Science.gov

Sample records for activity decreased sharply

  1. Cost leveling continues; planned activity drops sharply in US gas pipeline cnstruction

    SciTech Connect

    Morgan, J.M.

    1986-02-01

    Natural gas pipeline construction costs, as measured by the OGJ-Morgan Pipeline cost index for US gas-pipeline construction, barely crept up in the second quarter 1985. Construction activity for lines and compressor stations was down.

  2. Effect of sharply lowered muscular activity on the thyroid gland of the white rat

    NASA Technical Reports Server (NTRS)

    Bekishev, K.

    1980-01-01

    The effect of hypokinesia on the thyroid gland of 200 white rats was studied. The rats were kept in 16x6x6 cm cages for 90 days. The functional activity of the thyroids increased after 24 hrs of partial immobilization and peaked after 15 days. After 30 days of immobilization, the functional activity returned to normal in one third of the test animals and after 60 days in all animals. After 15 days of immobilization, the test animals began to lose weight (in comparison to the controls) and remained underweight for the rest of the test period (up to 90 days). When returned to normal conditions, they caught up with and even overtook in weight the control animals after about 1 month. All changes produced by hypokinesia were reversible after 1 month.

  3. Decreased fibrinolytic activity in juvenile chronic arthritis.

    PubMed Central

    Mussoni, L; Pintucci, G; Romano, G; De Benedetti, F; Massa, M; Martini, A

    1990-01-01

    The basal fibrinolytic activity in 17 children with active juvenile chronic arthritis (JCA) was investigated. It was found that patients with JCA, and particularly those with the systemic form, show decreased plasma fibrinolytic activity and a marked increase in plasminogen activator inhibitor. Additionally, it was found that patients with systemic JCA, but not those with the polyarticular or pauciarticular form, have increased circulating levels of tissue-type plasminogen activator, and endothelial cell protein, suggesting possible endothelial cell participation in systemic JCA. PMID:2125408

  4. Sharply Dominating MV-Effect Algebras

    NASA Astrophysics Data System (ADS)

    Kalina, Martin; Olejček, Vladimír; Paseka, Jan; Riečanová, Zdenka

    2011-04-01

    Some open questions on Archimedean atomic MV-effect algebras are answered. Namely we prove that there are Archimedean atomic MV-effect algebras which are not sharply dominating. Equivalently, they don't have a basic decomposition of elements. Moreover, if their set of sharp elements (their center) is a complete lattice then they need not be complete lattices. The existence of infinite orthogonal sums of their elements is discussed.

  5. The neurology of decreased activity: abulia.

    PubMed

    Ghoshal, Shivani; Gokhale, Sankalp; Rebovich, Gail; Caplan, Louis R

    2011-01-01

    Delirium is sometimes defined as acute onset of either overactivity or underactivity. This article reviews the nature and clinico-anatomical locations of lesions in patients with reduced activity. The term abulia is used to describe global underactivity. Abulia is customarily explained by interruptions in frontal-subcortical circuitry. These interruptions can occur with lesions in the frontal lobes, caudate nuclei, midbrain, and thalamus. The article describes the anatomy of frontal and subcortical circuits and reviews in detail individual cases and series of patients with reduced initiative and activity who have had localized central nervous system lesions. PMID:22249571

  6. Not each sequential effect algebra is sharply dominating

    NASA Astrophysics Data System (ADS)

    Shen, Jun; Wu, Junde

    2009-04-01

    Let E be an effect algebra and E be the set of all sharp elements of E. E is said to be sharply dominating if for each a∈E there exists a smallest element aˆ∈E such that a⩽aˆ. In 2002, Professors Gudder and Greechie proved that each σ-sequential effect algebra is sharply dominating. In 2005, Professor Gudder presented 25 open problems in [S. Gudder, Int. J. Theory Phys. 44 (2005) 2219], the 3rd problem asked: Is each sequential effect algebra sharply dominating? Now, we construct an example to answer the problem negatively.

  7. The method of decreasing of chemical activity of coals

    SciTech Connect

    Korobetskii, I.A.; Nazimov, S.A.

    1998-07-01

    The investigations of the tendency of coal products to self-ignite show the decreasing of chemical activity of this product after its modification in cool oxygen plasma. A new method for the passivation of coal products was suggested.

  8. Method of decreasing of chemical activity of coals

    SciTech Connect

    Korobetskii, I.A.; Nazimov, S.A.

    1998-04-01

    The investigations of tendency of coal products to selfignition show the decreasing of chemical activity of this product after its modification in cool oxygen plasma. Was suggested a new method of coal products passivation.

  9. Selenium bond decreases ON resistance of light-activated switch

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Vitrified amorphous selenium bond decreases the ON resistance of a gallium arsenide-silicon light-activated, low-level switch. The switch is used under a pulse condition to prolong switch life and minimize errors due to heating, devitrification, and overdrawing.

  10. Recent progress on the mechanics of sharply bent DNA

    NASA Astrophysics Data System (ADS)

    Cong, PeiWen; Yan, Jie

    2016-08-01

    Despite extensive studies on the mechanics of DNA under external constrains, such as tension, torsion, and bending, several important aspects have remained poorly understood. One biologically important example is the mechanics of DNA under sharp bending conditions, which has been debated for a decade without thorough comprehension. The debate is about the interesting phenomenon raised from a series of different experiments: sharply bent DNA has a surprisingly high apparent bending flexibility that deviates from the canonical bending elasticity of DNA. This finding has motivated various theoretical models, which mainly incorporate the excitation of mechanical defects inside severely bent DNA molecules. Here, we review the recent progress on the understanding of the mechanics of sharply bent DNA and provide our view on this important question by interrogating the theoretical foundation of these experimental measurements.

  11. Decreased phosphofructokinase activity in skeletal muscle of diabetic rats.

    PubMed

    Bauer, B A; Younathan, E S

    1984-01-01

    The activities of phosphofructokinase, aldolase and pyruvate kinase were diminished in extracts from skeletal muscle of streptozotocin diabetic rats, whereas the activities of glucose phosphate isomerase and phosphoglucomutase were not changed. Treatment of diabetic rats with insulin restored the activity of phosphofructokinase to normal. A kinetic study of the partially purified enzyme from normal and diabetic rats showed identical Michaelis constants for ATP and equal sensitivity to inhibition by excess of this substrate. Extracts of quick frozen muscle from diabetic rats had higher levels of citrate (an inhibitor of phosphofructokinase) and lower levels of D-fructose-1,6-bisphosphate and D-glucose-1,6-bisphosphate (activators of this enzyme). The levels of D-fructose-6-phosphate, D-glucose-6-phosphate, ATP, ADP and AMP were the same for the two groups. Our data suggest that the in vivo decrease of phosphofructokinase activity in skeletal muscle of diabetic rats is due to a decrease in the level of the enzymatically active protein as well as to an unfavorable change in the level of several of its allosteric modulators. PMID:6237837

  12. Secular period decreasing of 17 detached chromospherically active binaries

    NASA Astrophysics Data System (ADS)

    Luo, C. Q.; Luo, Y. P.; Zhang, X. B.; Deng, L. C.; Luo, Z. Q.; Yang, S. Z.

    2008-10-01

    The long-term orbital period changes of detached chromospheric active binaries were surveyed. 17 of such systems are found to be undergoing secular period decreasing with the rates (dP/dt) of -3.05 × 10-9 to -3.77 × 10-5 days per year. The longer the orbital period, the more rapidly the period decreases. Following Stepien (1995), the period decreasing rate due to the angular momentum loss (AML) caused by magnetic wind is computed for each system. A comparison shows that the observed dP/dt's are obviously higher than that of the theoretical predictions by 1-3 orders of magnitude. It suggests that the magnetic wind is not likely the determinant mechanism driving the AML in close binaries.

  13. Secular period decreasing of detached chromospherically active binaries

    NASA Astrophysics Data System (ADS)

    Luo, Chang Qing; Zhang, Xiao Bin; Deng, Li Cai; Luo, Yang Ping; Luo, Zhi Quan; Yang, Shu Zheng

    2010-05-01

    The long-term orbital period changes of a large sample of detached chromospherically active binaries (CABs) were studied. Eleven such systems were found to be undergoing secular period decreases with the rates of -6.3×10-9 to -1.1×10-6 days per year. The period decreasing rates are found to vary depending on the orbital period. The longer the orbital period is, the more rapidly the period decreases. Following Stepien (Mon. Not. R. Astron. Soc. 274:1019, 1995), the period decreasing rate predicted by angular momentum loss (AML) caused by magnetic wind is computed for each system. A comparison between the observed and calculated period decreasing rates shows that the former values are obviously larger than the latter by 1-3 orders of magnitude. It suggests that the magnetic wind is not likely the determinant mechanism driving the AML in these systems. Finally, the orbital angular momentum (AM) and the rate of AML, dot{J} , are computed for each system. It shows that the AM have a similar change with the orbital period like d P/d t does, but logdot{J}/J presents no strict changing with the kinematical ages.

  14. Osteoblast differentiation is functionally associated with decreased AMP kinase activity.

    PubMed

    Kasai, Takayuki; Bandow, Kenjiro; Suzuki, Hiraku; Chiba, Norika; Kakimoto, Kyoko; Ohnishi, Tomokazu; Kawamoto, Shin-ichiro; Nagaoka, Eiichi; Matsuguchi, Tetsuya

    2009-12-01

    Osteoblasts, originating from mesenchymal stem cells, play a pivotal role in bone formation and mineralization. Several transcription factors including runt-related transcription factor 2 (Runx2) have been reported to be essential for osteoblast differentiation, whereas the cytoplasmic signal transduction pathways controlling the differentiation process have not been fully elucidated. AMP-activated protein kinase (AMPK) is a serine-threonine kinase generally regarded as a key regulator of cellular energy homeostasis, polarity, and division. Recent lines of evidence have indicated that the activity of the catalytic alpha subunit of AMPK is regulated through its phosphorylation by upstream AMPK kinases (AMPKKs) including LKB1. Here, we explored the role of AMPK in osteoblast differentiation using in vitro culture models. Phosphorylation of AMPKalpha was significantly decreased during osteoblastic differentiation in both primary osteoblasts and MC3T3-E1, a mouse osteoblastic cell line. Conversely, the terminal differentiation of primary osteoblasts and MC3T3-E1 cells, represented by matrix mineralization, was significantly inhibited by glucose restriction and stimulation with metformin, both of which are known activators of AMPK. Matrix mineralization of MC3T3-E1 cells was also inhibited by the forced expression of a constitutively active form of AMPKalpha. Metformin significantly inhibited gene expression of Runx2 along with osteoblast differentiation markers including osteocalcin (Ocn), bone sialo protein (Bsp), and osteopontin (Opn). Thus, our present data indicate that differentiation of osteoblasts is functionally associated with decreased AMPK activity. PMID:19725053

  15. US data show sharply rising drug-induced death rates.

    PubMed

    Paulozzi, Leonard J; Annest, Joseph L

    2007-04-01

    Substantial numbers of deaths are related to disease and injury resulting from the use of drugs, alcohol and firearms worldwide. Death rates associated with these exposures were compared with those from motor vehicle crashes in the US from 1979 to 2003 by race. Among Caucasians, drug-induced death rates rose sharply after 1990 and surpassed deaths involving alcohol and firearms in 2001 and 2002, respectively. Among African-Americans, drug-induced deaths surpassed alcohol-induced deaths for the first time in 1999. PMID:17446255

  16. Decreased Proteasomal Activity Causes Photoreceptor Degeneration in Mice

    PubMed Central

    Ando, Ryo; Noda, Kousuke; Tomaru, Utano; Kamoshita, Mamoru; Ozawa, Yoko; Notomi, Shoji; Hisatomi, Toshio; Noda, Mika; Kanda, Atsuhiro; Ishibashi, Tatsuro; Kasahara, Masanori; Ishida, Susumu

    2014-01-01

    Purpose. To study the retinal degeneration caused by decreased proteasomal activity in β5t transgenic (β5t-Tg) mice, an animal model of senescence acceleration. Methods. β5t-Tg mice and age-matched littermate control (WT) mice were used. Proteasomal activities and protein level of poly-ubiquitinated protein in retinal extracts were quantified. Fundus images of β5t-Tg mice were taken and their features were assessed. For histologic evaluation, the thicknesses of inner nuclear layer (INL), outer nuclear layer (ONL), and photoreceptor outer segment (OS) were measured. For functional analysis, ERG was recorded under scotopic and photopic illumination conditions. Immunofluorescence (IF) staining and TUNEL were performed to investigate the mechanism of photoreceptor degeneration. Results. Chymotrypsin-like activity was partially suppressed in retinal tissues of β5t-Tg mice. Retinal degenerative changes with arterial attenuation were present in β5t-Tg, but not in WT mice. Inner nuclear layer thickness showed no significant change between β5t-Tg and WT mice at 1, 3, 6, and 9 months of age. By contrast, thicknesses of ONL and OS in β5t-Tg mice were significantly decreased at 3, 6, and 9 months compared with those in WT mice. Electroretinograms showed decrease of scotopic a-wave amplitude in β5t-Tg mice. The number of TUNEL-positive cells in ONL were significantly increased in β5t-Tg mice and colocalized with apoptosis-inducing factor, but not with cleaved caspase-3 and -9, indicating that the photoreceptor cell death was induced via a caspase-independent pathway. Conclusions. The current data showed that impaired proteasomal function causes photoreceptor degeneration. PMID:24994871

  17. Decreased Prolidase Activity in Patients with Posttraumatic Stress Disorder

    PubMed Central

    Bulut, Mahmut; Atli, Abdullah; Kaplan, İbrahim; Kaya, Mehmet Cemal; Bez, Yasin; Özdemir, Pınar Güzel; Sır, Aytekin

    2016-01-01

    Objective Many neurochemical systems have been implicated in the development of Posttraumatic Stress Disorder (PTSD). The prolidase enzyme is a cytosolic exopeptidase that detaches proline or hydroxyproline from the carboxyl terminal position of dipeptides. Prolidase has important biological effects, and to date, its role in the etiology of PTSD has not been studied. In the present study, we aimed to evaluate prolidase activity in patients with PTSD. Methods The study group consisted of patients who were diagnosed with PTSD after the earthquake that occurred in the province of Van in Turkey in 2011 (n=25); the first control group consisted of patients who experienced the earthquake but did not show PTSD symptoms (n=26) and the second control group consisted of patients who have never been exposed to a traumatic event (n=25). Prolidase activities in the patients and the control groups were determined by the ELISA method using commercial kits. Results Prolidase activity in the patient group was significantly lower when compared to the control groups. Prolidase activity was also significantly lower in the traumatized healthy subjects compared to the other healthy group (p<0.01). Conclusion The findings of the present study suggest that the decrease in prolidase activity may have neuroprotective effects in patients with PTSD. PMID:27482243

  18. Decreased dopamine activity predicts relapse in methamphetamine abusers

    SciTech Connect

    Wang G. J.; Wang, G.-J.; Smith, L.; Volkow, N.D.; Telang, F.; Logan, J.; Tomasi, D.; Wong, C.T.; Hoffman, W.; Jayne, M.; Alia-Klein, N.; Thanos, P.; Fowler, J.S.

    2011-01-20

    Studies in methamphetamine (METH) abusers showed that the decreases in brain dopamine (DA) function might recover with protracted detoxification. However, the extent to which striatal DA function in METH predicts recovery has not been evaluated. Here we assessed whether striatal DA activity in METH abusers is associated with clinical outcomes. Brain DA D2 receptor (D2R) availability was measured with positron emission tomography and [{sup 11}C]raclopride in 16 METH abusers, both after placebo and after challenge with 60 mg oral methylphenidate (MPH) (to measure DA release) to assess whether it predicted clinical outcomes. For this purpose, METH abusers were tested within 6 months of last METH use and then followed up for 9 months of abstinence. In parallel, 15 healthy controls were tested. METH abusers had lower D2R availability in caudate than in controls. Both METH abusers and controls showed decreased striatal D2R availability after MPH and these decreases were smaller in METH than in controls in left putamen. The six METH abusers who relapsed during the follow-up period had lower D2R availability in dorsal striatum than in controls, and had no D2R changes after MPH challenge. The 10 METH abusers who completed detoxification did not differ from controls neither in striatal D2R availability nor in MPH-induced striatal DA changes. These results provide preliminary evidence that low striatal DA function in METH abusers is associated with a greater likelihood of relapse during treatment. Detection of the extent of DA dysfunction may be helpful in predicting therapeutic outcomes.

  19. Deferred Feedback Sharply Dissociates Implicit and Explicit Category Learning

    PubMed Central

    Smith, J. David; Boomer, Joseph; Zakrzewski, Alexandria; Roeder, Jessica; Church, Barbara A.; Ashby, F. Gregory

    2014-01-01

    The controversy over multiple category-learning systems is reminiscent of the controversy over multiple memory systems. Researchers continue to seek paradigms to sharply dissociate explicit category-learning processes (featuring verbalizeable category rules) from implicit category-learning processes (featuring learned stimulus-response associations that lie outside of declarative cognition). We contribute a new dissociative paradigm, adapting from comparative psychology the technique of deferred-rearranged reinforcement. Participants learned matched category tasks that had either a one-dimensional, rule-based solution or a multidimensional, information-integration solution. They received feedback only after each block of trials, with their positive outcomes grouped and their negative outcomes grouped. Deferred-rearranged reinforcement qualitatively eliminated implicit, information-integration category learning. It left intact explicit, rule-based category learning. Moreover, implicit category learners—facing deferred-rearranged reinforcement—turned by default and information-processing necessity to rule-based strategies that poorly suited their nominal category task. The results represent one of the strongest explicit-implicit dissociations yet seen in the categorization literature. PMID:24335605

  20. Deferred feedback sharply dissociates implicit and explicit category learning.

    PubMed

    Smith, J David; Boomer, Joseph; Zakrzewski, Alexandria C; Roeder, Jessica L; Church, Barbara A; Ashby, F Gregory

    2014-02-01

    The controversy over multiple category-learning systems is reminiscent of the controversy over multiple memory systems. Researchers continue to seek paradigms to sharply dissociate explicit category-learning processes (featuring category rules that can be verbalized) from implicit category-learning processes (featuring learned stimulus-response associations that lie outside declarative cognition). We contribute a new dissociative paradigm, adapting the technique of deferred-rearranged reinforcement from comparative psychology. Participants learned matched category tasks that had either a one-dimensional, rule-based solution or a multidimensional, information-integration solution. They received feedback either immediately or after each block of trials, with the feedback organized such that positive outcomes were grouped and negative outcomes were grouped (deferred-rearranged reinforcement). Deferred reinforcement qualitatively eliminated implicit, information-integration category learning. It left intact explicit, rule-based category learning. Moreover, implicit-category learners facing deferred-rearranged reinforcement turned by default and information-processing necessity to rule-based strategies that poorly suited their nominal category task. The results represent one of the strongest explicit-implicit dissociations yet seen in the categorization literature. PMID:24335605

  1. Angular Dependence of the Sharply Directed Emission in Organic Light Emitting Diodes with a Microcavity Structure

    NASA Astrophysics Data System (ADS)

    Juang, Fuh-Shyang; Laih, Li-Hong; Lin, Chia-Ju; Hsu, Yu-Jen

    2002-04-01

    An optical microcavity structure was used in organic light emitting diodes. We succeeded in fabricating a device with sharply directed emission vertical to an emission surface. The device shows green emission (bright green) at normal position which turns red (bright red) at the 30° position. The angular dependences of the electroluminescence and the emission patterns versus viewing angle in the microcavity OLED were studied. The resonance wavelength λ decreases with viewing angle. The emission peak at 490 nm is directed vertically to the device surface more sharply than that at 632 nm. The microcavity structure shows non-Lambertian emission. The spectra appear more blue off-axis and the intensity of the green-like emission decreases rapidly with increasing viewing angle. A significantly narrow linewidth of 7.4 nm in the 0° direction for the 490 nm peak was observed. The full-widths at half maximum (FWHM) of the green-like spectra are much smaller than those of the red-like ones, indicating better cavity quality.

  2. Decreased physical activity in adults with bronchial asthma.

    PubMed

    van 't Hul, Alex J; Frouws, Siete; van den Akker, Edmee; van Lummel, Rob; Starrenburg-Razenberg, Anja; van Bruggen, Alie; Braunstahl, Gert-Jan; In 't Veen, Johannes C C M

    2016-05-01

    Contradictory findings have been reported in the literature on the impact that bronchial asthma may have on habitual physical activity. The present study was designed to compare physical activity, objectively measured with an activity monitor, between adults with bronchial asthma and apparently healthy controls. Valid registrations of physical activity were obtained in 226 patients with asthma and 201 healthy controls. A multiple general linear model was used to test between group differences and to correct for confounding of the results due to between group differences in BMI and employment status. In the patients, statistically significantly lower values were found for average steps/day (-1202; CI -1893 to -511; P = 0.001), physical activity level based on an estimate of a person's total energy expenditure (-0.035; CI -0.067 to -0.003); P = 0.034) and daily time (minutes) spent at vigorous intensive physical activity (-11; CI -17 to -1; P < 0.001). In addition, weak albeit significant correlations were found between measures of physical activity and asthma control. We conclude that bronchial asthma in adults is associated with a significant reduction in physical activity as compared to apparently healthy controls and is accompanied by a lower perceived health status. This is in support of the postulation of PA as potential pathway to better the outcome of care for these patients. PMID:27109814

  3. Insulin-induced decrease in protein phosphorylation in rat adipocytes not explained by decreased A-kinase activity

    SciTech Connect

    Egan, J.J.; Greenberg, A.S.; Chang, M.K.; Londos, C.

    1987-05-01

    In isolated rat adipocytes, insulin inhibits lipolysis to a greater extent than would be predicted by the decrease in (-/+)cAMP activity ratio of cAMP-dependent protein kinase (A-kinase), from which it was speculated that insulin promotes the dephosphorylation of hormone-sensitive lipase. They have examined the phosphorylation state of cellular proteins under conditions of varying A-kinase activities in the presence and absence of insulin. Protein phosphorylation was determined by SDS-PAGE electrophoresis of extracts from /sup 32/P-loaded cells; glycerol and A-kinase activity ratios were measured in the cytosolic extracts from control, non-radioactive cells. Increased protein phosphorylation in general occurred over the same range of A-kinase activity ratios, 0.1-0.3, associated with increased glycerol release. The insulin-induced decrease in lipolysis was associated with a decrease in the /sup 32/P content of several proteins, an effect not explained by the modest reduction in A-kinase activity by insulin. This effect of insulin on protein phosphorylation was lost as the A-kinase activity ratios exceeded 0.5. The results suggest that insulin promotes the dephosphorylation of those adipocyte proteins which are subject to phosphorylation by A-kinase.

  4. Chronic electrical stimulation homeostatically decreases spontaneous activity, but paradoxically increases evoked network activity

    PubMed Central

    Goel, Anubhuti

    2013-01-01

    Neural dynamics generated within cortical networks play a fundamental role in brain function. However, the learning rules that allow recurrent networks to generate functional dynamic regimes, and the degree to which these regimes are themselves plastic, are not known. In this study we examined plasticity of network dynamics in cortical organotypic slices in response to chronic changes in activity. Studies have typically manipulated network activity pharmacologically; we used chronic electrical stimulation to increase activity in in vitro cortical circuits in a more physiological manner. Slices were stimulated with “implanted” electrodes for 4 days. Chronic electrical stimulation or treatment with bicuculline decreased spontaneous activity as predicted by homeostatic learning rules. Paradoxically, however, whereas bicuculline decreased evoked network activity, chronic stimulation actually increased the likelihood that evoked stimulation elicited polysynaptic activity, despite a decrease in evoked monosynaptic strength. Furthermore, there was an inverse correlation between spontaneous and evoked activity, suggesting a homeostatic tradeoff between spontaneous and evoked activity. Within-slice experiments revealed that cells close to the stimulated electrode exhibited more evoked polysynaptic activity and less spontaneous activity than cells close to a control electrode. Collectively, our results establish that chronic stimulation changes the dynamic regimes of networks. In vitro studies of homeostatic plasticity typically lack any external input, and thus neurons must rely on “spontaneous” activity to reach homeostatic “set points.” However, in the presence of external input we propose that homeostatic learning rules seem to shift networks from spontaneous to evoked regimes. PMID:23324317

  5. Selective GPER activation decreases proliferation and activates apoptosis in tumor Leydig cells.

    PubMed

    Chimento, A; Casaburi, I; Bartucci, M; Patrizii, M; Dattilo, R; Avena, P; Andò, S; Pezzi, V; Sirianni, R

    2013-01-01

    We have previously shown that estrogens binding to estrogen receptor (ER) α increase proliferation of Leydig tumor cells. Estrogens can also bind to G protein-coupled ER (GPER) and activation of this receptor can either increase or decrease cell proliferation of several tumor types. The aim of this study was to investigate GPER expression in R2C rat tumor Leydig cells, evaluate effects of its activation on Leydig tumor cell proliferation and define the molecular mechanisms triggered in response to its activation. R2C cells express GPER and its activation, using the specific ligand G-1, is associated with decreased cell proliferation and initiation of apoptosis. Apoptosis after G-1 treatment was asserted by appearance of DNA condensation and fragmentation, decrease in Bcl-2 and increase in Bax expression, cytochrome c release, caspase and poly (ADP-ribose) polymerase-1 (PARP-1) activation. These effects were dependent on GPER activation because after silencing of the gene, using a specific small interfering RNA, cyt c release, PARP-1 activation and decrease in cell proliferation were abrogated. These events required a rapid, however, sustained extracellular regulated kinase 1/2 activation. G-1 was able to decrease the growth of R2C xenograft tumors in CD1 nude mice while increasing the number of apoptotic cells. In addition, in vivo administration of G-1 to male CD1 mice did not cause any alteration in testicular morphology, while cisplatin, the cytotoxic drug currently used for the therapy of Leydig tumors, severely damaged testicular structure, an event associated with infertility in cisplatin-treated patients. These observations indicate that GPER targeting for the therapy of Leydig cell tumor may represent a good alternative to cisplatin to preserve fertility in Leydig tumor patients. PMID:23907461

  6. Selective GPER activation decreases proliferation and activates apoptosis in tumor Leydig cells

    PubMed Central

    Chimento, A; Casaburi, I; Bartucci, M; Patrizii, M; Dattilo, R; Avena, P; Andò, S; Pezzi, V; Sirianni, R

    2013-01-01

    We have previously shown that estrogens binding to estrogen receptor (ER) α increase proliferation of Leydig tumor cells. Estrogens can also bind to G protein-coupled ER (GPER) and activation of this receptor can either increase or decrease cell proliferation of several tumor types. The aim of this study was to investigate GPER expression in R2C rat tumor Leydig cells, evaluate effects of its activation on Leydig tumor cell proliferation and define the molecular mechanisms triggered in response to its activation. R2C cells express GPER and its activation, using the specific ligand G-1, is associated with decreased cell proliferation and initiation of apoptosis. Apoptosis after G-1 treatment was asserted by appearance of DNA condensation and fragmentation, decrease in Bcl-2 and increase in Bax expression, cytochrome c release, caspase and poly (ADP-ribose) polymerase-1 (PARP-1) activation. These effects were dependent on GPER activation because after silencing of the gene, using a specific small interfering RNA, cyt c release, PARP-1 activation and decrease in cell proliferation were abrogated. These events required a rapid, however, sustained extracellular regulated kinase 1/2 activation. G-1 was able to decrease the growth of R2C xenograft tumors in CD1 nude mice while increasing the number of apoptotic cells. In addition, in vivo administration of G-1 to male CD1 mice did not cause any alteration in testicular morphology, while cisplatin, the cytotoxic drug currently used for the therapy of Leydig tumors, severely damaged testicular structure, an event associated with infertility in cisplatin-treated patients. These observations indicate that GPER targeting for the therapy of Leydig cell tumor may represent a good alternative to cisplatin to preserve fertility in Leydig tumor patients. PMID:23907461

  7. Increased Visual Stimulation Systematically Decreases Activity in Lateral Intermediate Cortex.

    PubMed

    Nasr, Shahin; Stemmann, Heiko; Vanduffel, Wim; Tootell, Roger B H

    2015-10-01

    Previous studies have attributed multiple diverse roles to the posterior superior temporal cortex (STC), both visually driven and cognitive, including part of the default mode network (DMN). Here, we demonstrate a unifying property across this multimodal region. Specifically, the lateral intermediate (LIM) portion of STC showed an unexpected feature: a progressively decreasing fMRI response to increases in visual stimulus size (or number). Such responses are reversed in sign, relative to well-known responses in classic occipital temporal visual cortex. In LIM, this "reversed" size function was present across multiple object categories and retinotopic eccentricities. Moreover, we found a significant interaction between the LIM size function and the distribution of subjects' attention. These findings suggest that LIM serves as a part of the DMN. Further analysis of functional connectivity, plus a meta-analysis of previous fMRI results, suggests that LIM is a heterogeneous area including different subdivisions. Surprisingly, analogous fMRI tests in macaque monkeys did not reveal a clear homolog of LIM. This interspecies discrepancy supports the idea that self-referential thinking and theory of mind are more prominent in humans, compared with monkeys. PMID:25480358

  8. Increased Visual Stimulation Systematically Decreases Activity in Lateral Intermediate Cortex

    PubMed Central

    Nasr, Shahin; Stemmann, Heiko; Vanduffel, Wim; Tootell, Roger B. H.

    2015-01-01

    Previous studies have attributed multiple diverse roles to the posterior superior temporal cortex (STC), both visually driven and cognitive, including part of the default mode network (DMN). Here, we demonstrate a unifying property across this multimodal region. Specifically, the lateral intermediate (LIM) portion of STC showed an unexpected feature: a progressively decreasing fMRI response to increases in visual stimulus size (or number). Such responses are reversed in sign, relative to well-known responses in classic occipital temporal visual cortex. In LIM, this “reversed” size function was present across multiple object categories and retinotopic eccentricities. Moreover, we found a significant interaction between the LIM size function and the distribution of subjects' attention. These findings suggest that LIM serves as a part of the DMN. Further analysis of functional connectivity, plus a meta-analysis of previous fMRI results, suggests that LIM is a heterogeneous area including different subdivisions. Surprisingly, analogous fMRI tests in macaque monkeys did not reveal a clear homolog of LIM. This interspecies discrepancy supports the idea that self-referential thinking and theory of mind are more prominent in humans, compared with monkeys. PMID:25480358

  9. Decrease in T Cell Activation and Calcium Flux during Clinorotation

    NASA Technical Reports Server (NTRS)

    Sams, Clarence; Holtzclaw, J. David

    2006-01-01

    We investigated the effect of altered gravitational environments on T cell activation. We isolated human, naive T cells (CD3+CD14-CD19-CD16-CD56-CD25-CD69-CD45RA-) following IRB approved protocols. These purified T cells were then incubated with 6 mm polystyrene beads coated with OKT3 (Ortho Biotech, Raritan, NJ) and antiCD28 (Becton Dickinson (BD), San Jose, CA) at 37 C for 24 hours. Antibodies were at a 1:1 ratio and the bead-to-cell ratio was 2:1. Four incubation conditions existed: 1) static or "1g"; 2) centrifugation at 10 relative centrifugal force (RCF) or "10g"; 3) clinorotation at 25 RPM (functional weightlessness or "0g"); and 4) clinorotation at 80 RPM ("1g" plus net shear force approx.30 dynes/sq cm). Following incubation, T cells were stained for CD25 expression (BD) and intracellular calcium (ratio of Fluo4 to Fura Red, Molecular Probes, Eugene, OR) and analyzed by flow cytometry (Coulter EPICS XL, Miami, FL). Results: Static or "1g" T cells had the highest level of CD25 expression and intracellular calcium. T cells centrifuged at 10 RCF ("10g") had lower CD25 expression and calcium levels compared to the static control. However, cells centrifuged at 10 RCF had higher CD25 expression and calcium levels than those exposed to 24 RPM clinorotation ("0g"). T cells exposed to 24 RPM clinorotation had lower CD25 expression, but the approximately the same calcium levels than T cells exposed to 80 RPM clinorotation. These data suggest that stress-activated calcium channel exist in T cells and may play a role during T cell activation.

  10. Acutely Decreased Thermoregulatory Energy Expenditure or Decreased Activity Energy Expenditure Both Acutely Reduce Food Intake in Mice

    PubMed Central

    Kaiyala, Karl J.; Morton, Gregory J.; Thaler, Joshua P.; Meek, Thomas H.; Tylee, Tracy; Ogimoto, Kayoko; Wisse, Brent E.

    2012-01-01

    Despite the suggestion that reduced energy expenditure may be a key contributor to the obesity pandemic, few studies have tested whether acutely reduced energy expenditure is associated with a compensatory reduction in food intake. The homeostatic mechanisms that control food intake and energy expenditure remain controversial and are thought to act over days to weeks. We evaluated food intake in mice using two models of acutely decreased energy expenditure: 1) increasing ambient temperature to thermoneutrality in mice acclimated to standard laboratory temperature or 2) exercise cessation in mice accustomed to wheel running. Increasing ambient temperature (from 21°C to 28°C) rapidly decreased energy expenditure, demonstrating that thermoregulatory energy expenditure contributes to both light cycle (40±1%) and dark cycle energy expenditure (15±3%) at normal ambient temperature (21°C). Reducing thermoregulatory energy expenditure acutely decreased food intake primarily during the light cycle (65±7%), thus conflicting with the delayed compensation model, but did not alter spontaneous activity. Acute exercise cessation decreased energy expenditure only during the dark cycle (14±2% at 21°C; 21±4% at 28°C), while food intake was reduced during the dark cycle (0.9±0.1 g) in mice housed at 28°C, but during the light cycle (0.3±0.1 g) in mice housed at 21°C. Cumulatively, there was a strong correlation between the change in daily energy expenditure and the change in daily food intake (R2 = 0.51, p<0.01). We conclude that acutely decreased energy expenditure decreases food intake suggesting that energy intake is regulated by metabolic signals that respond rapidly and accurately to reduced energy expenditure. PMID:22936977

  11. Inhibition of the central melanocortin system decreases brown adipose tissue activity[S

    PubMed Central

    Kooijman, Sander; Boon, Mariëtte R.; Parlevliet, Edwin T.; Geerling, Janine J.; van de Pol, Vera; Romijn, Johannes A.; Havekes, Louis M.; Meurs, Illiana; Rensen, Patrick C. N.

    2014-01-01

    The melanocortin system is an important regulator of energy balance, and melanocortin 4 receptor (MC4R) deficiency is the most common monogenic cause of obesity. We investigated whether the relationship between melanocortin system activity and energy expenditure (EE) is mediated by brown adipose tissue (BAT) activity. Therefore, female APOE*3-Leiden.CETP transgenic mice were fed a Western-type diet for 4 weeks and infused intracerebroventricularly with the melanocortin 3/4 receptor (MC3/4R) antagonist SHU9119 or vehicle for 2 weeks. SHU9119 increased food intake (+30%) and body fat (+50%) and decreased EE by reduction in fat oxidation (−42%). In addition, SHU9119 impaired the uptake of VLDL-TG by BAT. In line with this, SHU9119 decreased uncoupling protein-1 levels in BAT (−60%) and induced large intracellular lipid droplets, indicative of severely disturbed BAT activity. Finally, SHU9119-treated mice pair-fed to the vehicle-treated group still exhibited these effects, indicating that MC4R inhibition impairs BAT activity independent of food intake. These effects were not specific to the APOE*3-Leiden.CETP background as SHU9119 also inhibited BAT activity in wild-type mice. We conclude that inhibition of central MC3/4R signaling impairs BAT function, which is accompanied by reduced EE, thereby promoting adiposity. We anticipate that activation of MC4R is a promising strategy to combat obesity by increasing BAT activity. PMID:25016380

  12. Effects of decreasing sedentary behaviors on activity choice in obese children.

    PubMed

    Epstein, L H; Saelens, B E; Myers, M D; Vito, D

    1997-03-01

    In this study, methods of decreasing highly preferred sedentary behaviors were compared and the consequent effects on activity choice were examined. Following free choice of sedentary and physical activities, 34 obese children either were positively reinforced for decreases in high-preference sedentary activity, were punished for high-preference sedentary activity, had access to high-preference sedentary activity restricted, or had no contingencies on activity (control group). Children randomized to reinforcement and punishment were more physically active on intervention days than the control group. Liking for targeted sedentary activity decreased in the reinforcement group, but increased in the restriction and control groups. Results suggest that reinforcing decreases in high-preference sedentary activity can increase physical activity and decrease liking for targeted sedentary activities. PMID:9269880

  13. An Asp7Gly substitution in PPARG is associated with decreased transcriptional activation activity.

    PubMed

    Hua, Liushuai; Wang, Jing; Li, Mingxun; Sun, Xiaomei; Zhang, Liangzhi; Lei, Chuzhao; Lan, Xianyong; Fang, Xingtang; Zhao, Xin; Chen, Hong

    2014-01-01

    As the master regulator of adipogenesis, peroxisome proliferator-activated receptor gamma (PPARG) is required for the accumulation of adipose tissue and hence contributes to obesity. A previous study showed that the substitution of +20A>G in PPARG changed the 7(th) amino acid from Asp to Gly, creating a mutant referred to as PPARG Asp7Gly. In this study, association analysis indicated that PPARG Asp7Gly was associated with lower body height, body weight and heart girth in cattle (P<0.05). Overexpression of PPARG in NIH3T3-L1 cells showed that the Asp7Gly substitution may cause a decrease in its adipogenic ability and the mRNA levels of CIDEC (cell death-inducing DFFA-like effector c) and aP2, which are all transcriptionally activated by PPARG during adipocyte differentiation. A dual-luciferase reporter assay was used to analyze the promoter activity of CIDEC. The results confirmed that the mutant PPARG exhibited weaker transcriptional activation activity than the wild type (P<0.05). These findings likely explain the associations between the Asp7Gly substitution and the body measurements. Additionally, the Asp7Gly mutation may be used in molecular marker assisted selection (MAS) of cattle breeding in the future. PMID:24466299

  14. Nonexistence of sharply covariant mutually unbiased bases in odd prime dimensions

    NASA Astrophysics Data System (ADS)

    Zhu, Huangjun

    2015-09-01

    Mutually unbiased bases (MUB) are useful in a number of research areas. The symmetry of MUB is an elusive and interesting subject. A (complete set of) MUB in dimension d is sharply covariant if it can be generated by a group of order d (d +1 ) from a basis state. Such MUB, if they exist, would be most appealing to theoretical studies and practical applications. Unfortunately, they seem to be quite rare. Here we prove that no MUB in odd prime dimensions is sharply covariant, by virtue of clever applications of Mersenne primes, Galois fields, and Frobenius groups. This conclusion provides valuable insight about the symmetry of MUB and the geometry of quantum state space. It complements and strengthens the earlier result of the author that only two stabilizer MUB are sharply covariant. Our study leads to the conjecture that no MUB other than those in dimensions 2 and 4 is sharply covariant.

  15. Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1.

    PubMed

    Shmuel, Amir; Augath, Mark; Oeltermann, Axel; Logothetis, Nikos K

    2006-04-01

    Most functional brain imaging studies use task-induced hemodynamic responses to infer underlying changes in neuronal activity. In addition to increases in cerebral blood flow and blood oxygenation level-dependent (BOLD) signals, sustained negative responses are pervasive in functional imaging. The origin of negative responses and their relationship to neural activity remain poorly understood. Through simultaneous functional magnetic resonance imaging and electrophysiological recording, we demonstrate a negative BOLD response (NBR) beyond the stimulated regions of visual cortex, associated with local decreases in neuronal activity below spontaneous activity, detected 7.15 +/- 3.14 mm away from the closest positively responding region in V1. Trial-by-trial amplitude fluctuations revealed tight coupling between the NBR and neuronal activity decreases. The NBR was associated with comparable decreases in local field potentials and multiunit activity. Our findings indicate that a significant component of the NBR originates in neuronal activity decreases. PMID:16547508

  16. Decrease of total activity with time at long distances from a nuclear accident or explosion.

    PubMed

    Dolejs, Josef

    2005-05-01

    Two data groups were analyzed: (1) the exposure rate in the former Czechoslovakia after the Chernobyl accident in 1986, and (2) the decrease of beta activity of an atmospheric fallout sample taken in Bratislava during 24 h on 30 May 1965. Both quantities decreased with the first power of time. This pattern of decrease is explained by applying the same mathematical formalism as is also used to describe the decrease in postnatal mortality with age. Following this formalism, the decrease of total activity with the first power of time could be seen as a consequence of a log-normal distribution of decay constants in the fallout. This differs slightly from earlier results that show the total activity decreasing with a power of 1.2 immediately after the nuclear explosion. PMID:15818480

  17. A decrease in solar and geomagnetic activity from cycle 19 to cycle 24

    NASA Astrophysics Data System (ADS)

    Gvishiani, A. D.; Starostenko, V. I.; Sumaruk, Yu. P.; Soloviev, A. A.; Legostaeva, O. V.

    2015-05-01

    Variations in the solar and geomagnetic activity from cycle 19 to cycle 24 were considered based on data from the magnetic observatories of the Russian-Ukrainian INTERMAGNET segment and international centers of data on solar-terrestrial physics. It has been indicated that activity decreases over the course of time. This is especially evident during the cycle 24 growth phase. The possible causes and consequences of a decrease in geomagnetic activity were analyzed.

  18. Decreased ADAMTS 13 Activity is Associated With Disease Severity and Outcome in Pediatric Severe Sepsis

    PubMed Central

    Lin, Jainn-Jim; Chan, Oi-Wa; Hsiao, Hsiang-Ju; Wang, Yu; Hsia, Shao-Hsuan; Chiu, Cheng-Hsun

    2016-01-01

    Abstract Decreased ADAMTS 13 activity has been reported in severe sepsis and in sepsis-induced disseminated intravascular coagulation. This study aimed to investigate the role of ADAMTS 13 in different pediatric sepsis syndromes and evaluate its relationship with disease severity and outcome. We prospectively collected cases of sepsis treated in a pediatric intensive care unit, between July 2012 and June 2014 in Chang Gung Children's Hospital in Taoyuan, Taiwan. Clinical characteristics and ADAMTS-13 activity were analyzed. All sepsis syndromes had decreased ADAMTS 13 activity on days 1 and 3 of admission compared to healthy controls. Patients with septic shock had significantly decreased ADAMTS 13 activity on days 1 and 3 compared to those with sepsis and severe sepsis. There was a significant negative correlation between ADAMTS 13 activity on day 1 and day 1 PRISM-II, PELOD, P-MOD, and DIC scores. Patients with mortality had significantly decreased ADAMTS 13 activity on day 1 than survivors, but not on day 3. Different pediatric sepsis syndromes have varying degrees of decreased ADAMTS 13 activity. ADAMTS 13 activity is strongly negatively correlated with disease severity of pediatric sepsis syndrome, whereas decreased ADAMTS 13 activity on day 1 is associated with increased risk of mortality. PMID:27100422

  19. Computer Simulation for the Crossing Time in a Diploid, Asymmetric, Sharply-Peaked Landscape in the Infinite Population Limit

    NASA Astrophysics Data System (ADS)

    Gill, Wonpyong

    2013-12-01

    This study calculated the crossing time in the diploid mutation-selection model in an infinite population limit for various dominance parameters, h, and selective advantages, by switching on a diploid, asymmetric, sharply-peaked landscape, from an initial state which is the steady state in a diploid, sharply-peaked landscape. The crossing time for h < 1 was found to diverge at the critical fitness parameter, which increased with increasing selective advantage and decreased with increasing sequence length. When the sequence length was increased with a fixed extension parameter, there was no crossing time for h < 1 when the sequence length was longer than the critical sequence length, which increased with increasing selective advantage. The crossing time for h ≤ 1 was found to be an exponentially increasing function of the sequence length, and the crossing time for h > 1 became saturated at a long sequence length. The crossing time decreased with increasing selective advantage, mainly because the larger selective advantage caused the increase in relative density of the reversal allele to grow exponentially at an earlier time.

  20. Can Email Prompting Minimize the Decrease in Wintertime Physical Activity Levels?

    ERIC Educational Resources Information Center

    Liguori, Gary; Mozumdar, Arupendra

    2007-01-01

    The primary purpose of this study is to evaluate the effectiveness of using email prompts to attenuate the decrease of physical activity in adults during a winter season. In addition, the secondary purposes were (1) to evaluate the effectiveness of email prompts at increasing motivation towards physical activity and (2) to evaluate the awareness…

  1. Correlations Decrease with Propagation of Spiking Activity in the Mouse Barrel Cortex

    PubMed Central

    Ranganathan, Gayathri Nattar; Koester, Helmut Joachim

    2011-01-01

    Propagation of suprathreshold spiking activity through neuronal populations is important for the function of the central nervous system. Neural correlations have an impact on cortical function particularly on the signaling of information and propagation of spiking activity. Therefore we measured the change in correlations as suprathreshold spiking activity propagated between recurrent neuronal networks of the mammalian cerebral cortex. Using optical methods we recorded spiking activity from large samples of neurons from two neural populations simultaneously. The results indicate that correlations decreased as spiking activity propagated from layer 4 to layer 2/3 in the rodent barrel cortex. PMID:21629764

  2. Salivary gland extracts of partially fed Dermacentor reticulatus ticks decrease natural killer cell activity in vitro.

    PubMed Central

    Kubes, M; Fuchsberger, N; Labuda, M; Zuffová, E; Nuttall, P A

    1994-01-01

    The salivary glands and saliva of ticks (Arachnida, Acari, Ixodida) play a vital role in blood feeding, including manipulation of the host's immune response to tick infestation. Furthermore, a diverse number of tick-borne pathogens are transmitted to vertebrate hosts via tick saliva. A factor synthesized in the salivary glands of feeding ticks potentiates the transmission of certain tick-borne viruses. We show that salivary gland extracts (SGE) derived from Dermacentor reticulatus female ticks fed for 6 days on laboratory mice (SGED6) induced a decrease in the natural killer (NK) activity of effector cells obtained from 16 healthy blood donors. The decreased activity ranged from 14 to 69% of NK activity observed with the respective untreated effector cells. Such a decrease was not observed after treatment of effector cells with SGE from unfed ticks. Ten-fold dilution of SGED6 significantly reduced the capacity to decrease NK activity and a further 10-fold dilution almost eliminated the effect. After addition of IFN-alpha 2, the SGED6-induced decrease in NK activity was restored to activity levels approaching those of untreated cells. The apparent reversibility of the inhibition indicates that the effect of SGED6 on NK activity was not due to cytotoxicity. The results demonstrate the presence of a factor(s) in the salivary gland products of feeding D. reticulatus female ticks that influences human NK activity in vitro. These data suggest a possible mechanism by which tick SGE potentiates the transmission of some tick-borne viruses through suppression of NK activity. PMID:8045588

  3. Noise power associated with decreased task-induced variability of brain electrical activity in schizophrenia.

    PubMed

    Molina, Vicente; Bachiller, Alejandro; Suazo, Vanessa; Lubeiro, Alba; Poza, Jesús; Hornero, Roberto

    2016-02-01

    In schizophrenia, both increased baseline metabolic and electroencephalographic (EEG) activities as well as decreased task-related modulation of neural dynamics have been reported. Noise power (NP) can measure the background EEG activity during task performance, and Shannon entropy (SE) is useful for quantifying the global modulation of EEG activity with a high temporal resolution. In this study, we have assessed the possible relationship between increased NP in theta and gamma bands and decreased SE modulation in 24 patients with schizophrenia and 26 controls over the parietal and central regions during a P300 task. SE modulation was calculated as the change from baseline to the active epoch (i.e., 150-550 ms following the target stimulus onset). Patients with schizophrenia displayed statistically significant higher NP values and lower SE modulation than healthy controls. We found a significant association between gamma NP and SE in all of the participants. Specifically, a NP increase in the gamma band was followed by a decrease in SE change. These results support the notion that an excess of gamma activity, unlocked to the task being performed, is accompanied by a decreased modulation of EEG activity in schizophrenia. PMID:25547316

  4. Prenatal Protein Malnutrition Decreases KCNJ3 and 2DG Activity in Rat Prefrontal Cortex

    PubMed Central

    Amaral, A.C.; Jakovcevski, M.; McGaughy, J.A.; Calderwood, S.K.; Mokler, D.J.; Rushmore, R.J.; Galler, J.R.; Akbarian, S.A.; Rosene, D.L.

    2014-01-01

    Prenatal protein malnutrition (PPM) in rats causes enduring changes in brain and behavior including increased cognitive rigidity and decreased inhibitory control. A preliminary gene microarray screen of PPM rat prefrontal cortex (PFC) identified alterations in KCNJ3 (GIRK1/Kir3.1), a gene important for regulating neuronal excitability. Follow-up with polymerase chain reaction and Western blot showed decreased KCNJ3 expression in PFC, but not hippocampus or brainstem. To verify localization of the effect to the PFC, baseline regional brain activity was assessed with 14C-2-deoxyglucose. Results showed decreased activation in PFC but not hippocampus. Together these findings point to the unique vulnerability of the PFC to the nutritional insult during early brain development, with enduring effects in adulthood on KCNJ3 expression and baseline metabolic activity. PMID:25446346

  5. Prenatal protein malnutrition decreases KCNJ3 and 2DG activity in rat prefrontal cortex.

    PubMed

    Amaral, A C; Jakovcevski, M; McGaughy, J A; Calderwood, S K; Mokler, D J; Rushmore, R J; Galler, J R; Akbarian, S A; Rosene, D L

    2015-02-12

    Prenatal protein malnutrition (PPM) in rats causes enduring changes in brain and behavior including increased cognitive rigidity and decreased inhibitory control. A preliminary gene microarray screen of PPM rat prefrontal cortex (PFC) identified alterations in KCNJ3 (GIRK1/Kir3.1), a gene important for regulating neuronal excitability. Follow-up with polymerase chain reaction and Western blot showed decreased KCNJ3 expression in the PFC, but not hippocampus or brainstem. To verify localization of the effect to the PFC, baseline regional brain activity was assessed with (14)C-2-deoxyglucose. Results showed decreased activation in the PFC but not hippocampus. Together these findings point to the unique vulnerability of the PFC to the nutritional insult during early brain development, with enduring effects in adulthood on KCNJ3 expression and baseline metabolic activity. PMID:25446346

  6. Decreasing excessive media usage while increasing physical activity: a single-subject research study.

    PubMed

    Larwin, Karen H; Larwin, David A

    2008-11-01

    The Kaiser Family Foundation released a report entitled Kids and Media Use in the United States that concluded that children's use of media--including television, computers, Internet, video games, and phones--may be one of the primary contributor's to the poor fitness and obesity of many of today's adolescents. The present study examines the potential of increasing physical activity and decreasing media usage in a 14-year-old adolescent female by making time spent on the Internet and/or cell phone contingent on physical activity. Results of this investigation indicate that requiring the participant to earn her media-usage time did correspond with an increase in physical activity and a decrease in media-usage time relative to baseline measures. Five weeks after cessation of the intervention, the participant's new level of physical activity was still being maintained. One year after the study, the participant's level of physical activity continued to increase. PMID:18544746

  7. Statins decrease dendritic arborization in rat sympathetic neurons by blocking RhoA activation

    PubMed Central

    Kim, Woo-Yang; Gonsiorek, Eugene A.; Barnhart, Chris; Davare, Monika A.; Engebose, Abby J.; Lauridsen, Holly; Bruun, Donald; Lesiak, Adam; Wayman, Gary; Bucelli, Robert; Higgins, Dennis; Lein, Pamela J.

    2014-01-01

    Clinical and experimental evidence suggest that statins decrease sympathetic activity, but whether peripheral mechanisms involving direct actions on post-ganglionic sympathetic neurons contribute to this effect is not known. Because tonic activity of these neurons is directly correlated with the size of their dendritic arbor, we tested the hypothesis that statins decrease dendritic arborization in sympathetic neurons. Oral administration of atorvastatin (20 mg/kg/day for 7 days) significantly reduced dendritic arborization in vivo in sympathetic ganglia of adult male rats. In cultured sympathetic neurons, statins caused dendrite retraction and reversibly blocked bone morphogenetic protein-induced dendritic growth without altering cell survival or axonal growth. Supplementation with mevalonate or isoprenoids, but not cholesterol, attenuated the inhibitory effects of statins on dendritic growth, whereas specific inhibition of isoprenoid synthesis mimicked these statin effects. Statins blocked RhoA translocation to the membrane, an event that requires isoprenylation, and constitutively active RhoA reversed statin effects on dendrites. These observations that statins decrease dendritic arborization in sympathetic neurons by blocking RhoA activation suggest a novel mechanism by which statins decrease sympathetic activity and protect against cardiovascular and cerebrovascular disease. PMID:19209406

  8. Increased physical activity decreases hepatic free fatty acid uptake: a study in human monozygotic twins.

    PubMed

    Hannukainen, Jarna C; Nuutila, Pirjo; Borra, Ronald; Ronald, Borra; Kaprio, Jaakko; Kujala, Urho M; Janatuinen, Tuula; Heinonen, Olli J; Kapanen, Jukka; Viljanen, Tapio; Haaparanta, Merja; Rönnemaa, Tapani; Parkkola, Riitta; Knuuti, Juhani; Kalliokoski, Kari K

    2007-01-01

    Exercise is considered to be beneficial for free fatty acid (FFA) metabolism, although reports of the effects of increased physical activity on FFA uptake and oxidation in different tissues in vivo in humans have been inconsistent. To investigate the heredity-independent effects of physical activity and fitness on FFA uptake in skeletal muscle, the myocardium, and liver we used positron emission tomography (PET) in nine healthy young male monozygotic twin pairs discordant for physical activity and fitness. The cotwins with higher physical activity constituting the more active group had a similar body mass index but less body fat and 18 +/- 10% higher (P < 0.001) compared to the less active brothers with lower physical activity. Low-intensity knee-extension exercise increased skeletal muscle FFA and oxygen uptake six to 10 times compared to resting values but no differences were observed between the groups at rest or during exercise. At rest the more active group had lower hepatic FFA uptake compared to the less active group (5.5 +/- 4.3 versus 9.0 +/- 6.1 micromol (100 ml)(-1) min(-1), P = 0.04). Hepatic FFA uptake associated significantly with body fat percentage (P = 0.05). Myocardial FFA uptake was similar between the groups. In conclusion, in the absence of the confounding effects of genetic factors, moderately increased physical activity and aerobic fitness decrease body adiposity even in normal-weighted healthy young adult men. Further, increased physical activity together with decreased intra-abdominal adiposity seems to decrease hepatic FFA uptake but has no effects on skeletal muscle or myocardial FFA uptake. PMID:17053033

  9. Local imipenem activity against Pseudomonas aeruginosa decreases in vivo in the presence of siliconized latex.

    PubMed

    Pichardo, C; Conejo, M C; Docobo-Pérez, F; Velasco, C; López-Rojas, R; García, I; Pachón-Ibáñez, M E; Rodríguez, J M; Pachón, J; Pascual, A

    2011-02-01

    Zinc eluted from siliconized latex (SL) increases resistance of Pseudomonas aeruginosa to imipenem in vitro. A foreign body peritonitis model was used to evaluate the activity of imipenem using SL or silicone (S) implants. No differences were observed in mortality, positive blood cultures and tissue bacterial counts between SL and S implants. Implant-associated counts, however, were significantly higher in the SL group. It is concluded that SL decreases the activity of imipenem against P. aeruginosa. PMID:20936490

  10. Decreasing Sports Activity with Increasing Age? Findings from a 20-Year Longitudinal and Cohort Sequence Analysis

    ERIC Educational Resources Information Center

    Breuer, Christoph; Wicker, Pamela

    2009-01-01

    According to cross-sectional studies in sport science literature, decreasing sports activity with increasing age is generally assumed. In this paper, the validity of this assumption is checked by applying more effective methods of analysis, such as longitudinal and cohort sequence analyses. With the help of 20 years' worth of data records from the…

  11. Decreased Activation of Subcortical Brain Areas in the Motor Fatigue State: An fMRI Study.

    PubMed

    Hou, Li J; Song, Zheng; Pan, Zhu J; Cheng, Jia L; Yu, Yong; Wang, Jun

    2016-01-01

    One aspect of motor fatigue is the exercise-induced reduction of neural activity to voluntarily drive the muscle or muscle group. Functional magnetic resonance imaging provides access to investigate the neural activation on the whole brain level and studies observed changes of activation intensity after exercise-induced motor fatigue in the sensorimotor cortex. However, in human, little evidence exists to demonstrate the role of subcortical brain regions in motor fatigue, which is contradict to abundant researches in rodent indicating that during simple movement, the activity of the basal ganglia is modulated by the state of motor fatigue. Thus, in present study, we explored the effect of motor fatigue on subcortical areas in human. A series of fMRI data were collected from 11 healthy subjects while they were executing simple motor tasks in two conditions: before and under the motor fatigue state. The results showed that in both conditions, movements evoked activation volumes in the sensorimotor areas, SMA, cerebellum, thalamus, and basal ganglia. Of primary importance are the results that the intensity and size of activation volumes in the subcortical areas (i.e., thalamus and basal ganglia areas) are significantly decreased during the motor fatigue state, implying that motor fatigue disturbs the motor control processing in a way that both sensorimotor areas and subcortical brain areas are less active. Further study is needed to clarify how subcortical areas contribute to the overall decreased activity of CNS during motor fatigue state. PMID:27536264

  12. Decreased Activation of Subcortical Brain Areas in the Motor Fatigue State: An fMRI Study

    PubMed Central

    Hou, Li J.; Song, Zheng; Pan, Zhu J.; Cheng, Jia L.; Yu, Yong; Wang, Jun

    2016-01-01

    One aspect of motor fatigue is the exercise-induced reduction of neural activity to voluntarily drive the muscle or muscle group. Functional magnetic resonance imaging provides access to investigate the neural activation on the whole brain level and studies observed changes of activation intensity after exercise-induced motor fatigue in the sensorimotor cortex. However, in human, little evidence exists to demonstrate the role of subcortical brain regions in motor fatigue, which is contradict to abundant researches in rodent indicating that during simple movement, the activity of the basal ganglia is modulated by the state of motor fatigue. Thus, in present study, we explored the effect of motor fatigue on subcortical areas in human. A series of fMRI data were collected from 11 healthy subjects while they were executing simple motor tasks in two conditions: before and under the motor fatigue state. The results showed that in both conditions, movements evoked activation volumes in the sensorimotor areas, SMA, cerebellum, thalamus, and basal ganglia. Of primary importance are the results that the intensity and size of activation volumes in the subcortical areas (i.e., thalamus and basal ganglia areas) are significantly decreased during the motor fatigue state, implying that motor fatigue disturbs the motor control processing in a way that both sensorimotor areas and subcortical brain areas are less active. Further study is needed to clarify how subcortical areas contribute to the overall decreased activity of CNS during motor fatigue state. PMID:27536264

  13. Azolla filiculoides Nitrogenase Activity Decrease Induced by Inoculation with Chlamydomonas sp.

    PubMed

    Habte, M

    1986-11-01

    Experiments were conducted to determine the influence of Chlamydomonas sp. on nitrogen fixation (C(2)H(2) --> C(2)H(4)) in Azolla filiculoides and on the nitrogen fixation and growth of free-living Anabaena azollae 2B organisms. Inoculation of azolla medium with Chlamydomonas sp. was associated with decreased nitrogenase activity in A. filiculoides and with increases in the density of a fungal population identified as Acremonium sp. Subsequent inoculation of azolla medium with this fungus was also accompanied by a significant decrease in nitrogenase activity of A. filiculoides. However, the extent of depression of nitrogenase activity was significantly higher when azolla medium was inoculated with Chlamydomonas sp. than when it was inoculated with Acremonium sp. Inoculation of nitrogen-free Stanier medium with either Acremonium sp. or Chlamydomonas sp. did not adversely affect the growth or nitrogenase activity of free-living A. azollae. Decreased nitrogenase activity in A. filiculoides is apparently related to the adverse influence of the green alga and the fungus on the macrosymbiont. The mechanisms that might be involved are discussed. PMID:16347211

  14. Azolla filiculoides Nitrogenase Activity Decrease Induced by Inoculation with Chlamydomonas sp. †

    PubMed Central

    Habte, Mitiku

    1986-01-01

    Experiments were conducted to determine the influence of Chlamydomonas sp. on nitrogen fixation (C2H2 → C2H4) in Azolla filiculoides and on the nitrogen fixation and growth of free-living Anabaena azollae 2B organisms. Inoculation of azolla medium with Chlamydomonas sp. was associated with decreased nitrogenase activity in A. filiculoides and with increases in the density of a fungal population identified as Acremonium sp. Subsequent inoculation of azolla medium with this fungus was also accompanied by a significant decrease in nitrogenase activity of A. filiculoides. However, the extent of depression of nitrogenase activity was significantly higher when azolla medium was inoculated with Chlamydomonas sp. than when it was inoculated with Acremonium sp. Inoculation of nitrogen-free Stanier medium with either Acremonium sp. or Chlamydomonas sp. did not adversely affect the growth or nitrogenase activity of free-living A. azollae. Decreased nitrogenase activity in A. filiculoides is apparently related to the adverse influence of the green alga and the fungus on the macrosymbiont. The mechanisms that might be involved are discussed. PMID:16347211

  15. Modeling of the atmospheric response to a strong decrease of the solar activity

    NASA Astrophysics Data System (ADS)

    Rozanov, Eugene V.; Egorova, Tatiana A.; Shapiro, Alexander I.; Schmutz, Werner K.

    2012-07-01

    We estimate the consequences of a potential strong decrease of the solar activity using the model simulations of the future driven by pure anthropogenic forcing as well as its combination with different solar activity related factors: total solar irradiance, spectral solar irradiance, energetic electron precipitation, solar protons and galactic cosmic rays. The comparison of the model simulations shows that introduced strong decrease of solar activity can lead to some delay of the ozone recovery and partially compensate greenhouse warming acting in the direction opposite to anthropogenic effects. The model results also show that all considered solar forcings are important in different atmospheric layers and geographical regions. However, in the global scale the solar irradiance variability can be considered as the most important solar forcing. The obtained results constitute probably the upper limit of the possible solar influence. Development of the better constrained set of future solar forcings is necessary to address the problem of future climate and ozone layer with more confidence.

  16. Aldosterone impairs vascular reactivity by decreasing glucose-6-phosphate dehydrogenase activity

    PubMed Central

    Leopold, Jane A.; Dam, Aamir; Maron, Bradley A.; Scribner, Anne W.; Liao, Ronglih; Handy, Diane E.; Stanton, Robert C.; Pitt, Bertram; Loscalzo, Joseph

    2013-01-01

    Hyperaldosteronism is associated with impaired vascular reactivity; however, the mechanism by which aldosterone promotes endothelial dysfunction remains unknown. Glucose-6-phosphate dehydrogenase (G6pd), the principal source of Nadph, modulates vascular function by limiting oxidant stress to preserve bioavailable nitric oxide (NO•). In these studies, we show that aldosterone (10−9-10−7 mol/l) decreases endothelial G6pd expression and activity in vitro resulting in increased oxidant stress and decreased cGMP levels similar to what is observed in G6pd-deficient cells. Aldosterone decreases G6pd expression by protein kinase A activation to increase expression of Crem, which interferes with Creb binding to the G6pd promoter. In vivo, infusion of aldosterone decreases vascular G6pd expression and impairs vascular reactivity. These effects are abrogated by spironolactone or vascular gene transfer of G6pd. These studies demonstrate that aldosterone induces a G6pd-deficient phenotype to impair endothelial function; aldosterone antagonism or gene transfer of G6pd improves vascular reactivity by restoring G6pd activity. PMID:17273168

  17. Decreasing Incidence of Gonorrhea in Homosexually Active Men—Minimal Effect on Risk of AIDS

    PubMed Central

    Handsfield, H. Hunter

    1985-01-01

    The incidence of gonorrhea in homosexually active men in Seattle-King County and in Washington State as a whole decreased by 57% from 1982 to 1984, compared with a 20% decrease among heterosexual men and women. This probably reflects behavioral changes of homosexual men in response to the epidemic of the acquired immunodeficiency syndrome (AIDS). Nevertheless, changes in sexual behavior that greatly reduce the incidence of gonorrhea do not necessarily result in a similar reduction in the risk of exposure to the virus that causes AIDS. PMID:4090477

  18. Gestational diabetes mellitus (GDM) decreases butyrylcholinesterase (BChE) activity and changes its relationship with lipids

    PubMed Central

    Guimarães, Larissa O.; de Andrade, Fabiana A.; Bono, Gleyse F.; Setoguchi, Thaís E.; Brandão, Mariana B.; Chautard-Freire-Maia, Eleidi A.; dos Santos, Izabella C.R.; Picheth, Geraldo; Faria, Ana Cristina R. de A.; Réa, Rosângela R.; Souza, Ricardo L.R.; Furtado-Alle, Lupe

    2014-01-01

    Many conditions interfere with butyrylcholinesterase (BChE) activity, e.g., pregnancy or presence of the BCHE gene variant −116A can decrease activity whereas obesity and types I and II diabetes mellitus can increase activity. In this study, we examined BChE activity, −116A and 1615A BCHE gene variants, and anthropometric and biochemical variables associated with diabetes in patients with gestational diabetes mellitus (GDM) and in healthy pregnant women. BChE activity was measured spectrophotometrically using propionylthiocholine as substrate and genotyping of the −116 and 1615 sites of the BCHE gene was done with a TaqMan SNP genotyping assay. Three groups were studied: 150 patients with GDM, 295 healthy pregnant women and 156 non-pregnant healthy women. Mean BChE activity was significantly lower in healthy pregnant women than in women from the general population and was further reduced in GDM patients. BChE activity was significantly reduced in carriers of −116A in GDM patients and healthy pregnant women. Although GDM patients had a significantly higher mean body mass index (BMI) and triglycerides than healthy pregnant women, they had lower mean BChE activity, suggesting that the lowering effect of GDM on BChE activity was stronger than the characteristic enhancing effect of increased BMI and triglycerides. PMID:24688284

  19. Decreased electrophysiological activity represents the conscious state of emptiness in meditation.

    PubMed

    Hinterberger, Thilo; Schmidt, Stephanie; Kamei, Tsutomu; Walach, Harald

    2014-01-01

    Many neuroscientific theories explain consciousness with higher order information processing corresponding to an activation of specific brain areas and processes. In contrast, most forms of meditation ask for a down-regulation of certain mental processing activities while remaining fully conscious. To identify the physiological properties of conscious states with decreased mental and cognitive processing, the electrical brain activity (64 channels of EEG) of 50 participants of various meditation proficiencies was measured during distinct and idiosyncratic meditative tasks. The tasks comprised a wakeful "thoughtless emptiness (TE)," a "focused attention," and an "open monitoring" task asking for mindful presence in the moment and in the environment without attachment to distracting thoughts. Our analysis mainly focused on 30 highly experienced meditators with at least 5 years and 1000 h of meditation experience. Spectral EEG power comparisons of the TE state with the resting state or other forms of meditation showed decreased activities in specific frequency bands. In contrast to a focused attention task the TE task showed significant central and parietal gamma decreases (p < 0.05). Compared to open monitoring TE expressed decreased alpha and beta amplitudes, mainly in parietal areas (p < 0.01). TE presented significantly less delta (p < 0.001) and theta (p < 0.05) waves than a wakeful closed eyes resting condition. A group of participants with none or little meditation practice did not present those differences significantly. Our findings indicate that a conscious state of TE reached by experienced meditators is characterized by reduced high-frequency brain processing with simultaneous reduction of the low frequencies. This suggests that such a state of meditative conscious awareness might be different from higher cognitive and mentally focused states but also from states of sleep and drowsiness. PMID:24596562

  20. Decreased electrophysiological activity represents the conscious state of emptiness in meditation

    PubMed Central

    Hinterberger, Thilo; Schmidt, Stephanie; Kamei, Tsutomu; Walach, Harald

    2014-01-01

    Many neuroscientific theories explain consciousness with higher order information processing corresponding to an activation of specific brain areas and processes. In contrast, most forms of meditation ask for a down-regulation of certain mental processing activities while remaining fully conscious. To identify the physiological properties of conscious states with decreased mental and cognitive processing, the electrical brain activity (64 channels of EEG) of 50 participants of various meditation proficiencies was measured during distinct and idiosyncratic meditative tasks. The tasks comprised a wakeful “thoughtless emptiness (TE),” a “focused attention,” and an “open monitoring” task asking for mindful presence in the moment and in the environment without attachment to distracting thoughts. Our analysis mainly focused on 30 highly experienced meditators with at least 5 years and 1000 h of meditation experience. Spectral EEG power comparisons of the TE state with the resting state or other forms of meditation showed decreased activities in specific frequency bands. In contrast to a focused attention task the TE task showed significant central and parietal gamma decreases (p < 0.05). Compared to open monitoring TE expressed decreased alpha and beta amplitudes, mainly in parietal areas (p < 0.01). TE presented significantly less delta (p < 0.001) and theta (p < 0.05) waves than a wakeful closed eyes resting condition. A group of participants with none or little meditation practice did not present those differences significantly. Our findings indicate that a conscious state of TE reached by experienced meditators is characterized by reduced high-frequency brain processing with simultaneous reduction of the low frequencies. This suggests that such a state of meditative conscious awareness might be different from higher cognitive and mentally focused states but also from states of sleep and drowsiness. PMID:24596562

  1. An Acute Lateral Ankle Sprain Significantly Decreases Physical Activity across the Lifespan

    PubMed Central

    Hubbard-Turner, Tricia; Wikstrom, Erik A.; Guderian, Sophie; Turner, Michael J.

    2015-01-01

    We do not know the impact an ankle sprain has on physical activity levels across the lifespan. With the negative consequences of physical inactivity well established, understanding the effect of an ankle sprain on this outcome is critical. The objective of this study was to measure physical activity across the lifespan after a single ankle sprain in an animal model. Thirty male mice (CBA/J) were randomly placed into one of three groups: the transected calcaneofibular ligament (CFL) group, the transected anterior talofibular ligament (ATFL)/CFL group, and a SHAM group. Three days after surgery, all of the mice were individually housed in a cage containing a solid surface running wheel. Physical activity levels were recorded and averaged every week across the mouse’s lifespan. The SHAM mice ran significantly more distance each day compared to the remaining two running groups (post hoc p = 0.011). Daily duration was different between the three running groups (p = 0.048). The SHAM mice ran significantly more minutes each day compared to the remaining two running groups (post hoc p=0.046) while the ATFL/CFL mice ran significantly less minutes each day (post hoc p = 0.028) compared to both the SHAM and CFL only group. The SHAM mice ran at a faster daily speed versus the remaining two groups of mice (post hoc p = 0.019) and the ATFL/CFL mice ran significantly slower each day compared to the SHAM and CFL group (post hoc p = 0.005). The results of this study indicate that a single ankle sprain significantly decreases physical activity across the lifespan in mice. This decrease in physical activity can potentially lead to the development of numerous chronic diseases. An ankle sprain thus has the potential to lead to significant long term health risks if not treated appropriately. Key points A single ankle significantly decreased physical activity levels in mice across the lifespan. Decreased physical activity could significantly negatively impact overall health if not

  2. Decreases in Theta and Increases in High Frequency Activity Underlie Associative Memory Encoding

    PubMed Central

    Greenberg, Jeffrey A.; Burke, John F.; Haque, Rafi; Kahana, Michael J.; Zaghloul, Kareem A.

    2015-01-01

    Episodic memory encoding refers to the cognitive process by which items and their associated contexts are stored in memory. To investigate changes directly attributed to the formation of explicit associations, we examined oscillatory power captured through intracranial electroencephalography (iEEG) as 27 neurosurgical patients receiving subdural and depth electrodes for seizure monitoring participated in a paired associates memory task. We examined low (3–8 Hz) and high (45–95 Hz) frequency activity, and found that the successful formation of new associations was accompanied by broad decreases in low frequency activity and a posterior to anterior progression of increases in high frequency activity in the left hemisphere. These data suggest that the observed patterns of activity may reflect the neural mechanisms underlying the formation of novel item-item associations. PMID:25862266

  3. Lead Exposure Is Associated with Decreased Serum Paraoxonase 1 (PON1) Activity and Genotypes

    PubMed Central

    Li, Wan-Fen; Pan, Mei-Hung; Chung, Meng-Chu; Ho, Chi-Kung; Chuang, Hung-Yi

    2006-01-01

    Lead exposure causes cardiac and vascular damage in experimental animals. However, there is considerable debate regarding the causal relationship between lead exposure and cardiovascular dysfunction in humans. Paraoxonase 1 (PON1), a high-density lipoprotein-associated antioxidant enzyme, is capable of hydrolyzing oxidized lipids and thus protects against atherosclerosis. Previous studies have shown that lead and several other metal ions are able to inhibit PON1 activity in vitro. To investigate whether lead exposure has influence on serum PON1 activity, we conducted a cross-sectional study of workers from a lead battery manufactory and lead recycling plant. Blood samples were analyzed for whole-blood lead levels, serum PON1 activity, and three common PON1 polymorphisms (Q192R, L55M, −108C/T). The mean blood lead level (± SD) of this cohort was 27.1 ± 15 μg/dL. Multiple linear regression analysis showed that blood lead levels were significantly associated with decreased serum PON1 activity (p < 0.001) in lead workers. This negative correlation was more evident for workers who carry the R192 allele, which has been suggested to be a risk factor for coronary heart disease. Taken together, our results suggest that the decrease in serum PON1 activity due to lead exposure may render individuals more susceptible to atherosclerosis, particularly subjects who are homozygous for the R192 allele. PMID:16882531

  4. Exercise Decreases Risk of Future Active Disease in Inflammatory Bowel Disease Patients in Remission

    PubMed Central

    Jones, Patricia D.; Kappelman, Michael D.; Martin, Christopher F.; Chen, Wenli; Sandler, Robert S.; Long, Millie D.

    2015-01-01

    Background Although exercise impacts quality of life in patients with inflammatory bowel disease (IBD), little is known about its role in disease activity. Among IBD patients in remission, we aimed to evaluate the association between exercise and subsequent active disease. Methods We performed a prospective study using the Crohn's and Colitis Foundation of America (CCFA) Partners Internet-based cohort of individuals with self-reported IBD. We identified participants in remission, defined as short Crohn's disease activity index (sCDAI) <150 or simple clinical colitis activity index (SCCAI) ≤2. The primary exposure was exercise status, measured using the validated Godin leisure time activity index. The primary study outcome, assessed after six months, was active disease defined using the above disease activity index thresholds. We used bivariate and multivariate analyses to describe the independent association between exercise and risk of active disease. Results We identified 1308 patients with Crohn's Disease (CD) and 549 with ulcerative or indeterminate colitis (UC/IC) in remission, of whom 227(17.4%) with CD and 135 (24.6%) with UC/IC developed active disease after 6 months. Higher exercise level was associated with decreased risk of active disease for CD (adjusted RR 0.72, 95% CI 0.55-0.94) and UC/IC (adjusted RR 0.78, 95% CI 0.54-1.13). Conclusions In patients with CD in remission, those with higher exercise levels were significantly less likely to develop active disease at six months. In patients with UC/IC in remission, patients with higher exercise levels were less likely to develop active disease at six months, however this was not statistically significant. PMID:25723616

  5. Cell Motility Is Decreased in Macrophages Activated by Cancer Cell-Conditioned Medium

    PubMed Central

    Go, Ahreum; Ryu, Yun-Kyoung; Lee, Jae-Wook; Moon, Eun-Yi

    2013-01-01

    Macrophages play a role in innate immune responses to various foreign antigens. Many products from primary tumors influence the activation and transmigration of macrophages. Here, we investigated a migration of macrophages stimulated with cancer cell culture-conditioned medium (CM). Macrophage activation by treatment with CM of B16F10 cells were judged by the increase in protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2). The location where macrophages were at 4 h-incubation with control medium or CM was different from where they were at 5 h-incubation in culture dish. Percentage of superimposed macrophages at every 1 h interval was gradually increased by CM treatment as compared to control. Total coverage of migrated track expressed in coordinates was smaller and total distance of migration was shorter in CM-treated macrophages than that in control. Rac1 activity in CM-treated macrophages was also decreased as compared to that in control. When macrophages were treated with CM in the presence of dexamethasone (Dex), an increase in COX2 protein levels, and a decrease in Rac1 activity and total coverage of migration were reversed. In the meanwhile, biphasic changes were detected by Dex treatment in section distance of migration at each time interval, which was more decreased at early time and then increased at later time. Taken together, data demonstrate that macrophage motility could be reduced in accordance with activation in response to cancer cell products. It suggests that macrophage motility could be a novel marker to monitor cancer-associated inflammatory diseases and the efficacy of anti-inflammatory agents. PMID:24404340

  6. Decreased glycogen synthase kinase-3 levels and activity contribute to Huntington's disease.

    PubMed

    Fernández-Nogales, Marta; Hernández, Félix; Miguez, Andrés; Alberch, Jordi; Ginés, Silvia; Pérez-Navarro, Esther; Lucas, José J

    2015-09-01

    Huntington's disease (HD) is a hereditary neurodegenerative disorder characterized by brain atrophy particularly in striatum leading to personality changes, chorea and dementia. Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase in the crossroad of many signaling pathways that is highly pleiotropic as it phosphorylates more than hundred substrates including structural, metabolic, and signaling proteins. Increased GSK-3 activity is believed to contribute to the pathogenesis of neurodegenerative diseases like Alzheimer's disease and GSK-3 inhibitors have been postulated as therapeutic agents for neurodegeneration. Regarding HD, GSK-3 inhibitors have shown beneficial effects in cell and invertebrate animal models but no evident efficacy in mouse models. Intriguingly, those studies were performed without interrogating GSK-3 level and activity in HD brain. Here we aim to explore the level and also the enzymatic activity of GSK-3 in the striatum and other less affected brain regions of HD patients and of the R6/1 mouse model to then elucidate the possible contribution of its alteration to HD pathogenesis by genetic manipulation in mice. We report a dramatic decrease in GSK-3 levels and activity in striatum and cortex of HD patients with similar results in the mouse model. Correction of the GSK-3 deficit in HD mice, by combining with transgenic mice with conditional GSK-3 expression, resulted in amelioration of their brain atrophy and behavioral motor and learning deficits. Thus, our results demonstrate that decreased brain GSK-3 contributes to HD neurological phenotype and open new therapeutic opportunities based on increasing GSK-3 activity or attenuating the harmful consequences of its decrease. PMID:26082469

  7. Music Attenuated a Decrease in Parasympathetic Nervous System Activity after Exercise

    PubMed Central

    Miura, Misa; Ito, Osamu; Kohzuki, Masahiro

    2016-01-01

    Music and exercise can both affect autonomic nervous system activity. However, the effects of the combination of music and exercise on autonomic activity are poorly understood. Additionally, it remains unknown whether music affects post-exercise orthostatic tolerance. The aim of this study was to evaluate the effects of music on autonomic nervous system activity in orthostatic tolerance after exercise. Twenty-six healthy graduate students participated in four sessions in a random order on four separate days: a sedentary session, a music session, a bicycling session, and a bicycling with music session. Participants were asked to listen to their favorite music and to exercise on a cycle ergometer. We evaluated autonomic nervous system activity before and after each session using frequency analysis of heart rate variability. High frequency power, an index of parasympathetic nervous system activity, was significantly increased in the music session. Heart rate was increased, and high frequency power was decreased, in the bicycling session. There was no significant difference in high frequency power before and after the bicycling with music session, although heart rate was significantly increased. Additionally, both music and exercise did not significantly affect heart rate, systolic blood pressure or also heart rate variability indices in the orthostatic test. These data suggest that music increased parasympathetic activity and attenuated the exercise-induced decrease in parasympathetic activity without altering the orthostatic tolerance after exercise. Therefore, music may be an effective approach for improving post-exercise parasympathetic reactivation, resulting in a faster recovery and a reduction in cardiac stress after exercise. PMID:26840532

  8. Music Attenuated a Decrease in Parasympathetic Nervous System Activity after Exercise.

    PubMed

    Jia, Tiantian; Ogawa, Yoshiko; Miura, Misa; Ito, Osamu; Kohzuki, Masahiro

    2016-01-01

    Music and exercise can both affect autonomic nervous system activity. However, the effects of the combination of music and exercise on autonomic activity are poorly understood. Additionally, it remains unknown whether music affects post-exercise orthostatic tolerance. The aim of this study was to evaluate the effects of music on autonomic nervous system activity in orthostatic tolerance after exercise. Twenty-six healthy graduate students participated in four sessions in a random order on four separate days: a sedentary session, a music session, a bicycling session, and a bicycling with music session. Participants were asked to listen to their favorite music and to exercise on a cycle ergometer. We evaluated autonomic nervous system activity before and after each session using frequency analysis of heart rate variability. High frequency power, an index of parasympathetic nervous system activity, was significantly increased in the music session. Heart rate was increased, and high frequency power was decreased, in the bicycling session. There was no significant difference in high frequency power before and after the bicycling with music session, although heart rate was significantly increased. Additionally, both music and exercise did not significantly affect heart rate, systolic blood pressure or also heart rate variability indices in the orthostatic test. These data suggest that music increased parasympathetic activity and attenuated the exercise-induced decrease in parasympathetic activity without altering the orthostatic tolerance after exercise. Therefore, music may be an effective approach for improving post-exercise parasympathetic reactivation, resulting in a faster recovery and a reduction in cardiac stress after exercise. PMID:26840532

  9. Smelling lavender and rosemary increases free radical scavenging activity and decreases cortisol level in saliva.

    PubMed

    Atsumi, Toshiko; Tonosaki, Keiichi

    2007-02-28

    Free radicals/reactive oxygen species are related to many biological phenomena such as inflammation, aging, and carcinogenesis. The body possesses various antioxidative systems (free radical scavenging activity, FRSA) for preventing oxidative stress, and saliva contains such activity. In the present study, we measured the total salivary FRSA induced after the smelling of lavender and rosemary essential oils that are widely used in aromatherapy. Various physiologically active substances in saliva such as cortisol, secretory IgA, and alpha-amylase activity were found to be correlated with aroma-induced FRSA. The subjects (22 healthy volunteers) sniffed aroma for 5 min, and each subject's saliva was collected immediately. FRSA was measured using 1,1-diphenyl-2-picrylhydrazyl. The FRSA values were increased by stimulation with low concentrations (1000 times dilution) of lavender or by high-concentrations (10 times dilution) of rosemary. In contrast, both lavender and rosemary stimulations decreased cortisol levels. A significant inverse correlation was observed between the FRSA values and the cortisol levels with each concentration of rosemary stimulation. No significant changes were noted in sIgA or alpha-amylase. These findings clarify that lavender and rosemary enhance FRSA and decrease the stress hormone, cortisol, which protects the body from oxidative stress. PMID:17291597

  10. Silencing of Doublecortin-Like (DCL) Results in Decreased Mitochondrial Activity and Delayed Neuroblastoma Tumor Growth

    PubMed Central

    Verissimo, Carla S.; Elands, Rachel; Cheng, Sou; Saaltink, Dirk-Jan; ter Horst, Judith P.; Alme, Maria N.; Pont, Chantal; van de Water, Bob; Håvik, Bjarte; Fitzsimons, Carlos P.; Vreugdenhil, Erno

    2013-01-01

    Doublecortin-like (DCL) is a microtubule-binding protein crucial for neuroblastoma (NB) cell proliferation. We have investigated whether the anti-proliferative effect of DCL knockdown is linked to reduced mitochondrial activity. We found a delay in tumor development after DCL knockdown in vivo in doxycycline-inducible NB tumor xenografts. To understand the mechanisms underlying this tumor growth retardation we performed a series of in vitro experiments in NB cell lines. DCL colocalizes with mitochondria, interacts with the mitochondrial outer membrane protein OMP25/ SYNJ2BP and DCL knockdown results in decreased expression of genes involved in oxidative phosphorylation. Moreover, DCL knockdown decreases cytochrome c oxidase activity and ATP synthesis. We identified the C-terminal Serine/Proline-rich domain and the second microtubule-binding area as crucial DCL domains for the regulation of cytochrome c oxidase activity and ATP synthesis. Furthermore, DCL knockdown causes a significant reduction in the proliferation rate of NB cells under an energetic challenge induced by low glucose availability. Together with our previous studies, our results corroborate DCL as a key player in NB tumor growth in which DCL controls not only mitotic spindle formation and the stabilization of the microtubule cytoskeleton, but also regulates mitochondrial activity and energy availability, which makes DCL a promising molecular target for NB therapy. PMID:24086625

  11. Correlates and geographic patterns of knowledge that physical activity decreases cancer risk.

    PubMed

    Ramírez, A Susana; Finney Rutten, Lila J; Vanderpool, Robin C; Moser, Richard P; Hesse, Bradford W

    2013-04-01

    While many lifestyle-related cancer risk factors including tobacco use, poor diet, and sun exposure are well recognized by the general public, the role of physical activity in decreasing cancer risk is less recognized. Studies have demonstrated gender-, race/ethnicity-, and age-based disparities in cancer risk factor knowledge; however, beliefs and geographic factors that may be related to knowledge are under-examined. In this study, we analyzed data from the 2008 Health Information National Trends Survey to determine correlates of knowledge of the relationship between physical activity and reduced cancer risk in the adult US population. We generated geographic information system maps to examine the geographic distribution of this knowledge. Results revealed that there is confusion among US adults about the relationship between physical activity and cancer risk: Respondents who believed that cancer is not preventable had significantly lower odds of knowing that physical activity reduces cancer risk (p < .001) whereas respondents who believed that cancer is caused by one's behavior had almost two times the odds of knowing that physical activity reduces cancer risk (p < .001). Those who were aware of current physical activity guidelines were also significantly more likely to know that physical activity reduces cancer risk (p < .01). Observed geographic variability in knowledge was consistent with geographic trends in obesity and physical inactivity. Correlates of cancer risk factor knowledge point to opportunities for targeted interventions. PMID:23344632

  12. Rotenone Decreases Intracellular Aldehyde Dehydrogenase Activity: Implications for the Pathogenesis of Parkinson Disease

    PubMed Central

    Goldstein, David S.; Sullivan, Patti; Cooney, Adele; Jinsmaa, Yunden; Kopin, Irwin J.; Sharabi, Yehonatan

    2015-01-01

    Repeated systemic administration of the mitochondrial complex I inhibitor rotenone produces a rodent model of Parkinson disease (PD). Mechanisms of relatively selective rotenone-induced damage to nigrostriatal dopaminergic neurons remain incompletely understood. According to the “catecholaldehyde hypothesis,” buildup of the autotoxic dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL) contributes to PD pathogenesis. Vesicular uptake blockade increases DOPAL levels, and DOPAL is detoxified mainly by aldehyde dehydrogenase (ALDH). We tested whether rotenone interferes with vesicular uptake and intracellular ALDH activity. Endogenous and F-labeled catechols were measured in PC12 cells incubated with rotenone (0-1000 nM, 180 minutes), without or with F-dopamine (2 μM) to track vesicular uptake and catecholamine metabolism. Rotenone dose-dependently increased DOPAL, F-DOPAL, and 3,4-dihydroxyphenylethanol (DOPET) levels while decreasing dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) levels and the ratio of dopamine to the sum of its deaminated metabolites. In test tubes, rotenone did not affect conversion of DOPAL to DOPAC by ALDH when NAD+ was supplied, whereas the direct-acting ALDH inhibitor benomyl markedly increased DOPAL and decreased DOPAC concentrations in the reaction mixtures. We propose that rotenone builds up intracellular DOPAL by decreasing ALDH activity and attenuating vesicular sequestration of cytoplasmic catecholamines. The results provide a novel mechanism for selective rotenone-induced toxicity in dopaminergic neurons. PMID:25645689

  13. Decreased Fronto-Limbic Activation and Disrupted Semantic-Cued List Learning in Major Depressive Disorder

    PubMed Central

    Kassel, Michelle T.; Rao, Julia A.; Walker, Sara J.; Briceño, Emily M.; Gabriel, Laura B.; Weldon, Anne L.; Avery, Erich T.; Haase, Brennan D.; Peciña, Marta; Considine, Ciaran M.; Noll, Douglas C.; Bieliauskas, Linas A.; Starkman, Monica N.; Zubieta, Jon-Kar; Welsh, Robert C.; Giordani, Bruno; Weisenbach, Sara L.; Langenecker, Scott A.

    2016-01-01

    Objective Individuals with Major Depressive Disorder (MDD) demonstrate poorer learning and memory skills relative to never-depressed comparisons (NDC). Previous studies report decreased volume and disrupted function of frontal lobes and hippocampi in MDD during memory challenge. However, it has been difficult to dissociate contributions of short-term memory and executive functioning to memory difficulties from those that might be attributable to long-term memory deficits. Method Adult males (MDD, n=19; NDC, n=22) and females (MDD, n=23; NDC, n=19) performed the Semantic List Learning Task (SLLT) during fMRI. The SLLT Encoding condition consists of 15 lists, each containing 14 words. After each list, a Distractor condition occurs, followed by cued Silent Rehearsal instructions. Post-scan recall and recognition were collected. Groups were compared using block (Encoding-Silent Rehearsal) and event-related (Words Recalled) models. Results MDD displayed lower recall relative to NDC. NDC displayed greater activation in several temporal, frontal, and parietal regions, for both Encoding-Silent Rehearsal and the Words Recalled analyses. Groups also differed in activation patterns in regions of the Papez circuit in planned analyses. The majority of activation differences were not related to performance, presence of medications, presence of comorbid anxiety disorder, or decreased gray matter volume in MDD. Conclusions Adults with MDD exhibit memory difficulties during a task designed to reduce the contribution of individual variability from short-term memory and executive functioning processes, parallel with decreased activation in memory and executive functioning circuits. Ecologically valid long-term memory tasks are imperative for uncovering neural correlates of memory performance deficits in adults with MDD. PMID:26831638

  14. Protein Kinase Activity Decreases with Higher Braak Stages of Alzheimer’s Disease Pathology

    PubMed Central

    Rosenberger, Andrea F.N.; Hilhorst, Riet; Coart, Elisabeth; García Barrado, Leandro; Naji, Faris; Rozemuller, Annemieke J.M.; van der Flier, Wiesje M.; Scheltens, Philip; Hoozemans, Jeroen J.M.; van der Vies, Saskia M.

    2015-01-01

    Alzheimer’s disease (AD) is characterized by a long pre-clinical phase (20–30 years), during which significant brain pathology manifests itself. Disease mechanisms associated with pathological hallmarks remain elusive. Most processes associated with AD pathogenesis, such as inflammation, synaptic dysfunction, and hyper-phosphorylation of tau are dependent on protein kinase activity. The objective of this study was to determine the involvement of protein kinases in AD pathogenesis. Protein kinase activity was determined in postmortem hippocampal brain tissue of 60 patients at various stages of AD and 40 non-demented controls (Braak stages 0-VI) using a peptide-based microarray platform. We observed an overall decrease of protein kinase activity that correlated with disease progression. The phosphorylation of 96.7% of the serine/threonine peptides and 37.5% of the tyrosine peptides on the microarray decreased significantly with increased Braak stage (p-value <0.01). Decreased activity was evident at pre-clinical stages of AD pathology (Braak I-II). Increased phosphorylation was not observed for any peptide. STRING analysis in combination with pathway analysis and identification of kinases responsible for peptide phosphorylation showed the interactions between well-known proteins in AD pathology, including the Ephrin-receptor A1 (EphA1), a risk gene for AD, and sarcoma tyrosine kinase (Src), which is involved in memory formation. Additionally, kinases that have not previously been associated with AD were identified, e.g., protein tyrosine kinase 6 (PTK6/BRK), feline sarcoma oncogene kinase (FES), and fyn-associated tyrosine kinase (FRK). The identified protein kinases are new biomarkers and potential drug targets for early (pre-clinical) intervention. PMID:26519433

  15. Experimental evaluation of decrease in the activities of polyphosphate/glycogen-accumulating organisms due to cell death and activity decay in activated sludge.

    PubMed

    Hao, Xiaodi; Wang, Qilin; Cao, Yali; van Loosdrecht, Mark C M

    2010-06-15

    Decrease in bacterial activity (biomass decay) in activated sludge can result from cell death (reduction in the amount of active bacteria) and activity decay (reduction in the specific activity of active bacteria). The goal of this study was to experimentally differentiate between cell death and activity decay as the cause of decrease in bacterial activity. By means of measuring maximal anaerobic phosphate release rates, verifying membrane integrity by live/dead staining and verifying presence of 16S rRNA with fluorescence in situ hybridization (FISH), the decay rates and death rates of polyphosphate-accumulating organisms (PAOs) in a biological nutrient removal (BNR) system and a laboratory phosphate removing sequencing batch reactor (SBR) system were determined, respectively, under famine conditions. In addition, the decay rate and death rate of glycogen-accumulating organisms (GAOs) in a SBR system with an enrichment culture of GAOs were also measured under famine conditions. Hereto the maximal anaerobic volatile fatty acid uptake rates, live/dead staining, and FISH were used. The experiments revealed that in the BNR and enriched PAO-SBR systems, activity decay contributed 58% and 80% to the decreased activities of PAOs, and that cell death was responsible for 42% and 20% of decreases in their respective activities. In the enriched GAOs system, activity decay constituted a proportion of 74% of the decreased activity of GAOs, and cell death only accounted for 26% of the decrease of their activity. PMID:20178124

  16. Salt overload in fructose-fed insulin-resistant rats decreases paraoxonase-1 activity

    PubMed Central

    2012-01-01

    Paraoxonase 1 (PON1) is a HDL-associated esterase/lactonase and its activity is inversely related to the risk of cardiovascular diseases. The aim of the present study was to evaluate the effect of a high-salt diet on serum PON1 activity in fructose-fed insulin-resistant rats. Adult male Fischer rats were initially divided into two groups. Control (CON), which received a normal salt diet and drinking water throughout the study; high fructose (HF), which received a normal salt diet and 20% fructose supplemented drinking water. After 10 weeks, half of the animals from HF group were randomly switched to a high-salt diet and 20% fructose supplemented drinking water (HFS) for more 10 weeks. Serum PON1 activity was determined by synthetic substrate phenyl acetate. HFS rats showed markedly decreased PON1 activity (HFS rats, 44.3 ± 14.4 g/dL versus CON rats, 64.4 ± 13.3 g/dL, P < 0.05) as compared to controls. In parallel, the level of oxidative stress, as indicated by thiobarbituric acid reactive substances (TBARS), was increased in HFS rats by 1.2-fold in the liver in relation to controls and was negatively correlated with PON activity. Differential leukocyte counts in blood showed a significant change in lymphocytes and monocytes profile. In conclusion, these results show that PON1 activity is decreased in fructose-fed insulin-resistant rats on a high-salt diet, which may be associated with increased oxidative stress, leading to inflammation. PMID:22738670

  17. Liver protein kinase A activity is decreased during the late hypoglycemic phase of sepsis.

    PubMed

    Hsu, C; Hsu, H K; Yang, S L; Jao, H C; Liu, M S

    1999-10-01

    Changes in protein kinase A (PKA, or cAMP-dependent protein kinase) activity in the rat liver during different metabolic phases of sepsis were investigated. Sepsis was induced by cecal ligation and puncture (CLP). Experiments were divided into 3 groups: control, early sepsis, and late sepsis. Early and late sepsis refer to those animals killed at 9 and 18 h, respectively, after CLP. Hepatic PKA was extracted and partially purified by acid precipitation, ammonium sulfate fractionation, and diethylaminoethyl (DEAE)-cellulose chromatography. PKA was eluted from DEAE-cellulose column with a linear NaCl gradient. Two peaks of PKA, type I (eluted at low ionic strength) and type II (eluted at high ionic strength), were collected and their activities were determined on the basis of the rate of incorporation of [gamma-32-P]ATP into histone. The results show that during early sepsis, both type I and type II PKA activities remained unchanged. During late sepsis, type I PKA activity was decreased by 40.7-53.6%, whereas type II PKA activity was unaffected. Kinetic analysis of the data on type I PKA during the late phase of sepsis reveals that the Vmax (maximal velocity) values for ATP, cAMP, and histone were decreased by 40.7, 53.6, and 47.3%, respectively whereas the Km (substrate concentration required for half-maximal enzymatic activity) values for ATP, cAMP, and histone were unaltered. These data indicate that type I PKA was inactivated during the late hypoglycemic phase of sepsis in the rat liver. Because PKA-mediated phosphorylation plays an important role in the regulation of hepatic glucose metabolism, an inactivation of PKA may contribute to the development of hypoglycemia during the late phase of sepsis. PMID:10509629

  18. Social interaction reward decreases p38 activation in the nucleus accumbens shell of rats.

    PubMed

    Salti, Ahmad; Kummer, Kai K; Sadangi, Chinmaya; Dechant, Georg; Saria, Alois; El Rawas, Rana

    2015-12-01

    We have previously shown that animals acquired robust conditioned place preference (CPP) to either social interaction alone or cocaine alone. Recently it has been reported that drugs of abuse abnormally activated p38, a member of mitogen-activated protein kinase family, in the nucleus accumbens. In this study, we aimed to investigate the expression of the activated form of p38 (pp38) in the nucleus accumbens shell and core of rats expressing either cocaine CPP or social interaction CPP 1 h, 2 h and 24 h after the CPP test. We hypothesized that cocaine CPP will increase pp38 in the nucleus accumbens shell/core as compared to social interaction CPP. Surprisingly, we found that 24 h after social interaction CPP, pp38 neuronal levels were decreased in the nucleus accumbens shell to the level of naïve rats. Control saline rats that received saline in both compartments of the CPP apparatus and cocaine CPP rats showed similar enhanced p38 activation as compared to naïve and social interaction CPP rats. We also found that the percentage of neurons expressing dopaminergic receptor D2R and pp38 was also decreased in the shell of the nucleus accumbens of social interaction CPP rats as compared to controls. Given the emerging role of p38 in stress/anxiety behaviors, these results suggest that (1) social interaction reward has anti-stress effects; (2) cocaine conditioning per se does not affect p38 activation and that (3) marginal stress is sufficient to induce p38 activation in the shell of the nucleus accumbens. PMID:26300300

  19. Salt overload in fructose-fed insulin-resistant rats decreases paraoxonase-1 activity.

    PubMed

    Dornas, Waleska Cláudia; de Lima, Wanderson Geraldo; Dos Santos, Rinaldo Cardoso; de Souza, Melina Oliveira; Silva, Maísa; Diniz, Mirla Fiuza; Silva, Marcelo Eustáquio

    2012-01-01

    Paraoxonase 1 (PON1) is a HDL-associated esterase/lactonase and its activity is inversely related to the risk of cardiovascular diseases. The aim of the present study was to evaluate the effect of a high-salt diet on serum PON1 activity in fructose-fed insulin-resistant rats. Adult male Fischer rats were initially divided into two groups. Control (CON), which received a normal salt diet and drinking water throughout the study; high fructose (HF), which received a normal salt diet and 20% fructose supplemented drinking water. After 10 weeks, half of the animals from HF group were randomly switched to a high-salt diet and 20% fructose supplemented drinking water (HFS) for more 10 weeks. Serum PON1 activity was determined by synthetic substrate phenyl acetate. HFS rats showed markedly decreased PON1 activity (HFS rats, 44.3 ± 14.4 g/dL versus CON rats, 64.4 ± 13.3 g/dL, P < 0.05) as compared to controls. In parallel, the level of oxidative stress, as indicated by thiobarbituric acid reactive substances (TBARS), was increased in HFS rats by 1.2-fold in the liver in relation to controls and was negatively correlated with PON activity. Differential leukocyte counts in blood showed a significant change in lymphocytes and monocytes profile. In conclusion, these results show that PON1 activity is decreased in fructose-fed insulin-resistant rats on a high-salt diet, which may be associated with increased oxidative stress, leading to inflammation. PMID:22738670

  20. Endoplasmic reticulum stress decreases intracellular thyroid hormone activation via an eIF2a-mediated decrease in type 2 deiodinase synthesis.

    PubMed

    Arrojo E Drigo, Rafael; Fonseca, Tatiana L; Castillo, Melany; Salathe, Matthias; Simovic, Gordana; Mohácsik, Petra; Gereben, Balazs; Bianco, Antonio C

    2011-12-01

    Cells respond rapidly to endoplasmic reticulum (ER) stress by blocking protein translation, increasing protein folding capacity, and accelerating degradation of unfolded proteins via ubiquitination and ER-associated degradation pathways. The ER resident type 2 deiodinase (D2) is normally ubiquitinated and degraded in the proteasome, a pathway that is accelerated by enzyme catalysis of T(4) to T(3). To test whether D2 is normally processed through ER-associated degradation, ER stress was induced in cells that endogenously express D2 by exposure to thapsigargin or tunicamycin. In all cell models, D2 activity was rapidly lost, to as low as of 30% of control activity, without affecting D2 mRNA levels; loss of about 40% of D2 activity and protein was also seen in human embryonic kidney 293 cells transiently expressing D2. In primary human airway cells with ER stress resulting from cystic fibrosis, D2 activity was absent. The rapid ER stress-induced loss of D2 resulted in decreased intracellular D2-mediated T(3) production. ER stress-induced loss of D2 was prevented in the absence of T(4), by blocking the proteasome with MG-132 or by treatment with chemical chaperones. Notably, ER stress did not alter D2 activity half-life but rather decreased D2 synthesis as assessed by induction of D2 mRNA and by [(35)S]methionine labeling. Remarkably, ER-stress-induced loss in D2 activity is prevented in cells transiently expressing an inactive eukaryotic initiation factor 2, indicating that this pathway mediates the loss of D2 activity. In conclusion, D2 is selectively lost during ER stress due to an eukaryotic initiation factor 2-mediated decrease in D2 synthesis and sustained proteasomal degradation. This explains the lack of D2 activity in primary human airway cells with ER stress resulting from cystic fibrosis. PMID:22053000

  1. Prenatal exposure to cocaine decreases adenylyl cyclase activity in embryonic mouse striatum.

    PubMed

    Unterwald, Ellen M; Ivkovic, Sanja; Cuntapay, Marie; Stroppolo, Antonella; Guinea, Barbara; Ehrlich, Michelle E

    2003-12-30

    Adenylyl cyclase activity was measured in the striatum of naive mice as a function of age and in mice exposed in utero to cocaine. In naive Swiss-Webster mice, basal and forskolin-stimulated adenylyl cyclase activity increased gradually from embryonic day 13 (E13) until 2-3 weeks of age when activity peaked before decreasing slightly to adult levels. The ability of the dopamine D1 receptor agonist, SKF 82958, to stimulate adenylyl cyclase activity also increased in magnitude until P15. In a separate study, pregnant Swiss-Webster mice were injected twice daily with cocaine (15 mg/kg, s.c.) or an equal volume of saline from E10 to E17. Adenylyl cyclase activity was measured in the striatum of E18 embryos. Basal adenylyl cyclase activity was significantly reduced following prenatal exposure to cocaine. Likewise, the ability of forskolin or SKF 82958 to stimulate adenylyl cyclase was attenuated following cocaine exposure. DeltaFosB was not induced, contrary to what is seen in adult mice. These results demonstrate a functional change in a critical signal transduction pathway following chronic in utero exposure to cocaine that might have profound effects of the development of the brain. Alterations in the cAMP system may underlie some of the deficits seen in humans exposed in utero to cocaine. PMID:14741752

  2. The antibacterial activity and toxicity of enrofloxacin are decreased by nanocellulose conjugated with aminobenzyl purin.

    PubMed

    Yasini, Seyed Ali; Zadeh, Mohammad Hossein Balal; Shahdadi, Hossein

    2015-11-01

    The first aim of this study was to synthesize nanocellulose conjugated with aminobenzyl purin (NCABP), and the second aim was to evaluate the effect of NCABP on both toxicity and antibacterial activity of enrofloxacin. Here, the adsorption of enrofloxacin by NCABP was first modeled by molecular dynamic (MD) simulation. In the next step, NCABP was synthesized, and was exposed to enrofloxacin, 1000 μg mL(-1), at various conditions. Then, the quantity of adsorption and release was separately measured. Furthermore, both toxicity and antibacterial activity of NCABP, enrofloxacin, and (NCABP+enrofloxacin) were separately evaluated. In this study, MD simulation clearly showed the adsorption after 50 picoseconds. The adsorption tests revealed that the increase of incubation time and NCABP concentration, at range of 50-200 μg mL(-1), led to increase of adsorption. Moreover, the decrease of pH led to increase of adsorption. Interestingly, NCABP could adsorb enrofloxacin, up to 1000 μg mL(-1), in different types of meat. Moreover, the increase of incubation time and temperature did not release enrofloxacin, but the increase of pH increased release. This study showed that both toxicity and antibacterial activity of enrofloxacin were decreased when exposed together with NCABP. PMID:26295691

  3. 4F decreases IRF5 expression and activation in hearts of tight skin mice.

    PubMed

    Xu, Hao; Krolikowski, John G; Jones, Deron W; Ge, Zhi-Dong; Pagel, Paul S; Pritchard, Kirkwood A; Weihrauch, Dorothée

    2012-01-01

    The apoAI mimetic 4F was designed to inhibit atherosclerosis by improving HDL. We reported that treating tight skin (Tsk(-/+)) mice, a model of systemic sclerosis (SSc), with 4F decreases inflammation and restores angiogenic potential in Tsk(-/+) hearts. Interferon regulating factor 5 (IRF5) is important in autoimmunity and apoptosis in immune cells. However, no studies were performed investigating IRF5 in myocardium. We hypothesize that 4F differentially modulates IRF5 expression and activation in Tsk(-/+) hearts. Posterior wall thickness was significantly increased in Tsk(-/+) compared to C57Bl/6J (control) and Tsk(-/+) mice with 4F treatment assessed by echoradiography highlighting reduction of fibrosis in 4F treated Tsk(-/+) mice. IRF5 in heart lysates from control and Tsk/+ with and without 4F treatment (sc, 1 mg/kg/d, 6-8 weeks) was determined. Phosphoserine, ubiquitin, ubiquitin K(63) on IRF5 were determined on immunoprecipitates of IRF5. Immunofluorescence and TUNEL assays in heart sections were used to determine positive nuclei for IRF5 and apoptosis, respectively. Fluorescence-labeled streptavidin (SA) was used to determine endothelial cell uptake of biotinylated 4F. SA-agarose pulldown and immunoblotting for IRF5 were used to determine 4F binding IRF5 in endothelial cell cytosolic fractions and to confirm biolayer interferometry studies. IRF5 levels in Tsk(-/+) hearts were similar to control. 4F treatments decrease IRF5 in Tsk(-/+) hearts and decrease phosphoserine and ubiquitin K(63) but increase total ubiquitin on IRF5 in Tsk(-/+) compared with levels on IRF5 in control hearts. 4F binds IRF5 by mechanisms favoring association over dissociation strong enough to pull down IRF5 from a mixture of endothelial cell cytosolic proteins. IRF5 positive nuclei and apoptotic cells in Tsk(-/+) hearts were increased compared with controls. 4F treatments decreased both measurements in Tsk(-/+) hearts. IRF5 activation in Tsk(-/+) hearts is increased. 4F treatments

  4. Topical Application of Ice-Nucleating-Active Bacteria Decreases Insect Cold Tolerance †

    PubMed Central

    Strong-Gunderson, Janet M.; Lee, Richard E.; Lee, Marcia R.

    1992-01-01

    The majority of overwintering insects avoid lethal freezing by lowering the temperature at which ice spontaneously nucleates within their body fluids. We examined the effect of ice-nucleating-active bacteria on the cold-hardiness of the lady beetle, Hippodamia convergens, a freeze-intolerant species that overwinters by supercooling to ca. −16°C. Topical application of the ice-nucleating-active bacteria Pseudomonas syringae increased the supercooling point to temperatures as high as −3°C. This decrease in cold tolerance was maintained for at least 3 days after treatment. Various treatment doses (108, 106, and 104 bacteria per ml) and modes of action (bacterial ingestion and topical application) were also compared. At the highest concentration of topically applied P. syringae, 50% of the beetles froze between −2 and −4°C. After topical application at the lowest concentration, 50% of the individuals froze by −11°C. In contrast, beetles fed bacteria at this concentration did not begin to freeze until −10°C, and 50% were frozen only at temperatures of −13°C or less. In addition to reducing the supercooling capacity in H. convergens, ice-nucleating-active bacteria also significantly reduced the cold-hardiness of four additional insects. These data demonstrate that ice-nucleating-active bacteria can be used to elevate the supercooling point and thereby decrease insect cold tolerance. The results of this study support the proposition that ice-nucleating-active bacteria may be used as a biological insecticide for the control of insect pests during the winter. Images PMID:16348764

  5. Using an Alternate Reality Game to Increase Physical Activity and Decrease Obesity Risk of College Students

    PubMed Central

    Johnston, Jeanne D.; Massey, Anne P.; Marker-Hoffman, Rickie Lee

    2012-01-01

    Background This quasi-experimental study investigated a game intervention—specifically, an alternate reality game (ARG)—as a means to influence college students’ physical activity (PA). An ARG is an interactive narrative that takes place in the real world and uses multiple media to reveal a story. Method Three sections of a college health course (n = 115 freshman students) were assigned either to a game group that played the ARG or to a comparison group that learned how to use exercise equipment in weekly laboratory sessions. Pre- and post-intervention measures included weight, waist circumference, body mass index (BMI), percentage body fat (PBF), and self-reported moderate physical activity (MPA) and vigorous physical activity (VPA), and PA (steps/week). Results A significant group x time interaction (p = .001) was detected for PA, with a significant increase in PA for the game (p < .001) versus a significant decrease (p = .001) for the comparison group. Significant within-group increases for weight (p = .001), BMI (p = .001), and PBF (p = .001) were detected. A significant group x time interaction (p = .001) was detected when analyzing self-reported VPA, with both groups reporting decreases in VPA over time; however, the decrease was only significant for the comparison group (p < .001). No significant group differences were found for MPA. Conclusions It is important that any intervention meet the needs and interests of its target population. Here, the ARG was designed in light of the learning preferences of today’s college students—collaborative and social, experiential and media-rich. Our results provide preliminary evidence that a game intervention can positively influence PA within the college student population. PMID:22920809

  6. Topical application of ice-nucleating-active bacteria decreases insect cold tolerance.

    PubMed

    Strong-Gunderson, J M; Lee, R E; Lee, M R

    1992-09-01

    The majority of overwintering insects avoid lethal freezing by lowering the temperature at which ice spontaneously nucleates within their body fluids. We examined the effect of ice-nucleating-active bacteria on the cold-hardiness of the lady beetle, Hippodamia convergens, a freeze-intolerant species that overwinters by supercooling to ca. -16 degrees C. Topical application of the ice-nucleating-active bacteria Pseudomonas syringae increased the supercooling point to temperatures as high as -3 degrees C. This decrease in cold tolerance was maintained for at least 3 days after treatment. Various treatment doses (10, 10, and 10 bacteria per ml) and modes of action (bacterial ingestion and topical application) were also compared. At the highest concentration of topically applied P. syringae, 50% of the beetles froze between -2 and -4 degrees C. After topical application at the lowest concentration, 50% of the individuals froze by -11 degrees C. In contrast, beetles fed bacteria at this concentration did not begin to freeze until -10 degrees C, and 50% were frozen only at temperatures of -13 degrees C or less. In addition to reducing the supercooling capacity in H. convergens, ice-nucleating-active bacteria also significantly reduced the cold-hardiness of four additional insects. These data demonstrate that ice-nucleating-active bacteria can be used to elevate the supercooling point and thereby decrease insect cold tolerance. The results of this study support the proposition that ice-nucleating-active bacteria may be used as a biological insecticide for the control of insect pests during the winter. PMID:16348764

  7. Why even active people get fatter--the asymmetric effects ofincreasing and decreasing exercise

    SciTech Connect

    Williams, Paul T.

    2006-01-06

    Background: Public health policies for preventing obesityneed guidelines for active individuals who are at risk due to exerciserecidivism. Methods: Changes in adiposity were compared to the runningdistances at baseline and follow-up in men and women whose reportedexercise increased (N=4,632 and 1,953, respectively) or decreased (17,280and 5,970, respectively) during 7.7 years of follow-up. Results: PerDelta km/wk, decreases in running distance caused over four-fold greaterweight gain between 0-8 km/wk (slope+-SE, males: -0.068+ -0.005 kg/m2,females: -0.080+-0.01 kg/m2) than between 32-48 km/wk (-0.017+-0.002 and-0.010+-0.005 kg/m2, respectively). In contrast, increases in runningdistance produced the smallest weight losses between 0-8 km/wk andstatistically significant weight loss only above 16 km/wk in males and 32km/wk in females. Above 32 km/wk (30 kcal/kg) in men and 16 km/wk (15kcal/kg) in women, weight loss from increasing exercise was equal to orgreater than weight gained with decreasing exercise, otherwise weightgain exceeded weight loss. Substantial weight gain occurred in runnerswho quit running, which would be mostly retained with resumed activity.Conclusion: Public health recommendations should warn against the risksof irreversible weight gain with exercise cessation. Weight gained due toreductions in exercise below 30 kcal/kg in men and 15 kcal/kg in womenmay not be reversed by resuming prior activity. Current IOM guidelines(i.e., maintain total energy expenditure at 160 percent of basal) agreewith the men s exercise threshold for symmetric weight change withchanging exercise levels.

  8. Long-term calorie restriction decreases metabolic cost of movement and prevents decrease of physical activity during aging in the rhesus monkeys

    PubMed Central

    Yamada, Yosuke; Colman, Ricki J; Kemnitz, Joseph W.; Baum, Scott T.; Anderson, Rozalyn M.; Weindruch, Richard; Schoeller, Dale A.

    2013-01-01

    Background Short-term (<1 year) calorie restriction (CR) has been reported to decrease physical activity and metabolic rate in humans and non-human primate models; however, studies examining the very long-term (>10 year) effect of CR on these parameters are lacking. Objective The objective of this study was to examine metabolic and behavioral adaptations to long-term CR longitudinally in rhesus macaques. Design Eighteen (10 male, 8 female) control (C) and 24 (14 male, 10 female) age matched CR rhesus monkeys between 19.6 and 31.9 years old were examined after 13 and 18 years of moderate adult-onset CR. Energy expenditure (EE) was examined by doubly labeled water (DLW; TEE) and respiratory chamber (24hrEE). Physical activity was assessed both by metabolic equivalent (MET) in a respiratory chamber and by an accelerometer. Metabolic cost of movements during 24h were also calculated. Age and fat-free mass were included as covariates. Results Adjusted total and 24hr EE were not different between C and CR. Sleeping metabolic rate was significantly lower, and physical activity level was higher in CR than in C independent from the CR-induced changes in body composition. The duration of physical activity above 1.6 METs was significantly higher in CR than in C, and CR had significantly higher accelerometer activity counts than C. Metabolic cost of movements during 24h were significantly lower in CR than in C. The accelerometer activity counts were significantly decreased after seven years in C animals, but not in CR animals. Conclusions The results suggest that long-term CR decreases basal metabolic rate, but maintains higher physical activity with lower metabolic cost of movements compared with C. PMID:23954367

  9. The Experimental Research (In Vitro) of Carrageenans and Fucoidans to Decrease Activity of Hantavirus.

    PubMed

    Pavliga, Stanislav N; Kompanets, Galina G; Tsygankov, Vasiliy Yu

    2016-06-01

    The effect of carrageenans and fucoidans on the activity of Hantavirus is studied. It has been found that among carrageenans a significant antiviral effect is exerted by the ι-type, which decreases the viral titer by 2.5 log focus forming units per mL; among fucoidans, by a preparation from Laminaria cichorioides, which reduces the number of infected cells from 27.0 to 5.3 after pretreatment of both the macrophage culture and Hantavirus. The antiviral effect of fucoidan from Laminaria japonica is shown to grow in direct proportion to the increase of dose of the preparation. PMID:26943130

  10. A stable phage lysin (Cpl-1) dimer with increased antipneumococcal activity and decreased plasma clearance.

    PubMed

    Resch, Gregory; Moreillon, Philippe; Fischetti, Vincent A

    2011-12-01

    Bacteriophages (phages) produce endolysins (lysins) as part of their lytic cycle in order to degrade the peptidoglycan layer of the infected bacteria for subsequent release of phage progeny. Because these enzymes maintain their lytic and lethal activity against Gram-positive bacteria when added extrinsically to the cells, they have been actively exploited as novel anti-infectives, sometimes termed enzybiotics. As with other relatively small peptides, one issue in their clinical development is their rapid inactivation through proteolytic degradation, immunological blockage and renal clearance. The antipneumococcal lysin Cpl-1 was shown to escape both proteolysis and immunological blockage. However, its short plasma half-life (20.5 min in mice) may represent a shortcoming for clinical usefulness. Here we report the construction of a Cpl-1 dimer with a view to increasing both the antipneumococcal specific activity and plasma half-life of Cpl-1. Dimerisation was achieved by introducing specific cysteine residues at the C-terminal end of the enzyme, thus favouring disulphide bonding. Compared with the native monomer, the constructed dimer demonstrated a two-fold increase in specific antipneumococcal activity and a ca. ten-fold decrease in plasma clearance. As several lysins are suspected to dimerise on contact with their cell wall substrate to be fully active, stable pre-dimerised enzymes may represent a more efficient alternative to the native monomer. PMID:21982146

  11. An insecticidal protein from Xenorhabdus ehlersii triggers prophenoloxidase activation and hemocyte decrease in Galleria mellonella.

    PubMed

    Shi, Huaixing; Zeng, Hongmei; Yang, Xiufen; Zhao, Jing; Chen, Mingjia; Qiu, Dewen

    2012-06-01

    The bacteria Xenorhabdus spp. are entomopathogenic symbionts that can produce several toxic proteins that interfere the immune system of insects. We purified an insecticidal protein from Xenorhabdus ehlersii, and designated it as XeGroEL with an estimated molecular mass of ~58 kDa. Galleria mellonella larva injected with XeGroEL presented prophenoloxidase activation and hemocyte decrease. XeGroEL can kill G. mellonella larva in 48 h with an LD(50) of 0.76 ± 0.08 μg/larva. Our results demonstrate that X. ehlersii possesses a toxic XeGroEL protein acting as a potential factor to activate proPO in host insect, which also provides a meaningful hypothesis to understand the interaction between nematode-symbiotic bacteria and host. PMID:22477033

  12. Decreased histone deacetylase 2 impairs Nrf2 activation by oxidative stress

    SciTech Connect

    Mercado, Nicolas; Thimmulappa, Rajesh; Thomas, Catherine M.R.; Fenwick, Peter S.; Chana, Kirandeep K.; Donnelly, Louise E.; Biswal, Shyam; Ito, Kazuhiro; Barnes, Peter J.

    2011-03-11

    Research highlights: {yields} Nrf2 anti-oxidant function is impaired when HDAC activity is inhibited. {yields} HDAC inhibition decreases Nrf2 protein stability. {yields} HDAC2 is involved in reduced Nrf2 stability and both correlate in COPD samples. {yields} HDAC inhibition increases Nrf2 acetylation. -- Abstract: Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a crucial role in cellular defence against oxidative stress by inducing the expression of multiple anti-oxidant genes. However, where high levels of oxidative stress are observed, such as chronic obstructive pulmonary disease (COPD), Nrf2 activity is reduced, although the molecular mechanism for this defect is uncertain. Here, we show that down-regulation of histone deacetylase (HDAC) 2 causes Nrf2 instability, resulting in reduced anti-oxidant gene expression and increase sensitivity to oxidative stress. Although Nrf2 protein was clearly stabilized after hydrogen peroxide (H{sub 2}O{sub 2}) stimulation in a bronchial epithelial cell line (BEAS2B), Nrf2 stability was decreased and Nrf2 acetylation increased in the presence of an HDAC inhibitor, trichostatin A (TSA). TSA also reduced Nrf2-regulated heme-oxygenase-1 (HO-1) expression in these cells, and this was confirmed in acute cigarette-smoke exposed mice in vivo. HDAC2 knock-down by RNA interference resulted in reduced H{sub 2}O{sub 2}-induced Nrf2 protein stability and activity in BEAS2B cells, whereas HDAC1 knockdown had no effect. Furthermore, monocyte-derived macrophages obtained from healthy volunteers (non-smokers and smokers) and COPD patients showed a significant correlation between HDAC2 expression and Nrf2 expression (r = 0.92, p < 0.0001). Thus, reduced HDAC2 activity in COPD may account for increased Nrf2 acetylation, reduced Nrf2 stability and impaired anti oxidant defences.

  13. Protein Phosphatases Decrease Their Activity during Capacitation: A New Requirement for This Event

    PubMed Central

    Signorelli, Janetti R.; Díaz, Emilce S.; Fara, Karla; Barón, Lina; Morales, Patricio

    2013-01-01

    There are few reports on the role of protein phosphatases during capacitation. Here, we report on the role of PP2B, PP1, and PP2A during human sperm capacitation. Motile sperm were resuspended in non-capacitating medium (NCM, Tyrode's medium, albumin- and bicarbonate-free) or in reconstituted medium (RCM, NCM plus 2.6% albumin/25 mM bicarbonate). The presence of the phosphatases was evaluated by western blotting and the subcellular localization by indirect immunofluorescence. The function of these phosphatases was analyzed by incubating the sperm with specific inhibitors: okadaic acid, I2, endothall, and deltamethrin. Different aliquots were incubated in the following media: 1) NCM; 2) NCM plus inhibitors; 3) RCM; and 4) RCM plus inhibitors. The percent capacitated sperm and phosphatase activities were evaluated using the chlortetracycline assay and a phosphatase assay kit, respectively. The results confirm the presence of PP2B and PP1 in human sperm. We also report the presence of PP2A, specifically, the catalytic subunit and the regulatory subunits PR65 and B. PP2B and PP2A were present in the tail, neck, and postacrosomal region, and PP1 was present in the postacrosomal region, neck, middle, and principal piece of human sperm. Treatment with phosphatase inhibitors rapidly (≤1 min) increased the percent of sperm depicting the pattern B, reaching a maximum of ∼40% that was maintained throughout incubation; after 3 h, the percent of capacitated sperm was similar to that of the control. The enzymatic activity of the phosphatases decreased during capacitation without changes in their expression. The pattern of phosphorylation on threonine residues showed a sharp increase upon treatment with the inhibitors. In conclusion, human sperm express PP1, PP2B, and PP2A, and the activity of these phosphatases decreases during capacitation. This decline in phosphatase activities and the subsequent increase in threonine phosphorylation may be an important requirement for the

  14. Altered polymorphonuclear leukocyte Fc gamma R expression contributes to decreased candicidal activity during intraabdominal sepsis

    SciTech Connect

    Simms, H.H.; D'Amico, R.; Monfils, P.; Burchard, K.W. )

    1991-03-01

    We investigated the effects of untreated intraabdominal sepsis on polymorphonuclear leukocyte (PMN) candicidal activity. Two groups of swine were studied. Group I (n=6) underwent sham laparotomy, group II (n=7) underwent cecal ligation and incision. Untreated intraabdominal sepsis resulted in a progressive decrease in PMN candicidal activity. Concomitant rosetting and phagocytosis assays demonstrated a decrease in both the attachment and phagocytosis of Candida albicans opsonized with both normal and septic swine serum by PMNs in group II. Iodine 125-labeled swine immunoglobulin G (IgG) and fluorescein isothioalanate (FITC)-labeled swine IgG were used to investigate Fc gamma receptor ligand interactions. Scatchard analyses demonstrated a progressive decline in both the binding affinity constant and number of IgG molecules bound per PMN. Stimulation of the oxidative burst markedly reduced 125I-labeled IgG binding in both group I and group II, with a greater decrement being seen in animals with intraabdominal sepsis. Further, in group II, PMN recycling of the Fc gamma receptor to the cell surface after generation of the oxidative burst was reduced by postoperative day 4. Binding of monoclonal antibodies to Fc gamma receptor II, but not Fc gamma receptor I/III markedly reduced intracellular candicidal activity. Immunofluorescence studies revealed a homogeneous pattern of FITC-IgG uptake by nearly all group I PMNs, whereas by postoperative day 8 a substantial number of PMNs from group II failed to internalize the FITC-IgG. These studies suggest that untreated intraabdominal sepsis reduces PMN candicidal activity and that this is due, in part, to altered PMN Fc gamma receptor ligand interactions.

  15. Inhibition of Nuclear Factor-Kappa B Activation Decreases Survival of Mycobacterium tuberculosis in Human Macrophages

    PubMed Central

    Chmura, Kathryn; Ovrutsky, Alida R.; Su, Wen-Lin; Griffin, Laura; Pyeon, Dohun; McGibney, Mischa T.; Strand, Matthew J.; Numata, Mari; Murakami, Seiji; Gaido, Loretta; Honda, Jennifer R.; Kinney, William H.; Oberley-Deegan, Rebecca E.; Voelker, Dennis R.; Ordway, Diane J.; Chan, Edward D.

    2013-01-01

    Nuclear factor-kappa B (NFκB) is a ubiquitous transcription factor that mediates pro-inflammatory responses required for host control of many microbial pathogens; on the other hand, NFκB has been implicated in the pathogenesis of other inflammatory and infectious diseases. Mice with genetic disruption of the p50 subunit of NFκB are more likely to succumb to Mycobacterium tuberculosis (MTB). However, the role of NFκB in host defense in humans is not fully understood. We sought to examine the role of NFκB activation in the immune response of human macrophages to MTB. Targeted pharmacologic inhibition of NFκB activation using BAY 11-7082 (BAY, an inhibitor of IκBα kinase) or an adenovirus construct with a dominant-negative IκBα significantly decreased the number of viable intracellular mycobacteria recovered from THP-1 macrophages four and eight days after infection. The results with BAY were confirmed in primary human monocyte-derived macrophages and alveolar macrophages. NFκB inhibition was associated with increased macrophage apoptosis and autophagy, which are well-established killing mechanisms of intracellular MTB. Inhibition of the executioner protease caspase-3 or of the autophagic pathway significantly abrogated the effects of BAY. We conclude that NFκB inhibition decreases viability of intracellular MTB in human macrophages via induction of apoptosis and autophagy. PMID:23634218

  16. Inhibition of nuclear factor-kappa B activation decreases survival of Mycobacterium tuberculosis in human macrophages.

    PubMed

    Bai, Xiyuan; Feldman, Nicole E; Chmura, Kathryn; Ovrutsky, Alida R; Su, Wen-Lin; Griffin, Laura; Pyeon, Dohun; McGibney, Mischa T; Strand, Matthew J; Numata, Mari; Murakami, Seiji; Gaido, Loretta; Honda, Jennifer R; Kinney, William H; Oberley-Deegan, Rebecca E; Voelker, Dennis R; Ordway, Diane J; Chan, Edward D

    2013-01-01

    Nuclear factor-kappa B (NFκB) is a ubiquitous transcription factor that mediates pro-inflammatory responses required for host control of many microbial pathogens; on the other hand, NFκB has been implicated in the pathogenesis of other inflammatory and infectious diseases. Mice with genetic disruption of the p50 subunit of NFκB are more likely to succumb to Mycobacterium tuberculosis (MTB). However, the role of NFκB in host defense in humans is not fully understood. We sought to examine the role of NFκB activation in the immune response of human macrophages to MTB. Targeted pharmacologic inhibition of NFκB activation using BAY 11-7082 (BAY, an inhibitor of IκBα kinase) or an adenovirus construct with a dominant-negative IκBα significantly decreased the number of viable intracellular mycobacteria recovered from THP-1 macrophages four and eight days after infection. The results with BAY were confirmed in primary human monocyte-derived macrophages and alveolar macrophages. NFκB inhibition was associated with increased macrophage apoptosis and autophagy, which are well-established killing mechanisms of intracellular MTB. Inhibition of the executioner protease caspase-3 or of the autophagic pathway significantly abrogated the effects of BAY. We conclude that NFκB inhibition decreases viability of intracellular MTB in human macrophages via induction of apoptosis and autophagy. PMID:23634218

  17. Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways

    PubMed Central

    Bergsma, Alexis L.; Senchuk, Megan M.; Van Raamsdonk, Jeremy M.

    2016-01-01

    In this work, we examine the relationship between stress resistance and aging. We find that resistance to multiple types of stress peaks during early adulthood and then declines with age. To dissect the underlying mechanisms, we use C. elegans transcriptional reporter strains that measure the activation of different stress responses including: the heat shock response, mitochondrial unfolded protein response, endoplasmic reticulum unfolded protein response, hypoxia response, SKN-1-mediated oxidative stress response, and the DAF-16-mediated stress response. We find that the decline in stress resistance with age is at least partially due to a decreased ability to activate protective mechanisms in response to stress. In contrast, we find that any baseline increase in stress caused by the advancing age is too mild to detectably upregulate any of the stress response pathways. Further exploration of how worms respond to stress with increasing age revealed that the ability to mount a hormetic response to heat stress is also lost with increasing age. Overall, this work demonstrates that resistance to all types of stress declines with age. Based on our data, we speculate that the decrease in stress resistance with advancing age results from a genetically-programmed inactivation of stress response pathways, not accumulation of damage. PMID:27053445

  18. Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways.

    PubMed

    Dues, Dylan J; Andrews, Emily K; Schaar, Claire E; Bergsma, Alexis L; Senchuk, Megan M; Van Raamsdonk, Jeremy M

    2016-04-01

    In this work, we examine the relationship between stress resistance and aging. We find that resistance to multiple types of stress peaks during early adulthood and then declines with age. To dissect the underlying mechanisms, we use C. elegans transcriptional reporter strains that measure the activation of different stress responses including: the heat shock response, mitochondrial unfolded protein response, endoplasmic reticulum unfolded protein response, hypoxia response, SKN-1-mediated oxidative stress response, and the DAF-16-mediated stress response. We find that the decline in stress resistance with age is at least partially due to a decreased ability to activate protective mechanisms in response to stress. In contrast, we find that any baseline increase in stress caused by the advancing age is too mild to detectably upregulate any of the stress response pathways. Further exploration of how worms respond to stress with increasing age revealed that the ability to mount a hormetic response to heat stress is also lost with increasing age. Overall, this work demonstrates that resistance to all types of stress declines with age. Based on our data, we speculate that the decrease in stress resistance with advancing age results from a genetically-programmed inactivation of stress response pathways, not accumulation of damage. PMID:27053445

  19. Activated carbon decreases invasive plant growth by mediating plant–microbe interactions

    PubMed Central

    Nolan, Nicole E.; Kulmatiski, Andrew; Beard, Karen H.; Norton, Jeanette M.

    2015-01-01

    There is growing appreciation for the idea that plant–soil interactions (e.g. allelopathy and plant–microbe feedbacks) may explain the success of some non-native plants. Where this is the case, native plant restoration may require management tools that change plant–soil interactions. Activated carbon (AC) is one such potential tool. Previous research has shown the potential for high concentrations of AC to restore native plant growth to areas dominated by non-natives on a small scale (1 m × 1 m plots). Here we (i) test the efficacy of different AC concentrations at a larger scale (15 m × 15 m plots), (ii) measure microbial responses to AC treatment and (iii) use a greenhouse experiment to identify the primary mechanism, allelopathy versus microbial changes, through which AC impacts native and non-native plant growth. Three years after large-scale applications, AC treatments decreased non-native plant cover and increased the ratio of native to non-native species cover, particularly at concentrations >400 g m−2. Activated carbon similarly decreased non-native plant growth in the greenhouse. This effect, however, was only observed in live soils, suggesting that AC effects were microbially mediated and not caused by direct allelopathy. Bacterial community analysis of field soils indicated that AC increased the relative abundance of an unidentified bacterium and an Actinomycetales and decreased the relative abundance of a Flavobacterium, suggesting that these organisms may play a role in AC effects on plant growth. Results support the idea that manipulations of plant–microbe interactions may provide novel and effective ways of directing plant growth and community development (e.g. native plant restoration). PMID:25387751

  20. Activated carbon decreases invasive plant growth by mediating plant-microbe interactions.

    PubMed

    Nolan, Nicole E; Kulmatiski, Andrew; Beard, Karen H; Norton, Jeanette M

    2014-01-01

    There is growing appreciation for the idea that plant-soil interactions (e.g. allelopathy and plant-microbe feedbacks) may explain the success of some non-native plants. Where this is the case, native plant restoration may require management tools that change plant-soil interactions. Activated carbon (AC) is one such potential tool. Previous research has shown the potential for high concentrations of AC to restore native plant growth to areas dominated by non-natives on a small scale (1 m × 1 m plots). Here we (i) test the efficacy of different AC concentrations at a larger scale (15 m × 15 m plots), (ii) measure microbial responses to AC treatment and (iii) use a greenhouse experiment to identify the primary mechanism, allelopathy versus microbial changes, through which AC impacts native and non-native plant growth. Three years after large-scale applications, AC treatments decreased non-native plant cover and increased the ratio of native to non-native species cover, particularly at concentrations >400 g m(-2). Activated carbon similarly decreased non-native plant growth in the greenhouse. This effect, however, was only observed in live soils, suggesting that AC effects were microbially mediated and not caused by direct allelopathy. Bacterial community analysis of field soils indicated that AC increased the relative abundance of an unidentified bacterium and an Actinomycetales and decreased the relative abundance of a Flavobacterium, suggesting that these organisms may play a role in AC effects on plant growth. Results support the idea that manipulations of plant-microbe interactions may provide novel and effective ways of directing plant growth and community development (e.g. native plant restoration). PMID:25387751

  1. PD-1 Increases PTEN Phosphatase Activity While Decreasing PTEN Protein Stability by Inhibiting Casein Kinase 2

    PubMed Central

    Patsoukis, Nikolaos; Li, Lequn; Sari, Duygu; Petkova, Victoria

    2013-01-01

    Programmed death 1 (PD-1) is a potent inhibitor of T cell responses. PD-1 abrogates activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, but the mechanism remains unclear. We determined that during T cell receptor (TCR)/CD3- and CD28-mediated stimulation, PTEN is phosphorylated by casein kinase 2 (CK2) in the Ser380-Thr382-Thr383 cluster within the C-terminal regulatory domain, which stabilizes PTEN, resulting in increased protein abundance but suppressed PTEN phosphatase activity. PD-1 inhibited the stabilizing phosphorylation of the Ser380-Thr382-Thr383 cluster within the C-terminal domain of PTEN, thereby resulting in ubiquitin-dependent degradation and diminished abundance of PTEN protein but increased PTEN phosphatase activity. These effects on PTEN were secondary to PD-1-mediated inhibition of CK2 and were recapitulated by pharmacologic inhibition of CK2 during TCR/CD3- and CD28-mediated stimulation without PD-1. Furthermore, PD-1-mediated diminished abundance of PTEN was reversed by inhibition of ubiquitin-dependent proteasomal degradation. Our results identify CK2 as a new target of PD-1 and reveal an unexpected mechanism by which PD-1 decreases PTEN protein expression while increasing PTEN activity, thereby inhibiting the PI3K/Akt signaling axis. PMID:23732914

  2. Pyruvate dehydrogenase activity and quantity decreases after coronary artery bypass grafting: a prospective observational study

    PubMed Central

    Andersen, Lars W.; Liu, Xiaowen; Peng, Teng J.; Giberson, Tyler A.; Khabbaz, Kamal R.; Donnino, Michael W.

    2014-01-01

    Introduction Pyruvate dehydrogenase (PDH) is a key gatekeeper enzyme in aerobic metabolism. The main purpose of this study was to determine if PDH activity is affected by major stress in the form of coronary artery bypass grafting (CABG) which has previously been used as a model of critical illness. Methods We conducted a prospective, observational study of patients undergoing CABG at an urban, tertiary care hospital. We included adult patients undergoing CABG with or without concomitant valve surgery. Measurements of PDH activity and quantity and thiamine were obtained prior to surgery, at the completion of surgery, and 6 hours post-surgery. Results Fourteen patients were enrolled (age: 67 ± 10 years, 21 % female). Study subjects had a mean 41.7 % (SD: 27.7) reduction in PDH activity after surgery and a mean 32.0% (SD: 31.4) reduction 6 hours after surgery (p < 0.001). Eight patients were thiamine deficient (≤ 7 nmol/L) after surgery compared to none prior to surgery (p = 0.002). Thiamine level was a significantly associated with PDH quantity at all time points (p = 0.01). Post-surgery lactate levels were inversely correlated with post-surgery thiamine levels (r = −0.58 and p = 0.04). Conclusion The stress of major surgery causes decreased PDH activity and quantity, and depletion of thiamine levels. PMID:25526377

  3. Changes in lysyl oxidase (LOX) distribution and its decreased activity in keratoconus corneas.

    PubMed

    Dudakova, Lubica; Liskova, Petra; Trojek, Tomas; Palos, Michalis; Kalasova, Sarka; Jirsova, Katerina

    2012-11-01

    Inadequate cross-linking between collagen lamellae is a characteristic feature of keratoconus corneas. The formation of covalent bonds between collagen and elastin fibrils, which maintain the biomechanical properties of the cornea, is mediated by the cuproenzyme lysyl oxidase and four lysyl oxidase-like enzymes. The aim of this study was to determine the distribution of lysyl oxidase and the total lysyl oxidase activity (lysyl oxidase and the four lysyl oxidase-like enzymes) in control and keratoconic corneas. Seven control and eight keratoconic corneas were used for the imunohistochemical detection of lysyl oxidase in corneal cryosections using two different antibodies. The total lysyl oxidase activity in the culture medium of corneal fibroblasts from six explanted keratoconic and four control corneas was measured using a fluorometric assay in the presence and absence of the lysyl oxidase inhibitor beta-aminopropionitrile and determined as the production of H(2)O(2) in nM per μg of total protein. In the control tissue, the most intense signal for lysyl oxidase was present in the corneal epithelium, in which perinuclear dots brightly projecting from more or less homogenous cytoplasmic staining may represent the lysyl oxidase propeptide. Less intense staining was present in keratocytes, the extracellular matrix and in the corneal endothelium. The epithelium of the limbus and the perilimbal conjunctiva showed intense to very intense staining. The distribution of lysyl oxidase was clearly decreased in at least five of the eight keratoconic specimens. The most marked signal reduction was observed in the stromal matrix and in keratocytes. Moreover, the signal in pathological specimens revealed a more irregular pattern, including the presence of intra- and extracellular clumps in the epithelium. Interestingly, endothelial cells showed no or very weak staining in areas just beneath negative stromal tissue. The mean activity of total lysyl oxidase in the keratoconic

  4. Nonsynonymous single nucleotide polymorphisms of NHE3 differentially decrease NHE3 transporter activity

    PubMed Central

    Zhu, Xinjun Cindy; Sarker, Rafiquel; Horton, John R.; Chakraborty, Molee; Chen, Tian-E; Tse, C. Ming; Cha, Boyoung

    2015-01-01

    Genetic determinants appear to play a role in susceptibility to chronic diarrhea, but the genetic abnormalities involved have only been identified in a few conditions. The Na+/H+ exchanger 3 (NHE3) accounts for a large fraction of physiologic intestinal Na+ absorption. It is highly regulated through effects on its intracellular COOH-terminal regulatory domain. The impact of genetic variation in the NHE3 gene, such as single nucleotide polymorphisms (SNPs), on transporter activity remains unexplored. From a total of 458 SNPs identified in the entire NHE3 gene, we identified three nonsynonymous mutations (R474Q, V567M, and R799C), which were all in the protein's intracellular COOH-terminal domain. Here we evaluated whether these SNPs affect NHE3 activity by expressing them in a mammalian cell line that is null for all plasma membrane NHEs. These variants significantly reduced basal NHE3 transporter activity through a reduction in intrinsic NHE3 function in variant R474Q, abnormal trafficking in variant V567M, or defects in both intrinsic NHE3 function and trafficking in variant R799C. In addition, variants NHE3 R474Q and R799C failed to respond to acute dexamethasone stimulation, suggesting cells with these mutant proteins might be defective in NHE3 function during postprandial stimulation and perhaps under stressful conditions. Finally, variant R474Q was shown to exhibit an aberrant interaction with calcineurin B homologous protein (CHP), an NHE3 regulatory protein required for basal NHE3 activity. Taken together, these results demonstrate decreased transport activity in three SNPs of NHE3 and provide mechanistic insight into how these SNPs impact NHE3 function. PMID:25715704

  5. Impaired ALDH2 activity decreases the mitochondrial respiration in H9C2 cardiomyocytes.

    PubMed

    Mali, Vishal R; Deshpande, Mandar; Pan, Guodong; Thandavarayan, Rajarajan A; Palaniyandi, Suresh S

    2016-02-01

    Reactive oxygen species (ROS)-mediated reactive aldehydes induce cellular stress. In cardiovascular diseases such as ischemia-reperfusion injury, lipid-peroxidation derived reactive aldehydes such as 4-hydroxy-2-nonenal (4HNE) are known to contribute to the pathogenesis. 4HNE is involved in ROS formation, abnormal calcium handling and more importantly defective mitochondrial respiration. Aldehyde dehydrogenase (ALDH) superfamily contains NAD(P)(+)-dependent isozymes which can detoxify endogenous and exogenous aldehydes into non-toxic carboxylic acids. Therefore we hypothesize that 4HNE afflicts mitochondrial respiration and leads to cell death by impairing ALDH2 activity in cultured H9C2 cardiomyocyte cell lines. H9C2 cardiomyocytes were treated with 25, 50 and 75 μM 4HNE and its vehicle, ethanol as well as 25, 50 and 75 μM disulfiram (DSF), an inhibitor of ALDH2 and its vehicle (DMSO) for 4 h. 4HNE significantly decreased ALDH2 activity, ALDH2 protein levels, mitochondrial respiration and mitochondrial respiratory reserve capacity, and increased 4HNE adduct formation and cell death in cultured H9C2 cardiomyocytes. ALDH2 inhibition by DSF and ALDH2 siRNA attenuated ALDH2 activity besides reducing ALDH2 levels, mitochondrial respiration and mitochondrial respiratory reserve capacity and increased cell death. Our results indicate that ALDH2 impairment can lead to poor mitochondrial respiration and increased cell death in cultured H9C2 cardiomyocytes. PMID:26577527

  6. Cardamonin Inhibits Metastasis of Lewis Lung Carcinoma Cells by Decreasing mTOR Activity

    PubMed Central

    Niu, Pei-Guang; Zhang, Yu-Xuan; Shi, Dao-Hua; Liu, Ying; Chen, Yao-Yao; Deng, Jie

    2015-01-01

    The mammalian target of rapamycin (mTOR) regulates the motility and invasion of cancer cells. Cardamonin is a chalcone that exhibits anti-tumor activity. The previous study had proved that the anti-tumor effect of cardamonin was associated with mTOR inhibition. In the present study, the anti-metastatic effect of cardamonin and its underlying molecule mechanisms were investigated on the highly metastatic Lewis lung carcinoma (LLC) cells. The proliferation, invasion and migration of LLC cells were measured by MTT, transwell and wound healing assays, respectively. The expression and activation of mTOR- and adhesion-related proteins were assessed by Western blotting. The in vivo effect of cardamonin on the metastasis of the LLC cells was investigated by a mouse model. Treated with cardamonin, the proliferation, invasion and migration of LLC cells were significantly inhibited. The expression of Snail was decreased by cardamonin, while that of E-cadherin was increased. In addition, cardamonin inhibited the activation of mTOR and its downstream target ribosomal S6 kinase 1 (S6K1). Furthermore, the tumor growth and its lung metastasis were inhibited by cardamonin in C57BL/6 mice. It indicated that cardamonin inhibited the invasion and metastasis of LLC cells through inhibiting mTOR. The metastasis inhibitory effect of cardamonin was correlated with down-regulation of Snail and up-regulation of E-cadherin. PMID:25996501

  7. Music improves verbal memory encoding while decreasing prefrontal cortex activity: an fNIRS study.

    PubMed

    Ferreri, Laura; Aucouturier, Jean-Julien; Muthalib, Makii; Bigand, Emmanuel; Bugaiska, Aurelia

    2013-01-01

    Listening to music engages the whole brain, thus stimulating cognitive performance in a range of non-purely musical activities such as language and memory tasks. This article addresses an ongoing debate on the link between music and memory for words. While evidence on healthy and clinical populations suggests that music listening can improve verbal memory in a variety of situations, it is still unclear what specific memory process is affected and how. This study was designed to explore the hypothesis that music specifically benefits the encoding part of verbal memory tasks, by providing a richer context for encoding and therefore less demand on the dorsolateral prefrontal cortex (DLPFC). Twenty-two healthy young adults were subjected to functional near-infrared spectroscopy (fNIRS) imaging of their bilateral DLPFC while encoding words in the presence of either a music or a silent background. Behavioral data confirmed the facilitating effect of music background during encoding on subsequent item recognition. fNIRS results revealed significantly greater activation of the left hemisphere during encoding (in line with the HERA model of memory lateralization) and a sustained, bilateral decrease of activity in the DLPFC in the music condition compared to silence. These findings suggest that music modulates the role played by the DLPFC during verbal encoding, and open perspectives for applications to clinical populations with prefrontal impairments, such as elderly adults or Alzheimer's patients. PMID:24339807

  8. Mitofusin 2 decreases intracellular lipids in macrophages by regulating peroxisome proliferator-activated receptor-γ

    SciTech Connect

    Liu, Chun; Ge, Beihai; He, Chao; Zhang, Yi; Liu, Xiaowen; Liu, Kejian; Qian, Cuiping; Zhang, Yu; Peng, Wenzhong; Guo, Xiaomei

    2014-07-18

    Highlights: • Mfn2 decreases cellular lipid accumulation by activating cholesterol transporters. • PPARγ is involved in the Mfn2-mediated increase of cholesterol transporter expressions. • Inactivation of ERK1/2 and p38 is involved in Mfn2-induced PPARγ expression. - Abstract: Mitofusin 2 (Mfn2) inhibits atherosclerotic plaque formation, but the underlying mechanism remains elusive. This study aims to reveal how Mfn2 functions in the atherosclerosis. Mfn2 expression was found to be significantly reduced in arterial atherosclerotic lesions of both mice and human compared with healthy counterparts. Here, we observed that Mfn2 increased cellular cholesterol transporter expression in macrophages by upregulating peroxisome proliferator-activated receptor-γ, an effect achieved at least partially by inhibiting extracellular signal-regulated kinase1/2 (ERK1/2) and p38 mitogen-activated protein kinases (MAPKs) pathway. These findings provide insights into potential mechanisms of Mfn2-mediated alterations in cholesterol transporter expression, which may have significant implications for the treatment of atherosclerotic heart disease.

  9. Music improves verbal memory encoding while decreasing prefrontal cortex activity: an fNIRS study

    PubMed Central

    Ferreri, Laura; Aucouturier, Jean-Julien; Muthalib, Makii; Bigand, Emmanuel; Bugaiska, Aurelia

    2013-01-01

    Listening to music engages the whole brain, thus stimulating cognitive performance in a range of non-purely musical activities such as language and memory tasks. This article addresses an ongoing debate on the link between music and memory for words. While evidence on healthy and clinical populations suggests that music listening can improve verbal memory in a variety of situations, it is still unclear what specific memory process is affected and how. This study was designed to explore the hypothesis that music specifically benefits the encoding part of verbal memory tasks, by providing a richer context for encoding and therefore less demand on the dorsolateral prefrontal cortex (DLPFC). Twenty-two healthy young adults were subjected to functional near-infrared spectroscopy (fNIRS) imaging of their bilateral DLPFC while encoding words in the presence of either a music or a silent background. Behavioral data confirmed the facilitating effect of music background during encoding on subsequent item recognition. fNIRS results revealed significantly greater activation of the left hemisphere during encoding (in line with the HERA model of memory lateralization) and a sustained, bilateral decrease of activity in the DLPFC in the music condition compared to silence. These findings suggest that music modulates the role played by the DLPFC during verbal encoding, and open perspectives for applications to clinical populations with prefrontal impairments, such as elderly adults or Alzheimer’s patients. PMID:24339807

  10. Microglial activation decreases retention of the protease inhibitor saquinavir: implications for HIV treatment

    PubMed Central

    2013-01-01

    Background Active HIV infection within the central nervous system (CNS) is confined primarily to microglia. The glial cell compartment acts as a viral reservoir behind the blood-brain barrier. It provides an additional roadblock to effective pharmacological treatment via expression of multiple drug efflux transporters, including P-glycoprotein. HIV/AIDS patients frequently suffer bacterial and viral co-infections, leading to deregulation of glial cell function and release of pro-inflammatory mediators including cytokines, chemokines, and nitric oxide. Methods To better define the role of inflammation in decreased HIV drug accumulation into CNS targets, accumulation of the antiretroviral saquinavir was examined in purified cultures of rodent microglia exposed to the prototypical inflammatory mediator lipopolysaccharide (LPS). Results [3H]-Saquinavir accumulation by microglia was rapid, and was increased up to two-fold in the presence of the specific P-glycoprotein inhibitor, PSC833. After six or 24 hours of exposure to 10 ng/ml LPS, saquinavir accumulation was decreased by up to 45%. LPS did not directly inhibit saquinavir transport, and did not affect P-glycoprotein protein expression. LPS exposure did not alter RNA and/or protein expression of other transporters including multidrug resistance-associated protein 1 and several solute carrier uptake transporters. Conclusions The decrease in saquinavir accumulation in microglia following treatment with LPS is likely multi-factorial, since drug accumulation was attenuated by inhibitors of NF-κβ and the MEK1/2 pathway in the microglia cell line HAPI, and in primary microglia cultures from toll-like receptor 4 deficient mice. These data provide new pharmacological insights into why microglia act as a difficult-to-treat viral sanctuary site. PMID:23642074

  11. Depression in pregnancy is associated with decreased glutathione peroxidase activity in fetal cord blood.

    PubMed

    Camkurt, Mehmet Akif; Fındıklı, Ebru; Bakacak, Murat; Karaaslan, Mehmet Fatih; Tolun, Fatma İnanç; Tuman, Taha Can

    2016-08-01

    The investigation of fetal cord blood (FCB) during child delivery has created a novel topic in the field of psychiatric research. The umbilical vein receives nutrients and oxygen from the mother's circulation and transports them to the fetal circulation. Investigating fetal cord blood during delivery is beneficial for understanding the fetal environment. Depression in pregnancy is associated with medical and emotional burdens. In this study, we aimed to investigate glutathione peroxidase (Gpx) and myeloperoxidase (MPO) activity in the FCB of depressed mothers and healthy controls. Our study included 45 depressed mothers and 59 healthy controls. The FCB samples were collected from the umbilical vein during delivery. We found that Gpx levels were significantly decreased in the FCB of depressed mothers than healthy controls, medians were 0.14 U/ml and 0.16 U/ml respectively, Z: -3.567 and p < 0.001. MPO levels were similar in both groups, medians were 1.0 U/L and 1.2 U/L respectively, Z: -1.837 and p:0.066. Depression in pregnancy may be associated with decreased antioxidant levels, and this condition may cause an oxidative load, which may lead to improper brain development. Future studies should be performed in larger samples to clarify our preliminary results. PMID:27174401

  12. Methamphetamine-induced decrease in tryptophan hydroxylase activity: role of 5-hydroxytryptaminergic transporters.

    PubMed

    Fleckenstein, A E; Beyeler, M L; Jackson, J C; Wilkins, D G; Gibb, J W; Hanson, G R

    1997-04-18

    Methamphetamine-induced 5-hydroxytryptaminergic neuronal damage purportedly involves transport of newly released dopamine from extracellular spaces into 5-hydroxytryptaminergic terminals. This hypothesis is based primarily on findings that dopamine is required for, whereas 5-hydroxytryptamine (5-HT) uptake inhibitors prevent, methamphetamine-induced deficits in 5-hydroxytryptaminergic neuronal function. This hypothesis is not, however, supported by findings presented in this study that 5-hydroxytryptaminergic neuronal damage, induced by p-chloroamphetamine, does not decrease [3H]dopamine uptake into rat brain synaptosomes prepared from 5-HT-transporter-containing tissue. Moreover, despite having greater affinity for the 5-HT transporter, citalopram has an IC50 for [1H]dopamine transport into these synaptosomal preparations that is considerably greater than that of fluoxetine. These data suggest that 5-HT transporters may not effect dopamine uptake and thereby methamphetamine-induced 5-hydroxytryptaminergic neuronal damage. Other possible mechanisms related to 5-HT uptake inhibitor attenuation of methamphetamine-induced deficits were investigated. Fluoxetine pretreatment prevented the methamphetamine-induced decrease in tryptophan hydroxylase activity: this effect cannot be attributed to altered body temperatures or brain concentrations of methamphetamine which suggests that neither, per se, is sufficient to impair 5-hydroxytryptaminergic neuronal function. PMID:9145769

  13. Automotive exhaust and mouse activity: relationships between pollutant concentrations and decreases in wheel running.

    PubMed

    Gage, M I

    1979-01-01

    Groups of male and female mice inhaled either clean air, 100 ppm carbon monoxide, or light-irradiated and nonirradiated automotive exhaust containing nominally 25, 50, 75, or 100 ppm carbon monoxide in three tests with exposure lasting from 4 to 7 days. Exhaust from a factory or lean-tuned engine in the first and third tests reversibly suppressed activity wheel running during exposure in mice of both sexes by as much as 78.3 and 83.1%, respectively. Light-irradiated exhaust suppressed running more than nonirradiated exhaust. For the second test, when the engine was tuned to be low in pollutants other than carbon monoxide, exhaust did not suppress running. Exposure to carbon monoxide alone only slightly decreased running in male mice, but increased running in female mice. PMID:88208

  14. Decreased serum cholesteryl-ester transfer activity in a patient with familial hyperalphalipoproteinemia.

    PubMed

    Takegoshi, T; Haba, T; Kitoh, C; Tokuda, T; Mabuchi, H

    1988-08-01

    Lipoprotein patterns and cholesteryl-ester transfer activity (CETA) were examined in a patient with familial hyperalphalipoproteinemia (FHALP). The proband was a 41-year-old Japanese male. He was found to have hypercholesterolemia, with a serum total cholesterol level of 382 mg/dl and a HDL-cholesterol level of 177 mg/dl. HDL showed a high cholesterol/Apo AI ratio. His father, all of his siblings and one of his children showed high HDL-cholesterol levels (91, 100, 70, 108, 75 and 98 mg/dl, respectively). These data suggest that all members of his family were heterozygotes. He had neither cutaneous or tendinous xanthomas nor any clinical signs of atherosclerosis. The proband appears to have only one-tenth of the normal level of CETA. However, the level of lipid-transfer protein I (LTP-I) activity was near normal. Thus, this patient is most likely to have an exaggerated level of LTP-I inhibitor(s). Effects of probucol on serum lipoprotein and apolipoprotein levels were studied in our patient. Treatment with 250 mg of probucol twice daily reduced total serum cholesterol, low density lipoprotein (LDL) and HDL-cholesterol levels by 33.32 and 33%, respectively. Apo AI, B and E levels decreased by 22, 16 and 35% respectively. HDL-cholesterol/Apo AI ratio decreased from 0.9 to 0.76. CETA showed no significant changes. However, cholesterol ester mass transfer increased from 10.8 to 14.9% after treatment with probucol. These results suggest that probucol appears to be a useful drug for FHALP. PMID:3193660

  15. Identification of a DMBT1 polymorphism associated with increased breast cancer risk and decreased promoter activity.

    PubMed

    Tchatchou, Sandrine; Riedel, Angela; Lyer, Stefan; Schmutzhard, Julia; Strobel-Freidekind, Olga; Gronert-Sum, Sabine; Mietag, Carola; D'Amato, Mauro; Schlehe, Bettina; Hemminki, Kari; Sutter, Christian; Ditsch, Nina; Blackburn, Anneke; Hill, Linda Zhai; Jerry, D Joseph; Bugert, Peter; Weber, Bernhard H F; Niederacher, Dieter; Arnold, Norbert; Varon-Mateeva, Raymonda; Wappenschmidt, Barbara; Schmutzler, Rita K; Engel, Christoph; Meindl, Alfons; Bartram, Claus R; Mollenhauer, Jan; Burwinkel, Barbara

    2010-01-01

    According to present estimations, the unfavorable combination of alleles with low penetrance but high prevalence in the population might account for the major part of hereditary breast cancer risk. Deleted in Malignant Brain Tumors 1 (DMBT1) has been proposed as a tumor suppressor for breast cancer and other cancer types. Genomewide mapping in mice further identified Dmbt1 as a potential modulator of breast cancer risk. Here, we report the association of two frequent and linked single-nucleotide polymorphisms (SNPs) with increased breast cancer risk in women above the age of 60 years: DMBT1 c.-93C>T, rs2981745, located in the DMBT1 promoter; and DMBT1 c.124A>C, p.Thr42Pro, rs11523871(odds ratio [OR]=1.66, 95% confidence interval [CI]=1.21-2.29, P=0.0017; and OR=1.66; 95% CI=1.21-2.28, P=0.0016, respectively), based on 1,195 BRCA1/2 mutation-negative German breast cancer families and 1,466 unrelated German controls. Promoter studies in breast cancer cells demonstrate that the risk-increasing DMBT1 -93T allele displays significantly decreased promoter activity compared to the DMBT1 -93C allele, resulting in a loss of promoter activity. The data suggest that DMBT1 polymorphisms in the 5'-region are associated with increased breast cancer risk. In accordance with previous results, these data link decreased DMBT1 levels to breast cancer risk. PMID:19830809

  16. Protein tyrosine phosphatase alpha (PTP alpha) knockout mice show deficits in Morris water maze learning, decreased locomotor activity, and decreases in anxiety.

    PubMed

    Skelton, Matthew R; Ponniah, Sathivel; Wang, Dennis Z-M; Doetschman, Thomas; Vorhees, Charles V; Pallen, Catherine J

    2003-09-12

    Receptor PTPalpha is a widely expressed transmembrane enzyme enriched in brain. PTPalpha knockout (PTPalpha(-/-)) mice are viable and display no gross abnormalities. Brain and embryo derived fibroblast src and fyn activity is reduced to <50% in PTPalpha(-/-) mice. These protein kinases are implicated in multiple aspects of neuronal development and function. However, the effect of the loss of function of the PTPalpha gene on behavior has yet to be investigated. PTPalpha(-/-) and WT mice were tested for anxiety, swimming ability, spatial learning, cued learning, locomotor activity, and novel object recognition (NOR). PTPalpha(-/-) mice were indistinguishable from WT in swimming ability, cued learning and novel object recognition. Knockout mice showed decreased anxiety without an increase in head dips and stretch-attend movements. During Morris water maze (MWM) learning, PTPalpha(-/-) mice had increased latencies to reach the goal compared to WT on acquisition, but no memory deficit on probe trials. On reversal learning, knockout mice showed no significant effects. PTPalpha(-/-) mice showed decreased exploratory locomotor activity, but responded normally to a challenge dose of D-methamphetamine. The data suggest that PTPalpha serves a regulatory function in learning and other forms of neuroplasticity. PMID:12932834

  17. BPA Directly Decreases GnRH Neuronal Activity via Noncanonical Pathway.

    PubMed

    Klenke, Ulrike; Constantin, Stephanie; Wray, Susan

    2016-05-01

    Peripheral feedback of gonadal estrogen to the hypothalamus is critical for reproduction. Bisphenol A (BPA), an environmental pollutant with estrogenic actions, can disrupt this feedback and lead to infertility in both humans and animals. GnRH neurons are essential for reproduction, serving as an important link between brain, pituitary, and gonads. Because GnRH neurons express several receptors that bind estrogen, they are potential targets for endocrine disruptors. However, to date, direct effects of BPA on GnRH neurons have not been shown. This study investigated the effects of BPA on GnRH neuronal activity using an explant model in which large numbers of primary GnRH neurons are maintained and express many of the receptors found in vivo. Because oscillations in intracellular calcium have been shown to correlate with electrical activity in GnRH neurons, calcium imaging was used to assay the effects of BPA. Exposure to 50μM BPA significantly decreased GnRH calcium activity. Blockage of γ-aminobutyric acid ergic and glutamatergic input did not abrogate the inhibitory BPA effect, suggesting direct regulation of GnRH neurons by BPA. In addition to estrogen receptor-β, single-cell RT-PCR analysis confirmed that GnRH neurons express G protein-coupled receptor 30 (G protein-coupled estrogen receptor 1) and estrogen-related receptor-γ, all potential targets for BPA. Perturbation studies of the signaling pathway revealed that the BPA-mediated inhibition of GnRH neuronal activity occurred independent of estrogen receptors, GPER, or estrogen-related receptor-γ, via a noncanonical pathway. These results provide the first evidence of a direct effect of BPA on GnRH neurons. PMID:26934298

  18. Characterization of volume-activated chloride currents in regulatory volume decrease of human cholangiocyte.

    PubMed

    Chen, Biyi; Jefferson, Douglas M; Cho, Won Kyoo

    2010-05-01

    Volume-activated chloride channel (VACC) plays vital roles in many physiological functions. In bile duct epithelium, VACC actively participates in biliary secretion and cell volume regulation, and it mediates regulatory volume decrease (RVD). Recently, we have shown that mouse cholangiocytes have an intact RVD via VACC and K(+) conductance. However, such cell volume regulation was not studied in the normal human cholangiocyte. Volume measurement by Coulter counter and whole-cell patch clamp technique were used to characterize the RVD and VACC in human cholangiocyte cell line (HBDC). When exposed to hypotonic solution, HBDC exhibited an intact RVD, which was inhibited by 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) (BAPTA-AM), NPPB (5-nitro-2'- (3-phenylpropylamino)-benzoate), DIDS (4,4'-diisothiocyanatostilbene-2-disulfonic acid), and tamoxifen, but was not affected by the removal of extracellular calcium. During RVD, HBDC exhibited large, outwardly rectifying currents and time-dependent inactivation at positive potential. The amplitude of the outward current was approximately 3 times of that of the inward current, and this volume-activated current returned to the baseline when switched to isotonic solution. The amplitude and reversal potential of the volume-activated current was dependent on Cl(-) concentration, and the VACC was significantly inhibited by replacing chloride with gluconate, glutamate, sucrose, and acetate in the hypotonic solution. In addition, classical VACC inhibitors, such as NPPB or tamoxifen, inhibited the VACC. These inhibitory effects were reversible with washing out the inhibitors from the bath solution. The present study is the first to characterize and show that HBDC has an intact RVD, mediated by VACC, which has similar electrophysiological characteristics as that in mouse cholangiocytes. PMID:20411247

  19. Decreased Pregnane X Receptor Expression in Children with Active Crohn's Disease.

    PubMed

    Shakhnovich, Valentina; Vyhlidal, Carrie; Friesen, Craig; Hildreth, Amber; Singh, Vivekanand; Daniel, James; Kearns, Gregory L; Leeder, J Steven

    2016-07-01

    Expression of the pregnane X receptor (PXR) has been reported to be decreased in animal models of inflammatory bowel disease (IBD). To investigate the differential expression of PXR in children with Crohn's disease, a type of IBD, RNA was extracted from archived intestinal biopsies from 18 children with Crohn's disease (CD) and 12 age- and sex-matched controls (aged 7-17yrs). The aim of this investigation was to compare the relative mRNA expression of PXR, cytochrome p450 3A4 (CYP3A4), and villin 1 (VIL1) (a marker of epithelial cell integrity) in the inflamed terminal ileum (TI) versus noninflamed duodenum of children with CD. Relative expression was determined via reverse transcription real-time quantitative polymerase chain reaction, data normalized to glyceraldehyde 3-phosphate dehydrogenase, and differences in gene expression explored via paired t tests. PXR expression was decreased in the inflamed TI versus noninflamed duodenum (TI = 1.88 ± 0.89 versus duodenum = 2.5 ± 0.67; P < 0.001) in CD, but not controls (TI = 2.11 ± 0.41 versus duodenum = 2.26 ± 0.61; P = 0.52). CYP3A4 expression was decreased in CD (TI = -0.89 ± 3.11 versus duodenum = 1.90 ± 2.29; P < 0.05), but not controls (TI = 2.46 ± 0.51 versus duodenum = 2.60 ± 0.60; P = 0.61), as was VIL1 (CD TI = 3.80 ± 0.94 versus duodenum = 4.61 ± 0.52; P < 0.001; controls TI = 4.30 ± 0.35 versus duodenum = 4.47 ± 0.40; P = 0.29). PXR expression correlated with VIL1 (r = 0.78, P = 0.01) and CYP3A4 (r = 0.52, P = 0.01) expression. In conclusion, PXR, CYP3A4, and VIL1 expression was decreased only in the actively inflamed small intestinal tissue in children with CD. Our findings suggest that inflammation has the potential to influence expression of genes, and potentially intestinal proteins, important to drug disposition and response. The observed differential patterns of gene expression support further investigation of the role of PXR in the pathogenesis and/or treatment of pediatric Crohn

  20. Decreased Pregnane X Receptor Expression in Children with Active Crohn’s Disease

    PubMed Central

    Vyhlidal, Carrie; Friesen, Craig; Hildreth, Amber; Singh, Vivekanand; Daniel, James; Kearns, Gregory L.; Leeder, J. Steven

    2016-01-01

    Expression of the pregnane X receptor (PXR) has been reported to be decreased in animal models of inflammatory bowel disease (IBD). To investigate the differential expression of PXR in children with Crohn’s disease, a type of IBD, RNA was extracted from archived intestinal biopsies from 18 children with Crohn’s disease (CD) and 12 age- and sex-matched controls (aged 7–17yrs). The aim of this investigation was to compare the relative mRNA expression of PXR, cytochrome p450 3A4 (CYP3A4), and villin 1 (VIL1) (a marker of epithelial cell integrity) in the inflamed terminal ileum (TI) versus noninflamed duodenum of children with CD. Relative expression was determined via reverse transcription real-time quantitative polymerase chain reaction, data normalized to glyceraldehyde 3-phosphate dehydrogenase, and differences in gene expression explored via paired t tests. PXR expression was decreased in the inflamed TI versus noninflamed duodenum (TI = 1.88 ± 0.89 versus duodenum = 2.5 ± 0.67; P < 0.001) in CD, but not controls (TI = 2.11 ± 0.41 versus duodenum = 2.26 ± 0.61; P = 0.52). CYP3A4 expression was decreased in CD (TI = –0.89 ± 3.11 versus duodenum = 1.90 ± 2.29; P < 0.05), but not controls (TI = 2.46 ± 0.51 versus duodenum = 2.60 ± 0.60; P = 0.61), as was VIL1 (CD TI = 3.80 ± 0.94 versus duodenum = 4.61 ± 0.52; P < 0.001; controls TI = 4.30 ± 0.35 versus duodenum = 4.47 ± 0.40; P = 0.29). PXR expression correlated with VIL1 (r = 0.78, P = 0.01) and CYP3A4 (r = 0.52, P = 0.01) expression. In conclusion, PXR, CYP3A4, and VIL1 expression was decreased only in the actively inflamed small intestinal tissue in children with CD. Our findings suggest that inflammation has the potential to influence expression of genes, and potentially intestinal proteins, important to drug disposition and response. The observed differential patterns of gene expression support further investigation of the role of PXR in the pathogenesis and/or treatment of pediatric Crohn

  1. Do CMIP5 models project increase or decrease in Pacific winter cyclone activity under global warming?

    NASA Astrophysics Data System (ADS)

    Chang, E. K.

    2013-12-01

    During the cool season, extratropical cyclones are responsible for much of the high impact weather, including high winds, heavy snow, coastal storm surge, and extreme precipitation events. Thus how cylone activity may change under global warming is of great concern to climate scientists and policy makers alike. With the availability of climate model simulations from multiple modeling centers under Phase 5 of the Coupled Model Intercomparison Project (CMIP5), several recent studies have examined how cyclone activity is projected to change under global warming. While the results of these studies generally agree that the total cyclone frequency is projected to decrease in the Northern Hemisphere, they disagree on how the frequency of deep cyclones may change. One study suggests that the frequency of deep cyclones will increase in the Pacific, while another study concludes that it will decrease significantly throughout the Northern Hemisphere, including over the North Pacific. This study seeks to assess why these two seemingly contradictory conclusions have been made based on CMIP5 data. A single tracking algorithm has been used to derive cyclone statistics from a multiple-model ensemble of 23 CMIP5 simulations based on two different definitions of what cyclones are. One definition treats cyclones as the minima in total sea level pressure (PSL), while the other definition considers cyclones as minima in PSL perturbations -- deviations of PSL from a large scale, low frequency background flow. Results of this study show that when cyclones are defined based on total PSL, the frequency of deep cyclones over the Pacific is projected to increase, while if cyclones are defined as perturbations, the frequency of deep cyclones is projected to decrease. The difference between these two results can be shown to be mainly due to a projected significant deepening of the Aleutian low under global warming. When the CMIP5 projected mean pressure change is added to historical PSL data

  2. cAMP-dependent protein kinase activation decreases cytokine release in bronchial epithelial cells

    PubMed Central

    Poole, Jill A.; Nordgren, Tara M.; DeVasure, Jane M.; Heires, Art J.; Bailey, Kristina L.; Romberger, Debra J.

    2014-01-01

    Lung injury caused by inhalation of dust from swine-concentrated animal-feeding operations (CAFO) involves the release of inflammatory cytokine interleukin 8 (IL-8), which is mediated by protein kinase C-ε (PKC-ε) in airway epithelial cells. Once activated by CAFO dust, PKC-ε is responsible for slowing cilia beating and reducing cell migration for wound repair. Conversely, the cAMP-dependent protein kinase (PKA) stimulates contrasting effects, such as increased cilia beating and an acceleration of cell migration for wound repair. We hypothesized that a bidirectional mechanism involving PKA and PKC regulates epithelial airway inflammatory responses. To test this hypothesis, primary human bronchial epithelial cells and BEAS-2B cells were treated with hog dust extract (HDE) in the presence or absence of cAMP. PKC-ε activity was significantly reduced in cells that were pretreated for 1 h with 8-bromoadenosine 3′,5′-cyclic monophosphate (8-Br-cAMP) before exposure to HDE (P < 0.05). HDE-induced IL-6, and IL-8 release was significantly lower in cells that were pretreated with 8-Br-cAMP (P < 0.05). To exclude exchange protein activated by cAMP (EPAC) involvement, cells were pretreated with either 8-Br-cAMP or 8-(4-chlorophenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate (8-CPT-2Me-cAMP) (EPAC agonist). 8-CPT-2Me-cAMP did not activate PKA and did not reduce HDE-stimulated IL-6 release. In contrast, 8-Br-cAMP decreased HDE-stimulated tumor necrosis factor (TNF)-α-converting enzyme (TACE; ADAM-17) activity and subsequent TNF-α release (P < 0.001). 8-Br-cAMP also blocked HDE-stimulated IL-6 and keratinocyte-derived chemokine release in precision-cut mouse lung slices (P < 0.05). These data show bidirectional regulation of PKC-ε via a PKA-mediated inhibition of TACE activity resulting in reduced PKC-ε-mediated release of IL-6 and IL-8. PMID:25150062

  3. cAMP-dependent protein kinase activation decreases cytokine release in bronchial epithelial cells.

    PubMed

    Wyatt, Todd A; Poole, Jill A; Nordgren, Tara M; DeVasure, Jane M; Heires, Art J; Bailey, Kristina L; Romberger, Debra J

    2014-10-15

    Lung injury caused by inhalation of dust from swine-concentrated animal-feeding operations (CAFO) involves the release of inflammatory cytokine interleukin 8 (IL-8), which is mediated by protein kinase C-ε (PKC-ε) in airway epithelial cells. Once activated by CAFO dust, PKC-ε is responsible for slowing cilia beating and reducing cell migration for wound repair. Conversely, the cAMP-dependent protein kinase (PKA) stimulates contrasting effects, such as increased cilia beating and an acceleration of cell migration for wound repair. We hypothesized that a bidirectional mechanism involving PKA and PKC regulates epithelial airway inflammatory responses. To test this hypothesis, primary human bronchial epithelial cells and BEAS-2B cells were treated with hog dust extract (HDE) in the presence or absence of cAMP. PKC-ε activity was significantly reduced in cells that were pretreated for 1 h with 8-bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP) before exposure to HDE (P < 0.05). HDE-induced IL-6, and IL-8 release was significantly lower in cells that were pretreated with 8-Br-cAMP (P < 0.05). To exclude exchange protein activated by cAMP (EPAC) involvement, cells were pretreated with either 8-Br-cAMP or 8-(4-chlorophenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate (8-CPT-2Me-cAMP) (EPAC agonist). 8-CPT-2Me-cAMP did not activate PKA and did not reduce HDE-stimulated IL-6 release. In contrast, 8-Br-cAMP decreased HDE-stimulated tumor necrosis factor (TNF)-α-converting enzyme (TACE; ADAM-17) activity and subsequent TNF-α release (P < 0.001). 8-Br-cAMP also blocked HDE-stimulated IL-6 and keratinocyte-derived chemokine release in precision-cut mouse lung slices (P < 0.05). These data show bidirectional regulation of PKC-ε via a PKA-mediated inhibition of TACE activity resulting in reduced PKC-ε-mediated release of IL-6 and IL-8. PMID:25150062

  4. The Peroxisome Proliferator Activated Receptor‐γ Pioglitazone Improves Vascular Function and Decreases Disease Activity in Patients With Rheumatoid Arthritis

    PubMed Central

    Marder, Wendy; Khalatbari, Shokoufeh; Myles, James D.; Hench, Rita; Lustig, Susan; Yalavarthi, Srilakshmi; Parameswaran, Aishwarya; Brook, Robert D.; Kaplan, Mariana J.

    2013-01-01

    Background Rheumatoid arthritis (RA) is associated with heightened mortality due to atherosclerotic cardiovascular disease (CVD). Inflammatory pathways in RA negatively affect vascular physiology and promote metabolic disturbances that contribute to CVD. We hypothesized that the peroxisome proliferator activated receptor‐γ (PPAR‐γ) pioglitazone could promote potent vasculoprotective and anti‐inflammatory effects in RA. Methods and Results One hundred forty‐three non‐diabetic adult RA patients (76.2% female, age 55.2±12.1 [mean±SD]) on stable RA standard of care treatment were enrolled in a randomized, double‐blind placebo controlled crossover trial of 45 mg daily pioglitazone versus placebo, with a 3‐month duration/arm and a 2‐month washout period. Pulse wave velocity of the aorta (PWV), brachial artery flow mediated dilatation (FMD), nitroglycerin mediated dilatation (NMD), microvascular endothelial function (reactive hyperemia index [RHI]), and circulating biomarkers of inflammation, insulin resistance, and atherosclerosis risk all were quantified. RA disease activity was assessed with the 28‐Joint Count Disease Activity Score (DAS‐28) C‐reactive protein (CRP) and the Short Form (36) Health Survey quality of life questionnaire. When added to standard of care RA treatment, pioglitazone significantly decreased pulse wave velocity (ie, aortic stiffness) (P=0.01), while FMD and RHI remained unchanged when compared to treatment with placebo. Further, pioglitazone significantly reduced RA disease activity (P=0.02) and CRP levels (P=0.001), while improving lipid profiles. The drug was well tolerated. Conclusions Addition of pioglitazone to RA standard of care significantly improves aortic elasticity and decreases inflammation and disease activity with minimal safety issues. The clinical implications of these findings remain to be established. Clinical Trial Registration URL: ClinicalTrials.gov Unique Identifier: NCT00554853. PMID:24252844

  5. Fasciola hepatica Kunitz Type Molecule Decreases Dendritic Cell Activation and Their Ability to Induce Inflammatory Responses

    PubMed Central

    Falcón, Cristian R.; Masih, Diana; Gatti, Gerardo; Sanchez, María Cecilia; Motrán, Claudia C.; Cervi, Laura

    2014-01-01

    The complete repertoire of proteins with immunomodulatory activity in Fasciola hepatica (Fh) has not yet been fully described. Here, we demonstrated that Fh total extract (TE) reduced LPS-induced DC maturation, and the DC ability to induce allogeneic responses. After TE fractionating, a fraction lower than 10 kDa (F<10 kDa) was able to maintain the TE properties to modulate the DC pro- and anti-inflammatory cytokine production induced by LPS. In addition, TE or F<10 kDa treatment decreased the ability of immature DC to stimulate the allogeneic responses and induced a novo allogeneic CD4+CD25+Foxp3+ T cells. In contrast, treatment of DC with T/L or F<10 kDa plus LPS (F<10/L) induced a regulatory IL-27 dependent mechanism that diminished the proliferative and Th1 and Th17 allogeneic responses. Finally, we showed that a Kunitz type molecule (Fh-KTM), present in F<10 kDa, was responsible for suppressing pro-inflammatory cytokine production in LPS-activated DC, by printing tolerogenic features on DC that impaired their ability to induce inflammatory responses. These results suggest a modulatory role for this protein, which may be involved in the immune evasion mechanisms of the parasite. PMID:25486609

  6. Bergenin decreases the morphine-induced physical dependence via antioxidative activity in mice.

    PubMed

    Yun, Jaesuk; Lee, Yeonju; Yun, Kyunghwa; Oh, Seikwan

    2015-06-01

    Oxidative stress plays a role in the development of physical dependence induced by morphine. Bergenin, a polyphenol found in many Asian, African, and South American medicinal plants, is a potent antinarcotic agent with wide spectrum of pharmacological activities including antioxidant action. In the present study, we observed that bergenin decreased the development of physical dependence induced by morphine in mice and the antioxidant activity of bergenin plays a role in the antinarcotic effects through adapting to morphine-induced oxidative stress in the brain. The naloxone-precipitated withdrawal symptom (jumping frequency) was significantly ameliorated (50% of control group) by administration of bergenin (20 mg/kg) in morphine-treated mice. Furthermore, morphine-induced down-regulation of glutathione (GSH) contents was reversed by bergenin administration in the frontal cortex and liver. Bergenin had no effects on the increased levels of nfr2-dependent antioxidant enzyme HO1 and NQO1 in the frontal cortex, striatum, and liver of morphine-treated mice. However, the morphine-induced increase in nrf2 nuclear translocation in the frontal cortex and striatum was inhibited by bergenin treatment. These results suggest that bergenin has a potential antinarcotic effect via regulation of GSH contents and oxidative stress. PMID:25542428

  7. PTEN downregulates p75NTR expression by decreasing DNA-binding activity of Sp1

    SciTech Connect

    Rankin, Sherri L.; Guy, Clifford S.; Mearow, Karen M.

    2009-02-13

    p75NTR is expressed throughout the nervous system and its dysregulation is associated with pathological conditions. We have recently demonstrated a signalling cascade initiated by laminin (LN), which upregulates PTEN and downregulates p75NTR. Here we investigate the mechanism by which PTEN modulates p75NTR. Studies using PTEN mutants show that its protein phosphatase activity directly modulates p75NTR protein expression. Nuclear relocalization of PTEN subsequent to LN stimulation suggests transcriptional control of p75NTR expression, which was confirmed following EMSA and ChIP analysis of Sp1 transcription factor binding activity. LN and PTEN independently decrease the DNA-binding ability of PTEN to the p75NTR promoter. Sp1 regulation of p75NTR occurs via dephosphorylation of Sp1, thus reducing p75NTR transcription and protein expression. This mechanism represents a novel regulatory pathway which controls the expression level of a receptor with broad implications not only for the development of the nervous system but also for progression of pathological conditions.

  8. Decreasing CNPY2 Expression Diminishes Colorectal Tumor Growth and Development through Activation of p53 Pathway.

    PubMed

    Yan, Ping; Gong, Hui; Zhai, Xiaoyan; Feng, Yi; Wu, Jun; He, Sheng; Guo, Jian; Wang, Xiaoxia; Guo, Rui; Xie, Jun; Li, Ren-Ke

    2016-04-01

    Neovascularization drives tumor development, and angiogenic factors are important neovascularization initiators. We recently identified the secreted angiogenic factor CNPY2, but its involvement in cancer has not been explored. Herein, we investigate CNPY2's role in human colorectal cancer (CRC) development. Tumor samples were obtained from CRC patients undergoing surgery. Canopy 2 (CNPY2) expression was analyzed in tumor and adjacent normal tissue. Stable lines of human HCT116 cells expressing CNPY2 shRNA or control shRNA were established. To determine CNPY2's effects on tumor xenografts in vivo, human CNPY2 shRNA HCT116 cells and controls were injected into nude mice, separately. Cellular apoptosis, growth, and angiogenesis in the xenografts were evaluated. CNPY2 expression was significantly higher in CRC tissues. CNPY2 knockdown in HCT116 cells inhibited growth and migration and promoted apoptosis. In xenografts, CNPY2 knockdown prevented tumor growth and angiogenesis and promoted apoptosis. Knockdown of CNPY2 in the HCT116 CRC cell line reversibly increased p53 activity. The p53 activation increased cyclin-dependent kinase inhibitor p21 and decreased cyclin-dependent kinase 2, thereby inhibiting tumor cell growth, inducing cell apoptosis, and reducing angiogenesis both in vitro and in vivo. CNPY2 may play a critical role in CRC development by enhancing cell proliferation, migration, and angiogenesis and by inhibiting apoptosis through negative regulation of the p53 pathway. Therefore, CNPY2 may represent a novel CRC therapeutic target and prognostic indicator. PMID:26835537

  9. HSP90 inhibitors decrease AID levels and activity in mice and in human cells

    PubMed Central

    Montamat-Sicotte, Damien; Liztler, Ludivine C; Abreu, Cecilia; Safavi, Shiva; Zahn, Astrid; Orthwein, Alexandre; Muschen, Markus; Oppezzo, Pablo; Muñoz, Denise P; Di Noia, Javier M

    2015-01-01

    Activation induced deaminase (AID) initiates somatic hypermutation and class switch recombination of the Ig genes in antigen-activated B cells, underpinning antibody affinity maturation and isotype switching. AID can also be pathogenic by contributing to autoimmune diseases and oncogenic mutations. Moreover, AID can exert non-canonical functions when aberrantly expressed in epithelial cells. The lack of specific inhibitors prevents therapeutic applications to modulate AID functions. Here, we have exploited our previous finding that the HSP90 molecular chaperoning pathway stabilizes AID in B cells, to test whether HSP90 inhibitors could target AID in vivo. We demonstrate that chronic administration of HSP90 inhibitors decreases AID protein levels and isotype switching in immunized mice. HSP90 inhibitors also reduce disease severity in a mouse model of acute B-cell lymphoblastic leukemia in which AID accelerates disease progression. We further show that human AID protein levels are sensitive to HSP90 inhibition in normal and leukemic B cells, and that HSP90 inhibition prevents AID-dependent epithelial to mesenchymal transition in a human breast cancer cell line in vitro. Thus, we provide proof-of-concept that HSP90 inhibitors indirectly target AID in vivo and that endogenous human AID is widely sensitive to them, which could have therapeutic applications. PMID:25912253

  10. Erythropoietin stimulation decreases hepcidin expression through hematopoietic activity on bone marrow cells in mice.

    PubMed

    Sasaki, Yusuke; Noguchi-Sasaki, Mariko; Yasuno, Hideyuki; Yorozu, Keigo; Shimonaka, Yasushi

    2012-12-01

    Erythropoiesis-stimulating agents (ESA) are now central to the treatment of renal anemia and are associated with improved clinical outcomes. It is well known that erythropoietin (EPO) is a key regulator of erythropoiesis through its promotion of red blood cell production. In order to investigate the role of ESA on iron metabolism, we analyzed the regulation of the iron regulatory hormone hepcidin by ESA treatment in a bone marrow transplant model in mouse. After treating C57BL/6 mice with continuous erythropoietin receptor activator (C.E.R.A.), recombinant human epoetin-β (rhEPO), or recombinant human carbamylated epoetin-β (rhCEPO), we investigated serum hepcidin concentrations and parameters of erythropoiesis. Serum hepcidin concentrations after rhEPO treatment were analyzed in mice subjected to total body irradiation followed by bone marrow transplantation. C.E.R.A. administration caused long-term downregulation of serum hepcidin levels. Serum hepcidin levels in rhEPO-treated mice decreased significantly, whereas there was no change in rhCEPO-treated mice. The reduction in circulating hepcidin levels after rhEPO administration was not observed in irradiated mice. Finally, bone marrow transplantation recovered the response to rhEPO administration that downregulates hepcidin concentration in irradiated mice. These results indicate that ESA treatment downregulates serum hepcidin concentrations, mainly by indirect mechanisms affecting hematopoietic activity in bone marrow cells. PMID:23160767

  11. Decreased activity of Blastocladiella emersonii zoospore ribosomes: correlation with developmental changes in ribosome-associated proteins.

    PubMed

    Jaworski, A J; Wilson, J B

    1989-10-01

    Ribosomal proteins isolated from dormant zoospores were compared to the ribosomal proteins found in the active growth phase by two-dimensional polyacrylamide gel electrophoresis. Zoospore ribosomes were found to contain a set of five proteins, designated Z1 to Z5, which were not present in growth phase ribosomes. The Z1-Z5 proteins were not removed by high-salt washes using either 1 M KCl or 1 M NH4 Cl. The Z1 protein is found associated with zoospore 60 S subunits while Z2-Z5 are bound to 40 S subunits. Zoospore monoribosomes and polyribosomes contain comparable levels of each of the five proteins. Approximately 60 min. after sporulation is induced, the Z1-Z5 proteins begin to accumulate on the ribosomes with the highest levels of these proteins found associated with ribosomes at the zoospore stage. During germination, the proteins gradually disappear and are not detectable on the ribosomes after 4 hr of germination. The presence of the Z1-Z5 proteins correlates with a decrease in in vitro protein synthetic activity of the fungal ribosomes. The data are consistent with the hypothesis that the proteins regulate translation by completely blocking protein synthesis on a subset of ribosomes while the remainder of the ribosomes function at normal rates. PMID:2776972

  12. Possibility of decreasing the activation energy of resistivity of mullite by doping with nickel ion

    NASA Astrophysics Data System (ADS)

    Roy, D.; Das, S.; Nandy, P.

    2012-12-01

    Monophasic mullite samples doped with 0.002 M, 0.02 M, 0.1 M, 0.15 M and 0.2 M of NiCl2 were prepared via sol-gel technique. The prepared gels were dried, grinded, pressed into pellets and sintered at 400 °C, 800 °C, 1000 °C and 1300 °C. The electrical resistivity and activation energy of the composites have been measured and the variation of resistivity with concentration of the nickel ion doping has been investigated. The resistivity decreases with the concentration of nickel ions. X-ray analysis confirms the presence of Ni2+ ions in mullite. The Ni2+ ion, which substitutes Al3+ ion in the octahedral site of mullite structure, can be considered as an efficient factor in reducing the resistivity. The mullite unit cell parameters suggest predominant incorporation of NiCl2 in a glassy phase. The lowest activation energy of resistivity ( E act ) that was achieved is 1.22 eV at 0.02 M.

  13. HSP90 inhibitors decrease AID levels and activity in mice and in human cells.

    PubMed

    Montamat-Sicotte, Damien; Litzler, Ludivine C; Abreu, Cecilia; Safavi, Shiva; Zahn, Astrid; Orthwein, Alexandre; Müschen, Markus; Oppezzo, Pablo; Muñoz, Denise P; Di Noia, Javier M

    2015-08-01

    Activation induced deaminase (AID) initiates somatic hypermutation and class switch recombination of the Ig genes in antigen-activated B cells, underpinning antibody affinity maturation and isotype switching. AID can also be pathogenic by contributing to autoimmune diseases and oncogenic mutations. Moreover, AID can exert noncanonical functions when aberrantly expressed in epithelial cells. The lack of specific inhibitors prevents therapeutic applications to modulate AID functions. Here, we have exploited our previous finding that the HSP90 molecular chaperoning pathway stabilizes AID in B cells, to test whether HSP90 inhibitors could target AID in vivo. We demonstrate that chronic administration of HSP90 inhibitors decreases AID protein levels and isotype switching in immunized mice. HSP90 inhibitors also reduce disease severity in a mouse model of acute B-cell lymphoblastic leukemia in which AID accelerates disease progression. We further show that human AID protein levels are sensitive to HSP90 inhibition in normal and leukemic B cells, and that HSP90 inhibition prevents AID-dependent epithelial to mesenchymal transition in a human breast cancer cell line in vitro. Thus, we provide proof-of-concept that HSP90 inhibitors indirectly target AID in vivo and that endogenous human AID is widely sensitive to them, which could have therapeutic applications. PMID:25912253

  14. Airway Peroxidases Catalyze Nitration of the β2-Agonist Salbutamol and Decrease Its Pharmacological Activity

    PubMed Central

    Sallans, Larry; Macha, Stephen; Brown, Kari; McGraw, Dennis W.; Kovacic, Melinda Butsch; Britigan, Bradley E.

    2011-01-01

    β2-Agonists are the most effective bronchodilators for the rapid relief of asthma symptoms, but for unclear reasons, their effectiveness may be decreased during severe exacerbations. Because peroxidase activity and nitrogen oxides are increased in the asthmatic airway, we examined whether salbutamol, a clinically important β2-agonist, is subject to potentially inactivating nitration. When salbutamol was exposed to myeloperoxidase, eosinophil peroxidase or lactoperoxidase in the presence of hydrogen peroxide (H2O2) and nitrite (NO2−), both absorption spectroscopy and mass spectrometry indicated formation of a new metabolite with features expected for the nitrated drug. The new metabolites showed an absorption maximum at 410 nm and pKa of 6.6 of the phenolic hydroxyl group. In addition to nitrosalbutamol (m/z 285.14), a salbutamol-derived nitrophenol, formed by elimination of the formaldehyde group, was detected (m/z 255.13) by mass spectrometry. It is noteworthy that the latter metabolite was detected in exhaled breath condensates of asthma patients receiving salbutamol but not in unexposed control subjects, indicating the potential for β2-agonist nitration to occur in the inflamed airway in vivo. Salbutamol nitration was inhibited in vitro by ascorbate, thiocyanate, and the pharmacological agents methimazole and dapsone. The efficacy of inhibition depended on the nitrating system, with the lactoperoxidase/H2O2/NO2− being the most affected. Functionally, nitrated salbutamol showed decreased affinity for β2-adrenergic receptors and impaired cAMP synthesis in airway smooth muscle cells compared with the native drug. These results suggest that under inflammatory conditions associated with asthma, phenolic β2-agonists may be subject to peroxidase-catalyzed nitration that could potentially diminish their therapeutic efficacy. PMID:20974700

  15. Increasing brain angiotensin converting enzyme 2 activity decreases anxiety-like behavior in male mice by activating central Mas receptors.

    PubMed

    Wang, Lei; de Kloet, Annette D; Pati, Dipanwita; Hiller, Helmut; Smith, Justin A; Pioquinto, David J; Ludin, Jacob A; Oh, S Paul; Katovich, Michael J; Frazier, Charles J; Raizada, Mohan K; Krause, Eric G

    2016-06-01

    Over-activation of the brain renin-angiotensin system (RAS) has been implicated in the etiology of anxiety disorders. Angiotensin converting enzyme 2 (ACE2) inhibits RAS activity by converting angiotensin-II, the effector peptide of RAS, to angiotensin-(1-7), which activates the Mas receptor (MasR). Whether increasing brain ACE2 activity reduces anxiety by stimulating central MasR is unknown. To test the hypothesis that increasing brain ACE2 activity reduces anxiety-like behavior via central MasR stimulation, we generated male mice overexpressing ACE2 (ACE2 KI mice) and wild type littermate controls (WT). ACE2 KI mice explored the open arms of the elevated plus maze (EPM) significantly more than WT, suggesting increasing ACE2 activity is anxiolytic. Central delivery of diminazene aceturate, an ACE2 activator, to C57BL/6 mice also reduced anxiety-like behavior in the EPM, but centrally administering ACE2 KI mice A-779, a MasR antagonist, abolished their anxiolytic phenotype, suggesting that ACE2 reduces anxiety-like behavior by activating central MasR. To identify the brain circuits mediating these effects, we measured Fos, a marker of neuronal activation, subsequent to EPM exposure and found that ACE2 KI mice had decreased Fos in the bed nucleus of stria terminalis but had increased Fos in the basolateral amygdala (BLA). Within the BLA, we determined that ∼62% of GABAergic neurons contained MasR mRNA and expression of MasR mRNA was upregulated by ACE2 overexpression, suggesting that ACE2 may influence GABA neurotransmission within the BLA via MasR activation. Indeed, ACE2 overexpression was associated with increased frequency of spontaneous inhibitory postsynaptic currents (indicative of presynaptic release of GABA) onto BLA pyramidal neurons and central infusion of A-779 eliminated this effect. Collectively, these results suggest that ACE2 may reduce anxiety-like behavior by activating central MasR that facilitate GABA release onto pyramidal neurons within the

  16. Muscle activation characteristics of the front leg during baseball swings with timing correction for sudden velocity decrease.

    PubMed

    Ohta, Yoichi; Nakamoto, Hiroki; Ishii, Yasumitsu; Ikudome, Sachi; Takahashi, Kyohei; Shima, Norihiro

    2014-01-01

    This study aimed to clarify the activation characteristics of the vastus lateralis muscle in the front leg during timing correction for a sudden decrease in the velocity of a target during baseball swings. Eleven male collegiate baseball players performed coincident timing tasks that comprised constant velocity of 8 m/s (unchanged) and a sudden decrease in velocity from 8 to 4 m/s (decreased velocity). Electromyography (EMG) revealed that the muscle activation was typically monophasic when responding unchanged conditions. The type of muscle activation during swings in response to decreased velocity condition was both monophasic and biphasic. When biphasic activation appeared in response to decreased velocity, the impact time and the time to peak EMG amplitude were significantly prolonged and the timing error was significantly smaller than that of monophasic activation. However, the EMG onset from the target start was consistent both monophasic and biphasic activation in response to conditions of decreased velocity. In addition, batters with small timing errors in response to decreased velocity were more likely to generate biphasic EMG activation. These findings indicated that timing correction for a sudden decrease in the velocity of an oncoming target is achieved by modifying the muscle activation characteristics of the vastus lateralis muscle of front leg from monophasic to biphasic to delay reaching peak muscle activation and thus prolong impact time. Therefore, the present findings suggests that the extent of timing errors in response to decreased velocity is influenced by the ability to correct muscle activation after its initiation rather than by delaying the initiation timing of muscle activation during baseball swings. PMID:25918848

  17. Muscle Activation Characteristics of the Front Leg During Baseball Swings with Timing Correction for Sudden Velocity Decrease

    PubMed Central

    Ohta, Yoichi; Nakamoto, Hiroki; Ishii, Yasumitsu; Ikudome, Sachi; Takahashi, Kyohei; Shima, Norihiro

    2015-01-01

    This study aimed to clarify the activation characteristics of the vastus lateralis muscle in the front leg during timing correction for a sudden decrease in the velocity of a target during baseball swings. Eleven male collegiate baseball players performed coincident timing tasks that comprised constant velocity of 8 m/s (unchanged) and a sudden decrease in velocity from 8 to 4 m/s (decreased velocity). Electromyography (EMG) revealed that the muscle activation was typically monophasic when responding unchanged conditions. The type of muscle activation during swings in response to decreased velocity condition was both monophasic and biphasic. When biphasic activation appeared in response to decreased velocity, the impact time and the time to peak EMG amplitude were significantly prolonged and the timing error was significantly smaller than that of monophasic activation. However, the EMG onset from the target start was consistent both monophasic and biphasic activation in response to conditions of decreased velocity. In addition, batters with small timing errors in response to decreased velocity were more likely to generate biphasic EMG activation. These findings indicated that timing correction for a sudden decrease in the velocity of an oncoming target is achieved by modifying the muscle activation characteristics of the vastus lateralis muscle of front leg from monophasic to biphasic to delay reaching peak muscle activation and thus prolong impact time. Therefore, the present findings suggests that the extent of timing errors in response to decreased velocity is influenced by the ability to correct muscle activation after its initiation rather than by delaying the initiation timing of muscle activation during baseball swings. PMID:25918848

  18. Decreased Circulating T Regulatory Cells in Egyptian Patients with Nonsegmental Vitiligo: Correlation with Disease Activity

    PubMed Central

    Hegab, Doaa Salah; Attia, Mohamed Attia Saad

    2015-01-01

    Background. Vitiligo is an acquired depigmentary skin disorder resulting from autoimmune destruction of melanocytes. Regulatory T cells (Tregs), specifically CD4+CD25+ and Forkhead box P3+ (FoxP3+) Tregs, acquired notable attention because of their role in a variety of autoimmune pathologies. Dysregulation of Tregs may be one of the factors that can break tolerance to melanocyte self-antigens and contribute to vitiligo pathogenesis. Methods. In order to sustain the role of Tregs in pathogenesis and disease activity of vitiligo, surface markers for CD4+CD25+ and FoxP3+ peripheral Tregs were evaluated by flow cytometry in 80 Egyptian patients with nonsegmental vitiligo in addition to 60 healthy control subjects and correlated with clinical findings. Results. Vitiligo patients had significantly decreased numbers of both peripheral CD4+CD25+ and FoxP3+ T cells compared to control subjects (11.49%  ± 8.58% of CD4+ T cells versus 21.20%  ± 3.08%, and 1.09%  ± 0.96% versus 1.44%  ± 0.24%, resp., P < 0.05 for both). Peripheral numbers of CD4+CD25+ and FoxP3+ Tregs correlated negatively with VIDA score. Conclusion. Treg depletion with impaired immune downregulatory function might play a key role in the autoimmune conditions beyond nonsegmental vitiligo particularly in active cases. Effective Treg cell-based immunotherapies might be a future hope for patients with progressive vitiligo. PMID:26788051

  19. Construction of Escherichia coli Mutant with Decreased Endotoxic Activity by Modifying Lipid A Structure.

    PubMed

    Liu, Qiong; Li, Yanyan; Zhao, Xinxin; Yang, Xue; Liu, Qing; Kong, Qingke

    2015-06-01

    Escherichia coli BL21 (DE3) and its derivatives are widely used for the production of recombinant proteins, but these purified proteins are always contaminated with lipopolysaccharide (LPS). LPS is recognized by the toll-like receptor 4 and myeloid differentiation factor 2 complex of mammalian immune cells and leads to release of pro-inflammatory cytokines. It is a vital step to remove LPS from the proteins before use for therapeutic purpose. In this study, we constructed BL21 (DE3) ∆msbB28 ∆pagP38 mutant, which produces a penta-acylated LPS with reduced endotoxicity. The plasmids harboring pagL and/or lpxE were then introduced into this mutant to further modify the LPS. The new strain (S004) carrying plasmid pQK004 (pagL and lpxE) produced mono-phosphoryated tetra-acylated lipid A, which induces markedly less production of tumor necrosis factor-α in the RAW264.7 and IL-12 in the THP1, but still retains ability to produce recombinant proteins. This study provides a strategy to decrease endotoxic activity of recombinant proteins purified from E. coli BL21 backgrounds and a feasible approach to modify lipid A structure for alternative purposes such as mono-phosphoryl lipid A (MPL) as vaccine adjuvants. PMID:26023843

  20. Synergistic effect of decreased opioid activity and sleep deprivation on head-twitch response in mice.

    PubMed

    Ionov, Ilya D

    2010-07-01

    In schizophrenia, an opioidergic understimulation and a decreased sleep duration are found. The pathogenic significance of these factors is unknown. The present study assessed the influence of the combination of the factors on serotonergic 2A (5-HT(2A)) receptors that are possibly related to psychosis development. 2,5-dimethoxy-4-iodoamphetamine (DOI)-induced head-twitch response in mice was used as a model of 5-HT(2A) receptor functioning. Mice underwent sleep deprivation and/or a blockade of opioidergic receptors with naloxone. To evaluate the involvement of 5-HT(2A) receptor in effects observed, animals were pretreated with MDL 100,907, a potent and selective antagonist of 5-HT(2A) receptor. As was found, 4h of sleep deprivation followed by administration of naloxone significantly increases the frequency of head twitches, with sleep deprivation and naloxone being ineffective alone. The action of the "sleep deprivation-opioid understimulation" combination is antagonized completely by MDL 100,907. Thus, some schizophrenia-associated factors can synergistically enhance the activity of 5-HT(2A) receptors. These results suggest the above factors being pathogenically relevant in schizophrenia. PMID:20399224

  1. Construction of Escherichia coli Mutant with Decreased Endotoxic Activity by Modifying Lipid A Structure

    PubMed Central

    Liu, Qiong; Li, Yanyan; Zhao, Xinxin; Yang, Xue; Liu, Qing; Kong, Qingke

    2015-01-01

    Escherichia coli BL21 (DE3) and its derivatives are widely used for the production of recombinant proteins, but these purified proteins are always contaminated with lipopolysaccharide (LPS). LPS is recognized by the toll-like receptor 4 and myeloid differentiation factor 2 complex of mammalian immune cells and leads to release of pro-inflammatory cytokines. It is a vital step to remove LPS from the proteins before use for therapeutic purpose. In this study, we constructed BL21 (DE3) ∆msbB28 ∆pagP38 mutant, which produces a penta-acylated LPS with reduced endotoxicity. The plasmids harboring pagL and/or lpxE were then introduced into this mutant to further modify the LPS. The new strain (S004) carrying plasmid pQK004 (pagL and lpxE) produced mono-phosphoryated tetra-acylated lipid A, which induces markedly less production of tumor necrosis factor-α in the RAW264.7 and IL-12 in the THP1, but still retains ability to produce recombinant proteins. This study provides a strategy to decrease endotoxic activity of recombinant proteins purified from E. coli BL21 backgrounds and a feasible approach to modify lipid A structure for alternative purposes such as mono-phosphoryl lipid A (MPL) as vaccine adjuvants. PMID:26023843

  2. Production and food web efficiency decrease as fishing activity increases in a coastal ecosystem

    NASA Astrophysics Data System (ADS)

    Anh, Pham Viet; Everaert, Gert; Goethals, Peter; Vinh, Chu Tien; De Laender, Frederik

    2015-11-01

    Fishing effort in the Vietnamese coastal ecosystem has rapidly increased from the 1990s to the 2000s, with unknown consequences for local ecosystem structure and functioning. Using ecosystem models that integrate fisheries and food webs we found profound differences in the production of six functional groups, the food web efficiency, and eight functional food web indices between the 1990s (low fishing intensity) and the 2000s (high fishing intensity). The functional attributes (e.g. consumption) of high trophic levels (e.g. predators) were lower in the 2000s than in the 1990s while primary production did not vary, causing food web efficiency to decrease up to 40% with time for these groups. The opposite was found for lower trophic levels (e.g. zooplankton): the functional attributes and food web efficiency increased with time (22 and 10% for the functional attributes and food web efficiency, respectively). Total system throughput, a functional food web index, was about 10% higher in the 1990s than in the 2000s, indicating a reduction of the system size and activity with time. The network analyses further indicated that the Vietnamese coastal ecosystem in the 1990s was more developed (higher ascendancy and capacity), more stable (higher overhead) and more mature (higher ratio of ascendancy and capacity) than in the 2000s. In the 1990s the recovery time of the ecosystem was shorter than in 2000s, as indicated by a higher Finn's cycling index in the 1990s (7.8 and 6.5% in 1990s and 2000s, respectively). Overall, our results demonstrate that the Vietnamese coastal ecosystem has experienced profound changes between the 1990s and 2000s, and emphasise the need for a closer inspection of the ecological impact of fishing.

  3. Ovine maternal nutrient restriction from mid to late gestation decreases heptic progesterone inactivating enzyme activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously we have shown increased concentrations of progesterone and decreased liver weight in mid to late pregnant ewes provided a nutrient restricted vs. adequate diet. This alteration in peripheral progesterone could be due to increased synthesis and/or decreased clearance of progesterone. There...

  4. Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago.

    PubMed

    Gardner, Alex S; Moholdt, Geir; Wouters, Bert; Wolken, Gabriel J; Burgess, David O; Sharp, Martin J; Cogley, J Graham; Braun, Carsten; Labine, Claude

    2011-05-19

    Mountain glaciers and ice caps are contributing significantly to present rates of sea level rise and will continue to do so over the next century and beyond. The Canadian Arctic Archipelago, located off the northwestern shore of Greenland, contains one-third of the global volume of land ice outside the ice sheets, but its contribution to sea-level change remains largely unknown. Here we show that the Canadian Arctic Archipelago has recently lost 61 ± 7 gigatonnes per year (Gt yr(-1)) of ice, contributing 0.17 ± 0.02 mm yr(-1) to sea-level rise. Our estimates are of regional mass changes for the ice caps and glaciers of the Canadian Arctic Archipelago referring to the years 2004 to 2009 and are based on three independent approaches: surface mass-budget modelling plus an estimate of ice discharge (SMB+D), repeat satellite laser altimetry (ICESat) and repeat satellite gravimetry (GRACE). All three approaches show consistent and large mass-loss estimates. Between the periods 2004-2006 and 2007-2009, the rate of mass loss sharply increased from 31 ± 8 Gt yr(-1) to 92 ± 12 Gt yr(-1) in direct response to warmer summer temperatures, to which rates of ice loss are highly sensitive (64 ± 14 Gt yr(-1) per 1 K increase). The duration of the study is too short to establish a long-term trend, but for 2007-2009, the increase in the rate of mass loss makes the Canadian Arctic Archipelago the single largest contributor to eustatic sea-level rise outside Greenland and Antarctica. PMID:21508960

  5. Zinc deficiency decreases the activity of calmodulin regulated cyclic nucleotide phosphodiesterases in vivo in selected rat tissues.

    PubMed

    Law, J S; McBride, S A; Graham, S; Nelson, N R; Slotnick, B M; Henkin, R I

    1988-08-01

    The effect of zinc deficiency on calmodulin function was investigated by assessing the in vivo activity of two calmodulin regulated enzymes, adenosine 3',5'-monophosphate (c-AMP) and guanosine 3',5'-monophosphate (c-GMP) phosphodiesterase (PDE) in several rat tissues. Enzymatic activities in brain, heart, and testis of rats fed a zinc deficient diet were compared with activities in these tissues from pair fed, zinc supplemented rats. In testis, a tissue in which zinc concentration decreased with zinc deficient diet, enzyme activities were significantly decreased over those in rats who were pair fed zinc supplemented diets. In brain and heart, tissues in which zinc concentrations did not change with either diet, enzymatic activities between the groups were not different. These results indicate that zinc deficiency influences the activity of calmodulin-regulated phosphodiesterases in vivo supporting the hypothesis that zinc plays a role in calmodulin function in vivo in zinc sensitive tissues. PMID:2484550

  6. Limitation of dietary copper and zinc decreases superoxide dismutase activity in the onion fly, Delia antiqua.

    PubMed

    Matsuo, T; Ooe, S; Ishikawa, Y

    1997-06-01

    Larvae of the onion fly, Delia antiqua, have lower superoxide dismutase (SOD) activity when they are fed a defined synthetic diet that contains no copper or zinc. SOD activity was rapidly recovered when these larvae were fed onion bulbs. Addition of copper and zinc to the synthetic diet also led to the recovery of SOD activity. Results of an immunoblotting analysis using anti-D. antiqua CuZnSOD mouse monoclonal antibody suggest that this alteration of SOD activity is dependent on the amount of CuZnSOD. PMID:9172377

  7. Role of cyclic AMP in promoting the thromboresistance of human endothelial cells by enhancing thrombomodulin and decreasing tissue factor activities.

    PubMed Central

    Archipoff, G.; Beretz, A.; Bartha, K.; Brisson, C.; de la Salle, C.; Froget-Léon, C.; Klein-Soyer, C.; Cazenave, J. P.

    1993-01-01

    1. The effects of forskolin, prostaglandin E1 (PGE1), dibutyryl cyclic AMP (db cyclic AMP), dibutyryl cyclic GMP (db cyclic GMP) and 3-isobutyl-l-methyl-xanthine (IBMX) were investigated on the expression of tissue factor and thrombomodulin activities on the surface of human saphenous vein endothelial cells (HSVEC) in culture. 2. Forskolin (10(-6) to 10(-4) M), PGE1 (10(-7) to 10(-5) M) and db cyclic AMP (10(-4) to 10(-3) M) caused a concentration-dependent decrease of cytokine-induced tissue factor activity. 3. Similar concentrations of forskolin, PGE1 and db cyclic AMP enhanced significantly constitutive thrombomodulin activity and reversed the decrease of this activity caused by interleukin-1 (IL-1). 4. IBMX (10(-4) M) decreased tissue factor activity and enhanced the effect of forskolin on tissue factor and thrombomodulin activities. 5. Forskolin (10(-4) M) decreased the IL-1-induced tissue factor mRNA and increased the thrombomodulin mRNA level. IL-1 did not change the thrombomodulin mRNA level after 2 h of incubation with HSVEC in culture. 6. Dibutyryl cyclic GMP (10(-4) M to 10(-3) M) did not influence tissue factor or thrombomodulin activity. 7. Our data suggest that elevation of intracellular cyclic AMP levels may participate in the regulation of tissue factor and thrombomodulin expression, thus contributing to promote or restore antithrombotic properties of the endothelium. Images Figure 5 Figure 6 PMID:7684300

  8. Decreasing Stereotypy in Preschoolers with Autism Spectrum Disorder: The Role of Increased Physical Activity and Function

    ERIC Educational Resources Information Center

    McLaughlin, Constance Ann Hylton

    2010-01-01

    This study used increased physical activity during recess to reduce stereotypy in preschoolers with Autism Spectrum Disorder. Results indicate increasing physical activity can be used as an intervention to reduce automatically maintained stereotypy in preschoolers with ASD. The intervention had a lesser effect on a preschooler whose stereotypy was…

  9. Serum activity of angiotensin converting enzyme 2 is decreased in patients with acute ischemic stroke.

    PubMed

    Bennion, Douglas M; Rosado, Christian A; Haltigan, Emily A; Regenhardt, Robert W; Sumners, Colin; Waters, Michael F

    2016-07-01

    Levels of angiotensin converting enzyme 2 (ACE2), a cardio and neuro-protective carboxypeptidase, are dynamically altered after stroke in preclinical models. We sought to characterize the previously unexplored changes in serum ACE2 activity of stroke patients and the mechanism of these changes. Serum samples were obtained from patients during acute ischemic stroke (n=39), conditions mimicking stroke (stroke-alert, n=23), or from control participants (n=20). Enzyme activity levels were analyzed by fluorometric assay and correlated with clinical variables by regression analyses. Serum ACE2 activity was significantly lower in acute ischemic stroke as compared to both control and stroke-alert patients, followed by an increase to control levels at three days. Serum ACE2 activity significantly correlated with the presence of ischemic stroke after controlling for other factors (P=0.01). Additional associations with ACE2 activity included a positive correlation with systolic blood pressure at presentation in stroke-alert (R(2)=0.24, P=0.03), while stroke levels showed no correlation (R(2)=0.01, P=0.50). ACE2 sheddase activity was unchanged between groups. These dynamic changes in serum ACE2 activity in stroke, which concur with preclinical studies, are not likely to be driven primarily by acute changes in blood pressure or sheddase activity. These findings provide new insight for developing therapies targeting this protective system in ischemic stroke. PMID:27488276

  10. Experimental evidence for shallow, slow-moving landslides activated by a decrease in ground temperature

    NASA Astrophysics Data System (ADS)

    Shibasaki, Tatsuya; Matsuura, Sumio; Okamoto, Takashi

    2016-07-01

    In order to understand the trigger mechanism of slow-moving landslides occurring in the early cold season from late autumn to winter, we investigated the effect of temperature on the shear strength of slip surface soils. Displacement-controlled and shear stress-controlled box shear experiments were performed on undisturbed slip zone soils under residual strength conditions. Test results conducted at temperatures from 9 to 25°C showed remarkable shear strength reductions with decreasing temperature. Creep-like slow shear displacements were induced by a decrease in temperature. These temperature-dependent shear behaviors are attributed to the rheological properties of hydrous smectite that dominantly compose the soil material along the failure surface. Our experimental results imply that ground temperature conditions influence slope instability, especially for shallow landslides occurring in smectite-bearing rock areas.

  11. Subchronic haloperidol administration decreases aminopeptidase N activity and [Met5]enkephalin metabolism in rat striatum and cortex.

    PubMed

    Konkoy, C S; Waters, S M; Davis, T P

    1996-02-15

    Previously we have shown that subchronic intraperitoneal (i.p.) administration of haloperidol decreases the degradation of [Met5]enkephalin by regional brain slices (Waters et al., 1995, J. Pharmacol. Exp. Ther. 274, 783). In the present study, subchronic (7-day i.p.) administration of haloperidol (1 mg/kg) decreased the accumulation of aminopeptidase-derived fragments Tyr and Gly-Gly-Phe-Met on cortical and striatal slices. The accumulation of Tyr-Gly-Gly, however, was not altered by haloperidol treatment on slices from either region. Further, aminopeptidase N activity was decreased in P2 membranes isolated from either the cortex or striatum of haloperidol-treated animals. These data suggest that the haloperidol-induced decrease in [Met5]enkephalin metabolism results, at least in part, from a reduction in the activity of aminopeptidase N. PMID:8851165

  12. DELTAMETHRIN AND PERMETHRIN DECREASE SPONTANEOUS ACTIVITY IN NEURONAL NETWORKS IN VITRO.

    EPA Science Inventory

    Effects of pyrethroid insecticides on spontaneous electrical activity were investigated in primary cultures of cortical or spinal cord neurons grown on microelectrode arrays. Bicuculline (40 ¿M) was utilized to block fast GABAergic transmission, and concentration-dependent effect...

  13. BLOOD AND BRAIN CONCENTRATIONS OF BIFENTHRIN CORRELATE WITH DECREASED MOTOR ACTIVITY INDEPENDENT OF TIME OF EXPOSURE

    EPA Science Inventory

    Pyrethroids are neurotoxic insecticides used in a variety of agricultural and household activities. Due to the phase-out of organophosphate pesticides, the use of pyrethroids has increased. The potential for human exposure to pyrethroids has prompted pharmacodynamic and pharmac...

  14. Involvement of Antibiotic Efflux Machinery in Glutathione-Mediated Decreased Ciprofloxacin Activity in Escherichia coli.

    PubMed

    Goswami, Manish; Subramanian, Mahesh; Kumar, Ranjeet; Jass, Jana; Jawali, Narendra

    2016-07-01

    We have analyzed the contribution of different efflux components to glutathione-mediated abrogation of ciprofloxacin's activity in Escherichia coli and the underlying potential mechanism(s) behind this phenomenon. The results indicated that glutathione increased the total active efflux, thereby partially contributing to glutathione-mediated neutralization of ciprofloxacin's antibacterial action in E. coli However, the role of glutathione-mediated increased efflux becomes evident in the absence of a functional TolC-AcrAB efflux pump. PMID:27139480

  15. Intracellular ATP Decrease Mediates NLRP3 Inflammasome Activation upon Nigericin and Crystal Stimulation.

    PubMed

    Nomura, Johji; So, Alexander; Tamura, Mizuho; Busso, Nathalie

    2015-12-15

    Activation of the nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome initiates an inflammatory response, which is associated with host defense against pathogens and the progression of chronic inflammatory diseases such as gout and atherosclerosis. The NLRP3 inflammasome mediates caspase-1 activation and subsequent IL-1β processing in response to various stimuli, including extracellular ATP, although the roles of intracellular ATP (iATP) in NLRP3 activation remain unclear. In this study, we found that in activated macrophages artificial reduction of iATP by 2-deoxyglucose, a glycolysis inhibitor, caused mitochondrial membrane depolarization, leading to IL-1β secretion via NLRP3 and caspase-1 activation. Additionally, the NLRP3 activators nigericin and monosodium urate crystals lowered iATP through K(+)- and Ca(2+)-mediated mitochondrial dysfunction, suggesting a feedback loop between iATP loss and lowering of mitochondrial membrane potential. These results demonstrate the fundamental roles of iATP in the maintenance of mitochondrial function and regulation of IL-1β secretion, and they suggest that maintenance of the intracellular ATP pools could be a strategy for countering NLRP3-mediated inflammation. PMID:26546608

  16. Biologic therapy improves psoriasis by decreasing the activity of monocytes and neutrophils.

    PubMed

    Yamanaka, Keiichi; Umezawa, Yoshinori; Yamagiwa, Akisa; Saeki, Hidehisa; Kondo, Makoto; Gabazza, Esteban C; Nakagawa, Hidemi; Mizutani, Hitoshi

    2014-08-01

    Therapy with monoclonal antibodies to tumor necrosis factor (TNF)-α and the interleukin (IL)-12/23 p40 subunit has significantly improved the clinical outcome of patients with psoriasis. These antibodies inhibit the effects of the target cytokines and thus the major concern during their use is the induction of excessive immunosuppression. Recent studies evaluating the long-term efficacy and safety of biologic therapy in psoriasis have shown no significant appearance of serious adverse effects including infections and malignancies. However, the immunological consequence and the mechanism by which the blockade of a single cytokine by biologics can successfully control the activity of psoriasis remain unclear. In the current study, we investigated the effect of biologic therapy on cytokine production of various lymphocytes and on the activity of monocytes and neutrophils in psoriatic patients. Neutrophils, monocytes and T cells were purified from heparinized peripheral venous blood by Ficoll density gradient centrifugation, and γ-interferon, TNF-α and IL-17 production from lymphocytes was measured by flow cytometer. The activation maker of neutrophils and the activated subsets of monocytes were also analyzed. Biologic therapy induced no significant changes in the cytokine production by lymphocytes from the skin and gut-homing T cells. However, neutrophil activity and the ratio of activated monocyte population increased in severely psoriatic patients were normalized in psoriatic patients receiving biologic therapy. The present study showed that biologic therapy ameliorates clinical symptoms and controls the immune response in patients with psoriasis. PMID:25099154

  17. PPARγ Ligands Decrease Hydrostatic Pressure-Induced Platelet Aggregation and Proinflammatory Activity

    PubMed Central

    Chen, Xiao-Shu; Xu, Jin-Song; Fu, Hui-Min; Su, Hai; Wang, Ling

    2014-01-01

    Hypertension is known to be associated with platelet overactivity, but the direct effects of hydrostatic pressure on platelet function remain unclear. The present study sought to investigate whether elevated hydrostatic pressure is responsible for platelet activation and to address the potential role of peroxisome proliferator-activated receptor-γ (PPARγ). We observed that hypertensive patients had significantly higher platelet volume and rate of ADP-induced platelets aggregation compared to the controls. In vitro, Primary human platelets were cultured under standard (0 mmHg) or increased (120, 180, 240 mmHg) hydrostatic pressure for 18 h. Exposure to elevated pressure was associated with morphological changes in platelets. Platelet aggregation and PAC-1 (the active confirmation of GPIIb/IIIa) binding were increased, CD40L was translocated from cytoplasm to the surface of platelet and soluble CD40L (sCD40L) was released into the medium in response to elevated hydrostatic pressure (180 and 240 mmHg). The PPARγ activity was up-regulated as the pressure was increased from 120 mmHg to 180 mmHg. Pressure-induced platelet aggregation, PAC-1 binding, and translocation and release of CD40L were all attenuated by the PPARγ agonist Thiazolidinediones (TZDs). These results demonstrate that platelet activation and aggregation are increased by exposure to elevated pressure and that PPARγ may modulate platelet activation induced by high hydrostatic pressure. PMID:24586940

  18. Decreased alanine aminotransferase activity in serum of man during gamma-acetylenic-GABA treatment.

    PubMed

    Olsen, R; Hørder, M

    1980-06-01

    Decreasing concentrations of alanine aminotransferase were observed in nine patients receiving gamma-acetylenic-GABA, an inhibitor of GABA aminotransferase. In vitro studies showed that preincubation at 37 degrees C of serum with gamma-acetylenic-GABA and with urine from a patient receiving the drug led to inhibition of alanine aminotransferase. This inhibition of alanine aminotransferase by gamma-acetylenic-GABA was neutralized by 1-analine, the natural substrate for the enzyme. The mechanism of inhibition may be a competition between the drug and 1-alanine for the substrate binding site of the enzyme. PMID:7414257

  19. KPC2 relocalizes HOXA2 to the cytoplasm and decreases its transcriptional activity.

    PubMed

    Bridoux, Laure; Bergiers, Isabelle; Draime, Amandine; Halbout, Mathias; Deneyer, Noémie; Twizere, Jean-Claude; Rezsohazy, René

    2015-10-01

    Regulation of transcription factor activity relies on molecular interactions or enzymatic modifications which influence their interaction with DNA cis-regulatory sequences, their transcriptional activation or repression, and stability or intracellular distribution of these proteins. Regarding the well-conserved Hox protein family, a restricted number of activity regulators have been highlighted thus far. In the framework of a proteome-wide screening aiming at identifying proteins interacting with Hoxa2, KPC2, an adapter protein constitutive of the KPC ubiquitin-ligase complex, was identified. In this work, KPC2 was confirmed as being a genuine interactor of Hoxa2 by co-precipitation and bimolecular fluorescence complementation assays. At functional level, KPC2 diminishes the transcriptional activity and induces the nuclear exit of Hoxa2. Gene expression analyses revealed that Kpc2 is active in restricted areas of the developing mouse embryo which overlap with the Hoxa2 expression domain. Together, our data support that KPC2 regulates Hoxa2 by promoting its relocation to the cytoplasm. PMID:26303204

  20. Laquinimod decreases Bax expression and reduces caspase-6 activation in neurons.

    PubMed

    Ehrnhoefer, Dagmar E; Caron, Nicholas S; Deng, Yu; Qiu, Xiaofan; Tsang, Michelle; Hayden, Michael R

    2016-09-01

    Laquinimod is an immunomodulatory compound that has shown neuroprotective benefits in clinical trials for multiple sclerosis. Laquinimod ameliorates both white and gray matter damage in human patients, and prevents axonal degeneration in animal models of multiple sclerosis. Axonal damage and white matter loss are a common feature shared between different neurodegenerative diseases. Caspase-6 activation plays an important role in axonal degeneration on the molecular level. Increased activity of caspase-6 has been demonstrated in brain tissue from presymptomatic Huntington disease mutation carriers, and it is an early marker of axonal dysfunction. Since laquinimod is currently undergoing a clinical trial in Huntington disease (LEGATO-HD, clinicaltrials.gov ID: NCT02215616), we set out to evaluate its impact on neuronal caspase-6 activation. We find that laquinimod ameliorates DNA-damage induced activation of caspase-6 in primary neuronal cultures. This is an indirect effect that is not mediated by direct inhibition of the enzyme. The investigation of potential caspase-6 activating mechanisms revealed that laquinimod reduces the expression of Bax, a pro-apoptotic molecule that causes mitochondrial cytochrome c release and caspase activation. Bax expression is furthermore increased in striatal tissues from the YAC128 mouse model of HD in an age-dependent manner. Our results demonstrate that laquinimod can directly downregulate neuronal apoptosis pathways relevant for axonal degeneration in addition to its known effects on astrocytes and microglia in the CNS. It targets a pathway that is relevant for the pathogenesis of HD, supporting the hypothesis that laquinimod may provide clinical benefit. PMID:27296315

  1. Human castration resistant prostate cancer rather prefer to decreased 5α-reductase activity

    PubMed Central

    Kosaka, Takeo; Miyajima, Akira; Nagata, Hirohiko; Maeda, Takahiro; Kikuchi, Eiji; Oya, Mototsugu

    2013-01-01

    Physiologically relevant steroid 5α-reductase (SRD5A) activity that is essential for dihydrotestosterone (DHT) biosynthesis in human castration-resistant prostate cancer (CRPC) has not been fully characterized yet. In this study to ascertain the potential SRD5A activity, we cultured two human CRPC cell lines, C4-2 and C4-2AT6, with the steroid precursor: 13C-[2,3,4]-androstenedione (13C-Adione), and analyzed the sequential biosynthesis of 13C-[2,3,4]-testosterone (13C-T) and 13C-[2,3,4]-DHT (13C-DHT) by liquid chromatography/mass spectrometry (LC/MS/MS). The 13C-DHT/13C-T concentration ratio detected by LC/MS/MS in C4-2AT6 cells appeared to reflect the SRD5A activity. The ratio in C4-2AT6 was significantly lower than that in C4-2. An increased concentration of DHT did not have a positive effect on cell proliferation, rather it exhibited inhibitory effects. 5α-reductase inhibitors did not have any inhibitory effect at clinically achievable concentrations. These results indicate that CRPC cells may have an unknown regulation system to protect themselves from an androgenic suppressive effect mediated by SRD5A activity. PMID:23429215

  2. A knockout mutation of a constitutive GPCR in Tetrahymena decreases both G-protein activity and chemoattraction.

    PubMed

    Lampert, Thomas J; Coleman, Kevin D; Hennessey, Todd M

    2011-01-01

    Although G-protein coupled receptors (GPCRs) are a common element in many chemosensory transduction pathways in eukaryotic cells, no GPCR or regulated G-protein activity has yet been shown in any ciliate. To study the possible role for a GPCR in the chemoresponses of the ciliate Tetrahymena, we have generated a number of macronuclear gene knockouts of putative GPCRs found in the Tetrahymena Genome database. One of these knockout mutants, called G6, is a complete knockout of a gene that we call GPCR6 (TTHERM_00925490). Based on sequence comparisons, the Gpcr6p protein belongs to the Rhodopsin Family of GPCRs. Notably, Gpcr6p shares highest amino acid sequence homologies to GPCRs from Paramecium and several plants. One of the phenotypes of the G6 mutant is a decreased responsiveness to the depolarizing ions Ba²⁺ and K⁺, suggesting a decrease in basal excitability (decrease in Ca²⁺ channel activity). The other major phenotype of G6 is a loss of chemoattraction to lysophosphatidic acid (LPA) and proteose peptone (PP), two known chemoattractants in Tetrahymena. Using microsomal [³⁵S]GTPγS binding assays, we found that wild-type (CU427) have a prominent basal G-protein activity. This activity is decreased to the same level by pertussis toxin (a G-protein inhibitor), addition of chemoattractants, or the G6 mutant. Since the basal G-protein activity is decreased by the GPCR6 knockout, it is likely that this gene codes for a constitutively active GPCR in Tetrahymena. We propose that chemoattractants like LPA and PP cause attraction in Tetrahymena by decreasing the basal G-protein stimulating activity of Gpcr6p. This leads to decreased excitability in wild-type and longer runs of smooth forward swimming (less interrupted by direction changes) towards the attractant. Therefore, these attractants may work as inverse agonists through the constitutively active Gpcr6p coupled to a pertussis-sensitive G-protein. PMID:22140501

  3. Decreased Erythrocyte NA+,K+-ATPase Activity and Increased Plasma TBARS in Prehypertensive Patients

    PubMed Central

    Malfatti, Carlos Ricardo Maneck; Burgos, Leandro Tibiriçá; Rieger, Alexandre; Rüdger, Cássio Luiz; Túrmina, Janaína Angela; Pereira, Ricardo Aparecido; Pavlak, João Lang; Silva, Luiz Augusto; Osiecki, Raul

    2012-01-01

    The essential hypertension has been associated with membrane cell damage. The aim of the present study is investigate the relationship between erythrocyte Na+,K+-ATPase and lipoperoxidation in prehypertensive patients compared to normotensive status. The present study involved the prehypertensive patients (systolic: 136 ± 7 mmHg; diastolic: 86.8 ± 6.3 mmHg; n = 8) and healthy men with normal blood pressure (systolic: 110 ± 6.4 mmHg; diastolic: 76.1 ± 4.2 mmHg; n = 8) who were matched for age (35 ± 4 years old). The venous blood samples of antecubital vein (5 mL) were collected into a tube containing sodium heparin as anticoagulant (1000 UI), and erythrocyte ghosts were prepared for quantifying Na+,K+-ATPase activity. The extent of the thiobarbituric acid reactive substances (TBARS) was determined in plasma. The statistical analysis was carried out by Student's t-test and Pearson's correlation coefficient. A P < 0.05 was considered significant. The Na+,K+-ATPase activity was lower in prehypertensive patients compared with normotensive subjects (4.9 versus 8.0 nmol Pi/mg protein/min; P < 0.05). The Na+,K+-ATPase activity correlated negatively with TBARS content (r = −0.6; P < 0.05) and diastolic blood pressure (r = −0.84; P < 0.05). The present study suggests that Na+,K+-ATPase activity reduction and elevation of the TBARS content may underlie the pathophysiological aspects linked to the prehypertensive status. PMID:22919304

  4. Decreased activity of neutrophils in the presence of diferuloylmethane (curcumin) involves protein kinase C inhibition.

    PubMed

    Jancinová, Viera; Perecko, Tomás; Nosál, Radomír; Kostálová, Daniela; Bauerová, Katarína; Drábiková, Katarína

    2009-06-10

    Diferuloylmethane (curcumin) has been shown to act beneficially in arthritis, particularly through downregulated expression of proinflammatory cytokines and collagenase as well as through the modulated activities of T lymphocytes and macrophages. In this study its impact on activated neutrophils was investigated both in vitro and in experimental arthritis. Formation of reactive oxygen species in neutrophils was recorded on the basis of luminol- or isoluminol-enhanced chemiluminescence. Phosphorylation of neutrophil protein kinases C alpha and beta II was assessed by Western blotting, using phosphospecific antibodies. Adjuvant arthritis was induced in Lewis rats by heat-killed Mycobacterium butyricum. Diferuloylmethane or methotrexate was administered over a period of 28 days after arthritis induction. Under in vitro conditions, diferuloylmethane (1-100 microM) reduced dose-dependently oxidant formation both at extra- and intracellular level and it effectively reduced protein kinase C activation. Adjuvant arthritis was accompanied by an increased number of neutrophils in blood and by a more pronounced spontaneous as well as PMA (phorbol myristate acetate) stimulated chemiluminescence. Whereas the arthritis-related alterations in neutrophil count and in spontaneous chemiluminescence were not modified by diferuloylmethane, the increased reactivity of neutrophils to PMA was less evident in diferuloylmethane-treated animals. The effects of diferuloylmethane were comparable with those of methotrexate. Diferuloylmethane was found to be a potent inhibitor of neutrophil functions both in vitro and in experimental arthritis. As neutrophils are considered to be cells with the greatest capacity to inflict damage within diseased joints, the observed effects could represent a further mechanism involved in the antirheumatic activity of diferuloylmethane. PMID:19371737

  5. NKT cell activation by local α-galactosylceramide administration decreases susceptibility to HSV-2 infection.

    PubMed

    Iversen, Marie Beck; Jensen, Simon Kok; Hansen, Anne Louise; Winther, Henriette; Issazadeh-Navikas, Shohreh; Reinert, Line Sinnathamby; Holm, Christian Kanstrup

    2015-06-01

    NKT cells are a subgroup of T cells, which express a restricted TCR repertoire and are critical for the innate immune responses to viral infections. Activation of NKT cells depends on the major histocompatibility complex-related molecule CD1d, which presents bioactive lipids to NKT cells. The marine sponge derived lipid αGalCer has recently been demonstrated as a specific agonist for activation of human and murine NKT cells. In the present study we investigated the applicability of αGalCer pre-treatment for immune protection against intra-vaginal HSV-2 infection. We found that C57BL/6 WT mice that received local pre-treatment with αGalCer prior to intra-vaginal HSV-2 infection had a lower mean disease score, mortality and viral load in the vagina following infection, compared to mice that did not receive αGalCer pre-treatment. Further, we found increased numbers of CD45 and NK1.1 positive cells in vaginal tissue and elevated levels of IFN-γ in the vaginal tissue and in vaginal fluids 24h after αGalCer pre-treatment. Collectively our data demonstrate a protective effect of αGalCer induced activation of NKT cells in the innate immune protection against viral infection. PMID:25648689

  6. Decreased somatosensory activity to non-threatening touch in combat veterans with posttraumatic stress disorder.

    PubMed

    Badura-Brack, Amy S; Becker, Katherine M; McDermott, Timothy J; Ryan, Tara J; Becker, Madelyn M; Hearley, Allison R; Heinrichs-Graham, Elizabeth; Wilson, Tony W

    2015-08-30

    Posttraumatic stress disorder (PTSD) is a severe psychiatric disorder prevalent in combat veterans. Previous neuroimaging studies have demonstrated that patients with PTSD exhibit abnormal responses to non-threatening visual and auditory stimuli, but have not examined somatosensory processing. Thirty male combat veterans, 16 with PTSD and 14 without, completed a tactile stimulation task during a 306-sensor magnetoencephalography (MEG) recording. Significant oscillatory neural responses were imaged using a beamforming approach. Participants also completed clinical assessments of PTSD, combat exposure, and depression. We found that veterans with PTSD exhibited significantly reduced activity during early (0-125 ms) tactile processing compared with combat controls. Specifically, veterans with PTSD had weaker activity in the left postcentral gyrus, left superior parietal area, and right prefrontal cortex in response to nonthreatening tactile stimulation relative to veterans without PTSD. The magnitude of activity in these brain regions was inversely correlated with symptom severity, indicating that those with the most severe PTSD had the most abnormal neural responses. Our findings are consistent with a resource allocation view of perceptual processing in PTSD, which directs attention away from nonthreatening sensory information. PMID:26184460

  7. Pravastatin limits endothelial activation after irradiation and decreases the resulting inflammatory and thrombotic responses.

    PubMed

    Gaugler, Marie-Hélène; Vereycken-Holler, Valérie; Squiban, Claire; Vandamme, Marie; Vozenin-Brotons, Marie-Catherine; Benderitter, Marc

    2005-05-01

    Endothelial dysfunction has been implicated in the pathogenesis of atherosclerosis, fibrosis and vascular occlusion after radiation therapy. Statins have been reported to improve endothelial function; however, this beneficial effect on endothelial cells has never been investigated after irradiation. Therefore, using human microvascular endothelial cells from lung that had been irradiated with 5 or 10 Gy, we assessed the effect of pravastatin on endothelial activation by ELISA, cell-ELISA and electrophoretic mobility shift assay and increased blood-endothelial cell interactions by a flow adhesion assay. Pravastatin inhibited the overproduction of monocyte chemoattractant protein 1, IL6 and IL8 and the enhanced expression of intercellular adhesion molecule 1 but had no effect on platelet-endothelial cell adhesion molecule 1 expression. Moreover, pravastatin down-regulated the radiation-induced activation of the transcription factor activator protein 1 but not of nuclear factor-kappaB. Finally, an inhibition by pravastatin of increased adhesion of leukocytes and platelets to irradiated endothelial cells was observed. The effect of pravastatin was maintained up to 14 days after irradiation and was reversed by mevalonate. Pravastatin exerts persistent anti-inflammatory and anti-thrombotic effects on irradiated endothelial cells. Statins may be considered in therapeutic strategies for the management of patients treated with radiation therapy. PMID:15850408

  8. GC protein-derived macrophage-activating factor decreases α-N-acetylgalactosaminidase levels in advanced cancer patients

    PubMed Central

    Thyer, Lynda; Ward, Emma; Smith, Rodney; Branca, Jacopo JV; Morucci, Gabriele; Gulisano, Massimo; Noakes, David; Eslinger, Robert; Pacini, Stefania

    2013-01-01

    α-N-acetylgalactosaminidase (nagalase) accumulates in the serum of cancer patients and its activity correlates with tumor burden, aggressiveness and clinical disease progression. The administration of GC protein-derived macrophage-activating factor (GcMAF) to cancer patients with elevated levels of nagalase has been associated with a decrease of serum nagalase activity and with significant clinical benefits. Here, we report the results of the administration of GcMAF to a heterogeneous cohort of patients with histologically diverse, advanced neoplasms, generally considered as “incurable” diseases. In most cases, GcMAF therapy was initiated at late stages of tumor progression. As this is an open-label, non-controlled, retrospective analysis, caution must be employed when establishing cause-effect relationships between the administration GcMAF and disease outcome. However, the response to GcMAF was generally robust and some trends emerged. All patients (n = 20) presented with elevated serum nagalase activity, well above normal values. All patients but one showed a significant decrease of serum nagalase activity upon weekly GcMAF injections. Decreased nagalase activity was associated with improved clinical conditions and no adverse side effects were reported. The observations reported here confirm and extend previous results and pave the way to further studies aimed at assessing the precise role and indications for GcMAF-based anticancer immunotherapy. PMID:24179708

  9. GC protein-derived macrophage-activating factor decreases α-N-acetylgalactosaminidase levels in advanced cancer patients.

    PubMed

    Thyer, Lynda; Ward, Emma; Smith, Rodney; Branca, Jacopo Jv; Morucci, Gabriele; Gulisano, Massimo; Noakes, David; Eslinger, Robert; Pacini, Stefania

    2013-08-01

    α-N-acetylgalactosaminidase (nagalase) accumulates in the serum of cancer patients and its activity correlates with tumor burden, aggressiveness and clinical disease progression. The administration of GC protein-derived macrophage-activating factor (GcMAF) to cancer patients with elevated levels of nagalase has been associated with a decrease of serum nagalase activity and with significant clinical benefits. Here, we report the results of the administration of GcMAF to a heterogeneous cohort of patients with histologically diverse, advanced neoplasms, generally considered as "incurable" diseases. In most cases, GcMAF therapy was initiated at late stages of tumor progression. As this is an open-label, non-controlled, retrospective analysis, caution must be employed when establishing cause-effect relationships between the administration GcMAF and disease outcome. However, the response to GcMAF was generally robust and some trends emerged. All patients (n = 20) presented with elevated serum nagalase activity, well above normal values. All patients but one showed a significant decrease of serum nagalase activity upon weekly GcMAF injections. Decreased nagalase activity was associated with improved clinical conditions and no adverse side effects were reported. The observations reported here confirm and extend previous results and pave the way to further studies aimed at assessing the precise role and indications for GcMAF-based anticancer immunotherapy. PMID:24179708

  10. Focus on Freshman: Basic Instruction Programs Enhancing Physical Activity

    ERIC Educational Resources Information Center

    Curry, Jarred; Jenkins, Jayne M.; Weatherford, Jennifer

    2015-01-01

    Physical activity sharply decreases after different life stages, particularly high school graduation to beginning university education. The purpose of this study was to investigate the effect of a specifically designed university physical activity class, Exercise Planning for Freshman (EPF), on students' physical activity and group cohesion…

  11. Inhibition of Matriptase Activity Results in Decreased Intestinal Epithelial Monolayer Integrity In Vitro

    PubMed Central

    Pászti-Gere, E.; McManus, S.; Meggyesházi, N.; Balla, P.; Gálfi, P.; Steinmetzer, T.

    2015-01-01

    Barrier dysfunction in inflammatory bowel diseases implies enhanced paracellular flux and lowered transepithelial electrical resistance (TER) causing effective invasion of enteropathogens or altered intestinal absorption of toxins and drug compounds. To elucidate the role of matriptase-driven cell surface proteolysis in the maintenance of intestinal barrier function, the 3-amidinophenylalanine-derived matriptase inhibitor, MI-432 was used on porcine IPEC-J2 cell monolayer. Studies with two fluorescent probes revealed that short (2 h) treatment with MI-432 caused an altered distribution of oxidative species between intracellular and extracellular spaces in IPEC-J2 cells. This perturbation was partially compensated when administration of inhibitor continued for up to 48 h. Significant decrease in TER between apical and basolateral compartments of MI-432-treated IPEC-J2 cell monolayers proved that matriptase is one of the key effectors in the maintenance of barrier integrity. Changes in staining pattern of matriptase and in localization of the junctional protein occludin were observed suggesting that inhibition of matriptase by MI-432 can also exert an effect on paracellular gate opening via modulation of tight junctional protein assembly. This study confirms that non-tumorigenic IPEC-J2 cells can be used as an appropriate small intestinal model for the in vitro characterization of matriptase-related effects on intestinal epithelium. These findings demonstrate indirectly that matriptase plays a pivotal role in the development of barrier integrity; thus matriptase dysfunction can facilitate the occurence of leaky gut syndrome observed in intestinal inflammatory diseases. PMID:26488575

  12. Hydroxyapatite nanocrystals functionalized with alendronate as bioactive components for bone implant coatings to decrease osteoclastic activity

    NASA Astrophysics Data System (ADS)

    Bosco, Ruggero; Iafisco, Michele; Tampieri, Anna; Jansen, John A.; Leeuwenburgh, Sander C. G.; van den Beucken, Jeroen J. J. P.

    2015-02-01

    The integration of bone implants within native bone tissue depends on periprosthetic bone quality, which is severely decreased in osteoporotic patients. In this work, we have synthesized bone-like hydroxyapatite nanocrystals (nHA) using an acid-base neutralization reaction and analysed their physicochemical properties. Subsequently, we have functionalized the nHA with alendronate (nHAALE), a well-known bisphosphonate drug used for the treatment of osteoporosis. An in vitro osteoclastogenesis test was carried out to evaluate the effect of nHAALE on the formation of osteoclast-like cells from monocytic precursor cells (i.e. RAW264.7 cell line) showing that nHAALE significantly promoted apoptosis of osteoclast-like cells. Subsequently, nHA and nHAALE were deposited on titanium disks using electrospray deposition (ESD), for which characterisation of the deposited coatings confirmed the presence of alendronate in nHAALE coatings with nanoscale thickness of about 700 nm. These results indicate that alendronate linked to hydroxyapatite nanocrystals has therapeutic potential and nHAALE can be considered as an appealing coating constituent material for orthopaedic and oral implants for application in osteoporotic patients.

  13. Protease inhibitors decrease IgG shedding from Staphylococcus aureus, increasing complement activation and phagocytosis efficiency.

    PubMed

    Fernandez Falcon, Maria F; Echague, Charlene G; Hair, Pamela S; Nyalwidhe, Julius O; Cunnion, Kenji M

    2011-10-01

    Staphylococcus aureus is a major pathogen for immunologically intact humans and its pathogenesis is a model system for evasion of host defences. Antibodies and complement are essential elements of the humoral immune system for prevention and control of S. aureus infections. The specific hypothesis for the proposed research is that S. aureus modifies humoral host defences by cleaving IgG that has bound to the bacterial surface, thereby inhibiting opsonophagocytosis. S. aureus was coated with pooled, purified human IgG and assayed for the shedding of cleaved IgG fragments using ELISA and Western blot analysis. Surface-bound IgG was shed efficiently from S. aureus in the absence of host blood proteins. Broad-spectrum protease inhibitors prevented cleavage of IgG from the S. aureus surface, suggesting that staphylococcal proteases are responsible for IgG cleavage. Serine protease inhibitors and cysteine protease inhibitors decreased the cleavage of surface-bound IgG; however, a metalloprotease inhibitor had no effect. Using protease inhibitors to prevent the cleavage of surface-bound IgG increased the binding of complement C3 fragments on the surface of S. aureus, increased the association with human neutrophils and increased phagocytosis by human neutrophils. PMID:21636671

  14. Age-related decrease in constructive activation of Akt/PKB in SAMP10 hippocampus.

    PubMed

    Nie, Kun; Yu, Jian-Chun; Fu, Yu; Cheng, Hai-Yan; Chen, Fu-Yan; Qu, You; Han, Jing-Xian

    2009-01-01

    Aging is the greatest risk factor for neurodegenerative diseases such as Alzheimer's disease (AD). Age-dependent alterations of cell signaling play an important role in the onset of AD. The serine/threonine kinase Akt is a critical cell signaling to neuronal survival. Using the senescence-accelerated mouse SAMP10, we investigated the effect of aging on AKT signaling in hippocampus tissue. During aging, the expression of Akt mRNA and protein remained stable. However, the constructive phosphorylation of Akt(Ser473) displayed a continuous decrease after 6 months in SAMP10. When compared with the control SAMR1, aged SAMP10 mice showed significant reduced phosphorylation of Akt(Ser473). SAMP10 at the age of 6 months showed obvious deterioration in performance of learning and memory tasks. Thus, the data reported here suggested a potential link between the age-related alteration of Akt(Ser473) and the deterioration in performance of learning and memory tasks in SAMP10 mouse. PMID:19013131

  15. Simvastatin and zinc synergistically enhance osteoblasts activity and decrease the acute response of inflammatory cells.

    PubMed

    Montazerolghaem, Maryam; Ning, Yi; Engqvist, Håkan; Karlsson Ott, Marjam; Tenje, Maria; Mestres, Gemma

    2016-02-01

    Several ceramic biomaterials have been suggested as promising alternatives to autologous bone to replace or restore bone after trauma or disease. The osteoinductive potential of most scaffolds is often rather low by themselves and for this reason growth factors or drugs have been supplemented to these synthetic materials. Although some growth factors show good osteoinductive potential their drawback is their high cost and potential severe side effects. In this work the combination of the well-known drug simvastatin (SVA) and the inorganic element Zinc (Zn) is suggested as a potential additive to bone grafts in order to increase their bone regeneration/formation. MC3T3-E1 cells were cultured with Zn (10 and 25 µM) and SVA (0.25 and 0.4 µM) for 10 days to evaluate proliferation and differentiation, and for 22 days to evaluate secretion of calcium deposits. The combination of Zn (10 µM) and SVA (0.25 µM) significantly enhanced cell differentiation and mineralization in a synergetic manner. In addition, the release of reactive oxygen species (ROS) from primary human monocytes in contact with the same concentrations of Zn and SVA was evaluated by chemiluminescence. The combination of the additives decreased the release of ROS, although Zn and SVA separately caused opposite effects. This work shows that a new combination of additives can be used to increase the osteoinductive capacity of porous bioceramics. PMID:26704540

  16. Inhibition of Matriptase Activity Results in Decreased Intestinal Epithelial Monolayer Integrity In Vitro.

    PubMed

    Pászti-Gere, E; McManus, S; Meggyesházi, N; Balla, P; Gálfi, P; Steinmetzer, T

    2015-01-01

    Barrier dysfunction in inflammatory bowel diseases implies enhanced paracellular flux and lowered transepithelial electrical resistance (TER) causing effective invasion of enteropathogens or altered intestinal absorption of toxins and drug compounds. To elucidate the role of matriptase-driven cell surface proteolysis in the maintenance of intestinal barrier function, the 3-amidinophenylalanine-derived matriptase inhibitor, MI-432 was used on porcine IPEC-J2 cell monolayer. Studies with two fluorescent probes revealed that short (2 h) treatment with MI-432 caused an altered distribution of oxidative species between intracellular and extracellular spaces in IPEC-J2 cells. This perturbation was partially compensated when administration of inhibitor continued for up to 48 h. Significant decrease in TER between apical and basolateral compartments of MI-432-treated IPEC-J2 cell monolayers proved that matriptase is one of the key effectors in the maintenance of barrier integrity. Changes in staining pattern of matriptase and in localization of the junctional protein occludin were observed suggesting that inhibition of matriptase by MI-432 can also exert an effect on paracellular gate opening via modulation of tight junctional protein assembly. This study confirms that non-tumorigenic IPEC-J2 cells can be used as an appropriate small intestinal model for the in vitro characterization of matriptase-related effects on intestinal epithelium. These findings demonstrate indirectly that matriptase plays a pivotal role in the development of barrier integrity; thus matriptase dysfunction can facilitate the occurence of leaky gut syndrome observed in intestinal inflammatory diseases. PMID:26488575

  17. Goatpoxvirus ATPase activity is increased by dsDNA and decreased by zinc ion.

    PubMed

    Lee, Ming-Liang; Hsu, Wei-Li; Wang, Chi-Young; Chen, Hui-Yu; Lin, Fong-Yuan; Chang, Ming-Huang; Chang, Hong-You; Wong, Min-Liang; Chan, Kun-Wei

    2016-10-01

    Viral-encoded ATPase can act as a part of molecular motor in genome packaging of DNA viruses, such as vaccinia virus and adenovirus, by ATP hydrolysis and interaction with DNA. Poxviral ATPase (also called A32) is involved in genomic double-stranded DNA (dsDNA) encapsidation, and inhibition of the expression of A32 causes formation of immature virions lacking viral DNA. However, the role of A32 in goatpoxvirus genome packaging and its dsDNA binding property are not known. In this study, purified recombinant goatpoxvirus A32 protein (rA32) was examined for its dsDNA binding property as well as the effect of dsDNA on ATP hydrolysis. We found that rA32 could bind dsDNA, and its ATPase activity was significant increased with dsDNA binding. Effects of magnesium and calcium ions on ATP hydrolysis were investigated also. The ATPase activity was dramatically enhanced by dsDNA in the presence of Mg(2+); in contrast, ATPase function was not altered by Ca(2+). Furthermore, the enzyme activity of rA32 was completely blocked by Zn(2+). Regarding DNA-protein interaction, the rA32-ATP-Mg(2+) showed lower dsDNA binding affinity than that of rA32-ATP-Ca(2+). The DNA-protein binding was stronger in the presence of zinc ion. Our results implied that A32 may play a role in viral genome encapsidation and DNA condensation. PMID:27146321

  18. Nitric oxide decreases intestinal haemorrhagic lesions in rat anaphylaxis independently of mast cell activation

    PubMed Central

    Tavares, J. Carvalho; Moreno, A.

    1997-01-01

    The purpose of this study is to assess the role of nitric oxide (NO) in the intestinal lesions of passive anaphylaxis, since this experimental model resembles necrotizing enterocolitis. Sprague-Dawley rats were sensitized with IgE anti-dinitrophenol monoclonal antibody. Extravasation of protein-rich plasma and haemorrhagia were measured in the small intestine. Plasma histamine was measured to assess mast cell activation. The effect of exogenous NO on the lesions was assessed by using two structurally unrelated NO-donors: sodium nitroprusside and S-nitroso-Nacetyl-penicillamine (SNAP). An increased basal production of NO was observed in cells taken after anaphylaxis, associated with a reduced response to platelet-activating factor, interleukin 1beta, and IgE/DNP-bovine serum albumin complexes. The response to bacterial lipopolysaccharide and dibutyryl cyclic adenosine monophosphate (AMP) was enhanced 24 h after challenge, but at earlier times was not significantly different from that observed in controls. Treatment with either sodium nitroprusside or SNAP produced a significant reduction of the haemorrhagic lesions, which are a hallmark of rat anaphylaxis. The extravasation of protein-rich plasma was not influenced by NO-donors. The increase of plasma histamine elicited by the anaphylactic challenge was not influenced by SNAP treatment. NO-donors protect intestinal haemorrhagic lesions of rat anaphylaxis by a mechanism apparently independent of mast cell histamine release. PMID:18472830

  19. Colchicine to decrease NLRP3-activated inflammation and improve obesity-related metabolic dysregulation.

    PubMed

    Demidowich, Andrew P; Davis, Angela I; Dedhia, Nicket; Yanovski, Jack A

    2016-07-01

    Obesity is a major risk-factor for the development of insulin resistance, type 2 diabetes, and cardiovascular disease. Circulating molecules associated with obesity, such as saturated fatty acids and cholesterol crystals, stimulate the innate immune system to incite a chronic inflammatory state. Studies in mouse models suggest that suppressing the obesity-induced chronic inflammatory state may prevent or reverse obesity-associated metabolic dysregulation. Human studies, however, have been far less positive, possibly because targeted interventions were too far downstream of the inciting inflammatory events. Recently, it has been shown that, within adipose tissue macrophages, assembly of a multi-protein member of the innate immune system, the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, is essential for the induction of this inflammatory state. Microtubules enable the necessary spatial arrangement of the components of the NLRP3 inflammasome in the cell, leading to its activation and propagation of the inflammatory cascade. Colchicine, a medication classically used for gout, mediates its anti-inflammatory effect by inhibiting tubulin polymerization, and has been shown to attenuate macrophage NLRP3 inflammasome arrangement and activation in vitro and in vivo. Given these findings, we hypothesize that, in at-risk individuals (those with obesity-induced inflammation and metabolic dysregulation), long-term colchicine use will lead to suppression of inflammation and thus cause improvements in insulin sensitivity and other obesity-related metabolic impairments. PMID:27241260

  20. Active immunization against vasoactive intestinal polypeptide decreases neuronal recruitment and inhibits reproduction in zebra finches.

    PubMed

    Vistoropsky, Yulia; Heiblum, Rachel; Smorodinsky, Nechama-Ina; Barnea, Anat

    2016-08-15

    Neurogenesis and neuronal recruitment occur in adult brains of many vertebrates, and the hypothesis is that these phenomena contribute to the brain plasticity that enables organisms to adjust to environmental changes. In mammals, vasoactive intestinal polypeptide (VIP) is known to have many neuroprotective properties, but in the avian brain, although widely distributed, its role in neuronal recruitment is not yet understood. In the present study we actively immunized adult zebra finches against VIP conjugated to KLH and compared neuronal recruitment in their brains, with brains of control birds, which were immunized against KLH. We looked at two forebrain regions: the nidopallium caudale (NC), which plays a role in vocal communication, and the hippocampus (HC), which is involved in the processing of spatial information. Our data demonstrate that active immunization against VIP reduces neuronal recruitment, inhibits reproduction, and induces molting, with no change in plasma prolactin levels. Thus, our observations suggest that VIP has a direct positive role in neuronal recruitment and reproduction in birds. J. Comp. Neurol. 524:2516-2528, 2016. © 2016 Wiley Periodicals, Inc. PMID:26801210

  1. Acetylation of glucokinase regulatory protein decreases glucose metabolism by suppressing glucokinase activity

    PubMed Central

    Park, Joo-Man; Kim, Tae-Hyun; Jo, Seong-Ho; Kim, Mi-Young; Ahn, Yong-Ho

    2015-01-01

    Glucokinase (GK), mainly expressed in the liver and pancreatic β-cells, is critical for maintaining glucose homeostasis. GK expression and kinase activity, respectively, are both modulated at the transcriptional and post-translational levels. Post-translationally, GK is regulated by binding the glucokinase regulatory protein (GKRP), resulting in GK retention in the nucleus and its inability to participate in cytosolic glycolysis. Although hepatic GKRP is known to be regulated by allosteric mechanisms, the precise details of modulation of GKRP activity, by post-translational modification, are not well known. Here, we demonstrate that GKRP is acetylated at Lys5 by the acetyltransferase p300. Acetylated GKRP is resistant to degradation by the ubiquitin-dependent proteasome pathway, suggesting that acetylation increases GKRP stability and binding to GK, further inhibiting GK nuclear export. Deacetylation of GKRP is effected by the NAD+-dependent, class III histone deacetylase SIRT2, which is inhibited by nicotinamide. Moreover, the livers of db/db obese, diabetic mice also show elevated GKRP acetylation, suggesting a broader, critical role in regulating blood glucose. Given that acetylated GKRP may affiliate with type-2 diabetes mellitus (T2DM), understanding the mechanism of GKRP acetylation in the liver could reveal novel targets within the GK-GKRP pathway, for treating T2DM and other metabolic pathologies. PMID:26620281

  2. Decreased bacteria activity on Si3N4 surfaces compared with PEEK or titanium

    PubMed Central

    Gorth, Deborah J; Puckett, Sabrina; Ercan, Batur; Webster, Thomas J; Rahaman, Mohamed; Bal, B Sonny

    2012-01-01

    A significant need exists for orthopedic implants that can intrinsically resist bacterial colonization. In this study, three biomaterials that are used in spinal implants – titanium (Ti), polyether-ether-ketone (PEEK), and silicon nitride (Si3N4) – were tested to understand their respective susceptibility to bacterial infection with Staphylococcus epidermidis, Staphlococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Enterococcus. Specifically, the surface chemistry, wettability, and nanostructured topography of respective biomaterials, and the effects on bacterial biofilm formation, colonization, and growth were investigated. Ti and PEEK were received with as-machined surfaces; both materials are hydrophobic, with net negative surface charges. Two surface finishes of Si3N4 were examined: as-fired and polished. In contrast to Ti and PEEK, the surface of Si3N4 is hydrophilic, with a net positive charge. A decreased biofilm formation was found, as well as fewer live bacteria on both the as-fired and polished Si3N4. These differences may reflect differential surface chemistry and surface nanostructure properties between the biomaterials tested. Because protein adsorption on material surfaces affects bacterial adhesion, the adsorption of fibronectin, vitronectin, and laminin on Ti, PEEK, and Si3N4 were also examined. Significantly greater amounts of these proteins adhered to Si3N4 than to Ti or PEEK. The findings of this study suggest that surface properties of biomaterials lead to differential adsorption of physiologic proteins, and that this phenomenon could explain the observed in-vitro differences in bacterial affinity for the respective biomaterials. Intrinsic biomaterial properties as they relate to resistance to bacterial colonization may reflect a novel strategy toward designing future orthopedic implants. PMID:22973102

  3. High Fetal Estrogen Concentrations: Correlation with Increased Adult Sexual Activity and Decreased Aggression in Male Mice

    NASA Astrophysics Data System (ADS)

    Vom Saal, Frederick S.; Grant, William M.; McMullen, Carol W.; Laves, Kurt S.

    1983-06-01

    In the house mouse (Mus musculus), fetuses may develop in utero next to siblings of the same or opposite sex. The amniotic fluid of the female fetuses contains higher concentrations of estradiol than that of male fetuses. Male fetuses that developed in utero between female fetuses had higher concentrations of estradiol in their amniotic fluid than males that were located between other male fetusesw during intrauterine development. They were also more sexually active as adults, less aggressive, and had smaller seminal vesicles than males that had developed between other male fetuses in utero. These findings raise the possibility that during fetal life circulating estrogens may interact with circulating androgens both in regulating the development of sex differences between males and females and in producing variation in phenotype among males and among females.

  4. Inhibition of cyclooxygenase-2 prevents intra-abdominal adhesions by decreasing activity of peritoneal fibroblasts

    PubMed Central

    Wei, Guangbing; Chen, Xin; Wang, Guanghui; Jia, Pengbo; Xu, Qinhong; Ping, Gaofeng; Wang, Kang; Li, Xuqi

    2015-01-01

    Background Postoperative intra-abdominal adhesions are common complications after abdominal surgery. The exact molecular mechanisms that are responsible for these complications remain unclear, and there are no effective methods for preventing adhesion formation or reformation. The aim of the study reported here was to investigate the preventive effects and underlying potential molecular mechanisms of selective cyclooxygenase-2 (COX-2) inhibitors in a rodent model of postoperative intra-abdominal adhesions. Materials and methods The expression of COX-2 in postoperative intra-abdominal adhe-sions and normal peritoneal tissue was examined by immunohistochemistry and Western blot analysis. Assays were performed to elucidate the effect of COX-2 inhibition on hypoxia-induced fibroblast activity in vitro and on intra-abdominal adhesion formation in vivo. Results Hypoxia-induced COX-2 expression in peritoneal fibroblasts was increased in postoperative intra-abdominal adhesions. Inhibition of COX-2 attenuated the activating effect of hypoxia on normal peritoneal fibroblasts in vitro. Data indicate that selective COX-2 inhibitor prevents in vivo intra-abdominal adhesion by inhibition of basic fibroblast growth factor and transforming growth factor-beta expression, but not through an antiangiogenic mechanism. Furthermore, using selective COX-2 inhibitors to prevent intra-abdominal adhesions did not adversely affect the weight, bowel motility, or healing of intestinal anastomoses in a rat model. Conclusion These results show that hypoxia-induced COX-2 expression in peritoneal fibroblasts is involved in the formation of intra-abdominal adhesions. Inhibition of COX-2 prevents postoperative intra-abdominal adhesions through suppression of inflammatory cytokines. PMID:26109851

  5. [On the mechanism of noopept action: decrease in activity of stress-induced kinases and increase in expression of neutrophines].

    PubMed

    Ostrovskaia, R U; Vakhitova, Iu V; Salimgareeva, M Kh; Iamidanov, R S; Sadovnikov, S V; Kapitsa, I G; Seredenin, S B

    2010-12-01

    The influence of noopept (N-phenylacetyl-L-prolylglycine ethyl ester, GVS-111)--a drug combining the nootrope and neuroprotector properties--on the activity of mitogen-activated protein kinases (MAPKs) and the level of NGF and BDNF gene and protein expression in the frontal cortex, hippocampus, and hypothalamus has been studied in rats. Under conditions of chronic administration (28 days, 0.5 mg/day, i.p.), noopept decreased the activity of stress-induced kinases (SAPK/JNK 46/54 and pERK1/2) in rat hippocampus and increases the level of mRNA of the BDNF gene in both hypothalamus and hippocampus. The content of BDNF protein in the hypothalamus was also somewhat increased. In the context of notions about the activation of stress-induced kinases, as an important factor of amyloidogenesis and tau-protein deposition in brain tissue, and the role of deficiency of the neurotrophic factors in the development of neurodegenerative processes, the observed decrease in the activity of stress-activated MAPKs and increased expression of BDNF as a result of noopept administration suggest thatthis drug hasaspecific activity withrespect to some pathogenetic mechanisms involved in the Alzheimer disease. PMID:21395007

  6. Decreased Total Antioxidant Activity in Major Depressive Disorder Patients Non-Responsive to Antidepressant Treatment

    PubMed Central

    Baek, Song-Eun; Lee, Gyoung-Ja; Rhee, Chang-Kyu; Rho, Dae-Young; Kim, Do-Hoon; Huh, Sun

    2016-01-01

    Objective This study aimed to evaluate the total antioxidant activity (TAA) in patients with major depressive disorder (MDD) and the effect of antidepressants on TAA using a novel potentiometric method. Methods Twenty-eight patients with MDD and thirty-one healthy controls were enrolled in this study. The control group comprised 31 healthy individuals matched for gender, drinking and smoking status. We assessed symptoms of depression using the Hamilton Depression Rating Scale (HAMD) and the Beck Depression Inventory (BDI). We measured TAA using potentiometry. All measurements were made at baseline and four and eight weeks later. Results There was a significant negative correlation between BDI scores and TAA. TAA was significantly lower in the MDD group than in controls. When the MDD group was subdivided into those who showed clinical response to antidepressant therapy (response group) and those who did not (non-response group), only the non-response group showed lower TAA, while the response group showed no significant difference to controls at baseline. After eight weeks of antidepressant treatment, TAA in both the response and non-response groups was similar, and there was no significant difference among the three groups. Conclusion These results suggest that the response to antidepressant treatment in MDD patients might be predicted by measuring TAA. PMID:27081384

  7. Permafrost thaw and intense thermokarst activity decreases abundance of stream benthic macroinvertebrates.

    PubMed

    Chin, Krista S; Lento, Jennifer; Culp, Joseph M; Lacelle, Denis; Kokelj, Steven V

    2016-08-01

    Intensification of permafrost thaw has increased the frequency and magnitude of large permafrost slope disturbances (mega slumps) in glaciated terrain of northwestern Canada. Individual thermokarst disturbances up to 40 ha in area have made large volumes of previously frozen sediments available for leaching and transport to adjacent streams, significantly increasing sediment and solute loads in these systems. To test the effects of this climate-sensitive disturbance regime on the ecology of Arctic streams, we explored the relationship between physical and chemical variables and benthic macroinvertebrate communities in disturbed and undisturbed stream reaches in the Peel Plateau, Northwest Territories, Canada. Highly disturbed and undisturbed stream reaches differed with respect to taxonomic composition and invertebrate abundance. Minimally disturbed reaches were not differentiated by these variables but rather were distributed along a disturbance gradient between highly disturbed and undisturbed sites. In particular, there was evidence of a strong negative relationship between macroinvertebrate abundance and total suspended solids, and a positive relationship between abundance and the distance from the disturbance. Increases in both sediments and nutrients appear to be the proximate cause of community differences in highly disturbed streams. Declines in macroinvertebrate abundance in response to slump activity have implications for the food webs of these systems, potentially leading to negative impacts on higher trophic levels, such as fish. Furthermore, the disturbance impacts on stream health can be expected to intensify as climate change increases the frequency and magnitude of thermokarst. PMID:26766394

  8. Dipeptidyl Peptidase-4 Inhibitor Decreases Abdominal Aortic Aneurysm Formation through GLP-1-Dependent Monocytic Activity in Mice

    PubMed Central

    Lu, Hsin Ying; Huang, Chun Yao; Shih, Chun Ming; Chang, Wei Hung; Tsai, Chein Sung; Lin, Feng Yen; Shih, Chun Che

    2015-01-01

    Abdominal aortic aneurysm (AAA) is a life-threatening situation affecting almost 10% of elders. There has been no effective medication for AAA other than surgical intervention. Dipeptidyl peptidase-4 (DPP-4) inhibitors have been shown to have a protective effect on cardiovascular disease. Whether DPP-4 inhibitors may be beneficial in the treatment of AAA is unclear. We investigated the effects of DPP-4 inhibitor sitagliptin on the angiotensin II (Ang II)-infused AAA formation in apoE-deficient (apoE-/-) mice. Mice with induced AAA were treated with placebo or 2.5, 5 or 10 mg/kg/day sitagliptin. Ang II-infused apoE-/- mice exhibited a 55.6% incidence of AAA formation, but treatment with sitagliptin decreased AAA formation. Specifically, administered sitagliptin in Ang II-infused mice exhibited decreased expansion of the suprarenal aorta, reduced elastin lamina degradation of the aorta, and diminished vascular inflammation by macrophage infiltration. Treatment with sitagliptin decreased gelatinolytic activity and apoptotic cells in aorta tissues. Sitaglipitn, additionally, was associated with increased levels of plasma active glucagon-like peptide-1 (GLP-1). In vitro studies, GLP-1 decreased reactive oxygen species (ROS) production, cell migration, and MMP-2 as well as MMP-9 activity in Ang II-stimulated monocytic cells. The results conclude that oral administration of sitagliptin can prevent abdominal aortic aneurysm formation in Ang II-infused apoE-/-mice, at least in part, by increasing of GLP-1 activity, decreasing MMP-2 and MMP-9 production from macrophage infiltration. The results indicate that sitagliptin may have therapeutic potential in preventing the development of AAA. PMID:25876091

  9. Inter-α-inhibitor blocks epithelial sodium channel activation and decreases nasal potential differences in ΔF508 mice.

    PubMed

    Lazrak, Ahmed; Jurkuvenaite, Asta; Ness, Emily C; Zhang, Shaoyan; Woodworth, Bradford A; Muhlebach, Marianne S; Stober, Vandy P; Lim, Yow-Pin; Garantziotis, Stavros; Matalon, Sadis

    2014-05-01

    Increased activity of lung epithelial sodium channels (ENaCs) contributes to the pathophysiology of cystic fibrosis (CF) by increasing the rate of epithelial lining fluid reabsorption. Inter-α-inhibitor (IαI), a serum protease inhibitor, may decrease ENaC activity by preventing its cleavage by serine proteases. High concentrations of IαI were detected in the bronchoalveolar lavage fluid (BALF) of children with CF and lower airway diseases. IαI decreased amiloride-sensitive (IENaC) but not cAMP-activated Cl(-) currents across confluent monolayers of rat ATII, and mouse nasal epithelial cells grew in primary culture by 45 and 25%, respectively. Changes in IENaC by IαI in ATII cells were accompanied by increased levels of uncleaved (immature) surface α-ENaC. IαI increased airway surface liquid depth overlying murine nasal epithelial cells to the same extent as amiloride, consistent with ENaC inhibition. Incubation of lung slices from C57BL/6, those lacking phenylalanine at position 508 (∆F508), or CF transmembrane conductance regulator knockout mice with IαI for 3 hours decreased the open probability of their ENaC channels by 50%. ∆F508 mice had considerably higher levels the amiloride-sensitive fractions of ENaC nasal potential difference (ENaC-NPD) than wild-type littermates and only background levels of IαI in their BALF. A single intranasal instillation of IαI decreased their ENaC-NPD 24 hours later by 25%. In conclusion, we show that IαI is present in the BALF of children with CF, is an effective inhibitor of ENaC proteolysis, and decreases ENaC activity in lung epithelial cells of ∆F508 mice. PMID:24303840

  10. Valproic acid exposure decreases Cbp/p300 protein expression and histone acetyltransferase activity in P19 cells.

    PubMed

    Lamparter, Christina L; Winn, Louise M

    2016-09-01

    The teratogenicity of the antiepileptic drug valproic acid (VPA) is well established and its inhibition of histone deacetylases (HDAC) is proposed as an initiating factor. Recently, VPA-mediated HDAC inhibition was demonstrated to involve transcriptional downregulation of histone acetyltransferases (HATs), which was proposed to compensate for the increased acetylation resulting from HDAC inhibition. Cbp and p300 are HATs required for embryonic development and deficiencies in either are associated with congenital malformations and embryolethality. The objective of the present study was to characterize Cbp/p300 following VPA exposure in P19 cells. Consistent with previous studies, exposure to 5mM VPA over 24h induced a moderate decrease in Cbp/p300 mRNA, which preceded a strong decrease in total cellular protein mediated by ubiquitin-proteasome degradation. Nuclear Cbp/p300 protein was also decreased following VPA exposure, although to a lesser extent. Total cellular and nuclear p300 HAT activity was reduced proportionately to p300 protein levels, however while total cellular HAT activity also decreased, nuclear HAT activity was unaffected. Using the Cbp/p300 HAT inhibitor C646, we demonstrated that HAT inhibition similarly affected many of the same endpoints as VPA, including increased reactive oxygen species and caspase-3 cleavage, the latter of which could be attenuated by pre-treatment with the antioxidant catalase. C646 exposure also decreased NF-κB/p65 protein, which was not due to reduced mRNA and was not attenuated with catalase pre-treatment. This study provides support for an adaptive HAT response following VPA exposure and suggests that reduced Cbp/p300 HAT activity could contribute to VPA-mediated alterations. PMID:27381264

  11. Subanesthetic doses of ketamine transiently decrease serotonin transporter activity: a PET study in conscious monkeys.

    PubMed

    Yamamoto, Shigeyuki; Ohba, Hiroyuki; Nishiyama, Shingo; Harada, Norihiro; Kakiuchi, Takeharu; Tsukada, Hideo; Domino, Edward F

    2013-12-01

    Subanesthetic doses of ketamine, an N-methyl-D-aspartic acid (NMDA) antagonist, have a rapid antidepressant effect which lasts for up to 2 weeks. However, the neurobiological mechanism regarding this effect remains unclear. In the present study, the effects of subanesthetic doses of ketamine on serotonergic systems in conscious monkey brain were investigated. Five young monkeys underwent four positron emission tomography measurements with [(11)C]-3-amino-4-(2-dimethylaminomethyl-phenylsulfanyl)benzonitrile ([(11)C]DASB) for the serotonin transporter (SERT), during and after intravenous infusion of vehicle or ketamine hydrochloride in a dose of 0.5 or 1.5 mg/kg for 40 min, and 24 h post infusion. Global reduction of [(11)C]DASB binding to SERT was observed during ketamine infusion in a dose-dependent manner, but not 24 h later. The effect of ketamine on the serotonin 1A receptor (5-HT1A-R) and dopamine transporter (DAT) was also investigated in the same subjects studied with [(11)C]DASB. No significant changes were observed in either 5-HT1A-R or DAT binding after ketamine infusion. Microdialysis analysis indicated that ketamine infusion transiently increased serotonin levels in the extracellular fluid of the prefrontal cortex. The present study demonstrates that subanesthetic ketamine selectively enhanced serotonergic transmission by inhibition of SERT activity. This action coexists with the rapid antidepressant effect of subanesthetic doses of ketamine. Further studies are needed to investigate whether the transient combination of SERT and NMDA reception inhibition enhances each other's antidepressant actions. PMID:23880871

  12. Decreased platelet function in aortic valve stenosis: high shear platelet activation then inactivation.

    PubMed Central

    O'Brien, J. R.; Etherington, M. D.; Brant, J.; Watkins, J.

    1995-01-01

    OBJECTIVE--To elucidate the mechanism of the bleeding tendency observed in patients with aortic valve stenosis. DESIGN--A prospective study of high and low shear platelet function tests in vitro in normal controls compared with that in patients with severe aortic valve stenosis with a mean (SD) systolic gradient by Doppler of 75 (18) mm Hg before and at least 4 months after aortic valve replacement. SETTING--District general hospital. RESULTS--The patients showed reduced retention in the high shear platelet function tests. (a) Platelet retention in the filter test was 53.6 (12.6)% in patients with aortic valve stenosis and 84.8 (9.6)% in the controls (P < 0.001). (b) Retention in the glass bead column test was 49.8 (19.2) in the patients and 87.4 (8.7) in the controls (P < 0.001). (c) The standard bleeding time was longer in the patients (P < 0.06). Results of the high shear tests (a, b, and c) after aortic valve replacement were within the normal range. The platelet count was low but within the normal range before surgery and increased postoperatively (P < 0.01). There were no differences in the results of standard clotting tests, plasma and intraplatelet von Willebrand's factor, or in 15 platelet aggregation tests using five agonists between patients with aortic valve stenosis and controls. CONCLUSIONS--The high shear haemodynamics of aortic valve stenosis modify platelet function in vivo predisposing to a bleeding tendency. This abnormality of platelet function is detectable only in vitro using high shear tests. The abnormal function is reversed by aortic valve replacement. High shear forces in vitro activate and then inactivate platelets. By the same mechanisms aortic valve stenosis seems to lead to high shear damage in vivo, resulting in a clinically important bleeding tendency in some patients. PMID:8541170

  13. Age-Dependent Decrease of Mitochondrial Complex II Activity in Human Skin Fibroblasts.

    PubMed

    Bowman, Amy; Birch-Machin, Mark A

    2016-05-01

    The mitochondrial theory of aging remains one of the most widely accepted aging theories and implicates mitochondrial electron transport chain dysfunction with subsequent increasing free radical generation. Recently, complex II of the electron transport chain appears to be more important than previously thought in this process, suggested predominantly by nonhuman studies. We investigated the relationship between complex II and aging using human skin as a model tissue. The rate of complex II activity per unit of mitochondria was determined in fibroblasts and keratinocytes cultured from skin covering a wide age range. Complex II activity significantly decreased with age in fibroblasts (P = 0.015) but not in keratinocytes. This was associated with a significant decline in transcript expression (P = 0.008 and P = 0.001) and protein levels (P = 0.0006 and P = 0.005) of the succinate dehydrogenase complex subunit A and subunit B catalytic subunits of complex II, respectively. In addition, there was a significant decrease in complex II activity with age (P = 0.029) that was specific to senescent skin cells. There was no decrease in complex IV activity with increasing age, suggesting possible locality to complex II. PMID:26829036

  14. Digestive enzyme activities in larvae of sharpsnout seabream (Diplodus puntazzo).

    PubMed

    Suzer, Cüneyt; Aktülün, Sevim; Coban, Deniz; Okan Kamaci, H; Saka, Sahin; Firat, Kürşat; Alpbaz, Atilla

    2007-10-01

    The ontogenesis and specific activities of pancreatic and intestinal enzymes were investigated in sharpsnout sea bream, Diplodus puntazzo, during larval development until the end of weaning on day 50. The green-water technique was carried out for larval rearing in triplicate. Trypsin was first detected as early as hatching and sharply increased related to age and exogenous feeding until day 25, but a sharp decrease was observed towards the end of the experiment. Amylase was determined 2 days after hatching (DAH) and sharply increased to 10 DAH. Afterwards, slight decreases were found between 10 and 20 DAH and then slow alterations were continued until end of the experiment. Lipase was measured for the first time on day 4, and then slight increase was found to 25 DAH. After this date, slow variations were maintained until end of the experiment. Pepsin was firstly assayed 32 DAH related with stomach formation and sharply increased to 40 DAH. Then it was fluctuated until end of the experiment. Enzymes of brush border membranes, alkaline phosphatase and aminopeptidase N, showed similar pattern on specific activities during the first 10 days. Thereafter, while specific activity of alkaline phosphatase slightly decreased to 15 DAH and fluctuated until 20 DAH, aminopeptidase N activity slowly declined to 20 DAH. Afterwards, activity of alkaline phosphatase and aminopeptidase N were sharply increased to 30 DAH, showing maturation of the intestinal digestive process and also these activities continued to slight increase until end of the experiment. The specific activity of cytosolic peptidase, leucine-alanine peptidase sharply increased to on day 8, then suddenly declined to 12 DAH and further decreased until 20 DAH. After this date, in contrast to enzymes of brush border membranes, it sharply decreased to 25 DAH and continued to gradually decline until the end of the experiment. These converse expressions were indicative of a maturation of enterocytes and the transition to

  15. Normal aging in rats and pathological aging in human Alzheimer's disease decrease FAAH activity: modulation by cannabinoid agonists.

    PubMed

    Pascual, A C; Martín-Moreno, A M; Giusto, N M; de Ceballos, M L; Pasquaré, S J

    2014-12-01

    Anandamide is an endocannabinoid involved in several physiological functions including neuroprotection. Anandamide is synthesized on demand and its endogenous level is regulated through its degradation, where fatty acid amide hydrolase plays a major role. The aim of this study was to characterize anandamide breakdown in physiological and pathological aging and its regulation by CB1 and CB2 receptor agonists. Fatty acid amide hydrolase activity was analyzed in an independent cohort of human cortical membrane samples from control and Alzheimer's disease patients, and in membrane and synaptosomes from adult and aged rat cerebral cortex. Our results demonstrate that fatty acid amide hydrolase activity decreases in the frontal cortex from human patients with Alzheimer's disease and this effect is mimicked by Aβ(1-40) peptide. This activity increases and decreases in aged rat cerebrocortical membranes and synaptosomes, respectively. Also, while the presence of JWH-133, a CB2 selective agonist, slightly increases anandamide hydrolysis in human controls, it decreases this activity in adults and aged rat cerebrocortical membranes and synaptosomes. In the presence of WIN55,212-2, a mixed CB1/CB2 agonist, anandamide hydrolysis increases in Alzheimer's disease patients but decreases in human controls as well as in adult and aged rat cerebrocortical membranes and synaptosomes. Although a similar profile is observed in fatty acid amide hydrolase activity between aged rat synaptic endings and human Alzheimer's disease brains, it is differently modulated by CB1/CB2 agonists. This modulation leads to a reduced availability of anandamide in Alzheimer's disease and to an increased availability of this endocannabinoid in aging. PMID:25456842

  16. Overexpression of Nitrate Reductase in Tobacco Delays Drought-Induced Decreases in Nitrate Reductase Activity and mRNA1

    PubMed Central

    Ferrario-Méry, Sylvie; Valadier, Marie-Hélène; Foyer, Christine H.

    1998-01-01

    Transformed (cauliflower mosaic virus 35S promoter [35S]) tobacco (Nicotiana plumbaginifolia L.) plants constitutively expressing nitrate reductase (NR) and untransformed controls were subjected to drought for 5 d. Drought-induced changes in biomass accumulation and photosynthesis were comparable in both lines of plants. After 4 d of water deprivation, a large increase in the ratio of shoot dry weight to fresh weight was observed, together with a decrease in the rate of photosynthetic CO2 assimilation. Foliar sucrose increased in both lines during water stress, but hexoses increased only in leaves from untransformed controls. Foliar NO3− decreased rapidly in both lines and was halved within 2 d of the onset of water deprivation. Total foliar amino acids decreased in leaves of both lines following water deprivation. After 4 d of water deprivation no NR activity could be detected in leaves of untransformed plants, whereas about 50% of the original activity remained in the leaves of the 35S-NR transformants. NR mRNA was much more stable than NR activity. NR mRNA abundance increased in the leaves of the 35S-NR plants and remained constant in controls for the first 3 d of drought. On the 4th d, however, NR mRNA suddenly decreased in both lines. Rehydration at d 3 caused rapid recovery (within 24 h) of 35S-NR transcripts, but no recovery was observed in the controls. The phosphorylation state of the protein was unchanged by long-term drought. There was a strong correlation between maximal extractable NR activity and ambient photosynthesis in both lines. We conclude that drought first causes increased NR protein turnover and then accelerates NR mRNA turnover. Constitutive NR expression temporarily delayed drought-induced losses in NR activity. 35S-NR expression may therefore allow more rapid recovery of N assimilation following short-term water deficit. PMID:9576799

  17. Antioxidative Activity after Rosuvastatin Treatment in Patients with Stable Ischemic Heart Disease and Decreased High Density Lipoprotein Cholesterol

    PubMed Central

    Park, Do-Sim; Park, Hyun Young; Rhee, Sang Jae; Kim, Nam-Ho; Oh, Seok Kyu; Jeong, Jin-Won

    2016-01-01

    Background and Objectives The clinical significance of statin-induced high-density lipoprotein cholesterol (HDL-C) changes is not well known. We investigated whether rosuvastatin-induced HDL-C changes can influence the anti-oxidative action of high-density lipoprotein particle. Subjects and Methods A total of 240 patients with stable ischemic heart disease were studied. Anti-oxidative property was assessed by paraoxonase 1 (PON1) activity. We compared the lipid profile and PON1 activity at baseline and at 8 weeks after rosuvastatin 10 mg treatment. Results Rosuvastatin treatment increased the mean HDL-C concentration by 1.9±9.2 mg/dL (6.4±21.4%). HDL-C increased in 138 patients (57.5%), but decreased in 102 patients (42.5%) after statin treatment. PON1 activity increased to 19.1% in all patients. In both, the patients with increased HDL-C and with decreased HDL-C, PON1 activity significantly increased after rosuvastatin treatment (+19.3% in increased HDL-C responder; p=0.018, +18.8% in decreased HDL-C responder; p=0.045 by paired t-test). Baseline PON1 activity modestly correlated with HDL-C levels (r=0.248, p=0.009); however, the PON1 activity evaluated during the course of the treatment did not correlate with HDL-C levels (r=0.153, p=0.075). Conclusion Rosuvastatin treatment improved the anti-oxidative properties as assessed by PON1 activity, regardless of on-treatment HDL-C levels, in patients with stable ischemic heart disease. PMID:27275167

  18. Cytochalasin E alters the cytoskeleton and decreases ENaC activity in Xenopus 2F3 cells

    PubMed Central

    Reifenberger, Matthew S.; Yu, Ling; Bao, Hui-Fang; Duke, Billie Jeanne; Liu, Bing-Chen; Ma, He-Ping; Eaton, Douglas C.; Alli, Abdel A.

    2014-01-01

    Numerous reports have linked cytoskeleton-associated proteins with the regulation of epithelial Na+ channel (ENaC) activity. The purpose of the present study was to determine the effect of actin cytoskeleton disruption by cytochalasin E on ENaC activity in Xenopus 2F3 cells. Here, we show that cytochalasin E treatment for 60 min can disrupt the integrity of the actin cytoskeleton in cultured Xenopus 2F3 cells. We show using single channel patch-clamp experiments and measurements of short-circuit current that ENaC activity, but not its density, is altered by cytochalasin E-induced disruption of the cytoskeleton. In nontreated cells, 8 of 33 patches (24%) had no measurable ENaC activity, whereas in cytochalasin E-treated cells, 17 of 32 patches (53%) had no activity. Analysis of those patches that did contain ENaC activity showed channel open probability significantly decreased from 0.081 ± 0.01 in nontreated cells to 0.043 ± 0.01 in cells treated with cytochalasin E. Transepithelial current from mpkCCD cells treated with cytochalasin E, cytochalasin D, or latrunculin B for 60 min was decreased compared with vehicle-treated cells. The subcellular expression of fodrin changed significantly, and several protein elements of the cytoskeleton decreased at least twofold after 60 min of cytochalasin E treatment. Cytochalasin E treatment disrupted the association between ENaC and myristoylated alanine-rich C-kinase substrate. The results presented here suggest disruption of the actin cytoskeleton by different compounds can attenuate ENaC activity through a mechanism involving changes in the subcellular expression of fodrin, several elements of the cytoskeleton, and destabilization of the ENaC-myristoylated alanine-rich C-kinase substrate complex. PMID:24829507

  19. Peculiarities of filamentation of sharply focused ultrashort laser pulses in air

    SciTech Connect

    Geints, Yu. E.; Zemlyanov, A. A.; Ionin, A. A.; Kudryashov, S. I.; Seleznev, L. V. Sinitsyn, D. V.; Sunchugasheva, E. S.

    2010-11-15

    Peculiarities of the self-focusing and filamentation of high-power femtosecond laser pulses in air have been experimentally and theoretically studied under conditions of broad variation of the beam focusing parameter. The influence of the numerical aperture (NA) of the initial radiation focusing on the main characteristics of laser-induced plasma columns (characteristic transverse size, length, and concentration of free electrons) is considered. It is established that, for a rigid (NA > 0.05) initial laser beam focusing, the transverse size of the plasma channel ceases to decrease at a level of R{sub pl} {approx} 2-4 {mu}m as a result of strong refraction of radiation on the plasma formed at the focal waist, which prevents further contraction of the laser beam due to its focusing and self-focusing.

  20. Decreased activity and enhanced nuclear export of CCAAT-enhancer-binding protein beta during inhibition of adipogenesis by ceramide.

    PubMed Central

    Sprott, Kam M; Chumley, Michael J; Hanson, Janean M; Dobrowsky, Rick T

    2002-01-01

    To identify novel molecular mechanisms by which ceramide regulates cell differentiation, we examined its effect on adipogenesis of 3T3-L1 preadipocytes. Hormonal stimulation of 3T3-L1 preadipocytes induced formation of triacylglycerol-laden adipocytes over 7 days; in part, via the co-ordinated action of CCAAT-enhancer-binding proteins alpha, beta and delta (C/EBP-alpha, -beta and -delta) and peroxisome-proliferator-activated receptor gamma (PPARgamma). The addition of exogenous N-acetylsphingosine (C2-ceramide) or increasing endogenous ceramide levels inhibited the expression of C/EBPalpha and PPARgamma, and blocked adipocyte development. C2-ceramide did not decrease the cellular expression of C/EBPbeta, which is required for expression of C/EBPalpha and PPARgamma, but significantly blocked its transcriptional activity from a promoter construct after 24 h. The ceramide-induced decrease in the transcriptional activity of C/EBPbeta correlated with a strong decrease in its phosphorylation, DNA-binding ability and nuclear localization at 24 h. However, ceramide did not change the nuclear level of C/EBPbeta after a period of 4 or 16 h, suggesting that it was not affecting nuclear import. CRM1 (more recently named 'exportin-1') is a nuclear membrane protein that regulates protein export from the nucleus by binding to a specific nuclear export sequence. Leptomycin B is an inhibitor of CRM1/exportin-1, and reversed the ceramide-induced decrease in nuclear C/EBPbeta at 24 h. Taken together, these data support the hypothesis that ceramide may inhibit adipogenesis, at least in part, by enhancing dephosphorylation and premature nuclear export of C/EBPbeta at a time when its maximal transcriptional activity is required to drive adipogenesis. PMID:12071851

  1. Sonication inhibited browning but decreased polyphenols contents and antioxidant activity of fresh apple (malus pumila mill, cv. Red Fuji) juice.

    PubMed

    Sun, Yujing; Zhong, Liezhou; Cao, Lianfei; Lin, Wenwen; Ye, Xingqian

    2015-12-01

    Enzyme browning is the main challenge in the preparation of fresh apple juice. The influence of sonication on browning, as well as polyphenols and antioxidant activity of fresh apple juice was investigated. It was found that ultrasound can inhibit the browning of fresh apple (Malus pumila Mill, cv. Red Fuji) juice, but decreased the contents of total phenolic content (TPC), total flavonoid content (TFC) and chlorogenic acid and reduced the antioxidant activity. On the whole, ultrasound technology cannot be used to the antibrowning of fresh apple (Malus pumila Mill, cv. Red Fuji) juice. PMID:26604412

  2. Increased phospholipase A2 and decreased lysophospholipase activity in the small intestinal mucosa after ischaemia and revascularisation.

    PubMed Central

    Otamiri, T; Franzén, L; Lindmark, D; Tagesson, C

    1987-01-01

    The influence of ischaemia and revascularisation on lipid peroxidation and phospholipid metabolism in the rat small intestinal mucosa was investigated. Two hours of total ischaemia followed by five minutes of revascularisation caused not only accumulation of malondialdehyde in the mucosa, but also increased activity of phospholipase A2, decreased activity of lysophospholipase, and increased ratio between lysophosphatidylcholine and phosphatidylcholine. Pretreatment with the phospholipase A2 inhibitor, quinacrine, prevented the increases in mucosal phospholipase A2 activity and lysophosphatidylcholine/phosphatidylcholine ratio after ischaemia and morphological examinations revealed that the mucosa was then also protected against ischaemic injury. These findings point to the possibility that activation of phospholipase A2 and accumulation of lysophosphoglycerides could be involved in mediating the mucosal injury caused by small intestinal ischaemia. Images Fig. 7 PMID:3428670

  3. Decreased NADH-oxidoreductase activities as an early response in rat liver to the carcinogen 2-acetylaminofluorene.

    PubMed

    Sun, I; MacKellar, W C; Crane, F L; Barr, R; Elliott, W L; Lem, N; Varnold, R L; Heinstein, P F; Morré, D J

    1985-01-01

    Reduced nicotinamide adenine dinucleotide (NADH):ferricyanide reductase and DT-diaphorase specific activity in total homogenates of rat liver are markedly decreased as a very early biochemical event of hepatocarcinogenesis induced by the carcinogen 2-acetylaminofluorene (AAF). A 50 to 75% decrease in NADH:ferricyanide reductase was observed after 1 day of AAF (0.025% in the diet) feeding and persisted throughout a 7-week continuum of AAF administration. Carcinogen added directly to cell extracts had no effect. Similar results were obtained with single injections of either AAF or diethylnitrosamine. Xanthine dehydrogenase was also reduced in liver following AAF administration to nearly the same extent as NADH:ferricyanide reductase and DT-diaphorase. Total NADH-cytochrome c reductase and mitochondrial activity as estimated from succinic dehydrogenase were not affected by carcinogen administration relative to basal dietary controls. The reduced nicotinamide adenine dinucleotide phosphate:cytochrome c reductase that functions in drug detoxification was elevated. With livers of animals fed 4-acetamidophenol, a hepatotoxin chemically related to AAF, small decreases were noted in NADH:ferricyanide reductase, but not in xanthine dehydrogenase nor in DT-diaphorase. Initial lowering of these activities in the livers of the carcinogen-treated animals is preceded by or concomitant with a reduction in the levels of extramitochondrial pyridine nucleotides known from other studies to result from DNA damage. PMID:3965129

  4. Decreased succinate dehydrogenase activity of gamma and alpha motoneurons in mouse spinal cords following 13 weeks of exposure to microgravity.

    PubMed

    Ishihara, Akihiko; Nagatomo, Fumiko; Fujino, Hidemi; Kondo, Hiroyo; Ohira, Yoshinobu

    2013-10-01

    Cell body size and succinate dehydrogenase activity of motoneurons in the dorsolateral region of the ventral horn in the lumbar and cervical segments of the mouse spinal cord were assessed after long-term exposure to microgravity and compared with those of ground-based controls. Mice were housed in a mouse drawer system on the International Space Station for 13 weeks. The mice were transported to the International Space Station by the Space Shuttle Discovery and returned to Earth by the Space Shuttle Atlantis. No changes in the cell body size of motoneurons were observed in either segment after exposure to microgravity, but succinate dehydrogenase activity of small-sized (<300 μm(2)) gamma and medium-sized (300-700 μm(2)) alpha motoneurons, which have higher succinate dehydrogenase activity than large-sized (>700 μm(2)) alpha motoneurons, in both segments was lower than that of ground-based controls. We concluded that exposure to microgravity for longer than 3 months induced decreased succinate dehydrogenase activity of both gamma and slow-type alpha motoneurons. In particular, the decreased succinate dehydrogenase activity of gamma motoneurons was observed only after long-term exposure to microgravity. PMID:23943522

  5. Cytosolic H2O2 mediates hypertrophy, apoptosis, and decreased SERCA activity in mice with chronic hemodynamic overload.

    PubMed

    Qin, Fuzhong; Siwik, Deborah A; Pimentel, David R; Morgan, Robert J; Biolo, Andreia; Tu, Vivian H; Kang, Y James; Cohen, Richard A; Colucci, Wilson S

    2014-05-15

    Oxidative stress in the myocardium plays an important role in the pathophysiology of hemodynamic overload. The mechanism by which reactive oxygen species (ROS) in the cardiac myocyte mediate myocardial failure in hemodynamic overload is not known. Accordingly, our goals were to test whether myocyte-specific overexpression of peroxisomal catalase (pCAT) that localizes in the sarcoplasm protects mice from hemodynamic overload-induced failure and prevents oxidation and inhibition of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA), an important sarcoplasmic protein. Chronic hemodynamic overload was caused by ascending aortic constriction (AAC) for 12 wk in mice with myocyte-specific transgenic expression of pCAT. AAC caused left ventricular hypertrophy and failure associated with a generalized increase in myocardial oxidative stress and specific oxidative modifications of SERCA at cysteine 674 and tyrosine 294/5. pCAT overexpression ameliorated myocardial hypertrophy and apoptosis, decreased pathological remodeling, and prevented the progression to heart failure. Likewise, pCAT prevented oxidative modifications of SERCA and increased SERCA activity without changing SERCA expression. Thus cardiac myocyte-restricted expression of pCAT effectively ameliorated the structural and functional consequences of chronic hemodynamic overload and increased SERCA activity via a post-translational mechanism, most likely by decreasing inhibitory oxidative modifications. In pressure overload-induced heart failure cardiac myocyte cytosolic ROS play a pivotal role in mediating key pathophysiologic events including hypertrophy, apoptosis, and decreased SERCA activity. PMID:24633550

  6. Decreased activity of hepatic P-glycoprotein in the isolated perfused liver of the adjuvant arthritis rat.

    PubMed

    Achira, M; Totsuka, R; Kume, T

    2002-11-01

    1. We investigated the hepatobiliary transport of doxorubicin in the isolated perfused liver prepared from the adjuvant arthritis rat, an animal model for rheumatoid arthritis, to examine the hepatic P-glycoprotein activity in the adjuvant arthritis rat. 2. Liver was isolated from the normal and the adjuvant arthritis rat and perfused for 60 min with recirculating buffer and the perfusate and bile samples were collected at timed interval. 3. The elimination of doxorubicin in the adjuvant arthritis rat tended to be reduced, but it was not significantly different from the normal rat. Biliary clearance (CL(bile)) in the normal rat was 1.93 +/- 0.48 ml min(-1), whereas, CL(bile) in the adjuvant arthritis rat was significantly decreased to 0.40 +/- 0.13 ml min(-1). 4. CL(bile) was markedly decreased to about 0.15 ml min(-1) in the presence of 100 microM verapamil in both types of rat. Methotrexate treatment had no effect on CL(bile) in both the normal and adjuvant arthritis rat (2.18 +/- 0.22 and 0.47 +/- 0.22 ml min(-1), respectively). 5. The results suggest that the hepatic P-glycoprotein activity was markedly decreased in the adjuvant arthritis rat and the effect of methotrexate on the hepatic P-glycoprotein activity did not corresponded to its anti-inflammatory effect. PMID:12487726

  7. 30 CFR 203.54 - How does my relief arrangement for an oil and gas lease operate if prices rise sharply?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false How does my relief arrangement for an oil and gas lease operate if prices rise sharply? 203.54 Section 203.54 Mineral Resources BUREAU OF SAFETY AND... operate if prices rise sharply? In those months when your current reference price rises by at least...

  8. 30 CFR 203.54 - How does my relief arrangement for an oil and gas lease operate if prices rise sharply?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false How does my relief arrangement for an oil and gas lease operate if prices rise sharply? 203.54 Section 203.54 Mineral Resources BUREAU OF SAFETY AND... operate if prices rise sharply? In those months when your current reference price rises by at least...

  9. 30 CFR 203.54 - How does my relief arrangement for an oil and gas lease operate if prices rise sharply?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false How does my relief arrangement for an oil and gas lease operate if prices rise sharply? 203.54 Section 203.54 Mineral Resources BUREAU OF SAFETY AND... operate if prices rise sharply? In those months when your current reference price rises by at least...

  10. High-fat diet decreases activity of the oxidative phosphorylation complexes and causes nonalcoholic steatohepatitis in mice

    PubMed Central

    García-Ruiz, Inmaculada; Solís-Muñoz, Pablo; Fernández-Moreira, Daniel; Grau, Montserrat; Colina, Francisco; Muñoz-Yagüe, Teresa; Solís-Herruzo, José A.

    2014-01-01

    Nonalcoholic fatty liver disease (NAFLD) is the most frequent histological finding in individuals with abnormal liver-function tests in the Western countries. In previous studies, we have shown that oxidative phosphorylation (OXPHOS) is decreased in individuals with NAFLD, but the cause of this mitochondrial dysfunction remains uncertain. The aims of this study were to determine whether feeding mice a high-fat diet (HFD) induces any change in the activity of OXPHOS, and to investigate the mechanisms involved in the pathogenesis of this defect. To that end, 30 mice were distributed between five groups: control mice fed a standard diet, and mice on a HFD and treated with saline solution, melatonin (an antioxidant), MnTBAP (a superoxide dismutase analog) or uric acid (a scavenger of peroxynitrite) for 28 weeks intraperitoneously. In the liver of these mice, we studied histology, activity and assembly of OXPHOS complexes, levels of subunits of these complexes, gene expression of these subunits, oxidative and nitrosative stress, and oxidative DNA damage. In HFD-fed mice, we found nonalcoholic steatohepatitis, increased gene expression of TNFα, IFNγ, MCP-1, caspase-3, TGFβ1 and collagen α1(I), and increased levels of 3-tyrosine nitrated proteins. The activity and assembly of all OXPHOS complexes was decreased to about 50–60%. The amount of all studied OXPHOS subunits was markedly decreased, particularly the mitochondrial-DNA-encoded subunits. Gene expression of mitochondrial-DNA-encoded subunits was decreased to about 60% of control. There was oxidative damage to mitochondrial DNA but not to genomic DNA. Treatment of HFD-fed mice with melatonin, MnTBAP or uric acid prevented all changes observed in untreated HFD-fed mice. We conclude that a HFD decreased OXPHOS enzymatic activity owing to a decreased amount of fully assembled complexes caused by a reduced synthesis of their subunits. Antioxidants and antiperoxynitrites prevented all of these changes, suggesting

  11. Dorsomedial hypothalamic lesions counteract decreases in locomotor activity in male Syrian hamsters transferred from long to short day lengths.

    PubMed

    Jarjisian, Stephan G; Butler, Matthew P; Paul, Matthew J; Place, Ned J; Prendergast, Brian J; Kriegsfeld, Lance J; Zucker, Irving

    2015-02-01

    The dorsomedial nucleus (DMN) of the hypothalamus has been implicated in seasonal control of reproduction. Syrian hamsters with DMN lesions, unlike control hamsters, do not undergo testicular regression after transfer from a long day length (14 h of light per day; LD) to a short day length (8 h of light per day; SD). SDs also markedly reduce hamster locomotor activity (LMA). To assess whether the DMN is a component of the neural circuitry that mediates seasonal variation in LMA, neurologically intact males (controls) and hamsters that had sustained lesions of the DMN (DMNx) were housed in an LD or SD photoperiod for 26 weeks. DMNx that prevented testicular regression counteracted decreases in LMA during 8 to10 weeks of SD treatment; steroid-independent effects of SDs did not override high levels of LMA in DMNx males. As in previous studies, testosterone (T) restoration increased LMA in LD but not SD castrated control males. In the present study, T also failed to increase LMA in SD-DMNx hamsters. The DMN is not necessary to maintain decreased responsiveness of locomotor activity systems to T in SDs, which presumably is mediated by other central nervous system androgen target tissues. Finally, DMNx did not interfere with the spontaneous increase in LMA exhibited by photorefractory hamsters after 26 weeks of SD treatment. We propose that DMN is an essential part of the substrate that mediates seasonal decreases in LMA as day length decreases but is not required to sustain decreased SD responsiveness to T or for development of refractoriness to SDs. PMID:25512303

  12. BOTH ENDOGENOUS AND EXOGENOUS TESTOSTERONE DECREASE MYOCARDIAL STAT3 ACTIVATION AND SOCS3 EXPRESSION FOLLOWING ACUTE ISCHEMIA AND REPERFUSION

    PubMed Central

    Wang, Meijing; Wang, Yue; Abarbanell, Aaron; Tan, Jiangjing; Weil, Brent; Herrmann, Jeremy; Meldrum, Daniel R.

    2009-01-01

    Background Signal transducer and activator of transduction 3 (STAT3) pathway has been shown to be cardioprotective. We observed decreased STAT3/suppressor of cytokine signaling 3 (SOCS3) in male hearts, which was associated with worse post-ischemic myocardial function compared to females. However, it is unclear whether this down-regulation of myocardial STAT3/SOCS3 is due to testosterone in males. We hypothesized that following ischemia/reperfusion (I/R): 1) endogenous testosterone decreases myocardial STAT3 and SOCS3 in males; 2) administration of exogenous testosterone reduces myocardial STAT3/SOCS3 in female and castrated male hearts. Methods To study this, hearts from I/R injury (Langendorff) were homogenized and assessed for phosphorylated-STAT3 (p-STAT3), total-STAT3 (T-STAT3), SOCS3 and GAPDH by western blot. Groups: age-matched adult males, females, castrated males, males with androgen receptor blocker-flutamide implantation, females and castrated males with chronic (3-week) 5alpha-dihydrotestosterone (DHT) release pellet implantation or acute (5-minute) testosterone infusion (ATI) prior to ischemia (n=5–9/group). Results Castration or flutamide treatment significantly increased SOCS3 expression in male hearts after I/R. However, only castration increased myocardial STAT3 activation. Notably, DHT replacement or ATI markedly decreased myocardial STAT3/SOCS3 in castrated males and females subjected to I/R. Conclusion These results suggest that endogenous and exogenous testosterone decrease myocardial STAT3 activation and SOCS3 expression following I/R. This represents the initial demonstration of testosterone-downregulated STAT3/SOCS3 signaling in myocardium. PMID:19628067

  13. Blocking CXCL9 Decreases HIV-1 Replication and Enhances the Activity of Prophylactic Antiretrovirals in Human Cervical Tissues

    PubMed Central

    Macura, Sherrill L.; Lathrop, Melissa J.; Gui, Jiang; Doncel, Gustavo F.; Rollenhagen, Christiane

    2016-01-01

    Objectives: The interferon-gamma–induced chemokine CXCL9 is expressed in a wide range of inflammatory conditions including those affecting the female genital tract. CXCL9 promotes immune cell recruitment, activation, and proliferation. The role of CXCL9 in modulating HIV-1 infection of cervicovaginal tissues, a main portal of viral entry, however, has not been established. We report a link between CXCL9 and HIV-1 replication in human cervical tissues and propose CXCL9 as a potential target to enhance the anti–HIV-1 activity of prophylactic antiretrovirals. Design: Using ex vivo infection of human cervical tissues as a model of mucosal HIV-1 acquisition, we described the effect of CXCL9 neutralization on HIV-1 gene expression and mucosal CD4+ T-cell activation. The anti-HIV-1 activity of tenofovir, the leading mucosal pre-exposure prophylactic microbicide, alone or in combination with CXCL9 neutralization was also studied. Methods: HIV-1 replication was evaluated by p24 ELISA. HIV-1 DNA and RNA, and CD4, CCR5, and CD38 transcription were evaluated by quantitative real-time polymerase chain reaction. Frequency of activated cervical CD4+ T cells was quantified using fluorescence-activated cell sorting. Results: Antibody blocking of CXCL9 reduced HIV-1 replication by decreasing mucosal CD4+ T-cell activation. CXCL9 neutralization in combination with suboptimal concentrations of tenofovir, possibly present in the cervicovaginal tissues of women using the drug inconsistently, demonstrated an earlier and greater decrease in HIV-1 replication compared with tissues treated with tenofovir alone. Conclusions: CXCL9 neutralization reduces HIV-1 replication and may be an effective target to enhance the efficacy of prophylactic antiretrovirals. PMID:26545124

  14. MEF2B mutations in non-Hodgkin lymphoma dysregulate cell migration by decreasing MEF2B target gene activation

    PubMed Central

    Pon, Julia R.; Wong, Jackson; Saberi, Saeed; Alder, Olivia; Moksa, Michelle; Grace Cheng, S. -W.; Morin, Gregg B.; Hoodless, Pamela A.; Hirst, Martin; Marra, Marco A.

    2015-01-01

    Myocyte enhancer factor 2B (MEF2B) is a transcription factor with mutation hotspots at K4, Y69 and D83 in diffuse large B-cell lymphoma (DLBCL). To provide insight into the regulatory network of MEF2B, in this study, we analyse global gene expression and DNA-binding patterns. We find that candidate MEF2B direct target genes include RHOB, RHOD, CDH13, ITGA5 and CAV1, and that indirect target genes of MEF2B include MYC, TGFB1, CARD11, MEF2C, NDRG1 and FN1. MEF2B overexpression increases HEK293A cell migration and epithelial–mesenchymal transition, and decreases DLBCL cell chemotaxis. K4E, Y69H and D83V MEF2B mutations decrease the capacity of MEF2B to activate transcription and decrease its' effects on cell migration. The K4E and D83V mutations decrease MEF2B DNA binding. In conclusion, our map of the MEF2B regulome connects MEF2B to drivers of oncogenesis. PMID:26245647

  15. MEF2B mutations in non-Hodgkin lymphoma dysregulate cell migration by decreasing MEF2B target gene activation.

    PubMed

    Pon, Julia R; Wong, Jackson; Saberi, Saeed; Alder, Olivia; Moksa, Michelle; Grace Cheng, S-W; Morin, Gregg B; Hoodless, Pamela A; Hirst, Martin; Marra, Marco A

    2015-01-01

    Myocyte enhancer factor 2B (MEF2B) is a transcription factor with mutation hotspots at K4, Y69 and D83 in diffuse large B-cell lymphoma (DLBCL). To provide insight into the regulatory network of MEF2B, in this study, we analyse global gene expression and DNA-binding patterns. We find that candidate MEF2B direct target genes include RHOB, RHOD, CDH13, ITGA5 and CAV1, and that indirect target genes of MEF2B include MYC, TGFB1, CARD11, MEF2C, NDRG1 and FN1. MEF2B overexpression increases HEK293A cell migration and epithelial-mesenchymal transition, and decreases DLBCL cell chemotaxis. K4E, Y69H and D83V MEF2B mutations decrease the capacity of MEF2B to activate transcription and decrease its' effects on cell migration. The K4E and D83V mutations decrease MEF2B DNA binding. In conclusion, our map of the MEF2B regulome connects MEF2B to drivers of oncogenesis. PMID:26245647

  16. Aspirin decreases systemic exposure to clopidogrel through modulation of P-glycoprotein but does not alter its antithrombotic activity.

    PubMed

    Oh, J; Shin, D; Lim, K S; Lee, S; Jung, K-H; Chu, K; Hong, K S; Shin, K-H; Cho, J-Y; Yoon, S H; Ji, S C; Yu, K-S; Lee, H; Jang, I-J

    2014-06-01

    Decreased oral clopidogrel absorption caused by induction of intestinal permeability glycoprotein (P-gp) expression after aspirin administration was observed in rats. This study evaluated the effect of aspirin coadministration on the pharmacokinetics/pharmacodynamics of clopidogrel in humans. A single 75-mg dose of clopidogrel was orally administered before and after 2 and 4 weeks of once-daily 100-mg aspirin administration in 18 healthy volunteers who were recruited based on CYP2C19 and PON1 genotypes. Plasma concentrations of clopidogrel and its active metabolite, H4, and relative platelet inhibition (RPI) were determined. The P-gp microRNA miR-27a increased by up to 7.67-fold (P = 0.004) and the clopidogrel area under the concentration-time curve (AUC) decreased by 14% (P > 0.05), but the AUC of H4 remained unchanged and RPI increased by up to 15% (P = 0.002) after aspirin administration. These findings indicate low-dose aspirin coadministration may decrease clopidogrel bioavailability but does not decrease its efficacy. PMID:24566733

  17. Salecan Enhances the Activities of β-1,3-Glucanase and Decreases the Biomass of Soil-Borne Fungi

    PubMed Central

    Chen, Yunmei; Xu, Haiyang; Zhou, Mengyi; Wang, Yang; Wang, Shiming; Zhang, Jianfa

    2015-01-01

    Salecan, a linear extracellular polysaccharide consisting of β-1,3-D-glucan, has potential applications in the food, pharmaceutical and cosmetic industries. The objective of this study was to evaluate the effects of salecan on soil microbial communities in a vegetable patch. Compositional shifts in the genetic structure of indigenous soil bacterial and fungal communities were monitored using culture-dependent dilution plating, culture-independent PCR-denaturing gradient gel electrophoresis (DGGE) and quantitative PCR. After 60 days, soil microorganism counts showed no significant variation in bacterial density and a marked decrease in the numbers of fungi. The DGGE profiles revealed that salecan changed the composition of the microbial community in soil by increasing the amount of Bacillus strains and decreasing the amount of Fusarium strains. Quantitative PCR confirmed that the populations of the soil-borne fungi Fusarium oxysporum and Trichoderma spp. were decreased approximately 6- and 2-fold, respectively, in soil containing salecan. This decrease in the amount of fungi can be explained by salecan inducing an increase in the activities of β-1,3-glucanase in the soil. These results suggest the promising application of salecan for biological control of pathogens of soil-borne fungi. PMID:26247592

  18. Saturated lipids decrease mitofusin 2 leading to endoplasmic reticulum stress activation and insulin resistance in hypothalamic cells.

    PubMed

    Diaz, Brenda; Fuentes-Mera, Lizeth; Tovar, Armando; Montiel, Teresa; Massieu, Lourdes; Martínez-Rodríguez, Herminia Guadalupe; Camacho, Alberto

    2015-11-19

    Endoplasmic reticulum (ER) and mitochondria dysfunction contribute to insulin resistance generation during obesity and diabetes. ER and mitochondria interact through Mitofusin 2 (MTF2), which anchors in the outer mitochondrial and ER membranes regulating energy metabolism. Ablation of MTF2 leads to ER stress activation and insulin resistance. Here we determine whether lipotoxic insult induced by saturated lipids decreases MTF2 expression leading to ER stress response in hypothalamus and its effects on insulin sensitivity using in vitro and in vivo models. We found that lipotoxic stimulation induced by palmitic acid, but not the monounsaturated palmitoleic acid, decreases MTF2 protein levels in hypothalamic mHypoA-CLU192 cells. Also, palmitic acid incubation activates ER stress response evidenced by increase in the protein levels of GRP78/BIP marker at later stage than MTF2 downregulation. Additionally, we found that MTF2 alterations induced by palmitic, but not palmitoleic, stimulation exacerbate insulin resistance in hypothalamic cells. Insulin resistance induced by palmitic acid is prevented by pre-incubation of the anti-inflammatory and the ER stress release reagents, sodium salicylate and 4 phenylbutirate, respectively. Finally, we demonstrated that lipotoxic insult induced by high fat feeding to mice decreases MTF2 proteins levels in arcuate nucleus of hypothalamus. Our data indicate that saturated lipids modulate MTF2 expression in hypothalamus coordinating the ER stress response and the susceptibility to insulin resistance. PMID:26410780

  19. Decrease in the activity of the drug-metabolizing enzymes of rat liver following the administration of tilorone hydrochloride.

    PubMed

    Leeson, G A; Biedenbach, S A; Chan, K Y; Gibson, J P; Wright, G J

    1976-01-01

    Tilorone hydrochloride, 2,7-bias(2-(diethylamino)ethoxy(fluoren-9-one dihydrochloride, has been studied to determine its effect on the drug-metabolizing enzymes of the liver of male Charles River CD strain rats. Single and multiple doses of tilorone-HCl, 100 mg/kg/day po, were used. Most experiments were performed 24 hr after the last dose, except for a study 5 hr after dosing, and those in which the duration of effects of tilorone hydrochloride were determined. The hexobarbital sleeping time was prolonged after both single doses and four doses of tilorone hydrochloride. The 4-dose regimen prolonged the zoxazolamine paralysis time but the single dose did not. A decrease in microsomal protein was observed after the single- and 4-dose regimens but not after 21 daily doses of tilorone-HCl. Cytochrome P-450 content of microsomes was decreased by the single doses, 100 and 250 mg/kg po, and by 4 and 21 doses of 100 mg/kg/day po. Activities of aminopyrine demethylase and hexobarbital oxidase also were decreased by the above regimens, but the activity of hexobarbital oxidase was affected more markedly. Electron micrographs of rat liver, after treatment with tilorone-HCl, 100 mg/kg/day for 21 days, revealed many membranous structures in the form of whorls. PMID:6227

  20. Progressive alopecia reveals decreasing stem cell activation probability during aging of mice with epidermal deletion of DNA methyltransferase 1.

    PubMed

    Li, Ji; Jiang, Ting-Xin; Hughes, Michael W; Wu, Ping; Yu, Juehua; Widelitz, Randall B; Fan, Guoping; Chuong, Cheng-Ming

    2012-12-01

    To examine the roles of epigenetic modulation on hair follicle regeneration, we generated mice with a K14-Cre-mediated loss of DNA methyltransferase 1 (DNMT1). The mutant shows an uneven epidermal thickness and alterations in hair follicle size. When formed, hair follicle architecture and differentiation appear normal. Hair subtypes exist but hair fibers are shorter and thinner. Hair numbers appear normal at birth but gradually decrease to <50% of control in 1-year-old mice. Sections of old mutant skin show follicles in prolonged telogen with hyperplastic sebaceous glands. Anagen follicles in mutants exhibit decreased proliferation and increased apoptosis in matrix transient-amplifying cells. Although K15-positive stem cells in the mutant bulge are comparable in number to the control, their ability to proliferate and become activated to form a hair germ is reduced. As mice age, residual DNMT activity declines further, and the probability of successful anagen reentry decreases, leading to progressive alopecia. Paradoxically, there is increased proliferation in the epidermis, which also shows aberrant differentiation. These results highlight the importance of DNA methylation in maintaining stem cell homeostasis during the development and regeneration of ectodermal organs. PMID:22763785

  1. Novel sulfonanilide analogs decrease aromatase activity in breast cancer cells: synthesis, biological evaluation, and ligand-based pharmacophore identification.

    PubMed

    Su, Bin; Tian, Ran; Darby, Michael V; Brueggemeier, Robert W

    2008-03-13

    Aromatase converts androgens to estrogens and is a particularly attractive target in the treatment of estrogen receptor positive breast cancer. Previously, the COX-2 selective inhibitor nimesulide and analogs decreased aromatase expression and enzyme activity independent of COX-2 inhibition. In this manuscript, a combinatorial approach was used to generate diversely substituted novel sulfonanilides by parallel synthesis. Their pharmacological evaluation as agents for suppression of aromatase activity in SK-BR-3 breast cancer cells was extensively explored. A ligand-based pharmacophore model was elaborated for selective aromatase modulation (SAM) using the Catalyst HipHop algorithms. The best qualitative model consisted of four features: one aromatic ring, two hydrogen bond acceptors, and one hydrophobic function. Several lead compounds have also been tested in aromatase transfected MCF-7 cells, and they significantly suppressed cellular aromatase activity. The results suggest that both genomic and nongenomic mechanisms of these compounds are involved within the aromatase suppression effect. PMID:18271519

  2. First functional polymorphism in CFTR promoter that results in decreased transcriptional activity and Sp1/USF binding

    SciTech Connect

    Taulan, M. Lopez, E.; Guittard, C.; Rene, C.; Baux, D.; Altieri, J.P.; DesGeorges, M.; Claustres, M.; Romey, M.C.

    2007-09-28

    Growing evidences show that functionally relevant polymorphisms in various promoters alter both transcriptional activity and affinities of existing protein-DNA interactions, and thus influence disease progression in humans. We previously reported the -94G>T CFTR promoter variant in a female CF patient in whom any known disease-causing mutation has been detected. To investigate whether the -94G>T could be a regulatory variant, we have proceeded to in silico analyses and functional studies including EMSA and reporter gene assays. Our data indicate that the promoter variant decreases basal CFTR transcriptional activity in different epithelial cells and alters binding affinities of both Sp1 and USF nuclear proteins to the CFTR promoter. The present report provides evidence for the first functional polymorphism that negatively affects the CFTR transcriptional activity and demonstrates a cooperative role of Sp1 and USF transcription factors in transactivation of the CFTR gene promoter.

  3. Symmetric tensor networks and practical simulation algorithms to sharply identify classes of quantum phases distinguishable by short-range physics

    NASA Astrophysics Data System (ADS)

    Ran, Ying; Jiang, Shenghan

    Phases of matter are sharply defined in the thermodynamic limit. One major challenge of accurately simulating quantum phase diagrams of interacting quantum systems is due to the fact that numerical simulations usually deal with the energy density, a local property of quantum wavefunctions, while identifying different quantum phases generally rely on long-range physics. In this paper we construct generic fully symmetric quantum wavefunctions under certain assumptions using a type of tensor networks: projected entangled pair states, and provide practical simulation algorithms based on them. We find that quantum phases can be organized into crude classes distinguished by short-range physics, which is related to the fractionalization of both on-site symmetries and space-group symmetries. Consequently, our simulation algorithms, which are useful to study long-range physics as well, are expected to be able to sharply determine crude classes in interacting quantum systems efficiently. Examples of these crude classes are demonstrated in half-integer quantum spin systems on the kagome lattice. Limitations and generalizations of our results are discussed. The Alfred P. Sloan fellowship and National Science Foundation under Grant No. DMR-1151440.

  4. Increased Physical Activity Not Decreased Energy Intake Is Associated with Inpatient Medical Treatment for Anorexia Nervosa in Adolescent Females

    PubMed Central

    Higgins, Janine; Hagman, Jennifer; Pan, Zhaoxing; MacLean, Paul

    2013-01-01

    There is a dearth of data regarding changes in dietary intake and physical activity over time that lead to inpatient medical treatment for anorexia nervosa (AN). Without such data, more effective nutritional therapies for patients cannot be devised. This study was undertaken to describe changes in diet and physical activity that precede inpatient medical hospitalization for AN in female adolescents. This data can be used to understand factors contributing to medical instability in AN, and may advance rodent models of AN to investigate novel weight restoration strategies. It was hypothesized that hospitalization for AN would be associated with progressive energy restriction and increased physical activity over time. 20 females, 11–19 years (14.3±1.8 years), with restricting type AN, completed retrospective, self-report questionnaires to assess dietary intake and physical activity over the 6 month period prior to inpatient admission (food frequency questionnaire, Pediatric physical activity recall) and 1 week prior (24 hour food recall, modifiable activity questionnaire). Physical activity increased acutely prior to inpatient admission without any change in energy or macronutrient intake. However, there were significant changes in reported micronutrient intake causing inadequate intake of Vitamin A, Vitamin D, and pantothenic acid at 1 week versus high, potentially harmful, intake of Vitamin A over 6 months prior to admission. Subject report of significantly increased physical activity, not decreased energy intake, were associated with medical hospitalization for AN. Physical activity and Vitamin A and D intake should be carefully monitored following initial AN diagnosis, as markers of disease progression as to potentially minimize the risk of medical instability. PMID:23637854

  5. Exogenous Carbon Monoxide Decreases Sepsis-Induced Acute Kidney Injury and Inhibits NLRP3 Inflammasome Activation in Rats.

    PubMed

    Wang, Peng; Huang, Jian; Li, Yi; Chang, Ruiming; Wu, Haidong; Lin, Jiali; Huang, Zitong

    2015-01-01

    Carbon monoxide (CO) has shown various physiological effects including anti-inflammatory activity in several diseases, whereas the therapeutic efficacy of CO on sepsis-induced acute kidney injury (AKI) has not been reported as of yet. The purpose of the present study was to explore the effects of exogenous CO on sepsis-induced AKI and nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome activation in rats. Male rats were subjected to cecal ligation and puncture (CLP) to induce sepsis and AKI. Exogenous CO delivered from CO-releasing molecule 2 (CORM-2) was used intraperitoneally as intervention after CLP surgery. Therapeutic effects of CORM-2 on sepsis-induced AKI were assessed by measuring serum creatinine (Scr) and blood urea nitrogen (BUN), kidney histology scores, apoptotic cell scores, oxidative stress, levels of cytokines TNF-α and IL-1β, and NLRP3 inflammasome expression. CORM-2 treatment protected against the sepsis-induced AKI as evidenced by reducing serum Scr/BUN levels, apoptotic cells scores, increasing survival rates, and decreasing renal histology scores. Furthermore, treatment with CORM-2 significantly reduced TNF-α and IL-1β levels and oxidative stress. Moreover, CORM-2 treatment significantly decreased NLRP3 inflammasome protein expressions. Our study provided evidence that CORM-2 treatment protected against sepsis-induced AKI and inhibited NLRP3 inflammasome activation, and suggested that CORM-2 could be a potential therapeutic candidate for treating sepsis-induced AKI. PMID:26334271

  6. Weekly multimodal MRI follow-up of two multiple sclerosis active lesions presenting a transient decrease in ADC

    PubMed Central

    Hannoun, Salem; Roch, Jean-Amédée; Durand-Dubief, Francoise; Vukusic, Sandra; Sappey-Marinier, Dominique; Guttmann, Charles RG; Cotton, Francois

    2015-01-01

    Background and purpose Blood-brain barrier disruption during the earliest phases of lesion formation in multiple sclerosis (MS) patients is commonly ascribed to perivenular inflammatory activity and is usually accompanied by increased diffusivity. Reduced diffusivity has also been shown in active lesions, albeit less frequently. This study aimed to characterize the development and natural history of contrast-enhanced lesions by weekly following five relapsing remitting (RR) MS patients. Materials and methods Diffusion tensor imaging (DTI), perfusion imaging, FLAIR and contrast-enhanced 3D T1-weighted MR, were weekly performed on five untreated patients recently diagnosed with RR MS. Results All five patients showed significant increases of the apparent diffusion coefficient (ADC) in the lesions compared to the first time point. One of the five patients presented 98 active lesions on ADC maps among which 36 had a volume larger than 10 mm3. In two of these lesions, a 1 week transient decrease in ADC was detected at the time of the first gadolinium enhancement. Also, the perfusion analysis showed a concomitant increase in the relative cerebral blood volume. Conclusions The infrequency detection of such ADC decrease in a new lesion is probably due to its very short duration. This observation may be consistent with a hyper-acute inflammatory stage concomitant with an increased reactional perfusion. PMID:25642392

  7. Exogenous Carbon Monoxide Decreases Sepsis-Induced Acute Kidney Injury and Inhibits NLRP3 Inflammasome Activation in Rats

    PubMed Central

    Wang, Peng; Huang, Jian; Li, Yi; Chang, Ruiming; Wu, Haidong; Lin, Jiali; Huang, Zitong

    2015-01-01

    Carbon monoxide (CO) has shown various physiological effects including anti-inflammatory activity in several diseases, whereas the therapeutic efficacy of CO on sepsis-induced acute kidney injury (AKI) has not been reported as of yet. The purpose of the present study was to explore the effects of exogenous CO on sepsis-induced AKI and nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome activation in rats. Male rats were subjected to cecal ligation and puncture (CLP) to induce sepsis and AKI. Exogenous CO delivered from CO-releasing molecule 2 (CORM-2) was used intraperitoneally as intervention after CLP surgery. Therapeutic effects of CORM-2 on sepsis-induced AKI were assessed by measuring serum creatinine (Scr) and blood urea nitrogen (BUN), kidney histology scores, apoptotic cell scores, oxidative stress, levels of cytokines TNF-α and IL-1β, and NLRP3 inflammasome expression. CORM-2 treatment protected against the sepsis-induced AKI as evidenced by reducing serum Scr/BUN levels, apoptotic cells scores, increasing survival rates, and decreasing renal histology scores. Furthermore, treatment with CORM-2 significantly reduced TNF-α and IL-1β levels and oxidative stress. Moreover, CORM-2 treatment significantly decreased NLRP3 inflammasome protein expressions. Our study provided evidence that CORM-2 treatment protected against sepsis-induced AKI and inhibited NLRP3 inflammasome activation, and suggested that CORM-2 could be a potential therapeutic candidate for treating sepsis-induced AKI. PMID:26334271

  8. Mean 24-hours sympathetic nervous system activity decreases during head-down tilted bed rest but not during microgravity

    NASA Astrophysics Data System (ADS)

    Christensen, Nj; Heer, M.; Ivanova, K.; Norsk, P.

    Sympathetic nervous system activity is closely related to gravitational stress in ground based experiments. Thus a high activity is present in the standing-up position and a very low activity is observed during acute head-out water immersion. Adjustments in sympathetic activity are necessary to maintain a constant blood pressure during variations in venous return. Head-down tilted bed rest is applied as a model to simulate changes observed during microgravity. The aim of the present study was to test the hypothesis that mean 24-hours sympathetic activity was low and similar during space flight and in ground based observation obtained during long-term head-down tilted bed rest. Forearm venous plasma noradrenaline was measured by a radioenzymatic technique as an index of muscle sympathetic activity and thrombocyte noradrenaline and adrenaline were measured as indices of mean 24-hours sympathoadrenal activity. Previous results have indicated that thrombocyte noradrenaline level has a half-time of 2 days. Thus to reflect sympathetic activity during a specific experiment the study period must last for at least 6 days and a sample must be obtained within 12 hours after the experiment has ended. Ten normal healthy subjects were studied before and during a 14 days head-down tilted bed rest as well as during an ambulatory study period of a similar length. The whole experiment was repeated while the subjects were on a low calorie diet. Thrombocyte noradrenaline levels were studied in 4 cosmonauts before and within 12 hours after landing after more than 7 days in flight. Thrombocyte noradrenaline decreased markedly during the head-down tilted bed rest (p<0.001), whereas there were no significant changes in the ambulatory study. Plasma noradrenaline decreased in the adaptation period but not during the intervention. During microgravity thrombocyte noradrenaline increased in four cosmonauts and the percentage changes were significantly different in cosmonauts and in subjects

  9. Neutrophil MiRNA-128-3p is Decreased During Active Phase of Granulo-matosis with Polyangiitis

    PubMed Central

    Surmiak, Marcin; Hubalewska-Mazgaj, Magdalena; Wawrzycka-Adamczyk, Katarzyna; Musiał, Jacek; Sanak, Marek

    2015-01-01

    Granulomatosis with polyangiitis is a rare chronic inflammatory disease. In this multisystem autoimmune disorder neutrophils cause small vessels necrosis and infiltrate perivascular tissue to form granulomas. Progression of the disease is evaluated by the symptoms score and by a titer of anti-neutrophil cytoplasm antibodies. Despite glucocorticoid and immunosuppressive therapy, prognosis is complicated by chronic renal insufficiency, hearing loss and skin ulceration. In this preliminary study we tested the hypothesis that altered neutrophil expression of miRNAs can contribute to the cell activation, extracellular traps formation and decreased apoptosis. First we compared a profile of 728 miRNAs expressed in circulating neutrophils of patients with active disease and matched healthy donors. Subsequently, candidate miRNAs were quantified in neutrophils from 16 subjects with active disease, 16 asymptomatic patients at the remission and in 16 healthy controls. Out of 11 candidate miRNAs, only miR-128-3p was both biologically (relative quantity < 30% control or remission patients) and statistically (p<0.01) decreased in the cells during active stage of the disease. This miRNA correlated with a clinical score of the disease well. A set of 10 transcripts involved in the mechanism of the disease was quantified from the same neutrophils RNA. Relative expression of MMP9 was higher in neutrophils from the patients with active disease and correlated negatively with miR-128-3p. The opposite finding was present for MTA1 transcripts. Despite surprisingly scarce changes in the expression of neutrophil miRNAs, miR-128-3p is the best candidate for deciphering etiology of granulomatosis with polyangiitis. PMID:27047256

  10. Neutrophil MiRNA-128-3p is Decreased During Active Phase of Granulo-matosis with Polyangiitis.

    PubMed

    Surmiak, Marcin; Hubalewska-Mazgaj, Magdalena; Wawrzycka-Adamczyk, Katarzyna; Musiał, Jacek; Sanak, Marek

    2015-10-01

    Granulomatosis with polyangiitis is a rare chronic inflammatory disease. In this multisystem autoimmune disorder neutrophils cause small vessels necrosis and infiltrate perivascular tissue to form granulomas. Progression of the disease is evaluated by the symptoms score and by a titer of anti-neutrophil cytoplasm antibodies. Despite glucocorticoid and immunosuppressive therapy, prognosis is complicated by chronic renal insufficiency, hearing loss and skin ulceration. In this preliminary study we tested the hypothesis that altered neutrophil expression of miRNAs can contribute to the cell activation, extracellular traps formation and decreased apoptosis. First we compared a profile of 728 miRNAs expressed in circulating neutrophils of patients with active disease and matched healthy donors. Subsequently, candidate miRNAs were quantified in neutrophils from 16 subjects with active disease, 16 asymptomatic patients at the remission and in 16 healthy controls. Out of 11 candidate miRNAs, only miR-128-3p was both biologically (relative quantity < 30% control or remission patients) and statistically (p<0.01) decreased in the cells during active stage of the disease. This miRNA correlated with a clinical score of the disease well. A set of 10 transcripts involved in the mechanism of the disease was quantified from the same neutrophils RNA. Relative expression of MMP9 was higher in neutrophils from the patients with active disease and correlated negatively with miR-128-3p. The opposite finding was present for MTA1 transcripts. Despite surprisingly scarce changes in the expression of neutrophil miRNAs, miR-128-3p is the best candidate for deciphering etiology of granulomatosis with polyangiitis. PMID:27047256

  11. High blood alcohol levels in women. The role of decreased gastric alcohol dehydrogenase activity and first-pass metabolism.

    PubMed

    Frezza, M; di Padova, C; Pozzato, G; Terpin, M; Baraona, E; Lieber, C S

    1990-01-11

    After consuming comparable amounts of ethanol, women have higher blood ethanol concentrations than men, even with allowance for differences in size, and are more susceptible to alcoholic liver disease. Recently, we documented significant "first-pass metabolism" of ethanol due to its oxidation by gastric tissue. We report a study of the possible contribution of this metabolism to the sex-related difference in blood alcohol concentrations in 20 men and 23 women. Six in each group were alcoholics. The first-pass metabolism was determined on the basis of the difference in areas under the curves of blood alcohol concentrations after intravenous and oral administration of ethanol (0.3 g per kilogram of body weight). Alcohol dehydrogenase activity was also measured in endoscopic gastric biopsies. In nonalcoholic subjects, the first-pass metabolism and gastric alcohol dehydrogenase activity of the women were 23 and 59 percent, respectively, of those in the men, and there was a significant correlation (rs = 0.659) between first-pass metabolism and gastric mucosal alcohol dehydrogenase activity. In the alcoholic men, the first-pass metabolism and gastric alcohol dehydrogenase activity were about half those in the nonalcoholic men; in the alcoholic women, the gastric mucosal alcohol dehydrogenase activity was even lower than in the alcoholic men, and first-pass metabolism was virtually abolished. We conclude that the increased bioavailability of ethanol resulting from decreased gastric oxidation of ethanol may contribute to the enhanced vulnerability of women to acute and chronic complications of alcoholism. PMID:2248624

  12. Nogo-A-deficient Transgenic Rats Show Deficits in Higher Cognitive Functions, Decreased Anxiety, and Altered Circadian Activity Patterns

    PubMed Central

    Petrasek, Tomas; Prokopova, Iva; Sladek, Martin; Weissova, Kamila; Vojtechova, Iveta; Bahnik, Stepan; Zemanova, Anna; Schönig, Kai; Berger, Stefan; Tews, Björn; Bartsch, Dusan; Schwab, Martin E.; Sumova, Alena; Stuchlik, Ales

    2014-01-01

    Decreased levels of Nogo-A-dependent signaling have been shown to affect behavior and cognitive functions. In Nogo-A knockout and knockdown laboratory rodents, behavioral alterations were observed, possibly corresponding with human neuropsychiatric diseases of neurodevelopmental origin, particularly schizophrenia. This study offers further insight into behavioral manifestations of Nogo-A knockdown in laboratory rats, focusing on spatial and non-spatial cognition, anxiety levels, circadian rhythmicity, and activity patterns. Demonstrated is an impairment of cognitive functions and behavioral flexibility in a spatial active avoidance task, while non-spatial memory in a step-through avoidance task was spared. No signs of anhedonia, typical for schizophrenic patients, were observed in the animals. Some measures indicated lower anxiety levels in the Nogo-A-deficient group. Circadian rhythmicity in locomotor activity was preserved in the Nogo-A knockout rats and their circadian period (tau) did not differ from controls. However, daily activity patterns were slightly altered in the knockdown animals. We conclude that a reduction of Nogo-A levels induces changes in CNS development, manifested as subtle alterations in cognitive functions, emotionality, and activity patterns. PMID:24672453

  13. High-yield production of hydrogen by Enterobacter aerogenes mutants with decreased alpha-acetolactate synthase activity.

    PubMed

    Ito, Takeshi; Nakashimada, Yutaka; Kakizono, Toshihide; Nishio, Naomichi

    2004-01-01

    To enhance hydrogen (H2) production from glucose by Enterobacter aerogenes HU-101, two mutants, strains VP-1 and VP-2, with decreased alpha-acetolactate synthase activity, were isolated using the Voges-Proskauer (VP) test. In pH-uncontrolled batch culture, both mutants showed a lower 2,3-butanediol yield for the glucose consumed than that shown by the wild-type strain, although glucose remained in the medium after 12 h of culture. In the same cultures, compared to the H2 yield of 0.80 mol/mol-glucose of the wild-type strain, strain VP-1 showed a high H2 yield of 1.8 mol/mol-glucose with decreased lactate and increased succinate yields, while strain VP-2 showed an H2 yield of 1.0 mol/mol-glucose with an increased lactate yield. Increasing the phosphate buffer concentration, which contributes to maintaining the pH in the medium, increased the glucose consumption by both strains. However, in a pH-controlled batch culture at neutral pH, the H2 yield of strain VP-1 was decreased to 1.2 mol/mol-glucose due to the accumulation of formate, an intermediate of the H2-producing pathway, with the yield of H2 plus formate being 1.7 mol/mol-glucose. PMID:16233620

  14. P2Y2 receptor activation decreases blood pressure via intermediate conductance potassium channels and connexin 37

    PubMed Central

    Dominguez Rieg, J. A.; Burt, J. M.; Ruth, P.; Rieg, T.

    2015-01-01

    Aims Nucleotides are important paracrine regulators of vascular tone. We previously demonstrated that activation of P2Y2 receptors causes an acute, NO-independent decrease in blood pressure, indicating this signalling pathway requires an endothelial-derived hyperpolarization (EDH) response. To define the mechanisms by which activation of P2Y2 receptors initiates EDH and vasodilation, we studied intermediate-conductance (KCa3.1, expressed in endothelial cells) and big-conductance potassium channels (KCa1.1, expressed in smooth muscle cells) as well as components of the myoendothelial gap junction, connexins 37 and 40 (Cx37, Cx40), all hypothesized to be part of the EDH response. Methods We compared the effects of a P2Y2/4 receptor agonist in wild-type (WT) mice and in mice lacking KCa3.1, KCa1.1, Cx37 or Cx40 under anaesthesia, while monitoring intra-arterial blood pressure and heart rate. Results Acute activation of P2Y2/4 receptors (0.01–3 mg kg−1 body weight i.v.) caused a biphasic blood pressure response characterized by a dose-dependent and rapid decrease in blood pressure in WT (maximal response % of baseline at 3 mg kg−1: −38 ± 1%) followed by a consecutive increase in blood pressure (+44 ± 11%). The maximal responses in KCa3.1−/− and Cx37−/− were impaired (−13 ± 5, +17 ± 7 and −27 ± 1, +13 ± 3% respectively), whereas the maximal blood pressure decrease in response to acetylcholine at 3 µg kg−1 was not significantly different (WT: −53 ± 3%; KCa3.1−/−: −52 ± 3; Cx37−/−: −53 ± 3%). KCa1.1−/− and Cx40−/− showed an identical biphasic response to P2Y2/4 receptor activation compared to WT. Conclusions The data suggest that the P2Y2/4 receptor activation elicits blood pressure responses via distinct mechanisms involving KCa3.1 and Cx37. PMID:25545736

  15. MTMR3 risk allele enhances innate receptor-induced signaling and cytokines by decreasing autophagy and increasing caspase-1 activation

    PubMed Central

    Lahiri, Amit; Hedl, Matija; Abraham, Clara

    2015-01-01

    Inflammatory bowel disease (IBD) is characterized by dysregulated host:microbial interactions and cytokine production. Host pattern recognition receptors (PRRs) are critical in regulating these interactions. Multiple genetic loci are associated with IBD, but altered functions for most, including in the rs713875 MTMR3/HORMAD2/LIF/OSM region, are unknown. We identified a previously undefined role for myotubularin-related protein 3 (MTMR3) in amplifying PRR-induced cytokine secretion in human macrophages and defined MTMR3-initiated mechanisms contributing to this amplification. MTMR3 decreased PRR-induced phosphatidylinositol 3-phosphate (PtdIns3P) and autophagy levels, thereby increasing PRR-induced caspase-1 activation, autocrine IL-1β secretion, NFκB signaling, and, ultimately, overall cytokine secretion. This MTMR3-mediated regulation required the N-terminal pleckstrin homology-GRAM domain and Cys413 within the phosphatase domain of MTMR3. In MTMR3-deficient macrophages, reducing the enhanced autophagy or restoring NFκB signaling rescued PRR-induced cytokines. Macrophages from rs713875 CC IBD risk carriers demonstrated increased MTMR3 expression and, in turn, decreased PRR-induced PtdIns3P and autophagy and increased PRR-induced caspase-1 activation, signaling, and cytokine secretion. Thus, the rs713875 IBD risk polymorphism increases MTMR3 expression, which modulates PRR-induced outcomes, ultimately leading to enhanced PRR-induced cytokines. PMID:26240347

  16. Cognitive deficits and decreased locomotor activity induced by single-walled carbon nanotubes and neuroprotective effects of ascorbic acid.

    PubMed

    Liu, Xudong; Zhang, Yuchao; Li, Jinquan; Wang, Dong; Wu, Yang; Li, Yan; Lu, Zhisong; Yu, Samuel C T; Li, Rui; Yang, Xu

    2014-01-01

    Single-walled carbon nanotubes (SWCNTs) have shown increasing promise in the field of biomedicine, especially in applications related to the nervous system. However, there are limited studies available on the neurotoxicity of SWCNTs used in vivo. In this study, neurobehavioral changes caused by SWCNTs in mice and oxidative stress were investigated. The results of ethological analysis (Morris water maze and open-field test), brain histopathological examination, and assessments of oxidative stress (reactive oxygen species [ROS], malondialdehyde [MDA], and glutathione [GSH]), inflammation (nuclear factor κB, tumor necrosis factor α, interleukin-1β), and apoptosis (cysteine-aspartic acid protease 3) in brains showed that 6.25 and 12.50 mg/kg/day SWCNTs in mice could induce cognitive deficits and decreased locomotor activity, brain histopathological alterations, and increased levels of oxidative stress, inflammation, and apoptosis in mouse brains; however, 3.125 mg/kg/day SWCNTs had zero or minor adverse effects in mice, and these effects were blocked by concurrent administration of ascorbic acid. Down-regulation of oxidative stress, inflammation, and apoptosis were proposed to explain the neuroprotective effects of ascorbic acid. This work suggests SWCNTs could induce cognitive deficits and decreased locomotor activity, and provides a strategy to avoid the adverse effects. PMID:24596461

  17. Chaperoning epigenetics: FKBP51 decreases the activity of DNMT1 and mediates epigenetic effects of the antidepressant paroxetine.

    PubMed

    Gassen, Nils C; Fries, Gabriel R; Zannas, Anthony S; Hartmann, Jakob; Zschocke, Jürgen; Hafner, Kathrin; Carrillo-Roa, Tania; Steinbacher, Jessica; Preißinger, S Nicole; Hoeijmakers, Lianne; Knop, Matthias; Weber, Frank; Kloiber, Stefan; Lucae, Susanne; Chrousos, George P; Carell, Thomas; Ising, Marcus; Binder, Elisabeth B; Schmidt, Mathias V; Rüegg, Joëlle; Rein, Theo

    2015-11-24

    Epigenetic processes, such as DNA methylation, and molecular chaperones, including FK506-binding protein 51 (FKBP51), are independently implicated in stress-related mental disorders and antidepressant drug action. FKBP51 associates with cyclin-dependent kinase 5 (CDK5), which is one of several kinases that phosphorylates and activates DNA methyltransferase 1 (DNMT1). We searched for a functional link between FKBP51 (encoded by FKBP5) and DNMT1 in cells from mice and humans, including those from depressed patients, and found that FKBP51 competed with its close homolog FKBP52 for association with CDK5. In human embryonic kidney (HEK) 293 cells, expression of FKBP51 displaced FKBP52 from CDK5, decreased the interaction of CDK5 with DNMT1, reduced the phosphorylation and enzymatic activity of DNMT1, and diminished global DNA methylation. In mouse embryonic fibroblasts and primary mouse astrocytes, FKBP51 mediated several effects of paroxetine, namely, decreased the protein-protein interactions of DNMT1 with CDK5 and FKBP52, reduced phosphorylation of DNMT1, and decreased the methylation and increased the expression of the gene encoding brain-derived neurotrophic factor (Bdnf). In human peripheral blood cells, FKBP5 expression inversely correlated with both global and BDNF methylation. Peripheral blood cells isolated from depressed patients that were then treated ex vivo with paroxetine revealed that the abundance of BDNF positively correlated and phosphorylated DNMT1 inversely correlated with that of FKBP51 in cells and with clinical treatment success in patients, supporting the relevance of this FKBP51-directed pathway that prevents epigenetic suppression of gene expression. PMID:26602018

  18. Decline in the Recovery from Synaptic Depression in Heavier Aplysia Results from Decreased Serotonin-Induced Novel PKC Activation

    PubMed Central

    Dunn, Tyler William; Sossin, Wayne S.

    2015-01-01

    The defensive withdrawal reflexes of Aplysia are important behaviors for protecting the animal from predation. Habituation and dishabituation allow for experience-dependent tuning of these reflexes and the mechanisms underlying these forms of behavioral plasticity involve changes in transmitter release from the sensory to motor neuron synapses through homosynaptic depression and the serotonin-mediated recovery from depression, respectively. Interestingly, dishabituation is reduced in older animals with no corresponding change in habituation. Here we show that the cultured sensory neurons of heavier animals (greater than 120g) that form synaptic connections with motor neurons have both reduced recovery from depression and reduced novel PKC Apl II activation with 5HT. The decrease in the recovery from depression correlated better with the size of the animal than the age of the animal. Much of this change in PKC activation and synaptic facilitation following depression can be rescued by direct activation of PKC Apl II with phorbol dibutyrate, suggesting a change in the signal transduction pathway upstream of PKC Apl II activation in the sensory neurons of larger animals. PMID:26317974

  19. Venom of Parasitoid Pteromalus puparum Impairs Host Humoral Antimicrobial Activity by Decreasing Host Cecropin and Lysozyme Gene Expression

    PubMed Central

    Fang, Qi; Wang, Bei-Bei; Ye, Xin-Hai; Wang, Fei; Ye, Gong-Yin

    2016-01-01

    Insect host/parasitoid interactions are co-evolved systems in which host defenses are balanced by parasitoid mechanisms to disable or hide from host immune effectors. Here, we report that Pteromalus puparum venom impairs the antimicrobial activity of its host Pieris rapae. Inhibition zone results showed that bead injection induced the antimicrobial activity of the host hemolymph but that venom inhibited it. The cDNAs encoding cecropin and lysozyme were screened. Relative quantitative PCR results indicated that all of the microorganisms and bead injections up-regulated the transcript levels of the two genes but that venom down-regulated them. At 8 h post bead challenge, there was a peak in the transcript level of the cecropin gene, whereas the peak of lysozyme gene occurred at 24 h. The transcripts levels of the two genes were higher in the granulocytes and fat body than in other tissues. RNA interference decreased the transcript levels of the two genes and the antimicrobial activity of the pupal hemolymph. Venom injections similarly silenced the expression of the two genes during the first 8 h post-treatment in time- and dose-dependent manners, after which the silence effects abated. Additionally, recombinant cecropin and lysozyme had no significant effect on the emergence rate of pupae that were parasitized by P. puparum females. These findings suggest one mechanism of impairing host antimicrobial activity by parasitoid venom. PMID:26907346

  20. Venom of Parasitoid Pteromalus puparum Impairs Host Humoral Antimicrobial Activity by Decreasing Host Cecropin and Lysozyme Gene Expression.

    PubMed

    Fang, Qi; Wang, Bei-Bei; Ye, Xin-Hai; Wang, Fei; Ye, Gong-Yin

    2016-02-01

    Insect host/parasitoid interactions are co-evolved systems in which host defenses are balanced by parasitoid mechanisms to disable or hide from host immune effectors. Here, we report that Pteromalus puparum venom impairs the antimicrobial activity of its host Pieris rapae. Inhibition zone results showed that bead injection induced the antimicrobial activity of the host hemolymph but that venom inhibited it. The cDNAs encoding cecropin and lysozyme were screened. Relative quantitative PCR results indicated that all of the microorganisms and bead injections up-regulated the transcript levels of the two genes but that venom down-regulated them. At 8 h post bead challenge, there was a peak in the transcript level of the cecropin gene, whereas the peak of lysozyme gene occurred at 24 h. The transcripts levels of the two genes were higher in the granulocytes and fat body than in other tissues. RNA interference decreased the transcript levels of the two genes and the antimicrobial activity of the pupal hemolymph. Venom injections similarly silenced the expression of the two genes during the first 8 h post-treatment in time- and dose-dependent manners, after which the silence effects abated. Additionally, recombinant cecropin and lysozyme had no significant effect on the emergence rate of pupae that were parasitized by P. puparum females. These findings suggest one mechanism of impairing host antimicrobial activity by parasitoid venom. PMID:26907346

  1. Charge transfer in a sharply nonuniform electric field mediated by swirling liquid flow with minimal hydraulic resistance

    NASA Astrophysics Data System (ADS)

    Nagorny, V. S.; Smirnovsky, A. A.; Chernyshev, A. S.; Kolodyazhny, D. Yu.

    2015-09-01

    A scheme of a fuel nozzle with "needle-plane" electrode system, the location of which enables one to minimize the imparted hydraulic resistance, is proposed. We consider the processes of charge transfer in a sharply inhomogeneous electric field in order to estimate the amount of charge coming out of the channel. For this purpose, we used the OpenFOAM software package, modified to account for the electrohydrodynamic effects. By using the k-ω SST turbulence model within an axial-symmetrical RANS problem, the vortex liquid flow and charge transfer are calculated. The impact of vorticity degree on the processes of charge transfer is studied. It is found that the charge flowing out of the calculation domain is about 80% of the injected charge. The vorticity degree in the above range of values has little effect on the process of charge transfer.

  2. Polymorphism rs7278468 is associated with Age-related cataract through decreasing transcriptional activity of the CRYAA promoter

    PubMed Central

    Ma, Xiaoyin; Jiao, Xiaodong; Ma, Zhiwei; Hejtmancik, J. Fielding

    2016-01-01

    CRYAA plays critical functional roles in lens transparency and opacity, and polymorphisms near CRYAA have been associated with age-related cataract (ARC). This study examines polymorphisms in the CRYAA promoter region for association with ARC and elucidates the mechanisms of this association. Three SNPs nominally associated with ARC were identified in the promoter region of CRYAA: rs3761382 (P = 0.06, OR (Odds ratio) = 1.5), rs13053109 (P = 0.04, OR = 1.6), rs7278468 (P = 0.007, OR = 0.6). The C-G-T haplotype increased the risk for ARC overall (P = 0.005, OR = 1.8), and both alleles and haplotypes show a stronger association with cortical cataract (rs3761382, P = 0.002, OR = 2.1; rs13053109, P = 0.002, OR = 2.1; rs7278468, P = 0.0007, OR = 0.5; C-G-T haplotype, P = 0.0003, OR = 2.2). The C-G-T risk haplotype decreased transcriptional activity through rs7278468, which lies in a consensus binding site for the transcription repressor KLF10. KLF10 binding inhibited CRYAA transcription, and both binding and inhibition were greater with the T rs7278468 allele. Knockdown of KLF10 in HLE cells partially rescued the transcriptional activity of CRYAA with rs7278468 T allele, but did not affect activity with the G allele. Thus, our data suggest that the T allele of rs7278468 in the CRYAA promoter is associated with ARC through increasing binding of KLF-10 and thus decreasing CRYAA transcription. PMID:26984531

  3. The small intestinal apical hydrolase activities are decreased in the piglet with bowel inflammation induced by dextran sodium sulfate.

    PubMed

    Lackeyram, D; Mine, Y; Archbold, T; Fan, M Z

    2012-12-01

    Inflammatory bowel disease (IBD) is characterized by cramping, abdominal pain, bloating, constipation, and diarrhea. We tested the hypothesis that compromised activities of the major small intestinal apical hydrolases contribute to the symptoms of IBD. Changes in hydrolytic kinetics, target protein abundances, and mRNA expression of intestinal alkaline phosphatase (IAP), lactase, maltase, sucrase-isomaltase (SI), maltase-glucoamylase (MGA), and aminopeptidase N (APN) in piglets with colonic inflammation chemically induced by dextran sodium sulfate (DSS) were investigated. Yorkshire piglets at 5 d of age, with an average initial BW of about 3 kg, were fitted with intragastric catheters and were divided into control (CON; n = 6) and treatment groups (DSS; n = 5). Both groups were infused with an equal volume of either saline or 1.25 g of DSS · kg BW(-1) · d(-1) in saline, respectively, for 10 d. Enzyme kinetic experiments for IAP, lactase, maltase, SI, MGA, and APN were measured at 37°C with isolated proximal jejunal apical membrane. Target hydrolase protein abundances in the apical membrane were analyzed by Western blotting and their mRNA abundances in the jejunum were measured by quantitative real-time reverse transcription (RT-) PCR with β-actin as the housekeeping gene. Expressed as percentage of the CON, DSS treatment decreased (P < 0.05) the maximal specific activities of IAP (53%), lactase (78%), maltase (56%), SI (72%), MGA (29%), and APN (22%) as well as the target hydrolase protein abundances of IAP (39%), lactase (35%), SI (36%), and APN (54%), respectively. Decreases (P < 0.05) in the mRNA abundances (% of the CON) for lactase (25%), SI (52%), MGA (75%), and APN (39%) were observed in the DSS group. However, DSS treatment increased (P < 0.05) the jejunal IAP mRNA abundance by 3.5 fold. We conclude that decreases in the small intestinal apical activities of these examined hydrolases likely contribute to overgrowth of pathogenic bacterial populations in

  4. Neuregulin1-β decreases interleukin-1β-induced RhoA activation, myosin light chain phosphorylation, and endothelial hyperpermeability.

    PubMed

    Wu, Limin; Ramirez, Servio H; Andrews, Allison M; Leung, Wendy; Itoh, Kanako; Wu, Jiang; Arai, Ken; Lo, Eng H; Lok, Josephine

    2016-01-01

    Neuregulin-1 (NRG1) is an endogenous growth factor with multiple functions in the embryonic and postnatal brain. The NRG1 gene is large and complex, transcribing more than twenty transmembrane proteins and generating a large number of isoforms in tissue and cell type-specific patterns. Within the brain, NRG1 functions have been studied most extensively in neurons and glia, as well as in the peripheral vasculature. Recently, NRG1 signaling has been found to be important in the function of brain microvascular endothelial cells, decreasing IL-1β-induced increases in endothelial permeability. In the current experiments, we have investigated the pathways through which the NRG1-β isoform acts on IL-1β-induced endothelial permeability. Our data show that NRG1-β increases barrier function, measured by transendothelial electrical resistance, and decreases IL-1β-induced hyperpermeability, measured by dextran-40 extravasation through a monolayer of brain microvascular endothelial cells plated on transwells. An investigation of key signaling proteins suggests that the effect of NRG1-β on endothelial permeability is mediated through RhoA activation and myosin light chain phosphorylation, events which affect filamentous actin morphology. In addition, AG825, an inhibitor of the erbB2-associated tyrosine kinase, reduces the effect of NRG1-β on IL-1β-induced RhoA activation and myosin light chain phosphorylation. These data add to the evidence that NRG1-β signaling affects changes in the brain microvasculature in the setting of neuroinflammation. We propose the following events for neuregulin-1-mediated effects on Interleukin-1 β (IL-1β)-induced endothelial hyperpermeability: IL-1β leads to RhoA activation, resulting in an increase in phosphorylation of myosin light chain (MLC). Phosphorylation of MLC is known to result in actin contraction and alterations in the f-actin cytoskeletal structure. These changes are associated with increased endothelial permeability

  5. All-trans retinoic acid decreases susceptibility of a gastric cancer cell line to lymphokine-activated killer cytotoxicity.

    PubMed Central

    Chao, T. Y.; Jiang, S. Y.; Shyu, R. Y.; Yeh, M. Y.; Chu, T. M.

    1997-01-01

    All-trans retinoic acid (RA) was previously shown to regulate the growth of gastric cancer cells derived from the cell line SC-M1. This study was designed to investigate the effect of RA on the sensitivity of SC-M1 cells to lymphokine-activated killer (LAK) activity. RA at the concentration range of 0.001-10 microM was shown to induce SC-M1 cells to exhibit resistance to LAK activity in a dose-dependent manner. A kinetics study indicated that a significantly increased resistance was detected after 2 days of co-culturing SC-M1 cells with RA and reached a maximum after 6 days of culture. Similar results were obtained from two other cancer cell lines: promyelocytic leukaemia HL-60 and hepatic cancer Hep 3B. A binding assay demonstrated that the binding efficacy between target SC-M1 cells and effector LAK cells was not altered by RA. Flow cytometric analyses revealed that RA exhibited no effect on the expression of cell surface molecules, including HLA class I and class II antigens, intercellular adhesion molecule-1 and -2, and lymphocyte function antigen-3. Cell cycle analysis revealed that culture of SC-M1 cells with RA resulted in an increase in G0/G1 phase and a decrease in S phase, accompanied by a decrease in cyclin A and cyclin B1 mRNA as determined by Northern blot analysis. Additionally, RA was shown to enhance the expression of retinoic acid receptor alpha (RAR alpha) in SC-M1 cells, and to have no effect on the expression of RARbeta or RARgamma. Taken together, these results indicate that RA can significantly increase gastric cancer cells SC-M1 to resist LAK cytotoxicity by means of a cytostatic effect through a mechanism relating to cell cycle regulation. The prevailing ideas, such as a decrease in effector to target cell binding, a reduced MHC class I antigen expression or an altered RARbeta expression, are not involved. Images Figure 4 Figure 5 PMID:9155047

  6. β2-Adrenoceptor is involved in connective tissue remodeling in regenerating muscles by decreasing the activity of MMP-9.

    PubMed

    Silva, Meiricris T; Nascimento, Tábata L; Pereira, Marcelo G; Siqueira, Adriane S; Brum, Patrícia C; Jaeger, Ruy G; Miyabara, Elen H

    2016-07-01

    We investigated the role of β2-adrenoceptors in the connective tissue remodeling of regenerating muscles from β2-adrenoceptor knockout (β2KO) mice. Tibialis anterior muscles from β2KO mice were cryolesioned and analyzed after 3, 10, and 21 days. Regenerating muscles from β2KO mice showed a significant increase in the area density of the connective tissue and in the amount of collagen at 10 days compared with wild-type (WT) mice. A greater increase occurred in the expression levels of collagen I, III, and IV in regenerating muscles from β2KO mice evaluated at 10 days compared with WT mice; this increase continued at 21 days, except for collagen III. Matrix metalloproteinase (MMP-2) activity increased to a similar extent in regenerating muscles from both β2KO and WT mice at 3 and 10 days. This was also the case for MMP-9 activity in regenerating muscles from both β2KO and WT mice at 3 days; however, at 10 days post-cryolesion, this activity returned to baseline levels only in WT mice. MMP-3 activity was unaltered in regenerating muscles at 10 days. mRNA levels of tumor necrosis factor-α increased in regenerating muscles from WT and β2KO mice at 3 days and, at 10 days post-cryolesion, returned to baseline only in WT mice. mRNA levels of interleukin-6 increased in muscles from WT mice at 3 days post-cryolesion and returned to baseline at 10 days post-cryolesion but were unchanged in β2KO mice. Our results suggest that the β2-adrenoceptor contributes to collagen remodeling during muscle regeneration by decreasing MMP-9 activity. PMID:26896238

  7. Neutrophil elastase enhances the proliferation and decreases apoptosis of leukemia cells via activation of PI3K/Akt signaling

    PubMed Central

    YANG, RONG; ZHONG, LIANG; YANG, XIAO-QUN; JIANG, KAI-LING; LI, LIU; SONG, HAO; LIU, BEI-ZHONG

    2016-01-01

    Neutrophil elastase (NE) is a neutrophil-derived serine proteinase with specificity for a broad range of substrates. NE has been reported to be associated with the pathogenesis of several conditions, particularly that of pulmonary diseases. Previous studies have shown that NE can cleave the pro-myelocyte - retinoic acid receptor-alpha chimeric protein and is important for the development of acute pro-myelocytic leukemia. To further elucidate the role of NE in acute pro-myelocytic leukemia, the present study successfully constructed a lentiviral vector containing the NE gene (LV5-NE), which was transfected into NB4 acute pro-myelocytic leukemia cells. The effects of NE overexpression in NB4 cells were detected using a Cell-Counting Kit-8 assay, flow cytometry and western blot analysis. The results showed that NE significantly promoted the proliferation of NB4 cells, inhibited cell apoptosis and apoptotic signaling, and led the activation of Akt. In an additional experiment, a vector expressing small hairpin RNA targeting NE was constructed to assess the effects of NE knockdown in U937 cells. Western blot analysis revealed that apoptotic signaling was increased, while Akt activation was decreased following silencing of NE. The results of the present study may indicate that NE activates the phosphoinositide-3 kinase/Akt signaling pathway in leukemia cells to inhibit apoptosis and enhance cell proliferation, and may therefore represent a molecular target for the treatment of pro-myelocytic leukemia. PMID:27035679

  8. Thyroid-stimulating hormone decreases HMG-CoA reductase phosphorylation via AMP-activated protein kinase in the liver

    PubMed Central

    Zhang, Xiujuan; Song, Yongfeng; Feng, Mei; Zhou, Xinli; Lu, Yingli; Gao, Ling; Yu, Chunxiao; Jiang, Xiuyun; Zhao, Jiajun

    2015-01-01

    Cholesterol homeostasis is strictly regulated through the modulation of HMG-CoA reductase (HMGCR), the rate-limiting enzyme of cholesterol synthesis. Phosphorylation of HMGCR inactivates it and dephosphorylation activates it. AMP-activated protein kinase (AMPK) is the major kinase phosphorylating the enzyme. Our previous study found that thyroid-stimulating hormone (TSH) increased the hepatocytic HMGCR expression, but it was still unclear whether TSH affected hepatic HMGCR phosphorylation associated with AMPK. We used bovine TSH (bTSH) to treat the primary mouse hepatocytes and HepG2 cells with or without constitutively active (CA)-AMPK plasmid or protein kinase A inhibitor (H89), and set up the TSH receptor (Tshr)-KO mouse models. The p-HMGCR, p-AMPK, and related molecular expression were tested. The ratios of p-HMGCR/HMGCR and p-AMPK/AMPK decreased in the hepatocytes in a dose-dependent manner following bTSH stimulation. The changes above were inversed when the cells were treated with CA-AMPK plasmid or H89. In Tshr-KO mice, the ratios of liver p-HMGCR/HMGCR and p-AMPK/AMPK were increased relative to the littermate wild-type mice. Consistently, the phosphorylation of acetyl-CoA carboxylase, a downstream target molecule of AMPK, increased. All results suggested that TSH could regulate the phosphorylation of HMGCR via AMPK, which established a potential mechanism for hypercholesterolemia involved in a direct action of the TSH in the liver. PMID:25713102

  9. Decreased RB1 mRNA, Protein, and Activity Reflect Obesity-Induced Altered Adipogenic Capacity in Human Adipose Tissue

    PubMed Central

    Moreno-Navarrete, José María; Petrov, Petar; Serrano, Marta; Ortega, Francisco; García-Ruiz, Estefanía; Oliver, Paula; Ribot, Joan; Ricart, Wifredo; Palou, Andreu; Bonet, Mª Luisa; Fernández-Real, José Manuel

    2013-01-01

    Retinoblastoma (Rb1) has been described as an essential player in white adipocyte differentiation in mice. No studies have been reported thus far in human adipose tissue or human adipocytes. We aimed to investigate the possible role and regulation of RB1 in adipose tissue in obesity using human samples and animal and cell models. Adipose RB1 (mRNA, protein, and activity) was negatively associated with BMI and insulin resistance (HOMA-IR) while positively associated with the expression of adipogenic genes (PPARγ and IRS1) in both visceral and subcutaneous human adipose tissue. BMI increase was the main contributor to adipose RB1 downregulation. In rats, adipose Rb1 gene expression and activity decreased in parallel to dietary-induced weight gain and returned to baseline with weight loss. RB1 gene and protein expression and activity increased significantly during human adipocyte differentiation. In fully differentiated adipocytes, transient knockdown of Rb1 led to loss of the adipogenic phenotype. In conclusion, Rb1 seems to play a permissive role for human adipose tissue function, being downregulated in obesity and increased during differentiation of human adipocytes. Rb1 knockdown findings further implicate Rb1 as necessary for maintenance of adipogenic characteristics in fully differentiated adipocytes. PMID:23315497

  10. Decreased expression of TLR7 in gastric cancer tissues and the effects of TLR7 activation on gastric cancer cells

    PubMed Central

    JIANG, JIONG; DONG, LEI; QIN, BIN; SHI, HAITAO; GUO, XIAOYAN; WANG, YAN

    2016-01-01

    The present study aimed to determine the expression of Toll-like receptor 7 (TLR7) in gastric cancer tissues and investigate the effects of its activation on gastric cancer cells. Patients with gastric cancer (n=30) and patients without gastric cancer (control; n=14) who underwent gastroscopy were enrolled in the study. Gastric cancer and cancer-adjacent tissues were obtained from the patients with gastric cancer, and normal gastric epithelial tissues were obtained from the control patients. The TLR7 mRNA and protein expressions in different tissues were investigated by reverse transcription-quantitative polymerase chain reaction, western blotting and immunohistochemistry. The present study also determined the effects of TLR7 activation by the agonist imiquimod on TLR7 protein expression, proinflammatory cytokine secretion and viability in SGC-7901 gastric cancer cells. The mRNA and protein expression levels of TLR7 were significantly downregulated in gastric cancer tissues compared with cancer-adjacent and normal gastric epithelial tissues (P<0.01). Imiquimod significantly increased TLR7 protein expression levels, and promoted the secretion of proinflammatory cytokines tumor necrosis factor-α and interleukin-6 in SGC-7901 cells. Furthermore, imiquimod inhibited the proliferation of SGC-7901 cells in a dose- and time-dependent manner. Thus, the present study identified that the expression of TLR7 was decreased in gastric cancer tissues, and TLR7 activation enhanced TLR7 expression, promoted the production of proinflammatory cytokines and inhibited the growth of gastric cancer cells. PMID:27347192

  11. Increased hepcidin in transferrin-treated thalassemic mice correlates with increased liver BMP2 expression and decreased hepatocyte ERK activation

    PubMed Central

    Chen, Huiyong; Choesang, Tenzin; Li, Huihui; Sun, Shuming; Pham, Petra; Bao, Weili; Feola, Maria; Westerman, Mark; Li, Guiyuan; Follenzi, Antonia; Blanc, Lionel; Rivella, Stefano; Fleming, Robert E.; Ginzburg, Yelena Z.

    2016-01-01

    Iron overload results in significant morbidity and mortality in β-thalassemic patients. Insufficient hepcidin is implicated in parenchymal iron overload in β-thalassemia and approaches to increase hepcidin have therapeutic potential. We have previously shown that exogenous apo-transferrin markedly ameliorates ineffective erythropoiesis and increases hepcidin expression in Hbbth1/th1 (thalassemic) mice. We utilize in vivo and in vitro systems to investigate effects of exogenous apo-transferrin on Smad and ERK1/2 signaling, pathways that participate in hepcidin regulation. Our results demonstrate that apo-transferrin increases hepcidin expression in vivo despite decreased circulating and parenchymal iron concentrations and unchanged liver Bmp6 mRNA expression in thalassemic mice. Hepatocytes from apo-transferrin-treated mice demonstrate decreased ERK1/2 pathway and increased serum BMP2 concentration and hepatocyte BMP2 expression. Furthermore, hepatocyte ERK1/2 phosphorylation is enhanced by neutralizing anti-BMP2/4 antibodies and suppressed in vitro in a dose-dependent manner by BMP2, resulting in converse effects on hepcidin expression, and hepatocytes treated with MEK/ERK1/2 inhibitor U0126 in combination with BMP2 exhibit an additive increase in hepcidin expression. Lastly, bone marrow erythroferrone expression is normalized in apo-transferrin treated thalassemic mice but increased in apo-transferrin injected wild-type mice. These findings suggest that increased hepcidin expression after exogenous apo-transferrin is in part independent of erythroferrone and support a model in which apo-transferrin treatment in thalassemic mice increases BMP2 expression in the liver and other organs, decreases hepatocellular ERK1/2 activation, and increases nuclear Smad to increase hepcidin expression in hepatocytes. PMID:26635037

  12. TIMP-2 mutant decreases MMP-2 activity and augments pressure overload induced LV dysfunction and heart failure.

    PubMed

    Givvimani, S; Kundu, S; Narayanan, N; Armaghan, F; Qipshidze, N; Pushpakumar, S; Vacek, T P; Tyagi, S C

    2013-05-01

    Pressure overload induces cardiac extracellular matrix (ECM) remodelling and results in heart failure. ECM remodelling by matrix metalloproteinases (MMPs) is primarily regulated by their target inhibitors, tissue inhibitor of matrix metalloproteinases (TIMPs). It is known that TIMP-2 is highly expressed in myocardium and is required for cell surface activation of pro-MMP-2. We and others have reported that imbalance between angiogenic growth factors and anti-angiogenic factors results in transition from compensatory cardiac hypertrophy to heart failure. We previously reported the pro-angiogenic role of MMP-2 in cardiac compensation, however, the specific role of TIMP-2 during pressure overload is yet unclear. We hypothesize that genetic ablation of TIMP-2 exacerbates the adverse cardiac matrix remodelling due to lack of pro-angiogenic MMP-2 and increase in anti-angiogenic factors during pressure overload stress and results in severe heart failure. To verify this, ascending aortic banding (AB) was created to mimic pressure overload, in wild type C57BL6/J and TIMP-2-/- (model of MMP-2 deficiency) mice. Left ventricular (LV) function assessed by echocardiography and pressure-volume loop studies showed severe LV dysfunction in TIMP-2-/- AB mice compared to controls. Expression of MMP-2, vascular endothelial growth factor (VEGF) was decreased and expression of MMP-9, anti-angiogenic factors endostatin and angiostatin was increased in TIMP-2-/- AB mice compared with wild type AB mice. Connexins (Cx) are the gap junction proteins that are widely present in the myocardium and play an important role in endothelial-myocyte coupling. Our results showed that expression of Cx 37 and 43 was decreased in TIMP-2-/- AB mice compared with corresponding wild type controls. These results suggest that genetic ablation of TIMP-2 decrease the expression of pro-angiogenic MMP-2, VEGF and increases anti-angiogenic factors that results in exacerbated abnormal ventricular remodelling leading

  13. Activation of Mitochondrial Uncoupling Protein 4 and ATP-Sensitive Potassium Channel Cumulatively Decreases Superoxide Production in Insect Mitochondria.

    PubMed

    Slocińska, Malgorzata; Rosinski, Grzegorz; Jarmuszkiewicz, Wieslawa

    2016-01-01

    It has been evidenced that mitochondrial uncoupling protein 4 (UCP4) and ATP-regulated potassium channel (mKATP channel) of insect Gromphadorhina coqereliana mitochondria decrease superoxide anion production. We elucidated whether the two energy-dissipating systems work together on a modulation of superoxide level in cockroach mitochondria. Our data show that the simultaneous activation of UCP4 by palmitic acid and mKATP channel by pinacidil revealed a cumulative effect on weakening mitochondrial superoxide formation. The inhibition of UCP4 by GTP (and/or ATP) and mKATP channel by ATP elevated superoxide production. These results suggest a functional cooperation of both energy-dissipating systems in protection against oxidative stress in insects. PMID:26548865

  14. Jumihaidokuto (Shi-Wei-Ba-Du-Tang), a Kampo Formula, Decreases the Disease Activity of Palmoplantar Pustulosis

    PubMed Central

    Mizawa, Megumi; Makino, Teruhiko; Inami, Chieko; Shimizu, Tadamichi

    2016-01-01

    Palmoplantar pustulosis (PPP) is a chronic skin disease characterized by sterile intraepidermal pustules associated with erythematous scaling on the palms and soles. Jumihaidokuto is a traditional herbal medicine composed of ten medical plants and has been given to patients with suppurative skin disease in Japan. This study investigated the effect of jumihaidokuto on the disease activity in PPP patients (n = 10). PPP patients were given jumihaidokuto (EKT-6; 6.0 g per day) for 4 to 8 weeks in addition to their prescribed medications. The results showed that the palmoplantar pustular psoriasis area and severity index (PPPASI) was decreased after the administration of jumihaidokuto (p < 0.05). Therefore, Jumihaidokuto is seemingly effective against PPP. PMID:27143961

  15. Jumihaidokuto (Shi-Wei-Ba-Du-Tang), a Kampo Formula, Decreases the Disease Activity of Palmoplantar Pustulosis.

    PubMed

    Mizawa, Megumi; Makino, Teruhiko; Inami, Chieko; Shimizu, Tadamichi

    2016-01-01

    Palmoplantar pustulosis (PPP) is a chronic skin disease characterized by sterile intraepidermal pustules associated with erythematous scaling on the palms and soles. Jumihaidokuto is a traditional herbal medicine composed of ten medical plants and has been given to patients with suppurative skin disease in Japan. This study investigated the effect of jumihaidokuto on the disease activity in PPP patients (n = 10). PPP patients were given jumihaidokuto (EKT-6; 6.0 g per day) for 4 to 8 weeks in addition to their prescribed medications. The results showed that the palmoplantar pustular psoriasis area and severity index (PPPASI) was decreased after the administration of jumihaidokuto (p < 0.05). Therefore, Jumihaidokuto is seemingly effective against PPP. PMID:27143961

  16. Inducible expression of mutant alpha-synuclein decreases proteasome activity and increases sensitivity to mitochondria-dependent apoptosis.

    PubMed

    Tanaka, Y; Engelender, S; Igarashi, S; Rao, R K; Wanner, T; Tanzi, R E; Sawa, A; L Dawson, V; Dawson, T M; Ross, C A

    2001-04-15

    Parkinson's disease (PD) is a common progressive neurodegenerative disorder caused by the loss of dopaminergic neurons in the substantia nigra. Although mutations in alpha-synuclein have been identified in autosomal dominant PD, the mechanism by which dopaminergic neural cell death occurs remains unknown. Proteins encoded by two other genes in which mutations cause familial PD, parkin and UCH-L1, are involved in regulation of the ubiquitin-proteasome pathway, suggesting that dysregulation of the ubiquitin-proteasome pathway is involved in the mechanism by which these mutations cause PD. We established inducible PC12 cell lines in which wild-type or mutant alpha-synuclein can be de-repressed by removing doxycycline. Differentiated PC12 cell lines expressing mutant alpha-synuclein showed decreased activity of proteasomes without direct toxicity. Cells expressing mutant alpha-synuclein showed increased sensitivity to apoptotic cell death when treated with sub-toxic concentrations of an exogenous proteasome inhibitor. Apoptosis was accompanied by mitochondrial depolarization and elevation of caspase-3 and -9, and was blocked by cyclosporin A. These data suggest that expression of mutant alpha-synuclein results in sensitivity to impairment of proteasome activity, leading to mitochondrial abnormalities and neuronal cell death. PMID:11309365

  17. mTOR inhibition decreases SOX2-SOX9 mediated glioma stem cell activity and temozolomide resistance

    PubMed Central

    Garros-Regulez, Laura; Aldaz, Paula; Arrizabalaga, Olatz; Moncho-Amor, Veronica; Carrasco-Garcia, Estefania; Manterola, Lorea; Moreno-Cugnon, Leire; Barrena, Cristina; Villanua, Jorge; Ruiz, Irune; Pollard, Steven; Lovell-Badge, Robin; Sampron, Nicolas; Garcia, Idoia; Matheu, Ander

    2016-01-01

    ABSTRACT Background: SOX2 and SOX9 are commonly overexpressed in glioblastoma, and regulate the activity of glioma stem cells (GSCs). Their specific and overlapping roles in GSCs and glioma treatment remain unclear. Methods: SOX2 and SOX9 levels were examined in human biopsies. Gain and loss of function determined the impact of altering SOX2 and SOX9 on cell proliferation, senescence, stem cell activity, tumorigenesis and chemoresistance. Results: SOX2 and SOX9 expression correlates positively in glioma cells and glioblastoma biopsies. High levels of SOX2 bypass cellular senescence and promote resistance to temozolomide. Mechanistic investigations revealed that SOX2 acts upstream of SOX9. mTOR genetic and pharmacologic (rapamycin) inhibition decreased SOX2 and SOX9 expression, and reversed chemoresistance. Conclusions: Our findings reveal SOX2-SOX9 as an oncogenic axis that regulates stem cell properties and chemoresistance. We identify that rapamycin abrogate SOX protein expression and provide evidence that a combination of rapamycin and temozolomide inhibits tumor growth in cells with high SOX2/SOX9. PMID:26878385

  18. Acute Hypoxia Decreases E. coli LPS-Induced Cytokine Production and NF-κB Activation in Alveolar Macrophages*

    PubMed Central

    Matuschak, George M.; Nayak, Ravi; Doyle, Timothy M.; Lechner, Andrew J.

    2010-01-01

    Reductions in alveolar oxygenation during lung hypoxia/reoxygenation (H/R) injury are common after gram-negative endotoxemia. However, the effects of H/R on endotoxin-stimulated cytokine production by alveolar macrophages are unclear and may depend upon thresholds for hypoxic oxyradical generation in situ. Here TNF-α and IL-β production were determined in rat alveolar macrophages stimulated with E. coli lipopolysaccharide (LPS, serotype O55:B5) while exposed to either normoxia for up to 24 h, to brief normocarbic hypoxia (1.5 h at an atmospheric PO2 = 10 ± 2 mm Hg), or to combined H/R. LPS-induced TNF-α and IL-β were reduced at the peak of hypoxia and by reoxygenation in LPS + H/R cells (P < 0.01) compared with normoxic controls despite no changes in reduced glutathione (GSH) or in PGE2 production. Both TNF-α mRNA and NF-κB activation were reduced by hypoxia that suppressed superoxide anion generation. Thus, dynamic reductions in the ambient PO2 of alveolar macrophages that do not deplete GSH suppress LPS-induced TNF-α expression, IL-β production, and NF-κB activation even as oxyradical production is decreased. PMID:20470909

  19. Methyl-donor supplementation in obese mice prevents the progression of NAFLD, activates AMPK and decreases acyl-carnitine levelsa

    PubMed Central

    Dahlhoff, Christoph; Worsch, Stefanie; Sailer, Manuela; Hummel, Björn A.; Fiamoncini, Jarlei; Uebel, Kirsten; Obeid, Rima; Scherling, Christian; Geisel, Jürgen; Bader, Bernhard L.; Daniel, Hannelore

    2014-01-01

    Non-alcoholic fatty liver disease (NAFLD) results from increased hepatic lipid accumulation and steatosis, and is closely linked to liver one-carbon (C1) metabolism. We assessed in C57BL6/N mice whether NAFLD induced by a high-fat (HF) diet over 8 weeks can be reversed by additional 4 weeks of a dietary methyl-donor supplementation (MDS). MDS in the obese mice failed to reverse NAFLD, but prevented the progression of hepatic steatosis associated with major changes in key hepatic C1-metabolites, e.g. S-adenosyl-methionine and S-adenosyl-homocysteine. Increased phosphorylation of AMPK-α together with enhanced β-HAD activity suggested an increased flux through fatty acid oxidation pathways. This was supported by concomitantly decreased hepatic free fatty acid and acyl-carnitines levels. Although HF diet changed the hepatic phospholipid pattern, MDS did not. Our findings suggest that dietary methyl-donors activate AMPK, a key enzyme in fatty acid β-oxidation control, that mediates increased fatty acid utilization and thereby prevents further hepatic lipid accumulation. PMID:25061561

  20. Stimulation of the ventral tegmental area increased nociceptive thresholds and decreased spinal dorsal horn neuronal activity in rat.

    PubMed

    Li, Ai-Ling; Sibi, Jiny E; Yang, Xiaofei; Chiao, Jung-Chih; Peng, Yuan Bo

    2016-06-01

    Deep brain stimulation has been found to be effective in relieving intractable pain. The ventral tegmental area (VTA) plays a role not only in the reward process, but also in the modulation of nociception. Lesions of VTA result in increased pain thresholds and exacerbate pain in several pain models. It is hypothesized that direct activation of VTA will reduce pain experience. In this study, we investigated the effect of direct electrical stimulation of the VTA on mechanical, thermal and carrageenan-induced chemical nociceptive thresholds in Sprague-Dawley rats using our custom-designed wireless stimulator. We found that: (1) VTA stimulation itself did not show any change in mechanical or thermal threshold; and (2) the decreased mechanical and thermal thresholds induced by carrageenan injection in the hind paw contralateral to the stimulation site were significantly reversed by VTA stimulation. To further explore the underlying mechanism of VTA stimulation-induced analgesia, spinal cord dorsal horn neuronal responses to graded mechanical stimuli were recorded. VTA stimulation significantly inhibited dorsal horn neuronal activity in response to pressure and pinch from the paw, but not brush. This indicated that VTA stimulation may have exerted its analgesic effect via descending modulatory pain pathways, possibly through its connections with brain stem structures and cerebral cortex areas. PMID:26821313

  1. Peroxisome-proliferator activator receptor-gamma activation decreases attachment of endometrial cells to peritoneal mesothelial cells in an in vitro model of the early endometriotic lesion.

    PubMed

    Kavoussi, S K; Witz, C A; Binkley, P A; Nair, A S; Lebovic, D I

    2009-10-01

    The aim of this study was to investigate whether peroxisome proliferator-activated receptor (PPAR)-gamma activation has an effect on the attachment of endometrial cells to peritoneal mesothelial cells in a well-established in vitro model of the early endometriotic lesion. The endometrial epithelial cell line EM42 and mesothelial cell line LP9 were used for this study. EM42 cells, LP9 cells or both were treated with the PPAR-gamma agonist ciglitazone (CTZ) at varying concentrations (10, 20 and 40 microM) x 48 h with subsequent co-culture of EM42 and LP9 cells. The rate of EM42 attachment and invasion through LP9 cells was then assessed and compared with control (EM42 and LP9 cells co-cultured without prior treatment with CTZ). Next, attachment of CTZ-treated and untreated EM42 cells to hyaluronic acid (HA), a cell adhesion molecule (CAM) on peritoneal mesothelial cells, were assessed. Although there was no difference in EM42 attachment when LP9 cells alone were treated with CTZ, treatment of EM42 cells with 40 microM CTZ decreased EM42 attachment to LP9 cells by 27% (P < 0.01). Treatment of both EM42 and LP9 cells with 40 microM CTZ decreased EM42 attachment to LP9 by 37% (P < 0.01). Treatment of EM42 cells with 40 microM CTZ decreased attachment to HA by 66% (P = 0.056). CTZ did not decrease invasion of EM42 cells through the LP9 monolayer. CTZ may inhibit EM42 cell proliferation. In conclusion, CTZ significantly decreased EM42 attachment to LP9 cells and HA in an in vitro model of the early endometriotic lesion. PMID:19643817

  2. Nitric Oxide Signaling in Pseudomonas aeruginosa Biofilms Mediates Phosphodiesterase Activity, Decreased Cyclic Di-GMP Levels, and Enhanced Dispersal▿ †

    PubMed Central

    Barraud, Nicolas; Schleheck, David; Klebensberger, Janosch; Webb, Jeremy S.; Hassett, Daniel J.; Rice, Scott A.; Kjelleberg, Staffan

    2009-01-01

    Bacteria in biofilms often undergo active dispersal events and revert to a free-swimming, planktonic state to complete the biofilm life cycle. The signaling molecule nitric oxide (NO) was previously found to trigger biofilm dispersal in the opportunistic pathogen Pseudomonas aeruginosa at low, nontoxic concentrations (N. Barraud, D. J. Hassett, S. H. Hwang, S. A. Rice, S. Kjelleberg, and J. S. Webb, J. Bacteriol. 188:7344-7353, 2006). NO was further shown to increase cell motility and susceptibility to antimicrobials. Recently, numerous studies revealed that increased degradation of the secondary messenger cyclic di-GMP (c-di-GMP) by specific phosphodiesterases (PDEs) triggers a planktonic mode of growth in eubacteria. In this study, the potential link between NO and c-di-GMP signaling was investigated by performing (i) PDE inhibitor studies, (ii) enzymatic assays to measure PDE activity, and (iii) direct quantification of intracellular c-di-GMP levels. The results suggest a role for c-di-GMP signaling in triggering the biofilm dispersal event induced by NO, as dispersal requires PDE activity and addition of NO stimulates PDE and induces the concomitant decrease in intracellular c-di-GMP levels in P. aeruginosa. Furthermore, gene expression studies indicated global responses to low, nontoxic levels of NO in P. aeruginosa biofilms, including upregulation of genes involved in motility and energy metabolism and downregulation of adhesins and virulence factors. Finally, site-directed mutagenesis of candidate genes and physiological characterization of the corresponding mutant strains uncovered that the chemotaxis transducer BdlA is involved in the biofilm dispersal response induced by NO. PMID:19801410

  3. TM-25659-Induced Activation of FGF21 Level Decreases Insulin Resistance and Inflammation in Skeletal Muscle via GCN2 Pathways.

    PubMed

    Jung, Jong Gab; Yi, Sang-A; Choi, Sung-E; Kang, Yup; Kim, Tae Ho; Jeon, Ja Young; Bae, Myung Ae; Ahn, Jin Hee; Jeong, Hana; Hwang, Eun Sook; Lee, Kwan-Woo

    2015-12-01

    The TAZ activator 2-butyl-5-methyl-6-(pyridine-3-yl)-3-[2'-(1H-tetrazole-5-yl)-biphenyl-4-ylmethyl]-3H-imidazo[4,5-b]pyridine] (TM-25659) inhibits adipocyte differentiation by interacting with peroxisome proliferator-activated receptor gamma. TM-25659 was previously shown to decrease weight gain in a high fat (HF) diet-induced obesity (DIO) mouse model. However, the fundamental mechanisms underlying the effects of TM-25659 remain unknown. Therefore, we investigated the effects of TM-25659 on skeletal muscle functions in C2 myotubes and C57BL/6J mice. We studied the molecular mechanisms underlying the contribution of TM-25659 to palmitate (PA)-induced insulin resistance in C2 myotubes. TM-25659 improved PA-induced insulin resistance and inflammation in C2 myotubes. In addition, TM-25659 increased FGF21 mRNA expression, protein levels, and FGF21 secretion in C2 myotubes via activation of GCN2 pathways (GCN2-phosphoeIF2α-ATF4 and FGF21). This beneficial effect of TM-25659 was diminished by FGF21 siRNA. C57BL/6J mice were fed a HF diet for 30 weeks. The HF-diet group was randomly divided into two groups for the next 14 days: the HF-diet and HF-diet + TM-25659 groups. The HF diet + TM-25659-treated mice showed improvements in their fasting blood glucose levels, insulin sensitivity, insulin-stimulated Akt phosphorylation, and inflammation, but neither body weight nor food intake was affected. The HF diet + TM-25659-treated mice also exhibited increased expression of both FGF21 mRNA and protein. These data indicate that TM-25659 may be beneficial for treating insulin resistance by inducing FGF21 in models of PA-induced insulin resistance and HF diet-induced insulin resistance. PMID:26537193

  4. Decreasing nicotinic receptor activity and the spatial learning impairment caused by the NMDA glutamate antagonist dizocilpine in rats

    PubMed Central

    Burke, Dennis A.; Heshmati, Pooneh; Kholdebarin, Ehsan; Levin, Edward D.

    2014-01-01

    Nicotinic systems have been shown by a variety of studies to be involved in cognitive function. Nicotinic receptors have an inherent property to become desensitized after activation. The relative role of nicotinic receptor activation vs. net receptor inactivation by desensitization in the cognitive effects of nicotinic drugs remains to be fully understood. In these studies, we tested the effects of the α7 nicotinic receptor antagonist methyllycaconitine (MLA), the α4β2 nicotinic receptor antagonist dihydro-β-erythroidine (DHβE), the nonspecific nicotinic channel blocker mecamylamine and the α4β2 nicotinic receptor desensitizing agent sazetidine-A on learning in a repeated acquisition test. Adult female Sprague-Dawley rats were trained on a repeated acquisition learning procedure in an 8-arm radial maze. MLA (1–4 mg/kg), DHβE (1–4 mg/kg), mecamylamine (0.125–0.5 mg/kg) or sazetidine-A (1 and 3 mg/kg) were administered in four different studies either alone or together with the NMDA glutamate antagonist dizocilpine (0.05 and 0.10 mg/kg). MLA significantly counteracted the learning impairment caused by dizocilpine. The overall choice accuracy impairment caused by dizocilpine was significantly attenuated by co-administration of DHβE. Low doses of the non-specific nicotinic antagonist mecamylamine also reduced dizocilpine-induced repeated acquisition impairment. Sazetidine-A reversed the accuracy impairment caused by dizocilpine. These studies provide evidence that a net decrease in nicotinic receptor activity can improve learning by attenuating learning impairment induced by NMDA glutamate blockade. This adds to evidence in cognitive tests that nicotinic antagonists can improve cognitive function. Further research characterizing the efficacy and mechanisms underlying nicotinic antagonist and desensitization induced cognitive improvement is warranted. PMID:25064338

  5. TM-25659-Induced Activation of FGF21 Level Decreases Insulin Resistance and Inflammation in Skeletal Muscle via GCN2 Pathways

    PubMed Central

    Jung, Jong Gab; Yi, Sang-A; Choi, Sung-E; Kang, Yup; Kim, Tae Ho; Jeon, Ja Young; Bae, Myung Ae; Ahn, Jin Hee; Jeong, Hana; Hwang, Eun Sook; Lee, Kwan-Woo

    2015-01-01

    The TAZ activator 2-butyl-5-methyl-6-(pyridine-3-yl)-3-[2′-(1H-tetrazole-5-yl)-biphenyl-4-ylmethyl]-3H-imidazo[4,5-b]pyridine] (TM-25659) inhibits adipocyte differentiation by interacting with peroxisome proliferator-activated receptor gamma. TM-25659 was previously shown to decrease weight gain in a high fat (HF) diet-induced obesity (DIO) mouse model. However, the fundamental mechanisms underlying the effects of TM-25659 remain unknown. Therefore, we investigated the effects of TM-25659 on skeletal muscle functions in C2 myotubes and C57BL/6J mice. We studied the molecular mechanisms underlying the contribution of TM-25659 to palmitate (PA)-induced insulin resistance in C2 myotubes. TM-25659 improved PA-induced insulin resistance and inflammation in C2 myotubes. In addition, TM-25659 increased FGF21 mRNA expression, protein levels, and FGF21 secretion in C2 myotubes via activation of GCN2 pathways (GCN2-phosphoeIF2α-ATF4 and FGF21). This beneficial effect of TM-25659 was diminished by FGF21 siRNA. C57BL/6J mice were fed a HF diet for 30 weeks. The HF-diet group was randomly divided into two groups for the next 14 days: the HF-diet and HF-diet + TM-25659 groups. The HF diet + TM-25659-treated mice showed improvements in their fasting blood glucose levels, insulin sensitivity, insulin-stimulated Akt phosphorylation, and inflammation, but neither body weight nor food intake was affected. The HF diet + TM-25659-treated mice also exhibited increased expression of both FGF21 mRNA and protein. These data indicate that TM-25659 may be beneficial for treating insulin resistance by inducing FGF21 in models of PA-induced insulin resistance and HF diet-induced insulin resistance. PMID:26537193

  6. Elevated nuclear sphingoid base-1-phosphates and decreased histone deacetylase activity after fumonisin B1 treatment in mouse embryonic fibroblasts.

    PubMed

    Gardner, Nicole M; Riley, Ronald T; Showker, Jency L; Voss, Kenneth A; Sachs, Andrew J; Maddox, Joyce R; Gelineau-van Waes, Janee B

    2016-05-01

    Fumonisin B1 (FB1) is a mycotoxin produced by a common fungal contaminant of corn. Administration of FB1 to pregnant LM/Bc mice induces exencephaly in embryos, and ingestion of FB1-contaminated food during early pregnancy is associated with increased risk for neural tube defects (NTDs) in humans. FB1 inhibits ceramide synthase enzymes in sphingolipid biosynthesis, causing sphinganine (Sa) and bioactive sphinganine-1-phosphate (Sa1P) accumulation in blood, cells, and tissues. Sphingosine kinases (Sphk) phosphorylate Sa to form Sa1P. Upon activation, Sphk1 associates primarily with the plasma membrane, while Sphk2 is found predominantly in the nucleus. In cells over-expressing Sphk2, accumulation of Sa1P in the nuclear compartment inhibits histone deacetylase (HDAC) activity, causing increased acetylation of histone lysine residues. In this study, FB1 treatment in LM/Bc mouse embryonic fibroblasts (MEFs) resulted in significant accumulation of Sa1P in nuclear extracts relative to cytoplasmic extracts. Elevated nuclear Sa1P corresponded to decreased histone deacetylase (HDAC) activity and increased histone acetylation at H2BK12, H3K9, H3K18, and H3K23. Treatment of LM/Bc MEFs with a selective Sphk1 inhibitor, PF-543, or with ABC294640, a selective Sphk2 inhibitor, significantly reduced nuclear Sa1P accumulation after FB1, although Sa1P levels remained significantly increased relative to basal levels. Concurrent treatment with both PF-543 and ABC294640 prevented nuclear accumulation of Sa1P in response to FB1. Other HDAC inhibitors are known to cause NTDs, so these results suggest that FB1-induced disruption of sphingolipid metabolism leading to nuclear Sa1P accumulation, HDAC inhibition, and histone hyperacetylation is a potential mechanism for FB1-induced NTDs. PMID:26905748

  7. Sharply Tuned pH Response of Genetic Competence Regulation in Streptococcus mutans: a Microfluidic Study of the Environmental Sensitivity of comX

    PubMed Central

    Son, Minjun; Ghoreishi, Delaram; Ahn, Sang-Joon; Burne, Robert A.

    2015-01-01

    Genetic competence in Streptococcus mutans is a transient state that is regulated in response to multiple environmental inputs. These include extracellular pH and the concentrations of two secreted peptides, designated CSP (competence-stimulating peptide) and XIP (comX-inducing peptide). The role of environmental cues in regulating competence can be difficult to disentangle from the effects of the organism's physiological state and its chemical modification of its environment. We used microfluidics to control the extracellular environment and study the activation of the key competence gene comX. We find that the comX promoter (PcomX) responds to XIP or CSP only when the extracellular pH lies within a narrow window, about 1 pH unit wide, near pH 7. Within this pH range, CSP elicits a strong PcomX response from a subpopulation of cells, whereas outside this range the proportion of cells expressing comX declines sharply. Likewise, PcomX is most sensitive to XIP only within a narrow pH window. While previous work suggested that comX may become refractory to CSP or XIP stimulus as cells exit early exponential phase, our microfluidic data show that extracellular pH dominates in determining sensitivity to XIP and CSP. The data are most consistent with an effect of pH on the ComR/ComS system, which has direct control over transcription of comX in S. mutans. PMID:26070670

  8. Sharply Tuned pH Response of Genetic Competence Regulation in Streptococcus mutans: a Microfluidic Study of the Environmental Sensitivity of comX.

    PubMed

    Son, Minjun; Ghoreishi, Delaram; Ahn, Sang-Joon; Burne, Robert A; Hagen, Stephen J

    2015-08-15

    Genetic competence in Streptococcus mutans is a transient state that is regulated in response to multiple environmental inputs. These include extracellular pH and the concentrations of two secreted peptides, designated CSP (competence-stimulating peptide) and XIP (comX-inducing peptide). The role of environmental cues in regulating competence can be difficult to disentangle from the effects of the organism's physiological state and its chemical modification of its environment. We used microfluidics to control the extracellular environment and study the activation of the key competence gene comX. We find that the comX promoter (PcomX) responds to XIP or CSP only when the extracellular pH lies within a narrow window, about 1 pH unit wide, near pH 7. Within this pH range, CSP elicits a strong PcomX response from a subpopulation of cells, whereas outside this range the proportion of cells expressing comX declines sharply. Likewise, PcomX is most sensitive to XIP only within a narrow pH window. While previous work suggested that comX may become refractory to CSP or XIP stimulus as cells exit early exponential phase, our microfluidic data show that extracellular pH dominates in determining sensitivity to XIP and CSP. The data are most consistent with an effect of pH on the ComR/ComS system, which has direct control over transcription of comX in S. mutans. PMID:26070670

  9. Human intestinal dendritic cells decrease cytokine release against Salmonella infection in the presence of Lactobacillus paracasei upon TLR activation.

    PubMed

    Bermudez-Brito, Miriam; Muñoz-Quezada, Sergio; Gomez-Llorente, Carolina; Matencio, Esther; Bernal, María J; Romero, Fernando; Gil, Angel

    2012-01-01

    Probiotic bacteria have been shown to modulate immune responses and could have therapeutic effects in allergic and inflammatory disorders. However, little is known about the signalling pathways that are engaged by probiotics. Dendritic cells (DCs) are antigen-presenting cells that are involved in immunity and tolerance. Monocyte-derived dendritic cells (MoDCs) and murine DCs are different from human gut DCs; therefore, in this study, we used human DCs generated from CD34+ progenitor cells (hematopoietic stem cells) harvested from umbilical cord blood; those DCs exhibited surface antigens of dendritic Langerhans cells, similar to the lamina propria DCs in the gut. We report that both a novel probiotic strain isolated from faeces of exclusively breast-fed newborn infants, Lactobacillus paracasei CNCM I-4034, and its cell-free culture supernatant (CFS) decreased pro-inflammatory cytokines and chemokines in human intestinal DCs challenged with Salmonella. Interestingly, the supernatant was as effective as the bacteria in reducing pro-inflammatory cytokine expression. In contrast, the bacterium was a potent inducer of TGF-β2 secretion, whereas the supernatant increased the secretion of TGF-β1 in response to Salmonella. We also showed that both the bacteria and its supernatant enhanced innate immunity through the activation of Toll-like receptor (TLR) signalling. These treatments strongly induced the transcription of the TLR9 gene. In addition, upregulation of the CASP8 and TOLLIP genes was observed. This work demonstrates that L. paracasei CNCM I-4034 enhanced innate immune responses, as evidenced by the activation of TLR signalling and the downregulation of a broad array of pro-inflammatory cytokines. The use of supernatants like the one described in this paper could be an effective and safe alternative to using live bacteria in functional foods. PMID:22905233

  10. Short-term oral exposure to aluminium decreases glutathione intestinal levels and changes enzyme activities involved in its metabolism.

    PubMed

    Orihuela, Daniel; Meichtry, Verónica; Pregi, Nicolás; Pizarro, Manuel

    2005-09-01

    To study the effects of aluminium (Al) on glutathione (GSH) metabolism in the small intestine, adult male Wistar rats were orally treated with AlCl3.6H2O at doses of 30, 60, 120 and 200 mg/kg body weight (b.w.) per day, during seven days. Controls received deionized water. At doses above 120 mg/kg b.w., Al produced both a significant reduction of GSH content and an increase of oxidized/reduced glutathione ratio (P < 0.05). The index of oxidative stress of the intestine mucosa in terms of lipid peroxidation evaluated by thiobarbituric acid reactive substances was significantly increased (52%) at higher Al dose used. The duodenal expression of the multidrug resistance-associated protein 2 in brush border membranes, determined by Western blot technique, was increased 2.7-fold in rats treated with 200mg AlCl3/kg b.w (P < 0.01). Intestine activities of both GSH-synthase (from 60 mg/kg b.w.) and GSSG-reductase (from 120 mg/kg b.w.) were significantly reduced (26% and 31%, respectively) while glutathione-S-transferase showed to be slightly modified in the Al-treated groups. Conversely, gamma-glutamyltranspeptidase activity was significantly increased (P < 0.05) due to the Al treatment. Al reduced in vitro mucosa-to-lumen GSH efflux (P < 0.05). A positive linear correlation between the intestine GSH depletion and reduction of in situ 45Ca intestinal absorption, both produced by Al, was found (r = 0.923, P = 0.038). Taking as a whole, these results show that Al would alter GSH metabolism in small intestine by decreasing its turnover, leading to an unbalance of redox state in the epithelial cells, thus contributing to deteriorate GSH-dependent absorptive functions. PMID:16084594

  11. Multiphoton microscopy can visualize zonal damage and decreased cellular metabolic activity in hepatic ischemia-reperfusion injury in rats

    NASA Astrophysics Data System (ADS)

    Thorling, Camilla A.; Liu, Xin; Burczynski, Frank J.; Fletcher, Linda M.; Gobe, Glenda C.; Roberts, Michael S.

    2011-11-01

    Ischemia-reperfusion (I/R) injury is a common occurrence in liver surgery. In orthotopic transplantation, the donor liver is exposed to periods of ischemia and when oxygenated blood is reintroduced to the liver, oxidative stress may develop and lead to graft failure. The aim of this project was to investigate whether noninvasive multiphoton and fluorescence lifetime imaging microscopy, without external markers, were useful in detecting early liver damage caused by I/R injury. Localized hepatic ischemia was induced in rats for 1 h followed by 4 h reperfusion. Multiphoton and fluorescence lifetime imaging microscopy was conducted prior to ischemia and up to 4 h of reperfusion and compared to morphological and biochemical assessment of liver damage. Liver function was significantly impaired at 2 and 4 h of reperfusion. Multiphoton microscopy detected liver damage at 1 h of reperfusion, manifested by vacuolated cells and heterogeneous spread of damage over the liver. The damage was mainly localized in the midzonal region of the liver acinus. In addition, fluorescence lifetime imaging showed a decrease in cellular metabolic activity. Multiphoton and fluorescence lifetime imaging microscopy detected evidence of early I/R injury both structurally and functionally. This provides a simple noninvasive technique useful for following progressive liver injury without external markers.

  12. Cold or calculating? Reduced activity in the subgenual cingulate cortex reflects decreased emotional aversion to harming in counterintuitive utilitarian judgment

    PubMed Central

    Wiech, Katja; Kahane, Guy; Shackel, Nicholas; Farias, Miguel; Savulescu, Julian; Tracey, Irene

    2013-01-01

    Recent research on moral decision-making has suggested that many common moral judgments are based on immediate intuitions. However, some individuals arrive at highly counterintuitive utilitarian conclusions about when it is permissible to harm other individuals. Such utilitarian judgments have been attributed to effortful reasoning that has overcome our natural emotional aversion to harming others. Recent studies, however, suggest that such utilitarian judgments might also result from a decreased aversion to harming others, due to a deficit in empathic concern and social emotion. The present study investigated the neural basis of such indifference to harming using functional neuroimaging during engagement in moral dilemmas. A tendency to counterintuitive utilitarian judgment was associated both with ‘psychoticism’, a trait associated with a lack of empathic concern and antisocial tendencies, and with ‘need for cognition’, a trait reflecting preference for effortful cognition. Importantly, only psychoticism was also negatively correlated with activation in the subgenual cingulate cortex (SCC), a brain area implicated in empathic concern and social emotions such as guilt, during counterintuitive utilitarian judgments. Our findings suggest that when individuals reach highly counterintuitive utilitarian conclusions, this need not reflect greater engagement in explicit moral deliberation. It may rather reflect a lack of empathic concern, and diminished aversion to harming others. PMID:23280149

  13. The PDGF-C regulatory region SNP rs28999109 decreases promoter transcriptional activity and is associated with CL/P

    PubMed Central

    Choi, Sun J; Marazita, Mary L; Hart, P Suzanne; Sulima, Pawel P; Field, L Leigh; McHenry, Toby Goldstein; Govil, Manika; Cooper, Margaret E; Letra, Ariadne; Menezes, Renato; Narayanan, Somnya; Mansilla, Maria Adela; Granjeiro, José M; Vieira, Alexandre R; Lidral, Andrew C; Murray, Jeffrey C; Hart, Thomas C

    2009-01-01

    Human linkage and association studies suggest a gene(s) for nonsyndromic cleft lip with or without cleft palate (CL/P) on chromosome 4q31–q32 at or near the platelet-derived growth factor-C (PDGF-C) locus. The mouse Pdgfc−/− knockout shows that PDGF-C is essential for palatogenesis. To evaluate the role of PDGF-C in human clefting, we performed sequence analysis and SNP genotyping using 1048 multiplex CL/P families and 1000 case–control samples from multiple geographic origins. No coding region mutations were identified, but a novel −986 C>T SNP (rs28999109) was significantly associated with CL/P (P=0.01) in cases from Chinese families yielding evidence of linkage to 4q31–q32. Significant or near-significant association was also seen for this and several other PDGF-C SNPs in families from the United States, Spain, India, Turkey, China, and Colombia, whereas no association was seen in families from the Philippines, and Guatemala, and case–controls from Brazil. The −986T allele abolished six overlapping potential transcription regulatory motifs. Transfection assays of PDGF-C promoter reporter constructs show that the −986T allele is associated with a significant decrease (up to 80%) of PDGF-C gene promoter activity. This functional polymorphism acting on a susceptible genetic background may represent a component of human CL/P etiology. PMID:19092777

  14. Complement activation on platelets correlates with a decrease in circulating immature platelets in patients with immune thrombocytopenic purpura.

    PubMed

    Peerschke, Ellinor I B; Andemariam, Biree; Yin, Wei; Bussel, James B

    2010-02-01

    The role of the complement system in immune thrombocytopenic purpura (ITP) is not well defined. We examined plasma from 79 patients with ITP, 50 healthy volunteers, and 25 patients with non-immune mediated thrombocytopenia, to investigate their complement activation/fixation capacity (CAC) on immobilized heterologous platelets. Enhanced CAC was found in 46 plasma samples (59%) from patients with ITP, but no samples from patients with non-immune mediated thrombocytopenia. Plasma from healthy volunteers was used for comparison. In patients with ITP, an enhanced plasma CAC was associated with a decreased circulating absolute immature platelet fraction (A-IPF) (<15 x 10(9)/l) (P = 0.027) and thrombocytopenia (platelet count < 100 x 10(9)/l) (P = 0.024). The positive predictive value of an enhanced CAC for a low A-IPF was 93%, with a specificity of 77%. The specificity and positive predictive values increased to 100% when plasma CAC was defined strictly by enhanced C1q and/or C4d deposition on test platelets. Although no statistically significant correlation emerged between CAC and response to different pharmacological therapies, an enhanced response to splenectomy was noted (P < 0.063). Thus, complement fixation may contribute to the thrombocytopenia of ITP by enhancing clearance of opsonized platelets from the circulation, and/or directly damaging platelets and megakaryocytes. PMID:19925495

  15. Decreased expression of hyperpolarisation-activated cyclic nucleotide-gated channel 3 in Hirschsprung’s disease

    PubMed Central

    O’Donnell, Anne Marie; Coyle, David; Puri, Prem

    2015-01-01

    AIM: To determine if hyperpolarisation-activated nucleotide-gated (HCN) channels exist in human colon, and to investigate the expression of HCN channels in Hirschsprung’s disease. METHODS: We investigated HCN1, HCN2, HCN3 and HCN4 protein expression in pull-through specimens from patients with Hirschsprung’s disease (HSCR, n = 10) using the proximal-most ganglionic segment and distal-most aganglionic segment, as well as in healthy control specimens obtained at the time of sigmoid colostomy closure in children who had undergone anorectoplasty for imperforate anus (n = 10). Fluorescent immunohistochemistry was performed to assess protein distribution, which was then visualized using confocal microscopy. RESULTS: No HCN1 channel expression was observed in any of the tissues studied. Both HCN2 and HCN4 proteins were found to be equally expressed in the aganglionic and ganglionic bowel in HSCR and controls. HCN3 channel expression was found to be markedly decreased in the aganglionic colon vs ganglionic colon and controls. HCN2-4 channels were seen to be expressed within neurons of the myenteric and submucosal plexus of the ganglionic bowel and normal controls, and also co-localised to interstitial cells of Cajal in all tissues studied. CONCLUSION: We demonstrate HCN channel expression in human colon for the first time. Reduced HCN3 expression in aganglionic bowel suggests its potential role in HSCR pathophysiology. PMID:25987789

  16. Pu-erh tea polysaccharides decrease blood sugar by inhibition of α-glucosidase activity in vitro and in mice.

    PubMed

    Deng, Yea-Tyz; Lin-Shiau, Shoei-Yn; Shyur, Lie-Fen; Lin, Jen-Kun

    2015-05-01

    Type 2 diabetes is mainly induced by environmental factors such as being overweight, decreased physical activity and inbalanced energy metabolism, such as pancreatic beta-cell dysfunction and peripheral insulin resistance. Acarbose, a microbial carbohydrate and an alpha-glucosidase inhibitor, is currently a useful agent for attenuating type 2 diabetes. However, it is usually accompanied by many side effects, such as abdominal distention, flatulence, diarrhea and meteorism. These side effects may be caused by its strong inhibition of alpha-amylase, leading to the accumulation of several undigested carbohydrates. The bacteria residing in the colon can further ferment the undigested carbohydrate to release gas. Finding a new alpha-glucosidase inhibitor with a low inhibitory effect on alpha-amylase is highly anticipated. In this report we describe a group of carbohydrates found in pu-erh tea polysaccharide (PTPS) that can inhibit alpha-glucosidase but have less of an inhibitory effect on alpha-amylase. The preliminary experiments on mice indicate that PTPS might be better than acarbose at suppressing blood glucose after oral administration of a carbohydrate diet; it is recommended that further clinical trials are required in type 2 diabetes in future studies. PMID:25820466

  17. Cold or calculating? Reduced activity in the subgenual cingulate cortex reflects decreased emotional aversion to harming in counterintuitive utilitarian judgment.

    PubMed

    Wiech, Katja; Kahane, Guy; Shackel, Nicholas; Farias, Miguel; Savulescu, Julian; Tracey, Irene

    2013-03-01

    Recent research on moral decision-making has suggested that many common moral judgments are based on immediate intuitions. However, some individuals arrive at highly counterintuitive utilitarian conclusions about when it is permissible to harm other individuals. Such utilitarian judgments have been attributed to effortful reasoning that has overcome our natural emotional aversion to harming others. Recent studies, however, suggest that such utilitarian judgments might also result from a decreased aversion to harming others, due to a deficit in empathic concern and social emotion. The present study investigated the neural basis of such indifference to harming using functional neuroimaging during engagement in moral dilemmas. A tendency to counterintuitive utilitarian judgment was associated both with 'psychoticism', a trait associated with a lack of empathic concern and antisocial tendencies, and with 'need for cognition', a trait reflecting preference for effortful cognition. Importantly, only psychoticism was also negatively correlated with activation in the subgenual cingulate cortex (SCC), a brain area implicated in empathic concern and social emotions such as guilt, during counterintuitive utilitarian judgments. Our findings suggest that when individuals reach highly counterintuitive utilitarian conclusions, this need not reflect greater engagement in explicit moral deliberation. It may rather reflect a lack of empathic concern, and diminished aversion to harming others. PMID:23280149

  18. Complement Activation on Platelets Correlates with a Decrease in Circulating Immature Platelets in Patients with Immune Thrombocytopenic Purpura

    PubMed Central

    Peerschke, Ellinor I.B.; Andemariam, Biree; Yin, Wei; Bussel, James B.

    2010-01-01

    The role of the complement system in immune thrombocytopenic purpura (ITP) is not well defined. We examined plasma from 79 patients with ITP, 50 healthy volunteers, and 25 patients with non-immune mediated thrombocytopenia, to investigate their complement activation/fixation capacity (CAC) on immobilized heterologous platelets. Enhanced CAC was found in 46 plasma samples (59%) from patients with ITP, but no samples from patients with non-immune mediated thrombocytopenia. Plasma from healthy volunteers was used for comparison. In patients with ITP, an enhanced plasma CAC was associated with a decreased circulating absolute immature platelet fraction (A-IPF) (<15 × 109/L) (p = 0.027) and thrombocytopenia (platelet count less than 100K/μl) (p= 0.024). The positive predictive value of an enhanced CAC for a low A-IPF was 93%, with a specificity of 77%. The specificity and positive predictive values increased to 100% when plasma CAC was defined strictly by enhanced C1q and/or C4d deposition on test platelets. Although no statistically significant correlation emerged between CAC and response to different pharmacologic therapies, an enhanced response to splenectomy was noted (p <0.063). Thus, complement fixation may contribute to the thrombocytopenia of ITP by enhancing clearance of opsonized platelets from the circulation, and/or directly damaging platelets and megakaryocytes. PMID:19925495

  19. HU-446 and HU-465, Derivatives of the Non-psychoactive Cannabinoid Cannabidiol, Decrease the Activation of Encephalitogenic T Cells.

    PubMed

    Kozela, Ewa; Haj, Christeene; Hanuš, Lumir; Chourasia, Mukesh; Shurki, Avital; Juknat, Ana; Kaushansky, Nathali; Mechoulam, Raphael; Vogel, Zvi

    2016-01-01

    Cannabidiol (CBD), the non-psychoactive cannabinoid, has been previously shown by us to decrease peripheral inflammation and neuroinflammation in mouse experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS). Here we have studied the anti-inflammatory effects of newly synthesized derivatives of natural (-)-CBD ((-)-8,9-dihydro-7-hydroxy-CBD; HU-446) and of synthetic (+)-CBD ((+)-8,9-dihydro-7-hydroxy-CBD; HU-465) on activated myelin oligodendrocyte glycoprotein (MOG)35-55-specific mouse encephalitogenic T cells (TMOG ) driving EAE/MS-like pathologies. Binding assays followed by molecular modeling revealed that HU-446 has negligible affinity toward the cannabinoid CB1 and CB2 receptors while HU-465 binds to both CB1 and CB2 receptors at the high nanomolar concentrations (Ki = 76.7 ± 5.8 nm and 12.1 ± 2.3 nm, respectively). Both, HU-446 and HU-465, at 5 and 10 μm (but not at 0.1 and 1 μm), inhibited the MOG35-55-induced proliferation of autoreactive TMOG cells via CB1/CB2 receptor independent mechanisms. Moreover, both HU-446 and HU-465, at 5 and 10 μm, inhibited the release of IL-17, a key autoimmune cytokine, from MOG35-55-stimulated TMOG cells. These results suggest that HU-446 and HU-465 have anti-inflammatory potential in inflammatory and autoimmune diseases. PMID:26259697

  20. Calorie restriction does not restore brain mitochondrial function in P301L tau mice, but it does decrease mitochondrial F0F1-ATPase activity.

    PubMed

    Delic, Vedad; Brownlow, Milene; Joly-Amado, Aurelie; Zivkovic, Sandra; Noble, Kenyaria; Phan, Tam-Anh; Ta, Yen; Zhang, Yumeng; Bell, Stephen D; Kurien, Crupa; Reynes, Christian; Morgan, Dave; Bradshaw, Patrick C

    2015-07-01

    Calorie restriction (CR) has been shown to increase lifespan and delay aging phenotypes in many diverse eukaryotic species. In mouse models of Alzheimer's disease (AD), CR has been shown to decrease amyloid-beta and hyperphosphorylated tau levels and preserve cognitive function. Overexpression of human mutant tau protein has been shown to induce deficits in mitochondrial electron transport chain complex I activity. Therefore, experiments were performed to determine the effects of 4-month CR on brain mitochondrial function in Tg4510 mice, which express human P301L tau. Expression of mutant tau led to decreased ADP-stimulated respiratory rates, but not uncoupler-stimulated respiratory rates. The membrane potential was also slightly higher in mitochondria from the P301L tau mice. As shown previously, tau expression decreased mitochondrial complex I activity. The decreased complex I activity, decreased ADP-stimulated respiratory rate, and increased mitochondrial membrane potential occurring in mitochondria from Tg4510 mice were not restored by CR. However, the CR diet did result in a genotype independent decrease in mitochondrial F0F1-ATPase activity. This decrease in F0F1-ATPase activity was not due to lowered levels of the alpha or beta subunits of F0F1-ATPase. The possible mechanisms through which CR reduces the F0F1-ATPase activity in brain mitochondria are discussed. PMID:26048366

  1. Mitochondrial DNA Variation, but Not Nuclear DNA, Sharply Divides Morphologically Identical Chameleons along an Ancient Geographic Barrier

    PubMed Central

    Zilka, Yael; Ovadia, Ofer; Bouskila, Amos; Mishmar, Dan

    2012-01-01

    The Levant is an important migration bridge, harboring border-zones between Afrotropical and palearctic species. Accordingly, Chameleo chameleon, a common species throughout the Mediterranean basin, is morphologically divided in the southern Levant (Israel) into two subspecies, Chamaeleo chamaeleon recticrista (CCR) and C. c. musae (CCM). CCR mostly inhabits the Mediterranean climate (northern Israel), while CCM inhabits the sands of the north-western Negev Desert (southern Israel). AFLP analysis of 94 geographically well dispersed specimens indicated moderate genetic differentiation (PhiPT = 0.097), consistent with the classical division into the two subspecies, CCR and CCM. In contrast, sequence analysis of a 637 bp coding mitochondrial DNA (mtDNA) fragment revealed two distinct phylogenetic clusters which were not consistent with the morphological division: one mtDNA cluster consisted of CCR specimens collected in regions northern of the Jezreel Valley and another mtDNA cluster harboring specimens pertaining to both the CCR and CCM subspecies but collected southern of the Jezreel Valley. AMOVA indicated clear mtDNA differentiation between specimens collected northern and southern to the Jezreel Valley (PhiPT = 0.79), which was further supported by a very low coalescent-based estimate of effective migration rates. Whole chameleon mtDNA sequencing (∼17,400 bp) generated from 11 well dispersed geographic locations revealed 325 mutations sharply differentiating the two mtDNA clusters, suggesting a long allopatric history further supported by BEAST. This separation correlated temporally with the existence of an at least 1 million year old marine barrier at the Jezreel Valley exactly where the mtDNA clusters meet. We discuss possible involvement of gender-dependent life history differences in maintaining such mtDNA genetic differentiation and suggest that it reflects (ancient) local adaptation to mitochondrial-related traits. PMID:22457709

  2. ATP-Sensitive Potassium (KATP) Channel Activation Decreases Intraocular Pressure in the Anterior Chamber of the Eye

    PubMed Central

    Chowdhury, Uttio Roy; Bahler, Cindy K.; Hann, Cheryl R.; Chang, Minhwang; Resch, Zachary T.; Romero, Michael F.

    2011-01-01

    Purpose. ATP-sensitive potassium channel (KATP) openers target key cellular events, many of which have been implicated in glaucoma. The authors sought to determine whether KATP channel openers influence outflow facility in human anterior segment culture and intraocular pressure (IOP) in vivo. Methods. Anterior segments from human eyes were placed in perfusion organ culture and treated with the KATP channel openers diazoxide, nicorandil, and P1075 or the KATP channel closer glyburide (glibenclamide). The presence, functionality, and specificity of KATP channels were determined by RT-PCR, immunohistochemistry, and inside-out patch clamp in human trabecular meshwork (TM) tissue or primary cultures of normal human trabecular meshwork (NTM) cells. The effect of diazoxide on IOP in anesthetized Brown Norway rats was measured with a rebound tonometer. Results. KATP channel openers increased outflow facility in human anterior segments (0.14 ± 0.02 to 0.26 ± 0.09 μL/min/mm Hg; P < 0.001) compared with fellow control eyes (0.22 ± 0.11 to 0.21 ± 0.11 μL/min/mm Hg; P > 0.5). The effect was reversible, with outflow facility returning to baseline after drug removal. The addition of glyburide inhibited diazoxide from increasing outflow facility. Electrophysiology confirmed the presence and specificity of functional KATP channels. KATP channel subunits Kir6.1, Kir6.2, SUR2A, and SUR2B were expressed in TM and NTM cells. In vivo, diazoxide significantly lowered IOP in Brown Norway rats. Conclusions. Functional KATP channels are present in the trabecular meshwork. When activated by KATP channel openers, these channels increase outflow facility through the trabecular outflow pathway in human anterior segment organ culture and decrease IOP in Brown Norway rat eyes. PMID:21743021

  3. Bamboo Vinegar Decreases Inflammatory Mediator Expression and NLRP3 Inflammasome Activation by Inhibiting Reactive Oxygen Species Generation and Protein Kinase C-α/δ Activation

    PubMed Central

    Ka, Shuk-Man; Chen, Ann; Tasi, Yu-Ling; Liu, May-Lan; Chiu, Yi-Chich; Hua, Kuo-Feng

    2013-01-01

    Bamboo vinegar (BV), a natural liquid derived from the condensation produced during bamboo charcoal production, has been used in agriculture and as a food additive, but its application to immune modulation has not been reported. Here, we demonstrated that BV has anti-inflammatory activities both in vitro and in vivo. BV reduced inducible nitric oxide synthase expression and nitric oxide levels in, and interleukin-6 secretion by, lipopolysaccharide-activated macrophages without affecting tumor necrosis factor-α secretion and cyclooxygenase-2 expression. The mechanism for the anti-inflammatory effect of BV involved decreased reactive oxygen species production and protein kinase C-α/δ activation. Furthermore, creosol (2-methoxy-4-methylphenol) was indentified as the major anti-inflammatory compound in BV. Impaired cytokine expression and NLR family, pyrin domain-containing 3 (NLRP3) inflammasome activation was seen in mice treated with creosol. These findings provide insights into how BV regulates inflammation and suggest that it may be a new source for the development of anti-inflammatory agents or a healthy supplement for preventing and ameliorating inflammation- and NLRP3 inflammasome-related diseases, including metabolic syndrome. PMID:24124509

  4. Activation of brain serotonergic system by repeated intracerebral administration of 5-hydroxytryptophan (5-HTP) decreases the expression and activity of liver cytochrome P450.

    PubMed

    Rysz, Marta; Bromek, Ewa; Daniel, Władysława A

    2016-01-01

    Our recent studies suggest that brain serotonergic system may be involved in the neuroendocrine regulation of cytochrome P450 expression. Intracerebral injection of the serotonergic neurotoxin 5,7-dihydroxytryptamine affected serum hormone concentration and increased the expression and activity of the hormone-dependent isoforms CYP1A1/2, CYP2C11 and CYP3A1. Therefore, the aim of the present study was to investigate the effect of stimulation of brain serotonergic system on cytochrome P450 expression in the liver. The serotonin precursor 5-hydroxytryptophan (5-HTP) was injected for 5 days to the lateral ventricles of rat brain. Afterwards, the brain concentrations of serotonin and its metabolite 5-hydroxyindoleacetic acid 5-HIAA, serum hormone levels and liver cytochrome P450 expression and activity were measured. 5-HTP potently increased the concentration of serotonin and its metabolite 5-HIAA in all the brain structures studied including the hypothalamus. The brain concentrations of noradrenaline or dopamine and its metabolites were not changed in that structure. At the same time, a significant decrease in the serum concentration of the growth hormone and an increase in that of thyroxine were observed. In the liver, the activity of CYP1A, CYP2A, CYP2B, CYP2C11 and CYP3A was diminished, which positively correlated with a decrease in the respective CYP protein levels and a reduction in the mRNA levels of CYP1A2, CYP2A2, CYP2C11, CYP3A1 and CYP3A2. The obtained results provide evidence to prove that brain serotonergic system negatively regulates liver cytochrome P450 expression via endocrine system and suggest mechanisms by which this enzyme may be regulated by drugs with a serotonergic profile such as antidepressants. PMID:26581122

  5. A single administration of methamphetamine to mice early in the light period decreases running wheel activity observed during the dark period.

    PubMed

    Kitanaka, Nobue; Kitanaka, Junichi; Hall, F Scott; Uhl, George R; Watabe, Kaname; Kubo, Hitoshi; Takahashi, Hitoshi; Tatsuta, Tomohiro; Morita, Yoshio; Takemura, Motohiko

    2012-01-01

    Repeated intermittent administration of amphetamines acutely increases appetitive and consummatory aspects of motivated behaviors as well as general activity and exploratory behavior, including voluntary running wheel activity. Subsequently, if the drug is withdrawn, the frequency of these behaviors decreases, which is thought to be indicative of dysphoric symptoms associated with amphetamine withdrawal. Such decreases may be observed after chronic treatment or even after single drug administrations. In the present study, the effect of acute methamphetamine (METH) on running wheel activity, horizontal locomotion, appetitive behavior (food access), and consummatory behavior (food and water intake) was investigated in mice. A multi-configuration behavior apparatus designed to monitor the five behaviors was developed, where combined measures were recorded simultaneously. In the first experiment, naïve male ICR mice showed gradually increasing running wheel activity over three consecutive days after exposure to a running wheel, while mice without a running wheel showed gradually decreasing horizontal locomotion, consistent with running wheel activity being a positively motivated form of natural motor activity. In experiment 2, increased horizontal locomotion and food access, and decreased food intake, were observed for the initial 3h after acute METH challenge. Subsequently, during the dark phase period decreased running wheel activity and horizontal locomotion were observed. The reductions in running wheel activity and horizontal locomotion may be indicative of reduced dopaminergic function, although it remains to be seen if these changes may be more pronounced after more prolonged METH treatments. PMID:22079320

  6. Aggravation of nonalcoholic steatohepatitis by moderate alcohol consumption is associated with decreased SIRT1 activity in rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronic alcohol intake decreases adiponectin and sirtuin 1 (SIRT1) expressions, both of which have been implicated in various biological processes including inflammation, apoptosis and metabolism. We have previously shown that moderate consumption of alcohol aggravates liver inflammation and apoptos...

  7. Curcumin decreases the expression of Pokemon by suppressing the binding activity of the Sp1 protein in human lung cancer cells.

    PubMed

    Cui, Jiajun; Meng, Xianfeng; Gao, Xudong; Tan, Guangxuan

    2010-03-01

    Pokemon, which stands for POK erythroid myeloid ontogenic factor, can regulate expression of many genes and plays an important role in tumorigenesis. Curcumin, a natural and non-toxic yellow compound, has capacity for antioxidant, free radical scavenger, anti-inflammatory properties. Recent studies shows it is a potential inhibitor of cell proliferation in a variety of tumour cells. To investigate whether curcumin can regulate the expression of Pokemon, a series of experiments were carried out. Transient transfection experiments demonstrated that curcumin could decrease the activity of the Pokemon promoter. Western blot analysis suggested that curcumin could significantly decrease the expression of the Pokemon. Overexpression of Sp1 could enhance the activity of the Pokemon promoter, whereas knockdown of Sp1 could decrease its activity. More important, we also found that curcumin could decrease the expression of the Pokemon by suppressing the stimulation of the Sp1 protein. Therefore, curcumin is a potential reagent for tumour therapy which may target Pokemon. PMID:19444642

  8. 30 CFR 203.54 - How does my relief arrangement for an oil and gas lease operate if prices rise sharply?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gas lease operate if prices rise sharply? 203.54 Section 203.54 Mineral Resources BUREAU OF OCEAN...? In those months when your current reference price rises by at least 25 percent above your base reference price, you must pay the effective royalty rate on all monthly production. (a) Your...

  9. Exercise restores decreased physical activity levels and increases markers of autophagy and oxidative capacity in myostatin/activin-blocked mdx mice.

    PubMed

    Hulmi, Juha J; Oliveira, Bernardo M; Silvennoinen, Mika; Hoogaars, Willem M H; Pasternack, Arja; Kainulainen, Heikki; Ritvos, Olli

    2013-07-15

    The importance of adequate levels of muscle size and function and physical activity is widely recognized. Myostatin/activin blocking increases skeletal muscle mass but may decrease muscle oxidative capacity and can thus be hypothesized to affect voluntary physical activity. Soluble activin receptor IIB (sActRIIB-Fc) was produced to block myostatin/activins. Modestly dystrophic mdx mice were injected with sActRIIB-Fc or PBS with or without voluntary wheel running exercise for 7 wk. Healthy mice served as controls. Running for 7 wk attenuated the sActRIIB-Fc-induced increase in body mass by decreasing fat mass. Running also enhanced/restored the markers of muscle oxidative capacity and autophagy in mdx mice to or above the levels of healthy mice. Voluntary running activity was decreased by sActRIIB-Fc during the first 3-4 wk correlating with increased body mass. Home cage physical activity of mice, quantified from the force plate signal, was decreased by sActRIIB-Fc the whole 7-wk treatment in sedentary mice. To understand what happens during the first weeks after sActRIIB-Fc administration, when mice are less active, healthy mice were injected with sActRIIB-Fc or PBS for 2 wk. During the sActRIIB-Fc-induced rapid 2-wk muscle growth period, oxidative capacity and autophagy were reduced, which may possibly explain the decreased running activity. These results show that increased muscle size and decreased markers of oxidative capacity and autophagy during the first weeks of myostatin/activin blocking are associated with decreased voluntary activity levels. Voluntary exercise in dystrophic mice enhances the markers of oxidative capacity and autophagy to or above the levels of healthy mice. PMID:23695214

  10. Decreased Left Posterior Insular Activity During Auditory Language in Autism American Journal of Neuroradiology – January 2010

    PubMed Central

    Anderson, Jeffrey S.; Lange, Nicholas; Froehlich, Alyson; DuBray, Molly B.; Druzgal, T. Jason; Froimowitz, Michael P.; Alexander, Andrew L.; Bigler, Erin D.; Lainhart, Janet E.

    2009-01-01

    Background and Purpose Individuals with autism spectrum disorders often exhibit atypical language patterns including delay of speech onset, literal speech interpretation, and poor recognition of social and emotional cues in speech. We acquired fMRI images during an auditory language task to evaluate for systematic differences in language network activation between control and high-functioning autistic populations. Materials and Methods 41 right-handed male subjects (26 high-functioning autistic, 15 control) were studied using an auditory phrase recognition task, and areas of differential activation between groups were identified. Hand preference, verbal IQ, age, and language function testing were included as covariables in the analysis. Results Control and autistic subjects showed similar language activation networks, with two notable differences. Control subjects showed significantly increased activation in the left posterior insula compared to autistic subjects (p<0.05, FDR), and autistic subjects showed increased bilaterality of receptive language compared to control subjects. Higher receptive language score on standardized testing was associated with greater activation of the posterior aspect of left Wernicke’s area. Higher verbal IQ was associated with greater activation of bilateral Broca’s area and involvement of prefrontal cortex and lateral premotor cortex. Conclusion Control subjects showed greater activation of the posterior insula during receptive language, which may correlate with impaired emotive processing of language in autism. Autism subjects showed greater bilateral activation of receptive language areas that was out of proportion to differences in hand preference in autism and control populations. PMID:19749222

  11. Activation of Constitutive Androstane Receptor (CAR) in Mice Results in Maintained Biliary Excretion of Bile Acids Despite a Marked Decrease of Bile Acids in Liver.

    PubMed

    Lickteig, Andrew J; Csanaky, Iván L; Pratt-Hyatt, Matthew; Klaassen, Curtis D

    2016-06-01

    Activation of Constitutive Androstane Receptor (CAR) protects against bile acid (BA)-induced liver injury. This study was performed to determine the effect of CAR activation on bile flow, BA profile, as well as expression of BA synthesis and transport genes. Synthetic CAR ligand 1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) was administered to mice for 4 days. BAs were quantified by UPLC-MS/MS (ultraperformance liquid chromatography-tandem mass spectrometry). CAR activation decreases total BAs in livers of male (49%) and female mice (26%), largely attributable to decreases of the 12α-hydroxylated BA taurocholic acid (T-CA) (males (M) 65%, females (F) 45%). Bile flow in both sexes was increased by CAR activation, and the increases were BA-independent. CAR activation did not alter biliary excretion of total BAs, but overall BA composition changed. Excretion of muricholic (6-hydroxylated) BAs was increased in males (101%), and the 12α-OH proportion of biliary BAs was decreased in both males (37%) and females (28%). The decrease of T-CA in livers of males and females correlates with the decreased mRNA of the sterol 12α-hydroxylase Cyp8b1 in males (71%) and females (54%). As a response to restore BAs to physiologic concentrations in liver, mRNA of Cyp7a1 is upregulated following TCPOBOP (males 185%, females 132%). In ilea, mRNA of the negative feedback regulator Fgf15 was unaltered by CAR activation, indicating biliary BA excretion was sufficient to maintain concentrations of total BAs in the small intestine. In summary, the effects of CAR activation on BAs in male and female mice are quite similar, with a marked decrease in the major BA T-CA in the liver. PMID:26984780

  12. Decreased modulation by the risk level on the brain activation during decision making in adolescents with internet gaming disorder.

    PubMed

    Qi, Xin; Du, Xin; Yang, Yongxin; Du, Guijin; Gao, Peihong; Zhang, Yang; Qin, Wen; Li, Xiaodong; Zhang, Quan

    2015-01-01

    Greater impulse and risk-taking and reduced decision-making ability were reported as the main behavioral impairments in individuals with internet gaming disorder (IGD), which has become a serious mental health issue worldwide. However, it is not clear to date how the risk level modulates brain activity during the decision-making process in IGD individuals. In this study, 23 adolescents with IGD and 24 healthy controls (HCs) without IGD were recruited, and the balloon analog risk task (BART) was used in a functional magnetic resonance imaging experiment to evaluate the modulation of the risk level (the probability of balloon explosion) on brain activity during risky decision making in IGD adolescents. Reduced modulation of the risk level on the activation of the right dorsolateral prefrontal cortex (DLPFC) during the active BART was found in IGD group compared to the HCs. In the IGD group, there was a significant negative correlation between the risk-related DLPFC activation during the active BART and the Barratt impulsivity scale (BIS-11) scores, which were significantly higher in IGD group compared with the HCs. Our study demonstrated that, as a critical decision-making-related brain region, the right DLPFC is less sensitive to risk in IGD adolescents compared with the HCs, which may contribute to the higher impulsivity level in IGD adolescents. PMID:26578922

  13. [A PARADIGM SHIFT IN THE PERCEPTION OF HEALTH MAINTENANCE FROM INCREASING PHYSICAL ACTIVITY TO DECREASING PHYSICAL INACTIVITY].

    PubMed

    Rotman, Dani; Constantini, Naama

    2016-06-01

    Modern man spends most of his waking hours (50-70%) in one form or another of sedentary behavior, defined as activity conducted in a sitting or reclining position involving low energy expenditure. The remaining waking hours are spent performing low intensity physical activity (25-45%) and medium-high intensity physical activity (less than 5%): Despite this distribution, medical research has focused on the impact of increasing medium-high intensity physical activity and many health organizations' recommendations are in accordance. In recent years, research conducted has begun to examine the effect inactivity has on health and has shown that excess sedentary behaviour is an independent risk factor for a wide range of medical problems such as obesity, metabolic syndrome, poor cardiovascular health profile, diabetes mellitus, and possibly cancer. Although the higher risk brought on by sedentary behaviour is partially reduced by increasing medium-high intensity physical activity, it is not completely neutralized. One way to diminish the harm caused by long hours of sitting is to take short breaks during periods of prolonged sitting in order to walk. According to these findings, it is worthwhile to recommend reducing the hours spent in sedentary behaviour, or at least to take frequent short breaks ("activity snacks") during periods of prolonged sitting to get up and walk around. PMID:27544992

  14. Decreased modulation by the risk level on the brain activation during decision making in adolescents with internet gaming disorder

    PubMed Central

    Qi, Xin; Du, Xin; Yang, Yongxin; Du, Guijin; Gao, Peihong; Zhang, Yang; Qin, Wen; Li, Xiaodong; Zhang, Quan

    2015-01-01

    Greater impulse and risk-taking and reduced decision-making ability were reported as the main behavioral impairments in individuals with internet gaming disorder (IGD), which has become a serious mental health issue worldwide. However, it is not clear to date how the risk level modulates brain activity during the decision-making process in IGD individuals. In this study, 23 adolescents with IGD and 24 healthy controls (HCs) without IGD were recruited, and the balloon analog risk task (BART) was used in a functional magnetic resonance imaging experiment to evaluate the modulation of the risk level (the probability of balloon explosion) on brain activity during risky decision making in IGD adolescents. Reduced modulation of the risk level on the activation of the right dorsolateral prefrontal cortex (DLPFC) during the active BART was found in IGD group compared to the HCs. In the IGD group, there was a significant negative correlation between the risk-related DLPFC activation during the active BART and the Barratt impulsivity scale (BIS-11) scores, which were significantly higher in IGD group compared with the HCs. Our study demonstrated that, as a critical decision-making-related brain region, the right DLPFC is less sensitive to risk in IGD adolescents compared with the HCs, which may contribute to the higher impulsivity level in IGD adolescents. PMID:26578922

  15. Plasma lyso-phosphatidylcholine concentration is decreased in cancer patients with weight loss and activated inflammatory status

    PubMed Central

    Taylor, Lenka A; Arends, Jann; Hodina, Arwen K; Unger, Clemens; Massing, Ulrich

    2007-01-01

    Background It has been observed that ras-transformed cell lines in culture have a higher phosphatidylcholine (PC) biosynthesis rate as well as higher PC-degradation rate (increased PC-turnover) than normal cells. In correspondence to these findings, the concentrations of the PC-degradation product lyso-phosphatidylcholine (LPC) in cancer patients were found to be decreased. Our objective was the systematic investigation of the relationship between LPC and inflammatory and nutritional parameters in cancer patients. Therefore, plasma LPC concentrations were assessed in 59 cancer patients and related to nutritional and inflammatory parameters. To determine LPC in blood plasma we developed and validated a HPTLC method. Results Average plasma LPC concentration was 207 ± 59 μM which corresponds to the lower limit of the reported range in healthy subjects. No correlation between LPC and age, performance status, body mass index (BMI) or fat mass could be seen. However, LPC correlated inversely with plasma C-reactive protein (CRP) and whole blood hydrogen peroxides (HPO). Further, a negative correlation could be observed between LPC and whole body extra cellular fluid volume (ECF) as well as with relative change in body weight since cancer diagnosis. Conclusion In conclusion, LPC concentrations were decreased in cancer patients. LPC plasma concentrations correlated with weight loss and inflammatory parameters and, therefore, might be a general indicator of severity of malignant disease. PMID:17623088

  16. Ophiobolin A induces paraptosis-like cell death in human glioblastoma cells by decreasing BKCa channel activity.

    PubMed

    Bury, M; Girault, A; Mégalizzi, V; Spiegl-Kreinecker, S; Mathieu, V; Berger, W; Evidente, A; Kornienko, A; Gailly, P; Vandier, C; Kiss, R

    2013-01-01

    Glioblastoma multiforme (GBM) is the most lethal and common malignant human brain tumor. The intrinsic resistance of highly invasive GBM cells to radiation- and chemotherapy-induced apoptosis accounts for the generally dismal treatment outcomes. This study investigated ophiobolin A (OP-A), a fungal metabolite from Bipolaris species, for its promising anticancer activity against human GBM cells exhibiting varying degrees of resistance to proapoptotic stimuli. We found that OP-A induced marked changes in the dynamic organization of the F-actin cytoskeleton, and inhibited the proliferation and migration of GBM cells, likely by inhibiting big conductance Ca(2+)-activated K(+) channel (BKCa) channel activity. Moreover, our results indicated that OP-A induced paraptosis-like cell death in GBM cells, which correlated with the vacuolization, possibly brought about by the swelling and fusion of mitochondria and/or the endoplasmic reticulum (ER). In addition, the OP-A-induced cell death did not involve the activation of caspases. We also showed that the expression of BKCa channels colocalized with these two organelles (mitochondria and ER) was affected in this programmed cell death pathway. Thus, this study reveals a novel mechanism of action associated with the anticancer effects of OP-A, which involves the induction of paraptosis through the disruption of internal potassium ion homeostasis. Our findings offer a promising therapeutic strategy to overcome the intrinsic resistance of GBM cells to proapoptotic stimuli. PMID:23538442

  17. Inhibition of host extracellular signal-regulated kinase (ERK) activation decreases new world alphavirus multiplication in infected cells

    SciTech Connect

    Voss, Kelsey; Amaya, Moushimi; Mueller, Claudius; Roberts, Brian; Kehn-Hall, Kylene; Bailey, Charles; Petricoin, Emanuel; Narayanan, Aarthi

    2014-11-15

    New World alphaviruses belonging to the family Togaviridae are classified as emerging infectious agents and Category B select agents. Our study is focused on the role of the host extracellular signal-regulated kinase (ERK) in the infectious process of New World alphaviruses. Infection of human cells by Venezuelan equine encephalitis virus (VEEV) results in the activation of the ERK-signaling cascade. Inhibition of ERK1/2 by the small molecule inhibitor Ag-126 results in inhibition of viral multiplication. Ag-126-mediated inhibition of VEEV was due to potential effects on early and late stages of the infectious process. While expression of viral proteins was down-regulated in Ag-126 treated cells, we did not observe any influence of Ag-126 on the nuclear distribution of capsid. Finally, Ag-126 exerted a broad-spectrum inhibitory effect on New World alphavirus multiplication, thus indicating that the host kinase, ERK, is a broad-spectrum candidate for development of novel therapeutics against New World alphaviruses. - Highlights: • VEEV infection activated multiple components of the ERK signaling cascade. • Inhibition of ERK activation using Ag-126 inhibited VEEV multiplication. • Activation of ERK by Ceramide C6 increased infectious titers of TC-83. • Ag-126 inhibited virulent strains of all New World alphaviruses. • Ag-126 treatment increased percent survival of infected cells.

  18. Decreased peroxisome proliferator-activated receptor γ level and signalling in sebaceous glands of patients with acne vulgaris.

    PubMed

    Dozsa, A; Mihaly, J; Dezso, B; Csizmadia, E; Keresztessy, T; Marko, L; Rühl, R; Remenyik, E; Nagy, L

    2016-07-01

    Little is known about the altered lipid metabolism-related transcriptional events occuring in sebaceous glands of patients with acne vulgaris. Peroxisome proliferator-activated receptor (PPAR)γ, a lipid-activated transcription factor, is implicated in differentiation and lipid metabolism of sebocytes. We have observed that PPARγ and its target genes, ADRP (adipose differentiation related protein) and PGAR (PPARγ angioprotein related protein) are expressed at lower levels in sebocytes from patients with acne than in those from healthy controls (HCs) Furthermore, endogenous PPARγ activator lipids such as arachidonic acid-derived keto-metabolites (e.g. 5KETE, 12KETE) are increased in acne-involved and nonacne-involved skin of patients with acne, compared with skin from healthy individuals. Our findings highlight the possible anti-inflammatory role of endogenous ligand-activated PPARγ signaling in human sebocyte biology, and suggest that modulating PPARγ- expression and thereby signaling might be a promising strategy for the clinical management of acne vulgaris. PMID:26800853

  19. Age-related decrease in the activity of UDP-xylose:core protein xylosyltransferase in rat costal cartilage.

    PubMed

    Wolf, B; Gressner, A M; Nevo, Z; Greiling, H

    1982-06-01

    The activity of UDP-xylose:core protein xylosyltransferase (EC 2.4.2.26) in costal cartilage of young rats (3 months) and old rats (36 months) was measured. The enzyme activity in cartilage of young rats (mean +/- S.D.) is 3370 +/- 1440 Bq h-1 mg-1 DNA, which is about three times higher than that determined in cartilage of old rats (1090 +/- 520 Bq h-1 mg-1 protein). The amount of galactosamine-containing proteoglycosaminoglycans that are extractable with 4 M guanidinium chloride from cartilage is significantly higher in young rats (29.1 +/- 4.8 nmol GalN per mg cartilage wet weight) than in old animals (5.8 +/- 3.0 nmol GalN per mg cartilage wet weight). Thus, if xylosyltransferase activity is referred to the amount of galactosamine-containing proteoglycans in cartilage, nearly identical values are obtained (young rats, 80 +/- 30 Bq h-1 mumol-1 GalN; old rats, 85 +/- 35 Bq h-1 mumol-1 GalN). The results support the assumption that the synthesis of proteochondroitin sulfate is diminished in costal cartilage of old rats by a mechanism involving a reduced activity of xylosyltransferase. PMID:7109714

  20. Decreased glutathione S-transferase expression and activity and altered sex steroids in Lake Apopka brown bullheads (Ameriurus nebulosus)

    USGS Publications Warehouse

    Gallagher, E.P.; Gross, T.S.; Sheehy, K.M.

    2001-01-01

    A number of freshwater lakes and reclaimed agricultural sites in Central Florida have been the receiving waters for agrochemical and municipal runoff. One of these sites, Lake Apopka, is also a eutrophic system that has been the focus of several case studies reporting altered reproductive activity linked to bioaccumulation of persistent organochlorine chemicals in aquatic species. The present study was initiated to determine if brown bullheads (Ameriurus nebulosus) from the north marsh of Lake Apopka (Lake Apopka Marsh) exhibit an altered capacity to detoxify environmental chemicals through hepatic glutathione S-transferase (GST)-mediated conjugation as compared with bullheads from a nearby reference site (Lake Woodruff). We also compared plasma sex hormone concentrations (testosterone, 17-?? estradiol, and 11 keto-testosterone) in bullheads from the two sites. Female bullheads from Lake Apopka had 40% lower initial rate GST conjugative activity toward 1-chloro-2,4-dinitrobenzene (CDNB), 50% lower activity towards p-nitrobutyl chloride (NBC), 33% lower activity toward ethacrynic acid (ECA), and 43% lower activity toward ??5-androstene-3,17-dione (??5-ADI), as compared with female bullheads from Lake Woodruff. Enzyme kinetic analyses demonstrated that female bullheads from Lake Apopka had lower GST-catalyzed CDNB clearance than did female Lake Woodruff bullheads. Western blotting studies of bullhead liver cytosolic proteins demonstrated that the reduced GST catalytic activities in female Lake Apopka bullheads were accompanied by lower expression of hepatic GST protein. No site differences were observed with respect to GST activities or GST protein expression in male bullheads. Female Lake Apopka bullheads also had elevated concentrations of plasma androgens (testosterone and 11-ketotestosterone) as compared with females from Lake Woodruff. In contrast, male Lake Apopka bullheads had elevated levels of plasma estrogen but similar levels of androgens as compared with

  1. Glucagon-Like Peptide-1 Receptor Activation in the Ventral Tegmental Area Decreases the Reinforcing Efficacy of Cocaine.

    PubMed

    Schmidt, Heath D; Mietlicki-Baase, Elizabeth G; Ige, Kelsey Y; Maurer, John J; Reiner, David J; Zimmer, Derek J; Van Nest, Duncan S; Guercio, Leonardo A; Wimmer, Mathieu E; Olivos, Diana R; De Jonghe, Bart C; Hayes, Matthew R

    2016-06-01

    Cocaine addiction continues to be a significant public health problem for which there are currently no effective FDA-approved treatments. Thus, there is a clear need to identify and develop novel pharmacotherapies for cocaine addiction. Recent evidence indicates that activation of glucagon-like peptide-1 (GLP-1) receptors in the ventral tegmental area (VTA) reduces intake of highly palatable food. As the neural circuits and neurobiological mechanisms underlying drug taking overlap to some degree with those regulating food intake, these findings suggest that activation of central GLP-1 receptors may also attenuate cocaine taking. Here, we show that intra-VTA administration of the GLP-1 receptor agonist exendin-4 (0.05 μg) significantly reduced cocaine, but not sucrose, self-administration in rats. We also demonstrate that cocaine taking is associated with elevated plasma corticosterone levels and that systemic infusion of cocaine activates GLP-1-expressing neurons in the nucleus tractus solitarius (NTS), a hindbrain nucleus that projects monosynaptically to the VTA. To determine the potential mechanisms by which cocaine activates NTS GLP-1-expressing neurons, we microinjected corticosterone (0.5 μg) directly into the hindbrain fourth ventricle. Intraventricular corticosterone attenuated cocaine self-administration and this effect was blocked in animals pretreated with the GLP-1 receptor antagonist exendin-(9-39) (10 μg) in the VTA. Finally, AAV-shRNA-mediated knockdown of VTA GLP-1 receptors was sufficient to augment cocaine self-administration. Taken together, these findings indicate that increased activation of NTS GLP-1-expressing neurons by corticosterone may represent a homeostatic response to cocaine taking, thereby reducing the reinforcing efficacy of cocaine. Therefore, central GLP-1 receptors may represent a novel target for cocaine addiction pharmacotherapies. PMID:26675243

  2. When Genomics Is Not Enough: Experimental Evidence for a Decrease in LINE-1 Activity During the Evolution of Australian Marsupials.

    PubMed

    Gallus, Susanne; Lammers, Fritjof; Nilsson, Maria Anna

    2016-01-01

    The autonomous transposable element LINE-1 is a highly abundant element that makes up between 15% and 20% of therian mammal genomes. Since their origin before the divergence of marsupials and placental mammals, LINE-1 elements have contributed actively to the genome landscape. A previous in silico screen of the Tasmanian devil genome revealed a lack of functional coding LINE-1 sequences. In this study we present the results of an in vitro analysis from a partial LINE-1 reverse transcriptase coding sequence in five marsupial species. Our experimental screen supports the in silico findings of the genome-wide degradation of LINE-1 sequences in the Tasmanian devil, and identifies a high frequency of degraded LINE-1 sequences in other Australian marsupials. The comparison between the experimentally obtained LINE-1 sequences and reference genome assemblies suggests that conclusions from in silico analyses of retrotransposition activity can be influenced by incomplete genome assemblies from short reads. PMID:27389686

  3. When Genomics Is Not Enough: Experimental Evidence for a Decrease in LINE-1 Activity During the Evolution of Australian Marsupials

    PubMed Central

    Gallus, Susanne; Lammers, Fritjof

    2016-01-01

    The autonomous transposable element LINE-1 is a highly abundant element that makes up between 15% and 20% of therian mammal genomes. Since their origin before the divergence of marsupials and placental mammals, LINE-1 elements have contributed actively to the genome landscape. A previous in silico screen of the Tasmanian devil genome revealed a lack of functional coding LINE-1 sequences. In this study we present the results of an in vitro analysis from a partial LINE-1 reverse transcriptase coding sequence in five marsupial species. Our experimental screen supports the in silico findings of the genome-wide degradation of LINE-1 sequences in the Tasmanian devil, and identifies a high frequency of degraded LINE-1 sequences in other Australian marsupials. The comparison between the experimentally obtained LINE-1 sequences and reference genome assemblies suggests that conclusions from in silico analyses of retrotransposition activity can be influenced by incomplete genome assemblies from short reads. PMID:27389686

  4. Extrusion decreases the negative effects of kidney bean on enzyme and transport activities of the rat small intestine.

    PubMed

    Marzo, F; Milagro, F I; Urdaneta, E; Barrenetxe, J; Ibañez, F C

    2011-10-01

    The objective of the present study was to evaluate the influence of raw and extruded kidney bean (Phaseolus vulgaris L. var. Pinto) consumption on the gut physiology of young growing rats. The intestinal enzyme activity (sucrase, maltase, Na(+) /K(+) ATPase, aminopeptidase N, dipeptidylpeptidase IV, alkaline phosphatase) and the uptake of sugar (d-galactose) and amino acids (l-leucine) were measured in brush border membrane vesicles. Five groups of growing male Wistar rats were fed ad libitum for 15 days on five different 10% protein diets: one containing casein as the main source of protein (Control, C), and four containing raw (RKB1, RKB6) or extruded kidney bean (EKB1, EKB6) at 1% and 6% of total protein content respectively. Extrusion treatment significantly reduced the content of bioactive factors (phytates, tannins) and abolished lectins, trypsin, chymotrypsin, and α-amylase inhibitory activities. Rats fed raw beans (especially RKB6) showed lower growth rate and food intake as compared to those fed extruded legumes, probably due to the high levels of lectins and other anti-nutritive factors in the raw beans. Gut enzymatic activities and uptake of d-galactose and l-leucine were lower in RKB6 and RKB1-fed animals, although they significantly improved in the groups fed extruded beans. Enzymatic activity and uptake in EKB1 were similar to those of casein-fed rats, whereas the uptake and growth rate of EKB6 were different to the control. This is attributable to the higher non-thermolabile biofactor content in the EKB6 diet, especially phytates and tannins, than in EKB1. This article shows the dose-dependent toxicological effects of bioactive factors contained in kidney beans on gut function. The extrusion process reduced their adverse impact on gut physiology and growth rate. PMID:21114542

  5. Mechanical stimulation of skeletal muscle cells mitigates glucocorticoid-induced decreases in prostaglandin production and prostaglandin synthase activity

    NASA Technical Reports Server (NTRS)

    Chromiak, J. A.; Vandenburgh, H. H.

    1994-01-01

    The glucocorticoid dexamethasone (Dex) induces a decline in protein synthesis and protein content in tissue cultured, avian skeletal muscle cells, and this atrophy is attenuated by repetitive mechanical stretch. Since the prostaglandin synthesis inhibitor indomethacin mitigated this stretch attenuation of muscle atrophy, the effects of Dex and mechanical stretch on prostaglandin production and prostaglandin H synthase (PGHS) activity were examined. In static cultures, 10(-8) M Dex reduced PGF2 alpha production 55-65% and PGE2 production 84-90% after 24-72 h of incubation. Repetitive 10% stretch-relaxations of non-Dex-treated cultures increased PGF2 alpha efflux 41% at 24 h and 276% at 72 h, and increased PGE2 production 51% at 24 h and 236% at 72 h. Mechanical stimulation of Dex-treated cultures increased PGF2 alpha production 162% after 24 h, returning PGF2 alpha efflux to the level of non-Dex-treated cultures. At 72 h, stretch increased PGF2 alpha efflux 65% in Dex-treated cultures. Mechanical stimulation of Dex-treated cultures also increased PGE2 production at 24 h, but not at 72 h. Dex reduced PGHS activity in the muscle cultures by 70% after 8-24 h of incubation, and mechanical stimulation of the Dex-treated cultures increased PGHS activity by 98% after 24 h. Repetitive mechanical stimulation attenuates the catabolic effects of Dex on cultured skeletal muscle cells in part by mitigating the Dex-induced declines in PGHS activity and prostaglandin production.

  6. Mechanism of influence of phosphorylation on serine 124 on a decrease of catalytic activity of human thymidylate synthase.

    PubMed

    Jarmuła, Adam; Fraczyk, Tomasz; Cieplak, Piotr; Rode, Wojciech

    2010-05-15

    Regulation by phosphorylation is a well-established mechanism for controlling biological activity of proteins. Recently, phosphorylation of serine 124 in human thymidylate synthase (hTS) has been shown to lower the catalytic activity of the enzyme. To clarify a possible mechanism of the observed influence, molecular dynamics (MD), essential dynamics (ED) and MM-GBSA studies were undertaken. Structures derived from the MD trajectories reveal incorrect binding alignment between the pyrimidine ring of the substrate, dUMP, and the pterine ring of the cofactor analogue, THF, in the active site of the phosphorylated enzyme. The ED analysis indicates changes in the behavior of collective motions in the phosphorylated enzyme, suggesting that the formation of the closed ternary complex is hindered. Computed free energies, in agreement with structural analysis, predict that the binding of dUMP and THF to hTS is favored in the native compared to phosphorylated state of the enzyme. The paper describes at the structural level how phosphorylation at the distant site influences the ligand binding. We propose that the 'phosphorylation effect' is transmitted from the outside loop of Ser 124 into the active site via a subtle mechanism initiated by the long-range electrostatic repulsion between the phosphate groups of dUMP and Ser124. The mechanism can be described in terms of the interplay between the two groups of amino acids: the link (residues 125-134) and the patch (residues 189-192), resulting in the change of orientation of the pyrimidine ring of dUMP, which, in turn, prevents the correct alignment between the latter ring and the pterin ring of THF. PMID:20430630

  7. Mechanism of influence of phosphorylation on serine 124 on a decrease of catalytic activity of human thymidylate synthase

    PubMed Central

    Jarmuła, Adam; Frączyk, Tomasz; Cieplak, Piotr; Rode, Wojciech

    2014-01-01

    Regulation by phosphorylation is a well-established mechanism for controlling biological activity of proteins. Recently, phosphorylation of serine 124 in human thymidylate synthase (hTS) has been shown to lower the catalytic activity of the enzyme. To clarify a possible mechanism of the observed influence, molecular dynamics (MD), essential dynamics (ED) and MM-GBSA studies were undertaken. Structures derived from the MD trajectories reveal incorrect binding alignment between the pyrimidine ring of the substrate, dUMP, and the pterine ring of the cofactor analogue, THF, in the active site of the phosphorylated enzyme. The ED analysis indicates changes in the behavior of collective motions in the phosphorylated enzyme, suggesting that the formation of the closed ternary complex is hindered. Computed free energies, in agreement with structural analysis, predict that the binding of dUMP and THF to hTS is favored in the native compared to phosphorylated state of the enzyme. The paper describes at the structural level how phosphorylation at the distant site influences the ligand binding. We propose that the ‘phosphorylation effect’ is transmitted from the outside loop of Ser 124 into the active site via a subtle mechanism initiated by the long-range electrostatic repulsion between the phosphate groups of dUMP and Ser124. The mechanism can be described in terms of the interplay between the two groups of amino acids: the link (residues 125–134) and the patch (residues 189–192), resulting in the change of orientation of the pyrimidine ring of dUMP, which, in turn, prevents the correct alignment between the latter ring and the pterin ring of THF. PMID:20430630

  8. Fructose decreases physical activity and increases body fat without affecting hippocampal neurogenesis and learning relative to an isocaloric glucose diet

    PubMed Central

    Rendeiro, Catarina; Masnik, Ashley M.; Mun, Jonathan G.; Du, Kristy; Clark, Diana; Dilger, Ryan N.; Dilger, Anna C.; Rhodes, Justin S.

    2015-01-01

    Recent evidence suggests that fructose consumption is associated with weight gain, fat deposition and impaired cognitive function. However it is unclear whether the detrimental effects are caused by fructose itself or by the concurrent increase in overall energy intake. In the present study we examine the impact of a fructose diet relative to an isocaloric glucose diet in the absence of overfeeding, using a mouse model that mimics fructose intake in the top percentile of the USA population (18% energy). Following 77 days of supplementation, changes in body weight (BW), body fat, physical activity, cognitive performance and adult hippocampal neurogenesis were assessed. Despite the fact that no differences in calorie intake were observed between groups, the fructose animals displayed significantly increased BW, liver mass and fat mass in comparison to the glucose group. This was further accompanied by a significant reduction in physical activity in the fructose animals. Conversely, no differences were detected in hippocampal neurogenesis and cognitive/motor performance as measured by object recognition, fear conditioning and rotorod tasks. The present study suggests that fructose per se, in the absence of excess energy intake, increases fat deposition and BW potentially by reducing physical activity, without impacting hippocampal neurogenesis or cognitive function. PMID:25892667

  9. Detecting emotion in others: increased insula and decreased medial prefrontal cortex activation during emotion processing in elite adventure racers.

    PubMed

    Thom, Nathaniel J; Johnson, Douglas C; Flagan, Taru; Simmons, Alan N; Kotturi, Sante A; Van Orden, Karl F; Potterat, Eric G; Swain, Judith L; Paulus, Martin P

    2014-02-01

    Understanding the neural processes that characterize elite performers is a first step to develop a neuroscience model that can be used to improve performance in stressful circumstances. Adventure racers are elite athletes that operate in small teams in the context of environmental and physical extremes. In particular, awareness of team member's emotional status is critical to the team's ability to navigate high-magnitude stressors. Thus, this functional magnetic resonance imaging (fMRI) study examined the hypothesis that adventure racers would show altered emotion processing in brain areas that are important for resilience and social awareness. Elite adventure racers (n = 10) were compared with healthy volunteers (n = 12) while performing a simple emotion face-processing (modified Hariri) task during fMRI. Across three types of emotional faces, adventure racers showed greater activation in right insula, left amygdala and dorsal anterior cingulate. Additionally, compared with healthy controls adventure racers showed attenuated right medial prefrontal cortex activation. These results are consistent with previous studies showing elite performers differentially activate neural substrates underlying interoception. Thus, adventure racers differentially deploy brain resources in an effort to recognize and process the internal sensations associated with emotions in others, which could be advantageous for team-based performance under stress. PMID:23171614

  10. The nature of the atrial receptors responsible for a reflex decrease in activity in renal nerves in the dog

    PubMed Central

    Linden, R. J.; Mary, D. A. S. G.; Weatherill, D.

    1980-01-01

    1. In dogs anaesthetized with chloralose, distension of small balloons in the pulmonary vein—atrial junctions and left atrial appendage, to stimulate left atrial receptors, caused a reduction in activity in efferent renal nerves. This response was maintained during distension of the balloons for 30 min periods. 2. In a second group of dogs, cooling the cervical vagi in steps reduced the magnitude of the response in renal nerves. In seven dogs, the response in fourteen preparations of renal nerves was slightly reduced with the vagi at 18 °C and markedly reduced or abolished at 12 °C. The effect of cooling the vagi was the same as the previously shown effect of cooling on the increase in activity in myelinated afferent vagal fibres during similar stimulation of atrial receptors. 3. In a third group of dogs, the cervical vagi were cooled to 9 °C. In six dogs, fifty-four preparations of renal nerves showed no significant response to distension of the balloons. 4. In a fourth group of dogs, both vagi were sectioned in the neck. In three dogs, twenty-four preparations of renal nerves then showed no response to distension of the balloons. 5. It is concluded that the reduction in activity in efferent renal nerves during distension of small balloons in the pulmonary vein—atrial junctions and left atrial appendage involves only atrial receptors discharging into myelinated vagal fibres. PMID:7381789

  11. Increases in the right dorsolateral prefrontal cortex and decreases the rostral prefrontal cortex activation after-8 weeks of focused attention based mindfulness meditation.

    PubMed

    Tomasino, Barbara; Fabbro, Franco

    2016-02-01

    Mindfulness meditation is a form of attention control training. The training exercises the ability to repeatedly focus attention. We addressed the activation changes related to an 8-weeks mindfulness-oriented focused attention meditation training on an initially naïve subject cohort. Before and after training participants underwent an fMRI experiment, thus, although not strictly a cross over design, they served as their internal own control. During fMRI they exercised focused attention on breathing and body scan as compared to resting. We found increased and decreased activation in different parts of the prefrontal cortex (PFC) by comparing pre- vs. post-mindfulness training (MT) during breathing and body scan meditation exercises that were compared against their own resting state. In the post-MT (vs. pre-MT) meditation increased activation in the right dorsolateral PFC and in the left caudate/anterior insula and decreased activation in the rostral PFC and right parietal area 3b. Thus a brief mindfulness training caused increased activation in areas involved in sustaining and monitoring the focus of attention (dorsolateral PFC), consistent with the aim of mindfulness that is exercising focused attention mechanisms, and in the left caudate/anterior insula involved in attention and corporeal awareness and decreased activation in areas part of the "default mode" network and is involved in mentalizing (rostral PFC), consistent with the ability trained by mindfulness of reducing spontaneous mind wandering. PMID:26720411

  12. Heparin (GAG-hed) inhibits LCR activity of Human Papillomavirus type 18 by decreasing AP1 binding

    PubMed Central

    Villanueva, Rita; Morales-Peza, Néstor; Castelán-Sánchez, Irma; García-Villa, Enrique; Tapia, Rocio; Cid-Arregui, Ángel; García-Carrancá, Alejandro; López-Bayghen, Esther; Gariglio, Patricio

    2006-01-01

    Background High risk HPVs are causative agents of anogenital cancers. Viral E6 and E7 genes are continuously expressed and are largely responsible for the oncogenic activity of these viruses. Transcription of the E6 and E7 genes is controlled by the viral Long Control Region (LCR), plus several cellular transcription factors including AP1 and the viral protein E2. Within the LCR, the binding and activity of the transcription factor AP1 represents a key regulatory event in maintaining E6/E7 gene expression and uncontrolled cell proliferation. Glycosaminoglycans (GAGs), such as heparin, can inhibit tumour growth; they have also shown antiviral effects and inhibition of AP1 transcriptional activity. The purpose of this study was to test the heparinoid GAG-hed, as a possible antiviral and antitumoral agent in an HPV18 positive HeLa cell line. Methods Using in vivo and in vitro approaches we tested GAG-hed effects on HeLa tumour cell growth, cell proliferation and on the expression of HPV18 E6/E7 oncogenes. GAG-hed effects on AP1 binding to HPV18-LCR-DNA were tested by EMSA. Results We were able to record the antitumoral effect of GAG-hed in vivo by using as a model tumours induced by injection of HeLa cells into athymic female mice. The antiviral effect of GAG-hed resulted in the inhibition of LCR activity and, consequently, the inhibition of E6 and E7 transcription. A specific diminishing of cell proliferation rates was observed in HeLa but not in HPV-free colorectal adenocarcinoma cells. Treated HeLa cells did not undergo apoptosis but the percentage of cells in G2/M phase of the cell cycle was increased. We also detected that GAG-hed prevents the binding of the transcription factor AP1 to the LCR. Conclusion Direct interaction of GAG-hed with the components of the AP1 complex and subsequent interference with its ability to correctly bind specific sites within the viral LCR may contribute to the inhibition of E6/E7 transcription and cell proliferation. Our data

  13. Endothelin-1 Impairs Nitric Oxide Signaling in Endothelial Cells Through a Protein Kinase Cδ-Dependent Activation of STAT3 and Decreased Endothelial Nitric Oxide Synthase Expression

    PubMed Central

    Sud, Neetu

    2009-01-01

    In an ovine model of persistent pulmonary hypertension of the newborn (PPHN), endothelin-1 (ET-1) expression is increased, while endothelial nitric oxide synthase (eNOS) expression is decreased. However, the molecular mechanisms by which ET-1 attenuates eNOS expression in endothelial cells are not completely understood. Thus, the goal of this study was to determine if the overexpression of ET-1 decreases eNOS expression in pulmonary arterial endothelial cells isolated from fetal lambs. To increase the ET-1 expression, cells were transfected with a plasmid coding for Prepro-ET-1, a precursor of ET-1. After overexpression of Prepro-ET-1, ET-1 levels in the culture medium were significantly increased (control = 805.3 ± 69.8; Prepro-ET-1 overexpression = 1351 ± 127.9). eNOS promoter activity, protein levels, and NO generation were all significantly decreased by the overexpression of Prepro-ET-1. The decrease in transcription correlated with increased activity of protein kinase Cδ (PKCδ) and STAT3. Further, DNA binding activity of STAT3 was also increased by Prepro-ET-1 overexpression. The increase in STAT3 activity and decrease in eNOS promoter activity were inhibited by the overexpression of dominant negative mutants of PKCδ or STAT3. Further, a 2 bp mutation in the STAT3 binding site in the eNOS promoter inhibited STAT3 binding and led to enhanced promoter activity in the presence of Prepro-ET-1 overexpression. In conclusion, ET-1 secretion is increased by Prepro-ET-1 overexpression. This results in activation of PKCδ, which phosphorylates STAT3, increasing its binding to the eNOS promoter. This in turn decreases eNOS promoter activity, protein levels, and NO production. Thus, ET-1 can reduce eNOS expression and NO generation in fetal pulmonary artery endothelial cells through PKCδ-mediated activation of STAT3. PMID:19754268

  14. Decreased physical activity and cardiorespiratory fitness in adults with ankylosing spondylitis: a cross-sectional controlled study.

    PubMed

    O'Dwyer, Tom; O'Shea, Finbar; Wilson, Fiona

    2015-11-01

    The health benefits of physical activity (PA) in the general population are numerous; however, few studies have measured PA among adults with ankylosing spondylitis (AS). The aims of this study were to: (1) objectively measure the PA levels and cardiorespiratory fitness of adults with AS and compare these to population controls, and (2) examine the relationships between PA, cardiorespiratory function and condition-specific outcomes. This cross-sectional study included participants (>18 years) meeting the modified New York criteria for AS, and matched population controls. Exclusion criteria were the presence of comorbidities limiting PA, or recent changes in medication usage. Participants completed clinical questionnaires assessing disease activity, physical function and quality of life. Tri-axial accelerometers recorded habitual PA over 1 week. Cardiorespiratory fitness was assessed by submaximal treadmill test with breath-by-breath gas analysis and heart rate monitoring. Thirty-nine adults with AS and 39 controls were recruited. The AS group spent significantly less time performing vigorous-intensity PA than controls [mean difference (95 % CI) 1.8 min/day (1.2-2.7)] and performed significantly fewer bouts of health-enhancing PA [1.7 min/day (1.1-2.5)]. The AS group had significantly lower predicted VO(2MAX) than controls [6.0 mL kg(-1) min(-1) (1.8-10.1)]. PA was associated with aerobic capacity. Sedentary time was associated with disease activity and physical function. Adults with AS participate in less health-enhancing PA than population controls. Fewer than half meet PA recommendations, despite exercise being a key component of AS management. Explorations of PA behaviour and strategies to increase PA participation are needed. PMID:26254884

  15. Decreased spontaneous activity in AMPK α2 muscle specific kinase dead mice is not caused by changes in brain dopamine metabolism.

    PubMed

    Møller, Lisbeth L V; Sylow, Lykke; Gøtzsche, Casper R; Serup, Annette K; Christiansen, Søren H; Weikop, Pia; Kiens, Bente; Woldbye, David P D; Richter, Erik A

    2016-10-01

    It is well known that physical activity has several health benefits, yet many people do not exercise. Dopamine levels in the striatum of the brain are thought to be important for the motivation to exercise. Conversely, we hypothesized that muscle quality can affect the motivation to exercise through alterations of the brain dopamine levels specifically in the striatal region. To test this hypothesis, transgenic mice overexpressing an inactivatable dominant negative α2 AMPK construct (AMPK α2 KD) in muscles and littermate wildtype (WT) mice were tested. AMPK α2 KD mice have impaired running capacity and display reduced voluntary wheel running activity. Striatal content of dopamine and its metabolites were measured under basal physiological conditions and after cocaine-induced dopamine efflux from the ventral striatum by in vivo microdialysis. Moreover, cocaine-induced locomotor activity was tested in an open field test. Furthermore, we investigated maximal running capacity and voluntary running over a period of 19days. AMPK α2 KD mice ran 30% less in daily distance compared to WT. Furthermore, AMPK α2 KD mice showed significantly decreased locomotor activity in the open field test compared to WT when treated with saline or cocaine, respectively, but the increase induced by cocaine was similar in AMPK α2 KD and WT mice. The efflux of dopamine in ventral striatum after cocaine treatment increased similarly by 2.5-fold in the two genotypes, and basal levels of dopamine and its metabolites DOPAC and HVA were also similar between genotypes. These findings show that decreased AMPK activity in muscle leads to decreased voluntary activity which is not due to secondary abnormalities in dopamine levels in the ventral striatum or sensitivity to cocaine. Thus, decreased voluntary activity in AMPK muscle deficient mice is most likely unrelated to regulation of brain dopamine content and metabolism. PMID:27306083

  16. Chicoric acid binds to two sites and decreases the activity of the YopH bacterial virulence factor

    PubMed Central

    Kuban-Jankowska, Alicja; Sahu, Kamlesh K.; Gorska, Magdalena; Tuszynski, Jack A.; Wozniak, Michal

    2016-01-01

    Chicoric acid (CA) is a phenolic compound present in dietary supplements with a large spectrum of biological properties reported ranging from antioxidant, to antiviral, to immunostimulatory properties. Due to the fact that chicoric acid promotes phagocytic activity and was reported as an allosteric inhibitor of the PTP1B phosphatase, we examined the effect of CA on YopH phosphatase from pathogenic bacteria, which block phagocytic processes of a host cell. We performed computational studies of chicoric acid binding to YopH as well as validation experiments with recombinant enzymes. In addition, we performed similar studies for caffeic and chlorogenic acids to compare the results. Docking experiments demonstrated that, from the tested compounds, only CA binds to both catalytic and secondary binding sites of YopH. Our experimental results showed that CA reduces activity of recombinant YopH phosphatase from Yersinia enterocolitica and human CD45 phosphatase. The inhibition caused by CA was irreversible and did not induce oxidation of catalytic cysteine. We proposed that inactivation of YopH induced by CA is involved with allosteric inhibition by interacting with essential regions responsible for ligand binding. PMID:26735581

  17. Activating HSP72 in rodent skeletal muscle increases mitochondrial number and oxidative capacity and decreases insulin resistance.

    PubMed

    Henstridge, Darren C; Bruce, Clinton R; Drew, Brian G; Tory, Kálmán; Kolonics, Attila; Estevez, Emma; Chung, Jason; Watson, Nadine; Gardner, Timothy; Lee-Young, Robert S; Connor, Timothy; Watt, Matthew J; Carpenter, Kevin; Hargreaves, Mark; McGee, Sean L; Hevener, Andrea L; Febbraio, Mark A

    2014-06-01

    Induction of heat shock protein (HSP)72 protects against obesity-induced insulin resistance, but the underlying mechanisms are unknown. Here, we show that HSP72 plays a pivotal role in increasing skeletal muscle mitochondrial number and oxidative metabolism. Mice overexpressing HSP72 in skeletal muscle (HSP72Tg) and control wild-type (WT) mice were fed either a chow or high-fat diet (HFD). Despite a similar energy intake when HSP72Tg mice were compared with WT mice, the HFD increased body weight, intramuscular lipid accumulation (triacylglycerol and diacylglycerol but not ceramide), and severe glucose intolerance in WT mice alone. Whole-body VO2, fatty acid oxidation, and endurance running capacity were markedly increased in HSP72Tg mice. Moreover, HSP72Tg mice exhibited an increase in mitochondrial number. In addition, the HSP72 coinducer BGP-15, currently in human clinical trials for type 2 diabetes, also increased mitochondrial number and insulin sensitivity in a rat model of type 2 diabetes. Together, these data identify a novel role for activation of HSP72 in skeletal muscle. Thus, the increased oxidative metabolism associated with activation of HSP72 has potential clinical implications not only for type 2 diabetes but also for other disorders where mitochondrial function is compromised. PMID:24430435

  18. Chicoric acid binds to two sites and decreases the activity of the YopH bacterial virulence factor.

    PubMed

    Kuban-Jankowska, Alicja; Sahu, Kamlesh K; Gorska, Magdalena; Tuszynski, Jack A; Wozniak, Michal

    2016-01-19

    Chicoric acid (CA) is a phenolic compound present in dietary supplements with a large spectrum of biological properties reported ranging from antioxidant, to antiviral, to immunostimulatory properties. Due to the fact that chicoric acid promotes phagocytic activity and was reported as an allosteric inhibitor of the PTP1B phosphatase, we examined the effect of CA on YopH phosphatase from pathogenic bacteria, which block phagocytic processes of a host cell. We performed computational studies of chicoric acid binding to YopH as well as validation experiments with recombinant enzymes. In addition, we performed similar studies for caffeic and chlorogenic acids to compare the results. Docking experiments demonstrated that, from the tested compounds, only CA binds to both catalytic and secondary binding sites of YopH. Our experimental results showed that CA reduces activity of recombinant YopH phosphatase from Yersinia enterocolitica and human CD45 phosphatase. The inhibition caused by CA was irreversible and did not induce oxidation of catalytic cysteine. We proposed that inactivation of YopH induced by CA is involved with allosteric inhibition by interacting with essential regions responsible for ligand binding. PMID:26735581

  19. Decrease in the transmembrane sodium activity gradient in ferret papillary muscle as a prerequisite to the calcium paradox.

    PubMed Central

    Guarnieri, T

    1988-01-01

    Sodium-dependent calcium exchange may be an important mediator of calcium reperfusion damage during the calcium paradox phenomenon. We measured intracellular sodium activity with ion-selective electrodes during a 15-min period of calcium reperfusion in isolated ferret papillary muscles. During the calcium-free period, alpha Nai increased from 9.0 +/- 0.9 to 18.9 +/- 4.3 mM. With reinstitution of calcium there was a significant contracture. The amount of contracture after calcium reinstitution was related to sodium loading during the calcium-free period. We were unable to block sodium entry during the calcium-free period with either nitrendipine, tetrodotoxin, or low concentrations of amiloride. 10(-3) M amiloride or lithium for sodium substitution in the calcium-free period, however, obliterated the increase in alpha Nai activity and the subsequent paradox. These data suggest that sodium loading is a necessary prerequisite for the calcium paradox and that one mechanism of sodium entry is through Na+/Ca2+ exchange. Under these conditions, no increase in the rest force is seen without previous sodium gains, suggesting that sodium-dependent calcium exchange is an important trigger for the calcium reflow, the calcium paradox. PMID:2454951

  20. Enhanced photosynthetic performance and growth as a consequence of decreasing mitochondrial malate dehydrogenase activity in transgenic tomato plants.

    PubMed

    Nunes-Nesi, Adriano; Carrari, Fernando; Lytovchenko, Anna; Smith, Anna M O; Loureiro, Marcelo Ehlers; Ratcliffe, R George; Sweetlove, Lee J; Fernie, Alisdair R

    2005-02-01

    Transgenic tomato (Solanum lycopersicum) plants expressing a fragment of the mitochondrial malate dehydrogenase gene in the antisense orientation and exhibiting reduced activity of this isoform of malate dehydrogenase show enhanced photosynthetic activity and aerial growth under atmospheric conditions (360 ppm CO2). In comparison to wild-type plants, carbon dioxide assimilation rates and total plant dry matter were up to 11% and 19% enhanced in the transgenics, when assessed on a whole-plant basis. Accumulation of carbohydrates and redox-related compounds such as ascorbate was also markedly elevated in the transgenics. Also increased in the transgenic plants was the capacity to use L-galactono-lactone, the terminal precursor of ascorbate biosynthesis, as a respiratory substrate. Experiments in which ascorbate was fed to isolated leaf discs also resulted in increased rates of photosynthesis providing strong indication for an ascorbate-mediated link between the energy-generating processes of respiration and photosynthesis. This report thus shows that the repression of this mitochondrially localized enzyme improves both carbon assimilation and aerial growth in a crop species. PMID:15665243

  1. Long-term decrease in Na+,K+-ATPase activity after pilocarpine-induced status epilepticus is associated with nitration of its alpha subunit.

    PubMed

    Funck, Vinícius Rafael; Ribeiro, Leandro Rodrigo; Pereira, Letícia Meier; de Oliveira, Clarissa Vasconcelos; Grigoletto, Jéssica; Fighera, Michele Rechia; Royes, Luiz Fernando Freire; Furian, Ana Flávia; Oliveira, Mauro Schneider

    2014-12-01

    Temporal lobe epilepsy (TLE) is the most common type of epilepsy with about one third of TLE patients being refractory to antiepileptic drugs. Knowledge about the mechanisms underlying seizure activity is fundamental to the discovery of new drug targets. Brain Na(+),K(+)-ATPase activity contributes to the maintenance of the electrochemical gradients underlying neuronal resting and action potentials as well as the uptake and release of neurotransmitters. In the present study we tested the hypothesis that decreased Na(+),K(+)-ATPase activity is associated with changes in the alpha subunit phosphorylation and/or redox state. Activity of Na(+),K(+)-ATPase decreased in the hippocampus of C57BL/6 mice 60 days after pilocarpine-induced status epilepticus (SE). In addition, the Michaelis-Menten constant for ATP of α2/3 isoforms increased at the same time point. Nitration of the α subunit may underlie decreased Na(+),K(+)-ATPase activity, however no changes in expression or phosphorylation state at Ser(943) were found. Further studies are necessary define the potential of nitrated Na(+),K(+)-ATPase as a new therapeutic target for seizure disorders. PMID:25311690

  2. Decrease and increase in brain activity during visual perceptual priming: an fMRI study on similar but perceptually different complex visual scenes.

    PubMed

    Blondin, François; Lepage, Martin

    2005-01-01

    A robust finding among functional neuroimaging studies on visual priming is decreased neural activity in extrastriate and inferior prefrontal cortices for the second presentation of an object relative to its first presentation. This effect can also be observed for different but perceptually similar objects that are alternative exemplars of the initially presented object (e.g. two different pencils). An unanswered question is whether this decrease in activity can be found for the successive presentation of similar complex visual scenes. We used a test in which landscape pictures were divided vertically into three segments. A first segment was presented and followed several stimuli later by a second related segment. Reaction times were faster for the presentation of the second segment relative to the first one. Although perceptually different from the first segment, the presentation of the second segment was nonetheless associated with reduced activity in late stage visual processing areas including parahippocampal/fusiform gyri bilaterally, left middle occipital and temporal gyri, right inferior temporal and superior occipital gyri, and in left inferior frontal gyrus. The observed decreases in activity in these regions replicate results on priming of different exemplars of single objects while further extending these results to similar complex visual scenes. The presentation of the second segment was also associated with increased activity mainly in frontal and parietal regions, two areas known to be associated with memory retrieval. In sum, priming effects can also occur for complex visual scenes that are intrinsically different from each other although similar in their composition. PMID:16168731

  3. Factor H uptake regulates intracellular C3 activation during apoptosis and decreases the inflammatory potential of nucleosomes.

    PubMed

    Martin, M; Leffler, J; Smoląg, K I; Mytych, J; Björk, A; Chaves, L D; Alexander, J J; Quigg, R J; Blom, A M

    2016-05-01

    Factor H (FH) binds apoptotic cells to limit the inflammatory potential of complement. Here we report that FH is actively internalized by apoptotic cells to enhance cathepsin L-mediated cleavage of endogenously expressed C3, which results in increased surface opsonization with iC3b. In addition, internalized FH forms complexes with nucleosomes, facilitates their phagocytosis by monocytes and induces an anti-inflammatory biased cytokine profile. A similar cytokine response was noted for apoptotic cells coated with FH, confirming that FH diminishes the immunogenic and inflammatory potential of autoantigens. These findings were supported by in vivo observations from CFH(-/-) MRL-lpr mice, which exhibited higher levels of circulating nucleosomes and necrotic cells than their CFH(+/+) littermates. This unconventional function of FH broadens the established view of apoptotic cell clearance and appears particularly important considering the strong associations with genetic FH alterations and diseases such as systemic lupus erythematosus and age-related macular degeneration. PMID:26768663

  4. Adolescent fluoxetine treatment decreases the effects of neonatal immune activation on anxiety-like behavior in mice.

    PubMed

    Majidi-Zolbanin, Jafar; Azarfarin, Maryam; Samadi, Hanieh; Enayati, Mohsen; Salari, Ali-Akbar

    2013-08-01

    Experimental studies have shown conflicting effects of neonatal infection on anxiety-like behaviors and hypothalamic-pituitary-adrenal (HPA) axis activity in adult rats. We investigated for the first time whether neonatal exposure to lipopolysaccharide (LPS) is associated with increased levels of anxiety-like behaviors in mice. Moreover, there have been several studies showing that adolescent fluoxetine (FLX) treatment can influence HPA axis development and prevent occurrence of psychiatric disorders induced by common early-life insults. In the present study, we also investigated the effects of adolescent FLX exposure following neonatal immune activation on anxiety-like behavior in mice. Neonatal mice were treated to LPS (50μg/kg) or saline on postnatal days (PND) 3 and 5, then male and female mice of both neonatal intervention groups received oral administration of FLX (5 and 10mg/kg/day) or water via regular drinking bottles during the adolescent period (PNDs 35-65). The results showed that postnatal immune challenge increased anxiety-like behavior in the open field, elevated plus-maze and light-dark box in adult mice (PND 90). Furthermore, the adolescent FLX treatment inhibited the anxiety-like behavior induced by neonatal infection in both sexes. However, this study indicates the negative effects of the FLX on normal behavioral symptoms in male control mice. Taken together, the current data provide experimental evidence that neonatal infection increases anxiety levels in male and female mice in adulthood. Additionally, the findings of this study support the hypothesis that an early pharmacological intervention with FLX may be an effective treatment for reducing the behavioral abnormalities induced by common early-life insults. PMID:23669137

  5. Fish oil supplementation decreases oxidative stress but does not affect platelet-activating factor bioactivity in lungs of asthmatic rats.

    PubMed

    Zanatta, A L; Miranda, D T S Z; Dias, B C L; Campos, R M; Massaro, M C; Michelotto, P V; West, A L; Miles, E A; Calder, P C; Nishiyama, A

    2014-07-01

    Dietary fish oil supplementation increases the content of n-3 polyunsaturated fatty acids (PUFA) in cellular membranes. The highly unsaturated nature of n-3 PUFA could result in an enhanced lipid peroxidation in the oxidative environment characteristic of asthma. The oxidative reaction cascade culminates in an increased production of components associated to oxidative stress and of an important proinflammatory mediator platelet-activating factor (PAF)-like lipid. We evaluated the effect of fish oil supplementation in asthmatic rats upon the PAF bioactivity and parameters related to oxidative stress in the lung. Fish oil supplementation of asthmatic rats resulted in lower concentrations of nitrite (1.719 ± 0.137 vs. 2.454 ± 0.163 nmol/mL) and lipid hydroperoxide (72.190 ± 7.327 vs. 120.200 ± 11.270 nmol/mg protein). In asthmatic animals, fish oil increased the activities of superoxide dismutase (EC 1.15.1.1) (33.910 ± 2.325 vs. 24.110 ± 0.618 U/mg protein) and glutathione peroxidase (EC 1.11.1.9) (164.100 ± 31.250 vs. 12.590 ± 5.234 U/mg protein). However, fish oil did not affect PAF bioactivity in lung tissue of asthmatic rats (0.545 ± 0.098 340/380 vs. 0.669 ± 0.101 340/380 nm ratio). Considering the two-step process--oxidative stress and PAF bioactivity--fish oil exhibited a divergent action on these aspects of asthmatic inflammation, since the supplement lowered oxidative stress in the lungs of asthmatic rats, presenting an antioxidant effect, but did not affect PAF bioactivity. This suggests a dual effect of fish oil on oxidative stress and inflammation in asthma. PMID:24858941

  6. Luteinizing Hormone Reduces the Activity of the NPR2 Guanylyl Cyclase in Mouse Ovarian Follicles, Contributing to the Cyclic GMP Decrease that Promotes Resumption of Meiosis in Oocytes

    PubMed Central

    Robinson, Jerid W.; Zhang, Meijia; Shuhaibar, Leia C.; Norris, Rachael P.; Geerts, Andreas; Wunder, Frank; Eppig, John J.; Potter, Lincoln R.; Jaffe, Laurinda A.

    2012-01-01

    In preovulatory ovarian follicles of mice, meiotic prophase arrest in the oocyte is maintained by cyclic GMP from the surrounding granulosa cells that diffuses into the oocyte through gap junctions. The cGMP is synthesized in the granulosa cells by the transmembrane guanylyl cyclase natriuretic peptide receptor 2 (NPR2) in response to the agonist C-type natriuretic peptide (CNP). In response to luteinizing hormone (LH), cGMP in the granulosa cells decreases, and as a consequence, oocyte cGMP decreases and meiosis resumes. Here we report that within 20 minutes, LH treatment results in decreased guanylyl cyclase activity of NPR2, as determined in the presence of a maximally activating concentration of CNP. This occurs by a process that does not reduce the amount of NPR2 protein. We also show that by a slower process, first detected at 2 hours, LH decreases the amount of CNP available to bind to the receptor. Both of these LH actions contribute to decreasing cGMP in the follicle, thus signaling meiotic resumption in the oocyte. PMID:22546688

  7. A Wasp Manipulates Neuronal Activity in the Sub-Esophageal Ganglion to Decrease the Drive for Walking in Its Cockroach Prey

    PubMed Central

    Gal, Ram; Libersat, Frederic

    2010-01-01

    Background The parasitoid Jewel Wasp hunts cockroaches to serve as a live food supply for its offspring. The wasp stings the cockroach in the head and delivers a cocktail of neurotoxins directly inside the prey's cerebral ganglia. Although not paralyzed, the stung cockroach becomes a living yet docile ‘zombie’, incapable of self-initiating spontaneous or evoked walking. We show here that such neuro-chemical manipulation can be attributed to decreased neuronal activity in a small region of the cockroach cerebral nervous system, the sub-esophageal ganglion (SEG). A decrease in descending permissive inputs from this ganglion to thoracic central pattern generators decreases the propensity for walking-related behaviors. Methodology and Principal Findings We have used behavioral, neuro-pharmacological and electrophysiological methods to show that: (1) Surgically removing the cockroach SEG prior to wasp stinging prolongs the duration of the sting 5-fold, suggesting that the wasp actively targets the SEG during the stinging sequence; (2) injecting a sodium channel blocker, procaine, into the SEG of non-stung cockroaches reversibly decreases spontaneous and evoked walking, suggesting that the SEG plays an important role in the up-regulation of locomotion; (3) artificial focal injection of crude milked venom into the SEG of non-stung cockroaches decreases spontaneous and evoked walking, as seen with naturally-stung cockroaches; and (4) spontaneous and evoked neuronal spiking activity in the SEG, recorded with an extracellular bipolar microelectrode, is markedly decreased in stung cockroaches versus non-stung controls. Conclusions and Significance We have identified the neuronal substrate responsible for the venom-induced manipulation of the cockroach's drive for walking. Our data strongly support previous findings suggesting a critical and permissive role for the SEG in the regulation of locomotion in insects. By injecting a venom cocktail directly into the SEG, the

  8. Decreased Frequencies of Circulating CD4+ T Follicular Helper Cells Associated with Diminished Plasma IL-21 in Active Pulmonary Tuberculosis

    PubMed Central

    Kumar, Nathella Pavan; Sridhar, Rathinam; Hanna, Luke E.; Banurekha, Vaithilingam V.; Nutman, Thomas B.; Babu, Subash

    2014-01-01

    Background Circulating T follicular helper (Tfh) cells represent a distinct subset of CD4+ T cells and are important in immunity to infections. Although they have been shown to play a role in experimental models of tuberculosis infection, their role in human tuberculosis remains unexplored. Aims/Methodology To determine the distribution of circulating Tfh cells in human TB, we measured the frequencies of Tfh cells ex vivo and following TB - antigen or polyclonal stimulation in pulmonary TB (PTB; n = 30) and latent TB (LTB; n = 20) individuals, using the markers CXCR5, PD-1 and ICOS. Results We found that both ex vivo and TB - antigen induced frequencies of Tfh cell subsets was significantly lower in PTB compared to LTB individuals. Similarly, antigen induced frequencies of Tfh cells expressing IL-21 was also significantly lower in PTB individuals and this was reflected in diminished circulating levels of IL-21 and IFNγ. This was not accompanied by diminished frequencies of activated or memory B cell subsets. Finally, the diminution in frequency of Tfh cells in PTB individuals was dependent on IL-10, CTLA-4 and PD-L1 in vitro. Conclusions Thus, PTB is characterized by adiminution in the frequency of Tfh cell subsets. PMID:25343703

  9. Inhibition of host extracellular signal-regulated kinase (ERK) activation decreases new world alphavirus multiplication in infected cells.

    PubMed

    Voss, Kelsey; Amaya, Moushimi; Mueller, Claudius; Roberts, Brian; Kehn-Hall, Kylene; Bailey, Charles; Petricoin, Emanuel; Narayanan, Aarthi

    2014-11-01

    New World alphaviruses belonging to the family Togaviridae are classified as emerging infectious agents and Category B select agents. Our study is focused on the role of the host extracellular signal-regulated kinase (ERK) in the infectious process of New World alphaviruses. Infection of human cells by Venezuelan equine encephalitis virus (VEEV) results in the activation of the ERK-signaling cascade. Inhibition of ERK1/2 by the small molecule inhibitor Ag-126 results in inhibition of viral multiplication. Ag-126-mediated inhibition of VEEV was due to potential effects on early and late stages of the infectious process. While expression of viral proteins was down-regulated in Ag-126 treated cells, we did not observe any influence of Ag-126 on the nuclear distribution of capsid. Finally, Ag-126 exerted a broad-spectrum inhibitory effect on New World alphavirus multiplication, thus indicating that the host kinase, ERK, is a broad-spectrum candidate for development of novel therapeutics against New World alphaviruses. PMID:25261871

  10. Inhibition of STAT3 with orally active JAK inhibitor, AZD1480, decreases tumor growth in Neuroblastoma and Pediatric Sarcomas In vitro and In vivo.

    PubMed

    Yan, Shuang; Li, Zhijie; Thiele, Carol J

    2013-03-01

    The IL-6/JAK/STAT pathway is a key signal transduction pathway implicated in the pathogenesis of many human cancers, suggesting that kinase inhibitors targeting JAK/STAT3 may have a broad spectrum of antitumor activity. AZD1480, a pharmacological JAK1/2 inhibitor, exhibits anti-tumor potency in multiple adult malignancies. To evaluate the efficacy of inhibition of JAK/STAT3 signal transduction pathway we assessed the activity of AZD1480 in pediatric malignancies using preclinical models of three highly malignant pediatric solid tumors: neuroblastoma (NB), rhabdomyosarcoma (RMS) and the Ewing Sarcoma Family Tumors (ESFT). In this study, we employed panels of biomedical and biological experiments to evaluate the in vitro and in vivo activity of AZD1480 in NB, RMS and ESFT. Our data indicate that AZD1480 blocks endogenous as well as IL-6 induced STAT3 activation. AZD1480 decreases cell viability in 7/7NB, 7/7RMS and 2/2 ESFT cell lines (median EC50 is 1.5 μM, ranging from 0.36-5.37 μM). AZD1480 induces cell growth inhibition and caspase-dependent apoptosis in vitro and decreases expression of STAT3 target genes, including cell cycle regulators CyclinD1, 3 and CDC25A, anti-apoptotic genes Bcl-2 and survivin, the metastasis-related factor TIMP-1 and c-Myc. In vivo studies showed AZD1480 significantly decreased tumor growth and prolonged overall survival in tumor-bearing mice. Tumors from AZD1480-treated mice showed inhibition of activated STAT3 as well as decreased expression of STAT3 downstream targets. Our study provides strong evidence of the anti-tumor growth potency of JAK inhibitor AZD1480 in pediatric solid tumors, providing proof-of principle that inhibition of the JAK/STAT3 signal transduction could be a promising therapeutic target for high-risk pediatric solid tumors. PMID:23531921

  11. Decreased glutamine synthetase, increased citrulline-nitric oxide cycle activities, and oxidative stress in different regions of brain in epilepsy rat model.

    PubMed

    Swamy, Mummedy; Yusof, Wan Roslina Wan; Sirajudeen, K N S; Mustapha, Zulkarnain; Govindasamy, Chandran

    2011-03-01

    To understand their role in epilepsy, the nitric oxide synthetase (NOS), argininosuccinate synthetase (AS), argininosuccinate lyase (AL), glutamine synthetase (GS), and arginase activities, along with the concentration of nitrate/nitrite (NOx), thiobarbituric acid reactive substances (TBARS), and total antioxidant status (TAS), were estimated in different regions of brain in rats subjected to experimental epilepsy induced by subcutaneous administration of kainic acid (KA). The short-term (acute) group animals were killed after 2 h and the long term (chronic) group animals were killed after 5 days of single injection of KA (15 mg/kg body weight). After decapitation of rats, the brain regions were separated and in their homogenates, the concentration of NOx, TBARS and TAS and the activities of NOS, AS, AL, arginase and glutamine synthetase were assayed by colorimetric methods. The results of the study demonstrated the increased activity of NOS and formation of NO in acute and chronic groups epilepsy. The activities of AS and AL were increased and indicate the effective recycling of citrulline to arginine. The activity of glutamine synthetase was decreased in acute and chronic groups of epilepsy compared to control group and indicate the modulation of its activity by NO in epilepsy. The activity of arginase was not changed in acute group; however it was decreased in chronic group and may favor increased production of NO in this condition. The concentration TBARS were increased and TAS decreased in acute and chronic groups of epilepsy and supports the oxidative stress in epilepsy. PMID:20960085

  12. Calcium(II)(3) (3,5-Diisopropylsalicylate)(6)(H(2)O)(6) Activates Nitric Oxide Synthase: An Accounting for its Action in Decreasing Platelet Aggregation.

    PubMed

    Donham, D C; Sorenson, J R

    2000-01-01

    Purposes of these studies were first; to determine whether or not Calcium(II)(3) (3,5- diisopropylsalicylate)(6)(H(2)O)(6) [Ca(II)(3)(3,5-DIPS)(6)], a lipophilic calcium complex, could decrease activated-platelet aggregation, and second; to determine whether or not it is plausible that Ca(II)(3)(3,5-DIPS)(6) decreases activated-platelet aggregation by facilitating the synthesis of Nitric Oxide (NO) by Nitric Oxide Synthase (NOS). The influence of Ca(II)(3)(3,5-DIPS)(6) on the initial rate of activated-platelet aggregation was determined by measuring the decrease in rate of increase in transmission at 550 nm for a suspension of Thrombin-CaCl(2) activated platelets following the addition of 0, 50, 100, 250, or 500 muM Ca(II)(3)(3,5-DIPS)(6). To establish that the Ca(lI)(3)(3,5- DIPS)(6)-mediated decrease in aggregation was due to activation of NOS, the effect of L-NMMA, an inhibitor of NOS, on the inhibition of platelet aggregation by Ca(II)(3)(3,5-DIPS)(6) was determined using a suspension of activated platelets contaimng 0 or 250 muM Ca(II)(3)(3,5-DIPS)(6) without or with 1 mM L-NMMA. An in vitro Bovine Brain NOS reaction mixture, containing CaCl(2) for the activation of Phosphodiesterase-3' ,5'-Cyclic Nucleotide Activator required for the activation of NOS, was used to determine whether or not Ca(II)(3)(3,5-DIPS)(6) could be used as a substitute for the addition of Ca. The decrease in absorbance at 340 nm, lambda maximum for NADPH, was measured to determine NOS activity following the addition of NOS to the complete reaction mixture containing either CaCl(2), Ca(II)(3)(3,5-DIPS)(6), or neither Ca compound. Increasing the concentration of Ca(II)(3)(3,5-DIPS)(6) caused a concentration related decrease in activated platelet aggregation. The addition of L-NMMA to activated platelets, in the absence of Ca(II)(3)(3,5-DIPS)(6), caused a 129% increase in initial rate of platelet aggregation. The initial rate of platelet aggregation decreased 74% with the addition of 250 mu

  13. Increased CDA expression/activity in males contributes to decreased cytidine analogue half-life and likely contributes to worse outcomes with 5-azacytidine or decitabine therapy

    PubMed Central

    Mahfouz, Reda Z; Jankowska, Ania; Ebrahem, Quteba; Gu, Xiaorong; Visconte, Valeria; Tabarroki, Ali; Terse, Pramod; Covey, Joseph; Chan, Kenneth; Ling, Yonghua; Engelke, Kory J.; Sekeres, Mikkael A.; Tiu, Ramon; Maciejewski, Jaroslaw; Radivoyevitch, Tomas; Saunthararajah, Yogen

    2013-01-01

    Purpose The cytidine analogues 5-azacytidine and decitabine, used to treat myelodysplastic syndromes (MDS), produce a molecular epigenetic effect, depletion of DNA-methyltransferase (DNMT1). This action is S-phase dependent. Hence, genetic factors that decrease the half-lives of these drugs could impact efficacy. Documentation of such impact, and elucidation of underlying mechanisms, could lead to improved clinical application. Design Cytidine deaminase (CDA) rapidly inactivates 5-azacytidine/decitabine. The effect of CDA SNP A79C and gender on CDA expression, enzyme activity and drug pharmacokinetics/pharmacodynamics was examined in mice and humans, and the impact on overall survival (OS) was evaluated in 5-azacytidine/decitabine-treated MDS patients (n=90) and cytarabine-treated acute myeloid leukemia (AML) patients (n=76). Results By HPLC, plasma CDA activity was decreased as expected in individuals with the SNP A79C. Interestingly and significantly, there was an even larger decrease in females compared to males. Explaining this decrease, liver CDA expression was significantly lower in female versus male mice. As expected, decitabine plasma levels, measured by mass-spectrometry, were significantly higher in females. In mathematical modeling, the detrimental impact of shorter drug half-life (e.g., in males) was greater in low compared to high S-phase fraction disease (e.g., MDS versus AML), since in high S-phase fraction disease, even a short exposure treats a major portion of cells. Accordingly, in multivariate analysis, OS was significantly worse in male versus female MDS patients treated with 5-azacytidine/decitabine. Conclusions Increased CDA expression/activity in males contributes to decreased cytidine analogue half-life and likely contributes to worse outcomes with 5-azacytidine or decitabine therapy. PMID:23287564

  14. Decreased Cystathionine-γ-lyase (CSE) Activity in Livers of Type 1 Diabetic Rats and Peripheral Blood Mononuclear Cells (PBMC) of Type 1 Diabetic Patients*

    PubMed Central

    Manna, Prasenjit; Gungor, Neslihan; McVie, Robert; Jain, Sushil K.

    2014-01-01

    The liver plays a major role in the formation of H2S, a novel signaling molecule. Diabetes is associated with lower blood levels of H2S. This study investigated the activities of cystathionine-γ-lyase (CSE, the enzyme that catalyzes H2S formation) in livers of type 1 diabetic (T1D) animals and in peripheral blood mononuclear cells (PBMC) isolated from T1D patients. T1D is associated with both hyperketonemia (acetoacetate and β-hydroxybutyrate) and hyperglycemia. This study also examined the role of hyperglycemia and hyperketonemia per se in decreased CSE activity using U937 monocytes and PBMC isolated from healthy subjects. Livers from streptozotocin-treated T1D rats demonstrated a significantly higher reactive oxygen species production, lower CSE protein expression and activity, and lower H2S formation compared with those of controls. Studies with T1D patients showed a decrease in CSE protein expression and activity in PBMC compared with those of age-matched normal subjects. Cell culture studies demonstrated that high glucose (25 mm) and/or acetoacetate (4 mm) increased reactive oxygen species, decreased CSE mRNA expression, protein expression, and enzymatic activity, and reduced H2S levels; however, β-hydroxybutyrate treatment had no effect. A similar effect, which was also observed in PBMC treated with high glucose alone or along with acetoacetate, was prevented by vitamin D supplementation. Studies with CSE siRNA provide evidence for a relationship between impaired CSE expression and reduced H2S levels. This study demonstrates for the first time that both hyperglycemia and hyperketonemia mediate a reduction in CSE expression and activity, which can contribute to the impaired H2S signaling associated with diabetes. PMID:24610811

  15. Distinct Time Course of the Decrease in Hepatic AMP-Activated Protein Kinase and Akt Phosphorylation in Mice Fed a High Fat Diet

    PubMed Central

    Shiwa, Mami; Yoneda, Masayasu; Okubo, Hirofumi; Ohno, Haruya; Kobuke, Kazuhiro; Monzen, Yuko; Kishimoto, Rui; Nakatsu, Yusuke; Asano, Tomoichiro; Kohno, Nobuoki

    2015-01-01

    AMP-activated protein kinase (AMPK) plays an important role in insulin resistance, which is characterized by the impairment of the insulin-Akt signaling pathway. However, the time course of the decrease in AMPK and Akt phosphorylation in the liver during the development of obesity and insulin resistance caused by feeding a high fat diet (HFD) remains controversial. Moreover, it is unclear whether the impairment of AMPK and Akt signaling pathways is reversible when changing from a HFD to a standard diet (SD). Male ddY mice were fed the SD or HFD for 3 to 28 days, or fed the HFD for 14 days, followed by the SD for 14 days. We examined the time course of the expression and phosphorylation levels of AMPK and Akt in the liver by immunoblotting. After 3 days of feeding on the HFD, mice gained body weight, resulting in an increased oil red O staining, indicative of hepatic lipid accumulation, and significantly decreased AMPK phosphorylation, in comparison with mice fed the SD. After 14 days on the HFD, systemic insulin resistance occurred and Akt phosphorylation significantly decreased. Subsequently, a change from the HFD to SD for 3 days, after 14 days on the HFD, ameliorated the impairment of AMPK and Akt phosphorylation and systemic insulin resistance. Our findings indicate that AMPK phosphorylation decreases early upon feeding a HFD and emphasizes the importance of prompt lifestyle modification for decreasing the risk of developing diabetes. PMID:26266809

  16. [Inhibition of NF-kB Activation Decreases Resistance in Acute Myeloid Leukemia Cells to TRAIL-induced Apoptosis in Multicellular Aggregates].

    PubMed

    Fadeev, R S; Solovieva, M E; Slyadovskiy, D A; Zakharov, S G; Fadeeva, I S; Senotov, A S; Golenkov, A K; Akatov, V S

    2015-01-01

    Suppression of resistance in acute myeloid leukemia cells to TRAIL-induced apoptosis in multicellular aggregates, was studied using small molecule inhibitors of the activation of the transcription factor NF-kB - NF-k9 Activation Inhibitor IV and JSH-23 at non-toxic concentrations. NF-kB Activation Inhibitor IV and JSH-23 reduced resistance in the acute myeloid leukemia cells in multicellular aggregates to cytotoxic action of recombinant protein izTRAIL. It is shown that the use of these inhibitors decreased the phosphorylation of the RelA (p65) as a main marker activation of the transcription factor NF-kB. We discuss a possible reason for increasing resistance in acute myeloid leukemia cells to TRAIL-induced apoptosis in multicellular aggregates. PMID:26841509

  17. Cocaine Decreases Metabotropic Glutamate Receptor mGluR1 Currents in Dopamine Neurons by Activating mGluR5.

    PubMed

    Kramer, Paul F; Williams, John T

    2015-09-01

    Midbrain dopamine neurons are important mediators of reward and movement and are sensitive to cocaine-induced plasticity. After even a single injection of cocaine, there is an increase in AMPA-dependent synaptic transmission. The present study examines cocaine-induced plasticity of mGluR-dependent currents in dopamine neurons in the substantia nigra. Activation of mGluR1 and mGluR5 resulted in a mixture of inward and outward currents mediated by a nonselective cation conductance and a calcium-activated potassium conductance (SK), respectively. A single injection of cocaine decreased the current activated by mGluR1 in dopamine neurons, and it had no effect on the size of the mGluR5-mediated current. When the injection of cocaine was preceded by treatment of the animals with a blocker of mGluR5 receptors (MPEP), cocaine no longer decreased the mGluR1 current. Thus, the activation of mGluR5 was required for the cocaine-mediated suppression of mGluR1-mediated currents in dopamine neurons. The results support the hypothesis that mGluR5 coordinates a reduction in mGluR1 functional activity after cocaine treatment. PMID:25829143

  18. Prolonged ingestion of prehydrolyzed whey protein induces little or no change in digestive enzymes, but decreases glutaminase activity in exercising rats.

    PubMed

    Nery-Diez, Ana Cláudia C; Carvalho, Iara R; Amaya-Farfán, Jaime; Abecia-Soria, Maria Inés; Miyasaka, Célio K; Ferreira, Clécio da S

    2010-08-01

    Because consumption of whey protein hydrolysates is on the increase, the possibility that prolonged ingestion of whey protein hydrolysates affect the digestive system of mammals has prompted us to evaluate the enzymatic activities of pepsin, leucine-aminopeptidase, chymotrypsin, trypsin, and glutaminase in male Wistar rats fed diets containing either a commercial whey isolate or a whey protein hydrolysate with medium degree of hydrolysis and to compare the results with those produced by physical training (sedentary, sedentary-exhausted, trained, and trained-exhausted) in the treadmill for 4 weeks. The enzymatic activities were determined by classical procedures in all groups. No effect due to the form of the whey protein in the diet was seen in the activities of pepsin, trypsin, chymotrypsin, and leucine-aminopeptidase. Training tended to increase the activity of glutaminase, but exhaustion promoted a decrease in the trained animals, and consumption of the hydrolysate decreased it even further. The results are consistent with the conclusion that chronic consumption of a whey protein hydrolysate brings little or no modification of the proteolytic digestive system and that the lowering of glutaminase activity may be associated with an antistress effect, counteracting the effect induced by training in the rat. PMID:20482282

  19. Bupropion sustained release treatment decreases craving for video games and cue-induced brain activity in patients with Internet video game addiction.

    PubMed

    Han, Doug Hyun; Hwang, Jun Won; Renshaw, Perry F

    2010-08-01

    Bupropion has been used in the treatment of patients with substance dependence based on its weak inhibition of dopamine and norepinephrine reuptake. We hypothesized that 6 weeks of bupropion sustained release (SR) treatment would decrease craving for Internet game play as well as video game cue-induced brain activity in patients with Internet video game addiction (IAG). Eleven subjects who met criteria for IAG, playing StarCraft (>30 hr/week), and eight healthy comparison subjects (HC) who had experience playing StarCraft (<3 days/week and <1 hr/day). At baseline and at the end of 6 weeks of bupropion SR treatment, brain activity in response to StarCraft cue presentation was assessed using 1.5 Tesla functional MRI. In addition, symptoms of depression, craving for playing the game, and the severity of Internet addiction were evaluated by Beck Depression Inventory, self-report of craving on a 7-point visual analogue scale, and Young's Internet Addiction Scale, respectively. In response to game cues, IAG showed higher brain activation in left occipital lobe cuneus, left dorsolateral prefrontal cortex, and left parahippocampal gyrus than HC. After a 6 week period of bupropion SR, craving for Internet video game play, total game play time, and cue-induced brain activity in dorsolateral prefrontal cortex were decreased in the IAG. We suggest that bupropion SR may change craving and brain activity in ways that are similar to those observed in individuals with substance abuse or dependence. PMID:20695685

  20. Wood smoke exposure induces a decrease in respiration parameters and in the activity of respiratory complexes I and IV in lung mitochondria from guinea pigs.

    PubMed

    Granados-Castro, Luis Fernando; Rodríguez-Rangel, Daniela Sarai; Montaño, Martha; Ramos, Carlos; Pedraza-Chaverri, José

    2015-04-01

    Domestic exposure to biomass smoke represents the second cause of chronic obstructive lung disease. Previous studies have shown that exposure of guinea pigs to wood smoke is capable of generating oxidative stress in lung tissue, and this may involve a failure at a mitochondrial level, given its close relation with the production of reactive oxygen species (ROS). The purpose of this study was to evaluate, in guinea pigs exposed to wood smoke, the lung mitochondrial functionality through O2 consumption measurement and the determination of the mitochondrial complexes enzymatic activity. We found that normal and maximum respiration decreased at 15 and 30 min of wood smoke exposure, recovering its normal values at 180 min. The same behavior was observed for the respiratory control rate (RCR) and the ADP/O value. Complex I activity decreased significantly after 30 min of exposure and it returned to baseline after 180 min. The greatest alteration was observed by the decrease of 85% on complex IV activity at 30 min of exposure, which returned to control values after 180 min of exposure. It is concluded that even when wood smoke exposure induces severe mitochondrial respiration alterations at the first 30 min, it seems that there is one or many ways by which mitochondria can reinstate its normal function after 180 min of exposure. PMID:24255020

  1. Increased oxidative stress and decreased activities of Ca2+/Mg2+-ATPase and Na+/K+-ATPase in the red blood cells of the hibernating black bear

    USGS Publications Warehouse

    Chauhan, V.P.S.; Tsiouris, J.A.; Chauhan, A.; Sheikh, A.M.; Brown, W. Ted; Vaughan, M.

    2002-01-01

    During hibernation, animals undergo metabolic changes that result in reduced utilization of glucose and oxygen. Fat is known to be the preferential source of energy for hibernating animals. Malonyldialdehyde (MDA) is an end product of fatty acid oxidation, and is generally used as an index of lipid peroxidation. We report here that peroxidation of lipids is increased in the plasma and in the membranes of red blood cells in black bears during hibernation. The plasma MDA content was about four fold higher during hibernation as compared to that during the active, non-hibernating state (P < 0.0001). Similarly, MDA content of erythrocyte membranes was significantly increased during hibernation (P < 0.025). The activity of Ca2+/Mg2+-ATPase in the erythrocyte membrane was significantly decreased in the hibernating state as compared to the active state. Na+/K+-ATPase activity was also decreased, though not significant, during hibernation. These results suggest that during hibernation, the bears are under increased oxidative stress, and have reduced activities of membrane-bound enzymes such as Ca2+/Mg2+-ATPase and Na+/K+-ATPase. These changes can be considered part of the adaptive for survival process of metabolic depression. ?? 2002 Elsevier Science Inc. All rights reserved.

  2. BN 52021 (a platelet activating factor-receptor antagonist) decreases alveolar macrophage-mediated lung injury in experimental extrinsic allergic alveolitis.

    PubMed Central

    Pérez-Arellano, J L; Martín, T; López-Novoa, J M; Sánchez, M L; Montero, A; Jiménez, A

    1998-01-01

    Several lines of research indirectly suggest that platelet activating factor (PAF) may intervene in the pathogenesis of extrinsic allergic alveolitis (EAA). The specific aim of our study was to evaluate the participation of PAF on macrophage activation during the acute phase of EAA in an experimental model of this disease developed in guinea pigs. Initially we measured the concentration of PAF in bronchoalvedar lavage fluid, blood and lung tissue. In a second phase we evaluate the participation of PAF on alveolar macrophage activation and parenchymal lung injury. The effect of PAF on parenchymal lung injury was evaluated by measuring several lung parenchymatous lesion indices (lung index, bronchoalvedar lavage fluid (BALF) lactic hydrogenase activity and BALF alkaline phosphatase activity) and parameters of systemic response to the challenge (acute phase reagents). We observed that induction of the experimental EAA gave rise to an increase in the concentration of PAF in blood and in lung tissue. The use of the PAF-receptor antagonist BN52021 decreases the release of lysosomal enzymes (beta-glucuronidase and tartrate-sensitive acid phosphatase) to the extracellular environment both in vivo and in vitro. Furthermore, antagonism of the PAF receptors notably decreases pulmonary parenchymatous lesion. These data suggest that lung lesions from acute EAA are partly mediated by local production of PAF. PMID:9705608

  3. Sickle cell vaso-occlusion causes activation of iNKT cells that is decreased by the adenosine A2A receptor agonist regadenoson

    PubMed Central

    Lin, Gene; Okam, Maureen M.; Majerus, Elaine; Keefer, Jeffrey; Onyekwere, Onyinye; Ross, Ainsley; Campigotto, Federico; Neuberg, Donna; Linden, Joel; Nathan, David G.

    2013-01-01

    Adenosine A2A receptor (A2AR) agonists reduce invariant natural killer T (iNKT) cell activation and decrease inflammation in sickle cell disease (SCD) mice. We conducted a phase 1 trial of the A2AR agonist regadenoson in adults with SCD. The target dose was 1.44 μg/kg/h. iNKT cell activation was evaluated using antibodies targeting the p65 subunit of nuclear factor-κB (phospho-NF-κB p65), interferon-γ (IFN-γ), and A2AR. Regadenoson was administered to 27 adults with SCD. We examined 21 patients at steady state and 6 during painful vaso-occlusive crises (pVOC). iNKT cell activation was also measured in 14 African-American controls. During pVOC, the fraction of iNKT cells demonstrating increased phospho-NF-κB p65 and A2AR expression was significantly higher compared with controls (P < .01) and steady-state patients (P < .05). IFN-γ expression was also significantly higher compared with controls (P = .02). After a 24-hour infusion of regadenoson during pVOC, phospho-NF-κB p65 activation in iNKT cells decreased compared to baseline by a median of 48% (P = .03) to levels similar to controls and steady-state SCD. No toxicities were identified. Infusional regadenoson administered to adults with SCD at 1.44 μg/kg/h during pVOC decreases activation of iNKT cells without toxicity. This trial was registered at www.clinicaltrials.gov as #NCT01085201. PMID:23377438

  4. Hydrogen Sulfide Selectively Inhibits γ-Secretase Activity and Decreases Mitochondrial Aβ Production in Neurons from APP/PS1 Transgenic Mice.

    PubMed

    Zhao, Feng-Li; Qiao, Pei-Feng; Yan, Ning; Gao, Dan; Liu, Meng-Jie; Yan, Yong

    2016-05-01

    Hydrogen sulfide (H2S) is now considered to be a gasotransmitter and may be involved in the pathological process of Alzheimer's disease (AD). A majority of APP is associated with mitochondria and is a substrate for the mitochondrial γ-secretase. The mitochondria-associated APP metabolism where APP intracellular domains (AICD) and Aβ are generated locally and may contribute to mitochondrial dysfunction in AD. Here, we aimed to investigate the ability of H2S to mediate APP processing in mitochondria and assessed the possible mechanisms underlying H2S-mediated AD development. We treated neurons from APP/PS1 transgenic mice with a range of sodium hydrosulfide (NaHS) concentrations. NaHS attenuated APP processing and decreased Aβ production in mitochondria. Meanwhile, NaHS did not changed BACE-1 and ADAM10 (a disintegrin and metalloprotease 10) protein levels, but NaHS (30 μM) significantly increased the levels of presenilin 1(PS1), PEN-2, and NCT, as well as improved the γ-secretase activity, while NaHS (50 μM) exhibits the opposing effects. Furthermore, the intracellular ATP and the COX IV activity of APP/PS1 neurons were increased after 30 μM NaHS treatment, while the ROS level was decreased and the MMP was stabilized. The effect of NaHS differs from DAPT (a non-selective γ-secretase inhibitor), and it selectively inhibited γ-secretase in vitro, without interacting with Notch and modulating its cleavage. The results indicated that NaHS decreases Aβ accumulation in mitochondria by selectively inhibiting γ-secretase. Thus, we provide a mechanistic view of NaHS is a potential anti-AD drug candidate and it may decrease Aβ deposition in mitochondria by selectively inhibiting γ-secretase activity and therefore protecting the mitochondrial function during AD conditions. PMID:26708452

  5. The loss of telomerase activity in highly differentiated CD8+CD28-CD27- T cells is associated with decreased Akt (Ser473) phosphorylation.

    PubMed

    Plunkett, Fiona J; Franzese, Ornella; Finney, Helene M; Fletcher, Jean M; Belaramani, Lavina L; Salmon, Mike; Dokal, Inderjeet; Webster, David; Lawson, Alastair D G; Akbar, Arne N

    2007-06-15

    The enzyme telomerase is essential for maintaining the replicative capacity of memory T cells. Although CD28 costimulatory signals can up-regulate telomerase activity, human CD8(+) T cells lose CD28 expression after repeated activation. Nevertheless, telomerase is still inducible in CD8(+)CD28(-) T cells. To identify alternative costimulatory pathways that may be involved, we introduced chimeric receptors containing the signaling domains of CD28, CD27, CD137, CD134, and ICOS in series with the CD3 zeta (zeta) chain into primary human CD8(+) T cells. Although CD3 zeta-chain signals alone were ineffective, triggering of all the other constructs induced proliferation and telomerase activity. However, not all CD8(+)CD28(-) T cells could up-regulate this enzyme. The further fractionation of CD8(+)CD28(-) T cells into CD8(+)CD28(-) CD27(+) and CD8(+)CD28(-)CD27(-) subsets showed that the latter had significantly shorter telomeres and extremely poor telomerase activity. The restoration of CD28 signaling in CD8(+)CD28(-)CD27(-) T cells could not reverse the low telomerase activity that was not due to decreased expression of human telomerase reverse transcriptase, the enzyme catalytic subunit. Instead, the defect was associated with decreased phosphorylation of the kinase Akt, that phosphorylates human telomerase reverse transcriptase to induce telomerase activity. Furthermore, the defective Akt phosphorylation in these cells was specific for the Ser(473) but not the Thr(308) phosphorylation site of this molecule. Telomerase down-regulation in highly differentiated CD8(+)CD28(-)CD27(-) T cells marks their inexorable progress toward a replicative end stage after activation. This limits the ability of memory CD8(+) T cells to be maintained by continuous proliferation in vivo. PMID:17548608

  6. 8-Hydroxyeicosapentaenoic Acid Decreases Plasma and Hepatic Triglycerides via Activation of Peroxisome Proliferator-Activated Receptor Alpha in High-Fat Diet-Induced Obese Mice

    PubMed Central

    Yamada, Hidetoshi; Kikuchi, Sayaka; Hakozaki, Mayuka; Motodate, Kaori; Nagahora, Nozomi; Hirose, Masamichi

    2016-01-01

    PPARs regulate the expression of genes involved in lipid homeostasis. PPARs serve as molecular sensors of fatty acids, and their activation can act against obesity and metabolic syndromes. 8-Hydroxyeicosapentaenoic acid (8-HEPE) acts as a PPAR ligand and has higher activity than EPA. However, to date, the PPAR ligand activity of 8-HEPE has only been demonstrated in vitro. Here, we investigated its ligand activity in vivo by examining the effect of 8-HEPE treatment on high fat diet-induced obesity in mice. After the 4-week treatment period, the levels of plasma and hepatic triglycerides in the 8-HEPE-fed mice were significantly lower than those in the HFD-fed mice. The expression of genes regulated by PPARα was significantly increased in 8-HEPE-fed mice compared to those that received only HFD. Additionally, the level of hepatic palmitic acid in 8-HEPE-fed mice was significantly lower than in HFD-fed mice. These results suggested that intake of 8-HEPE induced PPARα activation and increased catabolism of lipids in the liver. We found no significant differences between EPA-fed mice and HFD-fed mice. We demonstrated that 8-HEPE has a larger positive effect on metabolic syndrome than EPA and that 8-HEPE acts by inducing PPARα activation in the liver. PMID:27239345

  7. Decreasing Ventromedial Prefrontal Cortex Activity During Sequential Risk-Taking: An fMRI Investigation of the Balloon Analog Risk Task

    PubMed Central

    Schonberg, Tom; Fox, Craig R.; Mumford, Jeanette A.; Congdon, Eliza; Trepel, Christopher; Poldrack, Russell A.

    2012-01-01

    Functional imaging studies examining the neural correlates of risk have mainly relied on paradigms involving exposure to simple chance gambles and an economic definition of risk as variance in the probability distribution over possible outcomes. However, there is little evidence that choices made during gambling tasks predict naturalistic risk-taking behaviors such as drug use, extreme sports, or even equity investing. To better understand the neural basis of naturalistic risk-taking, we scanned participants using fMRI while they completed the Balloon Analog Risk Task, an experimental measure that includes an active decision/choice component and that has been found to correlate with a number of naturalistic risk-taking behaviors. In the task, as in many naturalistic settings, escalating risk-taking occurs under uncertainty and might be experienced either as the accumulation of greater potential rewards, or as exposure to increasing possible losses (and decreasing expected value). We found that areas previously linked to risk and risk-taking (bilateral anterior insula, anterior cingulate cortex, and right dorsolateral prefrontal cortex) were activated as participants continued to inflate balloons. Interestingly, we found that ventromedial prefrontal cortex (vmPFC) activity decreased as participants further expanded balloons. In light of previous findings implicating the vmPFC in value calculation, this result suggests that escalating risk-taking in the task might be perceived as exposure to increasing possible losses (and decreasing expected value) rather than the increasing potential total reward relative to the starting point of the trial. A better understanding of how neural activity changes with risk-taking behavior in the task offers insight into the potential neural mechanisms driving naturalistic risk-taking. PMID:22675289

  8. Pin1-mediated Sp1 phosphorylation by CDK1 increases Sp1 stability and decreases its DNA-binding activity during mitosis.

    PubMed

    Yang, Hang-Che; Chuang, Jian-Ying; Jeng, Wen-Yih; Liu, Chia-I; Wang, Andrew H-J; Lu, Pei-Jung; Chang, Wen-Chang; Hung, Jan-Jong

    2014-12-16

    We have shown that Sp1 phosphorylation at Thr739 decreases its DNA-binding activity. In this study, we found that phosphorylation of Sp1 at Thr739 alone is necessary, but not sufficient for the inhibition of its DNA-binding activity during mitosis. We demonstrated that Pin1 could be recruited to the Thr739(p)-Pro motif of Sp1 to modulate the interaction between phospho-Sp1 and CDK1, thereby facilitating CDK1-mediated phosphorylation of Sp1 at Ser720, Thr723 and Thr737 during mitosis. Loss of the C-terminal end of Sp1 (amino acids 741-785) significantly increased Sp1 phosphorylation, implying that the C-terminus inhibits CDK1-mediated Sp1 phosphorylation. Binding analysis of Sp1 peptides to Pin1 by isothermal titration calorimetry indicated that Pin1 interacts with Thr739(p)-Sp1 peptide but not with Thr739-Sp1 peptide. X-ray crystallography data showed that the Thr739(p)-Sp1 peptide occupies the active site of Pin1. Increased Sp1 phosphorylation by CDK1 during mitosis not only stabilized Sp1 levels by decreasing interaction with ubiquitin E3-ligase RNF4 but also caused Sp1 to move out of the chromosomes completely by decreasing its DNA-binding activity, thereby facilitating cell cycle progression. Thus, Pin1-mediated conformational changes in the C-terminal region of Sp1 are critical for increased CDK1-mediated Sp1 phosphorylation to facilitate cell cycle progression during mitosis. PMID:25398907

  9. Growth behavior of additional offspring with a beneficial reversal allele in the asymmetric sharply-peaked landscape in the coupled discrete-time mutation-selection model

    NASA Astrophysics Data System (ADS)

    Gill, Wonpyong

    2013-01-01

    The probability of additional offspring with a beneficial reversal allele for growing to a size NC for a range of population sizes N, sequence lengths L, selective advantages s, and measuring parameters C was calculated for a haploid, asexual population in the coupled discrete-time mutation-selection model in an asymmetric sharply-peaked landscape with a positive selective advantage of the reversal allele over the optimal allele. The growing probability in the stochastic region was inversely proportional to the measuring parameter when C < 1 /Ns, bent when C ≈ 1/ Ns and saturated when C > 1/ Ns. The crossing time and the time dependence of the increase in relative density of the reversal allele in the coupled discrete-time mutation-selection model was approximated using the Wright-Fisher two-allele model with the same selective advantage and corresponding effective mutation rate. The growth behavior of additional offspring with the reversal allele in the asymmetric sharply-peaked landscape in the coupled discrete-time mutation-selection model was controlled by the selective advantage of the reversal allele compared to the optimal allele and could be described by using the Wright-Fisher two-allele model, in spite of there being many other alleles with lower fitness, and in spite of there being two alleles, the optimal and reversal allele, separated by a low-fitness valley with a tunable depth and width.

  10. Decreased sucrase and lactase activity in iron deficiency is accompanied by reduced gene expression and upregulation of the transcriptional repressor PDX-1.

    PubMed

    West, Adrian R; Oates, Phillip S

    2005-12-01

    Disaccharidases are important digestive enzymes whose activities can be reduced by iron deficiency. We hypothesise that this is due to reduced gene expression, either by impairment to enterocyte differentiation or by iron-sensitive mechanisms that regulate mRNA levels in enterocytes. Iron-deficient Wistar rats were generated by dietary means. The enzyme activities and kinetics of sucrase and lactase were tested as well as the activity of intestinal alkaline phosphatase (IAP)-II because it is unrelated to carbohydrate digestion. mRNA levels of beta-actin, sucrase, lactase, and the associated transcription factors pancreatic duodenal homeobox (PDX)-1, caudal-related homeobox (CDX)-2, GATA-binding protein (GATA)-4, and hepatocyte nuclear factor (HNF)-1 were measured by real-time PCR. Spatial patterns of protein and gene expression were assessed by immunofluorescence and in situ hybridization, respectively. It was found that iron-deficient rats had significantly lower sucrase (19.5% lower) and lactase (56.8% lower) but not IAP-II activity than control rats. Kinetic properties of both enzymes remained unchanged from controls, suggesting a decrease in the quantity of enzyme present. Sucrase and lactase mRNA levels were reduced by 44.5% and 67.9%, respectively, by iron deficiency, suggesting that enzyme activity is controlled primarily by gene expression. Iron deficiency did not affect the pattern of protein and gene expression along the crypt to villus axis. Expression of PDX-1, a repressor of sucrase and lactase promoters, was 4.5-fold higher in iron deficiency, whereas CDX-2, GATA-4, and HNF-1 levels were not significantly different. These data suggest that decreases in sucrase and lactase activities result from a reduction in gene expression, following from increased levels of the transcriptional repressor PDX-1. PMID:16081762

  11. Participation of decreased serum cholesteryl ester transfer activity, independent of increased serum lipoprotein(a), in angina pectoris in normolipemic elderly subjects.

    PubMed

    Miyashita, Y; Morimoto, S; Fukuo, K; Imanaka, S; Koh, E; Tamatani, M; Ogihara, T

    1992-01-01

    The cholesteryl ester transfer activity (CETA) is a measurement of the transfer of cholesteryl ester from HDL to VLDL, LDL or peripheral cells. Its role in the development of early coronary heart disease is not clear. In the present study, serum levels of CETA, lipoprotein(a) [Lp(a)] and other lipid-related factors were compared in 10 normal young subjects, 28 healthy elderly subjects and 14 normolipemic elderly patients with angina pectoris. Compared to the young normals and healthy elderly subjects, the elderly patients with angina pectoris showed significantly decreased mean serum CETA levels, and significantly increased mean serum levels of Lp(a) and apoprotein B. These results may indicate that decreased serum values of CETA participate in the development of angina pectoris in normolipemic elderly patients. PMID:1427124

  12. Enhancement of macrophage candidacidal activity by interferon-gamma. Increased phagocytosis, killing, and calcium signal mediated by a decreased number of mannose receptors.

    PubMed Central

    Maródi, L; Schreiber, S; Anderson, D C; MacDermott, R P; Korchak, H M; Johnston, R B

    1993-01-01

    In contrast to its macrophage-activating capacity, IFN-gamma downregulates expression of the macrophage mannose receptor (MMR), which mediates uptake of Candida and other microorganisms. We found that IFN-gamma induced a concentration-dependent increase in the capacity of human monocyte-derived macrophages to ingest and kill both opsonized and unopsonized Candida albicans and to release superoxide anion upon stimulation with Candida. Mannan or mannosylated albumin inhibited this activated uptake of unopsonized Candida, but glucan did not. Addition of mAb to complement receptor (CR) 3 did not inhibit ingestion; macrophages that lacked CR3 (leukocyte adhesion defect) showed normal upregulation of ingestion by IFN-gamma. The increased candidacidal activity of IFN-gamma-activated macrophages was associated with reduced expression of MMR by a mean of 79% and decreased pinocytic uptake of 125I-mannosylated BSA by 73%; K(uptake) of pinocytosis was not changed. Exposure of resident macrophages to unopsonized Candida did not elicit a transient increase in intracellular free Ca2+ ([Ca2+]i); macrophages activated by IFN-gamma expressed a brisk increase in [Ca2+]i on exposure to Candida. These data suggest that macrophage activation by IFN-gamma can enhance resistance to C. albicans infection in spite of downregulation of the MMR, perhaps through enhanced coupling of the MMR to microbicidal functions. PMID:8390485

  13. Lowering the isoelectric point of the Fv portion of recombinant immunotoxins leads to decreased nonspecific animal toxicity without affecting antitumor activity.

    PubMed

    Onda, M; Nagata, S; Tsutsumi, Y; Vincent, J J; Wang, Q; Kreitman, R J; Lee, B; Pastan, I

    2001-07-01

    Recombinant immunotoxins are genetically engineered proteins in which the Fv portion of an antibody is fused to a toxin. Our laboratory uses a 38-kDa form of Pseudomonas exotoxin A termed PE38 for this purpose. Clinical studies with immunotoxins targeting CD25 and CD22 have shown that dose-limiting side effects are attributable to liver damage and other inflammatory toxicities. We recently showed that mutating exposed surface neutral residues to acidic residues in the framework region of the Fv portion of an immunotoxin targeting CD25 [anti-Tac(scFv)-PE38] lowered its isoelectric point (pI) and decreased its toxicity in mice without impairing its cytotoxic or antitumor activities. We have now extended these studies and made mutations that change basic residues to neutral or acidic residues. Initially the pI of the mutant Fv (M1) of anti-Tac(scFv)-PE38 was decreased further. Subsequently, mutations were made in two other immunotoxins, SS1(dsFv)-PE38 targeting ovarian cancer and B3(dsFv)-PE38 targeting colon and breast cancers. We have found that all these mutant molecules fully retained specific target cell cytotoxicity and antitumor activity but were considerably less toxic to mice. Therefore, lowering the pI of the Fv may be a general approach to diminish the nonspecific toxicity of recombinant immunotoxins and other Fv fusion proteins without losing antitumor activity. PMID:11431343

  14. Short-term fasting induces intra-hepatic lipid accumulation and decreases intestinal mass without reduced brush-border enzyme activity in mink (Mustela vison) small intestine.

    PubMed

    Bjornvad, C R; Elnif, J; Sangild, P T

    2004-11-01

    For many mammalian species short-term fasting is associated with intestinal atrophy and decreased digestive capacity. Under natural conditions, strictly carnivorous animals often experience prey scarcity during winter, and they may therefore be particularly well adapted to short-term food deprivation. To examine how the carnivorous gastrointestinal tract is affected by fasting, small-intestinal structure, brush-border enzyme activities and hepatic structure and function were examined in fed mink (controls) and mink that had been fasted for 1-10 days. During the first 1-2 days of fasting, intestinal mass decreased more rapidly than total body mass and villus heights were reduced 25-40%. In contrast, tissue-specific activity of the brush-border enzymes sucrase, maltase, lactase, aminopeptidase A and dipeptidylpeptidase IV increased 0.5- to 1.5-fold at this time, but returned to prefasting levels after 6 days of fasting. After 6-10 days of fasting there was a marked increase in the activity of hepatic enzymes and accumulation of intra-hepatic lipid vacuoles. Thus, mink may be a useful model for studying fasting-induced intestinal atrophy and adaptation as well as mechanisms involved in accumulation of intra-hepatic lipids following food deprivation in strictly carnivorous domestic mammals, such as cats and ferrets. PMID:15503054

  15. Curcumin Pretreatment Prevents Potassium Dichromate-Induced Hepatotoxicity, Oxidative Stress, Decreased Respiratory Complex I Activity, and Membrane Permeability Transition Pore Opening

    PubMed Central

    García-Niño, Wylly Ramsés; Tapia, Edilia; Zazueta, Cecilia; Zatarain-Barrón, Zyanya Lucía; Hernández-Pando, Rogelio; Vega-García, Claudia Cecilia; Pedraza-Chaverrí, José

    2013-01-01

    Curcumin is a polyphenol derived from turmeric with recognized antioxidant properties. Hexavalent chromium is an environmental toxic and carcinogen compound that induces oxidative stress. The objective of this study was to evaluate the potential protective effect of curcumin on the hepatic damage generated by potassium dichromate (K2Cr2O7) in rats. Animals were pretreated daily by 9-10 days with curcumin (400 mg/kg b.w.) before the injection of a single intraperitoneal of K2Cr2O7 (15 mg/kg b.w.). Groups of animals were sacrificed 24 and 48 h later. K2Cr2O7-induced damage to the liver was evident by histological alterations and increase in the liver weight and in the activity of alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, and alkaline phosphatase in plasma. In addition, K2Cr2O7 induced oxidative damage in liver and isolated mitochondria, which was evident by the increase in the content of malondialdehyde and protein carbonyl and decrease in the glutathione content and in the activity of several antioxidant enzymes. Moreover, K2Cr2O7 induced decrease in mitochondrial oxygen consumption, in the activity of respiratory complex I, and permeability transition pore opening. All the above-mentioned alterations were prevented by curcumin pretreatment. The beneficial effects of curcumin against K2Cr2O7-induced liver oxidative damage were associated with prevention of mitochondrial dysfunction. PMID:23956771

  16. Adenosine Prevents TNFα-Induced Decrease in Endothelial Mitochondrial Mass via Activation of eNOS-PGC-1α Regulatory Axis

    PubMed Central

    Kalogeris, Theodore J.; Baines, Christopher; Korthuis, Ronald J.

    2014-01-01

    We tested whether adenosine, a cytoprotective mediator and trigger of preconditioning, could protect endothelial cells from inflammation-induced deficits in mitochondrial biogenesis and function. We examined this question using human microvascular endothelial cells exposed to TNFα. TNFα produced time and dose-dependent decreases in mitochondrial membrane potential, cellular ATP levels, and mitochondrial mass, preceding an increase in apoptosis. These effects were prevented by co-incubation with adenosine, a nitric oxide (NO) donor, a guanylate cyclase (GC) activator, or a cell-permeant cyclic GMP (cGMP) analog. The effects of adenosine were blocked by a nitric oxide synthase inhibitor, a soluble guanylate cyclase inhibitor, a morpholino antisense oligonucleotide to endothelial nitric oxide synthase (eNOS), or siRNA knockdown of the transcriptional coactivator, PGC-1α. Incubation with exogenous NO, a GC activator, or a cGMP analog reversed the effect of eNOS knockdown, while the effect of NO was blocked by inhibition of GC. The protective effects of NO and cGMP analog were prevented by siRNA to PGC-1α. TNFα also decreased expression of eNOS, cellular NO levels, and PGC-1α expression, which were reversed by adenosine. Exogenous NO, but not adenosine, rescued expression of PGC-1α in cells in which eNOS expression was knocked down by eNOS antisense treatment. Thus, TNFα elicits decreases in endothelial mitochondrial function and mass, and an increase in apoptosis. These effects were reversed by adenosine, an effect mediated by eNOS-synthesized NO, acting via soluble guanylate cyclase/cGMP to activate a mitochondrial biogenesis regulatory program under the control of PGC-1α. These results support the existence of an adenosine-triggered, mito-and cytoprotective mechanism dependent upon an eNOS-PGC-1α regulatory pathway, which acts to preserve endothelial mitochondrial function and mass during inflammatory challenge. PMID:24914683

  17. Phosphatidylinositol 4,5-bisphosphate decreases the concentration of Ca2+, phosphatidylserine and diacylglycerol required for protein kinase C α to reach maximum activity.

    PubMed

    Egea-Jiménez, Antonio L; Pérez-Lara, Angel; Corbalán-García, Senena; Gómez-Fernández, Juan C

    2013-01-01

    The C2 domain of PKCα possesses two different binding sites, one for Ca(2+) and phosphatidylserine and a second one that binds PIP2 with very high affinity. The enzymatic activity of PKCα was studied by activating it with large unilamellar lipid vesicles, varying the concentration of Ca(2+) and the contents of dioleylglycerol (DOG), phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphadidylserine (POPS) in these model membranes. The results showed that PIP2 increased the Vmax of PKCα and, when the PIP2 concentration was 5 mol% of the total lipid in the membrane, the addition of 2 mol% of DOG did not increase the activity. In addition PIP2 decreases K0.5 of Ca(2+) more than 3-fold, that of DOG almost 5-fold and that of POPS by a half. The K0.5 values of PIP2 amounted to only 0.11 µM in the presence of DOG and 0.39 in its absence, which is within the expected physiological range for the inner monolayer of a mammalian plasma membrane. As a consequence, PKCα may be expected to operate near its maximum capacity even in the absence of a cell signal producing diacylglycerol. Nevertheless, we have shown that the presence of DOG may also help, since the K0.5 for PIP2 notably decreases in its presence. Taken together, these results underline the great importance of PIP2 in the activation of PKCα and demonstrate that in its presence, the most important cell signal for triggering the activity of this enzyme is the increase in the concentration of cytoplasmic Ca(2+). PMID:23874859

  18. Glucose restriction decreases telomerase activity and enhances its inhibitor response on breast cancer cells: possible extra-telomerase role of BIBR 1532

    PubMed Central

    2014-01-01

    Background Considerable progress has been made to understand the association between lifestyle and diet in cancer initiation and promotion. Because excessive glucose consumption is a key metabolic hallmark of cancer cells, glucose restriction (GR) decreases the proliferation, and promotes the differentiation and transformation of cancer cells to quiescent cells. The immortality of cancerous cells is largely assured by telomerase, which is an interesting target for inhibition by BIBR 1532. In this study, we investigated the effect of GR on telomerase activity and on the efficacy of its inhibition by BIBR 1532. Methods Breast cancer MDA-MB 231 and MCF-7 cells were cultured in DMEM (Dulbecco’s modified eagle’s media) with 0, 1 or 4.5 g/l of glucose. The telomerase activity was measured via quantitative Real-Time PCR, and the two telomerase subunits were semi-quantified by RT-PCR. Proliferation test and mitochondrial metabolism were assessed via tetrazolium salt reduction and cell counts; apoptosis was assessed via caspase-3 quantification and flow cytometry. Results A decrease in the telomerase activity of more than 75% was associated with a significant reduction in the mRNA expression of its catalytic subunit hTERT (Reverse Transcriptase) and a decrease in the mitochondrial metabolism by more than 80% under restricted glucose conditions. In addition, GR increased the effect of BIBR 1532. Glucose deprivation induces apoptosis via BIBR 1532-mediated telomerase inhibition in triple negative breast cancer cells, as assessed by caspase-3 measurements and Annexin analysis. Conclusions Taken together, our results suggest that the effect of BIBR 1532 is potentiated by GR to induce triple negative breast cancer cell death. PMID:25089119

  19. Decreased 11β-Hydroxysteroid Dehydrogenase 1 Level and Activity in Murine Pancreatic Islets Caused by Insulin-Like Growth Factor I Overexpression

    PubMed Central

    Chowdhury, Subrata; Grimm, Larson; Gong, Ying Jia Kate; Wang, Beixi; Li, Bing; Srikant, Coimbatore B.; Gao, Zu-hua; Liu, Jun-Li

    2015-01-01

    We have reported a high expression of IGF-I in pancreatic islet β-cells of transgenic mice under the metallothionein promoter. cDNA microarray analysis of the islets revealed that the expression of 82 genes was significantly altered compared to wild-type mice. Of these, 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1), which is responsible for the conversion of inert cortisone (11-dehydrocorticosterone, DHC in rodents) to active cortisol (corticosterone) in the liver and adipose tissues, has not been identified previously as an IGF-I target in pancreatic islets. We characterized the changes in its protein level, enzyme activity and glucose-stimulated insulin secretion. In freshly isolated islets, the level of 11β-HSD1 protein was significantly lower in MT-IGF mice. Using dual-labeled immunofluorescence, 11β-HSD1 was observed exclusively in glucagon-producing, islet α-cells but at a lower level in transgenic vs. wild-type animals. MT-IGF islets also exhibited reduced enzymatic activities. Dexamethasone (DEX) and DHC inhibited glucose-stimulated insulin secretion from freshly isolated islets of wild-type mice. In the islets of MT-IGF mice, 48-h pre-incubation of DEX caused a significant decrease in insulin release, while the effect of DHC was largely blunted consistent with diminished 11β-HSD1 activity. In order to establish the function of intracrine glucocorticoids, we overexpressed 11β-HSD1 cDNA in MIN6 insulinoma cells, which together with DHC caused apoptosis and a significant decrease in proliferation. Both effects were abolished with the treatment of an 11β-HSD1 inhibitor. Our results demonstrate an inhibitory effect of IGF-I on 11β-HSD1 expression and activity within the pancreatic islets, which may mediate part of the IGF-I effects on cell proliferation, survival and insulin secretion. PMID:26305481

  20. Baicalein induces G1 arrest in oral cancer cells by enhancing the degradation of cyclin D1 and activating AhR to decrease Rb phosphorylation

    SciTech Connect

    Cheng, Ya-Hsin; Li, Lih-Ann; Lin, Pinpin; Cheng, Li-Chuan; Hung, Chein-Hui; Chang, Nai Wen; Lin, Chingju

    2012-09-15

    Baicalein is a flavonoid, known to have anti-inflammatory and anti-cancer effects. As an aryl hydrocarbon receptor (AhR) ligand, baicalein at high concentrations blocks AhR-mediated dioxin toxicity. Because AhR had been reported to play a role in regulating the cell cycle, we suspected that the anti-cancer effect of baicalein is associated with AhR. This study investigated the molecular mechanism involved in the anti-cancer effect of baicalein in oral cancer cells HSC-3, including whether such effect would be AhR-mediated. Results revealed that baicalein inhibited cell proliferation and increased AhR activity in a dose-dependent manner. Cell cycle was arrested at the G1 phase and the expression of CDK4, cyclin D1, and phosphorylated retinoblastoma (pRb) was decreased. When the AhR was suppressed by siRNA, the reduction of pRb was partially reversed, accompanied by a decrease of cell population at G1 phase and an increase at S phase, while the reduction of cyclin D1 and CDK4 did not change. This finding suggests that the baicalein activation of AhR is indeed associated with the reduction of pRb, but is independent of the reduction of cyclin D1 and CDK4. When cells were pre-treated with LiCl, the inhibitor of GSK-3β, the decrease of cyclin D1 was blocked and the reduction of pRb was recovered. The data indicates that in HSC-3 the reduction of pRb is both mediated by baicalein through activation of AhR and facilitation of cyclin D1 degradation, which causes cell cycle arrest at the G1 phase, and results in the inhibition of cell proliferation. -- Highlights: ► Baicalein causes the G1 phase arrest by decreasing Rb phosphorylation. ► Baicalein modulates AhR-mediated cell proliferation. ► Both AhR activation and cyclin D1 degradation results in hypophosphorylation of Rb. ► Baicalein facilitates cyclin D1 degradation by signalling the GSK-3β pathway.

  1. Decreasing the singlet-triplet gap for thermally activated delayed fluorescence molecules by structural modification on the donor fragment: First-principles study

    NASA Astrophysics Data System (ADS)

    Fan, Jian-zhong; Lin, Li-li; Wang, Chuan-kui

    2016-05-01

    The small energy gap between singlet excitons (S) and triplet excitons (T) of organic molecules is a dominant condition for high efficient thermally activated delayed fluorescence (TADF). In this study, influence of modification in donor groups of a series of molecules on their geometries, S-T energy gaps, and photophysical properties, is investigated based on first-principles calculations. Investigation shows that, as the electron donating ability is increased, both S-T energy gap and overlap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) are decreased. This work provides strategy for designing high efficient and multi-color TADF devices.

  2. Phantom Cosmic Ray Decreases and their Extraterrestrial Origins

    NASA Astrophysics Data System (ADS)

    Thomas, Simon; Owens, Mathew; Lockwood, Mike; Scott, Chris

    2014-05-01

    Galactic cosmic rays are extremely high energy charged particles accelerated at extra-solar sources such as supernovae, active galactic nuclei, quasars, and gamma-ray bursts. Upon arrival at Earth's atmosphere, they collide with air molecules to produce a shower of secondary particles. One product of this air shower is energetic neutrons, which can be detected at the Earth's surface. Neutron monitors have been routinely operating for more than half a century and have shown that the cosmic ray flux at the top of the atmosphere is modulated by the heliospheric magnetic field (HMF), both at solar cycle time scales and due to shorter-term HMF variations, such as result from coronal mass ejections (CMEs). When a CME passes over the Earth, the neutron monitor counts are reduced sharply and suddenly (in a matter of hours) due to the modulation of cosmic rays by the enhancement in the heliospheric magnetic field (HMF). Such a drop in neutron counts is known as a Forbush Decrease. We present examples of unusual Forbush Decreases where there is no disturbance in the HMF at Earth at the time, which we name 'Phantom Cosmic Ray Decreases' (PCRDs). For recent PCRD events, we examine STEREO in-situ data and in each case, we find a large CME in either STEREO-A or -B. We also study neutron counts for each event from a number of neutron monitors at different longitudes. Differences between the size of the cosmic ray decreases at different longitudes are shown to give information on the location of the cosmic ray modulation source. We thus propose that these PCRDs are caused by CMEs which have missed Earth but which are large and intense enough to block out galactic cosmic rays on trajectories toward Earth.

  3. A Short-Term Decrease in Nitrogenase Activity (C2H2 Reduction) Is Induced by Exposure of Soybean Shoots to Their CO2 Compensation Point.

    PubMed Central

    Vidal, R.; Gerbaud, A.; Vidal, D.; Drevon, J. J.

    1995-01-01

    Photosynthesis and nitrogenase acetylene-reducing activity (ARA) were measured in soybeans (Glycine max [L.] Merr.) in which the shoots were exposed for 48 h to 60 [mu]L L-1 CO2, a value corresponding to their CO2 compensation point. Six hours after the beginning of the light period at low CO2, the ARA started to decrease, reaching a rate of 50% of the control rate in 14 to 24 h and 20% of the control rate in 34 to 38 h after the beginning of the CO2 treatment. At these times, there was no net photosynthesis, and the transpiration rate was 20% lower than that in the control plants. An increase in the partial pressure of O2 around the nodules alleviated this inhibition of ARA. The maximal ARA achieved at 40 kPaO2 was 3 times higher than that at 20 kPa O2 and similar to the maximal ARA of the control plants. It was argued that the decrease in ARA of soybean exposed to the CO2 compensation point was due to a decrease in the nodule's permeability to O2 diffusion. PMID:12228555

  4. High Fat Diet-Induced Skeletal Muscle Wasting Is Decreased by Mesenchymal Stem Cells Administration: Implications on Oxidative Stress, Ubiquitin Proteasome Pathway Activation, and Myonuclear Apoptosis.

    PubMed

    Abrigo, Johanna; Rivera, Juan Carlos; Aravena, Javier; Cabrera, Daniel; Simon, Felipe; Ezquer, Fernando; Ezquer, Marcelo; Cabello-Verrugio, Claudio

    2016-01-01

    Obesity can lead to skeletal muscle atrophy, a pathological condition characterized by the loss of strength and muscle mass. A feature of muscle atrophy is a decrease of myofibrillar proteins as a result of ubiquitin proteasome pathway overactivation, as evidenced by increased expression of the muscle-specific ubiquitin ligases atrogin-1 and MuRF-1. Additionally, other mechanisms are related to muscle wasting, including oxidative stress, myonuclear apoptosis, and autophagy. Stem cells are an emerging therapy in the treatment of chronic diseases such as high fat diet-induced obesity. Mesenchymal stem cells (MSCs) are a population of self-renewable and undifferentiated cells present in the bone marrow and other mesenchymal tissues of adult individuals. The present study is the first to analyze the effects of systemic MSC administration on high fat diet-induced skeletal muscle atrophy in the tibialis anterior of mice. Treatment with MSCs reduced losses of muscle strength and mass, decreases of fiber diameter and myosin heavy chain protein levels, and fiber type transitions. Underlying these antiatrophic effects, MSC administration also decreased ubiquitin proteasome pathway activation, oxidative stress, and myonuclear apoptosis. These results are the first to indicate that systemically administered MSCs could prevent muscle wasting associated with high fat diet-induced obesity and diabetes. PMID:27579157

  5. Deficient sucrose synthase activity in developing wood does not specifically affect cellulose biosynthesis, but causes an overall decrease in cell wall polymers.

    PubMed

    Gerber, Lorenz; Zhang, Bo; Roach, Melissa; Rende, Umut; Gorzsás, András; Kumar, Manoj; Burgert, Ingo; Niittylä, Totte; Sundberg, Björn

    2014-09-01

    The biosynthesis of wood in aspen (Populus) depends on the metabolism of sucrose, which is the main transported form of carbon from source tissues. The largest fraction of the wood biomass is cellulose, which is synthesized from UDP-glucose. Sucrose synthase (SUS) has been proposed previously to interact directly with cellulose synthase complexes and specifically supply UDP-glucose for cellulose biosynthesis. To investigate the role of SUS in wood biosynthesis, we characterized transgenic lines of hybrid aspen with strongly reduced SUS activity in developing wood. No dramatic growth phenotypes in glasshouse-grown trees were observed, but chemical fingerprinting with pyrolysis-GC/MS, together with micromechanical analysis, showed notable changes in chemistry and ultrastructure of the wood in the transgenic lines. Wet chemical analysis showed that the dry weight percentage composition of wood polymers was not changed significantly. However, a decrease in wood density was observed and, consequently, the content of lignin, hemicellulose and cellulose was decreased per wood volume. The decrease in density was explained by a looser structure of fibre cell walls as shown by increased wall shrinkage on drying. The results show that SUS is not essential for cellulose biosynthesis, but plays a role in defining the total carbon incorporation to wood cell walls. PMID:24920335

  6. High Fat Diet-Induced Skeletal Muscle Wasting Is Decreased by Mesenchymal Stem Cells Administration: Implications on Oxidative Stress, Ubiquitin Proteasome Pathway Activation, and Myonuclear Apoptosis

    PubMed Central

    Aravena, Javier; Cabrera, Daniel; Simon, Felipe; Ezquer, Fernando

    2016-01-01

    Obesity can lead to skeletal muscle atrophy, a pathological condition characterized by the loss of strength and muscle mass. A feature of muscle atrophy is a decrease of myofibrillar proteins as a result of ubiquitin proteasome pathway overactivation, as evidenced by increased expression of the muscle-specific ubiquitin ligases atrogin-1 and MuRF-1. Additionally, other mechanisms are related to muscle wasting, including oxidative stress, myonuclear apoptosis, and autophagy. Stem cells are an emerging therapy in the treatment of chronic diseases such as high fat diet-induced obesity. Mesenchymal stem cells (MSCs) are a population of self-renewable and undifferentiated cells present in the bone marrow and other mesenchymal tissues of adult individuals. The present study is the first to analyze the effects of systemic MSC administration on high fat diet-induced skeletal muscle atrophy in the tibialis anterior of mice. Treatment with MSCs reduced losses of muscle strength and mass, decreases of fiber diameter and myosin heavy chain protein levels, and fiber type transitions. Underlying these antiatrophic effects, MSC administration also decreased ubiquitin proteasome pathway activation, oxidative stress, and myonuclear apoptosis. These results are the first to indicate that systemically administered MSCs could prevent muscle wasting associated with high fat diet-induced obesity and diabetes. PMID:27579157

  7. Neuroprotection and Functional Recovery Associated with Decreased Microglial Activation Following Selective Activation of mGluR2/3 Receptors in a Rodent Model of Parkinson's Disease

    PubMed Central

    Chan, Hugh; Paur, Helen; Vernon, Anthony C.; Zabarsky, Virginia; Datla, Krishna P.; Croucher, Martin J.; Dexter, David T.

    2010-01-01

    Clinical trials have demonstrated positive proof of efficacy of dual metabotropic glutamate receptor 2/3 (mGluR2/3) agonists in both anxiety and schizophrenia. Importantly, evidence suggests that these drugs may also be neuroprotective against glutamate excitotoxicity, implicated in the pathogenesis of Parkinson's disease (PD). However, whether this neuroprotection also translates into functional recovery is unclear. In the current study, we examined the neuroprotective efficacy of the dual mGluR2/3 agonist, 2R,4R-4-aminopyrrolidine-2,4-dicarboxylate (2R,4R-APDC), and whether this is accompanied by behavioral recovery in a rodent 6-hydroxydopamine (6-OHDA) model of PD. We now report that delayed post lesion treatment with 2R,4R-APDC (10 nmol), results in robust neuroprotection of the nigrostriatal system, which translated into functional recovery as measured by improved forelimb use asymmetry and reduced (+)-amphetamine-induced rotation compared to vehicle treated animals. Interestingly, these beneficial effects were associated with a decrease in microglial markers in the SNc, which may suggest an antiinflammatory action of this drug. PMID:20948891

  8. Activation of α7 Nicotinic Acetylcholine Receptor Decreases On-site Mortality in Crush Syndrome through Insulin Signaling-Na/K-ATPase Pathway

    PubMed Central

    Fan, Bo-Shi; Zhang, En-Hui; Wu, Miao; Guo, Jin-Min; Su, Ding-Feng; Liu, Xia; Yu, Jian-Guang

    2016-01-01

    On-site mortality in crush syndrome remains high due to lack of effective drugs based on definite diagnosis. Anisodamine (Ani) is widely used in China for treatment of shock, and activation of α7 nicotinic acetylcholine receptor (α7nAChR) mediates such antishock effect. The present work was designed to test whether activation of α7nAChR with Ani decreased mortality in crush syndrome shortly after decompression. Sprague-Dawley rats and C57BL/6 mice with crush syndrome were injected with Ani (20 mg/kg and 28 mg/kg respectively, i.p.) 30 min before decompression. Survival time, serum potassium, insulin, and glucose levels were observed shortly after decompression. Involvement of α7nAChR was verified with methyllycaconitine (selective α7nAChR antagonist) and PNU282987 (selective α7nAChR agonist), or in α7nAChR knockout mice. Effect of Ani was also appraised in C2C12 myotubes. Ani reduced mortality and serum potassium and enhanced insulin sensitivity shortly after decompression in animals with crush syndrome, and PNU282987 exerted similar effects. Such effects were counteracted by methyllycaconitine or in α7nAChR knockout mice. Mortality and serum potassium in rats with hyperkalemia were also reduced by Ani. Phosphorylation of Na/K-ATPase was enhanced by Ani in C2C12 myotubes. Inhibition of tyrosine kinase on insulin receptor, phosphoinositide 3-kinase, mammalian target of rapamycin, signal transducer and activator of transcription 3, and Na/K-ATPase counteracted the effect of Ani on extracellular potassium. These findings demonstrated that activation of α7nAChR could decrease on-site mortality in crush syndrome, at least in part based on the decline of serum potassium through insulin signaling-Na/K-ATPase pathway. PMID:27065867

  9. Serum levels of cartilage oligomeric matrix protein (COMP): a rapid decrease in patients with active rheumatoid arthritis undergoing intravenous steroid treatment.

    PubMed

    Skoumal, M; Haberhauer, G; Feyertag, J; Kittl, E M; Bauer, K; Dunky, A

    2006-09-01

    To examine the influence of intravenous steroid-treatment (IST) on serum levels of Cartilage oligomeric matrix protein (COMP) in patients with active rheumatoid arthritis (RA). Serum levels of COMP and C-reactive protein (CRP) were measured in 12 patients with highly active RA (Steinbrocker stages II-IV) and in 5 patients with highly active reactive arthritis (ReA) (positive testing for HLA-B27) before starting daily IST. Patients received a total steroid dosage between 100 and 500 mg of prednisolone. COMP was measured by a commercially available sandwich-type ELISA-kit developed by AnaMar Medical AB, Sweden. Statistical evaluation was calculated by paired t test. In the RA group, COMP levels ranged from 6.3 to 19.4 U/l (mean 12.9 U/l), CRP from 5 to 195 mg/l (mean 77.8 mg/l), the COMP levels of the ReA group ranged from 5.1 to 7.4 U/l (mean 7.9 U/l), the CRP levels from 13 to 126 mg/l (mean 49 mg/l). We found a significant difference between the initial COMP levels in RA+ and ReA patients (P<0.005). In contrast to the ReA group, serum-COMP levels of RA+ patients (P<0.004) and the VAS (P<0.0001) decreased significantly within 2-10 days after the first treatment with steroids. The CRP levels remained unchanged in both groups. Our results indicate that the intravenous treatment with steroids in patients with highly active RA leads to a significant decrease of cartilage degradation. COMP seems to be a valuable parameter not even as a prognostic factor, but as a marker for monitoring the therapy response in patients with RA. PMID:16485108

  10. Extracts of Artocarpus communis decrease α-melanocyte stimulating hormone-induced melanogenesis through activation of ERK and JNK signaling pathways.

    PubMed

    Fu, Yi-Tzu; Lee, Chiang-Wen; Ko, Horng-Huey; Yen, Feng-Lin

    2014-01-01

    Artocarpus communis is an agricultural plant that is also used in folk medicine to prevent skin diseases, including acne and dermatitis. Extracts of A. communis have been used to effectively inhibit melanogenesis; however, the antimelanogenesis mechanism of these extracts has not yet been investigated. The present study utilized a cell-free tyrosinase assay as well as α-melanocyte stimulating hormone- (-MSH-) induced tyrosinase assay conducted in B16F10 cells, performed a cytotoxicity assay, and determined cellular melanin content to examine the effects of a methanolic extract of A. communis (ACM) and various organic partition fractions of A. communis on melanogenesis. In addition, we performed western blot analysis to elucidate the mechanism of their antimelanogenesis effect. Our results indicated that, except for the n-hexane extract, ACM and the various partition extracts at noncytotoxic concentrations effectively decreased melanin content and tyrosinase activity by downregulating microphthalmia-associated transcription factor (MITF) and phosphorylated cAMP response element-binding protein (p-CREB). Moreover, ACM and the partition fractions activated phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) to inhibit the synthesis of MITF and finally to decrease melanin production. In conclusion, we suggest that noncytotoxic concentrations of ACM and the various partition fractions may be useful as references for developing skin-lighting agents for use in medicines or cosmetics. PMID:24737988

  11. Blood pressure-lowering effect of Korean red ginseng associated with decreased circulating Lp-PLA2 activity and lysophosphatidylcholines and increased dihydrobiopterin level in prehypertensive subjects.

    PubMed

    Cha, Tae Woong; Kim, Minjoo; Kim, Minkyung; Chae, Jey Sook; Lee, Jong Ho

    2016-06-01

    We evaluated the effects of red ginseng consumption on blood pressure (BP) and the fasting plasma metabolome. This randomized, double-blind, placebo-controlled study included nonobese, nondiabetic, prehypertensive subjects consuming 10 capsules daily containing 5 g red ginseng (n=31) or placebo (n=31). Fasting plasma metabolome profiles were obtained using ultra performance liquid chromatography-linear trap quadrupole Orbitrap MS. After 12 weeks, participants consuming red ginseng showed reductions of 6.5 and 5.0 mm Hg in systolic and diastolic BP, respectively. Compared with controls, those consuming red ginseng showed greater reductions in changed values of systolic BP, diastolic BP and lipoprotein-associated phospholipase A2 (Lp-PLA2) activity, after adjusting for baseline values. In addition, the red ginseng group showed a greater increase in dihydrobiopterin levels and greater decrease in palmitic amide and lysophosphatidylcholines (lysoPCs). The change in diastolic BP positively correlated with changes in lysoPCs and Lp-PLA2 activity. The BP-lowering effect of red ginseng is associated with decreased Lp-PLA2 and lysoPCs and increased dihydrobiopterin levels in prehypertensive subjects (ClinicalTrials.gov: NCT02326766). PMID:26843120

  12. Decreased entropy of symbolic heart rate dynamics during daily activity as a predictor of positive head-up tilt test in patients with alleged neurocardiogenic syncope

    NASA Astrophysics Data System (ADS)

    Kim, June-Soo; Park, Jeong-Euy; Seo, Jung-Don; Lee, Won-Ro; Kim, Hee-Soo; Noh, Jung-Il; Kim, Nam-Su; Yum, Myung-Kul

    2000-11-01

    Entropy measures of RR interval variability during daily activity over a 24 h period were compared in 30 patients with a positive head-up tilt (HUT) test and 30 patients with a negative HUT test who had a history of alleged neurocardiogenic syncope. Two different entropies, approximate entropy (ApEn) and entropy of symbolic dynamics (SymEn), were employed. In patients showing a positive HUT test, the entropies were significantly decreased when compared with the patients with a negative HUT test. In addition, SymEn in the patients with a negative HUT test was significantly lower than in the normal controls. Discriminant analysis using SymEn could correctly identify 89.3% (520/582) of the 1 h RR interval data of the patients with a positive HUT test regardless of the time of day. Baseline entropies of heart rate dynamics during daily activity were found to be significantly lower in patients with alleged neurocardiogenic syncope and a positive HUT test than in those with the same history but with a negative HUT test. The decreased entropy of symbolic heart rate dynamics may be of predictive value of a positive HUT test in patients with alleged neurocardiogenic syncope.

  13. Extracts of Artocarpus communis Decrease α-Melanocyte Stimulating Hormone-Induced Melanogenesis through Activation of ERK and JNK Signaling Pathways

    PubMed Central

    Fu, Yi-Tzu; Lee, Chiang-Wen; Ko, Horng-Huey; Yen, Feng-Lin

    2014-01-01

    Artocarpus communis is an agricultural plant that is also used in folk medicine to prevent skin diseases, including acne and dermatitis. Extracts of A. communis have been used to effectively inhibit melanogenesis; however, the antimelanogenesis mechanism of these extracts has not yet been investigated. The present study utilized a cell-free tyrosinase assay as well as α-melanocyte stimulating hormone- (-MSH-) induced tyrosinase assay conducted in B16F10 cells, performed a cytotoxicity assay, and determined cellular melanin content to examine the effects of a methanolic extract of A. communis (ACM) and various organic partition fractions of A. communis on melanogenesis. In addition, we performed western blot analysis to elucidate the mechanism of their antimelanogenesis effect. Our results indicated that, except for the n-hexane extract, ACM and the various partition extracts at noncytotoxic concentrations effectively decreased melanin content and tyrosinase activity by downregulating microphthalmia-associated transcription factor (MITF) and phosphorylated cAMP response element-binding protein (p-CREB). Moreover, ACM and the partition fractions activated phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) to inhibit the synthesis of MITF and finally to decrease melanin production. In conclusion, we suggest that noncytotoxic concentrations of ACM and the various partition fractions may be useful as references for developing skin-lighting agents for use in medicines or cosmetics. PMID:24737988

  14. Inter-Individual Responses to Experimental Muscle Pain: Baseline Physiological Parameters Do Not Determine Whether Muscle Sympathetic Nerve Activity Increases or Decreases During Pain

    PubMed Central

    Kobuch, Sophie; Fazalbhoy, Azharuddin; Brown, Rachael; Macefield, Vaughan G.

    2015-01-01

    We have previously reported that there are inter-individual differences in the cardiovascular responses to experimental muscle pain, which are consistent over time: intramuscular infusion of hypertonic saline, causing pain lasting ~60 min, increases muscle sympathetic nerve activity (MSNA)—as well as blood pressure and heart rate—in certain subjects, but decrease it in others. Here, we tested the hypothesis that baseline physiological parameters (resting MSNA, heart rate, blood pressure, heart rate variability) determine the cardiovascular responses to long-lasting muscle pain. MSNA was recorded from the common peroneal nerve, together with heart rate and blood pressure, during a 45-min intramuscular infusion of hypertonic saline solution into the tibialis anterior of 50 awake human subjects (25 females and 25 males). Twenty-four subjects showed a sustained increase in mean amplitude of MSNA (160.9 ± 7.3%), while 26 showed a sustained decrease (55.1 ± 3.5%). Between the increasing and decreasing groups there were no differences in baseline MSNA (19.0 ± 1.5 vs. 18.9 ± 1.2 bursts/min), mean BP (88.1 ± 5.2 vs. 88.0 ± 3.8 mmHg), HR (74.7 ± 2.0 vs. 72.8 ± 1.8 beats/min) or heart rate variability (LF/HF 1.8 ± 0.2 vs. 2.2 ± 0.3). Furthermore, neither sex nor body mass index had any effect on whether MSNA increased or decreased during tonic muscle pain. We conclude that the measured baseline physiological parameters cannot account for the divergent sympathetic responses during tonic muscle pain. PMID:26733786

  15. Inter-Individual Responses to Experimental Muscle Pain: Baseline Physiological Parameters Do Not Determine Whether Muscle Sympathetic Nerve Activity Increases or Decreases During Pain.

    PubMed

    Kobuch, Sophie; Fazalbhoy, Azharuddin; Brown, Rachael; Macefield, Vaughan G

    2015-01-01

    We have previously reported that there are inter-individual differences in the cardiovascular responses to experimental muscle pain, which are consistent over time: intramuscular infusion of hypertonic saline, causing pain lasting ~60 min, increases muscle sympathetic nerve activity (MSNA)-as well as blood pressure and heart rate-in certain subjects, but decrease it in others. Here, we tested the hypothesis that baseline physiological parameters (resting MSNA, heart rate, blood pressure, heart rate variability) determine the cardiovascular responses to long-lasting muscle pain. MSNA was recorded from the common peroneal nerve, together with heart rate and blood pressure, during a 45-min intramuscular infusion of hypertonic saline solution into the tibialis anterior of 50 awake human subjects (25 females and 25 males). Twenty-four subjects showed a sustained increase in mean amplitude of MSNA (160.9 ± 7.3%), while 26 showed a sustained decrease (55.1 ± 3.5%). Between the increasing and decreasing groups there were no differences in baseline MSNA (19.0 ± 1.5 vs. 18.9 ± 1.2 bursts/min), mean BP (88.1 ± 5.2 vs. 88.0 ± 3.8 mmHg), HR (74.7 ± 2.0 vs. 72.8 ± 1.8 beats/min) or heart rate variability (LF/HF 1.8 ± 0.2 vs. 2.2 ± 0.3). Furthermore, neither sex nor body mass index had any effect on whether MSNA increased or decreased during tonic muscle pain. We conclude that the measured baseline physiological parameters cannot account for the divergent sympathetic responses during tonic muscle pain. PMID:26733786

  16. Decreased dopamine receptor 1 activity and impaired motor-skill transfer in Dyt1 ΔGAG heterozygous knock-in mice

    PubMed Central

    Yokoi, Fumiaki; Dang, Mai T.; Liu, Jun; Gandre, Jason R.; Kwon, Kelly; Yuen, Robert; Li, Yuqing

    2014-01-01

    DYT1 dystonia is a movement disorder caused by a trinucleotide deletion (ΔGAG) in DYT1 (TOR1A), corresponding to a glutamic acid loss in the C-terminal region of torsinA. Functional alterations in the basal ganglia circuits have been reported in both DYT1 dystonia patients and rodent models. Dyt1 ΔGAG heterozygous knock-in (KI) mice exhibit motor deficits and decreased striatal dopamine receptor 2 (D2R) binding activity, suggesting a malfunction of the indirect pathway. However, the role of the direct pathway in pathogenesis of dystonia is not yet clear. Here, we report that Dyt1 KI mice exhibit significantly decreased striatal dopamine receptor 1 (D1R) binding activity and D1R protein levels, suggesting the alteration of the direct pathway. The decreased D1R may be caused by translational or post-translational processes since Dyt1 KI mice had normal levels of striatal D1R mRNA and a normal number of striatal neurons expressing D1R. Levels of striatal ionotropic glutamate receptor subunits, dopamine transporter, acetylcholine muscarinic M4 receptor and adenosine A2A receptor were not altered suggesting a specificity of affected polytopic membrane-associated proteins. Contribution of the direct pathway to motor-skill learning has been suggested in another pharmacological rat model injected with a D1R antagonist. In the present study, we developed a novel motor skill transfer test for mice and found deficits in Dyt1 KI mice. Further characterization of both the direct and the indirect pathways in Dyt1 KI mice will aid the development of novel therapeutic drugs. PMID:25451552

  17. Epoxyeicosatrienoic acid agonist regulates human mesenchymal stem cell-derived adipocytes through activation of HO-1-pAKT signaling and a decrease in PPARγ.

    PubMed

    Kim, Dong Hyun; Vanella, Luca; Inoue, Kazuyoshi; Burgess, Angela; Gotlinger, Katherine; Manthati, Vijaya Lingam; Koduru, Sreenivasulu Reddy; Zeldin, Darryl C; Falck, John R; Schwartzman, Michal L; Abraham, Nader G

    2010-12-01

    Human mesenchymal stem cells (MSCs) expressed substantial levels of CYP2J2, a major CYP450 involved in epoxyeicosatrienoic acid (EET) formation. MSCs synthesized significant levels of EETs (65.8 ± 5.8 pg/mg protein) and dihydroxyeicosatrienoic acids (DHETs) (15.83 ± 1.62 pg/mg protein), suggesting the presence of soluble epoxide hydrolase (sEH). The addition of an sEH inhibitor to MSC culture decreased adipogenesis. EETs decreased MSC-derived adipocytes in a concentration-dependent manner, 8,9- and 14,15-EET having the maximum reductive effect on adipogenesis. We examined the effect of 12-(3-hexylureido)dodec-8(Z)-enoic acid, an EET agonist, on MSC-derived adipocytes and demonstrated an increased number of healthy small adipocytes, attenuated fatty acid synthase (FAS) levels (P < 0.01), and reduced PPARγ, C/EBPα, FAS, and lipid accumulation (P < 0.05). These effects were accompanied by increased levels of heme oxygenase (HO)-1 and adiponectin (P < 0.05), and increased glucose uptake (P < 0.05). Inhibition of HO activity or AKT by tin mesoporphyrin (SnMP) and LY2940002, respectively, reversed EET-induced inhibition of adipogenesis, suggesting that activation of the HO-1-adiponectin axis underlies EET effect in MSCs. These findings indicate that EETs decrease MSC-derived adipocyte stem cell differentiation by upregulation of HO-1-adiponectin-AKT signaling and play essential roles in the regulation of adipocyte differentiation by inhibiting PPARγ, C/EBPα, and FAS and in stem cell development. These novel observations highlight the seminal role of arachidonic acid metabolism in MSCs and suggest that an EET agonist may have potential therapeutic use in the treatment of dyslipidemia, diabetes, and the metabolic syndrome. PMID:20412023

  18. Epoxyeicosatrienoic Acid Agonist Regulates Human Mesenchymal Stem Cell–Derived Adipocytes Through Activation of HO-1-pAKT Signaling and a Decrease in PPARγ

    PubMed Central

    Kim, Dong Hyun; Vanella, Luca; Inoue, Kazuyoshi; Burgess, Angela; Gotlinger, Katherine; Manthati, Vijaya Lingam; Koduru, Sreenivasulu Reddy; Zeldin, Darryl C.; Falck, John R.; Schwartzman, Michal L.

    2010-01-01

    Human mesenchymal stem cells (MSCs) expressed substantial levels of CYP2J2, a major CYP450 involved in epoxyeicosatrienoic acid (EET) formation. MSCs synthesized significant levels of EETs (65.8 ± 5.8 pg/mg protein) and dihydroxyeicosatrienoic acids (DHETs) (15.83 ± 1.62 pg/mg protein), suggesting the presence of soluble epoxide hydrolase (sEH). The addition of an sEH inhibitor to MSC culture decreased adipogenesis. EETs decreased MSC-derived adipocytes in a concentration-dependent manner, 8,9- and 14,15-EET having the maximum reductive effect on adipogenesis. We examined the effect of 12-(3-hexylureido)dodec-8(Z)-enoic acid, an EET agonist, on MSC-derived adipocytes and demonstrated an increased number of healthy small adipocytes, attenuated fatty acid synthase (FAS) levels (P < 0.01), and reduced PPARγ, C/EBPα, FAS, and lipid accumulation (P < 0.05). These effects were accompanied by increased levels of heme oxygenase (HO)-1 and adiponectin (P < 0.05), and increased glucose uptake (P < 0.05). Inhibition of HO activity or AKT by tin mesoporphyrin (SnMP) and LY2940002, respectively, reversed EET-induced inhibition of adipogenesis, suggesting that activation of the HO-1-adiponectin axis underlies EET effect in MSCs. These findings indicate that EETs decrease MSC-derived adipocyte stem cell differentiation by upregulation of HO-1-adiponectin-AKT signaling and play essential roles in the regulation of adipocyte differentiation by inhibiting PPARγ, C/EBPα, and FAS and in stem cell development. These novel observations highlight the seminal role of arachidonic acid metabolism in MSCs and suggest that an EET agonist may have potential therapeutic use in the treatment of dyslipidemia, diabetes, and the metabolic syndrome. PMID:20412023

  19. Dietary n-3 polyunsaturated fatty acid depletion activates caspases and decreases NMDA receptors in the brain of a transgenic mouse model of Alzheimer's disease.

    PubMed

    Calon, Frédéric; Lim, Giselle P; Morihara, Takashi; Yang, Fusheng; Ubeda, Oliver; Salem, Norman; Frautschy, Sally A; Cole, Greg M

    2005-08-01

    Epidemiological data indicate that low n-3 polyunsaturated fatty acids (PFA) intake is a readily manipulated dietary risk factor for Alzheimer's disease (AD). Studies in animals confirm the deleterious effect of n-3 PFA depletion on cognition and on dendritic scaffold proteins. Here, we show that in transgenic mice overexpressing the human AD gene APPswe (Tg2576), safflower oil-induced n-3 PFA deficiency caused a decrease in N-methyl-D-aspartate (NMDA) receptor subunits, NR2A and NR2B, in the cortex and hippocampus with no loss of the presynaptic markers, synaptophysin and synaptosomal-associated protein 25 (SNAP-25). n-3 PFA depletion also decreased the NR1 subunit in the hippocampus and Ca2+/calmodulin-dependent protein kinase (CaMKII) in the cortex of Tg2576 mice. These effects of dietary n-3 PFA deficiency were greatly amplified in Tg2576 mice compared to nontransgenic mice. Loss of the NR2B receptor subunit was not explained by changes in mRNA expression, but correlated with p85alpha phosphatidylinositol 3-kinase levels. Most interestingly, n-3 PFA deficiency dramatically increased levels of protein fragments, corresponding to caspase/calpain-cleaved fodrin and gelsolin in Tg2576 mice. This effect was minimal in nontransgenic mice suggesting that n-3 PFA depletion potentiated caspase activation in the Tg2576 mouse model of AD. Dietary supplementation with docosahexaenoic acid (DHA; 22 : 6n-3) partly protected from NMDA receptor subunit loss and accumulation of fodrin and gelsolin fragments but fully prevented CaMKII decrease. The marked effect of dietary n-3 PFA on NMDA receptors and caspase/calpain activation in the cortex of an animal model of AD provide new insights into how dietary essential fatty acids may influence cognition and AD risk. PMID:16101743

  20. Dietary ɛ-Polylysine Decreased Serum and Liver Lipid Contents by Enhancing Fecal Lipid Excretion Irrespective of Increased Hepatic Fatty Acid Biosynthesis-Related Enzymes Activities in Rats

    PubMed Central

    Hosomi, Ryota; Yamamoto, Daiki; Otsuka, Ren; Nishiyama, Toshimasa; Yoshida, Munehiro; Fukunaga, Kenji

    2015-01-01

    ɛ-Polylysine (EPL) is used as a natural preservative in food. However, few studies have been conducted to assess the beneficial functions of dietary EPL. The purpose of this study was to elucidate the mechanism underlying the inhibition of neutral and acidic sterol absorption and hepatic enzyme activity-related fatty acid biosynthesis following EPL intake. EPL digest prepared using an in vitro digestion model had lower lipase activity and micellar lipid solubility and higher bile acid binding capacity than casein digest. Male Wistar rats were fed an AIN-93G diet containing 1% (wt/wt) EPL or l-lysine. After 4 weeks of feeding these diets, the marked decrease in serum and liver triacylglycerol contents by the EPL diet was partly attributed to increased fecal fatty acid excretion. The activities of hepatic acetyl-coenzyme A carboxylase and glucose-6-phosphate dehydrogenase, which are key enzymes of fatty acid biosynthesis, were enhanced in rats fed EPL diet. The increased fatty acid biosynthesis activity due to dietary EPL may be prevented by the enhancement of fecal fatty acid excretion. The hypocholesterolemic effect of EPL was mediated by increased fecal neutral and acidic sterol excretions due to the EPL digest suppressing micellar lipid solubility and high bile acid binding capacity. These results show that dietary EPL has beneficial effects that could help prevent lifestyle-related diseases such as hyperlipidemia and atherosclerosis. PMID:25866749

  1. Pentylenetetrazol-induced seizures are associated with Na⁺,K⁺-ATPase activity decrease and alpha subunit phosphorylation state in the mice cerebral cortex.

    PubMed

    Marquezan, Bárbara P; Funck, Vinícius R; Oliveira, Clarissa V; Pereira, Letícia M; Araújo, Stífani M; Zarzecki, Micheli S; Royes, Luiz Fernando F; Furian, Ana Flávia; Oliveira, Mauro S

    2013-08-01

    The present study aimed to investigate whether Na(+),K(+)-ATPase activity and phosphorylation state of the catalytic α subunit are altered by pentylenetetrazol (PTZ)-induced seizures. PTZ (30, 45 or 60 g/kg, i.p.) was administered to adult male Swiss mice, and Na(+),K(+)-ATPase activity and phosphorylation state were measured in the cerebral cortex 15 min after PTZ administration. Na(+),K(+)-ATPase activity significantly decreased after PTZ-induced seizures (60 mg/kg). Immunoreactivity of phosphorylated Ser943 at α subunit was increased after PTZ-induced seizures. A significant positive correlation between Na(+),K(+)-ATPase activity and latency to myoclonic jerks and generalized seizures was found. Conversely, a strong negative correlation between Ser943 phosphorylation and latency to generalized seizures was detected. Given the role of Na(+),K(+)-ATPase as a major regulator of brain excitability, Ser943 at Na(+),K(+)-ATPase α subunit may represent a potentially valuable new target for drug development for seizure disorders. PMID:23602551

  2. Dietary ɛ-Polylysine Decreased Serum and Liver Lipid Contents by Enhancing Fecal Lipid Excretion Irrespective of Increased Hepatic Fatty Acid Biosynthesis-Related Enzymes Activities in Rats.

    PubMed

    Hosomi, Ryota; Yamamoto, Daiki; Otsuka, Ren; Nishiyama, Toshimasa; Yoshida, Munehiro; Fukunaga, Kenji

    2015-03-01

    ɛ-Polylysine (EPL) is used as a natural preservative in food. However, few studies have been conducted to assess the beneficial functions of dietary EPL. The purpose of this study was to elucidate the mechanism underlying the inhibition of neutral and acidic sterol absorption and hepatic enzyme activity-related fatty acid biosynthesis following EPL intake. EPL digest prepared using an in vitro digestion model had lower lipase activity and micellar lipid solubility and higher bile acid binding capacity than casein digest. Male Wistar rats were fed an AIN-93G diet containing 1% (wt/wt) EPL or l-lysine. After 4 weeks of feeding these diets, the marked decrease in serum and liver triacylglycerol contents by the EPL diet was partly attributed to increased fecal fatty acid excretion. The activities of hepatic acetyl-coenzyme A carboxylase and glucose-6-phosphate dehydrogenase, which are key enzymes of fatty acid biosynthesis, were enhanced in rats fed EPL diet. The increased fatty acid biosynthesis activity due to dietary EPL may be prevented by the enhancement of fecal fatty acid excretion. The hypocholesterolemic effect of EPL was mediated by increased fecal neutral and acidic sterol excretions due to the EPL digest suppressing micellar lipid solubility and high bile acid binding capacity. These results show that dietary EPL has beneficial effects that could help prevent lifestyle-related diseases such as hyperlipidemia and atherosclerosis. PMID:25866749

  3. Phytochemicals of Aristolochia tagala and Curcuma caesia exert anticancer effect by tumor necrosis factor-α-mediated decrease in nuclear factor kappaB binding activity

    PubMed Central

    Hadem, Khetbadei Lysinia Hynniewta; Sharan, Rajeshwar Nath; Kma, Lakhan

    2015-01-01

    analysis revealed the presence of phenolic compounds in CC and indicated the presence of anthocynidin 3-glycosides, 6-hydroxylated flavonols, some flavones and chalcone glycosides in AT and also confirmed the presence of compounds such as terpenes, phenols, steroids, and other organic compounds in CC and presence of flavonoids in AT. In vivo studies carried out in BALB/c mice showed that exposure to DEN caused an increase in TNF-α and NF-κB binding activity. The HPE (CC or AT) was seen to revert this effect. Conclusions: The current paper documents the antioxidant, anti-inflammatory, and anticancer activity of the two extracts probably through TNF-α-mediated decrease in NF-κB binding activity. The active components of AT and CC may act as the potential anticancer agents in hepatocellular carcinoma and warrants further investigation. PMID:26792956

  4. The novel curcumin analog FLLL32 decreases STAT3 DNA binding activity and expression, and induces apoptosis in osteosarcoma cell lines

    PubMed Central

    2011-01-01

    Background Curcumin is a naturally occurring phenolic compound shown to have a wide variety of antitumor activities; however, it does not attain sufficient blood levels to do so when ingested. Using structure-based design, a novel compound, FLLL32, was generated from curcumin. FLLL32 possesses superior biochemical properties and more specifically targets STAT3, a transcription factor important in tumor cell survival, proliferation, metastasis, and chemotherapy resistance. In our previous work, we found that several canine and human osteosarcoma (OSA) cell lines, but not normal osteoblasts, exhibit constitutive phosphorylation of STAT3. Compared to curcumin, we hypothesized that FLLL32 would be more efficient at inhibiting STAT3 function in OSA cells and that this would result in enhanced downregulation of STAT3 transcriptional targets and subsequent death of OSA cells. Methods Human and canine OSA cells were treated with vehicle, curcumin, or FLLL32 and the effects on proliferation (CyQUANT®), apoptosis (SensoLyte® Homogeneous AMC Caspase- 3/7 Assay kit, western blotting), STAT3 DNA binding (EMSA), and vascular endothelial growth factor (VEGF), survivin, and matrix metalloproteinase-2 (MMP2) expression (RT-PCR, western blotting) were measured. STAT3 expression was measured by RT-PCR, qRT- PCR, and western blotting. Results Our data showed that FLLL32 decreased STAT3 DNA binding by EMSA. FLLL32 promoted loss of cell proliferation at lower concentrations than curcumin leading to caspase-3- dependent apoptosis, as evidenced by PARP cleavage and increased caspase 3/7 activity; this could be inhibited by treatment with the pan-caspase inhibitor Z-VAD-FMK. Treatment of OSA cells with FLLL32 decreased expression of survivin, VEGF, and MMP2 at both mRNA and protein levels with concurrent decreases in phosphorylated and total STAT3; this loss of total STAT3 occurred, in part, via the ubiquitin-proteasome pathway. Conclusions These data demonstrate that the novel curcumin

  5. Dipeptidylpeptidase-IV Activity and Expression Reveal Decreased Damage to the Intrahepatic Biliary Tree in Fatty Livers Submitted to Subnormothermic Machine-Perfusion Respect to Conventional Cold Storage

    PubMed Central

    Tarantola, E.; Bertone, V.; Milanesi, G.; Gruppi, C.; Ferrigno, A.; Vairetti, M.; Barni, S.

    2014-01-01

    Graft steatosis is a risk factor for poor initial function after liver transplantation. Biliary complications are frequent even after normal liver transplantation. A subnormothermic machine perfusion (MP20) preservation procedure was developed by our group with high potential for reducing injury to hepatocytes and sinusoidal cells of lean and fatty livers respect to conventional cold storage (CS). We report the response of the biliary tree to CS or MP20, in lean and obese Zucker rat liver. Dipeptidylpeptidase-IV (DPP-IV), crucial for the inactivation of incretins and neuropeptides, was used as a marker. Liver morphology and canalicular network of lean livers were similar after CS/reperfusion or MP20/reperfusion. CS preservation of fatty livers induced serious damage to the parenchyma and to the canalicular activity/ expression of DPP-IV, whereas with MP20 the morphology and canalicular network were similar to those of untreated lean liver. CS and MP20 had similar effects on DPP-IV activity and expression in the upper segments of the intrahepatic biliary tree of fatty livers. DPP-IV expression was significantly increased after MP20 respect to CS or to the controls, both for lean and obese animals. Our data support the superiority of MP20 over CS for preserving fatty livers. Dipeptidylpeptidase-IV activity and expression reveal decreased damage to the intrahepatic biliary tree in fatty livers submitted to subnormothermic machine-perfusion respect to conventional cold storage. PMID:25308846

  6. Social activity decreases risk of placement in a long-term care facility for a prospective sample of community-dwelling older adults.

    PubMed

    Miller, Lyndsey M; Dieckmann, Nathan F; Mattek, Nora C; Lyons, Karen S; Kaye, Jeffrey A

    2014-01-01

    The purpose of this study was to determine the role of modifiable factors in the risk of long-term care (LTC) placement. Using data from a cohort of community-residing older adults (N = 189), a secondary analysis was conducted of the contribution of social activity, sleep disturbances, and depressive symptoms to the risk of LTC placement. Analyses controlled for cognitive and functional impairment, age, and medical conditions. Within 5 years, 20% of participants were placed in a LTC facility. Each unit increase in social activity was associated with a 24% decrease in the risk of placement (odds ratio [OR] = 0.763, p = 0.001, 95% confidence interval [CI] [0.65, 0.89]). Cognitive impairment (OR = 3.05, p = 0.017, 95% CI [1.23, 7.59]), medical conditions (OR = 1.22, p = 0.039, 95% CI [1.01, 1.47]), and age (OR = 1.101, p = 0.030, 95% CI [1.01, 1.20]) were also significant individual predictors of placement. Although many of the strongest risk factors for placement are not modifiable, older adults who engage in more social activity outside the home may be able to delay transition from independent living. PMID:24444452

  7. Map2k4 Functions as a Tumor Suppressor in Lung Adenocarcinoma and Inhibits Tumor Cell Invasion by Decreasing Peroxisome Proliferator-Activated Receptor γ2 Expression ▿

    PubMed Central

    Ahn, Young-Ho; Yang, Yanan; Gibbons, Don L.; Creighton, Chad J.; Yang, Fei; Wistuba, Ignacio I.; Lin, Wei; Thilaganathan, Nishan; Alvarez, Cristina A.; Roybal, Jonathon; Goldsmith, Elizabeth J.; Tournier, Cathy; Kurie, Jonathan M.

    2011-01-01

    MAP2K4 encodes a dual-specificity kinase (mitogen-activated protein kinase kinase 4, or MKK4) that is mutated in a variety of human malignancies, but the biochemical properties of the mutant kinases and their roles in tumorigenesis have not been fully elucidated. Here we showed that 8 out of 11 cancer-associated MAP2K4 mutations reduce MKK4 protein stability or impair its kinase activity. On the basis of findings from bioinformatic studies on human cancer cell lines with homozygous MAP2K4 loss, we posited that MKK4 functions as a tumor suppressor in lung adenocarcinomas that develop in mice owing to expression of mutant Kras and Tp53. Conditional Map2k4 inactivation in the bronchial epithelium of mice had no discernible effect alone but increased the multiplicity and accelerated the growth of incipient lung neoplasias induced by oncogenic Kras. MKK4 suppressed the invasion and metastasis of Kras-Tp53-mutant lung adenocarcinoma cells. MKK4 deficiency increased peroxisomal proliferator-activated receptor γ2 (PPARγ2) expression through noncanonical MKK4 substrates, and PPARγ2 enhanced tumor cell invasion. We conclude that Map2k4 functions as a tumor suppressor in lung adenocarcinoma and inhibits tumor cell invasion by decreasing PPARγ2 levels. PMID:21896780

  8. Inefficiency in self-organized attentional switching in the normal aging population is associated with decreased activity in the ventrolateral prefrontal cortex.

    PubMed

    Hampshire, Adam; Gruszka, Aleksandra; Fallon, Sean J; Owen, Adrian M

    2008-09-01

    Studies of the aging brain have demonstrated that areas of the frontal cortex, along with their associated top-down executive control processes, are particularly prone to the neurodegenerative effects of age. Here, we investigate the effects of aging on brain and behavior using a novel task, which allows us to examine separate components of an individual's chosen strategy during routine problem solving. Our findings reveal that, contrary to previous suggestions of a specific decrease in cognitive flexibility, older participants show no increased level of perseveration to either the recently rewarded object or the recently relevant object category. In line with this lack of perseveration, lateral and medial regions of the orbito-frontal cortex, which are associated with inhibitory control and reward processing, appear to be functionally intact. Instead, a general loss of efficient problem-solving strategy is apparent with a concomitant decrease in neural activity in the ventrolateral prefrontal cortex and the posterior parietal cortex. The dorsolateral prefrontal cortex is also affected during problem solving, but age-related decline within this region appears to occur at a later stage. PMID:18345987

  9. Activation of the anti-inflammatory reflex blocks lipopolysaccharide-induced decrease in synaptic inhibition in the temporal cortex of the rat.

    PubMed

    Garcia-Oscos, Francisco; Peña, David; Housini, Mohammad; Cheng, Derek; Lopez, Diego; Cuevas-Olguin, Roberto; Saderi, Nadia; Salgado Delgado, Roberto; Galindo Charles, Luis; Salgado Burgos, Humberto; Rose-John, Stefan; Flores, Gonzalo; Kilgard, Michael P; Atzori, Marco

    2015-06-01

    Stress is a potential trigger for a number of neuropsychiatric conditions, including anxiety syndromes and schizophrenic psychoses. The temporal neocortex is a stress-sensitive area involved in the development of such conditions. We have recently shown that aseptic inflammation and mild electric shock shift the balance between synaptic excitation and synaptic inhibition in favor of the former in this brain area (Garcia-Oscos et al., 2012), as well as in the prefrontal cortex (Garcia-Oscos et al., 2014). Given the potential clinical importance of this phenomenon in the etiology of hyperexcitable neuropsychiatric illness, this study investigates whether inactivation of the peripheral immune system by the "anti-inflammatory reflex" would reduce the central response to aseptic inflammation. For a model of aseptic inflammation, this study used i.p. injections of the bacterial toxin lipopolysaccharide (LPS; 5 µM) and activated the anti-inflammatory reflex either pharmacologically by i.p. injections of the nicotinic α7 receptor agonist PHA543613 or physiologically through electrical stimulation of the left vagal nerve (VNS). Patch-clamp recording was used to monitor synaptic function. Recordings from LPS-injected Sprague Dawley rats show that activation of the anti-inflammatory reflex either pharmacologically or by VNS blocks or greatly reduces the LPS-induced decrease of the synaptic inhibitory-to-excitatory ratio and the saturation level of inhibitory current input-output curves. Given the ample variety of pharmacologically available α7 nicotinic receptor agonists as well as the relative safety of clinical VNS already approved by the FDA for the treatment of epilepsy and depression, our findings suggest a new therapeutic avenue in the treatment of stress-induced hyperexcitable conditions mediated by a decrease in synaptic inhibition in the temporal cortex. PMID:25626997

  10. Treatment with a Small Molecule Mutant IDH1 Inhibitor Suppresses Tumorigenic Activity and Decreases Production of the Oncometabolite 2-Hydroxyglutarate in Human Chondrosarcoma Cells.

    PubMed

    Li, Luyuan; Paz, Ana C; Wilky, Breelyn A; Johnson, Britt; Galoian, Karina; Rosenberg, Andrew; Hu, Guozhi; Tinoco, Gabriel; Bodamer, Olaf; Trent, Jonathan C

    2015-01-01

    Chondrosarcomas are malignant bone tumors that produce cartilaginous matrix. Mutations in isocitrate dehydrogenase enzymes (IDH1/2) were recently described in several cancers including chondrosarcomas. The IDH1 inhibitor AGI-5198 abrogates the ability of mutant IDH1 to produce the oncometabolite D-2 hydroxyglutarate (D-2HG) in gliomas. We sought to determine if treatment with AGI-5198 would similarly inhibit tumorigenic activity and D-2HG production in IDH1-mutant human chondrosarcoma cells. Two human chondrosarcoma cell lines, JJ012 and HT1080 with endogenous IDH1 mutations and a human chondrocyte cell line C28 with wild type IDH1 were employed in our study. Mutation analysis of IDH was performed by PCR-based DNA sequencing, and D-2HG was detected using tandem mass spectrometry. We confirmed that JJ012 and HT1080 harbor IDH1 R132G and R132C mutation, respectively, while C28 has no mutation. D-2HG was detectable in cell pellets and media of JJ012 and HT1080 cells, as well as plasma and urine from an IDH-mutant chondrosarcoma patient, which decreased after tumor resection. AGI-5198 treatment decreased D-2HG levels in JJ012 and HT1080 cells in a dose-dependent manner, and dramatically inhibited colony formation and migration, interrupted cell cycling, and induced apoptosis. In conclusion, our study demonstrates anti-tumor activity of a mutant IDH1 inhibitor in human chondrosarcoma cell lines, and suggests that D-2HG is a potential biomarker for IDH mutations in chondrosarcoma cells. Thus, clinical trials of mutant IDH inhibitors are warranted for patients with IDH-mutant chondrosarcomas. PMID:26368816

  11. Neuregulin1–β decreases interleukin–1β–induced RhoA activation, myosin light chain phosphorylation, and endothelial hyperpermeability

    PubMed Central

    Wu, Limin; Ramirez, Servio H.; Andrews, Allison M.; Leung, Wendy; Itoh, Kanako; Wu, Jiang; Arai, Ken; Lo, Eng H.; Lok, Josephine

    2016-01-01

    Neuregulin-1 (NRG1) is an endogenous growth factor with multiple functions in the embryonic and postnatal brain. The NRG1 gene is large and complex, transcribing more than twenty transmembrane proteins and generating a large number of isoforms in tissue and cell type-specific patterns. Within the brain, NRG1 functions have been studied most extensively in neurons and glia, as well as in the peripheral vasculature. Recently, NRG1 signaling has been found to be important in the function of brain microvascular endothelial cells, decreasing IL-1β-induced increases in endothelial permeability. In the current experiments, we have investigated the pathways through which the NRG1-β isoform acts on IL-1β-induced endothelial permeability. Our data show that NRG1-β increases barrier function, measured by transendothelial electrical resistance, and decreases IL-1β-induced hyperpermeability, measured by dextran-40 extravasation through a monolayer of brain microvascular endothelial cells plated on transwells. An investigation of key signaling proteins suggests that the effect of NRG1-β on endothelial permeability is mediated through RhoA activation and myosin light chain phosphorylation, events which affect filamentous actin morphology. In addition, AG825, an inhibitor of the erbB2-associated tyrosine kinase, reduces the effect of NRG1-β on IL-1β-induced RhoA activation and myosin light chain phosphorylation. These data add to the evidence that NRG1-β signaling affects changes in the brain microvasculature in the setting of neuroinflammation. PMID:26438054

  12. Treatment with a Small Molecule Mutant IDH1 Inhibitor Suppresses Tumorigenic Activity and Decreases Production of the Oncometabolite 2-Hydroxyglutarate in Human Chondrosarcoma Cells

    PubMed Central

    Li, Luyuan; Paz, Ana C.; Wilky, Breelyn A.; Johnson, Britt; Galoian, Karina; Rosenberg, Andrew; Hu, Guozhi; Tinoco, Gabriel; Bodamer, Olaf; Trent, Jonathan C.

    2015-01-01

    Chondrosarcomas are malignant bone tumors that produce cartilaginous matrix. Mutations in isocitrate dehydrogenase enzymes (IDH1/2) were recently described in several cancers including chondrosarcomas. The IDH1 inhibitor AGI-5198 abrogates the ability of mutant IDH1 to produce the oncometabolite D-2 hydroxyglutarate (D-2HG) in gliomas. We sought to determine if treatment with AGI-5198 would similarly inhibit tumorigenic activity and D-2HG production in IDH1-mutant human chondrosarcoma cells. Two human chondrosarcoma cell lines, JJ012 and HT1080 with endogenous IDH1 mutations and a human chondrocyte cell line C28 with wild type IDH1 were employed in our study. Mutation analysis of IDH was performed by PCR-based DNA sequencing, and D-2HG was detected using tandem mass spectrometry. We confirmed that JJ012 and HT1080 harbor IDH1 R132G and R132C mutation, respectively, while C28 has no mutation. D-2HG was detectable in cell pellets and media of JJ012 and HT1080 cells, as well as plasma and urine from an IDH-mutant chondrosarcoma patient, which decreased after tumor resection. AGI-5198 treatment decreased D-2HG levels in JJ012 and HT1080 cells in a dose-dependent manner, and dramatically inhibited colony formation and migration, interrupted cell cycling, and induced apoptosis. In conclusion, our study demonstrates anti-tumor activity of a mutant IDH1 inhibitor in human chondrosarcoma cell lines, and suggests that D-2HG is a potential biomarker for IDH mutations in chondrosarcoma cells. Thus, clinical trials of mutant IDH inhibitors are warranted for patients with IDH-mutant chondrosarcomas. PMID:26368816

  13. Constitutive activation of epidermal growth factor receptor promotes tumorigenesis of Cr(VI)-transformed cells through decreased reactive oxygen species and apoptosis resistance development.

    PubMed

    Kim, Donghern; Dai, Jin; Fai, Leonard Yenwong; Yao, Hua; Son, Young-Ok; Wang, Lei; Pratheeshkumar, Poyil; Kondo, Kazuya; Shi, Xianglin; Zhang, Zhuo

    2015-01-23

    Hexavalent chromium (Cr(VI)) compounds are well-established lung carcinogens. Epidermal growth factor receptor (EGFR) is a tyrosine kinase transmembrane receptor that regulates cell survival, tumor invasion, and angiogenesis. Our results show that chronic exposure of human bronchial epithelial (BEAS-2B) cells to Cr(VI) is able to cause malignant cell transformation. These transformed cells exhibit apoptosis resistance with reduced poly ADP-ribose polymerase cleavage (C-PARP) and Bax expression and enhanced expressions of Bcl-2 and Bcl-xL. These transformed cells also exhibit reduced capacity of reactive oxygen species (ROS) generation along with elevated expression of antioxidant manganese superoxide dismutase 2 (SOD2). The expression of this antioxidant was also elevated in lung tumor tissue from a worker exposed to Cr(VI) for 19 years. EGFR was activated in Cr(VI)-transformed BEAS-2B cells, lung tissue from animals exposed to Cr(VI) particles, and human lung tumor tissue. Further study indicates that constitutive activation of EGFR in Cr(VI)-transformed cells was due to increased binding to its ligand amphiregulin (AREG). Inhibition of EGFR or AREG increased Bax expression and reduced Bcl-2 expression, resulting in reduced apoptosis resistance. Furthermore, inhibition of AREG or EGFR restored capacity of ROS generation and decreased SOD2 expression. PI3K/AKT was activated, which depended on EGFR in Cr(VI)-transformed BEAS-2B cells. Inhibition of PI3K/AKT increased ROS generation and reduced SOD2 expression, resulting in reduced apoptosis resistance with commitment increase in Bax expression and reduction of Bcl-2 expression. Xenograft mouse tumor study further demonstrates the essential role of EGFR in tumorigenesis of Cr(VI)-transformed cells. In summary, the present study suggests that ligand-dependent constitutive activation of EGFR causes reduced ROS generation and increased antioxidant expression, leading to development of apoptosis resistance, contributing

  14. DISRUPTED FEMALE REPRODUCTIVE PHYSIOLOGY FOLLOWING NEONATAL EXPOSURE TO PHYTOESTROGENS OR ESTROGEN SPECIFIC LIGANDS IS ASSOCIATED WITH DECREASED GNRH ACTIVATION AND KISSPEPTIN FIBER DENSITY IN THE HYPOTHALAMUS

    PubMed Central

    Bateman, Heather L.; Patisaul, Heather B.

    2008-01-01

    It is well established that estrogen administration during neonatal development can advance pubertal onset and prevent the maintenance of regular estrous cycles in female rats. This treatment paradigm also eliminates the preovulatory rise of gonadotropin releasing hormone (GnRH). It remains unclear, however, through which of the two primary forms of the estrogen receptor (ERα or ERβ) this effect is mediated. It is also unclear whether endocrine disrupting compounds (EDCs) can produce similar effects. Here we compared the effect of neonatal exposure to estradiol benzoate (EB), the ERα specific agonist 1,3,5-tris(4-Hydroxyphenyl)-4-propyl-1H-pyrazole (PPT), the ERβ specific agonist diarylpropionitrile (DPN) and the naturally occurring EDCs genistein (GEN) and equol (EQ) on pubertal onset, estrous cyclicity, GnRH activation, and kisspeptin content in the anteroventral periventricular (AVPV) and arcuate (ARC) nuclei. Vaginal opening was significantly advanced by EB and GEN. By ten weeks post-puberty, irregular estrous cycles were observed in all groups except the control group. GnRH activation, as measured by the percentage of immunopositive GnRH neurons that were also immunopositive for Fos, was significantly lower in all treatment groups except the DPN group compared to the control group. GnRH activation was absent in the PPT group. These data suggest that neonatal exposure to EDCs can suppress GnRH activity in adulthood, and that ERα plays a pivotal role in this process. Kisspeptins (KISS) have recently been characterized to be potent stimulators of GnRH secretion. Therefore we quantified the density of KISS immunolabeled fibers in the AVPV and ARC. In the AVPV, KISS fiber density was significantly lower in the EB and GEN groups compared to the control group but only in the EB and PPT groups in the ARC. The data suggest that decreased stimulation of GnRH neurons by KISS could be a mechanism by which EDCs can impair female reproductive function. PMID:18656497

  15. Decreased systemic IGF-1 in response to calorie restriction modulates murine tumor cell growth, nuclear factor-κB activation, and inflammation-related gene expression.

    PubMed

    Harvey, Alison E; Lashinger, Laura M; Otto, Glen; Nunez, Nomeli P; Hursting, Stephen D

    2013-12-01

    Calorie restriction (CR) prevents obesity and has potent anticancer effects associated with altered hormones and cytokines. We tested the hypothesis that CR inhibits MC38 mouse colon tumor cell growth through modulation of hormone-stimulated nuclear factor (NF)-κB activation and protumorigenic gene expression. Female C57BL/6 mice were randomized (n = 30/group) to receive control diet or 30% CR diet. At 20 wk, 15 mice/group were killed for body composition analysis. At 21 wk, serum was obtained for hormone analysis. At 22 wk, mice were injected with MC38 cells; tumor growth was monitored for 24 d. Gene expression in excised tumors and MC38 cells was analyzed using real-time RT-PCR. In vitro MC38 NF-κB activation (by p65 ELISA and immunofluorescence) were measured in response to varying IGF-1 concentrations (1-400 ng/mL). Relative to controls, CR mice had decreased tumor volume, body weight, body fat, serum IGF-1, serum leptin, and serum insulin, and increased serum adiponectin (P < 0.05, each). Tumors from CR mice, versus controls, had downregulated inflammation- and/or cancer-related gene expression, including interleukin (IL)-6, IL-1β, tumor necrosis factor-α, cyclooxygenase-2, chemokine (C-C motif) ligand-2, S100A9, and F4/80, and upregulated 15-hydroxyprostaglandin dehydrogenase expression. In MC38 cells in vitro, IGF-1 increased NF-κB activation and NF-κB downstream gene expression (P < 0.05, each). We conclude that CR, in association with reduced systemic IGF-1, modulates MC38 tumor growth, NF-κB activation, and inflammation-related gene expression. Thus, IGF-1 and/or NF-κB inhibition may pharmacologically mimic the anticancer effects of CR to break the obesity-colon cancer link. PMID:22778026

  16. Decreased gene expression activity as a result of a mutation in the calreticulin gene promoter in a family case of schizoaffective disorder.

    PubMed

    Farashi, S; Ohadi, M; Hosseinkhani, S; Darvish, H; Mirabzadeh, A

    2016-06-01

    Accumulating evidence of population association studies support the hypothesis that the high heritability of major psychiatric disorders is a combination of relatively common alleles of modest effect, and rare alleles some with relatively larger effects. We have previously reported low frequency mutations in the proximal promoter of the human calreticulin (CALR) gene that co-occur with the spectrum of major psychiatric disorders. One of those mutations at -205C>T (rs556992558) was detected in an isolate case of schizoaffective disorder. In the current study, the functional implication of mutation -205T is studied in the human neuronal cell lines LAN-5, BE(2)-C and HEK-293. In contrast with other mutations in the promoter region which increase gene expression activity, the -205T mutation significantly decreased gene expression in those cell lines in comparison with the wild-type -205C nucleotide (p < 0.000001, p < 0.0005, and p < 0.017, respectively). Treatment of the cell lines with the mood-stabilizing drug, valproic acid (VPA) resulted in differential gene expression activity in the mutant -205T versus the wild-type -205C construct. VPA increased gene expression activity in both constructs, while a significantly higher expression activity was observed in the mutant construct (p < 0.01), indicative of the creation of a positive effector binding site for VPA as a result of the -205T mutation. We conclude that deviation from normalcy in the level of CALR in either direction is associated with major psychiatric disorders. PMID:27275382

  17. Decreased glycolate oxidase activity leads to altered carbon allocation and leaf senescence after a transfer from high CO2 to ambient air in Arabidopsis thaliana.

    PubMed

    Dellero, Younès; Jossier, Mathieu; Glab, Nathalie; Oury, Céline; Tcherkez, Guillaume; Hodges, Michael

    2016-05-01

    Metabolic and physiological analyses of Arabidopsis thaliana glycolate oxidase (GOX) mutant leaves were performed to understand the development of the photorespiratory phenotype after transfer from high CO2 to air. We show that two Arabidopsis genes, GOX1 and GOX2, share a redundant photorespiratory role. Air-grown single gox1 and gox2 mutants grew normally and no significant differences in leaf metabolic levels and photosynthetic activities were found when compared with wild-type plants. To study the impact of a highly reduced GOX activity on plant metabolism, both GOX1 and GOX2 expression was knocked-down using an artificial miRNA strategy. Air-grown amiRgox1/2 plants with a residual 5% GOX activity exhibited a severe growth phenotype. When high-CO2-grown adult plants were transferred to air, the photosynthetic activity of amiRgox1/2 was rapidly reduced to 50% of control levels, and a high non-photochemical chlorophyll fluorescence quenching was maintained. (13)C-labeling revealed that daily assimilated carbon accumulated in glycolate, leading to reduced carbon allocation to sugars, organic acids, and amino acids. Such changes were not always mirrored in leaf total metabolite levels, since many soluble amino acids increased after transfer, while total soluble protein, RuBisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase), and chlorophyll amounts decreased in amiRgox1/2 plants. The senescence marker, SAG12, was induced only in amiRgox1/2 rosettes after transfer to air. The expression of maize photorespiratory GOX in amiRgox1/2 abolished all observed phenotypes. The results indicate that the inhibition of the photorespiratory cycle negatively impacts photosynthesis, alters carbon allocation, and leads to early senescence in old rosette leaves. PMID:26896850

  18. Bezafibrate, a peroxisome proliferator-activated receptor α agonist, decreases circulating CD14(+)CD16(+) monocytes in patients with type 2 diabetes.

    PubMed

    Terasawa, Tomoko; Aso, Yoshimasa; Omori, Kyoko; Fukushima, Maiko; Momobayashi, Atsushi; Inukai, Toshihiko

    2015-02-01

    CD14(+)CD16(+) monocytes are proinflammatory cells that produce tumor necrosis factor and interleukin (IL)-1β. The number of circulating CD14(+)CD16(+) monocytes is increased in patients with chronic renal failure or coronary artery disease. We investigated the effect of bezafibrate, a peroxisome proliferator-activated receptor α agonist, on circulating CD14(+)CD16(+) monocytes in patients with type 2 diabetes. Using cells isolated from type 2 diabetic subjects, we also examined the in vitro expression of CD16 messenger RNA (mRNA) by mononuclear cells (MNCs) exposed to bezafibrate. The percentage of CD14(+)CD16(+) monocytes among all CD14(+) monocytes was significantly higher in subjects with impaired glucose tolerance (P < 0.01) or type 2 diabetes (P < 0.05) than in those with normal glucose tolerance. The percentage of CD14(+)CD16(+) monocytes was significantly lower in patients with type 2 diabetes who were taking bezafibrate (400 mg/d) than in patients not taking it (P < 0.01). Treatment with bezafibrate for 12 weeks significantly reduced the percentage of circulating CD14(+)CD16(+) monocytes from 45.4 ± 25.2% to 38.3 ± 21.8% (P = 0.0144). In an in vitro study, the expression of CD16 mRNA by MNCs from 6 diabetic subjects was decreased after 24 hours of treatment with 10 μg/mL of bezafibrate (P < 0.05). Expression of IL-1β mRNA by MNCs was also decreased after 24 hours of treatment with 10 μg/mL of bezafibrate, whereas the IL-1β level in the culture supernatant was significantly decreased after treatment of MNCs with either 1 or 10 μg/mL of bezafibrate. In conclusion, bezafibrate decreased circulating CD14(+)CD16(+) monocytes in patients with type 2 diabetes, probably by inhibiting the expression of CD16 mRNA. PMID:25134759

  19. Rationale, design and methods for a randomised and controlled trial to investigate whether home access to electronic games decreases children's physical activity

    PubMed Central

    Straker, Leon M; Abbott, Rebecca A; Piek, Jan P; Pollock, Clare M; Davies, Peter S; Smith, Anne J

    2009-01-01

    Background Many children are reported to have insufficient physical activity (PA) placing them at greater risk of poor health outcomes. Participating in sedentary activities such as playing electronic games is widely believed to contribute to less PA. However there is no experimental evidence that playing electronic games reduces PA. There is also no evidence regarding the effect of different types of electronic games (traditional sedentary electronic games versus new active input electronic games) on PA. Further, there is a poor understanding about how characteristics of children may moderate the impact of electronic game access on PA and about what leisure activities are displaced when children play electronic games. Given that many children play electronic games, a better understanding of the effect of electronic game use on PA is critical to inform child health policy and intervention. Methods This randomised and controlled trial will examine whether PA is decreased by access to electronic games and whether any effect is dependent on the type of game input or the child's characteristics. Children aged 10–12 years (N = 72, 36 females) will be recruited and randomised to a balanced ordering of 'no electronic games', 'traditional' electronic games and 'active' electronic games. Each child will participate in each condition for 8 weeks, and be assessed prior to participation and at the end of each condition. The primary outcome is PA, assessed by Actical accelerometers worn for 7 days on the wrist and hip. Energy expenditure will be assessed by the doubly labelled water technique and motor coordination, adiposity, self-confidence, attitudes to technology and PA and leisure activities will also be assessed. A sample of 72 will provide a power of > 0.9 for detecting a 15 mins difference in PA (sd = 30 mins). Discussion This is the first such trial and will provide critical information to understand whether access to electronic games affects children's PA. Given the

  20. Release from Xenopus oocyte prophase I meiotic arrest is independent of a decrease in cAMP levels or PKA activity.

    PubMed

    Nader, Nancy; Courjaret, Raphael; Dib, Maya; Kulkarni, Rashmi P; Machaca, Khaled

    2016-06-01

    Vertebrate oocytes arrest at prophase of meiosis I as a result of high levels of cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) activity. In Xenopus, progesterone is believed to release meiotic arrest by inhibiting adenylate cyclase, lowering cAMP levels and repressing PKA. However, the exact timing and extent of the cAMP decrease is unclear, with conflicting reports in the literature. Using various in vivo reporters for cAMP and PKA at the single-cell level in real time, we fail to detect any significant changes in cAMP or PKA in response to progesterone. More interestingly, there was no correlation between the levels of PKA inhibition and the release of meiotic arrest. Furthermore, we devised conditions whereby meiotic arrest could be released in the presence of sustained high levels of cAMP. Consistently, lowering endogenous cAMP levels by >65% for prolonged time periods failed to induce spontaneous maturation. These results argue that the release of oocyte meiotic arrest in Xenopus is independent of a reduction in either cAMP levels or PKA activity, but rather proceeds through a parallel cAMP/PKA-independent pathway. PMID:27122173

  1. Unpredictable chronic stress decreases inhibitory avoidance learning in Tuebingen long-fin zebrafish: stronger effects in the resting phase than in the active phase.

    PubMed

    Manuel, Remy; Gorissen, Marnix; Zethof, Jan; Ebbesson, Lars O E; van de Vis, Hans; Flik, Gert; van den Bos, Ruud

    2014-11-01

    Zebrafish (Danio rerio Hamilton) are increasingly used as a model to study the effects of chronic stress on brain and behaviour. In rodents, unpredictable chronic stress (UCS) has a stronger effect on physiology and behaviour during the active phase than during the resting phase. Here, we applied UCS during the daytime (active phase) for 7 and 14 days or during the night-time (resting phase) for 7 nights in an in-house-reared Tuebingen long-fin (TLF) zebrafish strain. Following UCS, inhibitory avoidance learning was assessed using a 3 day protocol where fish learn to avoid swimming from a white to a black compartment where they will receive a 3 V shock. Latencies of entering the black compartment were recorded before training (day 1; first shock) and after training on day 2 (second shock) and day 3 (no shock, tissue sampling). Fish whole-body cortisol content and expression levels of genes related to stress, fear and anxiety in the telencephalon were quantified. Following 14 days of UCS during the day, inhibitory avoidance learning decreased (lower latencies on days 2 and 3); minor effects were found following 7 days of UCS. Following 7 nights of UCS, inhibitory avoidance learning decreased (lower latency on day 3). Whole-body cortisol levels showed a steady increase compared with controls (100%) from 7 days of UCS (139%), to 14 days of UCS (174%) to 7 nights of UCS (231%), suggestive of an increasing stress load. Only in the 7 nights of UCS group did expression levels of corticoid receptor genes (mr, grα, grβ) and of bdnf increase. These changes are discussed as adaptive mechanisms to maintain neuronal integrity and prevent overload, and as being indicative of a state of high stress load. Overall, our data suggest that stressors during the resting phase have a stronger impact than during the active phase. Our data warrant further studies on the effect of UCS on stress axis-related genes, especially grβ; in mammals this receptor has been implicated in

  2. Nrf2-ARE Activator Carnosic Acid Decreases Mitochondrial Dysfunction, Oxidative Damage and Neuronal Cytoskeletal Degradation Following Traumatic Brain Injury in Mice

    PubMed Central

    Miller, Darren M.; Singh, Indrapal N.; Wang, Juan A.; Hall, Edward D.

    2014-01-01

    The importance of free radical-induced oxidative damage after traumatic brain injury (TBI) has been well documented. Despite multiple clinical trials with radical-scavenging antioxidants that are neuroprotective in TBI models, none is approved for acute TBI patients. As an alternative antioxidant target, Nrf2 is a transcription factor that activates expression of antioxidant and cytoprotective genes by binding to antioxidant response elements (ARE) within DNA. Previous research has shown that neuronal mitochondria are susceptible to oxidative damage post-TBI, and thus the current study investigates whether Nrf2-ARE activation protects mitochondrial function when activated post-TBI. It was hypothesized that administration of carnosic acid (CA) would reduce oxidative damage biomarkers in brain tissue and also preserve cortical mitochondrial respiratory function post-TBI. A mouse controlled cortical impact (CCI) model was employed with a 1.0mm cortical deformation injury. Administration of CA at 15 minutes post-TBI reduced cortical lipid peroxidation, protein nitration, and cytoskeletal breakdown markers in a dose-dependent manner at 48 hours post-injury. Moreover, CA preserved mitochondrial respiratory function compared to vehicle animals. This was accompanied by decreased oxidative damage to mitochondrial proteins, suggesting the mechanistic connection of the two effects. Lastly, delaying the initial administration of CA up to 8 hours post-TBI was still capable of reducing cytoskeletal breakdown, thereby demonstrating a clinically relevant therapeutic window for this approach. This study demonstrates that pharmacological Nrf2-ARE induction is capable of neuroprotective efficacy when administered after TBI. PMID:25432068

  3. Selective activation of the trace amine-associated receptor 1 decreases cocaine's reinforcing efficacy and prevents cocaine-induced changes in brain reward thresholds.

    PubMed

    Pei, Yue; Mortas, Patrick; Hoener, Marius C; Canales, Juan J

    2015-12-01

    The newly discovered trace amine-associated receptor 1 (TAAR1) has emerged as a promising target for medication development in stimulant addiction due to its ability to regulate dopamine (DA) function and modulate stimulants' effects. Recent findings indicate that TAAR1 activation blocks some of the abuse-related physiological and behavioral effects of cocaine. However, findings from existing self-administration studies are inconclusive due to the very limited range of cocaine unit doses tested. Here, in order to shed light on the influence of TAAR1 on cocaine's reward and reinforcement, we studied the effects of partial and full activation of TAAR1on (1) the dose-response curve for cocaine self-administration and (2) cocaine-induced changes in intracranial self-stimulation (ICSS). In the first experiment, we examined the effects of the selective full and partial TAAR1 agonists, RO5256390 and RO5203648, on self-administration of five unit-injection doses of cocaine (0.03, 0.1, 0.2, 0.45, and 1mg/kg/infusion). Both agonists induced dose-dependent downward shifts in the cocaine dose-response curve, indicating that both partial and full TAAR1 activation decrease cocaine, reinforcing efficacy. In the second experiment, RO5256390 and the partial agonist, RO5263397, dose-dependently prevented cocaine-induced lowering of ICSS thresholds. Taken together, these data demonstrated that TAAR1 stimulation effectively suppresses the rewarding and reinforcing effects of cocaine in self-administration and ICSS models, supporting the candidacy of TAAR1 as a drug discovery target for cocaine addiction. PMID:26048337

  4. β-Adrenergic Receptor-Mediated Transactivation Of Epidermal Growth Factor Receptor Decreases Cardiomyocyte Apoptosis Through Differential Subcellular Activation of ERK1/2 and Akt

    PubMed Central

    Grisanti, Laurel A.; Talarico, Jennifer A.; Carter, Rhonda L.; Yu, Justine E.; Repas, Ashley A.; Radcliffe, Scott W.; Tang, Hoang-ai; Makarewich, Catherine A.; Houser, Steven R.; Tilley, Douglas G.

    2014-01-01

    Rationale β-adrenergic receptor (βAR)-mediated transactivation of epidermal growth factor receptor (EGFR) has been shown to relay pro-survival effects via unknown mechanisms. Objective We hypothesized that acute βAR-mediated EGFR transactivation in the heart promotes differential subcellular activation of ERK1/2 and Akt, promoting cell survival through modulation of apoptosis. Methods and Results C57BL/6 mice underwent acute i.p. injection with isoproterenol (ISO) ± AG 1478 (EGFR antagonist) to assess the impact of βAR-mediated EGFR transactivation on phosphorylation of ERK1/2 (P-ERK1/2) and Akt (P-Akt) in distinct cardiac subcellular fractions. Increased P-ERK1/2 and P-Akt were observed in cytosolic, plasma membrane and nuclear fractions following ISO stimulation. Whereas the P-ERK1/2 response was EGFR-sensitive in all fractions, the P-Akt response was EGFR-sensitive only in the plasma membrane and nucleus, results confirmed in primary rat neonatal cardiomyocytes (RNCM). βAR-mediated EGFR-transactivation also decreased apoptosis in serum-depleted RNCM, as measured via TUNEL as well as caspase 3 activity/cleavage, which were sensitive to inhibition of either ERK1/2 (PD184352) or Akt (LY-294002) signaling. Caspase 3 activity/cleavage was also sensitive to inhibition of transcription, which, with an increase in nuclear P-ERK1/2 and P-Akt in response to ISO, suggested that βAR-mediated EGFR transactivation may regulate apoptotic gene transcription. An Apoptosis PCR Array identified tnfsf10 (TRAIL) to be altered by ISO in an EGFR-sensitive manner, results confirmed via RT-PCR and ELISA measurement of both membrane-bound and soluble cardiomyocyte TRAIL levels. Conclusions βAR-mediated EGFR transactivation induces differential subcellular activation of ERK1/2 and Akt leading to increased cell survival through the modulation of caspase 3 activity and apoptotic gene expression in cardiomyocytes. PMID:24566221

  5. Possible association of decreased NKG2D expression levels and suppression of the activity of natural killer cells in patients with colorectal cancer.

    PubMed

    Shen, Yajuan; Lu, Chao; Tian, Wenjun; Wang, Laicheng; Cui, Bin; Jiao, Yulian; Ma, Chunyan; Ju, Ying; Zhu, Ling; Shao, Chunhong; Liu, Xinqi; Wang, Jian; Zhang, Bingchang; Lu, Zhiming

    2012-04-01

    Natural-killer group 2 (NKG2), a natural killer (NK) cell receptor, plays a critical role in regulating NK cytotoxicity. In this study, we investigated the expression levels of natural killer group 2 member A (NKG2A) and natural killer group 2 member D (NKG2D) in NK cells as well as the regulatory function of NKG2D in patients with colorectal cancer (CRC). Sixty-two CRC patients and 32 healthy controls were enrolled in this study. The expression levels of NKG2A and NKG2D mRNA in peripheral blood mononuclear cells (PBMCs) were investigated using real-time PCR. Flow cytometry was performed to assay the levels of NKG2A and NKG2D proteins in NK cells. The levels of NKG2D mRNA in PBMCs in the patients were significantly lower than those in the controls [mean ± SD, 1.11 ± 0.60 (CRC patients) vs. 1.65 ± 0.71 (healthy controls); p < 0.01], whereas the 2 groups showed no apparent difference in the levels of NKG2A mRNA (p>0.05). In addition, the patients showed significantly lower NKG2D levels in NK cells than the controls did (71.23% ± 8.31% [CRC patients] vs. 79.39% ± 5.58% [healthy controls]; p < 0.01). However, we observed no distinct difference in the NKG2A expression levels in NK cells between the 2 groups (p> 0.05). Notably, blockage of NKG2D signaling with anti-NKG2D antibodies ex vivo resulted in decreased cytotoxicity and CD107a degranulation. Our data revealed that the decrease in NKG2D expression levels may have been associated with suppression of NK cell activity in CRC patients. PMID:22200673

  6. Response to platelet-activating factor in human platelets stored and aged in plasma. Decrease in aggregation, phosphoinositide turnover, and receptor affinity

    SciTech Connect

    Shukla, S.D.; Morrison, W.J.; Klachko, D.M.

    1989-07-01

    Human platelet concentrates were stored in polyolefin bags at 22 to 24 degrees C on a horizontal shaker for up to 8 days. At different intervals, aliquots of platelet-rich plasma (PRP) were removed aseptically and five variables, i.e., platelet counts, morphology, platelet-activating factor (PAF)-stimulated aggregation, phosphoinositide turnover, and (3H)PAF binding to platelet receptors, were studied. The number of platelets did not change during the 8 days of storage. Scanning electron microscopy of the platelets revealed a gradual morphologic change from biconcave flat discs to irregular, crenated forms. The PAF-induced aggregation of platelets declined with time of storage. A decrease to 50 percent of the Day 1 aggregatory response to PAF was evident on Day 2, and there was a further decline to about 20 percent by Day 6. Similarly, PAF receptor-coupled phosphoinositide turnover, as monitored by 32P incorporation into individual phosphoinositides, decreased dramatically with storage. After 2 to 3 days of storage, the phosphoinositide turnover was reduced to 50 percent of the original response, and it continued to decline to about 25 percent of original response by Day 5 or 6. The binding of (3H)PAF to washed human platelets indicated subtle changes between Days 2 and 4, which became more noticeable by Day 6. These results have raised the possibility of changes in the number of the receptors and/or their affinity for the ligand during storage. We conclude that although the number of platelets was maintained during storage for 8 days, a general deterioration of their responses to PAF occurred at the levels of cell surface receptor, transmembrane signaling (phosphoinositide turnover), and response (aggregation).

  7. Long-term total sleep deprivation decreases the default spontaneous activity and connectivity pattern in healthy male subjects: a resting-state fMRI study

    PubMed Central

    Dai, Xi-Jian; Liu, Chun-Lei; Zhou, Ren-Lai; Gong, Hong-Han; Wu, Bin; Gao, Lei; Wang, Yi-Xiang J

    2015-01-01

    Objective The aim of this study is to use resting-state functional connectivity (rsFC) and amplitude of low-frequency fluctuation (ALFF) methods to explore intrinsic default-mode network (DMN) impairment after sleep deprivation (SD) and its relationships with clinical features. Methods Twelve healthy male subjects underwent resting-state functional magnetic resonance imaging twice: once following rested wakefulness (RW) and the other following 72 hours of total SD. Before the scans, all subjects underwent the attention network test (ANT). The independent component analysis (ICA), rsFC, and ALFF methods were used to examine intrinsic DMN impairment. Receiver operating characteristic (ROC) curve was used to distinguish SD status from RW status. Results Compared with RW subjects, SD subjects showed a lower accuracy rate (RW =96.83%, SD =77.67%; P<0.001), a slower reaction time (RW =695.92 ms; SD =799.18 ms; P=0.003), a higher lapse rate (RW =0.69%, SD =19.29%; P<0.001), and a higher intraindividual coefficient of variability in reaction time (RW =0.26, SD =0.33; P=0.021). The ICA method showed that, compared with RW subjects, SD subjects had decreased rsFC in the right inferior parietal lobule (IPL, BA40) and in the left precuneus (PrC)/posterior cingulate cortex (PCC) (BA30, 31). The two different areas were selected as regions of interest (ROIs) for future rsFC analysis. Compared with the same in RW subjects, in SD subjects, the right IPL showed decreased rsFC with the left PrC (BA7) and increased rsFC with the left fusiform gyrus (BA37) and the left cluster of middle temporal gyrus and inferior temporal gyrus (BA37). However, the left PrC/PCC did not show any connectivity differences. Compared with RW subjects, SD subjects showed lower ALFF area in the left IPL (BA39, 40). The left IPL, as an ROI, showed decreased rsFC with the right cluster of IPL and superior temporal gyrus (BA39, 40). ROC curve analysis showed that the area under the curve (AUC) value of the

  8. Sharply curved turn around duct flow predictions using spectral partitioning of the turbulent kinetic energy and a pressure modified wall law

    NASA Technical Reports Server (NTRS)

    Santi, L. Michael

    1986-01-01

    Computational predictions of turbulent flow in sharply curved 180 degree turn around ducts are presented. The CNS2D computer code is used to solve the equations of motion for two-dimensional incompressible flows transformed to a nonorthogonal body-fitted coordinate system. This procedure incorporates the pressure velocity correction algorithm SIMPLE-C to iteratively solve a discretized form of the transformed equations. A multiple scale turbulence model based on simplified spectral partitioning is employed to obtain closure. Flow field predictions utilizing the multiple scale model are compared to features predicted by the traditional single scale k-epsilon model. Tuning parameter sensitivities of the multiple scale model applied to turn around duct flows are also determined. In addition, a wall function approach based on a wall law suitable for incompressible turbulent boundary layers under strong adverse pressure gradients is tested. Turn around duct flow characteristics utilizing this modified wall law are presented and compared to results based on a standard wall treatment.

  9. Increase of bone volume by a nanosecond pulsed laser irradiation is caused by a decreased osteoclast number and an activated osteoblasts.

    PubMed

    Ninomiya, Tadashi; Hosoya, Akihiro; Nakamura, Hiroaki; Sano, Kazuo; Nishisaka, Tsuyoshi; Ozawa, Hidehiro

    2007-01-01

    The biostimulatory effects of laser irradiation focus not only in the field of soft tissue but also bone formation. Studies have shown that the light of a nanosecond pulsed laser which has a high peak power can produce stress waves in tissue. We have hypothesized that nanosecond pulsed laser irradiation stimulates bone formation. Our aim was to clarify the mechanism of increased bone volume by nanosecond pulsed laser irradiation. Rat femur was irradiated with a Q-switched Nd:YAG laser, which has a wavelength of 1064 nm. The quantification of trabecular architecture using three-dimensional morphometric analysis and measurement of bone mineral density (BMD) using pQCT was performed on day 1, day 3, day 5, and day 7 after laser irradiation. The laser effects on bone cells were also investigated using histological and immunohistochemical analysis. On day 1 after laser irradiation, bone volume (BV/TV), trabecular thickness (Tb.Th), and other parameters of the irradiated group did not significantly differ from the non-irradiation group (control). However, the mean BV/TV, Tb.Th, mineral apposition rate, and BMD of the laser group on day 7 after laser irradiation were significantly greater than those of the control. On histological analysis, the number of TRAP-positive osteoclasts was lower on day 3 after laser irradiation. Osteoblasts with activated clearance were seen in the laser irradiated group on day 1 and day 3. These data reveal that the increased bone volume by nanosecond pulsed laser irradiation causes an increase in osteoblast activity and a decrease in osteoclast number. PMID:16978938

  10. Evidence that glucose metabolism is decreased in the cerebrum of aged female senescence-accelerated mouse; possible involvement of a low hexokinase activity.

    PubMed

    Kurokawa, T; Sato, E; Inoue, A; Ishibashi, S

    1996-08-16

    d-Glucose metabolism in cerebral cells prepared from aged senescence-accelerated mouse (SAM), was investigated in consideration of a sex difference. The production of 14CO2 from 6-[14C]D-glucose was reduced in female senescence-accelerated-prone mouse (SAMP) 8, a prone substrain, in comparison with that in female senescence-accelerated-resistant mouse (SAMR) 2, a control substrain, whereas there was no difference in males. The 2-deoxy-D-glucose uptake into cerebral cells from female SAMP8 was also lower than that of control mice. But, the 3-O-methyl-D-glucose uptake in SAMP8 was higher than that of SAMR2, suggesting that the low hexokinase activity was involved in the decreased glucose metabolism in cerebrum of SAMP8 females irrespective of glucose transporter. This possibility was supported by the finding that the contents of glucose 6-phosphate produced from glucose added to cerebral cells from SAMP8 was lower than that in ICR mice. PMID:8873128

  11. Decreased activation of lateral orbitofrontal cortex during risky choices under uncertainty is associated with disadvantageous decision-making and suicidal behavior.

    PubMed

    Jollant, Fabrice; Lawrence, Natalia S; Olie, Emilie; O'Daly, Owen; Malafosse, Alain; Courtet, Philippe; Phillips, Mary L

    2010-07-01

    Decision-making impairment has been linked to orbitofrontal cortex lesions and to different disorders including substance abuse, aggression and suicidal behavior. Understanding the neurocognitive mechanisms of these impairments could facilitate the development of effective treatments. In the current study, we aimed to explore the neural and cognitive basis of poor decision-making ability associated with the vulnerability to suicidal behavior, a public health issue in most western countries. Twenty-five not currently depressed male patients, 13 of whom had a history of suicidal acts (suicide attempters) and 12 of whom had none (affective controls), performed an adapted version of the Iowa Gambling Task during functional Magnetic Resonance Imaging. Task-related functional Regions-of-Interest were independently defined in 15 male healthy controls performing the same task (Lawrence et al., 2009). In comparison to affective controls, suicide attempters showed 1) poorer performance on the gambling task 2) decreased activation during risky relative to safe choices in left lateral orbitofrontal and occipital cortices 3) no difference for the contrast between wins and losses. Altered processing of risk under conditions of uncertainty, associated with left lateral orbitofrontal cortex dysfunction, could explain the decision-making deficits observed in suicide attempters. These impaired cognitive and neural processes may represent future predictive markers and therapeutic targets in a field where identification of those at risk is poor and specific treatments are lacking. These results also add to our growing understanding of the role of the orbitofrontal cortex in decision-making and psychopathology. PMID:20302946

  12. TRIM13 (RFP2) downregulation decreases tumour cell growth in multiple myeloma through inhibition of NF Kappa B pathway and proteasome activity

    PubMed Central

    Gatt, Moshe E; Takada, Kohichi; Mani, Mala; Lerner, Mikael; Pick, Marjorie; Hideshima, Teru; Carrasco, Daniel E.; Protopopov, Alexei; Ivanova, Elena; Sangfelt, Olle; Grandér, Dan; Barlogie, Bart; Shaughnessy, John D.; Anderson, Kenneth C.; Carrasco, Daniel R.

    2013-01-01

    Multiple myeloma (MM) is an incurable neoplasm caused by proliferation of malignant plasma cells in the bone marrow (BM). MM is characterized frequently by a complete or partial deletion of chromosome 13q14, seen in more than 50% of patients at diagnosis. Within this deleted region the tripartite motif containing 13 (TRIM13, also termed RFP2) gene product has been proposed to be a tumour suppressor gene (TSG). Here, we show that low expression levels of TRIM13 in MM are associated with chromosome 13q deletion and poor clinical outcome. We present a functional analysis of TRIM13 using a loss-of-function approach, and demonstrate that TRIM13 downregulation decreases tumour cell survival as well as cell cycle progression and proliferation of MM cells. In addition, we provide evidence for the involvement of TRIM13 downregulation in inhibiting the NF kappa B pathway and the activity of the 20S proteasome. Although this data does not support a role of TRIM13 as a TSG, it substantiates important roles of TRIM13 in MM tumour survival and proliferation, underscoring its potential role as a novel target for therapeutic intervention. PMID:23647456

  13. Decrease in neuroimmune activation by HSV-mediated gene transfer of TNFα soluble receptor alleviates pain in rats with diabetic neuropathy.

    PubMed

    Ortmann, Kathryn L Maier; Chattopadhyay, Munmun

    2014-10-01

    The mechanisms of diabetic painful neuropathy are complicated and comprise of peripheral and central pathophysiological phenomena. A number of proinflammatory cytokines are involved in this process. Tumor necrosis factor α (TNF-α) is considered to be one of the major contributors of neuropathic pain. In order to explore the potential role of inflammation in the peripheral nervous system of Type 1 diabetic animals with painful neuropathy, we investigated whether TNF-α is a key inflammatory mediator to the diabetic neuropathic pain and whether continuous delivery of TNFα soluble receptor from damaged axons achieved by HSV vector mediated transduction of DRG would block or alter the pain perception in animals with diabetic neuropathy. Diabetic animals exhibited changes in threshold of mechanical and thermal pain perception compared to control rats and also demonstrated increases in TNFα in the DRG, spinal cord dorsal horn, sciatic nerve and in the foot skin, 6 weeks after the onset of diabetes. Therapeutic approaches by HSV mediated expression of p55 TNF soluble receptor significantly attenuated the diabetes-induced hyperalgesia and decreased the expression of TNFα with reduction in the phosphorylation of p38MAPK in the spinal cord dorsal horn and DRG. The overall outcome of this study suggests that neuroinflammatory activation in the peripheral nervous system may be involved in the pathogenesis of painful neuropathy in Type 1 diabetes which can be alleviated by local expression of HSV vector expressing p55 TNF soluble receptor. PMID:24880032

  14. Reduction in the estrogenic activity of a treated sewage effluent discharge to an English river as a result of a decrease in the concentration of industrially derived surfactants.

    PubMed

    Sheahan, David A; Brighty, Geoff C; Daniel, Mic; Jobling, Susan; Harries, Jule E; Hurst, Mark R; Kennedy, Joe; Kirby, Sonia J; Morris, Steven; Routledge, Edwin J; Sumpter, John P; Waldock, Michael J

    2002-03-01

    As a result of the introduction of tighter discharge limits and effluent treatment processes at source, the concentration of alkylphenol ethoxylates and nonylphenol present in the final effluent discharge from a sewage treatment works that treats trade effluent from the textiles industry was reduced. The estrogenic effects of the final effluent discharge to the Aire River were compared over a four-year period during which various treatment measures were introduced. Male rainbow trout exposed to the effluent on four occasions in consecutive years (1994-1997) showed a reduction in the level of induced vitellogenesis between 1994 and 1997. A marked decrease in gonadosomatic index (GSI) and increase in heptaosomatic index (HSI) was measured in fish exposed to the effluent in 1994. In successive years, these differences diminished, and in the case of the GSI no measurable difference was observed between fish exposed to the final effluent or those in the control group in 1997. However, an increase in HSI was still measurable in 1997 in fish exposed to the final effluent and at sites farther downstream. The reduction in the effects of the effluent paralleled the reduction in the concentration of nonylphenol as well as its mono- and diethoxylates, which have been demonstrated to produce estrogenic effects in trout exposed to these compounds in the laboratory. This study demonstrates that the setting of more restricted discharge limits for known estrogenic chemicals of industrial origin can lead to significant reductions in the estrogenic activity of the watercourses into which the effluents are discharged. PMID:11878464

  15. Coffee intake can promote activity of antioxidant enzymes with increasing MDA level and decreasing HDL-cholesterol in physically trained rats

    PubMed Central

    Choi, Eun-Young; Jang, Jin-Young

    2010-01-01

    This study investigated the effect of coffee intake and exercise on the antioxidative activity and plasma cholesterol profile of physically trained rats while they were exercising. Forty eight rats were under either the control diet with water (C) or control diet with coffee (CF) and at the same time they were given physical training for 4 weeks. In terms of physical training, the rats were exercised on a treadmill for 30 minutes everyday. At the end of 4 weeks, animals in each dietary group were subdivided into 3 groups: before-exercise (BE); during-exercise (DE); after-exercise (AE). Animals in the DE group were exercised on a treadmill for one hour, immediately before being sacrificed. Animals in the AE group were allowed to take a rest for one hour after exercise. TG levels were significantly high in coffee intake group than in control group. Also TG level of AE group was significantly higher than that of BE group. Exercise and coffee-exercise interaction effects were significant in total cholesterol (P = 0.0004, 0.0170). The AE of coffee intake group showed highest total cholesterol levels. HDL-cholesterol was significantly lower in coffee intake group than in control group. Coffee, exercise, and coffee-exercise interaction effects were significant in SOD (P = 0.0001, 0.0001, and 0.0001). The AE and BE of coffee intake group showed higher SOD levels than the other four groups. Catalase activities were significantly higher in coffee intake group than control group. No significant main effect was found in GSH/GSSG. Coffee, exercise, and coffee-exercise interaction effects were significant in MDA levels (P = 0.0464, 0.0016, and 0.0353). The DE and AE of coffee intake group and the DE of control group showed higher MDA levels than the BE of control group. Therefore, coffee intake can promote activities of antioxidant enzyme but it also increases MDA and decreases HDL-cholesterol in physically trained rats. PMID:20827343

  16. Triptolide, a diterpenoid triepoxide, induces antitumor proliferation via activation of c-Jun NH{sub 2}-terminal kinase 1 by decreasing phosphatidylinositol 3-kinase activity in human tumor cells

    SciTech Connect

    Miyata, Yoshiki; Sato, Takashi . E-mail: satotak@ps.toyaku.ac.jp; Ito, Akira

    2005-11-04

    Triptolide, a diterpenoid triepoxide extracted from the Chinese herb Tripterygium wilfordii Hook f., exerts antitumorigenic actions against several tumor cells, but the intracellular target signal molecule(s) for this antitumorigenesis activity of triptolide remains to be identified. In the present study, we demonstrated that triptolide, in a dose-dependent manner, inhibited the proliferation of human fibrosarcoma HT-1080, human squamous carcinoma SAS, and human uterine cervical carcinoma SKG-II cells. In addition, triptolide was found to decrease phosphatidylinositol 3-kinase (PI3K) activity. A PI3K inhibitor, LY-294002, mimicked the triptolide-induced antiproliferative activity in HT-1080, SAS, and SKG-II cells. There was no change in the activity of Akt or protein kinase C (PKC), both of which are downstream effectors in the PI3K pathway. Furthermore, the phosphorylation of Ras, Raf, and mitogen-activated protein/extracellular signal-regulated kinase 1/2 was not modified in HT-1080 cells treated with triptolide. However, the phosphorylation of c-Jun NH{sub 2}-terminal kinase 1 (JNK1) was found to increase in both triptolide- and LY-294002-treated cells. Furthermore, the triptolide-induced inhibition of HT-1080 cell proliferation was not observed by JNK1 siRNA-treatment. These results provide novel evidence that PI3K is a crucial target molecule in the antitumorigenic action of triptolide. They further suggest a possible triptolide-induced inhibitory signal for tumor cell proliferation that is initiated by the decrease in PI3K activity, which in turn leads to the augmentation of JNK1 phosphorylation via the Akt and/or PKC-independent pathway(s). Moreover, it is likely that the activation of JNK1 is required for the triptolide-induced inhibition of tumor proliferation.

  17. Decrease in water activity due to fluid absent partial melting monitored with water content in biotite in the Western Adamello contact aureole (Italy)

    NASA Astrophysics Data System (ADS)

    Siron, Guillaume; Baumgartner, Lukas; Bouvier, Anne-Sophie; Vennemann, Torsten

    2016-04-01

    interpret the concentration of OH- to be influenced by water activity within the rocks, and temperature. Our results confirm that oxy-biotite is a non-negligible component, but in the case of prograde metamorphism we do not interpret this as the consequence of a Ti-oxygen exchange only, but also as the consequence of a decrease in water activity due to partial melting. Bauer, K. K., & Vennemann, T. W. (2014). Analytical methods for the measurement of hydrogen isotope composition and water content in clay minerals by TC/EA. Chemical Geology, 363(C), 229-240. Cesare, B., Satish-Kumar, M., Cruciani, G., Pocker, S., & Nodari, L. (2008). Mineral chemistry of Ti-rich biotite from pegmatite and metapelitic granulites of the Kerala Khondalite Belt (southeast India): Petrology and further insight into titanium substitutions. American Mineralogist, 93(2-3), 327-338. Floess, D., & Baumgartner, L. (2013). Formation of garnet clusters during polyphase metamorphism. Terra Nova, 25(2), 144-150. Munoz, J. L. (1984). F-OH and Cl-OH Exchange in Micas with Applications to Hydrothermal Ore Deposits. Reviews in Mineralogy and Geochemistry, 13, 469-493.

  18. A delayed chronic pain like condition with decreased Kv channel activity in a rat model of Gulf War Illness pain syndrome.

    PubMed

    Nutter, T J; Johnson, R D; Cooper, B Y

    2015-12-01

    Following their return from deployment, Gulf War (GW) veterans reported widespread joint and muscle pain at rates that far exceeded those of soldiers returning from other conflicts. It is widely believed that exposure to insecticides, repellants and nerve gas prophylactics contributed to the symptoms of Gulf War Illness (GWI), but an animal model of GW pain has been elusive. In our previous work, we observed that 4-8 weeks exposure to pyridostigmine bromide (PB), permethrin and chlorpyrifos could produce persistent alterations in the physiology of Nav1.9 and Kv7 expressed in deep tissue nociceptors of the dorsal root ganglion. However, behavioral assessments from these same rats were not consistent with a delayed pain syndrome similar to that of GWI pain. In the present studies, we intensified the exposure to anticholinesterases PB and chlorpyrifos while retaining the same dosages. Animals receiving the intensified protocol for 30 days exhibited significant increases in resting for about 8 weeks after exposure. Thereafter, all measures were comparable to controls. Animals treated with intensified anticholinesterases for 60 days exhibited increased resting and reduced movement 12 weeks post-exposure. In whole cell patch studies, muscle and vascular nociceptor KDR and Kv7 ion channels exhibited increased amplitude relative to controls (e.g., normalized current and/or peak conductance) at 8 weeks post-exposures; however, at 12 weeks post-exposure, the amplitude of these currents was significantly decreased in muscle nociceptors. In current clamp studies, muscle nociceptors also manifested increased action potential duration, afterhyperpolarization and increased discharge to muscarinic agonists 12 weeks post-exposure. The decline in activity of muscle nociceptor KDR and Kv7 channel proteins was consistent with increased nociceptor excitability and a delayed myalgia in rats exposed to GW chemicals. PMID:26409647

  19. Decrease of U(VI) immobilization capability of the facultative anaerobic strain Paenibacillus sp. JG-TB8 under anoxic conditions due to strongly reduced phosphatase activity.

    PubMed

    Reitz, Thomas; Rossberg, Andre; Barkleit, Astrid; Selenska-Pobell, Sonja; Merroun, Mohamed L

    2014-01-01

    Interactions of a facultative anaerobic bacterial isolate named Paenibacillus sp. JG-TB8 with U(VI) were studied under oxic and anoxic conditions in order to assess the influence of the oxygen-dependent cell metabolism on microbial uranium mobilization and immobilization. We demonstrated that aerobically and anaerobically grown cells of Paenibacillus sp. JG-TB8 accumulate uranium from aqueous solutions under acidic conditions (pH 2 to 6), under oxic and anoxic conditions. A combination of spectroscopic and microscopic methods revealed that the speciation of U(VI) associated with the cells of the strain depend on the pH as well as on the aeration conditions. At pH 2 and pH 3, uranium was exclusively bound by organic phosphate groups provided by cellular components, independently on the aeration conditions. At higher pH values, a part (pH 4.5) or the total amount (pH 6) of the dissolved uranium was precipitated under oxic conditions in a meta-autunite-like uranyl phosphate mineral phase without supplying an additional organic phosphate substrate. In contrast to that, under anoxic conditions no mineral formation was observed at pH 4.5 and pH 6, which was clearly assigned to decreased orthophosphate release by the cells. This in turn was caused by a suppression of the indigenous phosphatase activity of the strain. The results demonstrate that changes in the metabolism of facultative anaerobic microorganisms caused by the presence or absence of oxygen can decisively influence U(VI) biomineralization. PMID:25157416

  20. A genome-wide identified risk variant for PTSD is a methylation quantitative trait locus and confers decreased cortical activation to fearful faces.

    PubMed

    Almli, Lynn M; Stevens, Jennifer S; Smith, Alicia K; Kilaru, Varun; Meng, Qian; Flory, Janine; Abu-Amara, Duna; Hammamieh, Rasha; Yang, Ruoting; Mercer, Kristina B; Binder, Elizabeth B; Bradley, Bekh; Hamilton, Steven; Jett, Marti; Yehuda, Rachel; Marmar, Charles R; Ressler, Kerry J

    2015-07-01

    Genetic factors appear to be highly relevant to predicting differential risk for the development of post-traumatic stress disorder (PTSD). In a discovery sample, we conducted a genome-wide association study (GWAS) for PTSD using a small military cohort (Systems Biology PTSD Biomarkers Consortium; SBPBC, N = 147) that was designed as a case-controlled sample of highly exposed, recently returning veterans with and without combat-related PTSD. A genome-wide significant single nucleotide polymorphism (SNP), rs717947, at chromosome 4p15 (N = 147, β = 31.34, P = 1.28 × 10(-8) ) was found to associate with the gold-standard diagnostic measure for PTSD (the Clinician Administered PTSD Scale). We conducted replication and follow-up studies in an external sample, a larger urban community cohort (Grady Trauma Project, GTP, N = 2006), to determine the robustness and putative functionality of this risk variant. In the GTP replication sample, SNP rs717947 associated with PTSD diagnosis in females (N = 2006, P = 0.005), but not males. SNP rs717947 was also found to be a methylation quantitative trait locus (meQTL) in the GTP replication sample (N = 157, P = 0.002). Further, the risk allele of rs717947 was associated with decreased medial and dorsolateral cortical activation to fearful faces (N = 53, P < 0.05) in the GTP replication sample. These data identify a genome-wide significant polymorphism conferring risk for PTSD, which was associated with differential epigenetic regulation and with differential cortical responses to fear in a replication sample. These results may provide new insight into understanding genetic and epigenetic regulation of PTSD and intermediate phenotypes that contribute to this disorder. PMID:25988933

  1. Hesperetin and its sulfate and glucuronide metabolites inhibit TNF-α induced human aortic endothelial cell migration and decrease plasminogen activator inhibitor-1 (PAI-1) levels.

    PubMed

    Giménez-Bastida, Juan Antonio; González-Sarrías, Antonio; Vallejo, Fernando; Espín, Juan Carlos; Tomás-Barberán, Francisco A

    2016-01-01

    Epidemiological, clinical and preclinical studies have reported the protection offered by citrus consumption, mainly orange, against cardiovascular diseases, which is primarily mediated by the antiatherogenic and vasculoprotective effects of the flavanone hesperetin-7-O-rutinoside (hesperidin). However, flavanone aglycones or glycosides are not present in the bloodstream but their derived phase-II metabolites could be the actual bioactive molecules. To date, only a few studies have explored the effects of circulating hesperetin-derived metabolites (glucuronides and sulfates) on endothelial cells. Herein, we describe for the first time the effects of hesperetin 3'-O-glucuronide, hesperetin 7-O-glucuronide, hesperetin 3'-O-sulfate, hesperetin 7-O-sulfate and hesperetin on human aortic endothelial cell (HAEC) migration upon pro-inflammatory stimuli as an essential step to angiogenesis. Hesperetin and its derived metabolites, at physiologically relevant concentrations (1-10 μM), significantly attenuated cell migration in the presence of the pro-inflammatory cytokine TNF-α (50 ng mL(-1)), which was accompanied and perhaps mediated by a significant decrease in the levels of the thrombogenic plasminogen activator inhibitor-1 (PAI-1). However, hesperetin metabolites did not counteract the TNF-α-induced production of pro-inflammatory interleukin-6 (IL-6) and IL-8. We also study here for the first time, the metabolism of hesperetin and its derived metabolites by HAEC with and without a pro-inflammatory stimulus. All these results reinforce the concept according to which circulating phase-II hesperetin metabolites are critical molecules contributing to the cardioprotective effects upon consumption of citrus fruits such as orange. PMID:26456097

  2. Decrease of U(VI) Immobilization Capability of the Facultative Anaerobic Strain Paenibacillus sp. JG-TB8 under Anoxic Conditions Due to Strongly Reduced Phosphatase Activity

    PubMed Central

    Reitz, Thomas; Rossberg, Andre; Barkleit, Astrid; Selenska-Pobell, Sonja; Merroun, Mohamed L.

    2014-01-01

    Interactions of a facultative anaerobic bacterial isolate named Paenibacillus sp. JG-TB8 with U(VI) were studied under oxic and anoxic conditions in order to assess the influence of the oxygen-dependent cell metabolism on microbial uranium mobilization and immobilization. We demonstrated that aerobically and anaerobically grown cells of Paenibacillus sp. JG-TB8 accumulate uranium from aqueous solutions under acidic conditions (pH 2 to 6), under oxic and anoxic conditions. A combination of spectroscopic and microscopic methods revealed that the speciation of U(VI) associated with the cells of the strain depend on the pH as well as on the aeration conditions. At pH 2 and pH 3, uranium was exclusively bound by organic phosphate groups provided by cellular components, independently on the aeration conditions. At higher pH values, a part (pH 4.5) or the total amount (pH 6) of the dissolved uranium was precipitated under oxic conditions in a meta-autunite-like uranyl phosphate mineral phase without supplying an additional organic phosphate substrate. In contrast to that, under anoxic conditions no mineral formation was observed at pH 4.5 and pH 6, which was clearly assigned to decreased orthophosphate release by the cells. This in turn was caused by a suppression of the indigenous phosphatase activity of the strain. The results demonstrate that changes in the metabolism of facultative anaerobic microorganisms caused by the presence or absence of oxygen can decisively influence U(VI) biomineralization. PMID:25157416

  3. Inhibition of Monoacylglycerol Lipase Activity Decreases Glucose-Stimulated Insulin Secretion in INS-1 (832/13) Cells and Rat Islets

    PubMed Central

    Burritt, Nathan E.; Corkey, Barbara E.; Deeney, Jude T.

    2016-01-01

    Lipid signals derived from lipolysis and membrane phospholipids play an important role in glucose-stimulated insulin secretion (GSIS), though the exact secondary signals remain unclear. Previous reports have documented a stimulatory role of exogenously added mono-acyl-glycerol (MAG) on insulin secretion from cultured β-cells and islets. In this report we have determined effects of increasing intracellular MAG in the β-cell by inhibiting mono-acyl-glycerol lipase (MGL) activity, which catalyzes the final step in triacylglycerol breakdown, namely the hydrolysis of MAG to glycerol and free fatty acid (FA). To determine the role of MGL in GSIS, we used three different pharmacological agents (JZL184, MJN110 and URB602). All three inhibited GSIS and depolarization-induced insulin secretion in INS-1 (832/13). JZL184 significantly inhibited both GSIS and depolarization-induced insulin secretion in rat islets. JZL184 significantly decreased lipolysis and increased both mono- and diacyglycerol species in INS-1 cells. Analysis of the kinetics of GSIS showed that inhibition was greater during the sustained phase of secretion. A similar pattern was observed in the response of Ca2+ to glucose and depolarization but to a lesser degree suggesting that altered Ca2+ handling alone could not explain the reduction in insulin secretion. In addition, a significant reduction in long chain-CoA (LC-CoA) was observed in INS-1 cells at both basal and stimulatory glucose following inhibition of MGL. Our data implicate an important role for MGL in insulin secretion. PMID:26867016

  4. Solar Activity Parameters and Associated Forbush Decreases During the Minimum Between Cycles 23 and 24 and the Ascending Phase of Cycle 24

    NASA Astrophysics Data System (ADS)

    Lingri, D.; Mavromichalaki, H.; Belov, A.; Eroshenko, E.; Yanke, V.; Abunin, A.; Abunina, M.

    2016-03-01

    We study the Forbush decreases in cosmic-ray intensity from January 2008 to December 2013, covering the minimum between Solar Cycles 23 and 24 and the ascending phase of Cycle 24. We performed a statistical analysis of 617 events and concentrated on three of the most important ones. We used the IZMIRAN database of Forbush effects obtained by processing the data of the worldwide neutron monitor network using the global survey method. The first event occurred on 18 February 2011 with a {˜} 5 % decrease of cosmic rays with 10 GV rigidity, the second on 8 March 2012 with an amplitude of {˜} 12 %, and the third on 14 July 2012 with an amplitude of {˜} 6 %. For these three events, we also studied the events that occurred on the Sun and the way that these affected the interplanetary space, and finally provoked the decreases of the galactic cosmic rays near Earth. We found that each neutron monitor records these decreases, which depend on the cut-off rigidity of the station. We carried out a statistical analysis of the amplitude of the cosmic-ray decreases with solar and geomagnetic parameters.

  5. Aqueous extracts of selenium-fertilized broccoli increase selenoprotein activity and inhibit DNA single-strand breaks, but decrease the activity of quinone reductase in Hepa 1c1c7 cells.

    PubMed

    Keck, Anna-Sigrid; Finley, John W

    2006-05-01

    Depending on growth conditions, broccoli may be enriched in the isothiocyanate sulforaphane and/or the mineral selenium (Se); both compounds may play an important role in the reduction of intracellular oxidative stress and chronic disease prevention. Sulforaphane up-regulates transcription of Phase II detoxification proteins (e.g. quinone reductase [QR]), whereas Se is needed for the production of thioredoxin reductase (TR) and glutathione peroxidase-1 (GPx1), both of which exhibit antioxidant activity. The objective of the present study was to determine whether the fertilization of broccoli with Se increases the antioxidant ability of broccoli. Hydrogen peroxide-induced DNA single-strand breaks (measured by single cell electrophoresis, Comet assay) and activity of antioxidant enzymes (GPx, TR and QR) were measured in mouse hepatoma cells (Hepa 1c1c7 cells) treated with purified sulforaphane, sodium selenite or extracts of selenized broccoli. When supplied separately as chemically pure substances, sodium selenite was more effective than sulforaphane for reduction of single-strand breaks. Se-fertilized broccoli extracts were the most effective for reduction of DNA single-strand breaks, and extracts that contained 0.71 microM Se and 0.08 microM sulforaphane inhibited 94% of DNA single-strand breaks. A significant positive association (r = 0.81, p = 0.009) between GPx1 activity and inhibition of DNA single-strand breaks as well as a 24h lag time between addition of Se, sulforaphane or broccoli extract and inhibition of single-strand breaks suggests that some of the antioxidant protection is mediated through selenoproteins. Conversely, fertilization of broccoli with Se decreased the ability of broccoli extract to induce QR activity. These results demonstrate that Se and sulforaphane, alone or as a component of broccoli, may help decrease oxidative stress. They further suggest that Se is the most important for decreasing oxidative stress, but maximizing the Se content

  6. Increased Intrinsic Activity of Medial-Temporal Lobe Subregions is Associated with Decreased Cortical Thickness of Medial-Parietal Areas in Patients with Alzheimer's Disease Dementia.

    PubMed

    Pasquini, Lorenzo; Scherr, Martin; Tahmasian, Masoud; Myers, Nicholas E; Ortner, Marion; Kurz, Alexander; Förstl, Hans; Zimmer, Claus; Grimmer, Timo; Akhrif, Atae; Wohlschläger, Afra M; Riedl, Valentin; Sorg, Christian

    2016-01-21

    In Alzheimer's disease (AD), disrupted connectivity between medial-parietal cortices and medial-temporal lobes (MTL) is linked with increased MTL local functional connectivity, and parietal atrophy is associated with increased MTL memory activation. We hypothesized that intrinsic activity in MTL subregions is increased and associated with medial-parietal degeneration and impaired memory in AD. To test this hypothesis, resting-state-functional and structural-MRI was assessed in 22 healthy controls, 22 mild cognitive impairment patients, and 21 AD-dementia patients. Intrinsic activity was measured by power-spectrum density of blood-oxygenation-level-dependent signal, medial-parietal degeneration by cortical thinning. In AD-dementia patients, intrinsic activity was increased for several right MTL subregions. Raised intrinsic activity in dentate gyrus and cornu ammonis 1 was associated with cortical thinning in posterior cingulate cortices, and at-trend with impaired delayed recall. Critically, increased intrinsic activity in the right entorhinal cortex was associated with ipsilateral posterior cingulate degeneration. Our results provide evidence that in AD, intrinsic activity in MTL subregions is increased and associated with medial-parietal atrophy. Results fit a model in which medial-parietal degeneration contributes to MTL dysconnectivity from medial-parietal cortices, potentially underpinning disinhibition-like changes in MTL activity. PMID:26836175

  7. Mutations in E.coli 16s rRNA that enhance and decrease the activity of a suppressor tRNA.

    PubMed

    Prescott, C D; Kornau, H C

    1992-04-11

    The in vivo expression of mutations constructed within helix 34 of 16S rRNA has been examined together with a nonsense tRNA suppressor for their action at stop codons. The data revealed two novel results: in contrast to previous findings, some of the rRNA mutations affected suppression at UAA and UAG nonsense codons. Secondly, both an increase and a decrease in the efficiency of the suppressor tRNA were induced by the mutations. This is the first report that rRNA mutations decreased the efficiency of a suppressor tRNA. The data are interpreted as there being competition between the two release factors (RF-1 and RF-2) for an overlapping domain and that helix 34 influences this interaction. PMID:1374555

  8. Mutations in E.coli 16s rRNA that enhance and decrease the activity of a suppressor tRNA.

    PubMed Central

    Prescott, C D; Kornau, H C

    1992-01-01

    The in vivo expression of mutations constructed within helix 34 of 16S rRNA has been examined together with a nonsense tRNA suppressor for their action at stop codons. The data revealed two novel results: in contrast to previous findings, some of the rRNA mutations affected suppression at UAA and UAG nonsense codons. Secondly, both an increase and a decrease in the efficiency of the suppressor tRNA were induced by the mutations. This is the first report that rRNA mutations decreased the efficiency of a suppressor tRNA. The data are interpreted as there being competition between the two release factors (RF-1 and RF-2) for an overlapping domain and that helix 34 influences this interaction. PMID:1374555

  9. Decreased shoot stature and grain alpha-amylase activity following ectopic expression of a gibberellin 2-oxidase gene in transgenic wheat.

    PubMed

    Appleford, Nigel E J; Wilkinson, Mark D; Ma, Qian; Evans, Daniel J; Stone, Marlon C; Pearce, Stephen P; Powers, Stephen J; Thomas, Stephen G; Jones, Huw D; Phillips, Andrew L; Hedden, Peter; Lenton, John R

    2007-01-01

    Ectopic expression of a gibberellin 2-oxidase gene (PcGA2ox1) decreased the content of bioactive gibberellins (GAs) in transgenic wheat, producing a range of dwarf plants with different degrees of severity. In at least one case, a single transformation event gave rise to T(1) plants with different degrees of dwarfism, the phenotypes being stably inherited over at least four generations. The dwarf phenotype, which included dark-green leaves, increased tillering and, in severe cases, a prostrate growth habit, was replicated by the application of a GA biosynthesis inhibitor to the wild type. Ear rachis length, grain set, and grain size were also decreased in the wheat transformants, compared with an azygous (null) line. The extent of post-germination alpha-amylase production in grains reflected the severity of the shoot phenotype of the transformants and both developmental processes were restored to normal by the application of gibberellic acid (GA(3)). Expression of two GA biosynthesis genes (TaGA20ox1 and TaGA3ox2) was up-regulated, and that of two alpha-amylase gene families (alpha-Amy1 and alpha-Amy2) down regulated, in scutella of semi-dwarf lines, compared with controls. The marked decline in transcript abundance of both alpha-amylase gene families in aleurone was associated with a decreased content of bioactive GAs in grains of the semi-dwarf lines. PMID:17916639

  10. Active coping toward predatory stress is associated with lower corticosterone and progesterone plasma levels and decreased methylation in the medial amygdala vasopressin system.

    PubMed

    Bowen, Michael T; Dass, Shantala A Hari; Booth, Jessica; Suraev, Anastasia; Vyas, Ajai; McGregor, Iain S

    2014-08-01

    An active coping style displayed under stress - which involves proactive investigatory responses toward environmental threats - has been associated with reduced vulnerability to psychiatric illness. However, the neurobiological determinants of coping styles are not well understood. When rats are exposed to a naturalistic stressor (cat fur) in a group, some individuals in the group show robust active investigation of the stimulus while others show a passive response involving retreat, immobility and close aggregation with conspecifics. Here we explored endocrine and epigenetic correlates of these contrasting coping styles. Male Wistar rats (n=48) were exposed to cat fur in groups of 4 and the passive and active responders were identified and assessed for endocrine and epigenetic differences. Three days after the final cat fur exposure, active responders had substantially lower plasma levels of corticosterone and progesterone than passive responders. Plasma and testicular testosterone levels did not differ between active and passive responders. Active responders had markedly less methylation of the AVP CGCG promoter region located at base 4970 in the posterodorsal region of the medial amygdala but did not differ in the methylation status of the CCGG sequence located at base 2243. This is in agreement with prior research suggesting that AVP and progesterone act in opposition within the medial amygdala to modulate stress-related behaviors. The present study reports striking endocrine and epigenetic differences between active and passive responders, providing insight into potential systems involved in the manifestation of differing coping styles. PMID:25127982

  11. A natural xanthone increases catalase activity but decreases NF-kappa B and lipid peroxidation in U-937 and HepG2 cell lines.

    PubMed

    Sahoo, Binay K; Zaidi, Adeel H; Gupta, Pankaj; Mokhamatam, Raveendra B; Raviprakash, Nune; Mahali, Sidhartha K; Manna, Sunil K

    2015-10-01

    Mangiferin, a C-glycosyl xanthone, has shown anti-inflammatory, antioxidant, and anti-tumorigenic activities. In the present study, we investigated the molecular mechanism for the antioxidant property of mangiferin. Considering the role of nuclear transcription factor kappa B (NF-κB) in inflammation and tumorigenesis, we hypothesized that modulating its activity will be a viable therapeutic target in regulating the redox-sensitive ailments. Our results show that mangiferin blocks several inducers, such as tumor necrosis factor (TNF), lypopolysaccharide (LPS), phorbol-12-myristate-13-acetate (PMA) or hydrogen peroxide (H2O2) mediated NF-κB activation via inhibition of reactive oxygen species generation. In silico docking studies predicted strong binding energy of mangiferin to the active site of catalase (-9.13 kcal/mol), but not with other oxidases such as myeloperoxidase, glutathione peroxidase, or inducible nitric oxide synthase. Mangiferin increased activity of catalase by 44%, but had no effect on myeloperoxidase activity in vitro. Fluorescence spectroscopy further revealed the binding of mangiferin to catalase at the single site with binding constant and binding affinity of 3.1×10(-7) M(-1) and 1.046 respectively. Mangiferin also inhibits TNF-induced lipid peroxidation and thereby protects apoptosis. Hence, mangiferin with its ability to inhibit NF-κB and increase the catalase activity may prove to be a potent therapeutic. PMID:26209362

  12. Neutrophil elastase activity in differentiating HL-60 promyelocytes is decreased by culture with ethanol and elastase deficient neutrophils are produced in alcoholics

    SciTech Connect

    Sachs, C.; Christianson, R.; Pratt, P.; Lynn, W.

    1987-05-01

    Serum-free culture of HL-60 in the presence of recombinant Granulocyte-Macrophage Colony Stimulating Factor in four days elicits a five-fold increase in esterolytic neutrophil elastase (NE) like activity measured with methoxy-succinyl-ala-ala-pro-val p-nitroanilide and purified NE standard but does not cause terminal differentiation. Simultaneous exposure to 0.2, 0.4, or 0.6% (vol./vol.) ethanol blocks this increase in NE activity. Exposure to 0.85% ethanol promotes terminal differentiation to elastase-deficient granulocytes which as been described using DMSO. To ascertain if ethanol may have similar effects on granulocytic differentiation in vivo, they compared oxidase and elastase activities of PMN's in male alcoholics on a binge (ethanol > 200 mg/dl.). In 29 patients an average of 872 (+/- 237) (SD) ng./10/sup 6/ PMN's of active NE was found compared to 1571 (+/- 177) in 13 controls. Patients admitted for treatment of alcoholism had similar NE activity in 3-4 days, showed a slight increase in activity within one week and had NE activity comparable to controls within 2-3 weeks. These findings support the previous observation that smoking related emphysema is less prevalent and severe in patients who regularly consume alcohol. They conclude that ethanol may visibly alter responsiveness of promyelocytic precursors to regulatory differentiating factors.

  13. A novel dithiocarbamate analogue with potentially decreased ALDH inhibition has copper-dependent proteasome-inhibitory and apoptosis-inducing activity in human breast cancer cells

    PubMed Central

    Wang, Fei; Zhai, Shumei; Liu, Xiaojun; Li, Liwen; Wu, Shirley; Dou, Q. Ping; Yan, Bing

    2013-01-01

    Dithiocarbamates are a class of sulfur-based metal-chelating compounds with various applications in medicine. We reported previously that certain members of dithiocarbamates, such as diethyldithiocarbamate, disulfiram (DSF) and pyrrolidine dithiocarbamate (PDTC), were able to bind with tumor cellular copper to inhibit tumor growth through the inhibition of proteasome activity and induction of cancer cell apoptosis. Since the DSF is an irreversible inhibitor of aldehyde dehydrogenase (ALDH), its ALDH-inhibitory activity might potentially affect its usefulness as an anti-cancer drug. For the purpose of selecting potent anti-cancer compounds that are not ALDH inhibitors and mapping out preliminary structure–activity relationship trends for these novel compounds, we synthesized a series of PDTC analogues and chose three novel compounds to study their ALDH-inhibitory activity, proteasome-inhibitory activity as well as the cancer cell apoptosis-inducing activity. The results showed that compared to DSF, compound 9 has less ALDH inhibition activity, and the in vitro results also proved the positive effects of 9-Cu in proteasome inhibition and apoptosis induction in breast cancer cells, suggesting that 9 as a lead compound could be developed into a novel proteasome inhibitor anti-cancer drug. PMID:21035945

  14. Temporary elimination of IL-10 enhanced the effectiveness of cyclophosphamide and BMDC-based therapy by decrease of the suppressor activity of MDSCs and activation of antitumour immune response.

    PubMed

    Rossowska, Joanna; Anger, Natalia; Kicielińska, Jagoda; Pajtasz-Piasecka, Elżbieta; Bielawska-Pohl, Aleksandra; Wojas-Turek, Justyna; Duś, Danuta

    2015-03-01

    The antitumour activity of the dendritic cell (DC)-based cellular vaccines is greatly reduced in hostile tumour microenvironment. Therefore, there are many attempts to eliminate or neutralize both suppressor cells and cytokines. The aim of the investigation was to verify if temporary elimination of IL-10 just before injection of bone marrow-derived DCs (BMDCs) enhance the antitumour activity of applied vaccines and help to overcome the immunosuppressive tumour barrier. Mice bearing colon carcinoma MC38 were given single dose of cyclophosphamide (CY) followed by alternate injections of anti-IL-10 antibodies and BMDC-based vaccines consisted of BMDCs stimulated with MC38 tumour antigen (BMDC/TAg) or the combination of BMDC/TAg with BMDCs transduced with IL-12 genes (BMDC/IL-12). The high tumour growth inhibition was observed in mice treated with CY+anti-IL-10+BMDC/TAg as well as CY±anti-IL-10+BMDC/TAg+BMDC/IL-12. However, the mechanisms of action of particular treatment schemes were diversified. Generally, it was observed that application of anti-IL-10 Abs reduced suppressor activity of myeloid-derived suppressor cells (MDSCs). However, anti-IL-10 Abs in combination with diversely composed BMDC-based vaccines induced different components of an antitumour response. The high cytotoxic activity of spleen-derived NK cells and increased influx of these cells into tumours of mice treated with CY+anti-IL-10+BMDC/TAg indicate that mice from the group developed strong NK-dependent response. Whereas, application of anti-IL-10 Abs just before injection of BMDC/TAg+BMDC/IL-12 did not enhanced NK cell activity. Furthermore, it significantly impaired effectiveness of therapy composed of CY+BMDC/TAg+BMDC/IL-12 vaccine in induction of Th1 type immune response. Taken together, our results indicate that temporary elimination of IL-10 is an important and effective way to decrease the immune suppression associated with MDSCs activity and represents a useful strategy for successful

  15. Dichloromethane fraction of Cimicifuga heracleifolia decreases the level of melanin synthesis by activating the ERK or AKT signaling pathway in B16F10 cells.

    PubMed

    Jang, Ji Yeon; Lee, Jun Hyuk; Kang, Byoung Won; Chung, Kyung Tae; Choi, Yung Hyun; Choi, Byung Tae

    2009-03-01

    Cimicifuga rhizoma has long been used in traditional Korean medicine. In particular, a Cimicifuga heracleifolia extract (CHE) was reported to inhibit the formation of glutamate and the glutamate dehydrogenase activity in cultured rat islet. Glutamate activates melanogenesis by activating tyrosinase. Accordingly, it was hypothesized that a CHE might inhibit the melanogenesis-related signal pathways including the inhibition of microphthalmia-associated transcription factor (MITF)-tyrosinase signaling and/or the activation of extracellular signal-regulated kinase (ERK)-Akt signaling. The results showed that CHE inhibits the cellular melanin contents, tyrosinase activity and expression of melanogenesis-related proteins including MITF, tyrosinase and tyrosinase-related protein (TRP)s in alpha-melanocyte-stimulating hormone-stimulated B16 cells. Moreover, CHE phosphorylates MEK, ERK1/2 and Akt, which are melanogenesis inhibitory proteins. The data suggest that CHE inhibits melanogenesis signaling by both inhibiting the tyrosinase directly and activating the MEK-ERK or Akt signal pathways-mediated suppression of MITF and its downstream signal pathway, including tyrosinase and TRPs. Therefore, C. heracleifolia would be a useful therapeutic agent for treating hyperpigmentation and an effective component in whitening and/or lightening cosmetics. PMID:18803655

  16. Long-lived Snell dwarf mice display increased proteostatic mechanisms that are not dependent on decreased mTORC1 activity

    PubMed Central

    Drake, Joshua C; Bruns, Danielle R; Peelor, Frederick F; Biela, Laurie M; Miller, Richard A; Miller, Benjamin F; Hamilton, Karyn L

    2015-01-01

    Maintaining proteostasis is thought to be a key factor in slowed aging. In several growth-restricted models of long-life, we have shown evidence of increased proteostatic mechanisms, suggesting that proteostasis may be a shared characteristic of slowed aging. The Snell dwarf mouse is generated through the mutation of the Pit-1 locus causing reductions in multiple hormonal growth factors and mTORC1 signaling. Snell dwarfs are one of the longest lived rodent models of slowed aging. We hypothesized that proteostatic mechanisms would be increased in Snell compared to control (Con) as in other models of slowed aging. Using D2O, we simultaneously assessed protein synthesis in multiple subcellular fractions along with DNA synthesis in skeletal muscle, heart, and liver over 2 weeks in both sexes. We also assessed mTORC1-substrate phosphorylation. Skeletal muscle protein synthesis was decreased in all protein fractions of Snell compared to Con, varied by fraction in heart, and was not different between groups in liver. DNA synthesis was lower in Snell skeletal muscle and heart but not in liver when compared to Con. The new protein to new DNA synthesis ratio was increased threefold in Snell skeletal muscle and heart compared to Con. Snell mTORC1-substrate phosphorylation was decreased only in heart and liver. No effect of sex was seen in this study. Together with our previous investigations in long-lived models, we provide evidence further supporting proteostasis as a shared characteristic of slowed aging and show that increased proteostatic mechanisms may not necessarily require a decrease in mTORC1. PMID:25720574

  17. Decreased cytochrome-c oxidase activity and lack of age-related accumulation of mitochondrial DNA deletions in the brains of schizophrenics

    SciTech Connect

    Cavelier, L.; Jazin, E.E.; Eriksson, I.

    1995-09-01

    Defects in mitochondrial energy production have been implicated in several neurodegenerative disorders, such as Parkinson disease and amyotrophic lateral sclerosis. To study the contribution of mitochondrial defects to Alzheimer disease and schizophrenia, cytochrome-c oxidase (COX) activity and levels of the mtDNA{sup 4977} deletion in postmortem brain tissue specimens of patients were compared with those of asymptomatic age-matched controls. No difference in COX activity was observed between Alzheimer patients and controls in any of five brain regions investigated. In contrast, schizophrenic patients had a 63% reduction of the COX activity in the nucleus caudatus (P<0.0001) and a 43% reduction in the cortex gyrus frontalis (P<0.05) as compared to controls. The average levels of the mtDNA{sup 4977} deletion did not differ significantly between Alzheimer patients and controls, and the deletion followed similar modes of accumulation with age in the two groups. In contrast, no age-related accumulation of mtDNA deletions was found in schizophrenic patients. The reduction in COX activity in schizophrenic patients did not correlate with changes in the total amount of mtDNA or levels of the mtDNA{sup 4977} deletion. The lack of age-related accumulation of the mtDNA{sup 4977} deletion and reduction in COX activity suggest that a mitochondrial dysfunction may be involved in the pathogenesis of schizophrenia. 41 refs., 3 figs., 1 tab.

  18. Ghrelin Decreases Firing Activity of Gonadotropin-Releasing Hormone (GnRH) Neurons in an Estrous Cycle and Endocannabinoid Signaling Dependent Manner

    PubMed Central

    Farkas, Imre; Vastagh, Csaba; Sárvári, Miklós; Liposits, Zsolt

    2013-01-01

    The orexigenic peptide, ghrelin is known to influence function of GnRH neurons, however, the direct effects of the hormone upon these neurons have not been explored, yet. The present study was undertaken to reveal expression of growth hormone secretagogue receptor (GHS-R) in GnRH neurons and elucidate the mechanisms of ghrelin actions upon them. Ca2+-imaging revealed a ghrelin-triggered increase of the Ca2+-content in GT1-7 neurons kept in a steroid-free medium, which was abolished by GHS-R-antagonist JMV2959 (10µM) suggesting direct action of ghrelin. Estradiol (1nM) eliminated the ghrelin-evoked rise of Ca2+-content, indicating the estradiol dependency of the process. Expression of GHS-R mRNA was then confirmed in GnRH-GFP neurons of transgenic mice by single cell RT-PCR. Firing rate and burst frequency of GnRH-GFP neurons were lower in metestrous than proestrous mice. Ghrelin (40nM-4μM) administration resulted in a decreased firing rate and burst frequency of GnRH neurons in metestrous, but not in proestrous mice. Ghrelin also decreased the firing rate of GnRH neurons in males. The ghrelin-evoked alterations of the firing parameters were prevented by JMV2959, supporting the receptor-specific actions of ghrelin on GnRH neurons. In metestrous mice, ghrelin decreased the frequency of GABAergic mPSCs in GnRH neurons. Effects of ghrelin were abolished by the cannabinoid receptor type-1 (CB1) antagonist AM251 (1µM) and the intracellularly applied DAG-lipase inhibitor THL (10µM), indicating the involvement of retrograde endocannabinoid signaling. These findings demonstrate that ghrelin exerts direct regulatory effects on GnRH neurons via GHS-R, and modulates the firing of GnRH neurons in an ovarian-cycle and endocannabinoid dependent manner. PMID:24124622

  19. Triptolide inhibits B7-H1 expression on proinflammatory factor activated renal tubular epithelial cells by decreasing NF-kappaB transcription.

    PubMed

    Chen, Yongwen; Zhang, Jingbo; Li, Jingyi; Zhao, Tingting; Zou, Liyun; Tang, Yan; Zhang, Xiaoping; Wu, Yuzhang

    2006-03-01

    Triptolide has been used extensively in China for the treatment of autoimmune diseases and tumor for many centuries. Nevertheless, little is known about its exact immunosuppressive and anti-inflammatory properties. Increasing recognition of the importance of renal tubular epithelial cells (TECs) in renal diseases raises the question whether triptolide can regulate TEC activity. In this study, various cultured human and murine TECs were exposed to tumor necrotic factor-alpha (TNF-alpha) and triptolide, followed to examine the expression of B7-H1 and B7-DC. Flow cytometric analysis revealed that B7-H1 but not B7-DC constitutively expresses on TECs, and the B7-H1 protein expression was profoundly up-regulated by the stimulation of TNF-alpha with a dose-dependent manner. However, triptolide under non-cytotoxic concentration could down-regulate B7-H1 expression on activated TECs at both mRNA and protein level. This effect was transcription factor NF-kappaB dependent. Interestingly, the significant damping effect of triptolide on B7-H1 signal could promote interleukin-2 production by T cell hybridoma (C10) after antigen presentation and enhance cytokine (IFN-gamma and IL-2) secretion by anti-CD3 activated T cells. Our results indicated that triptolide could regulate TEC activity via B7-H1, in addition to previously reported it directly affects the production of some inflammatory factors by T cells, tumor cells and peripheral blood mononuclear cells. PMID:16129490

  20. MAgnetic stimulation of the brain increase Na+, K+-ATPase activity decreased by injection of AlCl3 into nucleus basalis magnocellularis of rats.

    PubMed

    Jovanova-Nesic, Katica; Eric-Jovicic, Milena; Spector, Novera Herbert

    2006-06-01

    This article reports here on the influence of the static magnetic fields (MFs), locally applied to the brain area, on Na, K-ATPase activity in the rat with lesioned nucleus basalis magnocellularis (NBM) by intracerebral injection of 5 microl, 1% AlCl3 into the nucleus. Two AKMA micromagnets (M) flux density of 60 miliTesla, 5 mm in diameter, were bilaterally implanted with "N" polarity facing down to the cranial bones in the vicinity of the pineal gland (PG), immediately after the lesioning of NBM, during the same operation procedure. Ten days after the lesions of NBM, Na, K-ATPase activity on the erythrocyte membranes in the peripheral blood, measured spectrophotometrically, was completely inhibited. Magnetic stimulation (60 mT) of the brain during the 10 days significantly increased Na, K-ATPase activity on the erythrocyte membranes of rats with lesioned NBM. This results suggests that altered by lesions Na, K-ATPase activity in an experimental model of Alzheimer's disease might be ameliorated by magnetic stimulation of the brain. PMID:16753895

  1. Phosphatase activity in commercial spleen exonuclease decreases the recovery of benzo[a]pyrene and N-hydroxy-2-naphthylamine DNA adducts by 32P-postlabeling.

    PubMed

    Adams, S P; Laws, G M; Selden, J R; Nichols, W W

    1994-05-15

    Spleen exonuclease, which degrades nucleic acids into single 3'-nucleotides, is used in the detection of DNA adducts by 32P-postlabeling. Contamination of the exonuclease with phosphatase activity can reduce the recovery of benzo[a]pyrene and N-hydroxy-2-naphthylamine DNA adducts by 32P-postlabeling. Four preparations of spleen exonuclease containing varying levels of phosphatase activity (< 1-62% of the unmodified 3'-nucleotides being dephosphorylated) were used to hydrolyze the DNA. The exonuclease with the lowest phosphatase activity produced a recovery of up to 9.60 mumol of benzo[a]pyrene adducts per mole of DNA. Recovery of benzo[a]pyrene adducts was reduced to 0.56 mumol of adduct per mole of DNA using the exonuclease with the highest phosphatase activity. Phosphatase in the exonucleases also dephosphorylated N-hydroxy-2-naphthylamine DNA adducts. Surprisingly, recovery of these DNA adducts was nearly 10 times greater using nuclease P1 than when using 1-butanol extraction for adduct enrichment, since arylamine DNA adducts have previously been reported to be poorly detected by 32P-postlabeling after nuclease P1 treatment. Our data indicate that the hydrolysis of DNA by spleen exonuclease may be an important source of variability in both qualitative and quantitative analysis of adducts by 32P-postlabeling. PMID:8059938

  2. S100A8 and S100A9 Are Induced by Decreased Hydration in the Epidermis and Promote Fibroblast Activation and Fibrosis in the Dermis.

    PubMed

    Zhong, Aimei; Xu, Wei; Zhao, Jingling; Xie, Ping; Jia, Shengxian; Sun, Jiaming; Galiano, Robert D; Mustoe, Thomas A; Hong, Seok J

    2016-01-01

    The most critical function of the epidermis is to prevent water loss and maintain skin homeostasis. Disruption of the functional skin barrier causes delayed wound healing, hypertrophic scarring, and many skin diseases. Herein, we show that reduced hydration increases the expression of S100 protein family members, S100A8/S100A9, in stratified keratinocyte culture and human ex vivo skin culture. Immunohistological analyses show that S100A8/A9 are highly expressed in the epidermis of human hypertrophic scar and keloid tissues. Reduced hydration demonstrates activation of fibroblasts in the keratinocyte-fibroblast co-culture. In contrast, knockdown of S100A8 or S100A9 by RNA interference in keratinocytes failed to activate fibroblasts. Pretreatment with pharmacological blockers of S100A8/A9 receptors, Toll-like receptor 4 and receptor for advanced glycation end products, inhibits fibroblast activation induced by recombinant S100A8/A9 proteins. Moreover, we observe that local delivery of S100A8 protein results in a marked increase in hypertrophic scarring in the in vivo rabbit ear scar model. Our results indicate that hydration status promotes fibroblast activation and fibrosis by directly affecting the expression of inflammatory signaling in keratinocytes, thereby strongly suggesting S100A8/A9 to be novel targets in preventing scarring. PMID:26597884

  3. A single amino acid substitution in the hemagglutinin-neuraminidase protein of Newcastle disease virus results in increased fusion and decreased neuraminidase activities without changes in virus pathotype

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Newcastle disease virus (NDV) attachment to the host cell is mediated by the hemagglutinin-neuraminidase (HN), a multifunctional protein that has receptor recognition, neuraminidase and fusion promotion activities. The process that correlates receptor binding and fusion triggering is poorly understo...

  4. Local activation of uterine Toll-like receptor 2 and 2/6 decreases embryo implantation and affects uterine receptivity in mice.

    PubMed

    Sanchez-Lopez, Javier Arturo; Caballero, Ignacio; Montazeri, Mehrnaz; Maslehat, Nasim; Elliott, Sarah; Fernandez-Gonzalez, Raul; Calle, Alexandra; Gutierrez-Adan, Alfonso; Fazeli, Alireza

    2014-04-01

    Embryo implantation is a complex interaction between maternal endometrium and embryonic structures. Failure to implant is highly recurrent and impossible to diagnose. Inflammation and infections in the female reproductive tract are common causes of infertility, embryo loss, and preterm labor. The current work describes how the activation of endometrial Toll-like receptor (TLR) 2 and 2/6 reduces embryo implantation chances. We developed a morphometric index to evaluate the effects of the TLR 2/6 activation along the uterine horn (UH). TLR 2/6 ligation reduced the endometrial myometrial and glandular indexes and increased the luminal index. Furthermore, TLR 2/6 activation increased the proinflammatory cytokines such as interleukin (IL)-1beta and monocyte chemotactic protein (MCP)-1 in UH lavages in the preimplantation day and IL-1 receptor antagonist in the implantation day. The engagement of TLR 2/6 with its ligand in the UH during embryo transfer severely affected the rate of embryonic implantation (45.00% ± 6.49% vs. 16.69% ± 5.01%, P < 0.05, control vs. test, respectively). Furthermore, this interference with the embryo implantation process was verified using an in vitro model of human embryo implantation where trophoblast spheroids failed to adhere to a monolayer of TLR 2- and TLR 2/6-activated endometrial cells. The inhibition of TLR receptors 2 and 6 in the presence of their specific ligands restored the ability of the spheroids to bind to the endometrial cells. In conclusion, the activation of the innate immune system in the uterus at the time of implantation interfered with the endometrial receptivity and reduced the chances of implantation success. PMID:24621922

  5. Type IX Ehlers-Danlos syndrome and Menkes syndrome: the decrease in lysyl oxidase activity is associated with a corresponding deficiency in the enzyme protein.

    PubMed Central

    Kuivaniemi, H; Peltonen, L; Kivirikko, K I

    1985-01-01

    Type IX of the Ehlers-Danlos syndrome (E-D IX) and the Menkes syndrome are X-linked recessively inherited disorders characterized by abnormalities in copper metabolism. These abnormalities are associated with a severe reduction in the activity of lysyl oxidase, the extracellular copper enzyme that initiates crosslinking of collagens and elastin. No increase in this deficient enzyme activity was obtained when culture media from fibroblasts of patients with E-D IX or the Menkes syndrome were incubated with copper under various conditions in vitro. A distinct, although small, increase in lysyl oxidase activity was obtained, however, when copper-supplemented media were used during culturing of the fibroblasts, although even under these conditions, the enzyme activity in the media from the affected cells remained markedly below that of the controls. Immunoprecipitation, dot-blotting, and immunoperoxidase staining experiments with antisera to human lysyl oxidase indicated that fibroblasts from patients with E-D IX or the Menkes syndrome do not secrete into their medium, or contain inside the cell, any significant amounts of a copper-deficient, catalytically inactive lysyl oxidase protein. These findings appear to be consistent with the hypothesis that synthesis of the lysyl oxidase protein itself is impaired. The possibility is not excluded, however, that a copper-deficient enzyme protein may be synthesized in normal amounts but become degraded very rapidly inside the cell. The failure to obtain any large increase in the deficient lysyl oxidase activity upon various forms of copper administration suggests that it may not be possible to obtain any significant improvement in the connective tissue manifestations of these disorders by copper therapy. Images Fig. 1 Fig. 2 PMID:9556668