Science.gov

Sample records for activity cytochrome p4501a

  1. Membrane Phospholipid Augments Cytochrome P4501a Enzymatic Activity by Modulating Structural Conformation during Detoxification of Xenobiotics

    PubMed Central

    Ghosh, Manik C.; Ray, Arun K.

    2013-01-01

    Cytochrome P450 is a superfamily of membrane-bound hemoprotein that gets involved with the degradation of xenobiotics and internal metabolites. Accumulated body of evidence indicates that phospholipids play a crucial role in determining the enzymatic activity of cytochrome P450 in the microenvironment by modulating its structure during detoxification; however, the structure-function relationship of cytochrome P4501A, a family of enzymes responsible for degrading lipophilic aromatic hydrocarbons, is still not well defined. Inducibility of cytochrome P4501A in cultured catfish hepatocytes in response to carbofuran, a widely used pesticide around the world, was studied earlier in our laboratory. In this present investigation, we observed that treating catfish with carbofuran augmented total phospholipid in the liver. We examined the role of phospholipid on the of cytochrome P4501A-marker enzyme which is known as ethoxyresorufin-O-deethylase (EROD) in the context of structure and function. We purified the carbofuran-induced cytochrome P4501A protein from catfish liver. Subsequently, we examined the enzymatic activity of purified P4501A protein in the presence of phospholipid, and studied how the structure of purified protein was influenced in the phospholipid environment. Membrane phospholipid appeared to accelerate the enzymatic activity of EROD by changing its structural conformation and thus controlling the detoxification of xenobiotics. Our study revealed the missing link of how the cytochrome P450 restores its enzymatic activity by changing its structural conformation in the phospholipid microenvironment. PMID:23469105

  2. Pristane-induced effects on cytochrome P-4501A, ornithine decarboxylase and putrescine in rats.

    PubMed

    Harper, C M; Soni, M G; Mehendale, H M; Cuchens, M A

    1995-08-16

    The effects of pristane (2,6,10,14-tetramethylpentadecane) on cytochrome P-4501A (cP4501A) activity in microsomes, as well as on ornithine decarboxylase (ODC) activity and concomitant putrescine levels were examined in Copenhagen rats. In general, pristane treatment led to increased cP4501A levels when compared to basal levels, while co-treatment with 3-methylcholanthrene (3-MC) and pristane elicited augmented cP4501A responses when compared to responses induced by 3-MC alone. Increases in both ODC activity and putrescine levels were also observed in pristane treated rats. Collectively, these results indicate that pristane influences cP4501A activity and elicits promoter-like responses as reflected in elevated ODC activity and increased amount of putrescine. PMID:7656217

  3. Reduced cytochrome P4501A activity and recovery from oxidative stress during subchronic benzo[a]pyrene and benzo[e]pyrene treatment of rainbow trout

    SciTech Connect

    Curtis, Lawrence R.; Garzon, Claudia B.; Arkoosh, Mary; Collier, Tracy; Myers, Mark S.; Buzitis, Jon; Hahn, Mark E.

    2011-07-01

    This study assessed the role of aryl hydrocarbon receptor (AHR) affinity, and cytochrome P4501A (CYP1A) protein and activity in polyaromatic hydrocarbon (PAH)-induced oxidative stress. In the 1-100 nM concentration range benzo[a]pyrene (BaP) but not benzo[e]pyrene (BeP) competitively displaced 2 nM [{sup 3}H]2, 3, 7, 8-tetrachloro-dibenzo-p-dioxin from rainbow trout AHR2{alpha}. Based on appearance of fluorescent aromatic compounds in bile over 3, 7, 14, 28 or 50 days of feeding 3 {mu}g of BaP or BeP/g fish/day, rainbow trout liver readily excreted these polyaromatic hydrocarbons (PAHs) and their metabolites at near steady state rates. CYP1A proteins catalyzed more than 98% of ethoxyresorufin-O-deethylase (EROD) activity in rainbow trout hepatic microsomes. EROD activity of hepatic microsomes initially increased and then decreased to control activities after 50 days of feeding both PAHs. Immunohistochemistry of liver confirmed CYP1A protein increased in fish fed both PAHs after 3 days and remained elevated for up to 28 days. Neither BaP nor BeP increased hepatic DNA adduct concentrations at any time up to 50 days of feeding these PAHs. Comet assays of blood cells demonstrated marked DNA damage after 14 days of feeding both PAHs that was not significant after 50 days. There was a strong positive correlation between hepatic EROD activity and DNA damage in blood cells over time for both PAHs. Neither CYP1A protein nor 3-nitrotyrosine (a biomarker for oxidative stress) immunostaining in trunk kidney were significantly altered by BaP or BeP after 3, 7, 14, or 28 days. There was no clear association between AHR2{alpha} affinity and BaP and BeP-induced oxidative stress. - Highlights: > No direct association between aryl hydrocarbon receptor affinity and polyaromatic hydrocarbon induced oxidative stress. > There was a strong correlation between cytochrome P4501A activity and oxidative stress as measured with the comet assay. > There was no correlation between cytochrome P

  4. Glycine N-methyltransferase is a mediator of cytochrome P4501A1 gene expression.

    PubMed

    Raha, A; Joyce, T; Gusky, S; Bresnick, E

    1995-10-01

    Cytochrome P4501A1, the isozyme most closely approximating aryl hydrocarbon hydroxylase activity under conditions of induction, is thought to be regulated by several trans-acting factors, including the 4S polycyclic aromatic hydrocarbon-binding protein; this protein has recently been identified as glycine N-methyltransferase (Raha et al. (1994) J. Biol. Chem. 269, 5750-5756). Previous studies had shown that partially purified liver preparations containing the 4S binding protein interacted with 5'-flanking regions of the cytochrome P4501A1 gene. Consequently, the ability of the 4S binding protein to serve as a mediator in the regulation of the cytochrome P4501A1 gene was investigated further. Introduction of an antisense 24-mer oligonucleotide to glycine N-methyltransferase cDNA into rat hepatoma H4IIE cells by lipofectin resulted in a 60% reduction in the benzo(a)pyrene-mediated induction of ethoxyresorufin-O-deethylase activity and protein over the sense and scrambled antisense oligonucleotide controls. In addition, the antisense oligonucleotide caused a marked reduction in the steady-state level of cytochrome P4501A1 mRNA; no such effect was observed with the sense oligonucleotide. Introduction of GNMT polyclonal antibodies into H4IIE cells by a streptolysin-O permeabilization technique markedly reduced both benzo(a)pyrene-binding and benzo(a)-pyrene-induced ethoxyresorufin-O-deethylase activities, but had no effect on 2,3,7,8-tetrachlorodibenzo-p-dioxin induction. Collectively, these findings suggest that, in addition to the Ah (dioxin) receptor, glycine N-methyltransferase appears to be both a polycyclic aromatic hydrocarbon-binding protein and a mediator of the induction of the cytochrome P4501A1 gene by polycyclic hydrocarbons such as benzo(a)pyrene. PMID:7574713

  5. Relationship between polychlorinated biphenyl 126 treatment and cytochrome P4501A activity in chickens, as measured by in vivo caffeine and ex vivo ethoxyresorufin metabolism

    SciTech Connect

    Feyk, L.A.; Giesy, J.P.; Lambert, G.H.

    1999-09-01

    Cytochrome P4501A (CYPIA) activity is often used as a biomarker of exposure of wildlife to polyhalogenated diaromatic hydrocarbons (PHDHs) and is usually measured ex vivo in liver tissue. A caffeine breath test with radiolabeled substrate ({sup 14}C-CBT) has been developed to measure in vivo avian CYPIA activity. Research goals were to develop stable isotope methods ({sup 13}C-CBT), determine dose-response relationships between caffeine N-demethylation (CNDM) and PHDH exposure, and assess the relative utility of the CBT and ex vivo ethoxyresorufin-O-deethylase (EROD) assay. The {sup 13}C-CBT methods were developed with 20 chickens (Gallus domesticus). Chickens received three intraperitoneal injections of 0, 1, 5, or 50 {micro}g 3,3{prime},4,4{prime},5-pentachlorobiphenyl (PCB 126)/kg body weight, and CNDM was quantified by measurement of {sup 13}CO{sub 2}/{sup 12}CO{sub 2} in expired breath. The {sup 13}C-CBT was not as sensitive or specific as the EROD assay as an indicator of PHDH exposure and effect in birds. Constitutive CNDM of great interindividual variability was observed, and the magnitude of induction was greater for EROD activity than for CNDM (approximately 1,000- and 2-fold, respectively). Variability associated with baseline {sup 13}CO{sub 2}/{sup 12}CO{sub 2} ratios in expired breath reduced the sensitivity of the {sup 13}C-CBT method.

  6. Effect of β-naphthoflavone on hepatic cytochrome P4501A activity in the scribbled rabbitfish (Siganus spinus) from tropical Indo-Pacific coral reefs.

    PubMed

    Emborski, Carmen; Reyes, Andres; Biggs, Jason S

    2012-11-01

    Several classes of carcinogenic environmental organic pollutants, including polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and dioxins, negatively affect aquatic ecosystems worldwide. Pollutant detection is often difficult and expensive, especially when dealing with complex mixtures and matrices. Biological markers are informative tools to identify living sources that may harbor toxic compounds and areas unsuitable for recreation. Currently, no species have established biomarkers for organopollutant monitoring in Indo-Pacific coral reefs. This study evaluated the time- and dose-dependent induction of the cytochrome P4501A (CYP1A) system in the scribbled rabbitfish, Siganus spinus (Siganidae), as a biomarker for organic pollutant exposures in these environments. Results indicate that S. spinus hepatic CYP1A enzymatic activity and protein level respond dose-, and time-dependently following a single intraperitoneal injection of the classic aryl hydrocarbon receptor agonist, β-naphthoflavone. S. spinus hepatic CYP1A protein and enzymatic activity rose as function of dose during the first two days and slowly returned to levels close to normal after 16 days, as measured using the 7-ethoxyresorufin-O-deethylase and the non-competitive enzyme-linked immunosorbent assays, respectively. These findings support use of the inducible CYP1A system of S. spinus as a biomarker for reef fish exposure to coastal marine pollution. Baseline CYP1A expression levels among Guam's wild S. spinus populations were also measured and compared. PMID:22760666

  7. Reduced Cytochrome P4501A Activity and Recovery from Oxidative Stress During Subchronic Benzo[a]pyrene and Benzo[e]pyrene Treatment of Rainbow Trout

    PubMed Central

    Garzon, Claudia B.; Arkoosh, Mary; Collier, Tracy; Myers, Mark S.; Buzitis, Jon; Hahn, Mark E.

    2011-01-01

    This study assessed the role of aryl hydrocarbon receptor (AHR) affinity, and cytochrome P4501A (CYP1A) protein and activity in polyaromatic hydrocarbon (PAH)-induced oxidative stress. In the 1–100 nM concentration range benzo[a]pyrene (BaP) but not benzo[e]pyrene (BeP) competitively displaced 2 nM [3H]2, 3, 7, 8-tetrachloro-dibenzo-p-dioxin from rainbow trout AHR2α. Based on appearance of fluorescent aromatic compounds in bile over 3, 7, 14, 28 or 50 days of feeding 3 μg of BaP or BeP/g fish/day, rainbow trout liver readily excreted these polyaromatic hydrocarbons (PAHs) and their metabolites at near steady state rates. CYP1A proteins catalyzed more than 98% of ethoxyresorufin-O-deethylase (EROD) activity in rainbow trout hepatic microsomes. EROD activity of hepatic microsomes initially increased and then decreased to control activities after 50 days of feeding both PAHs. Immunohistochemistry of liver confirmed CYP1A protein increased in fish fed both PAHs after 3 days and remained elevated for up to 28 days. Neither BaP nor BeP increased hepatic DNA adduct concentrations at any time up to 50 days of feeding these PAHs. Comet assays of blood cells demonstrated marked DNA damage after 14 days of feeding both PAHs that was not significant after 50 days. There was a strong positive correlation between hepatic EROD activity and DNA damage in blood cells over time for both PAHs. Neither CYP1A protein nor 3-nitrotyrosine (a biomarker for oxidative stress) immunostaining in trunk kidney were significantly altered by BaP or BeP after 3, 7, 14, or 28 days. There was no clear association between AHR2α affinity and BaP and BeP-induced oxidative stress. PMID:21550360

  8. Changes in cytochrome P4501A activity during development in common tern chicks fed polychlorinated biphenyls, as measured by the caffeine breath test

    SciTech Connect

    Feyk, L.A.; Giesy, J.P.; Bosveld, A.T.C.; Van den Berg, M.

    2000-03-01

    Cytochrome P4501A (CYPIA) activity is often used as a biomarker of exposure of wildlife to polyhalogenated diaromatic hydrocarbons and is usually measured ex vivo in liver tissue. A caffeine breath test (CBT) with radiolabeled substrate ({sup 14}C-caffeine) was used to measure in vivo CYP1A activity twice during development in 14 common tern (Sterna hirundo) chicks treated with polyhalogenated diaromatic hydrocarbons. Tern hatchlings were fed fish spiked with 3,3{prime}, 4,4{prime},5-pentachlorobiphenyl (PCB 126) and 2,2{prime},4,4{prime},5,5{prime}-hexachlorobiphenyl (PCB 153) such that the diet contained an average of 23, 99, or 561 pg of 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents per gram of fish for 21 d. Sixteen additional common tern chicks were similarly dosed with polyhalogenated diaromatic hydrocarbons but were not subjected to the CBT procedure. In weeks 1 and 2, caffeine N-demethylation and ethoxyresorufin-O-deethylation activity on day 21 were elevated in birds that received the greatest PCB dose. There was less constitutive and greater induction of ethoxyresorufin-O-deethylation activity than caffeine N-demethylation. The {sup 14}C-CBT was less invasive than the ethoxyresorufin-O-deethylase assay. Only one morphological parameter differed significantly between CBT subjects and no-CBT subjects fed the same level of PCBs. Bursa weight was significantly less in control CBT subjects than in control no-CBT subjects, but bursa weights did not differ among CBT and no-CBT birds from the two PCB treatment groups. No alterations of survival or growth occurred in CBT subjects compared with no-CBT subjects.

  9. Silica nanoparticles and silver-doped silica nanoparticles induce endoplasmatic reticulum stress response and alter cytochrome P4501A activity.

    PubMed

    Christen, Verena; Fent, Karl

    2012-04-01

    Engineered silica nanoparticles (SiO(2)-NPs) find widespread application and may lead to exposure of humans and the environment. Here we compare the effects of SiO(2)-NPs and SiO(2)-NPs doped with silver (SiO(2)-Ag-NPs) on survival and cellular function of human liver cells (Huh7) and Pimephales promelas (fathead minnow) fibroblast cells (FMH). In Huh7 cells we investigate effects on the endoplasmatic reticulum (ER), including ER stress, and interactions of nanoparticles (NPs) with metabolizing enzymes and efflux transporters. The NPs formed agglomerates/aggregates in cell culture media as revealed by SEM and TEM. SiO(2) and SiO(2)-1% Ag-NPs were taken up into cells as demonstrated by agglomerates occurring in vesicular-like structures or freely dispersed in the cytosol. Cytotoxicity was more pronounced in Huh7 than in FMH cells, and increased with silver content in silver-doped NPs. Dissolved silver was the most significant factor for cytotoxicity. At toxic and non-cytotoxic concentrations SiO(2)-NPs and SiO(2)-1% Ag-NPs induced perturbations in the function of ER. In Huh7 cells NPs induced the unfolded protein response (UPR), or ER stress response, as demonstrated in induced expression of BiP and splicing of XBP1 mRNA, two selective markers of ER stress. Additionally, SiO(2)-1% Ag-NPs and AgNO(3) induced reactive oxygen species. Pre-treatment of Huh7 cells with SiO(2)-1% Ag-NPs followed by exposure to the inducer benzo(a)pyrene caused a significant reduced induction of CYP1A activity. NPs did not alter the activity of ABC transporters. These data demonstrate for the first time that SiO(2)-NPs and SiO(2)-1% Ag-NPs result in perturbations of the ER leading to the ER stress response. This represents a novel and significant cellular signalling pathway contributing to the cytotoxicity of NPs. PMID:22245057

  10. Cytochrome P4501A immunoassay in freshwater turtles and exposure to PCBs and environmental pollutants

    SciTech Connect

    Yawetz, A.; Benedek-Segal, M.; Woodin, B.

    1997-09-01

    This is the result of a comparative study of cytochrome P4501A (CYP1A) induction in liver microsomes from three species of freshwater turtles. CYP1A induction in turtle hepatic microsomes was compared to CYP1A induction in microsomes from the alligator. Alligator mississippiensis. Treatment of two species of freshwater turtles with four consecutive intraperitoneal injections of 100 mg/kg Aroclor 1254 caused a four- to five-fold increase in P4501A in hepatic microsomes of Chrysemys picta picta and Chrysemys picta elegans. The same treatment administered to another freshwater turtle, Mauremys caspica rivulata, resulted in a very low but significant (p < 0.01) induction of P4501A in hepatic microsomes. Specimens of M. caspica rivulata collected from an organic waste oxidation pond near the petrochemical industry area of the city of Ashdod exhibited normal levels of total hepatic microsomal cytochrome P450 but no detectable level of induction of cytochrome P4501A. The lack of P4501A1 induction could have resulted from two possible reasons. The first possibility is that the turtles were not exposed to residues of petrochemical waste in the pond. More likely, the apparent lack of induction resulted from the low response to CYP1A inducers found in this species. Induction of cytochrome P4501A was evaluated immunohistochemically in liver tissue of C. picta picta pretreated with Aroclor 1254 or 3,3{prime},4,4{prime}-tetrachlorobiphenyl. The most intensive staining was exhibited by sections of liver from a 3,3{prime},4,4{prime}-tetrachlorobiphenyl-treated turtle. Staining of P4501A in liver sections from Aroclor 1254-treated turtles was relatively moderate. In induced turtles, staining of the hepatocytes concentrated near the cell membranes and nuclear membranes, but stained granules were observed throughout the cytoplasm. The presence of inducible CYP1A enzymes in turtles is of importance from an evolutionary point of view and has potential ecological relevance.

  11. Detection of cytochrome P4501A in several species using antibody against a synthetic peptide derived from rainbow trout cytochrome P4501A1

    SciTech Connect

    Lin, S.; Bandiera, S.M.; Bullock, P.L.; Addison, R.F.

    1998-03-01

    Induction of cytochrome P4501A (CYP1A) is being used increasingly as a biomarker to indicate exposure of organisms to environmental contaminants such as some polycyclic and polychlorinated aromatic hydrocarbons. Measurement of CYPIA protein in wildlife would be facilitated by the use of a specific antibody that recognized the isozyme in several species. In the present study, a polyclonal antibody targeted to CYP1A1 was generated using a synthetic peptide corresponding to amino acids 277--294 of the trout enzyme as the antigen of immunization. Specificity of the resulting antibody was assessed by noncompetitive enzyme-linked immunosorbent assay with several purified rat CYP isozymes and by immunoblot analysis with liver microsomes from diverse species. The antibody reacted strongly with the immunizing peptide and with purified rat cytochrome P4501A1 but did not react with rat CYP1A2, a closely related isozyme, or with six other purified rat CYP proteins in enzyme-linked immunosorbent assay. On immunoblots, the antibody recognized a single protein band in hepatic microsomes from the various mammal and fish species tested. Two protein bands were detected in liver microsomes from 3-methylcholanthrene-treated chickens. The results suggest that the antigenic determinant to which the antibody binds is unique to CYP1A and is conserved in different species. Because of its specificity, this anti-peptide antibody should be suitable as a probe to measure CYP1A protein levels in wildlife.

  12. Crystalline silica is a negative modifier of pulmonary cytochrome P-4501A1 induction.

    PubMed

    Battelli, Lori A; Ghanem, Mohamed M; Kashon, Michael L; Barger, Mark; Ma, Jane Y C; Simoskevitz, Ricki L; Miles, Philip R; Hubbs, Ann F

    2008-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are products of incomplete combustion that are commonly inhaled by workers in the dusty trades. Many PAHs are metabolized by cytochrome P-4501A1 (CYP1A1), which may facilitate excretion but may activate pulmonary carcinogens. PAHs also stimulate their own metabolism by inducing CYP1A1. Recent studies suggest that respirable coal dust exposure inhibits induction of pulmonary CYP1A1 using the model PAH beta-naphthoflavone. The effect of the occupational particulate respirable crystalline silica was investigated on PAH-dependent pulmonary CYP1A1 induction. Male Sprague-Dawley rats were exposed to intratracheal silica or vehicle and then intraperitoneal beta-naphthoflavone, a CYP1A1 inducer, and/or phenobarbital, an inducer of hepatic CYP2B1, or vehicle. Beta-naphthoflavone induced pulmonary CYP1A1, but silica attenuated this beta-naphthoflavone-induced CYP1A1 activity and also suppressed the activity of CYP2B1, the major constitutive CYP in rat lung. The magnitude of CYP activity suppression was similar regardless of silica exposure dose within a range of 5 to 20 mg/rat. Phenobarbital and beta-naphthoflavone had no effect on pulmonary CYP2B1 activity. Both enzymatic immunohistochemistry and immunofluorescent staining for CYP1A1 indicated that sites of CYP1A1 induction were nonciliated airway epithelial cells, endothelial cells, and the alveolar septum. Using immunofluorescent colocalization of CYP1A1 with cytokeratin 8, a marker of alveolar type II cells, the proximal alveolar region was the site of both increased alveolar type II cells and decreased proportional CYP1A1 expression in alveolar type II cells. Our findings suggest that in PAH-exposed rat lung, silica is a negative modifier of CYP1A1 induction and CYP2B1 activity. PMID:18338287

  13. Cytochrome P4501A induction in avian hepatocyte cultures exposed to polychlorinated biphenyls: Comparisons with AHR1-mediated reporter gene activity and in ovo toxicity

    SciTech Connect

    Manning, Gillian E.; Mundy, Lukas J.; Crump, Doug; Jones, Stephanie P.; Chiu, Suzanne; Klein, Jeff; Konstantinov, Alex; Potter, Dave; Kennedy, Sean W.

    2013-01-01

    Avian-specific toxic equivalency factors (TEFs) were developed by the World Health Organization to simplify environmental risk assessments of dioxin-like compounds (DLCs), but TEFs do not account for differences in the toxic and biochemical potencies of DLCs among species of birds. Such variability may be due to differences in species sensitivity to individual DLCs. The sensitivity of avian species to DLCs was recently associated with the identity of amino acids 324 and 380 in the aryl hydrocarbon receptor 1 (AHR1) ligand binding domain. A luciferase reporter gene (LRG) assay, measuring AHR1-mediated induction of a cytochrome P450 1A5 (CYP1A5) reporter gene, in combination with a species' AHR1 ligand binding domain sequence, were also shown to predict avian species sensitivity to polychlorinated biphenyls (PCBs) and PCB relative potency in a given species. The goals of the present study were to (1) characterize the concentration-dependent effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin and PCBs 126, 77, 105 and 118 on induction of ethoxyresorufin O-deethylase (EROD) activity and CYP1A4/5 mRNA in chicken, ring-necked pheasant and Japanese quail embryo hepatocytes and (2) compare these in vitro results to those previously generated by the LRG assay and in ovo toxicity studies. EROD activity and CYP1A4/5 mRNA expression data support and complement the findings of the LRG assay. CYP1A enzyme activity and mRNA expression were significantly correlated both with luciferase activity and in ovo toxicity induced by PCBs. Relative potency values were generally similar between the LRG and EROD assays and indicate that the relative potency of some PCBs may differ among species. -- Highlights: ► The chicken isn't the most sensitive species to CYP1A induction by PCB 105 and 118. ► The relative potency of PCBs differs between avian species. ► EROD activity was correlated with luciferase activity from the LRG assay. ► EROD activity was a better predictor of toxicity than CYP

  14. Rapid assessment of induced cytochrome P4501A protein and catalytic activity in fish hepatoma cells grown in multiwell plates: Response to TCDD, TCDF, and two planar PCBs

    SciTech Connect

    Hahn, M.E.; Woodward, B.L.; Stegeman, J.J.; Kennedy, S.W.

    1996-04-01

    Induction of cytochrome P450 1A1 (CYP1A1) in cultured cells can be used to determine taxon-specific relative potencies of Ah receptor agonists. This report describes optimized methods for growth and treatment of PLHC-1 fish hepatoma cells in multiwell plates, in situ analysis of ethoxyresorufin O-deethylase (EROD) activity, and measurement of CYP1A protein by immunoblotting of cell lysates. EROD activity was undetectable (< 1 pmol min{sup {minus}1} mg{sup {minus}1}) in untreated or dimethyl sulfoxide-treated cells, but was highly induced (up to 150 pmol min{sup {minus}1} mg{sup {minus}1}) in cells exposed to Ah receptor agonists such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 2,3,7,8-tetrachlorodibenzofuran (TCDF), or plant chlorobiphenyls (CB). Addition of exogenous NADPH was not required for measurement of EROD activity in PLHC-1 cells. As inducers of EROD activity, TCDD, TCDF, 3,3{prime},4,4{prime},5-pentachlorobiphenyl (CB-126), and 3,3{prime},4,4{prime}-tetrachlorobiphenyl (CB-77) differed both in potency and in apparent efficacy (maximal level of induced activity). In each case, EROD induction was biphasic, with stronger induction at lower concentrations and an attenuated response at higher concentrations. In contrast, the content of immunodetectable CYP1A protein increased monotonically with dose of CB, and the maximum level achieved was similar for all inducers. The discrepancy in results obtained for EROD activity versus CYP1A protein may result from inhibition or inactivation of catalytic function at high concentrations of inducer. By reducing peak EROD values, this inhibition leads to lower apparent EC50 values and thus the overestimation of relative potencies or toxic equivalency factors (TEFs) for many inducers. These studies demonstrate the necessity of measuring both EROD activity and immunodetectable CYP1A protein for the accurate assessment of CYP1A induction and relative potencies in cultured cells.

  15. Immunoquantitation and microsomal monooxygenase activities of hepatic cytochromes P4501A and P4502B and chlorinated hydrocarbon contaminant levels in polar bear (Ursus maritimus).

    PubMed

    Letcher, R J; Norstrom, R J; Lin, S; Ramsay, M A; Bandiera, S M

    1996-04-01

    Contamination of the Arctic ecosystem by anthropogenic compounds has resulted in exposure of polar bear (Ursus maritimus) to lipophilic chlorinated hydrocarbon contaminants (CHCs) accumulated through the marine food web. Liver samples were collected from 16 adult male polar bears in the Canadian arctic and subjected to chemical analysis for CHCs and metabolites, determination of alkoxyresorufin O-dealkylase activities, and immunoquantitation of cytochrome P450 (CYP) protein levels. We report on the relationships between the hepatic microsomal levels of immunoreactive CYP1A and CYP2B isozymes, catalytic activities, and hepatic CHC and metabolite concentrations in polar bear. We specifically explored the influence of several CHCs on the induction of hepatic CYP in polar bear and the potential use of immunoassay quantitation as a bioindicator of CHC exposure. Polychlorinated biphenyls (PCB) classed as CYP1A and mixed CYP1A/CYP2B inducers accounted for about 25% of the total PCB residues present (18,680 +/- 5053 ng/g lipid). CYP1A protein content correlated strongly with hepatic levels of PCBs, PCDDs (0.032 +/- 0.018 ng/g lipid, and PCDFs (0.011 +/- 0.007 ng/g lipid) and their corresponding toxic equivalents (TEQ, 0.377 +/- 0.182 ng/g lipid). Mono-ortho-CB-156, CB-157, and CB-105 were the predominant TEQ contributors. Correlations between CYP2B protein content and CHC residue levels in polar bear liver suggested that ortho-chlorine-substituted PCBs and chlordanes were the major contributors to CYP2B induction. CYP1A and CYP2B contents were therefore good indicators of CHC exposure in polar bear liver. Ethoxyresorufin, pentoxyresorufin, and benzyloxyresorufin O-dealkylase activities increased with increasing CYP1A protein content up to protein levels of approximately 5 pmol/mg, suggesting that all three activities were primarily CYP1A-mediated. These results were substantiated by antibody inhibition experiments. In summary, immunoquantitated CYP1A and CYP2B isozymes are

  16. Highly purified hexachlorobenzene induces cytochrome P4501A in primary cultures of chicken embryo hepatocytes

    SciTech Connect

    Mundy, Lukas J.; Jones, Stephanie P.; Crump, Doug; Herve, Jessica C.; Konstantinov, Alex; Utley, Fiona; Potter, David; Kennedy, Sean W.

    2010-11-01

    Some uncertainty exists regarding the purity of hexachlorobenzene (HCB) used in past toxicity studies. It has been suggested that reported toxic and biochemical effects initially attributed to HCB exposure may have actually been elicited by contamination of HCB by polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). Herein, primary cultures of chicken embryo hepatocytes (CEH) were used to compare the potencies of two lots of reagent-grade hexachlorobenzene (HCB-old [HCB-O] and HCB-new [HCB-N]), highly purified HCB (HCB-P) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) as inducers of ethoxyresorufin O-deethylase (EROD) activity, cytochrome P4501A4 (CYP1A4) messenger ribonucleic acid (mRNA) and CYP1A5 mRNA. The study also compared the EROD- and CYP1A4/5 mRNA-inducing potencies of HCB to the potencies of two mono-ortho substituted polychlorinated biphenyls (PCBs), 2,3,3',4,4'-pentachlorobiphenyl (PCB 105) and 2,3'4,4',5-pentachlorobiphenyl (PCB 118). HCB-O, HCB-N and HCB-P all induced EROD activity and up-regulated CYP1A4 and CYP1A5 mRNAs. Induction was not caused by contamination of HCB with PCDDs or PCDFs. Based upon a comparison of the EC{sub 50} and EC{sub threshold} values for EROD and CYP1A4/5 mRNA concentration-response curves, the potency of HCB relative to the potency of TCDD was 0.0001, and was similar to that of PCB 105 and PCB 118. The maximal EROD activity and CYP1A4/5 mRNA expression differed greatly between HCB and TCDD, and may contribute to an overestimation of the ReP value calculated for highly purified HCB.

  17. HALOGENATED AROMATIC HYDROCARBON-MEDIATED PORPHYRIN ACCUMULATION AND INDUCTION OF CYTOCHROME P4501A IN CHICKEN EMBRYO HEPATOCYTES. (R823889)

    EPA Science Inventory

    Concentration-dependent induction of cytochrome P4501A (CYP1A) and intracellular porphyrin accumulation were observed following treatment of chicken embryo hepatocyte (CEH) cultures with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 2,3,7,8-tetrachlorodibenzofuran (TCDF), 3,3',4,4'...

  18. Applications of stable V79-derived cell lines expressing rat cytochromes P4501A1, 1A2, and 2B1.

    PubMed

    Doehmer, J; Wölfel, C; Dogra, S; Doehmer, C; Seidel, A; Platt, K L; Oesch, F; Glatt, H R

    1992-01-01

    1. Chinese hamster V79-derived cell lines, stably expressing cytochromes P4501A1, 1A2, and 2B1 activities, were constructed by genetic engineering in continuation of our work to establish a battery of V79 derived cell lines designed to study the metabolism of xenobiotics. 2. Cell lines XEM1 and XEM2, expressing cytochrome P4501A1, were capable of the O-dealkylation of 7-ethoxycoumarin and the hydroxylation of benzo[a]pyrene. 3. Cell lines XEMd.MZ and XEMd.NH, expressing P4501A2, were shown to hydroxylate 17 beta-estradiol and 2-aminofluorene. 4. Cell line SD1, expressing cytochrome P4502B1, was able to hydroxylate testosterone stereo- and regio-specifically at the 16 alpha and 16 beta positions. 5. Cell lines were validated in mutagenicity, cytotoxicity, and metabolism studies employing benzo[a]pyrene, trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene, cyclophosphamide, ifosfamide, and picene. 6. Construction of metabolically-competent V79-derived cell lines be recombinant DNA technology will be a fundamental improvement for the evaluation of the cytotoxic, genotoxic and pharmacological properties of a chemical. PMID:1441600

  19. Regulation of cytochrome P4501A1 expression by hyperoxia in human lung cell lines: Implications for hyperoxic lung injury

    SciTech Connect

    Bhakta, Kushal Y. Jiang, Weiwu; Couroucli, Xanthi I.; Fazili, Inayat S.; Muthiah, Kathirvel; Moorthy, Bhagavatula

    2008-12-01

    Supplemental oxygen, used to treat pulmonary insufficiency in newborns, contributes to the development of bronchopulmonary dysplasia (BPD). Cytochrome P4501A enzymes are induced by hyperoxia in animal models, but their role in human systems is unknown. Here we investigated the molecular mechanisms of induction of CYP1A1 by hyperoxia in human lung cell lines. Three human lung cell lines were exposed to hyperoxia (95% O2) for 0-72 h, and CYP1A1 activities, apoprotein contents, and mRNA levels were determined. Hyperoxia significantly induced CYP1A1 activity and protein contents (2-4 fold), and mRNA levels (30-40 fold) over control in each cell line. Transfection of a CYP1A1 promoter/luciferase reporter construct, followed by hyperoxia (4-72 h), showed marked (2-6 fold) induction of luciferase expression. EMSA and siRNA experiments strongly suggest that the Ah receptor (AHR) is involved in the hyperoxic induction of CYP1A1. MTT reduction assays showed attenuation of cell injury with the CYP1A1 inducer beta-naphthoflavone (BNF). Our results strongly suggest that hyperoxia transcriptionally activates CYP1A1 expression in human lung cell lines by AHR-dependent mechanisms, and that CYP1A1 induction is associated with decreased toxicity. This novel finding of induction of CYP1A1 in the absence of exogenous AHR ligands could lead to novel interventions in the treatment of BPD.

  20. Cytochrome P4501A indices as biomarkers of contaminant exposure: A field study with plaice and flounder

    SciTech Connect

    Eggens, M.; Opperhuizen, A.

    1995-12-31

    Samples of two flatfish species, flounder (Platichthys flesus) and plaice (Pleurnectus platessa), were collected during August/September 1991 and May/June 1992 in the southern North Sea. The induction of hepatic cytochrome P4501A1 (CYP1A) in both species was examined, when exposed to environmental PCBs and PAHs. CYP1A was measured by a semi-quantitative ELISA technique and by the activity of its catalyst, 7-ethoxyresorufin O-deethylase (EROD). In plaice, both hepatic CYP1 protein level and EROD activity were significantly higher at offshore sampling locations than at coastal locations, by a factor of 1.5 to 2. In flounder, which were only collected at coastal locations, the range of values of EROD activity was much greater than in plaice, but the range in CYP1A protein content was comparable in both species. multiple regression analysis of data from plaice and flounder did not show any significant correlation between CYP1A indices, water temperature and contaminant concentrations in fish tissues. CYP1A indices also appeared to be unrelated to food type, as determined by visual screening of fish intestines. It is concluded that the induction of CYP1A in plaice and flounder from the southern North Sea is not related in a simple manner to exposure to PCBs and PAHs. From the point of view-of use as a biomarker, the measurement of CYP1A protein level and EROD activity in plaice and flounder from the open North Sea cannot be applied straightforwardly for monitoring exposure to PCBs and/or PAHs.

  1. A field evaluation of cytochrome P4501A as a biomarker of contaminant exposure in three species of flatfish

    SciTech Connect

    Collier, T.K.; Anulacion, B.F.; Stein, J.E.; Varanasi, U. ); Goksoeyr, A. . Lab. of Marine Molecular Biology)

    1995-01-01

    A study was conducted over the course of a year to determine the induction of hepatic cytochrome P4501A (CYP1A) in three species of benthic fish collected from a contaminated site compared to fish sampled from a less-contaminated site. Juvenile fish were used to minimize effects of reproductive status and migration. CYP1A was determined by two catalytic assays [aryl hydrocarbon hydroxylase (AHH) and ethoxyresorufin O-deethylase (EROD)] and by an immunoassay (ELISA) utilizing polyclonal antibodies raised against purified CYP1A from cod. AHH activities were measured by a standard method (AHH[sub std]) and by two variations of the standard method. All three primary CYP1A measures (AHH[sub std], EROD, and ELISA) showed consistent between-site differences, indicating that induction of CYP1A can be a reliable biomarker of contaminant exposure in fish if appropriate biological variables are controlled for in field studies. Multiple ANOVA demonstrated that the AHH[sub std] and ELISA data showed less variability due to species or temporal differences, and less unexplained variability, compared to the data from the EROD assay or either variation of the AHH assay. For all measures, variability associated with site differences far outweighed species or temporal variability. Immunoassay, while less sensitive than the AHH[sub std] assay, is nonetheless recommended to be used in conjunction with catalytic assays because of the potential for samples to lose catalytic activity if not handled properly. The current results suggest that the lower noncontaminant-related variability of AHH[sub std] makes this CYP1A measure potentially more useful for monitoring programs in which analysis of trends is a primary goal.

  2. Cytochrome P4501A induction by 2,3,7,8-tetrachlorodibenzo-p-dioxin and two chlorinated dibenzofurans in primary hepatocyte cultures of three avian species.

    PubMed

    Hervé, Jessica C; Crump, Doug; Jones, Stephanie P; Mundy, Lukas J; Giesy, John P; Zwiernik, Matthew J; Bursian, Steven J; Jones, Paul D; Wiseman, Steve B; Wan, Yi; Kennedy, Sean W

    2010-02-01

    Relative potencies of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 2,3,4,7,8-pentachlorodibenzofuran (PeCDF), and 2,3,7,8-tetrachlorodibenzofuran (TCDF) were determined in vitro in primary hepatocyte cultures of chicken (Gallus gallus), ring-necked pheasant (Phasianus colchicus), and Japanese quail (Coturnix japonica) embryos. Concentration-dependent effects on ethoxyresorufin O-deethylase (EROD) activity and expression of cytochrome P4501A4 and cytochrome P4501A5 (CYP1A4 and CYP1A5) messenger RNA (mRNA) were determined in hepatocytes exposed to serial dilutions of TCDD, PeCDF, or TCDF for 24 h. In chicken hepatocytes, the three compounds were equipotent inducers of EROD activity and CYP1A4/CYP1A5 mRNA expression. However, in ring-necked pheasant and Japanese quail hepatocytes, PeCDF was more potent than TCDD (3- to 5-fold in ring-necked pheasant and 13- to 30-fold in Japanese quail). Among species, the rank order of sensitivity (most to least) to EROD and CYP1A4/CYP1A5 mRNA induction for TCDD and TCDF was chicken > ring-necked pheasant > Japanese quail. In contrast, the three species were approximately equisensitive to EROD and CYP1A4/CYP1A5 mRNA induction by PeCDF. It has generally been assumed that TCDD is the most potent "dioxin-like compound" (DLC) and that the chicken is the most sensitive avian species to CYP1A induction by all DLCs. This study indicates that PeCDF is more potent than TCDD in ring-necked pheasant and Japanese quail hepatocytes and that ring-necked pheasant, Japanese quail, and chicken hepatocytes are equally sensitive to CYP1A induction by PeCDF. PMID:19884122

  3. Cytochrome P4501A2 phenotype and bladder cancer risk: The Shanghai bladder cancer study.

    PubMed

    Tao, Li; Xiang, Yong-Bing; Chan, Kenneth K; Wang, Renwei; Gao, Yu-Tang; Yu, Mimi C; Yuan, Jian-Min

    2012-03-01

    Cytochrome P450 1A2 (CYP1A2) is hypothesized to catalyze the activation of arylamines, known human bladder carcinogens present in cigarette smoke. The relationship between CYP1A2 phenotype and bladder cancer risk was examined in a case-control study involving 519 patients and 514 controls in Shanghai, China. Both CYP1A2 and N-acetyltransferase 2 (NAT2) phenotypic status were determined by a caffeine-based urinary assay. Our study showed that among smokers at urine collection, patients with bladder cancer had statistically significantly higher CYP1A2 phenotype scores compared to control subjects (p = 0.001). The odds ratios (95% confidence intervals) of bladder cancer for the second, third and fourth quartiles of the CYP1A2 score were 1.31 (0.53-3.28), 2.04 (0.90-4.60) and 2.82 (1.32-6.05), respectively, relative to the lowest quartile (p for trend = 0.003). NAT2 slow acetylation phenotype was associated with a statistically significant 40% increased risk of bladder cancer, and the relationship was independent of subjects' smoking status. Subjects possessing the NAT2 slow acetylation phenotype and the highest tertile of CYP1A2 scores showed the highest risk for bladder cancer. Their odds ratios (95% confidence intervals) was 2.13 (1.24-3.68) relative to their counterparts possessing the NAT2 rapid acetylation phenotype and the lowest tertile of CYP1A2 scores. The findings of our study demonstrate that CYP1A2 phenotype may be an important contributing factor in the development of smoking-related bladder cancer in humans. PMID:21480221

  4. Cytochrome P4501A induction and DNA adduct formation in glaucous gulls (Larus hyperboreus), fed with environmentally contaminated gull eggs.

    PubMed

    Østby, Lene; Gabrielsen, Geir Wing; Krøkje, Ase

    2005-11-01

    This study indicates that complex mixtures of pollutants found in the Arctic marine environment have genotoxic effects in glaucous gulls (Larus hyperboreus). DNA adducts were quantified, by the (32)P-postlabeling technique, in liver samples from gulls fed with hen eggs (controls) and from gulls fed with environmentally contaminated gull eggs (exposed). All birds were grown and fed under laboratory conditions. Hepatic homologues to mammalian cytochrome P4501A (CYP1A) proteins were also determined by Western blotting. DNA adducts were detected in all but one liver sample, but the exposed birds had a significantly increased level of DNA adducts relative to that of the controls. There was no clear significant correlation between the DNA adduct level and the level of organochlorine compounds (OCs) in blood. The level of CYP1A protein was significantly higher in the liver of exposed male gulls than in the liver of control males and positively correlated, with significance, to the level of OC compounds measured in blood. There was no significant correlation between the level of DNA adducts and the CYP1A protein content. PMID:16216630

  5. A noninvasive test of exposition to toxicants: quantitative analysis of cytochrome P4501A expression in fish scales.

    PubMed

    Quirós, Laia; Raldúa, Demetrio; Navarro, Anna; Casado, Marta; Barceló, Damià; Piña, Benjamin

    2007-10-01

    Elevated expression of cytochrome P4501A (CYP1A) is an established biomarker for exposition to a wide range of toxicants, particularly for dioxin and structurally similar compounds. Expression of CYP1A usually is analyzed in internal organs, which involves dissection of the specimen. To avoid unnecessary animal killing, we present here an alternative method based on the monitoring of CYP1A expression in fish scales. Using beta-naphthoflavone (BNF; 50 mg/kg body wt, intraperitoneal injection) as inducer in goldfish (Carassius auratus), we monitored levels of CYP1A mRNA both in scales and liver of treated and control specimens. Treatment with BNF resulted in a similar induction of CYP1A gene in both tissues, although scales responded faster (at 8 h after treatment) than liver (between 24 and 48 h). The scale-based test has the unique advantage of allowing sequential testing in the same specimen, which facilitates analysis of the time course of CYP1A induction and allows the study of individual variability. The method implies minimal suffering of the animals, because it only requires removal of a moderate (n = 1-3) number of scales for each time point. This nondestructive, fast, and relatively inexpensive test for toxic exposure therefore is suitable for environmental monitoring and food safety control programs in which specimen preservation is required. PMID:17867895

  6. Beluga whale liver microsomal cytochrome P4501A (CYP1A) enzymes

    SciTech Connect

    Bullock, P.L.; Addison, R.; Lockhart, L.; Metner, D.

    1995-12-31

    Beluga whale (Delphinapterus leucas) liver from the Canadian arctic was analyzed for the presence of CYP1A enzymes, as part of current studies on biomarkers for environmental contamination. CYP1A1-associated 7-ethoxyresorufin O-dealkylase activity (EROD) varied 13 fold among sixteen male whale liver microsomal samples and 31 fold among five females. Similarly, the rate of 7-methoxyresorufin O-dealkylation (MROD) varied 7 fold and 3 fold in microsomal samples from males and females, respectively. Furthermore, 7-pentoxyresorufin O-dealkylase activity (PROD) varied 10 fold in both sexes. None of these enzyme activities were sexually differentiated, and EROD and MROD were inhibited by {alpha}-naphthoflavone. There was very good correlation between EROD and MROD (r{sup 2} = .894), EROD and PROD (r{sup 2} = .909), but MROD and PROD were not as well correlated (r{sup 2} = 785). On Western immunoblots, a single band was recognized in Beluga whale liver microsomes by a polygonal antibody raised against an oligopeptide related to trout CYP1A1. This antibody also recognized purified rat CYP1A1 (56 kDa) and stained only one band (56 kDa) in liver microsomes isolated from male rats treated with {beta}-naphthoflavone. The interindividual variation in EROD paralleled differences in the amount of whale liver microsomal protein that cross-reacted with the anti-peptide antibody. The results suggest that Beluga whale liver contains at least one CYP1A enzyme which catalyzes the 0-dealkylation of 7-ethoxy, 7-methoxy and 7-pentoxyresorufin and has a molecular weight less than that of rat CYP1A1, but similar to rat CYP1A2 (52 kDa).

  7. Cytochrome P4501A biomarker indication of oil exposure in harlequin ducks up to 20 years after the Exxon Valdez oil spill.

    PubMed

    Esler, Daniel; Trust, Kimberly A; Ballachey, Brenda E; Iverson, Samuel A; Lewis, Tyler L; Rizzolo, Daniel J; Mulcahy, Daniel M; Miles, A Keith; Woodin, Bruce R; Stegeman, John J; Henderson, John D; Wilson, Barry W

    2010-05-01

    Hydrocarbon-inducible cytochrome P4501A (CYP1A) expression was measured, as ethoxyresorufin-O-deethylase (EROD) activity, in livers of wintering harlequin ducks (Histrionicus histrionicus) captured in areas of Prince William Sound, Alaska, USA, oiled by the 1989 Exxon Valdez spill and in birds from nearby unoiled areas, during 2005 to 2009 (up to 20 years following the spill). The present work repeated studies conducted in 1998 that demonstrated that in harlequin ducks using areas that received Exxon Valdez oil, EROD activity was elevated nearly a decade after the spill. The present findings strongly supported the conclusion that average levels of hepatic EROD activity were higher in ducks from oiled areas than those from unoiled areas during 2005 to 2009. This result was consistent across four sampling periods; furthermore, results generated from two independent laboratories using paired liver samples from one of the sampling periods were similar. The EROD activity did not vary in relation to age, sex, or body mass of individuals, nor did it vary strongly by season in birds collected early and late in the winter of 2006 to 2007, indicating that these factors did not confound inferences about observed differences between oiled and unoiled areas. We interpret these results to indicate that harlequin ducks continued to be exposed to residual Exxon Valdez oil up to 20 years after the original spill. This adds to a growing body of literature suggesting that oil spills have the potential to affect wildlife for much longer time frames than previously assumed. PMID:20821550

  8. Differential effects of metal ions on TCDD-induced cytotoxicity and cytochrome P4501A1 gene expression in a zebrafish liver (ZFL) cell-line.

    PubMed

    Chen, Ying Ying; Chan, King Ming

    2016-02-01

    Trace metal ions and trace organic compounds are common co-contaminants in the environment that pose risks to human health. We evaluated the effects of four metal ions (As(3+), Cu(2+), Hg(2+), and Zn(2+)) on 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced cytotoxicity and the expression of the cytochrome P4501A1 gene (cyp1a1) in the zebrafish liver (ZFL) cell line. A metal accumulation study showed that Cu and Zn did not accumulate in ZFL cells. However, As and Hg did accumulate, which resulted in the inhibition of TCDD-mediated induction of cyp1a1 mRNA and protein expression, and 7-ethoxyresorufin O-deethylase activity. A luciferase assay showed that both As(3+) and Hg(2+) inhibited the TCDD-induced activity of gene constructs containing either synthetic 3XRE or a distal cyp1a1 promoter region, implying that the decreased levels of TCDD-induced cyp1a1 were due to transcriptional effects. A proteomic study showed that the toxic effects of As(3+) might be due to changes in cellular metabolic processes, the cellular stimulation response and the cellular redox state in ZFL cells. PMID:26612010

  9. Sensitivity of bald eagle (Haliaeetus leucocephalus) hepatocyte cultures to induction of cytochrome P4501A by 2,3,7,8-tetrachlorodibenzo-p-dioxin.

    PubMed

    Kennedy, Sean W; Jones, Stephanie P; Elliott, John E

    2003-01-01

    Graded doses of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) were added to primary hepatocyte cultures of bald eagle (Haliaeetus leucocephalus) embryos to determine their sensitivity to induction of cytochrome P4501A (CYP1A) and porphyrin accumulation. No porphyrin accumulation was observed, but both CYP1A catalytic activity (using the ethoxyresorufin-O-deethylase (EROD) assay) and immunodetectable CYP1A were induced by relatively high concentrations of TCDD. Bald eagle hepatocytes were less sensitive to CYP1A induction than hepatocytes from any other avian species that we have studied to date. These in vitro results are in general agreement with recent assessments of field data, which indicate that bald eagles are relatively insensitive to some of the effects of TCDD and related compounds. Preparation of bald eagle hepatocytes was challenging because existing methods did not yield monolayers of cells. Here we describe details of a new method that was successful for bald eagle hepatocytes. This new method is used routinely in our laboratory to prepare hepatocyte cultures from birds for examination of various biochemical responses to environmental contaminants. PMID:12739865

  10. Hepatic cytochrome P4501A induction in dab (Limanda limanda) after oral dosing with the polychlorinated biphenyl mixture Clophen A40

    SciTech Connect

    Sleiderink, H.M.; Everaarts, J.M.; Boon, J.P.; Goksoeyr, A.

    1995-04-01

    The flatfish dab (Limanda limanda) serves as an indicator species in pollution monitoring programs in the North Sea. The present study investigated the induction response of the monooxygenase system and haematological changes in female dab after multiple administrations of a technical mixture of polychlorinated biphenyls (PCBs). Mature female dab were dosed with 1 mg of the PCB mixture Clophen A40 (Clo A40) in sunflower oil every 6 weeks, with a maximum of three doses per fish. In all PCB-administered groups, levels of cytochrome P4501A (CYPIA) protein, measured with a semi-quantitative ELISA method, and 7-ethoxyresorufin O-deethylase (EROD) activity showed a three- to ninefold induction 14 d after dosing compared with control groups, smaller but also significant increases were observed in total cytochrome P450 ({Sigma} P450) levels. Although the PCB concentrations and the corresponding toxic equivalent (TEQ) value in muscle tissue still increased after administration of the second and third dose of Clo A40, maximum responses of the EROD activity were already reached after the first dose at a TEQ value for chlorinated biphenyls (CB-TEQ) of 2 ng/g lipid. The PCB patterns of liver and muscle tissue of female dab from the central North Sea were found to be virtually identical. Hence, the use of PCB concentrations in muscle as a qualitative model for changes in the liver appears legitimate. Haemoglobin concentrations were elevated after the third dose of Clo A40, whereas haematocrit values and the mean corpuscular haemoglobin concentration (MCHC) between treated and control groups did not differ.

  11. Developmental toxicity of 4-ring polycyclic aromatic hydrocarbons in zebrafish is differentially dependent on AH receptor isoforms and hepatic cytochrome P4501A metabolism

    SciTech Connect

    Incardona, John P. . E-mail: john.incardona@noaa.gov; Day, Heather L.; Collier, Tracy K.; Scholz, Nathaniel L.

    2006-12-15

    Polycyclic aromatic hydrocarbons (PAHs) derived from fossil fuels are ubiquitous contaminants and occur in aquatic habitats as highly variable and complex mixtures of compounds containing 2 to 6 rings. For aquatic species, PAHs are generally accepted as acting through either of two modes of action: (1) 'dioxin-like' toxicity mediated by activation of the aryl hydrocarbon receptor (AHR), which controls a battery of genes involved in PAH metabolism, such as cytochrome P4501A (CYP1A) and (2) 'nonpolar narcosis', in which tissue uptake is dependent solely on hydrophobicity and toxicity is mediated through non-specific partitioning into lipid bilayers. As part of a systematic analysis of mechanisms of PAH developmental toxicity in zebrafish, we show here that three tetracyclic PAHs (pyrene, chrysene, and benz[a]anthracene) activate the AHR pathway tissue-specifically to induce distinct patterns of CYP1A expression. Using morpholino knockdown of ahr1a, ahr2, and cyp1a, we show that distinct embryolarval syndromes induced by exposure to two of these compounds are differentially dependent on tissue-specific activation of AHR isoforms or metabolism by CYP1A. Exposure of embryos with and without circulation (silent heart morphants) resulted in dramatically different patterns of CYP1A induction, with circulation required to deliver some compounds to internal tissues. Therefore, biological effects of PAHs cannot be predicted simply by quantitative measures of AHR activity or a compound's hydrophobicity. These results indicate that current models of PAH toxicity in fish are greatly oversimplified and that individual PAHs are pharmacologically active compounds with distinct and specific cellular targets.

  12. Cytochrome P4501A biomarker indication of oil exposure in harlequin ducks up to 20 years after the Exxon Valdez oil spill

    USGS Publications Warehouse

    Esler, Daniel; Trust, Kimberly A.; Ballachey, Brenda E.; Iverson, Samuel A.; Lewis, Tyler L.; Rizzolo, Daniel; Mulcahy, Daniel M.; Miles, A. Keith; Woodin, Bruce R.; Stegeman, John J.; Henderson, John D.; Wilson, Barry W.

    2010-01-01

    Hydrocarbon-inducible cytochrome P4501A (CYP1A) expression was measured, as ethoxyresorufin-O-deethylase (EROD) activity, in livers of wintering harlequin ducks (Histrionicus histrionicus) captured in areas of Prince William Sound, Alaska, USA, oiled by the 1989 Exxon Valdez spill and in birds from nearby unoiled areas, during 2005 to 2009 (up to 20 years following the spill). The present work repeated studies conducted in 1998 that demonstrated that in harlequin ducks using areas that received Exxon Valdez oil, EROD activity was elevated nearly a decade after the spill. The present findings strongly supported the conclusion that average levels of hepatic EROD activity were higher in ducks from oiled areas than those from unoiled areas during 2005 to 2009. This result was consistent across four sampling periods; furthermore, results generated from two independent laboratories using paired liver samples from one of the sampling periods were similar. The EROD activity did not vary in relation to age, sex, or body mass of individuals, nor did it vary strongly by season in birds collected early and late in the winter of 2006 to 2007, indicating that these factors did not confound inferences about observed differences between oiled and unoiled areas. We interpret these results to indicate that harlequin ducks continued to be exposed to residual Exxon Valdez oil up to 20 years after the original spill. This adds to a growing body of literature suggesting that oil spills have the potential to affect wildlife for much longer time frames than previously assumed.

  13. Induction of cytochrome P4501A by highly purified hexachlorobenzene in primary cultures of ring-necked pheasant and Japanese quail embryo hepatocytes.

    PubMed

    Mundy, Lukas J; Crump, Doug; Jones, Stephanie P; Konstantinov, Alex; Utley, Fiona; Potter, David; Kennedy, Sean W

    2012-04-01

    Primary cultures of ring-necked pheasant (Phasianus colchicus) and Japanese quail (Coturnix japonica) embryo hepatocytes were used to compare the potencies of highly purified hexachlorobenzne (HCB-P), reagent-grade HCB (RG-HCB) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) as inducers of ethoxyresorufin O-deethylase (EROD) activity, cytochrome P4501A (CYP1A4) messenger ribonucleic acid (mRNA) and CYP1A5 mRNA. HCB-P, RG-HCB and TCDD all induced EROD activity and up-regulated CYP1A4 and CYP1A5 mRNA. Induction was not caused by contamination of HCB with polychlorinated dibenzo-p-dioxins, dibenzofurans or biphenyls. Based upon a comparison of the EC(50) and EC(threshold) values for EROD and CYP1A4/5 concentration-response curves, the potency of HCB relative to TCDD was 0.001 in ring-necked pheasant and 0.01 in Japanese quail embryo hepatocytes. Differences in species sensitivity to HCB were found to be mainly dictated by differences in species sensitivity to TCDD rather than differences in the absolute potency of HCB. Consequently, ring-necked pheasant and Japanese quail embryo hepatocytes were found to be equally sensitive to HCB exposure. Species sensitivity comparisons were also made with chicken (Gallus gallus domesticus) and revealed that chicken embryo hepatocytes were less responsive to EROD induction (lower maximal response) by HCB compared to the embryo hepatocytes of pheasant and quail. PMID:22227438

  14. Surface marker-defined head kidney granulocytes and B lymphocytes of rainbow trout express benzo[a]pyrene-inducible cytochrome P4501A protein.

    PubMed

    Nakayama, Ayako; Riesen, Ivan; Köllner, Bernd; Eppler, Elisabeth; Segner, Helmut

    2008-05-01

    Polycyclic aromatic hydrocarbons (PAHs) such as benzo[a]pyrene (BaP) are immunotoxic to fish. Metabolism of PAHs in immune cells has been implicated in PAH immunotoxicity in mammals, but for fish the presence of metabolic enzymes in immune cells is less clear. The objective of this study was to examine localization and induction of the BaP-metabolizing biotransformation enzyme, cytochrome P4501A (CYP1A), in head kidney immune cells of rainbow trout (Oncorhynchus mykiss). In the first step, we measured induction of CYP1A-dependent 7-ethoxyresorufin-O-deethylase (EROD) activity and CYP1A protein in head kidney of rainbow trout treated with a single intraperitoneal (ip) injection of 25 mg BaP/kg body weight. From days 3 to 10 postinjection, the BaP treatment led to a significant elevation of EROD and CYP1A protein in head kidney and liver, with CYP1A expression levels in the head kidney being much lower than in the liver. Next, we examined the cellular localization of CYP1A protein in the head kidney cell types: vascular endothelial, endocrine and lymphoid cells. CYP1A immunoreactivity was detectable only in BaP-treated trout, where it was localized in endothelial and lymphoid cells. Finally, we aimed to clarify which of the hematopoietic cell types possess CYP1A protein. Using double immunostaining for CYP1A and surface markers of rainbow trout immune cells, we identified B lymphocytes and granulocytes expressing inducible CYP1A protein and being the likely sites of BaP metabolism in the head kidney. PMID:18281257

  15. Prenatal administration of the cytochrome P4501A inducer, {Beta}-naphthoflavone (BNF), attenuates hyperoxic lung injury in newborn mice: Implications for bronchopulmonary dysplasia (BPD) in premature infants

    SciTech Connect

    Couroucli, Xanthi I.; Liang Yanhong Wei; Jiang Weiwu; Wang Lihua; Barrios, Roberto; Yang Peiying; Moorthy, Bhagavatula

    2011-10-15

    injury > Cytochrome P4501A enzymes play protective roles against lung injury

  16. Elevated blood pressure in cytochrome P4501A1 knockout mice is associated with reduced vasodilation to omega − 3 polyunsaturated fatty acids

    SciTech Connect

    Agbor, Larry N.; Walsh, Mary T.; Boberg, Jason R.; Walker, Mary K.

    2012-11-01

    In vitro cytochrome P4501A1 (CYP1A1) metabolizes omega − 3 polyunsaturated fatty acids (n − 3 PUFAs); eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), primarily to 17,18-epoxyeicosatetraenoic acid (17,18-EEQ) and 19,20-epoxydocosapentaenoic acid (19,20-EDP), respectively. These metabolites have been shown to mediate vasodilation via increases in nitric oxide (NO) and activation of potassium channels. We hypothesized that genetic deletion of CYP1A1 would reduce vasodilatory responses to n − 3 PUFAs, but not the metabolites, and increase blood pressure (BP) due to decreases in NO. We assessed BP by radiotelemetry in CYP1A1 wildtype (WT) and knockout (KO) mice ± NO synthase (NOS) inhibitor. We also assessed vasodilation to acetylcholine (ACh), EPA, DHA, 17,18-EEQ and 19,20-EDP in aorta and mesenteric arterioles. Further, we assessed vasodilation to an NO donor and to DHA ± inhibitors of potassium channels. CYP1A1 KO mice were hypertensive, compared to WT, (mean BP in mm Hg, WT 103 ± 1, KO 116 ± 1, n = 5/genotype, p < 0.05), and exhibited a reduced heart rate (beats per minute, WT 575 ± 5; KO 530 ± 7; p < 0.05). However, BP responses to NOS inhibition and vasorelaxation responses to ACh and an NO donor were normal in CYP1A1 KO mice, suggesting that NO bioavailability was not reduced. In contrast, CYP1A1 KO mice exhibited significantly attenuated vasorelaxation responses to EPA and DHA in both the aorta and mesenteric arterioles, but normal vasorelaxation responses to the CYP1A1 metabolites, 17,18-EEQ and 19,20-EDP, and normal responses to potassium channel inhibition. Taken together these data suggest that CYP1A1 metabolizes n − 3 PUFAs to vasodilators in vivo and the loss of these vasodilators may lead to increases in BP. -- Highlights: ► CYP1A1 KO mice are hypertensive. ► CYP1A1 KO mice exhibit reduced vasodilation responses to n-3 PUFAs. ► Constitutive CYP1A1 expression regulates blood pressure and vascular function.

  17. 2,3,7,8-Tetrachlorodibenzo-p-dioxin induces apoptotic cell death and cytochrome P4501A expression in developing Fundulus heteroclitus embryos

    USGS Publications Warehouse

    Toomey, B.H.; Bello, S.; Hahn, M.E.; Cantrell, S.; Wright, P.; Tillitt, D.E.; Di Giulio, R.T.

    2001-01-01

    Fundulus heteroclitus embryos were exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during early development using nanoinjection or water bath exposure. TCDD caused developmental abnormalities that included hemorrhaging, loss of vascular integrity, edema, stunted development and death. The LC50 and LD50 of TCDD for Fundulus embryos were ???19.7??9.5 pg TCDD/??l (water bath) and 0.25??0.09 ng TCDD/g embryo (nanoinjection). To identify a possible cause for these developmental abnormalities we analyzed the effects of TCDD on apoptotic cell death and cytochrome P4501A (CYP1A) expression in the embryos. TCDD exposure increased apoptotic cell death in several tissues including brain, eye, gill, kidney, tail, intestine, heart, and vascular tissue. CYP1A expression was also increased in the TCDD-exposed embryos predominantly in liver, kidney, gill, heart, intestine, and in vascular tissues throughout the embryo. There was co-occurrence of TCDD-induced apoptosis and CYP1A expression in some, but not all, cell types. In addition the dose response relationships for apoptosis and mortality were similar, while CYP1A expression appeared more sensitive to TCDD induction. Copyright ?? 2001 Elsevier Science B.V.

  18. 2,3,7,8-Tetrachlorodibenzo-p-dioxin increases reactive oxygen species production in human endothelial cells via induction of cytochrome P4501A1

    SciTech Connect

    Kopf, P.G.; Walker, M.K.

    2010-05-15

    Studies in our laboratory have demonstrated that subchronic 2,3,7,8,-tetrachlorodibenzo-p-dioxin (TCDD) exposure of adult mice results in hypertension, cardiac hypertrophy, and reduced nitric oxide (NO)-mediated vasodilation. Moreover, increased superoxide anion production was observed in cardiovascular organs of TCDD-exposed mice and this increase contributed to the reduced NO-mediated vasodilation. Since cytochrome P4501A1 (CYP1A1) can contribute to some TCDD-induced toxicity, we tested the hypothesis that TCDD increases reactive oxygen species (ROS) in endothelial cells by the induction of CYP1A1. A concentration-response to 24 h TCDD exposure (10 pM-10 nM) was performed in confluent primary human aortic endothelial cells (HAECs). Oxidant-sensitive fluorescent probes dihydroethidium (DHE) and 2',7'-dichlorofluorescin diacetate (DCFH-DA), were used to measure superoxide anion, and hydrogen peroxide and hydroxyl radical, respectively. NO was also measured using the fluorescent probe diaminofluorescein-2 diacetate (DAF-2DA). These assessments were conducted in HAECs transfected with siRNA targeting the aryl hydrocarbon receptor (AhR), CYP1A1, or CYP1B1. TCDD concentration-dependently increased CYP1A1 and CYP1B1 mRNA, protein, and enzyme activity. Moreover, 1 nM TCDD maximally increased DHE (Cont = 1.0 +- 0.3; TCDD = 5.1 +- 1.0; p = 0.002) and DCFH-DA (Cont = 1.0 +- 0.2; TCDD = 4.1 +- 0.5; p = 0.002) fluorescence and maximally decreased DAF-2DA fluorescence (Cont = 1.0 +- 0.4; TCDD = 0.68 +- 0.1). siRNA targeting AhR and CYP1A1 significantly decreased TCDD-induced DHE (siAhR: Cont = 1.0 +- 0.1; TCDD = 1.3 +- 0.2; p = 0.093) (siCYP1A1: Cont = 1.0 +- 0.1; TCDD = 1.1 +- 0.1; p = 0.454) and DCFH-DA (siAhR: Cont = 1.0 +- 0.2; TCDD = 1.3 +- 0.3; p = 0.370) (siCYP1A1: Cont = 1.0 +- 0.1; TCDD = 1.3 +- 0.2; p = 0.114) fluorescence and increased DAF-2DA fluorescence (siAhR: Cont = 1.00 +- 0.03; TCDD = 0.97 +- 0.03; p = 0.481) (siCYP1A1: Cont = 1.00 +- 0.03; TCDD = 0.92 +- 0

  19. Comparison of hepatic and extra hepatic induction of cytochrome P4501A by graded doses of aryl hydrocarbon receptor agonists in Atlantic tomcod from two populations.

    PubMed

    Yuan, Zhanpeng; Courtenay, Simon; Wirgin, Isaac

    2006-03-10

    Atlantic tomcod Microgadus tomcod from the Hudson River, New York, are exposed to high levels of polycyclic aromatic hydrocarbons (PAHs) and bioaccumulate mixtures of polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins and polychlorinatedfurans (PCDD/Fs). Previous studies demonstrated that hepatic cytochrome P4501A (CYP1A) mRNA was not inducible in tomcod from the Hudson River treated with single doses of PCB77 or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), but was inducible with PAHs. In this study, we sought to determine if CYP1A mRNA was inducible with higher doses of these and other halogenated aromatic hydrocarbons (HAHs) in Hudson River tomcod and if decreased sensitivity to gene inducibility occurs across all tissues. Tomcod from the Hudson River and the cleaner Miramichi River, New Brunswick, were treated individually with graded doses of TCDD and coplanar PCBs (PCB77, PCB81, PCB126, PCB169) and profiles of hepatic CYP1A mRNA expression were compared between the two populations. CYP1A mRNA inducibility was also compared in multiple tissues of tomcod from the two rivers that were treated with PCB77. Additionally, hepatic CYP1A mRNA was characterized in Miramichi River tomcod treated with pairs of PCB congeners that included aryl hydrocarbon receptor (AHR) agonists and antagonists. Hepatic CYP1A mRNA was significantly inducible by all agonists in tomcod from the Miramichi River and TCDD and two of four PCBs in tomcod from the Hudson River. CYP1A mRNA was also significantly inducible in four of five tissues of tomcod from the Miramichi River but only in liver of Hudson River tomcod. In summary, CYP1A mRNA inducibility was approximately two orders of magnitude less sensitive in tomcod from the Hudson River than in those from the Miramichi River. But when achieved, maximum levels of CYP1A expression were similar in tomcod from the two populations. Co-administration of PCB126 and PCB77 did not produce significantly greater CYP1A mRNA induction

  20. Disruption of Cytochrome P4501A2 in mice leads to increased susceptibility to hyperoxic lung injury

    PubMed Central

    Wang, Lihua; Lingappan, Krithika; Jiang, Weiwu; Couroucli, Xanthi I.; Welty, Stephen E.; Shivanna, Binoy; Barrios, Roberto; Wang, Gangduo; Khan, M. Firoze; Gonzalez, Frank J.; Roberts, L Jackson; Moorthy, Bhagavatula

    2015-01-01

    Hyperoxia contributes to acute lung injury (ALI) in diseases such as acute respiratory distress syndrome (ARDS). Cytochrome P450 (CYP)1A enzymes have been implicated in hyperoxic lung injury, but the mechanistic role(s) of CYP1A2 in pulmonary injury is not known. We hypothesized that mice lacking the gene for Cyp1a2 (which is predominantly expressed in the liver) will be more sensitive to lung injury and inflammation mediated by hyperoxia, and that CYP1A2 will play a protective role by attenuating lipid peroxidation and oxidative stress in the lung. Eight to ten week old WT (C57BL/6) or Cyp1a2(−/−) mice were exposed to hyperoxia (>95% O2) or maintained in room air for 24–72 h. Lung injury was assessed by determining the ratios of lung weight/body weight (LW/BW), and by histology. Extent of inflammation was determined by measuring the number of neutrophils in the lung as well as cytokine expression. The Cyp1a2(−/−) mice under hyperoxic conditions showed increased LW/BW ratios, lung injury, neutrophil infiltration, IL-6 and TNF-α levels, and augmented lipid peroxidation, as evidenced by increased formation of malondialdehyde (MDA)- and 4-hydroxynonenal (4-HNE)-protein adducts, and pulmonary isofurans compared to those of WT mice. In vitro experiments showed that the F2-isoprostane PGF2-α is metabolized by CYP1A2 to a dinor metabolite, providing evidence for a catalytic role for CYP1A2 in the metabolism of F2-isoprostanes. In summary, our results support the hypothesis that hepatic CYP1A2 plays a critical role in the attenuation against hyperoxic lung injury by decreasing lipid peroxidation and oxidative stress in vivo. PMID:25680282

  1. Cytochrome P4501A biomarker indication of the timeline of chronic exposure of Barrow's goldeneyes to residual Exxon Valdez oil

    USGS Publications Warehouse

    Esler, Daniel; Ballachey, B.E.; Trust, K.A.; Iverson, S.A.; Reed, J.A.; Miles, A.K.; Henderson, J.D.; Woodin, Bruce R.; Stegeman, John J.; McAdie, M.; Mulcahy, D.M.; Wilson, B.W.

    2011-01-01

    We examined hepatic EROD activity, as an indicator of CYP1A induction, in Barrow's goldeneyes captured in areas oiled during the 1989 Exxon Valdez spill and those from nearby unoiled areas. We found that average EROD activity differed between areas during 2005, although the magnitude of the difference was reduced relative to a previous study from 1996/1997, and we found that areas did not differ by 2009. Similarly, we found that the proportion of individuals captured from oiled areas with elevated EROD activity (-2 times unoiled average) declined from 41% in winter 1996/1997 to 10% in 2005 and 15% in 2009. This work adds to a body of literature describing the timelines over which vertebrates were exposed to residual Exxon Valdez oil and indicates that, for Barrow's goldeneyes in Prince William Sound, exposure persisted for many years with evidence of substantially reduced exposure by 2 decades after the spill. ?? 2010 Elsevier Ltd.

  2. Cytochrome P4501A biomarker indication of the timeline of chronic exposure of Barrow's goldeneyes to residual Exxon Valdez oil.

    PubMed

    Esler, Daniel; Ballachey, Brenda E; Trust, Kimberly A; Iverson, Samuel A; Reed, John A; Miles, A Keith; Henderson, John D; Woodin, Bruce R; Stegeman, John J; McAdie, Malcolm; Mulcahy, Daniel M; Wilson, Barry W

    2011-03-01

    We examined hepatic EROD activity, as an indicator of CYP1A induction, in Barrow's goldeneyes captured in areas oiled during the 1989 Exxon Valdez spill and those from nearby unoiled areas. We found that average EROD activity differed between areas during 2005, although the magnitude of the difference was reduced relative to a previous study from 1996/1997, and we found that areas did not differ by 2009. Similarly, we found that the proportion of individuals captured from oiled areas with elevated EROD activity (≥ 2 times unoiled average) declined from 41% in winter 1996/1997 to 10% in 2005 and 15% in 2009. This work adds to a body of literature describing the timelines over which vertebrates were exposed to residual Exxon Valdez oil and indicates that, for Barrow's goldeneyes in Prince William Sound, exposure persisted for many years with evidence of substantially reduced exposure by 2 decades after the spill. PMID:21131011

  3. Cytochrome P4501A1 expression in blubber biopsies of endangered false killer whales (Pseudorca crassidens) and nine other odontocete species from Hawai'i.

    PubMed

    Foltz, Kerry M; Baird, Robin W; Ylitalo, Gina M; Jensen, Brenda A

    2014-11-01

    Odontocetes (toothed whales) are considered sentinel species in the marine environment because of their high trophic position, long life spans, and blubber that accumulates lipophilic contaminants. Cytochrome P4501A1 (CYP1A1) is a biomarker of exposure and molecular effects of certain persistent organic pollutants. Immunohistochemistry was used to visualize CYP1A1 expression in blubber biopsies collected by non-lethal sampling methods from 10 species of free-ranging Hawaiian odontocetes: short-finned pilot whale, melon-headed whale, pygmy killer whale, common bottlenose dolphin, rough-toothed dolphin, pantropical spotted dolphin, Blainville's beaked whale, Cuvier's beaked whale, sperm whale, and endangered main Hawaiian Islands insular false killer whale. Significantly higher levels of CYP1A1 were observed in false killer whales and rough-toothed dolphins compared to melon-headed whales, and in general, trophic position appears to influence CYP1A1 expression patterns in particular species groups. No significant differences in CYP1A1 were found based on age class or sex across all samples. However, within male false killer whales, juveniles expressed significantly higher levels of CYP1A1 when compared to adults. Total polychlorinated biphenyl (∑PCBs) concentrations in 84% of false killer whales exceeded proposed threshold levels for health effects, and ∑PCBs correlated with CYP1A1 expression. There was no significant relationship between PCB toxic equivalent quotient and CYP1A1 expression, suggesting that this response may be influenced by agonists other than the dioxin-like PCBs measured in this study. No significant differences were found for CYP1A1 expression among social clusters of false killer whales. This work provides a foundation for future health monitoring of the endangered stock of false killer whales and other Hawaiian odontocetes. PMID:25134676

  4. Cytochrome P4501A1 Is Required for Vascular Dysfunction and Hypertension Induced by 2,3,7,8-Tetrachlorodibenzo-p-Dioxin

    PubMed Central

    Kopf, Phillip G.; Scott, Jason A.; Agbor, Larry N.; Boberg, Jason R.; Elased, Khalid M.; Huwe, Janice K.; Walker, Mary K.

    2010-01-01

    National Health and Nutrition Examination Survey data show an association between hypertension and exposure to dioxin-like halogenated aromatic hydrocarbons (HAHs). Furthermore, chronic exposure of mice to the prototypical HAH, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), induces reactive oxygen species (ROS), endothelial dysfunction, and hypertension. Because TCDD induces cytochrome P4501A1 (CYP1A1) and CYP1A1 can increase ROS, we tested the hypothesis that TCDD-induced endothelial dysfunction and hypertension are mediated by CYP1A1. CYP1A1 wild-type (WT) and knockout (KO) mice were fed one control or TCDD-containing pill (180 ng TCDD/kg, 5 days/week) for 35 days (n = 10–14/genotype/treatment). Blood pressure was monitored by radiotelemetry, and liver TCDD concentration, CYP1A1 induction, ROS, and aortic reactivity were measured at 35 days. TCDD accumulated to similar levels in livers of both genotypes. TCDD induced CYP1A1 in endothelium of aorta and mesentery without detectable expression in the vessel wall. TCDD also induced superoxide anion production, measured by NADPH-dependent lucigenin luminescence, in aorta, heart, and kidney of CYP1A1 WT mice but not KO mice. In contrast, TCDD induced hydrogen peroxide, measured by amplex red assay, to similar levels in aorta of CYP1A1 WT and KO mice but not in heart or kidney. TCDD reduced acetylcholine-dependent vasorelaxation in aortic rings of CYP1A1 WT mice but not in KO mice. Finally, TCDD steadily increased blood pressure after 15 days, which plateaued after 25 days (+20 mmHg) in CYP1A1 WT mice but failed to alter blood pressure in KO mice. These results demonstrate that CYP1A1 is required for TCDD-induced cardiovascular superoxide anion production, endothelial dysfunction, and hypertension. PMID:20634294

  5. Localization of cytochrome P4501A in liver and extrahepatic organs of the pilot whale, Globiocephala melaena

    SciTech Connect

    Stegeman, J.; Miller, C.; Moore, M.; White, R.; Joy, J.; Early, G.; Hahn, M. |

    1994-12-31

    Marine mammals may be important indicators of effects of contaminants that are globally distributed. Recently the authors described apparent environmental induction of hepatic CYPLA in beluga whales. Here they describe the localization and extent of CYPLA expression in organs of the pilot whale. Tissues from 18 pilot whales stranded on Cape Cod in 1990/91 were frozen in liquid N2 or fixed in formalin and embedded. Liver microsomal EROD activity were comparable to results with other cetaceans. Immunohistochemical analysis showed a periportal localization of CYPLA in liver parenchyma, and staining in the endothelium. Renal staining was strong in brush border and endothelium. Testis, ovary, and spleen showed CYPLA staining only in endothelium. Adrenal zona fasciculata and zona reticularis stained more weakly than did endothelium. In lung there was mild staining of bronchiolar epithelium and strong staining of endothelium. The results indicate that active concentrations of inducer have penetrated throughout the body. CYPLA stained in dermal endothelium, indicating that analysis of skin biopsies could allow nondestructive analysis of CYPLA induction in marine mammals. CYPLA expression in these whales was surprisingly strong, suggesting the possibility of chemical effects related to CYPLA induction.

  6. Co-expression of human cytochrome P4501A1 (CYP1A1) variants and human NADPH-cytochrome P450 reductase in the baculovirus/insect cell system.

    PubMed

    Schwarz, D; Kisselev, P; Honeck, H; Cascorbi, I; Schunck, W H; Roots, I

    2001-06-01

    1. Three human cytochrome P4501A1 (CYP1A1) variants, wild-type (CYP1A1.1), CYP1A1.2 (1462V) and CYP1A1.4 (T461N), were co-expressed with human NADPH-P450 reductase (OR) in Spodoptera frugiperda (Sf9) insect cells by baculovirus co-infection to elaborate a suitable system for studying the role of CYPA1 polymorphism in the metabolism of exogenous and endogenous substrates. 2. A wide range of conditions was examined to optimize co-expression with regard to such parameters as relative multiplicity of infection (MOI), time of harvest, haem precursor supplementation and post-translational stabilization. tinder optimized conditions, almost identical expression levels and molar OR/CYP1A1 ratios (20:1) were attained for all CYP1A1 variants. 3. Microsomes isolated from co-infected cells demonstrated ethoxyresorufin deethlylase activities (nmol/min(-1) nmol(-1) CYP1A1) of 16.0 (CYP1A1.1), 20.5 (CYP1A1.2) and 22.5 (CYP1A1.4). Pentoxyresorufin was dealkylated approximately 10-20 times slower with all enzyme variants. 4. All three CYP1A1 variants were active in metabolizing the precarcinogen benzo[a]pyrene (B[a]P), with wild-type enzyme showing the highest activity, followed by CYP1A1.4 (60%) and CYP1A1.2 (40%). Each variant produced all major metabolites including B[a]P-7,8-dihydrodiol, the precursor of the ultimate carcinogenic species. 5. These studies demonstrate that the baculovirus-mediated co-expression-by-co-infection approach all CYP1A1 variants yields functionally active enzyme systems with similar molar OR/CYP1A1 ratios, thus providing suitable preconditions to examine the metabolism of and environmental chemicals by the different CY1A1 variants. PMID:11513247

  7. Cytochrome P4501A induction, benzo[a]pyrene metabolism, and nucleotide adduct formation in fish hepatoma cells: Effect of preexposure to 3,3',4,4',5-pentachlorobiphenyl

    USGS Publications Warehouse

    Smeets, J.M.W.; Voormolen, A.; Tillitt, D.E.; Everaarts, J.M.; Seinen, W.; Vanden Berg, M.D.

    1999-01-01

    In PLHC-1 hepatoma cells, benzo[a]pyrene (B[a]P) caused a maximum induction of cytochrome P4501A (CYP1A) activity, measured as ethoxyresorufin O-deethylation (EROD), after 4 to 8 h of exposure, depending on the B[a]P concentration. The decline of EROD activity at longer exposure times was probably caused by the rapid metabolism of B[a]P in this system (57% metabolism within 4 h incubation). In subsequent experiments, PLHC-1 cells were preinduced with PCB 126 for 24 h and then received a dose of 10, 100, or 1,000 nM 3H-B[a]P. A 1-nM concentration of PCB 126 caused an 80-fold induction of CYP1A activity, resulting in an increase in B[a]P metabolism of less than 10%, except at the highest concentration of B[a]P (1,000 nM), where a 50% increase was observed. In another experiment, an 80-fold induction of CYP1A activity caused a 20% increase in the metabolism of B[a]P (100 nM), and RNA adduct formation was increased approximately twofold. These results indicate that, at exposure concentrations up to 100 nM B[a]P, CYP1A activity is not rate limiting for B[a]P metabolism. Furthermore, CYP1A seems to also he specifically involved in B[a]P activation in PLHC-1 cells. However, CYP1A induction causes only a relatively small increase in activation, probably because of the action of other enzymes involved in B[a]P activation and deactivation.

  8. Cytochrome P450 bio-affinity detection coupled to gradient HPLC: on-line screening of affinities to cytochrome P4501A2 and 2D6.

    PubMed

    Kool, Jeroen; van Liempd, Sebastiaan M; Harmsen, Stefan; Beckman, Joran; van Elswijk, Danny; Commandeur, Jan N M; Irth, Hubertus; Vermeulen, Nico P E

    2007-10-15

    Here we describe novel on-line human CYP1A2 and CYP2D6 Enzyme Affinity Detection (EAD) systems coupled to gradient HPLC. The use of the systems lies in the detection of individual inhibitory ligands in mixtures (e.g. metabolic mixtures or herbal extracts) towards two relevant drug metabolizing human CYPs. The systems can rapidly detect individual compounds in mixtures with affinities to CYP1A2 or 2D6. The HPLC-EAD systems were first evaluated and validated in flow injection analysis mode. IC50 values of known ligands for both CYPs, tested both in flow injection and in HPLC mode, were well comparable with those measured in microplate reader formats. Both EAD systems were also connected to gradient HPLC and used to screen known compound mixtures for the presence of CYP1A2 and 2D6 inhibitors. Finally, the on-line CYP2D6 EAD system was used to screen for the inhibitory activities of stereoisomers of a mixture of five methylenedioxy-alkylamphetamines (XTC analogs) on a chiral analytical column. PMID:17826363

  9. Sustained induction of cytochrome P4501A1 in human hepatoma cells by co-exposure to benzo[a]pyrene and 7H-dibenzo[c,g]carbazole underlies the synergistic effects on DNA adduct formation

    SciTech Connect

    Gábelová, Alena; Poláková, Veronika; Prochazka, Gabriela; Kretová, Miroslava; Poloncová, Katarína; Regendová, Eva; Luciaková, Katarína; Segerbäck, Dan

    2013-08-15

    To gain a deeper insight into the potential interactions between individual aromatic hydrocarbons in a mixture, several benzo[a]pyrene (B[a]P) and 7H-dibenzo[c,g]carbazole (DBC) binary mixtures were studied. The biological activity of the binary mixtures was investigated in the HepG2 and WB-F344 liver cell lines and the Chinese hamster V79 cell line that stably expresses the human cytochrome P4501A1 (hCYP1A1). In the V79 cells, binary mixtures, in contrast to individual carcinogens, caused a significant decrease in the levels of micronuclei, DNA adducts and gene mutations, but not in cell survival. Similarly, a lower frequency of micronuclei and levels of DNA adducts were found in rat liver WB-F344 cells treated with a binary mixture, regardless of the exposure time. The observed antagonism between B[a]P and DBC may be due to an inhibition of Cyp1a1 expression because cells exposed to B[a]P:DBC showed a decrease in Cyp1a1 mRNA levels. In human liver HepG2 cells exposed to binary mixtures for 2 h, a reduction in micronuclei frequency was also found. However, after a 24 h treatment, synergism between B[a]P and DBC was determined based on DNA adduct formation. Accordingly, the up-regulation of CYP1A1 expression was detected in HepG2 cells exposed to B[a]P:DBC. Our results show significant differences in the response of human and rat cells to B[a]P:DBC mixtures and stress the need to use multiple experimental systems when evaluating the potential risk of environmental pollutants. Our data also indicate that an increased expression of CYP1A1 results in a synergistic effect of B[a]P and DBC in human cells. As humans are exposed to a plethora of noxious chemicals, our results have important implications for human carcinogenesis. - Highlights: • B[a]P:DBC mixtures were less genotoxic in V79MZh1A1 cells than B[a]P and DBC alone. • An antagonism between B[a]P and DBC was determined in rat liver WB-F344 cells. • The inhibition of CYP1a1 expression by B[a]P:DBC mixture

  10. Metformin inhibits 7,12-dimethylbenz[a]anthracene-induced breast carcinogenesis and adduct formation in human breast cells by inhibiting the cytochrome P4501A1/aryl hydrocarbon receptor signaling pathway

    SciTech Connect

    Maayah, Zaid H.; Ghebeh, Hazem; Alhaider, Abdulqader A.; El-Kadi, Ayman O.S.; Soshilov, Anatoly A.; Denison, Michael S.; Ansari, Mushtaq Ahmad; Korashy, Hesham M.

    2015-04-15

    Recent studies have established that metformin (MET), an oral anti-diabetic drug, possesses antioxidant activity and is effective against different types of cancer in several carcinogen-induced animal models and cell lines. However, whether MET can protect against breast cancer has not been reported before. Therefore, the overall objectives of the present study are to elucidate the potential chemopreventive effect of MET in non-cancerous human breast MCF10A cells and explore the underlying mechanism involved, specifically the role of cytochrome P4501A1 (CYP1A1)/aryl hydrocarbon receptor (AhR) pathway. Transformation of the MCF10A cells into initiated breast cancer cells with DNA adduct formation was conducted using 7,12-dimethylbenz[a]anthracene (DMBA), an AhR ligand. The chemopreventive effect of MET against DMBA-induced breast carcinogenesis was evidenced by the capability of MET to restore the induction of the mRNA levels of basic excision repair genes, 8-oxoguanine DNA glycosylase (OGG1) and apurinic/apyrimidinic endonuclease1 (APE1), and the level of 8-hydroxy-2-deoxyguanosine (8-OHdG). Interestingly, the inhibition of DMBA-induced DNA adduct formation was associated with proportional decrease in CYP1A1 and in NAD(P)H:quinone oxidoreductase 1 (NQO1) gene expression. Mechanistically, the involvements of AhR and nuclear factor erythroid 2-related factor-2 (Nrf2) in the MET-mediated inhibition of DMBA-induced CYP1A1 and NQO1 gene expression were evidenced by the ability of MET to inhibit DMBA-induced xenobiotic responsive element and antioxidant responsive element luciferase reporter gene expression which suggests an AhR- and Nrf2-dependent transcriptional control. However, the inability of MET to bind to AhR suggests that MET is not an AhR ligand. In conclusion, the present work shows a strong evidence that MET inhibits the DMBA-mediated carcinogenicity and adduct formation by inhibiting the expression of CYP1A1 through an AhR ligand-independent mechanism

  11. Functional analysis of basic transcription element (BTE)-binding protein (BTEB) 3 and BTEB4, a novel Sp1-like protein, reveals a subfamily of transcriptional repressors for the BTE site of the cytochrome P4501A1 gene promoter.

    PubMed Central

    Kaczynski, Joanna A; Conley, Abigail A; Fernandez Zapico, Martin; Delgado, Sharon M; Zhang, Jin-San; Urrutia, Raul

    2002-01-01

    The Sp1-like family of transcription factors is emerging as an integral part of the cellular machinery involved in the control of gene expression. Members of this family of proteins contain three highly homologous C-terminal zinc-finger motifs that bind GC-rich sequences found in the promoters of a diverse number of genes, such as the basic transcription element (BTE) in the promoter of the carcinogen-metabolizing cytochrome P4501A1 (CYP1A1) gene. In the present study, we report the molecular and functional characterization of BTE-binding protein (BTEB) 4, a novel ubiquitously expressed member of the Sp1-like proteins family. This protein represents a new homologue of BTEB1, originally described as a regulator of the BTE site in the CYP1A1 gene promoter. Similarly to the recently described BTEB3, we demonstrate that the N-terminal region of BTEB4 directly represses transcription and binds the co-repressor mSin3A. In addition, we show that the C-terminal zinc-finger domain of BTEB4 binds specifically the BTE site of the CYP1A1 promoter, similar to BTEB1 and BTEB3. Also, we show that both BTEB3 and BTEB4 repress the CYP1A1 gene promoter via the BTE site in HepG2 and BxPC3 cells. Thus the identification of this protein expands the repertoire of BTEB-like members of the Sp1-like protein family involved in transcriptional repression. Furthermore, our results demonstrate that the BTEB subfamily can repress the CYP1A1 gene promoter via the BTE site. PMID:12036432

  12. Characterization and Expression of Cytochrome P4501A in Atlantic Sturgeon and Shortnose Sturgeon Experimentally Exposed to Coplanar PCB 126 and TCDD

    PubMed Central

    Roy, Nirmal K; Walker, Nichole; Chambers, R. Christopher; Wirgin, Isaac

    2011-01-01

    The AHR pathway activates transcription of CYP1A and mediates most toxic responses from exposure to halogenated aromatic hydrocarbon contaminants such as PCBs and PCDD/Fs. Therefore, expression of CYP1A is predictive of most higher-level toxic responses from these chemicals. To date, no study had developed an assay to quantify CYP1A expression in any sturgeon species. We addressed this deficiency by partially characterizing CYP1A in Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) and shortnose sturgeon (Acipenser brevirostrum) and then used derived sturgeon sequences to develop reverse transcriptase (RT)-PCR assays to quantify CYP1A mRNA expression in TCDD and PCB126 treated early life-stages of both species. Phylogenetic analysis of CYP1A, CYP1B, CYP1C and CYP3A deduced amino acid sequences from other fishes and sturgeons revealed that our putative Atlantic sturgeon and shortnose sturgeon CYP1A sequences most closely clustered with previously derived CYP1A sequences. We then used semi-quantitative and real-time RT-PCR to measure CYP1A mRNA levels in newly hatched Atlantic sturgeon and shortnose sturgeon larvae that were exposed to graded doses of waterborne PCB126 (0.01–1000 parts per billion (ppb)) and TCDD (0.001–10 ppb). We initially observed significant induction of CYP1A mRNA compared to vehicle control at the lowest doses of PCB126 and TCDD used, 0.01 ppb and 0.001 ppb, respectively. Significant induction was observed at all doses of both chemicals although lower expression was seen at the highest doses. We also compared CYP1A expression among tissues of i.p. injected shortnose sturgeon and found significant inducibility in heart, intestine, and liver, but not in blood, gill, or pectoral fin clips. For the first time, our results indicate that young life-stages of sturgeons are sensitive to AHR ligands at environmentally relevant concentrations, however, it is yet to be determined if induction of CYP1A can be used as a biomarker in environmental

  13. Lack of antagonism of 2,3,7,8-tetrachlorodibenzo-p-dioxin's (TCDDs) induction of cytochrome P4501A1 (CYP1A1) by the putative selective aryl hydrocarbon receptor modulator 6-alkyl-1,3,8-trichlorodibenzofuran (6-MCDF) in the mouse hepatoma cell line Hepa-1c1c7.

    PubMed

    Fretland, Adrian J; Safe, Stephen; Hankinson, Oliver

    2004-11-20

    Regulation of gene expression by the aryl hydrocarbon (AHR) receptor is a much-studied pathway of molecular toxicology. Activation of AHR by the xenobiotic ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is hypothesized as the mechanism by which TCDD exerts its toxic and carcinogenic effects. Paradoxically, some studies have shown that TCDD acts as an antiestrogen. This has led to the hypothesis that so-called selective aryl hydrocarbon receptor modulators (SAhRMs), AHR ligands that retain the antiestrogenic effects but lack the transcriptional effects of TCDD associated with toxicity, may be utilized as cancer chemotherapeutics in conjunction with other antiestrogenic compounds such as tamoxifen. The present study attempts to further define the molecular mechanism of action of the putative SAhRMs, 6-alkyl-1,3,8-trichlorodibenzofuran (6-MCDF), and diindolylmethane (DIM), focusing particularly on the former. We tested 6-MCDF and DIM for the recruitment of AHR and RNA polymerase II (pol II) to the regulatory region of the AHR responsive gene, cytochrome P4501A1 (CYP1A1), using the chromatin immunoprecipitation (ChIP) assay in the mouse hepatoma cell line Hepa-1c1c7 (Hepa-1). We also tested the level of CYP1A1 induction in Hepa-1 cells using quantitative real-time PCR. We show no difference in the recruitment of AHR or pol II to the regulatory region of CYP1A1 in response to TCDD, 6-MCDF, or co-treatment with both TCDD and 6-MCDF. Our results also show no antagonism of CYP1A1 induction with co-treatment of Hepa-1 cells with TCDD and 6-MCDF. These data suggest that 6-MCDF exhibits agonist activity with respect to induction of CYP1A1 in the Hepa-1 cell line. PMID:15535986

  14. 2-Amino-3,8-dimethylimidazo-[4,5-f]quinoxaline-induced DNA adduct formation and mutagenesis in DNA repair-deficient Chinese hamster ovary cells expressing human cytochrome P4501A1 and rapid or slow acetylator N-acetyltransferase 2.

    PubMed

    Bendaly, Jean; Zhao, Shuang; Neale, Jason R; Metry, Kristin J; Doll, Mark A; States, J Christopher; Pierce, William M; Hein, David W

    2007-07-01

    2-Amino-3,8-dimethylimidazo-[4,5-f]quinoxaline (MeIQx) is one of the most potent and abundant mutagens in the western diet. Bioactivation includes N-hydroxylation catalyzed by cytochrome P450s followed by O-acetylation catalyzed by N-acetyltransferase 2 (NAT2). In humans, NAT2*4 allele is associated with rapid acetylator phenotype, whereas NAT2*5B allele is associated with slow acetylator phenotype. We hypothesized that rapid acetylator phenotype predisposes humans to DNA damage and mutagenesis from MeIQx. Nucleotide excision repair-deficient Chinese hamster ovary cells were constructed by stable transfection of human cytochrome P4501A1 (CYP1A1) and a single copy of either NAT2*4 (rapid acetylator) or NAT2*5B (slow acetylator) alleles. CYP1A1 and NAT2 catalytic activities were undetectable in untransfected Chinese hamster ovary cell lines. CYP1A1 activity did not differ significantly (P > 0.05) among the CYP1A1-transfected cell lines. Cells transfected with NAT2*4 had 20-fold significantly higher levels of sulfamethazine N-acetyltransferase (P = 0.0001) and 6-fold higher levels of N-hydroxy-MeIQx O-acetyltransferase (P = 0.0093) catalytic activity than cells transfected with NAT2*5B. Only cells transfected with both CYP1A1 and NAT2*4 showed concentration-dependent cytotoxicity and hypoxanthine phosphoribosyl transferase mutagenesis following MeIQx treatment. Deoxyguanosine-C8-MeIQx was the primary DNA adduct formed and levels were dose dependent in each cell line and in the following order: untransfected < transfected with CYP1A1 < transfected with CYP1A1 and NAT2*5B < transfected with CYP1A1 and NAT2*4. MeIQx DNA adduct levels were significantly higher (P < 0.001) in CYP1A1/NAT2*4 than CYP1A1/NAT2*5B cells at all concentrations of MeIQx tested. MeIQx-induced DNA adduct levels correlated very highly (r2 = 0.88) with MeIQx-induced mutants. These results strongly support extrahepatic activation of MeIQx by CYP1A1 and a robust effect of human NAT2 genetic polymorphism

  15. RELATIVE POTENCY VALUES FOR POLYCHLORINATED DIBENZO-P-DIOXIN, DIBENZOFURAN AND BIPHENYL CONGENERS TO INDUCE CYTOCHROME P4501A MRNA IN A ZEBRAFISH LIVER CELL LINE (ZF-L)

    EPA Science Inventory

    Induction of cytochrome P450 (CYPIA) mRNA by polychlorinated dibenzo-p-dioxin (PCDD), polychlorinated dibenzofuran (PCDF) and polychlorinated biphenyl (PCB) congeners was measured in a zebrafish liver cell line (ZF-L). ZF-L cells were far less sensitive to PCDD, PCDF and PCB cong...

  16. Transcription alterations of microRNAs, cytochrome P4501A1 and 3A65, and AhR and PXR in the liver of zebrafish exposed to crude microcystins.

    PubMed

    Li, Xiaoyu; Ma, Junguo; Fang, Qian; Li, Yuanyuan

    2013-10-01

    MicroRNAs are small non-coding regulatory RNAs that not only control diverse cellular processes but also regulate gene expression induced by environmental chemicals. However, little is known about the role of microRNAs in liver response of fish to the exposure of cyanobacterial hepatotoxin microcystins (MCs). In the present study, the transcription levels of 4 miRNAs (dre-miR-21, dre-miR-122, dre-miR-27b, and dre-miR-148), cytochromes P450s CYP1A1 and CYP3A65, and their receptors, aryl hydrocarbon receptor (AhR, for CYP1A1) and pregnane X receptor (PXR, for CYP3A65), in the liver of zebrafish were evaluated after 24 h of 50, 200, or 800 μg/L of crude MCs exposure by using the quantitative real-time PCR method. The results showed that MCs-exposure elevated the transcription levels of dre-miR-21 and dre-miR-27b while down-regulated the expressions of dre-miR-122 and dre-miR-148. However, CYP1A1 transcription remained unchanged while mRNA levels of AhRR1 and AhR2 were significantly higher than that of control. Furthermore, the expressions of CYP3A65 and its receptor PXR were up-regulated by MCs-exposure at higher concentrations (200, or 800 μg/L of crude MCs). Therefore we suggest that CYP3A65 and PXR may be involved in the metabolization and detoxification of MCs in zebrafish, which may be regulated by dre-miR-27b. This work might be beneficial for the discovery of new potential diagnostic biomarker and drug target for hepatosis caused by MC. PMID:23851223

  17. IMMUNE FUNCTION AND CYTOCHROME P4501A ACTIVITY AFTER ACUTE EXPOSURE TO 3,3',4,4',5-PENTACHLOROBIPHENYL (PCB-126) IN CHANNEL CATFISH. (R823881)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  18. Influence of toxicological and environmental factors on P4501A expression in gizzard shad: Consequences for biomarker interpretation

    SciTech Connect

    Levine, S.L.; Oris, J.T.

    1995-12-31

    Laboratory and field experiments were conducted to examine the influence of selected endogenous factors on gizzard shad (Dorosoma cepedianum) P4501A expression. The endogenous factors that were examined included the influence of exposure to a P4501A inducer, the combined effect of coexposure to a P4501A inducer and a P4501A inhibitor and the influence of nutritional status on P4501A expression. Shad exposed at 16 C exhibited a dose-response and time-course for P4501A induction following waterborne benzo[a]pyrene (BaP) exposures. P4501A expression was increased by waterborne BaP concentrations at half of the BaP water solubility within 48 h and was increased by waterborne BaP concentrations at the water solubility within 6 h. Correlations between the amount of BaP removed from the water by the fish and the degree of induction were established using a one-compartment linear clearance model. Shad pretreated with the inhibitor bioconcentrated more parent-BaP compared to groups exposed to BaP alone. Postspawning shad exhibited seasonal variation in basal hepatic P4501A expression and this variation corresponded with changes in liver somatic index, condition factor, and percent body lipid, indicating that seasonal variation in basal field P4501A expression may result from seasonally changing nutritional status. Preliminary results from BaP induction and enzyme kinetics studies suggest that seasonal changes in P4501A expression may reflect changes in P4501A protein concentration.

  19. RAPID ASSESSMENT OF INDUCED CYTOCHROME P4501A (CYP1A) PROTEIN AND CATALYTIC ACTIVITY IN FISH HEPATOMA CELLS GROWN IN MULTI-WELL PLATES: RESPONSE TO TCDD, TCDF, AND TWO PLANAR PCBS. (R823889)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  20. Evaluating cytochrome p450 in lesser scaup (Aythya affinis) and tree swallow (Tachycineta bicolor) by monooxygenase activity and immunohistochemistry: Possible nonlethal assessment by skin immunohistochemistry

    USGS Publications Warehouse

    Melancon, M.J.; Kutay, A.L.; Woodin, Bruce R.; Stegeman, John J.

    2006-01-01

    Six-month-old lesser scaup (Aythya affinis) and nestling tree swallows (Tachycineta bicolor) were injected intraperitoneally with beta-naphthoflavone (BNF) in corn oil or in vehicle alone. Liver samples were taken and stored at -80 degrees C until microsome preparation and monooxygenase assay. Skin samples were placed in buffered formalin for subsequent immunohistochemical (IHC) analysis for cytochrome P4501A (CYP1A). Lesser scaup treated with BNF at 20 or 100 mg/kg body weight showed approximately 6- to 18-fold increases in four monooxygenases (benzyloxyresorufin-O-dealkylase, ethoxyresorufin-O-dealkylase, methoxyresorufin-O-dealkylase, and pentoxyresorufin-O-dealkylase). No IHC response was observed for CYP1A in the skin of vehicle-injected ducks, whereas in the skin from BNF-treated ducks, the positive IHC response was of similar magnitude for both dose levels of BNF. Tree swallows injected with BNF at 100 mg/kg, but not at. 20 mg/kg, showed significant increases (approximately fivefold) in hepatic microsomal O-dealkylase activities. Cytochrome P4501A was undetectable by IHC response in skin from corn oil-treated swallows, but positive IHC responses were observed in the skin of one of five swallows at 20 mg/kg and four of five swallows at 100 mg/kg. Although these data do not allow construction of significant dose-response curves, the IHC responses for CYP1A in skin support the possible use of this nonlethal approach for biomonitoring contaminant exposure of birds. In addition, the CYP1A signal observed at the bases of emerging feathers suggest that these might provide less invasive sampling sites for IHC analysis of CYP1A.

  1. GLUCOCORTICOID-XENOBIOTIC INTERACTIONS: DEXAMETHASONE POTENTIATION OF CYTOCHROME P4501A INDUCTION BY BETA-NAPHTHOFLAVONE IN A FISH HEPATOMA CELL LINE (PLHC-1). (R823889)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  2. Exposure to hydrocarbons 10 years after the Exxon Valdez oil spill: evidence from cytochrome P4501A expression and biliary FACs in nearshore demersal fishes.

    PubMed

    Jewett, Stephen C; Dean, Thomas A; Woodin, Bruce R; Hoberg, Max K; Stegeman, John J

    2002-01-01

    Three biomarkers of hydrocarbon exposure, CYP1A in liver vascular endothelium, liver ethoxyresorufin O-deethylase (EROD), and biliary fluorescent aromatic compounds (FACs), were examined in the nearshore fishes, masked greenling (Hexagrammos octogrammus) and crescent gunnel (Pholis laeta), collected in Prince William Sound, Alaska, 7-10 years after the Exxon Valdez oil spill (EVOS). All biomarkers were elevated in fish collected from sites originally oiled, in comparison to fish from unoiled sites. In 1998, endothelial CYP1A in masked greenling from sites that were heavily oiled in 1989 was significantly higher than in fish collected outside the spill trajectory. In 1999, fishes collected from sites adjacent to intertidal mussel beds containing lingering Exxon Valdez oil had elevated endothelial CYP1A and EROD, and high concentrations of biliary FACs. Fishes from sites near unoiled mussel beds, but within the original spill trajectory, also showed evidence of hydrocarbon exposure, although there were no correlations between sediment petroleum hydrocarbon and any of the biomarkers. Our data show that 10 years after the spill, nearshore fishes within the original spill zone were still exposed to residual EVOS hydrocarbons. PMID:12148943

  3. ARACHIDONIC ACID METABOLISM IN THE MARINE FISH STENOTOMUS CHRYSOPS (SCUP) AND THE EFFECTS OF CYTOCHROME P4501A INDUCERS. (R827102)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  4. Cytochrome P4501A1 is Required for Vascular Dysfunction and Hypertension Induced by 2,3,7,8-Tetrachlorodibenzo-p-dioxin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    National Health and Nutrition Examination Survey data show an association between hypertension and exposure to dioxin-like halogenated aromatic hydrocarbons (HAH). Further, chronic exposure of mice to the prototypical HAH, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), induces reactive oxygen species (...

  5. 2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN (TCDD) DISTRIBUTION AND CYTOCHROME P4501A INDUCTION IN YOUNG ADULT AND SENESCENT MALE MICE

    EPA Science Inventory

    While the developmental toxicology of TCDD and its congeners has received considerable attention, the impact of advanced age on the biochemical effects and the pharmacokinetics of dioxins remains largely undetermined. n the present investigation, TCDD tissue distribution and cyto...

  6. Benzo(a)pyrene-induced cytochrome p4501A expression of four freshwater fishes (Oryzias latipes, Danio rerio, Cyprinus carpio, and Zacco platypus).

    PubMed

    Lee, Jin Wuk; Yoon, Hong-Gil; Lee, Sung Kyu

    2015-05-01

    Oryzias latipes, Danio rerio, Cyprinus carpio, and Zacco platypus are useful indicator species for CYP1A biomarker studies; however, comparative studies have not been performed. To compare susceptibility, dose- and time-dependent CYP1A induction at the mRNA and protein levels in response to benzo(a)pyrene (BaP) exposure was analyzed. At the mRNA level, a statistically significant difference was found among the four species; however, such was not observed at the protein level. C. carpio showed the highest CYP1A induction level and the steepest slope in the dose-response curve. To assess susceptibility, the difference in CYP1A mRNA induction among species must be considered, and C. carpio was the most sensitive species of the four evaluated in terms of CYP1A expression. PMID:25863331

  7. Formation of benzo[a]pyrene and 7,12-dimethylbenz[a]anthracene adducts in vascular endothelia of cytochrome P4501A-induced chicken embryos.

    PubMed

    Granberg, Lizette; Brunström, Björn; Brandt, Ingvar

    2003-10-01

    Polycyclic aromatic hydrocarbons (PAHs) are widespread in the environment and birds may be exposed to PAHs via diet, from preening feathers contaminated with oil, or through contamination of the eggshell during embryo development. In the present study, tissue distribution and the cell-specific binding of two labeled PAHs, benzo[a]pyrene ([3H]BaP) and 7,12-dimethylbenz[a]anthracene ([3H]DMBA), were examined in chicken embryos exposed in ovo to CYP1A inducers. Tape-section autoradiograms revealed high concentrations of radioactivity in the bile, liver, kidneys, heart, and leptomeninges. Light microscopy autoradiography of solvent-extracted tissue slices showed a high and selective binding in endothelial cells in certain blood vessels in brain, heart, lung, and chest muscle. Binding was also observed in blood vessel endothelial cells in the chorioallantoic membrane (CAM), an extraembryonal tissue lining the eggshell. Endothelial binding was confirmed in CAM exposed in vitro, implying that tissue-binding metabolites were formed in situ. The CYP1A inhibitor ellipticine abolished bleeding in the target endothelial cells in CAM. It is thus concluded that blood vessel endothelia in various tissues in birds can bioactivate environmental contaminants and be targets for their toxicity. In view of its critical position beneath the shell, the CAM could be an important target for toxicants following external exposure in oviparous species. PMID:14552004

  8. Cytochrome bd Displays Significant Quinol Peroxidase Activity

    PubMed Central

    Al-Attar, Sinan; Yu, Yuanjie; Pinkse, Martijn; Hoeser, Jo; Friedrich, Thorsten; Bald, Dirk; de Vries, Simon

    2016-01-01

    Cytochrome bd is a prokaryotic terminal oxidase that catalyses the electrogenic reduction of oxygen to water using ubiquinol as electron donor. Cytochrome bd is a tri-haem integral membrane enzyme carrying a low-spin haem b558, and two high-spin haems: b595 and d. Here we show that besides its oxidase activity, cytochrome bd from Escherichia coli is a genuine quinol peroxidase (QPO) that reduces hydrogen peroxide to water. The highly active and pure enzyme preparation used in this study did not display the catalase activity recently reported for E. coli cytochrome bd. To our knowledge, cytochrome bd is the first membrane-bound quinol peroxidase detected in E. coli. The observation that cytochrome bd is a quinol peroxidase, can provide a biochemical basis for its role in detoxification of hydrogen peroxide and may explain the frequent findings reported in the literature that indicate increased sensitivity to hydrogen peroxide and decreased virulence in mutants that lack the enzyme. PMID:27279363

  9. ELEVATED LEVELS OF MULTIPLE CYTOCHROME P450 FORMS IN TILAPIA FROM BILLINGS RESERVOIR-SAO PAULO, BRAZIL. (R827102)

    EPA Science Inventory

    Cytochrome P4501A (CYP1A) levels in tissues of fish inhabiting polluted areas have been used extensively in biomonitoring studies in Europe and North America. However, little information is available about the extent of CYP1A expression in fish from South American waters, nor on ...

  10. The role of cytochrome P450s in polycyclic aromatic hydrocarbon carcinogenesis

    SciTech Connect

    Polzer, R.J.

    1993-01-01

    Metabolic activation of polycyclic aromatic hydrocarbons (PAH) to carcinogenic diol epoxides has been determined to be a critical step in tumor initiation by PAH. The key enzyme(s) involved in the metabolic activation are members of the cytochrome P450 superfamily. Two distinct isoforms of cytochrome P450 have been determined to be induced upon treatment of cells in culture with benzo(a)pyrene (B(a)P) by use of Immobilized Artificial Membrane Column High Performance Liquid Chromatography, Western blotting, Northern blotting, and in vitro metabolism studies. Cytochrome P4501A is involved in the metabolism of PAH in the human hepatoma cell line, HepG2; the human mammary carcinoma cell line, MCF-7; and the mouse hepatoma cell line; Hepa-1; whereas cytochrome P450EF is involved in this metabolism in both secondary hamster and mouse embryo cell cultures. Induction of cytochrome P450s by B(a)P generally leads to an increased metabolism of tritiated B(a)P, DMBA, and DB(a,1)P to water-soluble metabolities and to the formation of PAH-DNA adducts, suggesting that induction by B(a)P alters the metabolism of PAH to metabolic activation. DMBA induction of cytochrome P450s leads to various changes in metabolism and PAH-DNA binding and these changes were both cell and PAH specific. These results suggest that DMBA can shift metabolism of certain PAH towards metabolic activation in some cells, while in other cells DMBA or one of its metabolities can compete with other PAH for metabolic activation. UDP-glucuronosyl-transferase and epoxide hydrase do not have significant roles in detoxifying proximate or ultimate carcinogenic PAH metabolites, however, sulfotransferase and glutathione-S-transferase do detoxify proximate and ultimate carcinogenic metabolities in the HepG2 cell line. Finally, attempts to inhibit B(a)P metabolism and DNA-binding in intact cells in culture through conjugation of inhibitory cytochrome P4501A1 antibodies to insulin or folic acid were examined.

  11. Two regulatory proteins that bind to the basic transcription element (BTE), a GC box sequence in the promoter region of the rat P-4501A1 gene.

    PubMed Central

    Imataka, H; Sogawa, K; Yasumoto, K; Kikuchi, Y; Sasano, K; Kobayashi, A; Hayami, M; Fujii-Kuriyama, Y

    1992-01-01

    The cDNAs for two DNA binding proteins of BTE, a GC box sequence in the promoter region of the P-450IA1(CYP1A1) gene, have been isolated from a rat liver cDNA library by using the BTE sequence as a binding probe. While one is for the rat equivalent to human Sp1, the other encodes a primary structure of 244 amino acids, a novel DNA binding protein designated BTEB. Both proteins contain a zinc finger domain of Cys-Cys/His-His motif that is repeated three times with sequence similarity of 72% to each other, otherwise they share little or no similarity. The function of BTEB was analysed by transfection of plasmids expressing BTEB and/or Sp1 with appropriate reporter plasmids into a monkey cell line CV-1 and compared with Sp1. BTEB and Sp1 activated the expression of genes with repeated GC box sequences in promoters such as the simian virus 40 early promoter and the human immunodeficiency virus-1 long terminal repeat promoter. In contrast, BTEB repressed the activity of a promoter containing BTE, a single GC box of the CYP1A1 gene that is stimulated by Sp1. When the BTE sequence was repeated five times, however, BTEB turned out to be an activator of the promoter. RNA blot analysis showed that mRNAs for BTEB and Sp1 were expressed in all tissues tested, but their concentrations varied independently in tissues. The former mRNA was rich in the brain, kidney, lung and testis, while the latter was relatively abundant in the thymus and spleen.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:1356762

  12. UROPORPHYRIN ACCUMULATION ASSOCIATED WITH CYTOCHROME P4501A INDUCTION IN FISH HEPATOMA CELLS EXPOSED TO AH RECEPTOR AGONISTS, INCLUDING 2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN AND PLANAR CHLOROBIPHENYLS. (R823889)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  13. Kinetic isotope effects implicate a single oxidant for cytochrome P450-mediated O-dealkylation, N-oxygenation, and aromatic hydroxylation of 6-methoxyquinoline.

    PubMed

    Dowers, Tamara S; Jones, Jeffrey P

    2006-08-01

    One major point of controversy in the area of cytochrome P450 (P450)-mediated oxidation reactions is the nature of the active-oxygen species. A number of hypotheses have been advanced which implicate a second oxidant besides the iron-oxo species designated as compound I (Cpd 1). This oxygen is thought to be either an iron-hydroperoxy species (Cpd 0) or a second spin-state of Cpd 1. Very little information is available on what fraction of P450 oxidations is mediated by the two different oxidants. Herein, we report results on three cytochrome P450-mediated reactions: O-dealkylation, N-oxygenation, and aromatic hydroxylation, which occur by three distinct chemical mechanisms. We have used kinetic isotope effects to test for branching from O-demethylation to N-oxygenation and aromatic hydroxylation, using 6-methoxyquinoline and 2H3-6-methoxyquinoline as substrates for P4501A2. Identical large inverse isotope effects on Vmax/Km are obtained for the formation of both the N-oxide and the phenol. This indicates that all three reactions occur through the same enzyme-substrate complex and, thus, through a single iron-oxygen species. The nature of the iron-oxygen species is less certain but is more likely to be iron-oxo Cpd 1, given the energetics of these reactions. PMID:16714370

  14. Significance of Cytochrome P450 System Responses and Levels of Bile Fluorescent Aromatic Compounds in Marine Wildlife Following Oil Spills

    SciTech Connect

    Lee, Richard F.; Anderson, Jack W.

    2005-07-01

    The relationships among cytochrome P450 induction in marine wildlife species, levels of fluorescent aromatic compounds (FAC) in their bile, the chemical composition of the inducing compounds, the significance of the exposure pathway, and any resulting injury, as a consequence of exposure to crude oil following a spill, are reviewed. Fish collected after oil spills often show increases in cytochrome P450 system activity, cytochrome P4501A (CYP1A) and bile fluorescent aromatic compounds (FAC), that are correlated with exposure to polycyclic aromatic hydrocarbons (PAH) in the oil. There is also some evidence for increases in bile FAC and induction of cytochrome P450 in marine birds and mammals after oil spills. However, when observed, increases in these exposure indicators are transitory and generally decrease to background levels within one year after the exposure. Laboratory studies have shown induction of cytochrome P450 systems occurs after exposure of fish to crude oil in water, sediment or food. Most of the PAH found in crude oil (dominantly 2- and 3-ring PAH) are not strong inducers of cytochrome P450. Exposure to the 4-ring chrysenes or the photooxidized products of the PAH may account for the cytochrome P450 responses in fish collected from oil-spill sites. The contribution of non-spill background PAH, particularly combustion-derived (pyrogenic) PAH, to bile FAC and cytochrome P450 system responses can be confounding and needs to be considered when evaluating oil spill effects. The ubiquity of pyrogenic PAH makes it important to fully characterize all sources of PAH, including PAH from natural resources, e.g. retene, in oil spill studies. In addition, such parameters as species, sex, age, ambient temperature and season need to be taken into account. While increases in fish bile FAC and cytochrome P450 system responses, can together, be sensitive general indicators of PAH exposure after an oil spill, there is little unequivocal evidence to suggest a linkage to

  15. Blarina brevicauda as a biological monitor of polychlorinated biphenyls: Evaluation of hepatic cytochrome p450 induction

    USGS Publications Warehouse

    Russell, J.S.; Halbrook, R.S.; Woolf, A.; French, J.B., Jr.; Melancon, M.J.

    2004-01-01

    We assessed the value of short-tailed shrews (Blarina brevicauda) as a possible biomonitor for polychlorinated biphenyl pollution through measurement of the induction of hepatic cytochrome P450 and associated enzyme activities. First, we checked the inducibility of four monooxygenases (benzyloxyresorufin-O-dealkylase [BROD], ethoxyresorufin-O-dealkylase [EROD], methoxyresorufin-O-dealkylase [MROD], and pentoxyresorufin-O-dealkylase [PROD]) by measuring the activity of these enzymes in hepatic microsomes prepared from shrews injected with $-naphthoflavone ($NF) or phenobarbital (PB), typical inducers of cytochrome P4501A (CYP1A) and CYP2B enzyme families, respectively. Enzyme activity was induced in shrews that received $NF but not in shrews that received PB; PROD was not induced by either exposure. Later, shrews were exposed to a mixture of polychlorinated biphenyls (PCBs) (Aroclor 1242:1254, in 1:2 ratio) at 0.6, 9.6, and 150 ppm in food, for 31 d. Induction in these shrews was measured by specific enzyme activity (BROD, EROD, and MROD) in hepatic microsomes, by western blotting of solubilized microsomes against antibodies to CYP1A or CYP2B, and by duration of sodium pentobarbital-induced sleep. These three CYP enzymes were induced in shrews by PCBs at similar levels of exposure as in cotton rat (Sigmodon hispidus). Neither sleep time nor the amount of CYP2B family protein were affected by PCB exposure. Blarina brevicauda can be a useful biomonitor of PCBs that induce CYP1A, especially in habitats where they are the abundant small mammal.

  16. Blarina brevicauda as a biological monitor of polychlorinated biphenyls: evaluation of hepatic cytochrome P450 induction.

    PubMed

    Russell, Julie S; Halbrook, Richard S; Woolf, Alan; French, John B; Melancon, Mark J

    2004-08-01

    We assessed the value of short-tailed shrews (Blarina brevicauda) as a possible biomonitor for polychlorinated biphenyl pollution through measurement of the induction of hepatic cytochrome P450 and associated enzyme activities. First, we checked the inducibility of four monooxygenases (benzyloxyresorufin-O-dealkylase [BROD], ethoxyresorufin-O-dealkylase [EROD], methoxyresorufin-O-dealkylase [MROD], and pentoxyresorufin-O-dealkylase [PROD]) by measuring the activity of these enzymes in hepatic microsomes prepared from shrews injected with beta-naphthoflavone (betaNF) or phenobarbital (PB), typical inducers of cytochrome P4501A (CYP1A) and CYP2B enzyme families, respectively. Enzyme activity was induced in shrews that received betaNF but not in shrews that received PB; PROD was not induced by either exposure. Later, shrews were exposed to a mixture of polychlorinated biphenyls (PCBs) (Aroclor 1242:1254, in 1:2 ratio) at 0.6, 9.6, and 150 ppm in food, for 31 d. Induction in these shrews was measured by specific enzyme activity (BROD, EROD, and MROD) in hepatic microsomes, by western blotting of solubilized microsomes against antibodies to CYP1A or CYP2B, and by duration of sodium pentobarbital-induced sleep. These three CYP enzymes were induced in shrews by PCBs at similar levels of exposure as in cotton rat (Sigmodon hispidus). Neither sleep time nor the amount of CYP2B family protein were affected by PCB exposure. Blarina brevicauda can be a useful biomonitor of PCBs that induce CYP1A, especially in habitats where they are the abundant small mammal. PMID:15352474

  17. Ataxia telangiectasia mutated influences cytochrome c oxidase activity.

    PubMed

    Patel, Akshar Y; McDonald, Todd M; Spears, Larry D; Ching, James Kain; Fisher, Jonathan S

    2011-02-25

    Cells lacking ataxia telangiectasia mutated (ATM) have impaired mitochondrial function. Furthermore, mammalian cells lacking ATM have increased levels of reactive oxygen species (ROS) as well as mitochondrial DNA (mtDNA) deletions in the region encoding for cytochrome c oxidase (COX). We hypothesized that ATM specifically influences COX activity in skeletal muscle. COX activity was ∼40% lower in tibialis anterior from ATM-deficient mice than for wild-type mice (P < 0.01, n = 9/group). However, there were no ATM-related differences in activity of succinate dehydrogenase, isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, mitochondrial glycerol 3-phosphate dehydrogenase, or complex III. Incubation of wild-type extensor digitorum longus muscles for 1h with the ATM inhibitor KU55933 caused a ∼50% reduction (P<0.05, n = 5/group) in COX activity compared to muscles incubated with vehicle alone. Among the control muscles and muscles treated with the ATM inhibitor, COX activity was correlated (r = 0.61, P<0.05) with activity of glucose 6-phosphate dehydrogenase, a key determinant of antioxidant defense through production of NADPH. Overall, the findings suggest that ATM has a protective role for COX activity. PMID:21266166

  18. The role of porcine cytochrome b5A and cytochrome b5B in the regulation of cytochrome P45017A1 activities.

    PubMed

    Billen, M J; Squires, E J

    2009-01-01

    Male pigs are routinely castrated to prevent the accumulation of testicular 16-androstene steroids, in particular 5alpha-androst-16-en-3-one (5alpha-androstenone), which contribute to an off-odour and off-flavour known as boar taint. Cytochrome P450C17 (CYP17A1) catalyses the key regulatory step in the formation of the 16-androstene steroids from pregnenolone by the andien-beta synthase reaction or the synthesis of the glucocorticoid and sex steroids via 17alpha-hydroxylase and C17,20 lyase pathways respectively. We have expressed CYP17A1, along with cytochrome P450 reductase (POR), cytochrome b5 reductase (CYB5R3) and cytochrome b5 (CYB5) in HEK-293FT cells to investigate the importance of the two forms of porcine CYB5, CYB5A and CYB5B, in both the andien-beta synthase as well as the 17alpha-hydroxylase and C17,20 lyase reactions. Increasing the ratio of CYB5A to CYP17A1 caused a decrease in 17alpha-hydroxylase (p<0.013), a transient increase in C17,20 lyase, and an increase in andien-beta synthase activity (p<0.0001). Increasing the ratio of CYB5B to CYP17A1 also decreased 17alpha-hydroxylase, but did not affect the andien-beta synthase activity; however, the C17,20 lyase, was significantly increased. These results demonstrate the differential effects of two forms of CYB5 on the three activities of porcine CYP17A1 and show that CYB5B does not stimulate the andien-beta synthase activity of CYP17A1. PMID:19101629

  19. The effects of ingested aluminium on brain cytochrome oxidase activity.

    PubMed

    Mohan, N; Alleyne, T; Adogwa, A

    2009-11-01

    Aluminium has a unique combination of physical and chemical properties which has enabled man to put this metal to very wide and varied use. However prolonged exposure to aluminium ions may lead to adverse health effects. In this study, we evaluated the effects of dietary aluminium on the protein composition and the intrinsic activity of cytochrome oxidase (COX) for brain mitochondria. New Zealand white rabbits were maintained on a diet of commercial rabbit pellets and distilled water for a period of 12 weeks. For the experimental group, AlCl3, 330 mg/kg/L was added to the drinking water. When compared to the control, mitochondria isolated from the brains of the AICl3 fed rabbits showed no change in Km but an approximate 35% decrease in both the low and high affinity Vmax values. Also, whereas the protein composition of the mitochondria from both sources appeared to be normal, isolation of highly purified COX proved to be difficult and for the AlCl3 fed rabbits, a number of the enzyme's low molecular weight subunits were absent. These results appear to confirm a relationship between long term aluminium consumption and low brain COX activity; they further suggest that an altered COX structure may be the cause of the low enzymic activity. PMID:20441059

  20. Engineering Ascorbate Peroxidase Activity Into Cytochrome C Peroxidase

    SciTech Connect

    Meharenna, Y.T.; Oertel, P.; Bhaskar, B.; Poulos, T.L.

    2009-05-26

    Cytochrome c peroxidase (CCP) and ascorbate peroxidase (APX) have very similar structures, and yet neither CCP nor APX exhibits each others activities with respect to reducing substrates. APX has a unique substrate binding site near the heme propionates where ascorbate H-bonds with a surface Arg and one heme propionate (Sharp et al. (2003) Nat. Struct. Biol. 10, 303--307). The corresponding region in CCP has a much longer surface loop, and the critical Arg residue that is required for ascorbate binding in APX is Asn in CCP. In order to convert CCP into an APX, the ascorbate-binding loop and critical arginine were engineered into CCP to give the CCP2APX mutant. The mutant crystal structure shows that the engineered site is nearly identical to that found in APX. While wild-type CCP shows no APX activity, CCP2APX catalyzes the peroxidation of ascorbate at a rate of {approx}12 min{sup -1}, indicating that the engineered ascorbate-binding loop can bind ascorbate.

  1. TERATOGEN METABOLISM: THALIDOMIDE ACTIVATION IS MEDIATED BY CYTOCHROME P-450

    EPA Science Inventory

    A metabolite of thalidomide generated by hepatic microsomes inhibited the attachment of tumor cells to concanavalin A-coated polyethylene. Evidence that metabolite formation is mediated by microsomal cytochrome P-450 is presented. Microsomes incubated with thalidomide underwent a...

  2. Evaluating cytochrome P450 in birds by monooxygenases and immunohistochemistry: possible nonlethal assessment by skin immunohistochemistry

    USGS Publications Warehouse

    Melancon, M.J.; Kutay, A.L.; Woodin, Bruce R.; Stegeman, John J.

    2000-01-01

    Six month old Lesser Scaup and nestling Tree Swallows were injected intraperitoneally with beta-naphthoflavone (BNF) or vehicle. Nestling Tree Swallows were also collected from five sites with differing levels of contaminants. Liver samples were taken and stored at -80C until microsome preparation and monooxygenase (MO) assay. Skin and heart samples were placed in buffered formalin until immunohistochemical (IMHC) analysis for cytochrome P4501A (CYP1A). Scaup treated with BNF at 20 or 100 mg/kg body weight showed approximately 20- to 65-fold increases in four MOs. Responses of two of the four MOs were as high at 20 mg/kg as at 100mg/kg. There was no IMHC response in the vehicle-injected ducks, while in skin the IMHC response was the same for both dose levels of BNF and in heart there was response in two of four samples at 20 mg/kg and in all five samples at 100mg/kg. Tree Swallows injected with BNF at 100, but not at 20 mg/kg showed significant increases (ca.5-fold) in two MO activities. There was no IMHC response in control swallows. In skin and heart there were IMHC responses in one of five swallows at 20 mg/kg and four of five swallows at 100mg/kg. There was poor correlation between individual skin IMHC responses and MO activities and PCB concentrations in 47 field-collected Tree Swallow samples, but 14 of the 16 skin samples with positive IMHC responses were from the location with the highest MO activities and PCB concentrations. Although present data do not allow construction of significant dose response curves, the responses in skin make it well worth continuing study on this potential nonlethal technique for biomonitoring contaminant exposure of birds.

  3. Activation of caspase-dependent apoptosis by intracellular delivery of cytochrome c-based nanoparticles

    PubMed Central

    2014-01-01

    Background Cytochrome c is an essential mediator of apoptosis when it is released from the mitochondria to the cytoplasm. This process normally takes place in response to DNA damage, but in many cancer cells (i.e., cancer stem cells) it is disabled due to various mechanisms. However, it has been demonstrated that the targeted delivery of Cytochrome c directly to the cytoplasm of cancer cells selective initiates apoptosis in many cancer cells. In this work we designed a novel nano-sized smart Cytochrome c drug delivery system to induce apoptosis in cancer cells upon delivery. Results Cytochrome c was precipitated with a solvent-displacement method to obtain protein nanoparticles. The size of the Cytochrome c nanoparticles obtained was 100-300 nm in diameter depending on the conditions used, indicating good potential to passively target tumors by the Enhanced Permeability and Retention effect. The surface of Cytochrome c nanoparticles was decorated with poly (lactic-co-glycolic) acid-SH via the linker succinimidyl 3-(2-pyridyldithio) propionate to prevent premature dissolution during delivery. The linker connecting the polymer to the protein nanoparticle contained a disulfide bond thus allowing polymer shedding and subsequent Cytochrome c release under intracellular reducing conditions. A cell-free caspase-3 assay revealed more than 80% of relative caspase activation by Cytochrome c after nanoprecipitation and polymer modification when compared to native Cytochrome c. Incubation of HeLa cells with the Cytochrome c based-nanoparticles showed significant reduction in cell viability after 6 hours while native Cytochrome c showed none. Confocal microscopy confirmed the induction of apoptosis in HeLa cells when they were stained with 4’,6-diamidino-2-phenylindole and propidium iodide after incubation with the Cytochrome c-based nanoparticles. Conclusions Our results demonstrate that the coating with a hydrophobic polymer stabilizes Cytochrome c nanoparticles allowing

  4. Nanoscale charge transport in cytochrome c3/DNA network: Comparative studies between redox-active molecules

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Harumasa; Che, Dock-Chil; Hirano, Yoshiaki; Suzuki, Masayuki; Higuchi, Yoshiki; Matsumoto, Takuya

    2015-09-01

    The redox-active molecule of a cytochrome c3/DNA network exhibits nonlinear current-voltage (I-V) characteristics with a threshold bias voltage at low temperature and zero-bias conductance at room temperature. I-V curves for the cytochrome c3/DNA network are well matched with the Coulomb blockade network model. Comparative studies of the Mn12 cluster, cytochrome c, and cytochrome c3, which have a wide variety of redox potentials, indicate no difference in charge transport, which suggests that the conduction mechanism is not directly related to the redox states. The charge transport mechanism has been discussed in terms of the newly-formed electronic energy states near the Fermi level, induced by the ionic interaction between redox-active molecules with the DNA network.

  5. The Desulfuromonas acetoxidans Triheme Cytochrome c7 Produced in Desulfovibrio desulfuricans Retains Its Metal Reductase Activity

    PubMed Central

    Aubert, Corinne; Lojou, Elisabeth; Bianco, Pierre; Rousset, Marc; Durand, Marie-Claire; Bruschi, Mireille; Dolla, Alain

    1998-01-01

    Multiheme cytochrome c proteins that belong to class III have been recently shown to exhibit a metal reductase activity, which could be of great environmental interest, especially in metal bioremediation. To get a better understanding of these activities, the gene encoding cytochrome c7 from the sulfur-reducing bacterium Desulfuromonas acetoxidans was cloned from genomic DNA by PCR and expressed in Desulfovibrio desulfuricans G201. The expression system was based on the cyc transcription unit from Desulfovibrio vulgaris Hildenborough and led to the synthesis of holocytochrome c7 when transferred by electrotransformation into the sulfate reducer Desulfovibrio desulfuricans G201. The produced cytochrome was indistinguishable from the protein purified from Desulfuromonas acetoxidans cells with respect to several biochemical and biophysical criteria and exhibited the same metal reductase activities as determined from electrochemical experiments. This suggests that the molecule was correctly folded in the host organism. Desulfovibrio desulfuricans produces functional multiheme c-type cytochromes from bacteria belonging to a different genus and may be considered a suitable host for the heterologous biogenesis of multiheme c-type cytochromes for either structural or engineering studies. This report, which presents the first example of the transformation of a Desulfovibrio desulfuricans strain by electrotransformation, describes work that is the first necessary step of a protein engineering program that aims to specify the structural features that are responsible for the metal reductase activities of multiheme cytochrome c7. PMID:9546165

  6. Biological activity of phenolic compounds. Hepatic cytochrome P-450, cytochrome b/sub 5/ and NADPH cytochrome c reductase in chicks and rats fed phenolic monomers, polymers, and glycosides

    SciTech Connect

    Klasing, S.A.; Mora, M.I.; Wilson, W.C.; Fahey, G.C. Jr.; Garst, J.E.

    1985-09-01

    Experiments were conducted to determine effects of a phenolic polymer (Kraft wood lignin, Indulin), phenolic glycosides (cane molasses and wood molasses), and phenolic monomers (vanillin, vanillic acid, ferulic acid, and p-coumaric acid) on liver cytochromes P-450, cytochrome b/sub 5/, and NADPH cytochrome c reductase in chicks and rats. Chicks fed 6.0% lignin had a higher cytochromes P-450 content than did chicks fed 0% fiber, 6.0% wood cellulose, or 6.0% arenaceous flour. Chicks fed 12.0% wood molasses had a higher cytochromes P-450 level than did chicks fed 0% fiber or 6.0% wood molasses. Cane molasses incorporated at both 6.0 and 12.0% of the diet induced cytochromes P-450 content over those of control-fed birds. Chicks fed 6.0% lignin, with or without antibiotic, had a higher cytochromes P-450 level than did chicks fed control diets, with or without antibiotic. Additionally, chicks fed 6.0% lignin had lower intestinal diaminopimelic acid (DAP) levels than did chicks fed 0% fiber. Rats fed 0% fiber, 6.0% wood cellulose, 6.0% arenaceous flour, or 6.0% lignin exhibited no difference in cytochrome level or activity among treatments. Chicks fed 0.5% vanillin, 0.5% vanillic acid, 0.5% ferulic acid, or 0.5% p-coumaric acid had comparable cytochromes level and activity compared with chicks fed no phenolics. Chicks fed 0.5% p-coumaric acid had lower rates of gain than did chicks fed control or other phenolic-containing diets. Rats fed these phenolics had similar cytochromes P-450 content among treatments.

  7. The two Drosophila cytochrome C proteins can function in both respiration and caspase activation

    PubMed Central

    Arama, Eli; Bader, Maya; Srivastava, Mayank; Bergmann, Andreas; Steller, Hermann

    2006-01-01

    Cytochrome C has two apparently separable cellular functions: respiration and caspase activation during apoptosis. While a role of the mitochondria and cytochrome C in the assembly of the apoptosome and caspase activation has been established for mammalian cells, the existence of a comparable function for cytochrome C in invertebrates remains controversial. Drosophila possesses two cytochrome c genes, cyt-c-d and cyt-c-p. We show that only cyt-c-d is required for caspase activation in an apoptosis-like process during spermatid differentiation, whereas cyt-c-p is required for respiration in the soma. However, both cytochrome C proteins can function interchangeably in respiration and caspase activation, and the difference in their genetic requirements can be attributed to differential expression in the soma and testes. Furthermore, orthologues of the apoptosome components, Ark (Apaf-1) and Dronc (caspase-9), are also required for the proper removal of bulk cytoplasm during spermatogenesis. Finally, several mutants that block caspase activation during spermatogenesis were isolated in a genetic screen, including mutants with defects in spermatid mitochondrial organization. These observations establish a role for the mitochondria in caspase activation during spermatogenesis. PMID:16362035

  8. Differential cytochrome content and reductase activity in Geospirillum barnesii strain SeS3

    USGS Publications Warehouse

    Stolz, J.F.; Gugliuzza, T.; Switzer, Blum J.; Oremland, R.; Martinez, Murillo F.

    1997-01-01

    The protein composition, cytochrome content, and reductase activity in the dissimilatory selenate-reducing bacterium Geospirillum barnesii strain SeS3, grown with thiosulfate, nitrate, selenate, or fumarate as the terminal electron acceptor, was investigated. Comparison of seven high-molecular-mass membrane proteins (105.3, 90.3, 82.6, 70.2, 67.4, 61.1, and 57.3 kDa) by SDS-PAGE showed that their detection was dependent on the terminal electron acceptor used. Membrane fractions from cells grown on thiosulfate contained a 70.2-kDa c-type cytochrome with absorbance maxima at 552, 522, and 421 nm. A 61.1-kDa c-type cytochrome with absorption maxima at 552, 523, and 423 nm was seen in membrane fractions from cells grown on nitrate. No c-type cytochromes were detected in membrane fractions of either selenate- or fumarate-grown cells. Difference spectra, however, revealed the presence of a cytochrome b554 (absorption maxima at 554, 523, and 422 nm) in membrane fractions from selenate-grown cells and a cytochrome b556 (absorption maxima at 556, 520, and 416 nm) in membrane fractions from fumarate-grown cells. Analysis of reductase activity in the different membrane fractions showed variability in substrate specificity. However, enzyme activity was greatest for the substrate on which the cells had been grown (e.g., membranes from nitrate-grown cells exhibited the greatest activity with nitrate). These results show that protein composition, cytochrome content, and reductase activity are dependent on the terminal electron acceptor used for growth.

  9. Cytochrome bd oxidase from Escherichia coli displays high catalase activity: an additional defense against oxidative stress.

    PubMed

    Borisov, Vitaliy B; Forte, Elena; Davletshin, Albert; Mastronicola, Daniela; Sarti, Paolo; Giuffrè, Alessandro

    2013-07-11

    Cytochrome bd oxygen reductase from Escherichia coli has three hemes, b558, b595 and d. We found that the enzyme, as-prepared or in turnover with O2, rapidly decomposes H2O2 with formation of approximately half a mole of O2 per mole of H2O2. Such catalase activity vanishes upon cytochrome bd reduction, does not compete with the oxygen-reductase activity, is insensitive to NO, CO, antimycin-A and N-ethylmaleimide (NEM), but is inhibited by cyanide (Ki ~2.5μM) and azide. The activity, possibly associated with heme-b595, was also observed in catalase-deficient E. coli cells following cytochrome bd over-expression suggesting a protective role against oxidative stress in vivo. PMID:23727202

  10. Cytochrome cb-type nitric oxide reductase with cytochrome c oxidase activity from Paracoccus denitrificans ATCC 35512.

    PubMed

    Fujiwara, T; Fukumori, Y

    1996-04-01

    A highly active nitric oxide reductase was purified from Paracoccus denitrificans ATCC 35512, formerly named Thiosphaera pantotropha, which was anaerobically cultivated in the presence of nitrate. The enzyme was composed of two subunits with molecular masses of 34 and 15 kDa and contained two hemes b and one heme c per molecule. Copper was not found in the enzyme. The spectral properties suggested that one of the two hemes b and heme c were in six-coordinated low-spin states and another heme b was in a five-coordinated high-spin state and reacted with carbon monoxide. The enzyme showed high cytochrome c-nitric oxide oxidoreductase activity and formed nitrous oxide from nitric oxide with the expected stoichiometry when P. denitrificans ATCC 35512 ferrocytochrome c-550 was used as the electron donor. The V max and Km values for nitric oxide were 84 micromol of nitric oxide per min/mg of protein and 0.25 microM, respectively. Furthermore, the enzyme showed ferrocytochrome c-550-O2 oxidoreductase activity with a V max of 8.4 micromol of O2 per min/mg of protein and a Km value of 0.9 mM. Both activities were 50% inhibited by about 0.3 mM KCN. PMID:8606159

  11. Cytochrome cb-type nitric oxide reductase with cytochrome c oxidase activity from Paracoccus denitrificans ATCC 35512.

    PubMed Central

    Fujiwara, T; Fukumori, Y

    1996-01-01

    A highly active nitric oxide reductase was purified from Paracoccus denitrificans ATCC 35512, formerly named Thiosphaera pantotropha, which was anaerobically cultivated in the presence of nitrate. The enzyme was composed of two subunits with molecular masses of 34 and 15 kDa and contained two hemes b and one heme c per molecule. Copper was not found in the enzyme. The spectral properties suggested that one of the two hemes b and heme c were in six-coordinated low-spin states and another heme b was in a five-coordinated high-spin state and reacted with carbon monoxide. The enzyme showed high cytochrome c-nitric oxide oxidoreductase activity and formed nitrous oxide from nitric oxide with the expected stoichiometry when P. denitrificans ATCC 35512 ferrocytochrome c-550 was used as the electron donor. The V max and Km values for nitric oxide were 84 micromol of nitric oxide per min/mg of protein and 0.25 microM, respectively. Furthermore, the enzyme showed ferrocytochrome c-550-O2 oxidoreductase activity with a V max of 8.4 micromol of O2 per min/mg of protein and a Km value of 0.9 mM. Both activities were 50% inhibited by about 0.3 mM KCN. PMID:8606159

  12. Cytochrome C oxidase activity in germinating Phaseolus vulgaris l. seeds: Effects of carbon monoxide

    SciTech Connect

    Caughey, W.S. ); Sowa, S.; Roos, E.E.

    1989-04-01

    Cytochrome c oxidase is a key bioenergetic enzyme required for seed germination. The enzyme was isolated from 2-day germinating beans and biochemically compared to its bovine heart counterpart. Carbon monoxide, which binds to the heme a{sub 3} site of cytochrome c oxidase, we used to probe O{sub 2} utilization activity in isolated enzyme, mitochondrial particles, and whole seeds. Bean seeds under 80% CO/20% O{sub 2} exhibited 46% growth inhibition as determined by root length. Reversible, dose-dependent partial inhibition of bean seed mitochondrial respiration was observed in the presence of CO; heart mitochondria had a more sensitive, less reversible response. Effects of CO on bean and bovine heart enzyme were similar. The close correlation of CO effects observed on seedling growth, mitochondrial respiration and cytochrome oxidase activity indicate an important role for this enzyme during the early stages of seed germination.

  13. Cytochrome c peroxidase activity of heme bound amyloid β peptides.

    PubMed

    Seal, Manas; Ghosh, Chandradeep; Basu, Olivia; Dey, Somdatta Ghosh

    2016-09-01

    Heme bound amyloid β (Aβ) peptides, which have been associated with Alzheimer's disease (AD), can catalytically oxidize ferrocytochrome c (Cyt c(II)) in the presence of hydrogen peroxide (H2O2). The rate of catalytic oxidation of Cyt(II) c has been found to be dependent on several factors, such as concentration of heme(III)-Aβ, Cyt(II) c, H2O2, pH, ionic strength of the solution, and peptide chain length of Aβ. The above features resemble the naturally occurring enzyme cytochrome c peroxidase (CCP) which is known to catalytically oxidize Cyt(II) c in the presence of H2O2. In the absence of heme(III)-Aβ, the oxidation of Cyt(II) c is not catalytic. Thus, heme-Aβ complex behaves as CCP. PMID:27270708

  14. Regional brain effects of sodium azide treatment on cytochrome oxidase activity: a quantitative histochemical study.

    PubMed

    Cada, A; Gonzalez-Lima, F; Rose, G M; Bennett, M C

    1995-12-01

    The objective of the present study was to determine if regional variation in brain cytochrome oxidase activity was observed following systemic administration of sodium azide. An image analysis system calibrated with internal standards of known cytochrome oxidase activity was used to quantify cytochrome oxidase in histochemically stained brain sections. Rats receiving chronic infusion of sodium azide (400 micrograms/hr), which were sacrificed after two weeks, showed a substantial decrease in brain cytochrome oxidase activity over those infused with saline. All of the 22 regions sampled from telencephalic, diencephalic, and mesencephalic levels, showed a significant activity reduction which ranged between 26% and 37%. The regions that appeared significantly more vulnerable to the sodium azide effects were the mesencephalic reticular formation and the central amygdala, which displayed the largest decrease in activity. In addition, interregional correlations of activity showed a deeply modified pattern of correlative metabolic activity between hippocampal, amygdaloid and cortical areas after azide treatment. The regional effects found were consistent with azide-induced learning and memory dysfunctions. PMID:8847994

  15. Cytochrome P450 Activity in Ex Vivo Cornea Models and a Human Cornea Construct.

    PubMed

    Kölln, Christian; Reichl, Stephan

    2016-07-01

    The pharmacokinetic behaviors of novel ophthalmic drugs are often preliminarily investigated in preclinical studies using ex vivo animal cornea or corneal cell culture models. During transcorneal passage, topically applied drugs may be affected by drug metabolizing enzymes. The knowledge regarding the functional expression of metabolic enzymes in corneal tissue is marginal; thus, the aim of this study was to investigate cytochrome P450 activity in an organotypic three-dimensional human cornea construct and to compare it with porcine and rabbit corneas, which are commonly used ex vivo cornea models. The total cytochrome P450 activity was determined by measuring the transformation of 7-ethoxycoumarin. Furthermore, the expression of the cytochrome P450 enzyme 2D6 (CYP2D6) was investigated at the protein level using immunohistochemistry and western blotting. CYP2D6 activity measurements were performed using a d-luciferin-based assay. In summary, similar levels of the total cytochrome P450 activity were identified in all 3 cornea models. The protein expression of CYP2D6 was confirmed in the human cornea construct and porcine cornea, whereas the signals in the rabbit cornea were weak. The analysis of the CYP2D6 activity indicated similar values for the human cornea construct and porcine cornea; however, a distinctly lower activity was observed in the rabbit cornea. PMID:27212636

  16. Cytochrome f

    SciTech Connect

    Soriano, G.M.; Smith, J.L.; Cramer, W.A.

    2001-07-17

    the extrinsic cytochromes f and c{sub 1} that, except for the heme-binding peptide sequence, are completely different, the redox-active protein subunits of the bc{sub 1} and b{sub 6}{sup f} complexes are structurally similar. For the b{sub 6}{sup f} complex, structures at the level of atomic resolution (<2 {angstrom}) have also been obtained for the p-side or lumen-side extrinsic domains of cytochrome f and the Rieske high potential [2Fe-2S] protein, which together constitute approximately 40% of the total mass of the complex.

  17. Polarizability of the active site of cytochrome c reduces the activation barrier for electron transfer.

    PubMed

    Dinpajooh, Mohammadhasan; Martin, Daniel R; Matyushov, Dmitry V

    2016-01-01

    Enzymes in biology's energy chains operate with low energy input distributed through multiple electron transfer steps between protein active sites. The general challenge of biological design is how to lower the activation barrier without sacrificing a large negative reaction free energy. We show that this goal is achieved through a large polarizability of the active site. It is polarized by allowing a large number of excited states, which are populated quantum mechanically by electrostatic fluctuations of the protein and hydration water shells. This perspective is achieved by extensive mixed quantum mechanical/molecular dynamics simulations of the half reaction of reduction of cytochrome c. The barrier for electron transfer is consistently lowered by increasing the number of excited states included in the Hamiltonian of the active site diagonalized along the classical trajectory. We suggest that molecular polarizability, in addition to much studied electrostatics of permanent charges, is a key parameter to consider in order to understand how enzymes work. PMID:27306204

  18. Polarizability of the active site of cytochrome c reduces the activation barrier for electron transfer

    NASA Astrophysics Data System (ADS)

    Dinpajooh, Mohammadhasan; Martin, Daniel R.; Matyushov, Dmitry V.

    2016-06-01

    Enzymes in biology’s energy chains operate with low energy input distributed through multiple electron transfer steps between protein active sites. The general challenge of biological design is how to lower the activation barrier without sacrificing a large negative reaction free energy. We show that this goal is achieved through a large polarizability of the active site. It is polarized by allowing a large number of excited states, which are populated quantum mechanically by electrostatic fluctuations of the protein and hydration water shells. This perspective is achieved by extensive mixed quantum mechanical/molecular dynamics simulations of the half reaction of reduction of cytochrome c. The barrier for electron transfer is consistently lowered by increasing the number of excited states included in the Hamiltonian of the active site diagonalized along the classical trajectory. We suggest that molecular polarizability, in addition to much studied electrostatics of permanent charges, is a key parameter to consider in order to understand how enzymes work.

  19. Polarizability of the active site of cytochrome c reduces the activation barrier for electron transfer

    PubMed Central

    Dinpajooh, Mohammadhasan; Martin, Daniel R.; Matyushov, Dmitry V.

    2016-01-01

    Enzymes in biology’s energy chains operate with low energy input distributed through multiple electron transfer steps between protein active sites. The general challenge of biological design is how to lower the activation barrier without sacrificing a large negative reaction free energy. We show that this goal is achieved through a large polarizability of the active site. It is polarized by allowing a large number of excited states, which are populated quantum mechanically by electrostatic fluctuations of the protein and hydration water shells. This perspective is achieved by extensive mixed quantum mechanical/molecular dynamics simulations of the half reaction of reduction of cytochrome c. The barrier for electron transfer is consistently lowered by increasing the number of excited states included in the Hamiltonian of the active site diagonalized along the classical trajectory. We suggest that molecular polarizability, in addition to much studied electrostatics of permanent charges, is a key parameter to consider in order to understand how enzymes work. PMID:27306204

  20. Cross-linking and modification of cytochrome c with redox-active metal complexes

    SciTech Connect

    Lukes, A.

    1991-05-02

    This thesis consists of two parts. The first part shows that a redox-active trinuclear metal cluster may be used as a cross-linking reagent for proteins. Electron transfer is observed in the protein oligomers. The second part involves labelling the cysteine residue of baker's yeast cytochrome c with chloromercuriferrocene. Chloromercuriferrocene reacts with cytochrome c in two interesting ways. Symmetrization produces two products; two proteins cross-linked with mercury and diferrocenylmercury. Simple substitution of FeHgCl onto the protein followed by the addition of a proton by electrophilic substitution affords ferrocene and the mercuric chloride modified protein. 16 refs., 3 figs.

  1. Structure of a mitochondrial cytochrome c conformer competent for peroxidase activity

    PubMed Central

    McClelland, Levi J.; Mou, Tung-Chung; Jeakins-Cooley, Margaret E.; Sprang, Stephen R.; Bowler, Bruce E.

    2014-01-01

    At the onset of apoptosis, the peroxidation of cardiolipin at the inner mitochondrial membrane by cytochrome c requires an open coordination site on the heme. We report a 1.45-Å resolution structure of yeast iso-1-cytochrome c with the Met80 heme ligand swung out of the heme crevice and replaced by a water molecule. This conformational change requires modest adjustments to the main chain of the heme crevice loop and is facilitated by a trimethyllysine 72-to-alanine mutation. This mutation also enhances the peroxidase activity of iso-1-cytochrome c. The structure shows a buried water channel capable of facilitating peroxide access to the active site and of moving protons produced during peroxidase activity to the protein surface. Alternate positions of the side chain of Arg38 appear to mediate opening and closing of the buried water channel. In addition, two buried water molecules can adopt alternate positions that change the network of hydrogen bonds in the buried water channel. Taken together, these observations suggest that low and high proton conductivity states may mediate peroxidase function. Comparison of yeast and mammalian cytochrome c sequences, in the context of the steric factors that permit opening of the heme crevice, suggests that higher organisms have evolved to inhibit peroxidase activity, providing a more stringent barrier to the onset of apoptosis. PMID:24760830

  2. FLUCONAZOLE-INDUCED HEPATIC CYTOCHROME P450 GENE EXPRESSION AND ENZYMATIC ACTIVITIES IN RATS AND MICE

    EPA Science Inventory

    This study was undertaken to examine the effects of the triazole antifungal agent fluconazole on the expression of hepatic cytochrome P450 (Cyp) genes and the activities of Cyp enzymes in male Sprague-Dawley rats and male CD-1 mice. Alkoxyresorufin O-dealkylation (AROD) methods w...

  3. Cytochrome c oxidase loses catalytic activity and structural integrity during the aging process in Drosophila melanogaster

    SciTech Connect

    Ren, Jian-Ching; Rebrin, Igor; Klichko, Vladimir; Orr, William C.; Sohal, Rajindar S.

    2010-10-08

    Research highlights: {yields} Cytochrome c oxidase loses catalytic activity during the aging process. {yields} Abundance of seven nuclear-encoded subunits of cytochrome c oxidase decreased with age in Drosophila. {yields} Cytochrome c oxidase is specific intra-mitochondrial site of age-related deterioration. -- Abstract: The hypothesis, that structural deterioration of cytochrome c oxidase (CcO) is a causal factor in the age-related decline in mitochondrial respiratory activity and an increase in H{sub 2}O{sub 2} generation, was tested in Drosophila melanogaster. CcO activity and the levels of seven different nuclear DNA-encoded CcO subunits were determined at three different stages of adult life, namely, young-, middle-, and old-age. CcO activity declined progressively with age by 33%. Western blot analysis, using antibodies specific to Drosophila CcO subunits IV, Va, Vb, VIb, VIc, VIIc, and VIII, indicated that the abundance these polypeptides decreased, ranging from 11% to 40%, during aging. These and previous results suggest that CcO is a specific intra-mitochondrial site of age-related deterioration, which may have a broad impact on mitochondrial physiology.

  4. HPLC Determination of Caffeine and Paraxanthine in Urine: An Assay for Cytochrome P450 1A2 Activity

    ERIC Educational Resources Information Center

    Furge, Laura Lowe; Fletke, Kyle J.

    2007-01-01

    Cytochrome P450 enzymes are a family of heme-containing proteins located throughout the body with roles in metabolism of endogenous and exogenous compounds. Among exogenous compounds, clinically relevant pharmaceutical agents are nearly all metabolized by P450 enzymes. However, the activity of the different cytochrome P450 enzymes varies among…

  5. Gene structure and quinol oxidase activity of a cytochrome bd-type oxidase from Bacillus stearothermophilus.

    PubMed

    Sakamoto, J; Koga, E; Mizuta, T; Sato, C; Noguchi, S; Sone, N

    1999-04-21

    Gram-positive thermophilic Bacillus species contain cytochrome caa3-type cytochrome c oxidase as their main terminal oxidase in the respiratory chain. We previously identified and purified an alternative oxidase, cytochrome bd-type quinol oxidase, from a mutant of Bacillus stearothermophilus defective in the caa3-type oxidase activity (J. Sakamoto et al., FEMS Microbiol. Lett. 143 (1996) 151-158). Compared with proteobacterial counterparts, B. stearothermophilus cytochrome bd showed lower molecular weights of the two subunits, shorter wavelength of alpha-band absorption maximum due to heme D, and lower quinol oxidase activity. Preincubation with menaquinone-2 enhanced the enzyme activity up to 40 times, suggesting that, besides the catalytic site, there is another quinone-binding site which largely affects the enzyme activity. In order to clarify the molecular basis of the differences of cytochromes bd between B. stearothermophilus and proteobacteria, the genes encoding for the B. stearothermophilus bd was cloned based on its partial peptide sequences. The gene for subunit I (cbdA) encodes 448 amino acid residues with a molecular weight of 50195 Da, which is 14 and 17% shorter than those of Escherichia coli and Azotobacter vinelandii, respectively, and CbdA lacks the C-terminal half of the long hydrophilic loop between the putative transmembrane segments V and VI (Q loop), which has been suggested to include the substrate quinone-binding site for the E. coli enzyme. The gene for subunit II (cbdB) encodes 342 residues with a molecular weight of 38992 Da. Homology search indicated that the B. stearothermophilus cbdAB has the highest sequence similarity to ythAB in B. subtilis genome rather than to cydAB, the first set of cytochrome bd genes identified in the genome. Sequence comparison of cytochromes bd and their homologs from various organisms demonstrates that the proteins can be classified into two subfamilies, a proteobacterial type including E. coli bd and a

  6. Rational Development of Novel Activity Probes for the Analysis of Human Cytochromes P450.

    PubMed

    Sellars, Jonathan D; Skipsey, Mark; Sadr-Ul-Shaheed; Gravell, Sebastian; Abumansour, Hamza; Kashtl, Ghasaq; Irfan, Jawaria; Khot, Mohamed; Pors, Klaus; Patterson, Laurence H; Sutton, Chris W

    2016-06-01

    The identification and quantification of functional cytochromes P450 (CYPs) in biological samples is proving important for robust analyses of drug efficacy and metabolic disposition. In this study, a novel CYP activity-based probe was rationally designed and synthesised, demonstrating selective binding of CYP isoforms. The dependence of probe binding upon the presence of NADPH permits the selective detection of functionally active CYP. This allows the detection and analysis of these enzymes using biochemical and proteomic methodologies and approaches. PMID:27154431

  7. Ligand-independent activation of the arylhydrocarbon receptor by ETK (Bmx) tyrosine kinase helps MCF10AT1 breast cancer cells to survive in an apoptosis-inducing environment.

    PubMed

    Fujisawa, Yasuko; Li, Wen; Wu, Dalei; Wong, Patrick; Vogel, Christoph; Dong, Bin; Kung, Hsing-Jien; Matsumura, Fumio

    2011-10-01

    It has been reported that the arylhydrocarbon receptor (AHR) is overexpressed in certain types of breast tumors. However, so far no concrete evidence has been provided yet as to why and how the overexpressed AHR in those cancer cells is functionally activated without exogenous ligands. Here we show that the AHR was functionally activated when estrogen receptor-negative, AHR overexpressing MCF10AT1 human breast cancer cells (designated P20E) were subjected to serum starvation. Transfection of cells with ETK-KQ, a plasmid for kinase-dead epithelial and endothelial tyrosine kinase (ETK), attenuated this AHR activation. Artificial over-expression of ETK in P20E cells through transfection with wild-type ETK plasmid (ETK-wt) caused up-regulation of cytochrome P4501a1 (CYP1A1; a marker of functional activation of AHR). Furthermore, ablation of ETK expression by a specific antisense oligonucleotide or AG879, a specific inhibitor of ETK kinase suppressed activation of AHR induced by omeprazole, a strong ligand-independent activator of AHR. Activation of ETK in those cells conferred them resistance to UVB- as well as doxorubicin-induced apoptosis, both of which were reversed by ETK-KQ. Together, these findings support our conclusion that ETK is the tyrosine kinase responsible for the functional activation of the AHR in these mammary epithelial cells. PMID:21861773

  8. Experimental approaches to evaluate activities of cytochromes P450 3A

    PubMed Central

    Bořek-Dohalská, Lucie; Hodek, Petr; Hudeček, Jiří; Stiborová, Marie

    2008-01-01

    Cytochrome P450 (CYP) is a heme protein oxidizing various xenobiotics, as well as endogenous substrates. Understanding which CYP enzymes are involved in metabolic activation and/or detoxication of different compounds is important in the assessment of an individual's susceptibility to the toxic action of these substances. Therefore, investigation which of several in vitro experimental models are appropriate to mimic metabolism of xenobiotics in organisms is the major challenge for research of many laboratories. The aim of this study was to evaluate the efficiency of different in vitro systems containing individual enzymes of the mixed-function monooxygenase system to oxidize two model substrates of CYP3A enzymes, exogenous and endogenous compounds, α-naphtoflavone (α-NF) and testosterone, respectively. Several different enzymatic systems containing CYP3A enzymes were utilized in the study: (i) human hepatic microsomes rich in CYP3A4, (ii) hepatic microsomes of rabbits treated with a CYP3A6 inducer, rifampicine, (iii) microsomes of Baculovirus transfected insect cells containing recombinant human CYP3A4 and NADPH:CYP reductase with or without cytochrome b5 (Supersomes™), (iv) membranes isolated from of Escherichia coli, containing recombinant human CYP3A4 and cytochrome b5, and (v) purified human CYP3A4 or rabbit CYP3A6 reconstituted with NADPH:CYP reductase with or without cytochrome b5 in liposomes. The most efficient systems oxidizing both compounds were Supersomes™ containing human CYP3A4 and cytochrome b5. The results presented in this study demonstrate the suitability of the supersomal CYP3A4 systems for studies investigating oxidation of testosterone and α-NF in vitro. PMID:21218106

  9. Reduced cytochrome oxidase activity in the retrosplenial cortex after lesions to the anterior thalamic nuclei.

    PubMed

    Mendez-Lopez, Magdalena; Arias, Jorge L; Bontempi, Bruno; Wolff, Mathieu

    2013-08-01

    The anterior thalamic nuclei (ATN) make a critical contribution to hippocampal system functions. Growing experimental work shows that the effects of ATN lesions often resemble those of hippocampal lesions and both markedly reduce the expression of immediate-early gene markers in the retrosplenial cortex, which still appears normal by standard histological means. This study shows that moderate ATN damage was sufficient to produce severe spatial memory impairment as measured in a radial-arm maze. Furthermore, ATN rats exhibited reduced cytochrome oxidase activity in the most superficial cortical layers of the granular retrosplenial cortex, and, to a lesser extent, in the anterior cingulate cortex. By contrast, no change in cytochrome oxidase activity was observed in other limbic cortical regions or in the hippocampal formation. Altogether our results indicate that endogenous long-term brain metabolic capacity within the granular retrosplenial cortex is compromised by even limited ATN damage. PMID:23660649

  10. Active Site Structure and Peroxidase Activity of Oxidatively Modified Cytochrome c Species in Complexes with Cardiolipin.

    PubMed

    Capdevila, Daiana A; Oviedo Rouco, Santiago; Tomasina, Florencia; Tortora, Verónica; Demicheli, Verónica; Radi, Rafael; Murgida, Daniel H

    2015-12-29

    We report a resonance Raman and UV-vis characterization of the active site structure of oxidatively modified forms of cytochrome c (Cyt-c) free in solution and in complexes with cardiolipin (CL). The studied post-translational modifications of Cyt-c include methionine sulfoxidation and tyrosine nitration, which lead to altered heme axial ligation and increased peroxidase activity with respect to those of the wild-type protein. In spite of the structural and activity differences between the protein variants free in solution, binding to CL liposomes induces in all cases the formation of a spectroscopically identical bis-His axial coordination conformer that more efficiently promotes lipid peroxidation. The spectroscopic results indicate that the bis-His form is in equilibrium with small amounts of high-spin species, thus suggesting a labile distal His ligand as the basis for the CL-induced increase in enzymatic activity observed for all protein variants. For Cyt-c nitrated at Tyr74 and sulfoxidized at Met80, the measured apparent binding affinities for CL are ∼4 times larger than for wild-type Cyt-c. On the basis of these results, we propose that these post-translational modifications may amplify the pro-apoptotic signal of Cyt-c under oxidative stress conditions at CL concentrations lower than for the unmodified protein. PMID:26620444

  11. Pyrethroid activity-based probes for profiling cytochrome P450 activities associated with insecticide interactions

    PubMed Central

    Ismail, Hanafy M.; O’Neill, Paul M.; Hong, David W.; Finn, Robert D.; Henderson, Colin J.; Wright, Aaron T.; Cravatt, Benjamin F.; Hemingway, Janet; Paine, Mark J. I.

    2013-01-01

    Pyrethroid insecticides are used to control diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity-based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid-metabolizing and nonmetabolizing mosquito P450s, as well as rodent microsomes, to measure labeling specificity, plus cytochrome P450 oxidoreductase and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using PyABPs, we were able to profile active enzymes in rat liver microsomes and identify pyrethroid-metabolizing enzymes in the target tissue. These included P450s as well as related detoxification enzymes, notably UDP-glucuronosyltransferases, suggesting a network of associated pyrethroid-metabolizing enzymes, or “pyrethrome.” Considering the central role P450s play in metabolizing insecticides, we anticipate that PyABPs will aid in the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450–insecticide interactions and aiding the development of unique tools for disease control. PMID:24248381

  12. Tryptamine serves as a proligand of the AhR transcriptional pathway whose activation is dependent of monoamine oxidases.

    PubMed

    Vikström Bergander, Linda; Cai, Wen; Klocke, Bernward; Seifert, Martin; Pongratz, Ingemar

    2012-09-01

    The function of the aryl hydrocarbon receptor (AhR) in mediating the biological effect to environmental pollutants is well established. However, accumulated evidence indicates a wide range of physiological and pathological functions mediated by the AhR, suggesting the existence of endogenous AhR ligand(s). The nature of an AhR ligand remain elusive; however, it is known that the AhR is activated by several compounds, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin or the tryptophan photoproduct 6-formylindolo[3,2-b]carbazole. In this study, we show that physiological concentrations of tryptamine (TA) lead to induction of cytochrome P4501A1 transcription through an AhR-dependent mechanism. In addition, we show that activation of the AhR by TA requires a functional monoamino oxidase system, suggesting that TA acts as an AhR proligand possibly by converting to a high-affinity AhR ligand. Taken together, we show a possible mechanism, through which AhR signaling is activated by endogenous conversion of TA involving monoamine oxidases. PMID:22865928

  13. Effects of dietary carbohydrate on iron metabolism and cytochrome oxidase activity in copper-deficient rats

    SciTech Connect

    Johnson, M.A.; Henderson, J.

    1986-03-01

    The effects of dietary carbohydrate on the metabolism of iron and the activity of cytochrome oxidase were examined in Cu-deficient and Cu-adequate rats. Male rats (n = 36) were fed one of six diets which varied in copper level (Cu-: < 0.6 ppm or Cu+: 8.2 ppm) and carbohydrate type (cornstarch, sucrose or fructose). After 31 days, Cu- rats had 50% more iron in the liver and 38, 30 and 18% less iron in the tibia, spleen and kidneys, respectively, than Cu+ rats. The activity of cytochrome oxidase in the bone marrow, heart, and liver were 59%, 51%, and 43%, respectively, of the levels in Cu/sup +/ rats. The type of dietary carbohydrate significantly affected the development of anemia during copper deficiency. Cu-rats fed cornstarch, sucrose or fructose had hematocrit levels which were 92, 83 or 73%, respectively, of Cu+ rats. Similarly, the levels of iron in the tibias of Cu- rats fed cornstarch, sucrose or fructose were 69, 66 or 54%, respectively, of Cu+ rats. The hematocrit levels of Cu- rats were positively correlated to both tibia iron levels (r = 0.64, p < 0.005) and liver cytochrome oxidase activities (r = 0.50, p < 0.05). Thus, it appears that changes in the metabolism of iron may be involved with the development of anemia in Cu- rats fed fructose or sucrose.

  14. Role of active site loop in coenzyme binding and flavin reduction in cytochrome P450 reductase.

    PubMed

    Mothersole, Robert G; Meints, Carla E; Louder, Alex; Wolthers, Kirsten R

    2016-09-15

    Cytochrome P450 reductase (CPR) contains a loop within the active site (comprising Asp(634), Ala(635), Arg(636) and Asn(637); human CPR numbering) that relocates upon NADPH binding. Repositioning of the loop triggers the reorientation of an FAD-shielding tryptophan (Trp(679)) to a partially stacked conformer, reducing the energy barrier for displacement of the residue by the NADPH nicotinamide ring: an essential step for hydride transfer. We used site-directed mutagenesis and kinetic analysis to investigate if the amino acid composition of the loop influences the catalytic properties of CPR. The D634A and D634N variants elicited a modest increase in coenzyme binding affinity coupled with a 36- and 10-fold reduction in cytochrome c(3+) turnover and a 17- and 3-fold decrease in the pre-steady state rate of flavin reduction. These results, in combination with a reduction in the kinetic isotope effect for hydride transfer, suggest that diminished activity is due to destabilization of the partially stacked conformer of Trp(677) and slower release of NADP(+). In contrast, R636A, R636S and an A635G/R636S double mutant led to a modest increase in cytochrome c(3+) reduction, which is linked to weaker coenzyme binding and faster interflavin electron transfer. A potential mechanism by which Arg(636) influences catalysis is discussed. PMID:27461959

  15. Induction of in vitro EROD activity and in vivo caffeine metabolism in two species of New Zealand birds.

    PubMed

    Numata, Mihoko; Fawcett, J Paul; Rosengren, Rhonda J

    2008-05-01

    In birds, induction of cytochrome P4501A (CYP1A) is usually assessed as liver microsomal ethoxyresorufin O-deethylase (EROD) activity, but in mammals, it can be determined by a caffeine metabolism blood test. We investigated both of these measures in two species of New Zealand birds. Administration of a model CYP1A inducer, β-naphthoflavone (BNF) (80mg/kg i.p. twice 2 days apart), to paradise shelducks (Tadorna variegata; herbivore) and southern black-backed gulls (Larus dominicanus; omnivore) (n=5 or 6) caused marked increases in EROD activity (80- and 20-fold, respectively). In both species, BNF treatment also caused significant increases (>8-fold) in caffeine metabolism determined prior to sacrifice as the serum concentration ratio of the major metabolite, paraxanthine, to caffeine, after caffeine administration (1mg/kg i.p.). The results suggest in vivo caffeine metabolism is a potentially useful non-destructive biomarker of CYP1A induction in wild birds. PMID:21783874

  16. The Frequency of 1,4-Benzoquinone-Lysine Adducts in Cytochrome c Correlate with Defects in Apoptosome Activation

    PubMed Central

    Fisher, Ashley A.; Labenski, Matthew T.; Chapman, John D.; Bratton, Shawn B.; Monks, Terrence J.; Lau, Serrine S.

    2011-01-01

    Electrophile-mediated post-translational modifications (PTMs) are known to cause tissue toxicities and disease progression. These effects are mediated via site-specific modifications and structural disruptions associated with such modifications. 1,4-Benzoquinone (BQ) and its quinone-thioether metabolites are electrophiles that elicit their toxicity via protein arylation and the generation of reactive oxygen species. Site-specific BQ-lysine adducts are found on residues in cytochrome c that are necessary for protein-protein interactions, and these adducts contribute to interferences in its ability to facilitate apoptosome formation. To further characterize the structural and functional impact of these BQ-mediated PTMs, the original mixture of BQ-adducted cytochrome c was fractionated by liquid isoelectric focusing to provide various fractions of BQ-adducted cytochrome c species devoid of the native protein. The fractionation process separates samples based on their isoelectric point (pI), and because BQ adducts form predominantly on lysine residues, increased numbers of BQ adducts on cytochrome c correlate with a lower protein pI. Each fraction was analyzed for structural changes, and each was also assayed for the ability to support apoptosome-mediated activation of caspase-3. Circular dichroism revealed that several of the BQ-adducted cytochrome c species maintained a slightly more rigid structure in comparison to native cytochrome c. BQ-adducted cytochrome c also failed to activate caspase-3, with increasing numbers of BQ-lysine adducts corresponding to a greater inability to activate the apoptosome. In summary, the specific site of the BQ-lysine adducts, and the nature of the adduct, are important determinants of the subsequent structural changes to cytochrome c. In particular, adducts at sites necessary for protein-protein interactions interfere with the proapoptotic function of cytochrome c. PMID:21527774

  17. Cytochrome b5 Activates the 17,20-Lyase Activity of Human Cytochrome P450 17A1 by Increasing the Coupling of NADPH Consumption to Androgen Production.

    PubMed

    Peng, Hwei-Ming; Im, Sang-Choul; Pearl, Naw May; Turcu, Adina F; Rege, Juilee; Waskell, Lucy; Auchus, Richard J

    2016-08-01

    Human cytochrome P450 17A1 is required for all androgen biosynthesis and is the target of abiraterone, a drug used widely to treat advanced prostate cancer. P450 17A1 catalyzes both 17-hydroxylation and subsequent 17,20-lyase reactions with pregnenolone, progesterone, and allopregnanolone. The presence of cytochrome b5 (b5) markedly stimulates the 17,20-lyase reaction, with little effect on 17-hydroxylation; however, the mechanism of this b5 effect is not known. We determined the influence of b5 on coupling efficiency-defined as the ratio of product formation to NADPH consumption-in a reconstituted system using these 3 pairs of substrates for the 2 reactions. Rates of NADPH consumption ranged from 4 to 13 nmol/min/nmol P450 with wild-type P450 17A1. For the 17-hydroxylase reaction, progesterone oxidation was the most tightly coupled (∼50%) and negligibly changed upon addition of b5. Rates of NADPH consumption were similar for the 17-hydroxylase and corresponding 17,20-lyase reactions for each steroid series, and b5 only slightly increased NADPH consumption. For the 17,20-lyase reactions, b5 markedly increased product formation and coupling in parallel with all substrates, from 6% to 44% with the major substrate 17-hydroxypregnenolone. For the naturally occurring P450 17A1 mutations E305G and R347H, which impair 17,20-lyase activity, b5 failed to rescue the poor coupling with 17-hydroxypregnenolone (2-4%). When the conserved active-site threonine was mutated to alanine (T306A), both the activity and coupling were markedly decreased with all substrates. We conclude that b5 stimulation of the 17,20-lyase reaction primarily derives from more efficient use of NADPH for product formation rather than side products. PMID:27426448

  18. Regulation of cytochrome c oxidase activity by c-Src in osteoclasts

    PubMed Central

    Miyazaki, Tsuyoshi; Neff, Lynn; Tanaka, Sakae; Horne, William C.; Baron, Roland

    2003-01-01

    The function of the nonreceptor tyrosine kinase c-Src as a plasma membrane–associated molecular effector of a variety of extracellular stimuli is well known. Here, we show that c-Src is also present within mitochondria, where it phosphorylates cytochrome c oxidase (Cox). Deleting the c-src gene reduces Cox activity, and this inhibitory effect is restored by expressing exogenous c-Src. Furthermore, reducing endogenous Src kinase activity down-regulates Cox activity, whereas activating Src has the opposite effect. Src-induced Cox activity is required for normal function of cells that require high levels of ATP, such as mitochondria-rich osteoclasts. The peptide hormone calcitonin, which inhibits osteoclast function, also down-regulates Cox activity. Increasing Src kinase activity prevented the inhibitory effect of calcitonin on Cox activity and osteoclast function. These results suggest that c-Src plays a previously unrecognized role in maintaining cellular energy stores by activating Cox in mitochondria. PMID:12615910

  19. Unusually high thermal stability and peroxidase activity of cytochrome c in ionic liquid colloidal formulation.

    PubMed

    Bharmoria, Pankaj; Kumar, Arvind

    2016-01-11

    Ionic liquid (IL) surfactant choline dioctylsulfosuccinate, [Cho][AOT], formed polydispersed vesicular structures in the IL, ethylmethylimidazolium ethylsulfate, [C2mim][C2OSO3]. Cytochrome c dissolved in such a colloidal medium has shown very high peroxidase activity (∼2 times to that in neat IL and ∼4 times to that in an aqueous buffer). Significantly, the enzyme retained both structural stability and functional activity in IL colloidal solutions up to 180 °C, demonstrating the suitability of the system as a high temperature bio-catalytic reactor. PMID:26529242

  20. [Activity of 5-aminolevulinate synthase in rat liver during degradation of cytochrome P-450 caused by administration of cadmium chloride].

    PubMed

    Kaliman, P A; Inshina, N N

    2003-01-01

    The 5-aminolevulinate synthase, tryptophan-2,3-dioxygenase activities and cytochrome P-450 content in the rat liver was studied in different terms after CdCl2 administration and after administration of metal salt against a background of 2-hours action of alpha-tocopherol. The lowering of activity of 5-aminolevulinate synthase in 2 h with the consequent increase of the enzyme activity in 6 h and 24 h was detected. The holoenzyme activity and heme saturation of tryptophan-2,3-dioxygenase increased 6 h after CdCl2 administration. The holoenzyme activity and the total activity of tryptophan-2,3-dioxygenase rised in 24 h. The level of cytochrome P-450 lowered. Preliminary administration of alpha-tocopherol prevented changes of studied parameters 24 h after CdCl2 administration. The relationship between decrease of cytochrome P-450 level and 5-aminolevulinate synthase activation are discussed. PMID:14577179

  1. Molecular Interface of S100A8 with Cytochrome b558 and NADPH Oxidase Activation

    PubMed Central

    Berthier, Sylvie; Hograindleur, Marc-André; Paclet, Marie-Hélène; Polack, Benoît; Morel, Françoise

    2012-01-01

    S100A8 and S100A9 are two calcium binding Myeloid Related Proteins, and important mediators of inflammatory diseases. They were recently introduced as partners for phagocyte NADPH oxidase regulation. However, the precise mechanism of their interaction remains elusive. We had for aim (i) to evaluate the impact of S100 proteins on NADPH oxidase activity; (ii) to characterize molecular interaction of either S100A8, S100A9, or S100A8/S100A9 heterocomplex with cytochrome b558; and (iii) to determine the S100A8 consensus site involved in cytochrome b558/S100 interface. Recombinant full length or S100A9-A8 truncated chimera proteins and ExoS-S100 fusion proteins were expressed in E. coli and in P. aeruginosa respectively. Our results showed that S100A8 is the functional partner for NADPH oxidase activation contrary to S100A9, however, the loading with calcium and a combination with phosphorylated S100A9 are essential in vivo. Endogenous S100A9 and S100A8 colocalize in differentiated and PMA stimulated PLB985 cells, with Nox2/gp91phox and p22phox. Recombinant S100A8, loaded with calcium and fused with the first 129 or 54 N-terminal amino acid residues of the P. aeruginosa ExoS toxin, induced a similar oxidase activation in vitro, to the one observed with S100A8 in the presence of S100A9 in vivo. This suggests that S100A8 is the essential component of the S100A9/S100A8 heterocomplex for oxidase activation. In this context, recombinant full-length rS100A9-A8 and rS100A9-A8 truncated 90 chimera proteins as opposed to rS100A9-A8 truncated 86 and rS100A9-A8 truncated 57 chimeras, activate the NADPH oxidase function of purified cytochrome b558 suggesting that the C-terminal region of S100A8 is directly involved in the molecular interface with the hemoprotein. The data point to four strategic 87HEES90 amino acid residues of the S100A8 C-terminal sequence that are involved directly in the molecular interaction with cytochrome b558 and then in the phagocyte NADPH oxidase activation

  2. Environmentally persistent free radicals inhibit cytochrome P450 activity in rat liver microsomes.

    PubMed

    Reed, James R; Cawley, George F; Ardoin, Taylor G; Dellinger, Barry; Lomnicki, Slawomir M; Hasan, Farhana; Kiruri, Lucy W; Backes, Wayne L

    2014-06-01

    Combustion processes generate particulate matter that affects human health. When incineration fuels include components that are highly enriched in aromatic hydrocarbons (especially halogenated varieties) and redox-active metals, ultrafine particulate matter containing air-stable, environmentally persistent free radicals (EPFRs) is generated. The exposure to fine EPFRs (less than 2.5 μm in diameter) has been shown to negatively influence pulmonary and cardiovascular functions in living organisms. The goal of this study was to determine if these EPFRs have a direct effect on cytochrome P450 function. This was accomplished by direct addition of the EPFRs to rat liver microsomal preparations and measurement of several P450 activities using form-selective substrates. The EPFRs used in this study were formed by heating vapors from an organic compound (either monochlorophenol (MCP230) or 1,2-dichlorobenzene (DCB230)) and 5% copper oxide supported on silica (approximately 0.2 μm in diameter) to 230°C under vacuum. Both types of EPFRs (but not silica, physisorbed silica, or silica impregnated with copper oxide) dramatically inhibited the activities of CYP1A, CYP2B, CYP2E1, CYP2D2 and CYP3A when incubated at concentrations less than 0.1 mg/ml with microsomes and NADPH. Interestingly, at the same concentrations, the EPFRs did not inhibit HO-1 activity or the reduction of cytochrome c by NADPH-cytochrome P450 reductase. CYP2D2-selective metabolism by rat liver microsomes was examined in more detail. The inhibition of CYP2D2-selective metabolism by both DCB230- and MCP230-EPFRs appeared to be largely noncompetitive and was attenuated in the presence of catalase suggesting that reactive oxygen species may be involved in the mechanism of inhibition. PMID:24713513

  3. Heme oxygenase-1 enhances renal mitochondrial transport carriers and cytochrome C oxidase activity in experimental diabetes.

    PubMed

    Di Noia, Maria Antonietta; Van Driesche, Sarah; Palmieri, Ferdinando; Yang, Li-Ming; Quan, Shuo; Goodman, Alvin I; Abraham, Nader G

    2006-06-01

    Up-regulation of heme oxygenase (HO-1) by either cobalt protoporphyrin (CoPP) or human gene transfer improves vascular and renal function by several mechanisms, including increases in antioxidant levels and decreases in reactive oxygen species (ROS) in vascular and renal tissue. The purpose of the present study was to determine the effect of HO-1 overexpression on mitochondrial transporters, cytochrome c oxidase, and anti-apoptotic proteins in diabetic rats (streptozotocin, (STZ)-induced type 1 diabetes). Renal mitochondrial carnitine, deoxynucleotide, and ADP/ATP carriers were significantly reduced in diabetic compared with nondiabetic rats (p < 0.05). The citrate carrier was not significantly decreased in diabetic tissue. CoPP administration produced a robust increase in carnitine, citrate, deoxynucleotide, dicarboxylate, and ADP/ATP carriers and no significant change in oxoglutarate and aspartate/glutamate carriers. The increase in mitochondrial carriers (MCs) was associated with a significant increase in cytochrome c oxidase activity. The administration of tin mesoporphyrin (SnMP), an inhibitor of HO-1 activity, prevented the restoration of MCs in diabetic rats. Human HO-1 cDNA transfer into diabetic rats increased both HO-1 protein and activity, and restored mitochondrial ADP/ATP and deoxynucleotide carriers. The increase in HO-1 by CoPP administration was associated with a significant increase in the phosphorylation of AKT and levels of BcL-XL proteins. These observations in experimental diabetes suggest that the cytoprotective mechanism of HO-1 against oxidative stress involves an increase in the levels of MCs and anti-apoptotic proteins as well as in cytochrome c oxidase activity. PMID:16595661

  4. Cytochrome b5 augments 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase activity.

    PubMed

    Goosen, Pierre; Storbeck, Karl-Heinz; Swart, Amanda C; Conradie, Riaan; Swart, Pieter

    2011-11-01

    During adrenal steroidogenesis the competition between 3β-hydroxysteroid dehydrogenase/Δ(5)-Δ(4) isomerase (3βHSD) and cytochrome P450 17α-hydroxylase/17,20 lyase (CYP17A1) for Δ(5) steroid intermediates greatly influences steroidogenic output. Cytochrome-b(5) (Cyt-b(5)), a small electron transfer hemoprotein, known to augment the lyase activity of CYP17A1, has been shown to alter the steroidogenic outcome of this competition. In this study, the influence of Cyt-b(5) on 3βHSD activity was investigated. In COS-1 cells, Cyt-b(5) was shown to significantly increase the activity of both caprine and ovine 3βHSD towards pregnenolone, 17-OH pregnenolone and dehydroepiandrosterone in a substrate and species specific manner. Furthermore, kinetic studies revealed Cyt-b(5) to have no influence on the K(m) values while significantly increasing the V(max) values of ovine 3βHSD for all its respective substrates. In addition, the activity of ovine 3βHSD in microsomal preparations was significantly influenced by the addition of either purified Cyt-b(5) or anti-Cyt-b(5) IgG. The results presented in this study indicate that Cyt-b(5) augments 3βHSD activity and represents the first documentation of such augmentation in any species. PMID:21930205

  5. Cocaine reduces cytochrome oxidase activity in the prefrontal cortex and modifies its functional connectivity with brainstem nuclei

    PubMed Central

    Vélez-Hernández, M.E.; Padilla, E.; Gonzalez-Lima, F.; Jiménez-Rivera, C.A.

    2014-01-01

    Cocaine-induced psychomotor stimulation may be mediated by metabolic hypofrontality and modification of brain functional connectivity. Functional connectivity refers to the pattern of relationships among brain regions, and one way to evaluate this pattern is using interactivity correlations of the metabolic marker cytochrome oxidase among different regions. This is the first study of how repeated cocaine modifies: (1) mean cytochrome oxidase activity in neural areas using quantitative enzyme histochemistry, and (2) functional connectivity among brain regions using inter-correlations of cytochrome oxidase activity. Rats were injected with 15 mg/kg i.p. cocaine or saline for 5 days, which lead to cocaine-enhanced total locomotion. Mean cytochrome oxidase activity was significantly decreased in cocaine-treated animals in the superficial dorsal and lateral frontal cortical association areas Fr2 and Fr3 when compared to saline-treated animals. Functional connectivity showed that the cytochrome oxidase activity of the noradrenergic locus coeruleus and the infralimbic cortex were positively inter-correlated in cocaine but not in control rats. Positive cytochrome oxidase activity inter-correlations were also observed between the dopaminergic substantia nigra compacta and Fr2 and Fr3 areas and the lateral orbital cortex in cocaine-treated animals. In contrast, cytochrome oxidase activity in the interpeduncular nucleus was negatively correlated with that of Fr2, anterior insular cortex, and lateral orbital cortex in saline but not in cocaine groups. After repeated cocaine specific prefrontal areas became hypometabolic and their functional connectivity changed in networks involving noradrenergic and dopaminergic brainstem nuclei. We suggest that this pattern of hypofrontality and altered functional connectivity may contribute to cocaine-induced psychomotor stimulation. PMID:24505625

  6. Environmentally persistent free radicals inhibit cytochrome P450 activity in rat liver microsomes

    SciTech Connect

    Reed, James R.; Cawley, George F.; Ardoin, Taylor G.; Dellinger, Barry; Lomnicki, Slawomir M.; Hasan, Farhana; Kiruri, Lucy W.; Backes, Wayne L.

    2014-06-01

    Combustion processes generate particulate matter that affects human health. When incineration fuels include components that are highly enriched in aromatic hydrocarbons (especially halogenated varieties) and redox-active metals, ultrafine particulate matter containing air-stable, environmentally persistent free radicals (EPFRs) is generated. The exposure to fine EPFRs (less than 2.5 μm in diameter) has been shown to negatively influence pulmonary and cardiovascular functions in living organisms. The goal of this study was to determine if these EPFRs have a direct effect on cytochrome P450 function. This was accomplished by direct addition of the EPFRs to rat liver microsomal preparations and measurement of several P450 activities using form-selective substrates. The EPFRs used in this study were formed by heating vapors from an organic compound (either monochlorophenol (MCP230) or 1,2-dichlorobenzene (DCB230)) and 5% copper oxide supported on silica (approximately 0.2 μm in diameter) to 230 °C under vacuum. Both types of EPFRs (but not silica, physisorbed silica, or silica impregnated with copper oxide) dramatically inhibited the activities of CYP1A, CYP2B, CYP2E1, CYP2D2 and CYP3A when incubated at concentrations less than 0.1 mg/ml with microsomes and NADPH. Interestingly, at the same concentrations, the EPFRs did not inhibit HO-1 activity or the reduction of cytochrome c by NADPH-cytochrome P450 reductase. CYP2D2-selective metabolism by rat liver microsomes was examined in more detail. The inhibition of CYP2D2-selective metabolism by both DCB230- and MCP230-EPFRs appeared to be largely noncompetitive and was attenuated in the presence of catalase suggesting that reactive oxygen species may be involved in the mechanism of inhibition. - Highlights: • Combustion of organic pollutants generates long-lived particulate radicals (EPFRs). • EPFRs inhibit metabolism by all cytochromes P450 tested in rat liver microsomes. • EPFR-mediated inhibition is related to

  7. Cytochrome P450 Family 1 Inhibitors and Structure-Activity Relationships

    PubMed Central

    Liu, Jiawang; Sridhar, Jayalakshmi; Foroozesh, Maryam

    2014-01-01

    With the widespread use of O-alkoxyresorufin dealkylation assays since the 1990’s, thousands of inhibitors of cytochrome P450 family 1 enzymes (P450s 1A1, 1A2, and 1B1) have been identified and studied. Generally, planar polycyclic molecules such as polycyclic aromatic hydrocarbons, stilbenoids, and flavonoids are considered to potentially be effective inhibitors of these enzymes. However, the details of structure-activity relationships and selectivity of these inhibitors are still ambiguous. In this review, we thoroughly discuss the selectivity of many representative P450 family 1 inhibitors reported in the past 20 years through a meta-analysis. PMID:24287985

  8. Apoptosis in Heart Failure: Release of Cytochrome c from Mitochondria and Activation of Caspase-3 in Human Cardiomyopathy

    NASA Astrophysics Data System (ADS)

    Narula, Jagat; Pandey, Pramod; Arbustini, Eloisa; Haider, Nezam; Narula, Navneet; Kolodgie, Frank D.; dal Bello, Barbara; Semigran, Marc J.; Bielsa-Masdeu, Anna; Dec, G. William; Israels, Sara; Ballester, Manel; Virmani, Renu; Saxena, Satya; Kharbanda, Surender

    1999-07-01

    Apoptosis has been shown to contribute to loss of cardiomyocytes in cardiomyopathy, progressive decline in left ventricular function, and congestive heart failure. Because the molecular mechanisms involved in apoptosis of cardiocytes are not completely understood, we studied the biochemical and ultrastructural characteristics of upstream regulators of apoptosis in hearts explanted from patients undergoing transplantation. Sixteen explanted hearts from patients undergoing heart transplantation were studied by electron microscopy or immunoblotting to detect release of mitochondrial cytochrome c and activation of caspase-3. The hearts explanted from five victims of motor vehicle accidents or myocardial ventricular tissues from three donor hearts were used as controls. Evidence of apoptosis was observed only in endstage cardiomyopathy. There was significant accumulation of cytochrome c in the cytosol, over myofibrils, and near intercalated discs of cardiomyocytes in failing hearts. The release of mitochondrial cytochrome c was associated with activation of caspase-3 and cleavage of its substrate protein kinase C δ but not poly(ADP-ribose) polymerase. By contrast, there was no apparent accumulation of cytosolic cytochrome c or caspase-3 activation in the hearts used as controls. The present study provides in vivo evidence of cytochrome c-dependent activation of cysteine proteases in human cardiomyopathy. Activation of proteases supports the phenomenon of apoptosis in myopathic process. Because loss of myocytes contributes to myocardial dysfunction and is a predictor of adverse outcomes in the patients with congestive heart failure, the present demonstration of an activated apoptotic cascade in cardiomyopathy could provide the basis for novel interventional strategies.

  9. Inhibition of acetylcholinesterase and cytochrome oxidase activity in Fasciola gigantica cercaria by phytoconstituents.

    PubMed

    Sunita, Kumari; Habib, Maria; Kumar, P; Singh, Vinay Kumar; Husain, Syed Akhtar; Singh, D K

    2016-02-01

    Fasciolosis is an important cattle and human disease caused by Fasciola hepatica and Fasciola gigantica. One of the possible methods to control this problem is to interrupt the life cycle of Fasciola by killing its larva (redia and cercaria) in host snail. Molecular identification of cercaria larva of F. gigantica was done by comparing the nucleotide sequencing with adult F. gigantica. It was noted that nucleotide sequencing of cercaria larva and adult F. gigantica were 99% same. Every month during the year 2011-2012, in vivo treatment with 60% of 4 h LC50 of phyto cercaricides citral, ferulic acid, umbelliferone, azadirachtin and allicin caused significant inhibition of acetylcholinesterase (AChE) and cytochrome oxidase activity in the treated cercaria larva of F. gigantica. Whereas, activity of both enzymes were not significantly altered in the nervous tissues of vector snail Lymnaea acuminata exposed to same treatments. Maximum reduction in AChE (1.35% of control in month of June) and cytochrome oxidase (3.71% of control in the month of July) activity were noted in the cercaria exposed to 60% of 4 h LC50 of azadirachtin and allicin, respectively. PMID:26536397

  10. Effect of tamoxifen on the enzymatic activity of human cytochrome CYP2B6.

    PubMed

    Sridar, Chitra; Kent, Ute M; Notley, Lisa M; Gillam, Elizabeth M J; Hollenberg, Paul F

    2002-06-01

    Tamoxifen is primarily used in the treatment of breast cancer. It has been approved as a chemopreventive agent for individuals at high risk for this disease. Tamoxifen is metabolized to a number of different products by cytochrome P450 enzymes. The effect of tamoxifen on the enzymatic activity of bacterially expressed human cytochrome CYP2B6 in a reconstituted system has been investigated. The 7-ethoxy-4-(trifluoromethyl)coumarin O-deethylation activity of purified CYP2B6 was inactivated by tamoxifen in a time- and concentration-dependent manner. Enzymatic activity was lost only in samples that were incubated with both tamoxifen and NADPH. The inactivation was characterized by a K(I) of 0.9 microM, a k(inact) of 0.02 min(-1), and a t(1/2) of 34 min. The loss in the 7-ethoxy-4-(trifluoromethyl)coumarin O-deethylation activity did not result in a similar percentage loss in the reduced carbon monoxide spectrum, suggesting that the heme moiety was not the major site of modification. The activity of CYP2B6 was not recovered after removal of free tamoxifen using spin column gel filtration. The loss in activity seemed to be due to a modification of the CYP2B6 and not reductase because adding fresh reductase back to the inactivated samples did not restore enzymatic activity. A reconstituted system containing purified CYP2B6, NADPH-reductase, and NADPH-generating system was found to catalyze tamoxifen metabolism to 4-OH-tamoxifen, 4'-OH-tamoxifen, and N-desmethyl-tamoxifen as analyzed by high-performance liquid chromatography analysis. Preliminary studies showed that tamoxifen had no effect on the activities of CYP1B1 and CYP3A4, whereas CYP2D6 and CYP2C9 exhibited a 25% loss in enzymatic activity. PMID:12023523

  11. Fluorescence-based screening of cytochrome P450 activities in intact cells.

    PubMed

    Donato, M Teresa; Gómez-Lechón, M José

    2013-01-01

    Fluorimetric methods to assess cytochrome P450 (P450) activities that do not require metabolite separation have been developed. These methods make use of non- or low-fluorescent P450 substrates that produce highly fluorescent metabolites in aqueous solutions. The assays are based on the direct incubation of intact cells in culture with appropriate fluorogenic probe substrates, followed by fluorimetric quantification of the product formed and released into incubation medium. We describe a battery of fluorescence assays for rapid measurement of the activity of nine P450s involved in drug metabolism. For each individual P450 activity the probe showing the best properties (highest metabolic rates, lowest background fluorescence) has been selected. Fluorescence-based assays are highly sensitive and allow the simultaneous activity assessments of cells cultured in 96-well plates, using plate readers, with notable reductions in costs, time, and cells, thus enhancing sample throughput. PMID:23475674

  12. Inhibition of Peroxidase Activity of Cytochrome c: De Novo Compound Discovery and Validation

    PubMed Central

    Bakan, Ahmet; Kapralov, Alexandr A.; Bayir, Hulya; Hu, Feizhou; Kagan, Valerian E.

    2015-01-01

    Cytochrome c (cyt c) release from mitochondria is accepted to be the point of no return for eliciting a cascade of interactions that lead to apoptosis. A strategy for containing sustained apoptosis is to reduce the mitochondrial permeability pore opening. Pore opening is enhanced by peroxidase activity of cyt c gained upon its complexation with cardiolipin in the presence of reactive oxygen species. Blocking access to the heme group has been proposed as an effective intervention method for reducing, if not eliminating, the peroxidase activity of cyt c. In the present study, using a combination of druggability simulations, pharmacophore modeling, virtual screening, and in vitro fluorescence measurements to probe peroxidase activity, we identified three repurposable drugs and seven compounds that are validated to effectively inhibit the peroxidase activity of cyt c. PMID:26078313

  13. Chemical proteomic probes for profiling cytochrome P450 activities and drug interactions in vivo

    PubMed Central

    Wright, Aaron T.; Cravatt, Benjamin F.

    2007-01-01

    The cytochrome P450 (P450) superfamily metabolizes many endogenous signaling molecules and drugs. P450 enzymes are regulated by post-translational mechanisms in vivo, which hinders their functional characterization by conventional genomic or proteomic methods. Here, we describe a chemical proteomic strategy to profile P450 activities directly in living systems. Derivatization of a mechanism-based inhibitor with a “clickable” handle provided an activity-based probe that labels multiple P450s both in proteomic extracts and in vivo. This probe was used to record alterations in liver P450 activities triggered by chemical agents, including inducers of P450 expression and direct P450 inhibitors. The chemical proteomic strategy described herein thus offers a versatile method to monitor P450 activities and small molecule interactions in any biological system and, through doing so, should facilitate the functional characterization of this large and diverse enzyme class. PMID:17884636

  14. Size-dependent effects of nanoparticles on the activity of cytochrome P450 isoenzymes

    SciTech Connect

    Froehlich, Eleonore; Kueznik, Tatjana; Samberger, Claudia; Roblegg, Eva; Wrighton, Christopher

    2010-02-01

    Nanoparticles are known to be able to interfere with cellular metabolism and to cause cytotoxicity and moreover may interfere with specific cellular functions. Serious effects on the latter include changes in liver cell function. The cytochrome P450 system is expressed in many cells but is especially important in hepatocytes and hormone-producing cells. The interaction of polystyrene nanoparticles with the most important drug-metabolizing cytochrome P450 isoenzymes, CYP3A4, CYP2D6, CYP2C9 and CYP2A1 expressed individually in insect cells (BACULOSOMES) was studied by the cleavage of substrates coupled to a fluorescent dye. The data obtained for individual isoenzymes were compared to metabolism in microsomes isolated from normal liver and from the hepatoma cell line H4-II-E-C3. Small (20-60 nm) carboxyl polystyrene particles but not larger (200 nm) ones reached high intracellular concentrations in the vicinity of the endoplasmic reticulum. These small particles inhibited the enzymatic activity of CYP450 isoenzymes in BACULOSOMES and substrate cleavage in normal liver microsomes. They moreover increased the effect of known inhibitors of the cytochrome P450 system (cimetidine, phenobarbital and paclitaxel). Substrate cleavage by the hepatoma cell line H4-II-E-C3 in contrast was undetectable, making this cell line unsuitable for this type of study. Our results thus demonstrate that nanoparticles can inhibit the metabolism of xenobiotics by the CYP450 system in model systems in vitro. Such inhibition could also potentially occur in vivo and possibly cause adverse effects in persons receiving medication.

  15. Superoxide anions mediate veratridine-induced cytochrome c release and caspase activity in bovine chromaffin cells

    PubMed Central

    Jordán, Joaquín; Galindo, María F; Tornero, Daniel; Benavides, Amparo; González, Constancio; Agapito, María T; González-Garcia, Carmen; Ceña, Valentín

    2002-01-01

    Mitochondrial mechanisms involved in veratridine-induced chromaffin cell death have been explored. Exposure to veratridine (30 μM, 1 h) produces cytochrome c release to the cytoplasm that seems to be mediated by superoxide anions and that is blocked by cyclosporin A (10 μM), MnTBAP (10 nM), catalase (100 IU ml−1) and vitamin E (50 μM). Following veratridine treatment, there is an increase in caspase-like activity, blocked by vitamin E (50 μM) and the mitochondrial permeability transition pore blocker cyclosporin A (10 μM). Superoxide anions open the mitochondrial permeability transition pore in isolated mitochondria, an effect that is blocked by vitamin E (50 μM) and cyclosporin A (10 μM), but not by the Ca2+ uniporter blocker ruthenium red (5 μM). These results strongly suggest that under the stress situation caused by veratridine, superoxide anions become important regulators of mitochondrial function in chromaffin cells. Exposure of isolated bovine chromaffin mitochondria to Ca2+ results in mitochondrial swelling. This effect was prevented by ruthenium red (5 μM) and cyclosporin A (10 μM), while it was not modified by vitamin E (50 μM). Veratridine (30 μM, 1 h) markedly decreased total glutathione and GSH content in bovine chromaffin cells. In conclusion, superoxide anions seem to mediate veratridine-induced cytochrome c release, decrease in total glutathione, caspase activation and cell death in bovine chromaffin cells. PMID:12429571

  16. Polar bear hepatic cytochrome P450: Immunochemical quantitation, EROD/PROD activity and organochlorines

    SciTech Connect

    Letcher, R.J.; Norstrom, R.J. |

    1994-12-31

    Polar bears (Ursus maritimus) are an ubiquitous mammal atop the arctic marine food chain and bioaccumulate lipophilic environmental contaminants. Antibodies prepared against purified rat liver cytochrome P450-1 Al, -1 A2, -2Bl and -3Al enzymes have been found to cross-react with structurally-related orthologues present in the hepatic microsomes of wild polar bears, immunochemically determined levels of P450-1 A and -2B proteins in polar bear liver relative to liver of untreated rats suggested enzyme induction, probably as a result of exposure to xenobiotic contaminants. Optical density quantitation of the most immunochemically responsive isozymes P450-I Al, -IA2 and -2Bi to polygonal rabbit anti-rat P450-IA/IA2 sera and -2BI antibodies in hepatic microsomes of 13 adult male polar bars from the Resolute Bay area of the Canadian Arctic is presented. Correlations with EROD and PROD catalytic activities and levels of organochlorines, such as polychlorinated biphenyls (PCBs), 1,1-dichloro-2,2-bis(4-chlorophenyl)ethene (p,p-DDE) and their methyl sulfone (MeSO2-) metabolites are made to determine if compound-specific enzyme induction linkages exist. Inter-species immunochemical quantitation of isozymic P450 cytochromes can serve as an indicator of exposure to biologically active contaminant.

  17. Molecular Modeling Analysis of the Inhibition of Mitochondrial Cytochrome BC1 Complex Activity by Tocol Derivatives

    NASA Astrophysics Data System (ADS)

    Singh, Awantika; Hauer-Jensen, Martin; Compadre, Cesar M.; Kumar, K. Sree

    2011-06-01

    The biological functions of vitamin E related compounds have been of interest in biomedical research for several decades. Among those compounds, α-, β-, δ-, and γ-tocopherols and their oxidation products, α-, β-, δ-, γ-tocopherylquinone and their analogs α-TQo, γ-TQo, TMC20 and TMC40 were recently shown to inhibit the mitochondrial cytochrome bc1 complex. In this investigation the effects of the structural variation on the inhibition of the mitochondrial cytochrome bc1 complex were analyzed using Comparative Molecular Field Analysis (CoMFA). CoMFA performed using steric and electrostatic molecular fields produced a very good correlation. The best CoMFA models were obtained using the manual alignment of 12 compounds with 5 components (q2 = 0.589, SPRESS = 0.515, r2 = 0.992, s = 0.068 and F value = 156.520). The resulting contour maps produced by the best CoMFA model were helpful in identifying the structural features required for the biological activity of compounds under study. These results would be helpful for predicting the activity of new compounds, and they could be used for guiding the design, synthesis and development of new and more effective agents.

  18. Cytochrome c oxidase loses catalytic activity and structural integrity during the aging process in Drosophila melanogaster

    PubMed Central

    Ren, Jian-Ching; Rebrin, Igor; Klichko, Vladimir; Orr, William C.; Sohal, Rajindar S.

    2010-01-01

    The hypothesis, that structural deterioration of cytochrome c oxidase (CcO) is a causal factor in the age-related decline in mitochondrial respiratory activity and an increase in H2O2 generation, was tested in Drosophila melanogaster. CcO activity and the levels of seven different nuclear DNA-encoded CcO subunits were determined at three different stages of adult life, namely, young-, middle- and old-age. CcO activity declined progressively with age by 33%. Western blot analysis, using antibodies specific to Drosophila CcO subunits IV, Va, Vb, VIb, VIc, VIIc and VIII, indicated that the abundance these polypeptides decreased, ranging from 11 to 40%, during aging. These and previous results suggest that CcO is a specific intra-mitochondrial site of age-related deterioration, which may have a broad impact on mitochondrial physiology. PMID:20833144

  19. Understanding Oxadiazolothiazinone Biological Properties: Negative Inotropic Activity versus Cytochrome P450-Mediated Metabolism.

    PubMed

    Carosati, Emanuele; Cosimelli, Barbara; Ioan, Pierfranco; Severi, Elda; Katneni, Kasiram; Chiu, Francis C K; Saponara, Simona; Fusi, Fabio; Frosini, Maria; Matucci, Rosanna; Micucci, Matteo; Chiarini, Alberto; Spinelli, Domenico; Budriesi, Roberta

    2016-04-14

    We present a series of oxadiazolothiazinones, selective inotropic agents on isolated cardiac tissues, devoid of chronotropy and vasorelaxant activity. Functional and binding data for the precursor of the series (compound 1) let us hypothesize LTCC blocking activity and the existence of a recognition site specific for this scaffold. We synthesized and tested 22 new derivatives: introducing a para-methoxyphenyl at C-8 led to compound 12 (EC50 = 0.022 μM), twice as potent as its para-bromo analogue (1). For 10 analogues, we extended the characterization of the biological properties by including the assessment of metabolic stability in human liver microsomes and cytochrome P450 inhibition potential. We observed that the methoxy group led to active compounds with low metabolic stability and high CYP inhibition, whereas the protective effect of bromine resulted in enhanced metabolic stability and reduced CYP inhibition. Thus, we identified two para-bromo benzothiazino-analogues as candidates for further studies. PMID:26962886

  20. A cytochrome c peroxidase from Pseudomonas nautica 617 active at high ionic strength: expression, purification and characterization.

    PubMed

    Alves, T; Besson, S; Duarte, L C; Pettigrew, G W; Girio, F M; Devreese, B; Vandenberghe, I; Van Beeumen, J; Fauque, G; Moura, I

    1999-10-12

    Cytochrome c peroxidase was expressed in cells of Pseudomonas nautica strain 617 grown under microaerophilic conditions. The 36.5 kDa dihaemic enzyme was purified to electrophoretic homogeneity in three chromatographic steps. N-terminal sequence comparison showed that the Ps. nautica enzyme exhibits a high similarity with the corresponding proteins from Paracoccus denitrificans and Pseudomonas aeruginosa. UV-visible spectra confirm calcium activation of the enzyme through spin state transition of the peroxidatic haem. Monohaemic cytochrome c(552) from Ps. nautica was identified as the physiological electron donor, with a half-saturating concentration of 122 microM and allowing a maximal catalytic centre activity of 116,000 min(-1). Using this cytochrome the enzyme retained the same activity even at high ionic strength. There are indications that the interactions between the two redox partners are mainly hydrophobic in nature. PMID:10525144

  1. Atomic structure of the apoptosome: mechanism of cytochrome c- and dATP-mediated activation of Apaf-1

    PubMed Central

    Zhou, Mengying; Li, Yini; Hu, Qi; Bai, Xiao-chen; Huang, Weiyun; Yan, Chuangye; Scheres, Sjors H.W.; Shi, Yigong

    2015-01-01

    The apoptotic protease-activating factor 1 (Apaf-1) controls the onset of many known forms of intrinsic apoptosis in mammals. Apaf-1 exists in normal cells as an autoinhibited monomer. Upon binding to cytochrome c and dATP, Apaf-1 oligomerizes into a heptameric complex known as the apoptosome, which recruits and activates cell-killing caspases. Here we present an atomic structure of an intact mammalian apoptosome at 3.8 Å resolution, determined by single-particle, cryo-electron microscopy (cryo-EM). Structural analysis, together with structure-guided biochemical characterization, uncovered how cytochrome c releases the autoinhibition of Apaf-1 through specific interactions with the WD40 repeats. Structural comparison with autoinhibited Apaf-1 revealed how dATP binding triggers a set of conformational changes that results in the formation of the apoptosome. Together, these results constitute the molecular mechanism of cytochrome c- and dATP-mediated activation of Apaf-1. PMID:26543158

  2. Structural basis for inhibition of the histone chaperone activity of SET/TAF-Iβ by cytochrome c

    PubMed Central

    González-Arzola, Katiuska; Díaz-Moreno, Irene; Cano-González, Ana; Díaz-Quintana, Antonio; Velázquez-Campoy, Adrián; Moreno-Beltrán, Blas; López-Rivas, Abelardo; De la Rosa, Miguel A.

    2015-01-01

    Chromatin is pivotal for regulation of the DNA damage process insofar as it influences access to DNA and serves as a DNA repair docking site. Recent works identify histone chaperones as key regulators of damaged chromatin’s transcriptional activity. However, understanding how chaperones are modulated during DNA damage response is still challenging. This study reveals that the histone chaperone SET/TAF-Iβ interacts with cytochrome c following DNA damage. Specifically, cytochrome c is shown to be translocated into cell nuclei upon induction of DNA damage, but not upon stimulation of the death receptor or stress-induced pathways. Cytochrome c was found to competitively hinder binding of SET/TAF-Iβ to core histones, thereby locking its histone-binding domains and inhibiting its nucleosome assembly activity. In addition, we have used NMR spectroscopy, calorimetry, mutagenesis, and molecular docking to provide an insight into the structural features of the formation of the complex between cytochrome c and SET/TAF-Iβ. Overall, these findings establish a framework for understanding the molecular basis of cytochrome c-mediated blocking of SET/TAF-Iβ, which subsequently may facilitate the development of new drugs to silence the oncogenic effect of SET/TAF-Iβ’s histone chaperone activity. PMID:26216969

  3. Structural basis for inhibition of the histone chaperone activity of SET/TAF-Iβ by cytochrome c.

    PubMed

    González-Arzola, Katiuska; Díaz-Moreno, Irene; Cano-González, Ana; Díaz-Quintana, Antonio; Velázquez-Campoy, Adrián; Moreno-Beltrán, Blas; López-Rivas, Abelardo; De la Rosa, Miguel A

    2015-08-11

    Chromatin is pivotal for regulation of the DNA damage process insofar as it influences access to DNA and serves as a DNA repair docking site. Recent works identify histone chaperones as key regulators of damaged chromatin's transcriptional activity. However, understanding how chaperones are modulated during DNA damage response is still challenging. This study reveals that the histone chaperone SET/TAF-Iβ interacts with cytochrome c following DNA damage. Specifically, cytochrome c is shown to be translocated into cell nuclei upon induction of DNA damage, but not upon stimulation of the death receptor or stress-induced pathways. Cytochrome c was found to competitively hinder binding of SET/TAF-Iβ to core histones, thereby locking its histone-binding domains and inhibiting its nucleosome assembly activity. In addition, we have used NMR spectroscopy, calorimetry, mutagenesis, and molecular docking to provide an insight into the structural features of the formation of the complex between cytochrome c and SET/TAF-Iβ. Overall, these findings establish a framework for understanding the molecular basis of cytochrome c-mediated blocking of SET/TAF-Iβ, which subsequently may facilitate the development of new drugs to silence the oncogenic effect of SET/TAF-Iβ's histone chaperone activity. PMID:26216969

  4. Molecular Crowding Affects the Conformational Fluctuations, Peroxidase Activity, and Folding Landscape of Yeast Cytochrome c.

    PubMed

    Paul, Simanta Sarani; Sil, Pallabi; Chakraborty, Ritobrita; Haldar, Shubhasis; Chattopadhyay, Krishnananda

    2016-04-26

    To understand how a protein folds and behaves inside living cells, the effects of synthetic crowding media on protein folding, function, stability, and association have been studied in detail. Because the effect of excluded volume is more prominent in an extended state than in the native protein, a majority of these studies have been conducted in the unfolded state of different model proteins. Here, we have used fluorescence correlation spectroscopy (FCS) and other biophysical methods to investigate the effect of crowding agents Ficoll70 and Dextran70 on the nativelike state of cytochrome c from yeast. Yeast cytochrome c (y-cytc) contains a substantial expanded state in its native folded condition, which is present in equilibrium with a compact conformer in aqueous buffer. We have found that the crowding medium affects the native state equilibrium between compact and expanded states, shifting its population toward the compact conformer. As a result, the peroxidase activity of y-cytc decreases. Urea-induced protein stability measurements show that the compaction destabilizes the protein due to charge repulsions between similar charged clusters. Interestingly, the time constant of conformational fluctuations between the compact and expanded conformers has been found to increase in the crowded milieu, suggesting a crucial role of the solution microviscosity. PMID:27050502

  5. Impaired 17,20-Lyase Activity in Male Mice Lacking Cytochrome b5 in Leydig Cells.

    PubMed

    Sondhi, Varun; Owen, Bryn M; Liu, Jiayan; Chomic, Robert; Kliewer, Steven A; Hughes, Beverly A; Arlt, Wiebke; Mangelsdorf, David J; Auchus, Richard J

    2016-04-01

    Androgen and estrogen biosynthesis in mammals requires the 17,20-lyase activity of cytochrome P450 17A1 (steroid 17-hydroxylase/17,20-lyase). Maximal 17,20-lyase activity in vitro requires the presence of cytochrome b5 (b5), and rare cases of b5 deficiency in human beings causes isolated 17,20-lyase deficiency. To study the consequences of conditional b5 removal from testicular Leydig cells in an animal model, we generated Cyb5(flox/flox):Sf1-Cre (LeyKO) mice. The LeyKO male mice had normal body weights, testis and sex organ weights, and fertility compared with littermates. Basal serum and urine steroid profiles of LeyKO males were not significantly different than littermates. In contrast, marked 17-hydroxyprogesterone accumulation (100-fold basal) and reduced testosterone synthesis (27% of littermates) were observed after human chorionic gonadotropin stimulation in LeyKO animals. Testis homogenates from LeyKO mice showed reduced 17,20-lyase activity and a 3-fold increased 17-hydroxylase to 17,20-lyase activity ratio, which were restored to normal upon addition of recombinant b5. We conclude that Leydig cell b5 is required for maximal androgen synthesis and to prevent 17-hydroxyprogesterone accumulation in the mouse testis; however, the b5-independent 17,20-lyase activity of mouse steroid 17-hydroxylase/17,20-lyase is sufficient for normal male genital development and fertility. LeyKO male mice are a good model for the biochemistry but not the physiology of isolated 17,20-lyase deficiency in human beings. PMID:26974035

  6. Impaired 17,20-Lyase Activity in Male Mice Lacking Cytochrome b5 in Leydig Cells

    PubMed Central

    Sondhi, Varun; Owen, Bryn M.; Liu, Jiayan; Chomic, Robert; Kliewer, Steven A.; Hughes, Beverly A.; Arlt, Wiebke; Mangelsdorf, David J.

    2016-01-01

    Androgen and estrogen biosynthesis in mammals requires the 17,20-lyase activity of cytochrome P450 17A1 (steroid 17-hydroxylase/17,20-lyase). Maximal 17,20-lyase activity in vitro requires the presence of cytochrome b5 (b5), and rare cases of b5 deficiency in human beings causes isolated 17,20-lyase deficiency. To study the consequences of conditional b5 removal from testicular Leydig cells in an animal model, we generated Cyb5flox/flox:Sf1-Cre (LeyKO) mice. The LeyKO male mice had normal body weights, testis and sex organ weights, and fertility compared with littermates. Basal serum and urine steroid profiles of LeyKO males were not significantly different than littermates. In contrast, marked 17-hydroxyprogesterone accumulation (100-fold basal) and reduced testosterone synthesis (27% of littermates) were observed after human chorionic gonadotropin stimulation in LeyKO animals. Testis homogenates from LeyKO mice showed reduced 17,20-lyase activity and a 3-fold increased 17-hydroxylase to 17,20-lyase activity ratio, which were restored to normal upon addition of recombinant b5. We conclude that Leydig cell b5 is required for maximal androgen synthesis and to prevent 17-hydroxyprogesterone accumulation in the mouse testis; however, the b5-independent 17,20-lyase activity of mouse steroid 17-hydroxylase/17,20-lyase is sufficient for normal male genital development and fertility. LeyKO male mice are a good model for the biochemistry but not the physiology of isolated 17,20-lyase deficiency in human beings. PMID:26974035

  7. Immobilization and activity assay of cytochrome P450 on patterned lipid membranes

    SciTech Connect

    Ueda, Yoshihiro; Morigaki, Kenichi . E-mail: morigaki-kenichi@aist.go.jp; Tatsu, Yoshiro; Yumoto, Noboru; Imaishi, Hiromasa . E-mail: himaish@kobe-u.ac.jp

    2007-04-20

    We report on a methodology for immobilizing cytochrome P450 on the surface of micropatterned lipid bilayer membranes and measuring the enzymatic activity. The patterned bilayer comprised a matrix of polymeric lipid bilayers and embedded fluid lipid bilayers. The polymeric lipid bilayer domains act as a barrier to confine fluid lipid bilayers in defined areas and as a framework to stabilize embedded membranes. The fluid bilayer domains, on the other hand, can contain lipid compositions that facilitate the fusion between lipid membranes, and are intended to be used as the binding agent of microsomes containing rat CYP1A1. By optimizing the membrane compositions of the fluid bilayers, we could selectively immobilize microsomal membranes on these domains. The enzymatic activity was significantly higher on lipid bilayer substrates compared with direct adsorption on glass. Furthermore, competitive assay experiment between two fluorogenic substrates demonstrated the feasibility of bioassays based on immobilized P450s.

  8. Immobilization and activity assay of cytochrome P450 on patterned lipid membranes.

    PubMed

    Ueda, Yoshihiro; Morigaki, Kenichi; Tatsu, Yoshiro; Yumoto, Noboru; Imaishi, Hiromasa

    2007-04-20

    We report on a methodology for immobilizing cytochrome P450 on the surface of micropatterned lipid bilayer membranes and measuring the enzymatic activity. The patterned bilayer comprised a matrix of polymeric lipid bilayers and embedded fluid lipid bilayers. The polymeric lipid bilayer domains act as a barrier to confine fluid lipid bilayers in defined areas and as a framework to stabilize embedded membranes. The fluid bilayer domains, on the other hand, can contain lipid compositions that facilitate the fusion between lipid membranes, and are intended to be used as the binding agent of microsomes containing rat CYP1A1. By optimizing the membrane compositions of the fluid bilayers, we could selectively immobilize microsomal membranes on these domains. The enzymatic activity was significantly higher on lipid bilayer substrates compared with direct adsorption on glass. Furthermore, competitive assay experiment between two fluorogenic substrates demonstrated the feasibility of bioassays based on immobilized P450s. PMID:17335776

  9. 13C-Methyl isocyanide as an NMR probe for cytochrome P450 active sites.

    PubMed

    McCullough, Christopher R; Pullela, Phani Kumar; Im, Sang-Choul; Waskell, Lucy; Sem, Daniel S

    2009-03-01

    The cytochromes P450 (CYPs) play a central role in many biologically important oxidation reactions, including the metabolism of drugs and other xenobiotic compounds. Because they are often assayed as both drug targets and anti-targets, any tools that provide: (a) confirmation of active site binding and (b) structural data, would be of great utility, especially if data could be obtained in reasonably high throughput. To this end, we have developed an analog of the promiscuous heme ligand, cyanide, with a (13)CH(3)-reporter attached. This (13)C-methyl isocyanide ligand binds to bacterial (P450cam) and membrane-bound mammalian (CYP2B4) CYPs. It can be used in a rapid 1D experiment to identify binders, and provides a qualitative measure of structural changes in the active site. PMID:19199046

  10. Copper supplementation restores cytochrome c oxidase activity in cultured cells from patients with SCO2 mutations.

    PubMed Central

    Salviati, Leonardo; Hernandez-Rosa, Evelyn; Walker, Winsome F; Sacconi, Sabrina; DiMauro, Salvatore; Schon, Eric A; Davidson, Mercy M

    2002-01-01

    Human SCO2 is a nuclear-encoded Cu-binding protein, presumed to be responsible for the insertion of Cu into the mitochondrial cytochrome c oxidase (COX) holoenzyme. Mutations in SCO2 are associated with cardioencephalomyopathy and COX deficiency. Studies in yeast and bacteria have shown that Cu supplementation can restore COX activity in cells harbouring mutations in genes involving Cu transport. Therefore we investigated whether Cu supplementation could restore COX activity in cultured cells from patients with SCO2 mutations. Our data demonstrate that the COX deficiency observed in fibroblasts, myoblasts and myotubes from patients with SCO2 mutations can be restored to almost normal levels by the addition of CuCl(2) to the growth medium. PMID:11931660

  11. Enantioselective Enzyme-Catalyzed Aziridination Enabled by Active-Site Evolution of a Cytochrome P450

    PubMed Central

    2015-01-01

    One of the greatest challenges in protein design is creating new enzymes, something evolution does all the time, starting from existing ones. Borrowing from nature’s evolutionary strategy, we have engineered a bacterial cytochrome P450 to catalyze highly enantioselective intermolecular aziridination, a synthetically useful reaction that has no natural biological counterpart. The new enzyme is fully genetically encoded, functions in vitro or in whole cells, and can be optimized rapidly to exhibit high enantioselectivity (up to 99% ee) and productivity (up to 1,000 catalytic turnovers) for intermolecular aziridination, demonstrated here with tosyl azide and substituted styrenes. This new aziridination activity highlights the remarkable ability of a natural enzyme to adapt and take on new functions. Once discovered in an evolvable enzyme, this non-natural activity was improved and its selectivity tuned through an evolutionary process of accumulating beneficial mutations. PMID:26405689

  12. Alterations of cytochrome P450-dependent monooxygenase activities in Eriocheir japonicus in response to water pollution.

    PubMed Central

    Ishizuka, M; Hoshi, H; Minamoto, N; Masuda, M; Kazusaka, A; Fujita, S

    1996-01-01

    Eriocheir japonicus, fresh-water crabs inhabiting rivers and estuaries in Japan, were investigated for cytochrome P450 (CYP)-dependent drug-metabolizing enzyme activities to see if these activities reflect the river pollution gradient. From the laboratory dose-response experiments, we found that the polycyclic aromatic hydrocarbon (PAH) 3-methylcholanthrene induced total CYP contents, ethoxycoumarin O-deethylase activity, and bunitrolol 4-hydroxylase activity in crab hepatopancreas. In the field studies, crabs collected from the river with the highest concentration of PAHs exhibited the highest levels of CYP, the highest activities of benzo[a]pyrene 3-hydroxylase, imipramine 2-hydroxylase, bunitrolol 4-hydroxylase, ethoxycoumarin O-deethylase, and the ability to metabolically activate benzo[a]pyrene, but erythromycin N-demethylase activity was not induced. The correlation between PAH levels and drug-metabolizing enzyme activities in female crabs were not as marked as in male crabs. The levels and activities of CYP did not appear to reflect the concentrations of organochlorines and polychlorinated biphenyl congeners (PCBs) studied in the fat of crab hepatopancreas. Images Figure 1. Figure 2. A Figure 2. B Figure 2. C Figure 3. Figure 4. A Figure 4. B Figure 5. A Figure 5. B Figure 5. C Figure 5. D Figure 5. E Figure 5. F Figure 6. PMID:8841764

  13. Pharmaceutical excipients inhibit cytochrome P450 activity in cell free systems and after systemic administration.

    PubMed

    Ren, Xiuhua; Mao, Xinliang; Si, Luqin; Cao, Lei; Xiong, Hui; Qiu, Jun; Schimmer, Aaron D; Li, Gao

    2008-09-01

    Excipients are largely used as inert vehicles in formulation. Recent studies indicated that some excipients could affect drug transport and disposition. But the effects of most excipients on drug metabolism are yet to be unveiled. To evaluate the actual action of pharmaceutical excipients in biotransformation, we examined the effects of 22 common excipients on cytochrome P450 3A4, the main CYP in intestinal and liver, using midazolam as the probe. The results showed that 15 of 22 (68.2%) tested excipients could inhibit the activity of CYP3A4 more than 50% in vitro, particularly the surfactants and polymers. To further understand these effects in vivo, five excipients were selected to study the effects on CYP3A4 in rats through the pharmacokinetics of midazolam and its primary metabolite 1'-hydroxymidazolam. In in vivo studies, most selected excipients significantly inhibited the activity of CYP3A4 by increasing the midazolam AUC(0-infinity) and decreasing the midazolam CL/F as well as decreasing the ratio of AUC(0-infinity) (1'-hydroxymidazolam)/AUC(0-infinity) (midazolam). For examples, single and multiple dose administration of PEG400 increased intraduodenally dosed midazolam AUC(0-infinity) to 1.78- and 1.51-fold, decreased midazolam CL/F from 8.86 to 5.25 and 6.28 L/h/kg and decreased the ratio of AUC(0-infinity) (1'-hydroxymidazolam)/AUC(0-infinity) (midazolam) from 1.14 to 0.34 and 0.39, respectively (p<0.05). This study indicated that some excipients could change drug metabolism through the effects on cytochrome P450 activity, such as CYP3A4, and thus this kind of inhibition should be taken into consideration in drug formulation and administration. PMID:18499414

  14. The mechanism by which oxygen and cytochrome c increase the rate of electron transfer from cytochrome a to cytochrome a3 of cytochrome c oxidase.

    PubMed

    Bickar, D; Turrens, J F; Lehninger, A L

    1986-11-01

    When cytochrome c oxidase is isolated from mitochondria, the purified enzyme requires both cytochrome c and O2 to achieve its maximum rate of internal electron transfer from cytochrome a to cytochrome a3. When reductants other than cytochrome c are used, the rate of internal electron transfer is very slow. In this paper we offer an explanation for the slow reduction of cytochrome a3 when reductants other than cytochrome c are used and for the apparent allosteric effects of cytochrome c and O2. Our model is based on the conventional understanding of cytochrome oxidase mechanism (i.e. electron transfer from cytochrome a/CuA to cytochrome a3/CuB), but assumes a relatively rapid two-electron transfer between cytochrome a/CuA and cytochrome a3/CuB and a thermodynamic equilibrium in the "resting" enzyme (the enzyme as isolated) which favors reduced cytochrome a and oxidized cytochrome a3. Using the kinetic constants that are known for this reaction, we find that the activating effects of O2 and cytochrome c on the rate of electron transfer from cytochrome a to cytochrome a3 conform to the predictions of the model and so provide no evidence of any allosteric effects or control of cytochrome c oxidase by O2 or cytochrome c. PMID:3021740

  15. Potent inhibition by star fruit of human cytochrome P450 3A (CYP3A) activity.

    PubMed

    Hidaka, Muneaki; Fujita, Ken-ichi; Ogikubo, Tetsuya; Yamasaki, Keishi; Iwakiri, Tomomi; Okumura, Manabu; Kodama, Hirofumi; Arimori, Kazuhiko

    2004-06-01

    There has been very limited information on the capacities of tropical fruits to inhibit human cytochrome P450 3A (CYP3A) activity. Thus, the inhibitory effects of tropical fruits on midazolam 1'-hydroxylase activity of CYP3A in human liver microsomes were evaluated. Eight tropical fruits such as common papaw, dragon fruit, kiwi fruit, mango, passion fruit, pomegranate, rambutan, and star fruit were tested. We also examined the inhibition of CYP3A activity by grapefruit (white) and Valencia orange as controls. The juice of star fruit showed the most potent inhibition of CYP3A. The addition of a star fruit juice (5.0%, v/v) resulted in the almost complete inhibition of midazolam 1'-hydroxylase activity (residual activity of 0.1%). In the case of grape-fruit, the residual activity was 14.7%. The inhibition depended on the amount of fruit juice added to the incubation mixture (0.2-6.0%, v/v). The elongation of the preincubation period of a juice from star fruit (1.25 or 2.5%, v/v) with the microsomal fraction did not alter the CYP3A inhibition, suggesting that the star fruit did not contain a mechanism-based inhibitor. Thus, we discovered filtered extracts of star fruit juice to be inhibitors of human CYP3A activity in vitro. PMID:15155547

  16. Active-Site Hydration and Water Diffusion in Cytochrome P450cam: A Highly Dynamic Process

    SciTech Connect

    Miao, Yinglong; Baudry, Jerome Y

    2011-01-01

    Long-timescale molecular dynamics simulations (300 ns) are performed on both the apo- (i.e., camphor-free) and camphor-bound cytochrome P450cam (CYP101). Water diffusion into and out of the protein active site is observed without biased sampling methods. During the course of the molecular dynamics simulation, an average of 6.4 water molecules is observed in the camphor-binding site of the apo form, compared to zero water molecules in the binding site of the substrate-bound form, in agreement with the number of water molecules observed in crystal structures of the same species. However, as many as 12 water molecules can be present at a given time in the camphor-binding region of the active site in the case of apo-P450cam, revealing a highly dynamic process for hydration of the protein active site, with water molecules exchanging rapidly with the bulk solvent. Water molecules are also found to exchange locations frequently inside the active site, preferentially clustering in regions surrounding the water molecules observed in the crystal structure. Potential-of-mean-force calculations identify thermodynamically favored trans-protein pathways for the diffusion of water molecules between the protein active site and the bulk solvent. Binding of camphor in the active site modifies the free-energy landscape of P450cam channels toward favoring the diffusion of water molecules out of the protein active site.

  17. Compressibility and uncoupling of cytochrome P450cam: high pressure FTIR and activity studies.

    PubMed

    Jung, Christiane; Kozin, Sergey A; Canny, Bernard; Chervin, Jean-Claude; Hoa, Gaston Hui Bon

    2003-12-01

    The effect of the hydrostatic pressure on the CO ligand stretch vibration in cytochrome P450cam-CO bound with various substrates is studied by FTIR. The vibration frequency is linearily shifted to lower values with increasing pressure. The slope of the shift gives the isothermal compressibility of the heme pocket and is found to be related to the high-spin state content in an opposite direction to that previously observed from the pressure-induced shift of the Soret band. This opposite behaviour is explained by the dual effect of heme pocket water molecules both on the CO ligand and on electrostatic potentials produced by the protein at the distal side. The latter effect disturbs ligand-distal side contacts which are needed for a specific proton transfer in oxygen activation when dioxygen is the ligand. Their loss results in uncoupled H(2)O(2) formation. PMID:14630042

  18. Cytochromes P450 and species differences in xenobiotic metabolism and activation of carcinogen.

    PubMed Central

    Lewis, D F; Ioannides, C; Parke, D V

    1998-01-01

    The importance of cytochrome P450 isoforms to species differences in the metabolism of foreign compounds and activation of procarcinogens has been identified. The possible range of P450 isozymes in significant variations in toxicity exhibited by experimental rodent species may have a relevance to chemical risk assessment, especially as human P450s are likely to show changes in the way they metabolize xenobiotics. Consequently, in the safety evaluation of chemicals, we should be cautious in extrapolating results from experimental animal models to humans. This paper focuses on examples in which species differences in P450s lead to significant alterations in carcinogenic response, and includes a discussion of the current procedures for toxicity screening, with an emphasis on short-term tests. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9755138

  19. Novel approaches to the use of cytochrome P450 activities in wildlife toxicity studies

    SciTech Connect

    VandenBerg, M.; Bosveld, A.T.C.

    1995-12-31

    Many wildlife toxicity studies, e.g. with avian species, use cytochrome P450 activities as markers for biological activities of environmental contaminants. It has been established that induction of CYP1A1 correlates with Ah-receptor mediated toxicity of dioxin-like compounds in many species. In addition, CYP1A1 plays a significant role in bioactivation of polycyclic aromatics. So far very few studies focused on the natural function of P450 isoenzymes in wildlife species. Besides classical hepatic CYP1A(1) associated activities, like EROD and AHH, several new techniques are available to study the activities of various CYP isoenzymes. Caffeine N-demethylation, testosterone and 17ss-estradiol hydroxylation patterns can provide new insights in the physiological function of P450 isoenzymes and the induction of the basal activities by chemicals. So far little interest was given to processes which occur after the DNA-receptor binding, e.g. changes in steroid hormone metabolism and pathways in environmental toxicology. This in spite of the fact that very subtle changes in steroid hormone levels may have significant physiological implications. This presentation will focus on some P450 activities, besides CYP1A(1), which might be important for development and reproduction. Some experimental approaches, limitations and techniques will be discussed which could lead to elucidation of the possible endocrine function of P450s.

  20. Hepatic Cytochrome P450 Activity, Abundance, and Expression Throughout Human Development

    PubMed Central

    Sadler, Natalie C.; Nandhikonda, Premchendar; Webb-Robertson, Bobbie-Jo; Ansong, Charles; Anderson, Lindsey N.; Smith, Jordan N.; Corley, Richard A.

    2016-01-01

    Cytochrome P450s are oxidative metabolic enzymes that play critical roles in the biotransformation of endogenous compounds and xenobiotics. The expression and activity of P450 enzymes varies considerably throughout human development; the deficit in our understanding of these dynamics limits our ability to predict environmental and pharmaceutical exposure effects. In an effort to develop a more comprehensive understanding of the ontogeny of P450 enzymes, we employed a multi-omic characterization of P450 transcript expression, protein abundance, and functional activity. Modified mechanism-based inhibitors of P450s were used as chemical probes for isolating active P450 proteoforms in human hepatic microsomes with developmental stages ranging from early gestation to late adult. High-resolution liquid chromatography–mass spectrometry was used to identify and quantify probe-labeled P450s, allowing for a functional profile of P450 ontogeny. Total protein abundance profiles and P450 rRNA was also measured, and our results reveal life-stage–dependent variability in P450 expression, abundance, and activity throughout human development and frequent discordant relationships between expression and activity. We have significantly expanded the knowledge of P450 ontogeny, particularly at the level of individual P450 activity. We anticipate that these results will be useful for enabling predictive therapeutic dosing, and for avoiding potentially adverse and harmful reactions during maturation from both therapeutic drugs and environmental xenobiotics. PMID:27084891

  1. Hepatic Cytochrome P450 Activity, Abundance, and Expression Throughout Human Development.

    PubMed

    Sadler, Natalie C; Nandhikonda, Premchendar; Webb-Robertson, Bobbie-Jo; Ansong, Charles; Anderson, Lindsey N; Smith, Jordan N; Corley, Richard A; Wright, Aaron T

    2016-07-01

    Cytochrome P450s are oxidative metabolic enzymes that play critical roles in the biotransformation of endogenous compounds and xenobiotics. The expression and activity of P450 enzymes varies considerably throughout human development; the deficit in our understanding of these dynamics limits our ability to predict environmental and pharmaceutical exposure effects. In an effort to develop a more comprehensive understanding of the ontogeny of P450 enzymes, we employed a multi-omic characterization of P450 transcript expression, protein abundance, and functional activity. Modified mechanism-based inhibitors of P450s were used as chemical probes for isolating active P450 proteoforms in human hepatic microsomes with developmental stages ranging from early gestation to late adult. High-resolution liquid chromatography-mass spectrometry was used to identify and quantify probe-labeled P450s, allowing for a functional profile of P450 ontogeny. Total protein abundance profiles and P450 rRNA was also measured, and our results reveal life-stage-dependent variability in P450 expression, abundance, and activity throughout human development and frequent discordant relationships between expression and activity. We have significantly expanded the knowledge of P450 ontogeny, particularly at the level of individual P450 activity. We anticipate that these results will be useful for enabling predictive therapeutic dosing, and for avoiding potentially adverse and harmful reactions during maturation from both therapeutic drugs and environmental xenobiotics. PMID:27084891

  2. Effects of interferon-tau and steroids on cytochrome P450 activity in bovine endometrial epithelial cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of the current study was to examine cyclooxygenase (COX), cytochrome P450 1A (CYP1A) and 2C (CYP2C) activity in bovine endometrial cell cultures following exposure to oxytocin (OT), interferon-t (IFN), estradiol (E2) and/or progesterone (P4). Bovine endometrial epithelial cells were tr...

  3. 1-Ethynylpyrene, a suicide inhibitor of cytochrome P-450 dependent benzo(a)pyrene hydroxylase activity in liver microsomes

    SciTech Connect

    Gan, L.S.L.; Acebo, A.L.; Alworth, W.L.

    1984-08-14

    The preparation of 1-ethynylpyrene (EP) by incubation of EP with liver microsomes in the presence of NADPH yields fluorescent products briefly. Addition of microsomes restores the original rate. The metabolism of EP is initially more rapid in microsomes from 5,6-benzoflavone- (BF) pretreated rats than in those from phenobarbital (PB) pretreated rats or controls. Ep inhibits the hydroxylation of benzo(a)pyrene (BP) by liver microsomes. Ep more effectively inhibits the oxidation of BP in liver microsomes from BF rats than from PB rats or from controls. The inhibition of BP hydroxylation activity due to EP is dependent upon NADPH and is apparently irreversible. Kinetic analyses show that the inhibition of BP hydroxylation is due to loss of the activity by a process that is first order in EP and that reaches a limiting value at infinite EP concentrations. A self-catalyzed inhibition of the cytochrome P-450 dependent BP hydroxylation may occur in the presence of EP. Incubation with EP under conditions that result in loss of BP hydroxylase activity in microsomes from BF rats and 66% of the activity from PB rats causes the loss of 6 and 12% of the cytochrome P-450, respectively. Thus the loss of P-450 content is an insensitive measure of the effect of this inhibitor upon this cytochrome P-450 dependent enzyme activity. Selectivity of the loss of P-450 due to the incubation of the different microsomal preparations with EP is observed to be different than the selectivity for loss of BP hydroxylase activity. It is proposed that the inhibition of cytochrome P-450 dependent enzymes by alkynes need not involve heme alkylation and a resulting loss of P-450 content. In vivo EP does not cause a significant change in the cytochrome P-450 content in the microsomes isolated, or result in the change in BP hydroxylation.

  4. Posttranslational modification by an isolevuglandin diminishes activity of the mitochondrial cytochrome P450 27A1.

    PubMed

    Charvet, Casey D; Laird, James; Xu, Yunfeng; Salomon, Robert G; Pikuleva, Irina A

    2013-05-01

    Posttranslational modification by isolevuglandins (isoLGs), arachidonate oxidation products, is an important yet understudied process associated with altered protein properties. This type of modification is detected in cytochrome P450 27A1 (CYP27A1), a multifunction enzyme expressed in almost every cell and involved in the metabolism of cholesterol and other sterols. Previously, the CYP27A1 Lys(358)-isoLG adduct was found in human retina afflicted with age-related macular degeneration. Yet, the effect of Lys(358) modification on enzyme activity was not investigated. Herein, we characterized catalytic properties of Lys(358) as well as Lys(476) CYP27A1 mutants before and after isoLG treatment and quantified the extent of modification by multiple reaction monitoring. The K358R mutant was less susceptible to isoLG-induced loss of catalytic activity than the wild type (WT), whereas the K476R mutant was nearly as vulnerable as the WT. Both mutants showed less isoLG modification than WT. Thus, modification of Lys(358), a residue involved in redox partner interactions, is the major contributor to isoLG-associated loss of CYP27A1 activity. Our data show the specificity of isoLG modification, provide direct evidence that isoLG adduction impairs enzyme activity, and support our hypothesis that isoLG modification in the retina is detrimental to CYP27A1 enzyme activity, potentially disrupting cholesterol homeostasis. PMID:23479405

  5. Deficits in neuronal cytochrome P450 activity attenuate opioid analgesia but not opioid side effects.

    PubMed

    Hough, Lindsay B; Nalwalk, Julia W; Cleary, Rachel A; Phillips, James G; Fang, Cheng; Yang, Weizhu; Ding, Xinxin

    2014-10-01

    Morphine-like analgesics act on µ opioid receptors in the CNS to produce highly effective pain relief, but the same class of receptors also mediates non-therapeutic side effects. The analgesic properties of morphine were recently shown to require the activity of a brain neuronal cytochrome P450 epoxygenase, but the significance of this pathway for opioid side effects is unknown. Here we show that brain P450 activity is not required for three of morphine׳s major side effects (respiratory depression, constipation, and locomotor stimulation). Following systemic or intracerebroventricular administration of morphine, transgenic mice with brain neuron - specific reductions in P450 activity showed highly attenuated analgesic responses as compared with wild-type (control) mice. However, brain P450-deficient mice showed normal morphine-induced side effects (respiratory depression, locomotor stimulation, and inhibition of intestinal motility). Pretreatment of control mice with the P450 inhibitor CC12 similarly reduced the analgesia, but not these side effects of morphine. Because activation of brain µ opioid receptors produces both opioid analgesia and opioid side effects, dissociation of the mechanisms for the therapeutic and therapy-limiting effects of opioids has important consequences for the development of analgesics with reduced side effects and/or limited addiction liability. PMID:25062792

  6. Comparative hepatic cytochrome P450 activities and contaminant concentrations in caged carp and juvenile ducks

    SciTech Connect

    O`Keefe, P.; Gierthy, J.; Connor, S.; Bush, B.; Hong, C.S.; Wood, L.; Clayton, W.; Storm, R.

    1995-12-31

    Juvenile carp (Cyprinius carpio) weighing approx. 60 g were placed in cages located on the surface of sediments near an aluminum plant and an automobile parts plant in the Massena area of the St. Lawrence River. Fish were removed at weekly intervals over a 35 day exposure period and composited samples of liver tissue, cranial lipid, and fillet tissue were prepared for analysis of polynuclear aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDDs/PCDFs). Liver tissue was also stored at {minus}80 C for determination of microsomal Cytochrome P450 activity using the aryl hydrocarbon hydroxylase (AHH) assay. A control exposure was carried out upstream at an uncontaminated site. Juvenile pre-flight ducks (mallards, gadwalls, wood ducks and common mergansers) were collected in the contaminated areas on the St. Lawrence and on the Hudson River two to three months after hatching. Control pre-flight mallards, wood ducks and common mergansers were collected from remote lakes in the Addirondack State Park. Samples of subcutaneous fat and liver tissue were removed for analysis as described above for the carp. There was a three fold increase in AHH activity in the carp liver tissue at the end of the 35 day exposure period and there was a similar increase it activity for the mallards, common mergansers and wood ducks compared to controls. For each species the enzyme activity increases will be compared to the contaminant concentrations.

  7. Cardiolipin linoleic acid content and mitochondrial cytochrome c oxidase activity are associated in rat skeletal muscle.

    PubMed

    Fajardo, Val Andrew; McMeekin, Lauren; Saint, Caitlin; LeBlanc, Paul J

    2015-04-01

    Cardiolipin (CL) is an inner-mitochondrial membrane phospholipid that is important for optimal mitochondrial function. Specifically, CL and CL linoleic (18:2ω6) content are known to be positively associated with cytochrome c oxidase (COX) activity. However, this association has not been examined in skeletal muscle. In this study, rats were fed high-fat diets with a naturally occurring gradient in linoleic acid (coconut oil [CO], 5.8%; flaxseed oil [FO], 13.2%; safflower oil [SO], 75.1%) in an attempt to alter both mitochondrial CL fatty acyl composition and COX activity in rat mixed hind-limb muscle. In general, mitochondrial membrane lipid composition was fairly resistant to dietary treatments as only modest changes in fatty acyl composition were detected in CL and other major mitochondrial phospholipids such as phosphatidylcholine (PC) and phosphatidylethanolamine (PE). As a result of this resistance, CL 18:2ω6 content was not different between the dietary groups. Consistent with the lack of changes in CL 18:2ω6 content, mitochondrial COX activity was also not different between the dietary groups. However, correlational analysis using data obtained from rats across the dietary groups showed a significant relationship (p = 0.009, R(2) = 0.21). Specifically, our results suggest that CL 18:2ω6 content may positively influence mitochondrial COX activity thereby making this lipid molecule a potential factor related to mitochondrial health and function in skeletal muscle. PMID:25727371

  8. Physiological Content and Intrinsic Activities of 10 Cytochrome P450 Isoforms in Human Normal Liver Microsomes.

    PubMed

    Zhang, Hai-Feng; Wang, Huan-Huan; Gao, Na; Wei, Jun-Ying; Tian, Xin; Zhao, Yan; Fang, Yan; Zhou, Jun; Wen, Qiang; Gao, Jie; Zhang, Yang-Jun; Qian, Xiao-Hong; Qiao, Hai-Ling

    2016-07-01

    Due to a lack of physiologic cytochrome P450 (P450) isoform content, P450 activity is typically only determined at the microsomal level (per milligram of microsomal protein) and not at the isoform level (per picomole of P450 isoform), which could result in the misunderstanding of variations in P450 activity between individuals and further hinder development of personalized medicine. We found that there were large variations in protein content, mRNA levels, and intrinsic activities of the 10 P450s in 100 human liver samples, in which CYP2E1 and CYP2C9 showed the highest expression levels. P450 gene polymorphisms had different effects on activity at two levels: CYP3A5*3 and CYP2A6*9 alleles conferred increased activity at the isoform level but decreased activity at the microsomal level; CYP2C9*3 had no effect at the isoform level but decreased activity at the microsomal level. The different effects at each level stem from the different effects of each polymorphism on the resulting P450 protein. Individuals with CYP2A6*1/*4, CYP2A6*1/*9, CYP2C9*1/*3, CYP2D6 100C>T TT, CYP2E1 7632T>A AA, CYP3A5*1*3, and CYP3A5*3*3 genotypes had significantly lower protein content, whereas CYP2D6 1661G>C mutants had a higher protein content. In conclusion, we first offered the physiologic data of 10 P450 isoform contents and found that some single nucleotide polymorphisms had obvious effects on P450 expression in human normal livers. The effects of gene polymorphisms on intrinsic P450 activity at the isoform level were quite different from those at the microsomal level, which might be due to changes in P450 protein content. PMID:27189963

  9. Cancer Activation and Polymorphisms of Human Cytochrome P450 1B1

    PubMed Central

    Chun, Young-Jin; Kim, Donghak

    2016-01-01

    Human cytochrome P450 enzymes (P450s, CYPs) are major oxidative catalysts that metabolize various xenobiotic and endogenous compounds. Many carcinogens induce cancer only after metabolic activation and P450 enzymes play an important role in this phenomenon. P450 1B1 mediates bioactivation of many procarcinogenic chemicals and carcinogenic estrogen. It catalyzes the oxidation reaction of polycyclic aromatic carbons, heterocyclic and aromatic amines, and the 4-hydroxylation reaction of 17β-estradiol. Enhanced expression of P450 1B1 promotes cancer cell proliferation and metastasis. There are at least 25 polymorphic variants of P450 1B1 and some of these have been reported to be associated with eye diseases. In addition, P450 1B1 polymorphisms can greatly affect the metabolic activation of many procarcinogenic compounds. It is necessary to understand the relationship between metabolic activation of such substances and P450 1B1 polymorphisms in order to develop rational strategies for the prevention of its toxic effect on human health. PMID:27123158

  10. Effects of several pyrethroids on hepatic cytochrome P450 activities in rats.

    PubMed

    Abdou, Rania; Sasaki, Kazuaki; Khalil, Waleed; Shah, Syed; Murasawa, Youhei; Shimoda, Minoru

    2010-04-01

    Four commonly used pyrethroids (permethrin, bifenthrin, ethofenprox, and fenpropathrin) were orally administered to Sprague-Dawley rats for 5 days to study their effects on the liver cytochrome P450 (CYP) activities. Also Michaelis-Menten kinetics of the metabolic reactions catalyzed by liver CYPs were examined after adding these pyrethroids to the assay system to investigate their possible inhibitory effects on liver CYPs activities. These reactions included ethoxyresorufin O-deethylation, tolbutamide hydroxylation, bufuralol 1'-hydroxylation, and midazolam 4-hydroxylation, for CYP1A, 2C, 2D, and 3A activities, respectively. Results showed that oral administration of bifenthrin and ethofenprox highly induced CYP1A. The most potent inhibitors for CYP1A were fenpropathrin and cis-permethrin with K(i) values of 3.71 & 3.87 microM, respectively. CYP2D was slightly inhibited by both of fenpropathrin and cis-permethrin (K(i) values were 307.32 & 632.23 microM, respectively). On the other hand, none of CYP2C or 3A was inhibited by the tested pyrethroids. Since CYP1A may relate to biotransformation of many chemicals to reactive metabolites, bifenthrin and ethofenprox may potentiate mutagenicity of the chemicals through their inducing effects on CYP 1A. As permethrin and fenpropathrin were potent inhibitor for CYP1A, they may result in substantial accumulation of some chemicals. The resultant accumulation may lead to fatal toxicities in some case. PMID:20009351

  11. Inhibitory effect of mitragynine on human cytochrome P450 enzyme activities

    PubMed Central

    Hanapi, N. A.; Ismail, S.; Mansor, S. M.

    2013-01-01

    Context: To date, many findings reveal that most of the modern drugs have the ability to interact with herbal drugs. Aims: This study was conducted to determine the inhibitory effects of mitragynine on cytochrome P450 2C9, 2D6 and 3A4 activities. Methods and Material: The in vitro study was conducted using a high-throughput luminescence assay. Statistical Analysis: Statistical analysis was conducted using one-way ANOVA and Dunnett's test with P < 0.05 vs. control. The IC50 values were calculated using the GraphPad Prism® 5 (Version 5.01, GraphPad Software, Inc., USA). Results: Assessment using recombinant enzymes showed that mitragynine gave the strongest inhibitory effect on CYP2D6 with an IC50 value of 0.45±0.33 mM, followed by CYP2C9 and CYP3A4 with IC50 values of 9.70±4.80 and 41.32±6.74 μM respectively. Positive inhibitors appropriate for CYP2C9, CYP2D6, and CYP3A4 which are sulfaphenazole, quinidine and ketoconazole were used respectively. Vmax values of CYP2C9, CYP2D6 and CYP3A4 were 0.0005, 0.01155 and 0.0137 μM luciferin formed/pmol/min respectively. Km values of CYP2C9, CYP2D6, and CYP3A4 were 32.65, 56.01, and 103.30 μM respectively. Mitragynine noncompetitively inhibits CYP2C9 and CYP2D6 activities with the Ki values of 61.48 and 12.86 μM respectively. On the other hand, mitragynine inhibits CYP3A4 competitively with a Ki value of 379.18 μM. Conclusions: The findings of this study reveal that mitragynine might inhibit cytochrome P450 enzyme activities, specifically CYP2D6. Therefore, administration of mitragynine together with herbal or modern drugs which follow the same metabolic pathway may contribute to herb-drug interactions. PMID:24174816

  12. Multiple, Ligand-Dependent Routes from the Active Site of Cytochrome P450 2C9

    SciTech Connect

    Cojocaru, Vlad; Winn, Peter J.; Wade, Rebecca C.

    2012-02-13

    The active site of liver-specific, drug-metabolizing cytochrome P450 (CYP) monooxygenases is deeply buried in the protein and is connected to the protein surface through multiple tunnels, many of which were found open in different CYP crystal structures. It has been shown that different tunnels could serve as ligand passage routes in different CYPs. However, it is not understood whether one CYP uses multiple routes for substrate access and product release and whether these routes depend on ligand properties. From 300 ns of molecular dynamics simulations of CYP2C9, the second most abundant CYP in the human liver we found four main ligand exit routes, the occurrence of each depending on the ligand type and the conformation of the F-G loop, which is likely to be affected by the CYP-membrane interaction. A non-helical F-G loop favored exit towards the putative membrane-embedded region. Important protein features that direct ligand exit include aromatic residues that divide the active site and whose motions control access to two pathways. The ligands interacted with positively charged residues on the protein surface through hydrogen bonds that appear to select for acidic substrates. The observation of multiple, ligand-dependent routes in a CYP aids understanding of how CYP mutations affect drug metabolism and provides new possibilities for CYP inhibition.

  13. Active sites of two orthologous cytochromes P450 2E1: Differences revealed by spectroscopic methods

    SciTech Connect

    Anzenbacherova, Eva; Hudecek, Jiri; Murgida, Daniel; Hildebrandt, Peter; Marchal, Stephane; Lange, Reinhard; Anzenbacher, Pavel . E-mail: anzen@tunw.upol.cz

    2005-12-09

    Cytochromes P450 2E1 of human and minipig origin were examined by absorption spectroscopy under high hydrostatic pressure and by resonance Raman spectroscopy. Human enzyme tends to denature to the P420 form more easily than the minipig form; moreover, the apparent compressibility of the heme active site (as judged from a redshift of the absorption maximum with pressure) is greater than that of the minipig counterpart. Relative compactness of the minipig enzyme is also seen in the Raman spectra, where the presence of planar heme conformation was inferred from band positions characteristic of the low-spin heme with high degree of symmetry. In this respect, the CYP2E1 seems to be another example of P450 conformational heterogeneity as shown, e.g., by Davydov et al. for CYP3A4 [Biochem. Biophys. Res. Commun. 312 (2003) 121-130]. The results indicate that the flexibility of the CYP active site is likely one of its basic structural characteristics.

  14. Peptide-Mediated Specific Immobilization of Catalytically Active Cytochrome P450 BM3 Variant.

    PubMed

    Zernia, Sarah; Ott, Florian; Bellmann-Sickert, Kathrin; Frank, Ronny; Klenner, Marcus; Jahnke, Heinz-Georg; Prager, Andrea; Abel, Bernd; Robitzki, Andrea; Beck-Sickinger, Annette G

    2016-04-20

    Cytochrome P450 BM3 (CYP102A1) from Bacillus megaterium is an interesting target for biotechnological applications, because of its vast substrate variety combined with high P450 monooxygenase activity. The low stability in vitro could be overcome by immobilization on surfaces. Here we describe a novel method for immobilization on metal surfaces by using selectively binding peptides. A P450 BM3 triple mutant (3M-P450BM3: A74G, F87V, L188Q) was purified as protein thioester and ligated to indium tin oxide or gold binding peptides (BP) named HighSP-BP and Cys-BP, respectively. The ligation products were characterized by Western Blot and tryptic digestion combined with mass spectrometry, and displayed high affinity binding on the depicted surfaces. Next, we could demonstrate by benzyloxyresorufin O-dealkylation assay (BROD assay) that the activity of immobilized ligation products is higher than for the soluble form. The study provides a new tool for selective modification and immobilization of P450 variants. PMID:26967204

  15. Geneva cocktail for cytochrome p450 and P-glycoprotein activity assessment using dried blood spots.

    PubMed

    Bosilkovska, M; Samer, C F; Déglon, J; Rebsamen, M; Staub, C; Dayer, P; Walder, B; Desmeules, J A; Daali, Y

    2014-09-01

    The suitability of the capillary dried blood spot (DBS) sampling method was assessed for simultaneous phenotyping of cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp) using a cocktail approach. Ten volunteers received an oral cocktail capsule containing low doses of the probes bupropion (CYP2B6), flurbiprofen (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), midazolam (CYP3A), and fexofenadine (P-gp) with coffee/Coke (CYP1A2) on four occasions. They received the cocktail alone (session 1), and with the CYP inhibitors fluvoxamine and voriconazole (session 2) and quinidine (session 3). In session 4, subjects received the cocktail after a 7-day pretreatment with the inducer rifampicin. The concentrations of probes/metabolites were determined in DBS and plasma using a single liquid chromatography-tandem mass spectrometry method. The pharmacokinetic profiles of the drugs were comparable in DBS and plasma. Important modulation of CYP and P-gp activities was observed in the presence of inhibitors and the inducer. Minimally invasive one- and three-point (at 2, 3, and 6 h) DBS-sampling methods were found to reliably reflect CYP and P-gp activities at each session. PMID:24722393

  16. Regional brain cytochrome oxidase activity in beta-amyloid precursor protein transgenic mice with the Swedish mutation.

    PubMed

    Strazielle, C; Sturchler-Pierrat, C; Staufenbiel, M; Lalonde, R

    2003-01-01

    Cytochrome oxidase activity was examined in a transgenic mouse model of Alzheimer's disease with overexpression of the 751 amino acid isoform of beta-amyloid precursor protein with the Swedish mutation under control of the murine thy-1 promoter. The neuritic plaques, abundantly localized in the hippocampus and anterior neocortical areas, showed a core devoid of enzymatic activity surrounded by higher cytochrome oxidase activity at the sites of the dystrophic neurites and activated glial cells. Quantitative measures, taken only in the healthy-appearing regional areas without neuritic plaques, were higher in numerous limbic and non-limbic regions of transgenic mice in comparison with controls. Enzymatic activity was higher in the dentate gyrus and CA2-CA3 region of the hippocampus, the anterior cingulate and primary visual cortex, two olfactory structures, the ventral part of the neostriatum, the parafascicularis nucleus of the thalamus, and the subthalamic nucleus. Brainstem regions anatomically related with altered forebrain regions were more heavily labeled as well, including the substantia nigra, the periaqueductal gray, the superior colliculus, the medial raphe, the locus coeruleus and the adjacent parabrachial nucleus, as well as the pontine nuclei, red nucleus, and trigeminal motor nucleus. Functional brain organization is discussed in the context of Alzheimer's disease. Although hypometabolism is generally observed in this pathology, the increased cytochrome oxidase activity obtained in these transgenic mice can be the result of a functional compensation on the surviving neurons, or of an early mitochondrial alteration related to increased oxidative damage. PMID:12732258

  17. Essential requirement of cytochrome c release for caspase activation by procaspase-activating compound defined by cellular models

    PubMed Central

    Seervi, M; Joseph, J; Sobhan, P K; Bhavya, B C; Santhoshkumar, T R

    2011-01-01

    Mitochondrial cytochrome c (cyt. c) release and caspase activation are often impaired in tumors with Bcl-2 overexpression or Bax and Bak-defective status. Direct triggering of cell death downstream of Bax and Bak is an attractive strategy to kill such cancers. Small molecule compounds capable of direct caspase activation appear to be the best mode for killing such tumors. However, there is no precise model to screen such compounds. The currently employed cell-free systems possess the inherent drawback of lacking cellular contents and organelles that operate in integrating cell death signaling. We have developed highly refined cell-based approaches to validate direct caspase activation in cancer cells. Using this approach, we show that PAC-1 (first procaspase-activating compound), the first direct activator of procaspases identified in a cell-free system, in fact requires mitochondrial cyt. c release for triggering caspase activation similar to other antitumor agents. It can induce significant caspase activation and cell death in the absence of Bax and Bak, and in cells overexpressing Bcl-2 and Bcl-xL. This study for the first time defines precise criteria for the validation of direct caspase-activating compounds using specialized cellular models that is expected to accelerate the discovery of potential direct caspase activators. PMID:21900958

  18. Systematic genetic and genomic analysis of cytochrome P450 enzyme activities in human liver

    PubMed Central

    Yang, Xia; Zhang, Bin; Molony, Cliona; Chudin, Eugene; Hao, Ke; Zhu, Jun; Gaedigk, Andrea; Suver, Christine; Zhong, Hua; Leeder, J. Steven; Guengerich, F. Peter; Strom, Stephen C.; Schuetz, Erin; Rushmore, Thomas H.; Ulrich, Roger G.; Slatter, J. Greg; Schadt, Eric E.; Kasarskis, Andrew; Lum, Pek Yee

    2010-01-01

    Liver cytochrome P450s (P450s) play critical roles in drug metabolism, toxicology, and metabolic processes. Despite rapid progress in the understanding of these enzymes, a systematic investigation of the full spectrum of functionality of individual P450s, the interrelationship or networks connecting them, and the genetic control of each gene/enzyme is lacking. To this end, we genotyped, expression-profiled, and measured P450 activities of 466 human liver samples and applied a systems biology approach via the integration of genetics, gene expression, and enzyme activity measurements. We found that most P450s were positively correlated among themselves and were highly correlated with known regulators as well as thousands of other genes enriched for pathways relevant to the metabolism of drugs, fatty acids, amino acids, and steroids. Genome-wide association analyses between genetic polymorphisms and P450 expression or enzyme activities revealed sets of SNPs associated with P450 traits, and suggested the existence of both cis-regulation of P450 expression (especially for CYP2D6) and more complex trans-regulation of P450 activity. Several novel SNPs associated with CYP2D6 expression and enzyme activity were validated in an independent human cohort. By constructing a weighted coexpression network and a Bayesian regulatory network, we defined the human liver transcriptional network structure, uncovered subnetworks representative of the P450 regulatory system, and identified novel candidate regulatory genes, namely, EHHADH, SLC10A1, and AKR1D1. The P450 subnetworks were then validated using gene signatures responsive to ligands of known P450 regulators in mouse and rat. This systematic survey provides a comprehensive view of the functionality, genetic control, and interactions of P450s. PMID:20538623

  19. The Arabidopsis COX11 Homolog is Essential for Cytochrome c Oxidase Activity

    PubMed Central

    Radin, Ivan; Mansilla, Natanael; Rödel, Gerhard; Steinebrunner, Iris

    2015-01-01

    Members of the ubiquitous COX11 (cytochrome c oxidase 11) protein family are involved in copper delivery to the COX complex. In this work, we characterize the Arabidopsis thaliana COX11 homolog (encoded by locus At1g02410). Western blot analyses and confocal microscopy identified Arabidopsis COX11 as an integral mitochondrial protein. Despite sharing high sequence and structural similarities, the Arabidopsis COX11 is not able to functionally replace the Saccharomyces cerevisiae COX11 homolog. Nevertheless, further analysis confirmed the hypothesis that Arabidopsis COX11 is essential for COX activity. Disturbance of COX11 expression through knockdown (KD) or overexpression (OE) affected COX activity. In KD lines, the activity was reduced by ~50%, resulting in root growth inhibition, smaller rosettes and leaf curling. In OE lines, the reduction was less pronounced (~80% of the wild type), still resulting in root growth inhibition. Additionally, pollen germination was impaired in COX11 KD and OE plants. This effect on pollen germination can only partially be attributed to COX deficiency and may indicate a possible auxiliary role of COX11 in ROS metabolism. In agreement with its role in energy production, the COX11 promoter is highly active in cells and tissues with high-energy demand for example shoot and root meristems, or vascular tissues of source and sink organs. In COX11 KD lines, the expression of the plasma-membrane copper transporter COPT2 and of several copper chaperones was altered, indicative of a retrograde signaling pathway pertinent to copper homeostasis. Based on our data, we postulate that COX11 is a mitochondrial chaperone, which plays an important role for plant growth and pollen germination as an essential COX complex assembly factor. PMID:26734017

  20. The Arabidopsis COX11 Homolog is Essential for Cytochrome c Oxidase Activity.

    PubMed

    Radin, Ivan; Mansilla, Natanael; Rödel, Gerhard; Steinebrunner, Iris

    2015-01-01

    Members of the ubiquitous COX11 (cytochrome c oxidase 11) protein family are involved in copper delivery to the COX complex. In this work, we characterize the Arabidopsis thaliana COX11 homolog (encoded by locus At1g02410). Western blot analyses and confocal microscopy identified Arabidopsis COX11 as an integral mitochondrial protein. Despite sharing high sequence and structural similarities, the Arabidopsis COX11 is not able to functionally replace the Saccharomyces cerevisiae COX11 homolog. Nevertheless, further analysis confirmed the hypothesis that Arabidopsis COX11 is essential for COX activity. Disturbance of COX11 expression through knockdown (KD) or overexpression (OE) affected COX activity. In KD lines, the activity was reduced by ~50%, resulting in root growth inhibition, smaller rosettes and leaf curling. In OE lines, the reduction was less pronounced (~80% of the wild type), still resulting in root growth inhibition. Additionally, pollen germination was impaired in COX11 KD and OE plants. This effect on pollen germination can only partially be attributed to COX deficiency and may indicate a possible auxiliary role of COX11 in ROS metabolism. In agreement with its role in energy production, the COX11 promoter is highly active in cells and tissues with high-energy demand for example shoot and root meristems, or vascular tissues of source and sink organs. In COX11 KD lines, the expression of the plasma-membrane copper transporter COPT2 and of several copper chaperones was altered, indicative of a retrograde signaling pathway pertinent to copper homeostasis. Based on our data, we postulate that COX11 is a mitochondrial chaperone, which plays an important role for plant growth and pollen germination as an essential COX complex assembly factor. PMID:26734017

  1. Structural Re-arrangement and Peroxidase Activation of Cytochrome c by Anionic Analogues of Vitamin E, Tocopherol Succinate and Tocopherol Phosphate*

    PubMed Central

    Yanamala, Naveena; Kapralov, Alexander A.; Djukic, Mirjana; Peterson, Jim; Mao, Gaowei; Klein-Seetharaman, Judith; Stoyanovsky, Detcho A.; Stursa, Jan; Neuzil, Jiri; Kagan, Valerian E.

    2014-01-01

    Cytochrome c is a multifunctional hemoprotein in the mitochondrial intermembrane space whereby its participation in electron shuttling between respiratory complexes III and IV is alternative to its role in apoptosis as a peroxidase activated by interaction with cardiolipin (CL), and resulting in selective CL peroxidation. The switch from electron transfer to peroxidase function requires partial unfolding of the protein upon binding of CL, whose specific features combine negative charges of the two phosphate groups with four hydrophobic fatty acid residues. Assuming that other endogenous small molecule ligands with a hydrophobic chain and a negatively charged functionality may activate cytochrome c into a peroxidase, we investigated two hydrophobic anionic analogues of vitamin E, α-tocopherol succinate (α-TOS) and α-tocopherol phosphate (α-TOP), as potential inducers of peroxidase activity of cytochrome c. NMR studies and computational modeling indicate that they interact with cytochrome c at similar sites previously proposed for CL. Absorption spectroscopy showed that both analogues effectively disrupt the Fe-S(Met80) bond associated with unfolding of cytochrome c. We found that α-TOS and α-TOP stimulate peroxidase activity of cytochrome c. Enhanced peroxidase activity was also observed in isolated rat liver mitochondria incubated with α-TOS and tBOOH. A mitochondria-targeted derivative of TOS, triphenylphosphonium-TOS (mito-VES), was more efficient in inducing H2O2-dependent apoptosis in mouse embryonic cytochrome c+/+ cells than in cytochrome c−/− cells. Essential for execution of the apoptotic program peroxidase activation of cytochrome c by α-TOS may contribute to its known anti-cancer pharmacological activity. PMID:25278024

  2. LRPPRC mutation suppresses cytochrome oxidase activity by altering mitochondrial RNA transcript stability in a mouse model.

    PubMed

    Xu, Fenghao; Addis, Jane B L; Cameron, Jessie M; Robinson, Brian H

    2012-01-01

    LRPPRC (leucine-rich pentatricopeptide repeat-containing) has been shown to be essential for the maturation of COX (cytochrome c oxidase), possibly by stabilizing RNA transcripts of COXI, COXII and COXIII genes encoded in mtDNA (mitochondrial DNA). We established a mouse 'gene-trap' model using ES cells (embryonic stem cells) in which the C-terminus of LRPPRC has been replaced with a β-geo construct. Mice homozygous for this modification were found to be subject to embryonic lethality, with death before 12.5 dpc (days post-coitum). Biochemical analysis of MEFs (mouse embryonic fibroblasts) isolated from homozygous mutants showed a major decrease in COX activity, with slight reductions in other respiratory chain complexes with mtDNA encoded components. Constructs of LRPPRC containing different numbers of PPRs (pentatricopeptide repeats) were expressed as recombinant proteins and tested for their ability to bind to the COXI mRNA transcript. Full binding required the first 19 PPR motifs. A specific segment of COXI mRNA was identified as the binding target for LRPPRC, encoded by mouse mtDNA nucleotides 5961-6020. These data strongly suggest that LRPPRC is involved in the maturation of COX, and is involved in stabilizing of mitochondrial mRNAs encoding COX transcripts. PMID:21880015

  3. Cytochrome P450 peroxidase/peroxygenase mediated xenobiotic metabolic activation and cytotoxicity in isolated hepatocytes.

    PubMed

    Anari, M R; Khan, S; Liu, Z C; O'Brien, P J

    1995-12-01

    Cytochrome P450 (P450) can utilize organic hydroperoxides and peracids to support hydroxylation and dealkylation of various P450 substrates. However, the biological significance of this P450 peroxygenase/peroxidase activity in the bioactivation of xenobiotics in intact cells has not been demonstrated. We have shown that tert-butyl hydroperoxide (tBHP) markedly enhances 3-20-fold the cytotoxicity of various aromatic hydrocarbons and their phenolic metabolites. The tBHP-enhanced hepatocyte cytotoxicity of 4-nitroanisole (4-NA) and 4-hydroxyanisole (4-HA) was also accompanied by an increase in the hepatocyte O-demethylation of 4-NA and 4-HA up to 7.5- and 21-fold, respectively. Hepatocyte GSH conjugation by 4-HA was also markedly increased by tBHP. An LC/MS analysis of the GSH conjugates identified hydroquinone-GSH and 4-methoxy-catechol:GSH conjugates as the predominant adducts. Pretreatment of hepatocytes with P450 inhibitors, e.g., phenylimidazole, prevented tBHP-enhanced 4-HA metabolism, GSH depletion, and cytotoxicity. In conclusion, hydroperoxides can therefore be used by intact cells to support the bioactivation of xenobiotics through the P450 peroxidase/peroxygenase system. PMID:8605292

  4. Antioxidant activity evaluation by physiologically relevant assays based on haemoglobin peroxidase activity and cytochrome c-induced oxidation of liposomes.

    PubMed

    Mot, Augustin C; Bischin, Cristina; Muresan, Bianca; Parvu, Marcel; Damian, Grigore; Vlase, Laurian; Silaghi-Dumitrescu, Radu

    2016-06-01

    Two new protocols for exploring antioxidant-related chemical composition and reactivity are described: one based on a chronometric variation of a haemoglobin ascorbate peroxidase assay and one based on cytochrome c-induced oxidation of lecithin liposomes. Detailed accounts are given on their design, application, critical correlations with established methods and mechanisms. These assays are proposed to be physiologically relevant and bring new information regarding a real sample, both qualitative and quantitative. The well-known assays used for evaluation of antioxidant (re)activity are revisited and compared with these new methods. Extracts of the Hedera helix L. are examined as test case, with focus on seasonal variation and on leaf, fruit and flower with respect to chromatographic, spectroscopic and reactivity properties. According to the set of assays performed, winter are the most antioxidant, followed by summer leaves, and then by flowers and fruits. PMID:26208459

  5. The Effects of Milk Thistle (Silybum marianum) on Human Cytochrome P450 Activity

    PubMed Central

    Kawaguchi-Suzuki, Marina; Frye, Reginald F.; Zhu, Hao-Jie; Brinda, Bryan J.; Chavin, Kenneth D.; Bernstein, Hilary J.

    2014-01-01

    Milk thistle (Silybum marianum) extracts are widely used as a complementary and alternative treatment of various hepatic conditions and a host of other diseases/disorders. The active constituents of milk thistle supplements are believed to be the flavonolignans contained within the extracts. In vitro studies have suggested that some milk thistle components may significantly inhibit specific cytochrome P450 (P450) enzymes. However, determining the potential for clinically significant drug interactions with milk thistle products has been complicated by inconsistencies between in vitro and in vivo study results. The aim of the present study was to determine the effect of a standardized milk thistle supplement on major P450 drug-metabolizing enzymes after a 14-day exposure period. CYP1A2, CYP2C9, CYP2D6, and CYP3A4/5 activities were measured by simultaneously administering the four probe drugs, caffeine, tolbutamide, dextromethorphan, and midazolam, to nine healthy volunteers before and after exposure to a standardized milk thistle extract given thrice daily for 14 days. The three most abundant falvonolignans found in plasma, following exposure to milk thistle extracts, were silybin A, silybin B, and isosilybin B. The concentrations of these three major constituents were individually measured in study subjects as potential perpetrators. The peak concentrations and areas under the time-concentration curves of the four probe drugs were determined with the milk thistle administration. Exposure to milk thistle extract produced no significant influence on CYP1A2, CYP2C9, CYP2D6, or CYP3A4/5 activities. PMID:25028567

  6. Role of active oxygen species in the photodestruction of microsomal cytochrome P-450 and associated monooxygenases by hematoporphyrin derivative in rats

    SciTech Connect

    Das, M.; Dixit, R.; Mukhtar, H.; Bickers, D.R.

    1985-02-01

    The cytochrome P-450 in hepatic microsomes prepared from rats pretreated with hematoporphyrin derivative was shown to be rapidly destroyed in the presence of long-wave ultraviolet light. The photocatalytic destruction of the heme-protein was dependent on both the dose of ultraviolet light and of hematoporphyrin derivative administered to the animals. The destructive reaction was accompanied by increased formation of cytochrome P-420, loss of microsomal heme content, and diminished catalytic activity of cytochrome P-450-dependent monooxygenases such as aryl hydrocarbon hydroxylase and 7-ethoxycoumarin O-deethylase. The specificity of the effect on cytochrome P-450 was confirmed by the observation that other heme-containing moieties such as myoglobin and cytochrome c were not susceptible to photocatalytic destruction. The destruction of cytochrome P-450 was a photodynamic process requiring oxygen since quenchers of singlet oxygen, including 2,5-dimethylfuran, histidine, and beta-carotene, each substantially diminished the reaction. Scavengers of superoxide anion such as superoxide dismutase and of H/sub 2/O/sub 2/ such as catalase did not protect against photodestruction of cytochrome P-450, whereas inhibitors of the hydroxyl radical, including benzoate, mannitol, and ethyl alcohol, did afford protection. These results indicate that lipid-rich microsomal membranes and the heme-protein cytochrome P-450 embedded therein are potential targets of injury in cells exposed to hematoporphyrin derivative photosensitization.

  7. Inhibitory potency of quinolone antibacterial agents against cytochrome P450IA2 activity in vivo and in vitro.

    PubMed Central

    Fuhr, U; Anders, E M; Mahr, G; Sörgel, F; Staib, A H

    1992-01-01

    Inhibition of cytochrome P450IA2 activity is an important adverse effect of quinolone antibacterial agents. It results in a prolonged half-life for some drugs that are coadministered with quinolones, such as theophylline. The objective of the study described here was to define the parameters for quantifying the inhibitory potencies of quinolones against cytochrome P450IA2 in vivo and in vitro and to investigate the relationship between the results of both approaches. Cytochrome P450IA2 activity in vitro was measured by using the 3-demethylation rate of caffeine (500 microM) in human liver microsomes. The inhibitory potency of a quinolone in vitro was determined by calculating the decrease in the activity of cytochrome P450IA2 caused by addition of the quinolone (500 microM) into the incubation medium. The mean values (percent reduction of activity without quinolone) were as follows: enoxacin, 74.9%; ciprofloxacin, 70.4%; nalidixic acid, 66.6%; pipemidic acid, 59.3%; norfloxacin, 55.7%; lomefloxacin, 23.4%; pefloxacin, 22.0%; amifloxacin, 21.4%; difloxacin, 21.3%; ofloxacin, 11.8%; temafloxacin, 10.0%; fleroxacin, no effect. The inhibitory potency of a quinolone in vivo was defined by a dose- and bioavailability-normalized parameter calculated from changes of the elimination half-life of theophylline and/or caffeine reported in previously published studies. Taking the pharmacokinetics of the quinolones into account, it was possible to differentiate between substances with and without clinically relevant inhibitory effects by using results of in vitro investigations. The in vitro test described here may help to qualitatively predict the relevant drug interactions between quinolones and methylxanthines that occur during therapy. PMID:1510417

  8. Benzene metabolism by human liver microsomes in relation to cytochrome P450 2E1 activity.

    PubMed

    Seaton, M J; Schlosser, P M; Bond, J A; Medinsky, M A

    1994-09-01

    Low levels of benzene from sources including cigarette smoke and automobile emissions are ubiquitous in the environment. Since the toxicity of benzene probably results from oxidative metabolites, an understanding of the profile of biotransformation of low levels of benzene is critical in making a valid risk assessment. To that end, we have investigated metabolism of a low concentration of [14C]benzene (3.4 microM) by microsomes from human, mouse and rat liver. The extent of phase I benzene metabolism by microsomal preparations from 10 human liver samples and single microsomal preparations from both mice and rats was then related to measured activities of cytochrome P450 (CYP) 2E1. Measured CYP 2E1 activities, as determined by hydroxylation of p-nitrophenol, varied 13-fold (0.253-3.266 nmol/min/mg) for human samples. The fraction of benzene metabolized in 16 min ranged from 10% to 59%. Also at 16 min, significant amounts of oxidative metabolites were formed. Phenol was the main metabolite formed by all but two human microsomal preparations. In those samples, both of which had high CYP 2E1 activity, hydroquinone was the major metabolite formed. Both hydroquinone and catechol formation showed a direct correlation with CYP 2E1 activity over the range of activities present. A simulation model was developed based on a mechanism of competitive inhibition between benzene and its oxidized metabolites, and was fit to time-course data for three human liver preparations. Model calculations for initial rates of benzene metabolism ranging from 0.344 to 4.442 nmol/mg/min are directly proportional to measured CYP 2E1 activities. The model predicted the dependence of benzene metabolism on the measured CYP 2E1 activity in human liver samples, as well as in mouse and rat liver samples. These results suggest that differences in measured hepatic CYP 2E1 activity may be a major factor contributing to both interindividual and interspecies variations in hepatic metabolism of benzene

  9. Effects of curcumin on cytochrome P450 and glutathione S-transferase activities in rat liver.

    PubMed

    Oetari, S; Sudibyo, M; Commandeur, J N; Samhoedi, R; Vermeulen, N P

    1996-01-12

    The stability of curcumin, as well as the interactions between curcumin and cytochrome P450s (P450s) and glutathione S-transferases (GSTs) in rat liver, were studied. Curcumin is relatively unstable in phosphate buffer at pH 7.4. The stability of curcumin was strongly improved by lowering the pH or by adding glutathione (GSH), N-acetyl L-cysteine (NAC), ascorbic acid, rat liver microsomes, or rat liver cytosol. Curcumin was found to be a potent inhibitor of rat liver P450 1A1/1A2 measured as ethoxyresorufin deethylation (EROD) activity in beta-naphthoflavone (beta NF)-induced microsomes, a less potent inhibitor of P450 2B1/2B2, measured as pentoxyresorufin depentylation (PROD) activity in phenobarbital (PB)-induced microsomes and a weak inhibitor of P450 2E1, measured as p-nitrophenol (PNP) hydroxylation activity in pyrazole-induced microsomes. Ki values were 0.14 and 76.02 microM for the EROD- and PROD-activities, respectively, and 30 microM of curcumin inhibited only 9% of PNP-hydroxylation activity. In ethoxyresorufin deethylation (EROD) and pentoxyresorufin depentylation (PROD) experiments, curcumin showed a competitive type of inhibition. Curcumin was also a potent inhibitor of glutathione S-transferase (GST) activity in cytosol from liver of rats treated with phenobarbital (PB), beta-naphthoflavone (beta NF) and pyrazole (Pyr), when measured towards 1-chloro-2,4-dinitrobenzene (CDNB) as substrate. In liver cytosol from rats treated with phenobarbital (PB), curcumin inhibited GST activity in a mixed-type manner with a Ki of 5.75 microM and Ki of 12.5 microM. In liver cytosol from rats treated with pyrazole (Pyr) or beta-naphthoflavone (beta NF), curcumin demonstrated a competitive type of inhibition with Ki values of 1.79 microM and 2.29 microM, respectively. It is concluded that these strong inhibitory properties of curcumin towards P450s and GSTs, in addition to its well-known antioxidant activity, may help explain the previously observed anticarcinogenic

  10. Measuring cytochrome P450 activity in aquatic invertebrates: a critical evaluation of in vitro and in vivo methods.

    PubMed

    Gottardi, Michele; Kretschmann, Andreas; Cedergreen, Nina

    2016-03-01

    The first step in xenobiotic detoxification in aquatic invertebrates is mainly governed by the cytochrome P450 mixed function oxidase system. The ability to measure cytochrome P450 activity provides an important tool to understand macroinvertebrates' responses to chemical stressors. However, measurements of P450 activity in small aquatic invertebrates have had variable success and a well characterized assay is not yet available. The general lack of success has been scarcely investigated and it is therefore the focus of the present work. In particular, the suitability of the substrate selected for the assay, the sensitivity of the assay and the possible inhibition/attenuation of enzymatic activity caused by endogenous substances were investigated. 7-ethoxycoumarin-O-dealkylation activity of Daphnia magna, Chironomus riparius larvae and Hyalella azteca was assessed in vivo and in vitro and possible inhibition of enzymatic activity by macroinvertebrates homogenate was investigated. Activities of D. magna and C. riparius larvae measured in vivo were 1.37 ± 0.08 and 2.2 ± 0.2 pmol h(-1) organism(-1), respectively, while activity of H. azteca could not be detected. In vitro activity could be measured in C. riparius larvae only (500-1000 pmol h(-1) mg microsomal protein(-1)). The optimization of the in vitro assay has been especially long and resource consuming and particularly for D. magna, substances that inhibited cytochrome P450 activity seemed to be released during tissue homogenization preventing activity measurements in vitro. We therefore recommend testing the P450 inhibition potential of homogenate preparations prior to any investigation of P450 activity in vitro in macroinvertebrates. PMID:26686507

  11. ANALYSIS OF CPG METHYLATION IN THE KILLIFISH CYP1A PROMOTER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fundulus heteroclitus (Atlantic killifish or mummichog) inhabiting a creosote-contaminated Superfund site on the Elizabeth River (VA, USA), exhibit a lack of induction of cytochrome P4501A (CYP1A) mRNA, immunodetectable protein, and catalytic activity after exposure to typical inducers. This "refrac...

  12. Induction of renal cytochrome P450 arachidonic acid epoxygenase activity by dietary gamma-linolenic acid.

    PubMed

    Yu, Zhigang; Ng, Valerie Y; Su, Ping; Engler, Marguerite M; Engler, Mary B; Huang, Yong; Lin, Emil; Kroetz, Deanna L

    2006-05-01

    Dietary gamma-linolenic acid (GLA), a omega-6 polyunsaturated fatty acid found in borage oil (BOR), lowers systolic blood pressure in spontaneously hypertensive rats (SHRs). GLA is converted into arachidonic acid (AA) by elongation and desaturation steps. Epoxyeicosatrienoic acids (EETs) and 20-hydroxyeicosatetraenoic acid (20-HETE) are cytochrome P450 (P450)-derived AA eicosanoids with important roles in regulating blood pressure. This study tested the hypothesis that the blood pressure-lowering effect of a GLA-enriched diet involves alteration of P450-catalyzed AA metabolism. Microsomes and RNA were isolated from the renal cortex of male SHRs fed a basal fat-free diet for 5 weeks to which 11% by weight of sesame oil (SES) or BOR was added. There was a 2.6- to 3.5-fold increase in P450 epoxygenase activity in renal microsomes isolated from the BOR-fed SHRs compared with the SES-fed rats. Epoxygenase activity accounted for 58% of the total AA metabolism in the BOR-treated kidney microsomes compared with 33% in the SES-treated rats. More importantly, renal 14,15- and 8,9-EET levels increased 1.6- to 2.5-fold after dietary BOR treatment. The increase in EET formation is consistent with increases in CYP2C23, CYP2C11, and CYP2J protein levels. There were no differences in the level of renal P450 epoxygenase mRNA between the SES- and BOR-treated rats. Enhanced synthesis of the vasodilatory EETs and decreased formation of the vasoconstrictive 20-HETE suggests that changes in P450-mediated AA metabolism may contribute, at least in part, to the blood pressure-lowering effect of a BOR-enriched diet. PMID:16421287

  13. Structure-activity correlations in pentachlorobenzene oxidation by engineered cytochrome P450cam.

    PubMed

    Xu, Feng; Bell, Stephen G; Rao, Zihe; Wong, Luet-Lok

    2007-10-01

    We had reported engineering of the heme monooxygenase cytochrome P450cam from Pseudomonas putida with the F87W/Y96F/L244A/V247L mutations for the oxidation of pentachlorobenzene (PeCB), a recalcitrant environmental contaminant, to pentachlorophenol. In order to provide further insights into P450 structure, function and substrate recognition, we have determined the crystal structure of this 4-mutant without a substrate and its complex with PeCB. PeCB is bound face-on to the heme, with a weak Fe--Cl interaction. One PeCB chlorine is located in the cavity generated by the L244A mutation, in striking illustration of the role of this mutation in promoting PeCB binding. The structures also show that the P450(cam) oxygen-binding groove between G248 and T252 is flexible and can tolerate significant deviations from their conformations in the wild type without loss of enzyme activity. Analysis of the PeCB binding interactions led to introduction of the T101A mutation to enable the substrate to reorient during the catalytic cycle for more efficient oxidation. The resultant 5-mutant F87W/Y96F/T101A/L244A/V247L is 3-fold more active for PeCB oxidation than the 4-mutant. Polychlorinated benzene binding by the mutants and the partitioning between substrate oxidation and non-productive (uncoupling) side reactions are correlated with the structural data. PMID:17962225

  14. Peroxidase activity stabilization of cytochrome P450(BM3) by rational analysis of intramolecular electron transfer.

    PubMed

    Vidal-Limón, Abraham; Águila, Sergio; Ayala, Marcela; Batista, Cesar V; Vazquez-Duhalt, Rafael

    2013-05-01

    Combined quantum mechanical and molecular mechanical (QM/MM) calculations were used to explore the electron pathway involved in the suicide inactivation of cytochrome P450BM3 from Bacillus megaterium. The suicide inactivation is a common phenomenon observed for heme peroxidases, in which the enzyme is inactivated as a result of self-oxidation mediated by highly oxidizing enzyme intermediates formed during the catalytic cycle. The selected model was a mutant comprising only the heme domain (CYPBM3 21B3) that had been previously evolved to efficiently catalyze hydroxylation reactions with hydrogen peroxide (H2O2) as electron acceptor. An extensive mapping of residues involved in electron transfer routes was obtained from density functional calculations on activated heme (i.e. Compound I) and selected amino acid residues. Identification of oxidizable residues (electron donors) was performed by selectively activating/deactivating different quantum regions. This method allowed a rational identification of key oxidizable targets in order to replace them for less oxidizable residues by site-directed mutagenesis. The residues W96 and F405 were consistently predicted by the QM/MM electron pathway to hold high spin density; single and double mutants of P450BM3 on these positions (W96A, F405L, W96A/F405L) resulted in a more stable variants in the presence of hydrogen peroxide, displaying a similar reaction rate than P450BM3 21B3. Furthermore, mass spectrometry confirmed these oxidation sites and corroborated the possible routes described by QM/MM electron transfer (ET) pathways. PMID:23425936

  15. Evaluation of the assumptions of an ontogeny model of rat hepatic cytochrome P450 activity.

    PubMed

    Alcorn, Jane; Elbarbry, Fawzy A; Allouh, Mohammed Z; McNamara, Patrick J

    2007-12-01

    We previously reported an ontogeny model of hepatic cytochrome P450 (P450) activity that predicts in vivo P450 elimination from in vitro intrinsic clearance. The purpose of this study was to conduct investigations into key assumptions of the P450 ontogeny model using the developing rat model system. We used two developmentally dissimilar enzymes, CYP2E1 and CYP1A2, and male rats (n = 4) at age groups representing critical developmental stages. Total body and liver weights and hepatic microsomal protein contents were measured. Following high-performance liquid chromatography analysis, apparent K(M) and V(max) estimates were calculated using nonlinear regression analysis for CYP2E1- and CYP1A2-mediated chlorzoxazone 6-hydroxylation and methoxyresorufin O-dealkylation, and V(max) estimates for p-nitrophenol and phenacetin hydroxylations, respectively. Hepatic scaling factors and V(max) values provided estimates for infant scaling factors (ISF). The data show microsomal protein contents increased with postnatal age and reached adult values after postnatal day (PD) 7. Apparent K(M) values were similar at all developmental stages except at < or =PD7. Developmental increases in probe substrate V(max) values did not correlate with the biphasic increase in immunoquantifiable P450. The activity of two different probe substrates for each P450 covaried as a function of age. A plot of observed ISF values as a function of age reflected the developmental pattern of rat hepatic P450. In summation, these observations diverge from several of the model's assumptions. Further investigations are required to explain these inconsistencies and to investigate whether the developing rat may provide a predictive paradigm for pediatric risk assessment for P450-mediated elimination processes. PMID:17881659

  16. Induction of cytochrome P450 1A1 and monooxygenase activity in Tilapia by sediment extract

    SciTech Connect

    Ueng, Y.F.; Ueng, T.H.; Liu, T.Y.

    1995-01-01

    Cytochrome P450 (P450)-dependent monooxygenases of fishes are inducible by a variety of environmental pollutants including polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). Induction of fish monoxygenases may serve as a biological monitor for PAH- and PCB-types of environmental chemicals. Many studies have demonstrated environmental induction of fish monooxygenases using various experimental approaches. However, relatively few studies have been conducted using fish treated with contaminated river sediment extracts. Damsui River is the largest river in the north of Taiwan. The lower section of the river in the Taipei Metropolitan area is heavily polluted by industrial and municipal wastes. Tilapia (Oreochromis mossambicus) is one of the few species of fish that occur in the polluted river. Previous field studies showed that the levels of P450 1A1, benzo(a)pyrene hydroxylase and 7-ethoxyresorufin O-deethylase activities in tilapia collected at Fu-Ho Bridge, a polluted section of Damsui River, were higher than respective levels in fish collected from an unpolluted section. These results suggested that tilapia caught at the polluted site were exposed to substances similar in action to PAHs and PCBs, because these chemical pollutants are potent inducers of P450 1A1. PAHs and PCBs are persistent compounds that can accumulate in sediment. Tilapia are occasionally associated with the bottom and could ingest chemically contaminated sediment. In the present study, we determined the induction properties of monooxygenases using tilapia treated with extract of sediment collected from a polluted section of Damsui River. The present study demonstrates that Damsui River sediment extract has the ability to induce hepatic P450 1A1 and dependent monooxygenase activities in tilapia. 17 refs., 2 figs., 2 tabs.

  17. Effects of soy containing diet and isoflavones on cytochrome P450 enzyme expression and activity.

    PubMed

    Ronis, Martin J J

    2016-08-01

    Cytochromes P450 (CYPs) play an important role in metabolism and clearance of most clinically utilized drugs and other xenobiotics. They are important in metabolism of endogenous compounds including fatty acids, sterols, steroids and lipid-soluble vitamins. Dietary factors such as phytochemicals are capable of affecting CYP expression and activity, which may be important in diet-drug interactions and in the development of fatty liver disease, cardiovascular disease and cancer. One important diet-CYP interaction is with diets containing plant proteins, particularly soy protein. Soy diets are traditionally consumed in Asian countries and are linked to lower incidence of several cancers and of cardiovascular disease in Asian populations. Soy is also an important protein source in vegetarian and vegan diets and the sole protein source in soy infant formulas. Recent studies suggest that consumption of soy can inhibit induction of CY1 enzymes by polycyclic aromatic hydrocarbons (PAHs) which may contribute to cancer prevention. In addition, there are data to suggest that soy components promiscuously activate several nuclear receptors including PXR, PPAR and LXR resulting in increased expression of CYP3As, CYP4As and CYPs involved in metabolism of cholesterol to bile acids. Such soy-CYP interactions may alter drug pharmacokinetics and therapeutic efficacy and are associated with improved lipid homeostasis and reduced risk of cardiovascular disease. The current review summarizes results from in vitro; in vivo and clinical studies of soy-CYP interactions and examines the evidence linking the effects of soy diets on CYP expression to isoflavone phytoestrogens, particularly, genistein and daidzein that are associated with soy protein. PMID:27440109

  18. Interaction between light harvesting chlorophyll-a/b protein (LHCII) kinase and cytochrome b6/f complex. In vitro control of kinase activity.

    PubMed

    Gal, A; Hauska, G; Herrmann, R; Ohad, I

    1990-11-15

    We have previously reported that the cytochrome b6/f complex may be involved in the redox activation of light harvesting chlorophyll-a/b protein complex of photosystem II (LHCII) kinase in higher plants (Gal, A., Shahak, Y., Schuster, G., and Ohad, I. (1987) FEBS Lett. 221, 205-210). The aim of this work was to establish whether a relation between the cytochrome b6/f and LHCII kinase activation can be demonstrated in vitro. Preparations enriched in cytochrome b6/f obtained from spinach thylakoids by detergent extraction and precipitation with ammonium sulfate followed by different procedures of purification, contained various amounts of LHCII kinase activity. Analysis of the cytochrome b6/f content and kinase activity of fractions obtained by histone-Sepharose and immunoaffinity columns, immunoprecipitation and sucrose density centrifugation, indicate functional association of kinase and cytochrome b6/f. Phosphorylation of LHCII by fractions containing both cytochrome b6/f and kinase was enhanced by addition of plastoquinol-1. LHCII phosphorylation and kinase activation could be obtained in fractions prepared by use of beta-D-octyl glucoside but not when 3-[(cholamidopropyl)dimethyl-ammonio]-1-propanesulfonate was used as the solubilizing detergent. Kinase activity could be inhibited by halogenated quinone analogues (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone and 2,3-diiodo-5-t-butyl-p-benzoquinone) known to inhibit cytochrome b6/f activity. However, kinase activity was inhibited by these analogues in all preparations including those which could not phosphorylate LHCII. We thus propose that the redox activation of LHCII phosphorylation is mediated by kinase interaction with cytochrome b6/f while the deactivation may be related to a distinct quinone binding site of the enzyme molecule. PMID:2246258

  19. Epoxidation Activities of Human Cytochromes P450c17 and P450c21

    PubMed Central

    2015-01-01

    Some cytochrome P450 enzymes epoxidize unsaturated substrates, but this activity has not been described for the steroid hydroxylases. Physiologic steroid substrates, however, lack carbon–carbon double bonds in the parts of the pregnane molecules where steroidogenic hydroxylations occur. Limited data on the reactivity of steroidogenic P450s toward olefinic substrates exist, and the study of occult activities toward alternative substrates is a fundamental aspect of the growing field of combinatorial biosynthesis. We reasoned that human P450c17 (steroid 17-hydroxylase/17,20-lyase, CYP17A1), which 17- and 16α-hydroxylates progesterone, might catalyze the formation of the 16α,17-epoxide from 16,17-dehydroprogesterone (pregna-4,16-diene-3,20-dione). CYP17A1 catalyzed the novel 16α,17-epoxidation and the ordinarily minor 21-hydroxylation of 16,17-dehydroprogesterone in a 1:1 ratio. CYP17A1 mutation A105L, which has reduced progesterone 16α-hydroxylase activity, gave a 1:5 ratio of epoxide:21-hydroxylated products. In contrast, human P450c21 (steroid 21-hydroxylase, CYP21A2) converted 16,17-dehydroprogesterone to the 21-hydroxylated product and only a trace of epoxide. CYP21A2 mutation V359A, which has significant 16α-hydroxylase activity, likewise afforded the 21-hydroxylated product and slightly more epoxide. CYP17A1 wild-type and mutation A105L do not 21- or 16α-hydroxylate pregnenolone, but the enzymes 21-hydroxylated and 16α,17-epoxidized 16,17-dehydropregnenolone (pregna-5,16-diene-3β-ol-20-one) in 4:1 or 12:1 ratios, respectively. Catalase and superoxide dismutase did not prevent epoxide formation. The progesterone epoxide was not a time-dependent, irreversible CYP17A1 inhibitor. Our substrate modification studies have revealed occult epoxidase and 21-hydroxylase activities of CYP17A1, and the fraction of epoxide formed correlated with the 16α-hydroxylase activity of the enzymes. PMID:25386927

  20. Beta-Amyloid Oligomers Activate Apoptotic BAK Pore for Cytochrome c Release

    PubMed Central

    Kim, Jaewook; Yang, Yoosoo; Song, Seung Soo; Na, Jung-Hyun; Oh, Kyoung Joon; Jeong, Cherlhyun; Yu, Yeon Gyu; Shin, Yeon-Kyun

    2014-01-01

    In Alzheimer’s disease, cytochrome c-dependent apoptosis is a crucial pathway in neuronal cell death. Although beta-amyloid (Aβ) oligomers are known to be the neurotoxins responsible for neuronal cell death, the underlying mechanisms remain largely elusive. Here, we report that the oligomeric form of synthetic Aβ of 42 amino acids elicits death of HT-22 cells. But, when expression of a bcl-2 family protein BAK is suppressed by siRNA, Aβ oligomer-induced cell death was reduced. Furthermore, significant reduction of cytochrome c release was observed with mitochondria isolated from BAK siRNA-treated HT-22 cells. Our in vitro experiments demonstrate that Aβ oligomers bind to BAK on the membrane and induce apoptotic BAK pores and cytochrome c release. Thus, the results suggest that Aβ oligomers function as apoptotic ligands and hijack the intrinsic apoptotic pathway to cause unintended neuronal cell death. PMID:25296312

  1. Constrained water access to the active site of cytochrome P450 from the piezophilic bacterium Photobacterium profundum

    NASA Astrophysics Data System (ADS)

    Sineva, Elena V.; Davydov, Dmitri R.

    2010-12-01

    Living species inhabiting ocean deeps must adapt to high hydrostatic pressure. This adaptation, which must enable functioning under conditions of promoted protein hydration, is especially important for proteins such as cytochromes P450 that exhibit functionally important hydration-dehydration dynamics. Here we study the interactions of substrates with cytochrome P450-SS9, a putative fatty acid hydroxylase from the piezophilic bacterium Photobacterium profundum SS9, and characterize the protein's barotropic properties. Comparison of P450-SS9 with cytochrome P450BM-3, a mesophilic fatty acid hydroxylase, suggests that P450-SS9 is characterized by severely confined accessibility and low water occupancy of the active site. This feature may reveal a mechanism for the structural adaptation of the piezophilic enzyme. We also demonstrate that saturated and unsaturated fatty acids exert opposite effects on solvent accessibility and hydration of the active site. Modulation of the protein conformation by fatty acids is hypothesized to have an important physiological function in the piezophile.

  2. A continuous spectrophotometric assay for NADPH-cytochrome P450 reductase activity using 1,1-diphenyl-2-picrylhydrazyl.

    PubMed

    Yim, Sung-Kun; Yun, Su-Jung; Yun, Chul-Ho

    2004-09-30

    NADPH-cytochrome P450 reductase (CPR) transfers electrons from NADPH to cytochrome P450, and catalyzes the one-electron reduction of many drugs and foreign compounds. Various forms of spectrophotometric titration have been performed to investigate the electron-accepting properties of CPR, particularly, to examine its ability to reduce cytochrome c and ferricyanide. In this study, the reduction of 1,1-diphenyl-2-picrylhydrazyl (DPPH) by CPR was assessed as a means of monitoring CPR activity. The principle advantage of DPPH is that its reduction can be assayed directly in the reaction medium by a continuous spectrophotometry. Thus, electrons released from NADPH by CPR were transferred to DPPH, and DPPH reduction was then followed spectrophotometrically by measuring A(520) reduction. Optimal assay concentrations of DPPH, CPR, potassium phosphate buffer, and NADPH were first established. DPPH reduction activity was found to depend upon the strength of the buffer used, which was optimal at 100 mM potassium phosphate and pH 7.6. The extinction coefficient of DPPH was 4.09mM(-1) cm(-1). DPPH reduction followed classical Michaelis-Menten kinetics (K(m) = 28 microM, k(cat) = 1690 min(-1)). This method uses readily available materials, and has the additional advantages of being rapid and inexpensive. PMID:15479629

  3. Relationships among Ergot Alkaloids, Cytochrome P450 Activity, and Beef Steer Growth

    NASA Astrophysics Data System (ADS)

    Rosenkrans, Charles; Ezell, Nicholas

    2015-03-01

    Determining a grazing animal’s susceptibility to ergot alkaloids has been a research topic for decades. Our objective was to determine if the Promega™ P450-Glo assay could be used to indirectly detect ergot alkaloids or their metabolites in urine of steers. The first experiment validated the effects of ergot alkaloids [0, 20, and 40 μM of ergotamine (ET), dihydroergotamine (DHET), and ergonovine (EN)] on human CYP3A4 using the P450-Glo assay (Promega™ V9800). With this assay, luminescence is directly proportional to CYP450 activity. Relative inhibition of in vitro cytochrome P450 activity was affected (P < 0.001) by an interaction between alkaloids and concentration. That interaction resulted in no concentration effect of EN, but within ET and DHET 20 and 40 µM concentrations inhibited CYP450 activity when compared with controls. In experiment 2, urine was collected from Angus-sired crossbred steers (n = 39; 216 ± 2.6 d of age; 203 ± 1.7 kg) after grazing tall fescue pastures for 105 d. Non-diluted urine was added to the Promega™ P450-Glo assay, and observed inhibition (3.7 % ± 2.7 of control). Urine content of total ergot alkaloids (331.1 ng/mg of creatinine ± 325.7) was determined using enzyme linked immunosorbent assay. Urine inhibition of CYP450 activity and total alkaloids were correlated (r = -0.31; P < 0.05). Steers were genotyped at CYP450 single nucleotide polymorphism, C994G. Steer genotype affected (P < 0.03) inhibition of CYP450 activity by urine; heterozygous steers had the least amount of CYP450 inhibition suggesting that genotyping cattle may be a method of identifying animals that are susceptible to ergot alkaloids. Although, additional research is needed, we demonstrate that the Promega™ P450-Glo assay is sensitive to ergot alkaloids and urine from steers grazing tall fescue. With some refinement the P450-Glo assay has potential as a tool for screening cattle for their exposure to fescue toxins.

  4. Relationships among ergot alkaloids, cytochrome P450 activity, and beef steer growth

    PubMed Central

    Rosenkrans, Charles F.; Ezell, Nicholas S.

    2015-01-01

    Determining a grazing animal's susceptibility to ergot alkaloids has been a research topic for decades. Our objective was to determine if the Promega™ P450-Glo assay could be used to indirectly detect ergot alkaloids or their metabolites in urine of steers. The first experiment validated the effects of ergot alkaloids [0, 20, and 40 μM of ergotamine (ET), dihydroergotamine (DHET), and ergonovine (EN)] on human CYP3A4 using the P450-Glo assay (Promega™ V9800). With this assay, luminescence is directly proportional to CYP450 activity. Relative inhibition of in vitro cytochrome P450 activity was affected (P < 0.001) by an interaction between alkaloids and concentration. That interaction resulted in no concentration effect of EN, but within ET and DHET 20 and 40 μM concentrations inhibited CYP450 activity when compared with controls. In experiment 2, urine was collected from Angus-sired crossbred steers (n = 39; 216 ± 2.6 days of age; 203 ± 1.7 kg) after grazing tall fescue pastures for 105 days. Non-diluted urine was added to the Promega™ P450-Glo assay, and observed inhibition (3.7 % ± 2.7 of control). Urine content of total ergot alkaloids (331.1 ng/mg of creatinine ± 325.7) was determined using enzyme linked immunosorbent assay. Urine inhibition of CYP450 activity and total alkaloids were correlated (r = −0.31; P < 0.05). Steers were genotyped at CYP450 single nucleotide polymorphism, C994G. Steer genotype affected (P < 0.03) inhibition of CYP450 activity by urine; heterozygous steers had the least amount of CYP450 inhibition suggesting that genotyping cattle may be a method of identifying animals that are susceptible to ergot alkaloids. Although, additional research is needed, we demonstrate that the Promega™ P450-Glo assay is sensitive to ergot alkaloids and urine from steers grazing tall fescue. With some refinement the P450-Glo assay has potential as a tool for screening cattle for their exposure to fescue toxins. PMID:25815288

  5. Relationships among ergot alkaloids, cytochrome P450 activity, and beef steer growth.

    PubMed

    Rosenkrans, Charles F; Ezell, Nicholas S

    2015-01-01

    Determining a grazing animal's susceptibility to ergot alkaloids has been a research topic for decades. Our objective was to determine if the Promega™ P450-Glo assay could be used to indirectly detect ergot alkaloids or their metabolites in urine of steers. The first experiment validated the effects of ergot alkaloids [0, 20, and 40 μM of ergotamine (ET), dihydroergotamine (DHET), and ergonovine (EN)] on human CYP3A4 using the P450-Glo assay (Promega™ V9800). With this assay, luminescence is directly proportional to CYP450 activity. Relative inhibition of in vitro cytochrome P450 activity was affected (P < 0.001) by an interaction between alkaloids and concentration. That interaction resulted in no concentration effect of EN, but within ET and DHET 20 and 40 μM concentrations inhibited CYP450 activity when compared with controls. In experiment 2, urine was collected from Angus-sired crossbred steers (n = 39; 216 ± 2.6 days of age; 203 ± 1.7 kg) after grazing tall fescue pastures for 105 days. Non-diluted urine was added to the Promega™ P450-Glo assay, and observed inhibition (3.7 % ± 2.7 of control). Urine content of total ergot alkaloids (331.1 ng/mg of creatinine ± 325.7) was determined using enzyme linked immunosorbent assay. Urine inhibition of CYP450 activity and total alkaloids were correlated (r = -0.31; P < 0.05). Steers were genotyped at CYP450 single nucleotide polymorphism, C994G. Steer genotype affected (P < 0.03) inhibition of CYP450 activity by urine; heterozygous steers had the least amount of CYP450 inhibition suggesting that genotyping cattle may be a method of identifying animals that are susceptible to ergot alkaloids. Although, additional research is needed, we demonstrate that the Promega™ P450-Glo assay is sensitive to ergot alkaloids and urine from steers grazing tall fescue. With some refinement the P450-Glo assay has potential as a tool for screening cattle for their exposure to fescue toxins. PMID:25815288

  6. Diabetes mellitus increases the in vivo activity of cytochrome P450 2E1 in humans

    PubMed Central

    Wang, Zaiqi; Hall, Stephen D; Maya, Juan F; Li, Lang; Asghar, Ali; Gorski, J C

    2003-01-01

    Aim Cytochrome P450 2E1 (CYP2E1) is thought to activate a number of protoxins, and has been implicated in the development of liver disease. Increased hepatic expression of CYP2E1 occurs in rat models of diabetes but it is unclear whether human diabetics display a similar up-regulation. This study was designed to test the hypothesis that human diabetics experience enhanced CYP2E1 expression. Methods The pharmacokinetics of a single dose of chlorzoxazone (500 mg), used as an index of hepatic CYP2E1 activity, was determined in healthy subjects (n = 10), volunteers with Type I (n = 13), and Type II (n = 8) diabetes mellitus. Chlorzoxazone and 6-hydroxychlorzoxazone in serum and urine were analysed by high-performance liquid chromatography. The expression of CYP2E1 mRNA in peripheral blood mononuclear cells was quantified by reverse transcriptase-polymerase chain reaction. Results The mean ± s.d. (90% confidence interval of the difference) chlorzoxazone area under the plasma concentration-time curve was significantly (P ≤ 0.05) reduced in obese Type II diabetics (15.7 ± 11.3 µg h ml−1; 9, 22) compared with healthy subjects (43.5 ± 16.9 µg h ml−1; 16, 40) and Type I diabetics (32.8 ± 9.2 µg h ml−1; 9, 25). There was a significant two-fold increase in the oral clearance of chlorzoxazone in obese Type II diabetics compared with healthy volunteers and Type I diabetics. The protein binding of chlorzoxazone was not significantly different between the three groups. In contrast, Type 1 diabetics and healthy volunteers demonstrated no difference in the oral clearance of chlorzoxazone. The urinary recovery of 6-hydroxychlorzoxazone as a percentage of the administered dose was not different between healthy, Type I and obese Type II diabetics. The elimination half-life of chlorzoxazone did not differ between the three groups. CYP2E1 mRNA was significantly elevated in Type I and obese Type II diabetics compared with healthy volunteers. The oral clearance of

  7. Cytochrome P450 Oxidoreductase Influences CYP2B6 Activity in Cyclophosphamide Bioactivation

    PubMed Central

    El-Serafi, Ibrahim; Afsharian, Parvaneh; Moshfegh, Ali; Hassan, Moustapha; Terelius, Ylva

    2015-01-01

    Introduction Cyclophosphamide is commonly used as an important component in conditioning prior to hematopoietic stem cell transplantation, a curative treatment for several hematological diseases. Cyclophosphamide is a prodrug activated mainly by cytochrome P450 2B6 (CYP2B6) in the liver. A high degree of inter- and intra-individual variation in cyclophosphamide kinetics has been reported in several studies. Materials and Methods Hydroxylation of cyclophosphamide was investigated in vitro using three microsomal batches of CYP2B6*1 with different ratios of POR/CYP expression levels. Twenty patients undergoing hematopoietic stem cell transplantation were also included in the study. All patients received an i.v. infusion of cyclophosphamide (60 mg/kg/day, for two days) as a part of their conditioning. Blood samples were collected from each patient before cyclophosphamide infusion, 6 h after the first dose and before and 6 h after the second dose. POR gene expression was measured by mRNA analysis and the pharmacokinetics of cyclophosphamide and its active metabolite were determined. Results A strong correlation between the in vitro intrinsic clearance of cyclophosphamide and the POR/CYP ratio was found. The apparent Km for CYP2B6.1 was almost constant (3-4 mM), while the CLint values were proportional to the POR/CYP ratio (3-34 μL/min/nmol CYP). In patients, the average expression of the POR gene in blood was significantly (P <0.001) up-regulated after cyclophosphamide infusion, with high inter-individual variations and significant correlation with the concentration ratio of the active metabolite 4-hydroxy-cyclophosphamide/cyclophosphamide. Nine patients were carriers for POR*28; four patients had relatively high POR expression. Conclusions This investigation shows for the first time that POR besides CYP2B6 can influence cyclophosphamide metabolism. Our results indicate that not only CYPs are important, but also POR expression and/or activity may influence

  8. PROPICONAZOLE-INDUCED CYTOCHROME P450 GENE EXPRESSION AND ENZYMATIC ACTIVITIES IN RAT AND MOUSE LIVER

    EPA Science Inventory

    Conazoles are N-substituted azole antifungal agents used as both pesticides and drugs. Some of these compounds are hepatocarcinogenic in mice and some can induce thyroid tumors in rats. Many of these compounds are able to induce and/or inhibit mammalian hepatic cytochrome P450s t...

  9. Stable expression of rat cytochrome P-450IIB1 cDNA in Chinese hamster cells (V79) and metabolic activation of aflatoxin B1.

    PubMed Central

    Doehmer, J; Dogra, S; Friedberg, T; Monier, S; Adesnik, M; Glatt, H; Oesch, F

    1988-01-01

    V79 Chinese hamster fibroblasts are widely used for mutagenicity testing but have the serious limitation that they do not express cytochromes P-450, which are needed for the activation of many promutagens to mutagenic metabolites. A full-length cDNA clone encoding the monooxygenase cytochrome P-450IIB1 under control of the simian virus 40 early promoter was constructed and cointroduced with the selection marker neomycin phosphotransferase (conferring resistance to G418) into V79 Chinese hamster cells. G418-resistant cells were selected, established as cell lines, and tested for cytochrome P-450IIB1 expression and enzymatic activity. Two cell lines (SD1 and SD3) were found that stably produce cytochrome P-450IIB1. Although purified cytochromes P-450 possess monooxygenase activity only after reconstitution with cytochrome P-450 reductase and phospholipid, the gene product of the construct exhibited this activity. This implies that the gene product is intracellularly localized in a way that allows access to the required components. If compared with V79 cells, the mutation rate for the hypoxanthine phosphoribosyltransferase (HPRT) locus in SD1 cells is markedly increased when exposed to aflatoxin B1, which is activated by this enzyme. Images PMID:3137560

  10. Cytochrome 572 is a conspicuous membrane protein with iron oxidation activity purified directly from a natural acidophilic microbial community

    SciTech Connect

    Verberkmoes, Nathan C; Singer, Steven; Shah, Manesh B; Thelen, Michael P.; Hettich, Robert {Bob} L; Banfield, Jillian F.

    2008-01-01

    We have discovered and characterized a novel membrane cytochrome of an iron oxidizing microbial biofilm obtained from the surface of extremely acidic mine water. This protein was initially identified through proteogenomic analysis as one of many novel gene products of Leptospirillum group II, the dominant bacterium of this community (Ram et al, 2005, Science 308, 1915-20). Extraction of proteins directly from environmental biofilm samples followed by membrane fractionation, detergent solubilization and gel filtration chromatography resulted in the purification of an abundant yellow-red protein. Covalently bound to heme, the purified cytochrome has a unique spectral signature at 572 nm and is thus called Cyt572. It readily oxidizes Fe2+ even in the presence of Fe3+ over a pH range from 0.95 to 3.4. Independent experiments involving 2D blue-native polyacrylamide gel electrophoresis and chemical crosslinking establish a homotetrameric structure for Cyt572. Also, circular dichroism spectroscopy indicates that the protein is largely beta-stranded, consistent with an outer membrane location. Although no significant sequence homology to the full-length cytochrome is detected in protein databases, environmental DNA sequences from both Leptospirillum groups II and III reveal at least 17 strain variants of Cyt572. Due to its abundance, cellular location and Fe2+ oxidation activity, we propose Cyt572 is the iron oxidase of the Leptospirillum bacteria, providing a critical function for fitness within the ecological niche of this acidophilic microbial community.

  11. Release of cytochrome c and activation of pro-caspase-9 following lysosomal photodamage involves bid cleavage

    PubMed Central

    Reiners, JJ; Caruso, JA; Mathieu, P; Chelladurai, B; Yin, X-M; Kessel, D

    2015-01-01

    Photodynamic therapy (PDT) protocols employing lysosomal sensitizers induce apoptosis via a mechanism that causes cytochrome c release prior to loss of mitochondrial membrane potential (ΔΨm). The current study was designed to determine how lysosomal photodamage initiates mitochondrial-mediated apoptosis in murine hepatoma 1c1c7 cells. Fluorescence microscopy demonstrated that the photosensitizer N-aspartyl chlorin e6 (NPe6) localized to the lysosomes. Irradiation of cultures preloaded with NPe6 induced the rapid destruction of lysosomes, and subsequent cleavage/activation of Bid, pro-caspases-9 and -3. Pro-caspase-8 was not activated. Release of cytochrome c occurred at about the time of Bid cleavage and preceded the loss of ΔΨm. Extracts of purified lysosomes catalyzed the in vitro cleavage of cytosolic Bid, but not pro-caspase-3 activation. Pharmacological inhibition of cathepsin B, L and D activities did not suppress Bid cleavage or pro-caspases-9 and -3 activation. These studies demonstrate that photodamaged lysosomes trigger the mitochondrial apoptotic pathway by releasing proteases that activate Bid. PMID:12181744

  12. Enhancing stability and oxidation activity of cytochrome C by immobilization in the nanochannels of mesoporous aluminosilicates.

    PubMed

    Lee, Chia-Hung; Lang, Jun; Yen, Chun-Wan; Shih, Pei-Chun; Lin, Tien-Sung; Mou, Chung-Yuan

    2005-06-30

    Hydrothermally stable and structrurally ordered mesoporous and microporous aluminosilicates with different pore sizes have been synthesized to immobilize cytochrome c (cyt c): MAS-9 (pore size 90 A), MCM-48-S (27 A), MCM-41-S (25 A), and Y zeolites (7.4 A). The amount of cyt c adsorption could be increased by the introduction of aluminum into the framework of pure silica materials. Among these mesoprous silicas (MPS), MAS-9 showed the highest loading capacity due to its large pore size. However, cyt c immobilized in MAS-9 could undergo facile unfolding during hydrothermal treatments. MCM-41-S and MCM-48-S have the pore sizes that match well the size of cyt c (25 x 25 x 37 A). Hence the adsorbed cyt c in these two medium pore size MPS have the highest hydrothermal stability and overall catalytic activity. On the other hand, the pore size of NaY zeolite is so small that cyt c is mostly adsorbed only on the outer surface and loses its enzymatic activity rapidly. The improved stability and high catalytic activity of cyt c immobilized in MPS are attributed to the electrostatic attraction between the pore surface and cyt c and the confinement provided by nanochannels. We further observed that cyt c immobilized in MPS exists in both high and low spin states, as inferred from the ESR and UV-vis studies. This is different from the native cyt c, which shows primarily the low spin state. The high spin state arises from the replacement of Met-80 ligands of heme Fe (III) by water or silanol group on silica surface, which could open up the heme groove for easy access of oxidants and substrates to iron center and facilitate the catalytic activity. In the catalytic study, MAS-9-cyt c showed the highest specific activity toward the oxidation of polycyclic aromatic hydrocarbons (PAHs), which arises from the fast mass transfer rate of reaction substrate due to its large pore size. For pinacyanol (a hydrophilic substrate), MCM-41-S-cyt c and MCM-48-S-cyt c showed higher specific

  13. Silica nanoparticles for the layer-by-layer assembly of fully electro-active cytochrome c multilayers

    PubMed Central

    2011-01-01

    Background For bioanalytical systems sensitivity and biomolecule activity are critical issues. The immobilization of proteins into multilayer systems by the layer-by-layer deposition has become one of the favorite methods with this respect. Moreover, the combination of nanoparticles with biomolecules on electrodes is a matter of particular interest since several examples with high activities and direct electron transfer have been found. Our study describes the investigation on silica nanoparticles and the redox protein cytochrome c for the construction of electro-active multilayer architectures, and the electron transfer within such systems. The novelty of this work is the construction of such artificial architectures with a non-conducting building block. Furthermore a detailed study of the size influence of silica nanoparticles is performed with regard to formation and electrochemical behavior of these systems. Results We report on interprotein electron transfer (IET) reaction cascades of cytochrome c (cyt c) immobilized by the use of modified silica nanoparticles (SiNPs) to act as an artificial matrix. The layer-by-layer deposition technique has been used for the formation of silica particles/cytochrome c multilayer assemblies on electrodes. The silica particles are characterized by dynamic light scattering (DLS), Fourier transformed infrared spectroscopy (FT-IR), Zeta-potential and transmission electron microscopy (TEM). The modified particles have been studied with respect to act as an artificial network for cytochrome c and to allow efficient interprotein electron transfer reactions. We demonstrate that it is possible to form electro-active assemblies with these non-conducting particles. The electrochemical response is increasing linearly with the number of layers deposited, reaching a cyt c surface concentration of about 80 pmol/cm2 with a 5 layer architecture. The interprotein electron transfer through the layer system and the influence of particle size are

  14. Purified form of cytochrome P-450 from rainbow trout with high activity toward conversion of aflatoxin B1 to aflatoxin B1-2,3-epoxide.

    PubMed

    Williams, D E; Buhler, D R

    1983-10-01

    Aflatoxin B1, the most potent hepatic chemical carcinogen known, is activated to the putative product aflatoxin B1-2,3-epoxide via a cytochrome P-450-dependent reaction. Mt. Shasta rainbow trout is the most sensitive species known to the hepatocarcinogenic effects of aflatoxin B1. We have previously isolated and purified a minor form of cytochrome P-450 from this strain of rainbow trout, with a lambda max in the carbon monoxide-reduced difference spectrum of 449.5 nm and a molecular weight of 54,000. In this study, we have compared in a reconstituted system this trout P-450 to trout cytochrome P-448 and rat cytochrome P-450 and P-448 for metabolism and activation of aflatoxin B1. Trout cytochrome P-450 had much higher activity towards aflatoxin B1 and a greater degree of regioselectivity in the formation of aflatoxin B1-2,3-dihydroxy-2,3-dihydrodiol and was much more efficient in producing aflatoxin B1 covalent adducts with DNA. The existence of such a form of cytochrome P-450 in Mt. Shasta rainbow trout may be responsible for the acute sensitivity of this strain to the carcinogenic effects of aflatoxin B1. PMID:6411332

  15. Pyrethroid Activity-Based Probes for Profiling Cytochrome P450 Activities Associated with Insecticide Interactions

    SciTech Connect

    Ismail, Hanafy M.; O'Neill, Paul M.; Hong, David; Finn, Robert; Henderson, Colin; Wright, Aaron T.; Cravatt, Benjamin; Hemingway, Janet; Paine, Mark J.

    2014-01-18

    Pyrethroid insecticides are used to control a diverse spectrum of diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid metabolizing and non-metabolizing mosquito P450s, as well as rodent microsomes to measure labeling specificity, plus CPR and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using a deltamethrin mimetic PyABP we were able to profile active enzymes in rat liver microsomes and identify pyrethroid metabolizing enzymes in the target tissue. The most reactive enzyme was a P450, CYP2C11, which is known to metabolize deltamethrin. Furthermore, several other pyrethroid metabolizers were identified (CYPs 2C6, 3A4, 2C13 and 2D1) along with related detoxification enzymes, notably UDP-g’s 2B1 - 5, suggesting a network of associated pyrethroid metabolizing enzymes, or ‘pyrethrome’. Considering the central role that P450s play in metabolizing insecticides, we anticipate that PyABPs will aid the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450-insecticide interactions and aiding the development of new tools for disease control.

  16. Inhibitory Activities of Thai Medicinal Plants with Promising Activities Against Malaria and Cholangiocarcinoma on Human Cytochrome P450.

    PubMed

    Sumsakul, Wiriyaporn; Mahavorasirikul, Wiratchanee; Na-Bangchang, Kesara

    2015-12-01

    Malaria and cholangiocarcinoma remain important public health problems in tropical countries including Southeast Asian nations. Newly developed chemotherapeutic and plant-derived drugs are urgently required for the control of both diseases. The aim of the present study was to investigate the propensity to inhibit cytochrome P450-mediated hepatic metabolism (CYP1A2, CYP2C19, CYP2D6 and CYP3A4) of the crude ethanolic extract of eight Thai medicinal plants with promising activities against malaria and cholangiocarcinoma, using human liver microsomes in vitro. Piper chaba Linn. (PC) and Atractylodes lancea (thung.) DC. (AL) exhibited the most potent inhibitory activities on CYP1A2-mediated phenacetin O-deethylation with mean IC50 of 0.04 and 0.36 µg/mL, respectively. Plumbago indica Linn. (PI) and Dioscorea membranacea Pierre. (DM) potently inhibited CYP2C19-mediated omeprazole 5-hydroxylation (mean IC50 4.71 and 6.92 µg/mL, respectively). DM, Dracaena loureiri Gagnep. (DL) and PI showed the highest inhibitory activities on dextromethorphan O-demethylation (mean IC50 2.93-9.57 µg/mL). PC, DM, DL and PI exhibited the most potent inhibitory activities on CYP3A4-mediated nifedipine oxidation (mean IC50 1.54-6.43 µg/mL). Clinical relevance of the inhibitory potential of DM, PC and PI is of concern for the further development of these plants for the treatment of malaria and/or cholangiocarcinoma. PMID:26490449

  17. Relation among cytochrome P450, Ah-active PCB congeners and dioxin equivalents in pipping black- crowned night-heron embryos

    USGS Publications Warehouse

    Rattner, B.A.; Hatfield, J.S.; Melancon, M.J.; Custer, T.W.; Tillitt, D.E.

    1994-01-01

    Pipping black-crowned night-heron (Nycticorax nycticorax) embryos were collected from a relatively uncontaminated site (next to Chincoteague National Wildlife Refuge, VA) and three polluted sites (Cat Island, Green Bay, Lake Michigan, WI; Bair Island, San Francisco Bay, CA; West Marin Island, San Francisco Bay, CA). Hepatic cytochrome P450-associated monooxygenases and cytochrome P450 proteins, induced up to 85- fold relative to the reference site, were associated with concentrations of total polychlorinated biphenyls (PCBs) and 11 PCB congeners that are presumed to express toxicity through the arylhydrocarbon (Ah) receptor. Multiple regression revealed that up to 86% of the variation of cytochrome P450 measurements was accounted for by variation in the concentration of these PCB congeners. Toxic equivalents (TEQs) of sample extracts, predicted mathematically (summed product of PCB congener concentrations and toxic equivalency factors), and dioxin equivalents (TCDD-EQs), derived by bioassay (ethoxyresorufin-O-dealkylase activity of treated H4IIE rat hepatoma cells), were greatest in Cat Island samples. Cytochrome P450-associated monooxygenases and cytochrome P450 proteins were related to TEQs and TCDD-EQs; adjusted r super(2) often exceeded 0.5 for the relation among mathematically predicted TEQs and cytochrome P450 measurements. These data extend previous observations in heron embryos of an association between P450 and total PCB burdens to include Ah- active PCB congeners, and presumably other compounds, which interact similarly with the Ah receptor. Benzyloxyresorufin O-dealkylase, ethoxyresorufin O-dealkylase, and cytochrome P450 1A appear to be the most reliable measures of exposure to Ah-active PCB congeners in black-crowned night-heron embryos. These findings provide further evidence that cytochrome P450-associated parameters have considerable value as a biomarker for assessing environmental contamination of wetlands.

  18. Relation among cytochrome P450, AH-active PCB congeners and dioxin equivalents in pipping black-crowned night-heron embryos

    USGS Publications Warehouse

    Rattner, B.A.; Hatfield, J.S.; Melancon, M.J.; Custer, T.W.; Tillitt, D.E.

    1994-01-01

    Pipping black-crowned night-heron (Nycticorax nycticorax) embryos were collected from a relatively uncontaminated site (next to Chincoteague National Wildlife Refuge, VA) and three polluted sites (Cat Island, Green Bay, Lake Michigan, WI; Bair Island, San Francisco Bay, CA; West Marin Island, San Francisco Bay, CA). Hepatic cytochrome P-450-associated monooxygenases and cytochrome P-450 proteins, induced up to 85-fold relative to the reference site, were associated with concentrations of total polychlorinated biphenyls (PCBs) and 11 PCB congeners that are presumed to express toxicity through the arylhydrocarbon (Ah) receptor. Multiple regression revealed that up to 86% of the variation of cytochrome P450 measurements was accounted for by variation in the concentration of these PCB congeners. Toxic equivalents (TEQs) of sample extracts, predicted mathematically (summed product of PCB congener concentrations and toxic equivalency factors), and dioxin equivalents (TCDD-EQs), derived by bioassay (ethoxyresorufin-O-dealkylase activity of treated H4IIE rat hepatoma cells), were greatest in Cat Island samples. Cytochrome P450-associated monooxygenases and cytochrome P450 proteins were related to TEQs and TCDD-EQs; adjusted r-2 often exceeded 0.5 for the relation among mathematically predicted TEQs and cytochrome P450 measurements. These data extend previous observations in heron embryos of an association between P450 and total PCB burdens to include Ah-active PCB congeners, and presumably other compounds, which interact similarly with the Ah receptor. Benzyloxyresorufin O-dealkylase, ethoxyresorufin O-dealkylase, and cytochrome P450 1A appear to be the most reliable measures of exposure to Ah-active PCB congeners in black-crowned night-heron embryos. These findings provide further evidence that cytochrome P450-associated parameters have considerable value as a biomarker for assessing environmental contamination of wetlands.

  19. Diiron centre mutations in Ciona intestinalis alternative oxidase abolish enzymatic activity and prevent rescue of cytochrome oxidase deficiency in flies

    PubMed Central

    Andjelković, Ana; Oliveira, Marcos T.; Cannino, Giuseppe; Yalgin, Cagri; Dhandapani, Praveen K.; Dufour, Eric; Rustin, Pierre; Szibor, Marten; Jacobs, Howard T.

    2015-01-01

    The mitochondrial alternative oxidase, AOX, carries out the non proton-motive re-oxidation of ubiquinol by oxygen in lower eukaryotes, plants and some animals. Here we created a modified version of AOX from Ciona instestinalis, carrying mutations at conserved residues predicted to be required for chelation of the diiron prosthetic group. The modified protein was stably expressed in mammalian cells or flies, but lacked enzymatic activity and was unable to rescue the phenotypes of flies knocked down for a subunit of cytochrome oxidase. The mutated AOX transgene is thus a potentially useful tool in studies of the physiological effects of AOX expression. PMID:26672986

  20. Elevated caspase 3 activity and cytosolic cytochrome c in NT2 cybrids containing amyotrophic lateral sclerosis subject mtDNA.

    PubMed

    Shrivastava, Mohita; Subbiah, Vivekanandhan

    2016-09-01

    Apoptosis of motor neurons is an important feature in amyotrophic lateral sclerosis (ALS). A vital role of mitochondria in apoptosis and cell survival is well documented. Eventually mitochondria have shown to be an early target in the pathogenesis of ALS. On account of these facts, we investigated the involvement of mitochondrial-dependent apoptosis in ALS and control (CTR) cybrids, generated fusing human platelets with mitochondrial DNA-depleted NT2-neuroteratocarcinoma cells. After a 6 week selection process during which transferred subject mtDNA repopulated the NT2 cells and restored mitochondrial oxygen consumption, we assessed cell viability and two programmed cell death parameters, caspase 3 activity and cytosolic cytochrome c levels. Compared to the control cybrid lines (n = 5), the ALS cybrid lines (n = 10) showed 45% less XTT reduction and higher caspase 3 activity ( p < 0.05, two-way Student's t test) exhibiting lesser cell viability and execution of apoptosis. Elevated cytosolic cytochrome c levels in ALS cybrid lines (n = 8) than in CTR (n = 4) ( p < 0.05, two-way Student's t-test) indicating its mitochondrial release and initiation of apoptosis. This indicates apoptosis as one of the possible mechanisms of cell death in ALS. Our findings support the view that in ALS, subject's mitochondria are altered in non-degenerating tissues in such a way that intrinsic apoptotic pathway activity is relatively increased. PMID:26268635

  1. The anticancer drug ellipticine activated with cytochrome P450 mediates DNA damage determining its pharmacological efficiencies: studies with rats, Hepatic Cytochrome P450 Reductase Null (HRN™) mice and pure enzymes.

    PubMed

    Stiborová, Marie; Černá, Věra; Moserová, Michaela; Mrízová, Iveta; Arlt, Volker M; Frei, Eva

    2015-01-01

    Ellipticine is a DNA-damaging agent acting as a prodrug whose pharmacological efficiencies and genotoxic side effects are dictated by activation with cytochrome P450 (CYP). Over the last decade we have gained extensive experience in using pure enzymes and various animal models that helped to identify CYPs metabolizing ellipticine. In this review we focus on comparison between the in vitro and in vivo studies and show a necessity of both approaches to obtain valid information on CYP enzymes contributing to ellipticine metabolism. Discrepancies were found between the CYP enzymes activating ellipticine to 13-hydroxy- and 12-hydroxyellipticine generating covalent DNA adducts and those detoxifying this drug to 9-hydroxy- and 7-hydroellipticine in vitro and in vivo. In vivo, formation of ellipticine-DNA adducts is dependent not only on expression levels of CYP3A, catalyzing ellipticine activation in vitro, but also on those of CYP1A that oxidize ellipticine in vitro mainly to the detoxification products. The finding showing that cytochrome b5 alters the ratio of ellipticine metabolites generated by CYP1A1/2 and 3A4 explained this paradox. Whereas the detoxification of ellipticine by CYP1A and 3A is either decreased or not changed by cytochrome b5, activation leading to ellipticine-DNA adducts increased considerably. We show that (I) the pharmacological effects of ellipticine mediated by covalent ellipticine-derived DNA adducts are dictated by expression levels of CYP1A, 3A and cytochrome b5, and its own potency to induce these enzymes in tumor tissues, (II) animal models, where levels of CYPs are either knocked out or induced are appropriate to identify CYPs metabolizing ellipticine in vivo, and (III) extrapolation from in vitro data to the situation in vivo is not always possible, confirming the need for these animal models. PMID:25547492

  2. Activation of the Stt7/STN7 Kinase through Dynamic Interactions with the Cytochrome b6f Complex1[OPEN

    PubMed Central

    Shapiguzov, Alexey; Chai, Xin; Fucile, Geoffrey; Longoni, Paolo; Zhang, Lixin

    2016-01-01

    Photosynthetic organisms have the ability to adapt to changes in light quality by readjusting the cross sections of the light-harvesting systems of photosystem II (PSII) and photosystem I (PSI). This process, called state transitions, maintains the redox poise of the photosynthetic electron transfer chain and ensures a high photosynthetic yield when light is limiting. It is mediated by the Stt7/STN7 protein kinase, which is activated through the cytochrome b6f complex upon reduction of the plastoquinone pool. Its probable major substrate, the light-harvesting complex of PSII, once phosphorylated, dissociates from PSII and docks to PSI, thereby restoring the balance of absorbed light excitation energy between the two photosystems. Although the kinase is known to be inactivated under high-light intensities, the molecular mechanisms governing its regulation remain unknown. In this study we monitored the redox state of a conserved and essential Cys pair of the Stt7/STN7 kinase and show that it forms a disulfide bridge. We could not detect any change in the redox state of these Cys during state transitions and high-light treatment. It is only after prolonged anaerobiosis that this disulfide bridge is reduced. It is likely to be mainly intramolecular, although kinase activation may involve a transient covalently linked kinase dimer with two intermolecular disulfide bonds. Using the yeast two-hybrid system, we have mapped one interaction site of the kinase on the Rieske protein of the cytochrome b6f complex. PMID:26941194

  3. Repeated Treatment with Furazolidone Induces Multiple Cytochrome P450-Related Activities in Chicken Liver, but Not in Rat Liver

    PubMed Central

    SASAKI, Nobuo; MATUMOTO, Tomoyuki; IKENAKA, Yoshinori; NAKAYAMA, Shouta M. M.; ISHIZUKA, Mayumi; KAZUSAKA, Akio; FUJITA, Shoichi

    2013-01-01

    ABSTRACT The nitrofuran antimicrobial agent, furazolidone (FZ), is still used in veterinary medicine in some countries in the Middle and Far Eastern countries. The present study aimed to investigate the effects of successive bolus doses of FZ and its metabolite 3-amino-2-oxazolidinone (AOZ) on cytochrome P450 (CYP)-related activities in the livers of rats and chickens. Female Wistar rats and white Leghorn chickens were orally administered FZ once a day for 4 consecutive days. FZ-treated chickens showed an increase in multiple CYP-related activities, however, rats treated with FZ did not show these changes. In chickens, treatment with FZ also induced production of microsomal CYP2C6-like apoprotein. The present study demonstrated that FZ caused a multiple-type induction of CYP-related activities in chickens, but not in rats. PMID:23774039

  4. Electrochemiluminescent Arrays for Cytochrome P450-Activated Genotoxicity Screening. DNA Damage from Benzo[a]pyrene Metabolites

    PubMed Central

    Hvastkovs, Eli G.; So, Minjeong; Krishnan, Sadagopan; Bajrami, Besnik; Tarun, Maricar; Jansson, Ingela; Schenkman, John B.; Rusling, James F.

    2007-01-01

    Arrays suitable for genotoxicity screening are reported that generate metabolites from cytochrome P450 enzymes (CYPs) in thin-film spots. Array spots containing DNA, various human cyt P450s, and electrochemiluminescence (ECL) generating metallopolymer [Ru(bpy)2PVP10]2+ were exposed to H2O2 to activate the enzymes. ECL from all spots was visualized simultaneously using a CCD camera. Using benzo[a]pyrene as a test substrate, enzyme activity for producing DNA damage in the arrays was found in the order CYP1B1 > CYP1A2 > CYP1A1 > CYP2E1 > myoglobin, the same as the order of their metabolic activity. Thus, these arrays estimate the relative propensity of different enzymes to produce genotoxic metabolites. This is the first demonstration of ECL arrays for high-throughput in vitro genotoxicity screening. PMID:17261025

  5. Activation of brain serotonergic system by repeated intracerebral administration of 5-hydroxytryptophan (5-HTP) decreases the expression and activity of liver cytochrome P450.

    PubMed

    Rysz, Marta; Bromek, Ewa; Daniel, Władysława A

    2016-01-01

    Our recent studies suggest that brain serotonergic system may be involved in the neuroendocrine regulation of cytochrome P450 expression. Intracerebral injection of the serotonergic neurotoxin 5,7-dihydroxytryptamine affected serum hormone concentration and increased the expression and activity of the hormone-dependent isoforms CYP1A1/2, CYP2C11 and CYP3A1. Therefore, the aim of the present study was to investigate the effect of stimulation of brain serotonergic system on cytochrome P450 expression in the liver. The serotonin precursor 5-hydroxytryptophan (5-HTP) was injected for 5 days to the lateral ventricles of rat brain. Afterwards, the brain concentrations of serotonin and its metabolite 5-hydroxyindoleacetic acid 5-HIAA, serum hormone levels and liver cytochrome P450 expression and activity were measured. 5-HTP potently increased the concentration of serotonin and its metabolite 5-HIAA in all the brain structures studied including the hypothalamus. The brain concentrations of noradrenaline or dopamine and its metabolites were not changed in that structure. At the same time, a significant decrease in the serum concentration of the growth hormone and an increase in that of thyroxine were observed. In the liver, the activity of CYP1A, CYP2A, CYP2B, CYP2C11 and CYP3A was diminished, which positively correlated with a decrease in the respective CYP protein levels and a reduction in the mRNA levels of CYP1A2, CYP2A2, CYP2C11, CYP3A1 and CYP3A2. The obtained results provide evidence to prove that brain serotonergic system negatively regulates liver cytochrome P450 expression via endocrine system and suggest mechanisms by which this enzyme may be regulated by drugs with a serotonergic profile such as antidepressants. PMID:26581122

  6. Evolved resistance to PCB- and PAH-induced cardiac teratogenesis, and reduced CYP1A activity in Gulf killifish (Fundulus grandis) populations from the Houston Ship Channel, Texas.

    PubMed

    Oziolor, Elias M; Bigorgne, Emilie; Aguilar, Lissette; Usenko, Sascha; Matson, Cole W

    2014-05-01

    The Houston Ship Channel (HSC), connecting Houston, Texas to Galveston Bay and ultimately the Gulf of Mexico, is heavily industrialized and includes several areas that have historically been identified as containing significant levels of mercury, dioxins, furans, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). Gulf killifish, Fundulus grandis, inhabit this entire estuarine system, including the most contaminated areas. F. grandis is the sister species of the well-established estuarine model organism Fundulus heteroclitus, for which heritable resistance to both PCB and PAH toxicity has been documented in several populations. F. grandis collected from two Superfund sites on the HSC and from a reference population were used to establish breeding colonies. F1 embryos from HSC populations were approximately 1000-fold more resistant to PCB126- and 2-5-fold more resistant to coal tar-induced cardiovascular teratogenesis, relative to embryos from the reference population. Reciprocal crosses between reference and contaminated populations exhibit an intermediate level of resistance, confirming that observed protection is genetic and biparentally inherited. Ethoxyresorufin-O-deethylase (EROD) data confirm a reduction in basal and induced cytochrome P4501A (CYP1A) activity in resistant populations of F. grandis. This result is consistent with responses previously described for resistant populations of F. heteroclitus, specifically a recalcitrant aryl hydrocarbon receptor (AHR) pathway. The decreased levels of cardiovascular teratogenesis, and decrease in CYP1A inducibility in response to PCB126 and a PAH mixture, suggest that HSC F. grandis populations have adapted to chronic contaminants exposures via a mechanism similar to that previously described for F. heteroclitus. To the best of our knowledge, this is the first documentation of evolved pollution resistance in F. grandis. Additionally, the mechanistic similarities between the population

  7. FASTING FOR LESS THAN 24 H INDUCES CYTOCHROME P450 2E1 AND 2B1/2ACTIVITIES IN RATS

    EPA Science Inventory

    Cytochrome p450 (CYP) 2E1 activity is induced after 24hr of fasting but no information is available for shorter fasting periods. e investigated the induction of CYP 2E1 in rats during the first 24 hours of food deprivation by examining marker activities for CYP isozymes 2b 1/2 an...

  8. Acute and subacute effects of miconazole nitrate on hepatic styrene oxide hydrolase and cytochrome P-450-dependent monooxygenase activities in male and female AKR/J mice.

    PubMed

    James, M O

    1988-08-01

    The imidazole-containing anti-fungal drug, miconazole nitrate, was shown to enhance hepatic microsomal styrene oxide hydrolase and inhibit several cytochrome P-450-dependent monooxygenase activities in the AKR/J mouse. Miconazole was a more potent inhibitor of cytochrome P-450-dependent monooxygenase activities in microsomes from male than female mice, and inhibitory potency also varied with substrate. When administered in vivo miconazole nitrate stimulated epoxide hydrolase activity, but had a substrate-dependent biphasic effect on cytochrome P-450-dependent monooxygenase activities. Monooxygenase activities with benzo[a]pyrene and benzphetamine were inhibited to varying degrees in liver homogenate and hepatic microsomes from mice sacrificed 45 min after miconazole administration. After repeated administration of miconazole, liver weight, microsomal protein yield and cytochrome P-450 were increased, as were specific monooxygenase activities with ethoxycoumarin and ethoxyresorufin, but benzphetamine N-demethylase activity was decreased. These results suggested that a metabolite of miconazole was responsible for the inhibition of benzphetamine N-demethylase. It was of special interest that ethoxyresorufin O-deethylase activity was induced in the AKR/J mouse by miconazole, since the AKR/J mouse is not responsive to induction by aromatic hydrocarbons. PMID:3394155

  9. Redox active molecules cytochrome c and vitamin C enhance heme-enzyme peroxidations by serving as non-specific agents for redox relay

    SciTech Connect

    Gade, Sudeep Kumar; Bhattacharya, Subarna; Manoj, Kelath Murali

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer At low concentrations, cytochrome c/vitamin C do not catalyze peroxidations. Black-Right-Pointing-Pointer But low levels of cytochrome c/vitamin C enhance diverse heme peroxidase activities. Black-Right-Pointing-Pointer Enhancement positively correlates to the concentration of peroxide in reaction. Black-Right-Pointing-Pointer Reducible additives serve as non-specific agents for redox relay in the system. Black-Right-Pointing-Pointer Insight into electron transfer processes in routine and oxidative-stress states. -- Abstract: We report that incorporation of very low concentrations of redox protein cytochrome c and redox active small molecule vitamin C impacted the outcome of one-electron oxidations mediated by structurally distinct plant/fungal heme peroxidases. Evidence suggests that cytochrome c and vitamin C function as a redox relay for diffusible reduced oxygen species in the reaction system, without invoking specific or affinity-based molecular interactions for electron transfers. The findings provide novel perspectives to understanding - (1) the promiscuous role of cytochrome b{sub 5} in the metabolism mediated by liver microsomal xenobiotic metabolizing systems and (2) the roles of antioxidant molecules in affording relief from oxidative stress.

  10. Significantly reduced cytochrome P450 3A4 expression and activity in liver from humans with diabetes mellitus

    PubMed Central

    Dostalek, Miroslav; Court, Michael H; Yan, Bingfang; Akhlaghi, Fatemeh

    2011-01-01

    BACKGROUND AND PURPOSE Patients with diabetes mellitus require pharmacotherapy with numerous medications. However, the effect of diabetes on drug biotransformation is not well understood. Our goal was to investigate the effect of diabetes on liver cytochrome P450 3As, the most abundant phase I drug-metabolizing enzymes in humans. EXPERIMENTAL APPROACH Human liver microsomal fractions (HLMs) were prepared from diabetic (n = 12) and demographically matched nondiabetic (n = 12) donors, genotyped for CYP3A4*1B and CYP3A5*3 polymorphisms. Cytochrome P450 3A4, 3A5 and 2E1 mRNA expression, protein level and enzymatic activity were compared between the two groups. KEY RESULTS Midazolam 1′- or 4-hydroxylation and testosterone 6β-hydroxylation, catalyzed by P450 3A, were markedly reduced in diabetic HLMs, irrespective of genotype. Significantly lower P450 3A4 protein and comparable mRNA levels were observed in diabetic HLMs. In contrast, neither P450 3A5 protein level nor mRNA expression differed significantly between the two groups. Concurrently, we have observed increased P450 2E1 protein level and higher chlorzoxazone 6-hydroxylation activity in diabetic HLMs. CONCLUSIONS AND IMPLICATIONS These studies indicate that diabetes is associated with a significant decrease in hepatic P450 3A4 enzymatic activity and protein level. This finding could be clinically relevant for diabetic patients who have additional comorbidities and are receiving multiple medications. To further characterize the effect of diabetes on P450 3A4 activity, a well-controlled clinical study in diabetic patients is warranted. PMID:21323901

  11. Effect of physical exercise on changes in activities of creatine kinase, cytochrome c oxidase and ATP levels caused by ovariectomy.

    PubMed

    Siebert, Cassiana; Kolling, Janaína; Scherer, Emilene B S; Schmitz, Felipe; da Cunha, Maira Jaqueline; Mackedanz, Vanize; de Andrade, Rodrigo B; Wannmacher, Clovis M D; Wyse, Angela T S

    2014-09-01

    The reduction in the secretion of ovarian hormones, principally estrogen, is a consequence of menopause. Estrogens act primarily as female sex hormones, but also exert effects on different physiological systems including the central nervous system. The treatment normally used to reduce the symptoms of menopause is the hormone therapy, which seems to be effective in treating symptoms, but it may be responsible for adverse effects. Based on this, there is an increasing demand for alternative therapies that minimize signs and symptoms of menopause. In the present study we investigated the effect of ovariectomy and/or physical exercise on the activities of energy metabolism enzymes, such as creatine kinase (cytosolic and mitochondrial fractions), pyruvate kinase, succinate dehydrogenase, complex II, cytochrome c oxidase, as well as on ATP levels in the hippocampus of adult rats. Adult female Wistar rats with 90 days of age were subjected to ovariectomy (an animal model widely used to mimic the postmenopausal changes). Thirty days after the procedure, the rats were submitted to the exercise protocol, which was performed three times a week for 30 days. Twelve hours after the last training session, the rats were decapitated for subsequent biochemical analyzes. Results showed that ovariectomy did not affect the activities of pyruvate kinase, succinate dehydrogenase and complex II, but decreased the activities of creatine kinase (cytosolic and mitochondrial fractions) and cytochrome c oxidase. ATP levels were also reduced. Exercise did not produce the expected results since it was only able to partially reverse the activity of creatine kinase cytosolic fraction. The results of this study suggest that estrogen deficiency, which occurs as a result of ovariectomy, affects generation systems and energy homeostasis, reducing ATP levels in hippocampus of adult female rats. PMID:24810635

  12. Ribose 5-Phosphate Glycation Reduces Cytochrome c Respiratory Activity and Membrane Affinity‡

    PubMed Central

    Hildick-Smith, Gordon J.; Downey, Michael C.; Gretebeck, Lisa M.; Gersten, Rebecca A.; Sandwick, Roger K.

    2011-01-01

    Spontaneous glycation of bovine heart cytochrome c (cyt c) by the sugar ribose 5-phosphate (R5P) decreases the ability of the heme protein to transfer electrons in the respiratory pathway and to bind to membranes. Trypsin fragmentation studies suggest the preferential sites of glycation include Lys72 and Lys87/88 of a cationic patch involved in the association of the protein with its respiratory chain partners and with cardiolipin-containing membranes. Reaction of bovine cyt c with R5P (50 mM) for 8 h modified the protein in a manner that decreased its ability to transfer electrons to cytochrome oxidase by 60%. An 18 hour treatment with R5P decreased bovine cyt c’s binding affinity with cardiolipin-containing liposomes by an estimated eightfold. A similar lower binding of glycated cyt c was observed with mitoplasts. The reversal of the effects of R5P on membrane binding by ATP further supports an A-site modification. A significant decrease in the rate of spin state change for ferro-cyt c, thought to be due to cardiolipin insertion disrupting the Met coordination to heme, was found for the R5P-treated cyt c. This change occurred to a greater extent than explained by the permanent attachment of the protein onto the liposome. Turbidity changes resulting from the multi-lamellar liposome fusion that is readily promoted by cyt c binding were not seen for the R5P-glycated cyt c samples. Collectively, these results demonstrate the negative impact that R5P glycation can have on critical electron transfer and membrane association functions of cyt c. PMID:22091532

  13. Evaluation of inhibitory effects of caffeic acid and quercetin on human liver cytochrome p450 activities.

    PubMed

    Rastogi, Himanshu; Jana, Snehasis

    2014-12-01

    When herbal drugs and conventional allopathic drugs are used together, they can interact in our body which can lead to the potential for herb-drug interactions. This work was conducted to evaluate the herb-drug interaction potential of caffeic acid and quercetin mediated by cytochrome P450 (CYP) inhibition. Human liver microsomes (HLMs) were added to each selective probe substrates of cytochrome P450 enzymes with or without of caffeic acid and quercetin. IC50 , Ki values, and the types of inhibition were determined. Both caffeic acid and quercetin were potent competitive inhibitors of CYP1A2 (Ki = 1.16 and 0.93 μM, respectively) and CYP2C9 (Ki = 0.95 and 1.67 μM, respectively). Caffeic acid was a potent competitive inhibitor of CYP2D6 (Ki = 1.10 μM) and a weak inhibitor of CYP2C19 and CYP3A4 (IC50  > 100 μM). Quercetin was a potent competitive inhibitor of CYP 2C19 and CYP3A4 (Ki = 1.74 and 4.12 μM, respectively) and a moderate competitive inhibitor of CYP2D6 (Ki = 18.72 μM). These findings might be helpful for safe and effective use of polyphenols in clinical practice. Our data indicated that it is necessary to study the in vivo interactions between drugs and pharmaceuticals with dietary polyphenols. PMID:25196644

  14. Regulation of cytochrome c- and quinol oxidases, and piezotolerance of their activities in the deep-sea piezophile Shewanella violacea DSS12 in response to growth conditions.

    PubMed

    Ohke, Yoshie; Sakoda, Ayaka; Kato, Chiaki; Sambongi, Yoshihiro; Kawamoto, Jun; Kurihara, Tatsuo; Tamegai, Hideyuki

    2013-01-01

    The facultative piezophile Shewanella violacea DSS12 is known to have respiratory components that alter under the influence of hydrostatic pressure during growth, suggesting that its respiratory system is adapted to high pressure. We analyzed the expression of the genes encoding terminal oxidases and some respiratory components of DSS12 under various growth conditions. The expression of some of the genes during growth was regulated by both the O2 concentration and hydrostatic pressure. Additionally, the activities of cytochrome c oxidase and quinol oxidase of the membrane fraction of DSS12 grown under various conditions were measured under high pressure. The piezotolerance of cytochrome c oxidase activity was dependent on the O2 concentration during growth, while that of quinol oxidase was influenced by pressure during growth. The activity of quinol oxidase was more piezotolerant than that of cytochrome c oxidase under all growth conditions. Even in the membranes of the non-piezophile Shewanella amazonensis, quinol oxidase was more piezotolerant than cytochrome c oxidase, although both were highly piezosensitive as compared to the activities in DSS12. By phylogenetic analysis, piezophile-specific cytochrome c oxidase, which is also found in the genome of DSS12, was identified in piezophilic Shewanella and related genera. Our observations suggest that DSS12 constitutively expresses piezotolerant respiratory terminal oxidases, and that lower O2 concentrations and higher hydrostatic pressures induce higher piezotolerance in both types of terminal oxidases. Quinol oxidase might be the dominant terminal oxidase in high-pressure environments, while cytochrome c oxidase might also contribute. These features should contribute to adaptation of DSS12 in deep-sea environments. PMID:23832349

  15. The Use of Cytochrome C Oxidase Enzyme Activity and Immunohistochemistry in Defining Mitochondrial Injury in Kidney Disease.

    PubMed

    Zsengellér, Zsuzsanna K; Rosen, Seymour

    2016-09-01

    The renal biopsy is a dynamic way of looking at renal disease, and tubular elements are an important part of this analysis. The mitochondria in 20 renal biopsies were examined by immunohistochemical (electron transport chain enzyme: cytochrome C oxidase IV [COX IV]) and enzyme histochemical methods (COX), both by light and electron microscopy. The distal convoluted tubules and thick ascending limbs showed the greatest intensity in the COX immunostains and enzyme activity in controls. The degree of mitochondrial COX protein and enzyme activity diminished as the tubules became atrophic. With proximal hypertrophic changes, there was great variation in both COX activity and protein expression. In contrast, in three cases of systemic lupus erythematosus, biopsied for high-grade proteinuria, the activity was consistently upregulated, whereas protein expression remained normal. These unexpected findings of heterogeneous upregulation in hypertrophy and the dyssynchrony of protein expression and activity may indicate mitochondrial dysregulation. Functional electron microscopy showed COX activity delineated by the intense mitochondrial staining in normal or hypertrophic proximal tubules. With atrophic changes, residual small mitochondria with diminished activity could be seen. With mitochondrial size abnormalities (enlargement and irregularity, adefovir toxicity), activity persisted. In the renal biopsy, mitochondrial analysis is feasible utilizing immunohistochemical and enzyme histochemical techniques. PMID:27578326

  16. Helium-neon laser irradiation of cryopreserved ram sperm enhances cytochrome c oxidase activity and ATP levels improving semen quality.

    PubMed

    Iaffaldano, N; Paventi, G; Pizzuto, R; Di Iorio, M; Bailey, J L; Manchisi, A; Passarella, S

    2016-08-01

    This study examines whether and how helium-neon laser irradiation (at fluences of 3.96-9 J/cm(2)) of cryopreserved ram sperm helps improve semen quality. Pools (n = 7) of cryopreserved ram sperm were divided into four aliquots and subjected to the treatments: no irradiation (control) or irradiation with three different energy doses. After treatment, the thawed sperm samples were compared in terms of viability, mass and progressive sperm motility, osmotic resistance, as well as DNA and acrosome integrity. In response to irradiation at 6.12 J/cm(2), mass sperm motility, progressive motility and viability increased (P < 0.05), with no significant changes observed in the other investigated properties. In parallel, an increase (P < 0.05) in ATP content was detected in the 6.12 J/cm(2)-irradiated semen samples. Because mitochondria are the main cell photoreceptors with a major role played by cytochrome c oxidase (COX), the COX reaction was monitored using cytochrome c as a substrate in both control and irradiated samples. Laser treatment resulted in a general increase in COX affinity for its substrate as well as an increase in COX activity (Vmax values), the highest activity obtained for sperm samples irradiated at 6.12 J/cm(2) (P < 0.05). Interestingly, in these irradiated sperm samples, COX activity and ATP contents were positively correlated, and, more importantly, they also showed positive correlation with motility, suggesting that the improved sperm quality observed was related to mitochondria-laser light interactions. PMID:27036659

  17. Formation of the active species of cytochrome p450 by using iodosylbenzene: a case for spin-selective reactivity.

    PubMed

    Cho, Kyung-Bin; Moreau, Yohann; Kumar, Devesh; Rock, Dan A; Jones, Jeffrey P; Shaik, Sason

    2007-01-01

    The generation of the active species for the enzyme cytochrome P450 by using the highly versatile oxygen surrogate iodosylbenzene (PhIO) often produces different results compared with the native route, in which the active species is generated through O(2) uptake and reduction by NADPH. One of these differences that is addressed here is the deuterium kinetic isotope effect (KIE) jump observed during N-dealkylation of N,N-dimethylaniline (DMA) by P450, when the reaction conditions change from the native to the PhIO route. The paper presents a theoretical analysis targeted to elucidate the mechanism of the reaction of PhIO with heme, to form the high-valent iron-oxo species Compound I (Cpd I), and define the origins of the KIE jump in the reaction of Cpd I with DMA. It is concluded that the likely origin of the KIE jump is the spin-selective chemistry of the enzyme cytochrome P450 under different preparation procedures. In the native route, the reaction proceeds via the doublet spin state of Cpd I and leads to a low KIE value. PhIO, however, diverts the reaction to the quartet spin state of Cpd I, which leads to the observed high KIE values. The KIE jump is reproduced here experimentally for the dealkylation of N,N-dimethyl-4-(methylthio)aniline, by using intra-molecular KIE measurements that avoid kinetic complexities. The effect of PhIO is compared with N,N-dimethylaniline-N-oxide (DMAO), which acts both as the oxygen donor and the substrate and leads to the same KIE values as the native route. PMID:17367100

  18. Radical scavenging and cytochrome P450 3A4 inhibitory activity of bergaptol and geranylcoumarin from grapefruit.

    PubMed

    Girennavar, Basavaraj; Jayaprakasha, G K; Jadegoud, Y; Nagana Gowda, G A; Patil, Bhimanagouda S

    2007-06-01

    Grapefruit juice has been shown to increase the oral bioavailability of several clinically important drugs by inhibiting first pass metabolism. Several compounds in grapefruit juice have shown different biological activities. Unique among them are furocoumarins with potent inhibitory activity against cytochrome P450 enzymes. In the present study, two bioactive compounds were isolated from grapefruit juice and grapefruit peel oil. The purity of the isolated compounds has been analyzed by HPLC. Structures of the compounds were elucidated by extensive NMR and mass spectral studies and identified as bergaptol and geranylcoumarin. The isolated compounds were tested for their radical scavenging activity using 2,2'-azobis (3-ethylbenz-thiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazil (DPPH) methods at different concentrations. Bergaptol showed very good radical scavenging activity at all the tested concentrations. Furthermore, these compounds were evaluated for their inhibitory activity against CYP3A4 enzyme. Bergaptol and geranylcoumarin were found to be potent inhibitors of debenzylation activity of CYP3A4 enzyme with an IC(50) value of 24.92 and 42.93 microM, respectively. PMID:17400460

  19. The hydrogen-peroxide-induced radical behaviour in human cytochrome c-phospholipid complexes: implications for the enhanced pro-apoptotic activity of the G41S mutant.

    PubMed

    Rajagopal, Badri S; Edzuma, Ann N; Hough, Michael A; Blundell, Katie L I M; Kagan, Valerian E; Kapralov, Alexandr A; Fraser, Lewis A; Butt, Julea N; Silkstone, Gary G; Wilson, Michael T; Svistunenko, Dimitri A; Worrall, Jonathan A R

    2013-12-15

    We have investigated whether the pro-apoptotic properties of the G41S mutant of human cytochrome c can be explained by a higher than wild-type peroxidase activity triggered by phospholipid binding. A key complex in mitochondrial apoptosis involves cytochrome c and the phospholipid cardiolipin. In this complex cytochrome c has its native axial Met(80) ligand dissociated from the haem-iron, considerably augmenting the peroxidase capability of the haem group upon H2O2 binding. By EPR spectroscopy we reveal that the magnitude of changes in the paramagnetic haem states, as well as the yield of protein-bound free radical, is dependent on the phospholipid used and is considerably greater in the G41S mutant. A high-resolution X-ray crystal structure of human cytochrome c was determined and, in combination with the radical EPR signal analysis, two tyrosine residues, Tyr(46) and Tyr(48), have been rationalized to be putative radical sites. Subsequent single and double tyrosine-to-phenylalanine mutations revealed that the EPR signal of the radical, found to be similar in all variants, including G41S and wild-type, originates not from a single tyrosine residue, but is instead a superimposition of multiple EPR signals from different radical sites. We propose a mechanism of multiple radical formations in the cytochrome c-phospholipid complexes under H2O2 treatment, consistent with the stabilization of the radical in the G41S mutant, which elicits a greater peroxidase activity from cytochrome c and thus has implications in mitochondrial apoptosis. PMID:24099549

  20. Adaptation of cytochrome-b5 reductase activity and methaemoglobinaemia in areas with a high nitrate concentration in drinking-water.

    PubMed Central

    Gupta, S. K.; Gupta, R. C.; Seth, A. K.; Gupta, A. B.; Bassin, J. K.; Gupta, A.

    1999-01-01

    An epidemiological investigation was undertaken in India to assess the prevalence of methaemoglobinaemia in areas with high nitrate concentration in drinking-water and the possible association with an adaptation of cytochrome-b5 reductase. Five areas were selected, with average nitrate ion concentrations in drinking-water of 26, 45, 95, 222 and 459 mg/l. These areas were visited and house schedules were prepared in accordance with a statistically designed protocol. A sample of 10% of the total population was selected in each of the areas, matched for age and weight, giving a total of 178 persons in five age groups. For each subject, a detailed history was documented, a medical examination was conducted and blood samples were taken to determine methaemoglobin level and cytochrome-b5 reductase activity. Collected data were subjected to statistical analysis to test for a possible relationship between nitrate concentration, cytochrome-b5 reductase activity and methaemoglobinaemia. High nitrate concentrations caused methaemoglobinaemia in infants and adults. The reserve of cytochrome-b5 reductase activity (i.e. the enzyme activity not currently being used, but which is available when needed; for example, under conditions of increased nitrate ingestion) and its adaptation with increasing water nitrate concentration to reduce methaemoglobin were more pronounced in children and adolescents. PMID:10534899

  1. Cardiac Cytochrome c Oxidase Activity and Contents of Submits 1 and 4 are Altered in Offspring by Low Prenatal Intake by Rat Dams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been reported previously that the offspring of rat dams consuming low dietary copper (Cu) during pregnancy and lactation experience a deficiency in cardiac cytochrome c oxidase (CCO) characterized by reduced catalytic activity and mitochondrial- and nuclear-subunit content after postnatal day...

  2. Inhibitory effects of citrus fruits on cytochrome P450 3A (CYP3A) activity in humans.

    PubMed

    Fujita, Ken-Ichi; Hidaka, Muneaki; Takamura, Norito; Yamasaki, Keishi; Iwakiri, Tomomi; Okumura, Manabu; Kodama, Hirofumi; Yamaguchi, Masatoshi; Ikenoue, Tsuyomu; Arimori, Kazuhiko

    2003-09-01

    The capacities of citrus fruits to inhibit midazolam 1'-hydroxylase activity of cytochrome P450 3A (CYP3A) expressed in human liver microsomes were evaluated. Eight citrus fruits such as ama-natsu, banpeiyu, Dekopon, hassaku, hyuga-natsu, completely matured kinkan (Tamatama), takaoka-buntan and unshu-mikan were tested. We also examined the inhibition of CYP3A activity by grapefruit (white) and grapefruit juice (white, Tropicana-Kirin). The addition of a fruit juice prepared from banpeiyu, hassaku, takaoka-buntan or Tamatama caused the inhibition of the microsomal CYP3A activity. The inhibition depended on the amount of a fruit juice added to the incubation mixture (2.5 and 5.0%, v/v). The fruit juice from banpeiyu showed the most potent inhibition of CYP3A. The addition of a banpeiyu juice (5.0%, v/v) resulted in the inhibition of midazolam 1'-hydroxylase activity to about 20% of control without a fruit juice. The elongation of the preincubation period of a fruit juice from banpeiyu (5.0%, v/v) with the microsomal fraction (5 to 15 min) led to the enhancement of the CYP3A inhibition (5% of control). Thus, we discovered ingredients of banpeiyu to be inhibitor(s) or mechanism-based inhibitor(s) of human CYP3A activity, but the inhibitory effects of them were somewhat lower than those of grapefruit. PMID:12951492

  3. Cardiolipin Switch in Mitochondria: Shutting off the Reduction of Cytochrome c and Turning on the Peroxidase Activity

    PubMed Central

    Basova, Liana V.; Kurnikov, Igor V.; Wang, Lei; Ritov, Vladimir B.; Belikova, Natalia A.; Vlasova, Irina I.; Pacheco, Andy A.; Winnica, Daniel E.; Peterson, Jim; Bayir, Hülya; Waldeck, David H.; Kagan, Valerian E.

    2012-01-01

    Upon interaction with anionic phospholipids, particularly mitochondria-specific cardiolipin (CL), cytochrome c (cyt c) loses its tertiary structure and its peroxidase activity dramatically increases. CL induced peroxidase activity of cyt c has been found to be important for selective CL oxidation in cells undergoing programmed death. During apoptosis, the peroxidase activity and the fraction of CL-bound cyt c markedly increases suggesting that CL may act as a switch to regulate cyt c’s mitochondrial functions. Using cyclic voltammetry and equilibrium redox-titrations, we show that the redox potential of cyt c shifts negatively by 350–400 mV upon binding to CL-containing membranes. Consequently, functions of cyt c as an electron transporter and cyt c reduction by Complex III are strongly inhibited. Further, CL/cyt c complexes are not effective in scavenging superoxide anions and are not effectively reduced by ascorbate. Thus, both redox properties and functions of cyt c change upon interaction with CL in the mitochondrial membrane, diminishing cyt c’s electron donor/acceptor role and stimulating its peroxidase activity. PMID:17319652

  4. Physiologically Based Pharmacokinetic Model to Assess the Influence of Blinatumomab-Mediated Cytokine Elevations on Cytochrome P450 Enzyme Activity

    PubMed Central

    Xu, Y; Hijazi, Y; Wolf, A; Wu, B; Sun, Y-N; Zhu, M

    2015-01-01

    Blinatumomab is a CD19/CD3 bispecific T-cell engager (BiTE®) antibody construct for treatment of leukemia. Transient elevation of cytokines (interleukin (IL)-6, IL-10, interferon-gamma (IFN-γ)) has been observed within the first 48 hours of continuous intravenous blinatumomab infusion. In human hepatocytes, blinatumomab showed no effect on cytochrome P450 (CYP450) activities, whereas a cytokine cocktail showed suppression of CYP3A4, CYP1A2, and CYP2C9 activities. We developed a physiologically based pharmacokinetic (PBPK) model to evaluate the effect of transient elevation of cytokines, particularly IL-6, on CYP450 suppression. The predicted suppression of hepatic CYP450 activities was <30%, and IL-6–mediated changes in exposure to sensitive substrates of CYP3A4, CYP1A2, and CYP2C9 were activities; the duration of cytokine elevation was a major determinant of magnitude of suppression. This study shows the utility of PBPK modeling for risk assessment of cytokine-mediated drug interactions. PMID:26451330

  5. Functional Coupling of ATP-binding Cassette Transporter Abcb6 to Cytochrome P450 Expression and Activity in Liver*

    PubMed Central

    Chavan, Hemantkumar; Li, Feng; Tessman, Robert; Mickey, Kristen; Dorko, Kenneth; Schmitt, Timothy; Kumer, Sean; Gunewardena, Sumedha; Gaikwad, Nilesh; Krishnamurthy, Partha

    2015-01-01

    Although endogenous mechanisms that negatively regulate cytochrome P450 (P450) monooxygenases in response to physiological and pathophysiological signals are not well understood, they are thought to result from alterations in the level of endogenous metabolites, involved in maintaining homeostasis. Here we show that homeostatic changes in hepatic metabolite profile in Abcb6 (mitochondrial ATP-binding cassette transporter B6) deficiency results in suppression of a specific subset of hepatic P450 activity. Abcb6 null mice are more susceptible to pentobarbital-induced sleep and zoxazolamine-induced paralysis, secondary to decreased expression and activity of Cyp3a11 and Cyp2b10. The knock-out mice also show decrease in both basal and xeno-inducible expression and activity of a subset of hepatic P450s that appear to be related to changes in hepatic metabolite profile. These data, together with the observation that liver extracts from Abcb6-deficient mice suppress P450 expression in human primary hepatocytes, suggest that this mouse model may provide an opportunity to understand the physiological signals and the mechanisms involved in negative regulation of P450s. PMID:25623066

  6. Comparative evaluation of 12 immature citrus fruit extracts for the inhibition of cytochrome P450 isoform activities.

    PubMed

    Fujita, Tadashi; Kawase, Atsushi; Niwa, Toshiro; Tomohiro, Norimichi; Masuda, Megumi; Matsuda, Hideaki; Iwaki, Masahiro

    2008-05-01

    In a previous study we found that 50% ethanol extracts of immature fruits of Citrus unshiu (satsuma mandarin) have anti-allergic effects against the Type I, II and IV allergic reactions. However, many adverse interactions between citrus fruit, especially grapefruit juice, and drugs have been reported due to the inhibition of cytochrome P450 (CYP) activities. The purpose of this study was to examine the competitive inhibitory effects of extracts from immature citrus fruit on CYP activity. Extracts were prepared from 12 citrus species or cultivars, and were tested against three kinds of major CYPs, CYP2C9, CYP2D6 and CYP3A4, in human liver microsomes. We also estimated the amounts of flavonoids (narirutin, hesperidin, naringin and neohesperidin) and furanocoumarins (bergapten, 6',7'-dihydroxybergamottin and bergamottin) in each extract using HPLC. Citrus paradisi (grapefruit) showed the greatest inhibition of CYP activities, while Citrus unshiu which has an antiallergic effect, showed relatively weak inhibitory effects. Extracts having relatively strong inhibitory effects for CYP3A4 tended to contain higher amounts of naringin, bergamottin and 6',7'-dihydroxybergamottin. These results, providing comparative information on the inhibitory effects of citrus extracts on CYP isoforms, suggest that citrus extracts containing high levels of narirutin and hesperidin and lower levels of furanocoumarins such as C. unshiu are favorable as antiallergic functional ingredients. PMID:18451520

  7. Functional coupling of ATP-binding cassette transporter Abcb6 to cytochrome P450 expression and activity in liver.

    PubMed

    Chavan, Hemantkumar; Li, Feng; Tessman, Robert; Mickey, Kristen; Dorko, Kenneth; Schmitt, Timothy; Kumer, Sean; Gunewardena, Sumedha; Gaikwad, Nilesh; Krishnamurthy, Partha

    2015-03-20

    Although endogenous mechanisms that negatively regulate cytochrome P450 (P450) monooxygenases in response to physiological and pathophysiological signals are not well understood, they are thought to result from alterations in the level of endogenous metabolites, involved in maintaining homeostasis. Here we show that homeostatic changes in hepatic metabolite profile in Abcb6 (mitochondrial ATP-binding cassette transporter B6) deficiency results in suppression of a specific subset of hepatic P450 activity. Abcb6 null mice are more susceptible to pentobarbital-induced sleep and zoxazolamine-induced paralysis, secondary to decreased expression and activity of Cyp3a11 and Cyp2b10. The knock-out mice also show decrease in both basal and xeno-inducible expression and activity of a subset of hepatic P450s that appear to be related to changes in hepatic metabolite profile. These data, together with the observation that liver extracts from Abcb6-deficient mice suppress P450 expression in human primary hepatocytes, suggest that this mouse model may provide an opportunity to understand the physiological signals and the mechanisms involved in negative regulation of P450s. PMID:25623066

  8. Metabolic Activation of the Antibacterial Agent Triclocarban by Cytochrome P450 1A1 Yielding Glutathione Adducts

    PubMed Central

    Muvvala, Jaya B.; Morin, Dexter; Buckpitt, Alan R.; Hammock, Bruce D.; Rice, Robert H.

    2014-01-01

    Triclocarban (3,4,4′-trichlorocarbanilide; TCC) is an antibacterial agent used in personal care products such as bar soaps. Small amounts of chemical are absorbed through the epidermis. Recent studies show that residues of reactive TCC metabolites are bound covalently to proteins in incubations with keratinocytes, raising concerns about the potential toxicity of this antimicrobial agent. To obtain additional information on metabolic activation of TCC, this study characterized the reactive metabolites trapped as glutathione conjugates. Incubations were carried out with 14C-labeled TCC, recombinant CYP1A1 or CYP1B1, coexpressed with cytochrome P450 reductase, glutathione-S-transferases (GSH), and an NADPH-generating system. Incubations containing CYP1A1, but not 1B1, led to formation of a single TCC-GSH adduct with a conversion rate of 1% of parent compound in 2 hours. Using high-resolution mass spectrometry and diagnostic fragmentation, the adduct was tentatively identified as 3,4-dichloro-3′-glutathionyl-4′-hydroxycarbanilide. These findings support the hypothesis that TCC is activated by oxidative dehalogenation and oxidation to a quinone imine. Incubations of TCDD-induced keratinocytes with 14C-TCC yielded a minor radioactive peak coeluting with TCC-GSH. Thus, we conclude that covalent protein modification by TCC in TCDD-induced human keratinocyte incubations is mainly caused by activation of TCC by CYP1A1 via a dehalogenated TCC derivative as reactive species. PMID:24733789

  9. Two azole fungicides (carcinogenic triadimefon and non-carcinogenic myclobutanil) exhibit different hepatic cytochrome P450 activities in medaka fish.

    PubMed

    Lin, Chun-Hung; Chou, Pei-Hsin; Chen, Pei-Jen

    2014-07-30

    Conazoles are a class of imidazole- or triazole-containing drugs commonly used as fungicides in agriculture and medicine. The broad application of azole drugs has led to the contamination of surface aquifers receiving the effluent of municipal or hospital wastewater or agricultural runoff. Several triazoles are rodent carcinogens; azole pollution is a concern to environmental safety and human health. However, the carcinogenic mechanisms associated with cytochrome P450 enzymes (CYPs) of conazoles remain unclear. We exposed adult medaka fish (Oryzias latipes) to continuous aqueous solutions of carcinogenic triadimefon and non-carcinogenic myclobutanil for 7 to 20 days at sub-lethal or environmentally relevant concentrations and assessed hepatic CYP activity and gene expression associated with CYP-mediated toxicity. Both triadimefon and myclobutanil induced hepatic CYP3A activity, but only triadimefon enhanced CYP1A activity. The gene expression of cyp3a38, cyp3a40, pregnane x receptor (pxr), cyp26b, retinoid acid receptor γ1 (rarγ1) and p53 was higher with triadimefon than myclobutanil. As well, yeast-based reporter gene assay revealed that 4 tested conazoles were weak agonists of aryl hydrocarbon receptor (AhR). We reveal differential CYP gene expression with carcinogenic and non-carcinogenic conazoles in a lower vertebrate, medaka fish. Liver CYP-enzyme induction may be a key event in conazole-induced tumorigenesis. This information is essential to evaluate the potential threat of conazoles to human health and fish populations in the aquatic environment. PMID:24962053

  10. Metabolic activation of the antibacterial agent triclocarban by cytochrome P450 1A1 yielding glutathione adducts.

    PubMed

    Schebb, Nils Helge; Muvvala, Jaya B; Morin, Dexter; Buckpitt, Alan R; Hammock, Bruce D; Rice, Robert H

    2014-07-01

    Triclocarban (3,4,4'-trichlorocarbanilide; TCC) is an antibacterial agent used in personal care products such as bar soaps. Small amounts of chemical are absorbed through the epidermis. Recent studies show that residues of reactive TCC metabolites are bound covalently to proteins in incubations with keratinocytes, raising concerns about the potential toxicity of this antimicrobial agent. To obtain additional information on metabolic activation of TCC, this study characterized the reactive metabolites trapped as glutathione conjugates. Incubations were carried out with (14)C-labeled TCC, recombinant CYP1A1 or CYP1B1, coexpressed with cytochrome P450 reductase, glutathione-S-transferases (GSH), and an NADPH-generating system. Incubations containing CYP1A1, but not 1B1, led to formation of a single TCC-GSH adduct with a conversion rate of 1% of parent compound in 2 hours. Using high-resolution mass spectrometry and diagnostic fragmentation, the adduct was tentatively identified as 3,4-dichloro-3'-glutathionyl-4'-hydroxycarbanilide. These findings support the hypothesis that TCC is activated by oxidative dehalogenation and oxidation to a quinone imine. Incubations of TCDD-induced keratinocytes with (14)C-TCC yielded a minor radioactive peak coeluting with TCC-GSH. Thus, we conclude that covalent protein modification by TCC in TCDD-induced human keratinocyte incubations is mainly caused by activation of TCC by CYP1A1 via a dehalogenated TCC derivative as reactive species. PMID:24733789

  11. Gene polymorphisms and contents of cytochrome P450s have only limited effects on metabolic activities in human liver microsomes.

    PubMed

    Gao, Na; Tian, Xin; Fang, Yan; Zhou, Jun; Zhang, Haifeng; Wen, Qiang; Jia, Linjing; Gao, Jie; Sun, Bao; Wei, Jingyao; Zhang, Yunfei; Cui, Mingzhu; Qiao, Hailing

    2016-09-20

    Extensive inter-individual variations in pharmacokinetics are considered as a major reason for unpredictable drug responses. As the most important drug metabolic enzymes, inter-individual variations of cytochrome P450 (CYP) activities are not clear in human liver. In this paper, metabolic activities, gene polymorphisms and protein contents of 10 CYPs were determined in 105 human normal liver microsomes. The results indicated substantial inter-individual variations in CYP activities, with the greatest being CYP2C19 activity (>600-fold). Only half of 10 CYP isoforms and 26 gene polymorphism sites had limited effects on metabolic activities, such as CYP2A6, CYP2B6, CYP2C9, CYP2D6 and CYP3A4/5, others had almost no effects. Compared with their respective wild type, Km, Vmax, and CLint decreased by 51.6%, 88.7% and 70.7% in CYP2A6*1/*4 genotype, Vmax and CLint decreased by 32.8% and 60.2% in CYP2C9*1/*3 genotype, Km increased by 118.4% and CLint decreased by 65.2% in CYP2D6 100TT genotype, respectively. Moreover, there were only 4 CYP isoforms, CYP1A2, CYP2A6, CYP2E1 and CYP3A5, which had moderate or weak correlations between Vmax values and corresponding contents. In conclusions, the genotypes and contents of some CYPs have only limited effects on metabolic activities, which imply that there are other more important factors to influence inter-individual variations. PMID:27339126

  12. All-Trans Retinoic Acid Activity in Acute Myeloid Leukemia: Role of Cytochrome P450 Enzyme Expression by the Microenvironment

    PubMed Central

    Su, Meng; Alonso, Salvador; Jones, Jace W.; Yu, Jianshi; Kane, Maureen A.; Jones, Richard J.; Ghiaur, Gabriel

    2015-01-01

    Differentiation therapy with all-trans retinoic acid (atRA) has markedly improved outcome in acute promyelocytic leukemia (APL) but has had little clinical impact in other AML sub-types. Cell intrinsic mechanisms of resistance have been previously reported, yet the majority of AML blasts are sensitive to atRA in vitro. Even in APL, single agent atRA induces remission without cure. The microenvironment expression of cytochrome P450 (CYP)26, a retinoid-metabolizing enzyme was shown to determine normal hematopoietic stem cell fate. Accordingly, we hypothesized that the bone marrow (BM) microenvironment is responsible for difference between in vitro sensitivity and in vivo resistance of AML to atRA-induced differentiation. We observed that the pro-differentiation effects of atRA on APL and non-APL AML cells as well as on leukemia stem cells from clinical specimens were blocked by BM stroma. In addition, BM stroma produced a precipitous drop in atRA levels. Inhibition of CYP26 rescued atRA levels and AML cell sensitivity in the presence of stroma. Our data suggest that stromal CYP26 activity creates retinoid low sanctuaries in the BM that protect AML cells from systemic atRA therapy. Inhibition of CYP26 provides new opportunities to expand the clinical activity of atRA in both APL and non-APL AML. PMID:26047326

  13. Structural and functional characterization of "laboratory evolved" cytochrome P450cam mutants showing enhanced naphthalene oxygenation activity.

    PubMed

    Matsuura, Koji; Tosha, Takehiko; Yoshioka, Shiro; Takahashi, Satoshi; Ishimori, Koichiro; Morishima, Isao

    2004-10-29

    To elucidate molecular mechanisms for the enhanced oxygenation activity in the three mutants of cytochrome P450cam screened by 'laboratory evolution' [Nature 399 (1999) 670], we purified the mutants and characterized their functional and structural properties. The electronic absorption and resonance Raman spectra revealed that the structures of heme binding site of all purified mutants were quite similar to that of the wild-type enzyme, although the fraction of the inactivated form, called "P420," was increased. In the reaction with H(2)O(2), only trace amounts of the naphthalene hydroxylation product were detected by gas chromatography. We, therefore, conclude that the three mutants do not exhibit significant changes in the structural and functional properties from those of wild-type P450cam except for the stability of the axial ligand in the reduced form. The enhanced fluorescence in the whole-cell assay would reflect enhancement in the oxygenation activity below the detectable limit of the gas chromatography and/or contributions of other reactions catalyzed by the heme iron. PMID:15451425

  14. All-Trans Retinoic Acid Activity in Acute Myeloid Leukemia: Role of Cytochrome P450 Enzyme Expression by the Microenvironment.

    PubMed

    Su, Meng; Alonso, Salvador; Jones, Jace W; Yu, Jianshi; Kane, Maureen A; Jones, Richard J; Ghiaur, Gabriel

    2015-01-01

    Differentiation therapy with all-trans retinoic acid (atRA) has markedly improved outcome in acute promyelocytic leukemia (APL) but has had little clinical impact in other AML sub-types. Cell intrinsic mechanisms of resistance have been previously reported, yet the majority of AML blasts are sensitive to atRA in vitro. Even in APL, single agent atRA induces remission without cure. The microenvironment expression of cytochrome P450 (CYP)26, a retinoid-metabolizing enzyme was shown to determine normal hematopoietic stem cell fate. Accordingly, we hypothesized that the bone marrow (BM) microenvironment is responsible for difference between in vitro sensitivity and in vivo resistance of AML to atRA-induced differentiation. We observed that the pro-differentiation effects of atRA on APL and non-APL AML cells as well as on leukemia stem cells from clinical specimens were blocked by BM stroma. In addition, BM stroma produced a precipitous drop in atRA levels. Inhibition of CYP26 rescued atRA levels and AML cell sensitivity in the presence of stroma. Our data suggest that stromal CYP26 activity creates retinoid low sanctuaries in the BM that protect AML cells from systemic atRA therapy. Inhibition of CYP26 provides new opportunities to expand the clinical activity of atRA in both APL and non-APL AML. PMID:26047326

  15. [Activity of key enzymes of heme metabolism and cytochrome P-450 content in the rat liver in experimental rhabdomyolysis and hemolytic anemia].

    PubMed

    Kaliman, P A; Inshina, N N; Strel'chenko, E V

    2003-01-01

    The 5-aminolevulinate synthase, heme oxygenase, tryptophan-2,3-dioxygenase activities, the content of total heme and cytochrome P-450 content in the rat liver and absorption spectrum of blood serum in Soret region under glycerol model of rhabdomiolisis and hemolytic anemia caused by single phenylhydrazine injection have been investigated. The glycerol injection caused a considerable accumulation of heme-containing products in the serum and the increase of the total heme content, holoenzyme, total activity and heme saturation of tryptophan-2,3-dioxygenase, as well as the increase of the 5-aminolevulinate synthase and heme oxygenase activities in the liver during the first hours of its action and the decrease of cytochrome P-450 content in 24 h. Administration of phenylhydrazine lead to the increasing of hemolysis products content in blood serum too, although it was less expressed. The phenylhydrazine injection caused the increase of activities of 5-aminolevulinate synthase, holoenzyme, total activity and heme saturation of tryptophan-2,3-dioxygenase, as well as decrease of cytochrome P-450 content in the rat liver in 2 h. The increase of the total heme content and heme oxygenase activity has been observed in 24 h. The effect of heme arrival from the blood stream, as well as a direct influence of glycerol and phenylhydrazine on the investigated parameters are discussed. PMID:14577161

  16. Effects of mace and nutmeg on human cytochrome P450 3A4 and 2C9 activity.

    PubMed

    Kimura, Yuka; Ito, Hideyuki; Hatano, Tsutomu

    2010-01-01

    Pharmacokinetic or pharmacodynamic interactions between herbal medicines or food constituents and drugs have been studied as crucial factors determining therapeutic efficacy and outcome. Most of these interactions are attributed to inhibition or induction of activity of cytochrome P450 (CYP) metabolic enzymes. Inhibition or induction of CYP enzymes by beverages, including grapefruit, pomegranate, or cranberry juice, has been well documented. Because spices are a common daily dietary component, other studies have reported inhibition of CYP activity by spices or their constituents/derivatives. However, a systematic evaluation of various spices has not been performed. In this study, we investigated effects of 55 spices on CYP3A4 and CYP2C9 activity. Cinnamon, black or white pepper, ginger, mace, and nutmeg significantly inhibited CYP3A4 or CYP2C9 activity. Furthermore, bioassay-guided fractionation of mace (Myristica fragrans) led to isolation and structural characterization of a new furan derivative (1) along with other 16 known compounds, including an acylphenol, neolignans, and phenylpropanoids. Among these isolates, (1S,2R)-1-acetoxy-2-(4-allyl-2,6-dimethoxyphenoxy)-1-(3,4-dimethoxyphenyl)propane (9) exhibited the most potent CYP2C9 inhibitory activity with an IC₅₀ value comparable to that of sulfaphenazole, a CYP2C9 inhibitor. Compound 9 competitively inhibited CYP2C9-mediated 4'-hydroxylation of diclofenac. The inhibitory constant (K(i)) of 9 was determined to be 0.037 µM. Compound 9 was found to be 14-fold more potent than was sulfaphenazole. PMID:21139236

  17. Five of 12 forms of vaccinia virus-expressed human hepatic cytochrome P450 metabolically activate aflatoxin B sub 1

    SciTech Connect

    Aoyama, Toshifumi; Yamano, Shigeru; Gelboin, H.V.; Gonzalez, F.J. ); Guzelian, P.S. )

    1990-06-01

    Twelve forms of human hepatic cytochrome P450 were expressed in hepatoma cells by means of recombinant vaccinia viruses. The expressed P450s were analyzed for their abilities to activate the potent hepatocarcinogen aflatoxin B{sub 1} to metabolites having mutagenic or DNA-binding properties. Five forms, P450s IA2, IIA3, IIB7, IIIA3, and IIIA4, activated aflatoxin B{sub 1} to mutagenic metabolites as assessed by the production of His revertants of Salmonella typhimurium in the Ames test. The same P450s catalyzed conversion of aflatoxin B{sub 1} to DNA-bound derivatives as judged by an in situ assay in which the radiolabeled carcinogen was incubated with cells expressing the individual P450 forms. Seven other human P450s, IIC8, IIC9, IID6, IIE1, IIF1, and IIIA5, and IVB1, did not significantly activate aflatoxin B{sub 1} as measured by both the Ames test and the DNA-binding assay. Moreover, polyclonal anti-rat liver P450 antibodies that crossreact with individual human P450s IA2, IIA3, IIIA3, and IIIA4 each inhibited aflatoxin B{sub 1} activation catalyzed by human liver S-9 extracts. Inhibition ranged from as low as 10% with antibody against IIA3 to as high as 65% with antibody against IIIA3 and IIIA4. These results establish that metabolic activation of aflatoxin B{sub 1} in human liver involves the contribution of multiple forms of P450.

  18. Feed-drug interaction of orally applied butyrate and phenobarbital on hepatic cytochrome P450 activity in chickens.

    PubMed

    Mátis, G; Kulcsár, A; Petrilla, J; Hermándy-Berencz, K; Neogrády, Zs

    2016-08-01

    The expression of hepatic drug-metabolizing cytochrome P450 (CYP) enzymes may be affected by several nutrition-derived compounds, such as by the commonly applied feed additive butyrate, possibly leading to feed-drug interactions. The aim of this study was to provide some evidence if butyrate can alter the activity of hepatic CYPs in chickens exposed to CYP-inducing xenobiotics, monitoring for the first time the possibility of such interaction. Ross 308 chickens in the grower phase were treated with daily intracoelomal phenobarbital (PB) injection (80 mg/kg BW), applied as a non-specific CYP-inducer, simultaneously with two different doses of intra-ingluvial sodium butyrate boluses (0.25 and 1.25 g/kg BW) for 5 days. Activity of CYP2H and CYP3A subfamilies was assessed by specific enzyme assays from isolated liver microsomes. According to our results, the lower dose of orally administered butyrate significantly attenuated the PB-triggered elevation of both hepatic CYP2H and CYP3A activities, which might be in association with the partly common signalling pathways of butyrate and CYP-inducing drugs, such as that of PB. Based on these data, butyrate may take part in pharmacoepigenetic interactions with simultaneously applied drugs or other CYP-inducing xenobiotics, with possible consequences for food safety and pharmacotherapy. Butyrate was found to be capable to maintain physiological CYP activity by attenuating CYP induction, underlining the safety of butyrate application in poultry nutrition. PMID:26614344

  19. Menadione Suppresses Benzo(α)pyrene-Induced Activation of Cytochromes P450 1A: Insights into a Possible Molecular Mechanism

    PubMed Central

    Pivovarova, Elena N.; Markel, Arkady L.; Lyakhovich, Vyacheslav V.; Grishanova, Alevtina Y.

    2016-01-01

    Oxidative reactions that are catalyzed by cytochromes P450 1A (CYP1A) lead to formation of carcinogenic derivatives of arylamines and polycyclic aromatic hydrocarbons (PAHs), such as the widespread environmental pollutant benzo(α)pyrene (BP). These compounds upregulate CYP1A at the transcriptional level via an arylhydrocarbon receptor (AhR)-dependent signaling pathway. Because of the involvement of AhR-dependent genes in chemically induced carcinogenesis, suppression of this signaling pathway could prevent tumor formation and/or progression. Here we show that menadione (a water-soluble analog of vitamin K3) inhibits BP-induced expression and enzymatic activity of both CYP1A1 and CYP1A2 in vivo (in the rat liver) and BP-induced activity of CYP1A1 in vitro. Coadministration of BP and menadione reduced DNA-binding activity of AhR and increased DNA-binding activity of transcription factors Oct-1 and CCAAT/enhancer binding protein (C/EBP), which are known to be involved in negative regulation of AhR-dependent genes, in vivo. Expression of another factor involved in downregulation of CYP1A—pAhR repressor (AhRR)—was lower in the liver of the rats treated with BP and menadione, indicating that the inhibitory effect of menadione on CYP1A is not mediated by this protein. Furthermore, menadione was well tolerated by the animals: no signs of acute toxicity were detected by visual examination or by assessment of weight gain dynamics or liver function. Taken together, our results suggest that menadione can be used in further studies on animal models of chemically induced carcinogenesis because menadione may suppress tumor formation and possibly progression. PMID:27167070

  20. Influence of Panax ginseng on Cytochrome P450 (CYP)3A and P-glycoprotein (Pgp) Activity in Healthy Subjects

    PubMed Central

    Malati, Christine Y.; Robertson, Sarah M.; Hunt, Jennifer D.; Chairez, Cheryl; Alfaro, Raul M.; Kovacs, Joseph A.; Penzak, Scott R.

    2012-01-01

    A number of herbal preparations have been shown to interact with prescription medications secondary to modulation of cytochrome P450 (CYP) and/or P-glycoprotein (P-gp). The purpose of this study was to determine the influence of Panax ginseng on CYP3A and P-gp function using the probe substrates midazolam and fexofenadine, respectively. Twelve healthy subjects (8 males) completed this open label, single sequence pharmacokinetic study. Healthy volunteers received single oral doses of midazolam 8 mg and fexofenadine 120 mg, before and after 28 days of P. ginseng 500 mg twice daily. Midazolam and fexofenadine pharmacokinetic parameter values were calculated and compared pre-and post P. ginseng administration. Geometric mean ratios (post-ginseng/pre-ginseng) for midazolam area under the concentration vs. time curve from zero to infinity (AUC0-∞), half life (T1/2), and maximum concentration (Cmax) were significantly reduced at 0.66 (0.55 – 0.78), 0.71 (0.53 – 0.90), and 0.74 (0.56 – 0.93), respectively. Conversely, fexofenadine pharmacokinetics were unaltered by P. ginseng administration. Based on these results, Panax ginseng appeared to induce CYP3A activity in the liver and possibly the gastrointestinal tract. Patients taking Panax ginseng in combination with CYP3A substrates with narrow therapeutic ranges should be monitored closely for adequate therapeutic response to the substrate medication. PMID:21646440

  1. Comparable reduction in Zif268 levels and cytochrome oxidase activity in the retrosplenial cortex following mammillothalamic tract lesions.

    PubMed

    Frizzati, Aura; Milczarek, Michal M; Sengpiel, Frank; Thomas, Kerrie L; Dillingham, Christopher M; Vann, Seralynne D

    2016-08-25

    Damage to the mammillothalamic tract (MTT) produces memory impairments in both humans and rats, yet it is still not clear why this diencephalic pathway is vital for memory. One suggestion is that it is an important route for midbrain inputs to reach a wider cortical and subcortical network that supports memory. Consistent with this idea, MTT lesions produce widespread hypoactivity in distal brain regions as measured by the immediate-early gene, c-fos. To determine whether these findings were selective to c-fos or reflected more general changes in neuronal function, we assessed the effects of MTT lesions on the expression of the immediate-early gene protein, Zif268 and the metabolic marker, cytochrome oxidase, in the retrosplenial cortex and hippocampus. The lesions decreased levels of both activity markers in the superficial and deep layers of the retrosplenial cortex in both its granular and dysgranular subregions. In contrast, no significant changes were observed in the hippocampus, despite the MTT-lesioned animals showing marked impairments on T-maze alternation. These findings are consistent with MTT lesions providing important, indirect inputs for normal retrosplenial cortex functioning. These distal functional changes may contribute to the memory impairments observed after MTT lesions. PMID:27233617

  2. Oxygen-dependent upstream activation sites of Saccharomyces cerevisiae cytochrome c genes are related forms of the same sequence

    SciTech Connect

    Cerdan, M.E.; Zitomer, R.S.

    1988-06-01

    In Sacchariomyces cerevisiae, the two genes, CYC1 and CYC7, that encode the isoforms of cytochrome c are expressed at different levels. Oxygen regulation is indicated by the expression of the CYP1 gene, and the CYP1 protein interacts with both CYC1 upstream activation sequence 1 (UAS1) and CYC7 UAS/sub 0/. In this study, the homology between the CYP1-binding sites of both genes was investigated. The most noticeable difference between the CYC1 and CYC7 UASs is the presence of GC base pairs at the same positions in a repeated sequence in CYC7 compared with CG base pairs in CYC1. Directed mutagenesis changing these GC residues to CG residues in CYC7 led to CYC1-like expression of CYC7 both in a CYP1 wild-type strain and in a strain carrying the semidominant mutation CYP1-16 which reverses the oxygen-dependent expression of the two genes. The authors' results strongly support the hypothesis that the CYP1-binding sites in CYC1 and CYC7 are related forms of the same sequence and that the CYP1-16 protein has altered specificity for the variant forms of the concensus sequences in both genes.

  3. Tuning the substrate specificity by engineering the active site of cytochrome P450cam: a rational approach.

    PubMed

    Manna, Soumen Kanti; Mazumdar, Shyamalava

    2010-03-28

    Rational design of the active site of cytochrome P450cam has been carried out to catalyse oxygenation of various potentially important chemical reactions. The modeling studies showed that the distal pocket of the heme consisting of the Y96, T101, F87 and L244 residues could be suitably mutated to change the substrate specificity of the enzyme. We found that the mutant enzymes could catalyse oxygenation of indole to produce indigo. While Y96F was found to be several times better as a catalyst for conversion of indole to indigo, the double mutant Y96F/L244A showed the highest NADH oxidation rate as well as yield of indigo. The oxidative catalysis using H(2)O(2) as the oxygen source was found to produce a higher purity of indigo, and lesser or no formation of indirubin was detected. The enzymatic oxygenation of aromatic hydrocarbons such as coumarin and analogues was also found to be enhanced on mutation of Y96 and L244 residues in the enzyme. The studies also showed that mutation of suitable residues can alter the regio-selectivity of hydroxylation of the aromatic hydrocarbons. PMID:20221546

  4. A structural model for across membrane coupling between the Qo and Qi active sites of cytochrome bc1.

    PubMed

    Cooley, Jason W

    2010-12-01

    The two spatially distant quinone-binding sites of the ubihydroquinone: cytochrome c oxidoreductase (cyt bc(1)) complex have been shown to influence one another in some fashion. This transmembrane communication alters cofactor and redox partner binding interactions and could potentially influence the timing or 'concerted' steps involved in the steady-state turnover of the homodimeric enzymes. Yet, despite several lines of evidence corroborating the coupling of the quinone binding active sites to one another, little to no testable hypothesis has been offered to explain how such a "signal" might be transmitted across the presumably rigid hydrophobic domain of the enzyme. Recently, it has been shown that this interquinone binding sites communication influences the steady-state position of the mobile [2Fe-2S] cluster containing iron sulfur protein (Sarewicz M., Dutka M., Froncisz W., Osyczka A. (2009) Biochemistry 48, 5708-5720) as mediated by at least one transmembrane helix of the b-type cyt containing subunit (Cooley, J. W., Lee, D. W., and Daldal, F. (2009) Biochemistry 48, 1988-1999). Here we provide an overview of the evidence supporting the structural coupling of these sites and provide a theoretical framework for how the redox state of a quinone at one cofactor binding site might influence the cofactor-, inhibitor-, and/or protein-protein interactions at the structurally distant opposing Q binding site. PMID:20513347

  5. Effects of herbal products and their constituents on human cytochrome P450(2E1) activity.

    PubMed

    Raner, Gregory M; Cornelious, Sean; Moulick, Kamalika; Wang, Yingqing; Mortenson, Ashley; Cech, Nadja B

    2007-12-01

    Ethanolic extracts from fresh Echinacea purpurea and Spilanthes acmella and dried Hydrastis canadensis were examined with regard to their ability to inhibit cytochrome P450(2E1) mediated oxidation of p-nitrophenol in vitro. In addition, individual constituents of these extracts, including alkylamides from E. purpurea and S. acmella, caffeic acid derivatives from E. purpurea, and several of the major alkaloids from H. canadensis, were tested for inhibition using the same assay. H. canadensis (goldenseal) was a strong inhibitor of the P450(2E1), and the inhibition appeared to be related to the presence of the alkaloids berberine, hydrastine and canadine in the extract. These compounds inhibited 2E1 with K(I) values ranging from 2.8 microM for hydrastine to 18 microM for berberine. The alkylamides present in E. purpurea and S. acmella also showed significant inhibition at concentrations as low as 25 microM, whereas the caffeic acid derivatives had no effect. Commercial green tea preparations, along with four of the individual tea catechins, were also examined and were found to have no effect on the activity of P450(2E1). PMID:17658211

  6. Individual variability in esterase activity and CYP1A levels in Chinook salmon (Oncorhynchus tshawytscha) exposed to esfenvalerate and chlorpyrifos

    PubMed Central

    Wheelock, Craig E.; Eder, Kai J.; Werner, Inge; Huang, Huazhang; Jones, Paul D.; Brammell, Benjamin F.; Elskus, Adria A.; Hammock, Bruce D.

    2006-01-01

    Acetylcholinesterase (AChE) activity has traditionally been monitored as a biomarker of organophosphate (OP) and/or carbamate exposure. However, AChE activity may not be the most sensitive endpoint for these agrochemicals, because OPs can cause adverse physiological effects at concentrations that do not affect AChE activity. Carboxylesterases are a related family of enzymes that have higher affinity than AChE for some OPs and carbamates and may be more sensitive indicators of environmental exposure to these pesticides. In this study, carboxylesterase and AChE activity, cytochrome P4501A (CYP1A) protein levels, and mortality were measured in individual juvenile Chinook salmon (Oncorhynchus tshawytscha) following exposure to an OP (chlorpyrifos) and a pyrethroid (esfenvalerate). As expected, high doses of chlorpyrifos and esfenvalerate were acutely toxic, with nominal concentrations (100 and 1 μg/l, respectively) causing 100% mortality within 96 h. Exposure to chlorpyrifos at a high dose (7.3 μg/l), but not a low dose (1.2 μg/l), significantly inhibited AChE activity in both brain and muscle tissue (85% and 92% inhibition, respectively), while esfenvalerate exposure had no effect. In contrast, liver carboxylesterase activity was significantly inhibited at both the low and high chlorpyrifos dose exposure (56% and 79% inhibition, respectively), while esfenvalerate exposure still had little effect. The inhibition of carboxylesterase activity at levels of chlorpyrifos that did not affect AChE activity suggests that some salmon carboxylesterase isozymes may be more sensitive than AChE to inhibition by OPs. CYP1A protein levels were ∼30% suppressed by chlorpyrifos exposure at the high dose, but esfenvalerate had no effect. Three teleost species, Chinook salmon, medaka (Oryzias latipes) and Sacramento splittail (Pogonichthys macrolepidotus), were examined for their ability to hydrolyze a series of pyrethroid surrogate substrates and in all cases hydrolysis activity was

  7. Individual variability in esterase activity and CYP1A levels in Chinook salmon (Oncorhynchus tshawytscha) exposed to esfenvalerate and chlorpyrifos

    USGS Publications Warehouse

    Wheelock, C.E.; Eder, K.J.; Werner, I.; Huang, H.; Jones, P.D.; Brammell, B.F.; Elskus, A.A.; Hammock, B.D.

    2005-01-01

    Acetylcholinesterase (AChE) activity has traditionally been monitored as a biomarker of organophosphate (OP) and/or carbamate exposure. However, AChE activity may not be the most sensitive endpoint for these agrochemicals, because OPs can cause adverse physiological effects at concentrations that do not affect AChE activity. Carboxylesterases are a related family of enzymes that have higher affinity than AChE for some OPs and carbamates and may be more sensitive indicators of environmental exposure to these pesticides. In this study, carboxylesterase and AChE activity, cytochrome P4501A (CYP1A) protein levels, and mortality were measured in individual juvenile Chinook salmon (Oncorhynchus tshawytscha) following exposure to an OP (chlorpyrifos) and a pyrethroid (esfenvalerate). As expected, high doses of chlorpyrifos and esfenvalerate were acutely toxic, with nominal concentrations (100 and 1 ??g/l, respectively) causing 100% mortality within 96 h. Exposure to chlorpyrifos at a high dose (7.3 ??g/l), but not a low dose (1.2 ??g/l), significantly inhibited AChE activity in both brain and muscle tissue (85% and 92% inhibition, respectively), while esfenvalerate exposure had no effect. In contrast, liver carboxylesterase activity was significantly inhibited at both the low and high chlorpyrifos dose exposure (56% and 79% inhibition, respectively), while esfenvalerate exposure still had little effect. The inhibition of carboxylesterase activity at levels of chlorpyrifos that did not affect AChE activity suggests that some salmon carboxylesterase isozymes may be more sensitive than AChE to inhibition by OPs. CYP1A protein levels were ???30% suppressed by chlorpyrifos exposure at the high dose, but esfenvalerate had no effect. Three teleost species, Chinook salmon, medaka (Oryzias latipes) and Sacramento splittail (Pogonichthys macrolepidotus), were examined for their ability to hydrolyze a series of pyrethroid surrogate substrates and in all cases hydrolysis activity was

  8. Cytochrome P450-mediated activation of the fragrance compound geraniol forms potent contact allergens

    SciTech Connect

    Hagvall, Lina; Baron, Jens Malte; Boerje, Anna; Weidolf, Lars; Merk, Hans; Karlberg, Ann-Therese

    2008-12-01

    Contact sensitization is caused by low molecular weight compounds which penetrate the skin and bind to protein. In many cases, these compounds are activated to reactive species, either by autoxidation on exposure to air or by metabolic activation in the skin. Geraniol, a widely used fragrance chemical, is considered to be a weak allergen, although its chemical structure does not indicate it to be a contact sensitizer. We have shown that geraniol autoxidizes and forms allergenic oxidation products. In the literature, it is suggested but not shown that geraniol could be metabolically activated to geranial. Previously, a skin-like CYP cocktail consisting of cutaneous CYP isoenzymes, was developed as a model system to study cutaneous metabolism. In the present study, we used this system to investigate CYP-mediated activation of geraniol. In incubations with the skin-like CYP cocktail, geranial, neral, 2,3-epoxygeraniol, 6,7-epoxygeraniol and 6,7-epoxygeranial were identified. Geranial was the main metabolite formed followed by 6,7-epoxygeraniol. The allergenic activities of the identified metabolites were determined in the murine local lymph node assay (LLNA). Geranial, neral and 6,7-epoxygeraniol were shown to be moderate sensitizers, and 6,7-epoxygeranial a strong sensitizer. Of the isoenzymes studied, CYP2B6, CYP1A1 and CYP3A5 showed high activities. It is likely that CYP1A1 and CYP3A5 are mainly responsible for the metabolic activation of geraniol in the skin, as they are expressed constitutively at significantly higher levels than CYP2B6. Thus, geraniol is activated through both autoxidation and metabolism. The allergens geranial and neral are formed via both oxidation mechanisms, thereby playing a large role in the sensitization to geraniol.

  9. Peroxisome proliferator-activated receptor alpha, PPARα, directly regulates transcription of cytochrome P450 CYP2C8

    PubMed Central

    Thomas, Maria; Winter, Stefan; Klumpp, Britta; Turpeinen, Miia; Klein, Kathrin; Schwab, Matthias; Zanger, Ulrich M.

    2015-01-01

    The cytochrome P450, CYP2C8, metabolizes more than 60 clinically used drugs as well as endogenous substances including retinoic acid and arachidonic acid. However, predictive factors for interindividual variability in the efficacy and toxicity of CYP2C8 drug substrates are essentially lacking. Recently we demonstrated that peroxisome proliferator-activated receptor alpha (PPARα), a nuclear receptor primarily involved in control of lipid and energy homeostasis directly regulates the transcription of CYP3A4. Here we investigated the potential regulation of CYP2C8 by PPARα. Two linked intronic SNPs in PPARα (rs4253728, rs4823613) previously associated with hepatic CYP3A4 status showed significant association with CYP2C8 protein level in human liver samples (N = 150). Furthermore, siRNA-mediated knock-down of PPARα in HepaRG human hepatocyte cells resulted in up to ∼60 and ∼50% downregulation of CYP2C8 mRNA and activity, while treatment with the PPARα agonist WY14,643 lead to an induction by >150 and >100%, respectively. Using chromatin immunoprecipitation scanning assay we identified a specific upstream gene region that is occupied in vivo by PPARα. Electromobility shift assay demonstrated direct binding of PPARα to a DR-1 motif located at positions –2762/–2775 bp upstream of the CYP2C8 transcription start site. We further validated the functional activity of this element using luciferase reporter gene assays in HuH7 cells. Moreover, based on our previous studies we demonstrated that WNT/β-catenin acts as a functional inhibitor of PPARα-mediated inducibility of CYP2C8 expression. In conclusion, our data suggest direct involvement of PPARα in both constitutive and inducible regulation of CYP2C8 expression in human liver, which is further modulated by WNT/β-catenin pathway. PPARA gene polymorphism could have a modest influence on CYP2C8 phenotype. PMID:26582990

  10. Inhibitory Effects of Aschantin on Cytochrome P450 and Uridine 5'-diphospho-glucuronosyltransferase Enzyme Activities in Human Liver Microsomes.

    PubMed

    Kwon, Soon-Sang; Kim, Ju-Hyun; Jeong, Hyeon-Uk; Cho, Yong Yeon; Oh, Sei-Ryang; Lee, Hye Suk

    2016-01-01

    Aschantin is a bioactive neolignan found in Magnolia flos with antiplasmodial, Ca(2+)-antagonistic, platelet activating factor-antagonistic, and chemopreventive activities. We investigated its inhibitory effects on the activities of eight major human cytochrome P450 (CYP) and uridine 5'-diphospho-glucuronosyltransferase (UGT) enzymes of human liver microsomes to determine if mechanistic aschantin-enzyme interactions were evident. Aschantin potently inhibited CYP2C8-mediated amodiaquine N-de-ethylation, CYP2C9-mediated diclofenac 4'-hydroxylation, CYP2C19-mediated [S]-mephenytoin 4'-hydroxylation, and CYP3A4-mediated midazolam 1'-hydroxylation, with Ki values of 10.2, 3.7, 5.8, and 12.6 µM, respectively. Aschantin at 100 µM negligibly inhibited CYP1A2-mediated phenacetin O-de-ethylation, CYP2A6-mediated coumarin 7-hydroxylation, CYP2B6-mediated bupropion hydroxylation, and CYP2D6-mediated bufuralol 1'-hydroxylation. At 200 µM, it weakly inhibited UGT1A1-catalyzed SN-38 glucuronidation, UGT1A6-catalyzed N-acetylserotonin glucuronidation, and UGT1A9-catalyzed mycophenolic acid glucuronidation, with IC50 values of 131.7, 144.1, and 71.0 µM, respectively, but did not show inhibition against UGT1A3, UGT1A4, or UGT2B7 up to 200 µM. These in vitro results indicate that aschantin should be examined in terms of potential interactions with pharmacokinetic drugs in vivo. It exhibited potent mechanism-based inhibition of CYP2C8, CYP2C9, CYP2C19, and CYP3A4. PMID:27128896

  11. Effect of atrazine and chlorpyrifos exposure on cytochrome P450 contents and enzyme activities in common carp gills.

    PubMed

    Fu, Yao; Li, Ming; Liu, Ci; Qu, Jian-Ping; Zhu, Wen-Jun; Xing, Hou-Juan; Xu, Shi-Wen; Li, Shu

    2013-08-01

    Chlorpyrifos (CPF) and atrazine (ATR) are the most widely used organophosphate insecticides and triazine herbicides, respectively, worldwide. This study aimed at investigating the effects of ATR, CPF and mixture on common carp gills following 40-d exposure and 40-d recovery experiments. Cytochrome P450 content, activities of aminopyrine N-demethylase (APND) and erythromycin N-demethylase (ERND) and the mRNA levels of the CYP1 family (CYP1A, CYP1B, and CYP1C) were determined. In total, 220 common carps were divided into eleven groups, and each group was treated with a specific concentration of ATR (4.28, 42.8 and 428 μg/L), CPF (1.16, 11.6 and 116 μg/L) or ATR-CPF mixture (1.13, 11.3 and 113 μg/L). The results showed that P450 content and activities of APND and ERND in fish exposed to ATR and mixture were significantly higher than those in the control group. After the 40-d recovery treatment (i.e., depuration), the P450 content and the activities of APND and ERND in fish decreased to the background levels. A similar tendency was also found in the mRNA levels of the CYP1 family (CYP1A, CYP1B, and CYP1C) in common carp gills. The CPF-treated fish showed no significant difference from the control groups, except for a significant CYP1C induction. These results indicated that CYP enzyme levels are induced by ATR but were only slightly affected by CPF in common carp gills. In addition, the ATR and CPF exposure showed an antagonistic effect on P450 enzymes in common carp gills. PMID:23702303

  12. Diethyldithiocarbamate induces apoptosis in neuroblastoma cells by raising the intracellular copper level, triggering cytochrome c release and caspase activation.

    PubMed

    Matias, Andreza C; Manieri, Tânia M; Cipriano, Samantha S; Carioni, Vivian M O; Nomura, Cassiana S; Machado, Camila M L; Cerchiaro, Giselle

    2013-02-01

    Dithiocarbamates are nitrogen- and sulfur-containing compounds commonly used in pharmacology, medicine and agriculture. The molecular effects of dithiocarbamates on neuronal cell systems are not fully understood, especially in terms of their ability to accumulate copper ions inside the cell. In this work, the molecular effects of N,N-diethyldithiocarbamate (DEDTC) were studied in human SH-SY5Y neuroblastoma cells to determine the role of copper in the DEDTC toxicity and the pathway trigged in cell by the complex Cu-DEDTC. From concentration-dependent studies, we found that 5 μM of this compound induced a drastic decrease in viable cells with a concomitant accumulation in intracellular copper resulted from complexation with DEDTC, measured by atomic absorption spectroscopy. The mechanism of DEDTC-induced apoptosis in neuronal model cells is thought to occur through the death receptor signaling triggered by DEDTC-copper complex in low concentration that is associated with the activation of caspase 8. Our results indicated that the mechanism of cell death involves cytochrome c release forming the apoptosome together with Apaf-1 and caspase 9, converting the caspase 9 into its active form, allowing it to activate caspase 3 as observed by immunofluorescence. This pathway is induced by the cytotoxic effects that occur when DEDTC forms a complex with the copper ions present in the culture medium and transports them into the cell, suggesting that the DEDTC by itself was not able to cause cell death and the major effect is from its copper-complex in neuroblastoma cells. The present study suggests a role for the influence of copper by low concentrations of DEDTC in the extracellular media, the absorption and accumulation of copper in the cell and apoptotic events, induced by the cytotoxic effects that occur when DEDTC forms a complex with the copper ions. PMID:22951949

  13. Epigallocatechin-3-gallate induces oxidative phosphorylation by activating cytochrome c oxidase in human cultured neurons and astrocytes

    PubMed Central

    Castellano-González, Gloria; Pichaud, Nicolas; Ballard, J. William O.; Bessede, Alban; Marcal, Helder; Guillemin, Gilles J.

    2016-01-01

    Mitochondrial dysfunction and resulting energy impairment have been identified as features of many neurodegenerative diseases. Whether this energy impairment is the cause of the disease or the consequence of preceding impairment(s) is still under discussion, however a recovery of cellular bioenergetics would plausibly prevent or improve the pathology. In this study, we screened different natural molecules for their ability to increase intracellular adenine triphosphate purine (ATP). Among them, epigallocatechin-3-gallate (EGCG), a polyphenol from green tea, presented the most striking results. We found that it increases ATP production in both human cultured astrocytes and neurons with different kinetic parameters and without toxicity. Specifically, we showed that oxidative phosphorylation in human cultured astrocytes and neurons increased at the level of the routine respiration on the cells pre-treated with the natural molecule. Furthermore, EGCG-induced ATP production was only blocked by sodium azide (NaN3) and oligomycin, inhibitors of cytochrome c oxidase (CcO; complex IV) and ATP synthase (complex V) respectively. These findings suggest that the EGCG modulates CcO activity, as confirmed by its enzymatic activity. CcO is known to be regulated differently in neurons and astrocytes. Accordingly, EGCG treatment is acting differently on the kinetic parameters of the two cell types. To our knowledge, this is the first study showing that EGCG promotes CcO activity in human cultured neurons and astrocytes. Considering that CcO dysfunction has been reported in patients having neurodegenerative diseases such as Alzheimer's disease (AD), we therefore suggest that EGCG could restore mitochondrial function and prevent subsequent loss of synaptic function. PMID:26760769

  14. Simultaneous and comprehensive in vivo analysis of cytochrome P450 activity by using a cocktail approach in rats.

    PubMed

    Uchida, Shinya; Tanaka, Shimako; Namiki, Noriyuki

    2014-05-01

    A cocktail approach can detect the activities of multiple cytochrome P450 (CYP) isoforms following the administration of multiple CYP-specific substrates in a single experiment. This study aimed to develop a simultaneous and comprehensive in vivo analysis of CYP activity in rats. The rats received an oral administration of losartan (10 mg/kg) and omeprazole (40 mg/kg). Caffeine (1 mg/kg), dextromethorphan (10 mg/kg) and midazolam (10 mg/kg) were administered 15 min later. In the drug-interaction phase, the rats were treated orally with dexamethasone (80 mg/kg) 24 h before, or with ketoconazole (10 mg/kg), fluvoxamine (100 mg kg) or fluconazole (10 mg/kg) 1 h before the administration of cocktail drugs. The concentrations of the drugs and their metabolites were determined by LC/MS/MS. Plasma concentrations of five CYP substrates and their metabolites were simultaneously evaluated after the oral drug administration. Fluvoxamine and fluconazole significantly increased the Cmax and AUC of caffeine, and the AUC of omeprazole and midazolam. Dexamethasone significantly increased Cmax and AUC of losartan, while it decreased the Cmax of midazolam. Ketoconazole showed no significant effect on the pharmacokinetic parameters of the tested drugs. In conclusion, a cocktail approach was developed for simultaneous and comprehensive analysis of the activities of multiple CYP isoforms in rats. In this approach, the effects of inhibitors and an inducer of various CYP isoforms were examined. Although further studies are necessary to predict the effects in humans, this approach may be expected to serve as a convenient method for detecting drug-drug interactions in rats. PMID:24395703

  15. Application of a cocktail approach to screen cytochrome P450 BM3 libraries for metabolic activity and diversity.

    PubMed

    Reinen, Jelle; Postma, Geert; Tump, Cornelis; Bloemberg, Tom; Engel, Jasper; Vermeulen, Nico P E; Commandeur, Jan N M; Honing, Maarten

    2016-02-01

    In the present study, the validity of using a cocktail screening method in combination with a chemometrical data mining approach to evaluate metabolic activity and diversity of drug-metabolizing bacterial Cytochrome P450 (CYP) BM3 mutants was investigated. In addition, the concept of utilizing an in-house-developed library of CYP BM3 mutants as a unique biocatalytic synthetic tool to support medicinal chemistry was evaluated. Metabolic efficiency of the mutant library towards a selection of CYP model substrates, being amitriptyline (AMI), buspirone (BUS), coumarine (COU), dextromethorphan (DEX), diclofenac (DIC) and norethisterone (NET), was investigated. First, metabolic activity of a selection of CYP BM3 mutants was screened against AMI and BUS. Subsequently, for a single CYP BM3 mutant, the effect of co-administration of multiple drugs on the metabolic activity and diversity towards AMI and BUS was investigated. Finally, a cocktail of AMI, BUS, COU, DEX, DIC and NET was screened against the whole in-house CYP BM3 library. Different validated quantitative and qualitative (U)HPLC-MS/MS-based analytical methods were applied to screen for substrate depletion and targeted product formation, followed by a more in-depth screen for metabolic diversity. A chemometrical approach was used to mine all data to search for unique metabolic properties of the mutants and allow classification of the mutants. The latter would open the possibility of obtaining a more in-depth mechanistic understanding of the metabolites. The presented method is the first MS-based method to screen CYP BM3 mutant libraries for diversity in combination with a chemometrical approach to interpret results and visualize differences between the tested mutants. PMID:26753974

  16. Effects of the aqueous extract from Salvia miltiorrhiza Bge on the pharmacokinetics of diazepam and on liver microsomal cytochrome P450 enzyme activity in rats.

    PubMed

    Jinping, Qiao; Peiling, Hou; Yawei, Li; Abliz, Zeper

    2003-08-01

    The aim of this study was to determine the effects of the aqueous extract of Salvia miltiorrhiza Bge (danshen in Chinese) on the pharmacokinetics of diazepam and on liver microsomal cytochrome P450 enzyme activity in rats. Rats (n = 5) were pretreated with danshen extract (100 mg kg(-1) per day, p.o.) for 15 consecutive days. Control rats (n = 5) received saline at the same time. Each rat was then administered a single oral dose of 15 mg kg(-1) diazepam. The pharmacokinetic parameters of diazepam were significantly different between the two groups. In the danshen pretreated group, the maximum concentration of diazepam and the area under the plasma concentration-time curve were reduced to about 72.7% and 44.4%, respectively, while the total body clearance was markedly increased by 2-fold. To help explain the results, liver microsomal suspensions were obtained from rats that were randomly divided into the control group (n = 10), and the low- (20 mg kg(-1) for 15 days, p.o., n = 10) and high-dose groups (100 mg kg(-1) for 15 days, p.o., n = 10) pretreated with danshen extract. Compared with the control rats, the microsomal protein content, cytochrome P450 enzyme level and erythromycin N-demethylase activity of pretreated rats were significantly increased. These results indicate that danshen extract can stimulate the activity of cytochrome P450 isoforms, and changes in the pharmacokinetics of diazepam resulting from danshen extract are related to an increase in metabolic activity of cytochrome P450. PMID:12956908

  17. Effects of Interferon-Tau and Steroids on Cytochrome P450 Activity in Bovine Endometrial Epithelial Cells.

    PubMed

    Gilfeather, C L; Lemley, C O

    2016-06-01

    The objective of the current study was to examine cyclooxygenase (COX), cytochrome P450 1A (CYP1A) and 2C (CYP2C) activity in bovine endometrial cell cultures following exposure to oxytocin (OT), interferon-τ (IFN), estradiol (E2) and/or progesterone (P4). Bovine endometrial epithelial cells were treated with OT, IFN, a combination of OT+IFN or control (CON) media for 24 h. For the second experiment, cells were treated with E2, P4, a combination of E2 + P4 or CON media for 24 h. Treatments were performed in triplicate, and the experiment was repeated four times (n = 12 per treatment). Treatment with OT alone increased (p < 0.01) activity of COX compared with CON; however, OT alone did not alter activity of CYP1A (p = 0.55) or CYP2C (p = 0.46) compared with CON. Activity of CYP1A and CYP2C was decreased in cells exposed to IFN (p < 0.01) or OT+IFN (p < 0.01) compared with CON. Treatment with E2 alone did not alter activity of CYP1A (p = 0.64) or CYP2C (p = 0.06) compared with CON. Activity of CYP1A and CYP2C was decreased (p < 0.01) in P4 vs CON. In summary, IFN exposure, irrespective of OT treatment, decreased the activity of CYP1A and CYP2C. Activity of CYP1A was decreased following P4 treatment alone, while that of CYP2C was decreased following both P4 and E2 + P4 treatment. The mixed function monooxygenase enzymes, CYP1A and CYP2C, have been implicated in synthesizing embryotoxic compounds; therefore, downregulation in the endometrium may be necessary during maternal recognition of pregnancy. PMID:27103466

  18. Cytochrome P450 2D6 Activity Predicts Discontinuation of Tamoxifen Therapy in Breast Cancer Patients

    PubMed Central

    Rae, James M.; Sikora, Matthew J.; Henry, N. Lynn; Li, Lang; Kim, Seongho; Oesterreich, Steffi; Skaar, Todd; Nguyen, Anne T.; Desta, Zeruesenay; Storniolo, Anna Maria; Flockhart, David A.; Hayes, Daniel F.; Stearns, Vered

    2009-01-01

    The selective estrogen receptor modulator tamoxifen is routinely used for treatment and prevention of estrogen receptor positive breast cancer. Studies of tamoxifen adherence suggest that over half of patients discontinue treatment before the recommended 5 years. We hypothesized that polymorphisms in CYP2D6, the enzyme responsible for tamoxifen activation, predict for tamoxifen discontinuation. Tamoxifen-treated women (n = 297) were genotyped for CYP2D6 variants and assigned a “score” based on predicted allele activities from 0 (no activity) to 2 (high activity). Correlation between CYP2D6 score and discontinuation rates at 4 months were tested. We observed a strong non-linear correlation between higher CYP2D6 score and increased rates of discontinuation (r2 = 0.935, p = 0.018). These data suggest that presence of active CYP2D6 alleles may predict for higher likelihood of tamoxifen discontinuation. Therefore, patients who may be most likely to benefit from tamoxifen may paradoxically be most likely to discontinue treatment prematurely. PMID:19421167

  19. Induction of hepatic cytochrome P-450 activity in wild cotton rats (Sigmodon hispidus) by phenobarbital and 3-methylcholanthrene

    SciTech Connect

    Elangbam, C.S.; Qualls, C.W.,Jr.; Bauduy, M. )

    1989-05-01

    Wild cotton rats (Sigmodon hispidus) are ubiquitous throughout the Southeast quadrant of the United States, easy to capture, have a generation interval of less than one year and a limited range of movement (less than one hectare). This species may prove to be an excellent model for monitoring environmental contamination. Traditionally, cytochrome P-450 inducing agents are grouped into two classes. One, represented by phenobarbital, induces P-450b and P-450e; the other, represented by 3-methylcholanthrene, induces P-450c and P-450d isoenzymes. The types and amounts of cytochrome P-450 vary among species, organs, health status, sex, and stress of the animal. If the levels of cytochrome P-450 of wild cotton rats are to be used in monitoring environmental pollution, it is necessary to characterize the inducibility and concentration of cytochrome P-450 in this species. This study was designed to determine the concentration and inducibility of cytochrome P-450 in the livers of cotton rats after intraperitoneal (ip) administration of phenobarbital and 3-methylcholanthrene.

  20. Coupling in cytochrome c oxidase

    PubMed Central

    Kessler, R. J.; Blondin, G. A.; Zande, H. Vande; Haworth, R. A.; Green, D. E.

    1977-01-01

    Cytochrome c oxidase (ferrocytochrome c: oxygen oxidoreductase; EC 1.9.3.1) can be resolved into an electron transfer complex (ETC) and an ionophore transfer complex (ITC). Coupling requires an interaction between the moving electron in the ETC and a moving, positively charged ionophore-cation adduct in the ITC. The duplex character of cytochrome oxidase facilitates this interaction. The ITC mediates cyclical cation transport. It can be replaced as the coupling partner by the combination of valinomycin and nigericin in the presence of K+ when cytochrome oxidase is incorporated into liposomes containing acidic phospholipids or by the combination of lipid cytochrome c and bile acids in an ITC-resolved preparation of the ETC. Respiratory control can be induced by incorporating cytochrome oxidase into vesicles of unfractionated whole mitochondrial lipid. The activity of the ITC is suppressed by such incorporation and this suppression leads to the emergence of respiratory control. The ionophoroproteins of the ITC can be extracted into organic solvents; some 50% of the total protein of cytochrome oxidase is extractable. The release of free ionophore is achieved by tryptic digestion of the ionophoroprotein. Preliminary to this release the ionophoroprotein is degraded to an ionophoropeptide. Electrogenic ionophores, as well as uncoupler, are liberated by such proteolysis. The ITC contains a set of ionophoroproteins imbedded in a matrix of phospholipid. Images PMID:198794

  1. Overexpression of cerebral and hepatic cytochrome P450s alters behavioral activity of rat offspring following prenatal exposure to lindane

    SciTech Connect

    Johri, Ashu; Yadav, Sanjay; Dhawan, Alok; Parmar, Devendra

    2007-12-15

    Oral administration of different doses (0.0625, 0.125 or 0.25 mg/kg corresponding to 1/1400th, 1/700th or 1/350th of LD{sub 50}) of lindane to the pregnant Wistar rats from gestation days 5 to 21 were found to produce a dose-dependent increase in the activity of cytochrome P450 (CYP)-dependent 7-ethoxyresorufin-O-deethylase (EROD), 7-pentoxyresorufin-O-dealkylase (PROD) and N-nitrosodimethylamine demethylase (NDMA-d) in brain and liver of offspring postnatally at 3 weeks. The increase in the activity of CYP monooxygenases was found to be associated with the increase in the mRNA and protein expression of xenobiotic metabolizing CYP1A, 2B and 2E1 isoenzymes in the brain and liver of offspring. Dose-dependent alterations in the parameters of spontaneous locomotor activity in the offspring postnatally at 3 weeks have suggested that increase in CYP activity may possibly lead to the formation of metabolites to the levels that may be sufficient to alter the behavioral activity of the offspring. Interestingly, the inductive effect on cerebral and hepatic CYPs was found to persist postnatally up to 6 weeks in the offspring at the relatively higher doses (0.125 and 0.25 mg/kg) of lindane and up to 9 weeks at the highest dose (0.25 mg/kg), though the magnitude of induction was less than that observed at 3 weeks. Alterations in the parameters of spontaneous locomotor activity in the offspring postnatally at 6 and 9 weeks, though significant only in the offspring at 3 and 6-week of age, have further indicated that due to the reduced activity of the CYPs during the ontogeny, lindane and its metabolites may not be effectively cleared from the brain. The data suggest that low dose prenatal exposure to the pesticide has the potential to produce overexpression of xenobiotic metabolizing CYPs in brain and liver of the offspring which may account for the behavioral changes observed in the offspring.

  2. Role of brain cytochrome P450 mono-oxygenases in bilirubin oxidation-specific induction and activity.

    PubMed

    Gambaro, Sabrina E; Robert, Maria C; Tiribelli, Claudio; Gazzin, Silvia

    2016-02-01

    In the Crigler-Najjar type I syndrome, the genetic absence of efficient hepatic glucuronidation of unconjugated bilirubin (UCB) by the uridine 5'-diphospho-glucuronosyltransferase1A1 (UGT1A1) enzyme produces the rise of UCB level in blood. Its entry to central nervous system could generate toxicity and neurological damage, and even death. In the past years, a compensatory mechanism to liver glucuronidation has been indicated in the hepatic cytochromes P450 enzymes (Cyps) which are able to oxidize bilirubin. Cyps are expressed also in the central nervous system, the target of bilirubin toxicity, thus making them theoretically important to confer a protective activity toward bilirubin accumulation and neurotoxicity. We therefore investigated the functional induction (mRNA, EROD/MROD) and the ability to oxidize bilirubin of Cyp1A1, 1A2, and 2A3 in primary astrocytes cultures obtained from two rat brain region (cortex: Cx and cerebellum: Cll). We observed that Cyp1A1 was the Cyp isoform more easily induced by beta-naphtoflavone (βNF) in both Cx and Cll astrocytes, but oxidized bilirubin only after uncoupling by 3, 4,3',4'-tetrachlorobiphenyl (TCB). On the contrary, Cyp1A2 was the most active Cyp in bilirubin clearance without uncoupling, but its induction was confined only in Cx cells. Brain Cyp2A3 was not inducible. In conclusion, the exposure of astrocytes to βNF plus TCB significantly enhanced Cyp1A1 mediating bilirubin clearance, improving cell viability in both regions. These results may be a relevant groundwork for the manipulation of brain Cyps as a therapeutic approach in reducing bilirubin-induced neurological damage. PMID:25370011

  3. Characterization of the Microsomal Cytochrome P450 2B4 O2-Activation Intermediates by Cryoreduction/EPR.†

    PubMed Central

    Davydov, Roman; Razeghifard, Reza; Im, Sang-Choul; Waskell, Lucy; Hoffman, Brian M.

    2009-01-01

    The oxy-ferrous complex of cytochrome P450 2B4 (2B4) has been prepared at − 40°C with and without bound substrate (butylated hydroxytoluene, BHT), and radiolytically oneelectron cryoreduced at 77K. EPR shows that in both cases the observed product of cryoreduction is the hydroperoxo-ferriheme species, indicating that the microsomal P450 contains an efficient distal-pocket proton-delivery network. In the absence of substrate, two distinct hydroperoxo-ferriheme signals are observed, reflecting the presence of two major conformational substates in the oxy-ferrous precursor. Only one species is observed when BHT, is bound, indicating a more ordered active site. BHT binding also changes the g-tensor components of the hydroperoxo-ferric 2B4 intermediate, indicating that the substrate modulates the properties of this intermediate. Step-annealing the cryoreduced ternary 2B4 complex at 175K and above causes the loss of hydroperoxo-ferric 2B4 and the parallel appearance of high-spin ferri-2B4; LC-MS/MS analysis shows that in this process BHT is quantitatively converted to two products, hydroxymethyl BHT (1) and 3-hydroxy-t-butyl BHT (2). This implies that the hydroperoxo-ferric 2B4 prepared by cryoreduction is catalytically active, and that the high-spin state observed after annealing contains an enzymebound product of BHT monooxygenation. The ratio of products generated during cryoreduction/annealing, 1/2 ~ 6.2/1, is significantly different from the ratio, 2.5/1, at ambient temperature, and product coupling is significantly greater. This suggests that substrate is held more rigidly relative to the oxidizing species at low temperature, and/or that dissociation of FeOOH is inhibited. As in experiments under ambient conditions, product formation is not observed in the inactive F429H 2B4 mutant. PMID:18700729

  4. Mechanism of O2 activation by cytochrome P450cam studied by isotope effects and transient state kinetics.

    PubMed

    Purdy, Matthew M; Koo, Laura S; de Montellano, Paul R Ortiz; Klinman, Judith P

    2006-12-26

    The early steps in dioxygen activation by the monooxygenase cytochrome P450cam (CYP101) include binding of O2 to ferrous P450cam to yield the ferric-superoxo form (oxyP450cam) followed by an irreversible, long-range electron transfer from putidaredoxin to reduce the oxyP450cam. The steady state kinetic parameter kcat/Km(O2) has been studied by a variety of probes that indicate a small D2O solvent isotope effect (1.21 +/- 0.08), a very small solvent viscosogen effect, and a 16O/18O isotope effect of 1.0147 +/- 0.0007. This latter value, which can be compared with the 16O/18O equilibrium isotope effect of 1.0048 +/- 0.0003 measured for oxyP450cam formation, is attributed to a primarily rate-limiting outer-sphere electron transfer from the heme iron center as O2 that has prebound to protein approaches the active site cofactor. The electron transfer from putidaredoxin to oxyP450cam was investigated by rapid mixing at 25 degrees C to complement previous lower-temperature measurements. A rate of 390 +/- 23 s-1 (and a near-unity solvent isotope effect) supports the view that the long-range electron transfer from reduced putidaredoxin to oxyP450cam is rapid relative to dissociation of O2 from the enzyme. P450cam represents the first enzymatic reaction of O2 in which both equilibrium and kinetic 16O/18O isotope effects have been measured. PMID:17176102

  5. Tumour suppressor protein p53 regulates the stress activated bilirubin oxidase cytochrome P450 2A6.

    PubMed

    Hu, Hao; Yu, Ting; Arpiainen, Satu; Lang, Matti A; Hakkola, Jukka; Abu-Bakar, A'edah

    2015-11-15

    Human cytochrome P450 (CYP) 2A6 enzyme has been proposed to play a role in cellular defence against chemical-induced oxidative stress. The encoding gene is regulated by various stress activated transcription factors. This paper demonstrates that p53 is a novel transcriptional regulator of the gene. Sequence analysis of the CYP2A6 promoter revealed six putative p53 binding sites in a 3kb proximate promoter region. The site closest to transcription start site (TSS) is highly homologous with the p53 consensus sequence. Transfection with various stepwise deletions of CYP2A6-5'-Luc constructs--down to -160bp from the TSS--showed p53 responsiveness in p53 overexpressed C3A cells. However, a further deletion from -160 to -74bp, including the putative p53 binding site, totally abolished the p53 responsiveness. Electrophoretic mobility shift assay with a probe containing the putative binding site showed specific binding of p53. A point mutation at the binding site abolished both the binding and responsiveness of the recombinant gene to p53. Up-regulation of the endogenous p53 with benzo[α]pyrene--a well-known p53 activator--increased the expression of the p53 responsive positive control and the CYP2A6-5'-Luc construct containing the intact p53 binding site but not the mutated CYP2A6-5'-Luc construct. Finally, inducibility of the native CYP2A6 gene by benzo[α]pyrene was demonstrated by dose-dependent increases in CYP2A6 mRNA and protein levels along with increased p53 levels in the nucleus. Collectively, the results indicate that p53 protein is a regulator of the CYP2A6 gene in C3A cells and further support the putative cytoprotective role of CYP2A6. PMID:26343999

  6. Proton NMR investigation of the heme active site structure of an engineered cytochrome c peroxidase that mimics manganese peroxidase.

    PubMed

    Wang, X; Lu, Y

    1999-07-13

    The heme active site structure of an engineered cytochrome c peroxidase [MnCcP; see Yeung, B. K., et al. (1997) Chem. Biol. 4, 215-221] that closely mimics manganese peroxidase (MnP) has been characterized by both one- and two-dimensional NMR spectroscopy. All hyperfine-shifted resonances from the heme pocket as well as resonances from catalytically relevant amino acid residues in the congested diamagnetic envelope have been assigned. From the NMR spectral assignment and the line broadening pattern of specific protons in NOESY spectra of MnCcP, the location of the engineered Mn(II) center is firmly identified. Furthermore, we found that the creation of the Mn(II)-binding site in CcP resulted in no detectable structural changes on the distal heme pocket of the protein. However, notable structural changes are observed at the proximal side of the heme cavity. Both CepsilonH shift of the proximal histidine and (15)N shift of the bound C(15)N(-) suggest a weaker heme Fe(III)-N(His) bond in MnCcP compared to WtCcP. Our results indicate that the engineered Mn(II)-binding site in CcP resulted in not only a similar Mn(II)-binding affinity and improved MnP activity, but also weakened the Fe(III)-N(His) bond strength of the template protein CcP so that its bond strength is similar to that of the target protein MnP. The results presented here help elucidate the impact of designing a metal-binding site on both the local and global structure of the enzyme, and provide a structural basis for engineering the next generation of MnCcP that mimics MnP more closely. PMID:10413489

  7. NADPH Oxidase-Dependent Mechanism Explains How Arsenic and Other Oxidants Can Activate Aryl Hydrocarbon Receptor Signaling.

    PubMed

    Mohammadi-Bardbori, Afshin; Vikström Bergander, Linda; Rannug, Ulf; Rannug, Agneta

    2015-12-21

    The mechanisms explaining arsenic toxicity are not well understood, but physiological consequences of stimulated aryl hydrocarbon receptor (AHR) signaling both directly and through cross-talk with other pathways have been indicated. The aim of this study was to establish how arsenic interacts with AHR-mediated transcription. The human hepatoma cell line (HepG2-XRE-Luc) carrying a luciferase reporter under the control of two AHR response elements (AHREs) and immortalized human keratinocytes (HaCaT) were exposed to sodium arsenite (NaAsO2; As(3+)), alone or in combination with the endogenous high affinity AHR ligand 6-formylindolo[3,2-b]carbazole (FICZ). Luciferase activity, cytochrome P4501A1 (CYP1A1) activity, oxidative stress-related responses, metabolic clearance of FICZ, and NADPH oxidase (NOX) activity as well as nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-dependent gene expression were measured. Arsenic inhibited CYP1A1 enzyme activity and reduced the metabolic clearance of FICZ. Arsenic also led to activated CYP1A1 transcription but only in cells grown in medium containing trace amounts of the endogenous ligand FICZ, pointing to an indirect mechanism of activation. Initially, arsenic caused dose-dependent inhibition of FICZ-activated AHR signaling, disturbed intracellular GSH status, and increased expression of oxidative stress-related genes. Silencing of NOX4, addition of N-acetylcystein, or pretreatment with arsenic itself attenuated the initial dose-dependent inhibition of AHR signaling. Arsenic pretreatment led to elevated GSH levels and sensitized the cells to ligand-dependent AHR signaling, while silencing of Nrf2 significantly reduced arsenic-mediated activation of the AHR. In addition, influence of NOX on AHR activation was also observed in cells treated with the SH-reactive metals cadmium, mercury, and nickel. Together, the results suggest that SH-reactive agents via a new and possibly general NOX/H2O2-dependent mechanism can interfere with

  8. Production of a highly active, soluble form of the cytochrome P450 reductase (CPR A) from Candida tropicalis

    DOEpatents

    Donnelly, Mark

    2006-08-01

    The present invention provides soluble cytochrome p450 reductase (CPR) proteins from Candida sp. having an altered N-terminal region which results in reduced hydrophobicity of the N-terminal region. Also provided are host cells comprising the subject soluble CPR proteins. In addition, the present invention provides nucleotide and corresponding amino acid sequences for soluble CPR proteins and vectors comprising the nucleotide sequences. Methods for producing a soluble CPR, for increasing production of a dicarboxylic acid, and for detecting a cytochrome P450 are also provided.

  9. Effects of suberoylanilide hydroxamic acid on rat cytochrome P450 enzyme activities

    PubMed Central

    Lin, Kezhi; Zhang, Qingwei; Liu, Zezheng; Yang, Suping; Lin, Yingying; Wen, Congcong; Zheng, Yuancai

    2015-01-01

    Vorinostat (suberoylanilide hydroxamic acid, SAHA) is the first approved histone deacetylase (HDAC) inhibitor for the treatment of cutaneous T-cell lymphoma after progressive disease following two systemic therapies. The rats were randomly divided into SAHA groups (low, medium and high dosage) and control group. The SAHA group rats were given 12.3, 24.5, and 49 mg/kg SAHA, respectively, by continuous intragastric administration for 7 days. The influence of SAHA on the activities of CYP450 isoforms CYP2B6, CYP1A2, CYP2C19, CYP2D6 and CYP2C9 were evaluated by cocktail method, they were responsed by the changes of pharmacokinetic parameters of bupropion, phenacetin, tolbutamide, metroprolol and omeprazole. The five probe drugs were given to rats through intragastric administration, and the plasma concentration were determined by UPLC-MS/MS. The result of SAHA group compared to control group, there were statistical pharmacokinetics difference for bupropion, phenacetin, tolbutamide and metroprolol. Continuous intragastric administration for 7 days may induce the activities of CYP2C19 of rats, inhibit CYP1A2 and slightly inhibit CYP2B6 and CYP2D6 of rats. This may give advising for reasonable drug use after co-used with SAHA. The results indicated that drug co-administrated with SAHA may need dose adjustment. Furthermore, continuous intragastric administration of SAHA for 7 days, liver cell damaged, causing liver cell edema, in liver metabolism process. PMID:26191268

  10. Effects of suberoylanilide hydroxamic acid on rat cytochrome P450 enzyme activities.

    PubMed

    Lin, Kezhi; Zhang, Qingwei; Liu, Zezheng; Yang, Suping; Lin, Yingying; Wen, Congcong; Zheng, Yuancai

    2015-01-01

    Vorinostat (suberoylanilide hydroxamic acid, SAHA) is the first approved histone deacetylase (HDAC) inhibitor for the treatment of cutaneous T-cell lymphoma after progressive disease following two systemic therapies. The rats were randomly divided into SAHA groups (low, medium and high dosage) and control group. The SAHA group rats were given 12.3, 24.5, and 49 mg/kg SAHA, respectively, by continuous intragastric administration for 7 days. The influence of SAHA on the activities of CYP450 isoforms CYP2B6, CYP1A2, CYP2C19, CYP2D6 and CYP2C9 were evaluated by cocktail method, they were responsed by the changes of pharmacokinetic parameters of bupropion, phenacetin, tolbutamide, metroprolol and omeprazole. The five probe drugs were given to rats through intragastric administration, and the plasma concentration were determined by UPLC-MS/MS. The result of SAHA group compared to control group, there were statistical pharmacokinetics difference for bupropion, phenacetin, tolbutamide and metroprolol. Continuous intragastric administration for 7 days may induce the activities of CYP2C19 of rats, inhibit CYP1A2 and slightly inhibit CYP2B6 and CYP2D6 of rats. This may give advising for reasonable drug use after co-used with SAHA. The results indicated that drug co-administrated with SAHA may need dose adjustment. Furthermore, continuous intragastric administration of SAHA for 7 days, liver cell damaged, causing liver cell edema, in liver metabolism process. PMID:26191268

  11. Cytochrome P450-dependent eicosapentaenoic acid metabolites are novel BK channel activators.

    PubMed

    Lauterbach, Birgit; Barbosa-Sicard, Eduardo; Wang, Mong-Heng; Honeck, Horst; Kärgel, Eva; Theuer, Jürgen; Schwartzman, Michal L; Haller, Hermann; Luft, Friedrich C; Gollasch, Maik; Schunck, Wolf-Hagen

    2002-02-01

    P450-dependent arachidonic acid (AA) metabolites regulate arterial tone by modulating calcium-activated (BK) potassium channels in vascular smooth muscle cells (VSMC). Because eicosapentaenoic acid (EPA) has been reported to improve vascular function, we tested the hypothesis that P450-dependent epoxygenation of EPA produces alternative vasoactive compounds. We synthesized the 5 regioisomeric epoxyeicosattrienoic acids (EETeTr) and examined them for effects on K(+) currents in rat cerebral artery VSMCs with the patch-clamp technique. 11(R),12(S)-epoxyeicosatrienoic acid (50 nmol/L) was used for comparison and stimulated K(+) currents 6-fold at +60 mV. However, 17(R),18(S)-EETeTr elicited a more than 14-fold increase. 17(S),18(R)-EET and the remaining four regioisomers were inactive. The effect of 17(R),18(S)-EETeTr was blocked by tetraethylammonium but not by 4-aminopyridine. VSMCs expressed P450s 4A1 and 4A3. Recombinant P450 4A1 hydroxylated EPA at C-19 and C-20 and epoxygenated the 17,18-double bond, yielding the R, S- and S, R-enantiomers in a ratio of 64:36. We conclude that 17(R),18(S)-EETeTr represents a novel, potent activator of BK potassium channels. Furthermore, this metabolite can be directly produced in VSMCs. We suggest that 17(R),18(S)-EETeTr may function as an important hyperpolarizing factor, particularly with EPA-rich diets. PMID:11882617

  12. Increasing CO[sub 2] concentration inhibits cytochrome c oxidase (cytox) in vitro, cytochrome pathway (cytpath) activity in plant mitochondria and dark respiration in plant tissue

    SciTech Connect

    Gonzalez-Meler, M.A.; Drake, B.G.; Jacob, J. ); Ribas-Carbo, M.; Siedow, J.N. ); Aranda, X.; Azcon-Bieto, J.; Palet, A. )

    1994-06-01

    Dark respiration is inhibited in many plant be exposure to elevated atmospheric CO[sub 2] concentration. The addition of 0.2mM free CO[sub 2] in the reaction medium decreased citpath activity in Pisum sativum and Glycine max mitochondria at pH 7.2, possibly by inhibiting cytox. Under similar conditions, activity of purified cytox from beef heart was also inhibited. Cytox activity extracted from plants grown in elevated CO[sub 2] for 7 years was lower than in those grown in normal ambient. The relationship among these effects and the rate of respiration as well as the role of the alternative pathway in each case will be discussed.

  13. The Oxidized Linoleic Acid Metabolite-Cytochrome P450 System is Active in Biopsies from Patients with Inflammatory Dental Pain

    PubMed Central

    Ruparel, Shivani; Hargreaves, Kenneth M.; Eskander, Michael; Rowan, Spencer; de Almeida, Jose F.A.; Roman, Linda; Henry, Michael A.

    2013-01-01

    Endogenous TRPV1 agonists such as oxidized linoleic acid metabolites (OLAMs) and the enzymes releasing them [e.g., cytochrome P450 (CYP)], are up-regulated following inflammation in the rat. However, it is not known if such agonists are elevated in human inflammatory pain conditions. Since TRPV1 is expressed in human dental pulp nociceptors, we hypothesized that OLAM-CYP machinery is active in this tissue type and is increased under painful inflammatory conditions such as irreversible pulpitis (IP). The aim of this study was to compare CYP expression and linoleic acid (LA) metabolism in normal versus inflamed human dental pulp. Our data showed that exogenous LA metabolism was significantly increased in IP tissues compared to normal tissues and that pretreatment with a CYP inhibitor, ketoconazole, significantly inhibited LA metabolism. Additionally, extracts obtained from LA-treated inflamed tissues, evoked significant inward currents in TG neurons, and were blocked by pretreatment with the TRPV1 antagonist, IRTX. Moreover, extracts obtained from ketoconazole-pretreated inflamed tissues significantly reduced inward currents in TG neurons. These data suggest that LA metabolites produced in human inflamed tissues act as TRPV1 agonists and that the metabolite production can be targeted by CYP inhibition. In addition, immunohistochemical analysis of two CYP isoforms, CYP2J and CYP3A1, were shown to be predominately expressed in immune cells infiltrating the inflamed dental pulp, emphasizing the paracrine role of CYP enzymes in OLAM regulation. Collectively, our data indicates that the machinery responsible for OLAM production is up-regulated during inflammation and can be targeted to develop potential analgesics for inflammatory-induced dental pain. PMID:23867730

  14. Camptothecin Attenuates Cytochrome P450 3A4 Induction by Blocking the Activation of Human Pregnane X ReceptorS⃞

    PubMed Central

    Chen, Yakun; Tang, Yong; Robbins, Gregory T.

    2010-01-01

    Differential regulation of drug-metabolizing enzymes (DMEs) is a common cause of adverse drug effects in cancer therapy. Due to the extremely important role of cytochrome P450 3A4 (CYP3A4) in drug metabolism and the dominant regulation of human pregnane X receptor (hPXR) on CYP3A4, finding inhibitors for hPXR could provide a unique tool to control drug efficacies in cancer therapy. Camptothecin (CPT) was demonstrated as a novel and potent inhibitor (IC50 = 0.58 μM) of an hPXR-mediated transcriptional regulation on CYP3A4 in this study. In contrast, one of its analogs, irinotecan (CPT-11), was found to be an hPXR agonist in the same tests. CPT disrupted the interaction of hPXR with steroid receptor coactivator-1 but had effects on neither the competition of ligand binding nor the formation of the hPXR and retinoid X receptor α heterodimer, nor the interaction between the regulatory complex and DNA-responsive elements. CPT treatment resulted in delayed metabolism of nifedipine in human hepatocytes treated with rifampicin, suggesting a potential prevention of drug-drug interactions between CYP3A4 inducers and CYP3A4-metabolized drugs. Because CPT is the leading compound of topoisomerase I inhibitors, which comprise a quickly developing class of anticancer agents, the findings indicate the potential of a new class of compounds to modify hPXR activity as agonists/inhibitors and are important in the development of CPT analogs. PMID:20504912

  15. Phenotyping studies to assess the effects of phytopharmaceuticals on in vivo activity of main human cytochrome p450 enzymes.

    PubMed

    Zadoyan, Gregor; Fuhr, Uwe

    2012-09-01

    The extensive use of herbal drugs and their multiple components and modes of action suggests that they may also cause drug interactions by changing the activity of human cytochrome P450 enzymes. The purpose of the present review is to present the available data for the top 14 herbal drug sales in the U. S. Studies describing the effects of herbal drugs on phenotyping substrates for individual CYPs were identified by a comprehensive MEDLINE search. Drugs included Allium sativum (Liliaceae), Echinacea purpurea (Asteraceae), Serenoa repens (Arecaceae), Ginkgo biloba (Ginkgoaceae), Vaccinium macrocarpon (Ericaceae), Glycine max (Fabaceae), Panax ginseng (Araliaceae), Actea racemosa (Ranunculaceae), Hypericum perforatum (Hypericaceae), Silybum marianum (Asteraceae), Camellia sinensis (Theaceae), Valeriana officinalis (Valerianaceae), Piper methysticum (Piperaceae), and Hydrastis canadensis (Ranunculaceae) preparations. We identified 70 clinical studies in 69 publications. The majority of the herbal drugs appeared to have no clear effects on most of the CYPs examined. If there was an effect, there was mild inhibition in almost all cases, as seen with garlic or kava effects on CYP2E1 and with soybean components on CYP1A2. The most pronounced effects were induction of CYP3A and other CYPs by St. John's wort and the inhibitory effect of goldenseal on CYP3A and CYP2D6, both being borderline between mild and moderate in magnitude. With the exceptions of St.John's wort and goldenseal, the information currently available suggests that concomitant intake of the herbal drugs addressed here is not a major risk for drugs that are metabolized by CYPs. PMID:22588833

  16. The nitrite reductase activity of horse heart carboxymethylated-cytochrome c is modulated by cardiolipin.

    PubMed

    Ascenzi, Paolo; Sbardella, Diego; Sinibaldi, Federica; Santucci, Roberto; Coletta, Massimo

    2016-06-01

    Horse heart carboxymethylated cytc (CM-cytc) displays myoglobin-like properties. Here, the effect of cardiolipin (CL) liposomes on the nitrite reductase activity of ferrous CM-cytc [CM-cytc-Fe(II)], in the presence of sodium dithionite, is reported between pH 5.5 and 7.6, at 20.0 °C. Cytc-Fe(II) displays a very low value of the apparent second-order rate constant for the NO2 (-)-mediated conversion of cytc-Fe(II) to cytc-Fe(II)-NO [k on = (7.3 ± 0.7) × 10(-2) M(-1) s(-1); at pH 7.4], whereas the value of k on for NO2 (-) reduction by CM-cytc-Fe(II) is 1.1 ± 0.2 M(-1) s(-1) (at pH 7.4). CL facilitates the NO2 (-)-mediated nitrosylation of CM-cytc-Fe(II) in a dose-dependent manner, the value of k on for the NO2 (-)-mediated conversion of CL-CM-cytc-Fe(II) to CL-CM-cytc-Fe(II)-NO (5.6 ± 0.6 M(-1) s(-1); at pH 7.4) being slightly higher than that for the NO2 (-)-mediated conversion of CL-cytc-Fe(II) to CL-cytc-Fe(II)-NO (2.6 ± 0.3 M(-1) s(-1); at pH 7.4). The apparent affinity of CL for CM-cytc-Fe(II) is essentially pH independent, the average value of B being (1.3 ± 0.3) × 10(-6) M. In the absence and presence of CL liposomes, the nitrite reductase activity of CM-cytc-Fe(II) increases linearly on lowering pH and the values of the slope of the linear fittings of Log k on versus pH are -1.05 ± 0.07 and -1.03 ± 0.03, respectively, reflecting the involvement of one proton for the formation of the transient ferric form, NO, and OH(-). These results indicate that Met80 carboxymethylation and CL binding cooperate in the stabilization of the highly reactive heme-Fe atom of CL-CM-cytc. PMID:27010463

  17. Inhibition of human Cytochrome P450 2E1 and 2A6 by aldehydes: Structure and activity relationships

    PubMed Central

    Kandagatla, Suneel K.; Mack, Todd; Simpson, Sean; Sollenberger, Jill; Helton, Eric; Raner, Gregory M.

    2014-01-01

    The purpose of this study was to probe active site structure and dynamics of human cytochrome P4502E1 and P4502A6 using a series of related short chain fatty aldehydes. Binding efficiency of the aldehydes was monitored via their ability to inhibit the binding and activation of the probe substrates p-nitrophenol (2E1) and coumarin (2A6). Oxidation of the aldehydes was observed in reactions with individually expressed 2E1, but not 2A6, suggesting alternate binding modes. For saturated aldehydes the optimum chain length for inhibition of 2E1 was 9 carbons (KI=7.8 ±0.3 μM), whereas for 2A6 heptanal was most potent (KI=15.8 ±1.1 μM). A double bond in the 2-position of the aldehyde significantly decreased the observed KI relative to the corresponding saturated compound in most cases. A clear difference in the effect of the double bond was observed between the two isoforms. With 2E1, the double bond appeared to remove steric constraints on aldehyde binding with KI values for the 5–12 carbon compounds ranging between 2.6 ± 0.1 μM and 12.8± 0.5 μM, whereas steric effects remained the dominant factor in the binding of the unsaturated aldehydes to 2A6 (observed KI values between 7.0± 0.5 μM and >1000 μM). The aldehyde function was essential for effective inhibition, as the corresponding carboxylic acids had very little effect on enzyme activity over the same range of concentrations, and branching at the 3-position of the aldehydes increased the corresponding KI value in all cases examined. The results suggest that a conjugated π-system may be a key structural determinant in the binding of these compounds to both enzymes, and may also be an important feature for the expansion of the active site volume in 2E1. PMID:24924949

  18. Fungal lactone ring opening of 6', 7'-dihydroxybergamottin diminishes cytochrome P450 3A4 inhibitory activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Furanocoumarins (FCs) are a class of aromatic compounds in grapefruit that inhibit human intestinal cytochrome P450 3A4 (CYP3A4). Since fungi metabolize polycyclic aromatic hydrocarbons, we hypothesized that certain fungi might also metabolize FCs into forms that may be inactive as CYP3A4 inhibitors...

  19. Prenatal Cu intake by rat dams is the principle determinant of cardiac cytochrome c oxidase activity in their offspring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Preceding studies have shown that cardiac cytochrome c oxidase (CCO) deficiency occurs in the offspring of Cu-deficient rats on postnatal days (PND) 15 and 21. In order to determine if the CCO deficiency resulted from low prenatal Cu intake rather than from low postnatal Cu intake, pups from dams fe...

  20. Cytochrome P450 expression and activities in human tongue cells and their modulation by green tea extract

    SciTech Connect

    Yang, S.-P.; Raner, Gregory M. . E-mail: gmraner@uncg.edu

    2005-01-15

    The expression, inducibility, and activities of several cytochrome P450 (CYP) enzymes were investigated in a human tongue carcinoma cell model, CAL 27, and compared with the human liver model HepG2 cells. The modulation effects of green tea on various CYP isoforms in both cell lines were also examined. RT-PCR analysis of CAL 27 cells demonstrated constitutive expression of mRNA for CYPs 1A1, 1A2, 2C, 2E1, 2D6, and 4F3. The results were negative for CYP2A6, 2B6/7, 3A3/4, and 3A7. Both cell lines displayed identical expression and induction profiles for all of the isoforms examined in this study except 3A7 and 2B6/7, which were produced constitutively in HepG2 but not Cal-27 cells. CYP1A1 and 1A2 were both induced by treatment with {beta}-napthoflavone as indicated by RT-PCR and Western blotting, while CYP2C mRNA was upregulated by all-trans retinoic acid and farnesol. RT-PCR and Western blot analysis showed that the expressions of CYP1A1 and 1A2 were induced by green tea extract (GTE), which also caused an increase in mRNA for CYP2E1, CYP2D6, and CYP2C isoforms. The four tea catechins, EGC, EC, EGCG and ECG, applied to either HepG2 or Cal-27 cells at the concentration found in GTE failed to induce CYP1A1 or CYP1A2, as determined by RT-PCR. Of the isoforms that were apparently induced by GTE, only 7-ethoxycoumarin deethylase (ECOD) activity could be detected in CAL 27 or HepG2 cells. Interestingly, mRNA and protein for CYP1A1 and CYP1A2 were detected in both cell lines, and although protein and mRNA levels of CYP1A1 and CYP1A2 were increased by GTE, the observed ECOD activity in both cell lines was decreased.

  1. Cytochrome P450 active site plasticity: attenuation of imidazole binding in cytochrome P450(cam) by an L244A mutation.

    PubMed

    Verras, Andreas; Alian, Akram; de Montellano, Paul R Ortiz

    2006-11-01

    We have identified a P450(cam) mutation, L244A, that mitigates the affinity for imidazole and substituted imidazoles while maintaining a high affinity for the natural substrate camphor. The P450(cam) L244A crystal structure solved in the absence of any ligand reveals that the I-helix is displaced inwards by over 1 A in response to the cavity created by the change from leucine to alanine. Furthermore, the crystal structures of imidazole-bound P450(cam) and the 1-methylimidazole-bound P450(cam) L244A mutant reveal that the ligands have distinct binding modes in the two proteins. Whereas in wild-type P450(cam) the imidazole coordinates to the iron in an orientation roughly perpendicular to the plane of the heme, in the L244A mutant the rearranged I helix, and specifically residue Val247, forces the imidazole into an orientation almost parallel to the heme that impairs its ability to coordinate to the heme iron. As a result, the imidazole is much more weakly bound to the mutant than it is to the wild-type enzyme. Despite the constriction of the active site by the mutation, previous work with the L244A mutant has shown that it oxidizes larger substrates than the wild-type enzyme. This paradoxical situation, in which a mutation that nominally increases the active site cavity appears to decrease it, suggests that the mutation actually increases the active site maleability, allowing it to better expand to oxidize larger substrates. PMID:16943206

  2. Two-dimensional crystallization of monomeric bovine cytochrome c oxidase with bound cytochrome c in reconstituted lipid membranes.

    PubMed

    Osuda, Yukiho; Shinzawa-Itoh, Kyoko; Tani, Kazutoshi; Maeda, Shintaro; Yoshikawa, Shinya; Tsukihara, Tomitake; Gerle, Christoph

    2016-06-01

    Mitochondrial cytochrome c oxidase utilizes electrons provided by cytochrome c for the active vectorial transport of protons across the inner mitochondrial membrane through the reduction of molecular oxygen to water. Direct structural evidence on the transient cytochrome c oxidase-cytochrome c complex thus far, however, remains elusive and its physiological relevant oligomeric form is unclear. Here, we report on the 2D crystallization of monomeric bovine cytochrome c oxidase with tightly bound cytochrome c at a molar ratio of 1:1 in reconstituted lipid membranes at the basic pH of 8.5 and low ionic strength. PMID:26754561

  3. Two-dimensional crystallization of monomeric bovine cytochrome c oxidase with bound cytochrome c in reconstituted lipid membranes

    PubMed Central

    Osuda, Yukiho; Shinzawa-Itoh, Kyoko; Tani, Kazutoshi; Maeda, Shintaro; Yoshikawa, Shinya; Tsukihara, Tomitake; Gerle, Christoph

    2016-01-01

    Mitochondrial cytochrome c oxidase utilizes electrons provided by cytochrome c for the active vectorial transport of protons across the inner mitochondrial membrane through the reduction of molecular oxygen to water. Direct structural evidence on the transient cytochrome c oxidase–cytochrome c complex thus far, however, remains elusive and its physiological relevant oligomeric form is unclear. Here, we report on the 2D crystallization of monomeric bovine cytochrome c oxidase with tightly bound cytochrome c at a molar ratio of 1:1 in reconstituted lipid membranes at the basic pH of 8.5 and low ionic strength. PMID:26754561

  4. Interaction of smoking, uptake of polycyclic aromatic hydrocarbons, and cytochrome P450IA2 activity among foundry workers.

    PubMed Central

    Sherson, D; Sigsgaard, T; Overgaard, E; Loft, S; Poulsen, H E; Jongeneelen, F J

    1992-01-01

    An increased lung cancer risk has been described among foundry workers. Polycyclic aromatic hydrocarbons (PAHs) and silica are possible aetiological factors. This study describes a urinary PAH metabolite, 1-hydroxypyrene (hpU), as well as the degree of cytochrome P450IA2 activity/induction as reflected by the urinary caffeine ratio (IA2) in 45 foundry workers and 52 controls; IA2 was defined as the ratio of paraxanthine 7-demethylation products to a paraxanthine 8-hydroxylation product (1,7-dimethyluric acid). Mean exposure concentrations for foundry workers were defined by breathing zone hygienic samples (respirable dust 1.2 to 3.52 mg/m3 (93 samples)) and as total PAH (0.46 micrograms/m3) and pyrene concentrations (0.28 micrograms/m3) (six samples). Non-smoking controls and foundry workers had similar IA2 ratios (5.63, 95% confidence interval (95% CI) 4.56-6.70 and 4.40, 95% CI 3.56-5.24). The same was true for smoking controls and foundry workers (9.10, 95% CI 8.00-10.20 and 8.69, 95% CI 7.37-10.01). Both smoking groups had raised IA2 ratios compared with non-smokers (p less than 0.01). Non-smoking controls and foundry workers had similar hpU concentrations (0.16, 95% CI 0.10-0.22 and 0.11, 95% CI 0.09-0.13 mumol/mol creatinine). Smoking foundry workers had raised hpU concentrations (0.42, 95% CI 0.25-0.59) compared with smoking controls (0.26, 95% CI 0.18-0.34) (p less than 0.01). A small subgroup of smoking foundry workers with the highest exposures to both silica and PAH also had the highest hpU concentrations (0.70, 95% CI - 0.07-1.47 mumol/mol creatinine) (p less than 0.04). Increased hpU concentrations in smoking foundry workers suggest a more than additive effect from smoking and foundry exposures resulting in increased PAH uptake. Increased P450IA2 enzyme activity was only found in smokers and no additional effect of foundry exposures was seen. These data suggest that smoking as well as work related PAH exposure may be casually related to increased risk

  5. Isolation of S9 fractions from mouse and rat with increased enzyme activities after repeated administration of cytochrome P-450 and P-448 inducers.

    PubMed

    Paolini, M; Sapigni, E; Hrelia, P; Grilli, S; Cantelli-Forti, G

    1988-05-01

    Cytochrome P-450 (cyt P-450), NADPH cytochrome P-450 reductase and various microsomal monooxygenase activities [e.g. aminopyrine N-demethylase, p-nitroanisole O-demethylase, dinemorphan N-demethylase, ethoxycoumarin O-deethylase and ethoxyresorufin O-deethylase (ERD)], were determined in hepatic post-mitochondrial supernatant from mice and rats. Experiments were performed on male and female animals treated with a combination of sodium phenobarbital and beta-naphthoflavone according to the standard protocol schedule for short-term genotoxicity testing. A second inductive treatment after 2, 3, 4 or 5 weeks was provided. The increase in cyt P-450 and in all enzymatic activities measured was enhanced in both species by a second induction treatment, particularly when given after 4 weeks. ERD activity was the only monooxygenase activity which was sex-dependent, being more active in female than in male animals. To extend the biochemical data, experiments were performed with the proposed S9 fractions on styrene, which previously has proved difficult to detect in short-term in vitro mutagenicity tests. Using the new induction conditions positive results were obtained with the D7 strain of Saccharomyces cerevisiae. It was concluded that a simple pre-induction of the animals 3-4 weeks before the main induction treatment leads to a more active S9 fraction for in vitro genotoxicity studies. PMID:3045486

  6. Hexachlorobenzene as a possible major contributor to the dioxin activity of human milk.

    PubMed Central

    van Birgelen, A P

    1998-01-01

    A dioxinlike compound is a compound that binds to the aryl hydrocarbon (Ah) receptor, results in dioxinlike effects, and bioaccumulates. These are the three factors for including dioxinlike chemicals in the toxic equivalency factor (TEF) concept. Risk assessment of dioxinlike compounds is based on using these TEFs. Hexachlorobenzene (HCB) has all three features and should therefore be included in this TEF concept. Relative potency values express the potency of a specific compound in comparison to 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD), the most potent dioxinlike compound, with a relative potency value of 1. For the estimation of the total dioxin activity in an environmental biological sample, the TEF value of a compound is multiplied by the concentration in the specific matrix. This results in a certain amount of toxic equivalents (TEQs) for this compound. The summation of all TEQs in a certain mixture gives the total dioxin activity of this mixture. HCB binds to the Ah receptor about 10,000 times less than TCDD. HCB is also about 10,000 times less potent than TCDD based on in vitro cytochrome P4501A induction and porphyrin accumulation. Using a relative potency value of 0.0001, HCB could add 10-60% to the total TEQ in human milk samples in most countries. In a few countries such as Spain, Slovakia, and the Czech Republic, HCB levels in human milk expressed as TEQ could contribute up to a factor of six to the total TEQ in comparison to the contribution of polychlorinated dioxins, dibenzofurans, and biphenyls together, i.e., up to a daily intake of about 1 ng TEQ/kg for a breast-fed infant. The HCB levels in human milk in these countries are about the same as in India. Biochemical, immunological, and neurological alterations have been observed in infants fed breast milk in countries with relatively low TEQ levels in human milk. Based on the above information, it is clear that HCB should be classified as a dioxinlike compound, that more studies are needed to

  7. The effect of celery and parsley juices on pharmacodynamic activity of drugs involving cytochrome P450 in their metabolism.

    PubMed

    Jakovljevic, V; Raskovic, A; Popovic, M; Sabo, J

    2002-01-01

    Celery (Apium graveolens) and parsley (Petroselinum sativum), plants used worldwide in human nutrition, are the natural sources of methoxsalen. In this study we investigated the effect of mice pretreatment with juices of this plants on the hypnotic action of pentobarbital and analgesic action of paracetamol and aminopyrine, the drugs involving cytochrome P450 superfamily in their metabolism. In mice pretreated with celery and parsley juices a prolonged action of pentobarbital with respect to control was observed, statistical significance being attained only with parsley-pretreated animals. Both pretreatments increased and prolonged the analgesic action of aminopyrine and paracetamol, pretreatment with parsley being again more effective. Celery and parsley juices given to animals two hours before their decapitation caused a significant decrease of cytochrome P450 in the liver homogenate as compared to control. PMID:12365194

  8. [The oxenoid model of the mechanism of activating molecular oxygen by cytochrome p450: the role of substrate structure].

    PubMed

    Kuznetsov, A V

    1990-01-01

    The arene oxides formation energy for about 30 benzene derivatives were calculated in frames of MO LCAO method. The benzene derivatives are typical substrates of cytochrome P-450 catalyzed aromatic oxidation. The relationship between the formation energy of tetrahedral type arene oxides and the relative reactivity of substrates toward microsomal hydroxylation was found. The formation energy of arene oxides correlates also with toxicity of benzene derivatives. Some limitations of the oxenoid model are discussed. PMID:2290428

  9. Role of p38 MAPK activation and mitochondrial cytochrome-c release in allicin-induced apoptosis in SK-N-SH cells.

    PubMed

    Zhuang, Jianhui; Li, Yu; Chi, Yufen

    2016-04-01

    Here, we investigate the apoptotic effect of allicin, the predominant component of freshly crushed garlic, on neuroblastoma cells. In this paper, the authors have first assessed the effect of allicin on human neuroblastoma SK-N-SH cells and then investigated the underlying mechanism. The results indicate that allicin suppresses SK-N-SH cell growth in a dose-dependent and time-dependent manner and that 5 μmol/l of allicin leads to a significant increase in apoptotic rate with annexin-V/PI double staining. Western blot analysis shows that treatment with allicin-induced apoptosis through activation of caspases-3 and 9. Phosphorylation of p38 MAPK contributes to allicin-induced apoptosis upstream of caspase activation. Using p38 MAPK inhibitor, the authors discovered that p38 MAPK activation subsequently induces the release of cytochrome-c from mitochondria into the cytosol. Taken together, the results demonstrate that allicin can activate the p38 MAPK pathway, which leads to mitochondrial release of cytochrome-c, thus inducing SK-N-SH cell apoptosis. Overall, this study suggests that allicin may be used as one of the novel pharmacological treatment strategies in neuroblastoma. PMID:26771864

  10. Sphingosine generation, cytochrome c release, and activation of caspase-7 in doxorubicin-induced apoptosis of MCF7 breast adenocarcinoma cells.

    PubMed

    Cuvillier, O; Nava, V E; Murthy, S K; Edsall, L C; Levade, T; Milstien, S; Spiegel, S

    2001-02-01

    Treatment of human breast carcinoma MCF7 cells with doxorubicin, one of the most active antineoplastic agents used in clinical oncology, induces apoptosis and leads to increases in sphingosine levels. The transient generation of this sphingolipid mediator preceded cytochrome c release from the mitochondria and activation of the executioner caspase-7 in MCF7 cells which do not express caspase-3. Bcl-x(L) overexpression did not affect sphingosine generation whereas it reduced apoptosis triggered by doxorubicin and completely blocked apoptosis triggered by sphingosine. Exogenous sphingosine-induced apoptosis was also accompanied by cytochrome c release and activation of caspase-7 in a Bcl-x(L)-sensitive manner. Furthermore, neither doxorubicin nor sphingosine treatment affected expression of Fas ligand or induced activation of the apical caspase-8, indicating a Fas/Fas ligand-independent mechanism. Our results suggest that a further metabolite of ceramide, sphingosine, may also be involved in mitochondria-mediated apoptotic signaling induced by doxorubicin in human breast cancer cells. PMID:11313718

  11. Viola plant cyclotide vigno 5 induces mitochondria-mediated apoptosis via cytochrome C release and caspases activation in cervical cancer cells.

    PubMed

    Esmaeili, Mohammad Ali; Abagheri-Mahabadi, Nazanin; Hashempour, Hossein; Farhadpour, Mohsen; Gruber, Christian W; Ghassempour, Alireza

    2016-03-01

    Cyclotides describe a unique cyclic peptide family that displays a broad range of biological activities including uterotonic, anti-bacteria, anti-cancer and anti-HIV. The vigno cyclotides consist of vigno 1-10 were reported recently from Viola ignobilis. In the present study, we examined the effects of vigno 5, a natural cyclopeptide from V. ignobilis, on cervical cancer cells and the underlying mechanisms. We found that vigno 5-treated Hela cells were killed off by apoptosis in a dose-dependent manner within 24h, and were characterized by the appearance of nuclear shrinkage, cleavage of poly (ADP-ribose) polymerase (PARP) and DNA fragmentation. The mitochondrial pathway of apoptosis revealed that cytochrome C is released from mitochondria to cytosol, associated with the activation of caspase-9 and -3, and the cleavage of poly (ADP-ribose) polymerase (PARP). Overall, the results indicate that vigno 5 induces apoptosis in part via the mitochondrial pathway, which is associated with a release of cytochrome C and elevated activity of caspase-9 and -3 in Hela cells. PMID:26751970

  12. Inhibitory effects of curcumin on activity of cytochrome P450 2C9 enzyme in human and 2C11 in rat liver microsomes.

    PubMed

    Wang, Zhe; Sun, Wei; Huang, Cheng-Ke; Wang, Li; Xia, Meng-Ming; Cui, Xiao; Hu, Guo-Xin; Wang, Zeng-Shou

    2015-04-01

    Cytochrome P450 2C9 (CYP2C9), one of the most important phase I drug metabolizing enzymes, could catalyze the reactions that convert diclofenanc into diclofenac 4'-hydroxylation. Evaluation of the inhibitory effects of compounds on CYP2C9 is clinically important because inhibition of CYP2C9 could result in serious drug-drug interactions. The objective of this work was to investigate the effects of curcumin on CYP2C9 in human and cytochrome P450 2C11 (CYP2C11) in rat liver microsomes. The results showed that curcumin inhibited CYP2C9 activity (10 µmol L(-1) diclofenac) with half-maximal inhibition or a half-maximal inhibitory concentration (IC50) of 15.25 µmol L(-1) and Ki = 4.473 µmol L(-1) in human liver microsomes. Curcumin's mode of action on CYP2C9 activity was noncompetitive for the substrate diclofenanc and uncompetitive for the cofactor NADPH. In contrast to its potent inhibition of CYP2C9 in human, diclofenanc had lesser effects on CYP2C11 in rat, with an IC50 ≥100 µmol L(-1). The observations imply that curcumin has the inhibitory effects on CYP2C9 activity in human. These in vitro findings suggest that more attention should be paid to special clinical caution when intake of curcumin combined with other drugs in treatment. PMID:24517573

  13. Comparison of activities dependent on glutathione S-transferase and cytochrome P-450 IA1 in cultured keratinocytes and reconstructed epidermal models.

    PubMed

    Harris, Ian R; Siefken, Wilfried; Beck-Oldach, Konstanze; Brandt, Michael; Wittern, Klaus-Peter; Pollet, Dieter

    2002-01-01

    There is an increasing need for in vitro testing of compounds for topical application. Reconstructed epidermal models may provide a suitable and relevant model for screening compounds that may affect the activities of phase I and II enzymes involved in epidermal detoxification. In this study, we measured the activity of a phase I enzyme, cytochrome P450 IA1, i.e. 7-ethoxyresorufin-O-deethylase (EROD) and 7-ethoxycoumarin-O-deethylase (ECOD) activities, and that of a phase II enzyme, glutathione S-transferase (GST). The enzyme activities were determined in cultured keratinocytes, reconstructed epidermal models and samples of human epidermis or hair follicle. EROD activity was detected in cultured keratinocytes and was induced by 3-methylcholanthrene (3-MC) and beta-naphthoflavone. The level of induction increased with increasing confluence. Induced EROD activity could be inhibited by clotrimazole in a dose-dependent manner. However, EROD activity was not detected in either hair follicles or untreated epidermal models but could be induced by 3-MC. The ability to induce EROD activity in epidermal models was batch dependent, and clotrimazole was able to inhibit the induced EROD activity. ECOD activity was detected in untreated models and paralleled EROD activity. GST activity was detected in cultured keratinocytes and all epidermal models. GST activity in models was equal or higher than the activity in epidermal samples. Reconstructed skin models may be useful to study the effects of non-water-soluble topical formulations on xenobiotic metabolism. PMID:12476009

  14. Structural and dynamic basis of human cytochrome P450 7B1: a survey of substrate selectivity and major active site access channels.

    PubMed

    Cui, Ying-Lu; Zhang, Ji-Long; Zheng, Qing-Chuan; Niu, Rui-Juan; Xu, Yu; Zhang, Hong-Xing; Sun, Chia-Chung

    2013-01-01

    Cytochrome P450 (CYP) 7B1 is a steroid cytochrome P450 7α-hydroxylase that has been linked directly with bile salt synthesis and hereditary spastic paraplegia type 5 (SPG5). The enzyme provides the primary metabolic route for neurosteroids dehydroepiandrosterone (DHEA), cholesterol derivatives 25-hydroxycholesterol (25-HOChol), and other steroids such as 5α-androstane-3β,17β-diol (anediol), and 5α-androstene-3β,17β-diol (enediol). A series of investigations including homology modeling, molecular dynamics (MD), and automatic docking, combined with the results of previous experimental site-directed mutagenesis studies and access channels analysis, have identified the structural features relevant to the substrate selectivity of CYP7B1. The results clearly identify the dominant access channels and critical residues responsible for ligand binding. Both binding free energy analysis and total interaction energy analysis are consistent with the experimental conclusion that 25-HOChol is the best substrate. According to 20 ns MD simulations, the Phe cluster residues that lie above the active site, particularly Phe489, are proposed to merge the active site with the adjacent channel to the surface and accommodate substrate binding in a reasonable orientation. The investigation of CYP7B1-substrate binding modes provides detailed insights into the poorly understood structural features of human CYP7B1 at the atomic level, and will be valuable information for drug development and protein engineering. PMID:23180418

  15. Data in the activities of caspases and the levels of reactive oxygen species and cytochrome c in the •OH-induced fish erythrocytes treated with alanine, citrulline, proline and their combination

    PubMed Central

    Li, Huatao; Jiang, Weidan; Liu, Yang; Jiang, Jun; Zhang, Yongan; Wu, Pei; Zhao, Juan; Duan, Xudong; Zhou, Xiaoqiu; Feng, Lin

    2016-01-01

    The present study explored the effects of alanine (Ala), citrulline (Cit), proline (Pro) and their combination (Ala10Pro4Cit1) on the activities of caspases and levels of reactive oxygen species (ROS) and cytochrome c in hydroxyl radicals (•OH)-induced carp erythrocytes. The data displayed that •OH induced the increases in the activities of caspase−3, caspase−8 and caspase−9 and the levels of ROS and cytochrome c in carp erythrocytes. However, Ala, Cit, Pro and Ala10Pro4Cit1 effectively suppressed the •OH-induced increases in the activities of caspase−3, caspase−8 and caspase−9 and the levels of ROS and cytochrome c in carp erythrocytes. Furthermore, the activities of caspase−3, caspase−8 and caspase−9 and the levels of ROS and cytochrome c were gradually decreased with increasing concentrations of Ala, Cit, Pro and Ala10Pro4Cit1 (0.175−1.400 mM) in the •OH-induced carp erythrocytes. These data demonstrated that the 50% inhibitory doses (ID50) of Ala10Pro4Cit1 on the activities of caspase−8, caspase−9 and caspase−3 and levels of ROS and cytochrome c were respectively estimated to be the minimum values among amino acids examined so far. The 5% inhibitory doses (ID5) of Ala, Cit, Pro and Ala10Pro4Cit1 on the activities of caspase−8, caspase−9 and caspase−3 and levels of ROS and cytochrome c were estimated to be at their physiological concentrations in mammalian. Our research article for further interpretation and discussion from these data in Li et al. (2016) [1]. PMID:26952131

  16. Data in the activities of caspases and the levels of reactive oxygen species and cytochrome c in the •OH-induced fish erythrocytes treated with alanine, citrulline, proline and their combination.

    PubMed

    Li, Huatao; Jiang, Weidan; Liu, Yang; Jiang, Jun; Zhang, Yongan; Wu, Pei; Zhao, Juan; Duan, Xudong; Zhou, Xiaoqiu; Feng, Lin

    2016-06-01

    The present study explored the effects of alanine (Ala), citrulline (Cit), proline (Pro) and their combination (Ala10Pro4Cit1) on the activities of caspases and levels of reactive oxygen species (ROS) and cytochrome c in hydroxyl radicals (•OH)-induced carp erythrocytes. The data displayed that •OH induced the increases in the activities of caspase-3, caspase-8 and caspase-9 and the levels of ROS and cytochrome c in carp erythrocytes. However, Ala, Cit, Pro and Ala10Pro4Cit1 effectively suppressed the •OH-induced increases in the activities of caspase-3, caspase-8 and caspase-9 and the levels of ROS and cytochrome c in carp erythrocytes. Furthermore, the activities of caspase-3, caspase-8 and caspase-9 and the levels of ROS and cytochrome c were gradually decreased with increasing concentrations of Ala, Cit, Pro and Ala10Pro4Cit1 (0.175-1.400 mM) in the •OH-induced carp erythrocytes. These data demonstrated that the 50% inhibitory doses (ID50) of Ala10Pro4Cit1 on the activities of caspase-8, caspase-9 and caspase-3 and levels of ROS and cytochrome c were respectively estimated to be the minimum values among amino acids examined so far. The 5% inhibitory doses (ID5) of Ala, Cit, Pro and Ala10Pro4Cit1 on the activities of caspase-8, caspase-9 and caspase-3 and levels of ROS and cytochrome c were estimated to be at their physiological concentrations in mammalian. Our research article for further interpretation and discussion from these data in Li et al. (2016) [1]. PMID:26952131

  17. Heat shock protein expression and change of cytochrome c oxidase activity: presence of two phylogenic old systems to protect tissues in ischemia and reperfusion.

    PubMed

    Vogt, Sebastian; Portig, Irene; Irqsusi, Mark; Ruppert, Volker; Weber, Petra; Ramzan, Rabia

    2011-08-01

    Induction of heat shock proteins (hsp) has been shown to protect cells from ischemia by providing transient tolerance against myocardial injury and improving postischemic functional recovery. Attenuation of ATP depletion and earlier restoration of ATP content on reperfusion are thought to play a role in this scenario. Hsp induction is accompanied by altered enzyme activity of the respiratory chain, the major generator of ATP under physiological conditions. This report addresses the question whether processing and final assembly of the active holoenzyme cytochrome c oxidase (CcO, complex IV), member of the respiratory chain, is compromised under hypoxic conditions unless protected by stress proteins. Special focus is laid on function of the enzyme's subunits and importance of cellular energy availability and maintenance. PMID:21792694

  18. Biocatalytic Conversion of Avermectin to 4"-Oxo-Avermectin: Characterization of Biocatalytically Active Bacterial Strains and of Cytochrome P450 Monooxygenase Enzymes and Their Genes

    PubMed Central

    Jungmann, Volker; Molnár, István; Hammer, Philip E.; Hill, D. Steven; Zirkle, Ross; Buckel, Thomas G.; Buckel, Dagmar; Ligon, James M.; Pachlatko, J. Paul

    2005-01-01

    4"-Oxo-avermectin is a key intermediate in the manufacture of the agriculturally important insecticide emamectin benzoate from the natural product avermectin. Seventeen biocatalytically active Streptomyces strains with the ability to oxidize avermectin to 4"-oxo-avermectin in a regioselective manner have been discovered in a screen of 3,334 microorganisms. The enzymes responsible for this oxidation reaction in these biocatalytically active strains were found to be cytochrome P450 monooxygenases (CYPs) and were termed Ema1 to Ema17. The genes for Ema1 to Ema17 have been cloned, sequenced, and compared to reveal a new subfamily of CYPs. Ema1 to Ema16 have been overexpressed in Escherichia coli and purified as His-tagged recombinant proteins, and their basic enzyme kinetic parameters have been determined. PMID:16269732

  19. Catalytic Activities of Tumor-Specific Human Cytochrome P450 CYP2W1 Toward Endogenous Substrates.

    PubMed

    Zhao, Yan; Wan, Debin; Yang, Jun; Hammock, Bruce D; Ortiz de Montellano, Paul R

    2016-05-01

    CYP2W1 is a recently discovered human cytochrome P450 enzyme with a distinctive tumor-specific expression pattern. We show here that CYP2W1 exhibits tight binding affinities for retinoids, which have low nanomolar binding constants, and much poorer binding constants in the micromolar range for four other ligands. CYP2W1 converts all-transretinoic acid (atRA) to 4-hydroxyatRA and all-transretinol to 4-OH all-transretinol, and it also oxidizes retinal. The enzyme much less efficiently oxidizes 17β-estradiol to 2-hydroxy-(17β)-estradiol and farnesol to a monohydroxylated product; arachidonic acid is, at best, a negligible substrate. These findings indicate that CYP2W1 probably plays an important role in localized retinoid metabolism that may be intimately linked to its involvement in tumor development. PMID:26936974

  20. Xenobiotic biotransformation in unicellular green algae. Involvement of cytochrome P450 in the activation and selectivity of the pyridazinone pro-herbicide metflurazon.

    PubMed Central

    Thies, F; Backhaus, T; Bossmann, B; Grimme, L H

    1996-01-01

    The N-demethylation of the pyridazinone pro-herbicide metflurazon into norflurazon implies a toxification in photosynthetic organisms. This is confirmed by quantitative structure activity relationships determined for two unicellular green algae, Chlorella sorokiniana and Chlorella fusca; however, the latter is 25 to 80 times more sensitive to metflurazon. This sensitivity is linked to differences in the N-demethylase activity of both algae, as determined by an optimized in vivo biotransformation assay. Apparent K(m) values of the metflurazon-N-demethylase indicate a 10-fold higher affinity for this xenobiotic substrate for Chlorella fusca. Furthermore, algal metflurazon-N-demethylation is characterized by distinct variations in activity, depending on the stage of cell development within the cell cycle. Several well-established inhibitors of cytochrome P450-mediated reactions, including piperonylbutoxide, 1-aminobenzotriazole, 1-phenoxy-3-(1H-1,2,4-triol-1yl)-4-hydroxy-5,5-dimethylhexane++ +, and tetcyclacis, as well as cinnamic acid, a potential endogenous substrate, inhibited the N-demethylation of metflurazon. The results suggest that the N-demethylation of metflurazon by both algae is mediated by a cytochrome P450 monooxygenase. The determination of antigenic cross-reactivity of algal proteins with heterologous polyclonal antibodies originally raised against plant P450s, anti-cinnamic acid 4-hydroxylase (CYP73A1), anti-ethoxycoumarin-O-dealkylase, anti-tulip allene oxidase (CYP74), and an avocado P450 (CYP71A1) or those of bacterial origin, CYP105A1 and CYP105B1, suggests the presence of distinct P450 isoforms in both algae. PMID:8819332

  1. Induction of Caspase-3-like activity in Rice following release of cytochrome-f from the chloroplast and subsequent interaction with the Ubiquitin-Proteasome System

    PubMed Central

    Wang, Hongjuan; Zhu, Xiaonan; Li, Huan; Cui, Jing; Liu, Cheng; Chen, Xi; Zhang, Wei

    2014-01-01

    It has been known that the process of leaf senescence is accompanied by programmed cell death (PCD), and the previous study indicated that dark-induced senescence in detached leaves from rice led to the release of cytochrome f (Cyt f) from chloroplast into the cytoplasm. In this study, the effects of Cyt f on PCD were studied both in vitro and in vivo. In a cell-free system, purified Cyt f activated caspase-3-like protease and endonuclease OsNuc37, and induced DNA fragmentation. Furthermore, Cyt f-induced caspase-3-like activity could be inhibited by MG132, which suggests that the activity was attributed to the 26S proteasome. Conditional expression of Cyt f in the cytoplasm could also activate caspase-3-like activity and DNA fragmentation. Fluorescein diacetate staining and annexin V-FITC/PI double staining demonstrated that Cyt f expression in cytoplasm significantly increased the percentage of PCD protoplasts. Yeast two-hybrid screening showed that Cyt f might interact with E3-ubiquitin ligase and RPN9b, the subunits of the ubiquitin proteasome system (UPS), and other PCD-related proteins. Taken together, these results suggest that the released Cyt f from the chloroplast into the cytoplasm might activate or rescue caspase-3-like activity by interacting with the UPS, ultimately leading to the induction of PCD. PMID:25103621

  2. Induction of caspase-3-like activity in rice following release of cytochrome-f from the chloroplast and subsequent interaction with the ubiquitin-proteasome system.

    PubMed

    Wang, Hongjuan; Zhu, Xiaonan; Li, Huan; Cui, Jing; Liu, Cheng; Chen, Xi; Zhang, Wei

    2014-01-01

    It has been known that the process of leaf senescence is accompanied by programmed cell death (PCD), and the previous study indicated that dark-induced senescence in detached leaves from rice led to the release of cytochrome f (Cyt f) from chloroplast into the cytoplasm. In this study, the effects of Cyt f on PCD were studied both in vitro and in vivo. In a cell-free system, purified Cyt f activated caspase-3-like protease and endonuclease OsNuc37, and induced DNA fragmentation. Furthermore, Cyt f-induced caspase-3-like activity could be inhibited by MG132, which suggests that the activity was attributed to the 26S proteasome. Conditional expression of Cyt f in the cytoplasm could also activate caspase-3-like activity and DNA fragmentation. Fluorescein diacetate staining and annexin V-FITC/PI double staining demonstrated that Cyt f expression in cytoplasm significantly increased the percentage of PCD protoplasts. Yeast two-hybrid screening showed that Cyt f might interact with E3-ubiquitin ligase and RPN9b, the subunits of the ubiquitin proteasome system (UPS), and other PCD-related proteins. Taken together, these results suggest that the released Cyt f from the chloroplast into the cytoplasm might activate or rescue caspase-3-like activity by interacting with the UPS, ultimately leading to the induction of PCD. PMID:25103621

  3. Comparative ability of various PCBs, PCDFs, and TCDD to induce cytochrome P450 1A1 and 1A2 activity following 4 weeks of treatment (short communication)

    SciTech Connect

    De Vito, M.J.; Maier, W.E.; Diliberto, J.J.; Birnbaum, L.S.

    1993-01-01

    The toxic equivalency factors (TEF) have been proposed for dibenzo-p-dioxins, dibenzofurans and polychlorinated biphenyls (PCBs). The proposed TEFs, which are presently being evaluated in the authors' laboratory are currently used to estimate the potential health risk associated with exposure to complex mixtures containing these chemicals. Hepatic cytochrome P-450 1A1 and 1A2 activities were determined for all chemicals tested and compared to those from TCDD treated mice. These initial studies indicate that the interim TEFs for the dibenzofurans adequately predict the relative induction potency for these compounds. However, the TEFs proposed for the dioxin-like PCBs overestimate the potency of these compounds by factors of 10-10,000. The present study indicates that more experimental data is required before TEFs for PCBs are used in regulatory decision making.

  4. Metabolism of 1alpha-hydroxyvitamin D3 by cytochrome P450scc to biologically active 1alpha,20-dihydroxyvitamin D3.

    PubMed

    Tuckey, Robert C; Janjetovic, Zorica; Li, Wei; Nguyen, Minh N; Zmijewski, Michal A; Zjawiony, Jordan; Slominski, Andrzej

    2008-12-01

    Cytochrome P450scc (CYP11A1) metabolizes vitamin D3 to 20-hydroxyvitamin D3 as the major product, with subsequent production of dihydroxy and trihydroxy derivatives. The aim of this study was to determine whether cytochrome P450scc could metabolize 1alpha-hydroxyvitamin D3 and whether products were biologically active. The major product of 1alpha-hydroxyvitamin D3 metabolism by P450scc was identified by mass spectrometry and NMR as 1alpha,20-dihydroxyvitamin D3. Mass spectrometry of minor metabolites revealed the production of another dihydroxyvitamin D3 derivative, two trihydroxy-metabolites made via 1alpha,20-dihydroxyvitamin D3 and a tetrahydroxyvitamin D3 derivative. The Km for 1alpha-hydroxyvitamin D3 determined for P450scc incorporated into phospholipid vesicles was 1.4 mol substrate/mol phospholipid, half that observed for vitamin D3. The kcat was 3.0 mol/min/mol P450scc, 6-fold lower than that for vitamin D3. 1alpha,20-Dihydroxyvitamin D3 inhibited DNA synthesis by human epidermal HaCaT keratinocytes propagated in culture, in a time- and dose-dependent fashion, with a potency similar to that of 1alpha,25-dihydroxyvitamin D3. 1alpha,20-Dihydroxyvitamin D3 (10 microM) enhanced CYP24 mRNA levels in HaCaT keratinocytes but the potency was much lower than that reported for 1alpha,25-dihydroxyvitamin D3. We conclude that the presence of the 1-hydroxyl group in vitamin D3 does not alter the major site of hydroxylation by P450scc which, as for vitamin D3, is at C20. The major product, 1alpha,20-dihydroxyvitamin D3, displays biological activity on keratinocytes and therefore might be useful pharmacologically. PMID:19000766

  5. Evaluation of cytochrome P450 2C9 activity in normal, healthy, adult Western Indian population by both phenotyping and genotyping

    PubMed Central

    Swar, Balkrishna D.; Bendkhale, Shital R.; Rupawala, Abbas; Sridharan, Kannan; Gogtay, Nithya J.; Thatte, Urmila M.; Kshirsagar, Nilima A.

    2016-01-01

    Objectives: Cytochrome P450 2C9 (CYP2C9) is a member of cytochrome P450 (CYP) family that accounts for nearly 18% of the total CYP protein content in the human liver microsomes and catalyzes almost 15–20% of the drugs. Considering the paucity of data on the polymorphisms of CYP2C9 in Western Indian population, the present study was conducted to evaluate the prevalence of CYP2C9 polymorphisms (*1, *2 and *3) and correlate it with the activity using flurbiprofen (FLB) as a probe drug. Materials and Methods: A 100 mg FLB capsule was administered to 298 healthy adult participants. Venous blood samples were analyzed at 2 h postdose for the estimation of FLB and 4-hydroxy FLB. Metabolic ratio (MR) was calculated to determine the extent of poor metabolizer (PM) and rapid metabolizer status using probit plot. Genotyping of CYP2C9 polymorphism was performed using polymerase chain reaction-restriction fragment length polymorphism technique. Results: Of the total 298 participants, phenotype was assessable in 288 and genotype was performed in 289 participants. The median (range) MR of the study population was 6.6 (1.65–66.05). Five participants were found to be PMs by phenotype. Of the total 289 participants, 209 (72.3%) (66.7, 77.2) had CYP2C9*1/*1, 25 (8.7%) (5.8, 12.7) with CYP2C9*1/*2, 55 (19%) (14.8, 24.1) had CYP2C9*1/*3, 3 (1%) (0.3, 3.3) had CYP2C9*2/*3 genotype. A significant association between phenotype and genotype was observed. Conclusion: To conclude, the present study found significant association of CYP2C9 activity by both phenotype and genotype and these findings have to be corroborated in different kinds of patients. PMID:27298492

  6. The action of cytochrome b(5) on CYP2E1 and CYP2C19 activities requires anionic residues D58 and D65.

    PubMed

    Peng, Hwei-Ming; Auchus, Richard J

    2013-01-01

    The capacity of cytochrome b(5) (b(5)) to influence cytochrome P450 activities has been extensively studied and physiologically validated. Apo-b(5) enhances the activities of CYP3A4, CYP2A6, CYP2C19, and CYP17A1 but not that of CYP2E1 or CYP2D6, suggesting that the b(5) interaction varies among P450s. We previously showed that b(5) residues E48 and E49 are required to stimulate the 17,20-lyase activity of CYP17A1, but these same residues might not mediate b(5) activation of other P450 reactions, such as CYP2E1-catalyzed oxygenations, which are insensitive to apo-b(5). Using purified P450, b(5), and reductase (POR) in reconstituted assays, the D58G/D65G double mutation, of residues located in a hydrophilic α-helix of b(5), totally abolished the ability to stimulate CYP2E1-catalyzed chlorzoxazone 6-hydroxylation. In sharp contrast, the D58G/D65G double mutation retained the full ability to stimulate the 17,20-lyase activity of CYP17A1. The D58G/D65G double mutation competes poorly with wild-type b(5) for binding to the CYP2E1·POR complex yet accepts electrons from POR at a similar rate. Furthermore, the phospholipid composition markedly influences P450 turnover and b(5) stimulation and specificity, particularly for CYP17A1, in the following order: phosphatidylserine > phosphatidylethanolamine > phosphatidylcholine. The D58G/D65G double mutation also failed to stimulate CYP2C19-catalyzed (S)-mephenytoin 4-hydroxylation, whereas the E48G/E49G double mutation stimulated these activities of CYP2C19 and CYP2E1 equivalent to wild-type b(5). We conclude that b(5) residues D58 and D65 are essential for the stimulation of CYP2E1 and CYP2C19 activities and that the phospholipid composition significantly influences the b(5)-P450 interaction. At least two surfaces of b(5) differentially influence P450 activities, and the critical residues for individual P450 reactions cannot be predicted from sensitivity to apo-b(5) alone. PMID:23193974

  7. The action of cytochrome b5 on both CYP2E1 and CYP2C19 activities requires the anionic residues D58 and D65

    PubMed Central

    Peng, Hwei-Ming; Auchus, Richard J.

    2013-01-01

    The capacity of cytochrome b5 (b5) to influence cytochrome P450 activities has been extensively studied and physiologically validated. Apo-b5 enhances the activities of CYP3A4, CYP2A6, CYP2C19, and CYP17A1 but not of CYP2E1 or CYP2D6, suggesting that the b5 interaction varies amongst P450s. We previously showed that b5 residues E48 and E49 are required to stimulate the 17,20-lyase activity of CYP17A1, but these same residues might not mediate b5 activation of other P450 reactions, such as CYP2E1-catalyzed oxygenations, which are insensitive to apo-b5. Using purified P450, b5, and reductase (POR) in reconstituted assays, mutation D58G+D65G, residues located in a hydrophilic α-helix of b5, totally abolished the ability to stimulate CYP2E1-catalyzed chlorzoxazone 6-hydroxylation. In sharp contrast, the D58G+D65G mutation retained full capability to stimulate the 17,20 lyase activity of CYP17A1. Mutation D58G+D65G competes poorly with wild-type b5 for binding to the CYP2E1•POR complex yet accepts electrons from POR at a similar rate. Furthermore, the phospholipid composition markedly influences P450 turnover and b5 stimulation and specificity, particularly for CYP17A1, in the order phosphatidylserine > phosphatidylethanolamine > phosphatidylcholine. Mutation D58G+D65G also failed to stimulate CYP2C19-catalyzed (S)-mephenytoin 4-hydroxylation, whereas mutation E48G+E49G stimulated these activities of CYP2C19 and CYP2E1 equivalent to wild-type b5. We conclude that b5 residues D58 and D65 are essential for the stimulation of CYP2E1 and CYP2C19 activities and that phospholipid composition significantly influences the b5-P450 interaction. At least two surfaces of b5 differentially influence P450 activities, and the critical residues for individual P450 reactions cannot be predicted from sensitivity to apo-b5 alone. PMID:23193974

  8. Effect of Cytochrome b5 Content on the Activity of Polymorphic CYP1A2, 2B6, and 2E1 in Human Liver Microsomes

    PubMed Central

    Zhang, Haifeng; Gao, Na; Liu, Tingting; Fang, Yan; Qi, Bing; Wen, Qiang; Zhou, Jun; Jia, Linjing; Qiao, Hailing

    2015-01-01

    Human cytochrome b5 (Cyt b5) plays important roles in cytochrome P450 (CYP)-mediated drug metabolism. However, the expression level of Cyt b5 in normal human liver remains largely unknown. The effect of Cyt b5 on overall CYP activity in human liver microsomes (HLM) has rarely been reported and the relationship between Cyt b5 and the activity of polymorphic CYP has not been systematically investigated. In this study, we found that the median value of Cyt b5 protein was 270.01 pmol/mg from 123 HLM samples, and 12- and 19-fold individual variation was observed in Cyt b5 mRNA and protein levels, respectively. Gender and smoking clearly influenced Cyt b5 content. In addition, we found that Cyt b5 protein levels significantly correlated with the overall activity of CYP1A2, 2B6, and 2E1 in HLM. However, when the CYP activities were sorted by single nucleotide polymorphisms (SNP), the effect of Cyt b5 protein on the kinetic parameters varied greatly. There were significant correlations between Cyt b5 content and Vmax and CLint of CYP1A2 wild-types (3860GG, 2159GG, and 5347CC) as well as homozygous mutants (163AA and 3113GG). In contrast to Vmax and CLint, the Km of CYP2B6 516GG and 785AA genotypes was inversely associated with Cyt b5 content. Correlations between Cyt b5 content and Vmax and CLint of CYP2E1 -1293GG, -1293GC, 7632TT, 7632TA, -333TT, and -352AA genotypes were also observed. In conclusion, Cyt b5 expression levels varied considerably in the Chinese cohort from this study. Cyt b5 had significant impact on the overall activity of CYP1A2, 2B6, and 2E1 in HLM and the effects of Cyt b5 protein on polymorphic CYP1A2, 2B6, and 2E1 activity were SNP-dependent. These findings suggest that Cyt b5 plays an important role in CYP-mediated activities in HLM and may possibly be a contributing factor for the individual variation observed in CYP enzyme activities. PMID:26046844

  9. Phosphorylation of Human Cytochrome P450c17 by p38α Selectively Increases 17,20 Lyase Activity and Androgen Biosynthesis*

    PubMed Central

    Tee, Meng Kian; Miller, Walter L.

    2013-01-01

    Cytochrome P450c17, a steroidogenic enzyme encoded by the CYP17A1 gene, catalyzes the steroid 17α-hydroxylation needed for glucocorticoid synthesis, which may or may not be followed by 17,20 lyase activity needed for sex steroid synthesis. Whether or not P450c17 catalyzes 17,20 lyase activity is determined by three post-translational mechanisms influencing availability of reducing equivalents donated by P450 oxidoreductase (POR). These are increased amounts of POR, the allosteric action of cytochrome b5 to promote POR-P450c17 interaction, and Ser/Thr phosphorylation of P450c17, which also appears to promote POR-P450c17 interaction. The kinase(s) that phosphorylates P450c17 is unknown. In a series of kinase inhibition experiments, the pyridinyl imidazole drugs SB202190 and SB203580 inhibited 17,20 lyase but not 17α-hydroxylase activity in human adrenocortical HCI-H295A cells, suggesting an action on p38α or p38β. Co-transfection of non-steroidogenic COS-1 cells with P450c17 and p38 expression vectors showed that p38α, but not p38β, conferred 17,20 lyase activity on P450c17. Antiserum to P450c17 co-immunoprecipitated P450c17 and both p38 isoforms; however, knockdown of p38α, but not knockdown of p38β, inhibited 17,20 lyase activity in NCI-H295A cells. Bacterially expressed human P450c17 was phosphorylated by p38α in vitro at a non-canonical site, conferring increased 17,20 lyase activity. This phosphorylation increased the maximum velocity, but not the Michaelis constant, of the 17,20 lyase reaction. p38α phosphorylates P450c17 in a fashion that confers increased 17,20 lyase activity, implying that the production of adrenal androgens (adrenarche) is a regulated event. PMID:23836902

  10. Characterization of Medicago truncatula (barrel medic) hydroperoxide lyase (CYP74C3), a water-soluble detergent-free cytochrome P450 monomer whose biological activity is defined by monomer–micelle association

    PubMed Central

    Hughes, Richard K.; Belfield, Eric J.; Muthusamay, Mylrajan; Khan, Anuja; Rowe, Arthur; Harding, Stephen E.; Fairhurst, Shirley A.; Bornemann, Stephen; Ashton, Ruth; Thorneley, Roger N. F.; Casey, Rod

    2006-01-01

    We describe the detailed biochemical characterization of CYP74C3 (cytochrome P450 subfamily 74C3), a recombinant plant cytochrome P450 enzyme with HPL (hydroperoxide lyase) activity from Medicago truncatula (barrel medic). Steady-state kinetic parameters, substrate and product specificities, RZ (Reinheitszahl or purity index), molar absorption coefficient, haem content, and new ligands for an HPL are reported. We show on the basis of gel filtration, sedimentation velocity (sedimentation coefficient distribution) and sedimentation equilibrium (molecular mass) analyses that CYP74C3 has low enzyme activity as a detergent-free, water-soluble, monomer. The enzyme activity can be completely restored by re-activation with detergent micelles, but not detergent monomers. Corresponding changes in the spin state equilibrium, and probably co-ordination of the haem iron, are novel for cytochrome P450 enzymes and suggest that detergent micelles have a subtle effect on protein conformation, rather than substrate presentation, which is sufficient to improve substrate binding and catalytic-centre activity by an order of magnitude. The kcat/Km of up to 1.6×108 M−1·s−1 is among the highest recorded, which is remarkable for an enzyme whose reaction mechanism involves the scission of a C–C bond. We carried out both kinetic and biophysical studies to demonstrate that this effect is a result of the formation of a complex between a protein monomer and a single detergent micelle. Association with a detergent micelle rather than oligomeric state represents a new mechanism of activation for membrane-associated cytochrome P450 enzymes. Highly concentrated and monodispersed samples of detergent-free CYP74C3 protein may be well suited for the purposes of crystallization and structural resolution of the first plant cytochrome P450 enzyme. PMID:16454766

  11. Decreased cytochrome-c oxidase activity and lack of age-related accumulation of mitochondrial DNA deletions in the brains of schizophrenics

    SciTech Connect

    Cavelier, L.; Jazin, E.E.; Eriksson, I.

    1995-09-01

    Defects in mitochondrial energy production have been implicated in several neurodegenerative disorders, such as Parkinson disease and amyotrophic lateral sclerosis. To study the contribution of mitochondrial defects to Alzheimer disease and schizophrenia, cytochrome-c oxidase (COX) activity and levels of the mtDNA{sup 4977} deletion in postmortem brain tissue specimens of patients were compared with those of asymptomatic age-matched controls. No difference in COX activity was observed between Alzheimer patients and controls in any of five brain regions investigated. In contrast, schizophrenic patients had a 63% reduction of the COX activity in the nucleus caudatus (P<0.0001) and a 43% reduction in the cortex gyrus frontalis (P<0.05) as compared to controls. The average levels of the mtDNA{sup 4977} deletion did not differ significantly between Alzheimer patients and controls, and the deletion followed similar modes of accumulation with age in the two groups. In contrast, no age-related accumulation of mtDNA deletions was found in schizophrenic patients. The reduction in COX activity in schizophrenic patients did not correlate with changes in the total amount of mtDNA or levels of the mtDNA{sup 4977} deletion. The lack of age-related accumulation of the mtDNA{sup 4977} deletion and reduction in COX activity suggest that a mitochondrial dysfunction may be involved in the pathogenesis of schizophrenia. 41 refs., 3 figs., 1 tab.

  12. Piperine activates human pregnane X receptor to induce the expression of cytochrome P450 3A4 and multidrug resistance protein 1

    PubMed Central

    Wang, Yue-Ming; Lin, Wenwei; Chai, Sergio C.; Wu, Jing; Ong, Su Sien; Schuetz, Erin G.; Chen, Taosheng

    2013-01-01

    Activation of the pregnane X receptor (PXR) and subsequently its target genes, including those encoding drug transporters and metabolizing enzymes, while playing substantial roles in xenobiotics detoxification, might cause undesired drug-drug interactions. Recently, an increased awareness has been given to dietary components for potential induction of diet-drug interactions through activation of PXR. Here, we studied, whether piperine (PIP), a major component extracted from the widely-used daily spice black pepper, could induce PXR-mediated expression of cytochrome P450 3A4 (CYP3A4) and multidrug resistance protein 1 (MDR1). Our results showed that PIP activated human PXR (hPXR)-mediated CYP3A4 and MDR1 expression in human hepatocytes, intestine cells, and a mouse model; PIP activated hPXR by recruiting its coactivator SRC-1 in both cellular and cell-free systems; PIP bound to the hPXR ligand binding domain in a competitive ligand binding assay in vitro. The dichotomous effects of PIP on induction of CYP3A4 and MDR1 expression observed here and inhibition of their activity reported elsewhere challenges the potential use of PIP as a bioavailability enhancer and suggests that cautions should be taken for PIP consumption during drug treatment in patients, particularly those who favor daily pepper spice or rely on certain pepper remedies. PMID:23707768

  13. Kinetics and Activation Parameters for Oxidations of Styrene by Compounds I from Cytochrome P450BM-3 (CYP102A1) Heme Domain and from CYP119†

    PubMed Central

    Yuan, Xinting; Wang, Qin; Horner, John H.; Sheng, Xin; Newcomb, Martin

    2009-01-01

    Cytochrome P450 (CYP or P450) enzymes are ubiquitous in nature where they catalyze a vast array of oxidation reactions. The active oxidants in P450s have long been assumed to be iron(IV)-oxo porphyrin radical cations termed Compounds I, but P450 Compounds I have proven difficult to prepare. The recent development of an entry to these transients by photo-oxidation of the corresponding iron(IV)-oxo neutral porphyrin species (Compounds II) permits spectroscopic and kinetic studies. We report here application of the photo-oxidation method for production of Compound I from the heme domain of CYP102A1 (cytochrome P450BM-3), and product and kinetic studies of reactions of styrene with this Compound I transient and also Compound I from CYP119. The studies were performed at low temperatures in 1:1 (v:v) mixtures of glycerol--phosphate buffer. Single turnover reactions at 0 °C gave styrene oxide in good yields. In kinetic studies conducted between −10 and −50 °C, both Compounds I displayed saturation kinetics permitting determinations of binding constants and first-order oxidation rate constants. Temperature-dependent functions for the binding constants and rate constants were determined for both Compounds I. In the temperature range studied, the Compound I transient from CYP102A1 heme domain bound styrene more strongly than Compound I from CYP119, but the rate constants for oxidations of styrene by the latter were somewhat larger than those for the former. The temperature dependent functions for the first-order oxidation reactions are log k = 13.2 – 15.2/2.303RT and log k = 13.3 – 14.6/2.303RT (kcal/mol) for Compounds I from CYP102A1 heme domain and CYP119, respectively. PMID:19708688

  14. Determinants of the substrate specificity of human cytochrome P-450 CYP2D6: design and construction of a mutant with testosterone hydroxylase activity.

    PubMed Central

    Smith, G; Modi, S; Pillai, I; Lian, L Y; Sutcliffe, M J; Pritchard, M P; Friedberg, T; Roberts, G C; Wolf, C R

    1998-01-01

    Cytochrome P-450 CYP2D6, human debrisoquine hydroxylase, metabolizes more than 30 prescribed drugs, the vast majority of which are small molecules containing a basic nitrogen atom. In contrast, the similar mouse protein Cyp2d-9 was first characterized as a testosterone 16alpha-hydroxylase. No common substrates have been reported for the two enzymes. Here we investigate the structural basis of this difference in substrate specificity. We have earlier used a combination of NMR data and homology modelling to generate a three-dimensional model of CYP2D6 [Modi, Paine, Sutcliffe, Lian, Primrose, Wolf, C.R. and Roberts (1996) Biochemistry 35, 4541-4550]. We have now generated a homology model of Cyp2d-9 and compared the two models to identify specific amino acid residues that we believe form the substrate-binding site in each protein and therefore influence catalytic selectivity. Although there are many similarities in active site structure, the most notable difference is a phenylalanine residue (Phe-483) in CYP2D6, which in the model is located such that the bulky phenyl ring is positioned across the channel mouth, thus limiting the size of substrate that can access the active site. In Cyp2d-9, the corresponding position is occupied by an isoleucine residue, which imposes fewer steric restraints on the size of substrate that can access the active site. To investigate whether the amino acid residue at this position does indeed influence the catalytic selectivity of these enzymes, site-directed mutagenesis was used to change Phe-483 in CYP2D6 to isoleucine and also to tryptophan. CYP2D6, Cyp2d-9 and both mutant CYP2D6 proteins were co-expressed with NADPH cytochrome P-450 reductase as a functional mono-oxygenase system in Escherichia coli and their relative catalytic activities towards bufuralol and testosterone were determined. All four proteins exhibited catalytic activity towards bufuralol but only Cyp2d-9 catalysed the formation of 16alpha-hydroxytesterone. Uniquely

  15. Thiazide-like diuretic drug metolazone activates human pregnane X receptor to induce cytochrome 3A4 and multidrug-resistance protein 1

    PubMed Central

    Banerjee, Monimoy; Chen, Taosheng

    2014-01-01

    Human pregnane X receptor (hPXR) regulates the expression of drug-metabolizing enzyme cytochrome P450 3A4 (CYP3A4) and drug transporters such as multidrug-resistance protein 1 (MDR1). PXR can be modulated by small molecules, including Federal Drug Administration (FDA)–approved drugs, thus altering drug metabolism and causing drug-drug interactions. To determine the role of FDA-approved drugs in PXR-mediated regulation of drug metabolism and clearance, we screened 1481 FDA-approved small-molecule drugs by using a luciferase reporter assay in HEK293T cells and identified the diuretic drug metolazone as an activator of PXR. Our data showed that metolazone activated hPXR-mediated expression of CYP3A4 and MDR1 in human hepatocytes and intestine cells and increased CYP3A4 promoter activity in various cell lines. Mammalian two-hybrid assays showed that hPXR recruits its co-activator SRC-1 upon metolazone binding in HepG2 cells, explaining the mechanism of hPXR activation. To understand the role of other commonly-used diuretics in PXR activation and the structure-activity relationship of metolazone, thiazide and non-thiazide diuretics drugs were also tested but only metolazone activates PXR. To understand the molecular mechanism, docking studies and mutational analysis were carried out and showed that metolazone binds in the ligand-binding pocket and interacts with mostly hydrophobic amino acid residues. This is the first report showing that metolazone activates PXR. Because activation of hPXR might cause drug-drug interactions, metolazone should be used with caution for drug treatment in patients undergoing combination therapy. PMID:25181459

  16. Dioxin activation of CYP1A5 promoter/enhancer regions from two avian species, common cormorant (Phalacrocorax carbo) and chicken (Gallus gallus): Association with aryl hydrocarbon receptor 1 and 2 isoforms

    SciTech Connect

    Lee, Jin-Seon; Kim, Eun-Young Iwata, Hisato

    2009-01-01

    The present study focuses on the molecular mechanism and interspecies differences in susceptibility of avian aryl hydrocarbon receptor (AHR)-cytochrome P4501A (CYP1A) signaling pathway. By the cloning of 5'-flanking regions of CYP1A5 gene from common cormorant (Phalacrocorax carbo) and chicken (Gallus gallus), seven putative xenobiotic response elements (XREs) were identified within 2.7 kb upstream region of common cormorant CYP1A5 (ccCYP1A5), and six XREs were found within 0.9 kb of chicken CYP1A5 (ckCYP1A5). Analysis of sequential deletion and mutagenesis of the binding sites in avian CYP1A5 genes by in vitro reporter gene assays revealed that two XREs at -613 bp and -1585 bp in ccCYP1A5, and one XRE at -262 bp in ckCYP1A5 conferred TCDD-responsiveness. The binding of AHR1 with AHR nuclear translocator 1 (ARNT1) to the functional XRE in a TCDD-dependent manner was verified with gel shift assays, suggesting that avian CYP1A5 is induced by TCDD through AHR1/ARNT1 signaling pathway as well as mammalian CYP1A1 but through a distinct pathway from mammalian CYP1A2, an ortholog of the CYP1A5. TCDD-EC{sub 50} for the transcriptional activity in both cormorant AHR1- and AHR2-ccCYP1A5 reporter construct was 10-fold higher than that in chicken AHR1-ckCYP1A5 reporter construct. In contrast, chicken AHR2 showed no TCDD-dependent response. The TCDD-EC{sub 50} for CYP1A5 transactivation was altered by switching AHR1 between the two avian species, irrespective of the species from which the regulatory region of CYP1A5 gene originates. Therefore, the structural difference in AHR, not the CYP1A5 regulatory region may be a major factor to account for the dioxin susceptibility in avian species.

  17. 7,12-Dimethylbenzanthracene induces apoptosis in RL95-2 human endometrial cancer cells: Ligand-selective activation of cytochrome P450 1B1

    SciTech Connect

    Kim, Ji Young; Lee, Seung Gee; Chung, Jin-Yong; Kim, Yoon-Jae; Park, Ji-Eun; Oh, Seunghoon; Lee, Se Yong; Choi, Hong Jo; Yoo, Young Hyun; and others

    2012-04-15

    7,12-Dimethylbenzanthracene (DMBA), a polycyclic aromatic hydrocarbon, exhibits mutagenic, carcinogenic, immunosuppressive, and apoptogenic properties in various cell types. To achieve these functions effectively, DMBA is modified to its active form by cytochrome P450 1 (CYP1). Exposure to DMBA causes cytotoxicity-mediated apoptosis in bone marrow B cells and ovarian cells. Although uterine endometrium constitutively expresses CYP1A1 and CYP1B1, their apoptotic role after exposure to DMBA remains to be elucidated. Therefore, we chose RL95-2 endometrial cancer cells as a model system for studying DMBA-induced cytotoxicity and cell death and hypothesized that exposure to DMBA causes apoptosis in this cell type following CYP1A1 and/or CYP1B1 activation. We showed that DMBA-induced apoptosis in RL95-2 cells is associated with activation of caspases. In addition, mitochondrial changes, including decrease in mitochondrial potential and release of mitochondrial cytochrome c into the cytosol, support the hypothesis that a mitochondrial pathway is involved in DMBA-induced apoptosis. Exposure to DMBA upregulated the expression of AhR, Arnt, CYP1A1, and CYP1B1 significantly; this may be necessary for the conversion of DMBA to DMBA-3,4-diol-1,2-epoxide (DMBA-DE). Although both CYP1A1 and CYP1B1 were significantly upregulated by DMBA, only CYP1B1 exhibited activity. Moreover, knockdown of CYP1B1 abolished DMBA-induced apoptosis in RL95-2 cells. Our data show that RL95-2 cells are susceptible to apoptosis by exposure to DMBA and that CYP1B1 plays a pivotal role in DMBA-induced apoptosis in this system. -- Highlights: ► Cytotoxicity-mediated apoptogenic action of DMBA in human endometrial cancer cells. ► Mitochondrial pathway in DMBA-induced apoptosis of RL95-2 endometrial cancer cells. ► Requirement of ligand-selective activation of CYP1B1 in DMBA-induced apoptosis.

  18. Key substrate recognition residues in the active site of a plant cytochrome P450, CYP73A1. Homology guided site-directed mutagenesis.

    PubMed

    Schoch, Guillaume A; Attias, Roger; Le Ret, Monique; Werck-Reichhart, Danièle

    2003-09-01

    CYP73 enzymes are highly conserved cytochromes P450 in plant species that catalyse the regiospecific 4-hydroxylation of cinnamic acid to form precursors of lignin and many other phenolic compounds. A CYP73A1 homology model based on P450 experimentally solved structures was used to identify active site residues likely to govern substrate binding and regio-specific catalysis. The functional significance of these residues was assessed using site-directed mutagenesis. Active site modelling predicted that N302 and I371 form a hydrogen bond and hydrophobic contacts with the anionic site or aromatic ring of the substrate. Modification of these residues led to a drastic decrease in substrate binding and metabolism without major perturbation of protein structure. Changes to residue K484, which is located too far in the active site model to form a direct contact with cinnamic acid in the oxidized enzyme, did not influence initial substrate binding. However, the K484M substitution led to a 50% loss in catalytic activity. K484 may affect positioning of the substrate in the reduced enzyme during the catalytic cycle, or product release. Catalytic analysis of the mutants with structural analogues of cinnamic acid, in particular indole-2-carboxylic acid that can be hydroxylated with different regioselectivities, supports the involvement of N302, I371 and K484 in substrate docking and orientation. PMID:12950252

  19. Three-dimensional quantitative structure–activity relationship and docking studies in a series of anthocyanin derivatives as cytochrome P450 3A4 inhibitors

    PubMed Central

    Shityakov, Sergey; Puskás, István; Roewer, Norbert; Förster, Carola; Broscheit, Jens

    2014-01-01

    The cytochrome P450 (CYP)3A4 enzyme affects the metabolism of most drug-like substances, and its inhibition may influence drug safety. Modulation of CYP3A4 by flavonoids, such as anthocyanins, has been shown to inhibit the mutagenic activity of mammalian cells. Considering the previous investigations addressing CYP3A4 inhibition by these substances, we studied the three-dimensional quantitative structure–activity relationship (3D-QSAR) in a series of anthocyanin derivatives as CYP3A4 inhibitors. For the training dataset (n=12), comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) yielded crossvalidated and non-crossvalidated models with a q2 of 0.795 (0.687) and r2 of 0.962 (0.948), respectively. The models were also validated by an external test set of four compounds with r2 of 0.821 (CoMFA) and r2 of 0.812 (CoMSIA). The binding affinity modes associated with experimentally derived IC50 (half maximal inhibitory concentration) values were confirmed by molecular docking into the CYP3A4 active site with r2 of 0.66. The results obtained from this study are useful for a better understanding of the effects of anthocyanin derivatives on inhibition of carcinogen activation and cellular DNA damage. PMID:24741320

  20. Strain differences in cytochrome P450 mRNA and protein expression, and enzymatic activity among Sprague Dawley, Wistar, Brown Norway and Dark Agouti rats

    PubMed Central

    NISHIYAMA, Yoshihiro; NAKAYAMA, Shouta M.M.; WATANABE, Kensuke P.; KAWAI, Yusuke K.; OHNO, Marumi; IKENAKA, Yoshinori; ISHIZUKA, Mayumi

    2016-01-01

    Rat cytochrome P450 (CYP) exhibits inter-strain differences, but their analysis has been scattered across studies under different conditions. To identify these strain differences in CYP more comprehensively, mRNA expression, protein expression and metabolic activity among Wistar (WI), Sprague Dawley (SD), Dark Agouti (DA) and Brown Norway (BN) rats were compared. The mRNA level and enzymatic activity of CYP1A1 were highest in SD rats. The rank order of Cyp3a2 mRNA expression mirrored its protein expression, i.e., DA>BN>SD>WI, and was similar to the CYP3A2-dependent warfarin metabolic activity, i.e., DA>SD>BN>WI. These results suggest that the strain differences in CYP3A2 enzymatic activity are caused by differences in mRNA expression. Cyp2b1 mRNA levels, which were higher in DA rats, did not correlate with its protein expression or enzymatic activity. This suggests that the strain differences in enzymatic activity are not related to Cyp2b1 mRNA expression. In conclusion, WI rats tended to have the lowest CYP1A1, 2B1 and 3A2 mRNA expression, protein expression and enzymatic activity among the strains. In addition, SD rats had the highest CYP1A1 mRNA expression and activity, while DA rats had higher CYP2B1 and CYP3A2 mRNA and protein expression. These inter-strain differences in CYP could influence pharmacokinetic considerations in preclinical toxicological studies. PMID:26806536

  1. Cytochromes P450 in Nanodiscs

    PubMed Central

    Denisov, Ilia G.; Sligar, Stephen G.

    2010-01-01

    Nanodiscs have proven to be a versatile tool for the study all types of membrane proteins, including receptors, transporters, enzymes and viral antigens. The self-assembled Nanodisc system provides a robust and common means for rendering these targets soluble in aqueous media while providing a native like bilayer environment that maintains functional activity. This system has thus provided a means for studying the extensive collection of membrane bound cytochromes P450 with the same biochemical and biophysical tools that have been previously limited to use with the soluble P450s. These include a plethora of spectroscopic, kinetic and surface based methods. Significant improvements in homogeneity and stability of these preparations open new possibilities for detailed analysis of equilibrium and steady-state kinetic characteristics of catalytic mechanisms of human cytochromes P450 involved in xenobiotic metabolism and in steroid biosynthesis. The experimental methods developed for physico-chemical and functional studies of membrane cytochromes P450 incorporated in Nanodiscs allow for more detailed understanding of the scientific questions along the lines pioneered by Professor Klaus Ruckpaul and his array of colleagues and collaborators. PMID:20685623

  2. Novel Substrate Specificity and Temperature-Sensitive Activity of Mycosphaerella graminicola CYP51 Supported by the Native NADPH Cytochrome P450 Reductase

    PubMed Central

    Price, Claire L.; Warrilow, Andrew G. S.; Parker, Josie E.; Mullins, Jonathan G. L.; Nes, W. David

    2015-01-01

    Mycosphaerella graminicola (Zymoseptoria tritici) is an ascomycete filamentous fungus that causes Septoria leaf blotch in wheat crops. In Europe the most widely used fungicides for this major disease are demethylation inhibitors (DMIs). Their target is the essential sterol 14α-demethylase (CYP51), which requires cytochrome P450 reductase (CPR) as its redox partner for functional activity. The M. graminicola CPR (MgCPR) is able to catalyze the sterol 14α-demethylation of eburicol and lanosterol when partnered with Candida albicans CYP51 (CaCYP51) and that of eburicol only with M. graminicola CYP51 (MgCYP51). The availability of the functional in vivo redox partner enabled the in vitro catalytic activity of MgCYP51 to be demonstrated for the first time. MgCYP51 50% inhibitory concentration (IC50) studies with epoxiconazole, tebuconazole, triadimenol, and prothioconazole-desthio confirmed that MgCYP51 bound these azole inhibitors tightly. The characterization of the MgCPR/MgCYP51 redox pairing has produced a functional method to evaluate the effects of agricultural azole fungicides, has demonstrated eburicol specificity in the activity observed, and supports the conclusion that prothioconazole is a profungicide. PMID:25746994

  3. Structural basis for the mechanism of Ca(2+) activation of the di-heme cytochrome c peroxidase from Pseudomonas nautica 617.

    PubMed

    Dias, João M; Alves, Teresa; Bonifácio, Cecília; Pereira, Alice S; Trincão, José; Bourgeois, Dominique; Moura, Isabel; Romão, Maria João

    2004-06-01

    Cytochrome c peroxidase (CCP) catalyses the reduction of H(2)O(2) to H(2)O, an important step in the cellular detoxification process. The crystal structure of the di-heme CCP from Pseudomonas nautica 617 was obtained in two different conformations in a redox state with the electron transfer heme reduced. Form IN, obtained at pH 4.0, does not contain Ca(2+) and was refined at 2.2 A resolution. This inactive form presents a closed conformation where the peroxidatic heme adopts a six-ligand coordination, hindering the peroxidatic reaction from taking place. Form OUT is Ca(2+) dependent and was crystallized at pH 5.3 and refined at 2.4 A resolution. This active form shows an open conformation, with release of the distal histidine (His71) ligand, providing peroxide access to the active site. This is the first time that the active and inactive states are reported for a di-heme peroxidase. PMID:15274917

  4. The role of the K-channel and the active-site tyrosine in the catalytic mechanism of cytochrome c oxidase.

    PubMed

    Sharma, Vivek; Wikström, Mårten

    2016-08-01

    The active site of cytochrome c oxidase (CcO) comprises an oxygen-binding heme, a nearby copper ion (CuB), and a tyrosine residue that is covalently linked to one of the histidine ligands of CuB. Two proton-conducting pathways are observed in CcO, namely the D- and the K-channels, which are used to transfer protons either to the active site of oxygen reduction (substrate protons) or for pumping. Proton transfer through the D-channel is very fast, and its role in efficient transfer of both substrate and pumped protons is well established. However, it has not been fully clear why a separate K-channel is required, apparently for the supply of substrate protons only. In this work, we have analysed the available experimental and computational data, based on which we provide new perspectives on the role of the K-channel. Our analysis suggests that proton transfer in the K-channel may be gated by the protonation state of the active-site tyrosine (Tyr244) and that the neutral radical form of this residue has a more general role in the CcO mechanism than thought previously. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. PMID:26898520

  5. Hepatic cytochrome P450 activity and pollutant concentrations in paradise shelducks and southern black-backed gulls in the South Island of New Zealand.

    PubMed

    Numata, Mihoko; Fawcett, J Paul; Saville, Dorothy J; Rosengren, Rhonda J

    2008-11-01

    Cytochrome P450 (CYP) enzymes catalyse the oxidative metabolism of various xenobiotics including environmental pollutants. We investigated liver microsomal CYP marker activities in 60 paradise shelducks (Tadorna variegata; herbivore) and 77 southern black-backed gulls (Larus dominicanus; omnivore) collected at three sites with putatively different levels of pollution in the South Island of New Zealand. Ethoxyresorufin O-deethylase (EROD) activity was high in birds at an urban landfill site compared to those at a relatively pristine and an agricultural site. Analysis of p-nitrophenol hydroxylase and erythromycin demethylase activities indicated the presence of two additional CYP isoforms in shelducks but no additional form in gulls. Total polychlorinated biphenyl (PCB) concentrations (ranges: shelducks, 0.073-6.2; gulls, 8.2-330 ng/g wet weight) were high in landfill samples suggesting a link to EROD induction and, in landfill shelducks, EROD was independently associated with Hg and Pb concentration. PCB congener-specific assessments indicated the metabolism of at least two congeners (#28 and #74) is induced in shelducks. DDE concentrations (ranges: shelducks, 0.85-320; gulls, 44-4800 ng/g) were high in birds at the landfill and agricultural sites. Body weight tended to be lower in landfill birds, but whether this reflects the greater energetic demands of pollutant detoxification remains to be investigated. PMID:18473165

  6. Novel Substrate Specificity and Temperature-Sensitive Activity of Mycosphaerella graminicola CYP51 Supported by the Native NADPH Cytochrome P450 Reductase.

    PubMed

    Price, Claire L; Warrilow, Andrew G S; Parker, Josie E; Mullins, Jonathan G L; Nes, W David; Kelly, Diane E; Kelly, Steven L

    2015-05-15

    Mycosphaerella graminicola (Zymoseptoria tritici) is an ascomycete filamentous fungus that causes Septoria leaf blotch in wheat crops. In Europe the most widely used fungicides for this major disease are demethylation inhibitors (DMIs). Their target is the essential sterol 14α-demethylase (CYP51), which requires cytochrome P450 reductase (CPR) as its redox partner for functional activity. The M. graminicola CPR (MgCPR) is able to catalyze the sterol 14α-demethylation of eburicol and lanosterol when partnered with Candida albicans CYP51 (CaCYP51) and that of eburicol only with M. graminicola CYP51 (MgCYP51). The availability of the functional in vivo redox partner enabled the in vitro catalytic activity of MgCYP51 to be demonstrated for the first time. MgCYP51 50% inhibitory concentration (IC50) studies with epoxiconazole, tebuconazole, triadimenol, and prothioconazole-desthio confirmed that MgCYP51 bound these azole inhibitors tightly. The characterization of the MgCPR/MgCYP51 redox pairing has produced a functional method to evaluate the effects of agricultural azole fungicides, has demonstrated eburicol specificity in the activity observed, and supports the conclusion that prothioconazole is a profungicide. PMID:25746994

  7. Effects of dimephosphone, xydiphone, and ionol on the content and activities of rat liver cytochromes P-450 during long-term treatment with phenobarbital.

    PubMed

    Ziganshina, L E; Fattakhova, A N; Vedernikova, O O; Ziganshin, A U

    2004-10-01

    Effects of dimephosphone, xydiphone, and ionol administered in parallel with phenobarbital on the content of cytochromes P-450 in rat liver and on the rate of C-hydroxylation of diazepam, haloperidol, and prednisolone by rat liver microsomal enzymes were studied in vitro. Dimephosphone, xydiphone, and ionol exhibited similar inductive effects on C-hydroxylation reactions in the CYP P-450 system during treatment with phenobarbital. Xydiphone and ionol in a dose of 1 mmol/kg canceled phenobarbital-induced increase in P-450 cytochrome content in rat liver. Sex-dependent cytochromes P-450 are involved in the prednisolone and haloperidol C-hydroxylation reactions in rats. PMID:15665954

  8. Piperine activates human pregnane X receptor to induce the expression of cytochrome P450 3A4 and multidrug resistance protein 1

    SciTech Connect

    Wang, Yue-Ming; Lin, Wenwei; Chai, Sergio C.; Wu, Jing; Ong, Su Sien; Schuetz, Erin G.; Chen, Taosheng

    2013-10-01

    Activation of the pregnane X receptor (PXR) and subsequently its target genes, including those encoding drug transporters and metabolizing enzymes, while playing substantial roles in xenobiotic detoxification, might cause undesired drug-drug interactions. Recently, an increased awareness has been given to dietary components for potential induction of diet–drug interactions through activation of PXR. Here, we studied, whether piperine (PIP), a major component extracted from the widely-used daily spice black pepper, could induce PXR-mediated expression of cytochrome P450 3A4 (CYP3A4) and multidrug resistance protein 1 (MDR1). Our results showed that PIP activated human PXR (hPXR)-mediated CYP3A4 and MDR1 expression in human hepatocytes, intestine cells, and a mouse model; PIP activated hPXR by recruiting its coactivator SRC-1 in both cellular and cell-free systems; PIP bound to the hPXR ligand binding domain in a competitive ligand binding assay in vitro. The dichotomous effects of PIP on induction of CYP3A4 and MDR1 expression observed here and inhibition of their activity reported elsewhere challenges the potential use of PIP as a bioavailability enhancer and suggests that caution should be taken in PIP consumption during drug treatment in patients, particularly those who favor daily pepper spice or rely on certain pepper remedies. - Highlights: • Piperine induces PXR-mediated CYP3A4 and MDR1 expression. • Piperine activates PXR by binding to PXR and recruiting coactivator SRC-1. • Piperine induces PXR activation in vivo. • Caution should be taken in piperine consumption during drug treatment.

  9. Cytochrome P450 1A2 (CYP1A2) activity and risk factors for breast cancer: a cross-sectional study

    PubMed Central

    Hong, Chi-Chen; Tang, Bing-Kou; Hammond, Geoffrey L; Tritchler, David; Yaffe, Martin; Boyd, Norman F

    2004-01-01

    Introduction Breast cancer risk may be determined by various genetic, metabolic, and lifestyle factors that alter sex hormone metabolism. Cytochrome P450 1A2 (CYP1A2) is responsible for the metabolism of estrogens and many exogenous compounds, including caffeine. Methods In a cross-sectional study of 146 premenopausal and 149 postmenopausal women, we examined the relationships between CYP1A2 activity and known or suspected risk factors for breast cancer. Blood levels of sex hormones, lipids, and growth factors were measured. In vivo CYP1A2 activity was assessed by measuring caffeine metabolites in urine. Stepwise and maximum R regression analyses were used to identify covariates related to CYP1A2 activity after adjustment for ethnicity. Results In both menopausal groups CYP1A2 activity was positively related to smoking and levels of sex hormone binding globulin. In premenopausal women, CYP1A2 activity was also positively related to insulin levels, caffeine intake, age, and plasma triglyceride levels, and negatively related with total cholesterol levels and body mass index. In postmenopausal women CYP1A2 activity was positively associated with insulin-like growth factor-1, and negatively associated with plasma triglyceride, high-density lipoprotein cholesterol, and age at menarche. Conclusion These results suggest that CYP1A2 activity is correlated with hormones, blood lipids, and lifestyle factors associated with breast cancer risk, although some of the observed associations were contrary to hypothesized directions and suggest that increased CYP1A2 function may be associated with increased risk for breast cancer. PMID:15217502

  10. Effects of methoxychlor and 2,2-bis ( p -hydroxyphenyl)-1,1,1-trichloroethane on cytochrome P450 enzyme activities in human and rat livers.

    PubMed

    Chen, Bingbing; Pan, Peipei; Wang, Li; Chen, Menchun; Dong, Yaoyao; Ge, Ren-Shan; Hu, Guo-Xin

    2015-01-01

    Cytochrome P450 (CYP) enzymes are involved in the metabolism of endogenous and exogenous compounds. Human and rat liver microsomes were used to investigate the inhibitory effects of methoxychlor (MXC) and its metabolite 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE) on the activities of corresponding human and rat CYPs. Probe drugs were used to test the inhibitory effects of MXC and HPTE on human and rat CYPs. The results showed that MXC and HPTE inhibited both human CYP2C9 and rat liver CYP2C11 activity, with half-maximal inhibitory concentration (IC50) values of 15.47 ± 0.36 (MXC) and 8.87 ± 0.53 μmol/l (HPTE) for human CYP2C9, and of 22.45 ± 1.48 (MXC) and 24.63 ± 1.35 μmol/l (HPTE) for rat CYP2C11. MXC and HPTE had no effects on human CYP2C19 activity but inhibited rat CYP2C6 activity with IC50 values of 14.84 ± 0.04 (MXC) and 8.72 ± 0.25 μmol/l (HPTE). With regard to human CYP2D6 and rat CYP2D2 activity, only HPTE potently inhibited human CYP2D6 activity, with an IC50 value of 16.56 ± 0.69 μmol/l. Both chemicals had no effect on human CYP3A4 and rat CYP3A1 activity. In summary, MXC and HPTE are potent inhibitors of some human and rat CYPs. PMID:25833162

  11. Cytochrome P450 1A2 (CYP1A2) activity, mammographic density, and oxidative stress: a cross-sectional study

    PubMed Central

    Hong, Chi-Chen; Tang, Bing-Kou; Rao, Venketeshwer; Agarwal, Sanjiv; Martin, Lisa; Tritchler, David; Yaffe, Martin; Boyd, Norman F

    2004-01-01

    Introduction Mammographically dense breast tissue is a strong predictor of breast cancer risk, and is influenced by both mitogens and mutagens. One enzyme that is able to affect both the mitogenic and mutagenic characteristics of estrogens is cytochrome P450 1A2 (CYP1A2), which is principally responsible for the metabolism of 17β-estradiol. Methods In a cross-sectional study of 146 premenopausal and 149 postmenopausal women, we examined the relationships between CYP1A2 activity, malondialdehyde (MDA) levels, and mammographic density. In vivo CYP1A2 activity was assessed by measuring caffeine metabolites in urine. Levels of serum and urinary MDA, and MDA–deoxyguanosine adducts in DNA were measured. Mammograms were digitized and measured using a computer-assisted method. Results CYP1A2 activity in postmenopausal women, but not in premenopausal women, was positively associated with mammographic density, suggesting that increased CYP1A2 activity after the menopause is a risk factor for breast cancer. In premenopausal women, but not in postmenopausal women, CYP1A2 activity was positively associated with serum and urinary MDA levels; there was also some evidence that CYP1A2 activity was more positively associated with percentage breast density when MDA levels were high, and more negatively associated with percentage breast density when MDA levels were low. Conclusion These findings provide further evidence that variation in the activity level of enzymes involved in estrogen metabolism is related to levels of mammographic density and potentially to breast cancer risk. PMID:15217501

  12. Iron(II)/reductant(DH2)-induced activation of dioxygen for the hydroxylation and ketonization of hydrocarbons; mimics for the cytochrome P-450 hydroxylase/reductase system.

    PubMed

    Sawyer, D T; Liu, X; Redman, C; Chong, B

    1994-12-01

    Several metal complexes [(FeII(DPAH)2 (DPAH2 = 2,6-dicarboxyl pyridine), FeII(PA)2 (PAH = picolinic acid), FeII(bpy)2(2+), FeII(OPPh3)4(2+), (Cl8TPP)FeIIIX (X = Cl, OH, SCH2Ph) [Cl8TPP = tetrakis (2,6-dichlorophenyl)porphyrin], (TPP) FeIIICl (TPP = tetraphenylporphyrin), and CuI(tpy)2+ (typ = 2,2'-6,2"-terpyridine)] in combination with one of several reductants [DH2; PhNHNHPh (mimic of dihydroflavin), PhNHNH2, ascorbic acid (H2asc), and PhCH2SH (model ligand for cysteine residue)] catalytically activate O2 (1 atm) for the hydroxylation of saturated hydrocarbons (e.g. c-C6H12-->c-C6H11OH). This chemistry closely parallels that of cytochrome P-450 proteins, and both appear to involve a Fenton-like reactive intermediate), [LxFeOOH(DH)]. With cyclohexane as the substrate the dominant product is its ketone (as well as significant amounts of its hydroperoxide). 1,4-Cyclohexadiene (with two double-allylic carbon centers) undergoes dehydrogenation to give benzene, but also yields substantial amounts of phenol via ketonization of an allylic carbon. The 1:1 FeII(bpy)2(2+)/(PhNHNH2 or H2asc), FeII(PA)2/H2asc, and (Cl8TPP)FeIIICl/PhNHNH2 combinations initiate the autoxidation of 1,4-cyclohexadiene with turnover numbers (moles of product per mole of reductant) from 71 to 26, respectively (alpha-tocophenol reduces the turnover numbers by 20-80%). With respect to aerobic biology, the present results indicate that dysfunctional transition metals (degradation products of metalloproteins) in combination with biological reductants activate O2 for reaction with organic substrates. The level of activation is similar to that for Fenton reagents and cytochrome P-450 hydroxylases. Hence, dysfunctional transition metals, reductants, and O2 are a hazardous combination within a biological matrix. PMID:7788301

  13. Engineering bacterial cytochrome P450 (P450) BM3 into a prototype with human P450 enzyme activity using indigo formation.

    PubMed

    Park, Sun-Ha; Kim, Dong-Hyun; Kim, Dooil; Kim, Dae-Hwan; Jung, Heung-Chae; Pan, Jae-Gu; Ahn, Taeho; Kim, Donghak; Yun, Chul-Ho

    2010-05-01

    Human cytochrome P450 (P450) enzymes metabolize a variety of endogenous and xenobiotic compounds, including steroids, drugs, and environmental chemicals. In this study, we examine the possibility that bacterial P450 BM3 (CYP102A1) mutants with indole oxidation activity have the catalytic activities of human P450 enzymes. Error-prone polymerase chain reaction was carried out on the heme domain-coding region of the wild-type gene to generate a CYP102A1 DNA library. The library was transformed into Escherichia coli for expression of the P450 mutants. A colorimetric colony-based method was adopted for primary screening of the mutants. When the P450 activities were measured at the whole-cell level, some of the blue colonies, but not the white colonies, possessed apparent oxidation activity toward coumarin and 7-ethoxycoumarin, which are typical human P450 substrates that produce fluorescent products. Coumarin is oxidized by the CYP102A1 mutants to produce two metabolites, 7-hydroxycoumarin and 3-hydroxycoumarin. In addition, 7-ethoxycoumarin is simultaneously oxidized to 7-hydroxycoumarin by O-deethylation reaction and to 3-hydroxy,7-ethoxycoumarin by 3-hydroxylation reactions. Highly active mutants are also able to metabolize several other human P450 substrates, including phenacetin, ethoxyresorufin, and chlorzoxazone. These results indicate that indigo formation provides a simple assay for identifying CYP102A1 mutants with a greater potential for human P450 activity. Furthermore, our computational findings suggest a correlation between the stabilization of the binding site and the catalytic efficiency of CYP102A1 mutants toward coumarin: the more stable the structure in the binding site, the lower the energy barrier and the higher the catalytic efficiency. PMID:20100815

  14. CYTOCHROME OXIDASE IN NORMAL AND REGENERATING NEURONS

    PubMed Central

    Howe, Howard A.; Mellors, Robert C.

    1945-01-01

    Manometric determinations of cytochrome oxidase activity were carried out on grey matter from the thalamus and anterior horn of cats and monkeys under various experimental conditions. The thalamus of the cat was studied following the degeneration of virtually all the thalamic neurons secondary to decortication. In comparing the deneuronated thalamus with the normal one, it was found that approximately 34 per cent of the cytochrome oxidase activity was contributed by the neurons and the balance by neuroglia and mesodermal tissues which on the operated side remained comparable to that of the normal side. Total activity of the normal thalamus averaged 5.52 units per mg. of dry weight where I unit is defined as the amount of cytochrome oxidase required to produce a net oxygen consumption of 10 c.mm. per hour under the specified conditions of the experiment. The grey matter of the anterior horns of the spinal cord was isolated by a special technique and its cytochrome oxidase activity was compared with anterior horns in which motoneurons had been stimulated to regenerative activity by section of peripheral nerves. Each animal was studied in relation to an anterior horn which was normal and one in which only the functional state of the motoneurons had been changed. Average normal levels of 2.23 units were found for cat anterior horn and 0.69 units for the monkey. Reductions of cytochrome oxidase activity in the range of 22 to 23 per cent were observed for both cat and monkey following nerve section. In the latter the time sequence was carefully studied in relation to the cytological cycle known as chromatolysis and a virus refractory state previously described by us. It was found that maximal reduction of cytochrome oxidase activity coincided with maximal refractoriness of the cells to poliomyelitis virus (30 to 70 days following nerve section). Neither of these states could be correlated in time with maximal chromatolysis (10 to 15 days). PMID:19871471

  15. In vitro identification of human cytochrome P450 isoforms involved in the metabolism of Geissoschizine methyl ether, an active component of the traditional Japanese medicine Yokukansan.

    PubMed

    Matsumoto, Takashi; Kushida, Hirotaka; Maruyama, Takeshi; Nishimura, Hiroaki; Watanabe, Junko; Maemura, Kazuya; Kase, Yoshio

    2016-01-01

    1. Yokukansan (YKS) is a traditional Japanese medicine also called kampo, which has been used to treat neurosis, insomnia, and night crying and peevishness in children. Geissoschizine methyl ether (GM), a major indole alkaloid found in Uncaria hook, has been identified as a major active component of YKS with psychotropic effects. Recently, GM was reported to have a partial agonistic effect on serotonin 5-HT1A receptors. However, there is little published information on GM metabolism in humans, although several studies reported the blood kinetics of GM in rats and humans. In this study, we investigated the GM metabolic pathways and metabolizing enzymes in humans. 2. Using recombinant human cytochrome P450 (CYP) isoforms and polyclonal antibodies to CYP isoforms, we found that GM was metabolized into hydroxylated, dehydrogenated, hydroxylated+dehydrogenated, demethylated and water adduct forms by some CYP isoforms. 3. The relative activity factors in human liver microsomes were calculated to determine the relative contributions of individual CYP isoforms to GM metabolism in human liver microsomes (HLMs). We identified CYP3A4 as the CYP isoform primarily responsible for GM metabolism in human liver microsomes. 4. These findings provide an important basis for understanding the pharmacokinetics and pharmacodynamics of GM and YKS. PMID:26337900

  16. Characterization of a Leishmania Stage Specific Mitochondrial Membrane Protein that Enhances the Activity of Cytochrome C Oxidase and Its Role in Virulence

    PubMed Central

    Dey, Ranadhir; Meneses, Claudio; Salotra, Poonam; Kamhawi, Shaden; Nakhasi, Hira L.; Duncan, Robert

    2010-01-01

    Summary Leishmaniasis is caused by the dimorphic protozoan parasite Leishmania. Differentiation of the insect form, promastigotes, to the vertebrate form, amastigotes, and survival inside the vertebrate host accompanies a drastic metabolic shift. We describe a gene first identified in amastigotes that is essential for survival inside the host. Gene expression analysis identified a 27kDa protein encoding gene (Ldp27) that was more abundantly expressed in amastigotes and metacyclic promastigotes than in procyclic promastigotes. Immunofluorescence and biochemical analysis revealed that Ldp27 is a mitochondrial membrane protein. Co-imunoprecipitation using antibodies to the cytochrome c oxidase (COX) complex, present in the inner mitochondrial membrane, placed the p27 protein in the COX complex. Ldp27 gene deleted parasites (Ldp27−/−) showed significantly less COX activity and ATP synthesis than wild type in intracellular amastigotes. Moreover, the Ldp27−/− parasites were less virulent both in human macrophages and in BALB/c mice. These results demonstrate that Ldp27 is an important component of an active COX complex enhancing oxidative phosphorylation specifically in infectious metacyclics and amastigotes and promoting parasite survival in the host. Thus, Ldp27 can be explored as a potential drug target and parasites devoid of the p27 gene could be considered as a live attenuated vaccine candidate against visceral leishmaniasis. PMID:20497506

  17. Cytochrome bc1 complexes of microorganisms.

    PubMed Central

    Trumpower, B L

    1990-01-01

    The cytochrome bc1 complex is the most widely occurring electron transfer complex capable of energy transduction. Cytochrome bc1 complexes are found in the plasma membranes of phylogenetically diverse photosynthetic and respiring bacteria, and in the inner mitochondrial membrane of all eucaryotic cells. In all of these species the bc1 complex transfers electrons from a low-potential quinol to a higher-potential c-type cytochrome and links this electron transfer to proton translocation. Most bacteria also possess alternative pathways of quinol oxidation capable of circumventing the bc1 complex, but these pathways generally lack the energy-transducing, protontranslocating activity of the bc1 complex. All cytochrome bc1 complexes contain three electron transfer proteins which contain four redox prosthetic groups. These are cytochrome b, which contains two b heme groups that differ in their optical and thermodynamic properties; cytochrome c1, which contains a covalently bound c-type heme; and a 2Fe-2S iron-sulfur protein. The mechanism which links proton translocation to electron transfer through these proteins is the proton motive Q cycle, and this mechanism appears to be universal to all bc1 complexes. Experimentation is currently focused on understanding selected structure-function relationships prerequisite for these redox proteins to participate in the Q-cycle mechanism. The cytochrome bc1 complexes of mitochondria differ from those of bacteria, in that the former contain six to eight supernumerary polypeptides, in addition to the three redox proteins common to bacteria and mitochondria. These extra polypeptides are encoded in the nucleus and do not contain redox prosthetic groups. The functions of the supernumerary polypeptides of the mitochondrial bc1 complexes are generally not known and are being actively explored by genetically manipulating these proteins in Saccharomyces cerevisiae. Images PMID:2163487

  18. THE GAP JUNCTION INHIBITOR 2-AMINOETHOXY-DIPHENYL-BORATE PROTECTS AGAINST ACETAMINOPHEN HEPATOTOXICITY BY INHIBITING CYTOCHROME P450 ENZYMES AND C-JUN N-TERMINAL KINASE ACTIVATION

    PubMed Central

    Du, Kuo; Williams, C. David; McGill, Mitchell R.; Xie, Yuchao; Farhood, Anwar; Vinken, Mathieu; Jaeschke, Hartmut

    2013-01-01

    Acetaminophen (APAP) hepatotoxicity is the leading cause of acute liver failure in the US. Although many aspects of the mechanism are known, recent publications suggest that gap junctions composed of connexin32 function as critical intercellular communication channels which transfer cytotoxic mediators into neighboring hepatocytes and aggravate liver injury. However, these studies did not consider off-target effects of reagents used in these experiments, especially the gap junction inhibitor 2-aminoethoxy-diphenyl-borate (2-APB). In order to assess the mechanisms of protection of 2-APB in vivo, male C56Bl/6 mice were treated with 400 mg/kg APAP to cause extensive liver injury. This injury was prevented when animals were co-treated with 20 mg/kg 2-APB and was attenuated when 2-APB was administered 1.5h after APAP. However, the protection was completely lost when 2-APB was given 4–6h after APAP. Measurement of protein adducts and c-jun-N-terminal kinase (JNK) activation indicated that 2-APB reduced both protein binding and JNK activation, which correlated with hepatoprotection. Although some of the protection was due to the solvent dimethyl sulfoxide (DMSO), in vitro experiments clearly demonstrated that 2-APB directly inhibits cytochrome P450 activities. In addition, JNK activation induced by phorone and tert-butylhydroperoxide in vivo was inhibited by 2-APB. The effects against APAP toxicity in vivo were reproduced in primary cultured hepatocytes without use of DMSO and in the absence of functional gap junctions. We conclude that the protective effect of 2-APB was caused by inhibition of metabolic activation of APAP and inhibition of the JNK signaling pathway and not by blocking connexin32-based gap junctions. PMID:24070586

  19. The gap junction inhibitor 2-aminoethoxy-diphenyl-borate protects against acetaminophen hepatotoxicity by inhibiting cytochrome P450 enzymes and c-jun N-terminal kinase activation.

    PubMed

    Du, Kuo; Williams, C David; McGill, Mitchell R; Xie, Yuchao; Farhood, Anwar; Vinken, Mathieu; Jaeschke, Hartmut

    2013-12-15

    Acetaminophen (APAP) hepatotoxicity is the leading cause of acute liver failure in the US. Although many aspects of the mechanism are known, recent publications suggest that gap junctions composed of connexin32 function as critical intercellular communication channels which transfer cytotoxic mediators into neighboring hepatocytes and aggravate liver injury. However, these studies did not consider off-target effects of reagents used in these experiments, especially the gap junction inhibitor 2-aminoethoxy-diphenyl-borate (2-APB). In order to assess the mechanisms of protection of 2-APB in vivo, male C56Bl/6 mice were treated with 400 mg/kg APAP to cause extensive liver injury. This injury was prevented when animals were co-treated with 20 mg/kg 2-APB and was attenuated when 2-APB was administered 1.5 h after APAP. However, the protection was completely lost when 2-APB was given 4-6 h after APAP. Measurement of protein adducts and c-jun-N-terminal kinase (JNK) activation indicated that 2-APB reduced both protein binding and JNK activation, which correlated with hepatoprotection. Although some of the protection was due to the solvent dimethyl sulfoxide (DMSO), in vitro experiments clearly demonstrated that 2-APB directly inhibits cytochrome P450 activities. In addition, JNK activation induced by phorone and tert-butylhydroperoxide in vivo was inhibited by 2-APB. The effects against APAP toxicity in vivo were reproduced in primary cultured hepatocytes without use of DMSO and in the absence of functional gap junctions. We conclude that the protective effect of 2-APB was caused by inhibition of metabolic activation of APAP and inhibition of the JNK signaling pathway and not by blocking connexin32-based gap junctions. PMID:24070586

  20. Comparison in the in vitro inhibitory effects of major phytocannabinoids and polycyclic aromatic hydrocarbons contained in marijuana smoke on cytochrome P450 2C9 activity.

    PubMed

    Yamaori, Satoshi; Koeda, Kyoko; Kushihara, Mika; Hada, Yui; Yamamoto, Ikuo; Watanabe, Kazuhito

    2012-01-01

    Inhibitory effects of Δ⁹-tetrahydrocannabinol (Δ⁹-THC), cannabidiol (CBD), and cannabinol (CBN), the three major constituents in marijuana, and polycyclic aromatic hydrocarbons (PAHs) contained in marijuana smoke on catalytic activity of human cytochrome P450 (CYP) 2C9 were investigated. These phytocannabinoids concentration-dependently inhibited S-warfarin 7-hydroxylase and diclofenac 4'-hydroxylase activities of human liver microsomes (HLMs) and recombinant CYP2C9 (rCYP2C9). In contrast, none of the twelve PAHs including benz[a]anthracene and benzo[a]pyrene exerted substantial inhibition (IC₅₀ > 10 µM). The inhibitory potentials of Δ⁹-THC (Ki = 0.937-1.50 µM) and CBN (Ki = 0.882-1.29 µM) were almost equivalent regardless of the enzyme sources used, whereas the inhibitory potency of CBD (Ki > = 0.954-9.88 µM) varied depending on the enzyme sources and substrates used. Δ⁹-THC inhibited both S-warfarin 7-hydroxylase and diclofenac 4'-hydroxylase activities of HLMs and rCYP2C9 in a mixed manner. CBD and CBN competitively inhibited the activities of HLMs and rCYP2C9, with the only notable difference being that CBD and CBN exhibited mixed-type inhibitions against diclofenac 4'-hydroxylation and S-warfarin 7-hydroxylation, respectively, by rCYP2C9. None of Δ⁹-THC, CBD, and CBN exerted metabolism-dependent inhibition. These results indicated that the three major phytocannabinoids but not PAHs contained in marijuana smoke potently inhibited CYP2C9 activity and that these cannabinoids can be characterized as direct inhibitors for CYP2C9. PMID:22166891

  1. Cytochrome f function in photosynthetic electron transport.

    PubMed Central

    Whitmarsh, J; Cramer, W A

    1979-01-01

    The questions of whether the stoichiometry of the turnover of cytochrome f, and the time-course of its reduction subsequent to a light flash, are consistent with efficient function in noncyclic electron transport have been investigated. Measurements were made of the absorbance change at the 553-nm alpha-band maximum relative to a reference wavelength. In the dark cytochrome f is initially fully reduced, oxidized by a 0.3-s flash, and reduced again in the dark period after the flash. In the presence of gramicidin at 18 degrees C, the dark reduction was characterized by a half-time of 25-30 ms, stoichiometries of cytochrome f:chlorophyll and P700:chlorophyll of 1:670 and 1:640, respectively, and a short time delay. The time delay in the dark reduction of cytochrome f, which is expected for a component in an intermediate position in the chain, becomes more apparent in the presence of valinomycin and K+. Under these conditions the half-time for cytochrome f dark reduction is 130-150 ms, and the delay is approximately equal to 20 ms. The measured value for the activation energy of the dark reduction of cytochrome f (11 +/- 1 kcal/mol) is the same as that for noncyclic electron transport in steady-state light. A sigmoidal time-course for the reduction of cytochrome f has been calculated for a simple linear electron transport chain. The kinetics for reduction of cytochrome f predicted by the calculation, in the presence of valinomycin and K+, are in reasonably good agreement with the experimental data. There is an appreciable amount of data in the literature to document complex properties of cytochrome f after illumination with short flashes, and evidence for complexity in a light-minus-dark transition. The data presented here, obtained after a long flash that should establish steady-state conditions, either fulfill or are consistent with the basic criteria for efficient function of cytochrome f in noncyclic electron transport. PMID:262417

  2. Hyper- and Hypo- Induction of Cytochrome P450 activities with Aroclor 1254 and 3-Methylcholanthrene in Cyp1a2(−/−) mice

    PubMed Central

    Barker, Melissa L.; Hathaway, Laura B.; Arch, Dorinda D.; Westbroek, Mark L.; Kushner, James P.; Phillips, John D.; Franklin, Michael R.

    2009-01-01

    The response of hepatic mono-oxygenase activities to Aroclor 1254 or 3-methylcholanthrene was investigated in wild-type and Cyp1a2(−/−) mice. Cytochrome P450 concentrations were similar in naïve Cyp1a2(−/−) and wild-type mice. There was no difference between naïve wild-type and Cyp1a2(−/−) animals in 7-ethoxyresorufin and 7-ethoxy-4-trifluoromethylcoumarin dealkylase activities, nor was the induction response after 3-methylcholanthrene any different between the two genotypes. However, both activities were induced to a higher extent in Cyp1a2(−/−) mice after Aroclor 1254. In contrast, 7-pentoxyresorufin dealkylation activity was lower in Cyp1a2(−/−) mice and this differential was maintained during induction by both agents. 7-Methoxy- and 7-benzoxyresorufin dealkylation activities were also lower than wild-type in naïve Cyp1a2(−/−) animals and during 3-methylcholanthrene induction, but showed accelerated induction in Cyp1a2(−/−) mice with Aroclor 1254. Bufuralol 1′- and testosterone 6β-hydroxylation activities, and P450 characteristics were evaluated 48 hours after inducer administration. Bufuralol 1′-hydroxylation, a sexual dimorphic activity (female > male) showed no genotype differences in naïve animals. Activity changes varied across gender and genotype, with 3-methylcholanthrene and Aroclor 1254 inducing in male Cyp1a2(−/−), and Aroclor 1254 inducing in female wild-type. Testosterone 6β-hydroxylation activity was 16% higher in Cyp1a2(−/−) mice and neither 3-methylcholanthrene nor Aroclor 1254 elicited induction. After Aroclor 1254, a 24% increase in P450 concentration with a hypsochromic shift in the ferrous-CO maximum characteristic of CYP1A enzymes occurred in wild-type, compared to no change in either parameter in Cyp1a2(−/−) mice. Induction changes with 3-methylcholanthrene were greater in wild-type mice, a 60% increase in concentration and ~2 nm hypsochromic shift versus a 10% increase and ~1 nm hypsochromic

  3. E2 potentializes benzo(a)pyrene-induced hepatic cytochrome P450 enzyme activities in Nile tilapia at high concentrations.

    PubMed

    Rodrigues, Aline Cristina Ferreira; Moneró, Tatiana de Oliveira; Frighetto, Rosa Toyoko Shiraishi; de Almeida, Eduardo Alves

    2015-11-01

    In the aquatic environment, biotransformation enzymes are established biomarkers for assessing PAH exposure in fish, but little is known about the effect of 17β-estradiol (E2) on these enzymes during exposure to benzo(a)pyrene (BaP). In this study, Nile tilapia (Oreochromis niloticus) were exposed for 3, 5, and 10 days to BaP (300 μg L(-1)) and E2 (5 μg L(-1)). These substances were applied isolated or mixed. In the mixture experiment, fish were analyzed pre- and postexposure in order to better understand whether preexposure to the hormone masks the responses activated by PAH or vice versa. Phase I enzymes ethoxyresorufin-O-deethylase (EROD), pentoxyresorufin-O-depenthylase (PROD), and benzyloxyresorufin-O-debenzylase (BROD) activities as well as the phase II enzyme glutathione S-transferase (GST) were analyzed. Isolated E2 treatment decreased EROD activity after 3 days, but this enzyme activity returned to control values after 5 and 10 days of exposure. Isolated BaP treatment significantly induced EROD activity after 3 and 5 days, and the activity returned to control levels after ten exposure days. Combined treatment (E2 + Bap) significantly increased EROD activity, both in the pre- and postexposure. This increase was even higher than in the isolated BaP treatment, suggesting a synergism between these two compounds. When E2 and BaP were used singly, they did not change BROD and PROD activities. However, combined treatment (E2 + Bap) significantly increased PROD activity. Isolated BaP treatment increased GST activity after 10 days. However, this response was not observed in the mixture treatment, suggesting that E2 suppressed the GST induction modulated by BaP. The results put together indicated that E2 altered the biotransformation pathway regarding enzymes activated by BaP in Nile tilapia. PMID:25280508

  4. Ophiopogon japonicus strains from different cultivation regions exhibit markedly different properties on cytotoxicity, pregnane X receptor activation and cytochrome P450 3A4 induction

    PubMed Central

    GE, LE-LE; KAN, LIAN-DI; ZHUGE, ZHENG-BING; MA, KE; CHEN, SHU-QING

    2015-01-01

    Maidong, known as Ophiopogon japonicus, is one of the two basic ingredients of Shenmai injection, which is a widely used herbal preparation in traditional Chinese medicine (TCM) for the treatment of atherosclerotic coronary heart disease and viral myocarditis. Previously, the ethanol extract of Maidong activated the pregnane X receptor (PXR) signaling pathway and induced the cytochrome P450 3A4 (CYP3A4) reporter gene and raised the concern of herb-drug interactions (HDIs) when Maidong was used in combination with prescribed drugs metabolized by CYP3A4. Therefore, the present study further investigated and compared the differences of the ethanol and aqueous extracts (ee- and ae-, respectively) of two Maidong strains, known as Zhe Maidong (ZM) and Chuan Maidong (CM). Cytotoxicity, PXR activation and CYP3A4 induction by the 3-(4,5)-dimethylthiahiazo-(-z-y1)-3,5-diphenytetrazoliumromide assay, reporter gene assay and reverse transcription-quantitative polymerase chain reaction analysis were examined. The observations showed that ee-ZM demonstrated a significantly higher cytotoxicity, a relatively weaker PXR activation capability and a markedly stronger CYP3A4-inducing capacity than ee-CM. Compared to ae-CM, ae-ZM exhibited only a slight or no difference on cytotoxicity and CYP3A4 induction, while a significant lower level of PXR activation was apparent. Collectively, Maidong from different producing areas possess different properties upon cytotoxicity and the drug-metabolizing enzyme inducing effect, and attention should be paid to the selection of Maidong strains from different planting regions into TCM preparations for reducing potential adverse reactions and HDIs. PMID:26137250

  5. Active site substitution A82W improves the regioselectivity of steroid hydroxylation by cytochrome P450 BM3 mutants as rationalized by spin relaxation nuclear magnetic resonance studies.

    PubMed

    Rea, V; Kolkman, A J; Vottero, E; Stronks, E J; Ampt, K A M; Honing, M; Vermeulen, N P E; Wijmenga, S S; Commandeur, J N M

    2012-01-24

    Cytochrome P450 BM3 from Bacillus megaterium is a monooxygenase with great potential for biotechnological applications. In this paper, we present engineered drug-metabolizing P450 BM3 mutants as a novel tool for regioselective hydroxylation of steroids at position 16β. In particular, we show that by replacing alanine at position 82 with a tryptophan in P450 BM3 mutants M01 and M11, the selectivity toward 16β-hydroxylation for both testosterone and norethisterone was strongly increased. The A82W mutation led to a ≤42-fold increase in V(max) for 16β-hydroxylation of these steroids. Moreover, this mutation improves the coupling efficiency of the enzyme, which might be explained by a more efficient exclusion of water from the active site. The substrate affinity for testosterone increased at least 9-fold in M11 with tryptophan at position 82. A change in the orientation of testosterone in the M11 A82W mutant as compared to the orientation in M11 was observed by T(1) paramagnetic relaxation nuclear magnetic resonance. Testosterone is oriented in M11 with both the A- and D-ring protons closest to the heme iron. Substituting alanine at position 82 with tryptophan results in increased A-ring proton-iron distances, consistent with the relative decrease in the level of A-ring hydroxylation at position 2β. PMID:22208729

  6. Cytochrome P450 1D1: A novel CYP1A-related gene that is not transcriptionally activated by PCB126 or TCDD

    PubMed Central

    Goldstone, J. V.; Jönsson, M. E.; Behrendt, L.; Woodin, B. R.; Jenny, M. J.; Nelson, D. R.; Stegeman, J. J.

    2009-01-01

    Enzymes in the cytochrome P450 1 family oxidize many common environmental toxicants. We identified a new CYP1, termed CYP1D1, in zebrafish. Phylogenetically, CYP1D1 is paralogous to CYP1A and the two share 45% amino acid identity and similar gene structure. In adult zebrafish, CYP1D1 is most highly expressed in liver and is relatively highly expressed in brain. CYP1D1 transcript levels were higher at 9 hours post-fertilization than at later developmental times. Treatment of zebrafish with potent aryl hydrocarbon receptor (AHR) agonists (3,3′,4,4′,5-pentachlorobiphenyl or 2,3,7,8-tetrachlorodibenzo-p-dioxin) did not induce CYP1D1 transcript expression. Morpholino oligonucleotide knockdown of AHR2, which mediates induction of other CYP1s, did not affect CYP1D1 expression. Zebrafish CYP1D1 heterologously expressed in yeast exhibited ethoxyresorufin- and methoxyresorufin-O-dealkylase activities. Antibodies against a CYP1D1 peptide specifically detected a single electrophoretically-resolved protein band in zebrafish liver microsomes, distinct from CYP1A. CYP1D1 in zebrafish is a CYP1A-like gene that could have metabolic functions targeting endogenous compounds. PMID:19103147

  7. Mechanism-based inactivation of cytochrome P-450 dependent benzo(a)pyrene hydroxylase activity by acetylenic and olefinic polycyclic arylhydrocarbons

    SciTech Connect

    Gan, L.S.

    1986-01-01

    A series of aryl acetylenes and aryl olefins have been examined as substrates and inhibitors of cytochrome P-450 dependent monooxygenases in liver microsomes from 5,6-benzoflavone or phenobarbital pretreated rats. 1-Ethynylpyrene (EP), 3-ethynylperylene (EPL), cis- and trans-1-(2-bromo-vinyl)pyrene (c-BVP and t-BVP), and 1-allylpyrene (AP) serve as mechanism-based irreversible inactivators (suicide inhibitors) of benzo(a)pyrene (BP) hydroxylase, while 1-vinyl-pyrene (VP) and phenyl 1-pyrenyl acetylene (PPA) do not cause a detectable suicide inhibition of the BP hydroxylase. The mechanism-based loss of BP hydroxylase activity caused by the aryl acetylenes is not accompanied by a corresponding loss of the P-450 content of the microsomes. In the presence of NADPH, /sup 3/H-labeled EP covalently attached to P-450 isozymes with a measured stoichiometry of one mole of EP per mole of the P-450 heme. The results of the effects of these aryl derivatives in the mammalian cell-mediated mutagenesis assay and toxicity assay show that none of the compounds examined nor any of the their metabolites produced in the incubation system are cytotoxic to V79 cells.

  8. Influence of Panax ginseng on cytochrome P450 (CYP)3A and P-glycoprotein (P-gp) activity in healthy participants.

    PubMed

    Malati, Christine Y; Robertson, Sarah M; Hunt, Jennifer D; Chairez, Cheryl; Alfaro, Raul M; Kovacs, Joseph A; Penzak, Scott R

    2012-06-01

    A number of herbal preparations have been shown to interact with prescription medications secondary to modulation of cytochrome P450 (CYP) and/or P-glycoprotein (P-gp). The purpose of this study was to determine the influence of Panax ginseng on CYP3A and P-gp function using the probe substrates midazolam and fexofenadine, respectively. Twelve healthy participants (8 men) completed this open-label, single-sequence pharmacokinetic study. Healthy volunteers received single oral doses of midazolam 8 mg and fexofenadine 120 mg, before and after 28 days of P ginseng 500 mg twice daily. Midazolam and fexofenadine pharmacokinetic parameter values were calculated and compared before and after P ginseng administration. Geometric mean ratios (postginseng/preginseng) for midazolam area under the concentration-time curve from zero to infinity (AUC(0-∞)), half-life (t(1/2)), and maximum concentration (C(max)) were significantly reduced at 0.66 (0.55-0.78), 0.71 (0.53-0.90), and 0.74 (0.56-0.93), respectively. Conversely, fexofenadine pharmacokinetics were unaltered by P ginseng administration. Based on these results, P ginseng appeared to induce CYP3A activity in the liver and possibly the gastrointestinal tract. Patients taking P ginseng in combination with CYP3A substrates with narrow therapeutic ranges should be monitored closely for adequate therapeutic response to the substrate medication. PMID:21646440

  9. How PBDEs Are Transformed into Dihydroxylated and Dioxin Metabolites Catalyzed by the Active Center of Cytochrome P450s: A DFT Study.

    PubMed

    Fu, Zhiqiang; Wang, Yong; Chen, Jingwen; Wang, Zhongyu; Wang, Xingbao

    2016-08-01

    Predicting metabolism of chemicals and potential toxicities of relevant metabolites remains a vital and difficult task in risk assessment. Recent findings suggested that polybrominated diphenyl ethers (PBDEs) can be transformed into dihydroxylated and dioxin metabolites catalyzed by cytochrome P450 enzymes (CYPs), whereas the mechanisms pertinent to these transformations remain largely unknown. Here, by means of density functional theory (DFT) calculations, we probed the metabolic pathways of 2,2',4,4'-tetraBDE (BDE-47) using the active center model of CYPs (Compound I). Results show that BDE-47 is first oxidized to monohydroxylated products (HO-BDEs), wherein a keto-enol tautomerism is identified for rearrangement of the cyclohexenone intermediate. Dihydroxylation with HO-BDEs as precursors, has a unique phenolic H-abstraction and hydroxyl rebound pathway that is distinct from that for monohydroxylation, which accounts for the absence of epoxides in in vitro studies. Furthermore, we found only dihydroxylated PBDEs with heterophenyl -OH substituents ortho- and meta- to the ether bond serve as precursors for dioxins, which are evolved from aryl biradical coupling of diketone intermediates that are produced from dehydrogenation of the dihydroxylated PBDEs by Compound I. This study may enlighten the development of computational models that afford mechanism-based prediction of the xenobiotic biotransformation catalyzed by CYPs. PMID:27363260

  10. Expression and membrane-targeting of an active plant cytochrome P450 in the chloroplast of the green alga Chlamydomonas reinhardtii.

    PubMed

    Gangl, Doris; Zedler, Julie A Z; Włodarczyk, Artur; Jensen, Poul Erik; Purton, Saul; Robinson, Colin

    2015-02-01

    The unicellular green alga Chlamydomonas reinhardtii has potential as a cell factory for the production of recombinant proteins and other compounds, but mainstream adoption has been hindered by a scarcity of genetic tools and a need to identify products that can be generated in a cost-effective manner. A promising strategy is to use algal chloroplasts as a site for synthesis of high value bioactive compounds such as diterpenoids since these are derived from metabolic building blocks that occur naturally within the organelle. However, synthesis of these complex plant metabolites requires the introduction of membrane-associated enzymes including cytochrome P450 enzymes (P450s). Here, we show that a gene (CYP79A1) encoding a model P450 can be introduced into the C. reinhardtii chloroplast genome using a simple transformation system. The gene is stably expressed and the P450 is efficiently targeted into chloroplast membranes by means of its endogenous N-terminal anchor domain, where it is active and accounts for 0.4% of total cell protein. These results provide proof of concept for the introduction of diterpenoid synthesis pathways into the chloroplast of C. reinhardtii. PMID:25556316

  11. Constituents of Indonesian medicinal plant Averrhoa bilimbi and their cytochrome P450 3A4 and 2D6 inhibitory activities.

    PubMed

    Auw, Lidyawati; Subehan; Sukrasno; Kadota, Shigetoshi; Tezuka, Yasuhiro

    2015-01-01

    As constituents of Averrhoa bilimbi leaves we identified three new compounds (1-3) together with 12 known ones (4-15); their inhibitory activities on cytochrome P450 3A4 (CYP3A4) and 2D6 (CYP2D6) were examined. Among the isolated compounds, the mixture of 1 and 2, and compounds 4 and 9 showed strong inhibition on CYP3A4, but mild or no inhibition on CYP2D6. These compounds revealed the characteristics of 1) time- and concentration-dependent inhibition, 2) requirement of NADPH for the inhibition, 3) no protection by nucleophiles, and 4) suppression of the inhibition by competitive inhibitor. Thus, they are suggested to be mechanism-based inactivators of CYP3A4 and CYP2D6. The kinetic parameters for the inactivation (k(inact) and K(I)) were 0.19 min(-1) and 36.7 μM for the mixture of 1 and 2, 0.126 min(-1) and 10.5 μM for 4, and 0.29 min(-1) and 23.4 μM for 9. PMID:25920220

  12. The cytochrome bd respiratory oxygen reductases

    PubMed Central

    Borisov, Vitaliy B.; Gennis, Robert B.; Hemp, James; Verkhovsky, Michael I.

    2011-01-01

    Summary Cytochrome bd is a respiratory quinol:O2 oxidoreductase found in many prokaryotes, including a number of pathogens. The main bioenergetic function of the enzyme is the production of a proton motive force by the vectorial charge transfer of protons. The sequences of cytochromes bd are not homologous to those of the other respiratory oxygen reductases, i.e., the heme-copper oxygen reductases or alternative oxidases (AOX). Generally, cytochromes bd are noteworthy for their high affinity for O2 and resistance to inhibition by cyanide. In E. coli, for example, cytochrome bd (specifically, cytochrome bd-I) is expressed under O2-limited conditions. Among the members of the bd-family are the so-called cyanide-insensitive quinol oxidases (CIO) which often have a low content of the eponymous heme d but, instead, have heme b in place of heme d in at least a majority of the enzyme population. However, at this point, no sequence motif has been identified to distinguish cytochrome bd (with a stoichiometric complement of heme d) from an enzyme designated as CIO. Members of the bd-family can be subdivided into those which contain either a long or a short hydrophilic connection between transmembrane helices 6 and 7 in subunit I, designated as the Q-loop. However, it is not clear whether there is a functional consequence of this difference. This review summarizes current knowledge on the physiological functions, genetics, structural and catalytic properties of cytochromes bd. Included in this review are descriptions of the intermediates of the catalytic cycle, the proposed site for the reduction of O2, evidence for a proton channel connecting this active site to the bacterial cytoplasm, and the molecular mechanism by which a membrane potential is generated. PMID:21756872

  13. In Vitro Gender-Dependent Inhibition of Porcine Cytochrome P450 Activity by Selected Flavonoids and Phenolic Acids

    PubMed Central

    Ekstrand, Bo; Rasmussen, Martin Krøyer; Woll, Felicia; Zlabek, Vladimir; Zamaratskaia, Galia

    2015-01-01

    We investigated gender-related differences in the ability of selected flavonoids and phenolic compounds to modify porcine hepatic CYP450-dependent activity. Using pools of microsomes from male and female pigs, the inhibition of the CYP families 1A, 2A, 2E1, and 3A was determined. The specific CYP activities were measured in the presence of the following selected compounds: rutin, myricetin, quercetin, isorhamnetin, p-coumaric acid, gallic acid, and caffeic acid. We determined that myricetin and isorhamnetin competitively inhibited porcine CYP1A activity in the microsomes from both male and female pigs but did not affect the CYP2A and CYP2E1. Additionally, isorhamnetin competitively inhibited CYP3A in both genders. Noncompetitive inhibition of CYP3A activity by myricetin was observed only in the microsomes from male pigs, whereas CYP3A in female pigs was not affected. Quercetin competitively inhibited CYP2E1 and CYP1A activity in the microsomes from male pigs and irreversibly CY3A in female pigs. No effect of quercetin on CYP2E1 was observed in the microsomes from female pigs. Neither phenolic acids nor rutin affected CYP450 activities. Taken together, our results suggest that the flavonoids myricetin, isorhamnetin, and quercetin may affect the activities of porcine CYP1A, CYP3A, and CYP2E1 in a gender-dependent manner. PMID:25685784

  14. Reduction of uranium by cytochrome c3 of Desulfovibrio vulgaris

    USGS Publications Warehouse

    Lovley, D.R.; Widman, P.K.; Woodward, J.C.; Phillips, E.J.P.

    1993-01-01

    The mechanism for U(VI) reduction by Desulfovibrio vulgaris (Hildenborough) was investigated. The H2-dependent U(VI) reductase activity in the soluble fraction of the cells was lost when the soluble fraction was passed over a cationic exchange column which extracted cytochrome c3. Addition of cytochrome c3 back to the soluble fraction that had been passed over the cationic exchange column restored the U(VI)-reducing capacity. Reduced cytochrome c3 was oxidized by U(VI), as was a c-type cytochrome(s) in whole-cell suspensions. When cytochrome c3 was combined with hydrogenase, its physiological electron donor, U(VI) was reduced in the presence of H2. Hydrogenase alone could not reduce U(VI). Rapid U(VI) reduction was followed by a subsequent slow precipitation of the U(IV) mineral uraninite. Cytochrome c3 reduced U(VI) in a uranium-contaminated surface water and groundwater. Cytochrome c3 provides the first enzyme model for the reduction and biomineralization of uranium in sedimentary environments. Furthermore, the finding that cytochrome c3 can catalyze the reductive precipitation of uranium may aid in the development of fixed-enzyme reactors and/or organisms with enhanced U(VI)-reducing capacity for the bioremediation of uranium- contaminated waters and waste streams.

  15. Evaluation of Tetrahydropalmatine Enantiomers on the Activity of Five Cytochrome P450 Isozymes in Rats Using a Liquid Chromatography / Mass Spectrometric Method and a Cocktail Approach.

    PubMed

    Li, Wuhong; Zhao, Liang; Le, Jian; Zhang, Yinying; Liu, Yinli; Zhang, Guoqing; Chai, Yifeng; Hong, Zhanying

    2015-08-01

    The aim was to evaluate the effects of tetrahydropalmatine (THP) enantiomers on the activity of five cytochrome P450 (CYP450) isozymes in vivo. A liquid chromatography / mass spectrometric (LC-MS) method was developed for simultaneous determination of five specific probe substrates including metoprolol (2D6), caffeine (1A2), dapsone (3A4), chlorzoxazone (2E1), and tolbutamide (2C9) in rat plasma. Analytes were separated with the mobile phase consisting of 0.1% acetic acid aqueous solution and acetonitrile in a gradient elution. The mass spectrometric detection via selected ion monitoring (SIM) was operated in both positive ion mode (for metoprolol m/z 268, caffeine m/z 195, and dapsone m/z 249) and negative ion mode (for chlorzoxazone m/z 168 and tolbutamide m/z 269) in the same run. Linear correlation was obtained (r(2)  > 0.99) over the concentration range of 0.050-25.0 µg/mL for caffeine and dapsone, 0.025-10.0 µg/mL for metoprolol, 0.050-50.0 µg/mL for chlorzoxazone, and 0.25-100.0 µg/mL for tolbutamide. Intra- and interday precision were less than 12.09%. The matrix effect ranged from 87.50% to 109.25% and the absolute recoveries were greater than 70%. The method was successfully applied to evaluate the effect of THP enantiomers on the activity of CYP450 isozymes by a cocktail approach. The pharmacokinetic results of five probe drugs indicated that there were stereoselective differences between the two THP enantiomers, i.e., d-THP had the potential to inhibit the activities of CYP2D6 and CYP1A2 isozymes, while l-THP inhibited CYP1A2 isozyme and induced CYP3A4 and CYP2C9 isozymes. PMID:26032585

  16. Substrate-specific modulation of CYP3A4 activity by genetic variants of cytochrome P450 oxidoreductase (POR)

    PubMed Central

    Agrawal, Vishal; Choi, Ji Ha; Giacomini, Kathleen M.; Miller, Walter L.

    2010-01-01

    Objectives CYP3A4 receives electrons from P450 oxidoreductase (POR) to metabolize about 50% of clinically used drugs. There is substantial inter-individual variation in CYP3A4 catalytic activity that is not explained by CYP3A4 genetic variants. CYP3A4 is flexible and distensible, permitting it to accommodate substrates varying in shape and size. To elucidate mechanisms of variability in CYP3A4 catalysis, we examined the effects of genetic variants of POR, and explored the possibility that substrate-induced conformational changes in CYP3A4 differentially affect the ability of POR variants to support catalysis. Methods We expressed human CYP3A4 and four POR variants (Q153R, A287P, R457H, A503V) in bacteria, reconstituted them in vitro and measured the Michaelis constant and maximum velocity with testosterone, midazolam, quinidine and erythromycin as substrates. Results POR A287P and R457H had low activity with all substrates; Q153R had 76–94% of wild type (WT) activity with midazolam and erythromycin, but 129–150% activity with testosterone and quinidine. The A503V polymorphism reduced CYP3A4 activity to 61–77% of wild type with testosterone and midazolam, but had nearly wild type activity with quinidine and erythromycin. Conclusion POR variants affect CYP3A4 activities. The impact of a POR variant on catalysis by CYP3A4 is substrate-specific, probably due to substrate-induced conformational changes in CYP3A4. PMID:20697309

  17. Structure-Function Analyses of Cytochrome P450revI Involved in Reveromycin A Biosynthesis and Evaluation of the Biological Activity of Its Substrate, Reveromycin T*

    PubMed Central

    Takahashi, Shunji; Nagano, Shingo; Nogawa, Toshihiko; Kanoh, Naoki; Uramoto, Masakazu; Kawatani, Makoto; Shimizu, Takeshi; Miyazawa, Takeshi; Shiro, Yoshitsugu; Osada, Hiroyuki

    2014-01-01

    Numerous cytochrome P450s are involved in secondary metabolite biosynthesis. The biosynthetic gene cluster for reveromycin A (RM-A), which is a promising lead compound with anti-osteoclastic activity, also includes a P450 gene, revI. To understand the roles of P450revI, we comprehensively characterized the enzyme by genetic, kinetic, and structural studies. The revI gene disruptants (ΔrevI) resulted in accumulation of reveromycin T (RM-T), and revI gene complementation restored RM-A production, indicating that the physiological substrate of P450revI is RM-T. Indeed, the purified P450revI catalyzed the C18-hydroxylation of RM-T more efficiently than the other RM derivatives tested. Moreover, the 1.4 Å resolution co-crystal structure of P450revI with RM-T revealed that the substrate binds the enzyme with a folded compact conformation for C18-hydroxylation. To address the structure-enzyme activity relationship, site-directed mutagenesis was performed in P450revI. R190A and R81A mutations, which abolished salt bridge formation with C1 and C24 carboxyl groups of RM-T, respectively, resulted in significant loss of enzyme activity. The interaction between Arg190 and the C1 carboxyl group of RM-T elucidated why P450revI was unable to catalyze both RM-T 1-methyl ester and RM-T 1-ethyl ester. Moreover, the accumulation of RM-T in ΔrevI mutants enabled us to characterize its biological activity. Our results show that RM-T had stronger anticancer activity and isoleucyl-tRNA synthetase inhibition than RM-A. However, RM-T showed much less anti-osteoclastic activity than RM-A, indicating that hemisuccinate moiety is important for the activity. Structure-based P450revI engineering for novel hydroxylation and subsequent hemisuccinylation will help facilitate the development of RM derivatives with anti-osteoclast activity. PMID:25258320

  18. Effect of zinc deficiency on NADPH and cytochrome P-450 dependent active oxygen generation in rat lung and liver

    SciTech Connect

    Hammermueller, J.D.; Bray, T.M.; Bettger, W.J.

    1986-03-05

    The cyt. P-450 system and cyt. P-450 reductase are involved in the generation of active oxygen species such as H/sub 2/O/sub 2/. The objective of this study was to investigate the effect of short term, severe, dietary zinc deficiency in rats on the formation of active oxygen in vitro. Weanling male Wistar rats were fed egg white-based diets containing less than 1 ppm Zn (ZnD). Controls were fed ad libitum (ZnAl) or pair-fed (ZnPF) a diet containing 100 ppm Zn. After 3 weeks lung and liver microsomes were assayed for H/sub 2/O/sub 2/ production (pmol H/sub 2/O/sub 2//mg protein/min) and cyt. P-450 reductase activity (nmol cyt. C reduced/mg protein/min). For the measurement of H/sub 2/O/sub 2/ production exogenous substrate (aminopyrine) and NADPH (cofactor) were provided to drive the cyt. P-450 system and NaN/sub 3/ was used to inhibit catalase. The results showed a significant effect of dietary Zn on NADPH and cyt. P-450 dependent active oxygen generation and support the hypothesis that Zn has a role in the function of biomembranes.

  19. The gap junction inhibitor 2-aminoethoxy-diphenyl-borate protects against acetaminophen hepatotoxicity by inhibiting cytochrome P450 enzymes and c-jun N-terminal kinase activation

    SciTech Connect

    Du, Kuo; Williams, C. David; McGill, Mitchell R.; Xie, Yuchao; Farhood, Anwar; Vinken, Mathieu; Jaeschke, Hartmut

    2013-12-15

    Acetaminophen (APAP) hepatotoxicity is the leading cause of acute liver failure in the US. Although many aspects of the mechanism are known, recent publications suggest that gap junctions composed of connexin32 function as critical intercellular communication channels which transfer cytotoxic mediators into neighboring hepatocytes and aggravate liver injury. However, these studies did not consider off-target effects of reagents used in these experiments, especially the gap junction inhibitor 2-aminoethoxy-diphenyl-borate (2-APB). In order to assess the mechanisms of protection of 2-APB in vivo, male C56Bl/6 mice were treated with 400 mg/kg APAP to cause extensive liver injury. This injury was prevented when animals were co-treated with 20 mg/kg 2-APB and was attenuated when 2-APB was administered 1.5 h after APAP. However, the protection was completely lost when 2-APB was given 4–6 h after APAP. Measurement of protein adducts and c-jun-N-terminal kinase (JNK) activation indicated that 2-APB reduced both protein binding and JNK activation, which correlated with hepatoprotection. Although some of the protection was due to the solvent dimethyl sulfoxide (DMSO), in vitro experiments clearly demonstrated that 2-APB directly inhibits cytochrome P450 activities. In addition, JNK activation induced by phorone and tert-butylhydroperoxide in vivo was inhibited by 2-APB. The effects against APAP toxicity in vivo were reproduced in primary cultured hepatocytes without use of DMSO and in the absence of functional gap junctions. We conclude that the protective effect of 2-APB was caused by inhibition of metabolic activation of APAP and inhibition of the JNK signaling pathway and not by blocking connexin32-based gap junctions. - Highlights: • 2-APB protected against APAP-induced liver injury in mice in vivo and in vitro • 2-APB protected by inhibiting APAP metabolic activation and JNK signaling pathway • DMSO inhibited APAP metabolic activation as the solvent of 2-APB

  20. Effect of the ethinylestradiol/levonorgestrel combined oral contraceptive on the activity of cytochrome P4503A in obese women

    PubMed Central

    Edelman, Alison; Munar, Myrna; Elman, Miriam R; Koop, Dennis; Cherala, Ganesh

    2012-01-01

    AIM(S) While it is known that CYP3A4/5 activity is decreased with combined oral contraceptive (COC) use and obesity suppresses CYP expression, the combined effects of obesity and COC use on CYP3A4/5 activity are unclear. Therefore, our aim was to examine the effect of COC usage on CYP3A4/5 activity in obese women. METHODS Thirty-four, obese (body mass index, BMI > 30 kg m−2) women of reproductive age (18–35 years old) were placed on a COC pill containing 20 µg ethinylestradiol/100 µg levonorgestrel for 21 days starting at the onset of menses. A midazolam pharmacokinetic study was conducted prior to initiation and after 21 days of COC treatment. Serial blood samples were collected and plasma concentrations of midazolam were measured using liquid chromatography tandem mass spectrometry. Pharmacokinetic parameters were estimated using a non-compartmental method. RESULTS Midazolam clearance, a surrogate measure of CYP3A4/5 activity, was significantly decreased upon COC use (63.3 l h−1vs. 53.9 l h−1, P < 0.05). A median decrease of 5.6 l h−1 (95% CI −4.1, 13.3 l h−1) was observed. However, the magnitude of change was similar to that reported in women with normal BMI. CONCLUSIONS Although we hypothesized that obesity might amplify the impact on CYP3A4/5 activity in COC users, we found that this was not the case. This finding is reassuring regarding potential additional drug−drug interactions in obese COC users as CYP3A4/5 is a major enzyme in the metabolism of many marketed drugs. PMID:22299599

  1. Up- and down-modulation of liver cytochrome P450 activities and associated events in two murine malaria models

    PubMed Central

    2010-01-01

    Background The mechanisms by which malaria up and down-regulates CYP activities are not understood yet. It is also unclear whether CYP activities are modulated during non-lethal malaria infections. This study was undertaken to evaluate the time course of CYP alterations in lethal (Plasmodium berghei ANKA) and non-lethal (Plasmodium chabaudi chabaudi) murine malaria. Additionally, hypotheses on the association of CYP depression with enhanced nitric oxide (NO) production, and of CYP2a5 induction with endoplasmic reticulum dysfunction, enhanced haem metabolism and oxidative stress were examined as well. Methods Female DBA-2 and C57BL/6 mice were infected with P.berghei ANKA or P. chabaudi and killed at different post-infection days. Infection was monitored by parasitaemia rates and clinical signs. NO levels were measured in the serum. Activities of CYP1a (ethoxyresorufin-O-deethylase), 2b (benzyloxyresorufin-O-debenzylase), 2a5 (coumarin-7-hydroxylase) and uridine-diphosphoglucuronyl-transferase (UGT) were determined in liver microsomes. Glutathione-S-transferase (GST) activity and concentrations of gluthatione (GSH) and thiobarbituric acid-reactive substances (TBARS) were determined in the liver. Levels of glucose-regulated protein 78 (GRP78) were evaluated by immunoblotting, while mRNAs of haemoxygenase-1 (HO-1) and inducible nitric oxide synthase (iNOS) were determined by quantitative RT-PCR. Results Plasmodium berghei depressed CYP1a and 2b and induced 2a5 in DBA-2 mice. In P.berghei-infected C57BL/6 mice CYP activities remained unaltered. In both strains, GST and UGT were not affected by P.berghei. Plasmodium c. chabaudi depressed CYP1a and 2b and induced 2a5 activities on the day of peak parasitaemia or near this day. CYP2a5 induction was associated with over-expression of HO-1 and enhanced oxidative stress, but it was not associated with GRP78 induction, a marker of endoplasmic reticulum stress. Plasmodium chabaudi increased serum NO on days near the

  2. Hepatic catecholestrogen synthases: differential effect of sex, inducers of cytochromes P-450 and of antibody to the glucocorticoid inducible cytochrome P-450 on NADPH-dependent estrogen-2-hydroxylase and on organic hydroperoxide-dependent estrogen-2/4-hydroxylase activity of rat hepatic microsomes.

    PubMed

    Bui, Q D; Weisz, J; Wrighton, S A

    1990-10-01

    Formation of catecholestrogens (CE) by rat hepatic microsomes was re-examined because as recently shown; (1) CE formation can be catalyzed by an NADPH-dependent estrogen-4-hydroxylase (E-4-H(NADPH)) and by a peroxidatic, organic hydroperoxide-dependent estrogen-2/4-hydroxylase (E-2/4-H(OHP)), in addition to the established NADPH-dependent estrogen 2-hydroxylase (E-2-H(NADPH)); and (2) the indirect radiometric and the COMT-coupled radioenzymatic assays, used in many previous studies, may fail to provide an accurate measure, in particular, of 4-OH-CE. Using a direct product isolation assay, hepatic microsomes of both male and female rats were shown to express E-2/4-H(OHP) activity with properties similar to those of peroxidatic activity in other tissues. The activities of E-2/4-H(OHP) and E-2-H(NADPH) were affected differently by 5 out of 7 inducers of cytochromes P-450 administered in vivo. Phenobarbital and dexamethasone caused a 4- and 2-3-fold increase in E-2-H(NADPH) activity, respectively, but only a 38 and 20% increase in E-2/4-H(OHP) activity. Ketoconazol and beta-naphtoflavone caused a modest increase in E-2-H(NADPH) activity but a decrease in OHP-dependent activity. Clofibrate decreased peroxidatic activity by 50% and NADPH-dependent activity by approximately 20%. Both activities were increased by ethanol but decreased by isoniazide, an agent which induces the same form of cytochromes P-450 as ethanol. Polyclonal antibody against P-450p, a form of P-450 induced by glucocorticoids, inhibited E-2-H(NADPH) but not E-2/4-H(OHP) activity of untreated and of dexamethasone- and phenobarbital-treated rats. This study establishes that CE formation may occur in liver via the peroxidatic pathway and indicates that this pathway depends on forms of P-450 different from those mediating E-2-H(NADPH) activity. It also confirms and extends previous observations of the involvement of multiple, constitutive and induced forms of cytochrome P-450 in NADPH-dependent 2

  3. The photoproduction of superoxide radicals and the superoxide dismutase activity of Photosystem II. The possible involvement of cytochrome b559.

    PubMed

    Ananyev, G; Renger, G; Wacker, U; Klimov, V

    1994-08-01

    In the present study the light induced formation of superoxide and intrinsic superoxide dismutase (SOD) activity in PS II membrane fragments and D1/D2/Cytb559-complexes from spinach have been analyzed by the use of ferricytochrome c (cyt c(III)) reduction and xanthine/xanthine oxidase as assay systems. The following results were obtained: 1.) Photoreduction of Cyt c (III) by PS II membrane fragments is induced by addition of sodium azide, tetracyane ethylene (TCNE) or carbonylcyanide-p-trifluoromethoxy-phenylhydrazone (FCCP) and after removal of the extrinsic polypeptides by a 1M CaCl2-treatment. This activity which is absent in control samples becomes completely inhibited by the addition of exogenous SOD. 2.) The TCNE induced cyt c(III) photoreduction by PS II membrane fragments was found to be characterized by a half maximal concentration of c1/2=10 μM TCNE. Simultaneously, TCNE inhibits the oxygen evolution rate of PS II membrane fragments with c1/2≈ 3 μM. 3.) The photoproduction of O2 (-) is coupled with H(+)-uptake. This effect is diminished by the addition of the O2 (-)-trap cyt c(III). 4.) D1/D2/Cytb559-complexes and PS II membrane fragments deprived of the extrinsic proteins and manganese exhibit no SOD-activity but are capable of producing O2 (-) in the light if a PS II electron donor is added.Based on these results the site(s) of light induced superoxide formation in PS II is (are) inferred to be located at the acceptor side. A part of the PS II donor side and Cyt b559 in its HP-form are proposed to provide an intrinsic superoxide dismutase (SOD) activity. PMID:24310115

  4. Lack of inhibitory effects of several fluoroquinolones on cytochrome P-450 3A activities at clinical dosage in dogs.

    PubMed

    Regmi, N L; Abd El-Aty, A M; Kubota, R; Shah, S S; Shimoda, M

    2007-02-01

    Inhibitory effects of several fluoroquinolones (FQs) on liver CYP3A activities were examined by in vitro and in vivo tests in dogs. Midazolam (MDZ) hydroxylation rate was used to determine the CYP3A activities in liver microsomes. Enrofloxacin (EFX), ofloxacin (OFX) orbifloxacin (OBFX) and ciprofloxacin (CFX) were tested. None of the FQs changed Vmax, Km or intrinsic clearance (Vmax/Km) of MDZ. For in vivo test, we examined the effects of oral administration of EFX and OFX on the pharmacokinetics of quinidine (QN), a CYP3A substrate. EFX or OFX (10 mg/kg) was administered once a day for 3 days. QN (2 mg/kg) was intravenously injected at 2 h after the final dose of FQs administration. The same dose of QN was intravenously injected 3 weeks before the start of FQs administration for control. Neither EFX nor OFX changed the pharmacokinetic parameters of QN. These in vitro and in vivo consisted results suggest that these FQs lack the inhibitory effects on CYP3A activities in dogs. Hence, given these results, the risk of drug-drug interaction is unlikely to occur between FQs and CYP3A substrates in clinical situation in dogs. PMID:17217399

  5. Crystal Structures of Substrate-Free and Nitrosyl Cytochrome P450cin: Implications for O2 Activation

    PubMed Central

    Madrona, Yarrow; Tripathi, Sarvind; Li, Huiying; Poulos, Thomas L.

    2013-01-01

    The crystal structure of the P450cin substrate-bound nitric oxide complex and the substrate-free form have been determined revealing a substrate-free structure that adopts an open conformation relative to the substrate-bound structure. The region of the I helix that forms part of the O2 binding pocket shifts from α helix in the substrate-free form to a π helix in the substrate-bound form. Unique to P450cin is an active site residue, Asn242, in the I helix that H-bonds with the substrate. In most other P450s this residue is a Thr and plays an important role in O2 activation by participating in an H-bonding network required for O2 activation. The π/α I helix transition results in the carbonyl O atom of Gly238 moving in to form an H-bond with the water/hydroxide ligand in the substrate-free form. The corresponding residue, Gly248, in the substrate-free P450cam structure experiences a similar motion. Most significantly, the oxy-P450cam complex Gly248 adopts a position midway between the substrate-free and -bound states. A comparison between these P450cam and the new P450cin structures provides insights into differences in how the two P450s activate O2. The structure of P450cin complexed with nitric oxide, a close mimic of the O2 complex, shows that Gly238 is likely to form tighter interactions with ligands than the corresponding Gly248 in P450cam. Having a close interaction between an H-bond acceptor, the Gly238 carbonyl O atom, and the distal oxygen atom of O2 will promote protonation and hence further reduction of the oxy-complex to the hydroperoxy intermediate resulting in heterolytic cleavage of the peroxide O-O bond and formation of the active ferryl intermediate required for substrate hydroxylation. PMID:22775403

  6. Production of 22-hydroxy metabolites of vitamin d3 by cytochrome p450scc (CYP11A1) and analysis of their biological activities on skin cells.

    PubMed

    Tuckey, Robert C; Li, Wei; Shehabi, Haleem Z; Janjetovic, Zorica; Nguyen, Minh N; Kim, Tae-Kang; Chen, Jianjun; Howell, Danielle E; Benson, Heather A E; Sweatman, Trevor; Baldisseri, Donna M; Slominski, Andrzej

    2011-09-01

    Cytochrome P450scc (CYP11A1) can hydroxylate vitamin D(3), producing 20S-hydroxyvitamin D(3) [20(OH)D(3)] and 20S,23-dihydroxyvitamin D(3) [20,23(OH)(2)D(3)] as the major metabolites. These are biologically active, acting as partial vitamin D receptor (VDR) agonists. Minor products include 17-hydroxyvitamin D(3), 17,20-dihydroxyvitamin D(3), and 17,20,23-trihydroxyvitamin D(3). In the current study, we have further analyzed the reaction products from cytochrome P450scc (P450scc) action on vitamin D(3) and have identified two 22-hydroxy derivatives as products, 22-hydroxyvitamin D(3) [22(OH)D(3)] and 20S,22-dihydroxyvitamin D(3) [20,22(OH)(2)D(3)]. The structures of both of these derivatives were determined by NMR. P450scc could convert purified 22(OH)D(3) to 20,22(OH)(2)D(3). The 20,22(OH)(2)D(3) could also be produced from 20(OH)D(3) and was metabolized to a trihydroxyvitamin D(3) product. We compared the biological activities of these new derivatives with those of 20(OH)D(3), 20,23(OH)(2)D(3), and 1α,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)]. 1,25(OH)(2)D(3), 20(OH)D(3), 22(OH)D(3), 20,23(OH)(2)D(3), and 20,22(OH)(2)D(3) significantly inhibited keratinocyte proliferation in a dose-dependent manner. The strongest inducers of involucrin expression (a marker of keratinocyte differentiation) were 20,23(OH)(2)D(3), 20,22(OH)(2)D(3), 20(OH)D(3), and 1,25(OH)(2)D(3), with 22(OH)D(3) having a heterogeneous effect. Little or no stimulation of CYP24 mRNA expression was observed for all the analogs tested except for 1,25(OH)(2)D(3). All the compounds stimulated VDR translocation from the cytoplasm to the nucleus with 22(OH)D(3) and 20,22(OH)(2)D(3) having less effect than 1,25(OH)(2)D(3) and 20(OH)D(3). Thus, we have identified 22(OH)D(3) and 20,22(OH)(2)D(3) as products of CYP11A1 action on vitamin D(3) and shown that, like 20(OH)D(3) and 20,23(OH)(2)D(3), they are active on keratinocytes via the VDR, however, showing a degree of phenotypic heterogeneity in comparison

  7. Multiple modes of inhibition of human cytochrome P450 2J2 by dronedarone, amiodarone and their active metabolites.

    PubMed

    Karkhanis, Aneesh; Lam, Hui Yuan; Venkatesan, Gopalakrishnan; Koh, Siew Kwan; Chai, Christina Li Lin; Zhou, Lei; Hong, Yanjun; Kojodjojo, Pipin; Chan, Eric Chun Yong

    2016-05-01

    Dronedarone, a multiple ion channel blocker is prescribed for the treatment of paroxysmal and persistent atrial fibrillation. While dronedarone does not precipitate toxicities like its predecessor amiodarone, its clinical use has been associated with idiosyncratic hepatic and cardiac adverse effects and drug-drug interactions (DDIs). As dronedarone is a potent mechanism-based inactivator of CYP3A4 and CYP3A5, a question arose if it exerts a similar inhibitory effect on CYP2J2, a prominent cardiac CYP450 enzyme. In this study, we demonstrated that CYP2J2 is reversibly inhibited by dronedarone (Ki=0.034μM), amiodarone (Ki=4.8μM) and their respective pharmacologically active metabolites namely N-desbutyldronedarone (NDBD) (Ki=0.55μM) and N-desethylamiodarone (NDEA) (Ki=7.4μM). Moreover, time-, concentration- and NADPH-dependent irreversible inactivation of CYP2J2 was investigated where inactivation kinetic parameters (KI, kinact) and partition ratio (r) of dronedarone (0.05μM, 0.034min(-1), 3.3), amiodarone (0.21μM, 0.015min(-1), 20.7) and NDBD (0.48μM, 0.024min(-1), 21.7) were observed except for NDEA. The absence of the characteristic Soret peak, lack of recovery of CYP2J2 activity upon dialysis, and biotransformation of dronedarone and NDBD to quinone-oxime reactive metabolites further confirmed the irreversible inactivation of CYP2J2 by dronedarone and NDBD is via the covalent adduction of CYP2J2. Our novel findings illuminate the possible mechanisms of DDIs and cardiac adverse effects due to both reversible inhibition and irreversible inactivation of CYP2J2 by dronedarone, amiodarone and their active metabolites. PMID:26972388

  8. Effects of Eleutheroside B and Eleutheroside E on activity of cytochrome P450 in rat liver microsomes

    PubMed Central

    2014-01-01

    Background Chemicals of herbal products may cause unexpected toxicity or adverse effect by the potential for alteration of the activity of CYP450 when co-administered with other drugs. Eleutherococcus senticosus (ES), has been widely used as a traditional herbal medicine and popular herbal dietary supplements, and often co-administered with many other drugs. The main bioactive constituents of ES were considered to be eleutherosides including eleutheroside B (EB) and eleutheroside E (EE). This study was to investigate the effects of EB and EE on CYP2C9, CYP2D6, CYP2E1 and CYP3A4 in rat liver microsomes in vitro. Method Probe drugs of tolbutamide (TB), dextromethorphan (DM), chlorzoxazone (CLZ) and testosterone (TS) as well as eleutherosides of different concentrations were added to incubation systems of rat liver microsomes in vitro. After incubation, validated HPLC methods were used to quantify relevant metabolites. Results The results suggested that EB and EE exhibited weak inhibition against the activity of CYP2C9 and CYP2E1, but no effects on CYP2D6 and CYP3A4 activity. The IC50 values for EB and EE were calculated to be 193.20 μM and 188.36 μM for CYP2E1, 595.66 μM and 261.82 μM for CYP2C9, respectively. Kinetic analysis showed that inhibitions of CYP2E1 by EB and EE were best fit to mixed-type with Ki value of 183.95 μM and 171.63 μM, respectively. Conclusions These results indicate that EB and EE may inhibit the metabolism of drugs metabolized via CYP2C9 and CYP2E1, and have the potential to increase the toxicity of the drugs. PMID:24383621

  9. Changes in Respiratory Mitochondrial Machinery and Cytochrome and Alternative Pathway Activities in Response to Energy Demand Underlie the Acclimation of Respiration to Elevated CO2 in the Invasive Opuntia ficus-indica1[OA

    PubMed Central

    Gomez-Casanovas, Nuria; Blanc-Betes, Elena; Gonzalez-Meler, Miquel A.; Azcon-Bieto, Joaquim

    2007-01-01

    Studies on long-term effects of plants grown at elevated CO2 are scarce and mechanisms of such responses are largely unknown. To gain mechanistic understanding on respiratory acclimation to elevated CO2, the Crassulacean acid metabolism Mediterranean invasive Opuntia ficus-indica Miller was grown at various CO2 concentrations. Respiration rates, maximum activity of cytochrome c oxidase, and active mitochondrial number consistently decreased in plants grown at elevated CO2 during the 9 months of the study when compared to ambient plants. Plant growth at elevated CO2 also reduced cytochrome pathway activity, but increased the activity of the alternative pathway. Despite all these effects seen in plants grown at high CO2, the specific oxygen uptake rate per unit of active mitochondria was the same for plants grown at ambient and elevated CO2. Although decreases in photorespiration activity have been pointed out as a factor contributing to the long-term acclimation of plant respiration to growth at elevated CO2, the homeostatic maintenance of specific respiratory rate per unit of mitochondria in response to high CO2 suggests that photorespiratory activity may play a small role on the long-term acclimation of respiration to elevated CO2. However, despite growth enhancement and as a result of the inhibition in cytochrome pathway activity by elevated CO2, total mitochondrial ATP production was decreased by plant growth at elevated CO2 when compared to ambient-grown plants. Because plant growth at elevated CO2 increased biomass but reduced respiratory machinery, activity, and ATP yields while maintaining O2 consumption rates per unit of mitochondria, we suggest that acclimation to elevated CO2 results from physiological adjustment of respiration to tissue ATP demand, which may not be entirely driven by nitrogen metabolism as previously suggested. PMID:17660349

  10. Brain cytochrome P450 aromatase activity in roach (Rutilus rutilus): seasonal variations and impact of environmental contaminants.

    PubMed

    Geraudie, Perrine; Hinfray, Nathalie; Gerbron, Marie; Porcher, Jean-Marc; Brion, François; Minier, Christophe

    2011-10-01

    P450 aromatase catalyses the conversion of C19 androgens to C18 estrogens which is thought to be essential for the regulation of the reproductive function. In this study, brain aromatase activity (AA) was measured monthly over a reproductive cycle in wild roach (Rutilus rutilus) sampled in a reference site in Normandy. AA peaked during the breeding season, reaching 35 fmol mg(-1)min(-1) in both male and female fish, and was low during the rest of the year except for a significant rise in October. AA was correlated with ovary maturation (measured either as gonado-somatic index or by histological analysis of the gonads) and plasma sex-steroid levels (11-ketotestosterone in males and 17-β-estradiol in females). Measurements of AA in polluted sites showed that activity was significantly upregulated in sites with fish showing high levels of plasma vitellogenin and large proportion of intersexuality (20-50%) thus suggesting the occurrence of estrogenic compounds and their involvement in AA modulation. PMID:21820384

  11. Genetic variation in aldo-keto reductase 1D1 (AKR1D1) affects the expression and activity of multiple cytochrome P450s.

    PubMed

    Chaudhry, Amarjit S; Thirumaran, Ranjit K; Yasuda, Kazuto; Yang, Xia; Fan, Yiping; Strom, Stephen C; Schuetz, Erin G

    2013-08-01

    Human liver gene regulatory (Bayesian) network analysis was previously used to identify a cytochrome P450 (P450) gene subnetwork with Aldo-keto reductase 1D1 (AKR1D1) as a key regulatory driver of this subnetwork. This study assessed the biologic importance of AKR1D1 [a key enzyme in the synthesis of bile acids, ligand activators of farnesoid X receptor (FXR), pregnane X receptor (PXR), and constitutive androstane receptor (CAR), known transcriptional regulators of P450s] to hepatic P450 expression. Overexpression of AKR1D1 in primary human hepatocytes led to increased expression of CYP3A4, CYP2C8, CYP2C9, CYP2C19, and CYP2B6. Conversely, AKR1D1 knockdown decreased expression of these P450s. We resequenced AKR1D1 from 98 donor livers and identified a 3'-untranslated region (UTR) (rs1872930) single nucleotide polymorphism (SNP) significantly associated with higher AKR1D1 mRNA expression. AKR1D1 3'-UTR-luciferase reporter studies showed that the variant allele resulted in higher luciferase activity, suggesting that the SNP increases AKR1D1 mRNA stability and/or translation efficiency. Consistent with AKR1D1's putative role as a driver of the P450 subnetwork, the AKR1D1 3'-UTR SNP was significantly associated with increased hepatic mRNA expression of multiple P450s (CYP3A4, CYP2C8, CYP2C9, CYP2C19, and CYP2B6) and CYP3A4, CYP2C8, CYP2C19, and CYP2B6 activities. After adjusting for multiple testing, the association remained significant for AKR1D1, CYP2C9, and CYP2C8 mRNA expression and CYP2C8 activity. These results provide new insights into the variation in expression and activity of P450s that can account for interindividual differences in drug metabolism/efficacy and adverse drug events. In conclusion, we provide the first experimental evidence supporting a role for AKR1D1 as a key genetic regulator of the P450 network. PMID:23704699

  12. Modulation of cytochrome P450 2A5 activity by lipopolysaccharide: low-dose effects and non-monotonic dose-response relationship.

    PubMed

    De-Oliveira, Ana C A X; Poça, Kátia S; Totino, Paulo R R; Paumgartten, Francisco J R

    2015-01-01

    Mouse cytochrome P450 (CYP) 2A5 is induced by inflammatory conditions and infectious diseases that down-regulate the expression and activity of most other CYP isoforms. Enhanced oxidative stress and nuclear factor (erythroid 2-related factor) 2 (Nrf2) transcription factor activation have been hypothesised to mediate up-regulation of CYP2A5 expression in the murine liver. The unique and complex regulation of CYP2A5, however, is far from being thoroughly elucidated. Sepsis and high doses of bacterial lipopolysaccharide (LPS) elicit oxidative stress in the liver, but depression, not induction, of CYP2A5 has been observed in studies of mice treated with LPS. The foregoing facts prompted us to evaluate the response of CYP2A5 liver activity in female DBA-2 mice over a broad range of LPS doses (0, 0.025, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, and 20 mg/kg). Cytokine levels (interleukin [IL]-2, IL-4, IL-6, IL-10, IL-17A, interferon gamma, tumour necrosis factor alpha) and nitric oxide (NO) were measured in the blood serum. Activities of CYP1A (EROD) and CYP2B (BROD) in the liver were also determined for comparative purposes. LPS depressed CYP2A5 at low doses (0.025-2.0 mg/kg) but not at doses (>2 mg/kg) that increased pro-inflammatory cytokines and NO serum levels, and depressed CYP1A and CYP2B activities. Blockade of pro-inflammatory cytokines and the overproduction of NO induced by co-treatment with pentoxifylline and LPS and iNOS inhibition with aminoguanidine both extended down-regulation of CYP2A5 to the high dose range while not affecting LPS-induced depression of CYP1A and CYP2B. Overall, the results suggested that NO plays a role in the reversal of the low-dose LPS-induced depression of CYP2A5 observed when mice were challenged with higher doses of LPS. PMID:25635819

  13. Variability of cytochrome P450 1A2 activity over time in young and elderly healthy volunteers

    PubMed Central

    Simon, T; Becquemont, L; Hamon, B; Nouyrigat, E; Chodjania, Y; Poirier, J M; Funck-Brentano, C; Jaillon, P

    2001-01-01

    Aims To assess the age-associated changes over time of plasma paraxanthine/caffeine (PAX/CAF) ratios used as a probe for CYP1A2 activity. Methods Intraindividual and interindividual variabilities in PAX/CAF ratio were compared by phenotyping with caffeine, 16 young and 16 elderly healthy subjects on five occasions. Results PAX/CAF ratio variability was comparable regardless of age (intraindividual CV: 17.6 ± 6% and 16.2 ± 5.9%, interindividual CV: 48.1 ± 2.9% and 42.7 ± 3.6% in young and elderly, respectively). The PAX/CAF ratio was lower in elderly than in young subjects (95% CI for the difference: 0.004, 0.32) but the difference was not significant in nonsmokers compared separately. Conclusions The variability over time of the PAX/CAF ratio is not influenced by age. PMID:11736870

  14. Real-time monitoring of superoxide accumulation and antioxidant activity in a brain slice model using an electrochemical cytochrome c biosensor

    PubMed Central

    Ganesana, Mallikarjunarao; Erlichman, Joseph S.; Andreescu, Silvana

    2012-01-01

    The overproduction of reactive oxygen species and resulting damage are central to the pathology of many diseases. The study of the temporal and spatial accumulation of reactive oxygen species has been limited due to the lack of specific probes and techniques capable of continuous measurement. We demonstrate the use of a miniaturized electrochemical cytochrome C (Cyt C) biosensor for real-time measurements and quantitative assessment of superoxide production and inactivation by natural and engineered antioxidants in acutely prepared brain slices from mice. During control conditions, superoxide radicals produced from the hippocampal region of the brain in 400 μm thick sections were well within the range of detection of the electrode. Exposure of the slices to ischemic conditions increased the superoxide production two fold and measurements from the slices were stable over a 3–4 hour period. The stilbene derivative and anion channel inhibitor, 4,4′-diisothiocyano-2,2′-disulfonic stilbene (DIDS), markedly reduced the extracellular superoxide signal under control conditions suggesting that a transmembrane flux of superoxide into the extracellular space may occur as part of normal redox signaling. The specificity of the electrode for superoxide released by cells in the hippocampus was verified by the exogenous addition of superoxide dismutase (SOD) which decreased the superoxide signal in a dose-dependent manner. Similar results were seen with the addition of the SOD-mimetic, cerium oxide nanoparticles (nanoceria) where the superoxide anion radical scavenging activity of nanoceria with an average diameter of 15 nm was equivalent to 527 U of SOD for each 1 μg/ml of nanoceria added. This study demonstrates the potential of electrochemical biosensors for studying real-time dynamics of reactive oxygen species in a biological model and the utility of these measurements in defining the relative contribution of superoxide to oxidative injury. PMID:23085519

  15. In vitro characterization of the cytochrome P450 isoforms involved in the metabolism of 6-methoxy-2-napthylacetic acid, an active metabolite of the prodrug nabumetone.

    PubMed

    Matsumoto, Kaori; Nemoto, Eiichi; Hasegawa, Tetsuya; Akimoto, Masayuki; Sugibayashi, Kenji

    2011-01-01

    The cytochrome P450 (CYP) isoforms that catalyze the oxidation metabolism of 6-methoxy-2-napthylacetic acid (6-MNA), an active metabolite of nabumetone, were studied in rats and humans. Using an extractive reversed-phase HPLC assay with fluorescence detection, monophasic Michaelis-Menten kinetics was obtained for the formation of 6-hydroxy-2-naphthylacetic acid (6-HNA) in liver microsomes of rats and humans, and kinetic analysis showed that the K(m) and V(max) values for the formation of 6-HNA in humans and rats were 640.0 ± 30.9 and 722.9 ± 111.7 µM, and 1167.5 ± 33.0 and 1312.7 ± 73.8 pmol min⁻¹ mg protein⁻¹, respectively. The CYPs responsible for metabolism of 6-MNA in liver microsomes of rats and humans were identified using correlation study, recombinant CYP supersomes, and specific CYP inhibitors and antibodies. Recombinant human CYP2C9 exhibited appreciable catalytic activity with respect to 6-HNA formation from 6-MNA. Among 14 recombinant rat CYPs examined, CYP2C6, CYP2C11 and CYP1A2 were involved in the metabolism of 6-MNA. Sulfaphenazole (a selective inhibitor of CYP2C9) inhibited the formation of 6-HNA in pooled human microsomes by 89%, but failed to inhibit this reaction in rat liver microsomes. The treatment of pooled human liver microsomes with an antibody against CYP2C9 inhibited the formation of 6-HNA by about 80%. The antibody against CYP2C11 suppressed the activity by 20 to 30% in rat microsomes, whereas that of CYP1A2 microsomes did not show drastic inhibition. These findings suggest that CYP2C9 has the highest catalytic activity of 6-MNA metabolism in humans. In contrast, metabolism of 6-MNA is suggested to be mediated mainly by CYP2C6 and CYP2C11 in rats. PMID:21532165

  16. Induction of apoptosis by Uncaria tomentosa through reactive oxygen species production, cytochrome c release, and caspases activation in human leukemia cells.

    PubMed

    Cheng, An-Chin; Jian, Cheng-Bang; Huang, Yu-Ting; Lai, Ching-Shu; Hsu, Ping-Chi; Pan, Min-Hsiung

    2007-11-01

    Uncaria tomentosa (Wild.) DC., found in the Amazon rain forest in South-America and known commonly as cat's claw, has been used in traditional medicine to prevent and treat inflammation and cancer. Recently, it has been found to possess potent anti-inflammation activities. In this study, we extracted cat's claw using four different solvents of different polarities and compared their relative influence on proliferation in human premyelocytic leukemia HL-60 cell lines. Cat's claw n-hexane extracts (CC-H), ethyl acetate extracts (CC-EA) and n-butanol extracts (CC-B) had a greater anti-cancer effect on HL-60 cells than those extracted with methanol (CC-M). Furthermore, CC-EA induced DNA fragmentation in HL-60 cells in a clearly more a concentration- and time-dependent manner than the other extracts. CC-EA-induced cell death was characterized by cell body shrinkage and chromatin condensation. Further investigating the molecular mechanism behind CC-EA-induced apoptosis, sells treated with CC-EA underwent a rapid loss of mitochondrial transmembrane (DeltaPsi(m)) potential, stimulation of phosphatidylserine flip-flop, release of mitochondrial cytochrome c into cytosol, induction of caspase-3 activity in a time-dependent manner, and induced the cleavage of DNA fragmentation factor (DFF-45) and PARP poly-(ADP-ribose) polymerase (PARP). CC-EA promoted the up-regulation of Fas before the processing and activation of procaspase-8 and cleavage of Bid. In addition, the apoptosis induced by CC-EA was accompanied by up-regulation of Bax, down-regulation of Bcl-X(L) and cleavage of Mcl-1, suggesting that CC-EA may have some compounds that have anti-cancer activities and that further studies using cat's claw extracts need to be pursued. Taken together, the results of our studies show clearly that CC-EA's induction of apoptosis in HL-60 cells may make it very important in the development of medicine that can trigger chemopreventive actions in the body. PMID:17619071

  17. Identification of camphor oxidation and reduction products in Pseudomonas putida: new activity of the cytochrome P450cam system.

    PubMed

    Prasad, Brinda; Rojubally, Adina; Plettner, Erika

    2011-06-01

    P450 enzymes are known for catalyzing hydroxylation reactions of non-activated C-H bonds. For example, P450(cam) from Pseudomonas putida oxidizes (1R)-(+)-camphor to 5-exo-hydroxy camphor and further to 5-ketocamphor. This hydroxylation reaction proceeds via a catalytic cycle in which the reduction of dioxygen (O(2)) is coupled to the oxidation of the substrate. We have observed that under conditions of low oxygen, P. putida and isolated P450(cam) reduce camphor to borneol. We characterized the formation of borneol under conditions of low oxygen or when the catalytic cycle is shunted by artificial oxidants like m-chloro perbenzoic acid, cumene hydroperoxide, etc. We also tested the toxicity of camphor and borneol with P. putida and Escherichia coli. We have found that in P. putida borneol is less toxic than camphor, whereas in E. coli borneol is more toxic than camphor. We discuss a potental ecological advantage of the camphor reduction reaction for P. putida. PMID:21562741

  18. Intronic polymorphisms of cytochromes P450

    PubMed Central

    2010-01-01

    The cytochrome P450 enzymes active in drug metabolism are highly polymorphic. Most allelic variants have been described for enzymes encoded by the cytochrome P450 family 2 (CYP2) gene family, which has 252 different alleles. The intronic polymorphisms in the cytochrome P450 genes account for only a small number of the important variant alleles; however, the most important ones are CYP2D6*4 and CYP2D6*41, which cause abolished and reduced CYP2D6 activity, respectively, and CYP3A5*3 and CYP3A5*5, common in Caucasian populations, which cause almost null activity. Their discoveries have been based on phenotypic alterations within individuals in a population, and their identification has, in several cases, been difficult and taken a long time. In light of the next-generation sequencing projects, it is anticipated that further alleles with intronic mutations will be identified that can explain the hitherto unidentified genetic basis of inter-individual differences in cytochrome P450-mediated drug and steroid metabolism. PMID:20846929

  19. Porcine Hypothalamic Aromatase Cytochrome P450: Isoform Characterization, Sex-Dependent Activity, Regional Expression, and Regulation by Enzyme Inhibition in Neonatal Boars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Domestic pigs have three CYP19 genes encoding functional paralogues of the enzyme aromatase cytochrome P450 (P450arom) that are expressed in the gonads, placenta and pre-implantation blastocyst. All catalyze estrogen synthesis, but the “gonadal” type enzyme is unique in also synthesizing a nonaromat...

  20. Effects of orally applied butyrate bolus on histone acetylation and cytochrome P450 enzyme activity in the liver of chicken – a randomized controlled trial

    PubMed Central

    2013-01-01

    Background Butyrate is known as histone deacetylase inhibitor, inducing histone hyperacetylation in vitro and playing a predominant role in the epigenetic regulation of gene expression and cell function. We hypothesized that butyrate, endogenously produced by intestinal microbial fermentation or applied as a nutritional supplement, might cause similar in vivo modifications in the chromatin structure of the hepatocytes, influencing the expression of certain genes and therefore modifying the activity of hepatic microsomal drug-metabolizing cytochrome P450 (CYP) enzymes. Methods An animal study was carried out in chicken as a model to investigate the molecular mechanisms of butyrate’s epigenetic actions in the liver. Broiler chicks in the early post-hatch period were treated once daily with orally administered bolus of butyrate following overnight starvation with two different doses (0.25 or 1.25 g/kg body weight per day) for five days. After slaughtering, cell nucleus and microsomal fractions were separated by differential centrifugation from the livers. Histones were isolated from cell nuclei and acetylation of hepatic core histones was screened by western blotting. The activity of CYP2H and CYP3A37, enzymes involved in biotransformation in chicken, was detected by aminopyrine N-demethylation and aniline-hydroxylation assays from the microsomal suspensions. Results Orally added butyrate, applied in bolus, had a remarkable impact on nucleosome structure of hepatocytes: independently of the dose, butyrate caused hyperacetylation of histone H2A, but no changes were monitored in the acetylation state of H2B. Intensive hyperacetylation of H3 was induced by the higher administered dose, while the lower dose tended to increase acetylation ratio of H4. In spite of the observed modification in histone acetylation, no significant changes were observed in the hepatic microsomal CYP2H and CYP3A37 activity. Conclusion Orally added butyrate in bolus could cause in vivo

  1. A microtiterplate-based screening assay to assess diverse effects on cytochrome P450 enzyme activities in primary rat hepatocytes by various compounds.

    PubMed

    Schaeffner, I; Petters, J; Aurich, H; Frohberg, P; Christ, B

    2005-02-01

    During the development of potential drugs it is useful to identify pharmacological and/or toxicological side effects of a compound as early as possible in order to exclude them from further development for reasons of time and cost. Activation or inactivation of members of the cytochrome P450-dependent monooxygenase system (CYP450) might indicate potential undesired effects of a given compound. However, results using CYP450 assay systems are often inconsistent because of different experimental settings. Therefore, it was the goal of the present study to optimize the CYP450 assay in primary rat hepatocytes with respect to the time point of addition of and duration of exposure to alpha-naphthoflavone (ANF) and beta-naphthoflavone (BNF) as well as trans-resveratrol (RES), which have well-described stimulatory and inhibitory effects on CYP450 enzymes of the 1A and 2B family, respectively. Hepatocytes were also treated with putative lipoxygenase (LOX)/cyclooxygenase (COX) inhibitors with unknown impact on CYP450 enzyme activity in order to detect potential side effects. Cells were cultured for up to 7 days on 96-well microtiter plates, and enzyme activity was determined by a conventional fluorescence spectroscopy assay. ANF and BNF, given to the cells after 4 days of culture, stimulated CYP1A and 2B activities significantly in a concentration-dependent fashion after long-term exposure for at least 1 day. However, during short-term exposure for 1-6 h, CYP1A activity was inhibited, while CYP2B was increased weakly by ANF but not BNF. RES inhibited CYP1A activity during short- and long-term exposure without affecting CYP2B activity. From the results it was concluded that primary rat hepatocytes should be cultured for at least 3-4 days but no longer prior to the assay. The assay should be performed at two different time points of exposure, i.e., 6 h for short-term and 24 h for long-term exposure. The compounds under investigation should be applied at two different

  2. Differential reduction in soluble and membrane-bound c-type cytochrome contents in a Paracoccus denitrificans mutant partially deficient in 5-aminolevulinate synthase activity.

    PubMed Central

    Page, M D; Ferguson, S J

    1994-01-01

    A mutant of Paracoccus denitrificans, DP104, unable to grow anaerobically with nitrate as the terminal electron acceptor or aerobically with methanol as the electron donor and staining negatively in the dimethylphenylene diamine oxidation (Nadi) test, was isolated by transposon Tn5::phoA mutagenesis. P. denitrificans DP104 grown aerobically with succinate or choline had very low levels (2 to 3% of the wild-type levels) of spectroscopically detectable soluble c-type cytochromes. In contrast, membrane cytochromes of the a, b, and c types were present at 50% of the levels found in the wild type. The apo form of cytochrome c550, at an approximately 1:1 molar ratio with the holo form, was found in the periplasm of DP104. The TnphoA element was shown to be inserted immediately upstream of the translational start of hemA, the gene coding for 5-aminolevulinate synthase, which was sequenced. Low-level expression of this gene, driven off an incidental promoter provided by TnphoA-cointegrated suicide vector DNA, is the basis of the phenotype which could be complemented by the addition of 5-aminolevulinate to growth media. Disruption of the hemA gene generated a P. denitrificans strain auxotrophic for 5-aminolevulinate, establishing that there is no hemA-independent pathway of heme synthesis in this organism. The differential deficiency in periplasmic c-type cytochromes relative to membrane cytochromes in DP104 is suggested to arise from unequal competition for the restricted supply of heme which results from the effects of the transposon insertion. Images PMID:7928952

  3. Role of zebrafish cytochrome P450 CYP1C genes in the reduced mesencephalic vein blood flow caused by activation of AHR2

    SciTech Connect

    Kubota, Akira; Stegeman, John J.; Woodin, Bruce R.; Iwanaga, Toshihiko; Harano, Ryo; Peterson, Richard E.; Hiraga, Takeo; Teraoka, Hiroki

    2011-06-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) causes various signs of toxicity in early life stages of vertebrates through activation of the aryl hydrocarbon receptor (AHR). We previously reported a sensitive and useful endpoint of TCDD developmental toxicity in zebrafish, namely a decrease in blood flow in the dorsal midbrain, but downstream genes involved in the effect are not known. The present study addressed the role of zebrafish cytochrome P450 1C (CYP1C) genes in association with a decrease in mesencephalic vein (MsV) blood flow. The CYP1C subfamily was recently discovered in fish and includes the paralogues CYP1C1 and CYP1C2, both of which are induced via AHR2 in zebrafish embryos. We used morpholino antisense oligonucleotides (MO or morpholino) to block initiation of translation of the target genes. TCDD-induced mRNA expression of CYP1Cs and a decrease in MsV blood flow were both blocked by gene knockdown of AHR2. Gene knockdown of CYP1C1 by two different morpholinos and CYP1C2 by two different morpholinos, but not by their 5 nucleotide-mismatch controls, was effective in blocking reduced MsV blood flow caused by TCDD. The same CYP1C-MOs prevented reduction of blood flow in the MsV caused by {beta}-naphthoflavone (BNF), representing another class of AHR agonists. Whole-mount in situ hybridization revealed that mRNA expression of CYP1C1 and CYP1C2 was induced by TCDD most strongly in branchiogenic primordia and pectoral fin buds. In situ hybridization using head transverse sections showed that TCDD increased the expression of both CYP1Cs in endothelial cells of blood vessels, including the MsV. These results indicate a potential role of CYP1C1 and CYP1C2 in the local circulation failure induced by AHR2 activation in the dorsal midbrain of the zebrafish embryo. - Research Highlights: > We examine the roles of zebrafish CYP1C1 and CYP1C2 in TCDD developmental toxicity. > TCDD induces mRNA expression of both CYP1Cs in the mesencephalic vein. > Knockdown of each

  4. Identification of the heme adduct and an active site peptide modified during mechanism-based inactivation of rat liver cytochrome P450 2B1 by secobarbital.

    PubMed

    He, K; Falick, A M; Chen, B; Nilsson, F; Correia, M A

    1996-01-01

    The olefinic barbiturate secobarbital (SB) is a sedative hypnotic known to be a relatively selective mechanism-based inactivator of rat liver cytochrome P450 2B1. Previous studies have demonstrated that such inactivation results in prosthetic heme destruction and irreversible drug-induced protein modification, events most likely triggered by P450 2B1-dependent oxidative activation of the olefinic pi-bond. However, the precise structure of the SB-modified heme and/or the protein site targeted for attack remained to be elucidated. We have now isolated the SB-heme adduct from P450 2B1 inactivated by [14C]SB in a functionally reconstituted system and structurally characterized it by electronic absorption spectroscopy and tandem collision-induced dissociation (CID), matrix-assisted laser desorption ionization on time of flight (MALDI-TOF), and liquid secondary ion mass spectrometry in the positive mode (+ LSIMS) as the N-(5-(2-hydroxypropyl)-5-(1-methylbutyl)barbituric acid)protoporphyrin IX adduct. The [14C]SB-modified 2B1 protein has also been isolated from similar inactivation systems and subjected to lysyl endopeptidase C (Lys-C) digestion and HPLC-peptide mapping. A [14C]SB-modified 2B1 peptide was thus isolated, purified, electrotransferred onto a poly-(vinylidene) membrane, and identified by micro Edman degradation of its first N-terminal 17 residues (S277NH(H)TEFH(H)ENLMISLL293) as the Lys-C peptide domain comprised of amino acids 277-323. This peptide thus includes the peptide domain corresponding to the distal helix I of P450 101, a region highly conserved through evolution, and which is known not only to flank the heme moiety but also to intimately contact the substrates. This finding thus suggests that SB-induced protein modification of P450 2B1 also occurs at the active site and, together with heme N-alkylation, contributes to the SB-induced mechanism-based inactivation of P450 2B1. PMID:8728507

  5. Genetics Home Reference: cytochrome P450 oxidoreductase deficiency

    MedlinePlus

    ... P450 oxidoreductase deficiency is a disorder of hormone production. This condition specifically affects steroid hormones, which are ... activity of cytochrome P450 oxidoreductase, which disrupts the production of steroid hormones. Changes in sex hormones such ...

  6. All the O2 Consumed by Thermus thermophilus Cytochrome ba3 Is Delivered to the Active Site through a Long, Open Hydrophobic Tunnel with Entrances within the Lipid Bilayer.

    PubMed

    Mahinthichaichan, Paween; Gennis, Robert B; Tajkhorshid, Emad

    2016-03-01

    Cytochrome ba3 is a proton-pumping heme-copper oxygen reductase from the extreme thermophile Thermus thermophilus. Despite the fact that the enzyme's active site is buried deep within the protein, the apparent second order rate constant for the initial binding of O2 to the active-site heme has been experimentally found to be 10(9) M(-1) s(-1) at 298 K, at or near the diffusion limit, and 2 orders of magnitude faster than for O2 binding to myoglobin. To provide quantitative and microscopic descriptions of the O2 delivery pathway and mechanism in cytochrome ba3, extensive molecular dynamics simulations of the enzyme in its membrane-embedded form have been performed, including different protocols of explicit ligand sampling (flooding) simulations with O2, implicit ligand sampling analysis, and in silico mutagenesis. The results show that O2 diffuses to the active site exclusively via a Y-shaped hydrophobic tunnel with two 25-Å long membrane-accessible branches that coincide with the pathway previously suggested by the crystallographically identified xenon binding sites. The two entrances of the bifurcated tunnel of cytochrome ba3 are located within the lipid bilayer, where O2 is preferentially partitioned from the aqueous phase. The largest barrier to O2 migration within the tunnel is estimated to be only 1.5 kcal/mol, allowing O2 to reach the enzyme active site virtually impeded by one-dimensional diffusion once it reaches a tunnel entrance at the protein surface. Unlike other O2-utilizing proteins, the tunnel is "open" with no transient barriers observed due to protein dynamics. This unique low-barrier passage through the protein ensures that O2 transit through the protein is never rate-limiting. PMID:26845082

  7. Size- and time-dependent alteration in metabolic activities of human hepatic cytochrome P450 isozymes by gold nanoparticles via microsomal coincubations

    NASA Astrophysics Data System (ADS)

    Ye, Meiling; Tang, Ling; Luo, Mengjun; Zhou, Jing; Guo, Bin; Liu, Yangyuan; Chen, Bo

    2014-11-01

    Nano-sized particles are known to interfere with drug-metabolizing cytochrome P450 (CYP) enzymes, which can be anticipated to be a potential source of unintended adverse reactions, but the mechanisms underlying the inhibition are still not well understood. Herein we report a systematic investigation of the impacts of gold nanoparticles (AuNPs) on five major CYP isozymes under in vitro incubations of human liver microsomes (HLMs) with tannic acid (TA)-stabilized AuNPs in the size range of 5 to 100 nm. It is found that smaller AuNPs show more pronounced inhibitory effects on CYP2C9, CYP2C19, CYP2D6, and CYP3A4 in a dose-dependent manner, while 1A2 is the least susceptible to the AuNP inhibition. The size- and dose-dependent CYP-specific inhibition and the nonspecific drug-nanogold binding in the coincubation media can be significantly reduced by increasing the concentration ratio of microsomal proteins to AuNPs, probably via a noncompetitive mode. Remarkably, AuNPs are also found to exhibit a slow time-dependent inactivation of 2D6 and 3A4 in a β-nicotinamide adenine dinucleotide 2'-phosphate reduced tetrasodium salt hydrate (NADPH)-independent manner. During microsomal incubations, UV-vis spectroscopy, dynamic light scattering, and zeta-potential measurements were used to monitor the changes in particle properties under the miscellaneous AuNP/HLM/CYP dispersion system. An improved stability of AuNPs by mixing HLM with the gold nanocolloid reveals that the stabilization via AuNP-HLM interactions may occur on a faster time scale than the salt-induced nanoaggregation by incubation in phosphate buffer. The results suggest that the AuNP induced CYP inhibition can be partially attributed to its adhesion onto the enzymes to alter their structural conformations or onto the HLM membrane therefore impairing the integral membrane proteins. Additionally, AuNPs likely block the substrate pocket on the CYP surface, depending on both the particle characteristics and the

  8. Size- and time-dependent alteration in metabolic activities of human hepatic cytochrome P450 isozymes by gold nanoparticles via microsomal coincubations

    PubMed Central

    2014-01-01

    Nano-sized particles are known to interfere with drug-metabolizing cytochrome P450 (CYP) enzymes, which can be anticipated to be a potential source of unintended adverse reactions, but the mechanisms underlying the inhibition are still not well understood. Herein we report a systematic investigation of the impacts of gold nanoparticles (AuNPs) on five major CYP isozymes under in vitro incubations of human liver microsomes (HLMs) with tannic acid (TA)-stabilized AuNPs in the size range of 5 to 100 nm. It is found that smaller AuNPs show more pronounced inhibitory effects on CYP2C9, CYP2C19, CYP2D6, and CYP3A4 in a dose-dependent manner, while 1A2 is the least susceptible to the AuNP inhibition. The size- and dose-dependent CYP-specific inhibition and the nonspecific drug-nanogold binding in the coincubation media can be significantly reduced by increasing the concentration ratio of microsomal proteins to AuNPs, probably via a noncompetitive mode. Remarkably, AuNPs are also found to exhibit a slow time-dependent inactivation of 2D6 and 3A4 in a β-nicotinamide adenine dinucleotide 2′-phosphate reduced tetrasodium salt hydrate (NADPH)-independent manner. During microsomal incubations, UV–vis spectroscopy, dynamic light scattering, and zeta-potential measurements were used to monitor the changes in particle properties under the miscellaneous AuNP/HLM/CYP dispersion system. An improved stability of AuNPs by mixing HLM with the gold nanocolloid reveals that the stabilization via AuNP-HLM interactions may occur on a faster time scale than the salt-induced nanoaggregation by incubation in phosphate buffer. The results suggest that the AuNP induced CYP inhibition can be partially attributed to its adhesion onto the enzymes to alter their structural conformations or onto the HLM membrane therefore impairing the integral membrane proteins. Additionally, AuNPs likely block the substrate pocket on the CYP surface, depending on both the particle characteristics and the

  9. The role of redox-active amino acids on compound I stability, substrate oxidation, and protein cross-linking in yeast cytochrome C peroxidase.

    PubMed

    Pfister, T D; Gengenbach, A J; Syn, S; Lu, Y

    2001-12-11

    The role of two tryptophans (Trp51 and Trp191) and six tyrosines (Tyr36, Tyr39, Tyr42, Tyr187, Tyr229, and Tyr236) in yeast cytochrome c peroxidase (CcP) has been probed by site-directed mutagenesis. A series of sequential mutations of these redox-active amino acid residues to the corresponding, less oxidizable residues in lignin peroxidase (LiP) resulted in an increasingly more stable compound I, with rate constants for compound I decay decreasing from 57 s(-1) for CcP(MI, W191F) to 7 s(-1) for CcP(MI, W191F,W51F,Y187F,Y229F,Y236F,Y36F,Y39E,Y42F). These results provide experimental support for the proposal that the stability of compound I depends on the number of endogenous oxidizable amino acids in proteins. The higher stability of compound I in the variant proteins also makes it possible to observe its visible absorption spectroscopic features more clearly. The effects of the mutations on oxidation of ferrocytochrome c and 2,6-dimethoxyphenol were also examined. Since the first mutation in the series involved the change of Trp191, a residue that plays a critical role in the electron transfer pathway between CcP and cyt c, the ability to oxidize cyt c was negligible for all mutant proteins. On the other hand, the W191F mutation had little effect on the proteins' ability to oxidize 2,6-dimethoxyphenol. Instead, the W51F mutation resulted in the largest increase in the k(cat)/K(M), from 2.1 x 10(2) to 5.0 x 10(3) M(-1) s(-1), yielding an efficiency that is comparable to that of manganese peroxidase (MnP). The effect in W51F mutation can be attributed to the residue's influence on the stability and thus reactivity of the ferryl oxygen of compound II, whose substrate oxidation is the rate-determining step in the reaction mechanism. Finally, out of all mutant proteins in this study, only the variant containing the Y36F, Y39E, and Y42F mutations was found to prevent covalent protein cross-links in the presence of excess hydrogen peroxide and in the absence of exogenous

  10. Expression and activity of cytochromes P450 2E1, 2A, and 2B in the mouse ovary: the effect of 4-vinylcyclohexene and its diepoxide metabolite.

    PubMed

    Cannady, Ellen A; Dyer, Cheryl A; Christian, Patricia J; Sipes, I Glenn; Hoyer, Patricia B

    2003-06-01

    4-Vinylcyclohexene (VCH), an occupational chemical, causes destruction of small preantral follicles (F1) in mice. Previous studies suggested that VCH is bioactivated via cytochromes P450 (CYP450) to the ovotoxic, diepoxide metabolite, VCD. Whereas hepatic CYP450 isoforms 2E1, 2A, and 2B can metabolize VCH, the role of ovarian metabolism is unknown. This study investigated expression of these isoforms in isolated ovarian fractions (F1, 25-100 microm; F2, 100-250 microm; F3, >250 microm; interstitial cells, Int) from B6C3F1 mice dosed daily (15 days; ip) with vehicle, VCH (7.4 mmol/kg/day) or VCD (0.57 mmol/kg/day). Ovaries were removed and either isolated into specific ovarian compartments for mRNA analysis, fixed for immunohistochemistry, or prepared for enzymatic assays. mRNA and protein for all isoforms were expressed/distributed in all ovarian fractions from vehicle-treated mice. In the targeted F1 follicles, VCH or VCD dosing increased (p < 0.05) mRNA encoding CYP2E1 (645 +/- 14% VCH; 582 +/- 16% VCD), CYP2A (689 +/- 8% VCH; 730 +/- 22% VCD), and CYP2B (246 +/- 7% VCH) above control. VCH dosing altered (p < 0.05) mRNA encoding CYP2E1 in nontargeted F3 follicles (168 +/- 7%) and CYP2A in Int (207 +/- 19%) above control. Immunohistochemical analysis revealed the greatest staining intensity for all CYP isoforms in the Int. VCH dosing altered (p < 0.05) staining intensity in Int for CYP2E1 (19 +/- 2.4% below control) and CYP2A (39 +/- 5% above control). Staining intensity for CYP2B was increased (p < 0.05) above control in granulosa cells of small preantral (187 +/- 42%) and antral (63 +/- 8%) follicles. Catalytic assays in ovarian homogenates revealed that CYP2E1 and CYP2B were functional. Only CYP2E1 activity was increased (149 +/- 12% above control; p < 0.05) by VCH dosing. The results demonstrate that mRNA and protein for CYP isoforms known to bioactivate VCH are expressed in the mouse ovary and are modulated by in vivo exposure to VCH and VCD. Interestingly

  11. Interactions of Avocado (Persea americana) Cytochrome P-450 with Monoterpenoids

    PubMed Central

    Hallahan, David L.; Nugent, Jonathan H. A.; Hallahan, Beverly J.; Dawson, Glenn W.; Smiley, Diane W.; West, Jevon M.; Wallsgrove, Roger M.

    1992-01-01

    The microsomal fraction of avocado (Persea americana) mesocarp is a rich source of cytochrome P-450 active in the demethylation of xenobiotics. Cytochrome P-450 from this tissue has been purified and well characterized at the molecular level (DP O'Keefe, KJ Leto [1989] Plant Physiol 89: 1141-1149; KR Bozak, H Yu, R Sirevag, RE Christoffersen [1990] Proc Natl Acad Sci USA 87: 3904-3908). Despite this extensive characterization, the role of the enzyme in vivo was not established. Optical and electron paramagnetic resonance binding studies described here suggest that the monoterpenoids, nerol and geraniol, are substrates of avocado cytochrome P-450 (spectral dissociation constant of 7.2 and 35 micromolar, respectively). Avocado microsomes have been shown to catalyze the hydroxylation of these monoterpenoids, and both nerol and geraniol have been shown to inhibit the activity of avocado cytochrome P-450 toward the artificial substrate 7-ethoxycoumarin, with nerol a competitive inhibitor of this activity. PMID:16668790

  12. Sphingosine induces apoptosis in hippocampal neurons and astrocytes by activating caspase-3/-9 via a mitochondrial pathway linked to SDK/14-3-3 protein/Bax/cytochrome c.

    PubMed

    Kanno, Takeshi; Nishizaki, Tomoyuki

    2011-09-01

    The present study examined sphingosine-induced apoptosis in cultured rat hippocampal neurons and astrocytes. Sphingosine induced apoptosis in a concentration (1-100 µM)-dependent manner, that is inhibited by the PKC-δ inhibitor rottlerin, and a similar effect was obtained with the sphingosine kinase inhibitors, to raise intracellular sphingosine concentrations. Sphingosine increased presence of sphingosine-dependent protein kinase (SDK), and the effect was suppressed by rottlerin. Sphingosine increased phosphorylated 14-3-3 protein, thereby transforming the protein from a dimeric structure into a monomeric structure. Sphingosine accumulated Bax in the mitochondria and stimulated cytochrome c release into the cytosol, and those effects were inhibited by rottlerin. Sphingosine disrupted mitochondrial membrane potentials, that was abolished by silencing the PKC-δ-targeted gene. Moreover, sphingosine activated caspase-9 and the effector caspase-3 in a PKC-δ-dependent manner. Taken together, the results of the present study indicate that sphingosine activates SDK, produced through proteolytic processing of an active form of PKC-δ, to phosphorylate 14-3-3 protein and transform into a monomeric structure, causing Bax dissociation from 14-3-3 protein and accumulation in the mitochondria, which perturbs mitochondrial membrane potentials allowing cytochrome c release into the cytosol, to activate caspase-9 and the effector caspase-3, responsible for apoptosis in hippocampal neurons and astrocytes. PMID:21660956

  13. Differential behavior of the sub-sites of cytochrome 450 active site in binding of substrates, and products (implications for coupling/uncoupling).

    PubMed

    Narasimhulu, Shakunthala

    2007-03-01

    The cytochrome P450 catalyzes hydroxylation of many substrates in the presence of O(2) and specific electron transport system. The ternary complex S-Fe(+)O(2) with substrate and O(2) bound to their respective sites on the reduced enzyme is an important intermediate in the formation of the hydroxylating species. Then the active site may be considered as having two sub-sites geared for entirely different types of functionally relevant interactions. The two sites are the substrate binding site, the specific protein residues (Site I), and the L(6) position of the iron (Site II) to which O(2) binds upon reduction. In the ferric enzyme, when substrate binds to Site I, the low spin six-coordinated P450 is converted to the readily reducible high spin five coordinated state. Certain amines and OH compounds, such as products of P450-catalyzed reactions, can bind to Site II resulting in six coordinated inhibited complexes. Then the substrate and product interactions with the two sub-sites can regulate the functional state of the enzyme during catalysis. Product interactions have received very little attention. CYP101 is the only P450 in which X-ray and spectroscopic data on all three structures, the substrate-free, camphor-bound and the 5-exo-OHcamphor-bound are available. The substrate-free CYP101 is low spin and six-coordinated with a water molecule ligated at the L(6) position of the iron. The substrate camphor binds to Site I, and releases the L(6) water despite its inability to bind to this site, indicating that Site I binding can inhibit Site II ligation. The product 5-exo-OHcamphor in addition to binding to Site I, binds to Site II through its -OH group forming Fe-O bond, resulting in the low spin six-coordinated complex. New temperature-jump relaxation kinetic data indicating that Site II ligation inhibits Site I binding are presented. It appears that the Site I and Site II function as interacting sub-sites. The inhibitory allosteric interactions between the two sub

  14. Molecular Biomarkers: their significance and application in marine pollution monitoring.

    PubMed

    Sarkar, A; Ray, D; Shrivastava, Amulya N; Sarker, Subhodeep

    2006-05-01

    This paper presents an overview of the significance of the use of molecular biomarkers as diagnostic and prognostic tools for marine pollution monitoring. In order to assess the impact of highly persistent pollutants such as polychlorinated biphenyls (PCB), polychlorinated dibenzo-dioxins (PCDD), polychlorinated dibenzo-furans (PCDF), polynuclear aromatic hydrocarbons (PAH), tributyltin (TBT) and other toxic metals on the marine ecosystem a suite of biomarkers are being extensively used worldwide. Among the various types of biomarkers, the following have received special attention: cytochrome P4501A induction, DNA integrity, acetylcholinesterase activity and metallothionein induction. These biomarkers are being used to evaluate exposure of various species of sentinel marine organisms (e.g. mussels, clams, oysters, snails, fishes, etc.) to and the effect of various contaminants (organic xenobiotics and metals) using different molecular approaches [biochemical assays, enzyme linked immuno-sorbent assays (ELISA), spectrophotometric, fluorometric measurement, differential pulsed polarography, liquid chromatography, atomic absorption spectrometry]. The induction of the biotransformation enzyme, cytochrome P4501A in fishes (Callionymus lyra, Limanda limanda, Serranus sp., Mullus barbatus) and mussels (Dreissena polymorpha) by various xenobiotic contaminants such as PCBs, PAHs, PCDs is used as a biomarker of exposure to such organic pollutants. The induction of cytochrome P4501A is involved in chemical carcinogenesis through catalysis of the covalent bonding of organic contaminants to a DNA strand leading to formation of DNA adduct. Measurement of the induction of cytochrome P4501A in terms of EROD (7-ethoxy resorufin O-deethylase) activity is successfully used as a potential biomarker of exposure to xenobiotic contaminants in marine pollution monitoring. In order to assess the impact of neurotoxic compounds on marine environment the evaluation of acetylcholinesterase

  15. Nitric oxide and superoxide anion differentially activate poly(ADP-ribose) polymerase-1 and Bax to induce nuclear translocation of apoptosis-inducing factor and mitochondrial release of cytochrome c after spinal cord injury.

    PubMed

    Wu, Kay L H; Hsu, Chin; Chan, Julie Y H

    2009-07-01

    We reported previously that complete spinal cord transection (SCT) results in depression of mitochondrial respiratory chain enzyme activity that triggers apoptosis via sequential activations of apoptosis-inducing factor (AIF)- and caspase-dependent cascades in the injured spinal cord. This study tested the hypothesis that nitric oxide (NO) and superoxide anion (O(2)(.-)) serve as the interposing signals between SCT and impaired mitochondrial respiratory functions. Adult Sprague-Dawley rats manifested a significant increase in NO or O(2)(.-) level in the injured spinal cord during the first 3 days after SCT. The augmented O(2)(.-) production, along with concomitant reduction in mitochondrial respiratory chain enzyme activity or ATP level, nuclear translocation of AIF, cytosolic release of cytochrome c, and DNA fragmentation were reversed by osmotic minipump infusion of a NO trapping agent, carboxy-PTIO, or a superoxide dismutase mimetic, tempol, into the epicenter of the transected spinal cord. Intriguingly, carboxy-PTIO significantly suppressed upregulation of poly(ADP-ribose) polymerase-1 (PARP-1) in the nucleus, attenuated nuclear translocation of AIF, inhibited mitochondrial translocation of Bax and antagonized mitochondrial release of cytochrome c; whereas tempol only inhibited the later two cellular events after SCT. We conclude that overproduction of NO and O(2)(.-) in the injured spinal cord promulgates mitochondrial dysfunction and triggers AIF- and caspase-dependent apoptotic signaling cascades via differential upregulation of nuclear PARP-1 and mitochondrial translocation of Bax. PMID:19473058

  16. Cytochrome P450-like substrate oxidation catalyzed by cytochrome c and immobilized cytochrome c.

    PubMed

    Akasaka, R; Mashino, T; Hirobe, M

    1993-03-01

    Cytochrome c (cyt.c) was shown to catalyze cytochrome P450 (P450)-like oxidative reactions, such as N-, and O-demethylation, S-oxidation, and epoxidation of olefins. A more detailed examination showed that (i) N-methylcarbazole and thioanisole oxidation with H2(18)O2 catalyzed by cyt.c resulted in introduction of 18O into the product, and (ii) during the epoxidation of cis-stilbene catalyzed by cyt.c, the stereochemistry of the substrate was retained and 18O was introduced when H2(18)O2 was used as an oxidant. These results show that cyt.c catalyzed N-demethylation, S-oxidation, and epoxidation in the same manner as P450. To utilize these P450-like reactivities effectively, cyt.c was immobilized on poly-gamma-methyl-L-glutamate. Up to 99% of the cyt.c used was immobilized. This immobilized cyt.c catalyzed N-demethylation, S-oxidation, and epoxidation in the same manner as both P450 and free cyt.c, and the activities of these reactions were increased by the immobilization. In N-demethylation of N,N-dimethylaniline with cumene hydroperoxide (CHP) catalyzed by cyt.c, the Vmax for CHP was increased by 4.4-fold by the immobilization of the enzyme, while the Km remained unchanged. Since P450 is involved in the metabolism of many xenobiotics, the above results suggest that immobilized cyt.c may be useful in drug metabolism research. PMID:7681661

  17. Cytochromes P450

    PubMed Central

    Werck-Reichhart, Danièle; Bak, Søren; Paquette, Suzanne

    2002-01-01

    There are 272 cytochrome P450 genes (including 26 pseudogenes) in the Arabidopsis genome. P450s thus form one of the largest families of proteins in higher plants. This explosion of the P450 family is thought to have occurred via gene duplication and conversion, and to result from the need of sessile plants to adapt to a harsh environment and to protect themselves from pathogens and predators. P450s sometimes share less than 20% identity and catalyze extremely diverse reactions. Their biological functions range from the synthesis of structural macromolecules such as lignin, cutin or suberin, to the synthesis or catabolism of all types of hormone or signaling molecules, the synthesis of pigments and defense compounds, and to the metabolism of xenobiotics. In despite of a huge acceleration in our understanding of plant P450 functions in the recent years, the vast majority of these functions remain completely unknown. PMID:22303202

  18. Cytochromes p450.

    PubMed

    Bak, Søren; Beisson, Fred; Bishop, Gerard; Hamberger, Björn; Höfer, René; Paquette, Suzanne; Werck-Reichhart, Danièle

    2011-01-01

    There are 244 cytochrome P450 genes (and 28 pseudogenes) in the Arabidopsis genome. P450s thus form one of the largest gene families in plants. Contrary to what was initially thought, this family diversification results in very limited functional redundancy and seems to mirror the complexity of plant metabolism. P450s sometimes share less than 20% identity and catalyze extremely diverse reactions leading to the precursors of structural macromolecules such as lignin, cutin, suberin and sporopollenin, or are involved in biosynthesis or catabolism of all hormone and signaling molecules, of pigments, odorants, flavors, antioxidants, allelochemicals and defense compounds, and in the metabolism of xenobiotics. The mechanisms of gene duplication and diversification are getting better understood and together with co-expression data provide leads to functional characterization. PMID:22303269

  19. Cytochrome P450 database.

    PubMed

    Lisitsa, A V; Gusev, S A; Karuzina, I I; Archakov, A I; Koymans, L

    2001-01-01

    This paper describes a specialized database dedicated exclusively to the cytochrome P450 superfamily. The system provides the impression of superfamily's nomenclature and describes structure and function of different P450 enzymes. Information on P450-catalyzed reactions, substrate preferences, peculiarities of induction and inhibition is available through the database management system. Also the source genes and appropriate translated proteins can be retrieved together with corresponding literature references. Developed programming solution provides the flexible interface for browsing, searching, grouping and reporting the information. Local version of database manager and required data files are distributed on a compact disk. Besides, there is a network version of the software available on Internet. The network version implies the original mechanism, which is useful for the permanent online extension of the data scope. PMID:11769119

  20. Cytochromes p450.

    PubMed

    Werck-Reichhart, Danièle; Bak, Søren; Paquette, Suzanne

    2002-01-01

    There are 272 cytochrome P450 genes (including 26 pseudogenes) in the Arabidopsis genome. P450s thus form one of the largest families of proteins in higher plants. This explosion of the P450 family is thought to have occurred via gene duplication and conversion, and to result from the need of sessile plants to adapt to a harsh environment and to protect themselves from pathogens and predators. P450s sometimes share less than 20% identity and catalyze extremely diverse reactions. Their biological functions range from the synthesis of structural macromolecules such as lignin, cutin or suberin, to the synthesis or catabolism of all types of hormone or signaling molecules, the synthesis of pigments and defense compounds, and to the metabolism of xenobiotics. In despite of a huge acceleration in our understanding of plant P450 functions in the recent years, the vast majority of these functions remain completely unknown. PMID:22303202

  1. Cytochromes P450

    PubMed Central

    Bak, Søren; Beisson, Fred; Bishop, Gerard; Hamberger, Björn; Höfer, René; Paquette, Suzanne; Werck-Reichhart, Danièle

    2011-01-01

    There are 244 cytochrome P450 genes (and 28 pseudogenes) in the Arabidopsis genome. P450s thus form one of the largest gene families in plants. Contrary to what was initially thought, this family diversification results in very limited functional redundancy and seems to mirror the complexity of plant metabolism. P450s sometimes share less than 20% identity and catalyze extremely diverse reactions leading to the precursors of structural macromolecules such as lignin, cutin, suberin and sporopollenin, or are involved in biosynthesis or catabolism of all hormone and signaling molecules, of pigments, odorants, flavors, antioxidants, allelochemicals and defense compounds, and in the metabolism of xenobiotics. The mechanisms of gene duplication and diversification are getting better understood and together with co-expression data provide leads to functional characterization. PMID:22303269

  2. Nitrite reduction in paracoccus halodenitrificans: Evidence for the role of a cd-type cytochrome in ammonia formation

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Cronin, S. E.

    1984-01-01

    Cell-free extracts prepared from Paracoccus halodenitrificans catalyzed the reduction of nitrate to ammonia in the presence of dithionite and methyl viologen. Enzyme activity was located in the soluble fraction and was associated with a cytochrome whose spectral properties resembled those of a cd-type cytochrome. Unlike the sissimilatory cd-cytochrome nitrate reductase associated with the membrane fraction of P. halodenitrificans, this soluble cd-cytochrome did not reduce nitrite to nitrous oxide.

  3. Phase I/II Clinical Trial of Encapsulated, Cytochrome P450 Expressing Cells as Local Activators of Cyclophosphamide to Treat Spontaneous Canine Tumours

    PubMed Central

    Michałowska, Monika; Winiarczyk, Stanislaw; Adaszek, Łukasz; Łopuszyński, Wojciech; Grądzki, Zbigniew; Salmons, Brian; Günzburg, Walter H.

    2014-01-01

    Based upon promising preclinical studies, a clinical trial was performed in which encapsulated cells overexpressing cytochrome P450 enzyme isoform 2B1 were implanted around malignant mammary tumours arising spontaneously in dogs. The dogs were then given cyclophosphamide, one of the standard chemotherapeutic agents used for the treatment of mammary tumours. The dogs were assessed for a number of clinical parameters as well as for reduction in tumour size. The treatment was well tolerated with no evidence of adverse reactions or side effects being associated with the administration of the encapsulated cells. Reductions in tumour size of more than 50% were observed for 6 out of the 11 tumours analysed while 5 tumours showing minor responses, i.e. stable disease. In contrast, the tumours that received cyclophosphamide alone showed only stable disease. Taken together, this data suggests that encapsulated cytochrome P450 expressing cells combined with chemotherapy may be useful in the local treatment of a number of dog mammary tumours and support the performance of further clinical studies to evaluate this new treatment. PMID:25028963

  4. Mechanistic Scrutiny Identifies a Kinetic Role for Cytochrome b5 Regulation of Human Cytochrome P450c17 (CYP17A1, P450 17A1)

    PubMed Central

    Simonov, Alexandr N.; Holien, Jessica K.; Yeung, Joyee Chun In; Nguyen, Ann D.; Corbin, C. Jo; Zheng, Jie; Kuznetsov, Vladimir L.; Auchus, Richard J.; Conley, Alan J.; Bond, Alan M.; Parker, Michael W.; Rodgers, Raymond J.; Martin, Lisandra L.

    2015-01-01

    Cytochrome P450c17 (P450 17A1, CYP17A1) is a critical enzyme in the synthesis of androgens and is now a target enzyme for the treatment of prostate cancer. Cytochrome P450c17 can exhibit either one or two physiological enzymatic activities differentially regulated by cytochrome b5. How this is achieved remains unknown. Here, comprehensive in silico, in vivo and in vitro analyses were undertaken. Fluorescence Resonance Energy Transfer analysis showed close interactions within living cells between cytochrome P450c17 and cytochrome b5. In silico modeling identified the sites of interaction and confirmed that E48 and E49 residues in cytochrome b5 are essential for activity. Quartz crystal microbalance studies identified specific protein-protein interactions in a lipid membrane. Voltammetric analysis revealed that the wild type cytochrome b5, but not a mutated, E48G/E49G cyt b5, altered the kinetics of electron transfer between the electrode and the P450c17. We conclude that cytochrome b5 can influence the electronic conductivity of cytochrome P450c17 via allosteric, protein-protein interactions. PMID:26587646

  5. MAD structure of Pseudomonas nautica dimeric cytochrome c552 mimicks the c4 Dihemic cytochrome domain association.

    PubMed

    Brown, K; Nurizzo, D; Besson, S; Shepard, W; Moura, J; Moura, I; Tegoni, M; Cambillau, C

    1999-06-18

    The monohemic cytochrome c552from Pseudomonas nautica (c552-Pn) is thought to be the electron donor to cytochrome cd1, the so-called nitrite reductase (NiR). It shows as high levels of activity and affinity for the P. nautica NiR (NiR-Pn), as the Pseudomonas aeruginosa enzyme (NiR-Pa). Since cytochrome c552is by far the most abundant electron carrier in the periplasm, it is probably involved in numerous other reactions. Its sequence is related to that of the c type cytochromes, but resembles that of the dihemic c4cytochromes even more closely. The three-dimensional structure of P. nautica cytochrome c552has been solved to 2.2 A resolution using the multiple wavelength anomalous dispersion (MAD) technique, taking advantage of the presence of the eight Fe heme ions in the asymmetric unit. Density modification procedures involving 4-fold non-crystallographic averaging yielded a model with an R -factor value of 17.8 % (Rfree=20.8 %). Cytochrome c552forms a tight dimer in the crystal, and the dimer interface area amounts to 19% of the total cytochrome surface area. Four tighly packed dimers form the eight molecules of the asymmetric unit. The c552dimer is superimposable on each domain of the monomeric cytochrome c4from Pseudomomas stutzeri (c4-Ps), a dihemic cytochrome, and on the dihemic c domain of flavocytochrome c of Chromatium vinosum (Fcd-Cv). The interacting residues which form the dimer are both similar in character and position, which is also true for the propionates. The dimer observed in the crystal also exists in solution. It has been hypothesised that the dihemic c4-Ps may have evolved via monohemic cytochrome c gene duplication followed by evolutionary divergence and the adjunction of a connecting linker. In this process, our dimeric c552structure might be said to constitute a "living fossile" occurring in the course of evolution between the formation of the dimer and the gene duplication and fusion. The availability of the structure of the cytochrome c552

  6. Retraction statement: Dynamics of Cytochrome C Oxidase Activity in Acute Ischemic Stroke' by Selaković, V.M., Jovanović, M.D., Mihajlović, R.R. and Radenović, L.L.J.

    PubMed

    2016-10-01

    The above article from Acta Neurologica Scandinavica, published online on 7 April 2005 in Wiley Online Library (wileyonlinelibrary.com) and in Volume 111, pp. 329-332, has been retracted by agreement between the journal Editor in Chief, Professor Elinor Ben-Menachem, and John Wiley & Sons Ltd. The article has been retracted because a similar article had previously been published in the Jugoslovenska medicinska biohemija in 2003. The authors presumed that since the journal was no longer existing, they felt the need to re-publish their work in Acta Neuorologica Scandinavica. However, in the consideration of the Journal, this constitutes dual publication. References SelakovićVM, JovanovićMD, MihajlovićR, RadenovićLLJ. Cytochrome c oxidase in patients with acute ischaemic brain disease. Jugoslovenska medicinska biohemija. 2003;22:329-334. SelakovićVM, JovanovićMD, MihajlovićRR, RadenovićLLJ. Dynamics of cytochrome c oxidase activity in acute ischemic stroke. Acta Neurol Scand. 2005;111:329-332. PMID:27592845

  7. Effects of bromocriptine on hepatic cytochrome P-450 monooxygenase system.

    PubMed

    Moochhala, S M; Lee, E J; Hu, G T; Koh, O S; Becket, G

    1989-02-01

    We have evaluated the in vitro effects of bromocriptine (Br), on the hepatic cytochrome P-450 monooxygenase system of rats pretreated with saline phenobarbitone (PB) and beta-naphthoflavone (BNF). Br inhibited ethoxyresorufin O-dealkylase (EROD) activity in liver microsomes of rats pretreated with saline and PB but not in BNF pretreated animals. Maximum inhibition of EROD activity by Br in the microsomes of saline and PB pretreated rats were 50%-60% of the control. In contrast, a dual effect was observed on aminopyrine N-demethylase activity (APD) by Br in microsomes of saline, PB and BNF pretreated rats. At a low concentration (25 microM), Br inhibited the activity of APD to a similar extent in all pretreatment groups; however, with higher concentrations of Br (50 microM to 300 microM), enhancement of APD activity was observed. Br (300 microM) increased the APD activity to 2-3 times the control level in microsomes of rats pretreated with saline, PB or BNF. Spectral studies revealed a Type II binding of Br to cytochrome P-450 from microsomes of saline and PB pretreated rats. A reverse type I binding was observed for BNF induced microsomes. In addition, Br also enhanced NADPH cytochrome c (P-450) reductase activity to a similar extent in all pretreatment groups. These results suggest that the inhibition of EROD activity may be due to direct binding by Br to certain isozymes of cytochrome P-450 and that the enhancing effect of Br on APD activity may be in part due to the activation of the NADPH cytochrome c reductase component of the cytochrome P-450 monooxygenase system. PMID:2499727

  8. Endocrine involvement in mitochondrial encephalomyopathy with partial cytochrome c oxidase deficiency.

    PubMed Central

    Doriguzzi, C; Palmucci, L; Mongini, T; Bresolin, N; Bet, L; Comi, G; Lala, R

    1989-01-01

    A 19-year-old man born with thyroprivic hypothyroidism, due to congenital development defect, manifested hypogonadism, stunted growth, chronic progressive external ophthalmoplegia (CPEO), diffuse muscle weakness and wasting, right bundle branch block, cerebral atrophy. Muscle biopsy showed mitochondrial abnormalities. Biochemical investigations on muscle disclosed partial (50%) cytochrome c oxidase deficiency, 58% decrease of cytochrome aa3 and 41% decrease of cytochrome b. Enzyme-linked immunosorbent assay showed decrease of the immunologically active enzyme protein. Images PMID:2540284

  9. Molecular interaction studies revealed the bifunctional behavior of triheme cytochrome PpcA from Geobacter sulfurreducens toward the redox active analog of humic substances.

    PubMed

    Dantas, Joana M; Kokhan, Oleksandr; Pokkuluri, P Raj; Salgueiro, Carlos A

    2015-10-01

    Humic substances (HS) constitute a significant fraction of natural organic matter in terrestrial and aquatic environments and can act as terminal electron acceptors in anaerobic microbial respiration. Geobacter sulfurreducens has a remarkable respiratory versatility and can utilize the HS analog anthraquinone-2,6-disulfonate (AQDS) as a terminal electron acceptor or its reduced form (AH2QDS) as an electron donor. Previous studies set the triheme cytochrome PpcA as a key component for HS respiration in G. sulfurreducens, but the process is far from fully understood. In this work, NMR chemical shift perturbation measurements were used to map the interaction region between PpcA and AH2QDS, and to measure their binding affinity. The results showed that the AH2QDS binds reversibly to the more solvent exposed edge of PpcA heme IV. The NMR and visible spectroscopies coupled to redox measurements were used to determine the thermodynamic parameters of the PpcA:quinol complex. The higher reduction potential of heme IV (-127mV) compared to that of AH2QDS (-184mV) explains why the electron transfer is more favorable in the case of reduction of the cytochrome by the quinol. The clear evidence obtained for the formation of an electron transfer complex between AH2QDS and PpcA, combined with the fact that the protein also formed a redox complex with AQDS, revealed for the first time the bifunctional behavior of PpcA toward an analog of the HS. Such behavior might confer selective advantage to G. sulfurreducens, which can utilize the HS in any redox state available in the environment for its metabolic needs. PMID:26071085

  10. Monoclonal antibody-directed radioimmunoassay of specific cytochromes P-450

    SciTech Connect

    Song, B.J.; Fujino, T.; Park, S.S.; Friedman, F.K.; Gelboin, H.V.

    1984-02-10

    A rapid solid phase radioimmunoassay (RIA) for cytochromes P-450 has been developed utilizing specific monoclonal antibodies to major forms of rat liver cytochrome P-450 that are induced by 3-methylcholanthrene (MC-P-450) and phenobarbital (PB-P-450). Monoclonal antibodies (MAbs) that were endogenously labeled with (/sup 35/S)methionine were used to detect MAb-specific cytochromes P-450 in liver microsomes from untreated rats and rats pretreated with 3-methylcholanthrene (MC) or phenobarbital. The competitive binding assays are rapid and can detect cytochrome P-450 in less than 100 ng of microsomal protein. Tthe RIA was used to examine the distribution of MAb-specific cytochromes P-450 in extrahepatic tissues of MC-treated rats; an approximately 30- to 50-fold greater amount of MC-P-450 in liver relative to lung and kidney was observed, which corresponds well with aryl hydrocarbon hydroxylase activity in these tissues. The inducibility of MAb-specific cytochromes P-450 were observed in MC-treated rats, guinea pigs, and C57BL/6 mice, all highly inducible for aryl hydrocarbon hydroxylase; little increase was observed for the relatively noninducible DBA/2 mouse strain.

  11. Cytochrome P450 humanised mice

    PubMed Central

    2004-01-01

    Humans are exposed to countless foreign compounds, typically referred to as xenobiotics. These can include clinically used drugs, environmental pollutants, food additives, pesticides, herbicides and even natural plant compounds. Xenobiotics are metabolised primarily in the liver, but also in the gut and other organs, to derivatives that are more easily eliminated from the body. In some cases, however, a compound is converted to an electrophile that can cause cell toxicity and transformation leading to cancer. Among the most important xenobiotic-metabolising enzymes are the cytochromes P450 (P450s). These enzymes represent a superfamily of multiple forms that exhibit marked species differences in their expression and catalytic activities. To predict how humans will metabolise xenobiotics, including drugs, human liver extracts and recombinant P450s have been used. New humanised mouse models are being developed which will be of great value in the study of drug metabolism, pharmacokinetics and pharmacodynamics in vivo, and in carrying out human risk assessment of xenobiotics. Humanised mice expressing CYP2D6 and CYP3A4, two major drug-metabolising P450s, have revealed the feasibility of this approach. PMID:15588489

  12. Cox26 is a novel stoichiometric subunit of the yeast cytochrome c oxidase.

    PubMed

    Levchenko, Maria; Wuttke, Jan-Moritz; Römpler, Katharina; Schmidt, Bernhard; Neifer, Klaus; Juris, Lisa; Wissel, Mirjam; Rehling, Peter; Deckers, Markus

    2016-07-01

    The cytochrome c oxidase (COX) is the terminal enzyme of the respiratory chain. The complex accepts electrons from cytochrome c and passes them onto molecular oxygen. This process contributes to energy capture in the form of a membrane potential across the inner membrane. The enzyme complex assembles in a stepwise process from the three mitochondria-encoded core subunits Cox1, Cox2 and Cox3, which associate with nuclear-encoded subunits and cofactors. In the yeast Saccharomyces cerevisiae, the cytochrome c oxidase associates with the bc1-complex into supercomplexes, allowing efficient energy transduction. Here we report on Cox26 as a protein found in respiratory chain supercomplexes containing cytochrome c oxidase. Our analyses reveal Cox26 as a novel stoichiometric structural subunit of the cytochrome c oxidase. A loss of Cox26 affects cytochrome c oxidase activity and respirasome organization. PMID:27083394

  13. Cytochrome c' of Methylococcus capsulatus Bath.

    PubMed

    Zahn, J A; Arciero, D M; Hooper, A B; Dispirito, A A

    1996-09-15

    Cytochrome c' was isolated from the obligate methylotroph Methylococcus capsulatus Bath. The native and subunit molecular masses of the cytochrome were 34.9 kDa and 16.2 kDa, respectively, with an isoelectric pH of 7.0. The amino acid composition and N-terminal amino acid sequence were consistent with identification of the protein as a cytochrome c'. The electron paramagnetic resonance spectrum of the monoheme cytochrome indicated the presence of a high spin, S = 5/2, heme center that is diagnostic of cytochromes c'. The optical absorption spectra of ferric or ferrous cytochrome c' were also characteristic of cytochromes c'. The ferrocytochrome bound carbon monoxide and nitric oxide, but not isocyanide, cyanide, or azide. Changes in physical properties due to binding of CO or NO to some other c'-type cytochromes have been interpreted as an indication of dimer dissociation. In the case of cytochrome c' from M. capsulatus Bath, analytical ultracentrifugation of the ferricytochrome, the ferrocytochrome, and the ferrocytochrome-CO complex indicate that the changes induced by binding of CO are conformational and are not consistent with dimer dissociation. EPR spectra show that cytochrome c' was reduced in the presence of hydroxylamine only when in a complex with cytochrome P-460. The value of the midpoint potential, Em 7.0, was -250 mV for cytochrome c' from M. capsulatus Bath, which is well below the range of values reported for other cytochromes c'. The values of midpoint potentials for cytochrome P-460 (Em 7.0 = -300 mV to -380 mV) and cytochrome C555 (Em 7.0 = +175 mV to +195 mV) are less than and greater than, respectively, the value for cytochrome c' and suggest the possibility that the latter may function as an electron shuttle between cytochrome P-460 and cytochrome C555. PMID:8856071

  14. Reduction of U(VI) and Toxic Metals by Desulfovibrio Cytochrome c3

    SciTech Connect

    Wall, Judy D.

    2003-06-01

    The project, ''Reduction of U(VI) and toxic metals by Desulfovibrio cytochrome c3'', is designed to obtain spectroscopic information for or against a functional interaction of cytochrome c3 and uranium in the whole cells. That is, is the cytochrome c3 the uranium reductase? Our approach has been to start with purified cytochrome and determine any unique spectral disturbances during electron flow to U(VI). Then we will attempt to identify these signals emanating from cells actively reducing uranium. This project is being carried out in collaboration with Dr. William Woodruff at the Los Alamos National Laboratory where the spectral experiments are being carried out.

  15. Changes in the subcellular distribution of the cytochrome b-245 on stimulation of human neutrophils.

    PubMed Central

    Garcia, R C; Segal, A W

    1984-01-01

    Cytochrome b-245 of neutrophils has a bimodal distribution in sucrose density gradients. The lighter component (d = 1.14) is shown to be associated with the plasma membrane by the similarity between its density and that of markers of this organelle, as well as a parallel increase in the density of the cytochrome and plasma membrane after treatment with digitonin or dimethyl suberimidate. The cytochrome b-245 of monocytes and cytoplasts, the latter produced by the removal of nuclei and granules from neutrophils, was located only in the plasma membrane. The denser peak of cytochrome (d = 1.19), which contained approximately half of the cytochrome b of neutrophils, had a similar density-distribution profile to the specific granules. After hypo-osmotic disruption of this denser material, the cytochrome distributed with the density of membranes, suggesting an original location within the membrane of the intracellular structure. Redistribution of the cytochrome from the granules to the membranes was observed after stimulation of respiratory activity with soluble agents or opsonized particles. This translocation is not responsible for activation of the oxidase system. There was poor agreement between the kinetics of the transfer of cytochromes from the dense component to the membranes, and degranulation of specific-granule contents, suggesting that the cytochrome may be located in another intracellular structure or that its localization becomes further modified after granule fusion. PMID:6721852

  16. Modeling chemical interaction profiles: I. Spectral data-activity relationship and structure-activity relationship models for inhibitors and non-inhibitors of cytochrome P450 CYP3A4 and CYP2D6 isozymes.

    PubMed

    McPhail, Brooks; Tie, Yunfeng; Hong, Huixiao; Pearce, Bruce A; Schnackenberg, Laura K; Ge, Weigong; Valerio, Luis G; Fuscoe, James C; Tong, Weida; Buzatu, Dan A; Wilkes, Jon G; Fowler, Bruce A; Demchuk, Eugene; Beger, Richard D

    2012-01-01

    An interagency collaboration was established to model chemical interactions that may cause adverse health effects when an exposure to a mixture of chemicals occurs. Many of these chemicals--drugs, pesticides, and environmental pollutants--interact at the level of metabolic biotransformations mediated by cytochrome P450 (CYP) enzymes. In the present work, spectral data-activity relationship (SDAR) and structure-activity relationship (SAR) approaches were used to develop machine-learning classifiers of inhibitors and non-inhibitors of the CYP3A4 and CYP2D6 isozymes. The models were built upon 602 reference pharmaceutical compounds whose interactions have been deduced from clinical data, and 100 additional chemicals that were used to evaluate model performance in an external validation (EV) test. SDAR is an innovative modeling approach that relies on discriminant analysis applied to binned nuclear magnetic resonance (NMR) spectral descriptors. In the present work, both 1D ¹³C and 1D ¹⁵N-NMR spectra were used together in a novel implementation of the SDAR technique. It was found that increasing the binning size of 1D ¹³C-NMR and ¹⁵N-NMR spectra caused an increase in the tenfold cross-validation (CV) performance in terms of both the rate of correct classification and sensitivity. The results of SDAR modeling were verified using SAR. For SAR modeling, a decision forest approach involving from 6 to 17 Mold2 descriptors in a tree was used. Average rates of correct classification of SDAR and SAR models in a hundred CV tests were 60% and 61% for CYP3A4, and 62% and 70% for CYP2D6, respectively. The rates of correct classification of SDAR and SAR models in the EV test were 73% and 86% for CYP3A4, and 76% and 90% for CYP2D6, respectively. Thus, both SDAR and SAR methods demonstrated a comparable performance in modeling a large set of structurally diverse data. Based on unique NMR structural descriptors, the new SDAR modeling method complements the existing SAR

  17. Upgrading cytochrome P450 activity in HepG2 cells co-transfected with adenoviral vectors for drug hepatotoxicity assessment.

    PubMed

    Tolosa, Laia; Donato, M Teresa; Pérez-Cataldo, Gabriela; Castell, José Vicente; Gómez-Lechón, M José

    2012-12-01

    In a number of adverse drug reactions leading to hepatotoxicity, drug metabolism is thought to be involved by the generation of reactive metabolites from non-toxic drugs. The use of hepatoma cell lines, such as HepG2 cell line, for the evaluation of drug-induced hepatotoxicity is hampered by their low cytochrome P450 expression which makes impossible the study of the toxicity produced by bioactivable compounds. Genetically manipulated cells constitute promising tools for hepatotoxicity applications. HepG2 cells were simultaneously transfected with recombinant adenoviruses encoding CYP1A2, CYP2C9 and CYP3A4 to confer them drug-metabolic competence. Upgraded cells (Adv-HepG2) were highly able to metabolize the toxin studied in contrast to the reduced metabolic capacity of HepG2 cells. Aflatoxin B1-induced hepatotoxicity was studied as a proof of concept in metabolically competent and non-competent HepG2 cells by using high content screening technology. Significant differences in mitochondrial membrane potential, intracellular calcium concentration, nuclear morphology and cell viability after treatment with aflatoxin B1 were observed in Adv-HepG2 when compared to HepG2 cells. Rotenone (non bioactivable) and citrate (non hepatotoxic) were analysed as negative controls. This cell model showed to be a suitable hepatic model to test hepatotoxicity of bioactivable drugs and constitutes a valuable alternative for hepatotoxicity testing. PMID:22138474

  18. ALTERATION IN CYTOCHROME P450 3A4 ACTIVITY AS MEASURED BY A URINE CORTISOL ASSAY IN HIV-1-INFECTED PREGNANT WOMEN AND RELATIONSHIP TO ANTIRETROVIRAL PHARMACOKINETICS

    PubMed Central

    Aweeka, Francesca T.; Hu, Chengcheng; Huang, Liusheng; Best, Brookie M.; Stek, Alice; Lizak, Patricia; Burchett, Sandra K.; Read, Jennifer S.; Watts, Heather; Mirochnick, Mark; Capparelli, Edmund V.

    2014-01-01

    Objectives Pregnancy results in physiological changes altering the pharmacokinetics of drugs metabolized by cytochrome p450 3A4. The urinary ratio of 6-β hydroxycortisol to cortisol (6βHF:F) is a marker of CYP3A4 induction. We sought to evaluate its change in antiretroviral (ARV) treated HIV-1-infected women and to relate this change to ARV pharmacokinetics. Methods Women receiving various ARV had pharmacokinetic evaluations during third trimester pregnancy (>30 weeks) and postpartum with determination of 6βHF:F carried out on the same days. Wilcoxon signed rank test compared the ratio antepartum to postpartum. The relationship between the change in ratio to the change in pharmacokinetics was done using Kendall’s tau. Results 6βHF:F ratios were available for 107 women antepartum with 54 having postpartum values. The ratio was higher antepartum (p=0.033) [median comparison 1.35 (95% CI: 1.01, 1.81]. For 71 women taking a protease inhibitor (PI), the antepartum versus postpartum 6βHF:F comparison was marginally significant (p=0.058). When relating the change in the 6βHF:F ratio to the change in the dose-adjusted ARV AUC antepartum to postpartum, the 35 subjects in the LPV/r arms demonstrated an inverse relationship (p=0.125), albeit this correlation did not reach statistical significance. Conclusions A 35% increase in the urinary 6βHF:F ratio was measured during late pregnancy compared to postpartum, indicating CYP3A induction occurs during pregnancy. The trend to an inverse relationship between the change in the 6βHF:F ratio and the change in the LPV AUC antepartum versus postpartum suggests CYP3A induction may be one mechanism behind altered LPV exposure during pregnancy. PMID:25407158

  19. Xyloketal B, a marine compound, acts on a network of molecular proteins and regulates the activity and expression of rat cytochrome P450 3a: a bioinformatic and animal study

    PubMed Central

    Su, Junhui; Chang, Cui; Xiang, Qi; Zhou, Zhi-Wei; Luo, Rong; Yang, Lun; He, Zhi-Xu; Yang, Hongtu; Li, Jianan; Bei, Yu; Xu, Jinmei; Zhang, Minjing; Zhang, Qihao; Su, Zhijian; Huang, Yadong; Pang, Jiyan; Zhou, Shu-Feng

    2014-01-01

    Natural compounds are becoming popular for the treatment of illnesses and health promotion, but the mechanisms of action and safety profiles are often unknown. Xyloketal B (XKB) is a novel marine compound isolated from the mangrove fungus Xylaria sp., with potent antioxidative, neuroprotective, and cardioprotective effects. However, its molecular targets and effects on drug-metabolizing enzymes are unknown. This study aimed to investigate the potential molecular targets of XKB using bioinformatic approaches and to examine the effect of XKB on the expression and activity of rat cytochrome P450 3a (Cyp3a) subfamily members using midazolam as a model probe. DDI-CPI, a server that can predict drug–drug interactions via the chemical–protein interactome, was employed to predict the targets of XKB, and the Database for Annotation, Visualization and Integrated Discovery (DAVID) was used to analyze the pathways of the predicted targets of XKB. Homology modeling was performed using the Discovery Studio program 3.1. The activity and expression of rat hepatic Cyp3a were examined after the rats were treated with XKB at 7 and 14 mg/kg for 8 consecutive days. Rat plasma concentrations of midazolam and its metabolite 1′-OH-midazolam were determined using a validated high-performance liquid chromatographic method. Bioinformatic analysis showed that there were over 324 functional proteins and 61 related signaling pathways that were potentially regulated by XKB. A molecular docking study showed that XKB bound to the active site of human cytochrome P450 3A4 and rat Cyp3a2 homology model via the formation of hydrogen bonds. The in vivo study showed that oral administration of XKB at 14 mg/kg to rats for 8 days significantly increased the area under the plasma concentration-time curve (AUC) of midazolam, with a concomitant decrease in the plasma clearance and AUC ratio of 1′-OH-midazolam over midazolam. Further, oral administration of 14 mg/kg XKB for 8 days markedly reduced the

  20. Transfer of polychlorinated biphenyls and chlorinated pesticides from mother to pup in relation to cytochrome P450 enzyme activities in harp seals (Phoca groenlandica) from the gulf of St. Lawrence, Canada.

    PubMed

    Wolkers, Hans; Burkow, Ivan C; Hammill, Mike O; Lydersen, Christian; Witkamp, Renger F

    2002-01-01

    Congener-specific transfer of polychlorinated biphenyls (PCBs) and chlorinated pesticides from female to pup was studied in harp seals from eastern Canada. Possible effects on hepatic cytochrome P450 enzymes (CYP450) due to contaminant mobilization from blubber lipids in females and ingestion of contaminated milk in pups were studied. Contaminant transfer from blubber to milk in females favored the more polar compounds (lower chlorinated PCBs, toxaphenes, hexachlorocyclohexanes, and hexachlorobenzene) relative to more lipophilic compounds (higher chlorinated PCBs, dichlorodiphenyltrichloroethane [DDT], chlordane). In spite of substantial contaminant mobilization from blubber in females and ingestion of contaminated milk by pups, CYP450 activities were low in all animals. Possibly, increased plasma estradiol concentrations, involved in breeding after lactation, suppressed CYP450 directly. Although the pups were exposed to contaminants in milk, CYP450 activities were low, resulting in low contaminant metabolism. This was confirmed by similar contaminant patterns in milk and pups. A strong positive relation between CYP1A-like activities and body weight in the pups suggested not yet fully developed CYP1A enzymes. A negative association between CYP3A and pesticides in females and pups was hypothesized to be a result of metabolic inactivation of CYP450. The CYP450 enzyme activities were considered unsuitable indicators for contaminant mobilization and transfer in harp seals. PMID:11804067

  1. n-Alkane and clofibrate, a peroxisome proliferator, activate transcription of ALK2 gene encoding cytochrome P450alk2 through distinct cis-acting promoter elements in Candida maltosa

    SciTech Connect

    Kogure, Takahisa; Takagi, Masamichi; Ohta, Akinori . E-mail: aaohta@mail.ecc.u-tokyo.ac.jp

    2005-04-01

    The ALK2 gene, encoding one of the n-alkane-hydroxylating cytochromes P450 in Candida maltosa, is induced by n-alkanes and a peroxisome proliferator, clofibrate. Deletion analysis of this gene's promoter revealed two cis-acting elements-an n-alkane-responsive element (ARE2) and a clofibrate-responsive element (CRE2)-that partly overlap in sequence but have distinct functions. ARE2-mediated activation responded to n-alkanes but not to clofibrate and was repressed by glucose. CRE2-mediated activation responded to polyunsaturated fatty acids and steroid hormones as well as to peroxisome proliferators but not to n-alkanes, and it was not repressed by glucose. Both elements mediated activation by oleic acid. Mutational analysis demonstrated that three CCG sequences in CRE2 were critical to the activation by clofibrate as well as to the in vitro binding of a specific protein to this element. These findings suggest that ALK2 is induced by peroxisome proliferators and steroid hormones through a specific CRE2-mediated regulatory mechanism.

  2. Enhancing bio-availability of β-naphthoflavone by supramolecular complexation with 6,6'-thiobis(methylene)-β-cyclodextrin dimer.

    PubMed

    Choi, Jae Min; Cho, Eunae; Lee, Benel; Jeong, Daham; Choi, Youngjin; Yu, Jae-Hyuk; Jung, Seunho

    2016-10-20

    The aryl hydrocarbon receptor (AhR) is a ligand activated transcriptional regulator, which governs key biological processes including detoxification of carcinogens. β-Naphthoflavone (β-NF) is a non-toxic flavonoid, and a potent AhR agonist. Thus, β-NF can induce the representative detoxifying enzyme cytochrome P4501A1, thereby enhancing the detoxification potential. However, its low water solubility hampers the use. We found that supramolecular complexation of β-NF with the synthetic 6,6'-thiobis(methylene)-β-cyclodextrin (β-CD-S) dimer significantly enhanced β-NF's role as an AhR agonist. The water solubility of β-NF was increased to 469 fold by effective supramolecular complexation with the β-CD-S dimer, and caused significant induction of cytochrome P4501A1. Stable formation of the supramolecular complex of β-NF with β-CD-S-dimer was verified by various analyses. In summary, supramolecular complexation of β-NF with β-CD-S dimer greatly enhanced bio-availability of β-NF as an AhR agonist. Our findings provide an easy, non-destructive, and alternative approach to enhance the bio-availability of therapeutics. PMID:27474541

  3. Role of Cytochrome P450s in Inflammation.

    PubMed

    Christmas, Peter

    2015-01-01

    Cytochrome P450 epoxygenases and hydroxylases play a regulatory role in the activation and suppression of inflammation by generating or metabolizing bioactive mediators. CYP2C and CYP2J epoxygenases convert arachidonic acid to anti-inflammatory epoxyeicosatrienoic acids, which have protective effects in a variety of disorders including cardiovascular disease and metabolic syndrome. CYP4A and CYP4F hydroxylases have the ability to metabolize multiple substrates related to the regulation of inflammation and lipid homeostasis, and it is a challenge to determine which substrates are physiologically relevant for each enzyme; the best-characterized activities include generation of 20-hydroxyeicosatetraenoic acid and inactivation of leukotriene B4. The expression of hepatic drug-metabolizing cytochrome P450s is modulated by cytokines during inflammation, resulting in changes to the pharmacokinetics of prescribed medications. Cytochrome P450s are therefore the focus of intersecting challenges in the pharmacology of inflammation: not only do they represent targets for development of new anti-inflammatory drugs but they also contribute to variability in drug efficacy or toxicity in inflammatory disease. Animal models and primary hepatocytes have been used extensively to study the effects of cytokines on cytochrome P450 expression and activity. However, it is difficult to predict changes in drug exposure in patients because the response to inflammation varies depending on the disease state, its time course, and the cytochrome P450 involved. In these circumstances, the development of endogenous markers of cytochrome P450 metabolism might provide a useful tool to reevaluate drug dosage and choice of therapy. PMID:26233907

  4. Cardiolipin modulates allosterically peroxynitrite detoxification by horse heart cytochrome c

    SciTech Connect

    Ascenzi, Paolo; Ciaccio, Chiara; Sinibaldi, Federica; Santucci, Roberto; Coletta, Massimo

    2011-01-07

    Research highlights: {yields} Cardiolipin binding to cytochrome c. {yields} Cardiolipin-dependent peroxynitrite isomerization by cytochrome c. {yields} Cardiolipin-cytochrome c complex plays pro-apoptotic effects. {yields} Cardiolipin-cytochrome c complex plays anti-apoptotic effects. -- Abstract: Upon interaction with bovine heart cardiolipin (CL), horse heart cytochrome c (cytc) changes its tertiary structure disrupting the heme-Fe-Met80 distal bond, reduces drastically the midpoint potential out of the range required for its physiological role, binds CO and NO with high affinity, and displays peroxidase activity. Here, the effect of CL on peroxynitrite isomerization by ferric cytc (cytc-Fe(III)) is reported. In the absence of CL, hexa-coordinated cytc does not catalyze peroxynitrite isomerization. In contrast, CL facilitates cytc-Fe(III)-mediated isomerization of peroxynitrite in a dose-dependent fashion inducing the penta-coordination of the heme-Fe(III)-atom. The value of the second order rate constant for CL-cytc-Fe(III)-mediated isomerization of peroxynitrite (k{sub on}) is (3.2 {+-} 0.4) x 10{sup 5} M{sup -1} s{sup -1}. The apparent dissociation equilibrium constant for CL binding to cytc-Fe(III) is (5.1 {+-} 0.8) x 10{sup -5} M. These results suggest that CL-cytc could play either pro-apoptotic or anti-apoptotic effects facilitating lipid peroxidation and scavenging of reactive nitrogen species, such as peroxynitrite, respectively.

  5. The switching of electron flux from the cyanide-insensitive oxidase to the cytochrome pathway in mung-bean (Phaseolus aureus L.) mitochondria.

    PubMed Central

    Wilson, S B

    1988-01-01

    The activities of the mung-bean (Phaseolus aureus L.) mitochondrial cyanide-insensitive oxidase and cytochrome pathways have been measured simultaneously. The results show that electrons can be diverted both from the alternative pathway to the cytochrome pathway and from the cytochrome to the alternative pathway. The competition of the two pathways for the available electron flux is discussed. PMID:3342013

  6. Cytochrome c catalyzes the in vitro synthesis of arachidonoyl glycine

    SciTech Connect

    McCue, Jeffrey M.; Driscoll, William J.; Mueller, Gregory P.

    2008-01-11

    Long chain fatty acyl glycines are an emerging class of biologically active molecules that occur naturally and produce a wide array of physiological effects. Their biosynthetic pathway, however, remains unknown. Here we report that cytochrome c catalyzes the synthesis of N-arachidonoyl glycine (NAGly) from arachidonoyl coenzyme A and glycine in the presence of hydrogen peroxide. The identity of the NAGly product was verified by isotope labeling and mass analysis. Other heme-containing proteins, hemoglobin and myoglobin, were considerably less effective in generating arachidonoyl glycine as compared to cytochrome c. The reaction catalyzed by cytochrome c in vitro points to its potential role in the formation of NAGly and other long chain fatty acyl glycines in vivo.

  7. Mitofilin regulates cytochrome c release during apoptosis by controlling mitochondrial cristae remodeling

    SciTech Connect

    Yang, Rui-feng; Zhao, Guo-wei; Liang, Shu-ting; Zhang, Yuan; Sun, Li-hong; Chen, Hou-zao; Liu, De-pei

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer Mitofilin deficiency caused disruption of the cristae structures in HeLa cells. Black-Right-Pointing-Pointer Mitofilin deficiency reduced cell proliferation and increased cell sensitivity to apoptotic stimuli. Black-Right-Pointing-Pointer Mitofilin deficiency accelerated the release of cytochrome c from mitochondria. Black-Right-Pointing-Pointer Mitofilin deficiency accelerated STS-induced intrinsic apoptotic pathway without interfering with the activation of Bax. -- Abstract: Mitochondria amplify caspase-dependent apoptosis by releasing proapoptotic proteins, especially cytochrome c. This process is accompanied by mitochondrial cristae remodeling. Our studies demonstrated that mitofilin, a mitochondrial inner membrane protein, acted as a cristae controller to regulate cytochrome c release during apoptosis. Knockdown of mitofilin in HeLa cells with RNAi led to fragmentation of the mitochondrial network and disorganization of the cristae. Mitofilin-deficient cells showed cytochrome c redistribution between mitochondrial cristae and the intermembra