedral manner to the conserved residues among HP-NAP and Dps proteins. The two cadmium ions are coordinated in a trigonal-bipyramidal and distorted octahedral manner. In both structures, the second ion is more weakly coordinated than the first. Another zinc ion is found inside of the negatively-charged threefold-related pore, which is suitable for metal ions to pass through.

  9. Crystal structures of human 3-hydroxyanthranilate 3,4-dioxygenase with native and non-native metals bound in the active site.

    PubMed

    Pidugu, Lakshmi Swarna Mukhi; Neu, Heather; Wong, Tin Lok; Pozharski, Edwin; Molloy, John L; Michel, Sarah L J; Toth, Eric A

    2017-04-01

    3-Hydroxyanthranilate 3,4-dioxygenase (3HAO) is an enzyme in the microglial branch of the kynurenine pathway of tryptophan degradation. 3HAO is a non-heme iron-containing, ring-cleaving extradiol dioxygenase that catalyzes the addition of both atoms of O2 to the kynurenine pathway metabolite 3-hydroxyanthranilic acid (3-HANA) to form quinolinic acid (QUIN). QUIN is a highly potent excitotoxin that has been implicated in a number of neurodegenerative conditions, making 3HAO a target for pharmacological downregulation. Here, the first crystal structure of human 3HAO with the native iron bound in its active site is presented, together with an additional structure with zinc (a known inhibitor of human 3HAO) bound in the active site. The metal-binding environment is examined both structurally and via inductively coupled plasma mass spectrometry (ICP-MS), X-ray fluorescence spectroscopy (XRF) and electron paramagnetic resonance spectroscopy (EPR). The studies identified Met35 as the source of potential new interactions with substrates and inhibitors, which may prove useful in future therapeutic efforts.

  10. Crystal structure of a Trypanosoma brucei metacaspase.

    PubMed

    McLuskey, Karen; Rudolf, Jana; Proto, William R; Isaacs, Neil W; Coombs, Graham H; Moss, Catherine X; Mottram, Jeremy C

    2012-05-08

    Metacaspases are distantly related caspase-family cysteine peptidases implicated in programmed cell death in plants and lower eukaryotes. They differ significantly from caspases because they are calcium-activated, arginine-specific peptidases that do not require processing or dimerization for activity. To elucidate the basis of these differences and to determine the impact they might have on the control of cell death pathways in lower eukaryotes, the previously undescribed crystal structure of a metacaspase, an inactive mutant of metacaspase 2 (MCA2) from Trypanosoma brucei, has been determined to a resolution of 1.4 Å. The structure comprises a core caspase fold, but with an unusual eight-stranded β-sheet that stabilizes the protein as a monomer. Essential aspartic acid residues, in the predicted S1 binding pocket, delineate the arginine-specific substrate specificity. In addition, MCA2 possesses an unusual N terminus, which encircles the protein and traverses the catalytic dyad, with Y31 acting as a gatekeeper residue. The calcium-binding site is defined by samarium coordinated by four aspartic acid residues, whereas calcium binding itself induces an allosteric conformational change that could stabilize the active site in a fashion analogous to subunit processing in caspases. Collectively, these data give insights into the mechanistic basis of substrate specificity and mode of activation of MCA2 and provide a detailed framework for understanding the role of metacaspases in cell death pathways of lower eukaryotes.

  11. Synthesis, crystal structure, DNA interaction and antioxidant activities of two novel water-soluble Cu2+ complexes derivated from 2-oxo-quinoline-3-carbaldehyde Schiff-bases.

    PubMed

    Liu, Zeng-Chen; Wang, Bao-Dui; Yang, Zheng-Yin; Li, Yong; Qin, Dong-Dong; Li, Tian-Rong

    2009-11-01

    Two novel 2-oxo-quinoline-3-carbaldehyde (4'-hydroxybenzoyl) hydrazone, thiosemicarbazone ligands and its corresponding Cu(2+) complexes were synthesized, and the two complexes' structures were determined by X-ray single crystal diffraction. The interaction of the two Cu(2+) complexes with calf thymus DNA (CT-DNA) was investigated by electronic absorption spectroscopy, fluorescence spectroscopy and viscosity measurement. The experimental evidences indicated that the two water-soluble Cu(2+) complexes could strongly bind to CT-DNA via an intercalation mechanism. The intrinsic binding constants of complexes 1 and 2 with CT-DNA were 7.31 x 10(6) and 2.33 x 10(6)M(-1), respectively. Furthermore, the antioxidant activities (hydroxyl radical and superoxide) of the two water-soluble metal complexes were determined by hydroxyl radical and superoxide scavenging method in vitro.

  12. Crystal Structure and Activity Studies of the Mycobacterium tuberculosis β-Lactamase Reveal Its Critical Role in Resistance to β-Lactam Antibiotics

    PubMed Central

    Wang, Feng; Cassidy, Craig; Sacchettini, James C.

    2006-01-01

    β-Lactam antibiotics are extremely effective in disrupting the synthesis of the bacterial cell wall in both gram-positive and gram-negative bacteria. However, they are ineffective against Mycobacterium tuberculosis, due to the production of a β-lactamase enzyme encoded on the chromosome of M. tuberculosis that degrades these antibiotics. Indeed, recent studies have demonstrated that deletion of the blaC gene, the only gene encoding a β-lactamase in M. tuberculosis, or inhibition of the encoded enzyme resulted in significantly increased sensitivity to β-lactam antibiotics. In this paper we present a biochemical and structural characterization of M. tuberculosis BlaC. Recombinant BlaC shows a broad range of specificity with almost equal penicillinase and cepholothinase activity. While clavulanate is a mechanism-based inhibitor to class A β-lactamase with high potency (typically Ki < 0.1 μM), it is a relatively poor inhibitor of the M. tuberculosis BlaC (Ki = 2.4 μM). The crystal structure of the enzyme, determined at a resolution of 1.7 Å, shows that the overall fold of the M. tuberculosis enzyme is similar to other class A β-lactamases. There are, however, several distinct features of the active site, such as the amino acid substitutions N132G, R164A, R244A, and R276E, that explain the broad specificity of the enzyme, relatively low penicillinase activity, and resistance to clavulanate. PMID:16870770

  13. Crystal structure prediction of rigid molecules.

    PubMed

    Elking, Dennis M; Fusti-Molnar, Laszlo; Nichols, Anthony

    2016-08-01

    A non-polarizable force field based on atomic multipoles fit to reproduce experimental crystal properties and ab initio gas-phase dimers is described. The Ewald method is used to calculate both long-range electrostatic and 1/r(6) dispersion energies of crystals. The dispersion energy of a crystal calculated by a cutoff method is shown to converge slowly to the exact Ewald result. A method for constraining space-group symmetry during unit-cell optimization is derived. Results for locally optimizing 4427 unit cells including volume, cell parameters, unit-cell r.m.s.d. and CPU timings are given for both flexible and rigid molecule optimization. An algorithm for randomly generating rigid molecule crystals is described. Using the correct experimentally determined space group, the average and maximum number of random crystals needed to find the correct experimental structure is given for 2440 rigid single component crystals. The force field energy rank of the correct experimental structure is presented for the same set of 2440 rigid single component crystals assuming the correct space group. A complete crystal prediction is performed for two rigid molecules by searching over the 32 most probable space groups.

  14. Synthesis, characterization, crystal structure and antimicrobial activity of copper(II) complexes with the Schiff base derived from 2-hydroxy-4-methoxybenzaldehyde.

    PubMed

    Pahonțu, Elena; Ilieș, Diana-Carolina; Shova, Sergiu; Paraschivescu, Codruța; Badea, Mihaela; Gulea, Aurelian; Roșu, Tudor

    2015-04-02

    A novel Schiff base, ethyl 4-[(E)-(2-hydroxy-4-methoxyphenyl)methylene-amino]benzoate (HL), was prepared and structurally characterized on the basis of elemental analyses, (1)H NMR, (13)C NMR, UV-Vis and IR spectral data. Six new copper(II) complexes, [Cu(L)(NO3)(H2O)2] (1), [Cu(L)2] (2), [Cu(L)(OAc)] (3), [Cu2 (L)2Cl2(H2O)4] (4), [Cu(L)(ClO4)(H2O)] (5) and [Cu2(L2S)(ClO4)(H2O)]ClO4·H2O (6) have been synthesized. The characterization of the newly formed compounds was done by IR, UV-Vis, EPR, FAB mass spectroscopy, elemental and thermal analysis, magnetic susceptibility measurements and molar electric conductivity. The crystal structures of Schiff base and the complex [Cu2(L2S)(ClO4)(H2O)]ClO4·H2O (6) have been determined by single crystal X-ray diffraction studies. Both copper atoms display a distorted octahedral coordination type [O4NS]. This coordination is ensured by three phenol oxygen, two of which being related to the µ-oxo-bridge, the nitrogen atoms of the azomethine group and the sulfur atoms that come from the polydentate ligand. The in vitro antimicrobial activity against Escherichia coli ATCC 25922, Salmonella enteritidis, Staphylococcus aureus ATCC 25923, Enterococcus and Candida albicans strains was studied and compared with that of free ligand. The complexes 1, 2, 5 showed a better antimicrobial activity than the Schiff base against the tested microorganisms.

  15. Spectroscopic study, antimicrobial activity and crystal structures of N-(2-hydroxy-5-nitrobenzalidene)4-aminomorpholine and N-(2-hydroxy-1-naphthylidene)4-aminomorpholine

    NASA Astrophysics Data System (ADS)

    Yıldız, Mustafa; Ünver, Hüseyin; Dülger, Başaran; Erdener, Diğdem; Ocak, Nazan; Erdönmez, Ahmet; Durlu, Tahsin Nuri

    2005-03-01

    Schiff bases N-(2-hydroxy-3-nitrobenzalidene)4-aminomorpholine ( 1) and N-(2-hydroxy-1-naphthylidene)4-aminomorpholine ( 2) were synthesized from the reaction of 4-aminomorpholine with 2-hydroxy-5-nitrobenzaldehyde and 2-hydroxy-1-naphthaldehyde. Compounds 1 and 2 were characterized by elemental analysis, IR, 1H NMR, 13C NMR and UV-Visible techniques. The UV-Visible spectra of the Schiff bases with OH group in ortho position to the imino group were studied in polar and nonpolar solvents in acidic and basic media. The structures of compounds 1 and 2 have been examined cyrstallographically, for two compounds exist as dominant form of enol-imines in both the solutions and solid state. The title compounds 1 and 2 crystallize in the monoclinic space group P2 1/ c and P2 1/ n with unit cell parameters: a=8.410(1) and 11.911(3), b=6.350(9) and 4.860(9), c=21.728(3) and 22.381(6) Å, β=90.190(1) and 95.6(2)°, V=1160.6(3) and 1289.5(5) Å 3, Dx=1.438 and 1.320 g cm -3, respectively. The crystal structures were solved by direct methods and refined by full-matrix least squares. The antimicrobial activities of compounds 1 and 2 have also been studied. The antimicrobial activities of the ligands have been screened in vitro against the organisms Escherichia coli ATCC 11230, Staphylococcus aureus ATCC 6538, Klebsiella pneumoniae UC57, Micrococcus luteus La 2971, Proteus vulgaris ATCC 8427, Pseudomonas aeruginosa ATCC 27853, Mycobacterium smegmatis CCM 2067, Bacillus cereus ATCC 7064, Listeria monocytogenes ATCC 15313, Candida albicans ATCC 10231, Kluyveromyces fragilis NRRL 2415, Rhodotorula rubra DSM 70403, Debaryomyces hansenii DSM 70238 and Hanseniaspora guilliermondii DSM 3432.

  16. An unexpected cobalt(III) complex containing a Schiff base ligand: Synthesis, crystal structure, spectroscopic behavior, electrochemical property and SOD-like activity.

    PubMed

    Chai, Lan-Qin; Huang, Jiao-Jiao; Zhang, Hong-Song; Zhang, Yu-Li; Zhang, Jian-Yu; Li, Yao-Xin

    2014-10-15

    An unexpected mononuclear Co(III) complex, [Co(L2)2·(CH3COO)]·CH3OH (HL2=1-(2-{[(E)-3,5-dichloro-2-hydroxybenzylidene]amino}phenyl)ethanone oxime), has been synthesized via complexation of Co(II) acetate tetrahydrate with HL1 originally. The plausible reaction mechanism for the formation of quinazoline-type ligand was proposed. HL1 and its corresponding Co(III) complex were characterized by IR, as well as by elemental analysis and UV-vis spectroscopy. The crystal structure of the complex has been determined by single-crystal X-ray diffraction. Each complex links two other molecules into an infinite 1-D chain via intermolecular hydrogen bonding interactions. Moreover, the electrochemical properties of the cobalt(III) complex were studied by cyclic voltammetry and X-ray photoelectron spectrum (XPS). In addition, superoxide dismutase-like activities of HL1 and Co(III) complex were also investigated.

  17. Structures of cyano-biphenyl liquid crystals

    NASA Technical Reports Server (NTRS)

    Chu, Yuan-Chao; Tsang, Tung; Rahimzadeh, E.; Yin, L.

    1989-01-01

    The structures of p-alkyl- p'-cyano- bicyclohexanes, C(n)H(2n+1) (C6H10)(C6H10) CN (n-CCH), and p-alkyl- p'-cyano- biphenyls, C(n)H(2n+1) (C6H4)(C6H4) CN (n-CBP), were studied. It is convenient to use an x ray image intensification device to search for symmetric x ray diffraction patterns. Despite the similarities in molecular structures of these compounds, very different crystal structures were found. For the smectic phase of 2CCH, the structure is close to rhombohedral with threefold symmetry. In contrast, the structure is close to hexagonal close-packed with two molecules per unit cell for 4CCH. Since intermolecular forces may be quite weak for these liquid crystals systems, it appears that crystal structures change considerably when the alkyl chain length is slightly altered. Different structures were also found in the crystalline phase of n-CBP for n = 6 to 9. For n = 7 to 9, the structures are close to monclinic. The structures are reminiscent of the smectic-A liquid crystal structures with the linear molecules slightly tilted away from the c-axis. In contrast, the structure is quite different for n = 6 with the molecules nearly perpendicular to the c-axis.

  18. Copper(II) complexes with 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid: Syntheses, crystal structures and antifungal activities

    SciTech Connect

    Xiong, Pingping; Li, Jie; Bu, Huaiyu; Wei, Qing; Zhang, Ruolin; Chen, Sanping

    2014-07-01

    Reaction of Cu(II) with an asymmetric semi-rigid organic ligand 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid (HL), yielded five compounds, [Cu{sub 0.5}L]{sub n} (1), [Cu(HL){sub 2}Cl{sub 2}]{sub n} (2), [Cu(HL){sub 2}Cl{sub 2}(H{sub 2}O)] (3), [Cu(L){sub 2}(H{sub 2}O)]{sub n} (4) and [Cu(L)(phen)(HCO{sub 2})]{sub n} (5), which have been fully characterized by infrared spectroscopy, elemental analysis, and single-crystal X-ray diffraction. As for compounds 1, 2 and 5, Cu(II) is bridged through HL, Cl{sup -}, and formic acid, respectively, featuring 1D chain-structure. In compound 3, Cu(II) with hexahedral coordination sphere is assembled through hydrogen-bonding into 3D supramolecular framework. In compound 4, 1D chain units –Cu–O–Cu–O– are ligand-bridged into a 3D network. All compounds were tested on fungi (Fusarium graminearum, Altemaria solani, Macrophoma kawatsukai, Alternaria alternata and Colletotrichum gloeosporioides). Compound 1 exhibits a better antifungal effect compared to other compounds. An effect of structure on the antifungal activity has also been correlated. - Graphical abstract: Copper(II) compounds with 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid, were prepared, structurally characterized and investigated for antifungal activity. - Highlights: • The title compounds formed by thermodynamics and thermokinetics. • The five compounds show higher inhibition percentage than reactants. • The structure effect on the antifungal activity.

  19. Synthesis, crystal structures, molecular docking, and in vitro biological activities evaluation of transition metal complexes with 4-(3,4-dichlorophenyl) piperazine-1-carboxylic acid

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Jian; Chen, Ya-Na; Xu, Chun-Na; Zhao, Shan-Shan; Cao, Qi-Yue; Qian, Shao-Song; Qin, Jie; Zhu, Hai-Liang

    2016-08-01

    Three novel mononuclear complexes, [MⅡ(L)2·2H2O], (M = Cu, Ni or Cd; HL = 4-(3,4-dichlorophenyl)piperazine-1-carboxylic acid)were synthesized and structurally determined by single-crystal X-ray diffraction. Molecular docking study preliminarily revealed that complex 1 had potential urease inhibitory activity. In accordance with the result of calculation, in vitro tests of the inhibitory activities of complexes 1-3 against jack bean urease showed complex 1 (IC50 = 8.17 ± 0.91 μM) had better inhibitory activities than the positive reference acetohydroxamic acid (AHA) (IC50 = 26.99 ± 1.43 μM), while complexes 2 and 3 showed no inhibitory activities., kinetics study was carried out to explore the mechanism of the inhibiting of the enzyme, and the result indicated that complex 1 was a competitive inhibitor of urease. Albumin binding experiment and in vitro toxicity evaluation of complex 1 were implemented to explore its Pharmacological properties.

  20. Crystal structures of the human adiponectin receptors

    PubMed Central

    Tanabe, Hiroaki; Fujii, Yoshifumi; Hosaka, Toshiaki; Motoyama, Kanna; Ikeda, Mariko; Wakiyama, Motoaki; Terada, Takaho; Ohsawa, Noboru; Hato, Masakatsu; Ogasawara, Satoshi; Hino, Tomoya; Murata, Takeshi; Iwata, So; Hirata, Kunio; Kawano, Yoshiaki; Yamamoto, Masaki; Kimura-Someya, Tomomi; Shirouzu, Mikako; Yamauchi, Toshimasa; Kadowaki, Takashi; Yokoyama, Shigeyuki

    2015-01-01

    Adiponectin stimulation of its receptors, AdipoR1 and AdipoR2, increases AMPK and PPAR activities, respectively, thereby contributing to healthy longevity as key anti-diabetic molecules. AdipoR1 and AdipoR2 were predicted to contain seven transmembrane helices with the opposite topology to G protein-coupled receptor (GPCR)s. Here we report the crystal structures of human AdipoR1 and AdipoR2 at 2.9- and 2.4-Å resolution, respectively, which represent a novel class of receptor structure. The seven-transmembrane helices, conformationally distinct from those of GPCRs, enclose a large cavity where three conserved histidine residues coordinate a zinc ion. The zinc-binding structure may play a role in the adiponectin-stimulated AMPK phosphorylation and UCP2 upregulation. Adiponectin may broadly interact with the extracellular face, rather than the C-terminal flexible tail, of the receptors. The present information will facilitate the understanding of novel structure-function relationships and the development and optimization of AdipoR agonists for the treatment of obesity-related diseases, such as type 2 diabetes. PMID:25855295

  1. Crystal structure of an enzymatically inactive trans-sialidase-like lectin from Trypanosoma cruzi: the carbohydrate binding mechanism involves residual sialidase activity.

    PubMed

    Oppezzo, Pablo; Obal, Gonzalo; Baraibar, Martín A; Pritsch, Otto; Alzari, Pedro M; Buschiazzo, Alejandro

    2011-09-01

    Trans-sialidases are surface-located proteins in Trypanosoma cruzi that participate in key parasite-host interactions and parasite virulence. These proteins are encoded by a large multigenic family, with tandem-repeated and individual genes dispersed throughout the genome. While a large number of genes encode for catalytically active enzyme isoforms, many others display mutations that involve catalytic residues. The latter ultimately code for catalytically inactive proteins with very high similarity to their active paralogs. These inactive members have been shown to be lectins, able to bind sialic acid and galactose in vitro, although their cellular functions are yet to be fully established. We now report structural and biochemical evidence extending the current molecular understanding of these lectins. We have solved the crystal structure of one such catalytically inactive trans-sialidase-like protein, after soaking with a specific carbohydrate ligand, sialyl-α2,3-lactose. Instead of the expected trisaccharide, the binding pocket was observed occupied by α-lactose, strongly suggesting that the protein retains residual hydrolytic activity. This hypothesis was validated by enzyme kinetics assays, in comparison to fully active wild-type trans-sialidase. Surface plasmon resonance also confirmed that these trans-sialidase-like lectins are not only able to bind small oligosaccharides, but also sialylated glycoproteins, which is relevant in the physiologic scenario of parasite infection. Inactive trans-sialidase proteins appear thus to be β-methyl-galactosyl-specific lectins, evolved within an exo-sialidase scaffold, thus explaining why their lectin activity is triggered by the presence of terminal sialic acid.

  2. Natural photonic crystals: formation, structure, function

    NASA Astrophysics Data System (ADS)

    Bartl, Michael H.; Dahlby, Michael R.; Barrows, Frank P.; Richens, Zachary J.; Terooatea, Tommy; Jorgensen, Matthew R.

    2012-03-01

    The structure and properties of natural photonic crystals are discussed using the colored scales of the beetle Lamprocyphus augustus as an example. While the exact mechanism behind the formation of these biopolymeric photonic structures has yet to be fully explored, similarities of these structures to intracellular cubic membrane architectures are introduced. Some crucial parameters behind the formation of cubic membranes are discussed. Using these insights, intracellular cubic membrane structures are transformed into an extracellular environment.

  3. Crystal structure of Homo sapiens kynureninase.

    PubMed

    Lima, Santiago; Khristoforov, Roman; Momany, Cory; Phillips, Robert S

    2007-03-13

    Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.

  4. Kinetics and crystal structure of a mutant Escherichia coli alkaline phosphatase (Asp-369-->Asn): a mechanism involving one zinc per active site.

    PubMed

    Tibbitts, T T; Xu, X; Kantrowitz, E R

    1994-11-01

    Using site-directed mutagenesis, an aspartate side chain involved in binding metal ions in the active site of Escherichia coli alkaline phosphatase (Asp-369) was replaced, alternately, by asparagine (D369N) and by alanine (D369A). The purified mutant enzymes showed reduced turnover rates (kcat) and increased Michaelis constants (Km). The kcat for the D369A enzyme was 5,000-fold lower than the value for the wild-type enzyme. The D369N enzyme required Zn2+ in millimolar concentrations to become fully active; even under these conditions the kcat measured for hydrolysis of p-nitrophenol phosphate was 2 orders of magnitude lower than for the wild-type enzyme. Thus the kcat/Km ratios showed that catalysis is 50 times less efficient when the carboxylate side chain of Asp-369 is replaced by the corresponding amide; and activity is reduced to near nonenzymic levels when the carboxylate is replaced by a methyl group. The crystal structure of D369N, solved to 2.5 A resolution with an R-factor of 0.189, showed vacancies at 2 of the 3 metal binding sites. On the basis of the kinetic results and the refined X-ray coordinates, a reaction mechanism is proposed for phosphate ester hydrolysis by the D369N enzyme involving only 1 metal with the possible assistance of a histidine side chain.

  5. Crystal structures, DNA-binding and cytotoxic activities studies of Cu(II) complexes with 2-oxo-quinoline-3-carbaldehyde Schiff-bases.

    PubMed

    Liu, Zeng-Chen; Wang, Bao-Dui; Li, Bo; Wang, Qin; Yang, Zheng-Yin; Li, Tian-Rong; Li, Yong

    2010-11-01

    Three novel 2-oxo-quinoline-3-carbaldehyde Schiff-bases and their Cu(II) complexes were synthesized. The molecular structures of Cu(II) complexes were determined by X-ray crystal diffraction. The DNA-binding modes of the complexes were also investigated by UV-vis absorption spectrum, fluorescence spectrum, viscosity measurement and EB-DNA displacement experiment. The experimental evidences indicated that the ligands and Cu(II) complexes could interact with CT-DNA (calf-thymus DNA) through intercalation, respectively. Comparative cytotoxic activities of ligands and Cu(II) complexes were also determined by MTT [3-(4,5-dimethyl-2-thiazoyl)-2,5-diphenyl-2H-tetrazolium bromide] and SRB (sulforhodamine B) methods. The results showed that the three Cu(II) complexes exhibited more effective cytotoxic activity against HL60 cells and HeLa cells than corresponding ligands. Also, CuL(3) showed higher cytotoxic activity than CuL(1) and CuL(2).

  6. Traveling and Resting Crystals in Active Systems

    NASA Astrophysics Data System (ADS)

    Menzel, Andreas M.; Löwen, Hartmut

    2013-02-01

    A microscopic field theory for crystallization in active systems is proposed which unifies the phase-field-crystal model of freezing with the Toner—Tu theory for self-propelled particles. A wealth of different active crystalline states are predicted and characterized. In particular, for increasing strength of self-propulsion, a transition from a resting crystal to a traveling crystalline state is found where the particles migrate collectively while keeping their crystalline order. Our predictions, which are verifiable in experiments and in particle-resolved computer simulations, provide a starting point for the design of new active materials.

  7. Crystal structure of a photobiologically active brominated angular pyran­ocoumarin: bromo-hy­droxy-seselin

    PubMed Central

    2017-01-01

    The title compound, C14H13BrO3 [systematic name: rac-(9S,10R)-9-bromo-10-hy­droxy-8,8-dimethyl-9,10-di­hydro-2H,8H-pyrano[2,3-f]chromen-2-one], is a substituted pyran­ocoumarin, obtained by bromination of seselin [8,8-dimethyl-2H,8H-pyrano[2,3-f]chromen-2-one], which was isolated from the Indian herb Trachyspermum stictocarpum (Aajmod). The pyrano ring has a distorted half-chair conformation and its mean plane is inclined to the coumarin mean plane by 1.6 (2)°. In the crystal, mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming inversion dimers with an R 2 2(16) ring motif. The dimers stack along the a-axis direction and are linked by offset π–π inter­actions, forming columns [inter­centroid distance = 3.514 (4) Å]. PMID:28316830

  8. Crystal structure of Mox-1, a unique plasmid-mediated class C β-lactamase with hydrolytic activity towards moxalactam.

    PubMed

    Oguri, Takuma; Furuyama, Takamitsu; Okuno, Takashi; Ishii, Yoshikazu; Tateda, Kazuhiro; Bonomo, Robert A; Shimizu-Ibuka, Akiko

    2014-07-01

    Mox-1 is a unique plasmid-mediated class C β-lactamase that hydrolyzes penicillins, cephalothin, and the expanded-spectrum cephalosporins cefepime and moxalactam. In order to understand the unique substrate profile of this enzyme, we determined the X-ray crystallographic structure of Mox-1 β-lactamase at a 1.5-Å resolution. The overall structure of Mox-1 β-lactamase resembles that of other AmpC enzymes, with some notable exceptions. First, comparison with other enzymes whose structures have been solved reveals significant differences in the composition of amino acids that make up the hydrogen-bonding network and the position of structural elements in the substrate-binding cavity. Second, the main-chain electron density is not observed in two regions, one containing amino acid residues 214 to 216 positioned in the Ω loop and the other in the N terminus of the B3 β-strand corresponding to amino acid residues 303 to 306. The last two observations suggest that there is significant structural flexibility of these regions, a property which may impact the recognition and binding of substrates in Mox-1. These important differences allow us to propose that the binding of moxalactam in Mox-1 is facilitated by the avoidance of steric clashes, indicating that a substrate-induced conformational change underlies the basis of the hydrolytic profile of Mox-1 β-lactamase.

  9. Nucleation and structural growth of cluster crystals.

    PubMed

    Leitold, Christian; Dellago, Christoph

    2016-08-21

    We study the nucleation of crystalline cluster phases in the generalized exponential model with exponent n = 4. Due to the finite value of this pair potential for zero separation, at high densities the system forms cluster crystals with multiply occupied lattice sites. Here, we investigate the microscopic mechanisms that lead to the formation of cluster crystals from a supercooled liquid in the low-temperature region of the phase diagram. Using molecular dynamics and umbrella sampling, we calculate the free energy as a function of the size of the largest crystalline nucleus in the system, and compare our results with predictions from classical nucleation theory. Employing bond-order parameters based on a Voronoi tessellation to distinguish different crystal structures, we analyze the average composition of crystalline nuclei. We find that even for conditions where a multiply occupied fcc crystal is the thermodynamically stable phase, the nucleation into bcc cluster crystals is strongly preferred. Furthermore, we study the particle mobility in the supercooled liquid and in the cluster crystal. In the cluster crystal, the motion of individual particles is captured by a simple reaction-diffusion model introduced previously to model the kinetics of hydrogen bonds.

  10. Crystal structure of phospholipase A2 complex with the hydrolysis products of platelet activating factor: equilibrium binding of fatty acid and lysophospholipid-ether at the active site may be mutually exclusive.

    PubMed

    Pan, Ying H; Yu, Bao-Zhu; Berg, Otto G; Jain, Mahendra K; Bahnson, Brian J

    2002-12-17

    We have solved the 1.55 A crystal structure of the anion-assisted dimer of porcine pancreatic group IB phospholipase A2 (PLA2), complexed with the products of hydrolysis of the substrate platelet activating factor. The dimer contains five coplanar phosphate anions bound at the contact surface between the two PLA2 subunits. This structure parallels a previously reported anion-assisted dimer that mimics the tetrahedral intermediate of PLA2 bound to a substrate interface [Pan, Y. H., et al. (2001) Biochemistry 40, 609-617]. The dimer structure has a molecule of the product acetate bound in subunit A and the other product 1-octadecyl-sn-glycero-3-phosphocholine (LPC-ether) to subunit B. Therefore, this structure is of the two individual product binary complexes and not of a ternary complex with both products in one active site of PLA2. Protein crystals with bound products were only obtained by cocrystallization starting from the initial substrate. In contrast, an alternate crystal form was obtained when PLA2 was cocrystallized with LPC-ether and succinate, and this crystal form did not contain bound products. The product bound structure has acetate positioned in the catalytic site of subunit A such that one of its oxygen atoms is located 3.5 A from the catalytic calcium. Likewise, a longer than typical Ca-to-Gly(32) carbonyl distance of 3.4 A results in a final Ca coordination that is four-coordinate and has distorted geometry. The other oxygen of acetate makes hydrogen bonds with N(delta)(1)-His(48), O(delta)(1)-Asp(49), and the catalytic assisting water (w7). In contrast, the glycerophosphocholine headgroup of LPC-ether in subunit B makes no contacts with calcium or with the catalytic residues His(48) or Asp(49). The tail of the LPC-ether is located near the active site pocket with the last nine carbons of the sn-1- acyl chain refined in two alternate conformations. The remaining atoms of the LPC-ether product have been modeled into the solvent channel but have their

  11. The crystal structure and crystal chemistry of fernandinite and corvusite

    USGS Publications Warehouse

    Evans, H.T.; Post, J.E.; Ross, D.R.; Nelen, J.A.

    1994-01-01

    Using type material of fernandinite from Minasragra, Peru, and corvusite from the Jack Claim, La Sal Mountains, Utah, the properties and crystal chemistry of these minerals have been determined by Rietveld analysis of the powder X-ray-diffraction patterns. The crystal structure of both species is isotypic with the V2O5 -type layer first found for ??-Ag0.68V2O5; it consists of chains of VO6 octahedra linked by opposite corners (parallel to b) condensed by edge-sharing to form the layer. The vanadium has average valence 4.8, and the resulting layer-charge is balanced by varying amounts of Ca, Na, and K in the interlayer region accompanied by labile water. This study has confirmed the validity of fernandinite as a unique mineral species. It is closely related to corvusite, from which it is distinguished on the basis of the dominant interlayer cation: Ca for fernandinite, Na for curvusite. -Authors

  12. The crystal structure of necrosis- and ethylene-inducing protein 2 from the causal agent of cacao's Witches' Broom disease reveals key elements for its activity.

    PubMed

    Zaparoli, Gustavo; Barsottini, Mario Ramos de Oliveira; de Oliveira, Juliana Ferreira; Dyszy, Fabio; Teixeira, Paulo José Pereira Lima; Barau, Joan Grande; Garcia, Odalys; Costa-Filho, Antonio José; Ambrosio, Andre Luis Berteli; Pereira, Gonçalo Amarante Guimarães; Dias, Sandra Martha Gomes

    2011-11-15

    The necrosis- and ethylene-inducing peptide 1 (NEP1)-like proteins (NLPs) are proteins secreted from bacteria, fungi and oomycetes, triggering immune responses and cell death in dicotyledonous plants. Genomic-scale studies of Moniliophthora perniciosa, the fungus that causes the Witches' Broom disease in cacao, which is a serious economic concern for South and Central American crops, have identified five members of this family (termed MpNEP1-5). Here, we show by RNA-seq that MpNEP2 is virtually the only NLP expressed during the fungus infection. The quantitative real-time polymerase chain reaction results revealed that MpNEP2 has an expression pattern that positively correlates with the necrotic symptoms, with MpNEP2 reaching its highest level of expression at the advanced necrotic stage. To improve our understanding of MpNEP2's molecular mechanism of action, we determined the crystallographic structure of MpNEP2 at 1.8 Å resolution, unveiling some key structural features. The implications of a cation coordination found in the crystal structure were explored, and we show that MpNEP2, in contrast to another previously described member of the NLP family, NLP(Pya) from Pythium aphanidermatum, does not depend on an ion to accomplish its necrosis- and electrolyte leakage-promoting activities. Results of site-directed mutagenesis experiments confirmed the importance of a negatively charged cavity and an unforeseen hydrophobic β-hairpin loop for MpNEP2 activity, thus offering a platform for compound design with implications for disease control. Electron paramagnetic resonance and fluorescence assays with MpNEP2 performed in the presence of lipid vesicles of different compositions showed no sign of interaction between the protein and the lipids, implying that MpNEP2 likely requires other anchoring elements from the membrane to promote cytolysis or send death signals.

  13. A novel copper (II) complex containing a tetradentate Schiff base: Synthesis, spectroscopy, crystal structure, DFT study, biological activity and preparation of its nano-sized metal oxide

    NASA Astrophysics Data System (ADS)

    Tohidiyan, Zeinab; Sheikhshoaie, Iran; Khaleghi, Mouj; Mague, Joel T.

    2017-04-01

    A new nano-sized copper (II) complex, [Cu(L)] with a tetra dentate Schiff base ligand, 2-((E)-(2-(E-5- bromo-2-hydroxybezenylideneamino) methyl)-4-bromophenol [H2L] was prepared by the reaction between of Cu (CH3COO)2·2H2O and (H2L) ligand with the ratio of 1:1, at the present of triethylamine by sonochemical method. The structure of [Cu (L)] complex was determined by FT-IR, UV-Vis, FESEM and molar conductivity. The structure of [Cu (L)] complex was characterized by single crystal X-ray diffraction. The geometry of [Cu (L)] complex was optimized using density functional theory (DFT) method with the B3LYP/6-31(d) level of theory. The calculated bond lengths and bond angles are in good agreement with the X-ray data. This complex was used as a novel precursor for preparing of CuO nano particles by the thermal decomposition method. The antibacterial activities of [H2L] ligand, nano-sized [Cu (L)] complex and nano-sized CuO have been screened against various strains of bacteria. According to the results, nano-sized CuO can be considered as an appropriate antibiotic agent.

  14. Copper(II) complexes with 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid: Syntheses, crystal structures and antifungal activities

    NASA Astrophysics Data System (ADS)

    Xiong, Pingping; Li, Jie; Bu, Huaiyu; Wei, Qing; Zhang, Ruolin; Chen, Sanping

    2014-07-01

    Reaction of Cu(II) with an asymmetric semi-rigid organic ligand 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid (HL), yielded five compounds, [Cu0.5L]n (1), [Cu(HL)2Cl2]n (2), [Cu(HL)2Cl2(H2O)] (3), [Cu(L)2(H2O)]n (4) and [Cu(L)(phen)(HCO2)]n (5), which have been fully characterized by infrared spectroscopy, elemental analysis, and single-crystal X-ray diffraction. As for compounds 1, 2 and 5, Cu(II) is bridged through HL, Cl-, and formic acid, respectively, featuring 1D chain-structure. In compound 3, Cu(II) with hexahedral coordination sphere is assembled through hydrogen-bonding into 3D supramolecular framework. In compound 4, 1D chain units -Cu-O-Cu-O- are ligand-bridged into a 3D network. All compounds were tested on fungi (Fusarium graminearum, Altemaria solani, Macrophoma kawatsukai, Alternaria alternata and Colletotrichum gloeosporioides). Compound 1 exhibits a better antifungal effect compared to other compounds. An effect of structure on the antifungal activity has also been correlated.

  15. Crystal structure of the human LRH-1 DBD-DNA complex reveals Ftz-F1 domain positioning is required for receptor activity.

    PubMed

    Solomon, Isaac H; Hager, Janet M; Safi, Rachid; McDonnell, Donald P; Redinbo, Matthew R; Ortlund, Eric A

    2005-12-16

    The DNA-binding and ligand-binding functions of nuclear receptors are localized to independent domains separated by a flexible hinge. The DNA-binding domain (DBD) of the human liver receptor homologue-1 (hLRH-1), which controls genes central to development and metabolic homeostasis, interacts with monomeric DNA response elements and contains an Ftz-F1 motif that is unique to the NR5A nuclear receptor subfamily. Here, we present the 2.2A resolution crystal structure of the hLRH-1 DBD in complex with duplex DNA, and elucidate the sequence-specific DNA contacts essential for the ability of LRH-1 to bind to DNA as a monomer. We show that the unique Ftz-F1 domain folds into a novel helix that packs against the DBD but does not contact DNA. Mutations expected to disrupt the positioning of the Ftz-F1 helix do not eliminate DNA binding but reduce the transcriptional activity of full-length LRH-1 significantly. Moreover, we find that altering the Ftz-F1 helix positioning eliminates the enhancement of LRH-1-mediated transcription by the coactivator GRIP1, an action that is associated primarily with the distantly located ligand-binding domain (LBD). Taken together, these results indicate that subtle structural changes in a nuclear receptor DBD can exert long-range functional effects on the LBD of a receptor, and significantly impact transcriptional regulation.

  16. Synthesis, crystal structure, spectroscopic properties, DFT calculation and biological activity of 4-chloro-N-(2-(2-nitrophenyl)acetoxy)-N-phenylbenzamide

    NASA Astrophysics Data System (ADS)

    He, Dian; Yang, Zhu-Qing; Hou, Meng; Teng, Chong; Wang, Xiao-Hong

    2014-11-01

    4-Chloro-N-(2-(2-nitrophenyl)acetoxy)-N-phenylbenzamide was synthesized and characterized by 1H NMR, 13C NMR, MS, IR and X-ray diffraction methods. The structure-property relationship and the antitumor activity based on electrochemical measurements, density functional theory calculations (DFT) and methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay were investigated. The crystal structure adopts monoclinic space group P21/n with the unit cell parameters of a = 12.4385(10) Å, b = 6.5036(5) Å, c = 24.7944(19) Å, β = 103.045(9)°, V = 1954.0(3) Å3, Z = 4, and stabilized by π-π conjugation and hydrogen bonding interactions. The observed results of the compound have been compared with theoretical results and it is found that the experimental data show good agreement with calculated values. And the compound had slightly better inhibition than suberoylanilide hydroxamic acid (SAHA) in NCI-H460 cell line as well as the nearly same as SAHA in MCF-7, HCT-116, PC-3, and A549 cell lines.

  17. Crystal Structures of Sialyltransferase from Photobacterium damselae

    PubMed Central

    Huynh, Nhung; Li, Yanhong; Yu, Hai; Huang, Shengshu; Lau, Kam; Chen, Xi; Fisher, Andrew J.

    2014-01-01

    Sialyltransferase structures fall into either GT-A or GT-B glycosyltransferase fold. Some sialyltransferases from the Photobacterium genus have been shown to contain an additional N-terminal immunoglobulin (Ig)-like domain. Photobacterium damselae α2–6-sialyltransferase has been used efficiently in enzymatic and chemoenzymatic synthesis of α2–6-linked sialosides. Here we report three crystal structures of this enzyme. Two structures with and without a donor substrate analogue CMP-3F(a)Neu5Ac contain an immunoglobulin (Ig)-like domain and adopt the GT-B sialyltransferase fold. The binary structure reveals a non-productive pre-Michaelis complex, which are caused by crystal lattice contacts that prevent the large conformational changes. The third structure lacks the Ig-domain. Comparison of the three structures reveals small inherent flexibility between the two Rossmann-like domains of the GT-B fold. PMID:25451227

  18. Crystal Structure of Full-length Mycobacterium tuberculosis H37Rv Glycogen Branching Enzyme; Insights of N-Terminal [beta]-Sandwich in Sustrate Specifity and Enzymatic Activity

    SciTech Connect

    Pal, Kuntal; Kumar, Shiva; Sharma, Shikha; Garg, Saurabh Kumar; Alam, Mohammad Suhail; Xu, H. Eric; Agrawal, Pushpa; Swaminathan, Kunchithapadam

    2010-07-13

    The open reading frame Rv1326c of Mycobacterium tuberculosis (Mtb) H37Rv encodes for an {alpha}-1,4-glucan branching enzyme (MtbGlgB, EC 2.4.1.18, Uniprot entry Q10625). This enzyme belongs to glycoside hydrolase (GH) family 13 and catalyzes the branching of a linear glucose chain during glycogenesis by cleaving a 1 {yields} 4 bond and making a new 1 {yields} 6 bond. Here, we show the crystal structure of full-length MtbGlgB (MtbGlgBWT) at 2.33-{angstrom} resolution. MtbGlgBWT contains four domains: N1 {beta}-sandwich, N2 {beta}-sandwich, a central ({beta}/{alpha}){sub 8} domain that houses the catalytic site, and a C-terminal {beta}-sandwich. We have assayed the amylase activity with amylose and starch as substrates and the glycogen branching activity using amylose as a substrate for MtbGlgBWT and the N1 domain-deleted (the first 108 residues deleted) Mtb{Delta}108GlgB protein. The N1 {beta}-sandwich, which is formed by the first 105 amino acids and superimposes well with the N2 {beta}-sandwich, is shown to have an influence in substrate binding in the amylase assay. Also, we have checked and shown that several GH13 family inhibitors are ineffective against MtbGlgBWT and Mtb{Delta}108GlgB. We propose a two-step reaction mechanism, for the amylase activity (1 {yields} 4 bond breakage) and isomerization (1 {yields} 6 bond formation), which occurs in the same catalytic pocket. The structural and functional properties of MtbGlgB and Mtb{Delta}108GlgB are compared with those of the N-terminal 112-amino acid-deleted Escherichia coli GlgB (EC{Delta}112GlgB).

  19. Crystal structure of β1→6-galactosidase from Bifidobacterium bifidum S17: trimeric architecture, molecular determinants of the enzymatic activity and its inhibition by α-galactose.

    PubMed

    Godoy, Andre Schutzer; Camilo, Cesar Moises; Kadowaki, Marco Antonio; Muniz, Heloisa Dos S; Espirito Santo, Melissa; Murakami, Mario Tyago; Nascimento, Alessandro S; Polikarpov, Igor

    2016-11-01

    In a search for better comprehension of β-galactosidase function and specificity, we solved the crystal structures of the GH42 β-galactosidase BbgII from Bifidobacterium bifidum S17, a well-adapted probiotic microorganism from the human digestive tract, and its complex with d-α-galactose. BbgII is a three-domain molecule that forms barrel-shaped trimers in solution. BbgII interactions with d-α-galactose, a competitive inhibitor, showed a number of residues that are involved in the coordination of ligands. A combination of site-directed mutagenesis of these amino acid residues with enzymatic activity measurements confirmed that Glu161 and Glu320 are fundamental for catalysis and their substitution by alanines led to catalytically inactive mutants. Mutation Asn160Ala resulted in a two orders of magnitude decrease of the enzyme kcat without significant modification in its Km , whereas mutations Tyr289Phe and His371Phe simultaneously decreased kcat and increased Km values. Enzymatic activity of Glu368Ala mutant was too low to be detected. Our docking and molecular dynamics simulations showed that the enzyme recognizes and tightly binds substrates with β1→6 and β1→3 bonds, while binding of the substrates with β1→4 linkages is less favorable.

  20. Synthesis, structural characterization and antimicrobial activities of diorganotin(IV) complexes with azo-imino carboxylic acid ligand: Crystal structure and topological study of a doubly phenoxide-bridged dimeric dimethyltin(IV) complex appended with free carboxylic acid groups

    NASA Astrophysics Data System (ADS)

    Roy, Manojit; Roy, Subhadip; Devi, N. Manglembi; Singh, Ch. Brajakishor; Singh, Keisham Surjit

    2016-09-01

    Diorganotin(IV) complexes appended with free carboxylic acids were synthesized by reacting diorganotin(IV) dichlorides [R2SnCl2; R = Me (1), Bu (2) and Ph (3)] with an azo-imino carboxylic acid ligand i.e. 2-{4-hydroxy-3-[(2-hydroxyphenylimino)methyl]phenylazo}benzoic acid in presence of triethylamine. The complexes were characterized by elemental analysis, IR and multinuclear NMR (1H, 13C and 119Sn) spectroscopy. The structure of 1 in solid state has been determined by X-ray crystallography. Crystal structure of 1 reveals that the compound crystallizes in monoclinic space group P21/c and is a dimeric dimethyltin(IV) complex appended with free carboxylic acid groups. In the structure of 1, the Sn(IV) atoms are hexacoordinated and have a distorted octahedral coordination geometry in which two phenoxy oxygen atoms and the azomethine nitrogen atom of the ligand coordinate to each tin atom. One of the phenoxy oxygen atom bridges the two tin centers resulting in a planar Sn2O2 core. Topological analysis is used for the description of molecular packing in 1. Tin NMR spectroscopy study indicates that the complexes have five coordinate geometry around tin atom in solution state. Since the complexes have free carboxylic acids, these compounds could be further used as potential metallo-ligands for the synthesis of other complexes. The synthesized diorganotin(IV) complexes were also screened for their antimicrobial activities and compound 2 showed effective antimicrobial activities.

  1. Crystal structure and chirality of natural floridoside.

    PubMed

    Simon-Colin, Christelle; Michaud, François; Léger, Jean-Michel; Deslandes, Eric

    2003-10-31

    The crystal structure and absolute configuration of natural floridoside (2-O-alpha-D-galactopyranosylglycerol) were determined by single-crystal X-ray diffraction analysis. The space group is orthorhombic P2(1)2(1)2(1) with Z=4, a=4.885(1), b=9.734(1), c=23.886(2) A at 296 +/- 2 K. The structure was solved by a direct method and refined to R=0.0351 from 1914 reflections of Cu Kalpha radiation.

  2. Crystal structure of human nicotinic acid phosphoribosyltransferase.

    PubMed

    Marletta, Ada Serena; Massarotti, Alberto; Orsomando, Giuseppe; Magni, Giulio; Rizzi, Menico; Garavaglia, Silvia

    2015-01-01

    Nicotinic acid phosphoribosyltransferase (EC 2.4.2.11) (NaPRTase) is the rate-limiting enzyme in the three-step Preiss-Handler pathway for the biosynthesis of NAD. The enzyme catalyzes the conversion of nicotinic acid (Na) and 5-phosphoribosyl-1-pyrophosphate (PRPP) to nicotinic acid mononucleotide (NaMN) and pyrophosphate (PPi). Several studies have underlined the importance of NaPRTase for NAD homeostasis in mammals, but no crystallographic data are available for this enzyme from higher eukaryotes. Here, we report the crystal structure of human NaPRTase that was solved by molecular replacement at a resolution of 2.9 Å in its ligand-free form. Our structural data allow the assignment of human NaPRTase to the type II phosphoribosyltransferase subfamily and reveal that the enzyme consists of two domains and functions as a dimer with the active site located at the interface of the monomers. The substrate-binding mode was analyzed by molecular docking simulation and provides hints into the catalytic mechanism. Moreover, structural comparison of human NaPRTase with the other two human type II phosphoribosyltransferases involved in NAD biosynthesis, quinolinate phosphoribosyltransferase and nicotinamide phosphoribosyltransferase, reveals that while the three enzymes share a conserved overall structure, a few distinctive structural traits can be identified. In particular, we show that NaPRTase lacks a tunnel that, in nicotinamide phosphoribosiltransferase, represents the binding site of its potent and selective inhibitor FK866, currently used in clinical trials as an antitumoral agent.

  3. Crystal structure of human nicotinic acid phosphoribosyltransferase

    PubMed Central

    Marletta, Ada Serena; Massarotti, Alberto; Orsomando, Giuseppe; Magni, Giulio; Rizzi, Menico; Garavaglia, Silvia

    2015-01-01

    Nicotinic acid phosphoribosyltransferase (EC 2.4.2.11) (NaPRTase) is the rate-limiting enzyme in the three-step Preiss–Handler pathway for the biosynthesis of NAD. The enzyme catalyzes the conversion of nicotinic acid (Na) and 5-phosphoribosyl-1-pyrophosphate (PRPP) to nicotinic acid mononucleotide (NaMN) and pyrophosphate (PPi). Several studies have underlined the importance of NaPRTase for NAD homeostasis in mammals, but no crystallographic data are available for this enzyme from higher eukaryotes. Here, we report the crystal structure of human NaPRTase that was solved by molecular replacement at a resolution of 2.9 Å in its ligand-free form. Our structural data allow the assignment of human NaPRTase to the type II phosphoribosyltransferase subfamily and reveal that the enzyme consists of two domains and functions as a dimer with the active site located at the interface of the monomers. The substrate-binding mode was analyzed by molecular docking simulation and provides hints into the catalytic mechanism. Moreover, structural comparison of human NaPRTase with the other two human type II phosphoribosyltransferases involved in NAD biosynthesis, quinolinate phosphoribosyltransferase and nicotinamide phosphoribosyltransferase, reveals that while the three enzymes share a conserved overall structure, a few distinctive structural traits can be identified. In particular, we show that NaPRTase lacks a tunnel that, in nicotinamide phosphoribosiltransferase, represents the binding site of its potent and selective inhibitor FK866, currently used in clinical trials as an antitumoral agent. PMID:26042198

  4. Crystal structure of canagliflozin hemihydrate.

    PubMed

    Liu, Kai-Hang; Gu, Jian-Ming; Hu, Xiu-Rong; Tang, Gu-Ping

    2016-05-01

    There are two canagliflozin mol-ecules (A and B) and one water mol-ecule in the asymmetric unit of the title compound, C24H25FO5S·0.5H2O [systematic name: (2S,3R,4R,5S,6R)-2-(3-{[5-(4-fluoro-phen-yl)thio-phen-2-yl]meth-yl}-4-methylphen-yl)-6-(hy-droxy-meth-yl)-3,4,5,6-tetra-hydro-2H-pyran-3,4,5-triol hemihydrate]. The dihedral angles between the methyl-benzene and thio-phene rings are 115.7 (4) and 111.7 (4)°, while the dihedral angles between the fluoro-benzene and thio-phene rings are 24.2 (6) and 20.5 (9)° in mol-ecules A and B, respectively. The hydro-pyran ring exhibits a chair conformation in both canagliflozin mol-ecules. In the crystal, the canagliflozin mol-ecules and lattice water mol-ecules are connected via O-H⋯O hydrogen bonds into a three-dimensional supra-molecular architecture.

  5. Crystal structure of canagliflozin hemihydrate

    PubMed Central

    Liu, Kai-Hang; Gu, Jian-Ming; Hu, Xiu-Rong; Tang, Gu-Ping

    2016-01-01

    There are two canagliflozin mol­ecules (A and B) and one water mol­ecule in the asymmetric unit of the title compound, C24H25FO5S·0.5H2O [systematic name: (2S,3R,4R,5S,6R)-2-(3-{[5-(4-fluoro­phen­yl)thio­phen-2-yl]meth­yl}-4-methylphen­yl)-6-(hy­droxy­meth­yl)-3,4,5,6-tetra­hydro-2H-pyran-3,4,5-triol hemihydrate]. The dihedral angles between the methyl­benzene and thio­phene rings are 115.7 (4) and 111.7 (4)°, while the dihedral angles between the fluoro­benzene and thio­phene rings are 24.2 (6) and 20.5 (9)° in mol­ecules A and B, respectively. The hydro­pyran ring exhibits a chair conformation in both canagliflozin mol­ecules. In the crystal, the canagliflozin mol­ecules and lattice water mol­ecules are connected via O—H⋯O hydrogen bonds into a three-dimensional supra­molecular architecture. PMID:27308030

  6. Effects of Zn Content on Crystal Structure, Cytocompatibility, Antibacterial Activity, and Chemical Stability in Zn-Modified Calcium Silicate Coatings

    NASA Astrophysics Data System (ADS)

    Li, Kai; Yu, Jiangming; Xie, Youtao; Huang, Liping; Ye, Xiaojian; Zheng, Xuebin

    2013-08-01

    In our previous study, Zn-modified calcium silicate coatings possess not only excellent chemical stability but also well antibacterial activity. Still, effects of zinc content on these properties and cytocompatibility remain unclear. In this paper, two kinds of Zn-modified calcium silicate coatings (ZC0.3, ZC0.5) were fabricated on Ti-6Al-4V substrates via plasma spraying technology. X-ray diffraction results and transmission electron microscopy observations showed that the ZC0.5 coating was composed of pure hardystonite (Ca2ZnSi2O7) phase, while, besides Ca2ZnSi2O7 phase, the amorphous CaSiO3 phase was also detected in the ZC0.3 coating. Chemical stability in Tris-HCl buffer solution and antibacterial activity of the Zn-modified calcium silicate coatings increased with an increase in zinc content. In vitro cytocompatibility evaluation demonstrated that the proliferation and alkaline phosphatase activity and collagen type I (COLI) secretion of osteoblast-like MC3T3-E1 cells on Zn-modified coatings were significantly enhanced compared to the Zn-free coating and Ti-6Al-4V control, and no cytotoxicity appeared on Zn-modified coatings. The better antibacterial activity and the enhanced capability to promote MC3T3-E1 cells differentiation of Zn-modified coatings should be attributed to the slow and constant Zn2+ releasing from the coatings.

  7. Synthesis, crystal structure, DNA binding and photo-induced DNA cleavage activity of (S-methyl-L-cysteine)copper(II) complexes of heterocyclic bases.

    PubMed

    Patra, Ashis K; Nethaji, Munirathinam; Chakravarty, Akhil R

    2007-02-01

    Ternary S-methyl-L-cysteine (SMe-l-cys) copper(II) complexes [Cu(SMe-L-cys)(B)(H(2)O)](X) (1-4), where the heterocyclic base B is 2,2'-bipyridine (bpy, 1), 1,10-phenanthroline (phen, 2), dipyridoquinoxaline (dpq, 3) and dipyridophenazine (dppz, 4), and X is ClO(4)(-) (1-3) or NO(3)(-) (4), are prepared and their DNA binding and cleavage properties studied. Complexes 2 and 4 are structurally characterized by X-ray crystallography. Both the crystal structures show distorted square-pyramidal (4+1) CuN(3)O(2) coordination geometry of the complexes in which the N,O-donor S-methyl-L-cysteine and N,N-donor heterocyclic base bind at the basal plane with a water molecule as the axial ligand. In addition, the dppz structure shows the presence of a 1D-chain formed due to covalent linkage of the carboxylate oxygen atom belonging to another molecule at the elongated axial site. The crystal structures show chemically significant non-covalent interactions like hydrogen bonding involving the axial aqua ligand and pi-pi interactions between dppz ligands. The complexes display a d-d band in the range of 605-654 nm in aqueous dimethylformamide (DMF) solution (9:1 v/v). The redox active complexes show quasireversible cyclic voltammetric response near 0.1 V in DMF assignable to the Cu(II)/Cu(I) couple. The complexes show good binding affinity to calf thymus (CT) DNA giving the order: 4 (dppz)>3 (dpq)>2 (phen)>1 (bpy). The intrinsic binding constants, obtained from UV-visible spectroscopic studies, are 1.3x10(4) and 2.15 x 10(4) M(-1) for 3 and 4, respectively. Control DNA cleavage experiments using pUC19 supercoiled (SC) DNA and minor groove binder distamycin suggest major groove binding propensity for the dppz complex, while the phen and dpq complexes bind at the minor groove of DNA. Complexes 2-4 show DNA cleavage activity in dark in the presence of a reducing agent 3-mercaptopropionic acid (MPA) via a mechanistic pathway involving formation of hydroxyl radical as the reactive

  8. Crystal structure of Arabidopsis thaliana cytokinin dehydrogenase

    SciTech Connect

    Bae, Euiyoung; Bingman, Craig A.; Bitto, Eduard; Aceti, David J.; Phillips, Jr., George N.

    2008-08-13

    Since first discovered in Zea mays, cytokinin dehydrogenase (CKX) genes have been identified in many plants including rice and Arabidopsis thaliana, which possesses CKX homologues (AtCKX1-AtCKX7). So far, the three-dimensional structure of only Z. mays CKX (ZmCKX1) has been determined. The crystal structures of ZmCKX1 have been solved in the native state and in complex with reaction products and a slowly reacting substrate. The structures revealed four glycosylated asparagine residues and a histidine residue covalently linked to FAD. Combined with the structural information, recent biochemical analyses of ZmCKX1 concluded that the final products of the reaction, adenine and a side chain aldehyde, are formed by nonenzymatic hydrolytic cleavage of cytokinin imine products resulting directly from CKX catalysis. Here, we report the crystal structure of AtCKX7 (gene locus At5g21482.1, UniProt code Q9FUJ1).

  9. Requirements for structure determination of aperiodic crystals

    SciTech Connect

    Li, X.; Stern, E.A.; Ma, Y. )

    1991-01-15

    Using computer simulation, we compared the Patterson functions of one-dimensional (1D) randomly packed and quasiperiodic Fibonacci lattices with or without disorder, and a 2D Penrose lattice and random packing of pentagons (icosahedral glass model). Based on these comparisons, we derived some empirical guidelines for distinguishing ideal quasicrystals from aperiodic crystals with disorder using diffraction data. In contrast to periodic crystals, it is essential to include the background to obtain correct Patterson functions of the average structure since the background contains unresolved peaks. In particular, a Bragg peak scattering measurement {ital cannot}, in general, determine the structure of aperiodic crystals. Instead, a diffuse scattering measurement is required, which determines the absolute value of the diffraction background, in addition to the Bragg peaks. We further estimate that, dependent upon the disorder present, it is necessary to include up to 75% of the total diffracted intensity in any analysis.

  10. A novel Bi-based phosphomolybdate photocatalyst K{sub 2}Bi(PO{sub 4})(MoO{sub 4}): Crystal structure, electronic structure and photocatalytic activity

    SciTech Connect

    Huang, Hongwei; Chen, Gong; Wang, Shuobo; Kang, Lei; Lin, Zheshuai; Zhang, Yihe

    2014-03-01

    Graphical abstract: - Highlights: • A new type of phosphomolybdate K{sub 2}Bi(PO{sub 4})(MoO{sub 4}) photocatalyst was successfully synthesized. • The products synthesized at 600 °C were mainly composed of nano-cubes. • The indirect band gap of K{sub 2}Bi(PO{sub 4})(MoO{sub 4}) has been determined to be 2.93 eV. • K{sub 2}Bi(PO{sub 4})(MoO{sub 4}) synthesized at 600 °C exhibits the highest photocatalytic activity. • The electronic structure was calculated by density functional calculations. - Abstract: A novel phosphomolybdate photocatalyst K{sub 2}Bi(PO{sub 4})(MoO{sub 4}) has been successfully developed via a solid-state reaction. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), diffuse reflectance spectrum (DRS) and photoluminescence (PL) spectra. The photocatalytic activities of the samples prepared at different temperature were determined by the photooxidative decomposition of methylene blue (MB) in aqueous solution. The results revealed that K{sub 2}Bi(PO{sub 4})(MoO{sub 4}) can be used as an effective photocatalyst under UV–vis irradiation and the nanocubes obtained at 600 °C exhibits the highest photocatalytic activity. The photodegradation of MB by K{sub 2}Bi(PO{sub 4})(MoO{sub 4}) nanocrystals followed the first-order kinetics. Theoretical calculations on electronic structure confirmed the indirect optical transitions property in the absorption edge region of K{sub 2}Bi(PO{sub 4})(MoO{sub 4}), and the orbital constitutions of CB and VB were also analyzed.

  11. Crystal structure, mutational analysis and RNA-dependent ATPase activity of the yeast DEAD-box pre-mRNA splicing factor Prp28

    SciTech Connect

    Jacewicz, Agata; Schwer, Beate; Smith, Paul; Shuman, Stewart

    2014-10-10

    Yeast Prp28 is a DEAD-box pre-mRNA splicing factor implicated in displacing U1 snRNP from the 5' splice site. Here we report that the 588-aa Prp28 protein consists of a trypsin-sensitive 126-aa N-terminal segment (of which aa 1–89 are dispensable for Prp28 function in vivo) fused to a trypsin-resistant C-terminal catalytic domain. Purified recombinant Prp28 and Prp28-(127–588) have an intrinsic RNA-dependent ATPase activity, albeit with a low turnover number. The crystal structure of Prp28-(127–588) comprises two RecA-like domains splayed widely apart. AMPPNP•Mg2+ is engaged by the proximal domain, with proper and specific contacts from Phe194 and Gln201 (Q motif) to the adenine nucleobase. The triphosphate moiety of AMPPNP•Mg2+ is not poised for catalysis in the open domain conformation. Guided by the Prp28•AMPPNP structure, and that of the Drosophila Vasa•AMPPNP•Mg2+•RNA complex, we targeted 20 positions in Prp28 for alanine scanning. ATP-site components Asp341 and Glu342 (motif II) and Arg527 and Arg530 (motif VI) and RNA-site constituent Arg476 (motif Va) are essential for Prp28 activity in vivo. Synthetic lethality of double-alanine mutations highlighted functionally redundant contacts in the ATP-binding (Phe194-Gln201, Gln201-Asp502) and RNA-binding (Arg264-Arg320) sites. As a result, overexpression of defective ATP-site mutants, but not defective RNA-site mutants, elicited severe dominant-negative growth defects.

  12. Crystal structure, mutational analysis and RNA-dependent ATPase activity of the yeast DEAD-box pre-mRNA splicing factor Prp28

    DOE PAGES

    Jacewicz, Agata; Schwer, Beate; Smith, Paul; ...

    2014-10-10

    Yeast Prp28 is a DEAD-box pre-mRNA splicing factor implicated in displacing U1 snRNP from the 5' splice site. Here we report that the 588-aa Prp28 protein consists of a trypsin-sensitive 126-aa N-terminal segment (of which aa 1–89 are dispensable for Prp28 function in vivo) fused to a trypsin-resistant C-terminal catalytic domain. Purified recombinant Prp28 and Prp28-(127–588) have an intrinsic RNA-dependent ATPase activity, albeit with a low turnover number. The crystal structure of Prp28-(127–588) comprises two RecA-like domains splayed widely apart. AMPPNP•Mg2+ is engaged by the proximal domain, with proper and specific contacts from Phe194 and Gln201 (Q motif) to themore » adenine nucleobase. The triphosphate moiety of AMPPNP•Mg2+ is not poised for catalysis in the open domain conformation. Guided by the Prp28•AMPPNP structure, and that of the Drosophila Vasa•AMPPNP•Mg2+•RNA complex, we targeted 20 positions in Prp28 for alanine scanning. ATP-site components Asp341 and Glu342 (motif II) and Arg527 and Arg530 (motif VI) and RNA-site constituent Arg476 (motif Va) are essential for Prp28 activity in vivo. Synthetic lethality of double-alanine mutations highlighted functionally redundant contacts in the ATP-binding (Phe194-Gln201, Gln201-Asp502) and RNA-binding (Arg264-Arg320) sites. As a result, overexpression of defective ATP-site mutants, but not defective RNA-site mutants, elicited severe dominant-negative growth defects.« less

  13. Shear induced structures in crystallizing cocoa butter

    NASA Astrophysics Data System (ADS)

    Mazzanti, Gianfranco; Guthrie, Sarah E.; Sirota, Eric B.; Marangoni, Alejandro G.; Idziak, Stefan H. J.

    2004-03-01

    Cocoa butter is the main structural component of chocolate and many cosmetics. It crystallizes in several polymorphs, called phases I to VI. We used Synchrotron X-ray diffraction to study the effect of shear on its crystallization. A previously unreported phase (phase X) was found and a crystallization path through phase IV under shear was observed. Samples were crystallized under shear from the melt in temperature controlled Couette cells, at final crystallization temperatures of 17.5^oC, 20^oC and 22.5^oC in Beamline X10A of NSLS. The formation of phase X was observed at low shear rates (90 s-1) and low crystallization temperature (17.5^oC), but was absent at high shear (720 s-1) and high temperature (20^oC). The d-spacing and melting point suggest that this new phase is a mixture rich on two of the three major components of cocoa butter. We also found that, contrary to previous reports, the transition from phase II to phase V can happen through the intermediate phase IV, at high shear rates and temperature.

  14. Bio-relevant cobalt(II) complexes with compartmental polyquinoline ligand: synthesis, crystal structures and biological activities.

    PubMed

    Li, Jun-Ling; Jiang, Lin; Wang, Bi-Wei; Tian, Jin-Lei; Gu, Wen; Liu, Xin; Yan, Shi-Ping

    2015-04-01

    Three new Co(II) complexes, [Co4(L)2(μ3-CrO4)2](ClO4)2·2CH3CN (1), [Co2(L)(μ2-na)(H2O)](ClO4)2 (2) and [Co2(L)(μ2-ba)](ClO4)2·0.5CH3CN (3) (Hna=nicotinic acid, Hba=benzoic acid, HL=N,N,N',N'-tetrakis (2-quinolylmethyl)-1,3-diaminopropan-2-ol), have been synthesized and characterized by various physicochemical techniques. The Co(II) centers are connected by endogenous alkoxy bridge from L(-) and various extrinsic auxiliary linkers, some of which display coordination number asymmetry (5, 6-coordinated for 1 and 2; 5, 5-coordinated for 3). It is worth mentioning that complex 1 contains two rare reported μ3-η(1), η(1), η(1)-CrO4(2-) moieties. Susceptibility data of three complexes indicated intramolecular antiferromagnetic coupling of high-spin Co(II) atoms with exchange integral values (J) -14.94 cm(-1), -11.26 cm(-1) and -13.66 cm(-1) for 1, 2 and 3, respectively. Interaction of compounds with calf thymus DNA (CT-DNA) have been investigated by absorption spectral titration, ethidium bromide (EB) displacement assay and viscosity measurement, which revealed that compounds bound to CT-DNA with a moderate intercalative mode, accompanied the affinities order: 1>2≈3. Three complexes exhibit oxidative cleavage of pBR322 plasmid DNA including a reliance on H2O2 as the activator. Compound 1 demonstrates an increased DNA cleavage activity as compared with 2 and 3, which could degrade super coiled DNA (SC DNA) into nicked coiled DNA (NC DNA) in lower concentration (5 μM). Moreover, all compounds could quench the intrinsic fluorescence of bovine serum albumin (BSA) in a static quenching process. Complex 1 also shows higher anticancer activity than cisplatin with lower IC50 value of incubation for both 24 h and 48 h.

  15. The crystal structure of rice (Oryza sativa L.) Os4BGlu12, an oligosaccharide and tuberonic acid glucoside-hydrolyzing β-glucosidase with significant thioglucohydrolase activity.

    PubMed

    Sansenya, Sompong; Opassiri, Rodjana; Kuaprasert, Buabarn; Chen, Chun-Jung; Cairns, James R Ketudat

    2011-06-01

    Rice Os4BGlu12, a glycoside hydrolase family 1 (GH1) β-glucosidase, hydrolyzes β-(1,4)-linked oligosaccharides of 3-6 glucosyl residues and the β-(1,3)-linked disaccharide laminaribiose, as well as certain glycosides. The crystal structures of apo Os4BGlu12, and its complexes with 2,4-dinitrophenyl-2-deoxyl-2-fluoroglucoside (DNP2FG) and 2-deoxy-2-fluoroglucose (G2F) were solved at 2.50, 2.45 and 2.40Å resolution, respectively. The overall structure of rice Os4BGlu12 is typical of GH1 enzymes, but it contains an extra disulfide bridge in the loop B region. The glucose ring of the G2F in the covalent intermediate was found in a (4)C(1) chair conformation, while that of the noncovalently bound DNP2FG had a (1)S(3) skew boat, consistent with hydrolysis via a (4)H(3) half-chair transition state. The position of the catalytic nucleophile (Glu393) in the G2F structure was more similar to that of the Sinapsis alba myrosinase G2F complex than to that in covalent intermediates of other O-glucosidases, such as rice Os3BGlu6 and Os3BGlu7 β-glucosidases. This correlated with a significant thioglucosidase activity for Os4BGlu12, although with 200- to 1200-fold lower k(cat)/K(m) values for S-glucosides than the comparable O-glucosides, while hydrolysis of S-glucosides was undetectable for Os3BGlu6 and Os3BGlu7.

  16. Materials research at Stanford University. [composite materials, crystal structure, acoustics

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Research activity related to the science of materials is described. The following areas are included: elastic and thermal properties of composite materials, acoustic waves and devices, amorphous materials, crystal structure, synthesis of metal-metal bonds, interactions of solids with solutions, electrochemistry, fatigue damage, superconductivity and molecular physics and phase transition kinetics.

  17. Noninvasive Nanoscopy Uncovers the Impact of the Hierarchical Porous Structure on the Catalytic Activity of Single Dealuminated Mordenite Crystals

    PubMed Central

    Kubarev, Alexey V; Janssen, Kris P F; Roeffaers, Maarten B J

    2015-01-01

    Spatial restrictions around catalytic sites, provided by molecular-sized micropores, are beneficial to reaction selectivity but also inherently limit diffusion. The molecular transport can be enhanced by introducing meso- and macropores. However, the impact of this extraframework porosity on the local nanoscale reactivity is relatively unexplored. Herein we show that the area of enhanced reactivity in hierarchical zeolite, examined with super-resolution fluorescence microscopy, is spatially restricted to narrow zones around meso- and macropores, as observed with focused ion-beam-assisted scanning electron microscopy. This comparison indicates that reagent molecules efficiently reach catalytic active sites only in the micropores surrounding extraframework porosity and that extensive macroporosity does not warrant optimal reactivity distribution throughout a hierarchical porous zeolite. PMID:26697122

  18. Crystal structure, exogenous ligand binding, and redox properties of an engineered diiron active site in a bacterial hemerythrin.

    PubMed

    Okamoto, Yasunori; Onoda, Akira; Sugimoto, Hiroshi; Takano, Yu; Hirota, Shun; Kurtz, Donald M; Shiro, Yoshitsugu; Hayashi, Takashi

    2013-11-18

    A nonheme diiron active site in a 13 kDa hemerythrin-like domain of the bacterial chemotaxis protein DcrH-Hr contains an oxo bridge, two bridging carboxylate groups from Glu and Asp residues, and five terminally ligated His residues. We created a unique diiron coordination sphere containing five His and three Glu/Asp residues by replacing an Ile residue with Glu in DcrH-Hr. Direct coordination of the carboxylate group of E119 to Fe2 of the diiron site in the I119E variant was confirmed by X-ray crystallography. The substituted Glu is adjacent to an exogenous ligand-accessible tunnel. UV-vis absorption spectra indicate that the additional coordination of E119 inhibits the binding of the exogenous ligands azide and phenol to the diiron site. The extent of azide binding to the diiron site increases at pH ≤ 6, which is ascribed to protonation of the carboxylate ligand of E119. The diferrous state (deoxy form) of the engineered diiron site with the extra Glu residue is found to react more slowly than wild type with O2 to yield the diferric state (met form). The additional coordination of E119 to the diiron site also slows the rate of reduction from the met form. All these processes were found to be pH-dependent, which can be attributed to protonation state and coordination status of the E119 carboxylate. These results demonstrate that modifications of the endogenous coordination sphere can produce significant changes in the ligand binding and redox properties in a prototypical nonheme diiron-carboxylate protein active site.

  19. Crystal structure of monobasic sodium tartrate monohydrate

    SciTech Connect

    Titaeva, E. K. Somov, N. V.; Portnov, V. N.; Titaev, D. N.

    2015-01-15

    Crystals of a new polymorphic modification of monobasic sodium tartrate monohydrate NaHC{sub 4}H{sub 4}O{sub 6} · H{sub 2}O have been grown in a metasilicate gel. Their atomic structure is solved by X-ray diffraction.

  20. Hydrodynamics and Rheology of Active Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Cui, Zhenlu

    2012-02-01

    Active liquid crystals such as swimming bacteria, active gels and assemblies of motors and filaments are active complex fluids. Such systems differ from their passive counterparts in that particles absorb energy and generate motion. They are interesting from a more fundamental perspective as their dynamic phenomenons are both physically fascinating and potentially of great biological significance. In this talk, I will present a continuum model for active liquid crystals and analyze the behavior of a suspension subjected to a weak Poiseuille flow. Hydrodynamics, stability and rheology will also be discussed.

  1. Structure analysis on synthetic emerald crystals

    NASA Astrophysics Data System (ADS)

    Lee, Pei-Lun; Lee, Jiann-Shing; Huang, Eugene; Liao, Ju-Hsiou

    2013-05-01

    Single crystals of emerald synthesized by means of the flux method were adopted for crystallographic analyses. Emerald crystals with a wide range of Cr3+-doping content up to 3.16 wt% Cr2O3 were examined by X-ray single crystal diffraction refinement method. The crystal structures of the emerald crystals were refined to R 1 (all data) of 0.019-0.024 and w R 2 (all data) of 0.061-0.073. When Cr3+ substitutes for Al3+, the main adjustment takes place in the Al-octahedron and Be-tetrahedron. The effect of substitution of Cr3+ for Al3+ in the beryl structure results in progressively lengthening of the Al-O distance, while the length of the other bonds remains nearly unchanged. The substitution of Cr3+ for Al3+ may have caused the expansion of a axis, while keeping the c axis unchanged in the emerald lattice. As a consequence, the Al-O-Si and Al-O-Be bonding angles are found to decrease, while the angle of Si-O-Be increases as the Al-O distance increases during the Cr replacement.

  2. A new copper(II) complex with 2-thenoyltrifluoroacetone and 2,2-bipyridine: Crystal structure, spectral properties and cytotoxic activity

    NASA Astrophysics Data System (ADS)

    Lopes, P. S.; Paixão, D. A.; de Paula, F. C. S.; Ferreira, A. M. D. C.; Ellena, J.; Guilardi, S.; Pereira-Maia, E. C.; Guerra, W.

    2013-02-01

    This work reports the synthesis and characterization of a new copper(II) complex with 2-thenoyltrifluoroacetone (HTTA) and 2,2-bipyridine (bipy). The complex was characterized by elemental analysis, UV-Vis, IR and EPR. The crystal structure was determined by single-crystal X-ray diffraction. The copper ion has a distorted square-pyramidal geometry and is coordinated to two bidentate ligands (HTTA and bipy) and a perchlorate ion weakly bonded in the apical position. The crystal packing is stabilized by non-classical hydrogen bonds and weak interactions π-π stacking. In the copper complex, the metal ion binds to HTTA via the oxygen atoms of the β-diketone group and to bipy via its two heterocyclic nitrogens. The title compound inhibits the growth of K562 cells with an IC50 value equal to 28.2 μmol L-1.

  3. The Crystal Structure of GXGD Membrane Protease FlaK

    SciTech Connect

    J Hu; Y Xue; S Lee; Y Ha

    2011-12-31

    The GXGD proteases are polytopic membrane proteins with catalytic activities against membrane-spanning substrates that require a pair of aspartyl residues. Representative members of the family include preflagellin peptidase, type 4 prepilin peptidase, presenilin and signal peptide peptidase. Many GXGD proteases are important in medicine. For example, type 4 prepilin peptidase may contribute to bacterial pathogenesis, and mutations in presenilin are associated with Alzheimer's disease. As yet, there is no atomic-resolution structure in this protease family. Here we report the crystal structure of FlaK, a preflagellin peptidase from Methanococcus maripaludis, solved at 3.6 {angstrom} resolution. The structure contains six transmembrane helices. The GXGD motif and a short transmembrane helix, helix 4, are positioned at the centre, surrounded by other transmembrane helices. The crystal structure indicates that the protease must undergo conformational changes to bring the GXGD motif and a second essential aspartyl residue from transmembrane helix 1 into close proximity for catalysis. A comparison of the crystal structure with models of presenilin derived from biochemical analysis reveals three common transmembrane segments that are similarly arranged around the active site. This observation reinforces the idea that the prokaryotic and human proteases are evolutionarily related. The crystal structure presented here provides a framework for understanding the mechanism of the GXGD proteases, and may facilitate the rational design of inhibitors that target specific members of the family.

  4. The crystal structure of GXGD membrane protease FlaK

    SciTech Connect

    Hu, Jian; Xue, Yi; Lee, Sangwon; Ha, Ya

    2011-09-20

    The GXGD proteases are polytopic membrane proteins with catalytic activities against membrane-spanning substrates that require a pair of aspartyl residues. Representative members of the family include preflagellin peptidase, type 4 prepilin peptidase, presenilin and signal peptide peptidase. Many GXGD proteases are important in medicine. For example, type 4 prepilin peptidase may contribute to bacterial pathogenesis, and mutations in presenilin are associated with Alzheimer's disease. As yet, there is no atomic-resolution structure in this protease family. Here we report the crystal structure of FlaK, a preflagellin peptidase from Methanococcus maripaludis, solved at 3.6 {angstrom} resolution. The structure contains six transmembrane helices. The GXGD motif and a short transmembrane helix, helix 4, are positioned at the centre, surrounded by other transmembrane helices. The crystal structure indicates that the protease must undergo conformational changes to bring the GXGD motif and a second essential aspartyl residue from transmembrane helix 1 into close proximity for catalysis. A comparison of the crystal structure with models of presenilin derived from biochemical analysis reveals three common transmembrane segments that are similarly arranged around the active site. This observation reinforces the idea that the prokaryotic and human proteases are evolutionarily related. The crystal structure presented here provides a framework for understanding the mechanism of the GXGD proteases, and may facilitate the rational design of inhibitors that target specific members of the family.

  5. Crystal structure of a plectonemic RNA supercoil

    SciTech Connect

    Stagno, Jason R.; Ma, Buyong; Li, Jess; Altieri, Amanda S.; Byrd, R. Andrew; Ji, Xinhua

    2012-12-14

    Genome packaging is an essential housekeeping process in virtually all organisms for proper storage and maintenance of genetic information. Although the extent and mechanisms of packaging vary, the process involves the formation of nucleic-acid superstructures. Crystal structures of DNA coiled coils indicate that their geometries can vary according to sequence and/or the presence of stabilizers such as proteins or small molecules. However, such superstructures have not been revealed for RNA. Here we report the crystal structure of an RNA supercoil, which displays one level higher molecular organization than previously reported structures of DNA coiled coils. In the presence of an RNA-binding protein, two interlocking RNA coiled coils of double-stranded RNA, a 'coil of coiled coils', form a plectonemic supercoil. Molecular dynamics simulations suggest that protein-RNA interaction is required for the stability of the supercoiled RNA. This study provides structural insight into higher order packaging mechanisms of nucleic acids.

  6. Crystal structures of soybean beta-amylase reacted with beta-maltose and maltal: active site components and their apparent roles in catalysis.

    PubMed

    Mikami, B; Degano, M; Hehre, E J; Sacchettini, J C

    1994-06-28

    The crystal structures of catalytically competent soybean beta-amylase, unliganded and bathed with small substrates (beta-maltose, maltal), were determined at 1.9-2.2-A resolution. Two molecules of beta-maltose substrate bind to the protein in tandem, with some maltotetraose enzymic condensation product sharing the same binding sites. The beta-amylase soaked with maltal shows a similar arrangement of two bound molecules of 2-deoxymaltose, the enzymic hydration product. In each case the nonreducing ends of the saccharide ligands are oriented toward the base of the protein's active site pocket. The catalytic center, located between the bound disaccharides and found deeper in the pocket than where the inhibitor alpha-cyclodextrin binds, is characterized by the presence of oppositely disposed carboxyl groups of two conserved glutamic acid residues. The OE2 carboxyl of Glu 186 is below the plane of the penultimate glucose residue (Glc 2) of bound maltotetraose, 2.6 A from the oxygen atom of that ligand's penultimate alpha-1,4-glucosidic linkage. The OE2 carboxyl of Glu 380 lies above the plane of Glc 2, 2.8 A from the O-1 atom of the more deeply bound beta-maltose. Saccharide binding does not alter the spatial coordinates of these two carboxyl groups or the overall conformation of the 57-kDa protein. However, the saccharide complexes of the active enzyme are associated with a significant (10 A) local conformational change in a peptide segment of a loop (L3) that borders the active site pocket.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Crystal structure and theoretical study of IR and 1H and 13C NMR spectra of cordatin, a natural product with antiulcerogenic activity

    NASA Astrophysics Data System (ADS)

    Brasil, Davi S. B.; Alves, Cláudio N.; Guilhon, Giselle M. S. P.; Muller, Adolfo H.; Secco, Ricardo De S.; Peris, Gabriel; Llusar, Rosa

    Cordatin is a furan diterpenoid with a clerodane skeleton isolated from Croton palanostigma Klotzsch (Euphorbiaceae). This natural product shows significant antiulcerogenic activity, similar to cimetidine (Tagamet®), a compound used for the treatment of peptic ulcers. The crystal structure of cordatin was obtained by X-ray diffraction and its geometrical parameters were compared with theoretical calculations at the B3LYP theory level. The IR and NMR (1H and 13C chemical shifts and coupling constants) spectra were obtained and compared with the theoretical calculations. The B3LYP theory level, with the 6-31G(d,p) and 6-311G(d,p) basis set, provided IR absorption values close to the experimental data. Moreover, theoretical NMR parameters obtained in both gas phase and chloroform solvent at the B3PW91/DGDZVP, B3LYP/6-311+G(2d,p), and B3PW91/6-311+G(2d,p) levels showed good correlations with the experimental results.

  8. Crystal structure of zwitterionic bisimidazolium sulfonates

    NASA Astrophysics Data System (ADS)

    Kohmoto, Shigeo; Okuyama, Shinpei; Yokota, Nobuyuki; Takahashi, Masahiro; Kishikawa, Keiki; Masu, Hyuma; Azumaya, Isao

    2012-05-01

    Crystal structures of three zwitterionic bisimidazolium salts 1-3 in which imidazolium sulfonate moieties were connected with aromatic linkers, p-xylylene, 4,4'-dimethylenebiphenyl, and phenylene, respectively, were examined. The latter two were obtained as hydrates. An S-shaped molecular structure in which the sulfonate moiety was placed on the imidazolium ring was observed for 1. A helical array of hydrated water molecules was obtained for 2 while a linear array of hydrated water molecules was observed for 3.

  9. Crystal Structure of Human Enterovirus 71

    SciTech Connect

    Plevka, Pavel; Perera, Rushika; Cardosa, Jane; Kuhn, Richard J.; Rossmann, Michael G.

    2013-04-08

    Enterovirus 71 is a picornavirus associated with fatal neurological illness in infants and young children. Here, we report the crystal structure of enterovirus 71 and show that, unlike in other enteroviruses, the 'pocket factor,' a small molecule that stabilizes the virus, is partly exposed on the floor of the 'canyon.' Thus, the structure of antiviral compounds may require a hydrophilic head group designed to interact with residues at the entrance of the pocket.

  10. Structures and Crystal Chemistry of Layered Materials

    NASA Astrophysics Data System (ADS)

    Partin, Daniel Edward

    The crystal chemistry of several layered materials has been explored using a variety of methods, with an emphasis on their structural aspects. In the second part of this work, the structure of several copper oxides that are of significance to the study of superconductors are described. The crystal structures of MgCl_2 and CdCl_2 have been refined using powder X-ray diffraction data. They have the space group Roverline{3}m. For magnesium chloride the unit cell constants are a = 3.6363(1) A, c = 17.6663(5) A. For cadmium chloride they are a = 3.8459(1) A, c = 17.4931(4) A. The structures and their relationship to that of fluorite are discussed within the framework of a Born-Mayer model. The crystal structure of Mg(OD)_2 has been refined from time-of flight (TOF) neutron diffraction data and found to be trigonal, Poverline {3}m1, a = 3.1455(1) A, c = 4.7646(3) A. The data were collected at 305 K. The O-D bond length is 0.937 (1) A (corrected for "riding" motion 0.948 A). An infrared/Raman study of Mg(OH)_2 was conducted in a diamond anvil cell in the pressure range from room pressure up to 7 Gpa. For layered crystals, it was found that as the internally fixed layers are moved apart the Madelung energy of the system becomes constant after a very short distance, although not necessarily that of the given crystal's energy at ambient conditions. The crystal structure of Sr(OD)_2 has been refined from time-of-flight neutron diffraction data and the deuterium positions found. Strontium deuteroxide crystallizes in the space group Pnma, with the unit cell constants of a = 9.8269(5) A, b = 3.9051(2) A, and c = 6.0733(3) A. The crystal structures of SrCuO_2 and Sr_2CuO_3 have been refined by time-of-flight neutron diffraction. For SrCuO_2 the space group is Cmcm, a = 3.57002(2), b = 16.32268(8), c = 3.91100(2); for Sr _2CuO_3 the space group is Immm, a = 3.49900(5), b = 12.7009(2), c = 3.91120(5). In both structures the strontium atoms are coordinated by seven oxygen atoms

  11. THE CRYSTAL STRUCTURE OF 2,7-DIACETOXYTRANS-15,16-DIMETHYL-15,16-DIHYDROPYRENE,

    DTIC Science & Technology

    AROMATIC COMPOUNDS, CRYSTAL STRUCTURE ), (*POLYCYCLIC COMPOUNDS, CRYSTAL STRUCTURE ), (* CRYSTAL STRUCTURE , POLYCYCLIC COMPOUNDS), ESTERS, MOLECULAR STRUCTURE, CHEMICAL BONDS, X RAY DIFFRACTION, SCINTILLATION COUNTERS, CANADA

  12. Photonic Crystal Laser-Driven Accelerator Structures

    SciTech Connect

    Cowan, Benjamin M.

    2007-08-22

    Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques.

  13. Synthesis, characterization, X-ray crystal structure, DFT calculation and antibacterial activities of new vanadium(IV, V) complexes containing chelidamic acid and novel thiourea derivatives.

    PubMed

    Farzanfar, Javad; Ghasemi, Khaled; Rezvani, Ali Reza; Delarami, Hojat Samareh; Ebrahimi, Ali; Hosseinpoor, Hona; Eskandari, Amir; Rudbari, Hadi Amiri; Bruno, Giuseppe

    2015-06-01

    Three new thiourea ligands derived from the condensation of aroyl- and aryl-isothiocyanate derivatives with 2,6-diaminopyridine, named 1,1'-(pyridine-2,6-diyl)bis(3-(benzoyl)thiourea) (L1), 1,1'-(pyridine-2,6-diyl)bis(3-(2-chlorobenzoyl)thiourea) (L2) and 1,1'-(pyridine-2,6-diyl)bis(3-(4-chlorophenyl)thiourea) (L3), their oxido-vanadium(IV) complexes, namely [VO(L1('))(H2O)] (C1), [VO(L2('))(H2O)] (C2) and [VO(L3('))(H2O)] (C3), and also, dioxo-vanadium(V) complex containing 4-hydroxy-2,6-pyridine dicarboxylic acid (chelidamic acid, H2dipic-OH) and metformin (N,N-dimethylbiguanide, Met), named [H2Met][VO2(dipic-OH)]2·H2O (C4), were synthesized and characterized by elemental analysis, FTIR and (1)H NMR and UV-visible spectroscopies. Proposed structures for free thiourea ligands and their vanadium complexes were corroborated by applying geometry optimization and conformational analysis. Solid state structure of complex [H2Met][VO2(dipic-OH)]2·H2O (triclinic, Pī) was fully determined by single crystal X-ray diffraction analysis. In this complex, metformin is double protonated and acted as counter ion. The antibacterial properties of these compounds were investigated in vitro against standard Gram-positive and Gram-negative bacterial strains. The experiments showed that vanadium(IV) complexes had the superior antibacterial activities than novel thiourea derivatives and vanadium(V) complex against all Gram-positive and Gram-negative bacterial strains.

  14. Crystal structure of Clostridium difficile toxin A

    PubMed Central

    Chumbler, Nicole M.; Rutherford, Stacey A.; Zhang, Zhifen; Farrow, Melissa A.; Lisher, John P.; Farquhar, Erik; Giedroc, David P.; Spiller, Benjamin W.; Melnyk, Roman A.; Lacy, D. Borden

    2016-01-01

    Clostridium difficile infection is the leading cause of hospital-acquired diarrhoea and pseudomembranous colitis. Disease is mediated by the actions of two toxins, TcdA and TcdB, which cause the diarrhoea, as well as inflammation and necrosis within the colon1,2. The toxins are large (308 and 270 kDa, respectively), homologous (47% amino acid identity) glucosyltransferases that target small GTPases within the host3,4. The multidomain toxins enter cells by receptor-mediated endocytosis and, upon exposure to the low pH of the endosome, insert into and deliver two enzymatic domains across the membrane. Eukaryotic inositol-hexakisphosphate (InsP6) binds an autoprocessing domain to activate a proteolysis event that releases the N-terminal glucosyltransferase domain into the cytosol. Here, we report the crystal structure of a 1,832-amino-acid fragment of TcdA (TcdA1832), which reveals a requirement for zinc in the mechanism of toxin autoprocessing and an extended delivery domain that serves as a scaffold for the hydrophobic α-helices involved in pH-dependent pore formation. A surface loop of the delivery domain whose sequence is strictly conserved among all large clostridial toxins is shown to be functionally important, and is highlighted for future efforts in the development of vaccines and novel therapeutics. PMID:27571750

  15. The Surface Structure of Ground Metal Crystals

    NASA Technical Reports Server (NTRS)

    Boas, W.; Schmid, E.

    1944-01-01

    The changes produced on metallic surfaces as a result of grinding and polishing are not as yet fully understood. Undoubtedly there is some more or less marked change in the crystal structure, at least, in the top layer. Hereby a diffusion of separated crystal particles may be involved, or, on plastic material, the formation of a layer in greatly deformed state, with possible recrystallization in certain conditions. Czochralski verified the existence of such a layer on tin micro-sections by successive observations of the texture after repeated etching; while Thomassen established, roentgenographically by means of the Debye-Scherrer method, the existence of diffused crystal fractions on the surface of ground and polished tin bars, which he had already observed after turning (on the lathe). (Thickness of this layer - 0.07 mm). Whether this layer borders direct on the undamaged base material or whether deformed intermediate layers form the transition, nothing is known. One observation ty Sachs and Shoji simply states that after the turning of an alpha-brass crystal the disturbance starting from the surface, penetrates fairly deep (approx. 1 mm) into the crystal (proof by recrystallization at 750 C).

  16. Crystal Structure Prediction for Cyclotrimethylene Trinitramine (RDX) from First Principles

    DTIC Science & Technology

    2009-04-01

    REPORT Crystal structure prediction for cyclotrimethylene trinitramine (RDX) from ?rst principles 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Crystal... structure prediction and molecular dynamics methods were applied to the cyclotrimethylene trinitramine (RDX) crystal to explore the stability rankings...500 high-density structures resulting from molecular packing were minimized and the 14 lowest-energy structures were subjected to isothermal

  17. Dopant activation mechanism of Bi wire-δ-doping into Si crystal, investigated with wavelength dispersive fluorescence x-ray absorption fine structure and density functional theory.

    PubMed

    Murata, Koichi; Kirkham, Christopher; Shimomura, Masaru; Nitta, Kiyofumi; Uruga, Tomoya; Terada, Yasuko; Nittoh, Koh-Ichi; Bowler, David R; Miki, Kazushi

    2017-04-20

    We successfully characterized the local structures of Bi atoms in a wire-δ-doped layer (1/8 ML) in a Si crystal, using wavelength dispersive fluorescence x-ray absorption fine structure at the beamline BL37XU, in SPring-8, with the help of density functional theory calculations. It was found that the burial of Bi nanolines on the Si(0 0 1) surface, via growth of Si capping layer at 400 °C by molecular beam epitaxy, reduced the Bi-Si bond length from [Formula: see text] to [Formula: see text] Å. We infer that following epitaxial growth the Bi-Bi dimers of the nanoline are broken, and the Bi atoms are located at substitutional sites within the Si crystal, leading to the shorter Bi-Si bond lengths.

  18. Dopant activation mechanism of Bi wire-δ-doping into Si crystal, investigated with wavelength dispersive fluorescence x-ray absorption fine structure and density functional theory

    NASA Astrophysics Data System (ADS)

    Murata, Koichi; Kirkham, Christopher; Shimomura, Masaru; Nitta, Kiyofumi; Uruga, Tomoya; Terada, Yasuko; Nittoh, Koh-ichi; Bowler, David R.; Miki, Kazushi

    2017-04-01

    We successfully characterized the local structures of Bi atoms in a wire-δ-doped layer (1/8 ML) in a Si crystal, using wavelength dispersive fluorescence x-ray absorption fine structure at the beamline BL37XU, in SPring-8, with the help of density functional theory calculations. It was found that the burial of Bi nanolines on the Si(0 0 1) surface, via growth of Si capping layer at 400 °C by molecular beam epitaxy, reduced the Bi–Si bond length from 2.79+/- 0.01~{\\mathring{\\text{A}}} to 2.63+/- 0.02 Å. We infer that following epitaxial growth the Bi–Bi dimers of the nanoline are broken, and the Bi atoms are located at substitutional sites within the Si crystal, leading to the shorter Bi–Si bond lengths.

  19. Modeling the SHG activities of diverse protein crystals

    PubMed Central

    Haupert, Levi M.; DeWalt, Emma L.; Simpson, Garth J.

    2012-01-01

    A symmetry-additive ab initio model for second-harmonic generation (SHG) activity of protein crystals was applied to assess the likely protein-crystal coverage of SHG microscopy. Calculations were performed for 250 proteins in nine point-group symmetries: a total of 2250 crystals. The model suggests that the crystal symmetry and the limit of detection of the instrument are expected to be the strongest predictors of coverage of the factors considered, which also included secondary-structural content and protein size. Much of the diversity in SHG activity is expected to arise primarily from the variability in the intrinsic protein response as well as the orientation within the crystal lattice. Two or more orders-of-­magnitude variation in intensity are expected even within protein crystals of the same symmetry. SHG measurements of tetragonal lysozyme crystals confirmed detection, from which a protein coverage of ∼84% was estimated based on the proportion of proteins calculated to produce SHG responses greater than that of tetragonal lysozyme. Good agreement was observed between the measured and calculated ratios of the SHG intensity from lysozyme in tetragonal and monoclinic lattices. PMID:23090400

  20. Gas hydrate single-crystal structure analyses.

    PubMed

    Kirchner, Michael T; Boese, Roland; Billups, W Edward; Norman, Lewis R

    2004-08-04

    The first single-crystal diffraction studies on methane, propane, methane/propane, and adamantane gas hydrates SI, SII, and SH have been performed. To circumvent the problem of very slow crystal growth, a novel technique of in situ cocrystallization of gases and liquids resulting in oligocrystalline material in a capillary has been developed. With special data treatment, termed oligo diffractometry, structural data of the gas hydrates of methane, acetylene, propane, a propane/ethanol/methane-mixture and an adamantane/methane-mixture were obtained. Cell parameters are in accord with reported values. Host network and guest are subject to extensive disorder, reducing the reliability of structural information. It was found that most cages are fully occupied by a guest molecule with the exception of the dodecahedral cage in the acetylene hydrate which is only filled to 60%. For adamantane in the icosahedral cage a disordered model is proposed.

  1. Structural phase transitions in layered perovskitelike crystals

    SciTech Connect

    Aleksandrov, K.S.

    1995-03-01

    Possible symmetry changes due to small tilts of octahedra are considered for layered perovskite-like crystals containing slabs of several ({ell}) layers of comer-sharing octahedra. In the crystals with {ell} > 1, four types of distortions are possible; as a rule, these distortions correspond to the librational modes of the parent lattice. Condensation of these soft modes is the reason for structural phase transitions or sequences of phase transitions. The results obtained are compared with the known experimental data for a number of layered ferroelectric and ferroelastic perovskite-like compounds. An application of the results to the initial stage of determining unknown structures is discussed with particular attention paid to high-temperature superconductors. 76 refs., 9 figs., 7 tabs.

  2. Slow-light-enhanced gain in active photonic crystal waveguides.

    PubMed

    Ek, Sara; Lunnemann, Per; Chen, Yaohui; Semenova, Elizaveta; Yvind, Kresten; Mork, Jesper

    2014-09-30

    Passive photonic crystals have been shown to exhibit a multitude of interesting phenomena, including slow-light propagation in line-defect waveguides. It was suggested that by incorporating an active material in the waveguide, slow light could be used to enhance the effective gain of the material, which would have interesting application prospects, for example enabling ultra-compact optical amplifiers for integration in photonic chips. Here we experimentally investigate the gain of a photonic crystal membrane structure with embedded quantum wells. We find that by solely changing the photonic crystal structural parameters, the maximum value of the gain coefficient can be increased compared with a ridge waveguide structure and at the same time the spectral position of the peak gain be controlled. The experimental results are in qualitative agreement with theory and show that gain values similar to those realized in state-of-the-art semiconductor optical amplifiers should be attainable in compact photonic integrated amplifiers.

  3. Slow-light-enhanced gain in active photonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Ek, Sara; Lunnemann, Per; Chen, Yaohui; Semenova, Elizaveta; Yvind, Kresten; Mork, Jesper

    2014-09-01

    Passive photonic crystals have been shown to exhibit a multitude of interesting phenomena, including slow-light propagation in line-defect waveguides. It was suggested that by incorporating an active material in the waveguide, slow light could be used to enhance the effective gain of the material, which would have interesting application prospects, for example enabling ultra-compact optical amplifiers for integration in photonic chips. Here we experimentally investigate the gain of a photonic crystal membrane structure with embedded quantum wells. We find that by solely changing the photonic crystal structural parameters, the maximum value of the gain coefficient can be increased compared with a ridge waveguide structure and at the same time the spectral position of the peak gain be controlled. The experimental results are in qualitative agreement with theory and show that gain values similar to those realized in state-of-the-art semiconductor optical amplifiers should be attainable in compact photonic integrated amplifiers.

  4. Crystal Structure and Properties of Tetrathiafulvalenium Triiodide.

    DTIC Science & Technology

    1979-12-03

    CK? Task No. NR 05- ;TECHNICAL RE 10.9 -, -rysta-i-Strictreand Prop-eities of/ -4V ’ t-Tetrathiafulvalenium Triiodide - K1oe by obert C./Teitelbaum...CRYSTAL STRUCTURE AND PROPERTIES OF TETRATHAFULVALENIUM TRIIODIDE la, b, *la 2 Idby Robert C. Teitelbaum, Tobin J. Marks a and Carroll K. Johnson...contains disordered chains of triiodide ions and disordered TTF stacks ((TTF + o7)(I )o.7). 4g, 6, reliminary X-ray crystallographic investigations sug

  5. Crystal Structures of New Ammonium 5-Aminotetrazolates

    PubMed Central

    Lampl, Martin; Salchner, Robert; Laus, Gerhard; Braun, Doris E.; Kahlenberg, Volker; Wurst, Klaus; Fuhrmann, Gerda; Schottenberger, Herwig; Huppertz, Hubert

    2015-01-01

    The crystal structures of three salts of anionic 5-aminotetrazole are described. The tetramethylammonium salt (P1‒) forms hydrogen-bonded ribbons of anions which accept weak C–H⋯N contacts from the cations. The cystamine salt (C2/c) shows wave-shaped ribbons of anions linked by hydrogen bonds to screw-shaped dications. The tetramethylguanidine salt (P21/c) exhibits layers of anions hydrogen-bonded to the cations. PMID:26753100

  6. Observation of extraordinary optical activity in planar chiral photonic crystals.

    PubMed

    Konishi, Kuniaki; Bai, Benfeng; Meng, Xiangfeng; Karvinen, Petri; Turunen, Jari; Svirko, Yuri P; Kuwata-Gonokami, Makoto

    2008-05-12

    Control of light polarization is a key technology in modern photonics including application to optical manipulation of quantum information. The requisite is to obtain large rotation in isotropic media with small loss. We report on extraordinary optical activity in a planar dielectric on-waveguide photonic crystal structure, which has no in-plane birefringence and shows polarization rotation of more than 25 degrees for transmitted light. We demonstrate that in the planar chiral photonic crystal, the coupling of the normally incident light wave with low-loss waveguide and Fabry-Pérot resonance modes results in a dramatic enhancement of the optical activity.

  7. CRYSTAL STRUCTURE ANALYSIS OF A PUTATIVE OXIDOREDUCTASE FROM KLEBSIELLA PNEUMONIAE

    SciTech Connect

    Baig, M.; Brown, A.; Eswaramoorthy, S.; Swaminathan, S.

    2009-01-01

    Klebsiella pneumoniae, a gram-negative enteric bacterium, is found in nosocomial infections which are acquired during hospital stays for about 10% of hospital patients in the United States. The crystal structure of a putative oxidoreductase from K. pneumoniae has been determined. The structural information of this K. pneumoniae protein was used to understand its function. Crystals of the putative oxidoreductase enzyme were obtained by the sitting drop vapor diffusion method using Polyethylene glycol (PEG) 3350, Bis-Tris buffer, pH 5.5 as precipitant. These crystals were used to collect X-ray data at beam line X12C of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL). The crystal structure was determined using the SHELX program and refi ned with CNS 1.1. This protein, which is involved in the catalysis of an oxidation-reduction (redox) reaction, has an alpha/beta structure. It utilizes nicotinamide adenine dinucleotide phosphate (NADP) or nicotine adenine dinucleotide (NAD) to perform its function. This structure could be used to determine the active and co-factor binding sites of the protein, information that could help pharmaceutical companies in drug design and in determining the protein’s relationship to disease treatment such as that for pneumonia and other related pathologies.

  8. A photoactive titanate with a stereochemically active Sn lone pair: Electronic and crystal structure of Sn{sub 2}TiO{sub 4} from computational chemistry

    SciTech Connect

    Burton, Lee A.; Walsh, Aron

    2012-12-15

    TiO{sub 2} remains the most widely studied metal oxide for photocatalytic reactions. The standard approach to reduce the band gap of titania, for increasing the absorption of visible light, is anion modification. For example the formation of an oxynitride compound, where the nitrogen 2p states decrease the binding energy of the valence band. We demonstrate that cation modification can produce a similar effect through the formation of a ternary oxide combining Ti and an ns{sup 2} cation, Sn(II). In Sn{sub 2}TiO{sub 4}, the underlying Ti 3d conduction states remain largely unmodified and an electronic band gap of 2.1 eV (590 nm) is predicted by hybrid density functional theory. Our analysis indicates a strong potential for Sn{sub 2}TiO{sub 4} in visible-light driven photocatalysis, which should prove superior to the alternative (SnO{sub 2}){sub 1-x}(TiO{sub 2}){sub x} solid-solution. - Graphical abstract: Sn{sub 2}TiO{sub 4} is predicted to be a semiconductor with potential for bipolar conductivity and visible-light photocatalysis. Highlights: Black-Right-Pointing-Pointer Tin titanate adopts the Pb{sub 3}O{sub 4} crystal structure with a sterically active Sn(II) lone pair. Black-Right-Pointing-Pointer Tin titanate is thermodynamically stable with respect to TiO{sub 2} and SnO. Black-Right-Pointing-Pointer Tin titanate is predicted have a band gap of 590 nm, ideal for photocatalytic applications.

  9. Synthesis, crystal structure and antimicrobial activities of two isomeric gold(I) complexes with nitrogen-containing heterocycle and triphenylphosphine ligands, [Au(L)(PPh3)] (HL = pyrazole and imidazole).

    PubMed

    Nomiya, K; Noguchi, R; Ohsawa, K; Tsuda, K; Oda, M

    2000-03-01

    Two isomeric gold(I)-triphenylphosphine complexes with nitrogen-containing heterocycles, [Au(L)(PPh3) (HL = pyrazole (1), imidazole (2)) were isolated as colorless cubic crystals for 1 and colorless plate crystals for 2, respectively. The crystal structures of 1 and 2 were determined by single-crystal X-ray diffraction. These complexes were also fully characterized by complete elemental analyses, thermogravimetric/differential thermal analyses (TG/DTA) and FT-IR in the solid state and by solution NMR (31P, 1H and 13C) spectroscopy and molecular weight measurements in acetone solution. These complexes consisted of a monomeric 2-coordinate AuNP core both in the solid state and in solution. The molecular structures of 1 and 2 were compared with those of related gold(I) complexes, [Au(1,2,3-triz)(PPh3)] (3, Htriz = triazole), [Au(1,2,4-triz)(PPh3)]2 (4) as a dimer through a gold(I)-gold(I) bond in the solid state, and [Au(tetz)(PPh3)] (5, Htetz = tetrazole). Selective and effective antimicrobial activities against two gram-positive bacteria (B. subtilis, S. aureus) and modest activities against one yeast (C. albicans) found in these gold(I) complexes 1-4 are noteworthy, in contrast to poor activities observed in the corresponding silver(I) complexes.

  10. Crystal structures of sialyltransferase from Photobacterium damselae

    DOE PAGES

    Huynh, Nhung; Li, Yanhong; Yu, Hai; ...

    2014-11-15

    Sialyltransferase structures fall into either GT-A or GT-B glycosyltransferase fold. Some sialyltransferases from the Photobacterium genus have been shown to contain an additional N-terminal immunoglobulin (Ig)-like domain. Photobacterium damselae α2–6-sialyltransferase has been used efficiently in enzymatic and chemoenzymatic synthesis of α2–6-linked sialosides. In this paper, we report three crystal structures of this enzyme. Two structures with and without a donor substrate analog CMP-3F(a)Neu5Ac contain an immunoglobulin (Ig)-like domain and adopt the GT-B sialyltransferase fold. The binary structure reveals a non-productive pre-Michaelis complex, which are caused by crystal lattice contacts that prevent the large conformational changes. The third structure lacks themore » Ig-domain. Finally, comparison of the three structures reveals small inherent flexibility between the two Rossmann-like domains of the GT-B fold.« less

  11. Predicting polymeric crystal structures by evolutionary algorithms

    NASA Astrophysics Data System (ADS)

    Zhu, Qiang; Sharma, Vinit; Oganov, Artem R.; Ramprasad, Ramamurthy

    2014-10-01

    The recently developed evolutionary algorithm USPEX proved to be a tool that enables accurate and reliable prediction of structures. Here we extend this method to predict the crystal structure of polymers by constrained evolutionary search, where each monomeric unit is treated as a building block with fixed connectivity. This greatly reduces the search space and allows the initial structure generation with different sequences and packings of these blocks. The new constrained evolutionary algorithm is successfully tested and validated on a diverse range of experimentally known polymers, namely, polyethylene, polyacetylene, poly(glycolic acid), poly(vinyl chloride), poly(oxymethylene), poly(phenylene oxide), and poly (p-phenylene sulfide). By fixing the orientation of polymeric chains, this method can be further extended to predict the structures of complex linear polymers, such as all polymorphs of poly(vinylidene fluoride), nylon-6 and cellulose. The excellent agreement between predicted crystal structures and experimentally known structures assures a major role of this approach in the efficient design of the future polymeric materials.

  12. Lessons from crystal structures of kainate receptors.

    PubMed

    Møllerud, Stine; Frydenvang, Karla; Pickering, Darryl S; Kastrup, Jette Sandholm

    2017-01-01

    Kainate receptors belong to the family of ionotropic glutamate receptors. These receptors assemble from five subunits (GluK1-5) into tetrameric ion channels. Kainate receptors are located at both pre- and postsynaptic membranes in the central nervous system where they contribute to excitatory synaptic transmission and modulate network excitability by regulating neurotransmitter release. Dysfunction of kainate receptors has been implicated in several neurological disorders such as epilepsy, schizophrenia and depression. Here we provide a review on the current understanding of kainate receptor structure and how they bind agonists, antagonists and ions. The first structure of the ligand-binding domain of the GluK1 subunit was reported in 2005, seven years after publication of the crystal structure of a soluble construct of the ligand-binding domain of the AMPA-type subunit GluA2. Today, a full-length structure has been determined of GluK2 by cryo electron microscopy to 7.6 Å resolution as well as 84 high-resolution crystal structures of N-terminal domains and ligand-binding domains, including agonist and antagonist bound structures, modulatory ions and mutations. However, there are still many unanswered questions and challenges in front of us. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'.

  13. Heteropentanuclear Oxalato-Bridged nd–4f (n=4, 5) Metal Complexes with NO Ligand: Synthesis, Crystal Structures, Aqueous Stability and Antiproliferative Activity

    PubMed Central

    Kuhn, Paul-Steffen; Cremer, Laura; Gavriluta, Anatolie; Jovanović, Katarina K; Filipović, Lana; Hummer, Alfred A; Büchel, Gabriel E; Dojčinović, Biljana P; Meier, Samuel M; Rompel, Annette; Radulović, Siniša; Tommasino, Jean Bernard; Luneau, Dominique; Arion, Vladimir B

    2015-01-01

    A series of heteropentanuclear oxalate-bridged Ru(NO)-Ln (4d–4f) metal complexes of the general formula (nBu4N)5[Ln{RuCl3(μ-ox)(NO)}4], where Ln=Y (2), Gd (3), Tb (4), Dy (5) and ox=oxalate anion, were obtained by treatment of (nBu4N)2[RuCl3(ox)(NO)] (1) with the respective lanthanide salt in 4:1 molar ratio. The compounds were characterized by elemental analysis, IR spectroscopy, electrospray ionization (ESI) mass spectrometry, while 1, 2, and 5 were in addition analyzed by X-ray crystallography, 1 by Ru K-edge XAS and 1 and 2 by 13C NMR spectroscopy. X-ray diffraction showed that in 2 and 5 four complex anions [RuCl3(ox)(NO)]2− are coordinated to YIII and DyIII, respectively, with formation of [Ln{RuCl3(μ-ox)(NO)}4]5− (Ln=Y, Dy). While YIII is eight-coordinate in 2, DyIII is nine-coordinate in 5, with an additional coordination of an EtOH molecule. The negative charge is counterbalanced by five nBu4N+ ions present in the crystal structure. The stability of complexes 2 and 5 in aqueous medium was monitored by UV/Vis spectroscopy. The antiproliferative activity of ruthenium-lanthanide complexes 2–5 were assayed in two human cancer cell lines (HeLa and A549) and in a noncancerous cell line (MRC-5) and compared with those obtained for the previously reported Os(NO)-Ln (5d–4f) analogues (nBu4N)5[Ln{OsCl3(ox)(NO)}4] (Ln=Y (6), Gd (7), Tb (8), Dy (9)). Complexes 2–5 were found to be slightly more active than 1 in inhibiting the proliferation of HeLa and A549 cells, and significantly more cytotoxic than 5d–4f metal complexes 6–9 in terms of IC50 values. The highest antiproliferative activity with IC50 values of 20.0 and 22.4 μM was found for 4 in HeLa and A549 cell lines, respectively. These cytotoxicity results are in accord with the presented ICP-MS data, indicating five- to eightfold greater accumulation of ruthenium versus osmium in human A549 cancer cells. PMID:26260662

  14. Extracting Crystal Chemistry from Amorphous Carbon Structures.

    PubMed

    Deringer, Volker L; Csányi, Gábor; Proserpio, Davide M

    2017-03-08

    Carbon allotropes have been explored intensively by ab initio crystal structure prediction, but such methods are limited by the large computational cost of the underlying density functional theory (DFT). Here we show that a novel class of machine-learning-based interatomic potentials can be used for random structure searching and readily predicts several hitherto unknown carbon allotropes. Remarkably, our model draws structural information from liquid and amorphous carbon exclusively, and so does not have any prior knowledge of crystalline phases: it therefore demonstrates true transferability, which is a crucial prerequisite for applications in chemistry. The method is orders of magnitude faster than DFT and can, in principle, be coupled with any algorithm for structure prediction. Machine-learning models therefore seem promising to enable large-scale structure searches in the future.

  15. A DIRECT DETERMINATION OF THE CRYSTAL STRUCTURE OF 2,3,4,6-TETRANITROANILINE,

    DTIC Science & Technology

    ORGANIC NITROGEN COMPOUNDS, CRYSTAL STRUCTURE ), (* CRYSTAL STRUCTURE , EXPLOSIVES), (*EXPLOSIVES, CRYSTAL STRUCTURE ), AROMATIC COMPOUNDS, AMINES, NITRATES, LEAST SQUARES METHOD, FOURIER ANALYSIS, CHEMICAL BONDS.

  16. Fourier Analysis and Structure Determination--Part III: X-ray Crystal Structure Analysis.

    ERIC Educational Resources Information Center

    Chesick, John P.

    1989-01-01

    Discussed is single crystal X-ray crystal structure analysis. A common link between the NMR imaging and the traditional X-ray crystal structure analysis is reported. Claims that comparisons aid in the understanding of both techniques. (MVL)

  17. Crystal structure of B acillus anthracis virulence regulator AtxA and effects of phosphorylated histidines on multimerization and activity: AtxA multimerization, phosphorylation and activity

    SciTech Connect

    Hammerstrom, Troy G.; Horton, Lori B.; Swick, Michelle C.; Joachimiak, Andrzej; Osipiuk, Jerzy; Koehler, Theresa M.

    2014-12-30

    The Bacillus anthracis virulence regulator AtxA controls transcription of the anthrax toxin genes and capsule biosynthetic operon. AtxA activity is elevated during growth in media containing glucose and CO2/bicarbonate, and there is a positive correlation between the CO2/bicarbonate signal, AtxA activity and homomultimerization. AtxA activity is also affected by phosphorylation at specific histidines. We show that AtxA crystallizes as a dimer. Distinct folds associated with predicted DNA-binding domains (HTH1 and HTH2) and phosphoenolpyruvate: carbohydrate phosphotransferase system-regulated domains (PRD1 and PRD2) are apparent. We tested AtxA variants containing single and double phosphomimetic (HisAsp) and phosphoablative (HisAla) amino acid changes for activity in B.anthracis cultures and for protein-protein interactions in cell lysates. Reduced activity of AtxA H199A, lack of multimerization and activity of AtxAH379D variants, and predicted structural changes associated with phosphorylation support a model for control of AtxA function. We propose that (i) in the AtxA dimer, phosphorylation of H199 in PRD1 affects HTH2 positioning, influencing DNA-binding; and (ii) phosphorylation of H379 in PRD2 disrupts dimer formation. The AtxA structure is the first reported high-resolution full-length structure of a PRD-containing regulator, and can serve as a model for proteins of this family, especially those that link virulence to bacterial metabolism.

  18. Crystallization, X-Ray Structure Determination and Structure-Based Drug Design for Targeted Malarial Enzymes

    DTIC Science & Technology

    1998-07-01

    COOPERATIVE AGREEMENT NUMBER DAMD17-95-2-5007 TITLE: Crystallization, X-ray Structure Determination and Structure-Based Drug Design for...approach for the develpment of anti-malarial agent using structure-based drug design . This technique will enable us to identify active site inhibitors...based drug design project high resolution three domensional structure of the enzyme - inhibitor complex provides the basis for further modifications

  19. THE CRYSTAL STRUCTURE OF 2-(4’-AMINO-5’AMINO PYRIMIDY) -2-PENTENE-4-ONE.

    DTIC Science & Technology

    NITROGEN HETEROCYCLIC COMPOUNDS, CRYSTAL STRUCTURE ), (*AMINES, CRYSTAL STRUCTURE ), (*KETONES, CRYSTAL STRUCTURE ), CRYSTAL LATTICES, FOURIER ANALYSIS, LEAST SQUARES METHOD, MOLECULAR STRUCTURE, PYRIMIDINES, CHEMICAL BONDS

  20. Determining crystal structures through crowdsourcing and coursework

    PubMed Central

    Horowitz, Scott; Koepnick, Brian; Martin, Raoul; Tymieniecki, Agnes; Winburn, Amanda A.; Cooper, Seth; Flatten, Jeff; Rogawski, David S.; Koropatkin, Nicole M.; Hailu, Tsinatkeab T.; Jain, Neha; Koldewey, Philipp; Ahlstrom, Logan S.; Chapman, Matthew R.; Sikkema, Andrew P.; Skiba, Meredith A.; Maloney, Finn P.; Beinlich, Felix R. M.; Caglar, Ahmet; Coral, Alan; Jensen, Alice Elizabeth; Lubow, Allen; Boitano, Amanda; Lisle, Amy Elizabeth; Maxwell, Andrew T.; Failer, Barb; Kaszubowski, Bartosz; Hrytsiv, Bohdan; Vincenzo, Brancaccio; de Melo Cruz, Breno Renan; McManus, Brian Joseph; Kestemont, Bruno; Vardeman, Carl; Comisky, Casey; Neilson, Catherine; Landers, Catherine R.; Ince, Christopher; Buske, Daniel Jon; Totonjian, Daniel; Copeland, David Marshall; Murray, David; Jagieła, Dawid; Janz, Dietmar; Wheeler, Douglas C.; Cali, Elie; Croze, Emmanuel; Rezae, Farah; Martin, Floyd Orville; Beecher, Gil; de Jong, Guido Alexander; Ykman, Guy; Feldmann, Harald; Chan, Hugo Paul Perez; Kovanecz, Istvan; Vasilchenko, Ivan; Connellan, James C.; Borman, Jami Lynne; Norrgard, Jane; Kanfer, Jebbie; Canfield, Jeffrey M.; Slone, Jesse David; Oh, Jimmy; Mitchell, Joanne; Bishop, John; Kroeger, John Douglas; Schinkler, Jonas; McLaughlin, Joseph; Brownlee, June M.; Bell, Justin; Fellbaum, Karl Willem; Harper, Kathleen; Abbey, Kirk J.; Isaksson, Lennart E.; Wei, Linda; Cummins, Lisa N.; Miller, Lori Anne; Bain, Lyn; Carpenter, Lynn; Desnouck, Maarten; Sharma, Manasa G.; Belcastro, Marcus; Szew, Martin; Szew, Martin; Britton, Matthew; Gaebel, Matthias; Power, Max; Cassidy, Michael; Pfützenreuter, Michael; Minett, Michele; Wesselingh, Michiel; Yi, Minjune; Cameron, Neil Haydn Tormey; Bolibruch, Nicholas I.; Benevides, Noah; Kathleen Kerr, Norah; Barlow, Nova; Crevits, Nykole Krystyne; Dunn, Paul; Roque, Paulo Sergio Silveira Belo Nascimento; Riber, Peter; Pikkanen, Petri; Shehzad, Raafay; Viosca, Randy; James Fraser, Robert; Leduc, Robert; Madala, Roman; Shnider, Scott; de Boisblanc, Sharon; Butkovich, Slava; Bliven, Spencer; Hettler, Stephen; Telehany, Stephen; Schwegmann, Steven A.; Parkes, Steven; Kleinfelter, Susan C.; Michael Holst, Sven; van der Laan, T. J. A.; Bausewein, Thomas; Simon, Vera; Pulley, Warwick; Hull, William; Kim, Annes Yukyung; Lawton, Alexis; Ruesch, Amanda; Sundar, Anjali; Lawrence, Anna-Lisa; Afrin, Antara; Maheshwer, Bhargavi; Turfe, Bilal; Huebner, Christian; Killeen, Courtney Elizabeth; Antebi-Lerrman, Dalia; Luan, Danny; Wolfe, Derek; Pham, Duc; Michewicz, Elaina; Hull, Elizabeth; Pardington, Emily; Galal, Galal Osama; Sun, Grace; Chen, Grace; Anderson, Halie E.; Chang, Jane; Hewlett, Jeffrey Thomas; Sterbenz, Jennifer; Lim, Jiho; Morof, Joshua; Lee, Junho; Inn, Juyoung Samuel; Hahm, Kaitlin; Roth, Kaitlin; Nair, Karun; Markin, Katherine; Schramm, Katie; Toni Eid, Kevin; Gam, Kristina; Murphy, Lisha; Yuan, Lucy; Kana, Lulia; Daboul, Lynn; Shammas, Mario Karam; Chason, Max; Sinan, Moaz; Andrew Tooley, Nicholas; Korakavi, Nisha; Comer, Patrick; Magur, Pragya; Savliwala, Quresh; Davison, Reid Michael; Sankaran, Roshun Rajiv; Lewe, Sam; Tamkus, Saule; Chen, Shirley; Harvey, Sho; Hwang, Sin Ye; Vatsia, Sohrab; Withrow, Stefan; Luther, Tahra K; Manett, Taylor; Johnson, Thomas James; Ryan Brash, Timothy; Kuhlman, Wyatt; Park, Yeonjung; Popović, Zoran; Baker, David; Khatib, Firas; Bardwell, James C. A.

    2016-01-01

    We show here that computer game players can build high-quality crystal structures. Introduction of a new feature into the computer game Foldit allows players to build and real-space refine structures into electron density maps. To assess the usefulness of this feature, we held a crystallographic model-building competition between trained crystallographers, undergraduate students, Foldit players and automatic model-building algorithms. After removal of disordered residues, a team of Foldit players achieved the most accurate structure. Analysing the target protein of the competition, YPL067C, uncovered a new family of histidine triad proteins apparently involved in the prevention of amyloid toxicity. From this study, we conclude that crystallographers can utilize crowdsourcing to interpret electron density information and to produce structure solutions of the highest quality. PMID:27633552

  1. Determining crystal structures through crowdsourcing and coursework

    NASA Astrophysics Data System (ADS)

    Horowitz, Scott; Koepnick, Brian; Martin, Raoul; Tymieniecki, Agnes; Winburn, Amanda A.; Cooper, Seth; Flatten, Jeff; Rogawski, David S.; Koropatkin, Nicole M.; Hailu, Tsinatkeab T.; Jain, Neha; Koldewey, Philipp; Ahlstrom, Logan S.; Chapman, Matthew R.; Sikkema, Andrew P.; Skiba, Meredith A.; Maloney, Finn P.; Beinlich, Felix R. M.; Caglar, Ahmet; Coral, Alan; Jensen, Alice Elizabeth; Lubow, Allen; Boitano, Amanda; Lisle, Amy Elizabeth; Maxwell, Andrew T.; Failer, Barb; Kaszubowski, Bartosz; Hrytsiv, Bohdan; Vincenzo, Brancaccio; de Melo Cruz, Breno Renan; McManus, Brian Joseph; Kestemont, Bruno; Vardeman, Carl; Comisky, Casey; Neilson, Catherine; Landers, Catherine R.; Ince, Christopher; Buske, Daniel Jon; Totonjian, Daniel; Copeland, David Marshall; Murray, David; Jagieła, Dawid; Janz, Dietmar; Wheeler, Douglas C.; Cali, Elie; Croze, Emmanuel; Rezae, Farah; Martin, Floyd Orville; Beecher, Gil; de Jong, Guido Alexander; Ykman, Guy; Feldmann, Harald; Chan, Hugo Paul Perez; Kovanecz, Istvan; Vasilchenko, Ivan; Connellan, James C.; Borman, Jami Lynne; Norrgard, Jane; Kanfer, Jebbie; Canfield, Jeffrey M.; Slone, Jesse David; Oh, Jimmy; Mitchell, Joanne; Bishop, John; Kroeger, John Douglas; Schinkler, Jonas; McLaughlin, Joseph; Brownlee, June M.; Bell, Justin; Fellbaum, Karl Willem; Harper, Kathleen; Abbey, Kirk J.; Isaksson, Lennart E.; Wei, Linda; Cummins, Lisa N.; Miller, Lori Anne; Bain, Lyn; Carpenter, Lynn; Desnouck, Maarten; Sharma, Manasa G.; Belcastro, Marcus; Szew, Martin; Szew, Martin; Britton, Matthew; Gaebel, Matthias; Power, Max; Cassidy, Michael; Pfützenreuter, Michael; Minett, Michele; Wesselingh, Michiel; Yi, Minjune; Cameron, Neil Haydn Tormey; Bolibruch, Nicholas I.; Benevides, Noah; Kathleen Kerr, Norah; Barlow, Nova; Crevits, Nykole Krystyne; Dunn, Paul; Silveira Belo Nascimento Roque, Paulo Sergio; Riber, Peter; Pikkanen, Petri; Shehzad, Raafay; Viosca, Randy; James Fraser, Robert; Leduc, Robert; Madala, Roman; Shnider, Scott; de Boisblanc, Sharon; Butkovich, Slava; Bliven, Spencer; Hettler, Stephen; Telehany, Stephen; Schwegmann, Steven A.; Parkes, Steven; Kleinfelter, Susan C.; Michael Holst, Sven; van der Laan, T. J. A.; Bausewein, Thomas; Simon, Vera; Pulley, Warwick; Hull, William; Kim, Annes Yukyung; Lawton, Alexis; Ruesch, Amanda; Sundar, Anjali; Lawrence, Anna-Lisa; Afrin, Antara; Maheshwer, Bhargavi; Turfe, Bilal; Huebner, Christian; Killeen, Courtney Elizabeth; Antebi-Lerrman, Dalia; Luan, Danny; Wolfe, Derek; Pham, Duc; Michewicz, Elaina; Hull, Elizabeth; Pardington, Emily; Galal, Galal Osama; Sun, Grace; Chen, Grace; Anderson, Halie E.; Chang, Jane; Hewlett, Jeffrey Thomas; Sterbenz, Jennifer; Lim, Jiho; Morof, Joshua; Lee, Junho; Inn, Juyoung Samuel; Hahm, Kaitlin; Roth, Kaitlin; Nair, Karun; Markin, Katherine; Schramm, Katie; Toni Eid, Kevin; Gam, Kristina; Murphy, Lisha; Yuan, Lucy; Kana, Lulia; Daboul, Lynn; Shammas, Mario Karam; Chason, Max; Sinan, Moaz; Andrew Tooley, Nicholas; Korakavi, Nisha; Comer, Patrick; Magur, Pragya; Savliwala, Quresh; Davison, Reid Michael; Sankaran, Roshun Rajiv; Lewe, Sam; Tamkus, Saule; Chen, Shirley; Harvey, Sho; Hwang, Sin Ye; Vatsia, Sohrab; Withrow, Stefan; Luther, Tahra K.; Manett, Taylor; Johnson, Thomas James; Ryan Brash, Timothy; Kuhlman, Wyatt; Park, Yeonjung; Popović, Zoran; Baker, David; Khatib, Firas; Bardwell, James C. A.

    2016-09-01

    We show here that computer game players can build high-quality crystal structures. Introduction of a new feature into the computer game Foldit allows players to build and real-space refine structures into electron density maps. To assess the usefulness of this feature, we held a crystallographic model-building competition between trained crystallographers, undergraduate students, Foldit players and automatic model-building algorithms. After removal of disordered residues, a team of Foldit players achieved the most accurate structure. Analysing the target protein of the competition, YPL067C, uncovered a new family of histidine triad proteins apparently involved in the prevention of amyloid toxicity. From this study, we conclude that crystallographers can utilize crowdsourcing to interpret electron density information and to produce structure solutions of the highest quality.

  2. Determining crystal structures through crowdsourcing and coursework.

    PubMed

    Horowitz, Scott; Koepnick, Brian; Martin, Raoul; Tymieniecki, Agnes; Winburn, Amanda A; Cooper, Seth; Flatten, Jeff; Rogawski, David S; Koropatkin, Nicole M; Hailu, Tsinatkeab T; Jain, Neha; Koldewey, Philipp; Ahlstrom, Logan S; Chapman, Matthew R; Sikkema, Andrew P; Skiba, Meredith A; Maloney, Finn P; Beinlich, Felix R M; Popović, Zoran; Baker, David; Khatib, Firas; Bardwell, James C A

    2016-09-16

    We show here that computer game players can build high-quality crystal structures. Introduction of a new feature into the computer game Foldit allows players to build and real-space refine structures into electron density maps. To assess the usefulness of this feature, we held a crystallographic model-building competition between trained crystallographers, undergraduate students, Foldit players and automatic model-building algorithms. After removal of disordered residues, a team of Foldit players achieved the most accurate structure. Analysing the target protein of the competition, YPL067C, uncovered a new family of histidine triad proteins apparently involved in the prevention of amyloid toxicity. From this study, we conclude that crystallographers can utilize crowdsourcing to interpret electron density information and to produce structure solutions of the highest quality.

  3. Synthesis and structural characterization of a single-crystal to single-crystal transformable coordination polymer.

    PubMed

    Tian, Yuyang; Allan, Phoebe K; Renouf, Catherine L; He, Xiang; McCormick, Laura J; Morris, Russell E

    2014-01-28

    A single-crystal to single-crystal transformable coordination polymer compound was hydrothermally synthesized. The structural rearrangement is induced by selecting a ligand that contains both strong and weaker coordinating groups. Both hydrated and dehydrated structures were determined by single crystal X-ray analysis.

  4. GPCR crystal structures: Medicinal chemistry in the pocket.

    PubMed

    Shonberg, Jeremy; Kling, Ralf C; Gmeiner, Peter; Löber, Stefan

    2015-07-15

    Recent breakthroughs in GPCR structural biology have significantly increased our understanding of drug action at these therapeutically relevant receptors, and this will undoubtedly lead to the design of better therapeutics. In recent years, crystal structures of GPCRs from classes A, B, C and F have been solved, unveiling a precise snapshot of ligand-receptor interactions. Furthermore, some receptors have been crystallized in different functional states in complex with antagonists, partial agonists, full agonists, biased agonists and allosteric modulators, providing further insight into the mechanisms of ligand-induced GPCR activation. It is now obvious that there is enormous diversity in the size, shape and position of the ligand binding pockets in GPCRs. In this review, we summarise the current state of solved GPCR structures, with a particular focus on ligand-receptor interactions in the binding pocket, and how this can contribute to the design of GPCR ligands with better affinity, subtype selectivity or efficacy.

  5. Crystal Structure of the 30S Ribosomal Subunit from Thermus Thermophilus. Purification, Crystallization and Structure Determination

    SciTech Connect

    Clemons, William M.; Brodersen, Ditlev E.; McCutcheonn, John P.; May, Joanna L.C.; Carter, Andrew P.; Morgan-Warren, Robert J.; Wimberly, Brian T.; Ramakrishnan, Venki

    2009-10-07

    We describe the crystallization and structure determination of the 30 S ribosomal subunit from Thermus thermophilus. Previous reports of crystals that diffracted to 10 {angstrom} resolution were used as a starting point to improve the quality of the diffraction. Eventually, ideas such as the addition of substrates or factors to eliminate conformational heterogeneity proved less important than attention to detail in yielding crystals that diffracted beyond 3 {angstrom} resolution. Despite improvements in technology and methodology in the last decade, the structure determination of the 30 S subunit presented some very challenging technical problems because of the size of the asymmetric unit, crystal variability and sensitivity to radiation damage. Some steps that were useful for determination of the atomic structure were: the use of anomalous scattering from the LIII edges of osmium and lutetium to obtain the necessary phasing signal; the use of tunable, third-generation synchrotron sources to obtain data of reasonable quality at high resolution; collection of derivative data precisely about a mirror plane to preserve small anomalous differences between Bijvoet mates despite extensive radiation damage and multi-crystal scaling; the pre-screening of crystals to ensure quality, isomorphism and the efficient use of scarce third-generation synchrotron time; pre-incubation of crystals in cobalt hexaammine to ensure isomorphism with other derivatives; and finally, the placement of proteins whose structures had been previously solved in isolation, in conjunction with biochemical data on protein-RNA interactions, to map out the architecture of the 30 S subunit prior to the construction of a detailed atomic-resolution model.

  6. Crystal structure of inactive form of Rab3B

    SciTech Connect

    Zhang, Wei; Shen, Yang; Jiao, Ronghong; Liu, Yanli; Deng, Lingfu; Qi, Chao

    2012-06-28

    Rab proteins are the largest family of ras-related GTPases in eukaryotic cells. They act as directional molecular switches at membrane trafficking, including vesicle budding, cargo sorting, transport, tethering, and fusion. Here, we generated and crystallized the Rab3B:GDP complex. The structure of the complex was solved to 1.9 {angstrom} resolution and the structural base comparison with other Rab3 members provides a structural basis for the GDP/GTP switch in controlling the activity of small GTPase. The comparison of charge distribution among the members of Rab3 also indicates their different roles in vesicular trafficking.

  7. Crystal Structure Prediction from First Principles: The Crystal Structures of Glycine

    PubMed Central

    Lund, Albert M.; Pagola, Gabriel I.; Orendt, Anita M.; Ferraro, Marta B.; Facelli, Julio C.

    2015-01-01

    Here we present the results of our unbiased searches of glycine polymorphs obtained using the Genetic Algorithms search implemented in Modified Genetic Algorithm for Crystals coupled with the local optimization and energy evaluation provided by Quantum Espresso. We demonstrate that it is possible to predict the crystal structures of a biomedical molecule using solely first principles calculations. We were able to find all the ambient pressure stable glycine polymorphs, which are found in the same energetic ordering as observed experimentally and the agreement between the experimental and predicted structures is of such accuracy that the two are visually almost indistinguishable. PMID:25843964

  8. Crystal structure prediction from first principles: The crystal structures of glycine

    NASA Astrophysics Data System (ADS)

    Lund, Albert M.; Pagola, Gabriel I.; Orendt, Anita M.; Ferraro, Marta B.; Facelli, Julio C.

    2015-04-01

    Here we present the results of our unbiased searches of glycine polymorphs obtained using the genetic algorithms search implemented in MGAC, modified genetic algorithm for crystals, coupled with the local optimization and energy evaluation provided by Quantum Espresso. We demonstrate that it is possible to predict the crystal structures of a biomedical molecule using solely first principles calculations. We were able to find all the ambient pressure stable glycine polymorphs, which are found in the same energetic ordering as observed experimentally and the agreement between the experimental and predicted structures is of such accuracy that the two are visually almost indistinguishable.

  9. The Crystal Structure of Monovalent Streptavidin

    PubMed Central

    Zhang, Min; Biswas, Sangita; Deng, Wenbin; Yu, Hongjun

    2016-01-01

    The strong interaction between streptavidin (SA) and biotin is widely utilized in biotechnological applications. A SA variant, monovalent SA, was developed with a single and high affinity biotin-binding site within the intact tetramer. However, its structural characterization remains undetermined. Here, we seek to determine the crystal structure of monovalent SA at 1.7-Å resolution. We show that, in contrast to its ‘close-state’ in the only wild-type subunit, the L3,4 loops of three Dead SA subunits are free from crystal packing and remain in an ‘open state’, stabilized by a consistent H-bonding network involving S52. This H-bonding network also applies to the previously reported open state of the wild-type apo-SA. These results suggest that specific substitutions (N23A/S27D/S45A) at biotin-binding sites stabilize the open state of SA L3,4 loop, thereby further reducing biotin-binding affinity. The general features of the ‘open state’ SA among different SA variants may facilitate its rational design. The structural information of monovalent SA will be valuable for its applications across a wide range of biotechnological areas. PMID:28000673

  10. Crystal structure of a DNA catalyst.

    PubMed

    Ponce-Salvatierra, Almudena; Wawrzyniak-Turek, Katarzyna; Steuerwald, Ulrich; Höbartner, Claudia; Pena, Vladimir

    2016-01-14

    Catalysis in biology is restricted to RNA (ribozymes) and protein enzymes, but synthetic biomolecular catalysts can also be made of DNA (deoxyribozymes) or synthetic genetic polymers. In vitro selection from synthetic random DNA libraries identified DNA catalysts for various chemical reactions beyond RNA backbone cleavage. DNA-catalysed reactions include RNA and DNA ligation in various topologies, hydrolytic cleavage and photorepair of DNA, as well as reactions of peptides and small molecules. In spite of comprehensive biochemical studies of DNA catalysts for two decades, fundamental mechanistic understanding of their function is lacking in the absence of three-dimensional models at atomic resolution. Early attempts to solve the crystal structure of an RNA-cleaving deoxyribozyme resulted in a catalytically irrelevant nucleic acid fold. Here we report the crystal structure of the RNA-ligating deoxyribozyme 9DB1 (ref. 14) at 2.8 Å resolution. The structure captures the ligation reaction in the post-catalytic state, revealing a compact folding unit stabilized by numerous tertiary interactions, and an unanticipated organization of the catalytic centre. Structure-guided mutagenesis provided insights into the basis for regioselectivity of the ligation reaction and allowed remarkable manipulation of substrate recognition and reaction rate. Moreover, the structure highlights how the specific properties of deoxyribose are reflected in the backbone conformation of the DNA catalyst, in support of its intricate three-dimensional organization. The structural principles underlying the catalytic ability of DNA elucidate differences and similarities in DNA versus RNA catalysts, which is relevant for comprehending the privileged position of folded RNA in the prebiotic world and in current organisms.

  11. Crystal structure of Marburg virus VP24.

    PubMed

    Zhang, Adrianna P P; Bornholdt, Zachary A; Abelson, Dafna M; Saphire, Erica Ollmann

    2014-05-01

    The VP24 protein plays an essential, albeit poorly understood role in the filovirus life cycle. VP24 is only 30% identical between Marburg virus and the ebolaviruses. Furthermore, VP24 from the ebolaviruses is immunosuppressive, while that of Marburg virus is not. The crystal structure of Marburg virus VP24, presented here, reveals that although the core is similar between the viral genera, Marburg VP24 is distinguished by a projecting β-shelf and an alternate conformation of the N-terminal polypeptide.

  12. Elasticity of some mantle crystal structures. II.

    NASA Technical Reports Server (NTRS)

    Wang, H.; Simmons, G.

    1973-01-01

    The single-crystal elastic constants are determined as a function of pressure and temperature for rutile structure germanium dioxide (GeO2). The data are qualitatively similar to those of rutile TiO2 measured by Manghnani (1969). The compressibility in the c direction is less than one-half that in the a direction, the pressure derivative of the shear constant is negative, and the pressure derivative of the bulk modulus has a relatively high value of about 6.2. According to an elastic strain energy theory, the negative shear modulus derivative implies that the kinetic barrier to diffusion decreases with increasing pressure.

  13. Temperature dependent spin structures in Hexaferrite crystal

    NASA Astrophysics Data System (ADS)

    Chao, Y. C.; Lin, J. G.; Chun, S. H.; Kim, K. H.

    2016-01-01

    In this work, the Hexaferrite Ba0.5Sr1.5Zn2Fe12O22 (BSZFO) is studied due to its interesting characteristics of long-wavelength spin structure. Ferromagnetic resonance (FMR) is used to probe the magnetic states of BSZFO single crystal and its temperature dependence behavior is analyzed by decomposing the multiple lines of FMR spectra into various phases. Distinguished phase transition is observed at 110 K for one line, which is assigned to the ferro(ferri)-magnetic transition from non-collinear to collinear spin state.

  14. The crystal structure of the active domain of Anopheles anti-platelet protein, a powerful anti-coagulant, in complex with an antibody.

    PubMed

    Sugiyama, Kanako; Iyori, Mitsuhiro; Sawaguchi, Asuka; Akashi, Satoko; Tame, Jeremy R H; Park, Sam-Yong; Yoshida, Shigeto

    2014-06-06

    Blood clotting is a vitally important process that must be carefully regulated to prevent blood loss on one hand and thrombosis on the other. Severe injury and hemophilia may be treated with pro-coagulants, whereas risk of obstructive clotting or embolism may be reduced with anti-coagulants. Anti-coagulants are an extremely important class of drug, one of the most widely used types of medication, but there remains a pressing need for novel treatments, however, as present drugs such as warfarin have significant drawbacks. Nature provides a number of examples of anti-coagulant proteins produced by blood-sucking animals, which may provide templates for the development of new small molecules with similar physiological effects. We have, therefore, studied an Anopheles anti-platelet protein from a malaria vector mosquito and report its crystal structure in complex with an antibody. Overall the protein is extremely sensitive to proteolysis, but the crystal structure reveals a stable domain built from two helices and a turn, which corresponds to the functional region. The antibody raised against Anopheles anti-platelet protein prevents it from binding collagen. Our work, therefore, opens new avenues to the development of both novel small molecule anti-clotting agents and anti-malarials.

  15. Chelation, spectroscopic characterization, biological activity and crystal structure of 2,3-butanedione isonicotinylhydrazone: Determination of Zr4+ after flotation separation

    NASA Astrophysics Data System (ADS)

    Al-Fulaij, O. A.; Jeragh, B.; El-Sayed, A. E. M.; El-Defrawy, M. M.; El-Asmy, A. A.

    2015-02-01

    New metal complexes of Co(II), Ni(II) Cu(II), Zn(II), Cd(II), Pd(II) and Hg(II) with 2,3-butanedione isonicotinylhydrazone [BINH] have been prepared and investigated. Single crystal for BINH is grown and solved as orthorhombic with P 21 21 2 space group. The formula of the ligand was assigned based on the elemental analysis, mass spectra and conductivity measurements. The complexes assigned the formulae [M(BINH-H)Cl]ṡnH2O (Mdbnd Co(II), Ni(II), Cu(II), Zn(II); n = 0 or 1); [Hg(BINH-H)(H2O)2Cl]; [Cd(BINH)Cl2]ṡ2H2O and [Pd(BINH)Cl2]ṡH2O. All complexes are nonelectrolytes. BINH acts as a tridentate ligand in [M(BINH-H)Cl]ṡnH2O and [Hg(BINH-H)(H2O)2Cl] coordinating through Cdbnd Oketonic, Csbnd Oamedic and Cdbnd Nhy and as a neutral bidentate through Cdbnd Oketonic and Cdbnd Nhy in [Cd(BINH)Cl2]ṡ2H2O and [Pd(BINH)Cl2]ṡH2O; the pyridine nitrogen has no rule in coordination. The data are supported by NMR (1H and 13C) spectra. The magnetic moments and electronic spectra provide a tetrahedral structure for the Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes; square-planar for the Pd(II) complex and octahedral for the Hg(II) complex. The TGA of the complexes depicted the outer and inner water molecules as well as the final residue. The cobalt and cadmium complexes ended with the metal while the Cu(II), Zn(II) and Pd(II) complexes ended with complex species. [Hg(BINH-H)(H2O)2Cl] has no residue. The ligand is inactive against all tested organisms except for Bacillus thuringiensis. The Hg(II) complex is found more active than the other complexes. The flotation technique is found applicable for the separation of micro amount (10 ppm) of Zr4+ using 10 ppm of BINH and 1 × 10-5 mol L-1 of oleic acid at pH 6 with efficiency of 98% with no interferences.

  16. Crystal structure of inactive form of Rab3B

    SciTech Connect

    Zhang, Wei; Shen, Yang; Jiao, Ronghong; Liu, Yanli; Deng, Lingfu; Qi, Chao

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer This is the first structural information of human Rab3B. Black-Right-Pointing-Pointer To provides a structural basis for the GDP/GTP switch in controlling the activity of Rab3. Black-Right-Pointing-Pointer The charge distribution of Rab3B indicates its unique roles in vesicular trafficking. -- Abstract: Rab proteins are the largest family of ras-related GTPases in eukaryotic cells. They act as directional molecular switches at membrane trafficking, including vesicle budding, cargo sorting, transport, tethering, and fusion. Here, we generated and crystallized the Rab3B:GDP complex. The structure of the complex was solved to 1.9 A resolution and the structural base comparison with other Rab3 members provides a structural basis for the GDP/GTP switch in controlling the activity of small GTPase. The comparison of charge distribution among the members of Rab3 also indicates their different roles in vesicular trafficking.

  17. Crystal structure of yeast Sco1

    SciTech Connect

    Abajian, Carnie; Rosenzweig, Amy C.

    2010-03-05

    The Sco family of proteins are involved in the assembly of the dinuclear CuA site in cytochrome c oxidase (COX), the terminal enzyme in aerobic respiration. These proteins, which are found in both eukaryotes and prokaryotes, are characterized by a conserved CXXXC sequence motif that binds copper ions and that has also been proposed to perform a thiol:disulfide oxidoreductase function. The crystal structures of Saccharomyces cerevisiae apo Sco1 (apo-ySco1) and Sco1 in the presence of copper ions (Cu-ySco1) were determined to 1.8- and 2.3-{angstrom} resolutions, respectively. Yeast Sco1 exhibits a thioredoxin-like fold, similar to that observed for human Sco1 and a homolog from Bacillus subtilis. The Cu-ySco1 structure, obtained by soaking apo-ySco1 crystals in copper ions, reveals an unexpected copper-binding site involving Cys181 and Cys216, cysteine residues present in ySco1 but not in other homologs. The conserved CXXXC cysteines, Cys148 and Cys152, can undergo redox chemistry in the crystal. An essential histidine residue, His239, is located on a highly flexible loop, denoted the Sco loop, and can adopt positions proximal to both pairs of cysteines. Interactions between ySco1 and its partner proteins yeast Cox17 and yeast COX2 are likely to occur via complementary electrostatic surfaces. This high-resolution model of a eukaryotic Sco protein provides new insight into Sco copper binding and function.

  18. Structure, thermodynamics, and crystallization of amorphous hafnia

    SciTech Connect

    Luo, Xuhui; Demkov, Alexander A.

    2015-09-28

    We investigate theoretically amorphous hafnia using the first principles melt and quench method. We identify two types of amorphous structures of hafnia. Type I and type II are related to tetragonal and monoclinic hafnia, respectively. We find type II structure to show stronger disorder than type I. Using the phonon density of states, we calculate the specific heat capacity for type II amorphous hafnia. Using the nudged elastic band method, we show that the averaged transition barrier between the type II amorphous hafnia and monoclinic phase is approximately 0.09 eV/HfO{sub 2}. The crystallization temperature is estimated to be 421 K. The calculations suggest an explanation for the low thermal stability of amorphous hafnia.

  19. The Crystal Structure of Human Argonaute2

    SciTech Connect

    Schirle, Nicole T.; MacRae, Ian J.

    2012-07-18

    Argonaute proteins form the functional core of the RNA-induced silencing complexes that mediate RNA silencing in eukaryotes. The 2.3 angstrom resolution crystal structure of human Argonaute2 (Ago2) reveals a bilobed molecule with a central cleft for binding guide and target RNAs. Nucleotides 2 to 6 of a heterogeneous mixture of guide RNAs are positioned in an A-form conformation for base pairing with target messenger RNAs. Between nucleotides 6 and 7, there is a kink that may function in microRNA target recognition or release of sliced RNA products. Tandem tryptophan-binding pockets in the PIWI domain define a likely interaction surface for recruitment of glycine-tryptophan-182 (GW182) or other tryptophan-rich cofactors. These results will enable structure-based approaches for harnessing the untapped therapeutic potential of RNA silencing in humans.

  20. Automated High Throughput Protein Crystallization Screening at Nanoliter Scale and Protein Structural Study on Lactate Dehydrogenase

    SciTech Connect

    Li, Fenglei

    2006-08-09

    , evaporation rate can be controlled or adjusted in this method during the crystallization process to favor either nucleation or growing processes for optimizing crystallization process. The protein crystals gotten by this method were experimentally proven to possess high x-ray diffraction qualities. Finally, we crystallized human lactate dehydrogenase 1 (H4) complexed with NADH and determined its structure by x-ray crystallography. The structure of LDH/NADH displays a significantly different structural feature, compared with LDH/NADH/inhibitor ternary complex structure, that subunits in LDH/NADH complex show open conformation or two conformations on the active site while the subunits in LDH/NADH/inhibitor are all in close conformation. Multiple LDH/NADH crystals were obtained and used for x-ray diffraction experiments. Difference in subunit conformation was observed among the structures independently solved from multiple individual LDH/NADH crystals. Structural differences observed among crystals suggest the existence of multiple conformers in solution.

  1. Crystal Structure of a Lipid G Protein-Coupled Receptor

    SciTech Connect

    Hanson, Michael A; Roth, Christopher B; Jo, Euijung; Griffith, Mark T; Scott, Fiona L; Reinhart, Greg; Desale, Hans; Clemons, Bryan; Cahalan, Stuart M; Schuerer, Stephan C; Sanna, M Germana; Han, Gye Won; Kuhn, Peter; Rosen, Hugh; Stevens, Raymond C

    2012-03-01

    The lyso-phospholipid sphingosine 1-phosphate modulates lymphocyte trafficking, endothelial development and integrity, heart rate, and vascular tone and maturation by activating G protein-coupled sphingosine 1-phosphate receptors. Here, we present the crystal structure of the sphingosine 1-phosphate receptor 1 fused to T4-lysozyme (S1P1-T4L) in complex with an antagonist sphingolipid mimic. Extracellular access to the binding pocket is occluded by the amino terminus and extracellular loops of the receptor. Access is gained by ligands entering laterally between helices I and VII within the transmembrane region of the receptor. This structure, along with mutagenesis, agonist structure-activity relationship data, and modeling, provides a detailed view of the molecular recognition and requirement for hydrophobic volume that activates S1P1, resulting in the modulation of immune and stromal cell responses.

  2. Two crystal structures of the leupeptin-trypsin complex.

    PubMed Central

    Kurinov, I. V.; Harrison, R. W.

    1996-01-01

    Three-dimensional structures of trypsin with the reversible inhibitor leupeptin have been determined in two different crystal forms. The first structure was determined at 1.7 A resolution with R-factor = 17.7% in the trigonal crystal space group P3(1)21, with unit cell dimensions of a = b = 55.62 A, c = 110.51 A. The second structure was determined at a resolution of 1.8 A with R-factor = 17.5% in the orthorhombic space group P2(1)2(1)2(1), with unit cell dimensions of a = 63.69 A, b = 69.37 A, c = 63.01 A. The overall protein structure is very similar in both crystal forms, with RMS difference for main-chain atoms of 0.27 A. The leupeptin backbone forms four hydrogen bonds with trypsin and a fifth hydrogen bond interaction is mediated by a water molecule. The aldehyde carbonyl of leupeptin forms a covalent bond of 1.42 A length with side-chain oxygen of Ser-195 in the active site. The reaction of trypsin with leupeptin proceeds through the formation of stable tetrahedral complex in which the hemiacetal oxygen atom is pointing out of the oxyanion hole and forming a hydrogen bond with His-57. PMID:8845765

  3. Crystal structure of isoflavone reductase from alfalfa (Medicago sativa L.).

    PubMed

    Wang, Xiaoqiang; He, Xianzhi; Lin, Jianqiao; Shao, Hui; Chang, Zhenzhan; Dixon, Richard A

    2006-05-19

    Isoflavonoids play important roles in plant defense and exhibit a range of mammalian health-promoting activities. Isoflavone reductase (IFR) specifically recognizes isoflavones and catalyzes a stereospecific NADPH-dependent reduction to (3R)-isoflavanone. The crystal structure of Medicago sativa IFR with deletion of residues 39-47 has been determined at 1.6A resolution. Structural analysis, molecular modeling and docking, and comparison with the structures of other NADPH-dependent enzymes, defined the putative binding sites for co-factor and substrate and potential key residues for enzyme activity and substrate specificity. Further mutagenesis has confirmed the role of Lys144 as a catalytic residue. This study provides a structural basis for understanding the enzymatic mechanism and substrate specificity of IFRs as well as the functions of IFR-like proteins.

  4. Crystal structure and luminescence properties of Bi3+activated Ca2Y8(SiO4)6O2 phosphors under near UV excitation

    NASA Astrophysics Data System (ADS)

    Sun, Zhihua; Wang, Minqiang; Yang, Zhi; Liu, Kaiping; Zhu, Feiyan

    2016-07-01

    Oxyapatite Ca2Y8-x(SiO4)6O2:xBi3+phosphor has been prepared via high temperature solid-state reaction. Its crystal structure and PL properties were investigated by X-ray diffraction, photoluminescence excitation and emission spectra. The results indicated that the Ca2Y8(SiO4)6O2 crystallizes as a hexagonal structure with a space group of P63/m and lattice constants of a=b=9.3507 Å, c=6.7899 Å, α=β=90.00°, γ=120.00°, V=514.14 Å3; The phosphor has two prominent emission bands: when excited under 320-360 nm, the phosphors emit a broad band centered at 495 nm due to the 3P1-1S0 transition of Bi3+ in 4f (C3) sites; when excited under 380 nm, the phosphors emit a broad band centered at 411 nm due to the 3P1-1S0 transition of Bi3+ in 6h (Cs) sites. The emission color varies from the greenish blue to blue as the excitation wavelength increases from 335 to 380 nm. The optimal intensity of emission band was observed when x=0.015 in the Ca2Y8-x(SiO4)6O2:xBi3+ series. The average critical distance Rc among Bi3+ ions is determined to be 20.15 Å.

  5. Crystal structures of five 6-mercaptopurine derivatives.

    PubMed

    Gomes, Lígia R; Low, John Nicolson; Magalhães E Silva, Diogo; Cagide, Fernando; Borges, Fernanda

    2016-03-01

    The crystal structures of five 6-mercaptopurine derivatives, viz. 2-[(9-acetyl-9H-purin-6-yl)sulfan-yl]-1-(3-meth-oxy-phen-yl)ethan-1-one (1), C16H14N4O3S, 2-[(9-acetyl-9H-purin-6-yl)sulfan-yl]-1-(4-meth-oxy-phen-yl)ethan-1-one (2), C16H14N4O3S, 2-[(9-acetyl-9H-purin-6-yl)sulfan-yl]-1-(4-chloro-phen-yl)ethan-1-one (3), C15H11ClN4O2S, 2-[(9-acetyl-9H-purin-6-yl)sulfan-yl]-1-(4-bromo-phen-yl)ethan-1-one (4), C15H11BrN4O2S, and 1-(3-meth-oxy-phen-yl)-2-[(9H-purin-6-yl)sulfan-yl]ethan-1-one (5), C14H12N4O2S. Compounds (2), (3) and (4) are isomorphous and accordingly their mol-ecular and supra-molecular structures are similar. An analysis of the dihedral angles between the purine and exocyclic phenyl rings show that the mol-ecules of (1) and (5) are essentially planar but that in the case of the three isomorphous compounds (2), (3) and (4), these rings are twisted by a dihedral angle of approximately 38°. With the exception of (1) all mol-ecules are linked by weak C-H⋯O hydrogen bonds in their crystals. There is π-π stacking in all compounds. A Cambridge Structural Database search revealed the existence of 11 deposited compounds containing the 1-phenyl-2-sulfanyl-ethanone scaffold; of these, only eight have a cyclic ring as substituent, the majority of these being heterocycles.

  6. Crystal structure of natural phaeosphaeride A

    PubMed Central

    Abzianidze, Victoria V.; Poluektova, Ekaterina V.; Bolshakova, Ksenia P.; Panikorovskii, Taras L.; Bogachenkov, Alexander S.; Berestetskiy, Alexander O.

    2015-01-01

    The asymmetric unit of the title compound, C15H23NO5, contains two independent mol­ecules. Phaeosphaeride A contains two primary sections, an alkyl chain consisting of five C atoms and a cyclic system consisting of fused five- and six-membered rings with attached substituents. In the crystal, the mol­ecules form layered structures. Nearly planar sheets, parallel to the (001) plane, form bilayers of two-dimensional hydrogen-bonded networks with the hy­droxy groups located on the inter­ior of the bilayer sheets. The network is constructed primarily of four O—H⋯O hydrogen bonds, which form a zigzag pattern in the (001) plane. The butyl chains inter­digitate with the butyl chains on adjacent sheets. The crystal was twinned by a twofold rotation about the c axis, with refined major–minor occupancy fractions of 0.718 (6):0.282 (6). PMID:26396831

  7. Crystal structure of Junin virus nucleoprotein.

    PubMed

    Zhang, Yinjie; Li, Le; Liu, Xiang; Dong, Shishang; Wang, Wenming; Huo, Tong; Guo, Yu; Rao, Zihe; Yang, Cheng

    2013-10-01

    Junin virus (JUNV) has been identified as the aetiological agent of Argentine haemorrhagic fever (AHF), which is a serious public health problem with approximately 5 million people at risk. It is treated as a potential bioterrorism agent because of its rapid transmission by aerosols. JUNV is a negative-sense ssRNA virus that belongs to the genus Arenavirus within the family Arenaviridae, and its genomic RNA contains two segments encoding four proteins. Among these, the nucleoprotein (NP) has essential roles in viral RNA synthesis and immune suppression, but the molecular mechanisms of its actions are only partially understood. Here, we determined a 2.2 Å crystal structure of the C-terminal domain of JUNV NP. This structure showed high similarity to the Lassa fever virus (LASV) NP C-terminal domain. However, both the structure and function of JUNV NP showed differences compared with LASV NP. This study extends our structural insight into the negative-sense ssRNA virus NPs.

  8. The crystal structure of superoxide dismutase from Plasmodium falciparum

    PubMed Central

    Boucher, Ian W; Brzozowski, Andrzej M; Brannigan, James A; Schnick, Claudia; Smith, Derek J; Kyes, Sue A; Wilkinson, Anthony J

    2006-01-01

    Background Superoxide dismutases (SODs) are important enzymes in defence against oxidative stress. In Plasmodium falciparum, they may be expected to have special significance since part of the parasite life cycle is spent in red blood cells where the formation of reactive oxygen species is likely to be promoted by the products of haemoglobin breakdown. Thus, inhibitors of P. falciparum SODs have potential as anti-malarial compounds. As a step towards their development we have determined the crystal structure of the parasite's cytosolic iron superoxide dismutase. Results The cytosolic iron superoxide dismutase from P. falciparum (PfFeSOD) has been overexpressed in E. coli in a catalytically active form. Its crystal structure has been solved by molecular replacement and refined against data extending to 2.5 Å resolution. The structure reveals a two-domain organisation and an iron centre in which the metal is coordinated by three histidines, an aspartate and a solvent molecule. Consistent with ultracentrifugation analysis the enzyme is a dimer in which a hydrogen bonding lattice links the two active centres. Conclusion The tertiary structure of PfFeSOD is very similar to those of a number of other iron-and manganese-dependent superoxide dismutases, moreover the active site residues are conserved suggesting a common mechanism of action. Comparison of the dimer interfaces of PfFeSOD with the human manganese-dependent superoxide dismutase reveals a number of differences, which may underpin the design of parasite-selective superoxide dismutase inhibitors. PMID:17020617

  9. Unusual co-crystal of isonicotinamide: the structural landscape in crystal engineering.

    PubMed

    Tothadi, Srinu; Desiraju, Gautam R

    2012-06-28

    The idea of a structural landscape is based on the fact that a large number of crystal structures can be associated with a particular organic molecule. Taken together, all these structures constitute the landscape. The landscape includes polymorphs, pseudopolymorphs and solvates. Under certain circumstances, it may also include multi-component crystals (or co-crystals) that contain the reference molecule as one of the components. Under still other circumstances, the landscape may include the crystal structures of molecules that are closely related to the reference molecule. The idea of a landscape is to facilitate the understanding of the process of crystallization. It includes all minima that can, in principle, be accessed by the molecule in question as it traverses the path from solution to the crystal. Isonicotinamide is a molecule that is known to form many co-crystals. We report here a 2:1 co-crystal of this amide with 3,5-dinitrobenzoic acid, wherein an unusual N-H···N hydrogen-bonded pattern is observed. This crystal structure offers some hints about the recognition processes between molecules that might be implicated during crystallization. Also included is a review of other recent results that illustrate the concept of the structural landscape.

  10. Antibacterial Activity and Cytotoxicity of Silver(I) Complexes of Pyridine and (Benz)Imidazole Derivatives. X-ray Crystal Structure of [Ag(2,6-di(CH2OH)py)2]NO3.

    PubMed

    Kalinowska-Lis, Urszula; Felczak, Aleksandra; Chęcińska, Lilianna; Szabłowska-Gadomska, Ilona; Patyna, Emila; Małecki, Maciej; Lisowska, Katarzyna; Ochocki, Justyn

    2016-01-28

    Selected aspects of the biological activity of a series of six nitrate silver(I) complexes with pyridine and (benz)imidazole derivatives were investigated. The present study evaluated the antibacterial activities of the complexes against three Gram-negative strains: Pseudomonas aeruginosa ATCC 15442, Escherichia coli ATCC 25922 and Proteus hauseri ATCC 13315. The results were compared with those of silver nitrate, a silver sulfadiazine drug and appropriate ligands. The most significant antibacterial properties were exerted by silver(I) complexes containing benzimidazole derivatives. The cytotoxic activity of the complexes was examined against B16 (murine melanoma) and 10T1/2 (murine fibroblasts) cells. All of the tested silver(I) compounds were not toxic to fibroblast cells in concentration inhibited cancer cell (B16) viability by 50%, which ranged between 2.44-28.65 µM. The molecular and crystal structure of silver(I) complex of 2,6-di(hydroxymethyl)pyridine was determined by single-crystal X-ray diffraction analysis. The most important features of the crystal packing and intermolecular non-covalent interactions in the Ag(I) complex were quantified via Hirshfeld surface analysis.

  11. Exploring structural phase transitions of ion crystals

    PubMed Central

    Yan, L. L.; Wan, W.; Chen, L.; Zhou, F.; Gong, S. J.; Tong, X.; Feng, M.

    2016-01-01

    Phase transitions have been a research focus in many-body physics over past decades. Cold ions, under strong Coulomb repulsion, provide a repealing paradigm of exploring phase transitions in stable confinement by electromagnetic field. We demonstrate various conformations of up to sixteen laser-cooled 40Ca+ ion crystals in a home-built surface-electrode trap, where besides the usually mentioned structural phase transition from the linear to the zigzag, two additional phase transitions to more complicated two-dimensional configurations are identified. The experimental observation agrees well with the numerical simulation. Heating due to micromotion of the ions is analysed by comparison of the numerical simulation with the experimental observation. Our investigation implies very rich and complicated many-body behaviour in the trapped-ion systems and provides effective mechanism for further exploring quantum phase transitions and quantum information processing with ultracold trapped ions. PMID:26865229

  12. Crystal structure of a snake venom cardiotoxin

    SciTech Connect

    Rees, B.; Samama, J.P.; Thierry, J.C.; Gilibert, M.; Fischer, J.; Schweitz, H.; Lazdunski, M.; Moras, D.

    1987-05-01

    Cardiotoxin V/sup II/4 from Naja mossambica crystallizes in space group P6/sub 1/ (a = b = 73.9 A; c = 59.0 A) with two molecules of toxin (molecular mass = 6715 Da) in the asymmetric unit. The structure was solved by using a combination of multiple isomorphous replacement and density modification methods. Model building and least-squares refinement led to an agreement factor of 27% for a data set to 3-A resolution prior to any inclusion of solvent molecules. The topology of the molecule is similar to that found in short and long snake neurotoxins, which block the nicotinic acetylcholine receptor. Major differences occur in the conformation of the central loop, resulting in a change in the concavity of the molecule. Hydrophobic residues are clustered in two distinct areas. The existence of stable dimeric entities in the crystalline state, with the formation of a six-stranded antiparallel ..beta.. sheet, may be functionally relevant.

  13. Pressure effects on crystal and electronic structure of bismuth tellurohalides

    NASA Astrophysics Data System (ADS)

    Rusinov, I. P.; Menshchikova, T. V.; Sklyadneva, I. Yu; Heid, R.; Bohnen, K.-P.; Chulkov, E. V.

    2016-11-01

    We study the possibility of pressure-induced transitions from a normal semiconductor to a topological insulator (TI) in bismuth tellurohalides using density functional theory and tight-binding method. In BiTeI this transition is realized through the formation of an intermediate phase, a Weyl semimetal, that leads to modification of surface state dispersions. In the topologically trivial phase, the surface states exhibit a Bychkov-Rashba type dispersion. The Weyl semimetal phase exists in a narrow pressure interval of 0.2 GPa. After the Weyl semimetal-TI transition occurs, the surface electronic structure is characterized by gapless states with linear dispersion. The peculiarities of the surface states modification under pressure depend on the band-bending effect. We have also calculated the frequencies of Raman active modes for BiTeI in the proposed high-pressure crystal phases in order to compare them with available experimental data. Unlike BiTeI, in BiTeBr and BiTeCl the topological phase transition does not occur. In BiTeBr, the crystal structure changes with pressure but the phase remains a trivial one. However, the transition appears to be possible if the low-pressure crystal structure is retained. In BiTeCl under pressure, the topological phase does not appear up to 18 GPa due to a relatively large band gap width in this compound.

  14. The Crystal Structure of BRAF in Complex with an Organoruthenium Inhibitor Reveals a Mechanism for Inhibition of an Active Form of BRAF Kinase

    SciTech Connect

    Xie, Peng; Streu, Craig; Qin, Jie; Bregman, Howard; Pagano, Nicholas; Meggers, Eric; Marmorstein, Ronen

    2012-06-19

    Substitution mutations in the BRAF serine/threonine kinase are found in a variety of human cancers. Such mutations occur in 70% of human malignant melanomas, and a single hyperactivating V600E mutation is found in the activation segment of the kinase domain and accounts for more than 90% of these mutations. Given this correlation, the molecular mechanism for BRAF regulation as well as oncogenic activation has attracted considerable interest, and activated forms of BRAF, such as BRAF{sup V600E}, have become attractive targets for small molecule inhibition. Here we report on the identification and subsequent optimization of a potent BRAF inhibitor, CS292, based on an organometallic kinase inhibitor scaffold. A cocrystal structure of CS292 in complex with the BRAF kinase domain reveals that CS292 binds to the ATP binding pocket of the kinase and is an ATP competitive inhibitor. The structure of the kinase-inhibitor complex also demonstrates that CS292 binds to BRAF in an active conformation and suggests a mechanism for regulation of BRAF by phosphorylation and BRAF{sup V600E} oncogene-induced activation. The structure of CS292 bound to the active form of the BRAF kinase also provides a novel scaffold for the design of BRAF{sup V600E} oncogene selective BRAF inhibitors for therapeutic application.

  15. Revisiting the blind tests in crystal structure prediction: accurate energy ranking of molecular crystals.

    PubMed

    Asmadi, Aldi; Neumann, Marcus A; Kendrick, John; Girard, Pascale; Perrin, Marc-Antoine; Leusen, Frank J J

    2009-12-24

    In the 2007 blind test of crystal structure prediction hosted by the Cambridge Crystallographic Data Centre (CCDC), a hybrid DFT/MM method correctly ranked each of the four experimental structures as having the lowest lattice energy of all the crystal structures predicted for each molecule. The work presented here further validates this hybrid method by optimizing the crystal structures (experimental and submitted) of the first three CCDC blind tests held in 1999, 2001, and 2004. Except for the crystal structures of compound IX, all structures were reminimized and ranked according to their lattice energies. The hybrid method computes the lattice energy of a crystal structure as the sum of the DFT total energy and a van der Waals (dispersion) energy correction. Considering all four blind tests, the crystal structure with the lowest lattice energy corresponds to the experimentally observed structure for 12 out of 14 molecules. Moreover, good geometrical agreement is observed between the structures determined by the hybrid method and those measured experimentally. In comparison with the correct submissions made by the blind test participants, all hybrid optimized crystal structures (apart from compound II) have the smallest calculated root mean squared deviations from the experimentally observed structures. It is predicted that a new polymorph of compound V exists under pressure.

  16. Some Lower Valence Vanadium Fluorides: Their Crystal Distortions, Domain Structures, Modulated Structures, Ferrimagnetism, and Composition Dependence.

    ERIC Educational Resources Information Center

    Hong, Y. S.; And Others

    1980-01-01

    Describes some contemporary concepts unique to the structure of advanced solids, i.e., their crystal distortions, domain structures, modulated structures, ferrimagnetism, and composition dependence. (Author/CS)

  17. Eight- and six-coordinated Mn(II) complexes of heteroaromatic alcohol and aldehyde: crystal structure, spectral, magnetic, thermal and antibacterial activity studies.

    PubMed

    Jabłońska-Wawrzycka, Agnieszka; Barszcz, Barbara; Zienkiewicz, Małgorzata; Hodorowicz, Maciej; Jezierska, Julia; Stadnicka, Katarzyna; Lechowicz, Łukasz; Kaca, Wiesław

    2014-08-14

    Crystal, molecular and electronic structure of new manganese(II) compounds: [Mn(2-CH2OHpy)2(NO3)2] (1), [Mn(4-CHO-5-MeIm)2(NO3)2] (2) and [Mn(4-CHO-5-MeIm)2Cl2] (3), where 2-hydroxymethylpyridine (2-CH2OHpy) and 5(4)-carbaldehyde-4(5)-methylimidazole (5(4)-CHO-4(5)-MeIm), have been characterised using X-ray, spectroscopic, magnetic and TG/DTG data. In compounds 1 and 2, the Mn(II) ion is eight-coordinated forming distorted pseudo-dodecahedron, that is rather unusual for the manganese(II) complexes, whereas in 3 the Mn(II) ion environment is a distorted octahedron. The high coordination number (CN=8) of 1 and 2 results from bidentate character of the nitrate ligands. The X-band EPR spectra of compounds 2 and 3 exhibit fine structure signals resulting from zero-field splitting (ZFS) of the spin states for high spin d(5) Mn(II), whereas for 1 the broad isotropic signals were observed. The estimation of ZFS for individual Mn(II) ions was carried out for all compounds using DFT calculations. The free ligands and their manganese(II) complexes have been tested in vitro against gram-positive and gram-negative bacteria in order to assess their antimicrobial properties.

  18. Eight- and six-coordinated Mn(II) complexes of heteroaromatic alcohol and aldehyde: Crystal structure, spectral, magnetic, thermal and antibacterial activity studies

    NASA Astrophysics Data System (ADS)

    Jabłońska-Wawrzycka, Agnieszka; Barszcz, Barbara; Zienkiewicz, Małgorzata; Hodorowicz, Maciej; Jezierska, Julia; Stadnicka, Katarzyna; Lechowicz, Łukasz; Kaca, Wiesław

    2014-08-01

    Crystal, molecular and electronic structure of new manganese(II) compounds: [Mn(2-CH2OHpy)2(NO3)2] (1), [Mn(4-CHO-5-MeIm)2(NO3)2] (2) and [Mn(4-CHO-5-MeIm)2Cl2] (3), where 2-hydroxymethylpyridine (2-CH2OHpy) and 5(4)-carbaldehyde-4(5)-methylimidazole (5(4)-CHO-4(5)-MeIm), have been characterised using X-ray, spectroscopic, magnetic and TG/DTG data. In compounds 1 and 2, the Mn(II) ion is eight-coordinated forming distorted pseudo-dodecahedron, that is rather unusual for the manganese(II) complexes, whereas in 3 the Mn(II) ion environment is a distorted octahedron. The high coordination number (CN = 8) of 1 and 2 results from bidentate character of the nitrate ligands. The X-band EPR spectra of compounds 2 and 3 exhibit fine structure signals resulting from zero-field splitting (ZFS) of the spin states for high spin d5 Mn(II), whereas for 1 the broad isotropic signals were observed. The estimation of ZFS for individual Mn(II) ions was carried out for all compounds using DFT calculations. The free ligands and their manganese(II) complexes have been tested in vitro against gram-positive and gram-negative bacteria in order to assess their antimicrobial properties.

  19. Crystal Structures of Aedes Aegypt Alanine Glyoxylate Aminotransferase

    SciTech Connect

    Han,Q.; Robinson, H.; Gao, Y.; Vogelaar, N.; Wilson, S.; Rizzi, M.; Li, J.

    2006-01-01

    Mosquitoes are unique in having evolved two alanine glyoxylate aminotransferases (AGTs). One is 3-hydroxykynurenine transaminase (HKT), which is primarily responsible for catalyzing the transamination of 3-hydroxykynurenine (3-HK) to xanthurenic acid (XA). Interestingly, XA is used by malaria parasites as a chemical trigger for their development within the mosquito. This 3-HK to XA conversion is considered the major mechanism mosquitoes use to detoxify the chemically reactive and potentially toxic 3-HK. The other AGT is a typical dipteran insect AGT and is specific for converting glyoxylic acid to glycine. Here we report the 1.75{angstrom} high-resolution three-dimensional crystal structure of AGT from the mosquito Aedes aegypti (AeAGT) and structures of its complexes with reactants glyoxylic acid and alanine at 1.75 and 2.1{angstrom} resolution, respectively. This is the first time that the three-dimensional crystal structures of an AGT with its amino acceptor, glyoxylic acid, and amino donor, alanine, have been determined. The protein is dimeric and adopts the type I-fold of pyridoxal 5-phosphate (PLP)-dependent aminotransferases. The PLP co-factor is covalently bound to the active site in the crystal structure, and its binding site is similar to those of other AGTs. The comparison of the AeAGT-glyoxylic acid structure with other AGT structures revealed that these glyoxylic acid binding residues are conserved in most AGTs. Comparison of the AeAGT-alanine structure with that of the Anopheles HKT-inhibitor complex suggests that a Ser-Asn-Phe motif in the latter may be responsible for the substrate specificity of HKT enzymes for 3-HK.

  20. Crystal structures of Aedes aegypti alanine glyoxylate aminotransferase.

    PubMed

    Han, Qian; Robinson, Howard; Gao, Yi Gui; Vogelaar, Nancy; Wilson, Scott R; Rizzi, Menico; Li, Jianyong

    2006-12-01

    Mosquitoes are unique in having evolved two alanine glyoxylate aminotransferases (AGTs). One is 3-hydroxykynurenine transaminase (HKT), which is primarily responsible for catalyzing the transamination of 3-hydroxykynurenine (3-HK) to xanthurenic acid (XA). Interestingly, XA is used by malaria parasites as a chemical trigger for their development within the mosquito. This 3-HK to XA conversion is considered the major mechanism mosquitoes use to detoxify the chemically reactive and potentially toxic 3-HK. The other AGT is a typical dipteran insect AGT and is specific for converting glyoxylic acid to glycine. Here we report the 1.75A high-resolution three-dimensional crystal structure of AGT from the mosquito Aedes aegypti (AeAGT) and structures of its complexes with reactants glyoxylic acid and alanine at 1.75 and 2.1A resolution, respectively. This is the first time that the three-dimensional crystal structures of an AGT with its amino acceptor, glyoxylic acid, and amino donor, alanine, have been determined. The protein is dimeric and adopts the type I-fold of pyridoxal 5-phosphate (PLP)-dependent aminotransferases. The PLP co-factor is covalently bound to the active site in the crystal structure, and its binding site is similar to those of other AGTs. The comparison of the AeAGT-glyoxylic acid structure with other AGT structures revealed that these glyoxylic acid binding residues are conserved in most AGTs. Comparison of the AeAGT-alanine structure with that of the Anopheles HKT-inhibitor complex suggests that a Ser-Asn-Phe motif in the latter may be responsible for the substrate specificity of HKT enzymes for 3-HK.

  1. Crystal Structure of Baculovirus RNA Triphosphatase Complexed with Phosphate

    SciTech Connect

    Changela, Anita; Martin, Alexandra; Shuman, Stewart; Mondragon, Alfonso

    2010-03-05

    Baculovirus RNA 5'-triphosphatase (BVP) exemplifies a family of RNA-specific cysteine phosphatases that includes the RNA triphosphatase domains of metazoan and plant mRNA capping enzymes. Here we report the crystal structure of BVP in a phosphate-bound state at 1.5 {angstrom} resolution. BVP adopts the characteristic cysteine-phosphatase {alpha}/{beta} fold and binds two phosphate ions in the active site region, one of which is proposed to mimic the phosphate of the product complex after hydrolysis of the covalent phosphoenzyme intermediate. The crystal structure highlights the role of backbone amides and side chains of the P-loop motif {sup 118}HCTHGXNRT{sup 126} in binding the cleavable phosphate and stabilizing the transition state. Comparison of the BVP structure to the apoenzyme of mammalian RNA triphosphatase reveals a concerted movement of the Arg-125 side chain (to engage the phosphate directly) and closure of an associated surface loop over the phosphate in the active site. The structure highlights a direct catalytic role of Asn-124, which is the signature P-loop residue of the RNA triphosphatase family and a likely determinant of the specificity of BVP for hydrolysis of phosphoanhydride linkages.

  2. Structure dependent hydrogen induced etching features of graphene crystals

    NASA Astrophysics Data System (ADS)

    Thangaraja, Amutha; Shinde, Sachin M.; Kalita, Golap; Papon, Remi; Sharma, Subash; Vishwakarma, Riteshkumar; Sharma, Kamal P.; Tanemura, Masaki

    2015-06-01

    H2 induced etching of graphene is of significant interest to understand graphene growth process as well as to fabricate nanoribbons and various other structures. Here, we demonstrate the structure dependent H2 induced etching behavior of graphene crystals. We synthesized graphene crystals on electro-polished Cu foil by an atmospheric pressure chemical vapor deposition process, where some of the crystals showed hexagonal shaped snowflake-dendritic morphology. Significant differences in H2 induced etching behavior were observed for the snowflake-dendritic and regular graphene crystals by annealing in a gas mixture of H2 and Ar. The regular graphene crystals were etched anisotropically creating hexagonal holes with pronounced edges, while etching of all the dendritic crystals occurred from the branches of lobs creating symmetrical fractal structures. The etching behavior provides important clue of graphene nucleation and growth as well as their selective etching to fabricate well-defined structures for nanoelectronics.

  3. Crystal Structure of a Fructokinase Homolog from Halothermothrix orenii

    SciTech Connect

    Khiang, C.; Seetharaman, J; Kasprzak, J; Cherlyn, N; Patel, B; Love, C; Bujnicki, J; Sivaraman, J

    2010-01-01

    Fructokinase (FRK; EC 2.7.1.4) catalyzes the phosphorylation of D-fructose to D-fructose 6-phosphate (F6P). This irreversible and near rate-limiting step is a central and regulatory process in plants and bacteria, which channels fructose into a metabolically active state for glycolysis. Towards understanding the mechanism of FRK, here we report the crystal structure of a FRK homolog from a thermohalophilic bacterium Halothermothrix orenii (Hore{_}18220 in sequence databases). The structure of the Hore{_}18220 protein reveals a catalytic domain with a Rossmann-like fold and a b-sheet 'lid' for dimerization. Based on comparison of Hore{_}18220 to structures of related proteins, we propose its mechanism of action, in which the lid serves to regulate access to the substrate binding sites. Close relationship of Hore{_}18220 and plant FRK enzymes allows us to propose a model for the structure and function of FRKs.

  4. Multiple solvent crystal structures of ribonuclease A: An assessment of the method

    SciTech Connect

    Dechene, Michelle; Wink, Glenna; Smith, Mychal; Swartz, Paul; Mattos, Carla

    2010-11-12

    The multiple solvent crystal structures (MSCS) method uses organic solvents to map the surfaces of proteins. It identifies binding sites and allows for a more thorough examination of protein plasticity and hydration than could be achieved by a single structure. The crystal structures of bovine pancreatic ribonuclease A (RNAse A) soaked in the following organic solvents are presented: 50% dioxane, 50% dimethylformamide, 70% dimethylsulfoxide, 70% 1,6-hexanediol, 70% isopropanol, 50% R,S,R-bisfuran alcohol, 70% t-butanol, 50% trifluoroethanol, or 1.0M trimethylamine-N-oxide. This set of structures is compared with four sets of crystal structures of RNAse A from the protein data bank (PDB) and with the solution NMR structure to assess the validity of previously untested assumptions associated with MSCS analysis. Plasticity from MSCS is the same as from PDB structures obtained in the same crystal form and deviates only at crystal contacts when compared to structures from a diverse set of crystal environments. Furthermore, there is a good correlation between plasticity as observed by MSCS and the dynamic regions seen by NMR. Conserved water binding sites are identified by MSCS to be those that are conserved in the sets of structures taken from the PDB. Comparison of the MSCS structures with inhibitor-bound crystal structures of RNAse A reveals that the organic solvent molecules identify key interactions made by inhibitor molecules, highlighting ligand binding hot-spots in the active site. The present work firmly establishes the relevance of information obtained by MSCS.

  5. Crystallization and Characterization of Galdieria sulphuraria RUBISCO in Two Crystal Forms: Structural Phase Transition Observed in P21 Crystal Form

    PubMed Central

    Baranowski, Michael; Stec, Boguslaw

    2007-01-01

    We have isolated ribulose-1,5-bisphosphate-carboxylase/oxygenase (RUBISCO) from the red algae Galdieria Sulphuraria. The protein crystallized in two different crystal forms, the I422 crystal form being obtained from high salt and the P21 crystal form being obtained from lower concentration of salt and PEG. We report here the crystallization, preliminary stages of structure determination and the detection of the structural phase transition in the P21 crystal form of G. sulphuraria RUBISCO. This red algae enzyme belongs to the hexadecameric class (L8S8) with an approximate molecular weight 0.6MDa. The phase transition in G. sulphuraria RUBISCO leads from two hexadecamers to a single hexadecamer per asymmetric unit. The preservation of diffraction power in a phase transition for such a large macromolecule is rare.

  6. Crystal structures of five 6-mercaptopurine derivatives

    PubMed Central

    Gomes, Lígia R.; Low, John Nicolson; Magalhães e Silva, Diogo; Cagide, Fernando; Borges, Fernanda

    2016-01-01

    The crystal structures of five 6-mercaptopurine derivatives, viz. 2-[(9-acetyl-9H-purin-6-yl)sulfan­yl]-1-(3-meth­oxy­phen­yl)ethan-1-one (1), C16H14N4O3S, 2-[(9-acetyl-9H-purin-6-yl)sulfan­yl]-1-(4-meth­oxy­phen­yl)ethan-1-one (2), C16H14N4O3S, 2-[(9-acetyl-9H-purin-6-yl)sulfan­yl]-1-(4-chloro­phen­yl)ethan-1-one (3), C15H11ClN4O2S, 2-[(9-acetyl-9H-purin-6-yl)sulfan­yl]-1-(4-bromo­phen­yl)ethan-1-one (4), C15H11BrN4O2S, and 1-(3-meth­oxy­phen­yl)-2-[(9H-purin-6-yl)sulfan­yl]ethan-1-one (5), C14H12N4O2S. Compounds (2), (3) and (4) are isomorphous and accordingly their mol­ecular and supra­molecular structures are similar. An analysis of the dihedral angles between the purine and exocyclic phenyl rings show that the mol­ecules of (1) and (5) are essentially planar but that in the case of the three isomorphous compounds (2), (3) and (4), these rings are twisted by a dihedral angle of approximately 38°. With the exception of (1) all mol­ecules are linked by weak C—H⋯O hydrogen bonds in their crystals. There is π–π stacking in all compounds. A Cambridge Structural Database search revealed the existence of 11 deposited compounds containing the 1-phenyl-2-sulfanyl­ethanone scaffold; of these, only eight have a cyclic ring as substituent, the majority of these being heterocycles. PMID:27006794

  7. Crystal structure of a Staphylococcus aureus protein A domain complexed with the Fab fragment of a human IgM antibody: structural basis for recognition of B-cell receptors and superantigen activity.

    PubMed

    Graille, M; Stura, E A; Corper, A L; Sutton, B J; Taussig, M J; Charbonnier, J B; Silverman, G J

    2000-05-09

    Staphylococcus aureus produces a virulence factor, protein A (SpA), that contains five homologous Ig-binding domains. The interactions of SpA with the Fab region of membrane-anchored Igs can stimulate a large fraction of B cells, contributing to lymphocyte clonal selection. To understand the molecular basis for this activity, we have solved the crystal structure of the complex between domain D of SpA and the Fab fragment of a human IgM antibody to 2.7-A resolution. In the complex, helices II and III of domain D interact with the variable region of the Fab heavy chain (V(H)) through framework residues, without the involvement of the hypervariable regions implicated in antigen recognition. The contact residues are highly conserved in human V(H)3 antibodies but not in other families. The contact residues from domain D also are conserved among all SpA Ig-binding domains, suggesting that each could bind in a similar manner. Features of this interaction parallel those reported for staphylococcal enterotoxins that are superantigens for many T cells. The structural homology between Ig V(H) regions and the T-cell receptor V(beta) regions facilitates their comparison, and both types of interactions involve lymphocyte receptor surface remote from the antigen binding site. However, T-cell superantigens reportedly interact through hydrogen bonds with T-cell receptor V(beta) backbone atoms in a primary sequence-independent manner, whereas SpA relies on a sequence-restricted conformational binding with residue side chains, suggesting that this common bacterial pathogen has adopted distinct molecular recognition strategies for affecting large sets of B and T lymphocytes.

  8. Crystal Structure of Human Kynurenine Aminotransferase ll*

    SciTech Connect

    Han,Q.; Robinson, H.; Li, J.

    2008-01-01

    Human kynurenine aminotransferase II (hKAT-II) efficiently catalyzes the transamination of knunrenine to kynurenic acid (KYNA). KYNA is the only known endogenous antagonist of N-methyl-d-aspartate (NMDA) receptors and is also an antagonist of 7-nicotinic acetylcholine receptors. Abnormal concentrations of brain KYNA have been implicated in the pathogenesis and development of several neurological and psychiatric diseases in humans. Consequently, enzymes involved in the production of brain KYNA have been considered potential regulatory targets. In this article, we report a 2.16 Angstroms crystal structure of hKAT-II and a 1.95 Angstroms structure of its complex with kynurenine. The protein architecture of hKAT-II reveals that it belongs to the fold-type I pyridoxal 5-phosphate (PLP)-dependent enzymes. In comparison with all subclasses of fold-type I-PLP-dependent enzymes, we propose that hKAT-II represents a novel subclass in the fold-type I enzymes because of the unique folding of its first 65 N-terminal residues. This study provides a molecular basis for future effort in maintaining physiological concentrations of KYNA through molecular and biochemical regulation of hKAT-II.

  9. Structure of the catalytic chain of Methanococcus jannaschii aspartate transcarbamoylase in a hexagonal crystal form: Insights into the path of carbamoyl phosphate to the active site of the enzyme

    SciTech Connect

    Vitali J.; Soares A.; Singh, A. K.; Colaneri, M. J.

    2012-05-01

    Crystals of the catalytic chain of Methanococcus jannaschii aspartate transcarbamoylase (ATCase) grew in the presence of the regulatory chain in the hexagonal space group P6{sub 3}22, with one monomer per asymmetric unit. This is the first time that crystals with only one monomer in the asymmetric unit have been obtained; all known structures of the catalytic subunit contain several crystallographically independent monomers. The symmetry-related chains form the staggered dimer of trimers observed in the other known structures of the catalytic subunit. The central channel of the catalytic subunit contains a sulfate ion and a K{sup +} ion as well as a glycerol molecule at its entrance. It is possible that it is involved in channeling carbamoyl phosphate (CP) to the active site of the enzyme. A second sulfate ion near Arg164 is near the second CP position in the wild-type Escherichia coli ATCase structure complexed with CP. It is suggested that this position may also be in the path that CP takes when binding to the active site in a partial diffusion process at 310 K. Additional biochemical studies of carbamoylation and the molecular organization of this enzyme in M. jannaschii will provide further insight into these points.

  10. Manipulating Heat Flow through 3 Dimensional Nanoscale Phononic Crystal Structure

    DTIC Science & Technology

    2014-06-02

    Nanoscale Phononic Crystal Structure 5a. CONTRACT NUMBER FA23861214047 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Baowen Li 5d...through computer simulation, how the three dimensional (3D) phononic crystal structures can confine phonon and thus reduce thermal conductivity...phononic crystal (PnC) with spherical pores, which can reduce thermal conductivity of bulk Si by a factor up to 10,000 times at room temperature. The

  11. Anomalous variations of crystal habits and solution properties in the context of the crystallization medium structure

    NASA Astrophysics Data System (ADS)

    Kiryanova, E. V.; Ugolkov, V. L.; Pyankova, L. A.; Filatov, S. K.

    2009-12-01

    The effect of the real structure of solutions on crystallization is one of the basic issues of crystallogenesis, which is also important for resolving problems of genetic mineralogy. The study of the NaNO3-H2O and KNO3-H2O model systems yielded new data on anomalous characteristics of crystal-forming systems, including morphological and kinetic properties of crystals, crystal-solution equilibrium, and physical properties of solutions (light scattering, thermal properties, IR parameters, pH), providing information on the structure of solutions. The internally consistent data confirm the previously suggested variations in structural heterogeneity of solutions related to minor (2-4%) variations in their composition, which result in numerous disturbances of monotonicity (thermal-concentration oscillations) in the liquidus curves of salts. It is shown that these variations can be caused by variable size and composition of crystal hydrate clusters. The experimental data indicate that the effect of the real solution structure on crystal morphology and crystal-solution equilibrium is enhanced in multicomponent systems, including natural crystal-forming systems. Anomalous faceting and habit, zoning, a sectorial structure of crystals, and nonuniform entrapment of admixtures cannot be ruled out in these systems.

  12. Crystal structure of the cystic fibrosis transmembrane conductance regulator inhibitory factor Cif reveals novel active-site features of an epoxide hydrolase virulence factor.

    PubMed

    Bahl, Christopher D; Morisseau, Christophe; Bomberger, Jennifer M; Stanton, Bruce A; Hammock, Bruce D; O'Toole, George A; Madden, Dean R

    2010-04-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) inhibitory factor (Cif) is a virulence factor secreted by Pseudomonas aeruginosa that reduces the quantity of CFTR in the apical membrane of human airway epithelial cells. Initial sequence analysis suggested that Cif is an epoxide hydrolase (EH), but its sequence violates two strictly conserved EH motifs and also is compatible with other alpha/beta hydrolase family members with diverse substrate specificities. To investigate the mechanistic basis of Cif activity, we have determined its structure at 1.8-A resolution by X-ray crystallography. The catalytic triad consists of residues Asp129, His297, and Glu153, which are conserved across the family of EHs. At other positions, sequence deviations from canonical EH active-site motifs are stereochemically conservative. Furthermore, detailed enzymatic analysis confirms that Cif catalyzes the hydrolysis of epoxide compounds, with specific activity against both epibromohydrin and cis-stilbene oxide, but with a relatively narrow range of substrate selectivity. Although closely related to two other classes of alpha/beta hydrolase in both sequence and structure, Cif does not exhibit activity as either a haloacetate dehalogenase or a haloalkane dehalogenase. A reassessment of the structural and functional consequences of the H269A mutation suggests that Cif's effect on host-cell CFTR expression requires the hydrolysis of an extended endogenous epoxide substrate.

  13. Crystal Structure of the Cystic Fibrosis Transmembrane Conductance Regulator Inhibitory Factor Cif Reveals Novel Active-Site Features of an Epoxide Hydrolase Virulence Factor

    SciTech Connect

    Bahl, C.; Morisseau, C; Bomberger, J; Stanton, B; Hammock, B; O' Toole, G; Madden, D

    2010-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) inhibitory factor (Cif) is a virulence factor secreted by Pseudomonas aeruginosa that reduces the quantity of CFTR in the apical membrane of human airway epithelial cells. Initial sequence analysis suggested that Cif is an epoxide hydrolase (EH), but its sequence violates two strictly conserved EH motifs and also is compatible with other {alpha}/{beta} hydrolase family members with diverse substrate specificities. To investigate the mechanistic basis of Cif activity, we have determined its structure at 1.8-{angstrom} resolution by X-ray crystallography. The catalytic triad consists of residues Asp129, His297, and Glu153, which are conserved across the family of EHs. At other positions, sequence deviations from canonical EH active-site motifs are stereochemically conservative. Furthermore, detailed enzymatic analysis confirms that Cif catalyzes the hydrolysis of epoxide compounds, with specific activity against both epibromohydrin and cis-stilbene oxide, but with a relatively narrow range of substrate selectivity. Although closely related to two other classes of {alpha}/{beta} hydrolase in both sequence and structure, Cif does not exhibit activity as either a haloacetate dehalogenase or a haloalkane dehalogenase. A reassessment of the structural and functional consequences of the H269A mutation suggests that Cif's effect on host-cell CFTR expression requires the hydrolysis of an extended endogenous epoxide substrate.

  14. Some New Observations on Activation Energy of Crystal Growth for Thermally Activated Crystallization.

    PubMed

    Mehta, N; Kumar, A

    2016-02-18

    Calorimetric study of glass/crystal phase transformation in disordered semiconductors is a significant tool for understanding their crystallization kinetics. Such studies provide the basis for practical application of glasses. Differential scanning calorimetry (DSC) is one of the advanced techniques for the analysis of thermally induced crystallization in glassy or amorphous systems. We are reporting the nonisothermal DSC measurements on four amorphous systems of Se70Te30 alloy with Ag, Cd, Sb, and Zn as chemical modifiers. In general, the rate constant (K) shows Arrhenian dependence on temperature (T), i.e., K = K0 exp (-Eg/RT) where Eg is the activation energy of crystal growth and K0 is called the pre-exponential factor of rate constant. In the present work, an experiment is designed to see the effect of composition on the activation energy of crystal growth. We have found Meyer-Neldel relation (MNR) between Eg and K0 for present systems. Another interesting feature of present work is the observation of further relation between Meyer-Neldel prefactor and Meyer-Neldel energy.

  15. Undergraduates Improve upon Published Crystal Structure in Class Assignment

    ERIC Educational Resources Information Center

    Horowitz, Scott; Koldewey, Philipp; Bardwell, James C.

    2014-01-01

    Recently, 57 undergraduate students at the University of Michigan were assigned the task of solving a crystal structure, given only the electron density map of a 1.3 Å crystal structure from the electron density server, and the position of the N-terminal amino acid. To test their knowledge of amino acid chemistry, the students were not given the…

  16. Crystal Structure of the Deglycating Enzyme Fructosamine Oxidase (Amadoriase ll)

    SciTech Connect

    Collard, F.; Zhang, J; Nemet, I; Qanungo, K; Monnier, V; Yee, V

    2008-01-01

    Fructosamine oxidases (FAOX) catalyze the oxidative deglycation of low molecular weight fructosamines (Amadori products). These proteins are of interest in developing an enzyme to deglycate proteins implicated in diabetic complications. We report here the crystal structures of FAOX-II from the fungi Aspergillus fumigatus, in free form and in complex with the inhibitor fructosyl-thioacetate, at 1.75 and 1.6{angstrom} resolution, respectively. FAOX-II is a two domain FAD-enzyme with an overall topology that is most similar to that of monomeric sarcosine oxidase. Active site residues Tyr-60, Arg-112 and Lys-368 bind the carboxylic portion of the fructosamine, whereas Glu-280 and Arg-411 bind the fructosyl portion. From structure-guided sequence comparison, Glu-280 was identified as a signature residue for FAOX activity. Two flexible surface loops become ordered upon binding of the inhibitor in a catalytic site that is about 12{angstrom} deep, providing an explanation for the very low activity of FAOX enzymes toward protein-bound fructosamines, which would have difficulty accessing the active site. Structure-based mutagenesis showed that substitution of Glu-280 and Arg-411 eliminates enzyme activity. In contrast, modification of other active site residues or of amino acids in the flexible active site loops has little effect, highlighting these regions as potential targets in designing an enzyme that will accept larger substrates.

  17. Crystal Structure of the Deglycating Enzyme Fructosamine Oxidase (Amadoriase II)

    SciTech Connect

    Collard, François; Zhang, Jianye; Nemet, Ina; Qanungo, Kaustubha R.; Monnier, Vincent M.; Yee, Vivien C.

    2009-01-12

    Fructosamine oxidases (FAOX) catalyze the oxidative deglycation of low molecular weight fructosamines (Amadori products). These proteins are of interest in developing an enzyme to deglycate proteins implicated in diabetic complications. We report here the crystal structures of FAOX-II from the fungi Aspergillus fumigatus, in free form and in complex with the inhibitor fructosyl-thioacetate, at 1.75 and 1.6{angstrom} resolution, respectively. FAOX-II is a two domain FAD-enzyme with an overall topology that is most similar to that of monomeric sarcosine oxidase. Active site residues Tyr-60, Arg-112 and Lys-368 bind the carboxylic portion of the fructosamine, whereas Glu-280 and Arg-411 bind the fructosyl portion. From structure-guided sequence comparison, Glu-280 was identified as a signature residue for FAOX activity. Two flexible surface loops become ordered upon binding of the inhibitor in a catalytic site that is about 12{angstrom} deep, providing an explanation for the very low activity of FAOX enzymes toward protein-bound fructosamines, which would have difficulty accessing the active site. Structure-based mutagenesis showed that substitution of Glu-280 and Arg-411 eliminates enzyme activity. In contrast, modification of other active site residues or of amino acids in the flexible active site loops has little effect, highlighting these regions as potential targets in designing an enzyme that will accept larger substrates.

  18. Crystal Structure of the Deglycating Enzyme Fructosamine Oxidase (Amadoriase II)*

    PubMed Central

    Collard, François; Zhang, Jianye; Nemet, Ina; Qanungo, Kaustubha R.; Monnier, Vincent M.; Yee, Vivien C.

    2008-01-01

    Fructosamine oxidases (FAOX) catalyze the oxidative deglycation of low molecular weight fructosamines (Amadori products). These proteins are of interest in developing an enzyme to deglycate proteins implicated in diabetic complications. We report here the crystal structures of FAOX-II from the fungi Aspergillus fumigatus, in free form and in complex with the inhibitor fructosyl-thioacetate, at 1.75 and 1.6Å resolution, respectively. FAOX-II is a two domain FAD-enzyme with an overall topology that is most similar to that of monomeric sarcosine oxidase. Active site residues Tyr-60, Arg-112 and Lys-368 bind the carboxylic portion of the fructosamine, whereas Glu-280 and Arg-411 bind the fructosyl portion. From structure-guided sequence comparison, Glu-280 was identified as a signature residue for FAOX activity. Two flexible surface loops become ordered upon binding of the inhibitor in a catalytic site that is about 12Å deep, providing an explanation for the very low activity of FAOX enzymes toward protein-bound fructosamines, which would have difficulty accessing the active site. Structure-based mutagenesis showed that substitution of Glu-280 and Arg-411 eliminates enzyme activity. In contrast, modification of other active site residues or of amino acids in the flexible active site loops has little effect, highlighting these regions as potential targets in designing an enzyme that will accept larger substrates. PMID:18667417

  19. Growth and crystal structure of the BeAl 6O 10 single crystals

    NASA Astrophysics Data System (ADS)

    Alimpiev, A. I.; Merkulov, A. A.; Solntsev, V. P.; Tsvetkov, E. G.; Matrosov, V. N.; Pestryakov, E. V.

    2002-04-01

    Unlike earlier published works we have established incongruent melting for the compound BeAl 6O 10 (BHA). The conditions of growing crystals from their own melt with a superstoichiometric excess of BeO, using the Czochralski method, have been determined. The nature of inclusions in grown BHA crystals is described. On the basis of X-ray crystal structure analysis and data of spectroscopic studies the symmetry and space group of BHA crystal structure have been refined, as well as uncertainties arising in their interpretation are discussed.

  20. Predicting crystal structure by merging data mining with quantum mechanics.

    PubMed

    Fischer, Christopher C; Tibbetts, Kevin J; Morgan, Dane; Ceder, Gerbrand

    2006-08-01

    Modern methods of quantum mechanics have proved to be effective tools to understand and even predict materials properties. An essential element of the materials design process, relevant to both new materials and the optimization of existing ones, is knowing which crystal structures will form in an alloy system. Crystal structure can only be predicted effectively with quantum mechanics if an algorithm to direct the search through the large space of possible structures is found. We present a new approach to the prediction of structure that rigorously mines correlations embodied within experimental data and uses them to direct quantum mechanical techniques efficiently towards the stable crystal structure of materials.

  1. Use of Pom Pons to Illustrate Cubic Crystal Structures.

    ERIC Educational Resources Information Center

    Cady, Susan G.

    1997-01-01

    Describes a method that uses olefin pom pons to illustrate cubic crystal structure. Facilitates hands-on examination of different packing arrangements such as hexagonal close-packed and cubic close-packed structures. (JRH)

  2. The crystal structure of a TL/CD8{alpha}{alpha} complex at 2.1 {angstrom} resolution : implications for modulation of T cell activation and memory.

    SciTech Connect

    Liu, Y.; Xiong, Y.; Naidenko, O. V.; Liu, J.-H.; Zhang, R.; Joachimiak, A.; Kronenberg, M.; Cheroutre, H.; Reinherz, E. L.; Wang, J.-H.; Biosciences Division; Dana-Farber Cancer Inst.; Harvard Medical School; La Jolla Inst. of Allergy and Immunology

    2003-02-01

    TL is a nonclassical MHC class I molecule that modulates T cell activation through relatively high-affinity interaction with CD8{alpha}{alpha}. To investigate how the TL/CD8{alpha}{alpha} interaction influences TCR signaling, we characterized the structure of the TL/CD8{alpha}{alpha} complex using X-ray crystallography. Unlike antigen-presenting molecules, the TL antigen-binding groove is occluded by specific conformational changes. This feature eliminates antigen presentation, severely hampers direct TCR recognition, and prevents TL from participating in the TCR activation complex. At the same time, the TL/CD8{alpha}{alpha} interaction is strengthened through subtle structure changes in the TL {alpha}3 domain. Thus, TL functions to sequester and redirect CD8{alpha}{alpha} away from the TCR, modifying lck-dependent signaling.

  3. Crystal Structures of Intermediates in the Nitroalkane Oxidase Reaction†

    PubMed Central

    Héroux, Annie; Bozinovski, Dragana M.; Valley, Michael P.; Fitzpatrick, Paul F.; Orville, Allen M.

    2009-01-01

    The flavoenzyme nitroalkane oxidase is a member of the acyl-CoA dehydrogenase superfamily. Nitroalkane oxidase catalyzes the oxidation of neutral nitroalkanes to nitrite and the corresponding aldehydes or ketones. Crystal structures to 2.2 Å resolution or better are described of enzyme complexes with bound substrates and of a trapped substrate-flavin adduct. The D402N enzyme has no detectable activity with neutral nitroalkanes (Valley, M. P., and Fitzpatrick, P. F. (2003) J. Am. Chem. Soc. 23, 8738–8739). The structure of the D402N enzyme crystallized in the presence of 1-nitrohexane or 1-nitrooctane shows the presence of the substrate in the binding site. The aliphatic chain of the substrate extends into a tunnel leading to the enzyme surface. The oxygens of the substrate nitro group interact both with amino acid residues and with the 2’-hydroxyl of the FAD. When nitroalkane oxidase oxidizes nitroalkanes in the presence of cyanide, an electrophilic flavin imine intermediate can be trapped (Valley, M. P., Tichy, S. E., and Fitzpatrick, P. F. (2005) J. Am. Chem. Soc. 127, 2062–2066). The structure of the enzyme trapped with cyanide during oxidation of 1-nitrohexane shows the presence of the modified flavin. A continuous hydrogen bond network connects the nitrogen of the CN-hexyl-FAD through the FAD 2’-hydroxyl to a chain of water molecules extending to the protein surface. Together, our complementary approaches provide strong evidence that the flavin cofactor is in the appropriate oxidation state and correlates well with the putative intermediate state observed within each of the crystal structures. Consequently, these results provide important structural descriptions of several steps along the nitroalkane oxidase reaction cycle. PMID:19265437

  4. Crystal Structures of Intermediates in the Nitroalkane Oxidase Reaction

    SciTech Connect

    Heroux, A.; Bozinovski, D; Valley, M; Fitzpatrick, P; Orville, A

    2009-01-01

    The flavoenzyme nitroalkane oxidase is a member of the acyl-CoA dehydrogenase superfamily. Nitroalkane oxidase catalyzes the oxidation of neutral nitroalkanes to nitrite and the corresponding aldehydes or ketones. Crystal structures to 2.2 {angstrom} resolution or better of enzyme complexes with bound substrates and of a trapped substrate-flavin adduct are described. The D402N enzyme has no detectable activity with neutral nitroalkanes. The structure of the D402N enzyme crystallized in the presence of 1-nitrohexane or 1-nitrooctane shows the presence of the substrate in the binding site. The aliphatic chain of the substrate extends into a tunnel leading to the enzyme surface. The oxygens of the substrate nitro group interact both with amino acid residues and with the 2'-hydroxyl of the FAD. When nitroalkane oxidase oxidizes nitroalkanes in the presence of cyanide, an electrophilic flavin imine intermediate can be trapped (Valley, M. P., Tichy, S. E., and Fitzpatrick, P. F. (2005) J. Am. Chem. Soc. 127, 2062-2066). The structure of the enzyme trapped with cyanide during oxidation of 1-nitrohexane shows the presence of the modified flavin. A continuous hydrogen bond network connects the nitrogen of the CN-hexyl-FAD through the FAD 2'-hydroxyl to a chain of water molecules extending to the protein surface. Together, our complementary approaches provide strong evidence that the flavin cofactor is in the appropriate oxidation state and correlates well with the putative intermediate state observed within each of the crystal structures. Consequently, these results provide important structural descriptions of several steps along the nitroalkane oxidase reaction cycle.

  5. Crystal structure of the yeast metacaspase Yca1.

    PubMed

    Wong, Ada Hang-Heng; Yan, Chuangye; Shi, Yigong

    2012-08-24

    Yca1, the only metacaspase in Saccharomyces cerevisiae, is thought to be a clan CD cysteine protease that includes the caspase subfamily. Although yeast is a single cell eukaryote, it can undergo a cell death process reminiscent of apoptosis. Yca1 has been reported to play an important role in the regulation of such apoptotic process. However, the structure and functional mechanism of Yca1 remain largely enigmatic. In this study, we report the crystal structure of the Yca1 metacaspase at 1.7 Å resolution, confirming a caspase-like fold. In sharp contrast to canonical caspases, however, Yca1 exists as a monomer both in solution and in the crystals. Canonical caspase contains six β-strands, with strand β6 pairing up with β6 of another caspase molecule to form a homodimerization interface. In Yca1, an extra pair of antiparallel β-strands forms a continuous β-sheet with the six caspase-common β-strands, blocking potential dimerization. Yca1 was reported to undergo autocatalytic processing in yeast; overexpression in bacteria also led to autoprocessing of Yca1 into two fragments. Unexpectedly, we found that both the autocatalytic processing and the proteolytic activity of Yca1 are greatly facilitated by the presence of calcium (Ca(2+)), but not other divalent cations. Our structural and biochemical characterization identifies Yca1 as a Ca(2+)-activated cysteine protease that may cleave specific substrates during stress response in yeast.

  6. High-speed prediction of crystal structures for organic molecules

    NASA Astrophysics Data System (ADS)

    Obata, Shigeaki; Goto, Hitoshi

    2015-02-01

    We developed a master-worker type parallel algorithm for allocating tasks of crystal structure optimizations to distributed compute nodes, in order to improve a performance of simulations for crystal structure predictions. The performance experiments were demonstrated on TUT-ADSIM supercomputer system (HITACHI HA8000-tc/HT210). The experimental results show that our parallel algorithm could achieve speed-ups of 214 and 179 times using 256 processor cores on crystal structure optimizations in predictions of crystal structures for 3-aza-bicyclo(3.3.1)nonane-2,4-dione and 2-diazo-3,5-cyclohexadiene-1-one, respectively. We expect that this parallel algorithm is always possible to reduce computational costs of any crystal structure predictions.

  7. Crystal structure of a family 80 chitosanase from Mitsuaria chitosanitabida.

    PubMed

    Yorinaga, Yutaka; Kumasaka, Takashi; Yamamoto, Masaki; Hamada, Kensaku; Kawamukai, Makoto

    2017-02-01

    Chitosanases belong to glycoside hydrolase families 5, 7, 8, 46, 75 and 80 and hydrolyse glucosamine polymers produced by partial or full deacetylation of chitin. Herein, we determined the crystal structure of chitosanase from the β-proteobacterium, Mitsuaria chitosanitabida, (McChoA) at 1.75 Å resolution; the first structure of a family 80 chitosanase. McChoA is a 34 kDa extracellular protein of 301 amino acids that fold into two (upper and lower) globular domains with an active site cleft between them. Key substrate-binding features are conserved with family 24 lysozymes and family 46 chitosanases. The distance between catalytic residues E41 and E61 (10.8 Å) indicates an inverting type mechanism. Uniquely, three disulphide bridges and the C terminus might contribute to enzyme activity.

  8. Crystal Structure of Rat Carnitine Palmitoyltransferase II (CPT-II)

    SciTech Connect

    Hsiao,Y.; Jogl, G.; Esser, V.; Tong, L.

    2006-01-01

    Carnitine palmitoyltransferase II (CPT-II) has a crucial role in the {beta}-oxidation of long-chain fatty acids in mitochondria. We report here the crystal structure of rat CPT-II at 1.9 Angstroms resolution. The overall structure shares strong similarity to those of short- and medium-chain carnitine acyltransferases, although detailed structural differences in the active site region have a significant impact on the substrate selectivity of CPT-II. Three aliphatic chains, possibly from a detergent that is used for the crystallization, were found in the structure. Two of them are located in the carnitine and CoA binding sites, respectively. The third aliphatic chain may mimic the long-chain acyl group in the substrate of CPT-II. The binding site for this aliphatic chain does not exist in the short- and medium-chain carnitine acyltransferases, due to conformational differences among the enzymes. A unique insert in CPT-II is positioned on the surface of the enzyme, with a highly hydrophobic surface. It is likely that this surface patch mediates the association of CPT-II with the inner membrane of the mitochondria.

  9. Crystal structure of oxam­yl

    PubMed Central

    Kwon, Eunjin; Park, Ki-Min; Park, Hyunjin; Kim, Tae Ho

    2016-01-01

    The title compound, C7H13N3O3S [systematic name: (Z)-methyl 2-di­methyl­amino-N-(methyl­carbamo­yloxy)-2-oxoethanimido­thio­ate], is an oxime carbamate acaride, insecticide and nematicide. The asymmetric unit comprises two independent mol­ecules, A and B. The dihedral angles between the mean planes [r.m.s. deviations = 0.0017 (A) and 0.0016 Å (B)] of the acetamide and oxyimino groups are 88.80 (8)° for A and 87.05 (8)° for B. In the crystal, N/C—H⋯O hydrogen bonds link adjacent mol­ecules, forming chains along the a axis. The chains are further linked by C—H⋯O hydrogen bonds, resulting in a three-dimensional network with alternating rows of A and B mol­ecules in the bc plane stacked along the a-axis direction. The structure was refined as an inversion twin with a final BASF parameter of 0.16 (9). PMID:27980838

  10. Microstructure and Crystal Structure in TAGS Compositions

    SciTech Connect

    Thompson, A. J.; Sharp, J; Rawn, Claudia J

    2009-01-01

    GeTe, a small bandgap semiconductor that has native p-type defects due to Ge vacancies, is an important constituent in the thermoelectric material known as TAGS. TAGS is an acronym for alloys of GeTe with AgSbTe{sub 2}, and compositions are normally designated as TAGS-x, where x is the fraction of GeTe. TAGS-85 is the most important with regard to applications, and there is also commercial interest in TAGS-80. The crystal structure of GeTe{sub 1+{delta}} has a composition-dependent phase transformation at a temperature ranging from 430 C ({delta} = 0) to {approx}400 C ({delta} = 0.02). The high-temperature form is cubic. The low-temperature form is rhombohedral for {delta} < 0.01, as is the case for good thermoelectric performance. Addition of AgSbTe{sub 2} shifts the phase transformation to lower temperatures, and one of the goals of this work is a systematic study of the dependence of transformation temperature on the parameter x. We present results on phase transformations and associated instabilities in TAGS compositions in the range of 70 at.% to 85 at.% GeTe.

  11. Crystal structure of the superantigen staphylococcal enterotoxin type A.

    PubMed Central

    Schad, E M; Zaitseva, I; Zaitsev, V N; Dohlsten, M; Kalland, T; Schlievert, P M; Ohlendorf, D H; Svensson, L A

    1995-01-01

    Staphylococcal enterotoxins are prototype superantigens characterized by their ability to bind to major histocompatibility complex (MHC) class II molecules and subsequently activate a large fraction of T-lymphocytes. The crystal structure of staphylococcal enterotoxin type A (SEA), a 27 kDa monomeric protein, was determined to 1.9 A resolution with an R-factor of 19.9% by multiple isomorphous replacement. SEA is a two domain protein composed of a beta-barrel and a beta-grasp motif demonstrating the same general structure as staphylococcal enterotoxins SEB and TSST-1. Unique for SEA, however, is a Zn2+ coordination site involved in MHC class II binding. Four amino acids including Ser1, His187, His225 and Asp227 were found to be involved in direct coordination of the metal ion. SEA is the first Zn2+ binding enterotoxin that has been structurally determined. Images PMID:7628431

  12. Synthesis, crystal structure and spectroscopy of bioactive Cd(II) polymeric complex of the non-steroidal anti-inflammatory drug diclofenac sodium: Antiproliferative and biological activity

    NASA Astrophysics Data System (ADS)

    Tabrizi, Leila; Chiniforoshan, Hossein; McArdle, Patrick

    2015-02-01

    The interaction of Cd(II) with the non-steroidal anti-inflammatory drug diclofenac sodium (Dic) leads to the formation of the complex [Cd2(L)41.5(MeOH)2(H2O)]n(L = Dic), 1, which has been isolated and structurally characterized by X-ray crystallography. Diclofenac sodium and its metal complex 1 have also been evaluated for antiproliferative activity in vitro against the cells of three human cancer cell lines, MCF-7 (breast cancer cell line), T24 (bladder cancer cell line), A-549 (non-small cell lung carcinoma), and a mouse fibroblast L-929 cell line. The results of cytotoxic activity in vitro expressed as IC50 values indicated the diclofenac sodium and cadmium chloride are non active or less active than the metal complex of diclofenac (1). Complex 1 was also found to be a more potent cytotoxic agent against T-24 and MCF-7 cancer cell lines than the prevalent benchmark metallodrug, cisplatin, under the same experimental conditions. The superoxide dismutase activity was measured by Fridovich test which showed that complex 1 shows a low value in comparison with Cu complexes. The binding properties of this complex to biomolecules, bovine or human serum albumin, are presented and evaluated. Antibacterial and growth inhibitory activity is also higher than that of the parent ligand compound.

  13. Preparation of iridescent colloidal crystal coatings with variable structural colors.

    PubMed

    Cong, Hailin; Yu, Bing; Wang, Shaopeng; Qi, Limin; Wang, Jilei; Ma, Yurong

    2013-07-29

    Iridescent colloidal crystal coatings with variable structural colors were fabricated by incorporating carbon black nanoparticles (CB-NPs) into the voids of polystyrene (PS) colloidal crystals. The structural color of the colloid crystal coatings was not only greatly enhanced after the composition but also varied with observation angles. By changing the diameter of monodisperse PS colloids in the composites, colloidal crystal coatings with three primary colors for additive or subtractive combination were obtained. After incorporation of the PS/CB-NPs hybrid coatings into polydimethylsiloxane (PDMS) matrix, manmade opal jewelry with variable iridescent colors was made facilely.

  14. Rotating bacteria aggregate into active crystals

    NASA Astrophysics Data System (ADS)

    Petroff, Alexander; Wu, Xiao-Lun; Libchaber, Albert

    2014-11-01

    The dynamics of many microbial ecosystems are determined not only by the response of individual bacteria to their chemical and physical environments but also the dynamics that emerge from interactions between cells. Here we investigate the collective dynamics displayed by communities of Thiovulum majus, one of the fastest known bacteria. We observe that when these bacteria swim close to a microscope cover slip, the cells spontaneously aggregate into a visually-striking two-dimensional hexagonal lattice of rotating cells. Each cell in an aggregate rotates its flagella, exerting a force that pushes the cell into the cover slip and a torque that causes the cell to rotate. As cells rotate against their neighbors, they exert forces and torques on the aggregate that cause the crystal to move and cells to hop to new positions in the lattice. We show how these dynamics arises from hydrodynamic and surface forces between cells. We derive the equations of motion for an aggregate, show that this model reproduces many aspects of the observed dynamics, and discuss the stability of these and similar active crystals. Finally, we discuss the ecological significance of this behavior to understand how the ability to aggregate into these communities may have evolved.

  15. Rotating Bacteria Aggregate into Active Crystals

    NASA Astrophysics Data System (ADS)

    Petroff, A. P.; Wu, X. L.; Libchaber, A.

    2014-12-01

    The dynamics of many microbial ecosystems are determined not only by the response of individual bacteria to their chemical and physical environments but also the dynamics that emerge from interactions between cells. Here we investigate collective dynamics displayed by communities of Thiovulum majus, one of the fastest known bacteria. We observe that when these bacteria swim close to a microscope cover slip, the cells spontaneously aggregate into a visually-striking, two-dimensional hexagonal lattice of rotating cells. Each cell in an aggregate rotates its flagella, exerting a force that pushes the cell into the cover slip and a torque that causes the cell to rotate. As cells rotate against their neighbors, they exert forces and torques on the aggregate that cause the crystal to move and cells to hop to new positions in the lattice. We show how these dynamics arise from hydrodynamic and surface forces between cells. We derive the equations of motion for an aggregate, show that this model reproduces many aspects of the observed dynamics, and discuss the stability of these and similar active crystals. Finally, we discuss the ecological significance of this behavior to understand how the ability to aggregate into these communities may have evolved.

  16. Characteristics and crystal structure of bacterial inosine-5'-monophosphate dehydrogenase.

    SciTech Connect

    Zhang, R.; Evans, G.; Rotella, F. J.; Westbrook, E. M.; Beno, D.; Huberman, E.; Joachimiak, A.; Collart, F. R.

    1999-01-01

    IMP dehydrogenase (IMPDH) is an essential enzyme that catalyzes the first step unique to GTP synthesis. To provide a basis for the evaluation of IMPDH inhibitors as antimicrobial agents, we have expressed and characterized IMPDH from the pathogenic bacterium Streptococcus pyogenes. Our results show that the biochemical and kinetic characteristics of S. pyogenes IMPDH are similar to other bacterial IMPDH enzymes. However, the lack of sensitivity to mycophenolic acid and the K{sub m} for NAD (1180 {mu}M) exemplify some of the differences between the bacterial and mammalian IMPDH enzymes, making it an attractive target for antimicrobial agents. To evaluate the basis for these differences, we determined the crystal structure of the bacterial enzyme at 1.9 {angstrom} with substrate bound in the catalytic site. The structure was determined using selenomethionine-substituted protein and multiwavelength anomalous (MAD) analysis of data obtained with synchrotron radiation from the undulator beamline (19ID) of the Structural Biology Center at Argonne's Advanced Photon Source. S. pyogenes IMPDH is a tetramer with its four subunits related by a crystallographic 4-fold axis. The protein is composed of two domains: a TIM barrel domain that embodies the catalytic framework and a cystathione {beta}-synthase (CBS) dimer domain of so far unknown function. Using information provided by sequence alignments and the crystal structure, we prepared several site-specific mutants to examine the role of various active site regions in catalysis. These variants implicate the active site flap as an essential catalytic element and indicate there are significant differences in the catalytic environment of bacterial and mammalian IMPDH enzymes. Comparison of the structure of bacterial IMPDH with the known partial structures from eukaryotic organisms will provide an explanation of their distinct properties and contribute to the design of specific bacterial IMPDH inhibitors.

  17. Crystal structures of dihydroxyacetone and its derivatives.

    PubMed

    Slepokura, Katarzyna; Lis, Tadeusz

    2004-08-02

    The crystal and molecular structures of three crystalline forms of the dihydroxyacetone dimer, C6H12O6, DHA-dimer: alpha (1a), beta (1b), and gamma (1c), the hydrated calcium chloride complex of dihydroxyacetone monomer, CaCl2(C3H6O3)(2) x H2O, CaCl2(DHA)2 x H2O (2a), the tetrahydrated calcium chloride complex of dihydroxyacetone monomer, CaCl2(C3H6O3) x 4H2O, CaCl2(DHA) x 4H2O (2b), the dihydroxyacetone monomer, C3H6O3, DHA (2c), and dihydroxyacetone dimethyl acetal, C5H12O4, (MeO)2DHA (3) are described. Compounds 1a and 2b crystallize in the triclinic system, and 1b,c, 2a,c, and 3 are monoclinic. Molecules of all forms of dihydroxyacetone dimer 1a,b, and 1c are the trans isomers, with the 1,4-dioxane ring in the chair conformation and the hydroxyl and hydroxymethyl groups in axial and equatorial dispositions, respectively. The Ca2+ ions in 2a and 2b are bridged by the carbonyl O atoms from two symmetry-related DHA molecules to form centrosymmetric dimers with Ca...Ca distance of 4.307(2)A in 2a and 4.330(2) and 4.305(2)A in two crystallographically independent dimers in 2b. DHA molecules coordinate to the Ca2+ ions by hydroxyl and carbonyl oxygen atoms. The eight-coordinate polyhedra of Ca2+ are completed by water molecule and Cl- ion in 2a and by four water molecules in 2b. The dihydroxyacetone molecules in 2a,b, and 2c are in an extended conformation, with both hydroxyl groups being synperiplanar (sp) to the carbonyl O atom. All hydroxyl groups in 2c (along with water molecules in 2a and 2b) are involved as donors in medium strong and weak intermolecular O-H...O hydrogen bonding. Some of them, as well as carbonyl O atoms or Cl- ions in 2a and 2b, act as acceptors in C-H...O (and C-H...Cl) hydrogen interactions.

  18. Exploring protein flexibility: incorporating structural ensembles from crystal structures and simulation into virtual screening protocols.

    PubMed

    Osguthorpe, David J; Sherman, Woody; Hagler, Arnold T

    2012-06-14

    The capacity of proteins to adapt their structure in response to various perturbations including covalent modifications, and interactions with ligands and other proteins plays a key role in biological processes. Here, we explore the ability of molecular dynamics (MD), replica exchange molecular dynamics (REMD), and a library of structures of crystal-ligand complexes, to sample the protein conformational landscape and especially the accessible ligand binding site geometry. The extent of conformational space sampled is measured by the diversity of the shapes of the ligand binding sites. Since our focus here is the effect of this plasticity on the ability to identify active compounds through virtual screening, we use the structures generated by these techniques to generate a small ensemble for further docking studies, using binding site shape hierarchical clustering to determine four structures for each ensemble. These are then assessed for their capacity to optimize enrichment and diversity in docking. We test these protocols on three different receptors: androgen receptor (AR), HIV protease, and CDK2. We show that REMD enhances structural sampling slightly as compared both to MD, and the distortions induced by ligand binding as reflected in the crystal structures. The improved sampling of the simulation methods does not translate directly into improved docking performance, however. The ensemble approach did improve enrichment and diversity, and the ensemble derived from the crystal structures performed somewhat better than those derived from the simulations.

  19. Crystal structure of lipid phosphatase Escherichia coli phosphatidylglycerophosphate phosphatase B.

    PubMed

    Fan, Junping; Jiang, Daohua; Zhao, Yan; Liu, Jianfeng; Zhang, Xuejun Cai

    2014-05-27

    Membrane-integrated type II phosphatidic acid phosphatases (PAP2s) are important for numerous bacterial to human biological processes, including glucose transport, lipid metabolism, and signaling. Escherichia coli phosphatidylglycerol-phosphate phosphatase B (ecPgpB) catalyzes removing the terminal phosphate group from a lipid carrier, undecaprenyl pyrophosphate, and is essential for transport of many hydrophilic small molecules across the membrane. We determined the crystal structure of ecPgpB at a resolution of 3.2 Å. This structure shares a similar folding topology and a nearly identical active site with soluble PAP2 enzymes. However, the substrate binding mechanism appears to be fundamentally different from that in soluble PAP2 enzymes. In ecPgpB, the potential substrate entrance to the active site is located in a cleft formed by a V-shaped transmembrane helix pair, allowing lateral movement of the lipid substrate entering the active site from the membrane lipid bilayer. Activity assays of point mutations confirmed the importance of the catalytic residues and potential residues involved in phosphate binding. The structure also suggests an induced-fit mechanism for the substrate binding. The 3D structure of ecPgpB serves as a prototype to study eukaryotic PAP2 enzymes, including human glucose-6-phosphatase, a key enzyme in the homeostatic regulation of blood glucose concentrations.

  20. Crystal structures of amylosucrase from Neisseria polysaccharea in complex with D-glucose and the active site mutant Glu328Gln in complex with the natural substrate sucrose.

    PubMed

    Mirza, O; Skov, L K; Remaud-Simeon, M; Potocki de Montalk, G; Albenne, C; Monsan, P; Gajhede, M

    2001-07-31

    The structure of amylosucrase from Neisseria polysaccharea in complex with beta-D-glucose has been determined by X-ray crystallography at a resolution of 1.66 A. Additionally, the structure of the inactive active site mutant Glu328Gln in complex with sucrose has been determined to a resolution of 2.0 A. The D-glucose complex shows two well-defined D-glucose molecules, one that binds very strongly in the bottom of a pocket that contains the proposed catalytic residues (at the subsite -1), in a nonstrained (4)C(1) conformation, and one that binds in the packing interface to a symmetry-related molecule. A third weaker D-glucose-binding site is located at the surface near the active site pocket entrance. The orientation of the D-glucose in the active site emphasizes the Glu328 role as the general acid/base. The binary sucrose complex shows one molecule bound in the active site, where the glucosyl moiety is located at the alpha-amylase -1 position and the fructosyl ring occupies subsite +1. Sucrose effectively blocks the only visible access channel to the active site. From analysis of the complex it appears that sucrose binding is primarily obtained through enzyme interactions with the glucosyl ring and that an important part of the enzyme function is a precise alignment of a lone pair of the linking O1 oxygen for hydrogen bond interaction with Glu328. The sucrose specificity appears to be determined primarily by residues Asp144, Asp394, Arg446, and Arg509. Both Asp394 and Arg446 are located in an insert connecting beta-strand 7 and alpha-helix 7 that is much longer in amylosucrase compared to other enzymes from the alpha-amylase family (family 13 of the glycoside hydrolases).

  1. Structural Color Patterns by Electrohydrodynamic Jet Printed Photonic Crystals.

    PubMed

    Ding, Haibo; Zhu, Cun; Tian, Lei; Liu, Cihui; Fu, Guangbin; Shang, Luoran; Gu, Zhongze

    2017-02-09

    In this work, we demonstrate the fabrication of photonic crystal patterns with controllable morphologies and structural colors utilizing electrohydrodynamic jet (E-jet) printing with colloidal crystal inks. The final shape of photonic crystal units is controlled by the applied voltage signal and wettability of the substrate. Optical properties of the structural color patterns are tuned by the self-assembly of the silica nanoparticle building blocks. Using this direct printing technique, it is feasible to print customized functional patterns composed of photonic crystal dots or photonic crystal lines according to relevant printing mode and predesigned tracks. This is the first report for E-jet printing with colloidal crystal inks. Our results exhibit promising applications in displays, biosensors, and other functional devices.

  2. Origin and structure of polar domains in doped molecular crystals

    PubMed Central

    Meirzadeh, E.; Azuri, I.; Qi, Y.; Ehre, D.; Rappe, A. M.; Lahav, M.; Kronik, L.; Lubomirsky, I.

    2016-01-01

    Doping is a primary tool for the modification of the properties of materials. Occlusion of guest molecules in crystals generally reduces their symmetry by the creation of polar domains, which engender polarization and pyroelectricity in the doped crystals. Here we describe a molecular-level determination of the structure of such polar domains, as created by low dopant concentrations (<0.5%). The approach comprises crystal engineering and pyroelectric measurements, together with dispersion-corrected density functional theory and classical molecular dynamics calculations of the doped crystals, using neutron diffraction data of the host at different temperatures. This approach is illustrated using centrosymmetric α-glycine crystals doped with minute amounts of different L-amino acids. The experimentally determined pyroelectric coefficients are explained by the structure and polarization calculations, thus providing strong support for the local and global understanding of how different dopants influence the properties of molecular crystals. PMID:27824050

  3. Synthesis, crystal structures, in vitro DNA binding, antibacterial and cytotoxic activities of new di- and polynuclear silver(I) saccharinate complexes with tertiary monophosphanes.

    PubMed

    Yilmaz, Veysel T; Gocmen, Elif; Icsel, Ceyda; Cengiz, Murat; Susluer, Sunde Y; Buyukgungor, Orhan

    2014-02-05

    Four new silver(I) saccharinate (sac) complexes, [Ag(μ-sac)(PPh3)]2 (1), [Ag(μ-sac)(PPh2Cy)]2 (2), [Ag(μ-sac)(PPhCy2)]2 (3) and [Ag(μ-sac)(PCy3)]n (4), where PPh3=triphenylphosphane, PPh2Cy=cyclohexyldiphenylphosphane, PPhCy2=dicyclohexylphenylphosphane and PCy3=tricyclohexylphosphane, have been synthesized and fully characterized by elemental analysis, IR, NMR, ESI-MS and single crystal X-ray diffraction. Fluorescence ethidium bromide displacement indicate that all complexes bind to fish sperm (FS) DNA by intercalation with binding constants (KA) of 29.1±0.26×10(5)M(-1) for 1, 2.54±0.12×10(5)M(-1) for 2, 2.42±0.08×10(5)M(-1) for 3, 0.19±0.03×10(5)M(-1) for 4. The relative viscosities of the FS-DNA solutions increase with increasing of the complex concentration, providing strong evidence for the intercalation mode. The gel electrophoresis assay further confirms their binding with the pBR322 plasmid DNA. The MIC values of the silver(I) complexes are generally higher than those of AgNO3 and silver sulfadiazine, but 1 presents a promising activity against Salmonellatyphimurium and Staphylococcusaureus. All complexes are highly cytotoxic on human lung carcinoma (A549) and human breast adenocarcinoma (MCF-7) cell lines with IC50 values ranging from 0.82 to 3.13μM.

  4. Crystal fingerprint space--a novel paradigm for studying crystal-structure sets.

    PubMed

    Valle, Mario; Oganov, Artem R

    2010-09-01

    The initial aim of the crystal fingerprint project was to solve a very specific problem: to classify and remove duplicate crystal structures from the results generated by the evolutionary crystal-structure predictor USPEX. These duplications decrease the genetic diversity of the population used by the evolutionary algorithm, potentially leading to stagnation and, after a certain time, reducing the likelihood of predicting essentially new structures. After solving the initial problem, the approach led to unexpected discoveries: unforeseen correlations, useful derived quantities and insight into the structure of the overall set of results. All of these were facilitated by the project's underlying idea: to transform the structure sets from the physical configuration space to an abstract, high-dimensional space called the fingerprint space. Here every structure is represented as a point whose coordinates (fingerprint) are computed from the crystal structure. Then the space's distance measure, interpreted as structure 'closeness', enables grouping of structures into similarity classes. This model provides much flexibility and facilitates access to knowledge and algorithms from fields outside crystallography, e.g. pattern recognition and data mining. The current usage of the fingerprint-space model is revealing interesting properties that relate to chemical and crystallographic attributes of a structure set. For this reason, the mapping of structure sets to fingerprint space could become a new paradigm for studying crystal-structure ensembles and global chemical features of the energy landscape.

  5. Crystal structure, Hirshfeld surfaces and DFT computation of NLO active (2E)-2-(ethoxycarbonyl)-3-[(1-methoxy-1-oxo-3-phenylpropan-2-yl)amino] prop-2-enoic acid

    NASA Astrophysics Data System (ADS)

    Venkatesan, Perumal; Thamotharan, Subbiah; Ilangovan, Andivelu; Liang, Hongze; Sundius, Tom

    2016-01-01

    Nonlinear optical (NLO) activity of the compound (2E)-2-(ethoxycarbonyl)-3-[(1-methoxy-1-oxo-3-phenylpropan-2-yl)amino] prop-2-enoic acid is investigated experimentally and theoretically using X-ray crystallography and quantum chemical calculations. The NLO activity is confirmed by both powder Second Harmonic Generation (SHG) experiment and first hyper polarizability calculation. The title compound displays 8 fold excess of SHG activity when compared with the standard compound KDP. The gas phase geometry optimization and vibrational frequencies calculations are performed using density functional theory (DFT) incorporated in B3LYP with 6-311G++(d,p) basis set. The title compound crystallizes in non-centrosymmetric space group P21. Moreover, the crystal structure is primarily stabilized through intramolecular N-H···O and O-H···O hydrogen bonds and intermolecular C-H···O and C-H···π interactions. These intermolecular interactions are analyzed and quantified using Hirshfeld surface analysis and PIXEL method. The detailed vibrational assignments are performed on the basis of the potential energy distributions (PED) of the vibrational modes.

  6. A Dominant Factor for Structural Classification of Protein Crystals.

    PubMed

    Qi, Fei; Fudo, Satoshi; Neya, Saburo; Hoshino, Tyuji

    2015-08-24

    With the increasing number of solved protein crystal structures, much information on protein shape and atom geometry has become available. It is of great interest to know the structural diversity for a single kind of protein. Our preliminary study suggested that multiple crystal structures of a single kind of protein can be classified into several groups from the viewpoint of structural similarity. In order to broadly examine this finding, cluster analysis was applied to the crystal structures of hemoglobin (Hb), myoglobin (Mb), human serum albumin (HSA), hen egg-white lysozyme (HEWL), and human immunodeficiency virus type 1 protease (HIV-1 PR), downloaded from the Protein Data Bank (PDB). As a result of classification by cluster analysis, 146 crystal structures of Hb were separated into five groups. The crystal structures of Mb (n = 284), HEWL (n = 336), HSA (n = 63), and HIV-1 PR (n = 488) were separated into six, five, three, and six groups, respectively. It was found that a major factor causing these structural separations is the space group of crystals and that crystallizing agents have an influence on the crystal structures. Amino acid mutation is a minor factor for the separation because no obvious point mutation making a specific cluster group was observed for the five kinds of proteins. In the classification of Hb and Mb, the species of protein source such as humans, rabbits, and mice is another significant factor. When the difference in amino sequence is large among species, the species of protein source is the primary factor causing cluster separation in the classification of crystal structures.

  7. On the Crystal Structure of Ln

    SciTech Connect

    Olafsen, Anja; Larsson, Ann-Kristin; Fjellvaag, Helmer; Hauback, Bjoern C.

    2001-04-01

    The crystal structures of La{sub 2}O{sub 2}CO{sub 3} II and Nd{sub 2}O{sub 2}CO{sub 3} II have been shown by means of high-resolution powder neutron (PND) and synchrotron X-ray diffraction (SXRD) combined with selected area electron diffraction (SAED) studies to be far more complex than earlier anticipated, owing to ordering of carbonate groups between (Ln{sub 2}O{sub 2}{sup +2}){sub n} layers. In contrast to earlier descriptions, the carbonate groups appear to be rather regular. Relative to an average model, the SAED patterns show additional scattering in the form of closely distributed, but essentially discrete, spots along < 1/3, 1/3, 1 >. Most of the observed scattering, H, can be described as H=G{+-}m q{sub 1}+n q{sub 2}, where G is the Bragg reflections of the underlying average P6{sub 3}/mmc lattice, q1=[1/3, 1/3, {+-}1/2]*, q2=[1/3, 1/3, {+-}2/3]*, and m and n are integers. The additional scattering reflects ordering of the carbonate groups into trigonal layers between the (Ln{sub 2}O{sub 2}{sup +2}){sub n} layers, but it remains open whether q{sub 1} and q{sub 2} represent two separate structures with different stacking sequences of such layers or whether they correspond to an even more complex stacking sequence. In any case, some disorder and rotational domain twinning are present. Two structure models, one for each modulation wave vector, were constructed. Rietveld-type refinements of PND data of La{sub 2}O{sub 2}CO{sub 3} II were performed, approximating the complex, and at least partly disordered, stacking sequence as a two-phase mixture of the two modulated phases. Satisfactory convergence was achieved with R{sub p}=6.4%, R{sub wp}=8.3%, and {chi}{sup 2}=3.32. The isothermal expansivities, {alpha}{sub p}, for La{sub 2}O{sub 2}CO{sub 3} II and Nd{sub 2}O{sub 2}CO{sub 3} II between 298 and 893 K were determined as 2.92x10{sup {minus}5} and 2.70x10{sup {minus}5} K{sup {minus}1}, respectively.

  8. Crystal structure of the petal death protein from carnation flower.

    PubMed

    Teplyakov, Alexey; Liu, Sijiu; Lu, Zhibing; Howard, Andrew; Dunaway-Mariano, Debra; Herzberg, Osnat

    2005-12-20

    Expression of the PSR132 protein from Dianthus caryophyllus (carnation, clover pink) is induced in response to ethylene production associated with petal senescence, and thus the protein is named petal death protein (PDP). Recent work has established that despite the annotation of PDP in sequence databases as carboxyphosphoenolpyruvate mutase, the enzyme is actually a C-C bond cleaving lyase exhibiting a broad substrate profile. The crystal structure of PDP has been determined at 2.7 A resolution, revealing a dimer-of-dimers oligomeric association. Consistent with sequence homology, the overall alpha/beta barrel fold of PDP is the same as that of other isocitrate lyase/PEP mutase superfamily members, including a swapped eighth helix within a dimer. Moreover, Mg(2+) binds in the active site of PDP with a coordination pattern similar to that seen in other superfamily members. A compound, covalently bound to the catalytic residue, Cys144, was interpreted as a thiohemiacetal adduct resulting from the reaction of glutaraldehyde used to cross-link the crystals. The Cys144-carrying flexible loop that gates access to the active site is in the closed conformation. Models of bound substrates and comparison with the closed conformation of isocitrate lyase and 2-methylisocitrate lyase revealed the structural basis for the broad substrate profile of PDP.

  9. Universal Hydrodynamic Mechanisms for Crystallization in Active Colloidal Suspensions

    NASA Astrophysics Data System (ADS)

    Singh, Rajesh; Adhikari, R.

    2016-11-01

    The lack of detailed balance in active colloidal suspensions allows dissipation to determine stationary states. Here we show that slow viscous flow produced by polar or apolar active colloids near plane walls mediates attractive hydrodynamic forces that drive crystallization. Hydrodynamically mediated torques tend to destabilize the crystal but stability can be regained through critical amounts of bottom heaviness or chiral activity. Numerical simulations show that crystallization is not nucleational, as in equilibrium, but is preceded by a spinodal-like instability. Harmonic excitations of the active crystal relax diffusively but the normal modes are distinct from an equilibrium colloidal crystal. The hydrodynamic mechanisms presented here are universal and rationalize recent experiments on the crystallization of active colloids.

  10. Structural and Thermoelectric Properties of Tungsten Diselenide Crystals

    NASA Astrophysics Data System (ADS)

    Patel, K. K.; Patel, K. D.; Patel, Mayur; Patel, C. A.; Pathak, V. M.; Srivastava, R.

    2011-12-01

    Crystals of Tungsten diselenide (WSe2) have been grown by direct vapour transport (DVT) technique using micro processor controlled dual zone horizontal furnace. The chemical composition and structure of grown crystals were confirmed using energy dispersive analysis of X-ray (EDAX) and X-ray diffraction (XRD). In the present investigation thermoelectric power measurements (TEP) have been carried out on the grown crystals. Different electrical transport parameters of semiconductors have been determined and discussed in the paper.

  11. The Anti-sigma Factor RsiV Is a Bacterial Receptor for Lysozyme: Co-crystal Structure Determination and Demonstration That Binding of Lysozyme to RsiV Is Required for σV Activation

    PubMed Central

    Houtman, Jon C.

    2016-01-01

    σ factors provide RNA polymerase with promoter specificity in bacteria. Some σ factors require activation in order to interact with RNA polymerase and transcribe target genes. The Extra-Cytoplasmic Function (ECF) σ factor, σV, is encoded by several Gram-positive bacteria and is specifically activated by lysozyme. This activation requires the proteolytic destruction of the anti-σ factor RsiV via a process of regulated intramembrane proteolysis (RIP). In many cases proteases that cleave at site-1 are thought to directly sense a signal and initiate the RIP process. We previously suggested binding of lysozyme to RsiV initiated the proteolytic destruction of RsiV and activation of σV. Here we determined the X-ray crystal structure of the RsiV-lysozyme complex at 2.3 Å which revealed that RsiV and lysozyme make extensive contacts. We constructed RsiV mutants with altered abilities to bind lysozyme. We find that mutants that are unable to bind lysozyme block site-1 cleavage of RsiV and σV activation in response to lysozyme. Taken together these data demonstrate that RsiV is a receptor for lysozyme and binding of RsiV to lysozyme is required for σV activation. In addition, the co-structure revealed that RsiV binds to the lysozyme active site pocket. We provide evidence that in addition to acting as a sensor for the presence of lysozyme, RsiV also inhibits lysozyme activity. Thus we have demonstrated that RsiV is a protein with multiple functions. RsiV inhibits σV activity in the absence of lysozyme, RsiV binds lysozyme triggering σV activation and RsiV inhibits the enzymatic activity of lysozyme. PMID:27602573

  12. Cytotoxic activity, X-ray crystal structures and spectroscopic characterization of cobalt(II), copper(II) and zinc(II) coordination compounds with 2-substituted benzimidazoles.

    PubMed

    Sánchez-Guadarrama, Obdulia; López-Sandoval, Horacio; Sánchez-Bartéz, Francisco; Gracia-Mora, Isabel; Höpfl, Herbert; Barba-Behrens, Noráh

    2009-09-01

    Herein we present the synthesis, structural and spectroscopic characterization of coordination compounds of cobalt(II), copper(II) and zinc(II) with 2-methylbenzimidazole (2mbz), 2-phenylbenzimidazole (2phbz), 2-chlorobenzimidazole (2cbz), 2-benzimidazolecarbamate (2cmbz) and 2-guanidinobenzimidazole (2gbz). Their cytotoxic activity was evaluated using human cancer cell lines, PC3 (prostate), MCF-7 (breast), HCT-15 (colon), HeLa (cervic-uterine), SKLU-1 (lung) and U373 (glioblastoma), showing that the zinc(II) and copper(II) compounds [Zn(2mbz)(2)Cl(2)].0.5H(2)O, [Zn(2cmbz)(2)Cl(2)].EtOH, [Cu(2cmbz)Br(2)].0.7H(2)O and [Cu(2gbz)Br(2)] had significant cytotoxic activity. The isostructural cobalt(II) complexes showed not significant activity. The cytotoxic activity is related to the presence of halides in the coordination sphere of the metal ion. Recuperation experiments with HeLa cells, showed that the cells recuperated after removing the copper(II) compounds and, on the contrary, the cells treated with the zinc(II) compounds did not. These results indicate that the mode of action of the coordination compounds is different.

  13. Photonic Crystal Structures with Tunable Structure Color as Colorimetric Sensors

    PubMed Central

    Wang, Hui; Zhang, Ke-Qin

    2013-01-01

    Colorimetric sensing, which transduces environmental changes into visible color changes, provides a simple yet powerful detection mechanism that is well-suited to the development of low-cost and low-power sensors. A new approach in colorimetric sensing exploits the structural color of photonic crystals (PCs) to create environmentally-influenced color-changeable materials. PCs are composed of periodic dielectrics or metallo-dielectric nanostructures that affect the propagation of electromagnetic waves (EM) by defining the allowed and forbidden photonic bands. Simultaneously, an amazing variety of naturally occurring biological systems exhibit iridescent color due to the presence of PC structures throughout multi-dimensional space. In particular, some kinds of the structural colors in living organisms can be reversibly changed in reaction to external stimuli. Based on the lessons learned from natural photonic structures, some specific examples of PCs-based colorimetric sensors are presented in detail to demonstrate their unprecedented potential in practical applications, such as the detections of temperature, pH, ionic species, solvents, vapor, humidity, pressure and biomolecules. The combination of the nanofabrication technique, useful design methodologies inspired by biological systems and colorimetric sensing will lead to substantial developments in low-cost, miniaturized and widely deployable optical sensors. PMID:23539027

  14. Photonic crystal structures with tunable structure color as colorimetric sensors.

    PubMed

    Wang, Hui; Zhang, Ke-Qin

    2013-03-28

    Colorimetric sensing, which transduces environmental changes into visible color changes, provides a simple yet powerful detection mechanism that is well-suited to the development of low-cost and low-power sensors. A new approach in colorimetric sensing exploits the structural color of photonic crystals (PCs) to create environmentally-influenced color-changeable materials. PCs are composed of periodic dielectrics or metallo-dielectric nanostructures that affect the propagation of electromagnetic waves (EM) by defining the allowed and forbidden photonic bands. Simultaneously, an amazing variety of naturally occurring biological systems exhibit iridescent color due to the presence of PC structures throughout multi-dimensional space. In particular, some kinds of the structural colors in living organisms can be reversibly changed in reaction to external stimuli. Based on the lessons learned from natural photonic structures, some specific examples of PCs-based colorimetric sensors are presented in detail to demonstrate their unprecedented potential in practical applications, such as the detections of temperature, pH, ionic species, solvents, vapor, humidity, pressure and biomolecules. The combination of the nanofabrication technique, useful design methodologies inspired by biological systems and colorimetric sensing will lead to substantial developments in low-cost, miniaturized and widely deployable optical sensors.

  15. Synthesis, crystal structures and spectroscopy of meclofenamic acid and its metal complexes with manganese(II), copper(II), zinc(II) and cadmium(II). Antiproliferative and superoxide dismutase activity.

    PubMed

    Kovala-Demertzi, Dimitra; Staninska, Malgorzata; Garcia-Santos, Isabel; Castineiras, Alfonso; Demertzis, Mavroudis A

    2011-09-01

    Some new complexes of meclofenamic acid (N-(2,6-dichloro-m-tolyl)anthranilic acid), Hmeclo (1), with potentially interesting biological activities are described. Complexes [Mn(meclo)(2)] (2), [Cu(meclo)(2)(H(2)O)(2)] (3), [Zn(meclo)(2)(H(2)O)(2)] (4) and [Cd(meclo)(2)(H(2)O)(2)] (5) were prepared and structurally characterized by means of vibrational, electronic and (1)H and (13)C NMR spectroscopies. The crystal structure of complexes [Cu(4)(meclo)(6)(OH)(2)(DMSO)(2)]2DMSO (3a) and [Cd(meclo)(2)(DMSO)(3)] (5a) have been determined by X-ray crystallography. Complex (3a) is a centrosymmetric tetramer built up around the planar cyclic Cu(2)(OH)(2) unit. Complex 5a is mononuclear seven-coordinated complex with the meclofenamato ligand behaving as a bidentate deprotonated chelating ligand. Intra and intermolecular hydrogen bonds stabilize these two structures, while the crystal packing is determined by π-π and C-H--π interactions. Meclofenamic acid and its metal complexes have been evaluated for antiproliferative activity in vitro against the cells of three human cancer cell lines, MCF-7 (breast cancer cell line), T24 (bladder cancer cell line), and A-549 (non-small cell lung carcinoma), and a mouse fibroblast L-929 cell line. Complex 5 exhibits the highest selectivity against MCF-7 and 4 shows the highest selectivity against T-24. Complexes 2-5 were found to be more potent cytotoxic agents against T-24 and complex 5 against MCF-7 cancer cell lines than the prevalent benchmark metallodrug, cis-platin. The superoxide dismutase activity was measured by the Fridovich test which showed that complex [Cu(meclo)(2)(H(2)O)(2)] is a good superoxide scavenger.

  16. Crystal structures of three bicyclic carbohydrate derivatives

    PubMed Central

    Schilde, Uwe; Kelling, Alexandra; Umbreen, Sumaira; Linker, Torsten

    2016-01-01

    The title compounds, [(1R,3R,4R,5R,6S)-4,5-bis­(acet­yloxy)-7-oxo-2-oxabi­cyclo[4.2.0]octan-3-yl]methyl acetate, C14H18O8, (I), [(1S,4R,5S,6R)-5-acet­yloxy-7-hy­droxy­imino-2-oxobi­cyclo­[4.2.0]octan-4-yl acetate, C11H15NO6, (II), and [(3aR,5R,6R,7R,7aS)-6,7-bis­(acet­yloxy)-2-oxo­octa­hydro­pyrano[3,2-b]pyrrol-5-yl]methyl acetate, C14H19NO8, (III), are stable bicyclic carbohydrate derivatives. They can easily be synthesized in a few steps from commercially available glycals. As a result of the ring strain from the four-membered rings in (I) and (II), the conformations of the carbohydrates deviate strongly from the ideal chair form. Compound (II) occurs in the boat form. In the five-membered lactam (III), on the other hand, the carbohydrate adopts an almost ideal chair conformation. As a result of the distortion of the sugar rings, the configurations of the three bicyclic carbohydrate derivatives could not be determined from their NMR coupling constants. From our three crystal structure determinations, we were able to establish for the first time the absolute configurations of all new stereocenters of the carbohydrate rings. PMID:27980845

  17. Using crystal structure prediction to rationalize the hydration propensities of substituted adamantane hydrochloride salts.

    PubMed

    Mohamed, Sharmarke; Karothu, Durga Prasad; Naumov, Panče

    2016-08-01

    The crystal energy landscapes of the salts of two rigid pharmaceutically active molecules reveal that the experimental structure of amantadine hydrochloride is the most stable structure with the majority of low-energy structures adopting a chain hydrogen-bond motif and packings that do not have solvent accessible voids. By contrast, memantine hydrochloride which differs in the substitution of two methyl groups on the adamantane ring has a crystal energy landscape where all structures within 10 kJ mol(-1) of the global minimum have solvent-accessible voids ranging from 3 to 14% of the unit-cell volume including the lattice energy minimum that was calculated after removing water from the hydrated memantine hydrochloride salt structure. The success in using crystal structure prediction (CSP) to rationalize the different hydration propensities of these substituted adamantane hydrochloride salts allowed us to extend the model to predict under blind test conditions the experimental crystal structures of the previously uncharacterized 1-(methylamino)adamantane base and its corresponding hydrochloride salt. Although the crystal structure of 1-(methylamino)adamantane was correctly predicted as the second ranked structure on the static lattice energy landscape, the crystallization of a Z' = 3 structure of 1-(methylamino)adamantane hydrochloride reveals the limits of applying CSP when the contents of the crystallographic asymmetric unit are unknown.

  18. Leads for development of new naphthalenesulfonate derivatives with enhanced antiangiogenic activity: crystal structure of acidic fibroblast growth factor in complex with 5-amino-2-naphthalene sulfonate.

    PubMed

    Fernández-Tornero, Carlos; Lozano, Rosa M; Redondo-Horcajo, Mariano; Gómez, Ana M; López, José C; Quesada, Ernesto; Uriel, Clara; Valverde, Serafín; Cuevas, Pedro; Romero, Antonio; Giménez-Gallego, Guillermo

    2003-06-13

    Inhibition of angiogenesis-promoting factors such as fibroblast growth factors is considered to be a potential procedure for inhibiting solid tumor growth. Although several peptide-based inhibitors are currently under study, the development of antiangiogenic compounds of small molecular size is a pharmacological goal of considerable interest. We have already shown that certain naphthalene sulfonates constitute minimal functional substitutes of the antiangiogenic compounds of the suramin and suradista family. Using those data as a lead, we have carried out a rational search for new angiogenesis inhibitors that could provide new pharmacological insights for the development of antiangiogenic treatments. The results of the study strongly underline the relevance of the stereochemistry for an efficient inhibition of acidic fibroblast growth factor mitogenic activity by the naphthalene sulfonate family and allow us to formulate rules to aid in searching for new inhibitors and pharmaceutical developments. To provide further leads for such developments and acquire a detailed insight into the basis of the inhibitory activity of the naphthalene sulfonate derivatives, we solved the three-dimensional structure of acidic fibroblast growth factor complexed to 5-amino-2-naphthalenesulfonate, the most pharmacologically promising of the identified inhibitors. The structure shows that binding of this compound would hamper the interaction of acidic fibroblast growth factor with the different components of the cell membrane mitogenesis-triggering complex.

  19. Crystal structure of Escherichia coli enterobactin-specific isochorismate synthase (EntC) bound to its reaction product isochorismate: implications for the enzyme mechanism and differential activity of chorismate-utilizing enzymes.

    PubMed

    Sridharan, Sudharsan; Howard, Nigel; Kerbarh, Olivier; Błaszczyk, Michał; Abell, Chris; Blundell, Tom L

    2010-03-19

    EntC, one of two isochorismate synthases in Escherichia coli, is specific to the biosynthesis of the siderophore enterobactin. Here, we report the crystal structure of EntC in complex with isochorismate and Mg(2+)at 2.3 A resolution, the first structure of a chorismate-utilizing enzyme with a non-aromatic reaction product. EntC exhibits a complex alpha+beta fold like the other chorismate-utilizing enzymes, such as salicylate synthase and anthranilate synthase. Comparison of active site structures allowed the identification of several residues, not discussed previously, that might be important for the isochorismate activity of the EntC. Although EntC, MenF and Irp9 all convert chorismate to isochorismate, only Irp9 subsequently exhibits isochorismate pyruvate lyase activity resulting in the formation of salicylate and pyruvate as the reaction products. With a view to understanding the roles of these amino acid residues in the conversion of chorismate to isochorismate and to obtaining clues about the pyruvate lyase activity of Irp9, several mutants of EntC were generated in which the selected residues in EntC were substituted for those of Irp9: these included A303T, L304A, F327Y, I346L and F359Q mutations. Biochemical analysis of these mutants indicated that the side chain of A303 in EntC may be crucial in the orientation of the carbonyl to allow formation of a hydrogen bond with isochorismate. Some mutations, such as L304A and F359Q, give rise to a loss of catalytic activity, whereas others, such as F327Y and I346L, show that subtle changes in the otherwise closely similar active sites influence activity. We did not find a combination of these residues that conferred pyruvate lyase activity.

  20. AFN-1252 is a potent inhibitor of enoyl-ACP reductase from Burkholderia pseudomallei—Crystal structure, mode of action, and biological activity

    PubMed Central

    Narasimha Rao, Krishnamurthy; Lakshminarasimhan, Anirudha; Joseph, Sarah; Lekshmi, Swathi U; Lau, Ming-Seong; Takhi, Mohammed; Sreenivas, Kandepu; Nathan, Sheila; Yusof, Rohana; Abd Rahman, Noorsaadah; Ramachandra, Murali; Antony, Thomas; Subramanya, Hosahalli

    2015-01-01

    Melioidosis is a tropical bacterial infection caused by Burkholderia pseudomallei (B. pseudomallei; Bpm), a Gram-negative bacterium. Current therapeutic options are largely limited to trimethoprim-sulfamethoxazole and β-lactam drugs, and the treatment duration is about 4 months. Moreover, resistance has been reported to these drugs. Hence, there is a pressing need to develop new antibiotics for Melioidosis. Inhibition of enoyl-ACP reducatase (FabI), a key enzyme in the fatty acid biosynthesis pathway has shown significant promise for antibacterial drug development. FabI has been identified as the major enoyl-ACP reductase present in B. pseudomallei. In this study, we evaluated AFN-1252, a Staphylococcus aureus FabI inhibitor currently in clinical development, for its potential to bind to BpmFabI enzyme and inhibit B. pseudomallei bacterial growth. AFN-1252 stabilized BpmFabI and inhibited the enzyme activity with an IC50 of 9.6 nM. It showed good antibacterial activity against B. pseudomallei R15 strain, isolated from a melioidosis patient (MIC of 2.35 mg/L). X-ray structure of BpmFabI with AFN-1252 was determined at a resolution of 2.3 Å. Complex of BpmFabI with AFN-1252 formed a symmetrical tetrameric structure with one molecule of AFN-1252 bound to each monomeric subunit. The kinetic and thermal melting studies supported the finding that AFN-1252 can bind to BpmFabI independent of cofactor. The structural and mechanistic insights from these studies might help the rational design and development of new FabI inhibitors. PMID:25644789

  1. Isomorph invariance of the structure and dynamics of classical crystals

    NASA Astrophysics Data System (ADS)

    Albrechtsen, Dan E.; Olsen, Andreas E.; Pedersen, Ulf R.; Schrøder, Thomas B.; Dyre, Jeppe C.

    2014-09-01

    This paper shows by computer simulations that some crystalline systems have curves in their thermodynamic phase diagrams, so-called isomorphs, along which structure and dynamics in reduced units are invariant to a good approximation. The crystals are studied in a classical-mechanical framework, which is generally a good description except significantly below melting. The existence of isomorphs for crystals is validated by simulations of particles interacting via the Lennard-Jones pair potential arranged into a face-centered cubic (fcc) crystalline structure; the slow vacancy-jump dynamics of a defective fcc crystal is also shown to be isomorph invariant. In contrast, a NaCl crystal model does not exhibit isomorph invariances. Other systems simulated, though in less detail, are the Wahnström binary Lennard-Jones crystal with the MgZn2 Laves crystal structure, monatomic fcc crystals of particles interacting via the Buckingham pair potential and via a purely repulsive pair potential diverging at a finite separation, an ortho-terphenyl molecular model crystal, and SPC/E hexagonal ice. Except for NaCl and ice, the crystals simulated all have isomorphs. Based on previous simulations of liquid models, we conjecture that crystalline solids with isomorphs include most or all formed by atoms or molecules interacting via metallic or van der Waals forces, whereas covalently bonded or hydrogen-bonded crystals are not expected to have isomorphs; crystals of ions or dipolar molecules constitute a limiting case for which isomorphs are only expected when the Coulomb interactions are relatively weak. We briefly discuss the consequences of the findings for theories of melting and crystallization.

  2. Production in Pichia pastoris, antifungal activity and crystal structure of a class I chitinase from cowpea (Vigna unguiculata): Insights into sugar binding mode and hydrolytic action.

    PubMed

    Landim, Patrícia G Castro; Correia, Tuana O; Silva, Fredy D A; Nepomuceno, Denise R; Costa, Helen P S; Pereira, Humberto M; Lobo, Marina D P; Moreno, Frederico B M B; Brandão-Neto, José; Medeiros, Suelen C; Vasconcelos, Ilka M; Oliveira, José T A; Sousa, Bruno L; Barroso-Neto, Ito L; Freire, Valder N; Carvalho, Cristina P S; Monteiro-Moreira, Ana C O; Grangeiro, Thalles B

    2017-04-01

    A cowpea class I chitinase (VuChiI) was expressed in the methylotrophic yeast P. pastoris. The recombinant protein was secreted into the culture medium and purified by affinity chromatography on a chitin matrix. The purified chitinase migrated on SDS-polyacrylamide gel electrophoresis as two closely-related bands with apparent molecular masses of 34 and 37 kDa. The identity of these bands as VuChiI was demonstrated by mass spectrometry analysis of tryptic peptides and N-terminal amino acid sequencing. The recombinant chitinase was able to hydrolyze colloidal chitin but did not exhibit enzymatic activity toward synthetic substrates. The highest hydrolytic activity of the cowpea chitinase toward colloidal chitin was observed at pH 5.0. Furthermore, most VuChiI activity (approximately 92%) was retained after heating to 50 °C for 30 min, whereas treatment with 5 mM Cu(2+) caused a reduction of 67% in the enzyme's chitinolytic activity. The recombinant protein had antifungal activity as revealed by its ability to inhibit the spore germination and mycelial growth of Penicillium herquei. The three-dimensional structure of VuChiI was resolved at a resolution of 1.55 Å by molecular replacement. The refined model had 245 amino acid residues and 381 water molecules, and the final R-factor and Rfree values were 14.78 and 17.22%, respectively. The catalytic domain of VuChiI adopts an α-helix-rich fold, stabilized by 3 disulfide bridges and possessing a wide catalytic cleft. Analysis of the crystallographic model and molecular docking calculations using chito-oligosaccharides provided evidences about the VuChiI residues involved in sugar binding and catalysis, and a possible mechanism of antifungal action is suggested.

  3. Missing strings of residues in protein crystal structures.

    PubMed

    Djinovic-Carugo, Kristina; Carugo, Oliviero

    2015-01-01

    A large fraction of the protein crystal structures deposited in the Protein Data Bank are incomplete, since the position of one or more residues is not reported, despite these residues are part of the material that was analyzed. This may bias the use of the protein crystal structures by molecular biologists. Here we observe that in the large majority of the protein crystal structures strings of residues are missing. Polar residues incline to occur in missing strings together with glycine, while apolar and aromatic residues tend to avoid them. Particularly flexible residues, as shown by their extremely high B-factors, by their exposure to the solvent and by their secondary structures, flank the missing strings. These data should be a helpful guideline for crystallographers that encounter regions of flat and uninterpretable electron density as well as end-users of crystal structures.

  4. Missing strings of residues in protein crystal structures

    PubMed Central

    Djinovic-Carugo, Kristina; Carugo, Oliviero

    2015-01-01

    A large fraction of the protein crystal structures deposited in the Protein Data Bank are incomplete, since the position of one or more residues is not reported, despite these residues are part of the material that was analyzed. This may bias the use of the protein crystal structures by molecular biologists. Here we observe that in the large majority of the protein crystal structures strings of residues are missing. Polar residues incline to occur in missing strings together with glycine, while apolar and aromatic residues tend to avoid them. Particularly flexible residues, as shown by their extremely high B-factors, by their exposure to the solvent and by their secondary structures, flank the missing strings. These data should be a helpful guideline for crystallographers that encounter regions of flat and uninterpretable electron density as well as end-users of crystal structures.

  5. Crystal structure of Bacillus anthracis transpeptidase enzyme CapD.

    SciTech Connect

    Wu, R.; Richter, S.; Zhang, R.; Anderson, V. J.; Missiakas, D.; Joachimiak, A.; Biosciences Division; Univ. of Chicago

    2009-09-04

    Bacillus anthracis elaborates a poly-{gamma}-d-glutamic acid capsule that protects bacilli from phagocytic killing during infection. The enzyme CapD generates amide bonds with peptidoglycan cross-bridges to anchor capsular material within the cell wall envelope of B. anthracis. The capsular biosynthetic pathway is essential for virulence during anthrax infections and can be targeted for anti-infective inhibition with small molecules. Here, we present the crystal structures of the {gamma}-glutamyltranspeptidase CapD with and without {alpha}-l-Glu-l-Glu dipeptide, a non-hydrolyzable analog of poly-{gamma}-d-glutamic acid, in the active site. Purified CapD displays transpeptidation activity in vitro, and its structure reveals an active site broadly accessible for poly-{gamma}-glutamate binding and processing. Using structural and biochemical information, we derive a mechanistic model for CapD catalysis whereby Pro{sup 427}, Gly{sup 428}, and Gly{sup 429} activate the catalytic residue of the enzyme, Thr{sup 352}, and stabilize an oxyanion hole via main chain amide hydrogen bonds.

  6. Crystal structure of PvdO from Pseudomonas aeruginosa.

    PubMed

    Yuan, Zenglin; Gao, Fei; Bai, Guohui; Xia, Hengchuan; Gu, Lichuan; Xu, Sujuan

    2017-02-26

    Pyoverdine I (PVDI) is a water-soluble fluorescein siderophore with strong iron chelating ability from the gram-negative pathogen Pseudomonas aeruginosa PAO1. Compared to common siderophores, PVDI is a relatively large compound whose synthesis requires a group of enzymes with different catalytic activities. In addition to four nonribosomal peptide synthetases (NRPS) which are responsible for the production of the peptide backbone of PVDI, several additional enzymes are associated with the modification of the side chains. PvdO is one of these enzymes and participates in PVDI precursor maturation in the periplasm. We determined the crystal structure of PvdO at 1.24 Å resolution. The PvdO structure shares a common fold with some FGly-generating enzymes (FGE) and is stabilized by Ca(2+). However, the catalytic residues in FGE are not observed in PvdO, indicating PvdO adopts a unique catalytic mechanism.

  7. Structuring β-Ga2O3 photonic crystal photocatalyst for efficient degradation of organic pollutants.

    PubMed

    Li, Xiaofang; Zhen, Xiuzheng; Meng, Sugang; Xian, Jiangjun; Shao, Yu; Fu, Xianzhi; Li, Danzhen

    2013-09-03

    Coupling photocatalysts with photonic crystals structure is based on the unique property of photonic crystals in confining, controlling, and manipulating the incident photons. This combination enhances the light absorption in photocatalysts and thus greatly improves their photocatalytic performance. In this study, Ga2O3 photonic crystals with well-arranged skeleton structures were prepared via a dip-coating infiltration method. The positions of the electronic band absorption for Ga2O3 photonic crystals could be made to locate on the red edge, on the blue edge, and away from the edge of their photonic band gaps by changing the pore sizes of the samples, respectively. Particularly, the electronic band absorption of the Ga2O3 photonic crystal with a pore size of 135 nm was enhanced more than other samples by making it locate on the red edge of its photonic band gap, which was confirmed by the higher instantaneous photocurrent and photocatalytic activity for the degradation of various organic pollutants under ultraviolet light irradiation. Furthermore, the degradation mechanism over Ga2O3 photonic crystals was discussed. The design of Ga2O3 photonic crystals presents a prospective application of photonic crystals in photocatalysis to address light harvesting and quantum efficiency problems through manipulating photons or constructing photonic crystal structure as groundwork.

  8. Barbiturate bearing aroylhydrazine derivatives: Synthesis, NMR investigations, single crystal X-ray studies and biological activity

    NASA Astrophysics Data System (ADS)

    Giziroglu, Emrah; Sarikurkcu, Cengiz; Aygün, Muhittin; Basbulbul, Gamze; Soyleyici, H. Can; Firinci, Erkan; Kirkan, Bulent; Alkis, Ayse; Saylica, Tayfur; Biyik, Halil

    2016-03-01

    A series of barbituric acid aroylhydrazine derivatives have been prepared from their corresponding 1,3-dimethyl-5-acetyl barbituric acid and aroylhydrazines. All compounds have been fully characterized by using FT-IR, multinuclear NMR (1H, 13C) and Mass (MS) spectrometry. We also describe the X-ray crystal structure of 3a, which crystallizes in the monoclinic P21/n space group. The crystal structure is stabilized with infinite linear chains of dimeric units. Furthermore, all compounds were investigated for their tyrosinase inhibition, antioxidative and antimicrobial activies. The results from biological activity assays have shown that all of compounds have excellent antioxidant, significant tyrosinase inhibition and moderate antimicrobial activity.

  9. Structural and mechanical studies of cadmium manganese thiocyanate crystal

    NASA Astrophysics Data System (ADS)

    Manikandan, M. R.; Vijayaprasath, G.; babu, G. Anandha; Bhagavannarayan, G.; Vijayan, N.; Ravi, G.

    2012-06-01

    Single crystals of cadmium manganese thiocyanate (CMTC) have been synthesized successfully and grown by slow evaporation method. The structural perfection of the grown crystals has been analyzed by High resolution X-ray diffraction (HRXRD), which shows the crystalline perfection of the grown crystal is quite good. Optical behavior was assessed by UV-Vis analysis and found that no absorption in the UV visible region and it may be useful for second harmonic applications. The mechanical hardness of the grown crystals was studied and Vicker's microhardness, Stiffness constant was calculated.

  10. Hydroflux synthesis and crystal structure of new lanthanide tungstate oxyhydroxides

    NASA Astrophysics Data System (ADS)

    Latshaw, Allison M.; Smith, Mark D.; Chance, W. Michael; zur Loye, Hans-Conrad

    2015-04-01

    Single crystals of Na5Ln(OH)6WO4 where Ln = Er, Tm, and Yb were grown out of a NaOH hydroflux. The crystals were characterized by single crystal X-ray diffraction and were found to crystallize in the monoclinic space group I2/a. The lattice parameter ranges for the three structures are a = 11.2024(7) Å-11.2412(6) Å, b = 16.1850(10) Å-16.2220(10) Å, and c = 11.9913(7) Å-12.0323(7) Å while the β angle range is 101.999(2)°-102.025(2)°.

  11. 1α,25(OH)2-3-Epi-Vitamin D3, a Natural Physiological Metabolite of Vitamin D3: Its Synthesis, Biological Activity and Crystal Structure with Its Receptor

    PubMed Central

    Molnár, Ferdinand; Sigüeiro, Rita; Sato, Yoshiteru; Araujo, Clarisse; Schuster, Inge; Antony, Pierre; Peluso, Jean; Muller, Christian; Mouriño, Antonio; Moras, Dino; Rochel, Natacha

    2011-01-01

    Background The 1α,25-dihydroxy-3-epi-vitamin-D3 (1α,25(OH)2-3-epi-D3), a natural metabolite of the seco-steroid vitamin D3, exerts its biological activity through binding to its cognate vitamin D nuclear receptor (VDR), a ligand dependent transcription regulator. In vivo action of 1α,25(OH)2-3-epi-D3 is tissue-specific and exhibits lowest calcemic effect compared to that induced by 1α,25(OH)2D3. To further unveil the structural mechanism and structure-activity relationships of 1α,25(OH)2-3-epi-D3 and its receptor complex, we characterized some of its in vitro biological properties and solved its crystal structure complexed with human VDR ligand-binding domain (LBD). Methodology/Principal Findings In the present study, we report the more effective synthesis with fewer steps that provides higher yield of the 3-epimer of the 1α,25(OH)2D3. We solved the crystal structure of its complex with the human VDR-LBD and found that this natural metabolite displays specific adaptation of the ligand-binding pocket, as the 3-epimer maintains the number of hydrogen bonds by an alternative water-mediated interaction to compensate the abolished interaction with Ser278. In addition, the biological activity of the 1α,25(OH)2-3-epi-D3 in primary human keratinocytes and biochemical properties are comparable to 1α,25(OH)2D3. Conclusions/Significance The physiological role of this pathway as the specific biological action of the 3-epimer remains unclear. However, its high metabolic stability together with its significant biologic activity makes this natural metabolite an interesting ligand for clinical applications. Our new findings contribute to a better understanding at molecular level how natural metabolites of 1α,25(OH)2D3 lead to significant activity in biological systems and we conclude that the C3-epimerization pathway produces an active metabolite with similar biochemical and biological properties to those of the 1α,25(OH)2D3. PMID:21483824

  12. Crystal Structure and Inhibition Studies of Transglutaminase from Streptomyces mobaraense*

    PubMed Central

    Yang, Ming-Te; Chang, Cheng-Hsiang; Wang, Jiou Ming; Wu, Tung Kung; Wang, Yu-Kuo; Chang, Chin-Yuan; Li, TienHsiung Thomas

    2011-01-01

    The crystal structure of the microbial transglutaminase (MTGase) zymogen from Streptomyces mobaraense has been determined at 1.9-Å resolution using the molecular replacement method based on the crystal structure of the mature MTGase. The overall structure of this zymogen is similar to that of the mature form, consisting of a single disk-like domain with a deep active cleft at the edge of the molecule. A major portion of the prosequence (45 additional amino acid residues at the N terminus of the mature transglutaminase) folds into an L-shaped structure, consisting of an extended N-terminal segment linked with a one-turn short helix and a long α-helix. Two key residues in the short helix of the prosequence, Tyr-12 and Tyr-16, are located on top of the catalytic triad (Cys-110, Asp-301, and His-320) to block access of the substrate acyl donors and acceptors. Biochemical characterization of the mature MTGase, using N-α-benzyloxycarbonyl-l-glutaminylglycine as a substrate, revealed apparent Km and kcat/Km values of 52.66 mm and 40.42 mm−1 min−1, respectively. Inhibition studies using the partial prosequence SYAETYR and homologous sequence SQAETYR showed a noncompetitive inhibition mechanism with IC50 values of 0.75 and 0.65 mm, respectively, but no cross-linking product formation. Nevertheless, the prosequence homologous oligopeptide SQAETQR, with Tyr-12 and Tyr-16 each replaced with Gln, exhibited inhibitory activity with the formation of the SQAETQR-monodansylcadaverine fluorophore cross-linking product (SQAETQR-C-DNS). MALDI-TOF tandem MS analysis of SQAETQR-C-DNS revealed molecular masses corresponding to those of NSQAETQC-C-DNS and C-DNS-NQRC sequences, suggesting the incorporation of C-DNS onto the C-terminal Gln residue of the prosequence homologous oligopeptide. These results support the putative functional roles of both Tyr residues in substrate binding and inhibition. PMID:21193394

  13. Crystal structure of D-psicose 3-epimerase from Agrobacterium tumefaciens and its complex with true substrate D-fructose: a pivotal role of metal in catalysis, an active site for the non-phosphorylated substrate, and its conformational changes.

    PubMed

    Kim, Kwangsoo; Kim, Hye-Jung; Oh, Deok-Kun; Cha, Sun-Shin; Rhee, Sangkee

    2006-09-01

    D-psicose, a rare sugar produced by the enzymatic reaction of D-tagatose 3-epimerase (DTEase), has been used extensively for the bioproduction of various rare carbohydrates. Recently characterized D-psicose 3-epimerase (DPEase) from Agrobacterium tumefaciens was found to belong to the DTEase family and to catalyze the interconversion of D-fructose and D-psicose by epimerizing the C-3 position, with marked efficiency for D-psicose. The crystal structures of DPEase and its complex with the true substrate D-fructose were determined; DPEase is a tetramer and each monomer belongs to a TIM-barrel fold. The active site in each subunit is distinct from that of other TIM-barrel enzymes, which use phosphorylated ligands as the substrate. It contains a metal ion with octahedral coordination to two water molecules and four residues that are absolutely conserved across the DTEase family. Upon binding of D-fructose, the substrate displaces water molecules in the active site, with a conformation mimicking the intermediate cis-enediolate. Subsequently, Trp112 and Pro113 in the beta4-alpha4 loop undergo significant structural changes, sealing off the active site. Structural evidence and site-directed mutagenesis of the putative catalytic residues suggest that the metal ion plays a pivotal role in catalysis by anchoring the bound D-fructose, and Glu150 and Glu244 carry out an epimerization reaction at the C-3 position.

  14. Synthesis and crystal structure of a ternary copper(II) complex of 2,2‧-bipyridine and picrate: Molecular docking, reactivity towards DNA and in vitro anticancer activity

    NASA Astrophysics Data System (ADS)

    Zheng, Kang; Jiang, Man; Li, Yan-Tuan; Wu, Zhi-Yong; Yan, Cui-Wei

    2014-01-01

    A new mononuclear ternary copper(II) complex with mixed ligands of 2,2‧-bipyridine (bpy) and picrate (pic), namely [Cu(bpy)(pic)2], has been synthesized and characterized by elemental analysis, molar conductivity measurement, IR and electronic spectral studies, and single-crystal X-ray diffraction. The crystal structure analysis reveals the presence of two crystallographic independent molecules in an asymmetric unit. The copper(II) atoms are in elongated octahedral coordination geometries. A three-dimensional supermolecular network is formed through non-classical C-H⋯O hydrogen bonds. The DNA-binding properties of the copper(II) complex are investigated both theoretically and experimentally, revealing that the copper(II) complex can interact with HS-DNA in the mode of intercalation, and the molecular docking of the copper(II) complex with the self-complementary DNA duplex of sequence d(ACCGACGTCGGT)2 facilitates the binding events. The in vitro anticancer activities suggest that the copper(II) complex is active against the selected tumor cell lines.

  15. Synthesis, crystal structure, antibacterial activity and theoretical studies on a novel mononuclear cobalt(II) complex based on 2,4,6-tris(2-pyridyl)-1,3,5-triazine ligand

    NASA Astrophysics Data System (ADS)

    Maghami, Mahboobeh; Farzaneh, Faezeh; Simpson, Jim; Ghiasi, Mina; Azarkish, Mohammad

    2015-08-01

    A cobalt complex was prepared from CoCl2·6H2O and 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz) in methanol and designated as [Co(tptz)(CH3OH)Cl2]·CH3OH·0.5H2O (1). It was characterized by several techniques including TGA analysis and FT-IR, UV-Vis and 1H NMR spectral studies. The crystal structure of 1 was determined by single-crystal X-ray diffraction. The Co(II) metal center in 1 is six coordinated with a distorted octahedral geometry. The tptz ligand is tridentate and coordinates to the cobalt through coplanar nitrogen atoms from the triazine and two pyridyl rings. Two chloride anions and a methanol molecule complete the inner coordination sphere of the metal ion. The optimized geometrical parameters obtained by DFT calculation are in good agreement with single XRD data. The in vitro antibacterial activity of various tptz complexes of Co(II), Ni(II), Cu(II), Mn(II) and Rh(III) were evaluated against Gram-positive (Bacillus subtilis, Staphylococcus aureus and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria. Whereas all complexes exhibited good activity in comparison to standard antibacterial drugs, the inhibitory effects of complexes were found to be more than that of the parent ligand. Overall, the obtained results strongly suggest that the cobalt(II) complex is a suitable candidate for counteracting antibiotic resistant microorganisms.

  16. Synthesis, crystal structure, spectral studies, and catechol oxidase activity of trigonal bipyramidal Cu(II) complexes derived from a tetradentate diamide bisbenzimidazole ligand.

    PubMed

    Gupta, M; Mathur, P; Butcher, R J

    2001-02-26

    A new benzimidazole-based diamide ligand-N,N'-bis(glycine-2- benzimidazolyl)hexanediamide (GBHA)-has been synthesized and utilized to prepare Cu(II) complexes of general composition [Cu(GBHA)X]X, where X is an exogenous anionic ligand (X = Cl(-), NO(3)(-), SCN(-)). The X-ray structure of one of the complexes, [Cu(GBHA)Cl]Cl.H(2)O.CH(3)OH, has been obtained. The compound crystallizes in the monoclinic space group C2/c with unit cell dimensions a = 26.464(3) A, b = 10.2210(8) A, c = 20.444(2) A, alpha = 90 degrees, beta = 106.554(7) degrees, gamma = 90 degrees, V= 5300.7(9) A(3), and Z = 8. To the best of our knowledge, the [Cu(GBHA)Cl]Cl.H(2)O.CH(3)OH complex is the first structurally characterized mononuclear trigonal bipyramidal copper(II) bisbenzimidazole diamide complex having coordinated amide carbonyl oxygen. The coordination geometry around the Cu(II) ion is distorted trigonal bipyramidal (tau = 0.59). Two carbonyl oxygen atoms and a chlorine atom form the equatorial plane, while the two benzimidazole imine nitrogen atoms occupy the axial positions. The geometry of the Cu(II) center in the solid state is not preserved in DMSO solution, changing to square pyramidal, as suggested by the low-temperature EPR data g( parallel) > g( perpendicular) > 2.0023. All the complexes display a quasi-reversible redox wave due to the Cu(II)/Cu(I) reduction process. E(1/2) values shift anodically from Cl(-) < NO(3)(-) < SCN(-), indicating that the bound Cl(-) ion stabilizes the Cu(II) ion while the N-bonded SCN(-) ion destabilizes the Cu(II) state in the complex. When calculated against NHE, the redox potentials turn out to be quite positive as compared to other copper(II) benzimidazole bound complexes (Nakao, Y.; Onoda, M.; Sakurai, T.; Nakahara, A.; Kinoshita, L.; Ooi, S. Inorg. Chim. Acta 1988, 151, 55. Addison, A. W.; Hendricks, H. M. J.; Reedijk, J.; Thompson, L. K. Inorg. Chem. 1981, 20 (1), 103. Sivagnanam, U.; Palaniandavar, M. J. Chem. Soc., Dalton Trans. 1994, 2277

  17. Growth, characterization and crystal structure analysis of rifapentine

    NASA Astrophysics Data System (ADS)

    Zhou, K.; Li, J.; Zheng, D. S.

    2010-11-01

    Single crystals of rifapentine have been grown by cooling technique. The crystal structure analysis and the molecular arrangement of these crystals have been determined using X-ray diffraction (XRD) method. From single-crystal XRD studies, it is found that the compound crystallizes in the monoclinic system with a space group P2 1, and the corresponding lattice parameters were calculated ( a = 12.278(3) Å, b = 19.768(4) Å, c = 12.473(3) Å, Z = 2, beta = 112.35(3)°). FT-IR spectra are recorded to identify the various functional groups present in the compound. The UV-Vis spectrum of rifapentine takes place at a wavelength of 236, 255, 334 and 474 nm, respectively. The thermal stability of the crystal is determined from TG/DTA curves.

  18. Comparison of hexagonal crystal structures between fluorapatite and polytetrafluoroethylene.

    PubMed

    Okazaki, Masayuki

    2017-01-01

    The crystallographic properties of fluorapatite (FAp) and polytetrafluoroethylene (PTFE) as biomedical materials were compared. Both materials contain fluorine and casually belong to the hexagonal crystal system. It is interesting that FAp is an inorganic ionic crystal, while PTFE is an organic covalent-bond crystal. Generally, fluorine contributes to the physicochemical stability and in some cases to the biocompatibility. The crystal structure of FAp was initially analyzed in 1930 by Náray-Szabó, although the analysis of hydroxyapatite (HAp) was markedly delayed until 1964. The computer graphics display demonstrated that fluoride ions serve to stabilize the hydroxyapatite crystals and prevent dental caries. On the other hand, PTFE crystal analysis was reported in 1954 by Bunn and Howells. The PTFE temperature-pressure phase diagram accepted for over 60 years is very complicated and insufficient. PTFE delicately changes its phase near room temperature, although at a glance it appears to have a simple form compared with DNA.

  19. DNA variability in five crystal structures of d(CGCAATTGCG).

    PubMed

    Valls, Núria; Wright, Glenford; Steiner, Roberto A; Murshudov, Garib N; Subirana, Juan A

    2004-04-01

    The deoxyoligonucleotide d(CGCAATTGCG) has previously been crystallized in four different space groups. The crystals diffract to moderate resolution (2.3-2.9 A). Here, a fifth crystal form that diffracts to higher resolution (1.6 A) is presented which was obtained thanks to the use of Co2+ and cryogenic temperatures. The availability of five different crystal structures allows a thorough analysis of the conformational variability of this DNA sequence. It is concluded that the central hexamer sequence CAATTG has a practically constant conformation under all conditions, whilst the terminal base pairs at both ends vary considerably as a result of differing interactions in the crystals. The new crystal structure presented here is stabilized by guanine-Co2+-guanine interactions and the formation of C1+ -G8.C3 triplexes between neighbouring duplexes. As a result of the higher resolution of the crystal structure, a more regular structure was obtained and a clear definition of the spine of hydration was observed which was not visible in the four previous structures.

  20. Synthesis, crystal structure, and photocatalytic activity of the new three-layer aurivillius phases, Bi{sub 2}ASrTi{sub 2}TaO{sub 12} (A=Bi, La)

    SciTech Connect

    Wang Dong; Tang Kaibin; Liang Zhenhua; Zheng Huagui

    2010-02-15

    Two new three-layer Aurivillius phases Bi{sub 2}ASrTi{sub 2}TaO{sub 12} (A=Bi, La) have been synthesized. The detailed structure determination of Bi{sub 2}ASrTi{sub 2}TaO{sub 12} (A=Bi, La) performed by powder X-ray diffraction (XRD) and selected area electron microscopy (SAED) shows that they all crystallize in the space group I/4mmm. UV-visible diffuse reflection spectrum of the prepared Bi{sub 2}ASrTi{sub 2}TaO{sub 12} (A=Bi, La) indicates that it had absorption in the ultraviolet (UV) region. The photocatalytic activity of the Bi{sub 2}ASrTi{sub 2}TaO{sub 12} (A=Bi, La) powders was evaluated by degradation of rhodamine B (RB) molecules in water under UV light irradiation. The results showed that Bi{sub 2}ASrTi{sub 2}TaO{sub 12} (A=Bi, La) has high photocatalytic activity at room temperature. Therefore, the preparation and properties studies of Bi{sub 2}ASrTi{sub 2}TaO{sub 12} (A=Bi, La) with a three-layer Aurivillius structure suggest potential future applications in photocatalysis. - Graphical abstract: Two new three-layer Aurivillius phases Bi{sub 2}ASrTi{sub 2}TaO{sub 12} (A=Bi, La) have been synthesized by a conventional solid state reaction method. And this is the crystal structure of the three-layer Aurivillius phases, Bi{sub 2}ASrTi{sub 2}TaO{sub 12}.

  1. Crystal structure of Pseudomonas aeruginosa bacteriophytochrome: Photoconversion and signal transduction

    PubMed Central

    Yang, Xiaojing; Kuk, Jane; Moffat, Keith

    2008-01-01

    Phytochromes are red-light photoreceptors that regulate light responses in plants, fungi, and bacteria via reversible photoconversion between red (Pr) and far-red (Pfr) light-absorbing states. Here we report the crystal structure at 2.9 Å resolution of a bacteriophytochrome from Pseudomonas aeruginosa with an intact, fully photoactive photosensory core domain in its dark-adapted Pfr state. This structure reveals how unusual interdomain interactions, including a knot and an “arm” structure near the chromophore site, bring together the PAS (Per-ARNT-Sim), GAF (cGMP phosphodiesterase/adenyl cyclase/FhlA), and PHY (phytochrome) domains to achieve Pr/Pfr photoconversion. The PAS, GAF, and PHY domains have topologic elements in common and may have a single evolutionary origin. We identify key interactions that stabilize the chromophore in the Pfr state and provide structural and mutational evidence to support the essential role of the PHY domain in efficient Pr/Pfr photoconversion. We also identify a pair of conserved residues that may undergo concerted conformational changes during photoconversion. Modeling of the full-length bacteriophytochrome structure, including its output histidine kinase domain, suggests how local structural changes originating in the photosensory domain modulate interactions between long, cross-domain signaling helices at the dimer interface and are transmitted to the spatially distant effector domain, thereby regulating its histidine kinase activity. PMID:18799746

  2. Construction of crystal structure prototype database: methods and applications

    NASA Astrophysics Data System (ADS)

    Su, Chuanxun; Lv, Jian; Li, Quan; Wang, Hui; Zhang, Lijun; Wang, Yanchao; Ma, Yanming

    2017-04-01

    Crystal structure prototype data have become a useful source of information for materials discovery in the fields of crystallography, chemistry, physics, and materials science. This work reports the development of a robust and efficient method for assessing the similarity of structures on the basis of their interatomic distances. Using this method, we proposed a simple and unambiguous definition of crystal structure prototype based on hierarchical clustering theory, and constructed the crystal structure prototype database (CSPD) by filtering the known crystallographic structures in a database. With similar method, a program structure prototype analysis package (SPAP) was developed to remove similar structures in CALYPSO prediction results and extract predicted low energy structures for a separate theoretical structure database. A series of statistics describing the distribution of crystal structure prototypes in the CSPD was compiled to provide an important insight for structure prediction and high-throughput calculations. Illustrative examples of the application of the proposed database are given, including the generation of initial structures for structure prediction and determination of the prototype structure in databases. These examples demonstrate the CSPD to be a generally applicable and useful tool for materials discovery.

  3. Construction of crystal structure prototype database: methods and applications.

    PubMed

    Su, Chuanxun; Lv, Jian; Li, Quan; Wang, Hui; Zhang, Lijun; Wang, Yanchao; Ma, Yanming

    2017-04-26

    Crystal structure prototype data have become a useful source of information for materials discovery in the fields of crystallography, chemistry, physics, and materials science. This work reports the development of a robust and efficient method for assessing the similarity of structures on the basis of their interatomic distances. Using this method, we proposed a simple and unambiguous definition of crystal structure prototype based on hierarchical clustering theory, and constructed the crystal structure prototype database (CSPD) by filtering the known crystallographic structures in a database. With similar method, a program structure prototype analysis package (SPAP) was developed to remove similar structures in CALYPSO prediction results and extract predicted low energy structures for a separate theoretical structure database. A series of statistics describing the distribution of crystal structure prototypes in the CSPD was compiled to provide an important insight for structure prediction and high-throughput calculations. Illustrative examples of the application of the proposed database are given, including the generation of initial structures for structure prediction and determination of the prototype structure in databases. These examples demonstrate the CSPD to be a generally applicable and useful tool for materials discovery.

  4. Crystal structure of pyruvate decarboxylase from Zymobacter palmae

    PubMed Central

    Buddrus, Lisa; Andrews, Emma S. V.; Leak, David J.; Danson, Michael J.; Arcus, Vickery L.; Crennell, Susan J.

    2016-01-01

    Pyruvate decarboxylase (PDC; EC 4.1.1.1) is a thiamine pyrophosphate- and Mg2+ ion-dependent enzyme that catalyses the non-oxidative decarboxylation of pyruvate to acetaldehyde and carbon dioxide. It is rare in bacteria, but is a key enzyme in homofermentative metabolism, where ethanol is the major product. Here, the previously unreported crystal structure of the bacterial pyruvate decarboxylase from Zymobacter palmae is presented. The crystals were shown to diffract to 2.15 Å resolution. They belonged to space group P21, with unit-cell parameters a = 204.56, b = 177.39, c = 244.55 Å and R r.i.m. = 0.175 (0.714 in the highest resolution bin). The structure was solved by molecular replacement using PDB entry 2vbi as a model and the final R values were R work = 0.186 (0.271 in the highest resolution bin) and R free = 0.220 (0.300 in the highest resolution bin). Each of the six tetramers is a dimer of dimers, with each monomer sharing its thiamine pyrophosphate across the dimer interface, and some contain ethylene glycol mimicking the substrate pyruvate in the active site. Comparison with other bacterial PDCs shows a correlation of higher thermostability with greater tetramer interface area and number of interactions. PMID:27599861

  5. Crystal Structure of 3S-hydroxy-7 Melleine

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-hong; Xu, Fang; Zhang, Yi; Liu, Li-hong; Huang, Hua-rong; She, Zhi-gang; Lin, Yong-cheng; Chan, Winglai

    2006-10-01

    A new compound, 3S-hydroxy-7 melleine was isolated from the endophytic fungus Xylariasp No.2508 from the mangrove tree on the South China Sea coast. It was the first time that this kind of compound was isolated from marine fungus. The structure was elucidated by NMR data, infrared spectrum (IR) and mass spectrometry (MS). In addition, its structure was determined by the single-crystal X-ray diffraction analysis. It crystallized in monoclinic, space group P21 with a=10.8884(19) Å, b=7.2284(13) Å, c=13.398(2) Å, β=104.217(3)°, C10H10O4·H2O, Mr=212.20, V=1022.2(3) Å3, Z=4, Dc=1.379 mg/m3, F(000)=448, μ=0.112 mm-1, the final R=0.0498, ωR=0.101 for 2407 observed reflections (I>2σ(I)). The molecular backbone of the compound includes a benzopyran ring. By comparing with the melting point and the optical rotation of the known 3R-hydroxy-7 melleine in literature, the absolute configuration of the compound was determined as 3S. It didn't exhibit antibacterial activity against Gram-positive bacterium Staphylococcus aureus at 200 μg/disk in the preliminary test.

  6. Room Temperature Crystallization of Hydroxyapatite in Porous Silicon Structures.

    PubMed

    Santana, M; Estevez, J O; Agarwal, V; Herrera-Becerra, R

    2016-12-01

    Porous silicon (PS) substrates, with different pore sizes and morphology, have been used to crystallize hydroxyapatite (HA) nano-fibers by an easy and economical procedure using a co-precipitation method at room temperature. In situ formation of HA nanoparticles, within the meso- and macroporous silicon structure, resulted in the formation of nanometer-sized hydroxyapatite crystals on/within the porous structure. The X-ray diffraction technique was used to determine the tetragonal structure of the crystals. Analysis/characterization demonstrates that under certain synthesis conditions, growth and crystallization of hydroxyapatite layer on/inside PS can be achieved at room temperature. Such composite structures expand the possibility of designing a new bio-composite material based on the hydroxyapatite and silicon synthesized at room temperature.

  7. Precise Identification of Graphene's Crystal Structures by Removable Nanowire Epitaxy.

    PubMed

    Kim, Jonghyeok; Lim, Kitaek; Lee, Yangjin; Kim, Jongin; Kim, Kihwan; Park, Jungwon; Kim, Kwanpyo; Lee, Won Chul

    2017-03-16

    Monitoring crystallographic orientations of graphene is important for the reliable generation of graphene-based nanostructures such as van der Waals heterostructures and graphene nanoribbons because their physical properties are dependent on crystal structures. However, facile and precise identification of graphene's crystallographic orientations is still challenging because the majority of current tools rely on complex atomic-scale imaging. Here, we present an identification method for the crystal orientations and grain boundaries of graphene using the directional alignment between epitaxially grown AuCN nanowires and the underlying graphene. Because the nanowires are visible in scanning electron microscopy, crystal orientations of graphene can be inspected with simple procedures. Kernel density estimation that we used in analyzing the nanowire directions enables precise measurement of graphene's crystal orientations. We also confirm that the imaged nanowires can be simply removed without degrading graphene's quality, thus showing that the present method can be practically used for measuring graphene's crystal structures.

  8. Thermal-induced conformational changes in the product release area drive the enzymatic activity of xylanases 10B: Crystal structure, conformational stability and functional characterization of the xylanase 10B from Thermotoga petrophila RKU-1

    SciTech Connect

    Santos, Camila Ramos; Meza, Andreia Navarro; Hoffmam, Zaira Bruna; Silva, Junio Cota; Alvarez, Thabata Maria; Ruller, Roberto; Giesel, Guilherme Menegon; Verli, Hugo; Squina, Fabio Marcio; Prade, Rolf Alexander; Murakami, Mario Tyago

    2010-12-10

    Research highlights: {yields} The hyperthermostable xylanase 10B from Thermotoga petrophila RKU-1 produces exclusively xylobiose at the optimum temperature. {yields} Circular dichroism spectroscopy suggests a coupling effect of temperature-induced structural changes with its enzymatic behavior. {yields} Crystallographic and molecular dynamics studies indicate that conformational changes in the product release area modulate the enzyme action mode. -- Abstract: Endo-xylanases play a key role in the depolymerization of xylan and recently, they have attracted much attention owing to their potential applications on biofuels and paper industries. In this work, we have investigated the molecular basis for the action mode of xylanases 10B at high temperatures using biochemical, biophysical and crystallographic methods. The crystal structure of xylanase 10B from hyperthermophilic bacterium Thermotoga petrophila RKU-1 (TpXyl10B) has been solved in the native state and in complex with xylobiose. The complex crystal structure showed a classical binding mode shared among other xylanases, which encompasses the -1 and -2 subsites. Interestingly, TpXyl10B displayed a temperature-dependent action mode producing xylobiose and xylotriose at 20 {sup o}C, and exclusively xylobiose at 90 {sup o}C as assessed by capillary zone electrophoresis. Moreover, circular dichroism spectroscopy suggested a coupling effect of temperature-induced structural changes with this particular enzymatic behavior. Molecular dynamics simulations supported the CD analysis suggesting that an open conformational state adopted by the catalytic loop (Trp297-Lys326) provokes significant modifications in the product release area (+1,+2 and +3 subsites), which drives the enzymatic activity to the specific release of xylobiose at high temperatures.

  9. Li2MoO4 crystal growth from solution activated by low-frequency vibrations

    NASA Astrophysics Data System (ADS)

    Barinova, Olga; Sadovskiy, Andrey; Ermochenkov, Ivan; Kirsanova, Svetlana; Sukhanova, Ekaterina; Kostikov, Vladimir; Belov, Stanislav; Mozhevitina, Elena; Khomyakov, Andrew; Kuchuk, Zhanna; Zharikov, Eugeny; Avetissov, Igor

    2017-01-01

    The possibility of Li2MoO4 crystal growth from aqueous solutions activated by axial vibrational control (AVC) technique was investigated. It was found out that a low-frequency mechanical activation of the solution led to an increase of Li2MoO4 equilibrium solubility in aqueous solution for 11 rel% in the 25-29 °C temperature range. The changes in solution structure were analyzed in situ by Raman study of the solution. The AVC activation of solution resulted in a re-faceting of growing crystals, a smoothing of a face surface morphology and reduction of water content in the crystal.

  10. Crystal structure of inhibitor of ;#954;B kinase [beta

    SciTech Connect

    Xu, Guozhou; Lo, Yu-Chih; Li, Qiubai; Napolitano, Gennaro; Wu, Xuefeng; Jiang, Xuliang; Dreano, Michel; Karin, Michael; Wu, Hao

    2011-07-26

    Inhibitor of {kappa}B (I{kappa}B) kinase (IKK) phosphorylates I{kappa}B proteins, leading to their degradation and the liberation of nuclear factor {kappa}B for gene transcription. Here we report the crystal structure of IKK{beta} in complex with an inhibitor, at a resolution of 3.6 {angstrom}. The structure reveals a trimodular architecture comprising the kinase domain, a ubiquitin-like domain (ULD) and an elongated, {alpha}-helical scaffold/dimerization domain (SDD). Unexpectedly, the predicted leucine zipper and helix-loop-helix motifs do not form these structures but are part of the SDD. The ULD and SDD mediate a critical interaction with I{kappa}B{alpha} that restricts substrate specificity, and the ULD is also required for catalytic activity. The SDD mediates IKK{beta} dimerization, but dimerization per se is not important for maintaining IKK{beta} activity and instead is required for IKK{beta} activation. Other IKK family members, IKK{alpha}, TBK1 and IKK-i, may have a similar trimodular architecture and function.

  11. Dynamics of Active Nematic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    DeCamp, Stephen J.

    liquid crystal by assembling microtubule bundles into a quasi-2D film confined to a large, flat oil-water interface. Internal stresses generated by kinesin motors drive the system far from equilibrium which precludes a uniformly aligned nematic ground state through the continuous creation and annihilation of +/-1/2 motile defects. First, we demonstrate that the nematic is extensile by observing the deformation of a photobleached spot which undergoes extension along the nematic director and contraction perpendicular to the director. We map the experimentally tunable parameter, ATP concentration, to the intrinsic activity of the sample measured by the characteristic time of the contractile dynamics. Then, we characterize the flow of individual microtubules by measuring their relative velocity within the nematic and find a flow field consistent with a force dipole but where the magnitude of the extension and contraction velocity are proportional to the separation between the filaments. The extensile and contractile flow velocities can be tuned by the ATP concentration and can be as large as 6 mum/s. Then we spatially map microtubule concentration, alignment, and flow near topological defect cores. We test a theory which predicts that flows are directly proportional to the local alignment of the nematic and find our results inconsistent with that theory. Finally, we measure large scale velocity and vorticity distributions as well as vortex area distributions and find agreement with other recent theoretical predictions. Next, we turn our attention to the complex behavior of defects in the active nematic. Using defect tracking algorithms developed by Gabriel S. Redner, we measure the +/-1/2 defect velocity and lifetime distributions as well as MSD and average defect density. We find that average velocities, lifetimes, and densities are tunable by varying the ATP concentration. The MSDs reveal that motile +1/2 defects stream ballistically through the sample (up to 15 mum

  12. Crystal structure of ATP-binding subunit of an ABC transporter from Geobacillus kaustophilus.

    PubMed

    Manjula, M; Pampa, K J; Kumar, S M; Mukherjee, S; Kunishima, N; Rangappa, K S; Lokanath, N K

    2015-03-27

    The ATP binding cassette (ABC) transporters, represent one of the largest superfamilies of primary transporters, which are very essential for various biological functions. The crystal structure of ATP-binding subunit of an ABC transporter from Geobacillus kaustophilus has been determined at 1.77 Å resolution. The crystal structure revealed that the protomer has two thick arms, (arm I and II), which resemble 'L' shape. The ATP-binding pocket is located close to the end of arm I. ATP molecule is docked into the active site of the protein. The dimeric crystal structure of ATP-binding subunit of ABC transporter from G. kaustophilus has been compared with the previously reported crystal structure of ATP-binding subunit of ABC transporter from Salmonella typhimurium.

  13. Crystal Structure of the MecA Degradation Tag*

    PubMed Central

    Wang, Feng; Mei, Ziqing; Qi, Yutao; Yan, Chuangye; Xiang, Siheng; Zhou, Zhiyuan; Hu, Qi; Wang, Jiawei; Shi, Yigong

    2009-01-01

    MecA is an adaptor protein that regulates the assembly and activity of the ATP-dependent ClpCP protease in Bacillus subtilis. MecA contains two domains. Although the amino-terminal domain of MecA recruits substrate proteins such as ComK and ComS, the carboxyl-terminal domain (residues 121–218) has dual roles in the regulation and function of ClpCP protease. MecA-(121–218) facilitates the assembly of ClpCP oligomer, which is required for the protease activity of ClpCP. This domain was identified to be a non-recycling degradation tag that targets heterologous fusion proteins to the ClpCP protease for degradation. To elucidate the mechanism of MecA, we determined the crystal structure of MecA-(121–218) at 2.2 Å resolution, which reveals a previously uncharacterized α/β fold. Structure-guided mutagenesis allows identification of surface residues that are essential for the function of MecA. We also solved the structure of a carboxyl-terminal domain of YpbH, a paralogue of MecA in B. subtilis, at 2.4 Å resolution. Despite low sequence identity, the two structures share essentially the same fold. The presence of MecA homologues in other bacterial species suggests conservation of a large family of unique degradation tags. PMID:19801546

  14. The Crystal and Molecular Structure of Dianhydrogossypol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dianhydrogossypol (4,4'-dihydroxy-5,5'-diisopropyl-7,7'-dimethyl-bis(3H-naphtho[1,8-bc]furan-3-one)) was made by refluxing gossypol in m-xylene. Proton NMR confirmed that complete conversion was achieved over several hours. Single crystals were obtained by slow evaporation of the product from dichl...

  15. Millimeter-wave Bragg diffraction of microfabricated crystal structures

    NASA Astrophysics Data System (ADS)

    Yuan, C. P.; Lin, S. Y.; Chang, T. H.; Shew, B. Y.

    2011-06-01

    A compact diffraction apparatus is developed with millimeter-wave propagation between two parallel plates. Two types of microfabricated model crystals are individually mounted on a rotatable structure. In contrast to previous work, the experimental results agree well with Bragg's predictions because multiple scattering is minimized in this configuration. Factors that affect the resolution and signal strength, such as the number of scatterers, cylinder radius, and the distance between the detector and the model crystal, are analyzed. The apparatus offers a visually accessible way to teach students about crystal structure as well as scattering and diffraction.

  16. Allophycocyanin and phycocyanin crystal structures reveal facets of phycobilisome assembly.

    PubMed

    Marx, Ailie; Adir, Noam

    2013-03-01

    X-ray crystal structures of the isolated phycobiliprotein components of the phycobilisome have provided high resolution details to the description of this light harvesting complex at different levels of complexity and detail. The linker-independent assembly of trimers into hexamers in crystal lattices of previously determined structures has been observed in almost all of the phycocyanin (PC) and allophycocyanin (APC) structures available in the Protein Data Bank. In this paper we describe the X-ray crystal structures of PC and APC from Synechococcus elongatus sp. PCC 7942, PC from Synechocystis sp. PCC 6803 and PC from Thermosynechococcus vulcanus crystallized in the presence of urea. All five structures are highly similar to other PC and APC structures on the levels of subunits, monomers and trimers. The Synechococcus APC forms a unique loose hexamer that may show the structural requirements for core assembly and rod attachment. While the Synechococcus PC assembles into the canonical hexamer, it does not further assemble into rods. Unlike most PC structures, the Synechocystis PC fails to form hexamers. Addition of low concentrations of urea to T. vulcanus PC inhibits this proteins propensity to form hexamers, resulting in a crystal lattice composed of trimers. The molecular source of these differences in assembly and their relevance to the phycobilisome structure is discussed.

  17. Stability of orientationally disordered crystal structures of colloidal hard dumbbells.

    PubMed

    Marechal, Matthieu; Dijkstra, Marjolein

    2008-06-01

    We study the stability of orientationally disordered crystal phases in a suspension of colloidal hard dumbbells using Monte Carlo simulations. For dumbbell bond length L/sigma<0.4 with L the separation of the two spheres of the dumbbell and sigma the diameter of the spheres, we determine the difference in Helmholtz free energy of a plastic crystal with a hexagonal-close-packed (hcp) and a face-centered-cubic (fcc) structure using thermodynamic integration and the lattice-switch Monte Carlo method. We find that the plastic crystal with the hcp structure is more stable than the one with the fcc structure for a large part of the stable plastic crystal regime. In addition, we study the stability of an orientationally disordered aperiodic crystal structure in which the spheres of the dumbbells are on a random-hexagonal-close-packed lattice, and the dumbbells are formed by taking random pairs of neighboring spheres. Using free-energy calculations, we determine the fluid-aperiodic crystal and periodic-aperiodic crystal coexistence regions for L/sigma>0.88 .

  18. Crystal and molecular structure of the antimalarial agent enpiroline.

    PubMed Central

    Karle, J M; Karle, I L

    1989-01-01

    To identify common spatial and structural features of amino alcohol antimalarial agents with the eventual goal of designing more effective drugs and a better understanding of the mechanism of action of this class of antimalarial agents, the three-dimensional crystal and molecular structure of enpiroline, a new antimalarial agent active against chloroquine-resistant Plasmodium falciparum, was determined by X-ray crystallography and compared with the crystal structures of the cinchona alkaloids and of the new antimalarial agent WR 194,965. The aromatic rings of the phenyl-pyridine ring system of enpiroline are twisted from each other by approximately 18 degrees. The intramolecular aliphatic N-O distance in enpiroline was 2.80 A (1 A = 0.1 nm), which is close to the N-O distance found in the antimalarial cinchona alkaloids. Enpiroline contains both an intramolecular hydrogen bond between the aliphatic nitrogen and oxygen atoms and an intermolecular hydrogen bond between the aliphatic nitrogen and oxygen atoms of two neighboring molecules. One enantiomer of enpiroline superimposed best with quinine, and the other enantiomer of enpiroline superimposed best with quinidine, suggesting that both enantiomers of enpiroline possess antimalarial activity. Since a common feature of the crystal structures of the amino alcohol antimalarial agents is the formation of intermolecular hydrogen bonds, the common spatial direction of hydrogen bond formation indicates the potential ability of these antimalarial agents to bind to a common receptor site. The crystallographic parameters were as follows: C19H18F6N5O; Mr = 404.3; symmetry of unit cell, monoclinic; space group, P2(1)/a; parameters of unit cell---a = 9.454 +/- 0.004 A, b = 18.908 +/- 0.008 A, c = 10.300 +/- 0.004 A, and beta = 96.55 +/- 0.03 degrees: V (volume of unit cell) = 1829.2 A3; Z (number of molecules per unit cell) = 4; Dchi (calculated density) = 1.46 g cm-3; source of radiation, CuK alpha (lambda = 1.54178 A); mu

  19. Crystal structure of the ternary complex of the catalytic domain of human phenylalanine hydroxylase with tetrahydrobiopterin and 3-(2-thienyl)-L-alanine, and its implications for the mechanism of catalysis and substrate activation.

    PubMed

    Andersen, Ole Andreas; Flatmark, Torgeir; Hough, Edward

    2002-07-26

    Phenylalanine hydroxylase catalyzes the stereospecific hydroxylation of L-phenylalanine, the committed step in the degradation of this amino acid. We have solved the crystal structure of the ternary complex (hPheOH-Fe(II).BH(4).THA) of the catalytically active Fe(II) form of a truncated form (DeltaN1-102/DeltaC428-452) of human phenylalanine hydroxylase (hPheOH), using the catalytically active reduced cofactor 6(R)-L-erythro-5,6,7,8-tetrahydrobiopterin (BH(4)) and 3-(2-thienyl)-L-alanine (THA) as a substrate analogue. The analogue is bound in the second coordination sphere of the catalytic iron atom with the thiophene ring stacking against the imidazole group of His285 (average interplanar distance 3.8A) and with a network of hydrogen bonds and hydrophobic contacts. Binding of the analogue to the binary complex hPheOH-Fe(II).BH(4) triggers structural changes throughout the entire molecule, which adopts a slightly more compact structure. The largest change occurs in the loop region comprising residues 131-155, where the maximum r.m.s. displacement (9.6A) is at Tyr138. This loop is refolded, bringing the hydroxyl oxygen atom of Tyr138 18.5A closer to the iron atom and into the active site. The iron geometry is highly distorted square pyramidal, and Glu330 adopts a conformation different from that observed in the hPheOH-Fe(II).BH(4) structure, with bidentate iron coordination. BH(4) binds in the second coordination sphere of the catalytic iron atom, and is displaced 2.6A in the direction of Glu286 and the iron atom, relative to the hPheOH-Fe(II).BH(4) structure, thus changing its hydrogen bonding network. The active-site structure of the ternary complex gives new insight into the substrate specificity of the enzyme, notably the low affinity for L-tyrosine. Furthermore, the structure has implications both for the catalytic mechanism and the molecular basis for the activation of the full-length tetrameric enzyme by its substrate. The large conformational change, moving

  20. Computed crystal energy landscapes for understanding and predicting organic crystal structures and polymorphism.

    PubMed

    Price, Sarah Sally L

    2009-01-20

    The phenomenon of polymorphism, the ability of a molecule to adopt more than one crystal structure, is a well-established property of crystalline solids. The possible variations in physical properties between polymorphs make the reliable reproduction of a crystalline form essential for all research using organic materials, as well as quality control in manufacture. Thus, the last two decades have seen both an increase in interest in polymorphism and the availability of the computer power needed to make the computational prediction of organic crystal structures a practical possibility. In the past decade, researchers have made considerable improvements in the theoretical basis for calculating the sets of structures that are within the energy range of possible polymorphism, called crystal energy landscapes. It is common to find that a molecule has a wide variety of ways of packing with lattice energy within a few kilojoules per mole of the most stable structure. However, as we develop methods to search for and characterize "all" solid forms, it is also now usual for polymorphs and solvates to be found. Thus, the computed crystal energy landscape reflects and to an increasing extent "predicts" the emerging complexity of the solid state observed for many organic molecules. This Account will discuss the ways in which the calculation of the crystal energy landscape of a molecule can be used as a complementary technique to solid form screening for polymorphs. Current methods can predict the known crystal structure, even under "blind test" conditions, but such successes are generally restricted to those structures that are the most stable over a wide range of thermodynamic conditions. The other low-energy structures can be alternative polymorphs, which have sometimes been found in later experimental studies. Examining the computed structures reveals the various compromises between close packing, hydrogen bonding, and pi-pi stacking that can result in energetically feasible

  1. X-ray crystal structures of a severely desiccated protein.

    PubMed Central

    Bell, J. A.

    1999-01-01

    Unlike most protein crystals, form IX of bovine pancreatic ribonuclease A diffracts well when severely dehydrated. Crystal structures have been solved after 2.5 and 4 days of desiccation with CaSO4, at 1.9 and 2.0 A resolution, respectively. The two desiccated structures are very similar. An RMS displacement of 1.6 A is observed for main-chain atoms in each structure when compared to the hydrated crystal structure with some large rearrangements observed in loop regions. The structural changes are the result of intermolecular contacts formed by strong electrostatic interactions in the absence of a high dielectric medium. The electron density is very diffuse for some surface loops, consistent with a very disordered structure. This disorder is related to the conformational changes. These results help explain conformational changes during the lyophilization of protein and the associated phenomena of denaturation and molecular memory. PMID:10548049

  2. Mefloquine derivatives: Crystal structures and anti-tubercular activities of diphenyl[(( R*, S*)-2,8-bis(trifluoromethyl)quinolin-4-yl)-piperidin-2-yl-methanolato- O, N]boron and (±)- erythro-mefloquinium tetraphenylborate solvates

    NASA Astrophysics Data System (ADS)

    Wardell, James L.; de Souza, Marcus V. N.; Wardell, Solange M. S. V.; Lourenço, Maria C. S.

    2011-03-01

    Thermolysis of ( R*, S*)-(2-{[2,8-bis(trifluoromethyl)quinolin-4-yl](hydroxy)˜methyl}piperidin-1-ium) tetraphenylborate, (±)- erythro-mefloquinium tetraphenylborate, 3, in solution or neat, provides the oxazaborolidine derivative, diphenyl[( R*, S*)-(2,8-bis(trifluoromethyl)quinolin-4-yl)]piperidin-2-yl-methanolato- O, N]boron, 2. Crystal structures of solvates of 2 and 3 are reported. As shown by the 1H NMR spectrum, 2 undergoes a conformation equilibrium in solution. Both 2 and 3 exhibit important anti-tubercular activities as indicated by the minimum inhibitory concentrations (MIC) of 50 and 12.5 μg/ml, respectively, in in vitro assays against M. tuberculosis H37Rv ATTC 27294.

  3. Crystal structure of dihydroorotate dehydrogenase from Leishmania major.

    PubMed

    Cordeiro, Artur T; Feliciano, Patricia R; Pinheiro, Matheus P; Nonato, M Cristina

    2012-08-01

    Dihydroorotate dehydrogenase (DHODH) is the fourth enzyme in the de novo pyrimidine biosynthetic pathway and has been exploited as the target for therapy against proliferative and parasitic diseases. In this study, we report the crystal structures of DHODH from Leishmania major, the species of Leishmania associated with zoonotic cutaneous leishmaniasis, in its apo form and in complex with orotate and fumarate molecules. Both orotate and fumarate were found to bind to the same active site and exploit similar interactions, consistent with a ping-pong mechanism described for class 1A DHODHs. Analysis of LmDHODH structures reveals that rearrangements in the conformation of the catalytic loop have direct influence on the dimeric interface. This is the first structural evidence of a relationship between the dimeric form and the catalytic mechanism. According to our analysis, the high sequence and structural similarity observed among trypanosomatid DHODH suggest that a single strategy of structure-based inhibitor design can be used to validate DHODH as a druggable target against multiple neglected tropical diseases such as Leishmaniasis, Sleeping sickness and Chagas' diseases.

  4. Crystal structure of the human glucose transporter GLUT1.

    PubMed

    Deng, Dong; Xu, Chao; Sun, Pengcheng; Wu, Jianping; Yan, Chuangye; Hu, Mingxu; Yan, Nieng

    2014-06-05

    The glucose transporter GLUT1 catalyses facilitative diffusion of glucose into erythrocytes and is responsible for glucose supply to the brain and other organs. Dysfunctional mutations may lead to GLUT1 deficiency syndrome, whereas overexpression of GLUT1 is a prognostic indicator for cancer. Despite decades of investigation, the structure of GLUT1 remains unknown. Here we report the crystal structure of human GLUT1 at 3.2 Å resolution. The full-length protein, which has a canonical major facilitator superfamily fold, is captured in an inward-open conformation. This structure allows accurate mapping and potential mechanistic interpretation of disease-associated mutations in GLUT1. Structure-based analysis of these mutations provides an insight into the alternating access mechanism of GLUT1 and other members of the sugar porter subfamily. Structural comparison of the uniporter GLUT1 with its bacterial homologue XylE, a proton-coupled xylose symporter, allows examination of the transport mechanisms of both passive facilitators and active transporters.

  5. Crystal Structure of the BARD1 BRCT Domains

    SciTech Connect

    Birrane,G.; Varma, A.; Soni, A.; Ladias, J.

    2007-01-01

    The interaction of the breast tumor suppressor BRCA1 with the protein BARD1 results in the formation of a heterodimeric complex that has ubiquitin ligase activity and plays central roles in cell cycle checkpoint control and DNA repair. Both BRCA1 and BARD1 possess a pair of tandem BRCT domains that interact in a phosphorylation-dependent manner with target proteins. We determined the crystal structure of the human BARD1 BRCT repeats (residues 568-777) at 1.9 {angstrom} resolution. The composition and structure of the BARD1 phosphoserine-binding pocket P{sub 1} are strikingly similar to those of the BRCA1 and MDC1 BRCT domains, suggesting a similar mode of interaction with the phosphate group of the ligand. By contrast, the BARD1 BRCT selectivity pocket P{sub 2} exhibits distinct structural features, including two prominent histidine residues, His685 and His686, which may be important for ligand binding. The protonation state of these histidines has a marked effect on the calculated electrostatic potential in the vicinity of P{sub 2}, raising the possibility that ligand recognition may be regulated by changes in pH. Importantly, the BARD1 BRCT structure provides insights into the mechanisms by which the cancer-associated missense mutations C645R, V695L, and S761N may adversely affect the structure and function of BARD1.

  6. Crystal structure of E. coli lipoprotein diacylglyceryl transferase.

    PubMed

    Mao, Guotao; Zhao, Yan; Kang, Xusheng; Li, Zhijie; Zhang, Yan; Wang, Xianping; Sun, Fei; Sankaran, Krishnan; Zhang, Xuejun C

    2016-01-05

    Lipoprotein biogenesis is essential for bacterial survival. Phosphatidylglycerol:prolipoprotein diacylglyceryl transferase (Lgt) is an integral membrane enzyme that catalyses the first reaction of the three-step post-translational lipid modification. Deletion of the lgt gene is lethal to most Gram-negative bacteria. Here we present the crystal structures of Escherichia coli Lgt in complex with phosphatidylglycerol and the inhibitor palmitic acid at 1.9 and 1.6 Å resolution, respectively. The structures reveal the presence of two binding sites and support the previously reported structure-function relationships of Lgt. Complementation results of lgt-knockout cells with different mutant Lgt variants revealed critical residues, including Arg143 and Arg239, that are essential for diacylglyceryl transfer. Using a GFP-based in vitro assay, we correlated the activities of Lgt with structural observations. Together, the structural and biochemical data support a mechanism whereby substrate and product, lipid-modified lipobox-containing peptide, enter and leave the enzyme laterally relative to the lipid bilayer.

  7. Crystal structure of the human glucose transporter GLUT1

    NASA Astrophysics Data System (ADS)

    Deng, Dong; Xu, Chao; Sun, Pengcheng; Wu, Jianping; Yan, Chuangye; Hu, Mingxu; Yan, Nieng

    2014-06-01

    The glucose transporter GLUT1 catalyses facilitative diffusion of glucose into erythrocytes and is responsible for glucose supply to the brain and other organs. Dysfunctional mutations may lead to GLUT1 deficiency syndrome, whereas overexpression of GLUT1 is a prognostic indicator for cancer. Despite decades of investigation, the structure of GLUT1 remains unknown. Here we report the crystal structure of human GLUT1 at 3.2 Å resolution. The full-length protein, which has a canonical major facilitator superfamily fold, is captured in an inward-open conformation. This structure allows accurate mapping and potential mechanistic interpretation of disease-associated mutations in GLUT1. Structure-based analysis of these mutations provides an insight into the alternating access mechanism of GLUT1 and other members of the sugar porter subfamily. Structural comparison of the uniporter GLUT1 with its bacterial homologue XylE, a proton-coupled xylose symporter, allows examination of the transport mechanisms of both passive facilitators and active transporters.

  8. Toward the Prediction of Organic Hydrate Crystal Structures.

    PubMed

    Hulme, Ashley T; Price, Sarah L

    2007-07-01

    Lattice energy minimization studies on four ordered crystal structures of ice and 22 hydrates of approximately rigid organic molecules (along with 11 corresponding anhydrate structures) were used to establish a model potential scheme, based on the use of a distributed multipole electrostatic model, that can reasonably reproduce the crystal structures. Transferring the empirical repulsion-dispersion potentials for organic oxygen and polar hydrogen atoms to water appears more successful for modeling ice phases than using common water potentials derived from liquid properties. Lattice energy differences are reasonable but quite sensitive to the exact conformation of water and the organic molecule used in the rigid molecule modeling. This potential scheme was used to test a new approach of predicting the crystal structure of 5-azauracil monohydrate (an isolated site hydrate) based on seeking dense crystal packings of 66 5-azauracil···water hydrogen-bonded clusters, derived from an analysis of hydrate hydrogen bond geometries involving the carbonyl- and aza-group acceptors in the Cambridge Structural Database. The known structure was found within 5 kJ mol(-1) of the global minimum in static lattice energy and as the third most stable structure, within 1 kJ mol(-1), when thermal effects at ambient temperature were considered. Thus, although the computational prediction of whether an organic molecule will crystallize in a hydrated form poses many challenges, the prediction of plausible structures for hydrogen-bonded monohydrates is now possible.

  9. Homodiselenacalix[4]arenes: Molecules with Unique Channelled Crystal Structures.

    PubMed

    Thomas, Joice; Dobrzańska, Liliana; Van Meervelt, Luc; Quevedo, Mario Alfredo; Woźniak, Krzysztof; Stachowicz, Marcin; Smet, Mario; Maes, Wouter; Dehaen, Wim

    2016-01-18

    A synthetic route towards homodiselenacalix[4]arene macrocycles is presented, based on the dynamic covalent chemistry of diselenides. The calixarene inner rim is decorated with either alkoxy or tert-butyl ester groups. Single-crystal X-ray analysis of two THF solvates with methoxy and ethoxy substituents reveals the high similarity of their molecular structures and alterations on the supramolecular level. In both crystal structures, solvent channels are present and differ in both shape and capacity. Furthermore, the methoxy-substituted macrocycle undergoes a single-crystal-to-single-crystal transformation during which the molecular structure changes its conformation from 1,3-alternate (loaded with THF/water) to 1,2-alternate (apohost form). Molecular modelling techniques were applied to explore the conformational and energetic behaviour of the macrocycles.

  10. Synthesis and crystal structure of a new copper(II) complex with N,N‧-(4,4‧-bithiazole-2,2‧-diyl)diacetimidamide as ligand: Molecular docking, DNA-binding and cytotoxicity activity studies

    NASA Astrophysics Data System (ADS)

    Wang, Ling-Dong; Zheng, Kang; Li, Yan-Tuan; Wu, Zhi-Yong; Yan, Cui-Wei

    2013-04-01

    A new mononuclear copper(II) complex with formula of [Cu2H(DABTA)2](pic)ṡ6H2O, where H2DABTA and pic- stand for N,N'-(4,4'-bithiazole-2,2'-diyl)diacetimidamide and picrate ion, respectively, has been synthesized and characterized by elemental analysis, molar conductivity measurement, IR and electronic spectra studies, and single-crystal X-ray diffraction. The crystal structure reveals that the copper(II) ion has a {CuN4} square-planar coordination environment. The solvent water molecules form a column parallel to c axis by hydrogen bonds. Then the mononuclear copper complexes link to the water columns to make a three-dimensional hydrogen bonding grid with the cavities filled by pic- anions. Besides, there are offset π-π stacking interactions between thiazole rings in the supramolecular system. The interactions between the copper(II) complex and herring sperm DNA (HS-DNA) have been investigated by using electronic absorption titration, fluorescence titration and viscometry. The molecular docking of the complex with the self-complementary DNA duplex of sequence d(ACCGACGTCGGT)2 demonstrates that the complex is stabilized by additional electrostatic and hydrogen bonding interaction with the DNA. The copper(II) complex exhibits potent anticancer activities against human hepatocellular carcinoma cell SMMC-7721 and human lung adenocarcinoma cell A549.

  11. Synthesis and crystal structure analysis of uranyl triple acetates

    NASA Astrophysics Data System (ADS)

    Klepov, Vladislav V.; Serezhkina, Larisa B.; Serezhkin, Victor N.; Alekseev, Evgeny V.

    2016-12-01

    Single crystals of triple acetates NaR[UO2(CH3COO)3]3·6H2O (R=Mg, Co, Ni, Zn), well-known for their use as reagents for sodium determination, were grown from aqueous solutions and their structural and spectroscopic properties were studied. Crystal structures of the mentioned phases are based upon {Na[UO2(CH3COO)3]3}2- clusters and [R(H2O)6]2+ aqua-complexes. The cooling of a single crystal of NaMg[UO2(CH3COO)3]3·6H2O from 300 to 100 K leads to a phase transition from trigonal to monoclinic crystal system. Intermolecular interactions between the structural units and their mutual packing were studied and compared from the point of view of the stereoatomic model of crystal structures based on Voronoi-Dirichlet tessellation. Using this method we compared the crystal structures of the triple acetates with Na[UO2(CH3COO)3] and [R(H2O)6][UO2(CH3COO)3]2 and proposed reasons of triple acetates stability. Infrared and Raman spectra were collected and their bands were assigned.

  12. Influences of glycerol as an efficient doping agent on crystal structure and antibacterial activity of B-TiO2 nano-materials.

    PubMed

    Yang, He; Wang, Yuzheng; Xue, Xiangxin

    2014-10-01

    In this study, highly effective boron acid and glycerol co-doped TiO2 nano-materials were directly synthesized via a sol-gel method. The resulting materials were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectrum (FT-IR), UV-vis diffuse reflectance spectroscopy (DRS) and X-ray photoelectron (PL) spectroscopy. The results indicate that boron dopant is partially embedded into the interstitial TiO2 structure or incorporated into the TiO2 lattice through occupying the position of the oxygen atom, and others is present in the form of B2O3. Boron acid and glycerol co-doping TiO2 materials show obvious red shift in their absorption edges and efficient electron-hole separation because of the glycerol doping. The study on the antibacterial activities demonstrate that co-doped TiO2 nano-materials could effectively inactivate the bacteria under visible light irradiation. Co-doped TiO2 nano-materials exhibit more excellent antibacterial performance than B-doped TiO2 nano-materials.

  13. Structure of initial crystals formed during human amelogenesis

    NASA Astrophysics Data System (ADS)

    Cuisinier, F. J. G.; Voegel, J. C.; Yacaman, J.; Frank, R. M.

    1992-02-01

    X-ray diffraction analysis revealed only the existence of carbonated hydroxyapatite (c.HA) during amelogenesis, whereas conventional transmission electron microscopy investigations showed that developing enamel crystals have a ribbon-like habit. The described compositional changes could be an indication for the presence of minerals different from c.HA. However, the absence of identification of such a mineral shows the need of studies by high resolution electron microscopy (HREM) of initial formed human enamel crystals. We demonstrate the existence of two crystal families involved in the early stages of biomineralization: (a) nanometer-size particles which appeared as a precursor phase; (b) ribbon-like crystals, with a structure closely related to c.HA, which by a progressive thickening process tend to attain the mature enamel crystal habit.

  14. Evolution of molecular crystal optical phonons near structural phase transitions

    NASA Astrophysics Data System (ADS)

    Michki, Nigel; Niessen, Katherine; Xu, Mengyang; Markelz, Andrea

    Molecular crystals are increasingly important photonic and electronic materials. For example organic semiconductors are lightweight compared to inorganic semiconductors and have inexpensive scale up processing with roll to roll printing. However their implementation is limited by their environmental sensitivity, in part arising from the weak intermolecular interactions of the crystal. These weak interactions result in optical phonons in the terahertz frequency range. We examine the evolution of intermolecular interactions near structural phase transitions by measuring the optical phonons as a function of temperature and crystal orientation using terahertz time-domain spectroscopy. The measured orientation dependence of the resonances provides an additional constraint for comparison of the observed spectra with the density functional calculations, enabling us to follow specific phonon modes. We observe crystal reorganization near 350 K for oxalic acid as it transforms from dihydrate to anhydrous form. We also report the first THz spectra for the molecular crystal fructose through its melting point.

  15. Crystal Structure of Cindoxin, the P450cin Redox Partner

    PubMed Central

    2015-01-01

    The crystal structure of the flavin mononucleotide (FMN)-containing redox partner to P450cin, cindoxin (Cdx), has been determined to 1.3 Å resolution. The overall structure is similar to that of the FMN domain of human cytochrome P450 reductase. A Brownian dynamics–molecular dynamics docking method was used to produce a model of Cdx with its redox partner, P450cin. This Cdx–P450cin model highlights the potential importance of Cdx Tyr96 in bridging the FMN and heme cofactors as well P450cin Arg102 and Arg346. Each of the single-site Ala mutants exhibits ∼10% of the wild-type activity, thus demonstrating the importance of these residues for binding and/or electron transfer. In the well-studied P450cam system, redox partner binding stabilizes the open low-spin conformation of P450cam and greatly decreases the stability of the oxy complex. In sharp contrast, Cdx does not shift P450cin to a low-spin state, although the stability of oxy-P450cin is decreased 10-fold in the presence of Cdx. This indicates that Cdx may have a modest effect on the open–closed equilibrium in P450cin compared to that in P450cam. It has been postulated that part of the effector role of Pdx on P450cam is to promote a significant structural change that makes available a proton relay network involving Asp251 required for O2 activation. The structure around the corresponding Asp in P450cin, Asp241, provides a possible structural reason for why P450cin is less dependent on its redox partner for functionally important structural changes. PMID:24533927

  16. A new Bi-based visible-light-sensitive photocatalyst BiLa1.4Ca0.6O4.2: crystal structure, optical property and photocatalytic activity

    PubMed Central

    Zhong, WenWu; Lou, YanFang; Jin, ShiFeng; Wang, WenJun; Guo, LiWei

    2016-01-01

    A new compound of BiLa1.4Ca0.6O4.2 is synthesized through solid state reaction, where the Ca substitutes, in part, the La site in a stable BiLa2O4.5 phase. The structure of the BiLa1.4Ca0.6O4.2 crystallizes in space group R3mH with a hexagonal lattice constants of a = 3.893(1) Å, c = 9.891(1) Å. Its optical absorption edge is about 2.05 eV, which just spans the visible light region. The photocatalytic activity of the BiLa1.4Ca0.6O4.2 powder to degradation of RhB under visible light irradiation is measured and improved more than 7 times by annealing in nitrogen ambient, indicating that annealing in nitrogen can effectively improve the photocatalytic activity by producing oxygen vacancy. Although the absolute photocatalytic activity obtained is low, there is great potential for enhancing the activity such as nanoscaling, doping, and coupling with other compounds. PMID:26984371

  17. Finite particle size drives defect-mediated domain structures in strongly confined colloidal liquid crystals.

    PubMed

    Gârlea, Ioana C; Mulder, Pieter; Alvarado, José; Dammone, Oliver; Aarts, Dirk G A L; Lettinga, M Pavlik; Koenderink, Gijsje H; Mulder, Bela M

    2016-06-29

    When liquid crystals are confined to finite volumes, the competition between the surface anchoring imposed by the boundaries and the intrinsic orientational symmetry-breaking of these materials gives rise to a host of intriguing phenomena involving topological defect structures. For synthetic molecular mesogens, like the ones used in liquid-crystal displays, these defect structures are independent of the size of the molecules and well described by continuum theories. In contrast, colloidal systems such as carbon nanotubes and biopolymers have micron-sized lengths, so continuum descriptions are expected to break down under strong confinement conditions. Here, we show, by a combination of computer simulations and experiments with virus particles in tailor-made disk- and annulus-shaped microchambers, that strong confinement of colloidal liquid crystals leads to novel defect-stabilized symmetrical domain structures. These finite-size effects point to a potential for designing optically active microstructures, exploiting the as yet unexplored regime of highly confined liquid crystals.

  18. Crystallization of germanium-carbon alloys -- Structure and electronic transport

    SciTech Connect

    John, T.M.; Blaesing, J.; Veit, P.; Druesedau, T.

    1997-07-01

    Amorphous Ge{sub 1{minus}x}C{sub x} alloys were deposited by rf-magnetron sputtering from a germanium target in methane-argon atmosphere. Structural investigations were performed by means of wide and small angle X-ray scattering, X-ray reflectometry and cross-sectional transmission electron microscopy. The electronic transport properties were characterized using Hall-measurements and temperature depended conductivity. The results of X-ray techniques together with the electron microscopy clearly prove the existence of a segregation of the electronic conductivity in the as-prepared films follows the Mott' T{sup {minus}1/4} law, indicating transport by a hopping process. After annealing at 870 K, samples with x {le} 0.4 show crystallization of the Ge-clusters with a crystallite size being a function of x. After Ge-crystallization, the conductivity increases by 4 to 5 orders of magnitude. Above room temperature, electronic transport is determined by a thermally activated process. For lower temperatures, the {sigma}(T) curves show a behavior which is determined by the crystallite size and the free carrier concentration, both depending on the carbon content.

  19. Datamining protein structure databanks for crystallization patterns of proteins.

    PubMed

    Valafar, Homayoun; Prestegard, James H; Valafar, Faramarz

    2002-12-01

    A study of 345 protein structures selected among 1,500 structures determined by nuclear magnetic resonance (NMR) methods, revealed useful correlations between crystallization properties and several parameters for the studied proteins. NMR methods of structure determination do not require the growth of protein crystals, and hence allow comparison of properties of proteins that have or have not been the subject of crystallographic approaches. One- and two-dimensional statistical analyses of the data confirmed a hypothesized relation between the size of the molecule and its crystallization potential. Furthermore, two-dimensional Bayesian analysis revealed a significant relationship between relative ratio of different secondary structures and the likelihood of success for crystallization trials. The most immediate result is an apparent correlation of crystallization potential with protein size. Further analysis of the data revealed a relationship between the unstructured fraction of proteins and the success of its crystallization. Utilization of Bayesian analysis on the latter correlation resulted in a prediction performance of about 64%, whereas a two-dimensional Bayesian analysis succeeded with a performance of about 75%.

  20. Crystal Structure of the Human Cannabinoid Receptor CB1.

    PubMed

    Hua, Tian; Vemuri, Kiran; Pu, Mengchen; Qu, Lu; Han, Gye Won; Wu, Yiran; Zhao, Suwen; Shui, Wenqing; Li, Shanshan; Korde, Anisha; Laprairie, Robert B; Stahl, Edward L; Ho, Jo-Hao; Zvonok, Nikolai; Zhou, Han; Kufareva, Irina; Wu, Beili; Zhao, Qiang; Hanson, Michael A; Bohn, Laura M; Makriyannis, Alexandros; Stevens, Raymond C; Liu, Zhi-Jie

    2016-10-20

    Cannabinoid receptor 1 (CB1) is the principal target of Δ(9)-tetrahydrocannabinol (THC), a psychoactive chemical from Cannabis sativa with a wide range of therapeutic applications and a long history of recreational use. CB1 is activated by endocannabinoids and is a promising therapeutic target for pain management, inflammation, obesity, and substance abuse disorders. Here, we present the 2.8 Å crystal structure of human CB1 in complex with AM6538, a stabilizing antagonist, synthesized and characterized for this structural study. The structure of the CB1-AM6538 complex reveals key features of the receptor and critical interactions for antagonist binding. In combination with functional studies and molecular modeling, the structure provides insight into the binding mode of naturally occurring CB1 ligands, such as THC, and synthetic cannabinoids. This enhances our understanding of the molecular basis for the physiological functions of CB1 and provides new opportunities for the design of next-generation CB1-targeting pharmaceuticals.

  1. X-ray crystal structure of arsenite-inhibited xanthine oxidase: μ-sulfido,μ-oxo double bridge between molybdenum and arsenic in the active site.

    PubMed

    Cao, Hongnan; Hall, James; Hille, Russ

    2011-08-17

    Xanthine oxidoreductase is a molybdenum-containing enzyme that catalyzes the hydroxylation reaction of sp(2)-hybridized carbon centers of a variety of substrates, including purines, aldehydes, and other heterocyclic compounds. The complex of arsenite-inhibited xanthine oxidase has been characterized previously by UV-vis, electron paramagnetic resonance, and X-ray absorption spectroscopy (XAS), and the catalytically essential sulfido ligand of the square-pyrimidal molybdenum center has been suggested to be involved in arsenite binding through either a μ-sulfido,μ-oxo double bridge or a single μ-sulfido bridge. However, this is contrary to the crystallographically observed single μ-oxo bridge between molybdenum and arsenic in the desulfo form of aldehyde oxidoreductase from Desulfovibrio gigas (an enzyme closely related to xanthine oxidase), whose molybdenum center has an oxo ligand replacing the catalytically essential sulfur, as seen in the functional form of xanthine oxidase. Here we use X-ray crystallography to characterize the molybdenum center of arsenite-inhibited xanthine oxidase and solve the structures of the oxidized and reduced inhibition complexes at 1.82 and 2.11 Å resolution, respectively. We observe μ-sulfido,μ-oxo double bridges between molybdenum and arsenic in the active sites of both complexes. Arsenic is four-coordinate with a distorted trigonal-pyramidal geometry in the oxidized complex and three-coordinate with a distorted trigonal-planar geometry in the reduced complex. The doubly bridged binding mode is in agreement with previous XAS data indicating that the catalytically essential sulfur is also essential for the high affinity of reduced xanthine oxidoreductase for arsenite.

  2. X-ray Crystal Structure of Arsenite-Inhibited Xanthine Oxidase:[mu]-Sulfido,[mu]-Oxo Double Bridge between Molybdenum and Arsenic in the Active Site

    SciTech Connect

    Cao, Hongnan; Hall, James; Hille, Russ

    2012-10-23

    Xanthine oxidoreductase is a molybdenum-containing enzyme that catalyzes the hydroxylation reaction of sp{sup 2}-hybridized carbon centers of a variety of substrates, including purines, aldehydes, and other heterocyclic compounds. The complex of arsenite-inhibited xanthine oxidase has been characterized previously by UV-vis, electron paramagnetic resonance, and X-ray absorption spectroscopy (XAS), and the catalytically essential sulfido ligand of the square-pyrimidal molybdenum center has been suggested to be involved in arsenite binding through either a {mu}-sulfido,{mu}-oxo double bridge or a single {mu}-sulfido bridge. However, this is contrary to the crystallographically observed single {mu}-oxo bridge between molybdenum and arsenic in the desulfo form of aldehyde oxidoreductase from Desulfovibrio gigas (an enzyme closely related to xanthine oxidase), whose molybdenum center has an oxo ligand replacing the catalytically essential sulfur, as seen in the functional form of xanthine oxidase. Here we use X-ray crystallography to characterize the molybdenum center of arsenite-inhibited xanthine oxidase and solve the structures of the oxidized and reduced inhibition complexes at 1.82 and 2.11 {angstrom} resolution, respectively. We observe {mu}-sulfido,{mu}-oxo double bridges between molybdenum and arsenic in the active sites of both complexes. Arsenic is four-coordinate with a distorted trigonal-pyramidal geometry in the oxidized complex and three-coordinate with a distorted trigonal-planar geometry in the reduced complex. The doubly bridged binding mode is in agreement with previous XAS data indicating that the catalytically essential sulfur is also essential for the high affinity of reduced xanthine oxidoreductase for arsenite.

  3. Shrink wrapping redox-active crystals of polyoxometalate open frameworks with organic polymers via crystal induced polymerisation.

    PubMed

    Takashima, Yohei; Miras, Haralampos N; Glatzel, Stefan; Cronin, Leroy

    2016-06-14

    We report examples of crystal surface modification of polyoxometalate open frameworks whereby the use of pyrrole or aniline as monomers leads to the formation of the corresponding polymers via an oxidative polymerization process initiated by the redox active POM scaffolds. Guest-exchange experiments demonstrate that the polymers can finely tune the guest exchange rate and their structural integrity is retained after the surface modifications. In addition, the formation of polyoxometalate-based self-fabricating tubes by the dissolution of Keggin-based network crystals were also modulated by the polymers, allowing a new type of hybrid inorganic polymer with an organic coating to be fabricated.

  4. The crystal structure of the Rv0301-Rv0300 VapBC-3 toxin-antitoxin complex from M. tuberculosis reveals a Mg2+ ion in the active site and a putative RNA-binding site

    SciTech Connect

    Min, Andrew B; Miallau, Linda; Sawaya, Michael R; Habel, Jeff; Cascio, Duilio; Eisenberg, David

    2013-01-10

    VapBC pairs account for 45 out of 88 identified toxin-antitoxin (TA) pairs in the Mycobacterium tuberculosis (Mtb) H37Rv genome. A working model suggests that under times of stress, antitoxin molecules are degraded, releasing the toxins to slow the metabolism of the cell, which in the case of VapC toxins is via their RNase activity. Otherwise the TA pairs remain bound to their promoters, autoinhibiting transcription. The crystal structure of Rv0301-Rv0300, an Mtb VapBC TA complex determined at 1.49 Å resolution, suggests a mechanism for these three functions: RNase activity, its inhibition by antitoxin, and its ability to bind promoter DNA. The Rv0301 toxin consists of a core of five parallel beta strands flanked by alpha helices. Three proximal aspartates coordinate a Mg2+ ion forming the putative RNase active site. The Rv0300 antitoxin monomer is extended in structure, consisting of an N-terminal beta strand followed by four helices. The last two helices wrap around the toxin and terminate near the putative RNase active site, but with different conformations. In one conformation, the C-terminal arginine interferes with Mg2+ ion coordination, suggesting a mechanism by which the antitoxin can inhibit toxin activity. At the N-terminus of the antitoxin, two pairs of Ribbon-Helix-Helix (RHH) motifs are related by crystallographic twofold symmetry. The resulting hetero-octameric complex is similar to the FitAB system, but the two RHH motifs are about 30 Å closer together in the Rv0301-Rv0300 complex, suggesting either a different span of the DNA recognition sequence or a conformational change.

  5. Single-crystal structure of a covalent organic framework.

    PubMed

    Zhang, Yue-Biao; Su, Jie; Furukawa, Hiroyasu; Yun, Yifeng; Gándara, Felipe; Duong, Adam; Zou, Xiaodong; Yaghi, Omar M

    2013-11-06

    The crystal structure of a new covalent organic framework, termed COF-320, is determined by single-crystal 3D electron diffraction using the rotation electron diffraction (RED) method for data collection. The COF crystals are prepared by an imine condensation of tetra-(4-anilyl)methane and 4,4'-biphenyldialdehyde in 1,4-dioxane at 120 °C to produce a highly porous 9-fold interwoven diamond net. COF-320 exhibits permanent porosity with a Langmuir surface area of 2400 m(2)/g and a methane total uptake of 15.0 wt % (176 cm(3)/cm(3)) at 25 °C and 80 bar. The successful determination of the structure of COF-320 directly from single-crystal samples is an important advance in the development of COF chemistry.

  6. Single-Crystal Structure of a Covalent Organic Framework

    SciTech Connect

    Zhang, YB; Su, J; Furukawa, H; Yun, YF; Gandara, F; Duong, A; Zou, XD; Yaghi, OM

    2013-11-06

    The crystal structure of a new covalent organic framework, termed COF-320, is determined by single-crystal 3D electron diffraction using the rotation electron diffraction (RED) method for data collection. The COF crystals are prepared by an imine condensation of tetra-(4-anilyl)methane and 4,4'-biphenyldialdehyde in 1,4-dioxane at 120 degrees C to produce a highly porous 9-fold interwoven diamond net. COF-320 exhibits permanent porosity with a Langmuir surface area of 2400 m(2)/g and a methane total uptake of 15.0 wt % (176 cm(3)/cm(3)) at 25 degrees C and 80 bar. The successful determination of the structure of COF-320 directly from single-crystal samples is an important advance in the development of COF chemistry.

  7. Crystal structure of TiBi2

    PubMed Central

    Watanabe, Kei; Yamane, Hisanori

    2016-01-01

    Black granular single crystals of monotitanium dibismuth, TiBi2, were synthesized by slow cooling of a mixture of Bi and Ti from 693 K. The title compound is isostructural with CuMg2 (ortho­rhom­bic Fddd symmetry). Ti atoms are located in square anti­prisms of Bi atoms. The network of one type of Bi atom spirals along the a-axis direction while honeycomb layers of the other type of Bi atom spreading in the ab plane inter­lace one another. PMID:27920910

  8. The different conformations and crystal structures of dihydroergocristine

    NASA Astrophysics Data System (ADS)

    Mönch, B.; Kraus, W.; Köppen, R.; Emmerling, F.

    2016-02-01

    The identification of different forms of dihydroergocristine (DHEC) was carried out by crystallization from different organic solvents. DHEC was identified as potential template for molecularly imprinted polymers (MIPs) for the epimeric specific analysis of ergot alkaloids (EAs) in food. DHEC was crystallized from different solvents in order to mimic the typical MIP synthesis conditions. Four new solvatomorphs of DHEC were obtained. All solvatomorphs contain a water molecule in the crystal structure, whereas three compounds contain an additional solvent molecule. Based on the conformation of DHEC a comparison with typical EA molecules was possible. The analysis showed that DHEC is a suitable template for MIPs for EAs.

  9. Boron-oxygen polyanion in the crystal structure of tunellite

    USGS Publications Warehouse

    Clark, J.R.

    1963-01-01

    The crystal structure of tunellite, SrO??3B2O 3??4H2O, with infinite sheets of composition n[B6O9(OH)2]2-, has cations and water molecules in the spaces within the sheets. Adjacent sheets are held together by hydrogen bonding through the water molecules. The boron-oxygen polyanions provide the first example in hydrated borate crystals of one oxygen linked to three borons.

  10. Atomic- Resolution Crystal Structure of the Antiviral Lectin Scytovirin

    SciTech Connect

    Moulaei,T.; Botos, I.; Ziolkowska, N.; Bokesch, H.; Krumpe, L.; McKee, T.; O'Keefe, B.; Dauter, Z.; Wlodawer, A.

    2007-01-01

    The crystal structures of the natural and recombinant antiviral lectin scytovirin (SVN) were solved by single-wavelength anomalous scattering and refined with data extending to 1.3 Angstroms and 1.0 Angstroms resolution, respectively. A molecule of SVN consists of a single chain 95 amino acids long, with an almost perfect sequence repeat that creates two very similar domains (RMS deviation 0.25 Angstroms for 40 pairs of Ca atoms). The crystal structure differs significantly from a previously published NMR structure of the same protein, with the RMS deviations calculated separately for the N- and C-terminal domains of 5.3 Angstroms and 3.7 Angstroms, respectively, and a very different relationship between the two domains. In addition, the disulfide bonding pattern of the crystal structures differs from that described in the previously published mass spectrometry and NMR studies.

  11. Dependence of property, crystal structure and electrode characteristics on Li content for Li xNi 0.8Co 0.2O 2 as a cathode active material for Li secondary battery

    NASA Astrophysics Data System (ADS)

    Idemoto, Yasushi; Takanashi, Yu; Kitamura, Naoto

    We investigated the dependence of the properties, crystal and electronic structures and electrode characteristics of Li xNi 0.8Co 0.2O 2 as a cathode active material for Li secondary batteries. Li xNi 0.8Co 0.2O 2 was prepared by a solid-state method and solution method. The crystal structure was determined by neutron and X-ray diffractions using the Rietveld analysis. All the samples were obtained as the α-NaFeO 2 type with the space group R-3 m. From the charge-discharge test, the cycle performance was improved with the decreasing Li content (x ≦ 1.066) although the discharge capacity decreased. Samples made by the solid-state method showed a better electrode performance than those made by the solution method. We measured the chemical diffusion coefficient of Li (DLi+ ˜) by the GITT method. The DLi+ ˜ in the stable cycle region was much improved in the sample prepared by the solid-state method than by the solution method. From the neutron powder diffraction, it was confirmed that Li 2CO 3 was formed by increasing the Li content (0.994 < x ≦ 1.066) as a secondary phase. Cation mixing was improved with the decreasing Li content. The bond length of the 3b site-6c site decreased with decreasing Li content. From the electron density images on the (1 1 0) plane for Li xNi 0.8Co 0.2O 2, the covalent bond of the 3b site-6c site increased with the decreasing Li content. This may be one of the reasons why the cycle performance improved with the decreasing Li content.

  12. Band structures and localization properties of aperiodic layered phononic crystals

    NASA Astrophysics Data System (ADS)

    Yan, Zhi-Zhong; Zhang, Chuanzeng

    2012-03-01

    The band structures and localization properties of in-plane elastic waves with coupling of longitudinal and transverse modes oblique propagating in aperiodic phononic crystals based on Thue-Morse and Rudin-Shapiro sequences are studied. Using transfer matrix method, the concept of the localization factor is introduced and the correctness is testified through the Rytov dispersion relation. For comparison, the perfect periodic structure and the quasi-periodic Fibonacci system are also considered. In addition, the influences of the random disorder, local resonance, translational and/or mirror symmetries on the band structures of the aperiodic phononic crystals are analyzed in this paper.

  13. Structure of ice crystallized from supercooled water.

    PubMed

    Malkin, Tamsin L; Murray, Benjamin J; Brukhno, Andrey V; Anwar, Jamshed; Salzmann, Christoph G

    2012-01-24

    The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. At ambient conditions, ice is considered to exist in two crystalline forms: stable hexagonal ice and metastable cubic ice. Using X-ray diffraction data and Monte Carlo simulations, we show that ice that crystallizes homogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I. Stacking disorder and stacking faults have been reported earlier for metastable ice I, but only for ice crystallizing in mesopores and in samples recrystallized from high-pressure ice phases rather than in water droplets. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder. These findings highlight the need to reevaluate the physical and thermodynamic properties of this metastable ice as a function of the nature and extent of stacking disorder using well-characterized samples.

  14. Structure of ice crystallized from supercooled water

    PubMed Central

    Malkin, Tamsin L.; Murray, Benjamin J.; Brukhno, Andrey V.; Anwar, Jamshed; Salzmann, Christoph G.

    2012-01-01

    The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. At ambient conditions, ice is considered to exist in two crystalline forms: stable hexagonal ice and metastable cubic ice. Using X-ray diffraction data and Monte Carlo simulations, we show that ice that crystallizes homogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I. Stacking disorder and stacking faults have been reported earlier for metastable ice I, but only for ice crystallizing in mesopores and in samples recrystallized from high-pressure ice phases rather than in water droplets. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder. These findings highlight the need to reevaluate the physical and thermodynamic properties of this metastable ice as a function of the nature and extent of stacking disorder using well-characterized samples. PMID:22232652

  15. Crystal structure and texture changes during thermal cycling of TATB

    SciTech Connect

    Vogel, Sven C.; Yeager, John David

    2015-02-20

    Goals: Understand crystal structure and micro-structure changes during thermal cycling, understand reasons for ratcheting of TATB during thermal cycling, and Support of B61 LEP. Deliverables achieved: Completed in situ thermal cycling of loose powder and pressed pellet TATB on HIPPO, Quantified preferred orientation of pressed pellet, and quantified relative change of each of the six lattic parameters.

  16. Heterogeneous Crystallization on Pairs of Pre-Structured Seeds.

    PubMed

    Jungblut, Swetlana; Dellago, Christoph

    2016-09-01

    Studying the effects of small pre-structured seeds on the crystallization transition in an undercooled monodisperse Lennard-Jones fluid with transition interface path sampling combined with molecular dynamics simulations, we analyze the impact of the simultaneous presence of two seeds with various structures. In the presence of seeds with face- and body-centered cubic structures, we find that decreasing the seed-to-seed distance enhances the probability of the crystalline clusters formed on one of the seeds to grow beyond the critical size, thus, increasing the crystal nucleation rates. In contrast, when seeds have an icosahedral structure, the crystalline clusters form mostly in the bulk. The crystal nucleation rate, however, is also determined by the distance between the seeds with regular structure in which the lattice spacing is equal to the bulk lattice constant, pointing to a heterogeneous crystal nucleation that occurs away from the icosahedrally structured seeds. For slightly squeezed seeds, the effects of the presence of seeds with face- and body-centered cubic structures are reduced in comparison to the regular seeds, and we do not see any effect of the presence of the second seed for seeds with squeezed icosahedral structure.

  17. Heterogeneous Crystallization on Pairs of Pre-Structured Seeds

    PubMed Central

    2016-01-01

    Studying the effects of small pre-structured seeds on the crystallization transition in an undercooled monodisperse Lennard-Jones fluid with transition interface path sampling combined with molecular dynamics simulations, we analyze the impact of the simultaneous presence of two seeds with various structures. In the presence of seeds with face- and body-centered cubic structures, we find that decreasing the seed-to-seed distance enhances the probability of the crystalline clusters formed on one of the seeds to grow beyond the critical size, thus, increasing the crystal nucleation rates. In contrast, when seeds have an icosahedral structure, the crystalline clusters form mostly in the bulk. The crystal nucleation rate, however, is also determined by the distance between the seeds with regular structure in which the lattice spacing is equal to the bulk lattice constant, pointing to a heterogeneous crystal nucleation that occurs away from the icosahedrally structured seeds. For slightly squeezed seeds, the effects of the presence of seeds with face- and body-centered cubic structures are reduced in comparison to the regular seeds, and we do not see any effect of the presence of the second seed for seeds with squeezed icosahedral structure. PMID:27479875

  18. Artemin Crystal Structure Reveals Insights into Heparan Sulfate Binding

    SciTech Connect

    Silvian,L.; Jin, P.; Carmillo, P.; Boriack-Sjodin, P.; Pelletier, C.; Rushe, M.; Gong, B.; Sah, D.; Pepinsky, B.; Rossomando, A.

    2006-01-01

    Artemin (ART) promotes the growth of developing peripheral neurons by signaling through a multicomponent receptor complex comprised of a transmembrane tyrosine kinase receptor (cRET) and a specific glycosylphosphatidylinositol-linked co-receptor (GFR{alpha}3). Glial cell line-derived neurotrophic factor (GDNF) signals through a similar ternary complex but requires heparan sulfate proteoglycans (HSPGs) for full activity. HSPG has not been demonstrated as a requirement for ART signaling. We crystallized ART in the presence of sulfate and solved its structure by isomorphous replacement. The structure reveals ordered sulfate anions bound to arginine residues in the pre-helix and amino-terminal regions that were organized in a triad arrangement characteristic of heparan sulfate. Three residues in the pre-helix were singly or triply substituted with glutamic acid, and the resulting proteins were shown to have reduced heparin-binding affinity that is partly reflected in their ability to activate cRET. This study suggests that ART binds HSPGs and identifies residues that may be involved in HSPG binding.

  19. Combined crystal structure prediction and high-pressure crystallization in rational pharmaceutical polymorph screening

    NASA Astrophysics Data System (ADS)

    Neumann, M. A.; van de Streek, J.; Fabbiani, F. P. A.; Hidber, P.; Grassmann, O.

    2015-07-01

    Organic molecules, such as pharmaceuticals, agro-chemicals and pigments, frequently form several crystal polymorphs with different physicochemical properties. Finding polymorphs has long been a purely experimental game of trial-and-error. Here we utilize in silico polymorph screening in combination with rationally planned crystallization experiments to study the polymorphism of the pharmaceutical compound Dalcetrapib, with 10 torsional degrees of freedom one of the most flexible molecules ever studied computationally. The experimental crystal polymorphs are found at the bottom of the calculated lattice energy landscape, and two predicted structures are identified as candidates for a missing, thermodynamically more stable polymorph. Pressure-dependent stability calculations suggested high pressure as a means to bring these polymorphs into existence. Subsequently, one of them could indeed be crystallized in the 0.02 to 0.50 GPa pressure range and was found to be metastable at ambient pressure, effectively derisking the appearance of a more stable polymorph during late-stage development of Dalcetrapib.

  20. Ytterbium- and neodymium-doped vanadate laser hose crystals having the apatite crystal structure

    DOEpatents

    Payne, Stephen A.; Kway, Wayne L.; DeLoach, Laura D.; Krupke, William F.; Chai, Bruce H. T.

    1994-01-01

    Yb.sup.3+ and Nd.sup.3+ doped Sr.sub.5 (VO.sub.4).sub.3 F crystals serve as useful infrared laser media that exhibit low thresholds of oscillation and high slope efficiencies, and can be grown with high optical quality. These laser media possess unusually high absorption and emission cross sections, which provide the crystals with the ability to generate greater gain for a given amount of pump power. Many related crystals such as Sr.sub.5 (VO.sub.4).sub.3 F crystals doped with other rare earths, transition metals, or actinides, as well as the many structural analogs of Sr.sub.5 (VO.sub.4).sub.3 F, where the Sr.sup.2+ and F.sup.- ions are replaced by related chemical species, have similar properties.

  1. Ytterbium- and neodymium-doped vanadate laser hose crystals having the apatite crystal structure

    DOEpatents

    Payne, S.A.; Kway, W.L.; DeLoach, L.D.; Krupke, W.F.; Chai, B.H.T.

    1994-08-23

    Yb[sup 3+] and Nd[sup 3+] doped Sr[sub 5](VO[sub 4])[sub 3]F crystals serve as useful infrared laser media that exhibit low thresholds of oscillation and high slope efficiencies, and can be grown with high optical quality. These laser media possess unusually high absorption and emission cross sections, which provide the crystals with the ability to generate greater gain for a given amount of pump power. Many related crystals such as Sr[sub 5](VO[sub 4])[sub 3]F crystals doped with other rare earths, transition metals, or actinides, as well as the many structural analogs of Sr[sub 5](VO[sub 4])[sub 3]F, where the Sr[sup 2+] and F[sup [minus

  2. Crystal structure of dengue virus methyltransferase without S-adenosyl-L-methionine.

    PubMed

    Noble, Christian G; Li, Shi-Hua; Dong, Hongping; Chew, Sock Hui; Shi, Pei-Yong

    2014-11-01

    Flavivirus methyltransferase is a genetically-validated antiviral target. Crystal structures of almost all available flavivirus methyltransferases contain S-adenosyl-L-methionine (SAM), the methyl donor molecule that co-purifies with the enzymes. This raises a possibility that SAM is an integral structural component required for the folding of dengue virus (DENV) methyltransferase. Here we exclude this possibility by solving the crystal structure of DENV methyltransferase without SAM. The SAM ligand was removed from the enzyme through a urea-mediated denaturation-and-renaturation protocol. The crystal structure of the SAM-depleted enzyme exhibits a vacant SAM-binding pocket, with a conformation identical to that of the SAM-enzyme co-crystal structure. Functionally, equivalent enzymatic activities (N-7 methylation, 2'-O methylation, and GMP-enzyme complex formation) were detected for the SAM-depleted and SAM-containing recombinant proteins. These results clearly indicate that the SAM molecule is not an essential component for the correct folding of DENV methyltransferase. Furthermore, the results imply a potential antiviral approach to search for inhibitors that can bind to the SAM-binding pocket and compete against SAM binding. To demonstrate this potential, we have soaked crystals of DENV methyltransferase without a bound SAM with the natural product Sinefungin and show that preformed crystals are capable of binding ligands in this pocket.

  3. Structural aspects of dog allergies: the crystal structure of a dog dander allergen Can f 4.

    PubMed

    Niemi, Merja H; Rytkönen-Nissinen, Marja; Jänis, Janne; Virtanen, Tuomas; Rouvinen, Juha

    2014-09-01

    Four out of six officially recognized dog allergens are members of the lipocalin protein family. So far, a three-dimensional structure has been determined for only one dog allergen, Can f 2, which is a lipocalin protein. We present here the crystal structure of a second lipocalin allergen from dog, a variant of Can f 4. Moreover, we have compared and analyzed the structures of these two weakly homologous (amino acid identity 21%) dog allergens. The size and the amino acid composition of the ligand-binding pocket indicate that Can f 4 is capable of binding only relatively small hydrophobic molecules which are different from those that Can f 2 is able to bind. The crystal structure of Can f 4 contained both monomeric and dimeric forms of the allergen, suggesting that Can f 4 is able to form transient (weak) dimers. The existence of transient dimers in solution was confirmed by use of native mass spectrometry. The dimeric structure of Can f 4 is formed when the ends of four β-strands are packed against the same strands from the second monomer. The residues in the interface are mainly hydrophobic and the formation of the dimer is similar to the major horse allergen Equ c 1. Interestingly, the crystal structure of dog Can f 2 has been reported to show a different type of dimer formation. The capability of these allergens to form dimers may be important for the development of immediate allergic reaction (mast cell activation) because oligomeric allergens can effectively present multivalent epitopes.

  4. Crystal Structure of Alcohol Oxidase from Pichia pastoris

    PubMed Central

    Valerius, Oliver; Feussner, Ivo; Ficner, Ralf

    2016-01-01

    FAD-dependent alcohol oxidases (AOX) are key enzymes of methylotrophic organisms that can utilize lower primary alcohols as sole source of carbon and energy. Here we report the crystal structure analysis of the methanol oxidase AOX1 from Pichia pastoris. The crystallographic phase problem was solved by means of Molecular Replacement in combination with initial structure rebuilding using Rosetta model completion and relaxation against an averaged electron density map. The subunit arrangement of the homo-octameric AOX1 differs from that of octameric vanillyl alcohol oxidase and other dimeric or tetrameric alcohol oxidases, due to the insertion of two large protruding loop regions and an additional C-terminal extension in AOX1. In comparison to other alcohol oxidases, the active site cavity of AOX1 is significantly reduced in size, which could explain the observed preference for methanol as substrate. All AOX1 subunits of the structure reported here harbor a modified flavin adenine dinucleotide, which contains an arabityl chain instead of a ribityl chain attached to the isoalloxazine ring. PMID:26905908

  5. Crystal structures of the TRIC trimeric intracellular cation channel orthologues

    PubMed Central

    Kasuya, Go; Hiraizumi, Masahiro; Maturana, Andrés D; Kumazaki, Kaoru; Fujiwara, Yuichiro; Liu, Keihong; Nakada-Nakura, Yoshiko; Iwata, So; Tsukada, Keisuke; Komori, Tomotaka; Uemura, Sotaro; Goto, Yuhei; Nakane, Takanori; Takemoto, Mizuki; Kato, Hideaki E; Yamashita, Keitaro; Wada, Miki; Ito, Koichi; Ishitani, Ryuichiro; Hattori, Motoyuki; Nureki, Osamu

    2016-01-01

    Ca2+ release from the sarcoplasmic reticulum (SR) and endoplasmic reticulum (ER) is crucial for muscle contraction, cell growth, apoptosis, learning and memory. The trimeric intracellular cation (TRIC) channels were recently identified as cation channels balancing the SR and ER membrane potentials, and are implicated in Ca2+ signaling and homeostasis. Here we present the crystal structures of prokaryotic TRIC channels in the closed state and structure-based functional analyses of prokaryotic and eukaryotic TRIC channels. Each trimer subunit consists of seven transmembrane (TM) helices with two inverted repeated regions. The electrophysiological, biochemical and biophysical analyses revealed that TRIC channels possess an ion-conducting pore within each subunit, and that the trimer formation contributes to the stability of the protein. The symmetrically related TM2 and TM5 helices are kinked at the conserved glycine clusters, and these kinks are important for the channel activity. Furthermore, the kinks of the TM2 and TM5 helices generate lateral fenestrations at each subunit interface. Unexpectedly, these lateral fenestrations are occupied with lipid molecules. This study provides the structural and functional framework for the molecular mechanism of this ion channel superfamily. PMID:27909292

  6. Crystal structure of the RNA component of bacterial ribonuclease P.

    PubMed

    Torres-Larios, Alfredo; Swinger, Kerren K; Krasilnikov, Andrey S; Pan, Tao; Mondragón, Alfonso

    2005-09-22

    Transfer RNA (tRNA) is produced as a precursor molecule that needs to be processed at its 3' and 5' ends. Ribonuclease P is the sole endonuclease responsible for processing the 5' end of tRNA by cleaving the precursor and leading to tRNA maturation. It was one of the first catalytic RNA molecules identified and consists of a single RNA component in all organisms and only one protein component in bacteria. It is a true multi-turnover ribozyme and one of only two ribozymes (the other being the ribosome) that are conserved in all kingdoms of life. Here we show the crystal structure at 3.85 A resolution of the RNA component of Thermotoga maritima ribonuclease P. The entire RNA catalytic component is revealed, as well as the arrangement of the two structural domains. The structure shows the general architecture of the RNA molecule, the inter- and intra-domain interactions, the location of the universally conserved regions, the regions involved in pre-tRNA recognition and the location of the active site. A model with bound tRNA is in agreement with all existing data and suggests the general basis for RNA-RNA recognition by this ribozyme.

  7. Synthesis, crystal structures, cytotoxicity and qualitative structure-activity relationship (QSAR) of cis-bis{5-[(E)-2-(aryl)-1-diazenyl]quinolinolato}di-n-butyltin(IV) complexes, (n)Bu2Sn(L)2.

    PubMed

    Basu Baul, Tushar S; Mizar, Archana; Chandra, Asit K; Song, Xueqing; Eng, George; Jirásko, Robert; Holcapek, Michal; de Vos, Dick; Linden, Anthony

    2008-09-01

    A series of cis-bis{5-[(E)-2-(aryl)-1-diazenyl]quinolinolato}di-n-butyltin(IV) complexes has been synthesized and characterized by (1)H-, (13)C-, (119)Sn NMR, ESI-MS (electrospray ionization mass spectrometry), IR and (119m)Sn Mössbauer spectroscopic techniques in combination with elemental analyses. The structures of four di-n-butyltin(IV) complexes, viz., (n)Bu(2)Sn(L(3))(2) (3), (n)Bu(2)Sn(L(4))(2) (4), (n)Bu(2)Sn(L(5))(2) (5) and (n)Bu(2)Sn(L(7))(2).0.5C(6)H(6) (7) (LH=5-[(E)-2-(aryl)-1-diazenyl)quinolin-8-ol) were determined by single crystal X-ray diffraction. In general, the complexes were found to adopt a distorted cis-octahedral arrangement around the tin atom. These complexes retain their solid-state structure in non-coordinating solvent as evidenced by (119)Sn and (13)C NMR spectroscopic results. The in vitro cytotoxicity of di-n-butyltin(IV) complexes (3-8) is reported against seven well characterized human tumour cell lines. The basicity of the two quinolinolato donor N and O atoms of the ligands are discussed in relation to the cytotoxicity data.

  8. Crystal structure of rubidium peroxide ammonia disolvate.

    PubMed

    Grassl, Tobias; Korber, Nikolaus

    2017-02-01

    The title compound, Rb2O2·2NH3, has been obtained as a reaction product of rubidium metal dissolved in liquid ammonia and glucuronic acid. As a result of the low-temperature crystallization, a disolvate was formed. To our knowledge, only one other solvate of an alkali metal peroxide is known: Na2O2·8H2O has been reported by Grehl et al. [Acta Cryst. (1995), C51, 1038-1040]. We determined the peroxide bond length to be 1.530 (11) Å, which is in accordance with the length reported by Bremm & Jansen [Z. Anorg. Allg. Chem. (1992), 610, 64-66]. One of the ammonia solvate molecules is disordered relative to a mirror plane, with 0.5 occupancy for the corresponding nitrogen atom.

  9. Crystal structure of rubidium peroxide ammonia disolvate

    PubMed Central

    Grassl, Tobias; Korber, Nikolaus

    2017-01-01

    The title compound, Rb2O2·2NH3, has been obtained as a reaction product of rubidium metal dissolved in liquid ammonia and glucuronic acid. As a result of the low-temperature crystallization, a disolvate was formed. To our knowledge, only one other solvate of an alkali metal peroxide is known: Na2O2·8H2O has been reported by Grehl et al. [Acta Cryst. (1995), C51, 1038–1040]. We determined the peroxide bond length to be 1.530 (11) Å, which is in accordance with the length reported by Bremm & Jansen [Z. Anorg. Allg. Chem. (1992), 610, 64–66]. One of the ammonia solvate molecules is disordered relative to a mirror plane, with 0.5 occupancy for the corresponding nitrogen atom. PMID:28217342

  10. The Crystal Structure of Toxoplasma gondii Pyruvate Kinase 1

    SciTech Connect

    Bakszt, R.; Wernimont, A; Allali-Hassani, A; Mok, M; Hills, T; Hui, R; Pizarro, J

    2010-01-01

    Pyruvate kinase (PK), which catalyzes the final step in glycolysis converting phosphoenolpyruvate to pyruvate, is a central metabolic regulator in most organisms. Consequently PK represents an attractive therapeutic target in cancer and human pathogens, like Apicomplexans. The phylum Aplicomplexa, a group of exclusively parasitic organisms, includes the genera Plasmodium, Cryptosporidium and Toxoplasma, the etiological agents of malaria, cryptosporidiosis and toxoplasmosis respectively. Toxoplasma gondii infection causes a mild illness and is a very common infection affecting nearly one third of the world's population. We have determined the crystal structure of the PK1 enzyme from T. gondii, with the B domain in the open and closed conformations. We have also characterized its enzymatic activity and confirmed glucose-6-phosphate as its allosteric activator. This is the first description of a PK enzyme in a closed inactive conformation without any bound substrate. Comparison of the two tetrameric TgPK1 structures indicates a reorientation of the monomers with a concomitant change in the buried surface among adjacent monomers. The change in the buried surface was associated with significant B domain movements in one of the interacting monomers. We hypothesize that a loop in the interface between the A and B domains plays an important role linking the position of the B domain to the buried surface among monomers through two {alpha}-helices. The proposed model links the catalytic cycle of the enzyme with its domain movements and highlights the contribution of the interface between adjacent subunits. In addition, an unusual ordered conformation was observed in one of the allosteric binding domains and it is related to a specific apicomplexan insertion. The sequence and structural particularity would explain the atypical activation by a mono-phosphorylated sugar. The sum of peculiarities raises this enzyme as an emerging target for drug discovery.

  11. Crystal structure of inorganic pyrophosphatase from Thermus thermophilus.

    PubMed Central

    Teplyakov, A.; Obmolova, G.; Wilson, K. S.; Ishii, K.; Kaji, H.; Samejima, T.; Kuranova, I.

    1994-01-01

    The 3-dimensional structure of inorganic pyrophosphatase from Thermus thermophilus (T-PPase) has been determined by X-ray diffraction at 2.0 A resolution and refined to R = 15.3%. The structure consists of an antiparallel closed beta-sheet and 2 alpha-helices and resembles that of the yeast enzyme in spite of the large difference in size (174 and 286 residues, respectively), little sequence similarity beyond the active center (about 20%), and different oligomeric organization (hexameric and dimeric, respectively). The similarity of the polypeptide folding in the 2 PPases provides a very strong argument in favor of an evolutionary relationship between the yeast and bacterial enzymes. The same Greek-key topology of the 5-stranded beta-barrel was found in the OB-fold proteins, the bacteriophage gene-5 DNA-binding protein, toxic-shock syndrome toxin-1, and the major cold-shock protein of Bacillus subtilis. Moreover, all known nucleotide-binding sites in these proteins are located on the same side of the beta-barrel as the active center in T-PPase. Analysis of the active center of T-PPase revealed 17 residues of potential functional importance, 16 of which are strictly conserved in all sequences of soluble PPases. Their possible role in the catalytic mechanism is discussed on the basis of the present crystal structure and with respect to site-directed mutagenesis studies on the Escherichia coli enzyme. The observed oligomeric organization of T-PPase allows us to suggest a possible mechanism for the allosteric regulation of hexameric PPases. PMID:7920256

  12. Synthesis, crystal structure and computational studies of 4-nitrobenzylphosphonic acid

    NASA Astrophysics Data System (ADS)

    Wilk, Magdalena; Jarzembska, Katarzyna N.; Janczak, Jan; Hoffmann, Józef; Videnova-Adrabinska, Veneta

    2014-09-01

    4-Nitrobenzylphosphonic acid (1a) has been synthesized and structurally characterized by vibrational spectroscopy (IR and Raman) and single-crystal X-ray diffraction. Additionally, Hirshfeld surface analysis and computational methods have been used to compare the intermolecular interactions in the crystal structures of 1a and its carboxylic analogue, 4-nitrobenzylcarboxylic acid (4-NBCA). The crystal structure analysis of 1a has revealed that the acid molecules are extended into helical chains along the b axis using one of the hydrogen bonds established between phosphonic groups. The second (P)Osbnd H⋯O(P) hydrogen bond cross-links the inversion-related chains to form a thick monolayer with phosphonic groups arranged inwards and aromatic rings outwards. The nitro groups serve to link the neighbouring monolayers by weak Csbnd H⋯O(N) hydrogen bonds. Computations have confirmed the great contribution of electrostatic interactions for the crystal lattice stability. The cohesive energy, computed for the crystal structure of 1a exceeds 200 kJ mol-1 in magnitude and is nearly twice as large as that of 4-NBCA. The calculated cohesive energy values have been further related to the results of thermal analyses.

  13. Free-Standing Photonic Crystal Films with Gradient Structural Colors.

    PubMed

    Ding, Haibo; Liu, Cihui; Ye, Baofen; Fu, Fanfan; Wang, Huan; Zhao, Yuanjin; Gu, Zhongze

    2016-03-23

    Hydrogel colloidal crystal composite materials have a demonstrated value in responsive photonic crystals (PhCs) via controllable stimuli. Although they have been successfully exploited to generate a gradient of color distribution, the soft hydrogels have limitations in terms of stability and storage caused by dependence on environment. Here, we present a practical strategy to fabricate free-standing PhC films with a stable gradient of structural colors using binary polymer networks. A colloidal crystal hydrogel film was prepared for this purpose, with continuously varying photonic band gaps corresponding to the gradient of the press. Then, a second polymer network was used to lock the inside non-close-packed PhC structures and color distribution of the hydrogel film. It was demonstrated that our strategy could bring about a solution to the angle-dependent structural colors of the PhC films by coating the surface with special microstructures.

  14. Compact Couplers for Photonic Crystal Laser-Driven Accelerator Structures

    SciTech Connect

    Cowan, Benjamin; Lin, M.C.; Schwartz, Brian; Byer, Robert; McGuinness, Christopher; Colby, Eric; England, Robert; Noble, Robert; Spencer, James; /SLAC

    2012-07-02

    Photonic crystal waveguides are promising candidates for laser-driven accelerator structures because of their ability to confine a speed-of-light mode in an all-dielectric structure. Because of the difference between the group velocity of the waveguide mode and the particle bunch velocity, fields must be coupled into the accelerating waveguide at frequent intervals. Therefore efficient, compact couplers are critical to overall accelerator efficiency. We present designs and simulations of high-efficiency coupling to the accelerating mode in a three-dimensional photonic crystal waveguide from a waveguide adjoining it at 90{sup o}. We discuss details of the computation and the resulting transmission. We include some background on the accelerator structure and photonic crystal-based optical acceleration in general.

  15. Anisotropy of bond projections in simple crystal structures

    NASA Astrophysics Data System (ADS)

    Šimůnek, Antonín

    2011-10-01

    The nearest-neighbor bond distances represented by the stick-and-ball model of a crystal are projected into planes in order to find the directions from where the projections have maximum or minimum values. The projection directions and their corresponding values of the maxima and minima are presented for simple cubic, body-centered-cubic, face-centered-cubic, sodium chloride, zinc sulfide, diamond, fluorite, cesium chloride, hexagonal close-packed, tungsten carbide, wurtzite, graphite, graphene, and aluminum boride structures. The purely geometrical considerations quantitatively reflect an anisotropy of the bond projections and provide data for a large amount of materials crystallizing in these structures. The presented results can be applied to the description, analysis, and understanding of anisotropic effects related to bond projection in 14 crystal structures. The application of hardness anisotropy for BN, SiC, and TiC is shown.

  16. Integrin activation and structural rearrangement.

    PubMed

    Takagi, Junichi; Springer, Timothy A

    2002-08-01

    Among adhesion receptor families, integrins are particularly important in biological processes that require rapid modulation of adhesion and de-adhesion. Activation on a timescale of < 1 s of beta2 integrins on leukocytes and beta3 integrins on platelets enables deposition of these cells at sites of inflammation or vessel wall injury. Recent crystal, nuclear magnetic resonance (NMR), and electron microscope (EM) structures of integrins and their domains lead to a unifying mechanism of activation for both integrins that contain and those that lack an inserted (I) domain. The I domain adopts two alternative conformations, termed open and closed. In striking similarity to signaling G-proteins, rearrangement of a Mg2+-binding site is linked to large conformational movements in distant backbone regions. Mutations that stabilize a particular conformation show that the open conformation has high affinity for ligand, whereas the closed conformation has low affinity. Movement of the C-terminal alpha-helix 10 A down the side of the domain in the open conformation is sufficient to increase affinity at the distal ligand-binding site 9,000-fold. This C-terminal "bell-rope" provides a mechanism for linkage to conformational movements in other domains. Recent structures and functional studies reveal interactions between beta-propeller, I, and I-like domains in the integrin headpiece, and a critical role for integrin epidermal growth factor (EGF) domains in the stalk region. The headpiece of the integrin faces down towards the membrane in the inactive conformation, and extends upward in a "switchblade"-like opening upon activation. These long-range structural rearrangements of the entire integrin molecule involving interdomain contacts appear closely linked to conformational changes within the I and I-like domains, which result in increased affinity and competence for ligand binding.

  17. Antioxidant activity and interaction with DNA and albumins of zinc-tolfenamato complexes. Crystal structure of [Zn(tolfenamato)₂(2,2'-dipyridylketoneoxime)₂].

    PubMed

    Tarushi, Alketa; Totta, Xanthippi; Papadopoulos, Athanasios; Kljun, Jakob; Turel, Iztok; Kessissoglou, Dimitris P; Psomas, George

    2014-03-03

    The zinc(II) complex of the non-steroidal anti-inflammatory drug tolfenamic acid (=Htolf) in the presence of 2,2'-dipyridylketone oxime (=Hpko) as a N,N'-donor heterocyclic ligand, [Zn(tolf-O)₂(Hpko-N,N')₂]·MeOH (=1·MeOH), has been synthesized and characterized by physicochemical techniques including X-ray crystallography. The complex exhibits good binding affinity to human or bovine serum albumin with high binding constant values. Complex 1 and previously reported Zn-tolfenamato complexes were tested for their free radical scavenging activity and in vitro inhibitory activity against soybean lipoxygenase and exhibited significant activity with [Zn(tolf)₂(1,10-phenantroline)] being the most active compound. The complexes interact with calf-thymus (CT) DNA via intercalation, and can displace the DNA-bound ethidium bromide with 1 exhibiting the highest binding constant to CT DNA.

  18. Axial vibration control of melt structure of sodium nitrate in crystal growth process

    NASA Astrophysics Data System (ADS)

    Sadovskiy, Andrey; Sukhanova, Ekaterina; Belov, Stanislav; Kostikov, Vladimir; Zykova, Marina; Artyushenko, Maxim; Zharikov, Evgeny; Avetissov, Igor

    2015-05-01

    The melt structure evolution under the action of the low-frequency axial vibration control (AVC) technique was studied in situ by Raman spectroscopy for several complex chemical compound melts: sodium nitrate, margarine acid, paraffin mixture (C17-C20). The measurements were conducted in the temperature range from the melting point up to 60 °C above. Comparison of crystallization heats for AVC activated and steady melts with melting heats of AVC-CZ and conventional CZ produced powders allowed to propose the energy diagram of NaNO3 states for activated and non-activated melts and crystals based on DTA, XRD, DSC and Raman experimental data.

  19. Optical extinction due to intrinsic structural variations of photonic crystals

    NASA Astrophysics Data System (ADS)

    Koenderink, A. Femius; Lagendijk, Ad; Vos, Willem L.

    2005-10-01

    Unavoidable variations in size and position of the building blocks of photonic crystals cause light scattering and extinction of coherent beams. We present a model for both two- and three-dimensional photonic crystals that relates the extinction length to the magnitude of the variations. The predicted lengths agree well with our experiments on high-quality opals and inverse opals, and with literature data analyzed by us. As a result, control over photons is limited to distances up to 50 lattice parameters (˜15 μm) in state-of-the-art structures, thereby impeding applications that require large photonic crystals, such as proposed optical integrated circuits. Conversely, scattering in photonic crystals may lead to different physics such as Anderson localization and nonclassical diffusion.

  20. Investigation by site-directed mutagenesis of the role of cytochrome P450 2B4 non-active site residues in protein-ligand interactions based on crystal structures of the ligand-bound enzyme

    PubMed Central

    Wilderman, P. Ross; Gay, Sean C.; Jang, Hyun-Hee; Zhang, Qinghai; Stout, C. David; Halpert, James R.

    2014-01-01

    SUMMARY Residues located outside of the active site of cytochromes P450 2B have exhibited importance in ligand binding, structural stability, and drug metabolism. However, contributions of non-active site residues to the plasticity of these enzymes are not known. Thus, a systematic investigation was undertaken of unique residue-residue interactions found in crystal structures of P450 2B4 in complex with 4-(4-chlorophenyl)imidazole (4-CPI), a closed conformation, or in complex with bifonazole, an expanded conformation. Nineteen mutants distributed over eleven sites were constructed, expressed in E. coli, and purified. Most mutants showed significantly decreased expression, especially in the case of interactions found in the 4-CPI structure. Six mutants (H172A, H172F, H172Q, L437A, E474D, and E474Q) were chosen for detailed functional analysis. Among these, the Ks of H172F for bifonazole was ~20-times higher than wild type 2B4, and the Ks of L437A for 4-CPI was ~50-times higher than wild type, leading to significantly altered inhibitor selectivity. Enzyme function was tested with the substrates 7-ethoxy-4-(trifluoromethyl)coumarin (7-EFC), 7-methoxy-4-(trifluoromethyl)coumarin (7-MFC), and 7-benzyloxyresorufin (7-BR). H172F was inactive with all three substrates, and L437A did not turn over 7-BR. Furthermore, H172A, H172Q, E474D and E474Q showed large changes in kcat/KM for each of the three substrates, in some cases up to 50-fold. Concurrent molecular dynamics simulations yield distances between some of the residues in these putative interaction pairs that are not consistent with contact. The results indicate that small changes in the protein scaffold lead to large differences in solution behavior and enzyme function. PMID:22051155