Science.gov

Sample records for activity dna fragmentation

  1. Phylogenomics of caspase-activated DNA fragmentation factor

    SciTech Connect

    Eckhart, Leopold . E-mail: leopold.eckhart@meduniwien.ac.at; Fischer, Heinz; Tschachler, Erwin

    2007-04-27

    The degradation of nuclear DNA by DNA fragmentation factor (DFF) is a key step in apoptosis of mammalian cells. Using comparative genomics, we have here determined the evolutionary history of the genes encoding the two DFF subunits, DFFA (also known as ICAD) and DFFB (CAD). Orthologs of DFFA and DFFB were identified in Nematostella vectensis, a representative of the primitive metazoan clade cnidarians, and in various vertebrates and insects, but not in representatives of urochordates, echinoderms, and nematodes. The domains mediating the interaction of DFFA and DFFB, a caspase cleavage site in DFFA, and the amino acid residues critical for endonuclease activity of DFFB were conserved in Nematostella. These findings suggest that DFF has been a part of the primordial apoptosis system of the eumetazoan common ancestor and that the ancient cell death machinery has degenerated in several evolutionary lineages, including the one leading to the prototypical apoptosis model, Caenorhabditis elegans.

  2. Caspase-2 cleaves DNA fragmentation factor (DFF45)/inhibitor of caspase-activated DNase (ICAD).

    PubMed

    Dahal, Giri Raj; Karki, Pratap; Thapa, Arjun; Shahnawaz, Mohammad; Shin, Song Yub; Lee, Jung Sup; Cho, Byungyun; Park, Il-Seon

    2007-12-01

    To investigate the signal transduction pathway of caspase-2, cell permeable Tat-reverse-caspase-2 was constructed, characterized and utilized for biochemical and cellular studies. It could induce the cell death as early as 2h, and caspase-2-specific VDVADase activity but not other caspase activities including DEVDase and IETDase. Interestingly, nuclear DNA fragmentation occurred and consistently DNA fragmentation factor (DFF45)/Inhibitor of caspase-activated DNase (ICAD) was cleaved inside the cell as well as in vitro, suggesting a role of caspase-2 in nuclear DNA fragmentation. PMID:17945178

  3. Purification of a 24-kD protease from apoptotic tumor cells that activates DNA fragmentation.

    PubMed

    Wright, S C; Wei, Q S; Zhong, J; Zheng, H; Kinder, D H; Larrick, J W

    1994-12-01

    We report the purification of a protease from tumor cells undergoing apoptosis that is involved in activating DNA fragmentation. Initial studies revealed that two inhibitors of serine proteases, N-1-tosylamide-2-phenylethylchloromethyl ketone and carbobenzoxy-Ala-Ala-borophe (DK120), suppressed tumor necrosis factor or ultraviolet (UV) light-induced DNA fragmentation in the U937 histiocytic lymphoma as well as UV light-induced DNA fragmentation in the BT-20 breast carcinoma, HL-60 myelocytic leukemia, and 3T3 fibroblasts. The protease was purified by affinity chromatography with DK120 as ligand and showed high activity on a synthetic substrate preferred by elastase-like enzymes (Ala-Ala-Pro-Val p-nitroanilide), but was inactive on the trypsin substrate, N-alpha-benzyloxycarbonyl-L-lysine thiobenzyl ester, or the chymotrypsin substrate, Ala-Ala-Pro-Phe p-nitroanilide. The activity of the DK120-binding protease purified from U937 cells undergoing apoptosis was increased approximately 10-fold over that recovered from normal cells. Further purification to homogeneity by heparin-Sepharose affinity chromatography followed by reverse phase high-performance liquid chromatography revealed a single band of 24 kD on a silver-stained sodium dodecyl sulfate gel. In addition to protease activity, the purified enzyme induced DNA fragmentation into multiples of 180 basepairs in isolated U937 nuclei. These findings suggest the 24-kD protease is a novel enzyme that activates DNA fragmentation in U937 cells undergoing apoptosis. PMID:7964487

  4. Single-molecule imaging of DNA polymerase I (Klenow fragment) activity by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Chao, J.; Zhang, P.; Wang, Q.; Wu, N.; Zhang, F.; Hu, J.; Fan, C. H.; Li, B.

    2016-03-01

    We report a DNA origami-facilitated single-molecule platform that exploits atomic force microscopy to study DNA replication. We imaged several functional activities of the Klenow fragment of E. coli DNA polymerase I (KF) including binding, moving, and dissociation from the template DNA. Upon completion of these actions, a double-stranded DNA molecule was formed. Furthermore, the direction of KF activities was captured and then confirmed by shifting the KF binding sites on the template DNA.We report a DNA origami-facilitated single-molecule platform that exploits atomic force microscopy to study DNA replication. We imaged several functional activities of the Klenow fragment of E. coli DNA polymerase I (KF) including binding, moving, and dissociation from the template DNA. Upon completion of these actions, a double-stranded DNA molecule was formed. Furthermore, the direction of KF activities was captured and then confirmed by shifting the KF binding sites on the template DNA. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06544e

  5. Characterization of the rat DNA fragmentation factor 35/Inhibitor of caspase-activated DNase (Short form). The endogenous inhibitor of caspase-dependent DNA fragmentation in neuronal apoptosis.

    PubMed

    Chen, D; Stetler, R A; Cao, G; Pei, W; O'Horo, C; Yin, X M; Chen, J

    2000-12-01

    Nuclear changes, including internucleosomal DNA fragmentation, are classical manifestations of apoptosis for which the biochemical mechanisms have not been fully elucidated, particularly in neuronal cells. We have cloned the rat DNA fragmentation factor 35/inhibitor of caspase-activated DNase (short form) (DFF35/ICAD(S)) and found it to be the predominant form of ICAD present in rodent brain cells as well as in many other types of cells. DFF35/ICAD(S) forms a functional complex with DFF40/caspase-activated DNase (CAD) in the nucleus, and when its caspase-resistant mutant is over-expressed, it inhibits the nuclease activity, internucleosomal DNA fragmentation, and nuclear fragmentation but not the shrinkage and condensation of the nucleus, in neuron-differentiated PC12 cells in response to apoptosis inducers. DFF40/CAD is found to be localized mainly in the nucleus, and during neuronal apoptosis, there is no evidence of further nuclear translocation of this molecule. It is further suggested that inactivation of DFF40/CAD-bound DFF35 and subsequent activation of DFF40/CAD during apoptosis of neuronal cells may not occur in the cytosol but rather in the nucleus through a novel mechanism that requires nuclear translocation of caspases. These results establish that DFF35/ICAD(S) is the endogenous inhibitor of DFF40/CAD and caspase-dependent apoptotic DNA fragmentation in neurons.

  6. DNA fragments binding CTCF in vitro and in vivo are capable of blocking enhancer activity

    PubMed Central

    2012-01-01

    Background Earlier we identified ten 100-300-bp long CTCF-binding DNA fragments selected earlier from a 1-Mb human chromosome 19 region. Here the positive-negative selection technique was used to check the ability of CTCF-binding human genomic fragments to block enhancer-promoter interaction when inserted into the genome. Results Ten CTCF-binding DNA fragments were inserted between the CMV enhancer and CMV minimal promoter driving the herpes simplex virus thymidine kinase (HSV-tk) gene in a vector expressing also the neoR gene under a separate promoter. The constructs were then integrated into the genome of CHO cells, and the cells resistant to neomycin and ganciclovir (positive-negative selection) were picked up, and their DNAs were PCR analyzed to confirm the presence of the fragments between the enhancer and promoter in both orientations. Conclusions We demonstrated that all sequences identified by their CTCF binding both in vitro and in vivo had enhancer-blocking activity when inserted between the CMV minimal promoter and enhancer in stably transfected CHO cells. PMID:22480385

  7. Absence of superoxide dismutase activity causes nuclear DNA fragmentation during the aging process

    SciTech Connect

    Muid, Khandaker Ashfaqul; Karakaya, Hüseyin Çaglar; Koc, Ahmet

    2014-02-07

    Highlights: • Aging process increases ROS accumulation. • Aging process increases DNA damage levels. • Absence of SOD activity does not cause DNA damage in young cells. • Absence of SOD activity accelerate aging and increase oxidative DNA damages during the aging process. - Abstract: Superoxide dismutases (SOD) serve as an important antioxidant defense mechanism in aerobic organisms, and deletion of these genes shortens the replicative life span in the budding yeast Saccharomyces cerevisiae. Even though involvement of superoxide dismutase enzymes in ROS scavenging and the aging process has been studied extensively in different organisms, analyses of DNA damages has not been performed for replicatively old superoxide dismutase deficient cells. In this study, we investigated the roles of SOD1, SOD2 and CCS1 genes in preserving genomic integrity in replicatively old yeast cells using the single cell comet assay. We observed that extend of DNA damage was not significantly different among the young cells of wild type, sod1Δ and sod2Δ strains. However, ccs1Δ mutants showed a 60% higher amount of DNA damage in the young stage compared to that of the wild type cells. The aging process increased the DNA damage rates 3-fold in the wild type and more than 5-fold in sod1Δ, sod2Δ, and ccs1Δ mutant cells. Furthermore, ROS levels of these strains showed a similar pattern to their DNA damage contents. Thus, our results confirm that cells accumulate DNA damages during the aging process and reveal that superoxide dismutase enzymes play a substantial role in preserving the genomic integrity in this process.

  8. Magnetic activated cell sorting: an effective method for reduction of sperm DNA fragmentation in varicocele men prior to assisted reproductive techniques.

    PubMed

    Degheidy, T; Abdelfattah, H; Seif, A; Albuz, F K; Gazi, S; Abbas, S

    2015-10-01

    Semen parameters of varicocele men have been usually suspected to exhibit higher levels of abnormalities including DNA fragmentation, reactive oxygen species (ROS) and apoptotic markers. Negative correlation between increased level of DNA fragmentation and assisted reproductive techniques (ART) outcome has been studied by several authors. In the current study, we aim to evaluate the possible value of magnetic activated cell sorting (MACs) technology in reduction of DNA fragmentation in infertile varicocele patients prior to ART. Semen samples, collected from 36 varicocele patients, were prepared by density gradient centrifugation (DGC). Every sample was subsequently divided into two aliquots. One aliquot was kept untouched as pre-MACs control while the other aliquot was subjected to MACs technique, for depletion of apoptotic spermatozoa, and serves as post-MACs test. Sperm count, motility and DNA fragmentations were evaluated for both control and test samples. Post-MACs samples showed no deleterious reduction in total sperm motility (80.64 ± 6.97%) compared with control samples (80.97 ± 7.74%) while sperm DNA fragmentations were significantly reduced in post-MACs samples (9.61 ± 5.62%) compared with pre-MACs controls (12.43 ± 6.29%) (P < 0.05). It can be concluded that MACs technique is a simple, noninvasive, technique that can efficiently reduce DNA fragmentation in infertile varicocele patients prior to ART.

  9. Biological and environmental conditionings for a sperm DNA fragmentation.

    PubMed

    Bojar, Iwona; Witczak, Mariusz; Wdowiak, Artur

    2013-01-01

    The objective of the presented study was determination of the effect of selected agents on sperm DNA fragmentation--superoxide dismutase in seminal plasma, the patients' age, and burdening with the tobacco smoking habit. An attempt was also undertaken to evaluate the effect of DNA fragmentation on the effectiveness of infertility treatment. The study covered 186 men who received treatment due to infertility. The database and statistical analyses were performed using computer software STATISTICA 7.1. A relationship was observed between sperm DNA fragmentation and superoxide dismutase activity, the higher the SOD activity, the lower the percentage of sperm fragmentation (rs=-0.324; P=0.000; r = -0.2110). A statistical relationship was found between sperm DNA fragmentation and the percentage of pregnancies obtained during the first year of treatment--patients with the lower DFI more frequently became fathers during the first year of trying, compared to the remainder (t=2.51; P=0.013). A statistically significant relationship was confirmed (rs=-0.370; P=0.000) consisting in an increase in the DFI with respondents' age. No significant differences were noted between the DFI and the tobacco smoking habit (Chi2=0.29; P=0.926). The percentage of sperm DNA fragmentation was inversely proportional to superoxide dismutase activity in seminal plasma. DNA fragmentation becomes intensified with patients' age. Cigarette smoking has no effect on sperm DNA fragmentation. DNA fragmentation exerts an effect on the effectiveness of infertility treatment.

  10. DNA sequence from Cretaceous period bone fragments.

    PubMed

    Woodward, S R; Weyand, N J; Bunnell, M

    1994-11-18

    DNA was extracted from 80-million-year-old bone fragments found in strata of the Upper Cretaceous Blackhawk Formation in the roof of an underground coal mine in eastern Utah. This DNA was used as the template in a polymerase chain reaction that amplified and sequenced a portion of the gene encoding mitochondrial cytochrome b. These sequences differ from all other cytochrome b sequences investigated, including those in the GenBank and European Molecular Biology Laboratory databases. DNA isolated from these bone fragments and the resulting gene sequences demonstrate that small fragments of DNA may survive in bone for millions of years.

  11. Fragment Length of Circulating Tumor DNA

    PubMed Central

    Underhill, Hunter R.; Kitzman, Jacob O.; Hellwig, Sabine; Welker, Noah C.; Daza, Riza; Gligorich, Keith M.; Rostomily, Robert C.; Shendure, Jay

    2016-01-01

    Malignant tumors shed DNA into the circulation. The transient half-life of circulating tumor DNA (ctDNA) may afford the opportunity to diagnose, monitor recurrence, and evaluate response to therapy solely through a non-invasive blood draw. However, detecting ctDNA against the normally occurring background of cell-free DNA derived from healthy cells has proven challenging, particularly in non-metastatic solid tumors. In this study, distinct differences in fragment length size between ctDNAs and normal cell-free DNA are defined. Human ctDNA in rat plasma derived from human glioblastoma multiforme stem-like cells in the rat brain and human hepatocellular carcinoma in the rat flank were found to have a shorter principal fragment length than the background rat cell-free DNA (134–144 bp vs. 167 bp, respectively). Subsequently, a similar shift in the fragment length of ctDNA in humans with melanoma and lung cancer was identified compared to healthy controls. Comparison of fragment lengths from cell-free DNA between a melanoma patient and healthy controls found that the BRAF V600E mutant allele occurred more commonly at a shorter fragment length than the fragment length of the wild-type allele (132–145 bp vs. 165 bp, respectively). Moreover, size-selecting for shorter cell-free DNA fragment lengths substantially increased the EGFR T790M mutant allele frequency in human lung cancer. These findings provide compelling evidence that experimental or bioinformatic isolation of a specific subset of fragment lengths from cell-free DNA may improve detection of ctDNA. PMID:27428049

  12. Optical selection and collection of DNA fragments

    DOEpatents

    Roslaniec, Mary C.; Martin, John C.; Jett, James H.; Cram, L. Scott

    1998-01-01

    Optical selection and collection of DNA fragments. The present invention includes the optical selection and collection of large (>.mu.g) quantities of clonable, chromosome-specific DNA from a sample of chromosomes. Chromosome selection is based on selective, irreversible photoinactivation of unwanted chromosomal DNA. Although more general procedures may be envisioned, the invention is demonstrated by processing chromosomes in a conventional flow cytometry apparatus, but where no droplets are generated. All chromosomes in the sample are first stained with at least one fluorescent analytic dye and bonded to a photochemically active species which can render chromosomal DNA unclonable if activated. After passing through analyzing light beam(s), unwanted chromosomes are irradiated using light which is absorbed by the photochemically active species, thereby causing photoinactivation. As desired chromosomes pass this photoinactivation point, the inactivating light source is deflected by an optical modulator; hence, desired chromosomes are not photoinactivated and remain clonable. The selection and photoinactivation processes take place on a microsecond timescale. By eliminating droplet formation, chromosome selection rates 50 times greater than those possible with conventional chromosome sorters may be obtained. Thus, usable quantities of clonable DNA from any source thereof may be collected.

  13. DNA fragmentation by charged particle tracks

    NASA Astrophysics Data System (ADS)

    Stenerlöw, B.; Höglund, E.; Carlsson, J.

    High-LET (linear energy transfer) charged particles induce DNA double-strand breaks (DSB) in a non-random fashion in mammalian cells. The clustering of DSB, probably determined by track structure as well as chromatin conformation, results in an excess of small- and intermediate-sized DNA fragments. DNA fragmentation in normal human fibroblasts (GM5758) was analyzed by pulsed-field gel electrophoresis after irradiation with photons ( 60Co) or 125 keV/μm nitrogen ions. Compared to conventional DSB analysis, i.e. assays only measuring the fraction of DNA smaller than a single threshold, the relative biological effectiveness (RBE) for DSB induction increased with 100%. Further, the size distribution of DNA fragments showed a significant dependence on radiation quality, with an excess of fragments up to 1 Mbp. Irradiation of naked genomic DNA without histone proteins increased the DSB yields 25 and 13 times for photons and nitrogen ions, respectively. The results suggest possible roles of both track structure and chromatin organization in the distribution of DNA double-strand breaks along the chromosome.

  14. DNA fragment sizing and sorting by laser-induced fluorescence

    DOEpatents

    Hammond, Mark L.; Jett, James H.; Keller, Richard A.; Marrone, Babetta L.; Martin, John C.

    1996-01-01

    A method is provided for sizing DNA fragments using high speed detection systems, such as flow cytometry to determine unique characteristics of DNA pieces from a sample. In one characterization the DNA piece is fragmented at preselected sites to produce a plurality of DNA fragments. The DNA piece or the resulting DNA fragments are treated with a dye effective to stain stoichiometrically the DNA piece or the DNA fragments. The fluorescence from the dye in the stained fragments is then examined to generate an output functionally related to the number of nucleotides in each one of the DNA fragments. In one embodiment, the intensity of the fluorescence emissions from each fragment is linearly related to the fragment length. The distribution of DNA fragment sizes forms a characterization of the DNA piece for use in forensic and research applications.

  15. Bis(acridine-9-carboxylate)-nitro-europium(III) dihydrate complex a new apoptotic agent through Flk-1 down regulation, caspase-3 activation and oligonucleosomes DNA fragmentation.

    PubMed

    Azab, Hassan A; Hussein, Belal H M; El-Azab, Mona F; Gomaa, Mohamed; El-Falouji, Abdullah I

    2013-01-01

    New bis(acridine-9-carboxylate)-nitro-europium(III) dihydrate complex was synthesized and characterized. In vivo anti-angiogenic activities of bis(acridine-9-carboxylate)-nitro-europium(III) dihydrate complex against Ehrlich ascites carcinoma (EAC) cells are described. The newly synthesized complex resulted in inhibition of proliferation of EAC cells and ascites formation. The anti-tumor effect was found to be through anti-angiogenic activity as evident by the reduction of microvessel density in EAC solid tumors. The anti-angiogenic effect is mediated through down-regulation of VEGF receptor type-2 (Flk-1). The complex was also found to significantly increase the level of caspase-3 in laboratory animals compared to the acridine ligand and to the control group. This was also consistent with the DNA fragmentation detected by capillary electrophoresis that proved the apoptotic effect of the new complex. Our complex exhibited anti-angiogenic and apoptotic activity in vivo, a thing that makes it a potential effective chemotherapeutic agent. The interaction of calf thymus DNA (ct-DNA) with bis(acridine-9-carboxylate)-nitro-europium(III) dihydrate complex has been investigated using fluorescence technique. A competitive experiment of the europium(III)-acridine complex with ethidium bromide (EB) to bind DNA revealed that interaction between the europium(III)-acridine and DNA was via intercalation. The interaction of the synthesized complex with tyrosine kinases was also studied using molecular docking simulation to further substantiate its mode of action.

  16. Optimized sequence retrieval from single bands of temperature gradient gel electrophoresis profiles of the amplified 16S rDNA fragments from an activated sludge system.

    PubMed

    Zhang, Xueli; Yan, Xing; Gao, Pingping; Wang, Linghua; Zhou, Zhihua; Zhao, Liping

    2005-01-01

    Sequence retrieval from single bands of polymerase chain reaction (PCR)-denaturing gel electrophoresis (DGE) profiles is an important but often difficult step for molecular diversity analysis of complex microbial communities such as activated sludge systems. We analyzed the temperature gradient gel electrophoresis (TGGE) profiles of PCR-amplified 16S rDNA fragments from an activated sludge sample of a coking wastewater treatment plant. Single bands were excised, and a clone library was constructed for each. Sequence heterogeneity in each single band was found to be significantly overestimated due to single-stranded DNA (ssDNA) contamination formed during the PCR amplification, since only 10-60% of library clones of each single TGGE band had identical migration behavior compared with the parent band. Three methods, digestion with mung bean nuclease, optimization of PCR amplification, and purification via denatured polyacrylamide gel electrophoresis (d-PAGE), were compared for their ability to minimize ssDNA contamination, with the last one being the most efficient. After using d-PAGE to minimize ssDNA to a nearly nondetectable level, 70-100% of library clones for each single TGGE band had identical migration compared with the parent band. Several sequences were found in each of six single bands, and this co-migration could be predicted with the Poland software. The predominant bacteria of the activated sludge were assessed via a combination of sequence retrieval from each single TGGE band and band intensity analysis. Only beta and alpha subclasses of the Proteobacteria were detected, 93.8% and 6.2%, respectively. Our work suggests that prior to constructing a clone library to retrieve the actual sequence diversity of a single DGE band, it is advisable to minimize ssDNA contamination to a nondetectable level.

  17. Enzymatic assembly of overlapping DNA fragments.

    PubMed

    Gibson, Daniel G

    2011-01-01

    Three methods for assembling multiple, overlapping DNA molecules are described. Each method shares the same basic approach: (i) an exonuclease removes nucleotides from the ends of double-stranded (ds) DNA molecules, exposing complementary single-stranded (ss) DNA overhangs that are specifically annealed; (ii) the ssDNA gaps of the joined molecules are filled in by DNA polymerase, and the nicks are covalently sealed by DNA ligase. The first method employs the 3'-exonuclease activity of T4 DNA polymerase (T4 pol), Taq DNA polymerase (Taq pol), and Taq DNA ligase (Taq lig) in a two-step thermocycled reaction. The second method uses 3'-exonuclease III (ExoIII), antibody-bound Taq pol, and Taq lig in a one-step thermocycled reaction. The third method employs 5'-T5 exonuclease, Phusion® DNA polymerase, and Taq lig in a one-step isothermal reaction and can be used to assemble both ssDNA and dsDNA. These assembly methods can be used to seamlessly construct synthetic and natural genes, genetic pathways, and entire genomes and could be very useful for molecular engineering tools. PMID:21601685

  18. Extensive DNA fragmentation in oxyphilic cell lesions of the thyroid.

    PubMed

    Volante, M; Papotti, M; Gugliotta, P; Migheli, A; Bussolati, G

    2001-08-01

    The in situ end-labeling (ISEL) method demonstrates DNA fragmentation, commonly regarded as a marker of apoptosis. We investigated by the ISEL procedure a series of 52 thyroid lesions, including 24 lesions of mitochondrion-rich oxyphilic cells, both benign and malignant, and 28 non-oxyphilic control tumors. A high percentage of nuclear ISEL staining (approximating to 100% in most cases) was observed in the vast majority of oxyphilic cells from both adenomas and carcinomas, in the absence of morphological apoptotic changes and with no immunocytochemical evidence of caspase activation. This pattern of DNA fragmentation was not observed in non-oxyphilic lesions and was confirmed in total extracted DNA. Moreover, a peculiar cytoplasmic staining was also observed in oxyphilic cells from both benign and malignant lesions, probably related to abnormal fragmentation of mitochondrial DNA. Similar staining patterns were detected in oxyphilic cell tumors of other organs (parathyroids, salivary glands, and kidneys). These findings are consistent with an extensive DNA fragmentation peculiar to oxyphilic cells, which is not directly related to apoptosis and whose origin and biological significance are presently unknown.

  19. DNA fragment sizing and sorting by laser-induced fluorescence

    SciTech Connect

    Jett, J.H.; Hammond, M.L.; Keller, R.A.; Marrone, B.L.; Martin, J.C.

    1992-12-31

    A method is provided for obtaining DNA fingerprints using high speed detection systems, such as flow cytometry to determine unique characteristics of DNA pieces from a selected sample. In one characterization the DNA piece is fragmented at preselected sites to produce a plurality of DNA fragments. The DNA piece or the resulting DNA fragments are treated with a dye effective to stain stoichiometrically the DNA fragments. The fluorescence from the dye in the stained fragments is then examined to generate an output functionally related to the number of nucleotides in each one of the DNA fragments. In one embodiment, the intensity of the fluorescence emissions from each fragment is directly proportional to the fragment length. Additional dyes can be bound to the DNA piece and DNA fragments to provide information additional to length information. Oligonucleotide specific dyes and/or hybridization probes can be bound to the DNA fragments to provide information on oligonucleotide distribution or probe hybridization to DNA fragments of different sizes.

  20. Distinct Roles of the Active-site Mg2+ Ligands, Asp882 and Asp705, of DNA Polymerase I (Klenow Fragment) during the Prechemistry Conformational Transitions*

    PubMed Central

    Bermek, Oya; Grindley, Nigel D. F.; Joyce, Catherine M.

    2011-01-01

    DNA polymerases catalyze the incorporation of deoxynucleoside triphosphates into a growing DNA chain using a pair of Mg2+ ions, coordinated at the active site by two invariant aspartates, whose removal by mutation typically reduces the polymerase activity to barely detectable levels. Using two stopped-flow fluorescence assays that we developed previously, we have investigated the role of the carboxylate ligands, Asp705 and Asp882, of DNA polymerase I (Klenow fragment) in the early prechemistry steps that prepare the active site for catalysis. We find that neither carboxylate is required for an early conformational transition, reported by a 2-aminopurine probe, that takes place in the open ternary complex after binding of the complementary dNTP. However, the subsequent fingers-closing step requires Asp882; this step converts the open ternary complex into the closed conformation, creating the active-site geometry required for catalysis. Crystal structures indicate that the Asp882 position changes very little during fingers-closing; this side chain may therefore serve as an anchor point to receive the dNTP-associated metal ion as the nucleotide is delivered into the active site. The Asp705 carboxylate is not required until after the fingers-closing step, and we suggest that its role is to facilitate the entry of the second Mg2+ into the active site. The two early prechemistry steps that we have studied take place normally at very low Mg2+ concentrations, although higher concentrations are needed for covalent nucleotide addition, consistent with the second metal ion entering the ternary complex after fingers-closing. PMID:21084297

  1. Alternative Okazaki Fragment Ligation Pathway by DNA Ligase III.

    PubMed

    Arakawa, Hiroshi; Iliakis, George

    2015-01-01

    Higher eukaryotes have three types of DNA ligases: DNA ligase 1 (Lig1), DNA ligase 3 (Lig3) and DNA ligase 4 (Lig4). While Lig1 and Lig4 are present in all eukaryotes from yeast to human, Lig3 appears sporadically in evolution and is uniformly present only in vertebrates. In the classical, textbook view, Lig1 catalyzes Okazaki-fragment ligation at the DNA replication fork and the ligation steps of long-patch base-excision repair (BER), homologous recombination repair (HRR) and nucleotide excision repair (NER). Lig4 is responsible for DNA ligation at DNA double strand breaks (DSBs) by the classical, DNA-PKcs-dependent pathway of non-homologous end joining (C-NHEJ). Lig3 is implicated in a short-patch base excision repair (BER) pathway, in single strand break repair in the nucleus, and in all ligation requirements of the DNA metabolism in mitochondria. In this scenario, Lig1 and Lig4 feature as the major DNA ligases serving the most essential ligation needs of the cell, while Lig3 serves in the cell nucleus only minor repair roles. Notably, recent systematic studies in the chicken B cell line, DT40, involving constitutive and conditional knockouts of all three DNA ligases individually, as well as of combinations thereof, demonstrate that the current view must be revised. Results demonstrate that Lig1 deficient cells proliferate efficiently. Even Lig1/Lig4 double knockout cells show long-term viability and proliferate actively, demonstrating that, at least in DT40, Lig3 can perform all ligation reactions of the cellular DNA metabolism as sole DNA ligase. Indeed, in the absence of Lig1, Lig3 can efficiently support semi-conservative DNA replication via an alternative Okazaki-fragment ligation pathway. In addition, Lig3 can back up NHEJ in the absence of Lig4, and can support NER and HRR in the absence of Lig1. Supporting observations are available in less elaborate genetic models in mouse cells. Collectively, these observations raise Lig3 from a niche-ligase to a

  2. Sizing of single fluorescently stained DNA fragments by scanning microscopy

    PubMed Central

    Laib, Stephan; Rankl, Michael; Ruckstuhl, Thomas; Seeger, Stefan

    2003-01-01

    We describe an approach to determine DNA fragment sizes based on the fluorescence detection of single adsorbed fragments on specifically coated glass cover slips. The brightness of single fragments stained with the DNA bisintercalation dye TOTO-1 is determined by scanning the surface with a confocal microscope. The brightness of adsorbed fragments is found to be proportional to the fragment length. The method needs only minute amount of DNA, beyond inexpensive and easily available surface coatings, like poly-l-lysine, 3-aminoproyltriethoxysilane and polyornithine, are utilizable. We performed DNA-sizing of fragment lengths between 2 and 14 kb. Further, we resolved the size distribution before and after an enzymatic restriction digest. At this a separation of buffers or enzymes was unnecessary. DNA sizes were determined within an uncertainty of 7–14%. The proposed method is straightforward and can be applied to standardized microtiter plates. PMID:14602931

  3. Detection of single lambda DNA fragments by flow cytometry

    SciTech Connect

    Johnson, M.E.; Goodwin, P.M.; Ambrose, W.P.; Martin, J.C.; Marrone, B.L.; Keller, R.A. )

    1993-01-01

    The authors have demonstrated flow cytometric detection and sizing of single pieces of fluorescently stained lambda DNA (48.5 kb) and individual Kpn I restriction fragments of lambda DNA at 17.05 kb and 29.95 kb. DNA fragments were stained stoichiometrically with an intercalating dye such that the fluorescence from each fragment was directly proportional to fragment length. Laser powers range from 10 to 100 mW and transit times through the focused laser beam were several milliseconds. Measurements were made using time-resolved single photon counting of the detected fluorescence emission from individual stained DNA fragments. Samples were analyzed at rates of about 50 fragments per second. The measured fluorescence intensities are linearly correlated with DNA fragment length over the range measured. Detection sensitivity and resolution needed for analysis of small pieces of DNA are discussed and a comparison of single photon counting measurements of DNA fragments to measurements using more conventional flow cytometers is made. Applications of this methodology to DNA sizing and DNA fingerprinting are discussed.

  4. DNA fragmentation induced by ionizing radiation - Atomic Force Microscopy study .

    NASA Astrophysics Data System (ADS)

    Gudowska-Nowak, E.; Psonka, K.; Elsaesser, Th.; Brons, S.; Taucher-Scholz, G.

    DNA as a carrier of genetic information is considered to be the critical target for radiation induced damage Especially severe are DNA double-strand breaks DSBs formed when breaks occur in both strands of the molecule The DSBs production is determined by the spatial distribution of ionization events dependent on the physical properties of the energy deposition and the chemical environment of the DNA According to theoretical predictions high LET charged particle radiation induces lesions in close proximity forming so called clustered damage in the DNA Atomic Force Microscopy AFM was newly established as a technique allowing the direct visualization of DNA fragments resulting from DSBs induced in small DNA molecules plasmids by ionizing radiation We have used AFM to visualize the DNA fragmentation induced by heavy ions high LET radiation and to compare it to the fragmentation pattern obtained after X-rays low LET radiation Plasmid supercoiled DNA was irradiated in vitro with X-rays and 3 9 MeV u Ni ions within a dose range 0 -- 3000 Gy Afterwards the samples were analyzed using AFM which allowed the detection and length measurement of individual fragments with a nanometer resolution Recording of the length of the induced fragments allowed to distinguish between molecules broken by a single DSB or by multiple DSBs The fragment length distributions were derived for different doses and different radiation qualities The first results of the measurement of radiation-induced DNA fragmentation show an influence of radiation quality on

  5. Short-fragment DNA-mediated in vivo DNA electroporation delivery.

    PubMed

    Peng, Jinliang; Zhao, Yonggang; Xu, Yuhong

    2014-01-01

    Electroporation is an effective physical delivery method. A variety of factors have been shown to affect the electroporation-mediated gene delivery efficiency. Here we report the usefulness of noncoding short-fragment DNA (sf-DNA) for facilitating electroporation-mediated gene transfer. The plasmid pGL3-control encoding firefly luciferase was injected into tissue together with or without sf-DNA in different length or dose. Immediately after injection, the tissues were electroporated and the level of luciferase activity was assessed 24 h later. The results showed that plasmid DNA formulated with sf-DNA resulted in significant improvement in electroporation-mediated gene transfer efficiency. The effect is dose and length dependent, and also found in low-voltage electroporation. These results indicated that sf-DNA can be used as a helper molecule to improve the electroporation-mediated gene transfection efficiency.

  6. Non-random DNA fragmentation in next-generation sequencing

    NASA Astrophysics Data System (ADS)

    Poptsova, Maria S.; Il'Icheva, Irina A.; Nechipurenko, Dmitry Yu.; Panchenko, Larisa A.; Khodikov, Mingian V.; Oparina, Nina Y.; Polozov, Robert V.; Nechipurenko, Yury D.; Grokhovsky, Sergei L.

    2014-03-01

    Next Generation Sequencing (NGS) technology is based on cutting DNA into small fragments, and their massive parallel sequencing. The multiple overlapping segments termed ``reads'' are assembled into a contiguous sequence. To reduce sequencing errors, every genome region should be sequenced several dozen times. This sequencing approach is based on the assumption that genomic DNA breaks are random and sequence-independent. However, previously we showed that for the sonicated restriction DNA fragments the rates of double-stranded breaks depend on the nucleotide sequence. In this work we analyzed genomic reads from NGS data and discovered that fragmentation methods based on the action of the hydrodynamic forces on DNA, produce similar bias. Consideration of this non-random DNA fragmentation may allow one to unravel what factors and to what extent influence the non-uniform coverage of various genomic regions.

  7. Non-random DNA fragmentation in next-generation sequencing

    PubMed Central

    Poptsova, Maria S.; Il'icheva, Irina A.; Nechipurenko, Dmitry Yu.; Panchenko, Larisa A.; Khodikov, Mingian V.; Oparina, Nina Y.; Polozov, Robert V.; Nechipurenko, Yury D.; Grokhovsky, Sergei L.

    2014-01-01

    Next Generation Sequencing (NGS) technology is based on cutting DNA into small fragments, and their massive parallel sequencing. The multiple overlapping segments termed “reads” are assembled into a contiguous sequence. To reduce sequencing errors, every genome region should be sequenced several dozen times. This sequencing approach is based on the assumption that genomic DNA breaks are random and sequence-independent. However, previously we showed that for the sonicated restriction DNA fragments the rates of double-stranded breaks depend on the nucleotide sequence. In this work we analyzed genomic reads from NGS data and discovered that fragmentation methods based on the action of the hydrodynamic forces on DNA, produce similar bias. Consideration of this non-random DNA fragmentation may allow one to unravel what factors and to what extent influence the non-uniform coverage of various genomic regions. PMID:24681819

  8. Relative stability of transgene DNA fragments from GM rapeseed in mixed ruminal cultures.

    PubMed

    Sharma, Ranjana; Alexander, Trevor W; John, S Jacob; Forster, Robert J; McAllister, Tim A

    2004-05-01

    The use of transgenic crops as feeds for ruminant animals has prompted study of the possible uptake of transgene fragments by ruminal micro-organisms and/or intestinal absorption of fragments surviving passage through the rumen. The persistence in buffered ruminal contents of seven different recombinant DNA fragments from GM rapeseed expressing the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) transgene was tracked using PCR. Parental and transgenic (i.e. glyphosphate-tolerant; Roundup Ready, Monsanto Company, St Louis, MO, USA) rapeseed were incubated for 0, 2, 4, 8, 12, 24 and 48 h as whole seeds, cracked seeds, rapeseed meal, and as pelleted, barley-based diets containing 65 g rapeseed meal/kg. The seven transgene fragments ranged from 179 to 527 bp and spanned the entire 1363 bp EPSPS transgene. A 180 bp ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit fragment and a 466 bp 16S rDNA fragment were used as controls for endogenous rapeseed DNA and bacterial DNA respectively. The limit of detection of the PCR assay, established using negative controls spiked with known quantities of DNA, was 12.5 pg. Production of gas and NH3 was monitored throughout the incubation and confirmed active in vitro fermentation. Bacterial DNA was detected in all sample types at all time points. Persistence patterns of endogenous (Rubisco) and recombinant (EPSPS) rapeseed DNA were inversely related to substrate digestibility (amplifiable for 48, 8 and 4 h in whole or cracked seeds, meal and diets respectively), but did not differ between parental and GM rapeseed, nor among fragments. Detection of fragments was representative of persistence of the whole transgene. No EPSPS fragments were amplifiable in microbial DNA, suggesting that transformation had not occurred during the 48 h incubation. Uptake of transgenic DNA fragments by ruminal bacteria is probably precluded or time-limited by rapid degradation of plant DNA upon plant cell lysis.

  9. DNA fragmentation and sperm head morphometry in cat epididymal spermatozoa.

    PubMed

    Vernocchi, Valentina; Morselli, Maria Giorgia; Lange Consiglio, Anna; Faustini, Massimo; Luvoni, Gaia Cecilia

    2014-10-15

    Sperm DNA fragmentation is an important parameter to assess sperm quality and can be a putative fertility predictor. Because the sperm head consists almost entirely of DNA, subtle differences in sperm head morphometry might be related to DNA status. Several techniques are available to analyze sperm DNA fragmentation, but they are labor-intensive and require expensive instrumentations. Recently, a kit (Sperm-Halomax) based on the sperm chromatin dispersion test and developed for spermatozoa of different species, but not for cat spermatozoa, became commercially available. The first aim of the present study was to verify the suitability of Sperm-Halomax assay, specifically developed for canine semen, for the evaluation of DNA fragmentation of epididymal cat spermatozoa. For this purpose, DNA fragmentation indexes (DFIs) obtained with Sperm-Halomax and terminal deoxynucleotidyl transferase-mediated nick-end labeling (TUNEL) were compared. The second aim was to investigate whether a correlation between DNA status, sperm head morphology, and morphometry assessed by computer-assisted semen analysis exists in cat epididymal spermatozoa. No differences were observed in DFIs obtained with Sperm-Halomax and TUNEL. This result indicates that Sperm-Halomax assay provides a reliable evaluation of DNA fragmentation of epididymal feline spermatozoa. The DFI seems to be independent from all the measured variables of sperm head morphology and morphometry. Thus, the evaluation of the DNA status of spermatozoa could effectively contribute to the completion of the standard analysis of fresh or frozen semen used in assisted reproductive technologies.

  10. Bacterial natural transformation by highly fragmented and damaged DNA.

    PubMed

    Overballe-Petersen, Søren; Harms, Klaus; Orlando, Ludovic A A; Mayar, J Victor Moreno; Rasmussen, Simon; Dahl, Tais W; Rosing, Minik T; Poole, Anthony M; Sicheritz-Ponten, Thomas; Brunak, Søren; Inselmann, Sabrina; de Vries, Johann; Wackernagel, Wilfried; Pybus, Oliver G; Nielsen, Rasmus; Johnsen, Pål Jarle; Nielsen, Kaare Magne; Willerslev, Eske

    2013-12-01

    DNA molecules are continuously released through decomposition of organic matter and are ubiquitous in most environments. Such DNA becomes fragmented and damaged (often <100 bp) and may persist in the environment for more than half a million years. Fragmented DNA is recognized as nutrient source for microbes, but not as potential substrate for bacterial evolution. Here, we show that fragmented DNA molecules (≥ 20 bp) that additionally may contain abasic sites, cross-links, or miscoding lesions are acquired by the environmental bacterium Acinetobacter baylyi through natural transformation. With uptake of DNA from a 43,000-y-old woolly mammoth bone, we further demonstrate that such natural transformation events include ancient DNA molecules. We find that the DNA recombination is RecA recombinase independent and is directly linked to DNA replication. We show that the adjacent nucleotide variations generated by uptake of short DNA fragments escape mismatch repair. Moreover, double-nucleotide polymorphisms appear more common among genomes of transformable than nontransformable bacteria. Our findings reveal that short and damaged, including truly ancient, DNA molecules, which are present in large quantities in the environment, can be acquired by bacteria through natural transformation. Our findings open for the possibility that natural genetic exchange can occur with DNA up to several hundreds of thousands years old.

  11. Bacterial natural transformation by highly fragmented and damaged DNA.

    PubMed

    Overballe-Petersen, Søren; Harms, Klaus; Orlando, Ludovic A A; Mayar, J Victor Moreno; Rasmussen, Simon; Dahl, Tais W; Rosing, Minik T; Poole, Anthony M; Sicheritz-Ponten, Thomas; Brunak, Søren; Inselmann, Sabrina; de Vries, Johann; Wackernagel, Wilfried; Pybus, Oliver G; Nielsen, Rasmus; Johnsen, Pål Jarle; Nielsen, Kaare Magne; Willerslev, Eske

    2013-12-01

    DNA molecules are continuously released through decomposition of organic matter and are ubiquitous in most environments. Such DNA becomes fragmented and damaged (often <100 bp) and may persist in the environment for more than half a million years. Fragmented DNA is recognized as nutrient source for microbes, but not as potential substrate for bacterial evolution. Here, we show that fragmented DNA molecules (≥ 20 bp) that additionally may contain abasic sites, cross-links, or miscoding lesions are acquired by the environmental bacterium Acinetobacter baylyi through natural transformation. With uptake of DNA from a 43,000-y-old woolly mammoth bone, we further demonstrate that such natural transformation events include ancient DNA molecules. We find that the DNA recombination is RecA recombinase independent and is directly linked to DNA replication. We show that the adjacent nucleotide variations generated by uptake of short DNA fragments escape mismatch repair. Moreover, double-nucleotide polymorphisms appear more common among genomes of transformable than nontransformable bacteria. Our findings reveal that short and damaged, including truly ancient, DNA molecules, which are present in large quantities in the environment, can be acquired by bacteria through natural transformation. Our findings open for the possibility that natural genetic exchange can occur with DNA up to several hundreds of thousands years old. PMID:24248361

  12. Bacterial natural transformation by highly fragmented and damaged DNA

    PubMed Central

    Overballe-Petersen, Søren; Harms, Klaus; Orlando, Ludovic A. A.; Mayar, J. Victor Moreno; Rasmussen, Simon; Dahl, Tais W.; Rosing, Minik T.; Poole, Anthony M.; Sicheritz-Ponten, Thomas; Brunak, Søren; Inselmann, Sabrina; de Vries, Johann; Wackernagel, Wilfried; Pybus, Oliver G.; Nielsen, Rasmus; Johnsen, Pål Jarle; Nielsen, Kaare Magne; Willerslev, Eske

    2013-01-01

    DNA molecules are continuously released through decomposition of organic matter and are ubiquitous in most environments. Such DNA becomes fragmented and damaged (often <100 bp) and may persist in the environment for more than half a million years. Fragmented DNA is recognized as nutrient source for microbes, but not as potential substrate for bacterial evolution. Here, we show that fragmented DNA molecules (≥20 bp) that additionally may contain abasic sites, cross-links, or miscoding lesions are acquired by the environmental bacterium Acinetobacter baylyi through natural transformation. With uptake of DNA from a 43,000-y-old woolly mammoth bone, we further demonstrate that such natural transformation events include ancient DNA molecules. We find that the DNA recombination is RecA recombinase independent and is directly linked to DNA replication. We show that the adjacent nucleotide variations generated by uptake of short DNA fragments escape mismatch repair. Moreover, double-nucleotide polymorphisms appear more common among genomes of transformable than nontransformable bacteria. Our findings reveal that short and damaged, including truly ancient, DNA molecules, which are present in large quantities in the environment, can be acquired by bacteria through natural transformation. Our findings open for the possibility that natural genetic exchange can occur with DNA up to several hundreds of thousands years old. PMID:24248361

  13. The antigenotoxic activities of cactus (Opuntia ficus-indica) cladodes against the mycotoxin zearalenone in Balb/c mice: prevention of micronuclei, chromosome aberrations and DNA fragmentation.

    PubMed

    Zorgui, Lazhar; Ayed-Boussema, Imen; Ayed, Yosra; Bacha, Hassen; Hassen, Wafa

    2009-03-01

    Zearalenone (ZEN) is a potent estrogenic metabolite. Evidence of its cytotoxicity and genotoxicity has recently emerged from several reports. This study was conducted to evaluate the ability of cactus (Opuntia ficus-indica) cladodes to protect Balb/c mice against ZEN induced genotoxicity. To this end, the effect of a single dose of ZEN (40 mg/kg b.w.) alone and with extract of cactus cladodes (25, 50 and 100 mg/kg b.w.) was monitored by measuring: (i) micronuclei induction in bone marrow cells, (ii) chromosome aberrations mainly breaks and gaps in bone marrow cells also and finally and (iii) DNA fragmentation in liver and kidney. Our results clearly show that ZEN is genotoxic to Balb/c mice. It induces DNA damage as indicated by DNA fragmentation, micronuclei and chromosomal aberrations in bone marrow cells. It is of note that cactus cladodes extract assayed alone at high dose (100 mg/kg b.w.) was found completely safe and did not induce any genotoxic effects. The simultaneous administration of cactus cladodes extract with ZEN resulted in an efficient prevention of micronuclei (the number of PCE MN decreased from 71.3+/-6.1 for animals treated with Zen to 32.6+/-15.5 for animals treated with cactus cladodes), chromosomal aberrations frequency (the % of chromosomal aberrations decreased from 38.3+/-3.0 to 18.6+/-1.1) in bone marrow cells and of DNA fragmentation compared to the group treated with ZEN alone. It could be concluded that cactus cladodes extract was effective in the protection against ZEN genotoxicity. This could be relevant, particularly with the emergent demand for natural products which may neutralize the genotoxic effects of the multiple food contaminants.

  14. The antigenotoxic activities of cactus (Opuntia ficus-indica) cladodes against the mycotoxin zearalenone in Balb/c mice: prevention of micronuclei, chromosome aberrations and DNA fragmentation.

    PubMed

    Zorgui, Lazhar; Ayed-Boussema, Imen; Ayed, Yosra; Bacha, Hassen; Hassen, Wafa

    2009-03-01

    Zearalenone (ZEN) is a potent estrogenic metabolite. Evidence of its cytotoxicity and genotoxicity has recently emerged from several reports. This study was conducted to evaluate the ability of cactus (Opuntia ficus-indica) cladodes to protect Balb/c mice against ZEN induced genotoxicity. To this end, the effect of a single dose of ZEN (40 mg/kg b.w.) alone and with extract of cactus cladodes (25, 50 and 100 mg/kg b.w.) was monitored by measuring: (i) micronuclei induction in bone marrow cells, (ii) chromosome aberrations mainly breaks and gaps in bone marrow cells also and finally and (iii) DNA fragmentation in liver and kidney. Our results clearly show that ZEN is genotoxic to Balb/c mice. It induces DNA damage as indicated by DNA fragmentation, micronuclei and chromosomal aberrations in bone marrow cells. It is of note that cactus cladodes extract assayed alone at high dose (100 mg/kg b.w.) was found completely safe and did not induce any genotoxic effects. The simultaneous administration of cactus cladodes extract with ZEN resulted in an efficient prevention of micronuclei (the number of PCE MN decreased from 71.3+/-6.1 for animals treated with Zen to 32.6+/-15.5 for animals treated with cactus cladodes), chromosomal aberrations frequency (the % of chromosomal aberrations decreased from 38.3+/-3.0 to 18.6+/-1.1) in bone marrow cells and of DNA fragmentation compared to the group treated with ZEN alone. It could be concluded that cactus cladodes extract was effective in the protection against ZEN genotoxicity. This could be relevant, particularly with the emergent demand for natural products which may neutralize the genotoxic effects of the multiple food contaminants. PMID:19152824

  15. DNA studies using atomic force microscopy: capabilities for measurement of short DNA fragments.

    PubMed

    Pang, Dalong; Thierry, Alain R; Dritschilo, Anatoly

    2015-01-01

    Short DNA fragments, resulting from ionizing radiation induced DNA double strand breaks (DSBs), or released from cells as a result of physiological processes and circulating in the blood stream, may play important roles in cellular function and potentially in disease diagnosis and early intervention. The size distribution of DNA fragments contribute to knowledge of underlining biological processes. Traditional techniques used in radiation biology for DNA fragment size measurements lack the resolution to quantify short DNA fragments. For the measurement of cell-free circulating DNA (ccfDNA), real time quantitative Polymerase Chain Reaction (q-PCR) provides quantification of DNA fragment sizes, concentration and specific gene mutation. A complementary approach, the imaging-based technique using Atomic Force Microscopy (AFM) provides direct visualization and measurement of individual DNA fragments. In this review, we summarize and discuss the application of AFM-based measurements of DNA fragment sizes. Imaging of broken plasmid DNA, as a result of exposure to ionizing radiation, as well as ccfDNA in clinical specimens offer an innovative approach for studies of short DNA fragments and their biological functions. PMID:25988169

  16. DNA studies using atomic force microscopy: capabilities for measurement of short DNA fragments

    PubMed Central

    Pang, Dalong; Thierry, Alain R.; Dritschilo, Anatoly

    2015-01-01

    Short DNA fragments, resulting from ionizing radiation induced DNA double strand breaks (DSBs), or released from cells as a result of physiological processes and circulating in the blood stream, may play important roles in cellular function and potentially in disease diagnosis and early intervention. The size distribution of DNA fragments contribute to knowledge of underlining biological processes. Traditional techniques used in radiation biology for DNA fragment size measurements lack the resolution to quantify short DNA fragments. For the measurement of cell-free circulating DNA (ccfDNA), real time quantitative Polymerase Chain Reaction (q-PCR) provides quantification of DNA fragment sizes, concentration and specific gene mutation. A complementary approach, the imaging-based technique using Atomic Force Microscopy (AFM) provides direct visualization and measurement of individual DNA fragments. In this review, we summarize and discuss the application of AFM-based measurements of DNA fragment sizes. Imaging of broken plasmid DNA, as a result of exposure to ionizing radiation, as well as ccfDNA in clinical specimens offer an innovative approach for studies of short DNA fragments and their biological functions. PMID:25988169

  17. Cryopreservation increases DNA fragmentation in spermatozoa of smokers.

    PubMed

    Aydin, Mehmet Serif; Senturk, Gozde Erkanli; Ercan, Feriha

    2013-05-01

    Smoking causes subfertility due to deterioration of spermatozoa including decreased concentration and abnormal morphology. Although evidence on the deleterious effects of smoking on spermatozoa parameters is well known, its interference with cryopreservation is not clear. This study aimed to investigate the effects of cryopreservation on sperm parameters and DNA fragmentation in non-smokers and smokers. Semen samples were obtained from 40 normospermic male volunteers of whom 20 were non-smokers and 20 smokers. Samples were analyzed in terms of motility, concentration, morphology, and DNA fragmentation before freezing and 1 and 3 months after freezing and thawing. Ultrastructural alterations were investigated by transmission electron microscopy. Sperm morphology seemed to be more affected after cryopreservation in samples obtained from smokers. Ultrastructural examination showed alterations in the integrity of the membranes and increased subacrosomal swelling. Before freezing, the increase in DNA fragmentation rate in smokers was not statistically significant compared to that of non-smokers. However, after thawing, the DNA fragmentation rates were significantly high in both non-smokers and smokers compared to their respective rates before freezing. The extent of the increase in DNA fragmentation rate was significantly higher in smokers after thawing compared to that of non-smokers. In conclusion, cryopreservation causes alterations in membrane integrity and increases DNA fragmentation, thus triggering relatively negative effects on the sperm samples of smokers compared to that of non-smokers.

  18. Electronic transport in methylated fragments of DNA

    SciTech Connect

    Almeida, M. L. de; Oliveira, J. I. N.; Lima Neto, J. X.; Gomes, C. E. M.; Fulco, U. L. Albuquerque, E. L.; Freire, V. N.; Caetano, E. W. S.; Moura, F. A. B. F. de; Lyra, M. L.

    2015-11-16

    We investigate the electronic transport properties of methylated deoxyribonucleic-acid (DNA) strands, a biological system in which methyl groups are added to DNA (a major epigenetic modification in gene expression), sandwiched between two metallic platinum electrodes. Our theoretical simulations apply an effective Hamiltonian based on a tight-binding model to obtain current-voltage curves related to the non-methylated/methylated DNA strands. The results suggest potential applications in the development of novel biosensors for molecular diagnostics.

  19. Electronic transport in methylated fragments of DNA

    NASA Astrophysics Data System (ADS)

    de Almeida, M. L.; Oliveira, J. I. N.; Lima Neto, J. X.; Gomes, C. E. M.; Fulco, U. L.; Albuquerque, E. L.; Freire, V. N.; Caetano, E. W. S.; de Moura, F. A. B. F.; Lyra, M. L.

    2015-11-01

    We investigate the electronic transport properties of methylated deoxyribonucleic-acid (DNA) strands, a biological system in which methyl groups are added to DNA (a major epigenetic modification in gene expression), sandwiched between two metallic platinum electrodes. Our theoretical simulations apply an effective Hamiltonian based on a tight-binding model to obtain current-voltage curves related to the non-methylated/methylated DNA strands. The results suggest potential applications in the development of novel biosensors for molecular diagnostics.

  20. Fragment-based discovery of 6-azaindazoles as inhibitors of bacterial DNA ligase.

    PubMed

    Howard, Steven; Amin, Nader; Benowitz, Andrew B; Chiarparin, Elisabetta; Cui, Haifeng; Deng, Xiaodong; Heightman, Tom D; Holmes, David J; Hopkins, Anna; Huang, Jianzhong; Jin, Qi; Kreatsoulas, Constantine; Martin, Agnes C L; Massey, Frances; McCloskey, Lynn; Mortenson, Paul N; Pathuri, Puja; Tisi, Dominic; Williams, Pamela A

    2013-12-12

    Herein we describe the application of fragment-based drug design to bacterial DNA ligase. X-ray crystallography was used to guide structure-based optimization of a fragment-screening hit to give novel, nanomolar, AMP-competitive inhibitors. The lead compound 13 showed antibacterial activity across a range of pathogens. Data to demonstrate mode of action was provided using a strain of S. aureus, engineered to overexpress DNA ligase. PMID:24900632

  1. Fragment-Based Discovery of 6-Azaindazoles As Inhibitors of Bacterial DNA Ligase

    PubMed Central

    2013-01-01

    Herein we describe the application of fragment-based drug design to bacterial DNA ligase. X-ray crystallography was used to guide structure-based optimization of a fragment-screening hit to give novel, nanomolar, AMP-competitive inhibitors. The lead compound 13 showed antibacterial activity across a range of pathogens. Data to demonstrate mode of action was provided using a strain of S. aureus, engineered to overexpress DNA ligase. PMID:24900632

  2. Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae.

    PubMed Central

    Schiestl, R H; Petes, T D

    1991-01-01

    DNA fragments (generated by BamHI treatment) with no homology to the yeast genome were transformed into Saccharomyces cerevisiae. When the fragments were transformed in the presence of the BamHI enzyme, they integrated into genomic BamHI sites. When the fragments were transformed in the absence of the enzyme, they integrated into genomic G-A-T-C sites. Since the G-A-T-C sequence is present at the ends of BamHI fragments, this results indicates that four base pairs of homology are sufficient for some types of mitotic recombination. Images PMID:1881899

  3. Advanced microinstrumentation for rapid DNA sequencing and large DNA fragment separation

    SciTech Connect

    Balch, J.; Davidson, J.; Brewer, L.; Gingrich, J.; Koo, J.; Mariella, R.; Carrano, A.

    1995-01-25

    Our efforts to develop novel technology for a rapid DNA sequencer and large fragment analysis system based upon gel electrophoresis are described. We are using microfabrication technology to build dense arrays of high speed micro electrophoresis lanes that will ultimately increase the sequencing rate of DNA by at least 100 times the rate of current sequencers. We have demonstrated high resolution DNA fragment separation needed for sequencing in polyacrylamide microgels formed in glass microchannels. We have built prototype arrays of microchannels having up to 48 channels. Significant progress has also been made in developing a sensitive fluorescence detection system based upon a confocal microscope design that will enable the diagnostics and detection of DNA fragments in ultrathin microchannel gels. Development of a rapid DNA sequencer and fragment analysis system will have a major impact on future DNA instrumentation used in clinical, molecular and forensic analysis of DNA fragments.

  4. Sperm DNA fragmentation and base oxidation.

    PubMed

    Lewis, Sheena E M

    2014-01-01

    Sperm DNA damage has been shown to be a valuable diagnostic and prognostic biomarker for male infertility and assisted reproductive treatment (ART) outcome. It is linked to every fertility checkpoint from reduced fertilization rates, lower embryo quality and pregnancy rates to higher rates of spontaneous miscarriage and childhood diseases. It is more robust than conventional semen parameters.The aim of this chapter is to provide an overview of current laboratory tests and relationships between sperm DNA damage and clinical outcomes. The conclusion is that sperm DNA damage is an important indicator of semen quality, and its routine use in the fertility clinic would improve ART success rates. PMID:23955675

  5. Selective binding of anti-DNA antibodies to native dsDNA fragments of differing sequence.

    PubMed

    Uccellini, Melissa B; Busto, Patricia; Debatis, Michelle; Marshak-Rothstein, Ann; Viglianti, Gregory A

    2012-03-30

    Systemic autoimmune diseases are characterized by the development of autoantibodies directed against a limited subset of nuclear antigens, including DNA. DNA-specific B cells take up mammalian DNA through their B cell receptor, and this DNA is subsequently transported to an endosomal compartment where it can potentially engage TLR9. We have previously shown that ssDNA-specific B cells preferentially bind to particular DNA sequences, and antibody specificity for short synthetic oligodeoxynucleotides (ODNs). Since CpG-rich DNA, the ligand for TLR9 is found in low abundance in mammalian DNA, we sought to determine whether antibodies derived from DNA-reactive B cells showed binding preference for CpG-rich native dsDNA, and thereby select immunostimulatory DNA for delivery to TLR9. We examined a panel of anti-DNA antibodies for binding to CpG-rich and CpG-poor DNA fragments. We show that a number of anti-DNA antibodies do show preference for binding to certain native dsDNA fragments of differing sequence, but this does not correlate directly with the presence of CpG dinucleotides. An antibody with preference for binding to a fragment containing optimal CpG motifs was able to promote B cell proliferation to this fragment at 10-fold lower antibody concentrations than an antibody that did not selectively bind to this fragment, indicating that antibody binding preference can influence autoreactive B cell responses.

  6. Clusters of DNA damage induced by ionizing radiation: formation of short DNA fragments. II. Experimental detection

    NASA Technical Reports Server (NTRS)

    Rydberg, B.; Chatterjee, A. (Principal Investigator)

    1996-01-01

    The basic 30-nm chromatin fiber in the mammalian cell consists of an unknown (possibly helical) arrangement of nucleosomes, with about 1.2 kb of DNA per 10-nm length of fiber. Track-structure considerations suggest that interactions of single delta rays or high-LET particles with the chromatin fiber might result in the formation of multiple lesions spread over a few kilobases of DNA (see the accompanying paper: W.R. Holley and A. Chatterjee, Radiat. Res. 145, 188-199, 1996). In particular, multiple DNA double-strand breaks and single-strand breaks may form. To test this experimentally, primary human fibroblasts were labeled with [3H]thymidine and exposed at 0 degrees C to X rays or accelerated nitrogen or iron ions in the LET range of 97-440 keV/microns. DNA was isolated inside agarose plugs and subjected to agarose gel electrophoresis under conditions that allowed good separation of 0.1-2 kb size DNA. The bulk of DNA remained in the well or migrated only a small distance into the gel. It was found that DNA fragments in the expected size range were formed linearly with dose with an efficiency that increased with LET. A comparison of the yield of such fragments with the yield of total DNA double-strand breaks suggests that for the high-LET ions a substantial proportion (20-90%) of DNA double-strand breaks are accompanied within 0.1-2 kb by at least one additional DNA double-strand break. It is shown that these results are in good agreement with theoretical calculations based on treating the 30-nm chromatin fiber as the target for ionizing particles. Theoretical considerations also predict that the clusters will contain numerous single-strand breaks and base damages. It is proposed that such clusters be designated "regionally multiply damaged sites." Postirradiation incubation at 37 degrees C resulted in a decline in the number of short DNA fragments, suggesting a repair activity. The biological significance of regionally multiply damaged sites is presently unknown.

  7. Viability and DNA fragmentation in differently sorted boar spermatozoa.

    PubMed

    De Ambrogi, M; Spinaci, M; Galeati, G; Tamanini, C

    2006-11-01

    Sperm cell defense against DNA damage relies on two factors: the tight packaging of chromatin, based on condensation and substitution of histones with protamines, and the antioxidant agents present in seminal plasma. These defenses are extremely important as mature sperm is unable to repair DNA damage and even if a successful fertilization occurs, embryo undergoes apoptosis at the time of genomic activation. Sex-sorting exposes spermatozoa to stress sources such as high pressure, laser beam and electrical charge. The aim of this work was to determine how sorting procedures affect viability and DNA integrity in boar spermatozoa, by using the newly developed Sperm-Sus-Halomax. Four sperm populations were considered: CONTROL (no treatment), REAL (sex-sorted semen), BULK (semen sorted without sex separation) and NO LASER (semen only exposed to the high pressure, but including also cells normally discarded from sex-sorting). A significantly (P=0.019) lower viability in NO LASER (64.71%) than in CONTROL (78.6%) and REAL (80.5%) groups was found; this was accompanied by a significantly (P=0.001) higher DNA fragmentation index (DFI) in NO LASER group (6.86%) respect to CONTROL (3.30%) and REAL (3.42%) groups. BULK group did not show any difference in viability or DFI as compared to the other groups. In conclusion, we may believe that sex-sorting procedure as a whole does not affect either viability or DFI and that shear mechanical forces are a relevant source of DNA damage for sorted semen. PMID:16814375

  8. Non-random fragmentation patterns in circulating cell-free DNA reflect epigenetic regulation

    PubMed Central

    2015-01-01

    Background The assessment of cell-free circulating DNA fragments, also known as a "liquid biopsy" of the patient's plasma, is an important source for the discovery and subsequent non-invasive monitoring of cancer and other pathological conditions. Although the nucleosome-guided fragmentation patterns of cell-free DNA (cfDNA) have not yet been studied in detail, non-random representation of cfDNA sequencies may reflect chromatin features in the tissue of origin at gene-regulation level. Results In this study, we investigated the association between epigenetic landscapes of human tissues evident in the patterns of cfDNA in plasma by deep sequencing of human cfDNA samples. We have demonstrated that baseline characteristics of cfDNA fragmentation pattern are in concordance with the ones corresponding to cell lines-derived. To identify the loci differentially represented in cfDNA fragment, we mapped the transcription start sites within the sequenced cfDNA fragments and tested for association of these genomic coordinates with the relative strength and the patterns of gene expressions. Preselected sets of house-keeping and tissue specific genes were used as models for actively expressed and silenced genes. Developed measure of gene regulation was able to differentiate these two sets based on sequencing coverage near gene transcription start site. Conclusion Experimental outcomes suggest that cfDNA retains characteristics previously noted in genome-wide analysis of chromatin structure, in particular, in MNase-seq assays. Thus far the analysis of the DNA fragmentation pattern may aid further developing of cfDNA based biomarkers for a variety of human conditions. PMID:26693644

  9. Single molecule detection: Applications to sizing of DNA fragments

    SciTech Connect

    Petty, J.T.; Johnson, M.E.; Affleck, R.L.

    1994-12-31

    Using, ultrasensitive fluorescence detection and flow cytometry, size determination of ds-DNA fragments is performed using the fluorescence intensity from samples stained with a thiazole orange homodimer TOTO-1. The stained fragments pass through a low-power (30 mW) continuous-wave laser beam. Using transit times of 1-5 ms, data were acquired in times ranging from 1 to 15 mins at a rate of 40 fragments/second. As little as 50 fg of DNA was needed for the analysis. The authors have demonstrated sizing of DNA fragments in the size range from 1.5 to 150 kbp. Future applications of this approach to DNA sizing require that the factors contributing to size resolution be understood, and the authors present simulations to address this issue. To aid in the modeling, the authors have measured the saturation intensity and the relative fluorescence quantum yield of the TOTO-1/DNA complex. Applications to physical mapping of the human genome are being investigated.

  10. Junction ribonuclease: An activity in Okazaki fragment processing

    PubMed Central

    Murante, Richard S.; Henricksen, Leigh A.; Bambara, Robert A.

    1998-01-01

    The initiator RNAs of mammalian Okazaki fragments are thought to be removed by RNase HI and the 5′-3′ flap endonuclease (FEN1). Earlier evidence indicated that the cleavage site of RNase HI is 5′ of the last ribonucleotide at the RNA-DNA junction on an Okazaki substrate. In current work, highly purified calf RNase HI makes this exact cleavage in Okazaki fragments containing mismatches that distort the hybrid structure of the heteroduplex. Furthermore, even fully unannealed Okazaki fragments were cleaved. Clearly, the enzyme recognizes the transition from RNA to DNA on a single-stranded substrate and not the RNA/DNA heteroduplex structure. We have named this junction RNase activity. This activity exactly comigrates with RNase HI activity during purification strongly suggesting that both activities reside in the same enzyme. After junction cleavage, FEN1 removes the remaining ribonucleotide. Because FEN1 prefers a substrate with a single-stranded 5′-flap structure, the single-stranded activity of junction RNase suggests that Okazaki fragments are displaced to form a 5′-tail prior to cleavage by both nucleases. PMID:9482870

  11. DNA Oligonucleotide Fragment Ion Rearrangements Upon Collision-Induced Dissociation

    NASA Astrophysics Data System (ADS)

    Harper, Brett; Neumann, Elizabeth K.; Solouki, Touradj

    2015-08-01

    Collision-induced dissociation (CID) of m/z-isolated w type fragment ions and an intact 5' phosphorylated DNA oligonucleotide generated rearranged product ions. Of the 21 studied w ions of various nucleotide sequences, fragment ion sizes, and charge states, 18 (~86%) generated rearranged product ions upon CID in a Synapt G2-S HDMS (Waters Corporation, Manchester, England, UK) ion mobility-mass spectrometer. Mass spectrometry (MS), ion mobility spectrometry (IMS), and theoretical modeling data suggest that purine bases can attack the free 5' phosphate group in w type ions and 5' phosphorylated DNA to generate sequence permuted [phosphopurine]- fragment ions. We propose and discuss a potential mechanism for generation of rearranged [phosphopurine]- and complementary y-B type product ions.

  12. Control of left ventricular mass by moxonidine involves reduced DNA synthesis and enhanced DNA fragmentation

    PubMed Central

    Paquette, P-A; Duguay, D; Ayoubi, R El-; Menaouar, A; Danalache, B; Gutkowska, J; DeBlois, D; Mukaddam-Daher, S

    2007-01-01

    Background and purpose: Left ventricular hypertrophy (LVH) is a maladaptive process associated with increased cardiovascular risk. Regression of LVH is associated with reduced complications of hypertension. Moxonidine is an antihypertensive imidazoline compound that reduces blood pressure primarily by central inhibition of sympathetic outflow and by direct actions on the heart to release atrial natriuretic peptide, a vasodilator and an antihypertrophic cardiac hormone. This study investigated the effect of moxonidine on LVH and the mechanisms involved in this effect. Experimental approach: Spontaneously hypertensive rats were treated with several doses of moxonidine (s.c.) over 4 weeks. Blood pressure and heart rate were continuously monitored by telemetry. Body weight and water and food intake were measured weekly. Measurements also included left ventricular mass, DNA content, synthesis, fragmentation, and apoptotic/anti-apoptotic pathway proteins. Key results: The decrease in mean arterial pressure stabilized at ∼ −10 mm Hg after 1 week of treatment and thereafter. Compared to vehicle-treated rats (100%), left ventricular mass was dose- and time-dependently reduced by treatment. This reduction remained significantly lower after normalizing to body weight. Moxonidine reduced left ventricular DNA content and inhibited DNA synthesis. DNA fragmentation transiently, but significantly increased at 1 week of moxonidine treatment and was paralleled by elevated active caspase-3 protein. The highest dose significantly decreased the apoptotic protein Bax and all doses stimulated anti-apoptotic Bcl-2 after 4 weeks of treatment. Conclusions and implications: These studies implicate the modulation of cardiac DNA dynamics in the control of left ventricular mass by moxonidine in a rat model of hypertension. PMID:18059325

  13. DNA Fragmentation in mammalian cells exposed to various light ions

    NASA Astrophysics Data System (ADS)

    Belli, M.; Cherubini, R.; Dalla Vecchia, M.; Dini, V.; Esposito, G.; Moschini, G.; Sapora, O.; Signoretti, C.; Simone, G.; Sorrentino, E.; Tabocchini, M. A.

    Elucidation of how effects of densely ionizing radiation at cellular level are linked to DNA damage is fundamental for a better understanding of the mechanisms leading to genomic damage (especially chromosome aberrations) and developing biophysical models to predict space radiation effects. We have investigated the DNA fragmentation patterns induced in Chinese hamster V79 cells by 31 keV/μm protons, 123 keV/μm helium-4 ions and γ-rays in the size range 0.023-5.7 Mbp, using calibrated Pulsed Field Gel Electrophoresis (PFGE). The frequency distributions of fragments induced by the charged particles were shifted towards smaller sizes with respct to that induced by comparable doses of γ-rays. The DSB yields, evaluated from the fragments induced in the size range studied, were higher for protons and helium ions than for γ-rays by a factor of about 1.9 and 1.2, respectively. However, these ratios do not adequately reflect the RBE observed on the same cells for inactivation and mutation induced by these beams. This is a further indication for the lack of correlation between the effects exerted at cellular level and the initial yield of DSB. The dependence on radiation quality of the fragmentation pattern suggests that it may have a role in damage reparability. We have analyzed these patterns with a "random breakage" model generalized in order to consider the initial non-random distribution of the DNA molecules. Our results suggest that a random breakage mechanism can describe with a reasonable approximation the DNA fragmentation induced by γ-rays, while the approximation is not so good for light ions, likely due to the interplay between ion tracks and chromatin organization at the loop level.

  14. Detection of Irradiated Food: DNA Fragmentation in Grapefruits

    NASA Astrophysics Data System (ADS)

    Delincée, Henry

    1998-06-01

    Employing the simple microgel electrophoresis of single cells - `comet assay' - on grapefruit seeds enabled a rapid identification of irradiated fruits. Fruits were exposed to radiation doses of 0, 0.1, 0.2, 0.3, 0.4 and 0.5 kGy covering the range of potential commercial irradiation for insect disinfestation and quarantine purposes. Seeds were isolated, crushed, and the cells embedded in an agarose layer. After lysis of the cells, they were subjected to microgel electrophoresis for 2.5 minutes, and then stained. Fruits irradiated with 0.2 kGy and higher doses showed typical DNA fragmentation, the DNA fragments stretching or migrating out of the cells forming a tail towards the anode, giving the damaged cells an appearance of a comet. With increasing dose a longer extension of the DNA from the nucleus towards the anode is observed. Undamaged cells will appear as intact nuclei without tails. The DNA comet assay is thus a rapid and inexpensive screening technique to detect irradiated grapefruits. Suspected samples may subsequently be analysed by officially validated methods for detection of irradiated foods.

  15. In vitro incubation of human spermatozoa promotes reactive oxygen species generation and DNA fragmentation.

    PubMed

    Cicaré, J; Caille, A; Zumoffen, C; Ghersevich, S; Bahamondes, L; Munuce, M J

    2015-10-01

    The aim of this study was to investigate the oxidative process associated with sperm capacitation and its impact on DNA fragmentation and sperm function. Redox activity and lipid peroxidation were analysed in human spermatozoa after 3, 6 and 22 h of incubation in Ham's F10 medium plus bovine albumin at 37° and 5% CO2 for capacitation. DNA status, tyrosine phosphorylation pattern and induced acrosome reaction were evaluated after capacitating conditions. At 22 h of incubation, there was a significant (P < 0.05) increase in oxygen-free radicals and lipid peroxidation, with no effect on sperm viability. There also was a significant (P < 0.001) increase in fragmented DNA in capacitated spermatozoa compared to semen values with higher rates being found after the occurrence of the induced acrosome reaction. Protein tyrosine phosphorylation pattern confirms that capacitation took place in parallel with the occurrence of DNA fragmentation. These results indicate that when spermatozoa are incubated for several hours (22 h), a common practice in assisted reproductive techniques, an increase in oxidative sperm metabolism and in the proportion of fragmented DNA should be expected. However, there was no effect on any of the other functional parameters associated with sperm fertilising capacity.

  16. Microfluidic chip for stacking, separation and extraction of multiple DNA fragments.

    PubMed

    Wu, Ruige; Seah, Y P; Wang, Zhiping

    2016-03-11

    A disposable integrated microfluidic device was developed for rapid sample stacking, separation and extraction of multiple DNA fragments from a relatively large amount of sample. Isotachophoresis hyphenated gel electrophoresis (ITP-GE) was used to pre-concentrate and separate DNA fragments, followed by extraction of pure DNA fragments with electroelution on-chip. DNA fragments of 200bp, 500bp and 1kbp were successfully separated and collected in the extraction chamber within 25min. The extraction efficiency obtained from the chip was 49.9%, 52.1% and 53.7% for 200bp, 500bp and 1kbp DNA fragments, respectively. The extracted DNA fragments exhibited compatibility with downstream enzymatic reactions, for example PCR. The chip was also used to extract DNA fragments with specific size range from sheared genomic DNA and demonstrated similar performance to that using traditional gel cutting method. The whole assay can finish in 32min, 6 times faster than traditional method.

  17. Large-scale production of palindrome DNA fragments

    SciTech Connect

    Palmer, E.L.; Gewiess, A.; Harp, J.M.

    1995-10-10

    Our structural studies of nucleosomes necessitated the production of over 100 mg of a 146-bp perfect palindrome DNA for use in the reconstitution of perfectly symmetrical nucleosome core particles for detailed X-ray crystallographic analysis. The propagation of palindromic DNA sequences by bacterial culture is hindered by the instability of these sequences during bacterial replication and recombination. While the loss of some palindrome sequences can be elminated by the use of sbcB or sbcC mutants of Escherichia coli, not all palindrome-containing plasmids are faithfully maintained by these strains. The production of large quantities of palindrome DNA can therefore be extremely difficult. After trying several approaches, we were able to develop a reliable procedure for production of large quantities of palindrome DNA that involves production of plasmid containing multiple copies of the repeating unit of the palindrome which are isolated by restriction digestion and ligated in vitro to form the palindrome DNA. The procedure has resulted in the production of over 20 mg of a 146-bp DNA fragment in 2 weeks.

  18. Nondetectability of restriction fragments and independence of DNA fragment sizes within and between loci in RFLP typing of DNA

    SciTech Connect

    Chakraborty, R.; Zhong, Y.; Jin, L. ); Budowle, B. )

    1994-08-01

    The authors provide experimental evidence showing that, during the restriction-enzyme digestion of DNA samples, some of the HaeIII-digested DNA fragments are small enough to prevent their reliable sizing on a Southern gel. As a result of such nondetectability of DNA fragments, individuals who show a single-band DNA profile at a VNTR locus may not necessarily be true homozygotes. In a population database, when the presence of such nondetectable alleles is ignored, they show that a pseudodependence of alleles within as well as across loci may occur. Using a known statistical method, under the hypothesis of independence of alleles within loci, they derive an efficient estimate of null allele frequency, which may be subsequently used for testing allelic independence within and across loci. The estimates of null allele frequencies, thus derived, are shown to agree with direct experimental data on the frequencies of HaeIII-null alleles. Incorporation of null alleles into the analysis of the forensic VNTR database suggests that the assumptions of allelic independence within and between loci are appropriate. In contrast, a failure to incorporate the occurrence of null alleles would provide a wrong inference regarding the independence of alleles within and between loci. 47 refs., 2 figs., 4 tabs.

  19. Characterization of a plant scaffold attachment region in a DNA fragment that normalizes transgene expression in tobacco.

    PubMed Central

    Breyne, P; van Montagu, M; Depicker, N; Gheysen, G

    1992-01-01

    Using a low-salt extraction procedure, we isolated nuclear scaffolds from tobacco that bind specific plant DNA fragments in vitro. One of these fragments was characterized in more detail; this characterization showed that it contains sequences with structural properties analogous to animal scaffold attachment regions (SARs). We showed that scaffold attachment is evolutionarily conserved between plants and animals, although different SARs have different binding affinities. Furthermore, we demonstrated that flanking a chimeric transgene with the characterized SAR-containing fragment reduces significantly the variation in expression in series of transformants with an active insertion, whereas a SAR fragment from the human beta-globin locus does not. Moreover, the frequency distribution patterns of transgene activities showed that most of the transformants containing the plant SAR fragment had expression levels clustered around the mean. These data suggest that the particular plant DNA fragment can insulate the reporter gene from expression-influencing effects exerted from the host chromatin. PMID:1498604

  20. Does varicocelectomy affect DNA fragmentation in infertile patients?

    PubMed Central

    Telli, Onur; Sarici, Hasmet; Kabar, Mucahit; Ozgur, Berat Cem; Resorlu, Berkan; Bozkurt, Selen

    2015-01-01

    Introduction: The aims of this study were to investigate the effect of varicocelectomy on DNA fragmentation index and semen parameters in infertile patients before and after surgical repair of varicocele. Materials and Methods: In this prospective study, 72 men with at least 1-year history of infertility, varicocele and oligospermia were examined. Varicocele sperm samples were classified as normal or pathological according to the 2010 World Health Organization guidelines. The acridine orange test was used to assess the DNA fragmentation index (DFI) preoperatively and postoperatively. Results: DFI decreased significantly after varicocelectomy from 34.5% to 28.2% (P = 0.024). In addition all sperm parameters such as mean sperm count, sperm concentration, progressive motility and sperm morphology significantly increased from 19.5 × 106 to 30.7 × 106, 5.4 × 106/ml to 14.3 × 106/ml, and 19.9% to 31.2% (P < 0.001) and 2.6% to 3.1% (P = 0.017). The study was limited by the loss to follow-up of some patients and unrecorded pregnancy outcome due to short follow-up. Conclusion: Varicocele causes DNA-damage in spermatozoa. We suggest that varicocelectomy improves sperm parameters and decreases DFI. PMID:25878412

  1. Adenosine stimulates DNA fragmentation in human thymocytes by Ca(2+)-mediated mechanisms.

    PubMed

    Szondy, Z

    1994-12-15

    Incubation of human thymocytes with an optimum concentration of adenosine and its receptor site agonist, 2-chloroadenosine, induced increases in intracellular cyclic AMP (cAMP) (from a resting 0.6 +/- 0.1 to 4.1 +/- 0.2 pmol/10(7) cells within 5 min) and Ca2+ (from the resting 85 +/- 7 nM to a peak of 210 +/- 25 nM) levels and resulted in internucleosomal DNA fragmentation and cell death (apoptosis). Other adenosine analogues were also effective at inducing DNA fragmentation, the order of potency being 2-p-(carboxyethylphenylethylamino)-5'-carboxyamidoadenosine < 5'-(N-ethylcarboxamide)adenosine < or = cyclopentyladenosine < 2-chloroadenosine (2-CA). 2-CA treatment (with an optimum concentration of 40 microM) selectively depleted a thymocyte subpopulation (15-20% of the total cells) which expressed higher levels of the CD3 molecule and which was found mainly in the CD4+CD8+ double positive immature thymocyte population. DNA fragmentation was prevented by the addition of actinomycin D or cycloheximide to the thymocyte suspension, indicating that this process required both mRNA and protein synthesis. Endonuclease activation and cell killing were dependent on an early, sustained increase in cytosolic Ca2+ concentration, most of which was of extracellular origin and was a result of an adenosine-induced inositol trisphosphate release. Other agents known to elevate intracellular cAMP levels by different mechanisms failed to induce similar DNA fragmentation, but enhanced the effect of adenosine. This suggested a supporting role for cAMP in adenosine-induced DNA fragmentation. Phorbol dibutyrate, a protein kinase. C activator, previously shown to inhibit Ca(2+)-dependent DNA fragmentation and cell killing in human thymocytes [McConkey, Hartzell, Jondal and Orrenius (1989) J. Biol. Chem. 264, 13399-13402], at 60 ng/ml concentration also prevented adenosine-induced DNA fragmentation when added prior to adenosine. This suggested a complex cross-talk between the adenosine

  2. Induction of internucleosomal DNA fragmentation by carcinogenic chromate: relationship to DNA damage, genotoxicity, and inhibition of macromolecular synthesis.

    PubMed Central

    Manning, F C; Blankenship, L J; Wise, J P; Xu, J; Bridgewater, L C; Patierno, S R

    1994-01-01

    Hexavalent chromium (Cr) compounds are respiratory carcinogens in humans and animals. Treatment of Chinese hamster ovary cells with 150 and 300 microM sodium chromate (Na2CrO4) for 2 hr decreased colony-forming efficiency by 46 and 92%, respectively. These treatments induced dose-dependent internucleosomal fragmentation of cellular DNA beyond 24 hr after chromate treatment. This fragmentation pattern is characteristic of apoptosis as a mechanism of cell death. These treatments also induced an immediate inhibition of macromolecular synthesis and delayed progression of cells through S-phase of the cell cycle. Cell growth (as evidenced by DNA synthesis) was inhibited for at least 4 days and transcription remained suppressed for at least 32 hr. Many of the cells that did progress to metaphase exhibited chromosome damage. Chromate caused the dose-dependent formation of DNA single-strand breaks and DNA-protein cross-links, but these were repaired 8 and 24 hr after removal of the treatment, respectively. In contrast, Cr-DNA adducts (up to 1/100 base-pairs) were extremely resistant to repair and were still detectable even 5 days after treatment. Compared with other regions of the genome, DNA-protein cross-links and Cr adducts were preferentially associated with the nuclear matrix DNA of treated cells, which was 4.5-fold enriched in actively transcribed genes. Chromium adducts, formed on DNA in vitro at a similar level to that detected in nuclear matrix DNA, arrested the progression of a DNA polymerase in a sequence-specific manner, possibly through the formation of DNA-DNA cross-links.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 2. Figure 3. Figure 7. PMID:7843091

  3. Acoustic stimulation promotes DNA fragmentation in the Guinea pig cochlea.

    PubMed

    Kamio, Tomonobu; Watanabe, Ken-Ichi; Okubo, Kimihiro

    2012-01-01

    Apoptosis can be described as programmed cell death. Apoptosis regulates cell turnover and is involved in various pathological conditions. The characteristic features of apoptosis are shrinkage of the cell body, chromatin condensation, and nucleic acid fragmentation. During apoptosis, double-stranded DNA is broken down into single-stranded DNA (ssDNA) by proteases. Acoustic trauma is commonly encountered in otorhinolaryngology clinics. Intense noise can cause inner ear damage, such as hearing disturbance, tinnitus, ear fullness, and decreased speech discrimination. In this study, we used immunohistochemical and electrophysiological methods to examine the fragmentation of DNA in the cochleas of guinea pigs that had been exposed to intense noise. Twenty-four guinea pigs weighing 250 to 350 g were used. The animals were divided into 4 groups: (I) a control group (n=6), (II) a group that was exposed to noise for 2 hours (n=6), (III) a group that was exposed to noise for 5 hours (n=6), and (IV) a group that was exposed to noise for 20 hours. The stimulus was a pure tone delivered at a frequency of 2 kHz. The sound pressure level was 120 dBSPL. No threshold shifts were apparent in group I. Group II showed a significant elevation of the hearing threshold (ANOVA, p<0.05(*)). The ABR threshold level was also significantly elevated immediately after the acoustic stimulation in groups III and IV (ANOVA, p<0.01(**)). In groups I, II, and IV, the lateral wall of the ear did not show immunoreactivity to ssDNA but did in group III. No immunoreactivity was apparent in the organ of Corti in group I or II. However, the supporting cells and outer hair cells in groups III and IV showed reactions for ssDNA. The fine structure of the organ of Corti had been destroyed in group IV. The lateral wall showed immunoreactivity for ssDNA only in group III, whereas the organ of Corti showed reactions for ssDNA in groups III and IV. Our study suggests that apoptotic changes occur in patients that

  4. Acoustic stimulation promotes DNA fragmentation in the Guinea pig cochlea.

    PubMed

    Kamio, Tomonobu; Watanabe, Ken-Ichi; Okubo, Kimihiro

    2012-01-01

    Apoptosis can be described as programmed cell death. Apoptosis regulates cell turnover and is involved in various pathological conditions. The characteristic features of apoptosis are shrinkage of the cell body, chromatin condensation, and nucleic acid fragmentation. During apoptosis, double-stranded DNA is broken down into single-stranded DNA (ssDNA) by proteases. Acoustic trauma is commonly encountered in otorhinolaryngology clinics. Intense noise can cause inner ear damage, such as hearing disturbance, tinnitus, ear fullness, and decreased speech discrimination. In this study, we used immunohistochemical and electrophysiological methods to examine the fragmentation of DNA in the cochleas of guinea pigs that had been exposed to intense noise. Twenty-four guinea pigs weighing 250 to 350 g were used. The animals were divided into 4 groups: (I) a control group (n=6), (II) a group that was exposed to noise for 2 hours (n=6), (III) a group that was exposed to noise for 5 hours (n=6), and (IV) a group that was exposed to noise for 20 hours. The stimulus was a pure tone delivered at a frequency of 2 kHz. The sound pressure level was 120 dBSPL. No threshold shifts were apparent in group I. Group II showed a significant elevation of the hearing threshold (ANOVA, p<0.05(*)). The ABR threshold level was also significantly elevated immediately after the acoustic stimulation in groups III and IV (ANOVA, p<0.01(**)). In groups I, II, and IV, the lateral wall of the ear did not show immunoreactivity to ssDNA but did in group III. No immunoreactivity was apparent in the organ of Corti in group I or II. However, the supporting cells and outer hair cells in groups III and IV showed reactions for ssDNA. The fine structure of the organ of Corti had been destroyed in group IV. The lateral wall showed immunoreactivity for ssDNA only in group III, whereas the organ of Corti showed reactions for ssDNA in groups III and IV. Our study suggests that apoptotic changes occur in patients that

  5. Function of streptokinase fragments in plasminogen activation.

    PubMed Central

    Shi, G Y; Chang, B I; Chen, S M; Wu, D H; Wu, H L

    1994-01-01

    Several peptide fragments of streptokinase (SK) were prepared by incubating SK with immobilized human plasmin (hPlm) and purified by h.p.l.c. with a reverse-phase phenyl column. The N-terminal sequences, amino acid compositions and molecular masses of these peptide fragments were determined. The SK peptide fragment of 36 kDa consisting of Ser60-Lys387 (SK-p), was the only peptide fragment that could be tightly bound to immobilized hPlm. Another three large SK peptide fragments, SK-m, SK-n and SK-o, with molecular masses of 7 kDa, 18 kDa and 30 kDa, and consisting of Ile1-Lys59, Glu148-Lys333, Ser60-Lys333 respectively, were also obtained from the supernatant of the reaction mixture. The purified SK-p had high affinity with hPlm and could activate human plasminogen (hPlg) with a kPlg one-sixth that of the native SK. SK-o had low affinity with hPlm and could also activate hPlg, although the catalytic constant was less than 1% of the native SK. SK-n, as well as SK-m, which is the N-terminal 59 amino acid peptide of the native SK, had no activator activity. However, SK-m could enhance the activator activity of both SK-o and SK-p and increase their second-order rate constants by two- and six-fold respectively. It was concluded from these studies that (1) SK-o, the Ser60-Lys333 peptide of SK, was essential for minimal SK activator activity, (2) the C-terminal peptide of SK-p, Ala334-Lys387, was essential for high affinity with hPlm, and (3) the N-terminal 59-amino-acid peptide was important in maintaining the proper conformation of SK to have its full activator activity. Images Figure 1 Figure 2 PMID:7998939

  6. Cloning of DNA fragments: ligation reactions in agarose gel.

    PubMed

    Furtado, Agnelo

    2014-01-01

    Ligation reactions to ligate a desired DNA fragment into a vector can be challenging to beginners and especially if the amount of the insert is limiting. Although additives known as crowding agents, such as PEG 8000, added to the ligation mixes can increase the success one has with ligation reactions, in practice the amount of insert used in the ligation can determine the success or the failure of the ligation reaction. The method described here, which uses insert DNA in gel slice added directly into the ligation reaction, has two benefits: (a) using agarose as the crowding agent and (b) reducing steps of insert purification. The use of rapid ligation buffer and incubation of the ligation reaction at room temperature greatly increase the efficiency of the ligation reaction even for blunt-ended ligation. PMID:24243199

  7. Cavitation Enhancing Nanodroplets Mediate Efficient DNA Fragmentation in a Bench Top Ultrasonic Water Bath

    PubMed Central

    Malc, Ewa P.; Jayakody, Chatura N.; Tsuruta, James K.; Mieczkowski, Piotr A.; Janzen, William P.; Dayton, Paul A.

    2015-01-01

    A perfluorocarbon nanodroplet formulation is shown to be an effective cavitation enhancement agent, enabling rapid and consistent fragmentation of genomic DNA in a standard ultrasonic water bath. This nanodroplet-enhanced method produces genomic DNA libraries and next-generation sequencing results indistinguishable from DNA samples fragmented in dedicated commercial acoustic sonication equipment, and with higher throughput. This technique thus enables widespread access to fast bench-top genomic DNA fragmentation. PMID:26186461

  8. Inhibition of DNA fragmentation in thymocytes and isolated thymocyte nuclei by agents that stimulate protein kinase C.

    PubMed

    McConkey, D J; Hartzell, P; Jondal, M; Orrenius, S

    1989-08-15

    Glucocorticoid hormones and Ca2+ ionophores stimulate a suicide process in immature thymocytes, known as apoptosis or programmed cell death, that involves extensive DNA fragmentation. We have recently shown that a sustained increase in cytosolic Ca2+ concentration stimulates DNA fragmentation and cell killing in glucocorticoid- or ionophore-treated thymocytes. However, a sustained increase in the cytosolic Ca2+ level also mediates lymphocyte proliferation, suggesting that apoptosis is blocked in proliferating thymocytes. In this study we report that phorbol esters, which selectively stimulate protein kinase C (PKC), blocked DNA fragmentation and cell death in thymocytes exposed to Ca2+ ionophore or glucocorticoid hormone. The T cell mitogen, concanavalin A, which stimulates thymocytes by a mechanism that involves PKC activation, caused concentration-dependent increases in the cytosolic Ca2+ level that did not result in DNA fragmentation, but incubation with concanavalin A and the PKC inhibitor H-7 (1-(5-isoquinolinylsulfonyl)-2-methylpiperazine) resulted in both DNA fragmentation and cell death. Phorbol ester directly inhibited Ca2+-dependent DNA fragmentation in isolated thymocyte nuclei. Our results strongly suggest that PKC activation blocks thymocyte apoptosis by preventing Ca2+-stimulated endonuclease activation. PMID:2503500

  9. Mitochondrial fragmentation in excitotoxicity requires ROCK activation.

    PubMed

    Martorell-Riera, Alejandro; Segarra-Mondejar, Marc; Reina, Manuel; Martínez-Estrada, Ofelia M; Soriano, Francesc X

    2015-01-01

    Mitochondria morphology constantly changes through fission and fusion processes that regulate mitochondrial function, and it therefore plays a prominent role in cellular homeostasis. Cell death progression is associated with mitochondrial fission. Fission is mediated by the mainly cytoplasmic Drp1, which is activated by different post-translational modifications and recruited to mitochondria to perform its function. Our research and other studies have shown that in the early moments of excitotoxic insult Drp1 must be nitrosylated to mediate mitochondrial fragmentation in neurons. Nonetheless, mitochondrial fission is a multistep process in which filamentous actin assembly/disassembly and myosin-mediated mitochondrial constriction play prominent roles. Here we establish that in addition to nitric oxide production, excitotoxicity-induced mitochondrial fragmentation also requires activation of the actomyosin regulator ROCK. Although ROCK1 has been shown to phosphorylate and activate Drp1, experiments using phosphor-mutant forms of Drp1 in primary cortical neurons indicate that in excitotoxic conditions, ROCK does not act directly on Drp1 to mediate fission, but may act on the actomyosin complex. Thus, these data indicate that a wider range of signaling pathways than those that target Drp1 are amenable to be inhibited to prevent mitochondrial fragmentation as therapeutic option. PMID:25789413

  10. Mitochondrial fragmentation in excitotoxicity requires ROCK activation.

    PubMed

    Martorell-Riera, Alejandro; Segarra-Mondejar, Marc; Reina, Manuel; Martínez-Estrada, Ofelia M; Soriano, Francesc X

    2015-01-01

    Mitochondria morphology constantly changes through fission and fusion processes that regulate mitochondrial function, and it therefore plays a prominent role in cellular homeostasis. Cell death progression is associated with mitochondrial fission. Fission is mediated by the mainly cytoplasmic Drp1, which is activated by different post-translational modifications and recruited to mitochondria to perform its function. Our research and other studies have shown that in the early moments of excitotoxic insult Drp1 must be nitrosylated to mediate mitochondrial fragmentation in neurons. Nonetheless, mitochondrial fission is a multistep process in which filamentous actin assembly/disassembly and myosin-mediated mitochondrial constriction play prominent roles. Here we establish that in addition to nitric oxide production, excitotoxicity-induced mitochondrial fragmentation also requires activation of the actomyosin regulator ROCK. Although ROCK1 has been shown to phosphorylate and activate Drp1, experiments using phosphor-mutant forms of Drp1 in primary cortical neurons indicate that in excitotoxic conditions, ROCK does not act directly on Drp1 to mediate fission, but may act on the actomyosin complex. Thus, these data indicate that a wider range of signaling pathways than those that target Drp1 are amenable to be inhibited to prevent mitochondrial fragmentation as therapeutic option.

  11. Dependence on radiation quality of DNA fragmentation spectra

    NASA Astrophysics Data System (ADS)

    Campa, Alessandro; Ottolenghi, Andrea; Alloni, Daniele; Ballarini, Francesca; Belli, Mauro; Esposito, Giuseppe; Facoetti, Angelica; Friedland, Werner; Liotta, Marco; Paretzke, Herwig

    Energy deposition by radiation initially gives rise to cellular critical lesions such as DNA doublestrand breaks (DSB), that later lead to the formation of relevant biological endpoints. Studies on fragment size distributions induced by radiations of various qualities can be of great help in linking the characteristics of radiation to cellular endpoints, providing information for understanding the main mechanisms of cell damage. Here we are concerned with the damage induced by heavy charged particles; this issue is very important in the field of radioprotection of astronauts participating in long term space missions, besides being relevant also in other fields, like hadrontherapy. Galactic Cosmic Rays contain a large component of high-LET particles (HZE), e.g. helium and carbon ions, as well as highcharge particles such as iron ions. These particles are characterized by complex track structures with energy depositions not only along the path of the primary particle, but also at relatively large distance form the path, due to the presence of high energy secondary electrons. In this work we have simulated the irradiation of human fibroblasts with γ-rays, protons, helium, carbon and iron ions at a fixed dose with the biophysical Monte Carlo code PARTRAC,and calculated the induction of DSB. The PARTRAC code includes accurate representation of the chromatin geometry and of the physical and physico-chemical processes associated with the energy deposition by radiation. The results of a first validation of the code have been reported in A. Campa et al. (2005) and D. Alloni et al. (2007a, 2007b). DNA fragment spectra were calculated based on the DSB induction patterns and compared in particular for particles of the same specific energy and for particles of the same LET. Special emphasis has been directed to the calculation of very small fragments (< 1 kbp) that are not detectable by the most common experimental techniques and that can significantly influence the RBE

  12. The effects of 4-MEI on cell proliferation, DNA breaking and DNA fragmentation.

    PubMed

    Tazehkand, M Norizadeh; Moridikia, A; Hajipour, O; Valipour, E; Timocin, T; Topaktas, M; Yilmaz, M B

    2016-01-01

    4-Methylimidazole (4-MEI) is a color widely found in cola drinks, roasted foods, grilled meats, coffee and other foods. This study was aimed to investigate the 4-MEI effects on the cell proliferation, purified circular DNA and DNA from cells of rats treated with the 4-MEI.In this study, mouse 3T3-L1 cell line was treated with 4-MEI at concentrations of 300, 450, 600 and 750 µg/mL for 24 hours and 48 hours periods, after that cytotoxic effect of the 4-MEI was studied by MTT test. Also, the effect of 4-MEI on purified circular DNA (pET22b) was investigated by treating of the DNA with 4-MEI concentrations of 300, 450, 600 and 750 µg/ml. DNA was extracted from liver cells of rats that have been treated with 4-MEI doses of 25 and 50 mg/kg for 10 week and it was subjected to agarose gel electrophoreses analyses.4-MEI significantly inhibited cell proliferation of 3T3-L1 cell line at highest concentration for 24 h and at all concentration for 48 h treatment time. DNA fragmentation assay showed that 4-MEI at 50 mg/kg concentration clearly produced characteristic DNA smear and no DNA laddering (200bp) was observed when mouse was exposed to 4-MEI. The results obtained from plasmid DNA damaging assay showed that 4-MEI has noeffect on the DNA, because the electrophoretic pattern of DNA treated with 4-MEI showed three bands on agarose gel electrophoresis as it was for untreated control. 4-MEI showed cytotoxic effect on 3T3-L1 cells but no effect on plasmid DNA breaking. According to DNA fragmentation assay 4-MEI has necrosis effects on mouse liver cells (Tab. 1, Fig. 4, Ref. 27). PMID:27546537

  13. Size-selective separation of DNA fragments by using lysine-functionalized silica particles

    NASA Astrophysics Data System (ADS)

    Liu, Lingling; Guo, Zilong; Huang, Zhenzhen; Zhuang, Jiaqi; Yang, Wensheng

    2016-02-01

    In this work, a facile and efficient approach has been demonstrated for size-selective separation of DNA fragments by using lysine-functionalized silica particles. At a given pH, the environmental ionic strength can be utilized to alter the electrostatic interactions of lysine-functionalized silica particles with DNA fragments and in turn the DNA fragments on the silica particle surfaces, which exhibits a clear dependence on the DNA fragment sizes. By carefully adjusting the environmental pH and salt concentration, therefore, the use of the lysine-functionalized silica particles allows effective separation of binary and ternary DNA mixtures, for example, two different DNA fragments with sizes of 101 and 1073 bp, 101 and 745 bp, 101 and 408 bp, respectively, and three different DNA fragments with sizes of 101, 408 and 1073 bp.

  14. Size-selective separation of DNA fragments by using lysine-functionalized silica particles

    PubMed Central

    Liu, Lingling; Guo, Zilong; Huang, Zhenzhen; Zhuang, Jiaqi; Yang, Wensheng

    2016-01-01

    In this work, a facile and efficient approach has been demonstrated for size-selective separation of DNA fragments by using lysine-functionalized silica particles. At a given pH, the environmental ionic strength can be utilized to alter the electrostatic interactions of lysine-functionalized silica particles with DNA fragments and in turn the DNA fragments on the silica particle surfaces, which exhibits a clear dependence on the DNA fragment sizes. By carefully adjusting the environmental pH and salt concentration, therefore, the use of the lysine-functionalized silica particles allows effective separation of binary and ternary DNA mixtures, for example, two different DNA fragments with sizes of 101 and 1073 bp, 101 and 745 bp, 101 and 408 bp, respectively, and three different DNA fragments with sizes of 101, 408 and 1073 bp. PMID:26911527

  15. Small Fragment Homologous Replacement (SFHR): sequence-specific modification of genomic DNA in eukaryotic cells by small DNA fragments.

    PubMed

    Luchetti, Andrea; Malgieri, Arianna; Sangiuolo, Federica

    2014-01-01

    The sequence-specific correction of a mutated gene (e.g., point mutation) by the Small Fragment Homologous Replacement (SFHR) method is a highly attractive approach for gene therapy. Small DNA fragments (SDFs) were used in SFHR to modify endogenous genomic DNA in both human and murine cells. The advantage of this gene targeting approach is to maintain the physiologic expression pattern of targeted genes without altering the regulatory sequences (e.g., promoter, enhancer), but the application of this technique requires the knowledge of the sequence to be targeted. In our recent study, an optimized SFHR protocol was used to replace the eGFP mutant sequence in SV-40-transformed mouse embryonic fibroblast (MEF-SV40), with the wild-type eGFP sequence. Nevertheless in the past, SFHR has been used to correct several mutant genes, each related to a specific genetic disease (e.g., spinal muscular atrophy, cystic fibrosis, severe combined immune deficiency). Several parameters can be modified to optimize the gene modification efficiency, as described in our recent study. In this chapter we describe the main guidelines that should be followed in SFHR application, in order to increase technique efficiency.

  16. Temporal Patterns of Nucleotide Misincorporations and DNA Fragmentation in Ancient DNA

    PubMed Central

    Sawyer, Susanna; Krause, Johannes; Guschanski, Katerina; Savolainen, Vincent; Pääbo, Svante

    2012-01-01

    DNA that survives in museum specimens, bones and other tissues recovered by archaeologists is invariably fragmented and chemically modified. The extent to which such modifications accumulate over time is largely unknown but could potentially be used to differentiate between endogenous old DNA and present-day DNA contaminating specimens and experiments. Here we examine mitochondrial DNA sequences from tissue remains that vary in age between 18 and 60,000 years with respect to three molecular features: fragment length, base composition at strand breaks, and apparent C to T substitutions. We find that fragment length does not decrease consistently over time and that strand breaks occur preferentially before purine residues by what may be at least two different molecular mechanisms that are not yet understood. In contrast, the frequency of apparent C to T substitutions towards the 5′-ends of molecules tends to increase over time. These nucleotide misincorporations are thus a useful tool to distinguish recent from ancient DNA sources in specimens that have not been subjected to unusual or harsh treatments. PMID:22479540

  17. Rapid sizing of individual fluorescently stained DNA fragments by flow cytometry.

    PubMed Central

    Goodwin, P M; Johnson, M E; Martin, J C; Ambrose, W P; Marrone, B L; Jett, J H; Keller, R A

    1993-01-01

    Large, fluorescently stained restriction fragments of lambda phage DNA are sized by passing individual fragments through a focused continuous wave laser beam in an ultrasensitive flow cytometer at a rate of 60 fragments per second. The size of the fluorescence burst emitted by each stained DNA fragment, as it passes through the laser beam, is measured in one millisecond. One hundred sixty four seconds of fluorescence burst data allow linear sizing of DNA with an accuracy of better than two percent over a range of 10 to 50 kbp. This corresponds to analyzing less than 1 pg of DNA. Sizing of DNA fragments by this approach is much faster, requires much less DNA, and can potentially analyze large fragments with better resolution and accuracy than with gel-based electrophoresis. Images PMID:8451182

  18. Cloning and characterization of an apoptosis-related DNA fragmentation factor (DFF) from oyster, Crassostrea hongkongensis.

    PubMed

    Xiang, Zhiming; Qu, Fufa; Qi, Lin; Ying, Tong; Li, Jun; Shu, Xiao; Yu, Ziniu

    2014-05-01

    Apoptosis plays an important pathophysiological role in the homeostasis of immune systems. DNA fragmentation factors (DFFs) have been shown to be essential for DNA fragmentation, and the resultant DNA fragments follow a laddering pattern during apoptosis in vertebrates. In invertebrates, the functions of the DFF orthologs are not well characterized; therefore, we cloned and characterized a bivalve DFFA ortholog from the Hong Kong oyster Crassostrea hongkongensis (designated ChDFFA). The full-length cDNA of ChDFFA is 1186 bp in length and encodes a putative protein of 200 amino acids that contains an N-terminal CAD domain and a DFF-C domain at its C-terminus. Real-time RT-PCR results showed that ChDFFA is ubiquitously expressed in several tissues, and its highest expression is in gill. Following a 3- to 48-h challenge by microbial infection, the expression of ChDFFA increased in hemocytes. Using fluorescence microscopy, ChDFFA was localized in nuclei when exogenously expressed in HeLa cells. In addition, over-expression of ChDFFA inhibited the transcriptional activities of p53/p21-Luc reporter genes in HEK293T cells. These results suggest that ChDFFA may be involved in immune response reactions in the Hong Kong oyster C. hongkongensis.

  19. Facile construction of a highly sensitive DNA biosensor by in-situ assembly of electro-active tags on hairpin-structured probe fragment

    PubMed Central

    Wang, Qingxiang; Gao, Feng; Ni, Jiancong; Liao, Xiaolei; Zhang, Xuan; Lin, Zhenyu

    2016-01-01

    An ultrasensitive DNA biosensor has been developed through in-situ labeling of electroactive melamine-Cu2+ complex (Mel-Cu2+) on the end of hairpin-like probe using gold nanoparticles (AuNPs) as the signal amplification platform. The 3′-thiolated hairpin-like probe was first immobilized to the gold electrode surface by the Au-S bond. The AuNPs were then tethered on the free 5′-end of the immobilized probe via the special affinity between Au and the modified -NH2. Followed by, the Mel and Cu2+ were assembled on the AuNPs surface through Au-N bond and Cu2+-N bond, respectively. Due to the surface area and electrocatalytic effects of the AuNPs, the loading amount and electron transfer kinetic of the Mel-Cu2+ were enhanced greatly, resulting in significantly enhanced electrochemical response of the developed biosensor. Compared with the synthesis process of conventional electroactive probe DNA accomplished by homogeneous method, the method presented in this work is more reagent- and time-saving. The proposed biosensor showed high selectivity, wide linear range and low detection limit. This novel strategy could also be extended to the other bioanalysis platforms such as immunosensors and aptasensors. PMID:26931160

  20. Facile construction of a highly sensitive DNA biosensor by in-situ assembly of electro-active tags on hairpin-structured probe fragment.

    PubMed

    Wang, Qingxiang; Gao, Feng; Ni, Jiancong; Liao, Xiaolei; Zhang, Xuan; Lin, Zhenyu

    2016-01-01

    An ultrasensitive DNA biosensor has been developed through in-situ labeling of electroactive melamine-Cu(2+) complex (Mel-Cu(2+)) on the end of hairpin-like probe using gold nanoparticles (AuNPs) as the signal amplification platform. The 3'-thiolated hairpin-like probe was first immobilized to the gold electrode surface by the Au-S bond. The AuNPs were then tethered on the free 5'-end of the immobilized probe via the special affinity between Au and the modified -NH2. Followed by, the Mel and Cu(2+) were assembled on the AuNPs surface through Au-N bond and Cu(2+)-N bond, respectively. Due to the surface area and electrocatalytic effects of the AuNPs, the loading amount and electron transfer kinetic of the Mel-Cu(2+) were enhanced greatly, resulting in significantly enhanced electrochemical response of the developed biosensor. Compared with the synthesis process of conventional electroactive probe DNA accomplished by homogeneous method, the method presented in this work is more reagent- and time-saving. The proposed biosensor showed high selectivity, wide linear range and low detection limit. This novel strategy could also be extended to the other bioanalysis platforms such as immunosensors and aptasensors. PMID:26931160

  1. Evidence That the DNA Mismatch Repair System Removes 1-Nucleotide Okazaki Fragment Flaps*♦

    PubMed Central

    Kadyrova, Lyudmila Y.; Dahal, Basanta K.; Kadyrov, Farid A.

    2015-01-01

    The DNA mismatch repair (MMR) system plays a major role in promoting genome stability and suppressing carcinogenesis. In this work, we investigated whether the MMR system is involved in Okazaki fragment maturation. We found that in the yeast Saccharomyces cerevisiae, the MMR system and the flap endonuclease Rad27 act in overlapping pathways that protect the nuclear genome from 1-bp insertions. In addition, we determined that purified yeast and human MutSα proteins recognize 1-nucleotide DNA and RNA flaps. In reconstituted human systems, MutSα, proliferating cell nuclear antigen, and replication factor C activate MutLα endonuclease to remove the flaps. ATPase and endonuclease mutants of MutLα are defective in the flap removal. These results suggest that the MMR system contributes to the removal of 1-nucleotide Okazaki fragment flaps. PMID:26224637

  2. Xanthorrhizol induced DNA fragmentation in HepG2 cells involving Bcl-2 family proteins

    SciTech Connect

    Tee, Thiam-Tsui; Cheah, Yew-Hoong; Meenakshii, Nallappan; Mohd Sharom, Mohd Yusof; Azimahtol Hawariah, Lope Pihie

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer We isolated xanthorrhizol, a sesquiterpenoid compound from Curcuma xanthorrhiza. Black-Right-Pointing-Pointer Xanthorrhizol induced apoptosis in HepG2 cells as observed using SEM. Black-Right-Pointing-Pointer Apoptosis in xanthorrhizol-treated HepG2 cells involved Bcl-2 family proteins. Black-Right-Pointing-Pointer DNA fragmentation was observed in xanthorrhizol-treated HepG2 cells. Black-Right-Pointing-Pointer DNA fragmentation maybe due to cleavage of PARP and DFF45/ICAD proteins. -- Abstract: Xanthorrhizol is a plant-derived pharmacologically active sesquiterpenoid compound isolated from Curcuma xanthorrhiza. Previously, we have reported that xanthorrhizol inhibited the proliferation of HepG2 human hepatoma cells by inducing apoptotic cell death via caspase activation. Here, we attempt to further elucidate the mode of action of xanthorrhizol. Apoptosis in xanthorrhizol-treated HepG2 cells as observed by scanning electron microscopy was accompanied by truncation of BID; reduction of both anti-apoptotic Bcl-2 and Bcl-X{sub L} expression; cleavage of PARP and DFF45/ICAD proteins and DNA fragmentation. Taken together, these results suggest xanthorrhizol as a potent antiproliferative agent on HepG2 cells by inducing apoptosis via Bcl-2 family members. Hence we proposed that xanthorrhizol could be used as an anti-liver cancer drug for future studies.

  3. Structures of minimal catalytic fragments of topoisomerase V reveals conformational changes relevant for DNA binding.

    PubMed

    Rajan, Rakhi; Taneja, Bhupesh; Mondragón, Alfonso

    2010-07-14

    Topoisomerase V is an archaeal type I topoisomerase that is unique among topoisomerases due to presence of both topoisomerase and DNA repair activities in the same protein. It is organized as an N-terminal topoisomerase domain followed by 24 tandem helix-hairpin-helix (HhH) motifs. Structural studies have shown that the active site is buried by the (HhH) motifs. Here we show that the N-terminal domain can relax DNA in the absence of any HhH motifs and that the HhH motifs are required for stable protein-DNA complex formation. Crystal structures of various topoisomerase V fragments show changes in the relative orientation of the domains mediated by a long bent linker helix, and these movements are essential for the DNA to enter the active site. Phosphate ions bound to the protein near the active site helped model DNA in the topoisomerase domain and show how topoisomerase V may interact with DNA. PMID:20637419

  4. Methods for producing partially digested restriction DNA fragments and for producing a partially modified PCR product

    DOEpatents

    Wong, Kwong-Kwok

    2000-01-01

    The present invention is an improved method of making a partially modified PCR product from a DNA fragment with a polymerase chain reaction (PCR). In a standard PCR process, the DNA fragment is combined with starting deoxynucleoside triphosphates, a primer, a buffer and a DNA polymerase in a PCR mixture. The PCR mixture is then reacted in the PCR producing copies of the DNA fragment. The improvement of the present invention is adding an amount of a modifier at any step prior to completion of the PCR process thereby randomly and partially modifying the copies of the DNA fragment as a partially modified PCR product. The partially modified PCR product may then be digested with an enzyme that cuts the partially modified PCR product at unmodified sites thereby producing an array of DNA restriction fragments.

  5. DNA fragmentation in human fibroblasts under extremely low frequency electromagnetic field exposure.

    PubMed

    Focke, Frauke; Schuermann, David; Kuster, Niels; Schär, Primo

    2010-01-01

    Extremely low frequency electromagnetic fields (ELF-EMFs) were reported to affect DNA integrity in human cells with evidence based on the Comet assay. These findings were heavily debated for two main reasons; the lack of reproducibility, and the absence of a plausible scientific rationale for how EMFs could damage DNA. Starting out from a replication of the relevant experiments, we performed this study to clarify the existence and explore origin and nature of ELF-EMF induced DNA effects. Our data confirm that intermittent (but not continuous) exposure of human primary fibroblasts to a 50 Hz EMF at a flux density of 1 mT induces a slight but significant increase of DNA fragmentation in the Comet assay, and we provide first evidence for this to be caused by the magnetic rather than the electric field. Moreover, we show that EMF-induced responses in the Comet assay are dependent on cell proliferation, suggesting that processes of DNA replication rather than the DNA itself may be affected. Consistently, the Comet effects correlated with a reduction of actively replicating cells and a concomitant increase of apoptotic cells in exposed cultures, whereas a combined Fpg-Comet test failed to produce evidence for a notable contribution of oxidative DNA base damage. Hence, ELF-EMF induced effects in the Comet assay are reproducible under specific conditions and can be explained by minor disturbances in S-phase processes and occasional triggering of apoptosis rather than by the generation of DNA damage.

  6. Polycyclic aromatic hydrocarbon-DNA adducts and the CYP1A1 restriction fragment length polymorphism

    SciTech Connect

    Shields, P.G.; Bowman, E.D.; Weston, A.; Harris, C.C.; Sugimura, H.; Caporaso, N.E.; Petruzzelli, S.F. ); Trump, B.F. )

    1992-11-01

    Human cancer risk assessment at a genetic level involves the investigation of carcinogen metabolism and DNA adduct formation. Wide interindividual differences in metabolism result in different DNA adduct levels. For this and other reasons, many laboratories have considered DNA adducts to be a measure of the biologically effective dose of a carcinogen. Techniques for studying DNA adducts using chemically specific assays are becoming available. A modification of the [sup 32]P-postlabeling assay for polycyclic aromatic hydrocarbon DNA adducts described here provides potential improvements in quantification. DNA adducts, however, reflect only recent exposure to carcinogens; in contrast, genetic testing for metabolic capacity indicates the extent to which carcinogens can be activated and exert genotoxic effects. Such studies may reflect both separate and integrated risk factors together with DNA adduct levels. A recently described restriction fragment length polymorphism for the CYP1A1, which codes for the cytochrome P450 enzyme primarily responsible for the metabolic activation of carcinogenic polycyclic aromatic hydrocarbons, has been found to be associated with lung cancer risk in a Japanese population. In a subset of individuals enrolled in a US lung cancer case-control study, no association with lung cancer was found. 17 refs., 3 figs.

  7. A Mini-Library of Sequenced Human DNA Fragments: Linking Bench Experiments with Informatics

    ERIC Educational Resources Information Center

    Dalgleish, Raymond; Shanks, Morag E.; Monger, Karen; Butler, Nicola J.

    2012-01-01

    We describe the development of a mini-library of human DNA fragments for use in an enquiry-based learning (EBL) undergraduate practical incorporating "wet-lab" and bioinformatics tasks. In spite of the widespread emergence of the polymerase chain reaction (PCR), the cloning and analysis of DNA fragments in "Escherichia coli" remains a fundamental…

  8. qPCR-based mitochondrial DNA quantification: Influence of template DNA fragmentation on accuracy

    SciTech Connect

    Jackson, Christopher B.; Gallati, Sabina; Schaller, Andre

    2012-07-06

    Highlights: Black-Right-Pointing-Pointer Serial qPCR accurately determines fragmentation state of any given DNA sample. Black-Right-Pointing-Pointer Serial qPCR demonstrates different preservation of the nuclear and mitochondrial genome. Black-Right-Pointing-Pointer Serial qPCR provides a diagnostic tool to validate the integrity of bioptic material. Black-Right-Pointing-Pointer Serial qPCR excludes degradation-induced erroneous quantification. -- Abstract: Real-time PCR (qPCR) is the method of choice for quantification of mitochondrial DNA (mtDNA) by relative comparison of a nuclear to a mitochondrial locus. Quantitative abnormal mtDNA content is indicative of mitochondrial disorders and mostly confines in a tissue-specific manner. Thus handling of degradation-prone bioptic material is inevitable. We established a serial qPCR assay based on increasing amplicon size to measure degradation status of any DNA sample. Using this approach we can exclude erroneous mtDNA quantification due to degraded samples (e.g. long post-exicision time, autolytic processus, freeze-thaw cycles) and ensure abnormal DNA content measurements (e.g. depletion) in non-degraded patient material. By preparation of degraded DNA under controlled conditions using sonification and DNaseI digestion we show that erroneous quantification is due to the different preservation qualities of the nuclear and the mitochondrial genome. This disparate degradation of the two genomes results in over- or underestimation of mtDNA copy number in degraded samples. Moreover, as analysis of defined archival tissue would allow to precise the molecular pathomechanism of mitochondrial disorders presenting with abnormal mtDNA content, we compared fresh frozen (FF) with formalin-fixed paraffin-embedded (FFPE) skeletal muscle tissue of the same sample. By extrapolation of measured decay constants for nuclear DNA ({lambda}{sub nDNA}) and mtDNA ({lambda}{sub mtDNA}) we present an approach to possibly correct measurements in

  9. Okadaic acid induces DNA fragmentation via caspase-3-dependent and caspase-3-independent pathways in Chinese hamster ovary (CHO)-K1 cells.

    PubMed

    Kitazumi, Ikuko; Maseki, Yoko; Nomura, Yoshiko; Shimanuki, Akiko; Sugita, Yumi; Tsukahara, Masayoshi

    2010-01-01

    DNA fragmentation is a hallmark of apoptosis that occurs in a variety of cell types; however, it remains unclear whether caspase-3 is required for its induction. To investigate this, we produced caspase-3 knockout Chinese hamster ovary (CHO)-K1 cells and examined the effects of gene knockout and treatment with caspase-3 inhibitors. Okadaic acid (OA) is a potent inhibitor of the serine/threonine protein phosphatases (PPs) PP1 and PP2A, which induce apoptotic cellular reactions. Treatment of caspase-3(-/-) cells with OA induced DNA fragmentation, indicating that caspase-3 is not an essential requirement. However, in the presence of benzyloxycarbonyl-Asp-Glu-Val-Asp (OMe) fluoromethylketone (z-DEVD-fmk), DNA fragmentation occurred in CHO-K1 cells but not in caspase-3(-/-) cells, suggesting that caspase-3 is involved in OA-induced DNA fragmentation that does not utilize DEVDase activity. In the absence of caspase-3, DEVDase activity may play an important role. In addition, OA-induced DNA fragmentation was reduced but not blocked in CHO-K1 cells, suggesting that caspase-3 is involved in caspase-independent OA-induced DNA fragmentation. Furthermore, OA-induced cleavage of caspase-3 and DNA fragmentation were blocked by pretreatment with the wide-ranging serine protease inhibitor 4-(2-aminoethyl)-benzenesulfonyl fluoride hydrochloride. These results suggest that serine proteases regulate DNA fragmentation upstream of caspase-3.

  10. Exhaustive de novo design of low-molecular-weight fragments against the ATP-binding site of DNA-gyrase.

    PubMed

    Firth-Clark, Stuart; Todorov, Nikolay P; Alberts, Ian L; Williams, Anthony; James, Timothy; Dean, Philip M

    2006-01-01

    We present a de novo design approach to generating small fragments in the DNA-gyrase ATP-binding site using the computational drug design platform SkelGen. We have generated an exhaustive number of structural possibilities, which were subsequently filtered for site complementarity and synthetic tractability. A number of known active fragments are found, but most of the species created are potentially novel and could be valuable for further elaboration and development into lead-like structures.

  11. Induced lipid peroxidation in ram sperm: semen profile, DNA fragmentation and antioxidant status.

    PubMed

    Hamilton, Thais Rose dos Santos; de Castro, Letícia Signori; Delgado, Juliana de Carvalho; de Assis, Patrícia Monken; Siqueira, Adriano Felipe Perez; Mendes, Camilla Mota; Goissis, Marcelo Demarchi; Muiño-Blanco, Teresa; Cebrián-Pérez, José Álvaro; Nichi, Marcílio; Visintin, José Antonio; D'Ávila Assumpção, Mayra Elena Ortiz

    2016-04-01

    Action of reactive oxygen species, protamination failures and apoptosis are considered the most important etiologies of sperm DNA fragmentation. This study evaluated the effects of induced lipid peroxidation susceptibility on native semen profile and identified the mechanisms involved in sperm DNA fragmentation and testicular antioxidant defense on Santa Ines ram sperm samples. Semen was collected from 12 adult rams (Ovis aries) performed weekly over a 9-week period. Sperm analysis (motility, mass motility, abnormalities, membrane and acrosome status, mitochondrial potential, DNA fragmentation, lipid peroxidation and intracellular free radicals production); protamine deficiency; PRM1, TNP1 and TNP2 gene expression; and determination of glutathione peroxidase (GPx), glutathione reductase, catalase (CAT) and superoxide dismutase activity and immunodetection in seminal plasma were performed. Samples were distributed into four groups according to the sperm susceptibility to lipid peroxidation after induction with ascorbate and ferrous sulfate (low, medium, high and very high). The results were analyzed by GLM test and post hoc least significant difference. We observed an increase in native GPx activity and CAT immunodetection in groups with high susceptibility to induced lipid peroxidation. We also found an increase in total sperm defects, acrosome and membrane damages in the group with the highest susceptibility to induced lipid peroxidation. Additionally, the low mitochondrial membrane potential, susceptible to chromatin fragmentation and the PRM1 mRNA were increased in the group showing higher susceptibility to lipid peroxidation. Ram sperm susceptibility to lipid peroxidation may compromise sperm quality and interfere with the oxidative homeostasis by oxidative stress, which may be the main cause of chromatin damage in ram sperm. PMID:26811546

  12. Induced lipid peroxidation in ram sperm: semen profile, DNA fragmentation and antioxidant status.

    PubMed

    Hamilton, Thais Rose dos Santos; de Castro, Letícia Signori; Delgado, Juliana de Carvalho; de Assis, Patrícia Monken; Siqueira, Adriano Felipe Perez; Mendes, Camilla Mota; Goissis, Marcelo Demarchi; Muiño-Blanco, Teresa; Cebrián-Pérez, José Álvaro; Nichi, Marcílio; Visintin, José Antonio; D'Ávila Assumpção, Mayra Elena Ortiz

    2016-04-01

    Action of reactive oxygen species, protamination failures and apoptosis are considered the most important etiologies of sperm DNA fragmentation. This study evaluated the effects of induced lipid peroxidation susceptibility on native semen profile and identified the mechanisms involved in sperm DNA fragmentation and testicular antioxidant defense on Santa Ines ram sperm samples. Semen was collected from 12 adult rams (Ovis aries) performed weekly over a 9-week period. Sperm analysis (motility, mass motility, abnormalities, membrane and acrosome status, mitochondrial potential, DNA fragmentation, lipid peroxidation and intracellular free radicals production); protamine deficiency; PRM1, TNP1 and TNP2 gene expression; and determination of glutathione peroxidase (GPx), glutathione reductase, catalase (CAT) and superoxide dismutase activity and immunodetection in seminal plasma were performed. Samples were distributed into four groups according to the sperm susceptibility to lipid peroxidation after induction with ascorbate and ferrous sulfate (low, medium, high and very high). The results were analyzed by GLM test and post hoc least significant difference. We observed an increase in native GPx activity and CAT immunodetection in groups with high susceptibility to induced lipid peroxidation. We also found an increase in total sperm defects, acrosome and membrane damages in the group with the highest susceptibility to induced lipid peroxidation. Additionally, the low mitochondrial membrane potential, susceptible to chromatin fragmentation and the PRM1 mRNA were increased in the group showing higher susceptibility to lipid peroxidation. Ram sperm susceptibility to lipid peroxidation may compromise sperm quality and interfere with the oxidative homeostasis by oxidative stress, which may be the main cause of chromatin damage in ram sperm.

  13. Clusters of DNA induced by ionizing radiation: formation of short DNA fragments. I. Theoretical modeling

    NASA Technical Reports Server (NTRS)

    Holley, W. R.; Chatterjee, A.

    1996-01-01

    We have developed a general theoretical model for the interaction of ionizing radiation with chromatin. Chromatin is modeled as a 30-nm-diameter solenoidal fiber comprised of 20 turns of nucleosomes, 6 nucleosomes per turn. Charged-particle tracks are modeled by partitioning the energy deposition between primary track core, resulting from glancing collisions with 100 eV or less per event, and delta rays due to knock-on collisions involving energy transfers >100 eV. A Monte Carlo simulation incorporates damages due to the following molecular mechanisms: (1) ionization of water molecules leading to the formation of OH, H, eaq, etc.; (2) OH attack on sugar molecules leading to strand breaks: (3) OH attack on bases; (4) direct ionization of the sugar molecules leading to strand breaks; (5) direct ionization of the bases. Our calculations predict significant clustering of damage both locally, over regions up to 40 bp and over regions extending to several kilobase pairs. A characteristic feature of the regional damage predicted by our model is the production of short fragments of DNA associated with multiple nearby strand breaks. The shapes of the spectra of DNA fragment lengths depend on the symmetries or approximate symmetries of the chromatin structure. Such fragments have subsequently been detected experimentally and are reported in an accompanying paper (B. Rydberg, Radiat, Res. 145, 200-209, 1996) after exposure to both high- and low-LET radiation. The overall measured yields agree well quantitatively with the theoretical predictions. Our theoretical results predict the existence of a strong peak at about 85 bp, which represents the revolution period about the nucleosome. Other peaks at multiples of about 1,000 bp correspond to the periodicity of the particular solenoid model of chromatin used in these calculations. Theoretical results in combination with experimental data on fragmentation spectra may help determine the consensus or average structure of the

  14. Clusters of DNA induced by ionizing radiation: formation of short DNA fragments. I. Theoretical modeling.

    PubMed

    Holley, W R; Chatterjee, A

    1996-02-01

    We have developed a general theoretical model for the interaction of ionizing radiation with chromatin. Chromatin is modeled as a 30-nm-diameter solenoidal fiber comprised of 20 turns of nucleosomes, 6 nucleosomes per turn. Charged-particle tracks are modeled by partitioning the energy deposition between primary track core, resulting from glancing collisions with 100 eV or less per event, and delta rays due to knock-on collisions involving energy transfers >100 eV. A Monte Carlo simulation incorporates damages due to the following molecular mechanisms: (1) ionization of water molecules leading to the formation of OH, H, eaq, etc.; (2) OH attack on sugar molecules leading to strand breaks: (3) OH attack on bases; (4) direct ionization of the sugar molecules leading to strand breaks; (5) direct ionization of the bases. Our calculations predict significant clustering of damage both locally, over regions up to 40 bp and over regions extending to several kilobase pairs. A characteristic feature of the regional damage predicted by our model is the production of short fragments of DNA associated with multiple nearby strand breaks. The shapes of the spectra of DNA fragment lengths depend on the symmetries or approximate symmetries of the chromatin structure. Such fragments have subsequently been detected experimentally and are reported in an accompanying paper (B. Rydberg, Radiat, Res. 145, 200-209, 1996) after exposure to both high- and low-LET radiation. The overall measured yields agree well quantitatively with the theoretical predictions. Our theoretical results predict the existence of a strong peak at about 85 bp, which represents the revolution period about the nucleosome. Other peaks at multiples of about 1,000 bp correspond to the periodicity of the particular solenoid model of chromatin used in these calculations. Theoretical results in combination with experimental data on fragmentation spectra may help determine the consensus or average structure of the

  15. Large Fragment of DNA Polymerase I from Geobacillus sp. 777: Cloning and Comparison with DNA Polymerases I in Practical Applications.

    PubMed

    Oscorbin, Igor P; Boyarskikh, Ulyana A; Filipenko, Maksim L

    2015-10-01

    A truncated gene of DNA polymerase I from the thermophilic bacteria Geobacillus sp. 777 encoding a large fragment of enzyme (LF Gss pol) was cloned and sequenced. The resulting sequence is 1776-bp long and encodes a 592 aa protein with a predicted molecular mass of 69.8 kDa. Enzyme was overexpressed in E. coli, purified by metal-chelate chromatography, and biochemically characterized. The specific activity of LF Gss pol is 104,000 U/mg (one unit of enzyme was defined as the amount of enzyme that incorporated 10 nmol of dNTP into acid insoluble material in 30 min at 65 °C). The properties of LF Gss pol were compared to commercially available large fragments of DNA polymerase I from G. stearothermophilus (LF Bst pol) and Bacillus smithii (LF Bsm pol). Studied enzymes showed maximum activity at similar pH and concentrations of monovalent/divalent ions, whereas LF Gss pol and LF Bst pol were more thermostable than LF Bsm pol. LF Gss pol is more resistant to enzyme inhibitors (SYBR Green I, heparin, ethanol, urea, blood plasma) in comparison with LF Bst pol and LF Bsm pol. LF Gss pol is also suitable for loop-mediated isothermal amplification and whole genome amplification of human genomic DNA.

  16. Large Fragment of DNA Polymerase I from Geobacillus sp. 777: Cloning and Comparison with DNA Polymerases I in Practical Applications.

    PubMed

    Oscorbin, Igor P; Boyarskikh, Ulyana A; Filipenko, Maksim L

    2015-10-01

    A truncated gene of DNA polymerase I from the thermophilic bacteria Geobacillus sp. 777 encoding a large fragment of enzyme (LF Gss pol) was cloned and sequenced. The resulting sequence is 1776-bp long and encodes a 592 aa protein with a predicted molecular mass of 69.8 kDa. Enzyme was overexpressed in E. coli, purified by metal-chelate chromatography, and biochemically characterized. The specific activity of LF Gss pol is 104,000 U/mg (one unit of enzyme was defined as the amount of enzyme that incorporated 10 nmol of dNTP into acid insoluble material in 30 min at 65 °C). The properties of LF Gss pol were compared to commercially available large fragments of DNA polymerase I from G. stearothermophilus (LF Bst pol) and Bacillus smithii (LF Bsm pol). Studied enzymes showed maximum activity at similar pH and concentrations of monovalent/divalent ions, whereas LF Gss pol and LF Bst pol were more thermostable than LF Bsm pol. LF Gss pol is more resistant to enzyme inhibitors (SYBR Green I, heparin, ethanol, urea, blood plasma) in comparison with LF Bst pol and LF Bsm pol. LF Gss pol is also suitable for loop-mediated isothermal amplification and whole genome amplification of human genomic DNA. PMID:26289299

  17. Reaction of systemic lupus erythematosus antinative DNA antibodies with native DNA fragments from 20 to 1,200 base pairs.

    PubMed Central

    Papalian, M; Lafer, E; Wong, R; Stollar, B D

    1980-01-01

    Double-stranded DNA fragments of varying sizes were isolated and tested for binding to systemic lupus erythematosus (SLE) antinative DNA antibodies. Fragments of 20-25, 40-50, 90-110, and 160-180 base pairs (bp), along with intermediate-size pieces were isolated by preparative gel electrophoresis of a limited micrococcal nuclease digest of calf thymus DNA. Larger helical polynucleotides of 160-200, 380, 600-1,000, and 1,200 bp were isolated by preparative gel electrophoresis of DNA from chicken erythrocyte nucleosomes and oligonucleosomes. The fragments behaved as base-paired structures as tested by thermal denaturation, resistance to S1 nuclease, and serological assays with antibodies to native or denatured DNA. At a concentration of 0.27 muM, fragments of 20-25 bp were able to react with two SLE sera in competition with native DNA. With these and two other sera, DNA of 40-50 bp was a much more effective competitor. One serum required DNA greater than 180 bp for competition in the concentration range tested. Denatured fragments were much less effective than native fragments. The results emphasize the heterogeneity of SLE antinative DNA antibodies, confirm that secondary structure of the antigen is important for specific binding to these antibodies, and support the suggestion that bivalent binding to one molecule may be important for high functional affinity. Images PMID:6153184

  18. [Molecular dynamics of immune complex of photoadduct-containing DNA with Fab-Anti-DNA antibody fragment].

    PubMed

    Akberova, N I; Zhmurov, A A; Nevzorova, T A; Litvinov, R I

    2016-01-01

    Antibodies to DNA play an important role in the pathogenesis of autoimmune diseases. The elucidation of structural mechanisms of both the antigen recognition and the interaction of anti-DNA antibodies with DNA will help to understand the role of DNA-containing immune complexes in various pathologies and can provide a basis for new treatment modalities. Moreover, the DNA-antibody complex is an analog of specific intracellular DNA-protein interactions. In this work, we used in silico molecular dynamic simulations of bimolecular complexes of the dsDNA segment containing the Fab fragment of an anti-DNA antibody to obtain the detailed thermodynamic and structural characteristics of dynamic intermolecular interactions. Using computationally modified crystal structure of the Fab-DNA complex (PDB ID: 3VW3), we studied the equilibrium molecular dynamics of the 64M-5 antibody Fab fragment associated with the dsDNA fragment containing the thymine dimer, the product of DNA photodamage. Amino acid residues that constitute paratopes and the complementary nucleotide epitopes for the Fab-DNA construct were identified. Stacking and electrostatic interactions were found to play the main role in mediating the most specific antibody-dsDNA contacts, while hydrogen bonds were less significant. These findings may shed light on the formation and properties of pathogenic anti-DNA antibodies in autoimmune diseases, such as systemic lupus erythematosus associated with skin photosensitivity and DNA photodamage.

  19. Correlation of DNA fragment sizes within loci in the presence of non-detectable alleles.

    PubMed

    Chakraborty, R; Li, Z

    1995-01-01

    At present most forensic databases of DNA profiling of individuals consist of DNA fragment sizes measured from Southern blot restriction fragment length polymorphism (RFLP) analysis. Statistical studies of these databases have revealed that, when fragment sizes are measured from RFLP analysis, some of the single-band patterns of individuals may actually be due to heterozygosity of alleles in which fragment size resulting from one allele remains undetected. In this work, we evaluate the effect of such allelic non-detectability on correlation of fragment sizes within individuals at a locus, and its impact on the inference of independence of fragment sizes within loci. We show that when non-detectable alleles are present in a population at a locus, positive correlations of fragment sizes are expected, which increase with the proportion of non-detectable alleles at the locus. Therefore, a non-zero positive correlation is not a proof of allelic dependence within individuals. Applications of this theory to the current forensic RFLP databases within the US show that there is virtually no evidence of significant allelic dependence within any of the loci. Therefore, the assumption that DNA fragment sizes within loci are independent is valid, and hence, the population genetic principles of computing DNA profile frequencies by multiplying binned frequencies of fragment sizes are most likely to be appropriate for forensic applications of DNA typing data.

  20. The sperm chromatin dispersion test: a simple method for the determination of sperm DNA fragmentation.

    PubMed

    Fernández, Jose Luis; Muriel, Lourdes; Rivero, Maria Teresa; Goyanes, Vicente; Vazquez, Rosana; Alvarez, Juan G

    2003-01-01

    Sperm DNA fragmentation is being increasingly recognized as an important cause of infertility. We herein describe the Sperm Chromatin Dispersion (SCD) test, a novel assay for sperm DNA fragmentation in semen. The SCD test is based on the principle that sperm with fragmented DNA fail to produce the characteristic halo of dispersed DNA loops that is observed in sperm with non-fragmented DNA, following acid denaturation and removal of nuclear proteins. This was confirmed by the analysis of DNA fragmentation using the specific DNA Breakage Detection-Fluorescence In Situ Hybridization (DBD-FISH) assay, which allows the detection of DNA breaks in lysed sperm nuclei. Sperm suspensions either prepared from semen or isolated from semen by gradient centrifugation were embedded in an agarose microgel on slides and treated with 0.08 N HCl and lysing solutions containing 0.8 M dithiothreitol (DTT), 1% sodium dodecyl sulfate (SDS), and 2 M NaCl. Then, the slides were sequentially stained with DAPI (4',6-diamidino-2-phenylindole) and/or the Diff-Quik reagent, and the percentages of sperm with nondispersed and dispersed chromatin loops were monitored by fluorescence and brightfield microscopy, respectively. The results indicate that all sperm with nondispersed chromatin displayed DNA fragmentation, as measured by DBD-FISH. Conversely, all sperm with dispersed chromatin had very low to undetectable DBD-FISH labeling. SCD test values were significantly higher in patients being screened for infertility than in normozoospermic sperm donors who had participated in a donor insemination program. The coefficient of variation obtained using 2 different observers, either by digital image analysis (DIA) or by brightfield microscopy scoring, was less than 3%. In conclusion, the SCD test is a simple, accurate, highly reproducible, and inexpensive method for the analysis of sperm DNA fragmentation in semen and processed sperm. Therefore, the SCD test could potentially be used as a routine test

  1. Effects of zinc and cadmium on apoptotic DNA fragmentation in isolated bovine liver nuclei.

    PubMed Central

    Lohmann, R D; Beyersmann, D

    1994-01-01

    Isolated nuclei from mammalian cells contain a calcium-dependent endonuclease. The produced DNA fragmentation is a necessary step in the sequence of events resulting in apoptosis (programmed cell death). We report here that zinc and cadmium inhibit the calcium-dependent endonuclease. The essential metal ion zinc may counterbalance the calcium-mediated apoptosis. In contrast to zinc, cadmium alone stimulates the endonuclease by replacing calcium. Thus cadmium exerts a dual effect: micromolar concentrations inhibit the apoptotic endonuclease in the presence but activate the enzyme in the absence of calcium. Images Figure 2. PMID:7843111

  2. Investigation on the Origin of Sperm DNA Fragmentation: Role of Apoptosis, Immaturity and Oxidative Stress

    PubMed Central

    Muratori, Monica; Tamburrino, Lara; Marchiani, Sara; Cambi, Marta; Olivito, Biagio; Azzari, Chiara; Forti, Gianni; Baldi, Elisabetta

    2015-01-01

    Sperm DNA fragmentation (sDF) represents a threat to male fertility, human reproduction and the health of the offspring. The causes of sDF are still unclear, even if apoptosis, oxidative assault and defects in chromatin maturation are hypothesized. Using multicolor flow cytometry and sperm sorting, we challenged the three hypothesized mechanisms by simultaneously evaluating sDF and signs of oxidative damage (8-hydroxy, 2′-deoxyguanosine [8-OHdG] and malondialdehyde [MDA]), apoptosis (caspase activity and cleaved poly[ADP-ribose] polymerase [cPARP]) and sperm immaturity (creatine phosphokinase [CK] and excess of residual histones). Active caspases and c-PARP were concomitant with sDF in a high percentage of spermatozoa (82.6% ± 9.1% and 53.5% ± 16.4%, respectively). Excess of residual histones was significantly higher in DNA-fragmented sperm versus sperm without DNA fragmentation (74.8% ± 17.5% and 37.3% ± 16.6%, respectively, p < 0.005), and largely concomitant with active caspases. Conversely, oxidative damage was scarcely concomitant with sDF in the total sperm population, at variance with live sperm, where 8-OHdG and MDA were clearly associated to sDF. In addition, most live cells with active caspase also showed 8-OHdG, suggesting activation of apoptotic pathways in oxidative-injured live cells. This is the first investigation on the origin of sDF directly evaluating the simultaneous presence of the signs of the hypothesized mechanisms with DNA breaks at the single cell level. The results indicate that the main pathway leading to sperm DNA breaks is a process of apoptosis, likely triggered by an impairment of chromatin maturation in the testis and by oxidative stress during the transit in the male genital tract. These findings are highly relevant for clinical studies on the effects of drugs on sDF and oxidative stress in infertile men and for the development of new therapeutic strategies. PMID:25786204

  3. An innovative platform for quick and flexible joining of assorted DNA fragments

    PubMed Central

    De Paoli, Henrique Cestari; Tuskan, Gerald A.; Yang, Xiaohan

    2016-01-01

    Successful synthetic biology efforts rely on conceptual and experimental designs in combination with testing of multi-gene constructs. Despite recent progresses, several limitations still hinder the ability to flexibly assemble and collectively share different types of DNA segments. Here, we describe an advanced system for joining DNA fragments from a universal library that automatically maintains open reading frames (ORFs) and does not require linkers, adaptors, sequence homology, amplification or mutation (domestication) of fragments in order to work properly. This system, which is enhanced by a unique buffer formulation, provides unforeseen capabilities for testing, and sharing, complex multi-gene circuitry assembled from different DNA fragments. PMID:26758940

  4. An innovative platform for quick and flexible joining of assorted DNA fragments.

    PubMed

    De Paoli, Henrique Cestari; Tuskan, Gerald A; Yang, Xiaohan

    2016-01-01

    Successful synthetic biology efforts rely on conceptual and experimental designs in combination with testing of multi-gene constructs. Despite recent progresses, several limitations still hinder the ability to flexibly assemble and collectively share different types of DNA segments. Here, we describe an advanced system for joining DNA fragments from a universal library that automatically maintains open reading frames (ORFs) and does not require linkers, adaptors, sequence homology, amplification or mutation (domestication) of fragments in order to work properly. This system, which is enhanced by a unique buffer formulation, provides unforeseen capabilities for testing, and sharing, complex multi-gene circuitry assembled from different DNA fragments. PMID:26758940

  5. CDP-choline reduces pro-caspase and cleaved caspase-3 expression, nuclear DNA fragmentation, and specific PARP-cleaved products of caspase activation following middle cerebral artery occlusion in the rat.

    PubMed

    Krupinski, J; Ferrer, I; Barrachina, M; Secades, J J; Mercadal, J; Lozano, R

    2002-05-01

    Citicoline has been demonstrated to be beneficial in several models of cerebral ischaemia. We tested the hypothesis that citicoline may provide apoptotic pathways following focal cerebral ischaemia. Focal cerebral ischaemia was produced by distal, permanent middle cerebral artery occlusion (MCAO) in Sprague-Dawley rats. The animals were randomised into four groups: (B+A) Citicoline 500 mg/kg IP 24 and 1 h before MCAO, and 23 h after MCAO; (A) citicoline 500 mg/kg IP, within 30 min after MCAO, and 23 h after MCAO; (C) vehicle IP; and (D) sham-operated. The animals were sacrificed at 12 h (n=8 per group) and 24 h (n=8 per group) after MCAO. Immunohistochemistry was performed on free-floating tissue sections with goat polyclonal antibodies to procaspase-1, -2, -3, -6 and -8, and in paraffin-embedded sections processed for cleaved caspase-3 (17 kDa) immunohistochemistry. Finally, some sections were stained with the method of in situ end-labelling of nuclear DNA fragmentation. For gel electrophoresis and Western blotting, antibodies to poly (ADP-ribose) polymerase (PARP) products of 89 kDa were used to reveal specific cleavage substrates of caspases. MCAO induced the expression of all procaspases and the expression of PARP products of 89 kDa, as well as cells with nuclear DNA fragmentation, at 12 and 24 h, in the infarcted core and penumbra. Citicoline reduced the expression of all procaspases at 12 and 24 h after MCAO, as well as the expression of cleaved caspase-3 in cells in the penumbra area. This was accompanied by a reduction in the number of cells bearing nuclear DNA fragments. The expression of caspase-cleaved products of PARP (PARP 89 kDa) was reduced in citicoline-treated ischaemic rats. These results show that citicoline inhibits the expression of proteins involved in apoptosis following MCAO.

  6. Deoxyribonuclease I is Essential for DNA Fragmentation Induced by Gamma Radiation in Mice

    PubMed Central

    Apostolov, Eugene O.; Soultanova, Izoumroud; Savenka, Alena; Bagandov, Osman O.; Yin, Xiaoyan; Stewart, Anna G.; Walker, Richard B.; Basnakian, Alexei G.

    2009-01-01

    Gamma radiation is known to induce cell death in several organs. This damage is associated with endonuclease-mediated DNA fragmentation; however, the enzyme that produces the latter and is likely to cause cell death is unknown. To determine whether the most abundant cytotoxic endonuclease DNase I mediates γ-radiation-induced tissue injury, we used DNase I knockout mice and zinc chelate of 3,5-diisopropylsalicylic acid (Zn-DIPS), which, as we show, has DNase I inhibiting activity in vitro. The study demonstrated for the first time that inactivation or inhibition of DNase I ameliorates radiation injury to the white pulp of spleen, intestine villi and bone marrow as measured using a quantitative TUNEL assay. The spleen and intestine of DNase I knockout mice were additionally protected from radiation by Zn-DIPS, perhaps due to the broad radioprotective effect of the zinc ions. Surprisingly, the main DNase I-producing tissues such as the salivary glands, pancreas and kidney showed no effect of DNase I inactivation. Another unexpected observation was that even without irradiation, DNA fragmentation and cell death were significantly lower in the intestine of DNase I knockout mice than in wild-type mice. This points to the physiological role of DNase I in normal cell death in the intestinal epithelium. In conclusion, our results suggested that DNase I-mediated mechanism of DNA damage and subsequent tissue injury are essential in γ-radiation-induced cell death in radiosensitive organs. PMID:19772469

  7. Effect of cryopreservation on the sperm DNA fragmentation dynamics of the bottlenose dolphin (Tursiops truncatus).

    PubMed

    Sánchez-Calabuig, M J; López-Fernández, C; Johnston, S D; Blyde, D; Cooper, J; Harrison, K; de la Fuente, J; Gosálvez, J

    2015-04-01

    Sperm DNA fragmentation is one of the major causes of infertility; the sperm chromatin dispersion test (SCDt) evaluates this parameter and offers the advantage of species-specific validated protocol and ease of use under field conditions. The main purpose of this study was to evaluate sperm DNA fragmentation dynamics in both fresh and post-thaw bottlenose dolphin sperm using the SCDt following different cryopreservation protocols to gain new information about the post-thaw differential sperm DNA longevity in this species. Fresh and cryopreserved semen samples from five bottlenose dolphins were examined for sperm DNA fragmentation dynamics using the SCDt (Halomax(®)). Sperm DNA fragmentation was assessed immediately at collection and following cryopreservation (T0) and then after 0.5, 1, 4, 8, 24, 48 and 72 h incubation at 37°C. Serially collected ejaculates from four dolphins were frozen using different cryopreservation protocols in a TES-TRIS-fructose buffer (TTF), an egg-yolk-free vegetable lipid LP1 buffer (LP1) and human sperm preservation medium (HSPM). Fresh ejaculated spermatozoa initially showed low levels of DNA fragmentation for up to 48 h. Lower Sperm DNA fragmentation (SDF) was found in the second fresh ejaculate compared to the first when more than one sample was collected on the same day (p < 0.05); this difference was not apparent in any other seminal characteristic. While there was no difference observed in SDF between fresh and frozen-thawed sperm using the different cryopreservation protocols immediately after thawing (T0), frozen-thawed spermatozoa incubated at 37°C showed an increase in the rate of SDF after 24 h. Sperm frozen in the LP1(℗) buffer had higher levels (p < 0.05) of DNA fragmentation after 24- and 48-h incubation than those frozen in TTF or HSPM. No correlation was found between any seminal characteristic and DNA fragmentation in either fresh and/or frozen-thawed samples.

  8. Effect of cryopreservation on the sperm DNA fragmentation dynamics of the bottlenose dolphin (Tursiops truncatus).

    PubMed

    Sánchez-Calabuig, M J; López-Fernández, C; Johnston, S D; Blyde, D; Cooper, J; Harrison, K; de la Fuente, J; Gosálvez, J

    2015-04-01

    Sperm DNA fragmentation is one of the major causes of infertility; the sperm chromatin dispersion test (SCDt) evaluates this parameter and offers the advantage of species-specific validated protocol and ease of use under field conditions. The main purpose of this study was to evaluate sperm DNA fragmentation dynamics in both fresh and post-thaw bottlenose dolphin sperm using the SCDt following different cryopreservation protocols to gain new information about the post-thaw differential sperm DNA longevity in this species. Fresh and cryopreserved semen samples from five bottlenose dolphins were examined for sperm DNA fragmentation dynamics using the SCDt (Halomax(®)). Sperm DNA fragmentation was assessed immediately at collection and following cryopreservation (T0) and then after 0.5, 1, 4, 8, 24, 48 and 72 h incubation at 37°C. Serially collected ejaculates from four dolphins were frozen using different cryopreservation protocols in a TES-TRIS-fructose buffer (TTF), an egg-yolk-free vegetable lipid LP1 buffer (LP1) and human sperm preservation medium (HSPM). Fresh ejaculated spermatozoa initially showed low levels of DNA fragmentation for up to 48 h. Lower Sperm DNA fragmentation (SDF) was found in the second fresh ejaculate compared to the first when more than one sample was collected on the same day (p < 0.05); this difference was not apparent in any other seminal characteristic. While there was no difference observed in SDF between fresh and frozen-thawed sperm using the different cryopreservation protocols immediately after thawing (T0), frozen-thawed spermatozoa incubated at 37°C showed an increase in the rate of SDF after 24 h. Sperm frozen in the LP1(℗) buffer had higher levels (p < 0.05) of DNA fragmentation after 24- and 48-h incubation than those frozen in TTF or HSPM. No correlation was found between any seminal characteristic and DNA fragmentation in either fresh and/or frozen-thawed samples. PMID:25604784

  9. A method for selective PCR-amplification of genomic DNA fragments (SAGF method)

    SciTech Connect

    Zheleznaya, L.A.; Menzenyuk, O.Y.; Matvienko, N.N.; Matvienko, N.I.

    1995-09-01

    A method is suggested for dividing into individual sets of the complex mixtures of fragments obtained by DNA cleavage with type IIS and IIN restriction endonucleases producing single-stranded termini with different sequences at the DNA fragment ends. The method is based on the ligation of short double-stranded adapters with single-stranded ends complementary to termini of the selected set of fragments followed by PCR-amplification with the primer representing one of the adapter chains. Using endonucleases BcoKI and Bli736I, recognizing sequences CTCTTC and GGTCTC and producing three- and four nucleotide 5{prime}-termini, respectively, it has been shown that amplification of a set of fragments occurs only upon attachment of the adapters to the DNA fragments with DNA-ligase. Several possible applications of the SAGF method are suggested: obtaining individual bands in DNA fingerprinting; reducing the kinetic complexity of DNA in representative difference analysis (RDA method) of complex genomes; cataloging of DNA fragments; construction of physical genome maps. 13 refs., 3 figs., 2 tabs.

  10. Nuclear-localized plastid DNA fragments in protozoa, metazoa and fungi.

    PubMed

    Yuan, Shu; Sun, Xin; Mu, Lin-Chun; Lei, Tao; Liu, Wen-Juan; Wang, Jian-Hui; Du, Jun-Bo; Lin, Hong-Hui

    2007-01-01

    We analyzed nuclear-localized plastid-like DNA (nupDNA) fragments in protozoa, metazoa and fungi. Most eukaryotes that do not have plastids contain 40-5000 bp nupDNAs in their nuclear genomes. These nupDNA fragments are mainly derived from repeated regions of plastids and distribute through the whole genomes. A majority of nupDNA fragments is located on coding regions with very important functions. Similar to plastids, these nupDNAs most possibly originate from cyanobacteria. Analysis of them suggests that through millions of years of universal endosymbiosis and gene transfer they may have occurred in ancient protists before divergence of plants and animals/fungi, and some transferred fragments have been reserved till now even in modern mammals.

  11. Comparison of DNA fragmentation and color thresholding for objective quantitation of apoptotic cells

    NASA Technical Reports Server (NTRS)

    Plymale, D. R.; Ng Tang, D. S.; Fermin, C. D.; Lewis, D. E.; Martin, D. S.; Garry, R. F.

    1995-01-01

    Apoptosis is a process of cell death characterized by distinctive morphological changes and fragmentation of cellular DNA. Using video imaging and color thresholding techniques, we objectively quantitated the number of cultured CD4+ T-lymphoblastoid cells (HUT78 cells, RH9 subclone) displaying morphological signs of apoptosis before and after exposure to gamma-irradiation. The numbers of apoptotic cells measured by objective video imaging techniques were compared to numbers of apoptotic cells measured in the same samples by sensitive apoptotic assays that quantitate DNA fragmentation. DNA fragmentation assays gave consistently higher values compared with the video imaging assays that measured morphological changes associated with apoptosis. These results suggest that substantial DNA fragmentation can precede or occur in the absence of the morphological changes which are associated with apoptosis in gamma-irradiated RH9 cells.

  12. Capillary electrophoretic separation of DNA restriction fragments using dilute polymer solutions

    SciTech Connect

    Braun, B.; Blanch, W.; Prausnitz, J.M.

    1997-02-01

    Because the mechanism of DNA separation in capillary electrophoresis is not well understood, selection of polymers is a {open_quotes}trial-and-error{close_quotes} procedure. We investigated dilute-solution DNA separations by capillary electrophoresis using solutions of four polymers that differ in size, shape and stiffness. Hydroxyethylcellulose of high molecular weight provides excellent separation of large DNA fragments (2027 bp - 23130 bp). Polyvinylpyrrolidone separates DNA from 72 bp to 23 kbp and star-(polyethylene oxide), like linear poly (ethylene oxide), provides separation of fragments up to 1353 bp.

  13. Simultaneous Vitality and DNA-fragmentation measurement in spermatozoa of smokers and non-smokers.

    PubMed

    De Bantel, A; Fleury-Feith, J; Poirot, C; Berthaut, I; Garcin, C; Landais, P; Ravel, C

    2014-08-30

    Background: Because cigarette smoke is a powerful ROS producer, we hypothesized that the spermatozoa of smokers would be more at risk of having increased DNA fragmentation than spermatozoa of non-smoking men. Methods: A Cross-Sectional Study was performed on consenting smokers and non-smokers, consulting in an infertility clinic for routine sperm analysis. The application of a novel TUNEL assay coupled to a vitality marker, LIVE/DEAD®, allowed both DNA fragmentation and viability measurement within spermatozoa of participants to be analyzed by flow cytometry. Results: The coupled vitality-DNA fragmentation analysis revealed that non-smokers and smokers respectively presented medians of 3.6% [0.6-36.8] and 3.3% [0.9-9.6] DNA fragmented spermatozoa among the living spermatozoa population (p>0.05). Conclusion: No deleterious effect of smoking on spermatozoa was found in our study. More studies concerning potential mutagenic capacities of cigarette smoke on spermatozoa are necessary. In addition, the coupled vitality-DNA fragmentation analysis may orient Assisted Reproductive Technologies teams when confronted with patients having a high percentage of DNA-fragmented living spermatozoa. © 2014 Clinical Cytometry Society.

  14. DNA fragmentation occurs in skeletal muscle during tumor growth: A link with cancer cachexia?

    PubMed

    van Royen, M; Carbó, N; Busquets, S; Alvarez, B; Quinn, L S; López-Soriano, F J; Argilés, J M

    2000-04-13

    In two different experimental models of cancer cachexia, the rat Yoshida AH-130 ascites hepatoma and the mouse Lewis lung carcinoma, the implantation of the tumor caused a loss of body weight which was associated with a reduction in the weight of different skeletal muscles, as well as with their protein content. The decrease in protein content was accompanied by a reduction in DNA content. Interestingly, the protein/DNA ratio was unchanged in the skeletal muscle of the tumor-bearing animals as compared with the non-tumor-bearing controls. Analysis of DNA fragmentation in skeletal muscle clearly showed enhanced laddering in the skeletal muscle of tumor-bearing animals, suggesting an apoptotic phenomenon. Interestingly, the degree of laddering (total DNA fragmented) increased with tumor burden. These results suggest that DNA fragmentation may be a primary event in cancer-associated cachexia.

  15. Recombination of homologous DNA fragments transfected into mammalian cells occurs predominantly by terminal pairing.

    PubMed Central

    Anderson, R A; Eliason, S L

    1986-01-01

    The mechanism by which double-strand cleavages stimulate the joining of plasmid DNA fragments introduced into cultured mammalian cells was investigated by cotransfecting pairs of plasmids encoding deletion mutations in a dominant selectable gene into LMtk- cells. Plasmid recombination substrates were produced by creating deletions of different sizes within the neo coding region of the pSV2neo plasmid. Complementing pairs of deleted plasmid DNAs were linearized at specific unique sites before cotransfection into mouse LMtk- cells by the calcium phosphate precipitation method. Cleaving one donor plasmid produced a 4- to 10-fold stimulation in the production of colonies able to survive in medium containing G-418. The linearization of the second plasmid further increased the efficiency by another factor of 6 to 15 when the cut was made on the opposite side of the homology, approximately equidistant from the center of the overlap. Fifty-seven individual G-418-resistant colonies representing the products of individual crosses were isolated, and the genomic DNAs containing the presumably integrated, functional recombinant neo genes were analyzed on Southern blots. A band consistent with the exchange of markers flanking the neo gene was present in 90% of the DNAs examined. In only one case was the pattern indicative of either a double crossover or a gene conversion event. These results support the idea that homologous extrachromosomal DNA fragments are joined through annealing of overlapping single-stranded ends. This DNA-joining phenomenon may represent the activity of cellular DNA repair enzymes; its relationship to genetic recombination occurring at the chromosomal level remains to be determined. Images PMID:3023971

  16. Generation of porcine reproductive and respiratory syndrome virus by in vitro assembly of viral genomic cDNA fragments.

    PubMed

    Suhardiman, Maman; Kramyu, Jarin; Narkpuk, Jaraspim; Jongkaewwattana, Anan; Wanasen, Nanchaya

    2015-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent for a swine disease affecting the pig industry worldwide. Infection with PRRSV leads to reproductive complications, respiratory illness, and weak immunity to secondary infections. To better control PRRSV infection, novel approaches for generating control measures are critically needed. Here, in vitro Gibson assembly (GA) of viral genomic cDNA fragments was tested for its use as a quick and simple method to recover infectious PRRSV in cell culture. GA involves the activities of T5-exonuclease, Phusion polymerase, and Taq ligase to join overlapping cDNA fragments in an isothermal condition. Four overlapping cDNA fragments covering the entire PRRSV genome and one vector fragment were used to create a plasmid capable of expressing the PRRSV genome. The assembled product was used to transfect a co-culture of 293T and MARC-145 cells. Supernatants from the transfected cells were then passaged onto MARC-145 cells to rescue infectious virus particles. Verification and characterization of the recovered virus confirmed that the GA protocol generated infectious PRRSV that had similar characteristics to the parental virus. This approach was then tested for the generation of a chimeric virus. By replacing one of the four genomic fragments with that of another virus strain, a chimeric virus was successfully recovered via GA. In conclusion, this study describes for the first time the use of GA as a simple, yet powerful tool for generating infectious PRRSV needed for studying PRRSV biology and developing novel vaccines.

  17. Characterization of DNA size determination of small fragments by flow cytometry

    SciTech Connect

    Petty, J.T.; Johnson, M.E.; Goodwin, P.M.; Martin, J.C.; Jett, J.H.; Keller, R.A.

    1995-05-15

    DNA fragment lengths were determined using the intensity of fluorescent bursts from single fragments stained with a thiazole orange derivative. The individual stained fragments were introduced into a sheath flow cuvette and passed through a low-power (30 mW), continuous-wave laser beam with transit times in the range 3-5 ms. As little as 50 fg of DNA was analyzed at a rate of 40 fragments/s for times ranging from 1 to 15 min. A detectable lower size limit of 1.5 kilobase pairs (kbp) was demonstrated, and a linear relationship between fluorescence intensity and fragment length was observed. Issues relating to size resolution in the 2-50 kbp range are discussed. 25 refs., 7 figs., 1 tab.

  18. Anomalous Separation of Small Y-Chromosomal DNA Fragments on Microchip Electrophoresis

    PubMed Central

    Jabasini, Mohammad; Ewis, Ashraf; Sato, Youichi; Nakahori, Yutaka; Baba, Yoshinobu

    2016-01-01

    We investigated an anomalous DNA separation where two DNA fragments from the human Y-chromosome sY638 (64 bp) and sY592 (65 bp), with only one base pair difference, were separated. This result is abnormal since in a previous study, we found that 5 bp was the minimum difference between two DNA fragments that the microchip electrophoresis system can separate. The formation of a mini-loop in the structure of the DNA fragment of sY638 (64 bp) was strongly expected to be the reason. To investigate this, we synthesized three modified DNA fragments for sY638 (64 bp), and the modifications were in two expected locations for possible mini-loop formation. Later, the separation between sY592 (65 bp) and the three modified fragments of sY638 (64 bp) was not possible. Thus, we conclude that the formation of a mini-loop in the structure of the DNA is the reason behind this anomalous separation.

  19. Isolation and characterization of matrix associated region DNA fragments in rice (Oryza sativa L.).

    PubMed

    Nomura, K; Saito, W; Ono, K; Moriyama, H; Takahashi, S; Inoue, M; Masuda, K

    1997-09-01

    To investigate the interactions between chromosomal DNA and nuclear matrices in higher plants, matrix associated regions (MARs) of rice (Oryza sativa L.) DNAs were cloned. First, we prepared nuclear matrices from isolated nuclei by digesting them with EcoRI and then extracting with 2 M NaCl. About 6% of the total DNA remained in the nuclear matrices after this digestion and extraction. The residual DNA fragments in the nuclear matrices were cloned. Some of the cloned DNA fragments showed binding to certain nuclear proteins. One of the MAR fragments contained sequences related to known consensus motifs and a hairpin loop structure. A method is presented for isolation of matrix associated region (MAR) DNAs from plant cells.

  20. Selective binding of specific mouse genomic DNA fragments by mouse vimentin filaments in vitro.

    PubMed

    Wang, X; Tolstonog, G; Shoeman, R L; Traub, P

    1996-03-01

    Mouse vimentin intermediate filaments (IFs) reconstituted in vitro were analyzed for their capacity to select certain DNA sequences from a mixture of about 500-bp-long fragments of total mouse genomic DNA. The fragments preferentially bound by the IFs and enriched by several cycles of affinity binding and polymerase chain reaction (PCR) amplification were cloned and sequenced. In general, they were G-rich and highly repetitive in that they often contained Gn, (GT)n, and (GA)n repeat elements. Other, more complex repeat sequences were identified as well. Apart from the capacity to adopt a Z-DNA and triple helix configuration under superhelical tension, many fragments were potentially able to form cruciform structures and contained consensus binding sites for various transcription factors. All of these sequence elements are known to occur in introns and 5'/3'-flanking regions of genes and to play roles in DNA transcription, recombination and replication. A FASTA search of the EMBL data bank indeed revealed that sequences homologous to the mouse repetitive DNA fragments are commonly associated with gene-regulatory elements. Unexpectedly, vimentin IFs also bound a large number of apparently overlapping, AT-rich DNA fragments that could be aligned into a composite sequence highly homologous to the 234-bp consensus centromere repeat sequence of gamma-satellite DNA. Previous experiments have shown a high affinity of vimentin for G-rich, repetitive telomere DNA sequences, superhelical DNA, and core histones. Taken together, these data support the hypothesis that, after penetration of the double nuclear membrane via an as yet unidentified mechanism, vimentin IFs cooperatively fix repetitive DNA sequence elements in a differentiation-specific manner in the nuclear periphery subjacent to the nuclear lamina and thus participate in the organization of chromatin and in the control of transcription, replication, and recombination processes. This includes aspects of global

  1. A mercury-thiol affinity system for rapid generation of overlapping labeled DNA fragments for DNA sequencing.

    PubMed Central

    Hartley, J L; Chen, K K; Donelson, J E

    1982-01-01

    We describe an in vitro protocol for quickly generating overlapping terminal-labeled restriction fragments for DNA sequence analysis via the Maxam-Gilbert technique. The protocol involves introducing mercurated nucleotides into one end of a region to be sequenced, partial digestion with several restriction enzymes and terminal-labeling, separation of the mercurated restriction enzymes and terminal-labeling, separation of the mercurated restriction fragments from non-mercurated ones on a thiol column and resolution of the different mercurated fragments on one preparative agarose gel. The protocol was used to determine the nucleotide sequence of a 980 base pair cDNA that contains the coding region for a variable surface glycoprotein of Trypanosoma brucei. It could just as quickly and easily be used to obtain many terminal-labeled overlapping restriction fragments covering a region of several kilobases. Images PMID:7050914

  2. Genetic variation detected by quantitative analysis of end-labeled genomic DNA fragments

    SciTech Connect

    Asakawa, Jun-Ichi; Kodaira, Mieko; Satoh, Chiyoko; Kuick, R.; Hanash, S.M.; Neel, J.V.

    1994-09-13

    The continuing efforts to evaluate specific human populations for altered germinal mutation rates would profit from more efficient and more specific approaches than those of the past. To this end, the authors have explored the potential usefulness of two-dimensional electrophoresis of DNA fragments obtained from restriction-enzyme-digested genomic DNA. This permits the analysis, on a single preparation, of {approx} 2000 DNA fragments varying in size from 1.0 to 5.0 kb in the first dimension and from 0.3 to 2.0 kb in the second dimension. To enter into a genetic analysis, these fragments must exhibit positional and quantitative stability. With respect to the latter, if spots are the product of only one fragment, the coefficient of variation of spot intensity should be approximately {le} 0.12. At present, 482 of the spots in preparations meet these standards. In an examination of preparations based on three Japanese mother/father/child trios, 43 of these 482 spots were found to exhibit variation that segregated within families according to mendelian principles. The authors have established the feasibility of cloning a variant fragment from such gels and establishing its nucleotide sequence. This technology should be highly efficient in monitoring for mutations resulting in loss/gain/rearrangement events in DNA fragments distributed throughout the genome. 17 refs., 2 figs., 2 tabs.

  3. Cloning should be simple: Escherichia coli DH5α-mediated assembly of multiple DNA fragments with short end homologies

    DOE PAGES

    Kostylev, Maxim; Otwell, Anne E.; Richardson, Ruth E.; Suzuki, Yo; Isalan, Mark

    2015-09-08

    Numerous DNA assembly technologies exist for generating plasmids for biological studies. Many procedures require complex in vitro or in vivo assembly reactions followed by plasmid propagation in recombination-impaired Escherichia coli strains such as DH5α, which are optimal for stable amplification of the DNA materials. Here we show that despite its utility as a cloning strain, DH5α retains sufficient recombinase activity to assemble up to six doublestranded DNA fragments ranging in size from 150 bp to at least 7 kb into plasmids in vivo. This process also requires surprisingly small amounts of DNA, potentially obviating the need for upstream assembly processesmore » associated with most common applications of DNA assembly. In addition, we demonstrate the application of this process in cloning of various DNA fragments including synthetic genes, preparation of knockout constructs, and incorporation of guide RNA sequences in constructs for clustered regularly interspaced short palindromic repeats (CRISPR) genome editing. This consolidated process for assembly and amplification in a widely available strain of E. coli may enable productivity gain across disciplines involving recombinant DNA work.« less

  4. [THE OPTIMAL CONDITIONS OF STORAGE OF SPERMATOZOA FOR ANALYSIS OF DNA FRAGMENTATION].

    PubMed

    Tataru, D A; Markova, E V; Osadchuk, L V; Sheina, E V; Svetlakov, A V

    2015-04-01

    The analysis of fragmentation of DNA of spermatozoons using technique of flow cytometry to evaluate male fertility more and more often begins to be applied in clinical diagnostic. However, development of optimal protocol of storage and preparation of spermatozoons for analysis still is at the stage of experimental elaboration. The studv was carried out to analyse effect of different conditions of preparation of ejaculate for adequate evaluation of index of fragmentation of DNA of spermatozoons using sperm chromatin structure assay technique. The sampling consisted of 20 patients of the Krasnoyarsk center of reproductive medicine. The sperm chromatin structure assay technique was applied to evaluate index of fragmentation of DNA of spermatozoons in fresh native ejaculate and after storage of spermatozoons under different temperature (37, 25 and 4 degrees C) and duration (1-2 and 1-3 days) and conditions of storage (-20 or -70 degrees C) of frozen spermatozoons (as native ejaculate or in TNE-buffer). It is demonstrated that index of fragmentation of DNA of spermatozoons has no significant alterations in ejaculate stored under 4 degrees C during 48 hours. In case of storage of ejaculate under 25 or 37 degrees C index of fragmentation of DNA of spermatozoons significantly increases already after first day of storage. The incubation of ejaculate under 37 degrees C results in increasing of index of fragmentation of DNA of spermatozoons already after first hour. The individual differences are established related to degree of increasing of index of fragmentation of DNA of spermatozoons because of impact of studied temperatures of ejaculate incubation. The storage of spermatozoons under temperature of - 20 and -70 degrees C in native ejaculate or in TNE-buffer has no effect of index of fragmentation of DNA of spermatozoons with measurement during 1-2 hours. Therefore, storage and transportation of native ejaculate under 4 degrees C during 1-2 days or in frozen condition

  5. Clinical value of DNA fragmentation evaluation tests under ART treatments

    PubMed Central

    Tavukçuoğlu, İlkay Şafak; Al-Azawi, Tahani; Khaki, Amir Afshin; Khaki, Arash; Khalil, Ahmed; Al-Hasani, Safaa

    2012-01-01

    Male reproductive health has been under scrutiny recently. Many studies in the literature have concluded that semen quality is declining and that the incidence of testicular cancers is increasing. The reason for this change has been attributed to damage in sperm chromatin. During in vivo reproduction, the natural selection process ensures that only a spermatozoon with normal genomic material can fertilize an oocyte. However, the assisted reproduction technique (ART) is our selection process, leading to the possibility that abnormal spermatozoa could be used to fertilize an oocyte. We could avoid this by quantifying the amount and type of genomic damage in sperm using well-accepted laboratory methods. The sperm deoxyribonucleic acid (DNA) integrity is important for success of natural or assisted fertilization as well as normal development of the embryo, fetus and child. Intra cytoplasmic sperm injection (ICSI) is bypassing natural sperm selection mechanisms, which increases the risk of transmitting damaged DNA. The significance of required investigations and multiple techniques is that they could evaluate DNA defects in human spermatozoa. The ability of these techniques to accurately estimate sperm DNA damage depends on many technical and biological aspects. The aim of this review is to evaluate the most commonly used methods. PMID:24592055

  6. Flying squirrel-associated Rickettsia prowazekii (epidemic typhus rickettsiae) characterized by a specific DNA fragment produced by restriction endonuclease digestion.

    PubMed

    Regnery, R L; Fu, Z Y; Spruill, C L

    1986-01-01

    The DNA from flying squirrel-associated Rickettsia prowazekii was characterized by using a specific DNA fragment produced by digestion with the enzyme BamHI. The DNA fragment was cloned into a plasmid vector and used to readily distinguish between available human- and flying squirrel-associated R. prowazekii DNAs derived from crude cytoplasmic extracts. PMID:3009528

  7. Flying squirrel-associated Rickettsia prowazekii (epidemic typhus rickettsiae) characterized by a specific DNA fragment produced by restriction endonuclease digestion.

    PubMed Central

    Regnery, R L; Fu, Z Y; Spruill, C L

    1986-01-01

    The DNA from flying squirrel-associated Rickettsia prowazekii was characterized by using a specific DNA fragment produced by digestion with the enzyme BamHI. The DNA fragment was cloned into a plasmid vector and used to readily distinguish between available human- and flying squirrel-associated R. prowazekii DNAs derived from crude cytoplasmic extracts. Images PMID:3009528

  8. Accurate phylogenetic classification of DNA fragments based onsequence composition

    SciTech Connect

    McHardy, Alice C.; Garcia Martin, Hector; Tsirigos, Aristotelis; Hugenholtz, Philip; Rigoutsos, Isidore

    2006-05-01

    Metagenome studies have retrieved vast amounts of sequenceout of a variety of environments, leading to novel discoveries and greatinsights into the uncultured microbial world. Except for very simplecommunities, diversity makes sequence assembly and analysis a verychallenging problem. To understand the structure a 5 nd function ofmicrobial communities, a taxonomic characterization of the obtainedsequence fragments is highly desirable, yet currently limited mostly tothose sequences that contain phylogenetic marker genes. We show that forclades at the rank of domain down to genus, sequence composition allowsthe very accurate phylogenetic 10 characterization of genomic sequence.We developed a composition-based classifier, PhyloPythia, for de novophylogenetic sequence characterization and have trained it on adata setof 340 genomes. By extensive evaluation experiments we show that themethodis accurate across all taxonomic ranks considered, even forsequences that originate fromnovel organisms and are as short as 1kb.Application to two metagenome datasets 15 obtained from samples ofphosphorus-removing sludge showed that the method allows the accurateclassification at genus level of most sequence fragments from thedominant populations, while at the same time correctly characterizingeven larger parts of the samples at higher taxonomic levels.

  9. Conserved DNA sequences adjacent to chromosome fragmentation and telomere addition sites in Euplotes crassus.

    PubMed

    Klobutcher, L A; Gygax, S E; Podoloff, J D; Vermeesch, J R; Price, C M; Tebeau, C M; Jahn, C L

    1998-09-15

    During the formation of a new macronucleus in the ciliate Euplotes crassus, micronuclear chromosomes are reproducibly broken at approximately 10 000 sites. This chromosome fragmentation process is tightly coupled with de novo telomere synthesis by the telomerase ribonucleoprotein complex, generating short linear macronuclear DNA molecules. In this study, the sequences of 58 macronuclear DNA termini and eight regions of the micronuclear genome containing chromosome fragmentation/telomere addition sites were determined. Through a statistically based analysis of these data, along with previously published sequences, we have defined a 10 bp conserved sequence element (E-Cbs, 5'-HATTGAAaHH-3', H = A, C or T) near chromosome fragmentation sites. The E-Cbs typically resides within the DNA destined to form a macronuclear DNA molecule, but can also reside within flanking micronuclear DNA that is eliminated during macronuclear development. The location of the E-Cbs in macronuclear-destined versus flanking micronuclear DNA leads us to propose a model of chromosome fragmentation that involves a 6 bp staggered cut in the chromosome. The identification of adjacent macronuclear-destined sequences that overlap by 6 bp provides support for the model. Finally, our data provide evidence that telomerase is able to differentiate between newly generated ends that contain partial telomeric repeats and those that do not in vivo.

  10. DNA fragmentation in developing lung fibroblasts exposed to Stachybotrys chartarum (atra) toxins.

    PubMed

    McCrae, K C; Rand, T G; Shaw, R A; Mantsch, H H; Sowa, M G; Thliveris, J A; Scott, J E

    2007-07-01

    Stachybotrys chartarum (atra) is a toxic mold that grows on water-damaged cellulose-based materials. Research has revealed also that inhalation of S. chartarum spores caused marked changes in respiratory epithelium, especially to developing lungs. We analyzed the epigenetic potential of S. chartarum spore toxins on developing rat lung fibroblasts using single cell gel electrophoresis (comet assay). Isolated fetal lung fibroblasts were exposed to S. chartarum spore toxins for 15 min, 3, 14, or 24 hr and control cells were exposed to saline under the same conditions. Cells were embedded in agarose, electrophoresed under alkaline conditions and silver stained. DNA damage was assessed in terms of fragmentation as measured by comet tail length (DNA migration) and intensity (% DNA contained within head and tail). Upon visual inspection, control fibroblasts showed no DNA fragmentation whereas S. chartarum-treated cells had definable comets of various degrees depending upon the time-course. Analyses of the comets revealed that exposure to S. chartarum spore toxins for at least 15 min to 14 hr, induced increased DNA fragmentation in a time-dependent manner. The fact that exposure to toxins for 24 hr showed less damage suggested that developing lung fibroblasts may have the capability of repairing DNA fragmentation. PMID:17534970

  11. An innovative platform for quick and flexible joining of assorted DNA fragments

    DOE PAGES

    De Paoli, Henrique Cestari; Tuskan, Gerald A.; Yang, Xiaohan

    2016-01-13

    Successful synthetic biology efforts rely on conceptual and experimental designs in combination with testing of multi-gene constructs. Despite recent progresses, several limitations still hinder the ability to flexibly assemble and collectively share different types of DNA segments. We describe an advanced system for joining DNA fragments from a universal library that automatically maintains open reading frames (ORFs) and does not require linkers, adaptors, sequence homology, amplification or mutation (domestication) of fragments in order to work properly. Moreover, we find that this system, which is enhanced by a unique buffer formulation, provides unforeseen capabilities for testing, and sharing, complex multi-gene circuitrymore » assembled from different DNA fragments.« less

  12. Synthesis and NMR of {sup 15}N-labeled DNA fragments

    SciTech Connect

    Jones, R.A.

    1994-12-01

    DNA fragments labeled with {sup 15}N at the ring nitrogens and at the exocyclic amino groups can be used to obtain novel insight into interactions such as base pairing, hydration, drug binding, and protein binding. A number of synthetic routes to {sup 15}N-labeled pyrimidine nucleosides, purines, and purine nucleosides have been reported. Moreover, many of these labeled bases or monomers have been incorporated into nucleic acids, either by chemical synthesis or by biosynthetic procedures. The focus of this chapter will be on the preparation of {sup 15}N-labeled purine 2{prime}-deoxynucleosides, their incorporation into DNA fragments by chemical synthesis, and the results of NMR studies using these labeled DNA fragments.

  13. Development of procedures for the identification of human papilloma virus DNA fragments in laser plume

    NASA Astrophysics Data System (ADS)

    Woellmer, Wolfgang; Meder, Tom; Jappe, Uta; Gross, Gerd; Riethdorf, Sabine; Riethdorf, Lutz; Kuhler-Obbarius, Christina; Loening, Thomas

    1996-01-01

    For the investigation of laser plume for the existence of HPV DNA fragments, which possibly occur during laser treatment of virus infected tissue, human papillomas and condylomas were treated in vitro with the CO2-laser. For the sampling of the laser plume a new method for the trapping of the material was developed by use of water-soluble gelatine filters. These samples were analyzed with the polymerase chain reaction (PCR) technique, which was optimized in regard of the gelatine filters and the specific primers. Positive PCR results for HPV DNA fragments up to the size of a complete oncogene were obtained and are discussed regarding infectiousity.

  14. [Affinity capture of specific DNA fragments with the use of short synthetic sequences].

    PubMed

    Mikhaĭlov, V S; Potapov, V K; Amirkhanov, R N; Amirkhanov, N V; Bulanenkova, S S; Akopov, S B; Zarytova, V F; Nikolaev, L G; Sverdlov, E D

    2013-01-01

    The ability of short peptide nucleic acid (PNA) oligomers and oligonucleotides containing modified residues of 5-methylcitidine, 2-aminoadenosine and 5-propynyl-2'-deoxyuridine (strong binding oligonucleotides, SBO) to affinity capture the target double-stranded DNA fragment from mixture by means of the end invasion was compared. Both types of probes were highly effective at the conditions used. The SBO-based probes may represent a handy and easily prepared alternative to PNA for selection of target DNA fragments from mixtures. PMID:23844509

  15. Differentiation of mixed biological traces in sexual assaults using DNA fragment analysis

    PubMed Central

    Apostolov, Аleksandar

    2014-01-01

    During the investigation of sexual abuse, it is not rare that mixed genetic material from two or more persons is detected. In such cases, successful profiling can be achieved using DNA fragment analysis, resulting in individual genetic profiles of offenders and their victims. This has led to an increase in the percentage of identified perpetrators of sexual offenses. The classic and modified genetic models used, allowed us to refine and implement appropriate extraction, polymerase chain reaction and electrophoretic procedures with individual assessment and approach to conducting research. Testing mixed biological traces using DNA fragment analysis appears to be the only opportunity for identifying perpetrators in gang rapes. PMID:26019514

  16. A simple DNA extraction method for marijuana samples used in amplified fragment length polymorphism (AFLP) analysis.

    PubMed

    Miller Coyle, Heather; Shutler, Gary; Abrams, Sharon; Hanniman, Janet; Neylon, Suzanne; Ladd, Carll; Palmbach, Timothy; Lee, Henry C

    2003-03-01

    As a first step in developing a molecular method for the individualization of marijuana samples, we evaluated a plant DNA extraction kit. The QIAGEN plant DNeasy method uses a spin column format for recovery of DNA and is effective for obtaining high molecular weight DNA from leaf, flower (bud), and seed samples of marijuana. The average DNA yield was 125-500 ng per 100 milligrams of fresh plant tissue. The recovered DNA was of polymerase chain reaction (PCR) quality as measured by the ability to generate reproducible amplified fragment length polymorphism (AFLP) profiles. AFLP is a technique used to create a DNA profile for plant varieties and is being applied to marijuana samples by the authors to link growers and distributors of clonal material. The QIAGEN plant DNeasy method was simple, efficient, and reproducible for processing small quantities of marijuana into DNA.

  17. Statistical methods for detecting periodic fragments in DNA sequence data

    PubMed Central

    2011-01-01

    Background Period 10 dinucleotides are structurally and functionally validated factors that influence the ability of DNA to form nucleosomes, histone core octamers. Robust identification of periodic signals in DNA sequences is therefore required to understand nucleosome organisation in genomes. While various techniques for identifying periodic components in genomic sequences have been proposed or adopted, the requirements for such techniques have not been considered in detail and confirmatory testing for a priori specified periods has not been developed. Results We compared the estimation accuracy and suitability for confirmatory testing of autocorrelation, discrete Fourier transform (DFT), integer period discrete Fourier transform (IPDFT) and a previously proposed Hybrid measure. A number of different statistical significance procedures were evaluated but a blockwise bootstrap proved superior. When applied to synthetic data whose period-10 signal had been eroded, or for which the signal was approximately period-10, the Hybrid technique exhibited superior properties during exploratory period estimation. In contrast, confirmatory testing using the blockwise bootstrap procedure identified IPDFT as having the greatest statistical power. These properties were validated on yeast sequences defined from a ChIP-chip study where the Hybrid metric confirmed the expected dominance of period-10 in nucleosome associated DNA but IPDFT identified more significant occurrences of period-10. Application to the whole genomes of yeast and mouse identified ~ 21% and ~ 19% respectively of these genomes as spanned by period-10 nucleosome positioning sequences (NPS). Conclusions For estimating the dominant period, we find the Hybrid period estimation method empirically to be the most effective for both eroded and approximate periodicity. The blockwise bootstrap was found to be effective as a significance measure, performing particularly well in the problem of period detection in the

  18. Fenton fragmentation for faster electrophoretic on chip purification of amplifiable genomic DNA.

    PubMed

    Hakenberg, S; Hügle, M; Meyer, P; Behrmann, O; Dame, G; Urban, G A

    2015-05-15

    With a rapid and simple actuation protocol electrophoretic nucleic acid extraction is easy automatable, requires no moving parts, is easy to miniaturize and furthermore possesses a size dependent cut-off filter adjustable by the pore size of the hydrogel. However electrophoretic nucleic acid extraction from bacteria has so far been applied mainly for short RNA targets. One of the reasons is that electrophoretic processing of unfragmented genomic DNA strands is time-consuming, because of the length. Here DNA fragmentation would accelerate extraction and isolation. We introduce on-chip lysis and non-enzymatic DNA cleavage directly followed by a purifying step for receiving amplifiable DNA fragments from bacteria in less than 25 min. In contrast to restriction enzymes the Fenton reaction is known to cleave DNA without nucleotide specificity. The reaction mix contains iron(II) EDTA, sodium ascorbate, hydrogen peroxide and lysozyme. The degree of fragmentation can be adjusted by the concentration of reagents. The results enable electrophoretic extraction methods to unspecifically process long genomic DNA in a short time frame, e.g. for pathogen detection in a lab-on-a-chip format.

  19. Fenton fragmentation for faster electrophoretic on chip purification of amplifiable genomic DNA.

    PubMed

    Hakenberg, S; Hügle, M; Meyer, P; Behrmann, O; Dame, G; Urban, G A

    2015-05-15

    With a rapid and simple actuation protocol electrophoretic nucleic acid extraction is easy automatable, requires no moving parts, is easy to miniaturize and furthermore possesses a size dependent cut-off filter adjustable by the pore size of the hydrogel. However electrophoretic nucleic acid extraction from bacteria has so far been applied mainly for short RNA targets. One of the reasons is that electrophoretic processing of unfragmented genomic DNA strands is time-consuming, because of the length. Here DNA fragmentation would accelerate extraction and isolation. We introduce on-chip lysis and non-enzymatic DNA cleavage directly followed by a purifying step for receiving amplifiable DNA fragments from bacteria in less than 25 min. In contrast to restriction enzymes the Fenton reaction is known to cleave DNA without nucleotide specificity. The reaction mix contains iron(II) EDTA, sodium ascorbate, hydrogen peroxide and lysozyme. The degree of fragmentation can be adjusted by the concentration of reagents. The results enable electrophoretic extraction methods to unspecifically process long genomic DNA in a short time frame, e.g. for pathogen detection in a lab-on-a-chip format. PMID:24970713

  20. A Monte Carlo study of the radiation quality dependence of DNA fragmentation spectra.

    PubMed

    Alloni, D; Campa, A; Belli, M; Esposito, G; Facoetti, A; Friedland, W; Liotta, M; Mariotti, L; Paretzke, H G; Ottolenghi, A

    2010-03-01

    We simulated the irradiation of human fibroblasts with gamma rays, protons and helium, carbon and iron ions at a fixed dose of 5 Gy. The simulations were performed with the biophysical Monte Carlo code PARTRAC. From the output of the code, containing in particular the genomic positions of the radiation-induced DNA double-strand breaks (DSBs), we obtained the DNA fragmentation spectra. Very small fragments, in particular those related to "complex lesions" (few tens of base pairs), are probably very important for the late cellular consequences, but their detection is not possible with the common experimental techniques. We paid special attention to the differences among the various ions in the production of these very small fragments; in particular, we compared the fragmentation spectra for ions of the same specific energy and for ions of the same LET (linear energy transfer). As found previously for iron ions, we found that the RBE (relative biological effectiveness) for DSB production was considerably higher than 1 for all high-LET radiations considered. This is at variance with the results obtainable from experimental data, and it is due to the ability to count the contribution of small fragments. It should be noted that for a given LET this RBE decreases with increasing ion charge, due mainly to the increasing mean energy of secondary electrons. A precise quantification of the DNA initial damage can be of great importance for both radiation protection, particularly in open-space long-term manned missions, and hadrontherapy.

  1. Restriction fragment length polymorphisms of the DNA of selected Naegleria and Acanthamoeba amebae.

    PubMed

    McLaughlin, G L; Brandt, F H; Visvesvara, G S

    1988-09-01

    Fourteen strains of Naegleria fowleri, two strains of N. gruberi, and one strain each of N. australiensis, N. jadini, N. lovaniensis, Acanthamoeba sp., A. castellanii, A. polyphaga, and A. comandoni isolated from patients, soil, or water were characterized by restriction fragment length polymorphisms. Total cellular DNA (1 microgram) was digested with either HindIII, BglII, or EcoRI; separated on agarose gels; and stained with ethidium bromide. From 2 to 15 unusually prominent repetitive restriction fragment bands, totaling 15 to 50 kilobases in length and constituting probably more than 30% of the total DNA, were detected for all ameba strains. Each species displayed a characteristic pattern of repetitive restriction fragments. Digests of the four Acanthamoeba spp. displayed fewer, less intensely staining repetitive fragments than those of the Naegleria spp. All N. fowleri strains, whether isolated from the cerebrospinal fluid of patients from different parts of the world or from hot springs, had repetitive restriction fragment bands of similar total lengths (ca. 45 kilobases), and most repetitive bands displayed identical mobilities. However, polymorphic bands were useful in identifying particular isolates. Restriction fragment length polymorphism analysis generally was consistent with taxonomy based on studies of infectivity, morphology, isoenzyme patterns, and antibody reactivity and suggests that this technique may help classify amebae isolated from clinical specimens or from the environment.

  2. Direct and precise length measurement of single, stretched DNA fragments by dynamic molecular combing and STED nanoscopy.

    PubMed

    Kim, Namdoo; Kim, Hyung Jun; Kim, Younggyu; Min, Kyung Suk; Kim, Seong Keun

    2016-09-01

    A combination of DNA stretching method and super-resolution nanoscopy allows an accurate and precise measurement of the length of DNA fragments ranging widely in size from 117 to 23,130 bp. BstEII- and HindIII-treated λDNA fragments were stained with an intercalating dye and then linearly stretched on a coverslip by dynamic molecular combing. The image of individual DNA fragments was obtained by stimulated emission depletion nanoscopy. For DNA fragments longer than ∼1000 bp, the measured lengths of DNA fragments were consistently within ∼0.5 to 1.0 % of the reference values, raising the possibility of this method in a wide range of applications including facile detection for copy number variations and trinucleotide repeat disorder. PMID:27457103

  3. Biologically active protein fragments containing specific binding regions of serum albumin or related proteins

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor)

    1998-01-01

    In accordance with the present invention, biologically active protein fragments can be constructed which contain only those specific portions of the serum albumin family of proteins such as regions known as subdomains IIA and IIIA which are primarily responsible for the binding properties of the serum albumins. The artificial serums that can be prepared from these biologically active protein fragments are advantageous in that they can be produced much more easily than serums containing the whole albumin, yet still retain all or most of the original binding potential of the full albumin proteins. In addition, since the protein fragment serums of the present invention can be made from non-natural sources using conventional recombinant DNA techniques, they are far safer than serums containing natural albumin because they do not carry the potentially harmful viruses and other contaminants that will be found in the natural substances.

  4. Study of aneuploidy rate and sperm DNA fragmentation in large-headed, multiple-tailed spermatozoa.

    PubMed

    Brahem, S; Mehdi, M; Elghezal, H; Saad, A

    2012-04-01

    The aim of this study was to analyse the meiotic segregation and DNA fragmentation rates in ejaculated spermatozoa of Tunisian men who presented the macrocephalic sperm head syndrome and to compare the results with those from 20 fertile men with normal semen profiles. Sperm DNA fragmentation was evaluated by the terminal desoxynucleotidyl transferase-mediated deoxyuridine triphosphate biotin nick-end labelling assay. Fluorescence in situ hybridisation for chromosomes X, Y and 18 was performed for the study of meiotic segregation. Despite a normal blood karyotype, patients with large-headed spermatozoa showed a significantly higher incidence of sperm chromosomal abnormalities compared with the control group. For all the patients, tetraploidy, triploidy and diploidy were the most observed abnormalities. A very high level of DNA fragmentation was shown for these patients. In conclusion, our results demonstrated that patients with large-headed, multiple-tailed spermatozoa had significantly higher incidence of sperm chromosomal abnormalities and very high level of DNA fragmentation. So intracytoplasmic sperm injection should not be recommended to these patients, not only because of its low chances of success rate but also because of its high genetic risk.

  5. The influence of cigarette smoking on human sperm quality and DNA fragmentation.

    PubMed

    Sepaniak, Sandrine; Forges, Thierry; Gerard, Hubert; Foliguet, Bernard; Bene, Marie-Christine; Monnier-Barbarino, Patricia

    2006-06-01

    The aim of the present study was to evaluate consequences of cigarette smoking on male gametes. In this prospective study, sperm parameters such as sperm density, motility, viability and normal morphology were measured according to the WHO criteria. In addition to these standard parameters, we analysed the degree of DNA fragmentation in spermatozoa using the TUNEL-assay with flow cytometry detection in 57 non-smokers and 51 smokers seeking for infertility counselling. The smoking intoxication was assessed by questionnaire and measured with the CO-Tester. We show that smokers' spermatozoa have a significantly higher DNA fragmentation than non-smokers (32% versus 25.9%, p<0.01). In contrast there is no significant difference in conventional parameters between smokers and non-smokers. The degree of sperm DNA fragmentation is not significantly correlated with any of the conventional parameters. These findings suggest that cigarette smoking may have deleterious effects on sperm nuclear quality and that sperm DNA fragmentation can therefore be considered as an independent parameter with diagnostic, prognostic, and strategic value in the treatment of infertility.

  6. Generation of porcine reproductive and respiratory syndrome virus by in vitro assembly of viral genomic cDNA fragments.

    PubMed

    Suhardiman, Maman; Kramyu, Jarin; Narkpuk, Jaraspim; Jongkaewwattana, Anan; Wanasen, Nanchaya

    2015-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent for a swine disease affecting the pig industry worldwide. Infection with PRRSV leads to reproductive complications, respiratory illness, and weak immunity to secondary infections. To better control PRRSV infection, novel approaches for generating control measures are critically needed. Here, in vitro Gibson assembly (GA) of viral genomic cDNA fragments was tested for its use as a quick and simple method to recover infectious PRRSV in cell culture. GA involves the activities of T5-exonuclease, Phusion polymerase, and Taq ligase to join overlapping cDNA fragments in an isothermal condition. Four overlapping cDNA fragments covering the entire PRRSV genome and one vector fragment were used to create a plasmid capable of expressing the PRRSV genome. The assembled product was used to transfect a co-culture of 293T and MARC-145 cells. Supernatants from the transfected cells were then passaged onto MARC-145 cells to rescue infectious virus particles. Verification and characterization of the recovered virus confirmed that the GA protocol generated infectious PRRSV that had similar characteristics to the parental virus. This approach was then tested for the generation of a chimeric virus. By replacing one of the four genomic fragments with that of another virus strain, a chimeric virus was successfully recovered via GA. In conclusion, this study describes for the first time the use of GA as a simple, yet powerful tool for generating infectious PRRSV needed for studying PRRSV biology and developing novel vaccines. PMID:25300804

  7. Mitochondrial DNA Fragmentation to Monitor Processing Parameters in High Acid, Plant-Derived Foods.

    PubMed

    Caldwell, Jane M; Pérez-Díaz, Ilenys M; Harris, Keith; Hassan, Hosni M; Simunovic, Josip; Sandeep, K P

    2015-12-01

    Mitochondrial DNA (mtDNA) fragmentation was assessed in acidified foods. Using quantitative polymerase chain reaction, Ct values measured from fresh, fermented, pasteurized, and stored cucumber mtDNA were determined to be significantly different (P > 0.05) based on processing and shelf-life. This indicated that the combination of lower temperature thermal processes (hot-fill at 75 °C for 15 min) and acidified conditions (pH = 3.8) was sufficient to cause mtDNA fragmentation. In studies modeling high acid juices, pasteurization (96 °C, 0 to 24 min) of tomato serum produced Ct values which had high correlation to time-temperature treatment. Primers producing longer amplicons (approximately 1 kb) targeting the same mitochondrial gene gave greater sensitivity in correlating time-temperature treatments to Ct values. Lab-scale pasteurization studies using Ct values derived from the longer amplicon differentiated between heat treatments of tomato serum (95 °C for <2 min). MtDNA fragmentation was shown to be a potential new tool to characterize low temperature (<100 °C) high acid processes (pH < 4.6), nonthermal processes such as vegetable fermentation and holding times of acidified, plant-derived products. PMID:26556214

  8. Chromosomal aneuploidies and DNA fragmentation of human spermatozoa from patients exposed to perfluorinated compounds.

    PubMed

    Governini, L; Guerranti, C; De Leo, V; Boschi, L; Luddi, A; Gori, M; Orvieto, R; Piomboni, P

    2015-11-01

    This study investigated chromosomal aneuploidies and DNA damage in spermatozoa from male patients contaminated by perfluorinated compounds (PFCs) in whole blood and seminal plasma. Sperm aneuploidy and diploidy rate for chromosomes 18, X and Y were evaluated by FISH; sperm DNA fragmentation was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling technique coupled to flow cytometry. Our results indicated that PFC contamination was present in 58% of subjects included in the study. A significant increase in alterations of sperm parameters was observed in PFC-positive subjects compared to PFC-negative subjects. As regards the sperm aneuploidy, both disomy and diploidy rates resulted significantly increased in subjects positive for PFC contamination compared to PFC-negative samples. In addition, sperm DNA fragmentation index resulted significantly increased in PFC-contaminated subjects compared to PFC-non-contaminated subjects, with a significant increased level of dimmer DNA fragmentation index. Our results clearly indicate that PFC contamination may detrimentally affect spermatogenesis, disturbing both meiotic segregation and DNA integrity. We could therefore suggest cautions to reduce or eliminate any contact with these compounds because the long-term effects of PFC accumulation in the body are not predictable.

  9. Mitochondrial DNA Fragmentation to Monitor Processing Parameters in High Acid, Plant-Derived Foods.

    PubMed

    Caldwell, Jane M; Pérez-Díaz, Ilenys M; Harris, Keith; Hassan, Hosni M; Simunovic, Josip; Sandeep, K P

    2015-12-01

    Mitochondrial DNA (mtDNA) fragmentation was assessed in acidified foods. Using quantitative polymerase chain reaction, Ct values measured from fresh, fermented, pasteurized, and stored cucumber mtDNA were determined to be significantly different (P > 0.05) based on processing and shelf-life. This indicated that the combination of lower temperature thermal processes (hot-fill at 75 °C for 15 min) and acidified conditions (pH = 3.8) was sufficient to cause mtDNA fragmentation. In studies modeling high acid juices, pasteurization (96 °C, 0 to 24 min) of tomato serum produced Ct values which had high correlation to time-temperature treatment. Primers producing longer amplicons (approximately 1 kb) targeting the same mitochondrial gene gave greater sensitivity in correlating time-temperature treatments to Ct values. Lab-scale pasteurization studies using Ct values derived from the longer amplicon differentiated between heat treatments of tomato serum (95 °C for <2 min). MtDNA fragmentation was shown to be a potential new tool to characterize low temperature (<100 °C) high acid processes (pH < 4.6), nonthermal processes such as vegetable fermentation and holding times of acidified, plant-derived products.

  10. GTP-specific fab fragment-based GTPase activity assay.

    PubMed

    Kopra, Kari; Rozwandowicz-Jansen, Anita; Syrjänpää, Markku; Blaževitš, Olga; Ligabue, Alessio; Veltel, Stefan; Lamminmäki, Urpo; Abankwa, Daniel; Härmä, Harri

    2015-03-17

    GTPases are central cellular signaling proteins, which cycle between a GDP-bound inactive and a GTP-bound active conformation in a controlled manner. Ras GTPases are frequently mutated in cancer and so far only few experimental inhibitors exist. The most common methods for monitoring GTP hydrolysis rely on luminescent GDP- or GTP-analogs. In this study, the first GTP-specific Fab fragment and its application are described. We selected Fab fragments using the phage display technology. Six Fab fragments were found against 2'/3'-GTP-biotin and 8-GTP-biotin. Selected antibody fragments allowed specific detection of endogenous, free GTP. The most potent Fab fragment (2A4(GTP)) showed over 100-fold GTP-specificity over GDP, ATP, or CTP and was used to develop a heterogeneous time-resolved luminescence based assay for the monitoring of GTP concentration. The method allows studying the GEF dependent H-Ras activation (GTP binding) and GAP-catalyzed H-Ras deactivation (GTP hydrolysis) at nanomolar protein concentrations.

  11. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments

    PubMed Central

    Dabney, Jesse; Knapp, Michael; Glocke, Isabelle; Gansauge, Marie-Theres; Weihmann, Antje; Nickel, Birgit; Valdiosera, Cristina; García, Nuria; Pääbo, Svante; Arsuaga, Juan-Luis; Meyer, Matthias

    2013-01-01

    Although an inverse relationship is expected in ancient DNA samples between the number of surviving DNA fragments and their length, ancient DNA sequencing libraries are strikingly deficient in molecules shorter than 40 bp. We find that a loss of short molecules can occur during DNA extraction and present an improved silica-based extraction protocol that enables their efficient retrieval. In combination with single-stranded DNA library preparation, this method enabled us to reconstruct the mitochondrial genome sequence from a Middle Pleistocene cave bear (Ursus deningeri) bone excavated at Sima de los Huesos in the Sierra de Atapuerca, Spain. Phylogenetic reconstructions indicate that the U. deningeri sequence forms an early diverging sister lineage to all Western European Late Pleistocene cave bears. Our results prove that authentic ancient DNA can be preserved for hundreds of thousand years outside of permafrost. Moreover, the techniques presented enable the retrieval of phylogenetically informative sequences from samples in which virtually all DNA is diminished to fragments shorter than 50 bp. PMID:24019490

  12. In-gel multiple displacement amplification of long DNA fragments diluted to the single molecule level.

    PubMed

    Michikawa, Yuichi; Sugahara, Keisuke; Suga, Tomo; Ohtsuka, Yoshimi; Ishikawa, Kenichi; Ishikawa, Atsuko; Shiomi, Naoko; Shiomi, Tadahiro; Iwakawa, Mayumi; Imai, Takashi

    2008-12-15

    The isolation and multiple genotyping of long individual DNA fragments are needed to obtain haplotype information for diploid organisms. Limiting dilution of sample DNA followed by multiple displacement amplification is a useful technique but is restricted to short (<5 kb) DNA fragments. In the current study, a novel modification was applied to overcome these problems. A limited amount of cellular DNA was carefully released from intact cells into a mildly heated alkaline agarose solution and mixed thoroughly. The solution was then gently aliquoted and allowed to solidify while maintaining the integrity of the diluted DNA. Exogenously provided Phi29 DNA polymerase was used to perform consistent genomic amplification with random hexameric oligonucleotides within the agarose gels. Simple heat melting of the gel allowed recovery of the amplified materials in a solution of the polymerase chain reaction (PCR)-ready form. The haplotypes of seven SNPs spanning 240 kb of the DNA surrounding the human ATM gene region on chromosome 11 were determined for 10 individuals, demonstrating the feasibility of this new method.

  13. Types, Causes, Detection and Repair of DNA Fragmentation in Animal and Human Sperm Cells

    PubMed Central

    González-Marín, Clara; Gosálvez, Jaime; Roy, Rosa

    2012-01-01

    Concentration, motility and morphology are parameters commonly used to determine the fertilization potential of an ejaculate. These parameters give a general view on the quality of sperm but do not provide information about one of the most important components of the reproductive outcome: DNA. Either single or double DNA strand breaks can set the difference between fertile and infertile males. Sperm DNA fragmentation can be caused by intrinsic factors like abortive apoptosis, deficiencies in recombination, protamine imbalances or oxidative stress. Damage can also occur due to extrinsic factors such as storage temperatures, extenders, handling conditions, time after ejaculation, infections and reaction to medicines or post-testicular oxidative stress, among others. Two singular characteristics differentiate sperm from somatic cells: Protamination and absence of DNA repair. DNA repair in sperm is terminated as transcription and translation stops post-spermiogenesis, so these cells have no mechanism to repair the damage occurred during their transit through the epididymis and post-ejaculation. Oocytes and early embryos have been shown to repair sperm DNA damage, so the effect of sperm DNA fragmentation depends on the combined effects of sperm chromatin damage and the capacity of the oocyte to repair it. In this contribution we review some of these issues. PMID:23203048

  14. [PCR-based evaluation of sequence specificity of DNA fragmentation by ultrasound].

    PubMed

    Garafutdinov, R R; Galimova, A A; Sakhabutdinova, A R; Chemeris, A V

    2016-01-01

    Ultrasonic fragmentation, which is a simple and convenient method for the mechanical degradation of DNA, is widely used in modern genome studies as one of the sample preparation steps. It has been recently found that the DNA breaks occur more often in the regions containing 5'-CG-3' dinucleotides. We studied the influence of the 5'-CG-3' dinucleotides on the efficiency of the 28S rRNA gene amplification during PCR with sonicated DNA of Mantis religiosa. It was shown that the amplification rate depends on the template length and the number of 5'-CG-3' dinucleotides. Amplification of the DNA regions with a higher 5'-CG-3' density is less efficient because of their higher sensitivity to ultrasound. The amount of the amplified DNA templates is inversely proportional to the 5'-CG-3'number. PMID:27239847

  15. Modelization of DNA fragmentation induced in human fibroblasts by Fe-56 ions

    NASA Astrophysics Data System (ADS)

    Ballarini, F.; Belli, M.; Campa, A.; Esposito, G.; Friedland, W.; Ottolenghi, A.; Paretzke, H.

    DNA double-strand breaks DSB are widely recognized as cellular critical lesions in the pathways leading from initial energy deposition by radiation to the formation of relevant biological endpoints such as gene mutations chromosome aberrations and cell death Chromatin conformation and radiation track structure are expected to have a strong influence on the spatial modulation of DSB induction at the scale of the nucleosome i e 100 base pairs bp and of the low-level chromatin fiber organization i e 1 kbp At larger scales the DNA fragmentation pattern induced by sparsely ionizing radiation approaches a scenario resulting from a random distribution of DSB However the pattern induced by high-LET irradiation can lead to deviation from randomness also at these scales This feature can have important biological consequences since spatial correlation of DSB is thought to affect their reparability Therefore studies on fragment size distributions induced by radiations of various qualities can help to link the physical characteristics of radiation with the cellular endpoints This is an important issue for understanding the main mechanisms of cell damage induced by HZE particles In this work we have compared the pattern of DNA fragmentation in the range 1-5700 kbp induced in human fibroblasts by gamma -rays with that induced by high-energy Fe-ions which have biological significance for radiation protection issues during long term astronauts travels The study has taken into account the comparison of the experimental fragmentation spectra

  16. Heterogeneity of DNA fragments associated with the sickle-globin gene.

    PubMed

    Feldenzer, J; Mears, J G; Burns, A L; Natta, C; Bank, A

    1979-09-01

    We have examined the genetic polymorphism previously reported to be associated with the sickle-cell (beta s) gene. The polymorphism involves an alteration of the DNA sequence 3' to the beta-globin gene as detected with the restriction endonuclease, Hpa I. In normal individuals, the beta-globin gene is contained within a DNA fragment of 7.6 kilobases (kb), whereas 87% of individuals with sickle-cell anemia have been reported to have the beta s-gene associated with a 13.0-kb Hpa I fragment. We have studied this polymorphism in 31 New York Black individuals homozygous for sickle-cell anemia to ascertain its genetic and biochemical significance and to evaluate its potential use in the prenatal diagnosis of sickle-cell disease. Our results show only a 58% association of the beta s-gene and the 13.0-kb Hpa I fragment, as well as the presence of additional variants involving the Hpa I site. In addition, the 13.0-kb fragment is also found associated with the beta c- and beta A-genes. Thus, the Hpa I polymorphism probably represents a change in DNA not specifically associated with the beta s-gene, and appears to antedate the beta s-and beta c-mutations.

  17. Relationship between phospholipase C zeta immunoreactivity and DNA fragmentation and oxidation in human sperm

    PubMed Central

    Park, Ju Hee; Kim, Seul Ki; Kim, Jayeon; Kim, Ji Hee; Chang, Jae Hoon; Kim, Seok Hyun

    2015-01-01

    Objective The study aimed to evaluate the feasibility and reproducibility of measuring phospholipase C zeta (PLCζ) using immunostaining in human sperm and to investigate the relationship between PLCζ immunoreactivity and DNA fragmentation and oxidation in human sperm. Methods Semen samples were obtained from participants (n=44) and processed by the conventional swim-up method. Sperm concentration, motility, normal form by strict morphology, DNA fragmentation index assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling method and immunofluorescent expression for 8-hydroxy-2'-deoxyguanosine (8-OHdG) and PLCζ were assessed. Results When duplicate PLCζ tests were performed on two sperm samples from each of the 44 participants, similar results were obtained (74.1±9.4% vs. 75.4±9.7%). Two measurements of PLCζ were found to be highly correlated with each other (r=0.759, P<0.001). Immunoreactivity of PLCζ was not associated with donor's age, sperm concentration, motility, and the percentage of normal form as well as DNA fragmentation index. However, immunoreactivity of PLCζ showed a significant negative relationship with 8-OHdG immunoreactivity (r=-0.404, P=0.009). Conclusion Measurement of PLCζ by immunostaining is feasible and reproducible. Lower expression of PLCζ in human sperm may be associated with higher sperm DNA oxidation status. PMID:26023673

  18. Study of aneuploidy and DNA fragmentation in gametes of patients with severe teratozoospermia.

    PubMed

    Perrin, A; Louanjli, N; Ziane, Y; Louanjli, T; Le Roy, C; Gueganic, N; Amice, V; De Braekeleer, M; Morel, F

    2011-02-01

    This study investigated meiotic segregation in spermatozoa to determine if severe teratozoospermia should prevent the use of intracytoplasmic sperm injection (ICSI) because of the high production of gametes with chromosomal aneuploidies and analysed DNA fragmentation in gametes from the same semen to determine if DNA integrity was worse in patients with severe teratozoospermia. Sperm samples from 12 infertile patients were studied by fluorescence in-situ hybridization for chromosomes X, Y, 13, 18 and 21 and by TdT (terminal deoxynucleotidyl transferase)-mediated dUDP nick-end labelling. Four patients with a majority of macrocephalic forms with multiple flagella had more than 99% spermatozoa with abnormal chromosomal content. The other patients (globozoospermia or other abnormalities concerning sperm heads) had no increased aneuploidy or a slightly significant increase (P<0.05). The rate of DNA fragmentation was significantly higher in infertile patients than in the controls (P<0.001; 14.3% versus 1.20%, respectively) but presented important variability. Therefore, ICSI should not be attempted if men have macrocephalic gametes with multiple flagella but morphology is not always a good predictor of chromosomal content, depending upon the kind of teratozoospermia. Evaluation of the rate of aneuploidy and DNA fragmentation in gametes of patients with severe teratozoospermia is recommended.

  19. A cost for high levels of sperm competition in rodents: increased sperm DNA fragmentation.

    PubMed

    delBarco-Trillo, Javier; García-Álvarez, Olga; Soler, Ana Josefa; Tourmente, Maximiliano; Garde, José Julián; Roldan, Eduardo R S

    2016-03-16

    Sperm competition, a prevalent evolutionary process in which the spermatozoa of two or more males compete for the fertilization of the same ovum, leads to morphological and physiological adaptations, including increases in energetic metabolism that may serve to propel sperm faster but that may have negative effects on DNA integrity. Sperm DNA damage is associated with reduced rates of fertilization, embryo and fetal loss, offspring mortality, and mutations leading to genetic disease. We tested whether high levels of sperm competition affect sperm DNA integrity. We evaluated sperm DNA integrity in 18 species of rodents that differ in their levels of sperm competition using the sperm chromatin structure assay. DNA integrity was assessed upon sperm collection, in response to incubation under capacitating or non-capacitating conditions, and after exposure to physical and chemical stressors. Sperm DNA was very resistant to physical and chemical stressors, whereas incubation in non-capacitating and capacitating conditions resulted in only a small increase in sperm DNA damage. Importantly, levels of sperm competition were positively associated with sperm DNA fragmentation across rodent species. This is the first evidence showing that high levels of sperm competition lead to an important cost in the form of increased sperm DNA damage.

  20. Short-Fragment DNA Residue from Vaccine Purification Processes Promotes Immune Response to the New Inactivated EV71 Vaccine by Upregulating TLR9 mRNA.

    PubMed

    Shao, Jie; Gao, Fan; Lin, Hui-Juan; Mao, Qun-Ying; Chen, Pan; Wu, Xing; Yao, Xin; Kong, Wei; Liang, Zheng-Lun

    2016-01-01

    To reduce potential oncogenic long genomic DNA in vaccines, nuclease treatment has been applied in the purification processes. However, this action increased the residue of short-fragment DNA and its effect on vaccine potency was still elusive. In this study, we found residual sf-DNA in an inactivated EV71 vaccine could enhance humoral immune response in mice. Ag stimulation in vitro and vaccine injection in vivo revealed that TLR9 transcription level was elevated, indicating that sf-DNA could activate TLR9. These new findings will help us to understand the molecular mechanism induced by vero-cell culture-derived vaccines.

  1. Short-Fragment DNA Residue from Vaccine Purification Processes Promotes Immune Response to the New Inactivated EV71 Vaccine by Upregulating TLR9 mRNA

    PubMed Central

    Shao, Jie; Gao, Fan; Lin, Hui-Juan; Mao, Qun-Ying; Chen, Pan; Wu, Xing; Yao, Xin; Kong, Wei; Liang, Zheng-Lun

    2016-01-01

    To reduce potential oncogenic long genomic DNA in vaccines, nuclease treatment has been applied in the purification processes. However, this action increased the residue of short-fragment DNA and its effect on vaccine potency was still elusive. In this study, we found residual sf-DNA in an inactivated EV71 vaccine could enhance humoral immune response in mice. Ag stimulation in vitro and vaccine injection in vivo revealed that TLR9 transcription level was elevated, indicating that sf-DNA could activate TLR9. These new findings will help us to understand the molecular mechanism induced by vero-cell culture-derived vaccines. PMID:27082865

  2. Three-dimensional imaging of DNA fragments during electrophoresis using a confocal detector

    NASA Astrophysics Data System (ADS)

    Brewer, Laurence R.; Davidson, Courtney; Balch, Joseph W.; Carrano, Anthony

    1995-04-01

    We have measured the 3D distribution of DNA fragments within an electrophoretic band. The measurements were made using a confocal microscope and a photon counting photomultiplier detector. A DNA sequencing standard was loaded into glass microchannel plates containing polyacrylamide gel. The measurements were made by scanning the plates in three dimensions using a mechanical stage under computer control, while electrophoresis was taking place. We found that the distribution of DNA was the same for all the bands measured in the sequencing ladder with an approximate Gaussian distribution along all three axis. These measurements are important to understand what physical forces shape electrophoretic bands confined by a channel and also as an aid in the design of high throughput DNA sequencers.

  3. DNA fragmentation induced by fe ions in human cells: shielding influence on spatially correlated damage

    SciTech Connect

    Antonelli, F.; Belli, M.; Campa, A.; Chatterjee, A.; Dini, V.; Esposito, G.; Rydberg, B.; Simone, G.; Tabocchini, M.A.

    2003-11-19

    Outside the magnetic field of the Earth, high energy heavy ions constitute a relevant part of the biologically significant dose to astronauts during the very long travels through space. The typical pattern of energy deposition in the matter by heavy ions on the microscopic scale is believed to produce spatially correlated damage in the DNA which is critical for radiobiological effects. We have investigated the influence of a lucite shielding on the initial production of very small DNA fragments in human fibroblasts irradiated with 1 GeV/u iron (Fe) ions. We also used small gamma, Greek-rays as reference radiation. Our results show: (1) a lower effect per incident ion when the shielding is used; (2) an higher DNA Double Strand Breaks (DSB) induction by Fe ions than by small gamma, Greek-rays in the size range 123 kbp; (3) a non-random DNA DSB induction by Fe ions.

  4. DNA fragmentation induced by Fe ions in human cells: shielding influence on spatially correlated damage

    NASA Technical Reports Server (NTRS)

    Antonelli, F.; Belli, M.; Campa, A.; Chatterjee, A.; Dini, V.; Esposito, G.; Rydberg, B.; Simone, G.; Tabocchini, M. A.

    2004-01-01

    Outside the magnetic field of the Earth, high energy heavy ions constitute a relevant part of the biologically significant dose to astronauts during the very long travels through space. The typical pattern of energy deposition in the matter by heavy ions on the microscopic scale is believed to produce spatially correlated damage in the DNA which is critical for radiobiological effects. We have investigated the influence of a lucite shielding on the initial production of very small DNA fragments in human fibroblasts irradiated with 1 GeV/u iron (Fe) ions. We also used gamma rays as reference radiation. Our results show: (1) a lower effect per incident ion when the shielding is used; (2) an higher DNA Double Strand Breaks (DSB) induction by Fe ions than by gamma rays in the size range 1-23 kbp; (3) a non-random DNA DSB induction by Fe ions. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  5. DNA fragmentation in morphologically normal spermatozoa: how much should we be concerned in the ICSI era?

    PubMed

    Avendaño, Conrado; Oehninger, Sergio

    2011-01-01

    Intracytoplasmic sperm injection (ICSI) has revolutionized the treatment of male infertility. However, there are still unanswered questions about the safety of this technique. During ICSI, only morphologically normal and motile spermatozoa are typically used to fertilize an oocyte. We recently reported that in infertile men, spermatozoa with apparently normal morphology may have DNA fragmentation. This finding consequently raised the possibility that spermatozoa with normal-shaped appearance but with DNA fragmentation could be mistakenly selected to fertilize oocytes during ICSI. This concern became more clinically significant following the subsequent finding that the presence of an increased proportion of normal spermatozoa with damaged DNA was negatively associated with embryo quality and pregnancy outcome after ICSI. Herein, we propose and discuss the hypothesis that the examination of DNA integrity in the subpopulation of highly motile (hence viable) and morphologically normal cells (and not in the total sperm population) may provide optimized information in prediction of ICSI success. More importantly, this new way of evaluation may provide reassurance about genomic normalcy and minimal risk of transmission of genetic disease and guide the development of improved methods of selection of spermatozoa with intact DNA to be used in assisted reproduction.

  6. Cloning and Analysis of a DNA Fragment Stimulating Avermectin Production in Various Streptomyces avermitilis Strains

    PubMed Central

    Hwang, Yong-Soon; Kim, Eung-Soo; Biró, Sándor; Choi, Cha-Yong

    2003-01-01

    To isolate a gene for stimulating avermectin production, a genomic library of Streptomyces avermitilis ATCC 31267 was constructed in Streptomyces lividans TK21 as the host strain. An 8.0-kb DNA fragment that significantly stimulated actinorhodin and undecylprodigiosin production was isolated. When wild-type S. avermitilis was transformed with the cloned fragment, avermectin production increased approximately 3.5-fold. The introduction of this fragment into high-producer (ATCC 31780) and semi-industrial (L-9) strains also resulted in an increase of avermectin production by more than 2.0- and 1.4-fold, respectively. Subclones were studied to locate the minimal region involved in stimulation of pigmented-antibiotic and avermectin production. An analysis of the nucleotide sequence of the entire DNA fragment identified eight complete and one incomplete open reading frame. All but one of the deduced proteins exhibited strong homology (68 to 84% identity) to the hypothetical proteins of Streptomyces coelicolor A3(2). The orfX gene product showed no significant similarity to any other protein in the databases, and an analysis of its sequence suggested that it was a putative membrane protein. Although the nature of the stimulatory effect is still unclear, the disruption of orfX revealed that this gene was intrinsically involved in the stimulation of avermectin production in S. avermitilis. PMID:12571055

  7. Cloning and analysis of a DNA fragment stimulating avermectin production in various Streptomyces avermitilis strains.

    PubMed

    Hwang, Yong-Soon; Kim, Eung-Soo; Biró, Sándor; Choi, Cha-Yong

    2003-02-01

    To isolate a gene for stimulating avermectin production, a genomic library of Streptomyces avermitilis ATCC 31267 was constructed in Streptomyces lividans TK21 as the host strain. An 8.0-kb DNA fragment that significantly stimulated actinorhodin and undecylprodigiosin production was isolated. When wild-type S. avermitilis was transformed with the cloned fragment, avermectin production increased approximately 3.5-fold. The introduction of this fragment into high-producer (ATCC 31780) and semi-industrial (L-9) strains also resulted in an increase of avermectin production by more than 2.0- and 1.4-fold, respectively. Subclones were studied to locate the minimal region involved in stimulation of pigmented-antibiotic and avermectin production. An analysis of the nucleotide sequence of the entire DNA fragment identified eight complete and one incomplete open reading frame. All but one of the deduced proteins exhibited strong homology (68 to 84% identity) to the hypothetical proteins of Streptomyces coelicolor A3(2). The orfX gene product showed no significant similarity to any other protein in the databases, and an analysis of its sequence suggested that it was a putative membrane protein. Although the nature of the stimulatory effect is still unclear, the disruption of orfX revealed that this gene was intrinsically involved in the stimulation of avermectin production in S. avermitilis. PMID:12571055

  8. [An efficient genetic knockout system based on linear DNA fragment homologous recombination for halophilic archaea].

    PubMed

    Xiaoli, Wang; Chuang, Jiang; Jianhua, Liu; Xipeng, Liu

    2015-04-01

    With the development of functional genomics, gene-knockout is becoming an important tool to elucidate gene functions in vivo. As a good model strain for archaeal genetics, Haloferax volcanii has received more attention. Although several genetic manipulation systems have been developed for some halophilic archaea, it is time-consuming because of the low percentage of positive clones during the second-recombination selection. These classical gene knockout methods are based on DNA recombination between the genomic homologous sequence and the circular suicide plasmid, which carries a pyrE selection marker and two DNA fragments homologous to the upstream and downstream fragments of the target gene. Many wild-type clones are obtained through a reverse recombination between the plasmid and genome in the classic gene knockout method. Therefore, it is necessary to develop an efficient gene knockout system to increase the positive clone percentage. Here we report an improved gene knockout method using a linear DNA cassette consisting of upstream and downstream homologous fragments, and the pyrE marker. Gene deletions were subsequently detected by colony PCR analysis. We determined the efficiency of our knockout method by deleting the xpb2 gene from the H. volcanii genome, with the percentage of positive clones higher than 50%. Our method provides an efficient gene knockout strategy for halophilic archaea.

  9. Crocin Effects on Human Myeloma Cells Regarding Intracellular Redox State, DNA Fragmentation, and Apoptosis or Necrosis Profile

    PubMed Central

    Rezaee, Ramin; Jamialahmadi, Khadijeh; Riahi Zanjani, Bamdad; Mahmoudi, Mahmoud; Abnous, Khalil; Zamani Taghizadeh Rabe, Shahrzad; Tabasi, Nafiseh; Zali, Marjan; Rezaee, Marjan; Amin, Bahareh; Karimi, Gholamreza

    2014-01-01

    Background: Well-documented studies reported several pharmacological properties for crocin, the active compound of Crocus sativus, such as its antitumor, radical scavenging, antidepressant, and memory-enhancing effects. Objectives: We aimed to evaluate the possible cytotoxic activity of crocin on B lymphocytes in human myeloma (U266 cell line) after 24- and 48-hour treatment. Materials and Methods: For this purpose, cell viability was determined by the colorimetric MTT assay and cell death pattern was evaluated using Annexin V-FITC/propidium iodide (PI) apoptosis detection kit. ROS (reactive oxygen species) production and DNA fragmentation were assessed using 2′,7′-dichlorofluorescein diacetate (DCFH-DA) kit and PI staining, respectively. Results: The highest concentration of crocin significantly decreased ROS production after 48 hours of treatment. However, crocin had no effect on the expression level of HSP (Heat shock protein). Additionally, its administration caused a mild decline in cell viability and a mild increase in the population of DNA fragmented cells as well as apoptosis. Conclusions: In our study, no prominent effect was seen; therefore, in order to have a better perspective of crocin activity against cancerous cell lines, further studies are highly recommended. PMID:25625054

  10. In vivo assembly of DNA-fragments in the moss, Physcomitrella patens

    PubMed Central

    King, Brian Christopher; Vavitsas, Konstantinos; Ikram, Nur Kusaira Binti Khairul; Schrøder, Josephine; Scharff, Lars B.; Hamberger, Björn; Jensen, Poul Erik; Simonsen, Henrik Toft

    2016-01-01

    Direct assembly of multiple linear DNA fragments via homologous recombination, a phenomenon known as in vivo assembly or transformation associated recombination, is used in biotechnology to assemble DNA constructs ranging in size from a few kilobases to full synthetic microbial genomes. It has also enabled the complete replacement of eukaryotic chromosomes with heterologous DNA. The moss Physcomitrella patens, a non-vascular and spore producing land plant (Bryophyte), has a well-established capacity for homologous recombination. Here, we demonstrate the in vivo assembly of multiple DNA fragments in P. patens with three examples of effective genome editing: we (i) efficiently deleted a genomic locus for diterpenoid metabolism yielding a biosynthetic knockout, (ii) introduced a salt inducible promoter, and (iii) re-routed endogenous metabolism into the formation of amorphadiene, a precursor of high-value therapeutics. These proof-of-principle experiments pave the way for more complex and increasingly flexible approaches for large-scale metabolic engineering in plant biotechnology. PMID:27126800

  11. Antiserum to Nitrogenase Generated from an Amplified DNA Fragment from Natural Populations of Trichodesmium spp

    PubMed Central

    Zehr, Jonathan P.; Limberger, Ronald J.; Ohki, Kaori; Fujita, Yoshihiko

    1990-01-01

    A fragment of the nifH gene was amplified from natural populations of Trichodesmium spp. and cloned into a maltose-binding protein (MBP) expression vector. The peptide product of the amplified 359-bp fragment of nifH was cleaved from the fusion protein, purified, and used to generate a specific antibody to the Fe protein of nitrogenase. The antiserum recognized the MBP-nitrogenase fusion protein and the cleaved nif peptide product but not MBP. The antibody cross-reacted with nitrogenase from natural populations of Trichodesmium spp. from the Caribbean Sea and with a cultured isolate from the Kuroshio waters (Trichodesmium sp. strain NIBB1067). The same nifH fragment was amplified, cloned, and sequenced from Trichodesmium sp. strain NIBB1067 and was found to be 98% identical at both the protein and DNA levels to nifH from the Caribbean populations. Three of the six nucleotide differences between the Trichodesmium sp. strain NIBB1067 and the Trichodesmium spp. nifH sequence had also been found in a second sequence from the natural populations, indicating either that there is more than one strain of Trichodesmium sp. in natural assemblages or that there are multiple copies of nifH in the genome. This DNA fragment, which is easily amplified with the polymerase chain reaction, may provide a good indicator of species relatedness without requiring extensive cloning or sequencing. Furthermore, the use of the polymerase chain reaction in combination with a MBP protein fusion vector provides a rapid method for production of highly specific sera, starting with a small amount of DNA. Images PMID:16348356

  12. Characterization of DNA fragment from Chlamydia psittaci avian strain which shows high homology with hypB gene of Chlamydia.

    PubMed

    Sato, C; Katumata, A; Takashima, I; Hashimoto, N

    1991-12-01

    A study was performed to characterize DNA fragment No. 17 of C. psittaci strain P-1041 which encoded 42 KD beta-galactosidase fusion protein with type-specific antigenicity. Sequence determination identified a partial open reading frame that spanned about 1,200b. p. nucleotides. Screening the literatures for the nucleotide and deduced amino acid sequences revealed extensive similarity between the DNA fragment of P-1041 and two chlamydial hypB genes. This DNA showed 91.5% homology with C. psittaci GPIC hypB gene in nucleotide sequence and 96.4% homology in deduced amino acid sequence. The hypB gene of C. trachomatis serovar A and the P-1041 DNA fragment showed 81.2% and 91.3% homology in nucleotide and amino acid sequences, respectively. Dot enzyme-linked immunosorbent assay, for the products of deleted DNA fragments defined the coding region for type-specific antigenic polypeptide. In addition, the P-1041 DNA fragment carried a sequence highly homologous (greater than 49%) with other bacterial and plant genes called chaperonin which responds to various stress in cells. From these results, the P-1041 DNA fragment was found to be a part of hypB gene and to encode the region critical for type-specific antigenicity.

  13. Fragmentation of DNA components by hyperthermal heavy ion (Ar+ and Xe+) impact in the condensed phase

    NASA Astrophysics Data System (ADS)

    Sarabipour, Sarvenaz; Sarvenaz Sarabipour, Ms; Michaud, Marc; Deng, Zongwu; Huels, Michael A.

    The overriding environmental factor that presently limits human endeavors in space is exposure to heavy ion radiation. While knowledge of its damage to living tissue is essential for radiation protection and risk estimates for astronauts, very little data exists at the molecular level regarding the nascent DNA damage by the primary particle track, or by secondary species during subsequent reaction cascades. This persistent lack of a basic understanding of nascent damage induced by such low dose, high LET radiation, introduces unacceptable errors in radiation risk estimates (based mainly on extrapolation from high dose, low LET radiation), particularly for long term exposure. Mutagenic effects induced by heavy ion radiation to cells are largely due to DNA damage by secondary transient species, i.e. secondary ballistic ions, electrons and radicals generated along the ion tracks; the secondary ions have hyperthermal energies up to several 100 eV, which they will deposit within a few nm in the surrounding medium; thus their LET is very high, and yields lethal clustered DNA lesions. We present measurements of molecular damage induced in films of DNA components by ions with precisely such low energies (1-100 eV) and compare results to conventional electron impact measurements. Experiments are conducted in UHV using a mass selected low energy ion source, and a high-resolution quadrupole MS to monitor ion yields desorbing from molecular films. Among the major fragments, NH4 + is identified in the desorption mass spectra of irradiated films of Adenine, Guanine, Cytosine, indicating efficient deamination; in cells this results in pre-mutagenic lesions. Experiments with 5-amino-Uracil, and comparison to previous results on uracil and thymine show that deamination is a key step in the NH4 + fragment formation. For Adenine, we also observe formation of amine aducts in the films, viz. amination of Adenine, and global fragmentation in all ion impact mass spectra, attributed

  14. Cas3-Derived Target DNA Degradation Fragments Fuel Primed CRISPR Adaptation.

    PubMed

    Künne, Tim; Kieper, Sebastian N; Bannenberg, Jasper W; Vogel, Anne I M; Miellet, Willem R; Klein, Misha; Depken, Martin; Suarez-Diez, Maria; Brouns, Stan J J

    2016-09-01

    Prokaryotes use a mechanism called priming to update their CRISPR immunological memory to rapidly counter revisiting, mutated viruses, and plasmids. Here we have determined how new spacers are produced and selected for integration into the CRISPR array during priming. We show that Cas3 couples CRISPR interference to adaptation by producing DNA breakdown products that fuel the spacer integration process in a two-step, PAM-associated manner. The helicase-nuclease Cas3 pre-processes target DNA into fragments of about 30-100 nt enriched for thymine-stretches in their 3' ends. The Cas1-2 complex further processes these fragments and integrates them sequence-specifically into CRISPR repeats by coupling of a 3' cytosine of the fragment. Our results highlight that the selection of PAM-compliant spacers during priming is enhanced by the combined sequence specificities of Cas3 and the Cas1-2 complex, leading to an increased propensity of integrating functional CTT-containing spacers. PMID:27546790

  15. Lack of in vivo transcription of Acetabularia mediterranea 1175 bp ctDNA fragment homologous to the Drosophila per locus.

    PubMed

    Yang, X P; Mittelsten Scheid, O

    1992-01-01

    The period (per) locus of Drosophila melanogaster has a fundamental role in the expression of biological rhythms. A DNA sequence homologous to a short region of the Drosophila per locus was detected in the chloroplast of Acetabularia mediterranea. A 1175 bp DNA fragment containing the sequence was used as a probe in 'Northern' hybridization experiments. It was found that this DNA was not transcribed or only marginally transcribed in A. mediterranea, at least at the developmental stage just prior to cap formation. It seems that the 1175 bp ctDNA fragment is not involved in the Acetabularia biological rhythm mechanism.

  16. Environmental toxicants cause sperm DNA fragmentation as detected by the Sperm Chromatin Structure Assay (SCSA[reg])

    SciTech Connect

    Evenson, Donald P. . E-mail: scsa@brookings.net; Wixon, Regina

    2005-09-01

    Studies over the past two decades have clearly shown that reproductive toxicants cause sperm DNA fragmentation. This DNA fragmentation can usually be detected prior to observing alterations of metaphase chromosomes in embryos. Thus, Sperm Chromatin Structure Assay (SCSA)-detected DNA damage is viewed as the molecular precursor to later gross chromosome damage observed under the light microscope. SCSA measurements of animal or human sperm consist of first obtaining a fresh or flash frozen neat semen sample in LN2 or dry ice. Samples are then sent to a SCSA diagnostic laboratory where the samples are thawed, diluted to {approx}1-2 x 106 sperm/ml, treated for 30 s with a pH 1.2 detergent buffer and then stained with acridine orange (AO). The low pH partially denatures DNA at the sites of DNA strand breaks and the AO-ssDNA fluoresces red while the AO-dsDNA fluoresces green. Flow cytometry measurements of 5000 sperm/sample provide statistically robust data on the ratio of red to green sperm, the extent of the DNA fragmentation and the standard deviations of measures. Numerous experiments on rodents treated with reproductive toxicants clearly showed that SCSA measures are highly dose responsive and have a very low CV. Different agents that act on germ cells at various stages of development usually showed sperm DNA fragmentation when that germ cell fraction arrived in the epididymis or ejaculate. Some of these treated samples were capable of successful in vitro fertilization but with frequent embryo failure. A 2-year longitudinal study of men living a valley town with a reported abnormal level of infertility and spontaneous miscarriages and also a seasonal atmospheric smog pollution, showed, for the first time, that SCSA measurements of human sperm DNA fragmentation were detectable and correlated with dosage of air pollution while the classical semen measures were not correlated. Also, young men spraying pesticides without protective gear are at an increased risk for

  17. Lophirones B and C prevent aflatoxin B1-induced oxidative stress and DNA fragmentation in rat hepatocytes.

    PubMed

    Ajiboye, Taofeek Olakunle; Yakubu, Musa Toyin; Oladiji, Adenike Temidayo

    2016-10-01

    Context Despite the reported anticarcinogenic activity of lophirones B and C, no scientific information exists for its activity in rat hepatocytes. Objective Effect of lophirones B and C on aflatoxin B1 (AFB1)-induced oxidative stress, and DNA fragmentation in rat hepatocytes was investigated. Materials and methods Wistar rat hepatocytes were incubated with lophirones B and C (1 mg/mL) or sylimarin (1 mg/mL) in the presence or absence of AFB1. For an in vivo study, rats were orally administered with lophirones B and C, and/or AFB1 (20 μg/d) for 9 weeks. Results Lophirones B and C lowered AFB1-mediated increase in nitric oxide, superoxide anion radicals, caspase-3 and fragmented DNA. Lophirones B and C attenuated AFB1-mediated decrease in superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and reduced glutathione. Also, lophirones B and C attenuated AFB1-mediated increase in conjugated dienes, lipid hydroperoxides and malondialdehyde in rat hepatocytes. Furthermore, AFB1-mediated alterations in alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, albumin, total bilirubin and globulin in rat serum were significantly annulled in lophirones B and C-treated rats. Conclusion This study revealed that lophirones B and C prevented AFB1-induced oxidative damage in rat hepatocytes.

  18. Active DNA demethylation by DNA repair: Facts and uncertainties.

    PubMed

    Schuermann, David; Weber, Alain R; Schär, Primo

    2016-08-01

    Pathways that control and modulate DNA methylation patterning in mammalian cells were poorly understood for a long time, although their importance in establishing and maintaining cell type-specific gene expression was well recognized. The discovery of proteins capable of converting 5-methylcytosine (5mC) to putative substrates for DNA repair introduced a novel and exciting conceptual framework for the investigation and ultimate discovery of molecular mechanisms of DNA demethylation. Against the prevailing notion that DNA methylation is a static epigenetic mark, it turned out to be dynamic and distinct mechanisms appear to have evolved to effect global and locus-specific DNA demethylation. There is compelling evidence that DNA repair, in particular base excision repair, contributes significantly to the turnover of 5mC in cells. By actively demethylating DNA, DNA repair supports the developmental establishment as well as the maintenance of DNA methylation landscapes and gene expression patterns. Yet, while the biochemical pathways are relatively well-established and reviewed, the biological context, function and regulation of DNA repair-mediated active DNA demethylation remains uncertain. In this review, we will thus summarize and critically discuss the evidence that associates active DNA demethylation by DNA repair with specific functional contexts including the DNA methylation erasure in the early embryo, the control of pluripotency and cellular differentiation, the maintenance of cell identity, and the nuclear reprogramming. PMID:27247237

  19. DNA sequence analysis of the Hind III M fragment from Chinese vaccine strain of vaccinia virus.

    PubMed

    Liu, V J; Jin, Q; Jin, D Y; Hou, Y D

    1989-01-01

    The complete DNA sequence of the Hind III M fragment of vaccinia virus (VV) Tian Tan strain genome was determined by the dideoxynucleotide chain termination method. Three open reading frames (ORFs) were identified in the complementary strand of the sequence, comprised of 2218bp. Among them, ORF K1 initiates its transcription at -45 of the Hind III K fragment. The deduced peptide encoded by K1 contains 284 amino acids with a calculated molecular weight of 32.48 KDa. Its sequence is homologous to the host range protein of VV Copenhagen strain; the variation is only 2.46% at the amino acid level. ORF M2 could encode a peptide of 21.94 KDa with 196 amino acids. This gene was shown to be homologous to that of the 23 KDa peptide of herpes simplex virus type I. A non-coding region of 204bp located between K1 and M2 is rich in palindromic structures. ORF M1 extends its 3' terminus into the Hind III N fragment. Within the M fragment, M1 can only encode 212 amino acids. The major part of ORF M1 is very similar to the M portion of a possible alpha-amanitin resistance gene isolated from VV-WR strain. This work provides a molecular foundation in the construction of a new insertion vector for the preparation of a recombinant vaccinia virus to be used as a polyvalent live vaccine.

  20. DNA fragmentation and nuclear phenotype in tendons exposed to low-intensity infrared laser

    NASA Astrophysics Data System (ADS)

    de Paoli, Flavia; Ramos Cerqueira, Larissa; Martins Ramos, Mayara; Campos, Vera M.; Ferreira-Machado, Samara C.; Geller, Mauro; de Souza da Fonseca, Adenilson

    2015-03-01

    Clinical protocols are recommended in device guidelines outlined for treating many diseases on empirical basis. However, effects of low-intensity infrared lasers at fluences used in clinical protocols on DNA are controversial. Excitation of endogenous chromophores in tissues and free radicals generation could be described as a consequence of laser used. DNA lesions induced by free radicals cause changes in DNA structure, chromatin organization, ploidy degrees and cell death. In this work, we investigated whether low-intensity infrared laser therapy could alter the fibroblasts nuclei characteristics and induce DNA fragmentation. Tendons of Wistar rats were exposed to low-intensity infrared laser (830 nm), at different fluences (1, 5 and 10 J/cm2), in continuous wave (power output of 10mW, power density of 79.6 mW/cm2). Different frequencies were analyzed for the higher fluence (10 J/cm2), at pulsed emission mode (2.5, 250 and 2500 Hz), with the laser source at surface of skin. Geometric, densitometric and textural parameters obtained for Feulgen-stained nuclei by image analysis were used to define nuclear phenotypes. Significant differences were observed on the nuclear phenotype of tendons after exposure to laser, as well as, high cell death percentages was observed for all fluences and frequencies analyzed here, exception 1 J/cm2 fluence. Our results indicate that low-intensity infrared laser can alter geometric, densitometric and textural parameters in tendon fibroblasts nuclei. Laser can also induce DNA fragmentation, chromatin lost and consequently cell death, using fluences, frequencies and emission modes took out from clinical protocols.

  1. Multiple Determinations of Sperm DNA Fragmentation Show That Varicocelectomy Is Not Indicated for Infertile Patients with Subclinical Varicocele

    PubMed Central

    García-Peiró, Agustín; Ribas-Maynou, Jordi; Oliver-Bonet, María; Navarro, Joaquima; Checa, Miguel A.; Nikolaou, Alexandros; Amengual, María J.; Abad, Carlos; Benet, Jordi

    2014-01-01

    Varicocele is one of the most common causes of low semen quality, which is reflected in high percentages of sperm cells with fragmented DNA. While varicocelectomy is usually performed to ameliorate a patient's fertility, its impact on sperm DNA integrity in the case of subclinical varicocele is poorly documented. In this study, multiple DNA fragmentation analyses (TUNEL, SCD, and SCSA) were performed on semen samples from sixty infertile patients with varicocele (15 clinical varicoceles, 19 clinical varicoceles after surgical treatment, 16 subclinical varicoceles, and 10 subclinical varicoceles after surgical treatment). TUNEL, SCD, and SCSA assays all showed substantial sperm DNA fragmentation levels that were comparable between subclinical and clinical varicocele patients. Importantly, varicocelectomy did improve sperm quality in patients with clinical varicocele; however, this was not the case in patients with subclinical varicocele. In summary, although infertile patients with clinical and subclinical varicocele have similar sperm DNA quality, varicocelectomy should only be advised for patients with clinical varicocele. PMID:24967335

  2. Correlation between sperm DNA fragmentation index and CMA3 positive spermatozoa in globozoospermic patients.

    PubMed

    Hosseinifar, H; Yazdanikhah, S; Modarresi, T; Totonchi, M; Sadighi Gilani, M A; Sabbaghian, M

    2015-05-01

    The absence of the acrosome causes the situation which is called globozoospermia. There are a few studies, mostly as case reports, about correlation between levels of sperm DNA damage in patients with total round-headed spermatozoa. We investigated this correlation as well as CMA3 positive spermatozoa in 20 globozoospermic men (with more than 90% round-headed spermatozoa) attending to Royan Institute. Semen samples divided into three parts to semen analysis, to measure DNA fragmentation index (DFI) using sperm chromatin structure assay (SCSA) and to detect CMA3(+) sperm cells by chromomycin A3 staining and fluorescent microscopy. Our results showed that there were significant differences in sperm concentration, total sperm motility, and normal morphology between patients and controls group (p < 0.001). Moreover, the average of DFI and CMA3 positive spermatozoa in patients group significantly increases compared with control group (p < 0.001). A significant correlation between DFI and CMA3(+) in total population was also detected in patients group (r = 0.45, p = 0.046). To our knowledge, this is the largest study about correlation between DNA damage levels and CMA3 positive spermatozoa with round head sperm cells in total globozoospermic men. It seems that the increase in DNA damage may be because of defective sperm DNA compaction, as we detected CMA3 positive sperm cells in these patients.

  3. A new way of measuring apoptosis by absolute quantitation of inter-nucleosomally fragmented genomic DNA

    PubMed Central

    Hooker, David J.; Mobarok, Masqura; Anderson, Jenny L.; Rajasuriar, Reena; Gray, Lachlan R.; Ellett, Anne M.; Lewin, Sharon R.; Gorry, Paul R.; Cherry, Catherine L.

    2012-01-01

    Several critical events of apoptosis occur in the cell nucleus, including inter-nucleosomal DNA fragmentation (apoptotic DNA) and eventual chromatin condensation. The generation of apoptotic DNA has become a biochemical hallmark of apoptosis because it is a late ‘point of no return’ step in both the extrinsic (cell-death receptor) and intrinsic (mitochondrial) apoptotic pathways. Despite investigators observing apoptotic DNA and understanding its decisive role as a marker of apoptosis for over 20 years, measuring it has proved elusive. We have integrated ligation-mediated PCR and qPCR to design a new way of measuring apoptosis, termed ApoqPCR, which generates an absolute value for the amount (picogram) of apoptotic DNA per cell population. ApoqPCR’s advances over current methods include a 1000-fold linear dynamic range yet sensitivity to distinguish subtle low-level changes, measurement with a 3- to 4-log improvement in sample economy, and capacity for archival or longitudinal studies combined with high-throughput capability. We demonstrate ApoqPCR’s utility in both in vitro and in vivo contexts. Considering the fundamental role apoptosis has in vertebrate and invertebrate health, growth and disease, the reliable measurement of apoptotic nucleic acid by ApoqPCR will be of value in cell biology studies in basic and applied science. PMID:22544708

  4. Identification of column edges of DNA fragments by using K-means clustering and mean algorithm on lane histograms of DNA agarose gel electrophoresis images

    NASA Astrophysics Data System (ADS)

    Turan, Muhammed K.; Sehirli, Eftal; Elen, Abdullah; Karas, Ismail R.

    2015-07-01

    Gel electrophoresis (GE) is one of the most used method to separate DNA, RNA, protein molecules according to size, weight and quantity parameters in many areas such as genetics, molecular biology, biochemistry, microbiology. The main way to separate each molecule is to find borders of each molecule fragment. This paper presents a software application that show columns edges of DNA fragments in 3 steps. In the first step the application obtains lane histograms of agarose gel electrophoresis images by doing projection based on x-axis. In the second step, it utilizes k-means clustering algorithm to classify point values of lane histogram such as left side values, right side values and undesired values. In the third step, column edges of DNA fragments is shown by using mean algorithm and mathematical processes to separate DNA fragments from the background in a fully automated way. In addition to this, the application presents locations of DNA fragments and how many DNA fragments exist on images captured by a scientific camera.

  5. Metabolic activation of carcinogenic ethylbenzene leads to oxidative DNA damage.

    PubMed

    Midorikawa, Kaoru; Uchida, Takafumi; Okamoto, Yoshinori; Toda, Chitose; Sakai, Yoshie; Ueda, Koji; Hiraku, Yusuke; Murata, Mariko; Kawanishi, Shosuke; Kojima, Nakao

    2004-12-01

    Ethylbenzene is carcinogenic to rats and mice, while it has no mutagenic activity. We have investigated whether ethylbenzene undergoes metabolic activation, leading to DNA damage. Ethylbenzene was metabolized to 1-phenylethanol, acetophenone, 2-ethylphenol and 4-ethylphenol by rat liver microsomes. Furthermore, 2-ethylphenol and 4-ethylphenol were metabolically transformed to ring-dihydroxylated metabolites such as ethylhydroquinone and 4-ethylcatechol, respectively. Experiment with 32P-labeled DNA fragment revealed that both ethylhydroquinone and 4-ethylcatechol caused DNA damage in the presence of Cu(II). These dihydroxylated compounds also induced the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine in calf thymus DNA in the presence of Cu(II). Catalase, methional and Cu(I)-specific chelator, bathocuproine, significantly (P<0.05) inhibited oxidative DNA damage, whereas free hydroxyl radical scavenger and superoxide dismutase did not. These results suggest that Cu(I) and H2O2 produced via oxidation of ethylhydroquinone and 4-ethylcatechol are involved in oxidative DNA damage. Addition of an endogenous reductant NADH dramatically enhanced 4-ethylcatechol-induced oxidative DNA damage, whereas ethylhydroquinone-induced DNA damage was slightly enhanced. Enhancing effect of NADH on oxidative DNA damage by 4-ethylcatechol may be explained by assuming that reactive species are generated from the redox cycle. In conclusion, these active dihydroxylated metabolites would be involved in the mechanism of carcinogenesis by ethylbenzene. PMID:15560893

  6. Novel extraction method of genomic DNA suitable for long-fragment amplification from small amounts of milk.

    PubMed

    Liu, Y F; Gao, J L; Yang, Y F; Ku, T; Zan, L S

    2014-11-01

    Isolation of genomic DNA is a prerequisite for assessment of milk quality. As a source of genomic DNA, milk somatic cells from milking ruminants are practical, animal friendly, and cost-effective sources. Extracting DNA from milk can avoid the stress response caused by blood and tissue sampling of cows. In this study, we optimized a novel DNA extraction method for amplifying long (>1,000 bp) DNA fragments and used it to evaluate the isolation of DNA from small amounts of milk. The techniques used for the separation of milk somatic cell were explored and combined with a sodium dodecyl sulfate (SDS)-phenol method for optimizing DNA extraction from milk. Spectrophotometry was used to determine the concentration and purity of the extracted DNA. Gel electrophoresis and DNA amplification technologies were used for to determine DNA size and quality. The DNA of 112 cows was obtained from milk (samples of 13 ± 1 mL) and the corresponding optical density ratios at 260:280 nm were between 1.65 and 1.75. Concentrations were between 12 and 45 μg/μL and DNA size and quality were acceptable. The specific PCR amplification of 1,019- and 729-bp bovine DNA fragments was successfully carried out. This novel method can be used as a practical, fast, and economical mean for long genomic DNA extraction from a small amount of milk.

  7. Novel extraction method of genomic DNA suitable for long-fragment amplification from small amounts of milk.

    PubMed

    Liu, Y F; Gao, J L; Yang, Y F; Ku, T; Zan, L S

    2014-11-01

    Isolation of genomic DNA is a prerequisite for assessment of milk quality. As a source of genomic DNA, milk somatic cells from milking ruminants are practical, animal friendly, and cost-effective sources. Extracting DNA from milk can avoid the stress response caused by blood and tissue sampling of cows. In this study, we optimized a novel DNA extraction method for amplifying long (>1,000 bp) DNA fragments and used it to evaluate the isolation of DNA from small amounts of milk. The techniques used for the separation of milk somatic cell were explored and combined with a sodium dodecyl sulfate (SDS)-phenol method for optimizing DNA extraction from milk. Spectrophotometry was used to determine the concentration and purity of the extracted DNA. Gel electrophoresis and DNA amplification technologies were used for to determine DNA size and quality. The DNA of 112 cows was obtained from milk (samples of 13 ± 1 mL) and the corresponding optical density ratios at 260:280 nm were between 1.65 and 1.75. Concentrations were between 12 and 45 μg/μL and DNA size and quality were acceptable. The specific PCR amplification of 1,019- and 729-bp bovine DNA fragments was successfully carried out. This novel method can be used as a practical, fast, and economical mean for long genomic DNA extraction from a small amount of milk. PMID:25218756

  8. Sex Determination in Highly Fragmented Human DNA by High-Resolution Melting (HRM) Analysis

    PubMed Central

    Álvarez-Sandoval, Brenda A.; Manzanilla, Linda R.; Montiel, Rafael

    2014-01-01

    Sex identification in ancient human remains is a common problem especially if the skeletons are sub-adult, incomplete or damaged. In this paper we propose a new method to identify sex, based on real-time PCR amplification of small fragments (61 and 64 bp) of the third exon within the amelogenin gene covering a 3-bp deletion on the AMELX-allele, followed by a High Resolution Melting analysis (HRM). HRM is based on the melting curves of amplified fragments. The amelogenin gene is located on both chromosomes X and Y, showing dimorphism in length. This molecular tool is rapid, sensitive and reduces the risk of contamination from exogenous genetic material when used for ancient DNA studies. The accuracy of the new method described here has been corroborated by using control samples of known sex and by contrasting our results with those obtained with other methods. Our method has proven to be useful even in heavily degraded samples, where other previously published methods failed. Stochastic problems such as the random allele drop-out phenomenon are expected to occur in a less severe form, due to the smaller fragment size to be amplified. Thus, their negative effect could be easier to overcome by a proper experimental design. PMID:25098828

  9. Sex determination in highly fragmented human DNA by high-resolution melting (HRM) analysis.

    PubMed

    Álvarez-Sandoval, Brenda A; Manzanilla, Linda R; Montiel, Rafael

    2014-01-01

    Sex identification in ancient human remains is a common problem especially if the skeletons are sub-adult, incomplete or damaged. In this paper we propose a new method to identify sex, based on real-time PCR amplification of small fragments (61 and 64 bp) of the third exon within the amelogenin gene covering a 3-bp deletion on the AMELX-allele, followed by a High Resolution Melting analysis (HRM). HRM is based on the melting curves of amplified fragments. The amelogenin gene is located on both chromosomes X and Y, showing dimorphism in length. This molecular tool is rapid, sensitive and reduces the risk of contamination from exogenous genetic material when used for ancient DNA studies. The accuracy of the new method described here has been corroborated by using control samples of known sex and by contrasting our results with those obtained with other methods. Our method has proven to be useful even in heavily degraded samples, where other previously published methods failed. Stochastic problems such as the random allele drop-out phenomenon are expected to occur in a less severe form, due to the smaller fragment size to be amplified. Thus, their negative effect could be easier to overcome by a proper experimental design. PMID:25098828

  10. Sex determination in highly fragmented human DNA by high-resolution melting (HRM) analysis.

    PubMed

    Álvarez-Sandoval, Brenda A; Manzanilla, Linda R; Montiel, Rafael

    2014-01-01

    Sex identification in ancient human remains is a common problem especially if the skeletons are sub-adult, incomplete or damaged. In this paper we propose a new method to identify sex, based on real-time PCR amplification of small fragments (61 and 64 bp) of the third exon within the amelogenin gene covering a 3-bp deletion on the AMELX-allele, followed by a High Resolution Melting analysis (HRM). HRM is based on the melting curves of amplified fragments. The amelogenin gene is located on both chromosomes X and Y, showing dimorphism in length. This molecular tool is rapid, sensitive and reduces the risk of contamination from exogenous genetic material when used for ancient DNA studies. The accuracy of the new method described here has been corroborated by using control samples of known sex and by contrasting our results with those obtained with other methods. Our method has proven to be useful even in heavily degraded samples, where other previously published methods failed. Stochastic problems such as the random allele drop-out phenomenon are expected to occur in a less severe form, due to the smaller fragment size to be amplified. Thus, their negative effect could be easier to overcome by a proper experimental design.

  11. Comparison of DNA restriction fragment length polymorphisms of Nostoc strains in and from cycads.

    PubMed

    Lindblad, P; Haselkorn, R; Bergman, B; Nierzwicki-Bauer, S A

    1989-01-01

    DNA was prepared from cyanobacteria freshly isolated from coralloid roots of natural populations of five cycad species: Ceratozamia mexicana mexicana (Mexico), C. mexicana robusta (Mexico), Dioon spinulosum (Mexico), Zamia furfuraceae (Mexico) and Z. skinneri (Costa Rica). Using the Southern blot technique and cloned Anabaena PCC 7120 nifK and glnA genes as probes, restriction fragment length polymorphisms of these cyanobacterial symbionts were compared. The five cyanobacterial preparations showed differences in the sizes of their DNA fragments hybridizing with both probes, indicating that different cyanobacterial species and/or strains were in the symbiotic associations. On the other hand, a similar comparison of cyanobacteria freshly collected from a single Encephalartos altensteinii coralloid root and from three independently subcultured isolates from the same coralloid root revealed that these were likely to be one and the same organism. Moreover, the complexity of restriction patterns shows that a mixture of Nostoc strains can associate with a single cycad species although a single cyanobacterial strain can predominate in the root of a single cycad plant. Thus, a wide range of Nostoc strains appear to associate with the coralloid roots of cycads.

  12. Monte Carlo predictions of DNA fragment-size distributions for large sizes after HZE particle irradiation

    NASA Technical Reports Server (NTRS)

    Ponomarev, A. L.; Cucinotta, F. A.; Sachs, R. K.; Brenner, D. J.

    2001-01-01

    DSBs (double-strand breaks) produced by densely ionizing space radiation are not located randomly in the genome: recent data indicate DSB clustering along chromosomes. DSB clustering at large scales, from >100 Mbp down to approximately 2 kbp, is modeled using a Monte-Carlo algorithm. A random-walk model of chromatin is combined with a track model, that predicts the radial distribution of energy from an ion, and the RLC (randomly-located-clusters) formalism, in software called DNAbreak. This model generalizes the random-breakage model, whose broken-stick fragment-size distribution is applicable to low-LET radiation. DSB induction due to track interaction with the DNA volume depends on the radiation quality parameter Q. This dose-independent parameter depends only weakly on LET. Multi-track, high-dose effects depend on the cluster intensity parameter lambda, proportional to fluence as defined by the RLC formalism. After lambda is determined by a numerical experiment, the model reduces to one adjustable parameter Q. The best numerical fits to the experimental data, determining Q, are obtained. The knowledge of lambda and Q allows us to give biophysically based extrapolations of high-dose DNA fragment-size data to low doses or to high LETs.

  13. DNA fragmentation, transgene expression and embryo development after intracytoplasmic injection of DNA-liposome complexes in IVF bovine zygotes.

    PubMed

    Vichera, G; Moro, L N; Buemo, C; Salamone, D

    2014-05-01

    Summary This study was designed to evaluate the quality and viability of bovine embryos produced by in vitro fertilization (IVF), after intracytoplasmic injection of pCX-EGFP-liposome complexes or pBCKIP2.8-liposome complexes (plasmids that codify the human insulin gene). Cleavage, blastocysts and expanded blastocysts rates of these both groups were not different from that of controls (IVF or IVF embryos injected with liposomes alone; IVF-L). The percentage of EGFP-positive (EGFP+) blastocysts was 41.8%. In Experiment 2, the blastocysts obtained after injection of pCX-EGFP-liposome complexes that did or did not express the transgene, were analyzed by TUNEL (terminal deoxynucleotidyl transferase dUTP nick-end labelling) assay at days 6, 7 and 8 of culture in vitro(Bd6, Bd7 and Bd8), in order to evaluate DNA fragmentation. The EGFP+ blastocysts showed different proportions of TUNEL-positive cells (T+) at Bd6, Bd7 and Bd8 (91, 73.7 and 99.5%, respectively) while blastocysts without EGFP expression (EGFP-) showed statistically lower numbers of fragmented nuclei (0, 44.6 and 85%, respectively; P < 0.05). There was no evidence of DNA fragmentation in either Bd6 or Bd7 IVF and IVF-L control blastocysts, but T+ nuclei were detected at Bd8 in both groups (66.4 and 85.8% respectively). Finally, IVF blastocysts (n = 21) injected with insulin-liposome complexes, cultured for 6, 7 and 8 days, were transferred to recipient cows. Pregnancy rates of 18.2% (2/11) and 40% (2/5) resulted from the transfer of Bd6 and Bd7 cells, respectively. Two pregnancies developed to term but they were not transgenic for the insulin gene. In conclusion, EGFP expression affects DNA integrity but not embryo development. Moreover, additional transfers are required in order to overcome the drawbacks generated by in vitro culture length and transgene expression.

  14. The AT-Hook motif as a versatile minor groove anchor for promoting DNA binding of transcription factor fragments

    PubMed Central

    Rodríguez, Jéssica; Mosquera, Jesús; Couceiro, Jose R.; Vázquez, M. Eugenio; Mascareñas, José L.

    2015-01-01

    We report the development of chimeric DNA binding peptides comprising a DNA binding fragment of natural transcription factors (the basic region of a bZIP protein or a monomeric zinc finger module) and an AT-Hook peptide motif. The resulting peptide conjugates display high DNA affinity and excellent sequence selectivity. Furthermore, the AT-Hook motif also favors the cell internalization of the conjugates. PMID:26290687

  15. Effects of UV irradiation and hydrogen peroxide on DNA fragmentation, motility and fertilizing ability of rainbow trout (Oncorhynchus mykiss) spermatozoa.

    PubMed

    Dietrich, G J; Szpyrka, A; Wojtczak, M; Dobosz, S; Goryczko, K; Zakowski, L; Ciereszko, A

    2005-11-01

    Preservation of DNA integrity is essential for protection of sperm quality. This study examined, with the use of comet assay, DNA fragmentation of rainbow trout (Oncorhynchus mykiss) spermatozoa subjected to UV irradiation (2,075 microW/cm(2), 0-15 min) or oxidative stress induced by hydrogen peroxide (0-20mM). Sperm motility and fertilizing ability were also measured. A dramatic increase in DNA fragmentation was recorded after 5 min UV irradiation but no significant changes in sperm motility were observed at this time. Longer irradiation resulted in a decrease in motility parameters and further increase of DNA fragmentation. UV irradiation caused a clear decrease in the percentage of eyed embryos and most of the embryos did not hatch. When highly diluted sperm suspensions (50,000-fold) were exposed to 0.1mM H(2)O(2) evident increase in DNA fragmentation was observed. On the other hand, when more concentrated sperm suspensions (diluted only 40-fold) were employed (in order to conduct motility and fertilization measurements at the same time) 1-20mM H(2)O(2) caused only moderate increase in DNA fragmentation and dose-dependent decline in sperm motility and fertilizing ability. This suggests that toxic effects of H(2)O(2) were primarily related to inhibition of sperm motility. Our results demonstrate that comet assay can be used for monitoring the effectiveness of fish sperm DNA inactivation by UV irradiation. Therefore, the comet assay together with sperm motility analysis can be applied in optimization works of gynogenetic procedures in fish. Lack of effectiveness of H(2)O(2) in inducing major DNA fragmentation suggests presence of mechanisms of antioxidative defense in rainbow trout spermatozoa.

  16. Dynamics of sperm DNA fragmentation in raw boar semen and fertility.

    PubMed

    Batista, C; van Lier, E; Petrocelli, H

    2016-10-01

    The aims were to evaluate sperm DNA fragmentation (SDF) in boars through the dispersion of their chromatin in raw semen samples, quantifying the extent of SDF, and to assess dynamic aspects of sperm DNA damage after incubation to obtain the rate of sperm DNA fragmentation (rSDF) under thermal conditions similar to the uterus (37°C) over a period of up to 24 hr and to correlate the reproductive outcome of the sows with the SDF of the boars at ejaculation. The study was performed on a pig-breeding farm in southern Uruguay. Sixty-one ejaculates from five of the most frequently used hybrid boars were evaluated. Semen was collected weekly from each of the boars, using the gloved-hand technique and discarding the jelly-like fraction of the ejaculate. Fresh semen was kept in a water bath at 37°C and protected from light, and was thereafter processed with Sperm-Sus-Halomax(®) to evaluate SDF. The smears for time 0 (T0) were made on farm, and thereafter smears were made at the laboratory at 4 hr of obtaining the semen (T4), then every 2 hr (T6, T8, T10, T12) and a final fixation at 24 hr (T24). Differences in SDF were observed among exposure times for all boars (p < .05), but not between T10 and T12 (p = .7751) nor T4 and T24 (p = .9113). In none of the T24 samples, sperm heads could be seen with chromatin dispersion halos. Furthermore, there were differences among boars when comparing sperm rSDF (p < .05). Farrowing rate was not affected by SDF at T0 (r = .38, p = .75), nor was litter size (r = .16, p = .70). With the present experimental conditions, we have not been able to show a relationship between sperm DNA fragmentation at ejaculation and reproductive performance. However, this could be a result of the low number of ejaculates and boars used. PMID:27546051

  17. Short DNA Fragments Are a Hallmark of Heavy Charged-Particle Irradiation and May Underlie Their Greater Therapeutic Efficacy

    PubMed Central

    Pang, Dalong; Chasovskikh, Sergey; Rodgers, James E.; Dritschilo, Anatoly

    2016-01-01

    Growing interest in proton and heavy ion therapy has reinvigorated research into the fundamental biological mechanisms underlying the therapeutic efficacy of charged-particle radiation. To improve our understanding of the greater biological effectiveness of high-LET radiations, we have investigated DNA double-strand breaks (DSBs) following exposure of plasmid DNA to low-LET Co-60 gamma photon and electron irradiation and to high-LET Beryllium and Argon ions with atomic force microscopy. The sizes of DNA fragments following radiation exposure were individually measured to construct fragment size distributions from which the DSB per DNA molecule and DSB spatial distributions were derived. We report that heavy charged particles induce a significantly larger proportion of short DNA fragments in irradiated DNA molecules, reflecting densely and clustered damage patterns of high-LET energy depositions. We attribute the enhanced short DNA fragmentation following high-LET radiations as an important determinant of the observed, enhanced biological effectiveness of high-LET irradiations. PMID:27376024

  18. Validation of a field based chromatin dispersion assay to assess sperm DNA fragmentation in the bottlenose dolphin (Tursiops truncatus).

    PubMed

    Sánchez-Calabuig, M-J; López-Fernández, C; Martínez-Nevado, E; Pérez-Gutiérrez, J F; de la Fuente, J; Johnston, S D; Blyde, D; Harrison, K; Gosálvez, J

    2014-10-01

    Over the last two decades, there have been significant advances in the use of assisted reproductive technology for genetic and reproductive management of captive dolphin populations, including evaluation of sperm DNA quality. This study validated a customized sperm chromatin dispersion test (SCDt) for the bottlenose dolphin (Tursiops truncatus) as a means of assessing sperm DNA damage both in the field and in the laboratory. After performing the SCDt, two different sperm morphotypes were identified: (i) sperm with fragmented DNA showed large haloes of dispersed DNA fragments emerging from a compact sperm nucleoid core and (ii) sperm containing non-fragmented DNA displayed small compact haloes surrounded by a dense core of non-dispersed DNA and protein complex. Estimates of sperm DNA fragmentation by means of SCDt were directly comparable to results obtained following a two-tailed comet assay and showed a significant degree of correlation (r = 0.961; p < 0.001). This investigation also revealed that the SCDt, with minor modifications to the standard protocol, can be successfully conducted in the field using a LED florescence microscopy obtaining a high correlation (r = 0.993; p = 0.01) between the data obtained in the laboratory and in the field.

  19. Short DNA Fragments Are a Hallmark of Heavy Charged-Particle Irradiation and May Underlie Their Greater Therapeutic Efficacy.

    PubMed

    Pang, Dalong; Chasovskikh, Sergey; Rodgers, James E; Dritschilo, Anatoly

    2016-01-01

    Growing interest in proton and heavy ion therapy has reinvigorated research into the fundamental biological mechanisms underlying the therapeutic efficacy of charged-particle radiation. To improve our understanding of the greater biological effectiveness of high-LET radiations, we have investigated DNA double-strand breaks (DSBs) following exposure of plasmid DNA to low-LET Co-60 gamma photon and electron irradiation and to high-LET Beryllium and Argon ions with atomic force microscopy. The sizes of DNA fragments following radiation exposure were individually measured to construct fragment size distributions from which the DSB per DNA molecule and DSB spatial distributions were derived. We report that heavy charged particles induce a significantly larger proportion of short DNA fragments in irradiated DNA molecules, reflecting densely and clustered damage patterns of high-LET energy depositions. We attribute the enhanced short DNA fragmentation following high-LET radiations as an important determinant of the observed, enhanced biological effectiveness of high-LET irradiations. PMID:27376024

  20. Validation of a field based chromatin dispersion assay to assess sperm DNA fragmentation in the bottlenose dolphin (Tursiops truncatus).

    PubMed

    Sánchez-Calabuig, M-J; López-Fernández, C; Martínez-Nevado, E; Pérez-Gutiérrez, J F; de la Fuente, J; Johnston, S D; Blyde, D; Harrison, K; Gosálvez, J

    2014-10-01

    Over the last two decades, there have been significant advances in the use of assisted reproductive technology for genetic and reproductive management of captive dolphin populations, including evaluation of sperm DNA quality. This study validated a customized sperm chromatin dispersion test (SCDt) for the bottlenose dolphin (Tursiops truncatus) as a means of assessing sperm DNA damage both in the field and in the laboratory. After performing the SCDt, two different sperm morphotypes were identified: (i) sperm with fragmented DNA showed large haloes of dispersed DNA fragments emerging from a compact sperm nucleoid core and (ii) sperm containing non-fragmented DNA displayed small compact haloes surrounded by a dense core of non-dispersed DNA and protein complex. Estimates of sperm DNA fragmentation by means of SCDt were directly comparable to results obtained following a two-tailed comet assay and showed a significant degree of correlation (r = 0.961; p < 0.001). This investigation also revealed that the SCDt, with minor modifications to the standard protocol, can be successfully conducted in the field using a LED florescence microscopy obtaining a high correlation (r = 0.993; p = 0.01) between the data obtained in the laboratory and in the field. PMID:25130370

  1. High-sensitivity capillary electrophoresis of double-stranded DNA fragments using monomeric and dimeric fluorescent intercalating dyes

    SciTech Connect

    Zhu, H.; Clark, S.M.; Benson, S.C.; Rye, H.S.; Glazer, A.N.; Mathies, R.A. )

    1994-07-01

    Fluorescence-detected capillary electrophoresis separations of [phi]X174/HaeIII DNA restriction fragments have been performed using monomeric and dimeric intercalating dyes. Replaceable hydroxyethyl cellulose solutions were used as the separation medium. Confocal fluorescence detection was performed following 488-nm laser excitation. The limits of DNA detection for on-column staining with monomeric dyes (ethidium bromide, two propidium dye derivatives, oxazole yellow, thiazole orange, and a polycationic thiazole orange derivative) were determined. The thiazole orange dyes provide the most sensitive detection with limiting sensitivities of 2-4 amol of DNA base pairs per band, and detection of the 603-bp fragment was successful, injecting from [phi]X174/HaeIII samples containing only 1-2 fg of this fragment per microliter. Separations of preformed DNA-dimeric dye complexes were also performed. The breadth of the bands observed in separations of preformed DNA-dimeric dye complexes is due to the presence of DNA fragments with different numbers of bound dye molecules that can be resolved as closely spaced subbands in many of our separations. The quality of these DNA-dye complex separations can be dramatically improved by performing the electrophoresis with 9-aminoacridine (9AA) in the column and running buffers. 43 refs., 10 figs., 1 tab.

  2. Cloning should be simple: Escherichia coli DH5α-mediated assembly of multiple DNA fragments with short end homologies

    SciTech Connect

    Kostylev, Maxim; Otwell, Anne E.; Richardson, Ruth E.; Suzuki, Yo; Isalan, Mark

    2015-09-08

    Numerous DNA assembly technologies exist for generating plasmids for biological studies. Many procedures require complex in vitro or in vivo assembly reactions followed by plasmid propagation in recombination-impaired Escherichia coli strains such as DH5α, which are optimal for stable amplification of the DNA materials. Here we show that despite its utility as a cloning strain, DH5α retains sufficient recombinase activity to assemble up to six doublestranded DNA fragments ranging in size from 150 bp to at least 7 kb into plasmids in vivo. This process also requires surprisingly small amounts of DNA, potentially obviating the need for upstream assembly processes associated with most common applications of DNA assembly. In addition, we demonstrate the application of this process in cloning of various DNA fragments including synthetic genes, preparation of knockout constructs, and incorporation of guide RNA sequences in constructs for clustered regularly interspaced short palindromic repeats (CRISPR) genome editing. This consolidated process for assembly and amplification in a widely available strain of E. coli may enable productivity gain across disciplines involving recombinant DNA work.

  3. The Gene Targeting Approach of Small Fragment Homologous Replacement (SFHR) Alters the Expression Patterns of DNA Repair and Cell Cycle Control Genes

    PubMed Central

    Pierandrei, Silvia; Luchetti, Andrea; Sanchez, Massimo; Novelli, Giuseppe; Sangiuolo, Federica; Lucarelli, Marco

    2016-01-01

    Cellular responses and molecular mechanisms activated by exogenous DNA that invades cells are only partially understood. This limits the practical use of gene targeting strategies. Small fragment homologous replacement (SFHR) uses a small exogenous wild-type DNA fragment to restore the endogenous wild-type sequence; unfortunately, this mechanism has a low frequency of correction. In this study, we used a mouse embryonic fibroblast cell line with a stably integrated mutated gene for enhanced green fluorescence protein. The restoration of a wild-type sequence can be detected by flow cytometry analysis. We quantitatively analyzed the expression of 84 DNA repair genes and 84 cell cycle control genes. Peculiar temporal gene expression patterns were observed for both pathways. Different DNA repair pathways, not only homologous recombination, as well as the three main cell cycle checkpoints appeared to mediate the cellular response. Eighteen genes were selected as highly significant target/effectors of SFHR. We identified a wide interconnection between SFHR, DNA repair, and cell cycle control. Our results increase the knowledge of the molecular mechanisms involved in cell invasion by exogenous DNA and SFHR. Specific molecular targets of both the cell cycle and DNA repair machineries were selected for manipulation to enhance the practical application of SFHR. PMID:27045208

  4. Phenotypic changes in Cyprinus carpiovar var. Jian introduced by sperm-mediated transgenesis of rearranged homologous DNA fragments.

    PubMed

    Cao, Zheming; Ding, Weidong; Ren, Hongtao

    2013-09-01

    Common carp, specifically the Jian variety (Cyprinus carpiovar var. Jian), is an important Chinese and global aquatic stock for commercial foodstuff. Homologous recombination of carp gene sequences has been widely used in population genetics to broadly screen for beneficial phenotypical variations, thus optimizing artificially engineered carp stocks with Jian variety and native stock varieties. Random rearrangement of homologous DNA fragments from parent specimens of C. carpiovar var. Jian were attained by digestion of genomic DNA with MspI followed by religation and redigestion with EcoR I to specifically rearrange homologous DNA fragments of myostatin and microsatellite genes. Based on known characteristics of myostatin gene function, growth pattern changes in resultant carp mutant varieties was expected. DNA fragments were introduced into metaphase-II oocytes, resulting in one to several dozen insertions of homologous fragments into the host genome by sperm-mediated transgenesis. Introduction of rearranged homologous DNA fragments often resulted in phenotypic changes in C. carpiovar var. Jian, including significant phenotypic changes linked to growth rate at 4 months.

  5. Smoking influence on sperm vitality, DNA fragmentation, reactive oxygen species and zinc in oligoasthenoteratozoospermic men with varicocele.

    PubMed

    Taha, E A; Ezz-Aldin, A M; Sayed, S K; Ghandour, N M; Mostafa, T

    2014-08-01

    This study aimed to assess the influence of smoking duration and intensity on sperm vitality, sperm DNA fragmentation, reactive oxygen species (ROS) and zinc (Zn) levels in oligoasthenoteratozoospermic (OAT) men with varicocele (Vx). A total of 246 men were investigated who were divided into OAT nonsmokers, OAT smokers, OAT nonsmokers and OAT smokers with Vx. They were subjected to history taking, clinical examination and semen analysis. In their semen, sperm hypo-osmotic swelling (HOS) test, sperm DNA fragmentation test, seminal ROS and seminal Zn were assessed. The results demonstrated significantly decreased HOS test, seminal Zn level and significantly increased sperm DNA fragmentation, seminal ROS levels in OAT smokers with Vx more than OAT smokers compared with OAT nonsmokers. Smoking intensity, smoking duration and Vx grade demonstrated significant negative correlations with sperm motility, HOS test percentage and significant positive correlations with sperm DNA fragmentation, seminal ROS level. It is concluded that smoking has a negative impact on sperm progressive motility, HOS test, seminal Zn and positive impact on sperm DNA fragmentation, semen ROS level that are exaggerated if Vx is associated being correlated with smoking intensity, smoking duration and Vx grade.

  6. DNA fingerprinting of Mycobacterium leprae strains using variable number tandem repeat (VNTR) - fragment length analysis (FLA).

    PubMed

    Jensen, Ronald W; Rivest, Jason; Li, Wei; Vissa, Varalakshmi

    2011-07-15

    presence of the desired DNA segments, and then submitted for fluorescent fragment length analysis (FLA) using capillary electrophoresis. DNA from armadillo passaged bacteria with a known number of repeat copies for each locus is used as a positive control. The FLA chromatograms are then examined using Peak Scanner software and fragment length is converted to number of VNTR copies (allele). Finally, the VNTR haplotypes are analyzed for patterns, and when combined with patient clinical data can be used to track distribution of strain types.

  7. DNA Fingerprinting of Mycobacterium leprae Strains Using Variable Number Tandem Repeat (VNTR) - Fragment Length Analysis (FLA)

    PubMed Central

    Jensen, Ronald W.; Rivest, Jason; Li, Wei; Vissa, Varalakshmi

    2011-01-01

    gel electrophoresis to verify the presence of the desired DNA segments, and then submitted for fluorescent fragment length analysis (FLA) using capillary electrophoresis. DNA from armadillo passaged bacteria with a known number of repeat copies for each locus is used as a positive control. The FLA chromatograms are then examined using Peak Scanner software and fragment length is converted to number of VNTR copies (allele). Finally, the VNTR haplotypes are analyzed for patterns, and when combined with patient clinical data can be used to track distribution of strain types. PMID:21775969

  8. Characterization of highly and moderately repetitive 500 bp Eco RI fragments from Xenopus laevis DNA.

    PubMed Central

    Hummel, S; Meyerhof, W; Korge, E; Knöchel, W

    1984-01-01

    Three different types of repetitive Eco RI fragments, which comigrate within a visible band of approximately 500 bp at gel electrophoresis of Xenopus laevis DNA Eco RI digests have been cloned and sequenced. These sequences are designated as Repetitive Eco RI Monomers: REM 1, REM 2 and REM 3. The sequences contain direct repeats, inverted repeats and palindromic elements. Genomic organization of the most abundant sequence (REM 1; 0.4% of total DNA) is that of an interspersed sequence. REM 2 (0.08%) is partly organized as an interspersed element and partly found in tandem arrangement, whereas REM 3 (0.02%) represents the tandemly repeated monomeric unit of a satellite DNA. In situ hybridization has shown that REM 1 and REM 2 sequences are found on most chromosomes, REM 1 being preferentially located on specific chromosomal loci. REM 3 is located near the centromere region of only one chromosome pair (presumably number 1). Hybridization of Northern blots from RNAs of different developmental stages revealed that REM 1, REM 2 and REM 3 sequences are transcribed and that transcription is under developmental control. Images PMID:6330690

  9. Crystal structures of the Klenow fragment of Thermus aquaticus DNA polymerase I complexed with deoxyribonucleoside triphosphates.

    PubMed Central

    Li, Y.; Kong, Y.; Korolev, S.; Waksman, G.

    1998-01-01

    The crystal structures of the Klenow fragment of the Thermus aquaticus DNA polymerase I (Klentaq1) complexed with four deoxyribonucleoside triphosphates (dNTP) have been determined to 2.5 A resolution. The dNTPs bind adjacent to the O helix of Klentaq1. The triphosphate moieties are at nearly identical positions in all four complexes and are anchored by three positively charged residues, Arg659, Lys663, and Arg587, and by two polar residues, His639 and Gln613. The configuration of the base moieties in the Klentaq1/dNTP complexes demonstrates variability suggesting that dNTP binding is primarily determined by recognition and binding of the phosphate moiety. However, when superimposed on the Taq polymerase/blunt end DNA complex structure (Eom et al., 1996), two of the dNTP/Klentaq1 structures demonstrate appropriate stacking of the nucleotide base with the 3' end of the DNA primer strand, suggesting that at least in these two binary complexes, the observed dNTP conformations are functionally relevant. PMID:9605316

  10. Novel apparatus to measure hyperthermal heavy ion damage to DNA: Strand breaks, base loss, and fragmentation

    NASA Astrophysics Data System (ADS)

    Sellami, L.; Lacombe, S.; Hunting, D.; Wagner, R. J.; Huels, M. A.

    2007-08-01

    We have developed a novel apparatus that allows us to irradiate nonvolatile organic films of high mass (1-100μg range) spread out over a large surface area (42cm2) with low energy (kT-100eV) heavy ions and to quantitatively analyze the film substance via standard biochemical techniques afterwards. Here we discuss the details of the apparatus and method and show that it allows us to measure substantial damage to double stranded DNA molecules (plasmids) and its fundamental subunits induced by heavy ions with unprecedented low energies, i.e., 2.5eV/amu; these energies correspond to track end energies of stopping ions or secondary ions created along primary ion tracks. We find that hyperthermal Ar+ ions interacting with plasmid DNA will lead to the formation of single and double strand breaks, as well as fragmentation of nucleosides, which also involve chemical modifications and site specific rupture along the N1-C1 glycosidic bond, resulting in base release. In cells, such localized clustered damage will enhance the severity of DNA strand lesions, thus making them harder to repair.

  11. Hot Fusion: an efficient method to clone multiple DNA fragments as well as inverted repeats without ligase.

    PubMed

    Fu, Changlin; Donovan, William P; Shikapwashya-Hasser, Olga; Ye, Xudong; Cole, Robert H

    2014-01-01

    Molecular cloning is utilized in nearly every facet of biological and medical research. We have developed a method, termed Hot Fusion, to efficiently clone one or multiple DNA fragments into plasmid vectors without the use of ligase. The method is directional, produces seamless junctions and is not dependent on the availability of restriction sites for inserts. Fragments are assembled based on shared homology regions of 17-30 bp at the junctions, which greatly simplifies the construct design. Hot Fusion is carried out in a one-step, single tube reaction at 50 °C for one hour followed by cooling to room temperature. In addition to its utility for multi-fragment assembly Hot Fusion provides a highly efficient method for cloning DNA fragments containing inverted repeats for applications such as RNAi. The overall cloning efficiency is in the order of 90-95%.

  12. Flexible bent rod model with a saturating induced dipole moment to study the electric linear dichroism of DNA fragments

    NASA Astrophysics Data System (ADS)

    Bertolotto, Jorge A.; Umazano, Juan P.

    2016-06-01

    In the present work we make a theoretical study of the steady state electric linear dichroism of DNA fragments in aqueous solution. The here developed theoretical approach considers a flexible bent rod model with a saturating induced dipole moment. The electric polarizability tensor of bent DNA fragments is calculated considering a phenomenological model which theoretical and experimental backgroung is presented here. The model has into account the electric polarizability longitudinal and transversal to the macroion. Molecular flexibility is described using an elastic potential. We consider DNA fragments originally bent with bending fluctuations around an average bending angle. The induced dipole moment is supposed constant once the electric field strength grows up at critical value. To calculate the reduced electric linear dichroism we determine the optical factor considering the basis of the bent DNA perpendicular to the molecular axis. The orientational distribution function has into account the anisotropic electric properties and the molecule flexibility. We applied the present theoretical background to fit electric dichroism experimental data of DNA fragments reported in the bibliography in a wide range of molecular weight and electric field. From these fits, values of DNA physical properties are estimated. We compare and discuss the results here obtained with the theoretical and experimental data presented by other authors. The original contributions of this work are: the inclusion of the transversal electric polarizability saturating with the electric field, the description of the electric properties with an electric polarizability tensor dependant on the bending angle and the use of an arc model originally bent.

  13. Synthesis and antiproliferative activity of benzophenone tagged pyridine analogues towards activation of caspase activated DNase mediated nuclear fragmentation in Dalton's lymphoma.

    PubMed

    Al-Ghorbani, Mohammed; Thirusangu, Prabhu; Gurupadaswamy, H D; Girish, V; Shamanth Neralagundi, H G; Prabhakar, B T; Khanum, Shaukath Ara

    2016-04-01

    A series of benzophenones possessing pyridine nucleus 8a-l were synthesized by multistep reaction sequence and evaluated for antiproliferative activity against DLA cells by in vitro and in vivo studies. The results suggested that, compounds 8b with fluoro group and 8e with chloro substituent at the benzoyl ring of benzophenone scaffold as well as pyridine ring with hydroxy group exhibited significant activity. Further investigation in mouse model suggests that compounds 8b and 8e have the potency to activate caspase activated DNase (endonuclease) which is responsible for DNA fragmentation, a primary hallmark of apoptosis and thereby inhibits the Dalton's lymphoma ascites tumour growth. PMID:26874345

  14. Risk to fragmented DNA in dry, wet, and frozen states from computed tomography: a comparative theoretical study.

    PubMed

    Wanek, Johann; Rühli, Frank Jakobus

    2016-05-01

    Computed tomography represents the gold standard in forensic and palaeopathological diagnosis. However, the X-rays used may affect the DNA quality through fragmentation and loss of genetic information. Previous work showed that the effects of ionizing radiation on dry DNA are non-significant with P < 10(-8), which cannot be detected by means of polymerase chain reaction methods. In the present paper, complete analytical model that characterizes radiation effects on fragmented DNA in dry, wet, and frozen states is described. Simulation of radiation tracks in water phantom cells was performed using the Geant4-DNA toolkit. Cell hits by electrons with energies between 5 and 20 keV were simulated, and the formation of radiolytic products was assessed at a temperature of 298 K. The diffusion coefficient and the mean square displacement of reactive species were calculated by Stokes-Einstein-Smoluchowski relations at 273 K. Finally, DNA fragment damage was estimated using the density distribution of fragments calculated from atomic force microscopy images. The lowest probability of radiation-induced DNA damage was observed for dry state, with a range from 2.5 × 10(-9) to 7.8 × 10(-12) at 298 K, followed by that for frozen state, with a range from 0.9 to 4 × 10(-7) at 273 K. The highest probability of radiation-induced DNA damage was demonstrated for fragmented DNA in wet state with a range from 2 to 9 × 10(-7) at 298 K. These results significantly improve the interpretation of CT imaging in future studies in forensic and palaeopathological science.

  15. Reduction of the DNA base excision repair protein, XRCC1, may contribute to DNA fragmentation after cold injury-induced brain trauma in mice.

    PubMed

    Fujimura, M; Morita-Fujimura, Y; Noshita, N; Yoshimoto, T; Chan, P H

    2000-06-30

    The X-ray repair cross-complementing group 1 (XRCC1) protein plays a central role in the DNA base excision repair pathway by interacting with DNA ligase III and DNA polymerase beta. The present study examined the protein expression of XRCC1 and DNA fragmentation before and after cold injury-induced brain trauma (CIBT) in mice, in which apoptosis is assumed to participate. Immunohistochemistry showed the nuclear expression of XRCC1 in the entire region of the control brains. Fifteen minutes after CIBT, nuclear immunoreactivity was predominantly decreased in the inner boundary of the lesion, followed by a significant reduction of XRCC1 in the entire lesion 4 h after CIBT. A characteristic 70-kDa band was detected in the non-traumatic area, and was markedly decreased after CIBT as shown by Western blot analysis. DNA fragmentation was also observed after CIBT, and double staining with XRCC1 immunohistochemistry and terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end labeling showed a spatial relationship between XRCC1 loss and DNA fragmentation 24 h after CIBT. These data indicate that early decrease of XRCC1 and failure of the DNA repair mechanism may contribute to DNA-damaged neuronal cell death after CIBT.

  16. Total reactive antioxidant potential and DNA fragmentation index as fertility sperm parameters.

    PubMed

    Miciński, Piotr; Pawlicki, Krzysztof; Wielgus, Ewa; Bochenek, Michał; Gogol, Piotr; Ficek, Beata

    2011-07-01

    There is a growing evidence that oxidative stress play a major role in the etiology of defective sperm function including impaired morphology, motility, metabolism and fertility. The aim of the present study was to examine: 1/ total reactive antioxidant potential (TRAP) in seminal plasma; 2/ sperm DNA fragmentation index (DFI), 3/ sperm morphology and motility and 4/ cellular membrane integrity (hypoosmotic swelling test: HOS test) in patients attending in vitro fertilization/intracytoplasmatic sperm injection ( IVF/ICSI) program. According to the DFI value, the men were divided into: group 1 with DFI ≤15% (n=38) and group 2 with DFI ≥15% (n=37). Significant differences between the two groups were found in TRAP, sperm motility, morphology and concentration as well as HOS test scores. In group 1, DFI was negatively correlated with sperm motility and HOS test scores (p<0.05). The sperm morphology was positively correlated with sperm motility and HOS test scores in both groups. There was no correlation between TRAP and sperm chromatin fragmentation. Our results suggest that seminal plasma TRAP level may be a DFI independent parameter of sperm fertility. PMID:21804634

  17. Characterization of HIFU ablation using DNA fragmentation labeling as apoptosis stain

    NASA Astrophysics Data System (ADS)

    Anquez, Jeremie; Corréas, Jean-Michel; Pau, Bernard; Lacoste, François; Yon, Sylvain

    2012-11-01

    The goal of this work was to compare modalities to precisely quantify the extent of thermally induced lesions: gross pathology vs. histopathology vs. devascularization. Liver areas of 14 rabbits were targeted with HIFU and RF ablations in an acute study. Contrast enhanced computorized tomography (CE-CT) scan images were acquired two hours after HIFU and RF treatment to obtain the devascularized volumes of the livers. The animals were then euthanized and deep frozen. The livers were sliced and each slice was photographed and stacked yielding a volume of gross pathology. The volume VGP of the HIFU lesions were derived. The area AGP of the lesions were computed on a particular slice. The lesions were segmented as hypo intense (devascularized) regions on CE-CT images and their volumes VC were computed. The ratios VC/VGP were computed for all the HIFU lesions on all the 14 subjects with a mean value of 1.2. Histology was performed on the livers using Hematoxyline Eosine Staining (HES) and DNA Fragmentation labeling (TUNEL® technology) which characterizes apoptosis. Apoptotic regions of area AT were segmented on the images stained by TUNEL®. No necrosis was identified on the HES data. While TUNEL® did not mark the cores of the RF lesions as apoptotic, the periphery of HIFU and RF lesions was always recognized with TUNEL® as apoptotic. The ratio AGP/AT was computed. The mean value was 0.95 and 0.25 for HIFU and RF lesions respectively. These findings show that the devascularized territory seen on CE-CT scan coincide with the coagulated territories seen with gross pathology. Those actually correspond to cells in apoptosis. It is confirmed that HES stain does not show necrosis 2 hours after thermal ablation. TUNEL® technology for DNA fragmentation labeling appears as a useful marker for thermally induced acute lesions in the liver.

  18. A DNA Metabarcoding Study of a Primate Dietary Diversity and Plasticity across Its Entire Fragmented Range

    PubMed Central

    Quéméré, Erwan; Hibert, Fabrice; Miquel, Christian; Lhuillier, Emeline; Rasolondraibe, Emmanuel; Champeau, Julie; Rabarivola, Clément; Nusbaumer, Louis; Chatelain, Cyrille; Gautier, Laurent; Ranirison, Patrick; Crouau-Roy, Brigitte; Taberlet, Pierre; Chikhi, Lounès

    2013-01-01

    In tropical regions, most primary ecosystems have been replaced by mosaic landscapes in which species must cope with a large shift in the distribution of their habitat and associated food resources. Primates are particularly vulnerable to habitat modifications. Most species persist in small fragments surrounded by complex human-mediated matrices whose structure and connectivity may strongly influence their dispersal and feeding behavior. Behavioral plasticity appears to be a crucial parameter governing the ability of organisms to exploit the resources offered by new matrix habitats and thus to persist in fragmented habitats. In this study, we were interested in the dietary plasticity of the golden-crowned sifaka (Propithecus tattersalli), an endangered species of lemur, found only in the Daraina region in north-eastern Madagascar. We used a DNA-based approach combining the barcoding concept and Illumina next-generation sequencing to (i) describe the species diet across its entire range and (ii) evaluate the influence of landscape heterogeneity on diet diversity and composition. Faeces from 96 individuals were sampled across the entire species range and their contents were analyzed using the trnL metabarcoding approach. In parallel, we built a large DNA reference database based on a checklist of the plant species of the Daraina region. Our results suggest that golden-crowned sifakas exhibit remarkable dietary diversity with at least 130 plant species belonging to 80 genera and 49 different families. We highlighted an influence of both habitat type and openness on diet composition suggesting a high flexibility of foraging strategies. Moreover, we observed the presence of numerous cultivated and naturalized plants in the faeces of groups living in forest edge areas. Overall, our findings support our initial expectation that P. tattersalli is able to cope with the current level of alteration of the landscape and confirm our previous results on the distribution and the

  19. The synthesis of new amphiphilic p-tert-butylthiacalix[4]arenes containing peptide fragments and their interaction with DNA.

    PubMed

    Padnya, Pavel L; Andreyko, Elena A; Mostovaya, Olga A; Rizvanov, Ildar Kh; Stoikov, Ivan I

    2015-06-01

    New water-soluble p-tert-butylthiacalix[4]arenes containing peptide and quaternary ammonium fragments in cone and 1,3-alternate conformations were synthesized and characterized. The interaction of the macrocycles with DNA was studied by UV-spectroscopy, DLS and TEM. It was shown that the interaction of the self-associates based on p-tert-butylthiacalix[4]arenes tetrasubstituted at the lower rim with glycine and quaternary ammonium fragments in cone and 1,3-alternate conformations with DNA led to the formation of particles of about 99-192 nm in size.

  20. Fragment-based activity space: smaller is better.

    PubMed

    Hesterkamp, Thomas; Whittaker, Mark

    2008-06-01

    Fragment-based drug discovery has the potential to supersede traditional high throughput screening based drug discovery for molecular targets amenable to structure determination. This is because the chemical diversity coverage is better accomplished by a fragment collection of reasonable size than by larger HTS collections. Furthermore, fragments have the potential to be efficient target binders with higher probability than more elaborated drug-like compounds. The selection of the fragment screening technique is driven by sensitivity and throughput considerations, and we advocate in the present article the use of high concentration bioassays in conjunction with NMR-based hit confirmation. Subsequent ligand X-ray structure determination of the fragment ligand in complex with the target protein by co-crystallisation or crystal soaking can focus on confirmed binders.

  1. DNA Methyltransferase Activity Assays: Advances and Challenges

    PubMed Central

    Poh, Wan Jun; Wee, Cayden Pang Pee; Gao, Zhiqiang

    2016-01-01

    DNA methyltransferases (MTases), a family of enzymes that catalyse the methylation of DNA, have a profound effect on gene regulation. A large body of evidence has indicated that DNA MTase is potentially a predictive biomarker closely associated with genetic disorders and genetic diseases like cancer. Given the attention bestowed onto DNA MTases in molecular biology and medicine, highly sensitive detection of DNA MTase activity is essential in determining gene regulation, epigenetic modification, clinical diagnosis and therapeutics. Conventional techniques such as isotope labelling are effective, but they often require laborious sample preparation, isotope labelling, sophisticated equipment and large amounts of DNA, rendering them unsuitable for uses at point-of-care. Simple, portable, highly sensitive and low-cost assays are urgently needed for DNA MTase activity screening. In most recent technological advances, many alternative DNA MTase activity assays such as fluorescent, electrochemical, colorimetric and chemiluminescent assays have been proposed. In addition, many of them are coupled with nanomaterials and/or enzymes to significantly enhance their sensitivity. Herein we review the progress in the development of DNA MTase activity assays with an emphasis on assay mechanism and performance with some discussion on challenges and perspectives. It is hoped that this article will provide a broad coverage of DNA MTase activity assays and their latest developments and open new perspectives toward the development of DNA MTase activity assays with much improved performance for uses in molecular biology and clinical practice. PMID:26909112

  2. DNA Methyltransferase Activity Assays: Advances and Challenges.

    PubMed

    Poh, Wan Jun; Wee, Cayden Pang Pee; Gao, Zhiqiang

    2016-01-01

    DNA methyltransferases (MTases), a family of enzymes that catalyse the methylation of DNA, have a profound effect on gene regulation. A large body of evidence has indicated that DNA MTase is potentially a predictive biomarker closely associated with genetic disorders and genetic diseases like cancer. Given the attention bestowed onto DNA MTases in molecular biology and medicine, highly sensitive detection of DNA MTase activity is essential in determining gene regulation, epigenetic modification, clinical diagnosis and therapeutics. Conventional techniques such as isotope labelling are effective, but they often require laborious sample preparation, isotope labelling, sophisticated equipment and large amounts of DNA, rendering them unsuitable for uses at point-of-care. Simple, portable, highly sensitive and low-cost assays are urgently needed for DNA MTase activity screening. In most recent technological advances, many alternative DNA MTase activity assays such as fluorescent, electrochemical, colorimetric and chemiluminescent assays have been proposed. In addition, many of them are coupled with nanomaterials and/or enzymes to significantly enhance their sensitivity. Herein we review the progress in the development of DNA MTase activity assays with an emphasis on assay mechanism and performance with some discussion on challenges and perspectives. It is hoped that this article will provide a broad coverage of DNA MTase activity assays and their latest developments and open new perspectives toward the development of DNA MTase activity assays with much improved performance for uses in molecular biology and clinical practice.

  3. Electrochemical strategy for sensing DNA methylation and DNA methyltransferase activity.

    PubMed

    Wang, Gang Lin; Zhou, Long Yin; Luo, Hong Qun; Li, Nian Bing

    2013-03-20

    The present work demonstrates a novel signal-off electrochemical method for the determination of DNA methylation and the assay of methyltransferase activity using the electroactive complex [Ru(NH3)6](3+) (RuHex) as a signal transducer. The assay exploits the electrostatic interactions between RuHex and DNA strands. Thiolated single strand DNA1 was firstly self-assembled on a gold electrode via Au-S bonding, followed by hybridization with single strand DNA2 to form double strand DNA containing specific recognition sequence of DNA adenine methylation MTase and methylation-responsive restriction endonuclease Dpn I. The double strand DNA may adsorb lots of electrochemical species ([Ru(NH3)6](3+)) via the electrostatic interaction, thus resulting in a high electrochemical signal. In the presence of DNA adenine methylation methyltransferase and S-adenosyl-l-methionine, the formed double strand DNA was methylated by DNA adenine methylation methyltransferase, then the double strand DNA can be cleaved by methylation-responsive restriction endonuclease Dpn I, leading to the dissociation of a large amount of signaling probes from the electrode. As a result, the adsorption amount of RuHex reduced, resulting in a decrease in electrochemical signal. Thus, a sensitive electrochemical method for detection of DNA methylation is proposed. The proposed method yielded a linear response to concentration of Dam MTase ranging from 0.25 to 10UmL(-1) with a detection limit of 0.18UmL(-1) (S/N=3), which might promise this method as a good candidate for monitoring DNA methylation in the future. PMID:23473252

  4. Microarrays Made Simple: "DNA Chips" Paper Activity

    ERIC Educational Resources Information Center

    Barnard, Betsy

    2006-01-01

    DNA microarray technology is revolutionizing biological science. DNA microarrays (also called DNA chips) allow simultaneous screening of many genes for changes in expression between different cells. Now researchers can obtain information about genes in days or weeks that used to take months or years. The paper activity described in this article…

  5. Electrochemical DNA sensor-based strategy for sensitive detection of DNA demethylation and DNA demethylase activity.

    PubMed

    Shen, Qingming; Fan, Mengxing; Yang, Yin; Zhang, Hui

    2016-08-31

    DNA demethylation and demethylase activity play important roles in DNA self-repair, and their detection is key to early diagnosis of fatal diseases. Herein, a facile electrochemical DNA (E-DNA) sensor was developed for the sensitive detection of DNA demethylation and demethylase activity based on an enzyme cleavage strategy. The thiol modified hemi-methylated hairpin probe DNA (pDNA) was self-assembled on a Au electrode surface through the formation of AuS bonds. The hemi-methylated pDNA served as the substrate of DNA demethylase (using methyl-CpG-binding domain protein 2 (MBD2) as an example). Following demethylation, the hairpin stem was then recognized and cleaved by BstUI endonuclease. The ferrocene carboxylic acid (FcA)-tagged pDNA strands were released into the buffer solution from the electrode surface, resulting in a significant decrease of electrochemical signal and providing a means to observe DNA demethylation. The activity of DNA demethylase was analyzed in the concentration ranging from 0.5 to 500 ng mL(-1) with a limit of detection as low as 0.17 ng mL(-1). With high specificity and sensitivity, rapid response, and low cost, this simple E-DNA sensor provides a unique platform for the sensitive detection of DNA demethylation, DNA demethylase activity, and related molecular diagnostics and drug screening. PMID:27506345

  6. Characterization of a fragment containing a putative TLP cDNA sequence.

    PubMed

    Tarro, G

    2002-01-01

    With the aim of isolating the Tumor Liberated Protein (TLP) gene, reverse transcription-polymerase chain reaction (RT-PCR) was used to isolate a approximately equal to 500 bp fragment containing a putative TLP cDNA sequence. Total RNAs were extracted from several cell lines with RNAzol B reagent (Tel-Test, Inc) and reverse transcribed using the Reverse Transcription System (Promega). PCR was carried out for 35 cycles (1 minute at 95 degrees C, 2 minutes at 40 degrees C and 1 minute at 72 degrees C) using an upstream degenerate oligonucleotide, ACN AAY AAR GAR GCN TCN ATG TG, which corresponds to the amino acid sequence T N K E A S I, and random hexamers as the downstream primer. PCR products were electrophoresed on a 1% agarose gel containing ethidium bromide. The PCR products were cloned in the pGEM-T easy vector (PROMEGA) and the resulting plasmid clones were sequenced with the chain termination method using the Applied Biosystems model 373A DNA sequencer. A putative open reading frame was deducted. The results obtained can be considered as preliminary data that will require more investigation in order to confirm them. We propose to continue the studies to verify that TLP could be a diagnostic marker in human cancer.

  7. Random rapid amplification of cDNA ends (RRACE) allows for cloning of multiple novel human cDNA fragments containing (CAG)n repeats.

    PubMed

    Carney, J P; McKnight, C; VanEpps, S; Kelley, M R

    1995-04-01

    We describe a new technique for isolating cDNA fragments in which (i) either a partial sequence of the cDNA is known or (ii) a repeat sequence is utilized. We have used this technique, termed random rapid amplification of cDNA ends (random RACE), to isolate a number of trinucleotide repeat (CAG)n-containing genes. Using the random RACE (RRACE) technique, we have isolated over a hundred (CAG)n-containing genes. The results of our initial analysis of ten clones indicate that three are identical to previously cloned (CAG)n-containing genes. Three of our clones matched with expressed sequence tags, one of which contained a CA repeat. The remaining four clones did not match with any sequence in GenBank. These results indicate that this approach provides a rapid and efficient method for isolating trinucleotide repeat-containing cDNA fragments. Finally, this technique may be used for purposes other than cloning repeat-containing cDNA fragments. If only a partial sequence of a gene is known, our system, described here, provides a rapid and efficient method for isolating a fragment of the gene of interest. PMID:7536696

  8. Study on detection of mutation DNA fragment in gastric cancer by restriction endonuclease fingerprinting with capillary electrophoresis.

    PubMed

    Wang, Rong; Xie, Hua; Xu, Yue-Bing; Jia, Zheng-Ping; Meng, Xian-Dong; Zhang, Juan-Hong; Ma, Jun; Wang, Juan; Wang, Xian-Hua

    2012-03-01

    The DNA fragment detection focusing technique has further enhanced the sensitivity and information of DNA targets. The DNA fragment detection method was established by capillary electrophoresis with laser-induced fluorescence detection and restriction endonuclease chromatographic fingerprinting (CE-LIF-REF) in our experiment. The silica capillary column was coated with short linear polyarclarylamide (SLPA) using nongel sieving technology. The excision product of various restricted enzymes of DNA fragments was obtained by REF with the molecular biology software Primer Premier 5. The PBR322/BsuRI DNA marker was used to establish the optimization method. The markers were focused electrophoretically and detected by CE-LIF. The results demonstrate that the CE-LIF-REF with SLPA can improve separation, sensitivity and speed of analysis. This technique may be applied to analysis of the excision product of various restricted enzymes of prokaryotic plasmid (pIRES2), eukaryote plasmid (pcDNA3.1) and the PCR product of codon 248 region of gastric cancer tissue. The results suggest that this method could very sensitively separate the excision products of various restricted enzymes at a much better resolution than the traditional agarose electrophoresis.

  9. Identification of restriction-fragment-length polymorphisms in genomic DNA of the lesser snow goose (Anser caerulescens caerulescens).

    PubMed

    Quinn, T W; White, B N

    1987-03-01

    A genomic library of partially EcoRI-digested DNA from the lesser snow goose, Anser caerulescens caerulescens, was constructed in the phage vector Charon 4. Phage containing only unique sequences were identified by screening plaques with 32P-labeled genomic DNA. Restriction-fragment-length polymorphisms (RFLPs) were identified by probing DNA from 11-13 male birds from the breeding colony at La Perouse Bay. Of the 17 probes examined, all detected RFLPs with at least one of EcoRi, HindIII, Msp1, and Taq1. Several of them identified highly variable regions with multiple alleles. These RFLPs are valuable DNA markers that can be used for (1) the examination of DNA variation, relatedness, and genetic distance and (2) assessing paternity and maternity. These data suggest that there are higher levels of variation of DNA sequence in birds than had previously been thought to exist. PMID:2895887

  10. Restriction fragment length polymorphism DNA analysis by the FBI Laboratory protocol using a simple, convenient hardware system.

    PubMed

    Lewis, M E; Kouri, R E; Latorra, D; Berka, K M; Lee, H C; Gaensslen, R E

    1990-09-01

    Restriction fragment length polymorphism analysis of human deoxyribonucleic acid (DNA) using two probes, pYNH24 and CMM101, was performed on the BIOS Timeframe system following the Federal Bureau of Investigation (FBI) Laboratory protocol and some variations of it. Comparable results were obtained by the different methods used.

  11. Effect of Sperm DNA Fragmentation on Clinical Outcome of Frozen-Thawed Embryo Transfer and on Blastocyst Formation

    PubMed Central

    Ni, Wuhua; Xiao, Shiquan; Qiu, Xiufang; Jin, Jianyuan; Pan, Chengshuang; Li, Yan; Fei, Qianjin; Yang, Xu; Zhang, Liya; Huang, Xuefeng

    2014-01-01

    During the last decades, many studies have shown the possible influence of sperm DNA fragmentation on assisted reproductive technique outcomes. However, little is known about the impact of sperm DNA fragmentation on the clinical outcome of frozen-thawed embryo transfer (FET) from cycles of conventional in vitro fertilization (IVF) and intra-cytoplasmic sperm injection (ICSI). In the present study, the relationship between sperm DNA fragmentation (SDF) and FET clinical outcomes in IVF and ICSI cycles was analyzed. A total of 1082 FET cycles with cleavage stage embryos (C-FET) (855 from IVF and 227 from ICSI) and 653 frozen-thawed blastocyst transfer cycles (B-FET) (525 from IVF and 128 from ICSI) were included. There was no significant change in clinical pregnancy, biochemical pregnancy and miscarriage rates in the group with a SDF >30% compared with the group with a SDF ≤30% in IVF and ICSI cycles with C-FET or B-FET. Also, there was no significant impact on the FET clinic outcome in IVF and ICSI when different values of SDF (such as 10%, 20%, 25%, 35%, and 40%) were taken as proposed threshold levels. However, the blastulation rates were significantly higher in the SDF ≤30% group in ICSI cycle. Taken together, our data show that sperm DNA fragmentation measured by Sperm Chromatin Dispersion (SCD) test is not associated with clinical outcome of FET in IVF and ICSI. Nonetheless, SDF is related to the blastocyst formation in ICSI cycles. PMID:24733108

  12. Single-stranded DNA fragments of insect-specific nuclear polyhedrosis virus act as selective DNA insecticides for gypsy moth control.

    PubMed

    Oberemok, Volodymyr V; Skorokhod, Oleksii A

    2014-07-01

    This paper focuses on the DNA insecticides as a novel preparation against gypsy moth (Lymantria dispar) based on DNA fragments of the anti-apoptotic gene of its nuclear polyhedrosis virus. It was found that the external application of a solution with two single-stranded DNA fragments from BIR and RING domains of LdMNPV (L.dispar multicapsid nuclear polyhedrosis virus) IAP-3 (inhibitor of apoptosis) gene induces a significantly higher mortality of gypsy moth caterpillars in comparison with the application of the control solutions. This effect does not depend on the infection of caterpillars with LdMNPV. The results also show that DNA insecticides based on LdMNPV IAP-3 gene fragments can be selective in action, and at least are not harmful to tobacco hornworm (Manduca sexta) and black cutworm (Agrotis ipsilon). Part of the gypsy moth genome cloned with the fragments of BIR and RING domains of LdMNPV IAP-3 gene as primers, has an overlap with the corresponding part of the LdMNPV IAP-3 gene and L.dispar IAP-1 mRNA for an inhibitor of apoptosis protein with the high cover by query, allows assuming that we cloned a part of gypsy moth anti-apoptosis gene. This finding gives the grounding that proposed here DNA insecticides might act through the blocking of the mechanisms involved in post transcriptional expression of insect anti-apoptosis genes. The results show the insecticidal potential of the viral genome fragments that can be used to create safe and relatively fast-acting DNA insecticides to control the quantity of gypsy moth populations, important task for forestry and agriculture.

  13. Single-stranded DNA fragments of insect-specific nuclear polyhedrosis virus act as selective DNA insecticides for gypsy moth control.

    PubMed

    Oberemok, Volodymyr V; Skorokhod, Oleksii A

    2014-07-01

    This paper focuses on the DNA insecticides as a novel preparation against gypsy moth (Lymantria dispar) based on DNA fragments of the anti-apoptotic gene of its nuclear polyhedrosis virus. It was found that the external application of a solution with two single-stranded DNA fragments from BIR and RING domains of LdMNPV (L.dispar multicapsid nuclear polyhedrosis virus) IAP-3 (inhibitor of apoptosis) gene induces a significantly higher mortality of gypsy moth caterpillars in comparison with the application of the control solutions. This effect does not depend on the infection of caterpillars with LdMNPV. The results also show that DNA insecticides based on LdMNPV IAP-3 gene fragments can be selective in action, and at least are not harmful to tobacco hornworm (Manduca sexta) and black cutworm (Agrotis ipsilon). Part of the gypsy moth genome cloned with the fragments of BIR and RING domains of LdMNPV IAP-3 gene as primers, has an overlap with the corresponding part of the LdMNPV IAP-3 gene and L.dispar IAP-1 mRNA for an inhibitor of apoptosis protein with the high cover by query, allows assuming that we cloned a part of gypsy moth anti-apoptosis gene. This finding gives the grounding that proposed here DNA insecticides might act through the blocking of the mechanisms involved in post transcriptional expression of insect anti-apoptosis genes. The results show the insecticidal potential of the viral genome fragments that can be used to create safe and relatively fast-acting DNA insecticides to control the quantity of gypsy moth populations, important task for forestry and agriculture. PMID:25052520

  14. The nucleotide sequence of a DNA fragment, 71 base pairs in length, near the origin of DNA replication of bacteriophage 0X174.

    PubMed Central

    Mansfeld, A D; Vereijken, J M; Jansz, H S

    1976-01-01

    Part of the nucleotide sequence of a restriction fragment covering the origin of phiX174 DNA replication 1 has been determined. The fragment A7c was obtained by digestion of phiX174 RF DNA by the restriction enzyme from Arthrobacter luteus, Alu 1. It was further cleaved into two fragments, one large and one small, by the action of the restriction enzyme from Haemophilus aegyptius, Hae 111. The nucleotide sequence of the small fragment has been determined by analysis of the transcription products obtained by the action of Escherichia coli DNA-dependent RNA polymerase on denaturated template under conditions of low salt. Transcripts longer than the template were found. The whole sequence of 71 nucleotide pairs could be derived from complementary oligonucleotides, obtained after digestion of the transcripts with T1 or pancreatic RNAase. The sequence suggests that at least 4 of the 5 amber mutants 2 that have been mapped on this fragment are identical. On account of this and other evidence a reading frame is proposed. Images PMID:995652

  15. Studies on the characteristic and activity of low-molecular fragments from zymosan.

    PubMed

    Gao, Yang; Jiang, Ruizhi; Qie, Jing; Chen, Yinghong; Xu, Duoduo; Liu, Wei; Gao, Qipin

    2012-11-01

    Zymosan was hydrolysed with HCl and fractionated by ultrafiltration and dialysis to obtain water-soluble fragments A, B and C. Physical and chemical analyses showed that these fractions are composed primarily of glucose and have molecular weights of 8 kDa, 5 kDa and 2 kDa, respectively. A glycosidic linkage analysis indicated that they are mainly composed of β-1,3-glucans. Fragment A, which has the highest molecular weight, contains approximately 30% β-1,6-linked glucans, but fragment C is almost entirely composed of linear β-1,3-glucan chains. The anti-chronic atrophic gastritis activity experiments showed that fragment A has significant activity, the activity of zymosan is quite low and the activities of fragments B and C are in between those of fragment A and zymosan.

  16. Os2 -Os4 Switch Controls DNA Knotting and Anticancer Activity.

    PubMed

    Fu, Ying; Romero, María J; Salassa, Luca; Cheng, Xi; Habtemariam, Abraha; Clarkson, Guy J; Prokes, Ivan; Rodger, Alison; Costantini, Giovanni; Sadler, Peter J

    2016-07-25

    Dinuclear trihydroxido-bridged osmium-arene complexes are inert and biologically inactive, but we show here that linking dihydroxido-bridged Os(II) -arene fragments by a bridging di-imine to form a metallacycle framework results in strong antiproliferative activity towards cancer cells and distinctive knotting of DNA. The shortened spacer length reduces biological activity and stability in solution towards decomposition to biologically inactive dimers. Significant differences in behavior toward plasmid DNA condensation are correlated with biological activity. PMID:27240103

  17. Gene activation by induced DNA rearrangements

    SciTech Connect

    Schnipper, L.E.; Chan, V.; Sedivy, J.; Jat, P.; Sharp, P.A. )

    1989-12-01

    A murine cell line (EN/NIH) containing the retroviral vector ZIPNeoSV(x)1 that was modified by deletion of the enhancer elements in the viral long terminal repeats has been used as an assay system to detect induced DNA rearrangements that result in activation of a transcriptionally silent reporter gene encoded by the viral genome. The spontaneous frequency of G418 resistance is less than 10(-7), whereas exposure to the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) or the combination of UV irradiation plus TPA resulted in the emergence of drug resistant cell lines at a frequency of 5 per 10(6) and 67 per 10(6) cells, respectively. In several of the cell lines that were analyzed a low level of amplification of one of the two parental retroviral integrants was observed, whereas in others no alteration in the region of the viral genome was detected. To determine the effect of the SV40 large T antigen on induced DNA rearrangements, EN/NIH cells were transfected with a temperature sensitive (ts) mutant of SV40 T. Transfectants were maintained at the permissive temperature (33 degrees C) for varying periods of time (1-5 days) in order to vary SV40 T antigen exposure, after which they were shifted to 39.5 degrees C for selection in G418. The frequency of emergence of drug resistant cell clones increased with duration of exposure to large T antigen (9-52 per 10(6) cells over 1-5 days, respectively), and all cell lines analyzed demonstrated DNA rearrangements in the region of the neo gene. A novel 18-kilobase pair XbaI fragment was cloned from one cell line which revealed the presence of a 2.0-kilobase pair EcoRI segment containing an inverted duplication which hybridized to neo sequences. It is likely that the observed rearrangement was initiated by the specific binding of large T antigen to the SV40 origin of replication encoded within the viral genome.

  18. A comparison of synthetic oligodeoxynucleotides, DNA fragments and AAV-1 for targeted episomal and chromosomal gene repair

    PubMed Central

    Leclerc, Xavier; Danos, Olivier; Scherman, Daniel; Kichler, Antoine

    2009-01-01

    Background Current strategies for gene therapy of inherited diseases consist in adding functional copies of the gene that is defective. An attractive alternative to these approaches would be to correct the endogenous mutated gene in the affected individual. This study presents a quantitative comparison of the repair efficiency using different forms of donor nucleic acids, including synthetic DNA oligonucleotides, double stranded DNA fragments with sizes ranging from 200 to 2200 bp and sequences carried by a recombinant adeno-associated virus (rAAV-1). Evaluation of each gene repair strategy was carried out using two different reporter systems, a mutated eGFP gene or a dual construct with a functional eGFP and an inactive luciferase gene, in several different cell systems. Gene targeting events were scored either following transient co-transfection of reporter plasmids and donor DNAs, or in a system where a reporter construct was stably integrated into the chromosome. Results In both episomal and chromosomal assays, DNA fragments were more efficient at gene repair than oligonucleotides or rAAV-1. Furthermore, the gene targeting frequency could be significantly increased by using DNA repair stimulating drugs such as doxorubicin and phleomycin. Conclusion Our results show that it is possible to obtain repair frequencies of 1% of the transfected cell population under optimized transfection protocols when cells were pretreated with phleomycin using rAAV-1 and dsDNA fragments. PMID:19379497

  19. The Protein Kinase Cδ Catalytic Fragment Is Critical for Maintenance of the G2/M DNA Damage Checkpoint*

    PubMed Central

    LaGory, Edward L.; Sitailo, Leonid A.; Denning, Mitchell F.

    2010-01-01

    Protein kinase Cδ (PKCδ) is an essential component of the intrinsic apoptotic program. Following DNA damage, such as exposure to UV radiation, PKCδ is cleaved in a caspase-dependent manner, generating a constitutively active catalytic fragment (PKCδ-cat), which is necessary and sufficient for keratinocyte apoptosis. We found that in addition to inducing apoptosis, expression of PKCδ-cat caused a pronounced G2/M cell cycle arrest in both primary human keratinocytes and immortalized HaCaT cells. Consistent with a G2/M arrest, PKCδ-cat induced phosphorylation of Cdk1 (Tyr15), a critical event in the G2/M checkpoint. Treatment with the ATM/ATR inhibitor caffeine was unable to prevent PKCδ-cat-induced G2/M arrest, suggesting that PKCδ-cat is functioning downstream of ATM/ATR in the G2/M checkpoint. To better understand the role of PKCδ and PKCδ-cat in the cell cycle response to DNA damage, we exposed wild-type and PKCδ null mouse embryonic fibroblasts (MEFs) to UV radiation. Wild-type MEFs underwent a pronounced G2/M arrest, Cdk1 phosphorylation, and induction of apoptosis following UV exposure, whereas PKCδ null MEFs were resistant to these effects. Expression of PKCδ-green fluorescent protein, but not caspase-resistant or kinase-inactive PKCδ, was able to restore G2/M checkpoint integrity in PKCδ null MEFs. The function of PKCδ in the DNA damage-induced G2/M cell cycle checkpoint may be a critical component of its tumor suppressor function. PMID:19917613

  20. A novel method to convert a DNA fragment inserted into a plasmid to an inverted repeat structure.

    PubMed

    Tomimoto, Kazuya; Fujita, Kosuke; Ishibashi, Jun; Imanishi, Shigeo; Yamakawa, Minoru; Tanaka, Hiromitsu

    2012-01-01

    Transfection of an expression plasmid possessing inverted repeat (IR) DNA into cultured cells leads to the overexpression of hairpin RNA and efficient suppression of target gene expression. Such DNA vector-based RNA interference (RNAi) is widely used for characterizing genes of interest in cultured cell lines. In this study, we developed a new method to convert an inserted DNA fragment (IDF) in specially designed plasmid vectors into an IR structure by using nicking endonucleases and BcaBEST DNA polymerase. This method consists of the following steps: (1) linearization of the plasmid with a nick by using a restriction enzyme and a nicking endonuclease, (2) formation of the hairpin-loop DNA at the end near the IDF of the linearized plasmid, (3) insertion of a nick at the other end of the IDF by a nicking endonuclease, (4) execution of the strand displacement reaction from the nick to synthesize IR DNA, and (5) self-ligation of the linear double-stranded DNA. The IR DNA containing expression plasmids constructed by this method effectively induced target-specific RNAi in a silkworm cell line. We further established a method to purify expression plasmids containing IR DNA. Our new methods provide techniques for the construction of long hairpin RNA (lhRNA) expression plasmids for silencing specific genes in silkworms and other organisms, and offer a fundamental methodology for constructing an lhRNA expression library from a cDNA plasmid library. PMID:21516519

  1. A novel method to convert a DNA fragment inserted into a plasmid to an inverted repeat structure.

    PubMed

    Tomimoto, Kazuya; Fujita, Kosuke; Ishibashi, Jun; Imanishi, Shigeo; Yamakawa, Minoru; Tanaka, Hiromitsu

    2012-01-01

    Transfection of an expression plasmid possessing inverted repeat (IR) DNA into cultured cells leads to the overexpression of hairpin RNA and efficient suppression of target gene expression. Such DNA vector-based RNA interference (RNAi) is widely used for characterizing genes of interest in cultured cell lines. In this study, we developed a new method to convert an inserted DNA fragment (IDF) in specially designed plasmid vectors into an IR structure by using nicking endonucleases and BcaBEST DNA polymerase. This method consists of the following steps: (1) linearization of the plasmid with a nick by using a restriction enzyme and a nicking endonuclease, (2) formation of the hairpin-loop DNA at the end near the IDF of the linearized plasmid, (3) insertion of a nick at the other end of the IDF by a nicking endonuclease, (4) execution of the strand displacement reaction from the nick to synthesize IR DNA, and (5) self-ligation of the linear double-stranded DNA. The IR DNA containing expression plasmids constructed by this method effectively induced target-specific RNAi in a silkworm cell line. We further established a method to purify expression plasmids containing IR DNA. Our new methods provide techniques for the construction of long hairpin RNA (lhRNA) expression plasmids for silencing specific genes in silkworms and other organisms, and offer a fundamental methodology for constructing an lhRNA expression library from a cDNA plasmid library.

  2. Clinical Factors Associated with Sperm DNA Fragmentation in Male Patients with Infertility

    PubMed Central

    Komiya, Akira; Kato, Tomonori; Kawauchi, Yoko; Watanabe, Akihiko; Fuse, Hideki

    2014-01-01

    Objective. The clinical factors associated with sperm DNA fragmentation (SDF) were investigated in male patients with infertility. Materials and Methods. Fifty-four ejaculates from infertile Japanese males were used. Thirty-three and twenty-one were from the patients with varicoceles and idiopathic causes of infertility, respectively. We performed blood tests, including the serum sex hormone levels, and conventional and computer-assisted semen analyses. The sperm nuclear vacuolization (SNV) was evaluated using a high-magnification microscope. The SDF was evaluated using the sperm chromatin dispersion test (SCDt) to determine the SDF index (SDFI). The SDFI was compared with semen parameters and other clinical variables, including lifestyle factors. Results. The SDFI was 41.3 ± 22.2% (mean ± standard deviation) and did not depend on the cause of infertility. Chronic alcohol use increased the SDFI to 49.6 ± 23.3% compared with 33.9 ± 18.0% in nondrinkers. The SDFI was related to adverse conventional semen parameters and sperm motion characteristics and correlated with the serum FSH level. The SNV showed a tendency to increase with the SDFI. The multivariate analysis revealed that the sperm progressive motility and chronic alcohol use were significant predictors of the SDF. Conclusion. The SCDt should be offered to chronic alcohol users and those with decreased sperm progressive motility. PMID:25165747

  3. Quantitative study of Helicobacter pylori in gastric mucus by competitive PCR using synthetic DNA fragments.

    PubMed

    Furuta, T; Kaneko, E; Suzuki, M; Arai, H; Futami, H

    1996-10-01

    Helicobacter pylori is closely related to upper gastrointestinal diseases, and the precise evaluation of H. pylori infection is necessary for the treatment of these diseases. The aim of the present study was to establish a method for the quantitative detection of H. pylori. We applied a competitive PCR method using various amounts of synthetic DNA fragments containing the same primer-binding and a subset of the same template sequences as the target competing for primer binding and amplification in order to quantify H. pylori in gastric mucus. The results obtained by this method were compared with the results of histological examination, the rapid urease test, bacterial culture, the [13C]urea breath test, and urea and ammonia measurements in gastric juice. As the quantity of H. pylori in gastric mucus increased, the rates of positivity of histological examination, the rapid urease test, and bacterial culture increased. The quantity of H. pylori in gastric mucus was also significantly correlated with the results of the [13C]urea breath test and was negatively correlated with the urea/ammonia ratio in gastric juice. The competitive PCR method provides an objective measure of the quantity of H. pylori and makes it possible to distinguish true negatives from false negatives due to incomplete PCR and true positives from false positives due to contamination. This method is very useful for the precise evaluation of gastric H. pylori infection. PMID:8880492

  4. The impact of partial manganese superoxide dismutase (SOD2)-deficiency on mitochondrial oxidant stress, DNA fragmentation and liver injury during acetaminophen hepatotoxicity

    SciTech Connect

    Ramachandran, Anup; Lebofsky, Margitta; Weinman, Steven A.; Jaeschke, Hartmut

    2011-03-15

    Acetaminophen (APAP) hepatotoxicity is the most frequent cause of acute liver failure in many countries. The mechanism of cell death is initiated by formation of a reactive metabolite that binds to mitochondrial proteins and promotes mitochondrial dysfunction and oxidant stress. Manganese superoxide dismutase (SOD2) is a critical defense enzyme located in the mitochondrial matrix. The objective of this investigation was to evaluate the functional consequences of partial SOD2-deficiency (SOD2+/-) on intracellular signaling mechanisms of necrotic cell death after APAP overdose. Treatment of C57Bl/6J wild type animals with 200 mg/kg APAP resulted in liver injury as indicated by elevated plasma alanine aminotransferase activities (2870 {+-} 180 U/L) and centrilobular necrosis at 6 h. In addition, increased tissue glutathione disulfide (GSSG) levels and GSSG-to-GSH ratios, delayed mitochondrial GSH recovery, and increased mitochondrial protein carbonyls and nitrotyrosine protein adducts indicated mitochondrial oxidant stress. In addition, nuclear DNA fragmentation (TUNEL assay) correlated with translocation of Bax to the mitochondria and release of apoptosis-inducing factor (AIF). Furthermore, activation of c-jun-N-terminal kinase (JNK) was documented by the mitochondrial translocation of phospho-JNK. SOD2+/- mice showed 4-fold higher ALT activities and necrosis, an enhancement of all parameters of the mitochondrial oxidant stress, more AIF release and more extensive DNA fragmentation and more prolonged JNK activation. Conclusions: the impaired defense against mitochondrial superoxide formation in SOD2+/- mice prolongs JNK activation after APAP overdose and consequently further enhances the mitochondrial oxidant stress leading to exaggerated mitochondrial dysfunction, release of intermembrane proteins with nuclear DNA fragmentation and more necrosis.

  5. Active DNA Demethylation in Plants and Animals

    PubMed Central

    Zhang, H.; Zhu, J.-K.

    2013-01-01

    Active DNA demethylation regulates many vital biological processes, including early development and locus-specific gene expression in plants and animals. In Arabidopsis, bifunctional DNA glycosylases directly excise the 5-methylcytosine base and then cleave the DNA backbone at the abasic site. Recent evidence suggests that mammals utilize DNA glycosylases after 5-methylcytosine is oxidized and/or deaminated. In both cases, the resultant single-nucleotide gap is subsequently filled with an unmodified cytosine through the DNA base excision repair pathway. The enzymatic removal of 5-methylcytosine is tightly integrated with histone modifications and possibly noncoding RNAs. Future research will increase our understanding of the mechanisms and critical roles of active DNA demethylation in various cellular processes as well as inspire novel genetic and chemical therapies for epigenetic disorders. PMID:23197304

  6. Analysis of sequence variations in several human genes using phosphoramidite bond DNA fragmentation and chip-based MALDI-TOF.

    PubMed

    Smylie, Kevin J; Cantor, Charles R; Denissenko, Mikhail F

    2004-01-01

    The challenge in the postgenome era is to measure sequence variations over large genomic regions in numerous patient samples. This massive amount of work can only be completed if more accurate, cost-effective, and high-throughput solutions become available. Here we describe a novel DNA fragmentation approach for single nucleotide polymorphism (SNP) discovery and sequence validation. The base-specific cleavage is achieved by creating primer extension products, in which acid-labile phosphoramidite (P-N) bonds replace the 5' phosphodiester bonds of newly incorporated pyrimidine nucleotides. Sequence variations are detected by hydrolysis of this acid-labile bond and MALDI-TOF analysis of the resulting fragments. In this study, we developed a robust protocol for P-N-bond fragmentation and investigated additional ways to improve its sensitivity and reproducibility. We also present the analysis of several human genomic targets ranging from 100-450 bp in length. By using a semiautomated sample processing protocol, we investigated an array of SNPs within a 240-bp segment of the NFKBIA gene in 48 human DNA samples. We identified and measured frequencies for the two common SNPs in the 3'UTR of NFKBIA (separated by 123 bp) and then confirmed these values in an independent genotyping experiment. The calculated allele frequencies in white and African American groups differed significantly, yet both fit Hardy-Weinberg expectations. This demonstrates the utility and effectiveness of PN-bond DNA fragmentation and subsequent MALDI-TOF MS analysis for the high-throughput discovery and measurement of sequence variations in fragments up to 0.5 kb in length in multiple human blood DNA samples.

  7. Different conformations of ribosomal DNA in active and inactive chromatin in Xenopus laevis.

    PubMed

    Spadafora, C; Riccardi, P

    1985-12-20

    The chromatin structure of the ribosomal DNA in Xenopus laevis was studied by micrococcal nuclease digestions of blood, liver and embryonic cell nuclei. We have found that BglI-restricted DNA from micrococcal nuclease-digested blood cell nuclei has an increased electrophoretic mobility compared to the undigested control. Micrococcal nuclease digestion of liver cell nuclei causes a very slight shift in mobility, only in the region of the spacer containing the "Bam Islands". In contrast, the mobility of ribosomal DNA in chromatin of embryonic cells, under identical digestion conditions, remains unaffected by the nuclease activity. Denaturing gels or ligase action on the nuclease-treated DNA abolishes the differences in the electrophoretic mobility. Ionic strength and ethidium bromide influence the relative electrophoretic migration of the two DNA fragment populations, suggesting that secondary structure may play an important role in the observed phenomena. In addition, restriction analysis under native electrophoretic conditions of DNA prepared from blood, liver and embryonic cells shows that blood cell DNA restriction fragments always have a faster mobility than the corresponding fragments of liver and embryo cell DNA. We therefore propose that nicking activity by micrococcal nuclease modifies the electrophoretic mobility of an unusual DNA conformation, present in blood cell, and to a lesser extent, in liver cell ribosomal chromatin. A possible function for these structures is discussed. The differences of the ribosomal chromatin structures in adult and embryonic tissues may reflect the potential of the genes to be expressed.

  8. An amphioxus RAG1-like DNA fragment encodes a functional central domain of vertebrate core RAG1.

    PubMed

    Zhang, Yanni; Xu, Ke; Deng, Anqi; Fu, Xing; Xu, Anlong; Liu, Xiaolong

    2014-01-01

    The highly diversified repertoire of antigen receptors in the vertebrate immune system is generated via proteins encoded by the recombination activating genes (RAGs) RAG1 and RAG2 by a process known as variable, diversity, and joining [V(D)J] gene recombination. Based on the study of vertebrate RAG proteins, many hypotheses have been proposed regarding the origin and evolution of RAG. This issue remains unresolved, leaving a significant gap in our understanding of the evolution of adaptive immunity. Here, we show that the amphioxus genome contains an ancient RAG1-like DNA fragment (bfRAG1L) that encodes a virus-related protein that is much shorter than vertebrate RAG1 and harbors a region homologous to the central domain of core RAG1 (cRAG1). bfRAG1L also contains an unexpected retroviral type II nuclease active site motif, DXN(D/E)XK, and is capable of degrading both DNA and RNA. Moreover, bfRAG1L shares important functional properties with the central domain of cRAG1, including interaction with RAG2 and localization to the nucleus. Remarkably, the reconstitution of bfRAG1L into a cRAG1-like protein yielded an enzyme capable of recognizing recombination signal sequences and performing V(D)J recombination in the presence of mouse RAG2. Moreover, this reconstituted cRAG1-like protein could mediate the assembly of antigen receptor genes in RAG1-deficient mice. Together, our results demonstrate that amphioxus bfRAG1L encodes a protein that is functionally equivalent to the central domain of cRAG1 and is well prepared for further evolution to mediate V(D)J recombination. Thus, our findings provide unique insights into the evolutionary origin of RAG1.

  9. An amphioxus RAG1-like DNA fragment encodes a functional central domain of vertebrate core RAG1.

    PubMed

    Zhang, Yanni; Xu, Ke; Deng, Anqi; Fu, Xing; Xu, Anlong; Liu, Xiaolong

    2014-01-01

    The highly diversified repertoire of antigen receptors in the vertebrate immune system is generated via proteins encoded by the recombination activating genes (RAGs) RAG1 and RAG2 by a process known as variable, diversity, and joining [V(D)J] gene recombination. Based on the study of vertebrate RAG proteins, many hypotheses have been proposed regarding the origin and evolution of RAG. This issue remains unresolved, leaving a significant gap in our understanding of the evolution of adaptive immunity. Here, we show that the amphioxus genome contains an ancient RAG1-like DNA fragment (bfRAG1L) that encodes a virus-related protein that is much shorter than vertebrate RAG1 and harbors a region homologous to the central domain of core RAG1 (cRAG1). bfRAG1L also contains an unexpected retroviral type II nuclease active site motif, DXN(D/E)XK, and is capable of degrading both DNA and RNA. Moreover, bfRAG1L shares important functional properties with the central domain of cRAG1, including interaction with RAG2 and localization to the nucleus. Remarkably, the reconstitution of bfRAG1L into a cRAG1-like protein yielded an enzyme capable of recognizing recombination signal sequences and performing V(D)J recombination in the presence of mouse RAG2. Moreover, this reconstituted cRAG1-like protein could mediate the assembly of antigen receptor genes in RAG1-deficient mice. Together, our results demonstrate that amphioxus bfRAG1L encodes a protein that is functionally equivalent to the central domain of cRAG1 and is well prepared for further evolution to mediate V(D)J recombination. Thus, our findings provide unique insights into the evolutionary origin of RAG1. PMID:24368847

  10. Immunogenicity of a plasmid DNA vaccine encoding 42kDa fragment of Plasmodium vivax merozoite surface protein-1.

    PubMed

    Sheikh, Inayat Hussain; Kaushal, Deep C; Chandra, Deepak; Kaushal, Nuzhat A

    2016-10-01

    Plasmodium vivax is the second major human malaria parasite that inflicts debilitating morbidity and consequent economic impact in South-East Asian countries. The relapsing nature of P. vivax along with the emergence of drug-resistant P. vivax strains has emphasized the urgent need for a vaccine. However, the development of an effective vivax vaccine is seriously hampered due to the diversity and variation in parasite antigens and non-availability of suitable animal models. DNA based vaccines represent an alternative approach in inducing immunity to multiple targets from different stages of malaria parasite. DNA prime-boosting strategies induce both antibody mediated and cell-mediated immune responses that are the major mechanisms of protection against malaria parasites. We have earlier studied the immunogenicity and protective efficacy of the soluble and refolded forms of recombinant 42kDa fragment of Plasmodium vivax merozoite surface protein-1 (PvMSP-142) using P. cynomolgi rhesus monkey model. In the present study, we have constructed a recombinant DNA vaccine encoding 42kDa fragment of P. vivax MSP-1 and studied the immunogenicity of PvMSP-142 DNA vaccine construct in mice. The 42kDa gene fragment of PvMSP-1 was PCR amplified using gene specific primers and subcloned into pcDNA 3.1 (+) eukaryotic expression vector. In vitro expression of PvMSP-142 plasmid construct was checked by transfection in COS-1 cell line. Indirect immunofluorescence of transfected COS-1 cells probed with monoclonal antibodies against PvMSP-142 exhibited positive fluorescence. Immunization of BALB/c mice with PvMSP-142-pcDNA vaccine construct revealed the immunogenicity of recombinant vaccine plasmid that can be enhanced by prime boosting with recombinant protein corresponding to the DNA vaccine as evidenced by significant elevation of antibody and the cytokines responses. PMID:27311385

  11. [The discovery of a specific DNA fragment associated with maize cytoplasmic male sterility and its differential display].

    PubMed

    Cao, Mo-Ju; Rong, Ting-Zhao; Zhu, Ying-Guo

    2005-09-01

    Three pairs of PCR primers were designed according to the mitochondrial DNA sequence. PCR amplification was applied to 3 sets of isonuclear alloplasm materials and 3 sets of isoplasm allonuclear materials. Multiplex PCR and general PCR protocol were adopted with total genomic DNA. As for the primers having detected polymorphsim between male sterility and its maintainers, differential display was conducted with mRNA from different development stage of microspore. The results showed as follows: with total genomic DNA template, primer P1-P2 has amplified a specific fragment only in all the male sterile materials, primer P5-P6 has amplified a specific fragment only in maintainer Huangzaosi, primer P3-P4 has no amplification in all the experiment materials. So primer P1-P2 can be used to distinguish male sterile cytoplasm and normal cytoplasm. RT-PCR was conducted with primer P1-P2 in inbred line huangzaosi and 48-2 with male sterile cytoplasm and normal cytoplasm, mRNA was separately isolated from tetrad stage, uninucleate stage and binucleate stage of microspore development, cDNA was obtained with random hexanucleotide primers. With the cDNA template, specific amplified fragments were also detected by primer P1-P2 in the male sterile materials at different development stage of microspore, but there was no amplification by primer P1-P2 in the 2 maintainer lines. This result indicated that primer P1-P2 can be transcripted at 3 development stages of microspore in all male sterile materials, and same transcript was produced by primer P1-P2 among all male sterile materials include 3 sets of isonuclear alloplasm and 3 sets of isoplasm allonuclear. It was suggested from this experiment that the specific DNA sequence detected by primer P1-P2 in all male sterile material total genomic DNA might be related to the cytoplasmic male sterile character.

  12. Rational Design of High-Number dsDNA Fragments Based on Thermodynamics for the Construction of Full-Length Genes in a Single Reaction.

    PubMed

    Birla, Bhagyashree S; Chou, Hui-Hsien

    2015-01-01

    Gene synthesis is frequently used in modern molecular biology research either to create novel genes or to obtain natural genes when the synthesis approach is more flexible and reliable than cloning. DNA chemical synthesis has limits on both its length and yield, thus full-length genes have to be hierarchically constructed from synthesized DNA fragments. Gibson Assembly and its derivatives are the simplest methods to assemble multiple double-stranded DNA fragments. Currently, up to 12 dsDNA fragments can be assembled at once with Gibson Assembly according to its vendor. In practice, the number of dsDNA fragments that can be assembled in a single reaction are much lower. We have developed a rational design method for gene construction that allows high-number dsDNA fragments to be assembled into full-length genes in a single reaction. Using this new design method and a modified version of the Gibson Assembly protocol, we have assembled 3 different genes from up to 45 dsDNA fragments at once. Our design method uses the thermodynamic analysis software Picky that identifies all unique junctions in a gene where consecutive DNA fragments are specifically made to connect to each other. Our novel method is generally applicable to most gene sequences, and can improve both the efficiency and cost of gene assembly.

  13. Rational Design of High-Number dsDNA Fragments Based on Thermodynamics for the Construction of Full-Length Genes in a Single Reaction

    PubMed Central

    Birla, Bhagyashree S.; Chou, Hui-Hsien

    2015-01-01

    Gene synthesis is frequently used in modern molecular biology research either to create novel genes or to obtain natural genes when the synthesis approach is more flexible and reliable than cloning. DNA chemical synthesis has limits on both its length and yield, thus full-length genes have to be hierarchically constructed from synthesized DNA fragments. Gibson Assembly and its derivatives are the simplest methods to assemble multiple double-stranded DNA fragments. Currently, up to 12 dsDNA fragments can be assembled at once with Gibson Assembly according to its vendor. In practice, the number of dsDNA fragments that can be assembled in a single reaction are much lower. We have developed a rational design method for gene construction that allows high-number dsDNA fragments to be assembled into full-length genes in a single reaction. Using this new design method and a modified version of the Gibson Assembly protocol, we have assembled 3 different genes from up to 45 dsDNA fragments at once. Our design method uses the thermodynamic analysis software Picky that identifies all unique junctions in a gene where consecutive DNA fragments are specifically made to connect to each other. Our novel method is generally applicable to most gene sequences, and can improve both the efficiency and cost of gene assembly. PMID:26716828

  14. Capturing Biological Activity in Natural Product Fragments by Chemical Synthesis

    PubMed Central

    Crane, Erika A.

    2016-01-01

    Abstract Natural products have had an immense influence on science and have directly led to the introduction of many drugs. Organic chemistry, and its unique ability to tailor natural products through synthesis, provides an extraordinary approach to unlock the full potential of natural products. In this Review, an approach based on natural product derived fragments is presented that can successfully address some of the current challenges in drug discovery. These fragments often display significantly reduced molecular weights, reduced structural complexity, a reduced number of synthetic steps, while retaining or even improving key biological parameters such as potency or selectivity. Examples from various stages of the drug development process up to the clinic are presented. In addition, this process can be leveraged by recent developments such as genome mining, antibody–drug conjugates, and computational approaches. All these concepts have the potential to identify the next generation of drug candidates inspired by natural products. PMID:26833854

  15. Capturing Biological Activity in Natural Product Fragments by Chemical Synthesis.

    PubMed

    Crane, Erika A; Gademann, Karl

    2016-03-14

    Natural products have had an immense influence on science and have directly led to the introduction of many drugs. Organic chemistry, and its unique ability to tailor natural products through synthesis, provides an extraordinary approach to unlock the full potential of natural products. In this Review, an approach based on natural product derived fragments is presented that can successfully address some of the current challenges in drug discovery. These fragments often display significantly reduced molecular weights, reduced structural complexity, a reduced number of synthetic steps, while retaining or even improving key biological parameters such as potency or selectivity. Examples from various stages of the drug development process up to the clinic are presented. In addition, this process can be leveraged by recent developments such as genome mining, antibody-drug conjugates, and computational approaches. All these concepts have the potential to identify the next generation of drug candidates inspired by natural products.

  16. Cloning and characterization of a highly reiterated 5.8-kilobase pair nucleolar EcoRI DNA fragment found in Novikoff hepatoma ascites cells.

    PubMed

    Parker, D L; Busch, H; Rothblum, L I

    1981-02-17

    The DNA of Novikoff hepatoma ascites cells was found to contain a 3.6-megadalton EcoRI restriction fragment, referred to as EcoRI fragment A (Parker et al., 1979). C0t analyses demonstrated an enrichment of fragment A sequences in Novikoff hepatoma genome relative to normal rat liver DNA. This fragment was cloned in lambda gtWES to determine its molecular structure and sequence organization. The DNA from a positive clone was labeled by nick translation and hybridized to a Southern blot of EcoRI digested Novikoff DNA. Distinct hybrids formed with the region corresponding to fragment A. The greater degree of hybridization to the nucleolar fraction suggested a nucleolar enrichment of fragment A. Fragment A has a PstI site approximately 300 base pairs from one terminus which was used to generate mono-5'-32P-labeled fragments. The larger PStI subfragment, 5500 base pairs, labeled at a single terminus, was used to evolve a restriction enzyme map. The 300 base pair fragment was partially sequenced, revealing the presence of a repetitive sequence "island", TT(GTCT)8(GAAT)5G-. C0t analysis, utilizing the purified clone as a probe, confirmed the enrichment of fragment A sequences in the tumor relative to the normal rat liver control.

  17. Pikeperch Sander lucioperca egg quality cannot be predicted by total antioxidant capacity and mtDNA fragmentation.

    PubMed

    Schaefer, Fabian J; Overton, Julia L; Wuertz, Sven

    2016-04-01

    In farmed pikeperch, there is a high variability in egg quality restraining the propagation of this species in aquaculture. The identification of reliable biomarkers for predicting successful embryo development already at an early stage (unfertilized oocyte) could help improve production efficiency. Total antioxidant capacity (TAC) and the quantification of mitochondrial DNA (mtDNA) fragmentation have been established as biomarkers for oxidative stress and damage of macromolecules, potentially influencing embryo development. Therefore, we evaluated these biomarkers in eggs of commercially farmed pikeperch (44 females). We measured egg TAC, as well as lesion rates per 10 kb of 12S and cytochrome b (cytb) as target regions within the mitochondrial genome by qPCR. It was tested whether these markers correlate with embryo development (fertilization rate, embryo survival, hatching rate). There was no significant relation of mtDNA lesion rates or TAC with these egg quality parameters. We detected average lesion rates (± SD) of 1.50 (± 1.57) and 1.89 (± 2.14) in 12S and cytb mtDNA respectively. Lesion rates in 12S and cytb were highly correlated within samples (P < 0.0001) and were independent of the observed TAC. The results suggest that TAC does not prevent mtDNA fragmentation and that embryos rather seem to be able to cope with the observed fragmentation of mtDNA. However, in post-ovulatory aged eggs of three females with little to no fertilization success, lesion rates of cytb were significantly elevated, whereas TAC was significantly lower compared to other females, suggesting a possible role of oxidative stress during post-ovulatory ageing. PMID:26922635

  18. Adenovirus preterminal protein synthesized in COS cells from cloned DNA is active in DNA replication in vitro.

    PubMed Central

    Pettit, S C; Horwitz, M S; Engler, J A

    1988-01-01

    Replication of the DNA genome of human adenovirus serotype 2 requires three virus-encoded proteins. Two of these proteins, the preterminal protein (pTP) and the adenovirus DNA polymerase, are transcribed from a single promoter at early times after virus infection. The mRNAs for these proteins share several exons, including one encoded near adenovirus genome coordinate 39. By using plasmids containing DNA fragments postulated to encode the various exons of pTP mRNA, the contributions of each exon to the synthesis of an active pTP have been measured. Only plasmids that contain both the open reading frame for pTP (genome coordinates 29.4 to 23.9) and the HindIII J fragment that contains the exon at genome coordinate 39 can express functional pTP. Images PMID:3336069

  19. Variation of DNA Fragmentation Levels During Density Gradient Sperm Selection for Assisted Reproduction Techniques

    PubMed Central

    Muratori, Monica; Tarozzi, Nicoletta; Cambi, Marta; Boni, Luca; Iorio, Anna Lisa; Passaro, Claudia; Luppino, Benedetta; Nadalini, Marco; Marchiani, Sara; Tamburrino, Lara; Forti, Gianni; Maggi, Mario; Baldi, Elisabetta; Borini, Andrea

    2016-01-01

    Abstract Predicting the outcome of in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) is one main goal of the present research on assisted reproduction. To understand whether density gradient centrifugation (DGC), used to select sperm, can affect sperm DNA integrity and impact pregnancy rate (PR), we prospectively evaluated sperm DNA fragmentation (sDF) by TUNEL/PI, before and after DGC. sDF was studied in a cohort of 90 infertile couples the same day of IVF/ICSI treatment. After DGC, sDF increased in 41 samples (Group A, median sDF value: 29.25% [interquartile range, IQR: 16.01–41.63] in pre- and 60.40% [IQR: 32.92–93.53] in post-DGC) and decreased in 49 (Group B, median sDF value: 18.84% [IQR: 13.70–35.47] in pre- and 8.98% [IQR: 6.24–15.58] in post-DGC). PR was 17.1% and 34.4% in Group A and B, respectively (odds ratio [OR]: 2.58, 95% confidence interval [CI]: 0.95–7.04, P = 0.056). After adjustment for female factor, female and male age and female BMI, the estimated OR increased to 3.12 (95% CI: 1.05–9.27, P = 0.041). According to the subgroup analysis for presence/absence of female factor, heterogeneity in the association between the Group A and B and PR emerged (OR: 4.22, 95% CI: 1.16–15.30 and OR: 1.53, 95% CI: 0.23–10.40, respectively, for couples without, n = 59, and with, n = 31, female factor). This study provides the first evidence that the DGC procedure produces an increase in sDF in about half of the subjects undergoing IVF/ICSI, who then show a much lower probability of pregnancy, raising concerns about the safety of this selection procedure. Evaluation of sDF before and after DGC configures as a possible new prognostic parameter of pregnancy outcome in IVF/ICSI. Alternative sperm selection strategies are recommended for those subjects who undergo the damage after DGC. PMID:27196465

  20. Novel insights into the pathophysiology of varicocele and its association with reactive oxygen species and sperm DNA fragmentation

    PubMed Central

    Cho, Chak-Lam; Esteves, Sandro C; Agarwal, Ashok

    2016-01-01

    Varicocele has been associated with reduced male reproductive potential. With the advances in biomolecular techniques, it has been possible to better understand the mechanisms involved in testicular damage provoked by varicocele. Current evidence suggests the central role of reactive oxygen species (ROS) and the resultant oxidative stress (OS) in the pathogenesis of varicocele-associated male subfertility although the mechanisms have not yet been fully described and it is likely to be multifactorial. Excessive ROS is associated with sperm DNA fragmentation, which may mediate the clinical manifestation of poor sperm function and fertilization outcome related to varicocele. Testing of ROS/OS and DNA fragmentation has the potential to provide additional diagnostic and prognostic information compared to conventional semen analysis and may guide therapeutic management strategies in individual patient. PMID:26732105

  1. Fibered confocal fluorescence microscopy for imaging apoptotic DNA fragmentation at the single-cell level in vivo

    SciTech Connect

    Al-Gubory, Kais H. . E-mail: kais.algubory@jouy.inra.fr

    2005-11-01

    The major characteristic of cell death by apoptosis is the loss of nuclear DNA integrity by endonucleases, resulting in the formation of small DNA fragments. The application of confocal imaging to in vivo monitoring of dynamic cellular events, like apoptosis, within internal organs and tissues has been limited by the accessibility to these sites. Therefore, the aim of the present study was to test the feasibility of fibered confocal fluorescence microscopy (FCFM) to image in situ apoptotic DNA fragmentation in surgically exteriorized sheep corpus luteum in the living animal. Following intra-luteal administration of a fluorescent DNA-staining dye, YO-PRO-1, DNA cleavage within nuclei of apoptotic cells was serially imaged at the single-cell level by FCFM. This imaging technology is sufficiently simple and rapid to allow time series in situ detection and visualization of cells undergoing apoptosis in the intact animal. Combined with endoscope, this approach can be used for minimally invasive detection of fluorescent signals and visualization of cellular events within internal organs and tissues and thereby provides the opportunity to study biological processes in the natural physiological environment of the cell in living animals.

  2. Improved ethanol production from biomass by a rumen metagenomic DNA fragment expressed in Escherichia coli MS04 during fermentation.

    PubMed

    Loaces, Inés; Amarelle, Vanesa; Muñoz-Gutierrez, Iván; Fabiano, Elena; Martinez, Alfredo; Noya, Francisco

    2015-11-01

    With the aim of improving current ethanologenic Escherichia coli strains, we screened a metagenomic library from bovine ruminal fluid for cellulolytic enzymes. We isolated one fosmid, termed Csd4, which was able to confer to E. coli the ability to grow on complex cellulosic material as the sole carbon source such as avicel, carboxymethyl cellulose, filter paper, pretreated sugarcane bagasse, and xylan. Glucanolytic activity obtained from E. coli transformed with Csd4 was maximal at 24 h of incubation and was inhibited when glucose or xylose were present in the media. The 34,406-bp DNA fragment of Csd4 was completely sequenced, and a putative endoglucanase, a xylosidase/arabinosidase, and a laccase gene were identified. Comparison analysis revealed that Csd4 derived from an organism closely related to Prevotella ruminicola, but no homologies were found with any of the genomes already sequenced. Csd4 was introduced into the ethanologenic E. coli MS04 strain and ethanol production from CMC, avicel, sugarcane bagasse, or filter paper was observed. Exogenously expressed β-glucosidase had a positie effect on cell growth in agreement with the fact that no putative β-glucosidase was found in Csd4. Ethanol production from sugarcane bagasse was improved threefold by Csd4 after saccharification by commercial Trichoderma reesei cellulases underlining the ability of Csd4 to act as a saccharification enhancer to reduce the enzymatic load and time required for cellulose deconstruction.

  3. Interleukin-15 is able to suppress the increased DNA fragmentation associated with muscle wasting in tumour-bearing rats.

    PubMed

    Figueras, Maite; Busquets, Sílvia; Carbó, Neus; Barreiro, Esther; Almendro, Vanessa; Argilés, Josep M; López-Soriano, Francisco J

    2004-07-01

    Administration of interleukin-15 (IL-15) to rats bearing the Yoshida AH-130 ascites hepatoma (a tumour that induces an important cachectic response) resulted in a significant reduction of muscle wasting, both measured as muscle weight and as protein content of different types of skeletal muscle. In addition, the administration of the cytokine completely reversed the increased DNA fragmentation observed in skeletal muscle of tumour-bearing animals. Concerning the mechanism(s) involved in the anti-apoptotic effects of IL-15 on skeletal muscle, the administration of the cytokine resulted in a considerable decrease in both R1 (43%) and R2 (64%) TNF-alpha receptors (TNFRs), and therefore it may be suggested that IL-15 decreases apoptosis by affecting TNF-alpha signalling. Formation of NO could be the signalling event associated with the activation of apoptosis in muscle of tumour-bearing rats; indeed, administration of IL-15 decreased the inducible nitric oxide synthase protein levels by 73%, suggesting that NO formation and muscle apoptosis during tumour growth are related. In conclusion, IL-15 seems to be able to reduce/suppress protein loss and apoptosis related to muscle wasting during cancer cachexia in experimental animals.

  4. Amplification of a species-specific DNA fragment of Mycobacterium tuberculosis and its possible use in diagnosis.

    PubMed Central

    Del Portillo, P; Murillo, L A; Patarroyo, M E

    1991-01-01

    In recent work, a species-specific Mycobacterium tuberculosis DNA fragment was cloned and sequenced. On the basis of its nucleotide sequence, two oligonucleotides were synthesized and used as primers for polymerase chain reaction (PCR) amplification. A 396-bp fragment was specifically amplified from the M. tuberculosis genome. No amplification was observed from any of 10 different mycobacterial strains, included those belonging to the M. tuberculosis complex. Neither was this fragment amplified from genomes of humans or different species of clinically important bacteria. The PCR product was detected by dot blot hybridization even when as little as 10 fg of purified M. tuberculosis DNA was used. This amplification method was subsequently used to detect and identify bacilli in different clinical samples, such as sputum, urine, and cerebrospinal fluid. A good correlation was observed between the results obtained with the PCR method that we describe and other diagnostic tests currently used. Thus, PCR amplification of this genomic fragment is proposed as a specific, rapid, and sensitive test for the diagnosis of infection with M. tuberculosis. Images PMID:1939567

  5. A polymer, random walk model for the size-distribution of large DNA fragments after high linear energy transfer radiation

    NASA Technical Reports Server (NTRS)

    Ponomarev, A. L.; Brenner, D.; Hlatky, L. R.; Sachs, R. K.

    2000-01-01

    DNA double-strand breaks (DSBs) produced by densely ionizing radiation are not located randomly in the genome: recent data indicate DSB clustering along chromosomes. Stochastic DSB clustering at large scales, from > 100 Mbp down to < 0.01 Mbp, is modeled using computer simulations and analytic equations. A random-walk, coarse-grained polymer model for chromatin is combined with a simple track structure model in Monte Carlo software called DNAbreak and is applied to data on alpha-particle irradiation of V-79 cells. The chromatin model neglects molecular details but systematically incorporates an increase in average spatial separation between two DNA loci as the number of base-pairs between the loci increases. Fragment-size distributions obtained using DNAbreak match data on large fragments about as well as distributions previously obtained with a less mechanistic approach. Dose-response relations, linear at small doses of high linear energy transfer (LET) radiation, are obtained. They are found to be non-linear when the dose becomes so large that there is a significant probability of overlapping or close juxtaposition, along one chromosome, for different DSB clusters from different tracks. The non-linearity is more evident for large fragments than for small. The DNAbreak results furnish an example of the RLC (randomly located clusters) analytic formalism, which generalizes the broken-stick fragment-size distribution of the random-breakage model that is often applied to low-LET data.

  6. Does the marine biotoxin okadaic acid cause DNA fragmentation in the blue mussel and the pacific oyster?

    PubMed

    McCarthy, Moira; O'Halloran, John; O'Brien, Nora M; van Pelt, Frank F N A M

    2014-10-01

    Two bivalve species of global economic importance: the blue mussel, Mytilus edulis and the pacific oyster, Crassostrea gigas were exposed in vivo, to the diarrhoetic shellfish toxin okadaic acid (OA), and impacts on DNA fragmentation were measured. Shellfish were exposed using two different regimes, the first was a single (24 h) exposure of 2.5 nM OA (∼0.1 μg/shellfish) and algal feed at the beginning of the trial (T0), after which shellfish were only fed algae. The second was daily exposure of shellfish to two different concentrations of OA mixed with the algal feed over 7 days; 1.2 nM OA (∼0.05 μg OA/shellfish/day) and 50 nM OA (∼2 μg OA/shellfish/day). Haemolymph and hepatopancreas cells were extracted following 1, 3 and 7 days exposure. Cell viability was measured using the trypan blue exclusion assay and remained above 85% for both cell types. DNA fragmentation was examined using the single-cell gel electrophoresis (comet) assay. A significant increase in DNA fragmentation was observed in the two cell types from both species relative to the controls. This increase was greater in the pacific oyster at the higher toxin concentration. However, there was no difference in the proportion of damage measured between the two cell types, and a classic dose response was not observed, increasing toxin concentration did not correspond to increased DNA fragmentation. PMID:25440785

  7. Transcriptional template activity of covalently modified DNA.

    PubMed

    Tolwińska-Stańczyk, Z; Wilmańska, D; Studzian, K; Gniazdowski, M

    1997-03-01

    The transcriptional template activity of covalent modified DNA is compared. 8-Methoxypsoralen (MOP), 3,4'dimethyl-8-methoxypsoralen (DMMOP) and benzopsoralen (BP) forming with DNA covalent complexes upon UV irradiation and exhibiting preference to pyrimidines, mostly thymines, differ in their cross-linking potency. MOP and DMMOP form both monoadducts and diadducts while no cross-links are formed by BP. Nitracrine (NC) forms covalent complexes with DNA upon reductive activation with dithiothreitol exhibiting a preference to purines and low cross-linking potency. Semilogarithmic plots of the relative template activity against the number of the drugs molecules covalently bound per 10(3) DNA nucleotides fit to regression lines corresponding to one-hit inactivation characteristics. The number of drug molecules decreasing RNA synthesis to 37% differ from 0.25 to 1.26 depending on the template used and the base preference but no dependence on the cross-linking potency was found. PMID:9067423

  8. DNA binding activity of Ku during chemotherapeutic agent-induced early apoptosis.

    PubMed

    Iuchi, Katsuya; Yagura, Tatsuo

    2016-03-15

    Ku protein is a heterodimer composed of two subunits, and is capable of both sequence-independent and sequence-specific DNA binding. The former mode of DNA binding plays a crucial role in DNA repair. The biological role of Ku protein during apoptosis remains unclear. Here, we show characterization of Ku protein during apoptosis. In order to study the DNA binding properties of Ku, we used two methods for the electrophoresis mobility shift assay (EMSA). One method, RI-EMSA, which is commonly used, employed radiolabeled DNA probes. The other method, WB-EMSA, employed unlabeled DNA followed by western blot and detection with anti-Ku antiserum. In this study, Ku-DNA probe binding activity was found to dramatically decrease upon etoposide treatment, when examined by the RI-EMSA method. In addition, pre-treatment with apoptotic cell extracts inhibited Ku-DNA probe binding activity in the non-treated cell extract. The inhibitory effect of the apoptotic cell extract was reduced by DNase I treatment. WB-EMSA showed that the Ku in the apoptotic cell extract bound to fragmented endogenous DNA. Interestingly, Ku in the apoptotic cell extract purified by the Resource Q column bound 15-bp DNA in both RI-EMSA and WB-EMSA, whereas Ku in unpurified apoptotic cell extracts did not bind additional DNA. These results suggest that Ku binds cleaved chromosomal DNA and/or nucleosomes in apoptotic cells. In conclusion, Ku is intact and retains DNA binding activity in early apoptotic cells.

  9. Nuclease activity of Saccharomyces cerevisiae Dna2 inhibits its potent DNA helicase activity

    PubMed Central

    Levikova, Maryna; Klaue, Daniel; Seidel, Ralf; Cejka, Petr

    2013-01-01

    Dna2 is a nuclease-helicase involved in several key pathways of eukaryotic DNA metabolism. The potent nuclease activity of Saccharomyces cerevisiae Dna2 was reported to be required for all its in vivo functions tested to date. In contrast, its helicase activity was shown to be weak, and its inactivation affected only a subset of Dna2 functions. We describe here a complex interplay of the two enzymatic activities. We show that the nuclease of Dna2 inhibits its helicase by cleaving 5′ flaps that are required by the helicase domain for loading onto its substrate. Mutational inactivation of Dna2 nuclease unleashes unexpectedly vigorous DNA unwinding activity, comparable with that of the most potent eukaryotic helicases. Thus, the ssDNA-specific nuclease activity of Dna2 limits and controls the enzyme's capacity to unwind dsDNA. We postulate that regulation of this interplay could modulate the biochemical properties of Dna2 and thus license it to carry out its distinct cellular functions. PMID:23671118

  10. Characterization of DNA binding and pairing activities associated with the native SFPQ•NONO DNA repair protein complex

    PubMed Central

    Udayakumar, Durga; Dynan, William S.

    2015-01-01

    Nonhomologous end joining (NHEJ) is a major pathway for repair of DNA double-strand breaks. We have previously shown that a complex of SFPQ (PSF) and NONO (p54nrb) cooperates with Ku protein at an early step of NHEJ, forming a committed preligation complex and stimulating end-joining activity by 10-fold or more. SFPQ and NONO show no resemblance to other repair factors, and their mechanism of action is uncertain. Here, we use an optimized microwell-based assay to characterize the in vitro DNA binding behavior of the native SFPQ•NONO complex purified from human (HeLa) cells. SFPQ•NONO and Ku protein bind independently to DNA, with little evidence of cooperativity and only slight mutual interference at high concentration. Whereas Ku protein requires free DNA ends for binding, SFPQ•NONO does not. Both Ku and SFPQ•NONO have pairing activity, as measured by the ability of DNA-bound protein to capture a second DNA fragment in a microwell-based assay. Additionally, SFPQ•NONO stimulates DNA-dependent protein kinase autophosphorylation, consistent with the ability to promote formation of a synaptic complex formation without occluding the DNA termini proper. These findings suggest that SFPQ•NONO promotes end joining by binding to internal DNA sequences and cooperating with other repair proteins to stabilize a synaptic pre-ligation complex. PMID:25998385

  11. Acetylation of Werner syndrome protein (WRN): relationships with DNA damage, DNA replication and DNA metabolic activities

    PubMed Central

    Lozada, Enerlyn; Yi, Jingjie; Luo, Jianyuan; Orren, David K.

    2014-01-01

    Loss of WRN function causes Werner Syndrome, characterized by increased genomic instability, elevated cancer susceptibility and premature aging. Although WRN is subject to acetylation, phosphorylation and sumoylation, the impact of these modifications on WRN’s DNA metabolic function remains unclear. Here, we examined in further depth the relationship between WRN acetylation and its role in DNA metabolism, particularly in response to induced DNA damage. Our results demonstrate that endogenous WRN is acetylated somewhat under unperturbed conditions. However, levels of acetylated WRN significantly increase after treatment with certain DNA damaging agents or the replication inhibitor hydroxyurea. Use of DNA repair-deficient cells or repair pathway inhibitors further increase levels of acetylated WRN, indicating that induced DNA lesions and their persistence are at least partly responsible for increased acetylation. Notably, acetylation of WRN correlates with inhibition of DNA synthesis, suggesting that replication blockage might underlie this effect. Moreover, WRN acetylation modulates its affinity for and activity on certain DNA structures, in a manner that may enhance its relative specificity for physiological substrates. Our results also show that acetylation and deacetylation of endogenous WRN is a dynamic process, with sirtuins and other histone deacetylases contributing to WRN deacetylation. These findings advance our understanding of the dynamics of WRN acetylation under unperturbed conditions and following DNA damage induction, linking this modification not only to DNA damage persistence but also potentially to replication stalling caused by specific DNA lesions. Our results are consistent with proposed metabolic roles for WRN and genomic instability phenotypes associated with WRN deficiency. PMID:24965941

  12. Membrane regulation of the chromosomal replication activity of E. coli DnaA requires a discrete site on the protein.

    PubMed Central

    Garner, J; Crooke, E

    1996-01-01

    The capacity of DnaA protein to initiate DNA synthesis at the chromosomal origin is influenced profoundly by the tightly bound nucleotides ATP and ADP. Acidic phospholipids can catalyze the conversion of inactive ADP-DnaA protein into the active ATP form. Proteolytic fragments of the nucleotide form of DnaA protein were examined to determine regions of the protein critical for functional interaction with membranes. A 35 kDa chymotryptic and 29 kDa tryptic fragment retained the tightly bound nucleotide. The fragments, whose amino-termini are within three residues of each other, but differ at their carboxyl ends, showed strikingly different behavior when treated with acidic phospholipids. The larger chymotryptic fragment released the bound nucleotide in the presence of acidic, but not neutral phospholipids. In contrast, the smaller tryptic fragment was inert to both forms of phospholipids. Acidic membranes, but not those composed of neutral phospholipids, protect from tryptic digestion a small portion of the segment that constitutes the difference between the 29 and 35 kDa fragments. The resulting 30 kDa tryptic fragment, which possesses this protected region, interacts functionally with acidic membranes to release the bound effector nucleotide. Inasmuch as the anionic ganglioside GM1, a compound structurally dissimilar to acidic glycerophospholipids, efficiently releases the nucleotide from DnaA protein, an acidic surface associated with a hydrophobic environment is the characteristic of the membrane that appears crucial for regulatory interaction with DnaA protein. Images PMID:8670850

  13. Performance Assessment of DNA Fragment Sizing by High-Sensitivity Flow Cytometry and Pulsed-Field Gel Electrophoresis

    PubMed Central

    Ferris, Matthew M.; Yan, Xiaomei; Habbersett, Robbert C.; Shou, Yulin; Lemanski, Cheryl L.; Jett, James H.; Yoshida, Thomas M.; Marrone, Babetta L.

    2004-01-01

    The sizing of restriction fragments is the chief analytical technique utilized in the production of DNA fingerprints. Few techniques have been able to compete with pulsed-field gel electrophoresis (PFGE), which is capable of discriminating among bacteria at species and strain levels by resolving restriction fragments. However, an ultrasensitive flow cytometer (FCM) developed in our lab has also demonstrated the ability to discriminate bacteria at species and strain levels. The abilities of FCM warrant a quantitative parallel comparison with PFGE to assess and evaluate the accuracy and precision of DNA fragment sizing by both techniques. Replicate samples of Staphylococcus aureus Mu50 were analyzed along with two clinical S. aureus isolates. The absolute fragment sizing accuracy was determined for PFGE (5% ± 2%) and FCM (4% ± 4%), with sequence-predicted Mu50 SmaI fragment sizes used as a reference. Precision was determined by simple arithmetic methods (relative standard deviation for PFGE [RSDPFGE ] = 3% ± 2% and RSDFCM = 1.2% ± 0.8%) as well as by the use of dendrograms derived from Dice coefficient-unweighted pair group method with arithmetic averages (UPGMA) and Pearson-UPGMA analyses. All quantitative measures of PFGE and FCM precision were equivalent, within error. The precision of both methods was not limited by any single sample preparation or analysis step that was tracked in this study. Additionally, we determined that the curve-based clustering of fingerprint data provided a more informative and useful assessment than did traditional band-based methods. PMID:15131156

  14. Viability and DNA fragmentation of rainbow trout embryos (Oncorhynchus mykiss) obtained from eggs stored at 4 °C.

    PubMed

    Ubilla, A; Valdebenito, I; Árias, M E; Risopatrón, J

    2016-05-01

    In vitro storage of salmonid eggs leads to aging of the cells causing a decline in quality and reducing their capacity to develop and produce embryos. The quality of salmonid embryos is assessed by morphologic analyses; however, data on the application of biomarkers to determine the cell viability and DNA integrity of embryos in these species are limited. The aim of this study was to evaluate the effect on embryo development, viability and DNA fragmentation in the embryonic cells of in vitro storage time at 4 °C of rainbow trout (Oncorhynchus mykiss) eggs. The embryos were obtained by IVF from eggs stored for 0 (control), 48, and 96 hours at 4 °C. At 72 hours after fertilization, dechorionated embryos were examined to determine percentages of developed embryos (embryos with normal cell division morphology), viability (LIVE/DEAD sperm viability kit), and DNA integrity (terminal deoxynucleotidyl transferase [TdT] dUTP nick-end labeling assay). The percentage of developing embryos decreased (P < 0.05) with storage time of the eggs (95.10 ± 2.55; 88.14 ± 4.50; 79.99 ± 6.60 for 0, 48, and 96 hours, respectively). Similarly, cell viability decreased (P < 0.05; 96.07 ± 7.15; 80.42 ± 8.55; 77.47 ± 7.88 for 0, 48, and 96 hours, respectively), and an increase (P < 0.05) in DNA fragmentation in the embryos was observed at 96-hour storage. A positive correlation was found between cell DNA fragmentation and storage time (r = 0.8173; P < 0.0001). The results revealed that terminal deoxynucleotidyl transferase [TdT] dUTP nick-end labeling assay technique is reliable mean to assess the state of the DNA in salmonid embryos and that in vitro eggs storage for 96h reduces embryo development and cell DNA integrity. DNA integrity evaluation constitutes a biomarker of the quality of the ova and resulting embryos so as to predict their capacity to produce good-quality embryos in salmonids, particularly under culture conditions. PMID:26893166

  15. Selection of normal spermatozoa with a vacuole-free head (x6300) improves selection of spermatozoa with intact DNA in patients with high sperm DNA fragmentation rates.

    PubMed

    Hammoud, I; Boitrelle, F; Ferfouri, F; Vialard, F; Bergere, M; Wainer, B; Bailly, M; Albert, M; Selva, J

    2013-06-01

    Intracytoplasmic morphologically selected sperm injection (IMSI, 6300× magnification with Nomarski contrast) of a normal spermatozoon with a vacuole-free head could improve the embryo's ability to grow to the blastocyst stage and then implant. However, the most relevant indications for IMSI remain to be determined. To evaluate the potential value of IMSI for patients with a high degree of sperm DNA fragmentation (n = 8), different types of spermatozoa were analysed in terms of DNA fragmentation. Motile normal spermatozoa with a vacuole-free head selected at 6300× magnification had a significantly lower mean DNA fragmentation rate (4.1 ± 1.1%, n = 191) than all other types of spermatozoa: non-selected spermatozoa (n = 8000; 26.1 ± 1.5% versus 4.1 ± 1.1%; P < 0.005), motile spermatozoa (n = 444; 20.8 ± 2.7% versus 4.1 ± 1.1%; P < 0.001) and motile, normal spermatozoa selected at 200× magnification (n = 370; 18.7 ± 2.7% versus 4.1 ± 1.1%; P < 0.001) and then motile, morphometrically normal spermatozoa with anterior vacuoles (n = 368; 15.9 ± 2.9% versus 4.1 ± 1.1%; P < 0.05) or posterior vacuoles (n = 402; 22.5 ± 3.6% versus 4.1 ± 1.1%; P < 0.001) selected at 6300× magnification. For patients with high sperm DNA fragmentation rates, selection of normal spermatozoa with a vacuole-free head (6300×) yields the greatest likelihood of obtaining spermatozoa with non-fragmented DNA.

  16. Characterization of 2-mum DNA of Saccharomyces cerevisiae by restriction fragment analysis and integration in an Escherichia coli plasmid.

    PubMed Central

    Hollenberg, C P; Degelmann, A; Kustermann-Kuhn, B; Royer, H D

    1976-01-01

    Electrophoretic analysis of EcoRI and HindIII restriction fragments of 2-mum supercoiled DNA of Saccharomyces cerevisiae indicated that this class of DNA is heterogeneous and probably consists of two types of molecules. Integration of the 2-mum yeast DNA in E. coli plasmid pCR1 directly showed that existence of two types of molecules as each of these could be individually inserted into separate bacterial plasmids. The difference between the two types of 2-mum circles is due to an inversion of about 1.6 X 10(6) daltons. The inversion is flanked by a reversed duplicated sequence of 0.45 X 10(6) daltons. Possible implications of this structure are dicussed. Images PMID:778854

  17. Characterization of chromosome fragmentation in two protozoans and identification of a candidate fragmentation sequence in Euplotes crassus.

    PubMed

    Baird, S E; Klobutcher, L A

    1989-05-01

    Following the sexual cycle, hypotrichous ciliated protozoans fragment a set of their micronuclear chromosomes to generate the thousands of short, linear DNA molecules present in the transcriptionally active macronucleus. We have used a hybrid selection procedure to examine macronuclear DNA molecules for subtelomeric length heterogeneity to determine whether chromosome fragmentation occurs at unique or multiple sites. The results suggest that multiple, but closely spaced, chromosome fragmentation sites are used by Oxytricha nova. In contrast, Euplotes crassus uses unique chromosome fragmentation sites in a reproducible manner to generate the ends of macronuclear DNA molecules. Additional studies compared DNA sequences in the vicinity of chromosome fragmentation sites in an attempt to define cis-acting sequences that direct the fragmentation process. A conserved sequence was found near chromosome fragmentation sites in E. crassus. The location of the conserved sequence suggests that chromosome fragmentation involves staggered cuts of the micronuclear DNA molecules.

  18. Protective role of probiotic lactic acid bacteria against dietary fumonisin B1-induced toxicity and DNA-fragmentation in sprague-dawley rats.

    PubMed

    Khalil, Ashraf A; Abou-Gabal, Ashgan E; Abdellatef, Amira A; Khalid, Ahmed E

    2015-08-18

    The genus Fusarium, especially F. verticillioides and F. proliferatum, has been found in several agricultural products worldwide, especially in maize. Regardless the occurrence of symptoms, the presence of Fusarium in maize constitutes an imminent risk due to its ability to produce fumonisins, mycotoxins with proven carcinogenic effect on rats, swine, and equines and already classified as possible carcinogens to humans. The toxicity of incremental levels of fumonisin B1 (FB1), that is, 50, 100, and 200 mg FB1/kg diet, and the role of Lactobacillus delbrueckii subsp. lactis DSM 20076 (LL) and Pediococcus acidilactici NNRL B-5627 (PA) supplementation in counteracting the FB1 effects in intoxicated rats were monitored over a period of 4 weeks. Effects on the feed intake and body weight gain were noticed. A significant (p ≤ 0.05) increase in the level of liver and kidney functions markers and DNA fragmentation was also noticed in rat groups T100 and T200. The lactic acid bacteria (LAB) supplementation could bring back the normal serum biochemical parameters in rats fed on fumonisin B1-contaminated diets (T50 and T100) compared to FB1-treated groups. In rats of high-dosage dietary groups supplemented with LAB (T200-LL and T200-PA), the supplementation reduced the serum activity levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and creatinine by 11.3, 11.9, 32, and 20%, respectively. DNA fragmentations were observed in the rat group treated with 200 mg FB1 after 3 weeks, while fragmentation was noticed in treated groups with 100 and 200 mg FB1 after 4 weeks. No DNA fragmentation was apparent in FB1-treated rats co-administered the LL or PA strain. These results suggest that in male rats consuming diets containing FB1, there is a time- and dose-dependent increase in serum enzyme activities and DNA lesions. Moreover, Lb. delbrueckii subsp. lactis (LL) and P. acidilactici (PA) strains have a protective effect

  19. Molecular cloning and characterization of CIDE-3, a novel member of the cell-death-inducing DNA-fragmentation-factor (DFF45)-like effector family.

    PubMed

    Liang, Liang; Zhao, Mujun; Xu, Zhenhua; Yokoyama, Kazunari K; Li, Tsaiping

    2003-02-15

    DNA fragmentation is one of the critical steps in apoptosis, which is induced by DNA fragmentation factor (DFF). DFF is composed of two subunits, a 40 kDa caspase-activated nuclease (DFF40) and a 45 kDa inhibitor (DFF45). Recently a novel family of cell-death-inducing DFF45-like effectors (CIDEs) has been identified. Among CIDEs, two from human (CIDE-A and CIDE-B) and three from mouse (CIDE-A, CIDE-B and FSP27) have been reported. In this study human CIDE-3, a novel member of CIDEs, was identified upon sequence analysis of a previously unidentified cDNA that encoded a protein of 238 amino acids. It was shown to be a human homologue of mouse FSP27, and shared homology with the CIDE-N and CIDE-C domains of CIDEs. Apoptosis-inducing activity was clearly shown by DNA-fragmentation assay of the nuclear DNA of CIDE-3 transfected 293T cells. The expression pattern of CIDE-3 was different from that of CIDE-B. As shown by Northern-blot analysis, CIDE-3 was expressed mainly in human small intestine, heart, colon and stomach, while CIDE-B showed strong expression in liver and small intestine and at a lower level in colon, kidney and spleen. Green-fluorescent-protein-tagged CIDE-3 was revealed in some cytosolic corpuscles. Alternative splicing of the CIDE-3 gene was also identified by reverse transcription PCR, revealing that two transcripts, CIDE-3 and CIDE-3alpha, were present in HepG2 and A375 cells. CIDE-3 comprised a full-length open reading frame with 238 amino acids; in CIDE-3alpha exon 3 was deleted and it encoded a protein of 164 amino acids. Interestingly the CIDE-3alpha isoform still kept the apoptosis-inducing activity and showed the same pattern of subcellular localization as CIDE-3. Consistent with its chromosome localization at 3p25, a region associated with high frequency loss of heterozygosity in many tumours, CIDE-3 may play an important role in prevention of tumorigenesis.

  20. Entamoeba histolytica: target cells killed by trophozoites undergo DNA fragmentation which is not blocked by Bcl-2.

    PubMed

    Ragland, B D; Ashley, L S; Vaux, D L; Petri, W A

    1994-11-01

    Amebic destruction of neutrophils and macrophages is contact-dependent. Adherence is mediated by a galactose-specific surface lectin on the amebic membrane. The pathway by which contact-dependent cytolysis of the target cell occurs is unknown. We hypothesized that target cell death is due to the triggering of apoptosis (programmed cell death) by the amebae. The purpose of this study was to determine whether target cell DNA is fragmented into a ladder pattern characteristic of apoptosis and to test whether overexpression of Bcl-2, a protein that confers resistance to apoptotic death from some stimuli, blocks target cell killing. The murine myeloid cell line FDC-P1 transfected with a retrovirus construct expressing the Bcl-2 protein was shown to be resistant to the apoptotic death that the parental line undergoes upon growth factor deprivation. 51Cr-labeled FDC-P1 control or bcl-2-transfected cells were incubated with Entamoeba histolytica (4:1 cell/ameba ratio) and killing of the cells was assessed by 51Cr release. Both cell lines were susceptible to contact-dependent killing. Death induced by the amebae in the bcl-2-transfected cells resulted in a DNA ladder fragmentation pattern (using [125I]iododeoxyuridine-labeled target cell DNA) identical to that seen in the control cells undergoing apoptosis upon growth factor withdrawal. Target cell DNA fragmentation was inhibited by blocking adherence with galactose. Our data suggest that target cell killing by E. histolytica can occur via Bcl-2-independent apoptotic mechanism. PMID:7957763

  1. Cloning of a DNA fragment encoding a heme-repressible hemoglobin-binding outer membrane protein from Haemophilus influenzae.

    PubMed Central

    Jin, H; Ren, Z; Pozsgay, J M; Elkins, C; Whitby, P W; Morton, D J; Stull, T L

    1996-01-01

    Haemophilus influenzae is able to use hemoglobin as a sole source of heme, and heme-repressible hemoglobin binding to the cell surface has been demonstrated. Using an affinity purification methodology, a hemoglobin-binding protein of approximately 120 kDa was isolated from H. influenzae type b strain HI689 grown in heme-restricted but not in heme-replete conditions. The isolated protein was subjected to N-terminal amino acid sequencing, and the derived amino acid sequence was used to design corresponding oligonucleotides. The oligonucleotides were used to probe a Southern blot of EcoRI-digested HI689 genomic DNA. A hybridizing band of approximately 4.2 kb was successfully cloned into pUC19. Using a 1.9-kb internal BglII fragment of the 4.2-kb clone as a probe, hybridization was seen in both typeable and nontypeable H. influenzae but not in other bacterial species tested. Following partial nucleotide sequencing of the 4.2-kb insert, a putative open reading frame was subcloned into an expression vector. The host Escherichia coli strain in which the cloned fragment was expressed bound biotinylated human hemoglobin, whereas binding of hemoglobin was not detected in E. coli with the vector alone. In conclusion, we hypothesize that the DNA fragment encoding an approximately 120-kDa heme-repressible hemoglobin-binding protein mediates one step in the acquisition of hemoglobin by H. influenzae in vivo. PMID:8757844

  2. Isolation of novel non-HLA gene fragments from the hemochromatosis region (6p21.3) by cDNA hybridization selection.

    PubMed Central

    Goei, V. L.; Parimoo, S.; Capossela, A.; Chu, T. W.; Gruen, J. R.

    1994-01-01

    It has previously been shown that cDNA hybridization selection can identify and recover novel genes from large cloned genomic DNA such as cosmids or YACs. In an effort to identify candidate genes for hemochromatosis, this technique was applied to a 320-kb YAC containing the HLA-A gene. A short fragment cDNA library derived from human duodenum was selected with the YAC DNA. Ten novel gene fragments were isolated, characterized, and localized on the physical map of the YAC. Images Figure 2 Figure 4 PMID:8304341

  3. Quantitative predictivity of carcinogenicity for four short-term parameters, evaluated in rat liver: alkaline DNA fragmentation, autoradiographic repair, DNA adducts, preneoplastic nodules.

    PubMed

    Parodi, S; Taningher, M; Santi, L

    1984-01-01

    The possibility of the study of a quantitative correlation between short-term tests and carcinogenicity, instead of a qualitative one, is discussed. Four tests related to the target organ, rat liver, were considered: alkaline DNA fragmentation, DNA repair, DNA adducts and the formation of preneoplastic nodules. All the four tests showed a similar level of correlation with carcinogenic potency (r approximately equal to 0.4). With this level of correlation, the dispersion of the data appeared too large to offer a meaningful degree of quantitative predictivity of carcinogenicity, in reference to a single test. It appeared however, that the use of a battery of two or three independent short-term tests, with the above level of simple correlation, could generate a multiple correlation high enough to be potentially useful for some degree of quantitative predictivity of carcinogenic potency.

  4. Activity and Regulation of Archaeal DNA Alkyltransferase

    PubMed Central

    Perugino, Giuseppe; Vettone, Antonella; Illiano, Giuseppina; Valenti, Anna; Ferrara, Maria C.; Rossi, Mosè; Ciaramella, Maria

    2012-01-01

    Agents that form methylation adducts in DNA are highly mutagenic and carcinogenic, and organisms have evolved specialized cellular pathways devoted to their repair, including DNA alkyltransferases. These are proteins conserved in eucarya, bacteria and archaea, acting by a unique reaction mechanism, which leads to direct repair of DNA alkylation damage and irreversible protein alkylation. The alkylated form of DNA alkyltransferases is inactive, and in eukaryotes, it is rapidly directed to degradation. We report here in vitro and in vivo studies on the DNA alkyltransferase from the thermophilic archaeon Sulfolobus solfataricus (SsOGT). The development of a novel, simple, and sensitive fluorescence-based assay allowed a careful characterization of the SsOGT biochemical and DNA binding activities. In addition, transcriptional and post-translational regulation of SsOGT by DNA damage was studied. We show that although the gene transcription is induced by alkylating agent treatment, the protein is degraded in vivo by an alkylation-dependent mechanism. These experiments suggest a striking conservation, from archaea to humans, of this important pathway safeguarding genome stability. PMID:22167184

  5. Redox activation of Fos-Jun DNA binding activity is mediated by a DNA repair enzyme.

    PubMed Central

    Xanthoudakis, S; Miao, G; Wang, F; Pan, Y C; Curran, T

    1992-01-01

    The DNA binding activity of Fos and Jun is regulated in vitro by a post-translational mechanism involving reduction-oxidation. Redox regulation occurs through a conserved cysteine residue located in the DNA binding domain of Fos and Jun. Reduction of this residue by chemical reducing agents or by a ubiquitous nuclear redox factor (Ref-1) recently purified from Hela cells, stimulates AP-1 DNA binding activity in vitro, whereas oxidation or chemical modification of the cysteine has an inhibitory effect on DNA binding activity. Here we demonstrate that the protein product of the ref-1 gene stimulates the DNA binding activity of Fos-Jun heterodimers, Jun-Jun homodimers and Hela cell AP-1 proteins as well as that of several other transcription factors including NF-kappa B, Myb and members of the ATF/CREB family. Furthermore, immunodepletion analysis indicates that Ref-1 is the major AP-1 redox activity in Hela nuclear extracts. Interestingly, Ref-1 is a bifunctional protein; it also possesses an apurinic/apyrimidinic (AP) endonuclease DNA repair activity. However, the redox and DNA repair activities of Ref-1 can, in part, be distinguished biochemically. This study suggests a novel link between transcription factor regulation, oxidative signalling and DNA repair processes in higher eukaryotes. Images PMID:1380454

  6. A novel fluorescent biosensor for detection of target DNA fragment from the transgene cauliflower mosaic virus 35S promoter.

    PubMed

    Qiu, Bin; Zhang, Ya-shan; Lin, Yi-bing; Lu, Yu-Jing; Lin, Zhen-yu; Wong, Kwok-Yin; Chen, Guo-nan

    2013-03-15

    In this paper, we reported a convenient fluorescence method for the detection of genetically modified organisms (GMOs). As it is known that the cauliflower mosaic virus (CaMV) 35S promoter is widely used in most transgenic plants (Schnurr and Guerra, 2000), we thus design a simple method based on the detection of a section target DNA (DNA-T) from the transgene CaMV 35S promoter. In this method, the full-length guanine-rich single-strand sequences were split into fragments (Probe 1 and 2) and each part of the fragment possesses two GGG repeats. In the presence of K(+) ion and berberine, if a complementary target DNA of the CaMV 35S promoter was introduced to hybridize with Probe 1 and 2, a G-quadruplex-berberine complex was thus formed and generated a strong fluorescence signal. The generation of fluorescence signal indicates the presence of CaMV 35S promoter. This method is able to identify and quantify Genetically Modified Organisms (GMOs), and it shows wide linear ranges from 5.0×10(-9) to 9.0×10(-7) mol/L with a detection limit of 2.0×10(-9) mol/L. PMID:22959013

  7. A novel fluorescent biosensor for detection of target DNA fragment from the transgene cauliflower mosaic virus 35S promoter.

    PubMed

    Qiu, Bin; Zhang, Ya-shan; Lin, Yi-bing; Lu, Yu-Jing; Lin, Zhen-yu; Wong, Kwok-Yin; Chen, Guo-nan

    2013-03-15

    In this paper, we reported a convenient fluorescence method for the detection of genetically modified organisms (GMOs). As it is known that the cauliflower mosaic virus (CaMV) 35S promoter is widely used in most transgenic plants (Schnurr and Guerra, 2000), we thus design a simple method based on the detection of a section target DNA (DNA-T) from the transgene CaMV 35S promoter. In this method, the full-length guanine-rich single-strand sequences were split into fragments (Probe 1 and 2) and each part of the fragment possesses two GGG repeats. In the presence of K(+) ion and berberine, if a complementary target DNA of the CaMV 35S promoter was introduced to hybridize with Probe 1 and 2, a G-quadruplex-berberine complex was thus formed and generated a strong fluorescence signal. The generation of fluorescence signal indicates the presence of CaMV 35S promoter. This method is able to identify and quantify Genetically Modified Organisms (GMOs), and it shows wide linear ranges from 5.0×10(-9) to 9.0×10(-7) mol/L with a detection limit of 2.0×10(-9) mol/L.

  8. The influence of ginger (Zingiber officinale) on human sperm quality and DNA fragmentation: A double-blind randomized clinical trial

    PubMed Central

    Hosseini, Jalil; Mardi Mamaghani, Azar; Hosseinifar, Hani; Sadighi Gilani, Mohammad Ali; Dadkhah, Farid; Sepidarkish, Mahdi

    2016-01-01

    Background: Although the effectiveness of ginger as an antioxidant agent has been exploited, little human research has been conducted on its activity on male reproductive functions. Objective: This study was designed to investigate the effects of ginger (Zingiber officinale) on sperm DNA fragmentation (SDF) in infertile men. Materials and Methods: This randomized double-blind, placebo-controlled trial with a 1:1 allocation was performed on 100 infertility treatment candidates who were admitted to Royan Institute for Reproductive Biomedicine, Tehran, Iran. Patients were randomly assigned to receive one of two treatments: ginger and placebo. Patients were given a 3-month oral treatment (members received capsules containing 250 mg of ginger powder twice a day in ginger and a placebo in other group). Before and after treatment, standardized semen samples were obtained to determine sperm concentration, motility, and SDF according to World Health Organization. Results: There was no significant difference between two groups regarding SDF at baseline (53.48. 95%CI: 37.95-69.02) in cases and (56.75, 95%CI: 40.01-73.5) in controls. The average positive percentage of SDF in patients receiving ginger (17.77, 95%CI: 6.16-29.39) was lower compared with placebo (40.54, 95%CI: 23.94-57.13) after three month of treatment (p=0.02). In multivariate analysis, SDF was significantly lower in patients receiving ginger compared with placebo (mean difference: 3.21, 95%CI: 0.78-5.63, p=0.009). There were no significant differences between two groups regarding to semen parameters. Conclusion: The present study has demonstrated that ginger in a controlled study of efficacy was effective in decreasing SDF in infertile men. PMID:27679829

  9. The influence of ginger (Zingiber officinale) on human sperm quality and DNA fragmentation: A double-blind randomized clinical trial

    PubMed Central

    Hosseini, Jalil; Mardi Mamaghani, Azar; Hosseinifar, Hani; Sadighi Gilani, Mohammad Ali; Dadkhah, Farid; Sepidarkish, Mahdi

    2016-01-01

    Background: Although the effectiveness of ginger as an antioxidant agent has been exploited, little human research has been conducted on its activity on male reproductive functions. Objective: This study was designed to investigate the effects of ginger (Zingiber officinale) on sperm DNA fragmentation (SDF) in infertile men. Materials and Methods: This randomized double-blind, placebo-controlled trial with a 1:1 allocation was performed on 100 infertility treatment candidates who were admitted to Royan Institute for Reproductive Biomedicine, Tehran, Iran. Patients were randomly assigned to receive one of two treatments: ginger and placebo. Patients were given a 3-month oral treatment (members received capsules containing 250 mg of ginger powder twice a day in ginger and a placebo in other group). Before and after treatment, standardized semen samples were obtained to determine sperm concentration, motility, and SDF according to World Health Organization. Results: There was no significant difference between two groups regarding SDF at baseline (53.48. 95%CI: 37.95-69.02) in cases and (56.75, 95%CI: 40.01-73.5) in controls. The average positive percentage of SDF in patients receiving ginger (17.77, 95%CI: 6.16-29.39) was lower compared with placebo (40.54, 95%CI: 23.94-57.13) after three month of treatment (p=0.02). In multivariate analysis, SDF was significantly lower in patients receiving ginger compared with placebo (mean difference: 3.21, 95%CI: 0.78-5.63, p=0.009). There were no significant differences between two groups regarding to semen parameters. Conclusion: The present study has demonstrated that ginger in a controlled study of efficacy was effective in decreasing SDF in infertile men.

  10. Insulin-sensitive glucose transporter transcript levels in calf muscles assessed with a bovine GLUT4 cDNA fragment.

    PubMed

    Hocquette, J F; Graulet, B; Castiglia-Delavaud, C; Bornes, F; Lepetit, N; Ferre, P

    1996-07-01

    Previous studies have shown that the expression of the insulin-sensitive glucose transporter (GLUT4) is lower in oxidative muscles than in glycolytic muscles in bovines and goats in contrast to observations in rats. Additional experiments in this work provide very strong arguments that the immunoreactive band detected does represent GLUT4 protein, which further validates our previous results. Therefore, to determine the level of regulation, the main objective of the present study was to measure GLUT4 mRNA amounts in various bovine muscles. A 241-bp fragment of the bovine GLUT4 cDNA was cloned by polymerase chain reaction (PCR). It shares 80-90% sequence identity with related sequences in other species. This PCR-amplified bovine GLUT4 probe was used to determine the distribution of GLUT4 mRNA in bovine tissues in comparison with that of GLUT1 mRNA. Moreover, GLUT4 mRNA amounts were quantified by Northern-blot analysis in heart and seven skeletal muscles with various oxidative and glycolytic activities from seven ruminant calves. GLUT4 mRNA was detected by Northern-blot analysis only in calf insulin-sensitive tissues. In contrast, GLUT1 mRNA was detected in all tissues studied except liver. GLUT4 mRNA amount was the highest in masseter and heart, which are oxidative muscles (1.67 +/- 0.16 and 1.53 +/- 0.19 units/g wet tissue weight, respectively) and the lowest in glycolytic or oxido-glycolytic muscles (0.31 +/- 0.04 to 1.00 +/- 0.09 units/g wet tissue weight; SEM, n = 7). These data and our previous results provide evidence for translational and/or post-translational control mechanisms of bovine GLUT4 protein expression in a muscle type-specific manner.

  11. The kinetics of force-dependent hybridization and strand-peeling of short DNA fragments

    NASA Astrophysics Data System (ADS)

    Yang, ZhouJie; Yuan, GuoHua; Zhai, WeiLi; Yan, Jie; Chen, Hu

    2016-08-01

    Deoxyribonucleic acid (DNA) carries the genetic information in all living organisms. It consists of two interwound single-stranded (ss) strands, forming a double-stranded (ds) DNA with a right-handed double-helical conformation. The two strands are held together by highly specific basepairing interactions and are further stabilized by stacking between adjacent basepairs. A transition from a dsDNA to two separated ssDNA is called melting and the reverse transition is called hybridization. Applying a tensile force to a dsDNA can result in a particular type of DNA melting, during which one ssDNA strand is peeled away from the other. In this work, we studied the kinetics of strand-peeling and hybridization of short DNA under tensile forces. Our results show that the force-dependent strand-peeling and hybridization can be described with a simple two-state model. Importantly, detailed analysis of the force-dependent transition rates revealed that the transition state consists of several basepairs dsDNA.

  12. Neural activity and CaMKII protect mitochondria from fragmentation in aging Caenorhabditis elegans neurons

    PubMed Central

    Jiang, Hao-Ching; Hsu, Jiun-Min; Yen, Chien-Ping; Chao, Chi-Chao; Chen, Ruey-Hwa; Pan, Chun-Liang

    2015-01-01

    Decline in mitochondrial morphology and function is a hallmark of neuronal aging. Here we report that progressive mitochondrial fragmentation is a common manifestation of aging Caenorhabditis elegans neurons and body wall muscles. We show that sensory-evoked activity was essential for maintaining neuronal mitochondrial morphology, and this activity-dependent mechanism required the Degenerin/ENaC sodium channel MEC-4, the L-type voltage-gated calcium channel EGL-19, and the Ca/calmodulin-dependent kinase II (CaMKII) UNC-43. Importantly, UNC-43 phosphorylated and inhibited the dynamin-related protein (DRP)-1, which was responsible for excessive mitochondrial fragmentation in neurons that lacked sensory-evoked activity. Moreover, enhanced activity in the aged neurons ameliorated mitochondrial fragmentation. These findings provide a detailed description of mitochondrial behavior in aging neurons and identify activity-dependent DRP-1 phosphorylation by CaMKII as a key mechanism in neuronal mitochondrial maintenance. PMID:26124107

  13. Fragmentation of positively-charged biological ions activated with a beam of high-energy cations.

    PubMed

    Chingin, Konstantin; Makarov, Alexander; Denisov, Eduard; Rebrov, Oleksii; Zubarev, Roman A

    2014-01-01

    First results are reported on the fragmentation of multiply protonated polypeptide ions produced in electrospray ionization mass spectrometry (ESI-MS) with a beam of high-energy cations as a source of activation. The ion beam is generated with a microwave plasma gun installed on a benchtop Q Exactive mass spectrometer. Precursor polypeptide ions are activated when trapped inside the collision cell of the instrument (HCD cell), and product species are detected in the Orbitrap analyzer. Upon exposure to the beam of air plasma cations (∼100 μA, 5 s), model precursor species such as multiply protonated angiotensin I and ubiquitin dissociated across a variety of pathways. Those pathways include the cleavages of C-CO, C-N as well as N-Cα backbone bonds, accordingly manifested as b/y, a, and c/z fragment ion series in tandem mass spectra. The fragmentation pattern observed includes characteristic fragments of collision-induced dissociation (CID) (b/y/a fragments) as well as electron capture/transfer dissociation (ECD, ETD) (c/z fragments), suggesting substantial contribution of both vibrational and electronic excitation in our experiments. Besides backbone cleavages, notable amounts of nondissociated precursor species were observed with reduced net charge, formed via electron or proton transfer between the colliding partners. Peaks corresponding to increased charge states of the precursor ions were also detected, which is the major distinctive feature of ion beam activation.

  14. Tandem mass spectrometry-based detection of c4'-oxidized abasic sites at specific positions in DNA fragments.

    PubMed

    Chowdhury, Goutam; Guengerich, F Peter

    2009-07-01

    Oxidative damage to DNA has been linked to aging, cancer, and other biological processes. Reactive oxygen species and various antitumor agents including bleomycin and ionizing radiation have been shown to cause oxidative DNA sugar damage. Detection of DNA lesions is important for understanding the toxicological or therapeutic consequences associated with such agents. C4'-oxidized abasic sites (C4-AP) are produced by the antitumor drug bleomycin and ionizing radiation. The currently available methods for the detection of C4-AP cannot provide both structural and sequence information. We have developed an LC-ESI-MS-based approach for specific detection and mapping of C4-AP from a mixture of lesions. We show using Fe-bleomycin-damaged DNA that C4-AP can be detected at cytosine and thymine sites by direct MS analysis. Our results reveal that collision-induced dissociation of C4-AP-containing oligonucleotides results in preferential fragmentation at C4-AP sites with the formation of the unique a* ions (18 amu more than the a-B ions) that allow mapping of the C4-AP sites. Various chemical modification strategies (e.g., reduction with NaBH4 and NaBD4 and derivatization with methoxyamine and hydrazine, followed by LC-MS analysis) were also used for unambiguous detection of C4-AP sites. Finally, we show that the methods described here can detect the presence of C4-AP at specific sites in a complex sample such as hydroxyl radical-damaged DNA. The LC-MS approach was also used for the simultaneous detection of the other C4'-oxidation end product, 3'-phosphoglycolate, at a specific site in hydroxyl radical-damaged DNA. Thus, LC-MS provides a rapid and direct approach for the detection and mapping of oxidative DNA lesions. PMID:19496605

  15. Single molecule fluorescence burst detection of DNA fragments separated by capillary electrophoresis

    SciTech Connect

    Haab, B.B.; Mathies, R.A.

    1995-09-15

    A method has been developed for detecting DNA separated by capillary gel electrophoresis (CGE) using single molecule photon burst counting. A confocal fluorescence microscope was used to observe the fluorescence bursts from single molecules of DNA multiply labeled with the thiazole orange derivative TO6 as they passed through the nearly 2-{mu}m diameter focused laser beam. Amplified photo-electron pulses from the photomultiplier are grouped into bins of 360-450 {mu}s in duration, and the resulting histogram is stored in a computer for analysis. Solutions of M13 DNA were first flowed through the capillary at various concentrations, and the resulting data were used to optimize the parameters for digital filtering using a low-pass Fourier filter, selecting a discriminator level for peak detection, and applying a peak-calling algorithm. The optimized single molecule counting method was then applied to an electrophoretic separation of M13 DNA and to a separation of pBR 322 DNA from pRL 277 DNA. Clusters of discreet fluorescence bursts were observed at the expected appearance time of each DNA band. The auto-correlation function of these data indicated transit times that were consistent with the observed electrophoretic velocity. These separations were easily detected when only 50-100 molecules of DNA per band traveled through the detection region. This new detection technology should lead to the routine analysis of DNA in capillary columns with an on-column sensitivity of nearly 100 DNA molecules/band or better. 45 refs., 10 figs.

  16. Successful carnivore identification with faecal DNA across a fragmented Amazonian landscape.

    PubMed

    Michalski, Fernanda; Valdez, Fernanda Pedone; Norris, Darren; Zieminski, Chris; Kashivakura, Cyntia Kayo; Trinca, Cristine S; Smith, Heath B; Vynne, Carly; Wasser, Samuel K; Metzger, Jean Paul; Eizirik, Eduardo

    2011-09-01

    The use of scat surveys to obtain DNA has been well documented in temperate areas, where DNA preservation may be more effective than in tropical forests. Samples obtained in the tropics are often exposed to high humidity, warm temperatures, frequent rain and intense sunlight, all of which can rapidly degrade DNA. Despite these potential problems, we demonstrate successful mtDNA amplification and sequencing for faeces of carnivores collected in tropical conditions and quantify how sample condition and environmental variables influence the success of PCR amplification and species identification. Additionally, the feasibility of genotyping nuclear microsatellites from jaguar (Panthera onca) faeces was investigated. From October 2007 to December 2008, 93 faecal samples were collected in the southern Brazilian Amazon. A total of eight carnivore species was successfully identified from 71% of all samples obtained. Information theoretic analysis revealed that the number of PCR attempts before a successful sequence was an important negative predictor across all three responses (success of species identification, success of species identification from the first sequence and PCR amplification success), whereas the relative importance of the other three predictors (sample condition, season and distance from forest edge) varied between the three responses. Nuclear microsatellite amplification from jaguar faeces had lower success rates (15-44%) compared with those of the mtDNA marker. Our results show that DNA obtained from faecal samples works efficiently for carnivore species identification in the Amazon forest and also shows potential for nuclear DNA analysis, thus providing a valuable tool for genetic, ecological and conservation studies.

  17. Fragment-guided design of subnanomolar β-lactamase inhibitors active in vivo

    PubMed Central

    Eidam, Oliv; Romagnoli, Chiara; Dalmasso, Guillaume; Barelier, Sarah; Caselli, Emilia; Bonnet, Richard; Shoichet, Brian K.; Prati, Fabio

    2012-01-01

    Fragment-based design was used to guide derivatization of a lead series of β-lactamase inhibitors that had heretofore resisted optimization for in vivo activity. X-ray structures of fragments overlaid with the lead suggested new, unanticipated functionality and points of attachment. Synthesis of three derivatives improved affinity over 20-fold and improved efficacy in cell culture. Crystal structures were consistent with the fragment-based design, enabling further optimization to a Ki of 50 pM, a 500-fold improvement that required the synthesis of only six derivatives. One of these, compound 5, was tested in mice. Whereas cefotaxime alone failed to cure mice infected with β-lactamase-expressing Escherichia coli, 65% were cleared of infection when treated with a cefotaxime:5 combination. Fragment complexes offer a path around design hurdles, even for advanced molecules; the series described here may provide leads to overcome β-lactamase-based resistance, a key clinical challenge. PMID:23043117

  18. Random mutagenesis strategies for construction of large and diverse clone libraries of mutated DNA fragments.

    PubMed

    Chusacultanachai, Sudsanguan; Yuthavong, Yongyuth

    2004-01-01

    The first important step toward a successful preparation of large and diverse DNA libraries with desired complexity is to select a suitable mutagenesis strategy. This chapter describes three different methods for random mutagenesis, the use of XL1-red cells, error-prone polymerase chain reaction (PCR), and degenerate oligonucleotides-Pfu (DOP). These mutagenesis strategies possess different benefits and pitfalls; thus, they are differentially useful for production of DNA libraries with different density and complexity. The use of XL1-red, an engineered Escherichia coli with DNA repair deficiency, is one of the simplest mutagenesis and requires no subcloning step. After plasmid encoding DNA of inter-est is transformed into the cells, the mutations are simply generated during each round of DNA replication. The mutation frequency of this method is reported to be 1 base change per 2000 nucleotides; however, it can be slightly increased by extending the culture period to allow the accumulation of more mutations. This strategy is suitable for generation of random mutations with low frequency in a large target DNA. Error-prone PCR is one of the most widely used random mutagenesis. During DNA amplification, misincorporation of nucleotides can be promoted by altering the nucleotide ratio and the concentration of divalent cations in the reaction. We discovered that, by adjusting template concentration, frequency of mutation could be controlled easily and a library with desired mutation rate could be obtained. Additionally, efficiency of subsequent cloning steps to insert the PCR product into plasmid DNA is also a key factor determining size and complexity of the libraries. DOP mutagenesis is a rapid and effective method for random mutagenesis of small DNA and peptides. This strategy uses two chemically synthesized degenerate oligonucleotides as primers. By controlling the positions and ratios of degenerate nucleotides used during oligonucleotide synthesis, it is possible to

  19. [Expression of the genes CelA and XylA isolated from a fragment of metagenomic DNA in Escherichia coli].

    PubMed

    Shedova, E N; Lunina, N A; Berezina, O V; Zverlov, V V; Schwarz, V; Velikodvorskaia, G A

    2009-01-01

    The glycosyl hydrolase genes cel5A and xyl3A previously isolated by ourselves within a fragment of DNA from the methagenomic library of cow rumen microflora DNA were sub-cloned and expressed in E. coli. The recombinant proteins Cel5A and Xyl3A were purified and characterized. Cellulase Cel5A belongs to the Family 5 glycosyl hydrolases and is a one-module 38.2 kDa enzyme that hydrolyses the 1,4-glycoside bonds of soluble cellulose substrates and amorphous cellulose, showing its maximal activity (31200 u/mg) on lichenan, a soluble substrate with mixed (beta-1,3-1,4) bonds. The end product of the amorphous cellulose hydrolysis is cellobiose. Cel5A is inactive toward the crystal forms of cellulose. Cel5A is an endoglucanase capable of exohydrolysis. The molecular mass of beta-xylosidase Xyl3A belonging to the Family 3 glycosyl hydrolases is 83.7 kDa. The enzyme is active only on xylooligosaccharides, with the maximal activity shown on xylobiose, the end product of the reaction being xylose. No activity on xylane was hitherto observed. Recombinant Cel5A and Xyl3A are stable over a wide range of pH and temperatures, their maximal activity being observed at pH 6.5 and at 55 degrees C.

  20. Antioxidant activity of hydrazones with sterically hindered phenol fragments

    NASA Astrophysics Data System (ADS)

    Nikolaevskii, A. N.; Kniga, O. P.; Khizhan, E. I.; Tikhonova, G. A.; Vinogradov, V. V.; Khizhan, A. I.

    2012-12-01

    Kinetic parameters of the antiradical activity of derivatives of hydrazones of 4-hydroxy-3,5-di- tert-butyl-benzaldehyde are determined photocolorimetrically in their reactions with a stable diphenylpicrylhydrazyl radical, and by chemiluminescence from the capture of peroxide radicals upon the initiated oxidation of ethylbenzene. It is found that during inhibited oxidation, the reactive centers (N-H and O-H) in hetaryl- and acylhydrazone molecules operate in parallel. Regularities of the compounds' inhibiting effect are studied in heterogeneous systems upon the initiated oxidation of ethylbenzene in emulsion, and in a water-lipid model of the oxidation of phosphatidylcholine dispersion. It is established that hydrazone derivatives are antioxidants of combined action in heterophase processes of the oxidation of unsaturated substrates, displaying properties of hydroperoxide deactivators in addition to their antiradical activity.

  1. Accessory proteins for DNA polymerase alpha activity with single-strand DNA templates.

    PubMed Central

    Lamothe, P; Baril, B; Chi, A; Lee, L; Baril, E

    1981-01-01

    Three forms of DNA polymerase alpha [DNA nucleotidyltransferase (DNA-directed), EC 2.7.7.7] were partially purified from the combined nuclear extract and postmicrosomal supernatant solution of synchronized HeLa cells. These enzymes, designated DNA polymerases alpha 1, alpha 2, and alpha 3, on the basis of their order of elution from DEAE-Bio-Gel, differ in their abilities to utilize single-strand DNA templates. DNA polymerase alpha 2 has equal catalytic activities with activated and single-strand DNAs as template-primers. DNA polymerase alpha 1 has only partial catalytic activity with single-strand DNA templates, and DNA polymerase alpha 3 is essentially inactive with this template. Successive steps of hydrophobic affinity chromatography and phosphocellulose chromatography of DNA polymerase alpha 2 resolved the polymerase alpha activity and two protein factors (C1 and C2) that are required for its catalytic activity with a DNA template-primer that contains extended single-strand regions. In the absence of the factors, DNA polymerase alpha activity is measurable with activated but not single-strand DNA templates. In the presence of the C1 and C2 factors DNA polymerase alpha activity with single-strand DNA templates is restored to about 75% of the catalytic activity of DNA polymerase alpha 2 with this template. Images PMID:6946421

  2. Screening relevant genes of tolerance to low phosphorus in maize using cDNA-amplified fragment length polymorphism.

    PubMed

    Jiang, H Y; Li, Z; Zhao, J; Ma, Q; Cheng, B J; Zhu, S W

    2015-01-01

    Soil contains a large amount of phosphorus, but plants cannot absorb most of this phosphorus effectively. Low inorganic phosphorus has been singled out as a major constraint that leads to a perpetually low Zea mays (maize) grain yield. The fundamental approach to solving this problem is to screen new genes of low phosphorous (LP) tolerance. Consequently, the exploration and utilization of LP-tolerant genes are of great significance in plants. The maize inbred line 178 is an inbred LP-tolerant line. In the current study, the expression of this inbred line was induced under the stress of LP conditions. We applied cDNA-amplified fragment length polymorphism to screen LP-tolerant genes and obtained and sequenced 78 differentially expressed gene fragments. Their functions were predicted via bioinformatic analysis. There were no function annotations for 8 differentially expressed fragments. Nine genes exhibited high homology to Arabidopsis thaliana and Oryza sativa genes involved in phosphorus metabolism. This study lays a good foundation for further cloning and verification of the genes involved in phosphorus metabolism in maize. PMID:26125772

  3. Screening relevant genes of tolerance to low phosphorus in maize using cDNA-amplified fragment length polymorphism.

    PubMed

    Jiang, H Y; Li, Z; Zhao, J; Ma, Q; Cheng, B J; Zhu, S W

    2015-05-29

    Soil contains a large amount of phosphorus, but plants cannot absorb most of this phosphorus effectively. Low inorganic phosphorus has been singled out as a major constraint that leads to a perpetually low Zea mays (maize) grain yield. The fundamental approach to solving this problem is to screen new genes of low phosphorous (LP) tolerance. Consequently, the exploration and utilization of LP-tolerant genes are of great significance in plants. The maize inbred line 178 is an inbred LP-tolerant line. In the current study, the expression of this inbred line was induced under the stress of LP conditions. We applied cDNA-amplified fragment length polymorphism to screen LP-tolerant genes and obtained and sequenced 78 differentially expressed gene fragments. Their functions were predicted via bioinformatic analysis. There were no function annotations for 8 differentially expressed fragments. Nine genes exhibited high homology to Arabidopsis thaliana and Oryza sativa genes involved in phosphorus metabolism. This study lays a good foundation for further cloning and verification of the genes involved in phosphorus metabolism in maize.

  4. DNA-based control of protein activity

    PubMed Central

    Engelen, W.; Janssen, B. M. G.

    2016-01-01

    DNA has emerged as a highly versatile construction material for nanometer-sized structures and sophisticated molecular machines and circuits. The successful application of nucleic acid based systems greatly relies on their ability to autonomously sense and act on their environment. In this feature article, the development of DNA-based strategies to dynamically control protein activity via oligonucleotide triggers is discussed. Depending on the desired application, protein activity can be controlled by directly conjugating them to an oligonucleotide handle, or expressing them as a fusion protein with DNA binding motifs. To control proteins without modifying them chemically or genetically, multivalent ligands and aptamers that reversibly inhibit their function provide valuable tools to regulate proteins in a noncovalent manner. The goal of this feature article is to give an overview of strategies developed to control protein activity via oligonucleotide-based triggers, as well as hurdles yet to be taken to obtain fully autonomous systems that interrogate, process and act on their environments by means of DNA-based protein control. PMID:26812623

  5. Increase in the astaxanthin synthase gene (crtS) dose by in vivo DNA fragment assembly in Xanthophyllomyces dendrorhous

    PubMed Central

    2013-01-01

    Background Xanthophyllomyces dendrorhous is a basidiomycetous yeast that is relevant to biotechnology, as it can synthesize the carotenoid astaxanthin. However, the astaxanthin levels produced by wild-type strains are low. Although different approaches for promoting increased astaxanthin production have been attempted, no commercially competitive results have been obtained thus far. A promising alternative to facilitate the production of carotenoids in this yeast involves the use of genetic modification. However, a major limitation is the few available molecular tools to manipulate X. dendrorhous. Results In this work, the DNA assembler methodology that was previously described in Saccharomyces cerevisiae was successfully applied to assemble DNA fragments in vivo and integrate these fragments into the genome of X. dendrorhous by homologous recombination in only one transformation event. Using this method, the gene encoding astaxanthin synthase (crtS) was overexpressed in X. dendrorhous and a higher level of astaxanthin was produced. Conclusions This methodology could be used to easily and rapidly overexpress individual genes or combinations of genes simultaneously in X. dendrorhous, eliminating numerous steps involved in conventional cloning methods. PMID:24103677

  6. DNA fragmentation and cell cycle arrest: a hallmark of apoptosis induced by Ruta graveolens in human colon cancer cells.

    PubMed

    Arora, Shagun; Tandon, Simran

    2015-01-01

    In the present study, we investigated the anti-cancer effect of various potencies of Ruta graveolens (Ruta) on COLO-205 cell line, as evidenced by cytotoxicity, migration, clonogenecity, morphological and biochemical changes and modification in the levels of genes associated with apoptosis and cell cycle. On treatment of COLO-205 cells maximal effects were seen with mother tincture (MT) and 30C potencies, wherein decrease in cell viability along with reduced clonogenecity and migration capabilities were noted. In addition morphological and biochemical alterations such as nuclear changes (fragmented nuclei with condensed chromatin) and DNA ladder-like pattern (increased amount of fragmented DNA) in COLO-205 cells indicating apoptotic related cell death were seen. The expression of apoptosis and cell-cycle related regulatory genes assessed by reverse transcriptase-PCR revealed an up-regulation of caspase 9, caspase-3, Bax, p21 and p27 expression and down-regulation of Bcl-2 expression in treated cells. The mode of cell death was suggestive of intrinsic apoptotic pathway along with cell cycle arrest at the G2/M of the cell cycle. Our findings indicate that phytochemicals present in Ruta showed potential for natural therapeutic product development for colon carcinoma.

  7. Os2–Os4 Switch Controls DNA Knotting and Anticancer Activity

    PubMed Central

    Fu, Ying; Romero, María J.; Salassa, Luca; Cheng, Xi; Habtemariam, Abraha; Clarkson, Guy J.; Prokes, Ivan; Rodger, Alison; Costantini, Giovanni

    2016-01-01

    Abstract Dinuclear trihydroxido‐bridged osmium–arene complexes are inert and biologically inactive, but we show here that linking dihydroxido‐bridged OsII–arene fragments by a bridging di‐imine to form a metallacycle framework results in strong antiproliferative activity towards cancer cells and distinctive knotting of DNA. The shortened spacer length reduces biological activity and stability in solution towards decomposition to biologically inactive dimers. Significant differences in behavior toward plasmid DNA condensation are correlated with biological activity. PMID:27240103

  8. Cloned plasmid DNA fragments as calibrators for controlling GMOs: different real-time duplex quantitative PCR methods.

    PubMed

    Taverniers, Isabel; Van Bockstaele, Erik; De Loose, Marc

    2004-03-01

    Analytical real-time PCR technology is a powerful tool for implementation of the GMO labeling regulations enforced in the EU. The quality of analytical measurement data obtained by quantitative real-time PCR depends on the correct use of calibrator and reference materials (RMs). For GMO methods of analysis, the choice of appropriate RMs is currently under debate. So far, genomic DNA solutions from certified reference materials (CRMs) are most often used as calibrators for GMO quantification by means of real-time PCR. However, due to some intrinsic features of these CRMs, errors may be expected in the estimations of DNA sequence quantities. In this paper, two new real-time PCR methods are presented for Roundup Ready soybean, in which two types of plasmid DNA fragments are used as calibrators. Single-target plasmids (STPs) diluted in a background of genomic DNA were used in the first method. Multiple-target plasmids (MTPs) containing both sequences in one molecule were used as calibrators for the second method. Both methods simultaneously detect a promoter 35S sequence as GMO-specific target and a lectin gene sequence as endogenous reference target in a duplex PCR. For the estimation of relative GMO percentages both "delta C(T)" and "standard curve" approaches are tested. Delta C(T) methods are based on direct comparison of measured C(T) values of both the GMO-specific target and the endogenous target. Standard curve methods measure absolute amounts of target copies or haploid genome equivalents. A duplex delta C(T) method with STP calibrators performed at least as well as a similar method with genomic DNA calibrators from commercial CRMs. Besides this, high quality results were obtained with a standard curve method using MTP calibrators. This paper demonstrates that plasmid DNA molecules containing either one or multiple target sequences form perfect alternative calibrators for GMO quantification and are especially suitable for duplex PCR reactions.

  9. Unusual Structures Are Present in DNA Fragments Containing Super-Long Huntingtin CAG Repeats

    PubMed Central

    Duzdevich, Daniel; Li, Jinliang; Whang, Jhoon; Takahashi, Hirohide; Takeyasu, Kunio; Dryden, David T. F.; Morton, A. Jennifer; Edwardson, J. Michael

    2011-01-01

    Background In the R6/2 mouse model of Huntington's disease (HD), expansion of the CAG trinucleotide repeat length beyond about 300 repeats induces a novel phenotype associated with a reduction in transcription of the transgene. Methodology/Principal Findings We analysed the structure of polymerase chain reaction (PCR)-generated DNA containing up to 585 CAG repeats using atomic force microscopy (AFM). As the number of CAG repeats increased, an increasing proportion of the DNA molecules exhibited unusual structural features, including convolutions and multiple protrusions. At least some of these features are hairpin loops, as judged by cross-sectional analysis and sensitivity to cleavage by mung bean nuclease. Single-molecule force measurements showed that the convoluted DNA was very resistant to untangling. In vitro replication by PCR was markedly reduced, and TseI restriction enzyme digestion was also hindered by the abnormal DNA structures. However, significantly, the DNA gained sensitivity to cleavage by the Type III restriction-modification enzyme, EcoP15I. Conclusions/Significance “Super-long” CAG repeats are found in a number of neurological diseases and may also appear through CAG repeat instability. We suggest that unusual DNA structures associated with super-long CAG repeats decrease transcriptional efficiency in vitro. We also raise the possibility that if these structures occur in vivo, they may play a role in the aetiology of CAG repeat diseases such as HD. PMID:21347256

  10. A baculovirus alkaline nuclease knockout construct produces fragmented DNA and aberrant capsids

    SciTech Connect

    Okano, Kazuhiro; Vanarsdall, Adam L.; Rohrmann, George F. . E-mail: rohrmanng@orst.edu

    2007-03-01

    DNA replication of bacmid-derived constructs of the Autographa californica multiple nucleocapsid nucleopolyhedrovirus (AcMNPV) was analyzed by field inversion gel electrophoresis (FIGE) in combination with digestion at a unique Eco81I restriction enzyme site. Three constructs were characterized: a parental bacmid, a bacmid deleted for the alkaline nuclease gene, and a bacmid from which the gp64 gene had been deleted. The latter was employed as a control for comparison with the alkaline nuclease knockout because neither yields infectious virus and their replication is limited to the initially transfected cells. The major difference between DNA replicated by the different constructs was the presence in the alkaline nuclease knockout of high concentrations of relatively small, subgenome length DNA in preparations not treated with Eco81I. Furthermore, upon Eco81I digestion, the alkaline nuclease knockout bacmid also yielded substantially more subgenome size DNA than the other constructs. Electron microscopic examination of cells transfected with the alkaline nuclease knockout indicated that, in addition to a limited number of normal-appearing electron-dense nucleocapsids, numerous aberrant capsid-like structures were observed indicating a defect in nucleocapsid maturation or in a DNA processing step that is necessary for encapsidation. Because of the documented role of the baculovirus alkaline nuclease and its homologs from other viruses in homologous recombination, these data suggest that DNA recombination may play a major role in the production of baculovirus genomes.

  11. DNA binding activity of Anabaena sensory rhodopsin transducer probed by fluorescence correlation spectroscopy.

    PubMed

    Kim, Sung Hyun; Kim, So Young; Jung, Kwang-Hwan; Kim, Doseok

    2015-01-01

    Anabaena sensory rhodopsin transducer (ASRT) is believed to be a major player in the photo-signal transduction cascade, which is triggered by Anabaena sensory rhodopsin. Here, we characterized DNA binding activity of ASRT probed by using fluorescence correlation spectroscopy. We observed clear decrease of diffusion coefficient of DNA upon binding of ASRT. The dissociation constant, K(D), of ASRT to 20 bp-long DNA fragments lied in micro-molar range and varied moderately with DNA sequence. Our results suggest that ASRT may interact with several different regions of DNA with different binding affinity for global regulation of several genes that need to be activated depending on the light illumination.

  12. Vitrification is not superior to rapid freezing of normozoospermic spermatozoa: effects on sperm parameters, DNA fragmentation and hyaluronan binding.

    PubMed

    Agha-Rahimi, Azam; Khalili, Mohammad Ali; Nabi, Ali; Ashourzadeh, Sareh

    2014-03-01

    Human sperm vitrification is a new cryopreservation method. This study compared the effects of rapid freezing and vitrification on various sperm parameters, hyaluronan-binding assay and DNA fragmentation and assessed the impact of cryoprotectant agents (CPA) with vitrification. A total of 30 normo-ejaculates were prepared by swim up and the motile sperm fraction was divided into four: fresh (control), rapid freezing, and two vitrification groups (a, lacking CPA; b, with CPA). For rapid freezing, a cryovial of sperm suspension was held just above the liquid nitrogen surface, and for vitrification, 30μl suspension was dropped directly into liquid nitrogen. Sperm parameters, including motility, viability and morphology, declined after cryopreservation in both groups. DNA fragmentation was not significantly higher in the vitrification (15.7±4.4%) or rapid freezing (16.6±5.6%) groups when compared with controls (11.6±4.5%). The rates of hyaluronan binding were similar between the control and cryopreserved groups. Moreover, addition of CPA for vitrification had a neutral effect on rates of sperm recovery. In conclusion, vitrification has great potential for human sperm cryopreservation and does not require CPA, with its possible toxicity. However, it is not superior to rapid cryopreservation regarding sperm recovery rate in normozoospermia. Human sperm vitrification is a new cryopreservation method that has been introduced recently. This study compared the effects of rapid freezing with vitrification on rates of sperm parameters, hyaluronan-binding assay and DNA fragmentation after thawing/warming and assessed the impact of cryoprotectant agent (CPA) on vitrification. The study was performed on 30 ejaculates prepared using the swim-up technique. Each motile sperm suspension was divided into four: control (fresh); rapid freezing; and two vitrification groups (a, lacking CPA; b, with CPA). For rapid freezing, a cryovial of sperm suspension was held above the surface of

  13. Successful carnivore identification with faecal DNA across a fragmented Amazonian landscape.

    PubMed

    Michalski, Fernanda; Valdez, Fernanda Pedone; Norris, Darren; Zieminski, Chris; Kashivakura, Cyntia Kayo; Trinca, Cristine S; Smith, Heath B; Vynne, Carly; Wasser, Samuel K; Metzger, Jean Paul; Eizirik, Eduardo

    2011-09-01

    The use of scat surveys to obtain DNA has been well documented in temperate areas, where DNA preservation may be more effective than in tropical forests. Samples obtained in the tropics are often exposed to high humidity, warm temperatures, frequent rain and intense sunlight, all of which can rapidly degrade DNA. Despite these potential problems, we demonstrate successful mtDNA amplification and sequencing for faeces of carnivores collected in tropical conditions and quantify how sample condition and environmental variables influence the success of PCR amplification and species identification. Additionally, the feasibility of genotyping nuclear microsatellites from jaguar (Panthera onca) faeces was investigated. From October 2007 to December 2008, 93 faecal samples were collected in the southern Brazilian Amazon. A total of eight carnivore species was successfully identified from 71% of all samples obtained. Information theoretic analysis revealed that the number of PCR attempts before a successful sequence was an important negative predictor across all three responses (success of species identification, success of species identification from the first sequence and PCR amplification success), whereas the relative importance of the other three predictors (sample condition, season and distance from forest edge) varied between the three responses. Nuclear microsatellite amplification from jaguar faeces had lower success rates (15-44%) compared with those of the mtDNA marker. Our results show that DNA obtained from faecal samples works efficiently for carnivore species identification in the Amazon forest and also shows potential for nuclear DNA analysis, thus providing a valuable tool for genetic, ecological and conservation studies. PMID:21676206

  14. Covalent Bonding of Pyrrolobenzodiazepines (PBDs) to Terminal Guanine Residues within Duplex and Hairpin DNA Fragments

    PubMed Central

    Mantaj, Julia; Jackson, Paul J. M.; Karu, Kersti; Rahman, Khondaker M.; Thurston, David E.

    2016-01-01

    Pyrrolobenzodiazepines (PBDs) are covalent-binding DNA-interactive agents with growing importance as payloads in Antibody Drug Conjugates (ADCs). Until now, PBDs were thought to covalently bond to C2-NH2 groups of guanines in the DNA-minor groove across a three-base-pair recognition sequence. Using HPLC/MS methodology with designed hairpin and duplex oligonucleotides, we have now demonstrated that the PBD Dimer SJG-136 and the C8-conjugated PBD Monomer GWL-78 can covalently bond to a terminal guanine of DNA, with the PBD skeleton spanning only two base pairs. Control experiments with the non-C8-conjugated anthramycin along with molecular dynamics simulations suggest that the C8-substituent of a PBD Monomer, or one-half of a PBD Dimer, may provide stability for the adduct. This observation highlights the importance of PBD C8-substituents, and also suggests that PBDs may bind to terminal guanines within stretches of DNA in cells, thus representing a potentially novel mechanism of action at the end of DNA strand breaks. PMID:27055050

  15. Strongly structured DNA sequences as targets for genosensing: sensing phase design and coupling to PCR amplification for a highly specific 33-mer gliadin DNA fragment.

    PubMed

    Martín-Fernández, Begoña; Miranda-Ordieres, Arturo J; Lobo-Castañón, María Jesús; Frutos-Cabanillas, Gloria; de-los-Santos-Álvarez, Noemí; López-Ruiz, Beatriz

    2014-10-15

    Electrochemical genosensors are becoming cost-effective miniaturizable alternatives to real-time PCR (RT-PCR) methods for the detection of sequence-specific DNA fragments. We report on the rapid detection of PCR amplicons without the need of purification or strand separation. A challenging target sequence for both PCR amplification and electrochemical detection allowed us to address some difficulties associated to hybridization on electrode surfaces. The target was a highly specific oligonucleotide sequence of wheat encoding the most immunogenic peptide of gliadin that triggers the immune response of celiac disease (CD), the 33-mer. With a sandwich assay format and a rational design of the capture and tagged-signaling probes the problems posed by the strong secondary structure of the target and complementary probes were alleviated. Using a binary self-assembled monolayer and enzymatic amplification, a limit of detection of 0.3 nM was obtained. The genosensor did not respond to other gluten-containing cereals such as rye and barley. Coupling to PCR to analyze wheat flour samples required tailoring both the capture and signaling probes. This is the first time that deleterious steric hindrance from long single-stranded regions adjacent to the electrode surface is reported for relatively short amplicons (less than 200 bp). The importance of the location of the recognition site within the DNA sequence is discussed. Since the selected gene fragment contains several repetitions of short sequences, a careful optimization of the PCR conditions had to be performed to circumvent the amplification of non-specific fragments from wheat flour.

  16. The effect of two pre-cryopreservation single layer colloidal centrifugation protocols in combination with different freezing extenders on the fragmentation dynamics of thawed equine sperm DNA

    PubMed Central

    2012-01-01

    Background Variability among stallions in terms of semen cryopreservation quality renders it difficult to arrive at a standardized cryopreservation method. Different extenders and processing techniques (such us colloidal centrifugation) are used in order to optimize post-thaw sperm quality. Sperm chromatin integrity analysis is an effective tool for assessing such quality. The aim of the present study was to compare the effect of two single layer colloidal centrifugation protocols (prior to cryopreservation) in combination with three commercial freezing extenders on the post-thaw chromatin integrity of equine sperm samples at different post-thaw incubation (37°C) times (i.e., their DNA fragmentation dynamics). Results Post-thaw DNA fragmentation levels in semen samples subjected to either of the colloidal centrifugation protocols were significantly lower (p<0.05) immediately after thawing and after 4 h of incubation at 37°C compared to samples that underwent standard (control) centrifugation. The use of InraFreeze® extender was associated with significantly less DNA fragmentation than the use of Botu-Crio® extender at 6 h of incubation, and than the use of either Botu-Crio® or Gent® extender at 24 h of incubation (p<0.05). Conclusions These results suggest that single layer colloidal centrifugation performed with extended or raw semen prior to cryopreservation reduces DNA fragmentation during the first four hours after thawing. Further studies are needed to determine the influence of freezing extenders on equine sperm DNA fragmentation dynamics. PMID:23217215

  17. Cleavage of the JunB transcription factor by caspases generates a carboxyl-terminal fragment that inhibits activator protein-1 transcriptional activity.

    PubMed

    Lee, Jason K H; Pearson, Joel D; Maser, Brandon E; Ingham, Robert J

    2013-07-26

    The activator protein-1 (AP-1) family transcription factor, JunB, is an important regulator of proliferation, apoptosis, differentiation, and the immune response. In this report, we show that JunB is cleaved in a caspase-dependent manner in apoptotic anaplastic lymphoma kinase-positive, anaplastic large cell lymphoma cell lines and that ectopically expressed JunB is cleaved in murine RAW 264.7 macrophage cells treated with the NALP1b inflammasome activator, anthrax lethal toxin. In both cases, we identify aspartic acid 137 as the caspase cleavage site and demonstrate that JunB can be directly cleaved in vitro by multiple caspases at this site. Cleavage of JunB at aspartic acid 137 separates the N-terminal transactivation domain from the C-terminal DNA binding and dimerization domains, and we show that the C-terminal cleavage fragment retains both DNA binding activity and the ability to interact with AP-1 family transcription factors. Furthermore, this fragment interferes with the binding of full-length JunB to AP-1 sites and inhibits AP-1-dependent transcription. In summary, we have identified and characterized a novel mechanism of JunB post-translational modification and demonstrate that the C-terminal JunB caspase cleavage product functions as a potent inhibitor of AP-1-dependent transcription.

  18. Substrate-induced DNA polymerase β activation.

    PubMed

    Beard, William A; Shock, David D; Batra, Vinod K; Prasad, Rajendra; Wilson, Samuel H

    2014-11-01

    DNA polymerases and substrates undergo conformational changes upon forming protein-ligand complexes. These conformational adjustments can hasten or deter DNA synthesis and influence substrate discrimination. From structural comparison of binary DNA and ternary DNA-dNTP complexes of DNA polymerase β, several side chains have been implicated in facilitating formation of an active ternary complex poised for chemistry. Site-directed mutagenesis of these highly conserved residues (Asp-192, Arg-258, Phe-272, Glu-295, and Tyr-296) and kinetic characterization provides insight into the role these residues play during correct and incorrect insertion as well as their role in conformational activation. The catalytic efficiencies for correct nucleotide insertion for alanine mutants were wild type ∼ R258A > F272A ∼ Y296A > E295A > D192A. Because the efficiencies for incorrect insertion were affected to about the same extent for each mutant, the effects on fidelity were modest (<5-fold). The R258A mutant exhibited an increase in the single-turnover rate of correct nucleotide insertion. This suggests that the wild-type Arg-258 side chain generates a population of non-productive ternary complexes. Structures of binary and ternary substrate complexes of the R258A mutant and a mutant associated with gastric carcinomas, E295K, provide molecular insight into intermediate structural conformations not appreciated previously. Although the R258A mutant crystal structures were similar to wild-type enzyme, the open ternary complex structure of E295K indicates that Arg-258 stabilizes a non-productive conformation of the primer terminus that would decrease catalysis. Significantly, the open E295K ternary complex binds two metal ions indicating that metal binding cannot overcome the modified interactions that have interrupted the closure of the N-subdomain. PMID:25261471

  19. Generation of biologically active endostatin fragments from human collagen XVIII by distinct matrix metalloproteases

    SciTech Connect

    Heljasvaara, Ritva; Nyberg, Pia; Luostarinen, Jani; Parikka, Mataleena; Heikkilae, Pia; Rehn, Marko; Sorsa, Timo; Salo, Tuula; Pihlajaniemi, Taina . E-mail: taina.pihlajaniemi@oulu.fi

    2005-07-15

    Endostatin, a potent inhibitor of endothelial cell proliferation, migration, angiogenesis and tumor growth, is proteolytically cleaved from the C-terminal noncollagenous NC1 domain of type XVIII collagen. We investigated the endostatin formation from human collagen XVIII by several MMPs in vitro. The generation of endostatin fragments differing in molecular size (24-30 kDa) and in N-terminal sequences was identified in the cases of MMP-3, -7, -9, -13 and -20. The cleavage sites were located in the protease-sensitive hinge region between the trimerization and endostatin domains of NC1. MMP-1, -2, -8 and -12 did not show any significant activity against the C-terminus of collagen XVIII. The anti-proliferative effect of the 20-kDa endostatin, three longer endostatin-containing fragments generated in vitro by distinct MMPs and the entire NC1 domain, on bFGF-stimulated human umbilical vein endothelial cells was established. The anti-migratory potential of some of these fragments was also studied. In addition, production of endostatin fragments between 24-30 kDa by human hepatoblastoma cells was shown to be due to MMP action on type XVIII collagen. Our results indicate that certain, especially cancer-related, MMP family members can generate biologically active endostatin-containing polypeptides from collagen XVIII and thus, by releasing endostatin fragments, may participate in the inhibition of endothelial cell proliferation, migration and angiogenesis.

  20. Effects of cigarette smoking on sperm plasma membrane integrity and DNA fragmentation.

    PubMed

    Belcheva, Antoaneta; Ivanova-Kicheva, Maria; Tzvetkova, Petia; Marinov, Mihail

    2004-10-01

    Cigarette smoking is a serious health problem of our society. It is known that cigarette smoke is a cell mutagen and carcinogen, and that it may affect adversely male fertility. The possible detrimental effects on sperm cells are of great interest but the data available to support this statement are somewhat elusive. To approach this problem we examined conventional semen parameters, plasma membrane translocation of phosphatidylserine (PS) (annexin V/6-CFDA cell staining) and sperm DNA integrity (comet assay) in a group of healthy man smoking cigarettes on a regular basis. The results of the study were compared with the results of the same tests in healthy non-smoking donors. Significant difference in standard sperm parameters between the two groups was not found. Intensive expression of PS on the sperm plasma membrane surface (assayed by annexin V positive staining) was detected in the smokers group. There is a significant increase of population of apoptotic spermatozoa in ejaculates of smokers. Albeit DNA damages (high frequencies of double- and single- stranded DNA breaks) in spermatozoa of smokers are increased compared with non-smokers, but this difference is not statistically significant. Sperm DNA integrity of healthy smokers remains in the normal range, but a clear negative trend is observed, especially in respect of disturbance of plasma membrane phospholipid asymmetry.

  1. Caspase-dependent and serine protease-dependent DNA fragmentation of myocytes in the ischemia-reperfused rabbit heart: these inhibitors do not reduce infarct size.

    PubMed

    Minatoguchi, S; Kariya, T; Uno, Y; Arai, M; Nishida, Y; Hashimoto, K; Wang, N; Aoyama, T; Takemura, G; Fujiwara, T; Fujiwara, H

    2001-10-01

    Some infarcted myocytes undergo caspase-dependent DNA fragmentation, but serine protease-dependent DNA fragmentation may also be involved. There is controversy regarding whether caspase inhibitors can reduce infarct size, so the present study investigated whether serine protease inhibitor can reduce the DNA fragmentation of infarcted myocytes and whether serine protease or caspase inhibitors attenuates myocardial infarct size in Japanese white rabbits without collateral circulation. Rabbits were subjected to 30-min coronary occlusion followed by 48-h reperfusion. A vehicle (dimethylsulfoxide, control group, n=8) or Z-Val-Ala-Asp(Ome)-CH2F (ZVAD-fmk, a caspase inhibitor, ZVAD group, 0.8 mg/kg iv at 20 min before coronary occlusion and 0.8 mg/kg at 90 min after reperfusion, n=8) or 3,4-dichloroisocoumarin (DCI, a serine protease inhibitor, 2 mg/kg iv at 20 min before coronary occlusion, DCI group, n=8) was administered. Animals were killed at 48h after reperfusion for the detection of myocardial infarct size and at 4h after reperfusion for the detection of dUTP nick end-labeling (TUNEL)-positive myocytes, the electrophoretic pattern of DNA fragmentation and ultrastructural analysis. The left ventricle (LV) was excised and sliced. The myocardial infarct size as a percentage of the area at risk was assessed by triphenyltetrazolium chloride staining. DNA fragmentation was assessed by in situ TUNEL at the light microscopic level. ZVAD and DCI significantly reduced the mean blood pressure during reperfusion without affecting heart rate. There was no significant difference in the % area at risk (AAR) of LV among the 3 groups (control: 26.3+/-3.0%; ZVAD: 25.6+/-2.6%; DCI: 25.6+/-2.0%). The % infarct size as a percentage of the AAR in the ZVAD group (41.3+/-4.5%) and the DCI group (50.4+/-3.8%) was not significantly different from the control group (43.5+/-4.5%). However, the percent DNA fragmentation in the infarcted area in the ZVAD (3.5+/-0.8%) and DCI groups (4

  2. FAST ROTATION AND TRAILING FRAGMENTS OF THE ACTIVE ASTEROID P/2012 F5 (GIBBS)

    SciTech Connect

    Drahus, Michał; Waniak, Wacław; Tendulkar, Shriharsh; Agarwal, Jessica; Jewitt, David; Sheppard, Scott S.

    2015-03-20

    While having a comet-like appearance, P/2012 F5 (Gibbs) has an orbit native to the Main Asteroid Belt, and physically is a km-sized asteroid which recently (mid 2011) experienced an impulsive mass ejection event. Here we report new observations of this object obtained with the Keck II telescope on UT 2014 August 26. The data show previously undetected 200 m scale fragments of the main nucleus, and reveal a rapid nucleus spin with a rotation period of 3.24 ± 0.01 hr. The existence of large fragments and the fast nucleus spin are both consistent with rotational instability and partial disruption of the object. To date, many fast rotators have been identified among the minor bodies, which, however, do not eject detectable fragments at the present-day epoch, and also fragmentation events have been observed, but with no rotation period measured. P/2012 F5 is unique in that for the first time we detected fragments and quantified the rotation rate of one and the same object. The rapid spin rate of P/2012 F5 is very close to the spin rates of two other active asteroids in the Main Belt, 133P/Elst-Pizarro and (62412), confirming the existence of a population of fast rotators among these objects. But while P/2012 F5 shows impulsive ejection of dust and fragments, the mass loss from 133P is prolonged and recurrent. We believe that these two types of activity observed in the rapidly rotating active asteroids have a common origin in the rotational instability of the nucleus.

  3. Creating Novel Activated Factor XI Inhibitors through Fragment Based Lead Generation and Structure Aided Drug Design

    PubMed Central

    Fjellström, Ola; Akkaya, Sibel; Beisel, Hans-Georg; Eriksson, Per-Olof; Erixon, Karl; Gustafsson, David; Jurva, Ulrik; Kang, Daiwu; Karis, David; Knecht, Wolfgang; Nerme, Viveca; Nilsson, Ingemar; Olsson, Thomas; Redzic, Alma; Roth, Robert; Sandmark, Jenny; Tigerström, Anna; Öster, Linda

    2015-01-01

    Activated factor XI (FXIa) inhibitors are anticipated to combine anticoagulant and profibrinolytic effects with a low bleeding risk. This motivated a structure aided fragment based lead generation campaign to create novel FXIa inhibitor leads. A virtual screen, based on docking experiments, was performed to generate a FXIa targeted fragment library for an NMR screen that resulted in the identification of fragments binding in the FXIa S1 binding pocket. The neutral 6-chloro-3,4-dihydro-1H-quinolin-2-one and the weakly basic quinolin-2-amine structures are novel FXIa P1 fragments. The expansion of these fragments towards the FXIa prime side binding sites was aided by solving the X-ray structures of reported FXIa inhibitors that we found to bind in the S1-S1’-S2’ FXIa binding pockets. Combining the X-ray structure information from the identified S1 binding 6-chloro-3,4-dihydro-1H-quinolin-2-one fragment and the S1-S1’-S2’ binding reference compounds enabled structure guided linking and expansion work to achieve one of the most potent and selective FXIa inhibitors reported to date, compound 13, with a FXIa IC50 of 1.0 nM. The hydrophilicity and large polar surface area of the potent S1-S1’-S2’ binding FXIa inhibitors compromised permeability. Initial work to expand the 6-chloro-3,4-dihydro-1H-quinolin-2-one fragment towards the prime side to yield molecules with less hydrophilicity shows promise to afford potent, selective and orally bioavailable compounds. PMID:25629509

  4. β-Eliminative depolymerization of the fucosylated chondroitin sulfate and anticoagulant activities of resulting fragments.

    PubMed

    Gao, Na; Lu, Feng; Xiao, Chuang; Yang, Lian; Chen, Jun; Zhou, Kai; Wen, Dandan; Li, Zi; Wu, Mingyi; Jiang, Jianmin; Liu, Guangming; Zhao, Jinhua

    2015-01-01

    Fucosylated chondroitin sulfate (FCS) from sea cucumber with complex structure has potent anticoagulant activity by inhibition of intrinsic tenase; however, it could activate factor XII and platelet. To obtain FCS' fragments with selective inhibition on intrinsic tenase, a method for β-eliminative depolymerization of FCS was developed by treating FCS benzyl esters with alkaline in anhydrous solution. Our results demonstrated that the glycosidic linkages of GalNAc-β1, 4-GlcA were selectively cleaved and distinctive Δ(4,5) unsaturated hexuronic acid was formed at non-reducing end of resulting fragments, while the main structures were essentially stable during depolymerization. By this method, five depolymerized fragments (dFCSs) with various molecular sizes were prepared and their anticoagulant activities and activation activities of factor XII and platelet were compared. Overall, dFCSs with Mw 3.2-8.8 kDa reserved potent anticoagulant activities by inhibition of intrinsic tenase, and activation activities of factor XII or platelet could be diminished or eliminated.

  5. Molecular cloning of a human histocompatibility antigen cDNA fragment.

    PubMed Central

    Ploegh, H L; Orr, H T; Strominger, J L

    1980-01-01

    A clone (pHLA-1) containing HLA-specific cDNA was constructed by reverse transcription of partially purified HLA mRNA from the human lymphoblastoid cell line LKT. The identity of pHLA-1 was established by its ability to hybridize to HLA heavy chain mRNA and by nucleotide sequence analysis. The pHLA-1 cDNA insert (approximately 525 base pairs) corresponds to the COOH-terminal 46 amino acids of an HLA-A, -B, or -C antigen (15 residues from the hydrophobic region and the remainder from the COOH-termial hydrophilic region), together with a portion of the 3' untranslated region of the mRNA. Images PMID:6934534

  6. Influence of volcanic activity on the population genetic structure of Hawaiian Tetragnatha spiders: Fragmentation, rapid population growth and the potential for accelerated evolution

    USGS Publications Warehouse

    Vandergast, A.G.; Gillespie, R.G.; Roderick, G.K.

    2004-01-01

    Volcanic activity on the island of Hawaii results in a cyclical pattern of habitat destruction and fragmentation by lava, followed by habitat regeneration on newly formed substrates. While this pattern has been hypothesized to promote the diversification of Hawaiian lineages, there have been few attempts to link geological processes to measurable changes in population structure. We investigated the genetic structure of three species of Hawaiian spiders in forests fragmented by a 150-year-old lava flow on Mauna Loa Volcano, island of Hawaii: Tetragnatha quasimodo (forest and lava flow generalist), T. anuenue and T. brevignatha (forest specialists). To estimate fragmentation effects on population subdivision in each species, we examined variation in mitochondrial and nuclear genomes (DNA sequences and allozymes, respectively). Population subdivision was higher for forest specialists than for the generalist in fragments separated by lava. Patterns of mtDNA sequence evolution also revealed that forest specialists have undergone rapid expansion, while the generalist has experienced more gradual population growth. Results confirm that patterns of neutral genetic variation reflect patterns of volcanic activity in some Tetragnatha species. Our study further suggests that population subdivision and expansion can occur across small spatial and temporal scales, which may facilitate the rapid spread of new character states, leading to speciation as hypothesized by H. L. Carson 30 years ago.

  7. DYNAMICS OF LARGE FRAGMENTS IN THE TAIL OF ACTIVE ASTEROID P/2010 A2

    SciTech Connect

    Agarwal, Jessica; Jewitt, David; Weaver, Harold

    2013-05-20

    We examine the motions of large fragments at the head of the dust tail of the active asteroid P/2010 A2. In previous work, we showed that these fragments were ejected from the primary nucleus in early 2009, either following a hypervelocity impact or by rotationally induced breakup. Here, we follow their positions through a series of Hubble Space Telescope images taken during the first half of 2010. The orbital evolution of each fragment allows us to constrain its velocity relative to the main nucleus after leaving its sphere of gravitational influence. We find that the fragments constituting a prominent X-shaped tail feature were emitted in a direction opposite to the motion of the asteroid and toward the south of its orbital plane. Derived emission velocities of these primary fragments range between 0.02 and 0.3 m s{sup -1}, comparable to the {approx}0.08 m s{sup -1} gravitational escape speed from the nucleus. Their sizes are on the order of decimeters or larger. We obtain the best fits to our data with ejection velocity vectors lying in a plane that includes the nucleus. This may suggest that the cause of the disruption of P/2010 A2 is rotational breakup.

  8. Description of the entire mRNA population by a 3' end cDNA fragment generated by class IIS restriction enzymes.

    PubMed Central

    Kato, K

    1995-01-01

    A novel means of recording the expression status of the total gene population is described. Digestion of cDNA by class IIS restriction enzymes produces a fragment with a poly (A) stretch and a 5' overhang with an unknown sequence. This fragment contains information such as the class IIS enzyme that cuts cDNA nearest to the poly (A) stretch, the sequence of the 5' overhang, and the size of the fragment. Expressed genes can be discriminated and displayed by the fragment as follows: (i) cut the cDNA with one class IIS restriction enzyme; (ii) ligate the digested cDNA to that from a pool of 64 biotinylated adaptors cohesive to all possible overhangs; (iii) digest by other two class IIS enzymes; (iv) recover the ligated molecules with streptavidin-coated paramagnetic beads; (v) perform PCR with the adaptor-primer and an anchored oligo-dT primer; (vi) separate the amplified fragments by denaturing polyacrylamide gel electrophoresis. Repeat the experiment with 64 adaptors, three enzymes and three anchored oligo-dT primers displays most of the expressed genes. Because redundancy is minimized, this technique is also ideal for generating tags for expressed genes, with which to construct a transcript map of the genome. Images PMID:7478997

  9. Efficient DNA Fingerprinting of Clostridium botulinum Types A, B, E, and F by Amplified Fragment Length Polymorphism Analysis

    PubMed Central

    Keto-Timonen, Riikka; Nevas, Mari; Korkeala, Hannu

    2005-01-01

    Amplified fragment length polymorphism (AFLP) analysis was applied to characterize 33 group I and 37 group II Clostridium botulinum strains. Four restriction enzyme and 30 primer combinations were screened to tailor the AFLP technique for optimal characterization of C. botulinum. The enzyme combination HindIII and HpyCH4IV, with primers having one selective nucleotide apiece (Hind-C and Hpy-A), was selected. AFLP clearly differentiated between C. botulinum groups I and II; group-specific clusters showed <10% similarity between proteolytic and nonproteolytic C. botulinum strains. In addition, group-specific fragments were detected in both groups. All strains studied were typeable by AFLP, and a total of 42 AFLP types were identified. Extensive diversity was observed among strains of C. botulinum type E, whereas group I had lower genetic biodiversity. These results indicate that AFLP is a fast, highly discriminating, and reproducible DNA fingerprinting method with excellent typeability, which, in addition to its suitability for typing at strain level, can be used for C. botulinum group identification. PMID:15746312

  10. Extrapolation of the dna fragment-size distribution after high-dose irradiation to predict effects at low doses

    NASA Technical Reports Server (NTRS)

    Ponomarev, A. L.; Cucinotta, F. A.; Sachs, R. K.; Brenner, D. J.; Peterson, L. E.

    2001-01-01

    The patterns of DSBs induced in the genome are different for sparsely and densely ionizing radiations: In the former case, the patterns are well described by a random-breakage model; in the latter, a more sophisticated tool is needed. We used a Monte Carlo algorithm with a random-walk geometry of chromatin, and a track structure defined by the radial distribution of energy deposition from an incident ion, to fit the PFGE data for fragment-size distribution after high-dose irradiation. These fits determined the unknown parameters of the model, enabling the extrapolation of data for high-dose irradiation to the low doses that are relevant for NASA space radiation research. The randomly-located-clusters formalism was used to speed the simulations. It was shown that only one adjustable parameter, Q, the track efficiency parameter, was necessary to predict DNA fragment sizes for wide ranges of doses. This parameter was determined for a variety of radiations and LETs and was used to predict the DSB patterns at the HPRT locus of the human X chromosome after low-dose irradiation. It was found that high-LET radiation would be more likely than low-LET radiation to induce additional DSBs within the HPRT gene if this gene already contained one DSB.

  11. CCQM-K86/P113.1: Relative quantification of genomic DNA fragments extracted from a biological tissue

    NASA Astrophysics Data System (ADS)

    Corbisier, P.; Vincent, S.; Schimmel, H.; Kortekaas, A.-M.; Trapmann, S.; Burns, M.; Bushell, C.; Akgoz, M.; Akyürek, S.; Dong, L.; Fu, B.; Zhang, L.; Wang, J.; Pérez Urquiza, M.; Bautista, J. L.; Garibay, A.; Fuller, B.; Baoutina, A.; Partis, L.; Emslie, K.; Holden, M.; Chum, W. Y.; Kim, H.-H.; Phunbua, N.; Milavec, M.; Zel, J.; Vonsky, M.; Konopelko, L. A.; Lau, T. L. T.; Yang, B.; Hui, M. H. K.; Yu, A. C. H.; Viroonudomphol, D.; Prawettongsopon, C.; Wiangnon, K.; Takabatake, R.; Kitta, K.; Kawaharasaki, M.; Parkes, H.

    2012-01-01

    Key comparison CCQM-K86 was performed to demonstrate and document the capacity of interested national metrology institutes (NMIs) and designated institutes (DIs) in the determination of the relative quantity of two specific genomic DNA fragments present in a biological tissue. The study provides the support for the following measurement claim: "Quantification of the ratio of the number of copies of specified intact sequence fragments of a length in the range of 70 to 100 nucleotides in a single genomic DNA extract from ground maize seed materials". The study was carried out under the auspices of the Bioanalysis Working Group (BAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM) and was piloted by the Institute for Reference Materials and Methods (IRMM) in Geel (Belgium). The following laboratories (in alphabetical order) participated in this key comparison: AIST (Japan), CENAM (Mexico), DMSc (Thailand), GLHK (Hong Kong), IRMM (European Union), KRISS (Republic of Korea), LGC (United Kingdom), MIRS/NIB (Slovenia), NIM (PR China), NIST (USA), NMIA (Australia), TÜBITAK UME (Turkey) and VNIIM (Russian Federation). The following laboratories (in alphabetical order) participated in a pilot study that was organized in parallel: LGC (United Kingdom), PKU (PR China), NFRI (Japan) and NIMT (Thailand). Good agreement was observed between the reported results of eleven participants. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  12. Structural transitions during prothrombin activation: On the importance of fragment 2

    PubMed Central

    Adams, Ty E.; Huntington, James A.

    2016-01-01

    Prothrombin is activated to thrombin by the prothrombinase complex through sequential cleavage at two distinct sites. This occurs at sites of vascular injury in a highly regulated cascade of serine protease and cofactor activation, where activated platelets provide a suitable surface for protease/cofactor/substrate assembly. The precise structural and conformational changes undergone during the transition from prothrombin to thrombin have been studied for decades, and several structures of prothrombin fragments along the activation pathway have been solved. Here we present a new structure analyzed in context of other recent structures and biochemical studies. What emerges is an unexpected mechanism that involves a change in the mode of binding of the F2 domain (fragment 2) on the catalytic domain after cleavage at Arg320, and a subsequent reorientation of the linker between the F2 and catalytic domain to present the Arg271 site for cleavage. PMID:26365066

  13. Single-Molecule Electronic Monitoring of DNA Polymerase Activity

    NASA Astrophysics Data System (ADS)

    Marushchak, Denys O.; Pugliese, Kaitlin M.; Turvey, Mackenzie W.; Choi, Yongki; Gul, O. Tolga; Olsen, Tivoli J.; Rajapakse, Arith J.; Weiss, Gregory A.; Collins, Philip G.

    Single-molecule techniques can reveal new spatial and kinetic details of the conformational changes occurring during enzymatic catalysis. Here, we investigate the activity of DNA polymerases using an electronic single-molecule technique based on carbon nanotube transistors. Single molecules of the Klenow fragment (KF) of polymerase I were conjugated to the transistors and then monitored via fluctuations in electrical conductance. Continuous, long-term monitoring recorded single KF molecules incorporating up to 10,000 new bases into single-stranded DNA templates. The duration of individual incorporation events was invariant across all analog and native nucleotides, indicating that the precise structure of different base pairs has no impact on the timing of incorporation. Despite similar timings, however, the signal magnitudes generated by certain analogs reveal alternate conformational states that do not occur with native nucleotides. The differences induced by these analogs suggest that the electronic technique is sensing KF's O-helix as it tests the stability of nascent base pairs.

  14. Effects of cyanoacrylate fuming, time after recovery, and location of biological material on the recovery and analysis of DNA from post-blast pipe bomb fragments*.

    PubMed

    Bille, Todd W; Cromartie, Carter; Farr, Matthew

    2009-09-01

    This study investigated the effects of time, cyanoacrylate fuming, and location of the biological material on DNA analysis of post-blast pipe bomb fragments. Multiple aliquots of a cell suspension (prepared by soaking buccal swabs in water) were deposited on components of the devices prior to assembly. The pipe bombs were then deflagrated and the fragments recovered. Fragments from half of the devices were cyanoacrylate fumed. The cell spots on the fragments were swabbed and polymerase chain reaction/short tandem repeat analysis was performed 1 week and 3 months after deflagration. A significant decrease in the amount of DNA recovered was observed between samples collected and analyzed within 1 week compared with the samples collected and analyzed 3 months after deflagration. Cyanoacrylate fuming did not have a measurable effect on the success of the DNA analysis at either time point. Greater quantities of DNA were recovered from the pipe nipples than the end caps. Undeflagrated controls showed that the majority (>95%) of the DNA deposited on the devices was not recovered at a week or 3 months. PMID:19737244

  15. Effects of cyanoacrylate fuming, time after recovery, and location of biological material on the recovery and analysis of DNA from post-blast pipe bomb fragments*.

    PubMed

    Bille, Todd W; Cromartie, Carter; Farr, Matthew

    2009-09-01

    This study investigated the effects of time, cyanoacrylate fuming, and location of the biological material on DNA analysis of post-blast pipe bomb fragments. Multiple aliquots of a cell suspension (prepared by soaking buccal swabs in water) were deposited on components of the devices prior to assembly. The pipe bombs were then deflagrated and the fragments recovered. Fragments from half of the devices were cyanoacrylate fumed. The cell spots on the fragments were swabbed and polymerase chain reaction/short tandem repeat analysis was performed 1 week and 3 months after deflagration. A significant decrease in the amount of DNA recovered was observed between samples collected and analyzed within 1 week compared with the samples collected and analyzed 3 months after deflagration. Cyanoacrylate fuming did not have a measurable effect on the success of the DNA analysis at either time point. Greater quantities of DNA were recovered from the pipe nipples than the end caps. Undeflagrated controls showed that the majority (>95%) of the DNA deposited on the devices was not recovered at a week or 3 months.

  16. Characterization of primary biogenic aerosol particles in urban, rural, and high-alpine air by DNA sequence and restriction fragment analysis of ribosomal RNA genes

    NASA Astrophysics Data System (ADS)

    Després, V. R.; Nowoisky, J. F.; Klose, M.; Conrad, R.; Andreae, M. O.; Pöschl, U.

    2007-12-01

    This study explores the applicability of DNA analyses for the characterization of primary biogenic aerosol (PBA) particles in the atmosphere. Samples of fine particulate matter (PM2.5) and total suspended particulates (TSP) have been collected on different types of filter materials at urban, rural, and high-alpine locations along an altitude transect in the south of Germany (Munich, Hohenpeissenberg, Mt. Zugspitze). From filter segments loaded with about one milligram of air particulate matter, DNA could be extracted and DNA sequences could be determined for bacteria, fungi, plants and animals. Sequence analyses were used to determine the identity of biological organisms, and terminal restriction fragment length polymorphism analyses (T-RFLP) were applied to estimate diversities and relative abundances of bacteria. Investigations of blank and background samples showed that filter materials have to be decontaminated prior to use, and that the sampling and handling procedures have to be carefully controlled to avoid artifacts in the analyses. Mass fractions of DNA in PM2.5 were found to be around 0.05% in urban, rural, and high-alpine aerosols. The average concentration of DNA determined for urban air was on the order of ~7 ng m-3, indicating that human adults may inhale about one microgram of DNA per day (corresponding to ~108 haploid bacterial genomes or ~105 haploid human genomes, respectively). Most of the bacterial sequences found in PM2.5 were from Proteobacteria (42) and some from Actinobacteria (10) and Firmicutes (1). The fungal sequences were characteristic for Ascomycota (3) and Basidiomycota (1), which are known to actively discharge spores into the atmosphere. The plant sequences could be attributed to green plants (2) and moss spores (2), while animal DNA was found only for one unicellular eukaryote (protist). Over 80% of the 53 bacterial sequences could be matched to one of the 19 T-RF peaks found in the PM2.5 samples, but only 40% of the T-RF peaks

  17. Repair of x-ray-induced DNA double-strand breaks in specific Not I restriction fragments in human fibroblasts: joining of correct and incorrect ends

    NASA Technical Reports Server (NTRS)

    Lobrich, M.; Rydberg, B.; Cooper, P. K.; Chatterjee, A. (Principal Investigator)

    1995-01-01

    An assay that allows measurement of absolute induction frequencies for DNA double-strand breaks (dsbs) in defined regions of the genome and that quantitates rejoining of correct DNA ends has been used to study repair of dsbs in normal human fibroblasts after x-irradiation. The approach involves hybridization of single-copy DNA probes to Not I restriction fragments separated according to size by pulsed-field gel electrophoresis. Induction of dsbs is quantitated from the decrease in the intensity of the hybridizing restriction fragment and an accumulation of a smear below the band. Rejoining of dsbs results in reconstitution of the intact restriction fragment only if correct DNA ends are joined. By comparing results from this technique with results from a conventional electrophoresis assay that detects all rejoining events, it is possible to quantitate the misrejoining frequency. Three Not I fragments on the long arm of chromosome 21 were investigated with regard to dsb induction, yielding an identical induction rate of 5.8 X 10(-3) break per megabase pair per Gy. Correct dsb rejoining was measured for two of these Not I fragments after initial doses of 80 and 160 Gy. The misrejoining frequency was about 25% for both fragments and was independent of dose. This result appears to be representative for the whole genome as shown by analysis of the entire Not I fragment distribution. The correct rejoining events primarily occurred within the first 2 h, while the misrejoining kinetics included a much slower component, with about half of the events occurring between 2 and 24 h. These misrejoining kinetics are similar to those previously reported for production of exchange aberrations in interphase chromosomes.

  18. Fluorescent in situ hybridization with arbitrarily amplified DNA fragments differentiates carrot (Daucus carota L.) chromosomes.

    PubMed

    Nowicka, Anna; Grzebelus, Ewa; Grzebelus, Dariusz

    2012-03-01

    Carrot (Daucus carota L.) chromosomes are small and poorly differentiated in size and morphology. Here we demonstrate that fluorescent in situ hybridization (FISH) signals derived from arbitrary PCR probes can be used for chromosome identification in carrot. To prepare probes, we searched for nonpolymorphic products abundantly amplified with arbitrary decamer primers in a group of accessions representing carrot genetic diversity. As a result, 13 fragments ranging in size from 517 to 1758 bp were selected, sequenced, and used as probes for fluorescent in situ hybridization. Four of these probes produced clear and reproducible hybridization signals. The sequences showed similarity to a number of carrot BAC-end sequences, indicating their repetitive character. Three of them were similar to internal portions of gypsy and copia LTR retrotransposons previously identified in plants. Hybridization signals for the four probes were observed as dotted tracks on chromosomes, differing in distribution and intensity. Generally, they were present in pericentromeric and (or) interstitial localizations on chromosome arms. The use of the four probes allowed discrimination of chromosome pairs and construction of more detailed karyotypes and idiograms of carrot.

  19. Historic cycles of fragmentation and expansion in Parnassius smintheus (papilionidae) inferred using mitochondrial DNA.

    PubMed

    DeChaine, Eric G; Martini, Andrew P

    2004-01-01

    Climate oscillations of the Quaternary drove the repeated expansion and contraction of ecosystems. Alpine organisms were probably isolated in sky island refugia during warm interglacials, such as now, and expanded their range by migrating down-slope during glacial periods. We used population genetic and phylogenetic approaches to infer how paleoclimatic events influenced the distribution of genetic variation in the predominantly alpine butterfly Parnassius smintheus. We sequenced a 789 bp region of cytochrome oxidase I for 385 individuals from 20 locations throughout the Rocky Mountains, ranging from southern Colorado to northern Montana. Analyses revealed at lease two centers of diversity in the northern and southern Rocky Mountains and strong population structure. Nested clade analysis suggested that the species experienced repeated cycles of population expansion and fragmentation. The estimated ages of these events, assuming a molecular clock, corresponded with paleoclimatic data on habitat expansion and contraction over the past 400,000 years. We propose that alpine butterflies persisted in an archipelago of isolated sky islands during interglacials and that populations expanded and became more connected during cold glacial periods. An archipelago model implies that the effects of genetic drift and selection varied among populations, depending on their latitude, area, and local environment. Alpine organisms are sensitive indicators of climate change and their history can be used to predict how high-elevation ecosystems might respond to further climate warming.

  20. Historic cycles of fragmentation and expansion in Parnassius smintheus (papilionidae) inferred using mitochondrial DNA.

    PubMed

    DeChaine, Eric G; Martini, Andrew P

    2004-01-01

    Climate oscillations of the Quaternary drove the repeated expansion and contraction of ecosystems. Alpine organisms were probably isolated in sky island refugia during warm interglacials, such as now, and expanded their range by migrating down-slope during glacial periods. We used population genetic and phylogenetic approaches to infer how paleoclimatic events influenced the distribution of genetic variation in the predominantly alpine butterfly Parnassius smintheus. We sequenced a 789 bp region of cytochrome oxidase I for 385 individuals from 20 locations throughout the Rocky Mountains, ranging from southern Colorado to northern Montana. Analyses revealed at lease two centers of diversity in the northern and southern Rocky Mountains and strong population structure. Nested clade analysis suggested that the species experienced repeated cycles of population expansion and fragmentation. The estimated ages of these events, assuming a molecular clock, corresponded with paleoclimatic data on habitat expansion and contraction over the past 400,000 years. We propose that alpine butterflies persisted in an archipelago of isolated sky islands during interglacials and that populations expanded and became more connected during cold glacial periods. An archipelago model implies that the effects of genetic drift and selection varied among populations, depending on their latitude, area, and local environment. Alpine organisms are sensitive indicators of climate change and their history can be used to predict how high-elevation ecosystems might respond to further climate warming. PMID:15058724

  1. Rapid identification and classification of bacteria by 16S rDNA restriction fragment melting curve analyses (RFMCA).

    PubMed

    Rudi, Knut; Kleiberg, Gro H; Heiberg, Ragnhild; Rosnes, Jan T

    2007-08-01

    The aim of this work was to evaluate restriction fragment melting curve analyses (RFMCA) as a novel approach for rapid classification of bacteria during food production. RFMCA was evaluated for bacteria isolated from sous vide food products, and raw materials used for sous vide production. We identified four major bacterial groups in the material analysed (cluster I-Streptococcus, cluster II-Carnobacterium/Bacillus, cluster III-Staphylococcus and cluster IV-Actinomycetales). The accuracy of RFMCA was evaluated by comparison with 16S rDNA sequencing. The strains satisfying the RFMCA quality filtering criteria (73%, n=57), with both 16S rDNA sequence information and RFMCA data (n=45) gave identical group assignments with the two methods. RFMCA enabled rapid and accurate classification of bacteria that is database compatible. Potential application of RFMCA in the food or pharmaceutical industry will include development of classification models for the bacteria expected in a given product, and then to build an RFMCA database as a part of the product quality control. PMID:17367680

  2. Towards the onset of fruit tree growing north of the Alps: ancient DNA from waterlogged apple (Malus sp.) seed fragments.

    PubMed

    Schlumbaum, Angela; van Glabeke, Sabine; Roldan-Ruiz, Isabel

    2012-01-20

    Wild apples (Malus sp.) have been a major food source in the northern Alpine region since prehistory and their use is well understood. The onset of deliberate fruit tree growing in the area is, however, less clear. It is generally assumed that horticulture was practised in Roman times, but it might be even earlier. In the archaeological record seed testa and pericarp remains are particularly frequent at sites with waterlogged preservation such as lakeshore settlements or wells, pits and ditches, but the distinction between wild and domestic plants is not morphologically possible. With waterlogged remains being one main source of information about past fruit cultivation, we have tested the feasibility of analysing ancient DNA from waterlogged preserved bulk samples of testa fragments. We studied apple seeds from three Neolithic and three Roman sites with waterlogged preservation in the Alpine foreland. Chloroplast markers failed in all samples, but nuclear ITS1 (internal transcribed spacer region 1) of the ribosomal DNA was successfully typed in two Roman samples from the site Oedenburg/Biesheim-Kunheim (Haut-Rhin, F). The retrieved ITS1 sequences are identical to each other and are shared with wild Malus sylvestris and Malus sieversii, and with domestic apple cultivars, supporting the potential of using waterlogged remains for identifying the genetic status of apple diachronically.

  3. Rapid radiation events in the family Ursidae indicated by likelihood phylogenetic estimation from multiple fragments of mtDNA.

    PubMed

    Waits, L P; Sullivan, J; O'Brien, S J; Ward, R H

    1999-10-01

    The bear family (Ursidae) presents a number of phylogenetic ambiguities as the evolutionary relationships of the six youngest members (ursine bears) are largely unresolved. Recent mitochondrial DNA analyses have produced conflicting results with respect to the phylogeny of ursine bears. In an attempt to resolve these issues, we obtained 1916 nucleotides of mitochondrial DNA sequence data from six gene segments for all eight bear species and conducted maximum likelihood and maximum parsimony analyses on all fragments separately and combined. All six single-region gene trees gave different phylogenetic estimates; however, only for control region data was this significantly incongruent with the results from the combined data. The optimal phylogeny for the combined data set suggests that the giant panda is most basal followed by the spectacled bear. The sloth bear is the basal ursine bear, and there is weak support for a sister taxon relationship of the American and Asiatic black bears. The sun bear is sister taxon to the youngest clade containing brown bears and polar bears. Statistical analyses of alternate hypotheses revealed a lack of strong support for many of the relationships. We suggest that the difficulties surrounding the resolution of the evolutionary relationships of the Ursidae are linked to the existence of sequential rapid radiation events in bear evolution. Thus, unresolved branching orders during these time periods may represent an accurate representation of the evolutionary history of bear species. PMID:10508542

  4. Detection of genetically modified maize DNA fragments in the intestinal contents of pigs fed StarLink CBH351.

    PubMed

    Chowdhury, E H; Mikami, O; Nakajima, Y; Hino, A; Kuribara, H; Suga, K; Hanazumi, M; Yomemochi, C

    2003-03-01

    We tried to detect DNA fragments derived from maize in the intestinal contents of pigs fed genetically modified (GM) StarLink CBH351 maize (SL) or non-GM maize. Intestinal contents of 8 SL and 8 non-GM maize-fed pigs were collected at slaughter, and the genes of the recombinant cry9C and the maize intrinsic zein (Zel) were assayed by polymerase chain reaction (PCR) 3 times with a total of 4 primer pairs of different expected lengths. The cry9C gene (either 103 or 170 bp) was detected in the rectal contents (with a frequency of 25-37.5%) and in the cecal contents (25-50%) of the pigs fed SL. In a similar fashion, the zein (Zel) gene (either 242 or 329 bp) was detected in the rectal contents (with a frequency of 31.3%) and in the cecal contents (25-37.5%) of pigs fed on SL non-GM maize. These results suggested that ingested DNA was not totally degraded, but is present in a form detectable by PCR.

  5. Synthesis and antiviral activity of PB1 component of the influenza A RNA polymerase peptide fragments.

    PubMed

    Matusevich, O V; Egorov, V V; Gluzdikov, I A; Titov, M I; Zarubaev, V V; Shtro, A A; Slita, A V; Dukov, M I; Shurygina, A-P S; Smirnova, T D; Kudryavtsev, I V; Vasin, A V; Kiselev, O I

    2015-01-01

    This study is devoted to the antiviral activity of peptide fragments from the PB1 protein - a component of the influenza A RNA polymerase. The antiviral activity of the peptides synthesized was studied in MDCK cell cultures against the pandemic influenza strain A/California/07/2009 (H1N1) pdm09. We found that peptide fragments 6-13, 6-14, 26-30, 395-400, and 531-540 of the PB1 protein were capable of suppressing viral replication in cell culture. Terminal modifications i.e. N-acetylation and C-amidation increased the antiviral properties of the peptides significantly. Peptide PB1 (6-14) with both termini modified showed maximum antiviral activity, its inhibitory activity manifesting itself during the early stages of viral replication. It was also shown that the fluorescent-labeled analog of this peptide was able to penetrate into the cell. The broad range of virus-inhibiting activity of PB1 (6-14) peptide was confirmed using a panel of influenza A viruses of H1, H3 and H5 subtypes including those resistant to oseltamivir, the leading drug in anti-influenza therapy. Thus, short peptide fragments of the PB1 protein could serve as leads for future development of influenza prevention and/or treatment agents.

  6. DnaB Helicase Activity Is Modulated by DNA Geometry and Force

    PubMed Central

    Ribeck, Noah; Kaplan, Daniel L.; Bruck, Irina; Saleh, Omar A.

    2010-01-01

    The replicative helicase for Escherichia coli is DnaB, a hexameric, ring-shaped motor protein that encircles and translocates along ssDNA, unwinding dsDNA in advance of its motion. The microscopic mechanisms of DnaB are unknown; further, prior work has found that DnaB's activity is modified by other replication proteins, indicating some mechanistic flexibility. To investigate these issues, we quantified translocation and unwinding by single DnaB molecules in three tethered DNA geometries held under tension. Our data support the following conclusions: 1), Unwinding by DnaB is enhanced by force-induced destabilization of dsDNA. 2), The magnitude of this stimulation varies with the geometry of the tension applied to the DNA substrate, possibly due to interactions between the helicase and the occluded ssDNA strand. 3), DnaB unwinding and (to a lesser extent) translocation are interrupted by pauses, which are also dependent on force and DNA geometry. 4), DnaB moves slower when a large tension is applied to the helicase-bound strand, indicating that it must perform mechanical work to compact the strand against the applied force. Our results have implications for the molecular mechanisms of translocation and unwinding by DnaB and for the means of modulating DnaB activity. PMID:20923651

  7. DNA fragment length polymorphism analysis of Mycobacterium tuberculosis isolates by arbitrarily primed polymerase chain reaction.

    PubMed

    Palittapongarnpim, P; Chomyc, S; Fanning, A; Kunimoto, D

    1993-04-01

    Strain identification of Mycobacterium tuberculosis would prove whether transmission had occurred between individuals. A method to characterize strains of M. tuberculosis has been developed utilizing polymerase chain reaction (PCR). Purified chromosomal DNA of cultured clinical samples of M. tuberculosis were subjected to PCR using short (10-12 nucleotide) oligonucleotide primers. PCR products visualized after agarose gel electrophoresis and ethidium bromide staining demonstrated that different strains of M. tuberculosis give different banding patterns. This technique was used to confirm the relationship between cases of tuberculosis in several clusters, prove the lack of relationship between 2 isolates with the same antibiotic-resistance pattern, confirm a suspected mislabeling event, and suggest the source of infection in a case of tuberculous meningitis. This method is rapid and simple and does not require radioactive probes.

  8. Fragment charge difference method for estimating donor-acceptor electronic coupling: Application to DNA π-stacks

    NASA Astrophysics Data System (ADS)

    Voityuk, Alexander A.; Rösch, Notker

    2002-09-01

    The purpose of this communication is two-fold. We introduce the fragment charge difference (FCD) method to estimate the electron transfer matrix element HDA between a donor D and an acceptor A, and we apply this method to several aspects of hole transfer electronic couplings in π-stacks of DNA, including systems with several donor-acceptor sites. Within the two-state model, our scheme can be simplified to recover a convenient estimate of the electron transfer matrix element HDA=(1-Δq2)1/2(E2-E1)/2 based on the vertical excitation energy E2-E1 and the charge difference Δq between donor and acceptor. For systems with strong charge separation, Δq≳0.95, one should resort to the FCD method. As favorable feature, we demonstrate the stability of the FCD approach for systems which require an approach beyond the two-state model. On the basis of ab initio calculations of various DNA related systems, we compared three approaches for estimating the electronic coupling: the minimum splitting method, the generalized Mulliken-Hush (GMH) scheme, and the FCD approach. We studied the sensitivity of FCD and GMH couplings to the donor-acceptor energy gap and found both schemes to be quite robust; they are applicable also in cases where donor and acceptor states are off resonance. In the application to π-stacks of DNA, we demonstrated for the Watson-Crick pair dimer [(GC),(GC)] how structural changes considerably affect the coupling strength of electron hole transfer. For models of three Watson-Crick pairs, we showed that the two-state model significantly overestimates the hole transfer coupling whereas simultaneous treatment of several states leads to satisfactory results.

  9. Reconstructing the history of a fragmented and heavily exploited red deer population using ancient and contemporary DNA

    PubMed Central

    2012-01-01

    Background Red deer (Cervus elaphus) have been an important human resource for millennia, experiencing intensive human influence through habitat alterations, hunting and translocation of animals. In this study we investigate a time series of ancient and contemporary DNA from Norwegian red deer spanning about 7,000 years. Our main aim was to investigate how increasing agricultural land use, hunting pressure and possibly human mediated translocation of animals have affected the genetic diversity on a long-term scale. Results We obtained mtDNA (D-loop) sequences from 73 ancient specimens. These show higher genetic diversity in ancient compared to extant samples, with the highest diversity preceding the onset of agricultural intensification in the Early Iron Age. Using standard diversity indices, Bayesian skyline plot and approximate Bayesian computation, we detected a population reduction which was more prolonged than, but not as severe as, historic documents indicate. There are signs of substantial changes in haplotype frequencies primarily due to loss of haplotypes through genetic drift. There is no indication of human mediated translocations into the Norwegian population. All the Norwegian sequences show a western European origin, from which the Norwegian lineage diverged approximately 15,000 years ago. Conclusions Our results provide direct insight into the effects of increasing habitat fragmentation and human hunting pressure on genetic diversity and structure of red deer populations. They also shed light on the northward post-glacial colonisation process of red deer in Europe and suggest increased precision in inferring past demographic events when including both ancient and contemporary DNA. PMID:23009643

  10. A DNA polymerase activity is associated with Cauliflower Mosaic Virus.

    PubMed Central

    Menissier, J; Laquel, P; Lebeurier, G; Hirth, L

    1984-01-01

    A DNA polymerase activity is found within the Cauliflower Mosaic Virus (CaMV) particle. Analysis of the reaction product reveals that the linear form of the virion DNA is preferentially labelled. The molecular weight of the DNA polymerase as determined on an "activity gel" is 76 kDa. Images PMID:6514573

  11. Membrane regulation of the chromosomal replication activity of E.coli DnaA requires a discrete site on the protein.

    PubMed Central

    Garner, J; Crooke, E

    1996-01-01

    The capacity of DnaA protein to initiate DNA synthesis at the chromosomal origin is influenced profoundly by the tightly bound nucleotides ATP and ADP. Acidic phospholipids can catalyze the conversion of inactive ADP-DnaK protein into the active ATP form. Proteolytic fragments of the nucleotide form of DnaA protein were examined to determine regions of the protein critical for functional interaction with membranes. A 35 kDa chymotryptic and 29 kDa tryptic fragment retained the tightly bound nucleotide. The fragments, whose amino-termini are within three residues of each other, but differ at their carboxyl ends, showed strikingly different behavior when treated with acidic phospholipids. The larger chymotryptic fragment released the bound nucleotide in the presence of acidic, but not neutral phospholipids. In contrast, the smaller tryptic fragment was inert to both forms of phospholipids. Acidic membranes, but not those composed of neutral phospholipids, protect from tryptic digestion a small portion of the segment that constitutes the difference between the 29 and 35 kDa fragments. The resulting 30 kDa tryptic fragment, which possesses this protected region, interacts functionally with acidic membranes to release the bound effector nucleotide. Inasmuch as the anionic ganglioside GM1, a compound structurally dissimilar to acidic glycerophospholipids, efficiently releases the nucleotide from DnaA protein, an acidic surface associated with a hydrophobic environment is the characteristic of the membrane that appears crucial for regulatory interaction with DnaA protein. Images PMID:8641297

  12. Barley aleurone cell death is not apoptotic: characterization of nuclease activities and DNA degradation.

    PubMed

    Fath, A; Bethke, P C; Jones, R L

    1999-11-01

    Barley aleurone cells undergo programmed cell death (PCD) when exposed to gibberellic acid (GA), but incubation in abscisic acid (ABA) prevent PCD. We tested the hypothesis that PCD in aleurone cells occurs by apoptosis, and show that the hallmark of apoptosis, namely DNA cleavage into 180 bp fragments, plasma membrane blebbing, and the formation of apoptotic bodies do not occur when aleurone cells die. We show that endogenous barley aleurone nucleases and nucleases present in enzymes used for protoplast preparation degrade aleurone DNA and that DNA degradation by these nucleases is rapid and can result in the formation of 180 bp DNA ladders. Methods are described that prevent DNA degradation during isolation from aleurone layers or protoplasts. Barley aleurone cells contain three nucleases whose activities are regulated by GA and ABA. CA induction and ABA repression of nuclease activities correlate with PCD in aleurone cells. Cells incubated in ABA remain alive and do not degrade their DNA, but living aleurone cells treated with GA accumulate nucleases and hydrolyze their nuclear DNA. We propose that barley nucleases play a role in DNA cleavage during aleurone PCD.

  13. Barley aleurone cell death is not apoptotic: characterization of nuclease activities and DNA degradation

    PubMed

    Fath; Bethke; Jones

    1999-11-01

    Barley aleurone cells undergo programmed cell death (PCD) when exposed to gibberellic acid (GA), but incubation in abscisic acid (ABA) prevents PCD. We tested the hypothesis that PCD in aleurone cells occurs by apoptosis, and show that the hallmarks of apoptosis, namely DNA cleavage into 180 bp fragments, plasma membrane blebbing, and the formation of apoptotic bodies do not occur when aleurone cells die. We show that endogenous barley aleurone nucleases and nucleases present in enzymes used for protoplast preparation degrade aleurone DNA and that DNA degradation by these nucleases is rapid and can result in the formation of 180 bp DNA ladders. Methods are described that prevent DNA degradation during isolation from aleurone layers or protoplasts. Barley aleurone cells contain three nucleases whose activities are regulated by GA and ABA. GA induction and ABA repression of nuclease activities correlate with PCD in aleurone cells. Cells incubated in ABA remain alive and do not degrade their DNA, but living aleurone cells treated with GA accumulate nucleases and hydrolyze their nuclear DNA. We propose that barley nucleases play a role in DNA cleavage during aleurone PCD.

  14. Characterization of the DNA dependent activation of human ARTD2/PARP2

    PubMed Central

    Obaji, Ezeogo; Haikarainen, Teemu; Lehtiö, Lari

    2016-01-01

    Human ADP-ribosyltransferase 2 (ARTD2/PARP2) is an enzyme catalyzing a post-translational modification, ADP-ribosylation. It is one of the three DNA dependent ARTDs in the 17 member enzyme family. ADP-ribosylation catalyzed by ARTD2 is involved in the regulation of multiple cellular processes such as control of chromatin remodeling, transcription and DNA repair. Here we used a combination of biochemical and biophysical methods to elucidate the structure and function of ARTD2. The solution structures revealed the binding mode of the ARTD2 monomer and dimer to oligonucleotides that mimic damaged DNA. In the complex, DNA binds between the WGR domain and the catalytic fragment. The binding mode is supported by biophysical data that indicate all domains contribute to DNA binding. Also, our study showed that ARTD2 is preferentially activated by short 5′-phosphorylated DNA oligonucleotides. We demonstrate that the N-terminus functions as a high-affinity DNA-binding module, while the WGR domain contributes to DNA binding specificity and subsequent catalytic activation. Our data further suggest that ARTD2 would function in double strand break repair as a dimeric module, while in single strand break repair it would function as a monomer. PMID:27708353

  15. DNA sequencing with dye-labeled terminators and T7 DNA polymerase: effect of dyes and dNTPs on incorporation of dye-terminators and probability analysis of termination fragments.

    PubMed Central

    Lee, L G; Connell, C R; Woo, S L; Cheng, R D; McArdle, B F; Fuller, C W; Halloran, N D; Wilson, R K

    1992-01-01

    The incorporation of fluorescently labeled dideoxynucleotides by T7 DNA polymerase is optimized by the use of Mn2+, fluorescein analogs and four 2'-deoxyribonucleoside 5'-O-(1-thiotriphosphates) (dNTP alpha S's). The one-tube extension protocol was tested on single-stranded templates, as well as PCR fragments which were made single-stranded by digestion with T7 gene 6 exonuclease. Dye primer sequencing using four dNTP alpha S's was shown to give uniform termination patterns which were comparable to four dNTPs. Efficiency of the polymerase also appeared to improve with the dNTP alpha S's. A mathematical model was developed to predict the pattern of termination based on enzyme activity and ratios of ddNTP/dNTPs. This method can be used to optimize sequencing reactions and to estimate enzyme discrimination constants of chain terminators. Images PMID:1598205

  16. Polysaccharide-based silver nanoparticles synthesized by Klebsiella oxytoca DSM 29614 cause DNA fragmentation in E. coli cells.

    PubMed

    Baldi, Franco; Daniele, Salvatore; Gallo, Michele; Paganelli, Stefano; Battistel, Dario; Piccolo, Oreste; Faleri, Claudia; Puglia, Anna Maria; Gallo, Giuseppe

    2016-04-01

    Silver nanoparticles (AgNPs), embedded into a specific exopolysaccharide (EPS), were produced by Klebsiella oxytoca DSM 29614 by adding AgNO3 to the cultures during exponential growth phase. In particular, under aerobic or anaerobic conditions, two types of silver nanoparticles, named AgNPs-EPS(aer) and the AgNPs-EPS(anaer), were produced respectively. The effects on bacterial cells was demonstrated by using Escherichia coli K12 and Kocuria rhizophila ATCC 9341 (ex Micrococcus luteus) as Gram-negative and Gram-positive tester strains, respectively. The best antimicrobial activity was observed for AgNPs-EPS(aer), in terms of minimum inhibitory concentrations and minimum bactericidal concentrations. Observations by transmission electron microscopy showed that the cell morphology of both tester strains changed during the exposition to AgNPs-EPS(aer). In particular, an electron-dense wrapped filament was observed in E. coli cytoplasm after 3 h of AgNPs-EPS(aer) exposition, apparently due to silver accumulation in DNA, and both E. coli and K. rhizophila cells were lysed after 18 h of exposure to AgNPs-EPS(aer). The DNA breakage in E. coli cells was confirmed by the comparison of 3-D fluorescence spectra fingerprints of DNA. Finally the accumulation of silver on DNA of E. coli was confirmed directly by a significant Ag(+) release from DNA, using the scanning electrochemical microscopy and the voltammetric determinations. PMID:26886276

  17. DNA variation in the wild plant Arabidopsis thaliana revealed by amplified fragment length polymorphism analysis.

    PubMed Central

    Miyashita, N T; Kawabe, A; Innan, H

    1999-01-01

    To investigate the level and pattern of DNA variation of Arabidopsis thaliana at the entire genome level, AFLP analysis was conducted for 38 ecotypes distributed throughout the world. Ten pairs of selective primers were used to detect a total of 472 bands, of which 374 (79. 2%) were polymorphic. The frequency distribution of polymorphic bands was skewed toward an excess of singleton variation. On the basis of AFLP variation, nucleotide diversity for the entire genome was estimated to be 0.0106, which was within the range reported previously for specific nuclear genes. The frequency distribution of pairwise distance was bimodal because of an ecotype (Fl-3) with a large number of unique bands. Linkage disequilibrium between polymorphic AFLPs was tested. The proportion of significant linkage disequilibria was close to random expectation after neglecting the ecotype Fl-3. This result indicates that the effect of recombination could not be ignored in this selfing species. A neighbor-joining tree was constructed on the basis of the AFLP variation. This tree has a star-like topology and shows no clear association between ecotype and geographic origin, suggesting a recent spread of this plant species and limited migration between its habitats. PMID:10430596

  18. Comparative study and prediction of DNA fragments associated with various elements of the nuclear matrix.

    PubMed

    Glazko, G V; Rogozin, I B; Glazkov, M V

    2001-02-16

    Scaffold/matrix-associated region (S/MAR) sequences are DNA regions that are attached to the nuclear matrix, and participate in many cellular processes. The nuclear matrix is a complex structure consisting of various elements. In this paper we compared frequencies of simple nucleotide motifs in S/MAR sequences and in sequences extracted directly from various nuclear matrix elements, such as nuclear lamina, cores of rosette-like structures, synaptonemal complex. Multivariate linear discriminant analysis revealed significant differences between these sequences. Based on this result we have developed a program, ChrClass (Win/NT version, ftp.bionet.nsc.ru/pub/biology/chrclass/chrclass.zip), for the prediction of the regions associated with various elements of the nuclear matrix in a query sequence. Subsequently, several test samples were analyzed by using two S/MAR prediction programs (a ChrClass and MAR-Finder) and a simple MRS criterion (S/MAR recognition signature) indicating the presence of S/MARs. Some overlap between the predictions of all MAR prediction tools has been found. Simultaneous use of the ChrClass, MRS criterion and MAR-Finder programs may help to obtain a more clearcut picture of S/MAR distribution in a query sequence. In general, our results suggest that the proportion of missed S/MARs is lower for ChrClass, whereas the proportion of wrong S/MARs is lower for MAR-Finder and MRS.

  19. Insertion mutagenesis of the yeast Candida famata (Debaryomyces hansenii) by random integration of linear DNA fragments.

    PubMed

    Dmytruk, Kostyantyn V; Voronovsky, Andriy Y; Sibirny, Andriy A

    2006-09-01

    The feasibility of using random insertional mutagenesis to isolate mutants of the flavinogenic yeast Candida famata was explored. Mutagenesis was performed by transformation of the yeast with an integrative plasmid containing the Saccharomyces cerevisiae LEU2 gene as a selective marker. The addition of restriction enzyme together with the plasmid (restriction enzyme-mediated integration, REMI) increased the transformation frequency only slightly. Integration of the linearized plasmid occurred randomly in the C. famata genome. To investigate the potential of insertional mutagenesis, it was used for tagging genes involved in positive regulation of riboflavin synthesis in C. famata. Partial DNA sequencing of tagged genes showed that they were homologous to the S. cerevisiae genes RIB1, MET2, and SEF1. Intact orthologs of these genes isolated from Debaryomyces hansenii restored the wild phenotype of the corresponding mutants, i.e., the ability to overproduce riboflavin under iron limitation. The Staphylococcus aureus ble gene conferring resistance to phleomycin was used successfully in the study as a dominant selection marker for C. famata. The results obtained indicate that insertional mutagenesis is a powerful tool for tagging genes in C. famata. PMID:16770625

  20. Insertion mutagenesis of the yeast Candida famata (Debaryomyces hansenii) by random integration of linear DNA fragments.

    PubMed

    Dmytruk, Kostyantyn V; Voronovsky, Andriy Y; Sibirny, Andriy A

    2006-09-01

    The feasibility of using random insertional mutagenesis to isolate mutants of the flavinogenic yeast Candida famata was explored. Mutagenesis was performed by transformation of the yeast with an integrative plasmid containing the Saccharomyces cerevisiae LEU2 gene as a selective marker. The addition of restriction enzyme together with the plasmid (restriction enzyme-mediated integration, REMI) increased the transformation frequency only slightly. Integration of the linearized plasmid occurred randomly in the C. famata genome. To investigate the potential of insertional mutagenesis, it was used for tagging genes involved in positive regulation of riboflavin synthesis in C. famata. Partial DNA sequencing of tagged genes showed that they were homologous to the S. cerevisiae genes RIB1, MET2, and SEF1. Intact orthologs of these genes isolated from Debaryomyces hansenii restored the wild phenotype of the corresponding mutants, i.e., the ability to overproduce riboflavin under iron limitation. The Staphylococcus aureus ble gene conferring resistance to phleomycin was used successfully in the study as a dominant selection marker for C. famata. The results obtained indicate that insertional mutagenesis is a powerful tool for tagging genes in C. famata.

  1. Contiguous 2,2,4-triamino-5(2H)-oxazolone obstructs DNA synthesis by DNA polymerases α, β, η, ι, κ, REV1 and Klenow Fragment exo-, but not by DNA polymerase ζ.

    PubMed

    Suzuki, Masayo; Kino, Katsuhito; Kawada, Taishu; Oyoshi, Takanori; Morikawa, Masayuki; Kobayashi, Takanobu; Miyazawa, Hiroshi

    2016-03-01

    Guanine is the most easily oxidized of the four DNA bases, and contiguous guanines (GG) in a sequence are more readily oxidized than a single guanine in a sequence. Continued oxidation of GGs results in a contiguous oxidized guanine lesion. Two contiguous 2,5-diamino-4H-imidazol-4-ones, an oxidized form of guanine that hydrolyses to 2,2,4-triamino-5(2H)-oxazolone (Oz), are detected following the oxidation of GG. In this study, we analysed translesion synthesis (TLS) across two contiguous Oz molecules (OzOz) using Klenow Fragment exo(-) (KF exo(-)) and DNA polymerases (Pols) α, β, ζ, η, ι, κ and REV1. We found that KF exo(-) and Pols α, β, ι and REV1 inserted one nucleotide opposite the 3' Oz of OzOz and stalled at the subsequent extension, and that Pol κ incorporated no nucleotide. Pol η only inefficiently elongated the primer up to full-length across OzOz; the synthesis of most DNA strands stalled at the 3' or 5' Oz of OzOz. Surprisingly, however, Pol ζ efficiently extended the primer up to full-length across OzOz, unlike the other DNA polymerases, but catalysed error-prone nucleotide incorporation. We therefore believe that Pol ζ is required for efficient TLS of OzOz. These results show that OzOz obstructs DNA synthesis by DNA polymerases except Pol ζ.

  2. [Molecular cloning and primary structure of cDNA fragment for alpha-latrocrustatoxin from black widow spider venom].

    PubMed

    Volynskiĭ, K E; Volkova, T M; Galkina, T G; Krasnoperov, V G; Pluzhnikov, K A; Khvoshchev, M V; Grishin, E V

    1999-01-01

    A fragment of the structural gene of alpha-latrocrustotoxin, a new representative of latrotoxins from black widow spider venom, was cloned. The fragment (1191 bp) was obtained by means of PCR based on the data obtained by sequencing tryptic peptides of the toxin. The fragment codes for a 397-aa sequence. The encoded polypeptide is the C-terminal fragment of the toxin central domain that presumably contains a site responsible for the toxin species specificity. The structural similarity of this fragment to the corresponding fragments of other latrotoxins was studied.

  3. Intervention improves assisted conception intracytoplasmic sperm injection outcomes for patients with high levels of sperm DNA fragmentation: a retrospective analysis.

    PubMed

    Bradley, C K; McArthur, S J; Gee, A J; Weiss, K A; Schmidt, U; Toogood, L

    2016-09-01

    Sperm DNA fragmentation (SDF) is used in assisted reproductive technology (ART) programs as an indicator for sperm quality, although there is still a lack of consensus as to its clinical utility. In this retrospective study, we examined intracytoplasmic sperm injection (ICSI) outcomes of 1924 infertile patients who underwent SDF analysis using the sperm chromatin integrity test. ART patients were classified as having low [DNA fragmentation index (DFI) <29%] or high SDF (DFI ≥29%) and by whether or not an intervention [physiological intracytoplasmic sperm injection (PICSI), intracytoplasmic morphologically selected sperm injection (IMSI), testicular sperm extraction (TESE)/testicular sperm aspiration (TESA), frequent ejaculation] was performed. High SDF patients who did not have an intervention had a lower fertilization rate and poorer clinical outcomes from blastocyst transfers as compared with low SDF patients; the fertilization rate was 66.0% vs. 70.2% (p = 0.042), single embryo transfer (SET) fetal heart pregnancy rate was 28.5% vs. 45.2% (p = 0.042), and SET live birth rate was 24.9% vs. 40.6% (p = 0.060), respectively. Furthermore, high SDF patients who had an intervention had significantly improved blastocyst transfer outcomes, similar to those of low SDF patients; the SET live birth rate for high SDF intervention patients was 43.8% as compared with 24.9% for high SDF no intervention patients (p = 0.037) and 40.6% for low SDF patients (p = 0.446). Analysis of the three main intervention subgroups for high SDF patients revealed that TESE/TESA patients had the highest SET live birth rate; in comparison with 24.2% for high SDF patients who did not have an intervention, PICSI patients had 38.3% (p = 0.151), IMSI patients had 28.7% (p = 0.680), and TESE/TESA patients had 49.8% (p = 0.020). Our data suggest that SDF results indicate ICSI outcomes and that patients who have high SDF benefit from an intervention.

  4. “Cre/loxP plus BAC”: a strategy for direct cloning of large DNA fragment and its applications in Photorhabdus luminescens and Agrobacterium tumefaciens

    PubMed Central

    Hu, Shengbiao; Liu, Zhengqiang; Zhang, Xu; Zhang, Guoyong; Xie, Yali; Ding, Xuezhi; Mo, Xiangtao; Stewart, A. Francis; Fu, Jun; Zhang, Youming; Xia, Liqiu

    2016-01-01

    Heterologous expression has been proven to be a valid strategy for elucidating the natural products produced by gene clusters uncovered by genome sequencing projects. Efforts have been made to efficiently clone gene clusters directly from genomic DNA and several approaches have been developed. Here, we present an alternative strategy based on the site-specific recombinase system Cre/loxP for direct cloning gene clusters. A type three secretion system (T3SS) gene cluster (~32 kb) from Photorhabdus luminescens TT01 and DNA fragment (~78 kb) containing the siderophore biosynthetic gene cluster from Agrobacterium tumefaciens C58 have been successfully cloned into pBeloBAC11 with “Cre/loxP plus BAC” strategy. Based on the fact that Cre/loxP system has successfully used for genomic engineering in a wide range of organisms, we believe that this strategy could be widely used for direct cloning of large DNA fragment. PMID:27364376

  5. "Cre/loxP plus BAC": a strategy for direct cloning of large DNA fragment and its applications in Photorhabdus luminescens and Agrobacterium tumefaciens.

    PubMed

    Hu, Shengbiao; Liu, Zhengqiang; Zhang, Xu; Zhang, Guoyong; Xie, Yali; Ding, Xuezhi; Mo, Xiangtao; Stewart, A Francis; Fu, Jun; Zhang, Youming; Xia, Liqiu

    2016-01-01

    Heterologous expression has been proven to be a valid strategy for elucidating the natural products produced by gene clusters uncovered by genome sequencing projects. Efforts have been made to efficiently clone gene clusters directly from genomic DNA and several approaches have been developed. Here, we present an alternative strategy based on the site-specific recombinase system Cre/loxP for direct cloning gene clusters. A type three secretion system (T3SS) gene cluster (~32 kb) from Photorhabdus luminescens TT01 and DNA fragment (~78 kb) containing the siderophore biosynthetic gene cluster from Agrobacterium tumefaciens C58 have been successfully cloned into pBeloBAC11 with "Cre/loxP plus BAC" strategy. Based on the fact that Cre/loxP system has successfully used for genomic engineering in a wide range of organisms, we believe that this strategy could be widely used for direct cloning of large DNA fragment. PMID:27364376

  6. Formation of the base modification 8-hydroxyl-2'-deoxyguanosine and DNA fragmentation following seizures induced by systemic kainic acid in the rat.

    PubMed

    Lan, J; Henshall, D C; Simon, R P; Chen, J

    2000-01-01

    The formation of oxidative DNA damage as a consequence of seizures remains little explored. We therefore investigated the regional and temporal profile of 8-hydroxyl-2'-deoxyguanosine (8-OHdG) formation, a hallmark of oxidative DNA damage and DNA fragmentation in rat brain following seizures induced by systemic kainic acid (KA). Formation of 8-OHdG was determined via HPLC with electrochemical detection, and single- and double-stranded DNA breaks were detected using in situ DNA polymerase I-mediated biotin-dATP nick-translation (PANT) and terminal deoxynucleotidyl-transferase-mediated nick end-labeling (TUNEL), respectively. Systemic KA (11 mg/kg) significantly increased levels of 8-OHdG within the thalamus after 2 h, within the amygdala/piriform cortex after 4 h, and within the hippocampus after 8 h. Levels remained elevated up to sevenfold within these areas for 72 h. Smaller increases in 8-OHdG levels were also detected within the parietal cortex and striatum. PANT-positive cells were detected within the thalamus, amygdala/piriform cortex, and hippocampus 24-72 h following KA injection. TUNEL-positive cells appeared within the same brain regions and over a similar time course (24-72 h) but were generally lower in number. The present data suggest oxidative damage to DNA may be an early consequence of epileptic seizures and a possible initiation event in the progression of seizure-induced injury to DNA fragmentation and cell death.

  7. Is it necessary to actively remove stone fragments during retrograde intrarenal surgery?

    PubMed Central

    Lee, You Jin; Bak, Dong Jae; Chung, Jae-Wook; Lee, Jun Nyung; Kim, Hyun Tae; Yoo, Eun Sang

    2016-01-01

    Purpose Based on the experiences of our center, we sought to verify the necessity of actively removing stones during retrograde intrarenal surgery (RIRS) for the management of renal stones. Materials and Methods From March 2010 to March 2015, 248 patients underwent RIRS at our center. We classified these patients into 2 groups according to the performance of active stone removal; group A (n=172) included the patients whose stones were actively removed using a stone basket, and group B (n=76) included the patients whose stones were fragmented with laser lithotripsy without active removal of the fragments. We retrospectively compared the operation time, success rate, and complication rate between the 2 groups. Results There were no significant differences between groups A and B in terms of mean age (56.1 years vs. 58.6 years), male to female ratio (115:57 vs. 46:30), mean body mass index (24.5 kg/m2 vs. 25.0 kg/m2), mean preoperative size of stone (11.1 mm vs. 11.1 mm), the ratio of unilateral and bilateral stones (136:36 vs. 64:12), success rate (89.0% vs. 86.8%), operation time (82.5 minutes vs. 82.1 minutes), overall complication rate (9.9% vs. 11.8%), incidence of febrile urinary tract infection (6.4% vs. 2.6%), gross hematuria (1.7% vs. 2.6%), or postoperative de novo hydronephrosis (2.9% vs. 5.3%). Conclusions This study demonstrated that during RIRS, fragmentation only, without the active removal of stones, is a safe and effective technique in which the surgical outcomes are comparable to those of procedures involving the active removal of stones. PMID:27437537

  8. Initial yields of DNA double-strand breaks and DNA Fragmentation patterns depend on linear energy transfer in tobacco BY-2 protoplasts irradiated with helium, carbon and neon ions.

    PubMed

    Yokota, Yuichiro; Yamada, Shinya; Hase, Yoshihiro; Shikazono, Naoya; Narumi, Issay; Tanaka, Atsushi; Inoue, Masayoshi

    2007-01-01

    The ability of ion beams to kill or mutate plant cells is known to depend on the linear energy transfer (LET) of the ions, although the mechanism of damage is poorly understood. In this study, DNA double-strand breaks (DSBs) were quantified by a DNA fragment-size analysis in tobacco protoplasts irradiated with high-LET ions. Tobacco BY-2 protoplasts, as a model of single plant cells, were irradiated with helium, carbon and neon ions having different LETs and with gamma rays. After irradiation, DNA fragments were separated into sizes between 1600 and 6.6 kbp by pulsed-field gel electrophoresis. Information on DNA fragmentation was obtained by staining the gels with SYBR Green I. Initial DSB yields were found to depend on LET, and the highest relative biological effectiveness (about 1.6) was obtained at 124 and 241 keV/microm carbon ions. High-LET carbon and neon ions induced short DNA fragments more efficiently than gamma rays. These results partially explain the large biological effects caused by high-LET ions in plants.

  9. A salmon DNA scaffold promotes osteogenesis through activation of sodium-dependent phosphate cotransporters.

    PubMed

    Katsumata, Yuri; Kajiya, Hiroshi; Okabe, Koji; Fukushima, Tadao; Ikebe, Tetsuro

    2015-12-25

    We previously reported the promotion of bone regeneration in calvarial defects of both normal and ovariectomy-induced osteoporotic rats, with the use of biodegradable DNA/protamine scaffold. However, the method by which this DNA-containing scaffold promotes bone formation is still not understood. We hypothesize that the salmon DNA, from which this scaffold is derived, has an osteoinductive effect on pre-osteoblasts and osteoblasts. We examined the effects of salmon DNA on osteoblastic differentiation and calcification in MC3T3-E1 cells, mouse osteoblasts, in vitro and bone regeneration in a calvarial defect model of aged mouse in vivo. The salmon DNA fragments (300 bps) upregulated the expression of the osteogenic markers, such as alkaline phosphatase, Runx2, and osterix (Osx) in MC3T3E1 cells compared with incubation with osteogenic induction medium alone. Measurement of phosphate ion concentrations in cultures showed that the DNA scaffold degraded phosphate ions were released to the cell cultures. Interestingly, we found that the inclusion of DNA in osteoblastic cell cultures upregulated the expression of sodium-dependent phosphate (NaPi) cotransporters, SLC20A1 and SLC34A2, in MC3T3-E1 cells in a time dependent manner. Furthermore, the inclusion of DNA in cell cultures increased the transcellular permeability of phosphate. Conversely, the incubation of phosphonoformic acid, an inhibitor of NaPi cotransporters, attenuated the DNA-induced expression and activation of SLC20A1 and SLC34A2 in MC3T3-E1 cells, resulting in suppression of the osteogenic markers. The implantation of a salmon DNA scaffold disk promoted bone regeneration using calvarial defect models in 30-week-old mice. Our results indicate that the phosphate released from salmon DNA upregulated the expression and activation of NaPi cotransporters, resulting in the promotion of bone regeneration. PMID:26551467

  10. Fragment-Based Drug Design of Novel Pyranopyridones as Cell Active and Orally Bioavailable Tankyrase Inhibitors.

    PubMed

    de Vicente, Javier; Tivitmahaisoon, Parcharee; Berry, Pamela; Bolin, David R; Carvajal, Daisy; He, Wei; Huang, Kuo-Sen; Janson, Cheryl; Liang, Lena; Lukacs, Christine; Petersen, Ann; Qian, Hong; Yi, Lin; Zhuang, Yong; Hermann, Johannes C

    2015-09-10

    Tankyrase activity has been linked to the regulation of intracellular axin levels, which have been shown to be crucial for the Wnt pathway. Deregulated Wnt signaling is important for the genesis of many diseases including cancer. We describe herein the discovery and development of a new series of tankyrase inhibitors. These pyranopyridones are highly active in various cell-based assays. A fragment/structure based optimization strategy led to a compound with good pharmacokinetic properties that is suitable for in vivo studies and further development. PMID:26396691

  11. Fragment-Based Drug Design of Novel Pyranopyridones as Cell Active and Orally Bioavailable Tankyrase Inhibitors

    PubMed Central

    2015-01-01

    Tankyrase activity has been linked to the regulation of intracellular axin levels, which have been shown to be crucial for the Wnt pathway. Deregulated Wnt signaling is important for the genesis of many diseases including cancer. We describe herein the discovery and development of a new series of tankyrase inhibitors. These pyranopyridones are highly active in various cell-based assays. A fragment/structure based optimization strategy led to a compound with good pharmacokinetic properties that is suitable for in vivo studies and further development. PMID:26396691

  12. Integrity and biological activity of DNA after UV exposure.

    PubMed

    Lyon, Delina Y; Monier, Jean-Michel; Dupraz, Sébastien; Freissinet, Caroline; Simonet, Pascal; Vogel, Timothy M

    2010-04-01

    The field of astrobiology lacks a universal marker with which to indicate the presence of life. This study supports the proposal to use nucleic acids, specifically DNA, as a signature of life (biosignature). In addition to its specificity to living organisms, DNA is a functional molecule that can confer new activities and characteristics to other organisms, following the molecular biology dogma, that is, DNA is transcribed to RNA, which is translated into proteins. Previous criticisms of the use of DNA as a biosignature have asserted that DNA molecules would be destroyed by UV radiation in space. To address this concern, DNA in plasmid form was deposited onto different surfaces and exposed to UVC radiation. The surviving DNA was quantified via the quantitative polymerase chain reaction (qPCR). Results demonstrate increased survivability of DNA attached to surfaces versus non-adsorbed DNA. The DNA was also tested for biological activity via transformation into the bacterium Acinetobacter sp. and assaying for antibiotic resistance conferred by genes encoded by the plasmid. The success of these methods to detect DNA and its gene products after UV exposure (254 nm, 3.5 J/m(2)s) not only supports the use of the DNA molecule as a biosignature on mineral surfaces but also demonstrates that the DNA retained biological activity.

  13. Integrity and Biological Activity of DNA after UV Exposure

    NASA Astrophysics Data System (ADS)

    Lyon, Delina Y.; Monier, Jean-Michel; Dupraz, Sébastien; Freissinet, Caroline; Simonet, Pascal; Vogel, Timothy M.

    2010-04-01

    The field of astrobiology lacks a universal marker with which to indicate the presence of life. This study supports the proposal to use nucleic acids, specifically DNA, as a signature of life (biosignature). In addition to its specificity to living organisms, DNA is a functional molecule that can confer new activities and characteristics to other organisms, following the molecular biology dogma, that is, DNA is transcribed to RNA, which is translated into proteins. Previous criticisms of the use of DNA as a biosignature have asserted that DNA molecules would be destroyed by UV radiation in space. To address this concern, DNA in plasmid form was deposited onto different surfaces and exposed to UVC radiation. The surviving DNA was quantified via the quantitative polymerase chain reaction (qPCR). Results demonstrate increased survivability of DNA attached to surfaces versus non-adsorbed DNA. The DNA was also tested for biological activity via transformation into the bacterium Acinetobacter sp. and assaying for antibiotic resistance conferred by genes encoded by the plasmid. The success of these methods to detect DNA and its gene products after UV exposure (254 nm, 3.5 J/m2s) not only supports the use of the DNA molecule as a biosignature on mineral surfaces but also demonstrates that the DNA retained biological activity.

  14. Assessment of sperm function parameters and DNA fragmentation in ejaculated alpaca sperm (Lama pacos) by flow cytometry.

    PubMed

    Cheuquemán, C; Merino, O; Giojalas, L; Von Baer, A; Sánchez, R; Risopatrón, J

    2013-06-01

    Flow cytometry has been shown to be an accurate and highly reproducible tool for the analysis of sperm function. The main objective of this study was to assess sperm function parameters in ejaculated alpaca sperm by flow cytometry. Semen samples were collected from six alpaca males and processed for flow cytometric analysis of sperm viability and plasma membrane integrity using SYBR-14⁄PI staining; acrosomal membrane integrity using FITC-conjugated Pisum Sativum Agglutinin⁄PI labelling; mitochondrial membrane potential (Δψm) by staining with JC-1 and DNA Fragmentation Index (DFI) by TUNEL. The results indicate that the mean value for sperm viability was 57 ± 8 %. Spermatozoa with intact acrosome membrane was 87.9 ± 5%, and viable sperm with intact acrosomal membrane was 46.8 ± 9%, high mitochondrial membrane potential (Δψm) was detected in 66.32 ± 9.51% of spermatozoa and mean DFI value was 0.91 ± 0.9%. The DFI was inversely correlated with high Δψm (p = 0.04; r = -0.41) and with plasma membrane integrity (p = 0.01; r = -0.47). To our knowledge, this is the first report of the assessment on the same sample of several parameters of sperm function in ejaculated alpaca sperm by flow cytometry.

  15. Escherichia coli DnaE Polymerase Couples Pyrophosphatase Activity to DNA Replication

    PubMed Central

    Lapenta, Fabio; Montón Silva, Alejandro; Brandimarti, Renato; Lanzi, Massimiliano; Gratani, Fabio Lino; Vellosillo Gonzalez, Perceval; Perticarari, Sofia; Hochkoeppler, Alejandro

    2016-01-01

    DNA Polymerases generate pyrophosphate every time they catalyze a step of DNA elongation. This elongation reaction is generally believed as thermodynamically favoured by the hydrolysis of pyrophosphate, catalyzed by inorganic pyrophosphatases. However, the specific action of inorganic pyrophosphatases coupled to DNA replication in vivo was never demonstrated. Here we show that the Polymerase-Histidinol-Phosphatase (PHP) domain of Escherichia coli DNA Polymerase III α subunit features pyrophosphatase activity. We also show that this activity is inhibited by fluoride, as commonly observed for inorganic pyrophosphatases, and we identified 3 amino acids of the PHP active site. Remarkably, E. coli cells expressing variants of these catalytic residues of α subunit feature aberrant phenotypes, poor viability, and are subject to high mutation frequencies. Our findings indicate that DNA Polymerases can couple DNA elongation and pyrophosphate hydrolysis, providing a mechanism for the control of DNA extension rate, and suggest a promising target for novel antibiotics. PMID:27050298

  16. Expression of a naturally occurring angiotensin AT1 receptor cleavage fragment elicits caspase-activation and apoptosis

    PubMed Central

    Singh, Akannsha; deHaro, Dawn; Alam, Jawed; Re, Richard N.

    2011-01-01

    Several transmembrane receptors are documented to accumulate in nuclei, some as holoreceptors and others as cleaved receptor products. Our prior studies indicate that a population of the 7-transmembrane angiotensin type-1 receptor (AT1R) is cleaved in a ligand-augmented manner after which the cytoplasmic, carboxy-terminal cleavage fragment (CF) traffics to the nucleus. In the present report, we determine the precise cleavage site within the AT1R by mass spectrometry and Edman sequencing. Cleavage occurs between Leu(305) and Gly(306) at the junction of the seventh transmembrane domain and the intracellular cytoplasmic carboxy-terminal domain. To evaluate the function of the CF distinct from the holoreceptor, we generated a construct encoding the CF as an in-frame yellow fluorescent protein fusion. The CF accumulates in nuclei and induces apoptosis in CHO-K1 cells, rat aortic smooth muscle cells (RASMCs), MCF-7 human breast adenocarcinoma cells, and H9c2 rat cardiomyoblasts. All cell types show nuclear fragmentation and disintegration, as well as evidence for phosphotidylserine displacement in the plasma membrane and activated caspases. RASMCs specifically showed a 5.2-fold increase (P < 0.001) in CF-induced active caspases compared with control and a 7.2-fold increase (P < 0.001) in cleaved caspase-3 (Asp174). Poly(ADP-ribose)polymerase was upregulated 4.8-fold (P < 0.001) in CF expressing cardiomyoblasts and colocalized with terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL). CF expression also induces DNA laddering, the gold-standard for apoptosis in all cell types studied. CF-induced apoptosis, therefore, appears to be a general phenomenon as it is observed in multiple cell types including smooth muscle cells and cardiomyoblasts. PMID:21813711

  17. Expression of a naturally occurring angiotensin AT(1) receptor cleavage fragment elicits caspase-activation and apoptosis.

    PubMed

    Cook, Julia L; Singh, Akannsha; DeHaro, Dawn; Alam, Jawed; Re, Richard N

    2011-11-01

    Several transmembrane receptors are documented to accumulate in nuclei, some as holoreceptors and others as cleaved receptor products. Our prior studies indicate that a population of the 7-transmembrane angiotensin type-1 receptor (AT(1)R) is cleaved in a ligand-augmented manner after which the cytoplasmic, carboxy-terminal cleavage fragment (CF) traffics to the nucleus. In the present report, we determine the precise cleavage site within the AT(1)R by mass spectrometry and Edman sequencing. Cleavage occurs between Leu(305) and Gly(306) at the junction of the seventh transmembrane domain and the intracellular cytoplasmic carboxy-terminal domain. To evaluate the function of the CF distinct from the holoreceptor, we generated a construct encoding the CF as an in-frame yellow fluorescent protein fusion. The CF accumulates in nuclei and induces apoptosis in CHO-K1 cells, rat aortic smooth muscle cells (RASMCs), MCF-7 human breast adenocarcinoma cells, and H9c2 rat cardiomyoblasts. All cell types show nuclear fragmentation and disintegration, as well as evidence for phosphotidylserine displacement in the plasma membrane and activated caspases. RASMCs specifically showed a 5.2-fold increase (P < 0.001) in CF-induced active caspases compared with control and a 7.2-fold increase (P < 0.001) in cleaved caspase-3 (Asp174). Poly(ADP-ribose)polymerase was upregulated 4.8-fold (P < 0.001) in CF expressing cardiomyoblasts and colocalized with terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL). CF expression also induces DNA laddering, the gold-standard for apoptosis in all cell types studied. CF-induced apoptosis, therefore, appears to be a general phenomenon as it is observed in multiple cell types including smooth muscle cells and cardiomyoblasts.

  18. Raman Optical Activity Spectra for Large Molecules through Molecules-in-Molecules Fragment-Based Approach.

    PubMed

    Jovan Jose, K V; Raghavachari, Krishnan

    2016-02-01

    We present an efficient method for the calculation of the Raman optical activity (ROA) spectra for large molecules through the molecules-in-molecules (MIM) fragment-based method. The relevant higher energy derivatives from smaller fragments are used to build the property tensors of the parent molecule to enable the extension of the MIM method for evaluating ROA spectra (MIM-ROA). Two factors were found to be particularly important in yielding accurate results. First, the link-atom tensor components are projected back onto the corresponding host and supporting atoms through the Jacobian projection method, yielding a mathematically rigorous method. Second, the long-range interactions between fragments are taken into account by using a less computationally expensive lower level of theory. The performance of the MIM-ROA model is calibrated on the enantiomeric pairs of 10 carbohydrate benchmark molecules, with strong intramolecular interactions. The vibrational frequencies and ROA intensities are accurately reproduced relative to the full, unfragmented, results for these systems. In addition, the MIM-ROA method is employed to predict the ROA spectra of d-maltose, α-D-cyclodextrin, and cryptophane-A, yielding spectra in excellent agreement with experiment. The accuracy and performance of the benchmark systems validate the MIM-ROA model for exploring ROA spectra of large molecules.

  19. Minimizing base loss and internal fragmentation in collisionally activated dissociation of multiply deprotonated RNA.

    PubMed

    Taucher, Monika; Rieder, Ulrike; Breuker, Kathrin

    2010-02-01

    In recent years, new classes of nonprotein-coding ribonucleic acids (ncRNAs) with important cellular functions have been discovered. Of particular interest for biomolecular research and pharmaceutical developments are small ncRNAs that are involved in gene regulation, such as small interfering RNAs (21-28 nt), pre-microRNAs (70-80 nt), or riboswitches (34-200 nt). De novo sequencing of RNA by top-down mass spectrometry has so far been limited to RNA consisting of up to approximately 20 nt. We report here complete sequence coverage for 34 nt RNA (10.9 kDa), along with 30 out of 32 possible complementary ion pairs from collisionally activated dissociation (CAD) experiments. The key to minimizing undesired base loss and internal fragmentation is to minimize the internal energy of fragment ions from primary backbone cleavage. This can be achieved by collisional cooling of primary fragment ions and selection of precursor ions of relatively low negative net charge (about -0.2/nt).

  20. Characterization of airborne ice-nucleation-active bacteria and bacterial fragments

    NASA Astrophysics Data System (ADS)

    Šantl-Temkiv, Tina; Sahyoun, Maher; Finster, Kai; Hartmann, Susan; Augustin-Bauditz, Stefanie; Stratmann, Frank; Wex, Heike; Clauss, Tina; Nielsen, Niels Woetmann; Sørensen, Jens Havskov; Korsholm, Ulrik Smith; Wick, Lukas Y.; Karlson, Ulrich Gosewinkel

    2015-05-01

    Some bacteria have the unique capacity of synthesising ice-nucleation-active (INA) proteins and exposing them at their outer membrane surface. As INA bacteria enter the atmosphere, they may impact the formation of clouds and precipitation. We studied members of airborne bacterial communities for their capacity to catalyse ice formation and we report on the excretion of INA proteins by airborne Pseudomonas sp. We also observed for the first time that INA biological fragments <220 nm were present in precipitation samples (199 and 482 INA fragments per L of precipitation), which confirms the presence of submicron INA biological fragments in the atmosphere. During 14 precipitation events, strains affiliated with the genus Pseudomonas, which are known to carry ina genes, were dominant. A screening for INA properties revealed that ∼12% of the cultivable bacteria caused ice formation at ≤-7 °C. They had likely been emitted to the atmosphere from terrestrial surfaces, e.g. by convective transport. We tested the ability of isolated INA strains to produce outer membrane vesicles and found that two isolates could do so. However, only very few INA vesicles were released per INA cell. Thus, the source of the submicron INA proteinaceous particles that we detected in the atmosphere remains to be elucidated.

  1. Recombination hotspot activity of hypervariable minisatellite DNA requires minisatellite DNA binding proteins.

    PubMed

    Wahls, W P; Moore, P D

    1998-01-01

    Hypervariable minisatellite DNA repeats are found at tens of thousands of loci in the mammalian genome. These sequences stimulate homologous recombination in mammalian cells [Cell 60:95-103]. To test the hypothesis that protein-DNA interaction is required for hotspot function in vivo, we determined whether a second protein binding nearby could abolish hotspot activity. Intermolecular recombination between pairs of plasmid substrates was measured in the presence or absence of the cis-acting recombination hotspot and in the presence or absence of the second trans-acting DNA binding protein. Minisatellite DNA had hotspot activity in two cell lines, but lacked hotspot activity in two closely related cell lines expressing a site-specific helicase that bound to DNA adjacent to the hotspot. Suppression of hotspot function occurred for both replicating and non-replicating recombination substrates. These results indicate that hotspot activity in vivo requires site occupancy by minisatellite DNA binding proteins. PMID:9776980

  2. Geographic Variability and Anti-Staphylococcal Activity of the Chrysophaentins and Their Synthetic Fragments

    PubMed Central

    Keffer, Jessica L.; Hammill, Jared T.; Lloyd, John R.; Plaza, Alberto; Wipf, Peter; Bewley, Carole A.

    2012-01-01

    Drug-resistant Staphylococcus aureus is a continuing public health concern, both in the hospital and community settings. Antibacterial compounds that possess novel structural scaffolds and are effective against multiple S. aureus strains, including current drug-resistant ones, are needed. Previously, we have described the chrysophaentins, a family of bisdiarylbutene macrocycles from the chrysophyte alga Chrysophaeum taylori that inhibit the growth of S. aureus and methicillin-resistant S. aureus (MRSA). In this study we have analyzed the geographic variability of chrysophaentin production in C. taylori located at different sites on the island of St. John, U.S. Virgin Islands, and identified two new linear chrysophaentin analogs, E2 and E3. In addition, we have expanded the structure activity relationship through synthesis of fragments comprising conserved portions of the chrysophaentins, and determined the antimicrobial activity of natural chrysophaentins and their synthetic analogs against five diverse S. aureus strains. We find that the chrysophaentins show similar activity against all S. aureus strains, regardless of their drug sensitivity profiles. The synthetic chrysophaentin fragments indeed mimic the natural compounds in their spectrum of antibacterial activity, and therefore represent logical starting points for future medicinal chemistry studies of the natural products and their analogs. PMID:22822360

  3. Predictive activity profiling of drugs by topological-fragment-spectra-based support vector machines.

    PubMed

    Kawai, Kentaro; Fujishima, Satoshi; Takahashi, Yoshimasa

    2008-06-01

    Aiming at the prediction of pleiotropic effects of drugs, we have investigated the multilabel classification of drugs that have one or more of 100 different kinds of activity labels. Structural feature representation of each drug molecule was based on the topological fragment spectra method, which was proposed in our previous work. Support vector machine (SVM) was used for the classification and the prediction of their activity classes. Multilabel classification was carried out by a set of the SVM classifiers. The collective SVM classifiers were trained with a training set of 59,180 compounds and validated by another set (validation set) of 29,590 compounds. For a test set that consists of 9,864 compounds, the classifiers correctly classified 80.8% of the drugs into their own active classes. The SVM classifiers also successfully performed predictions of the activity spectra for multilabel compounds. PMID:18533712

  4. Ligation activity of fragmented ribozymes in frozen solution: implications for the RNA world

    PubMed Central

    Vlassov, Alexander V.; Johnston, Brian H.; Landweber, Laura F.; Kazakov, Sergei A.

    2004-01-01

    A vexing difficulty of the RNA world hypothesis is how RNA molecules of significant complexity could ever have evolved given their susceptibility to degradation. One way degradation might have been reduced is through low temperature. Here we report that truncated and fragmented derivatives of the hairpin ribozyme can catalyze ligation of a wide variety of RNA molecules to a given sequence in frozen solution despite having little or no activity under standard solution conditions. These results suggest that complex RNAs could have evolved in freezing environments on the early earth and perhaps elsewhere. PMID:15161960

  5. DNA replication origin activation in space and time.

    PubMed

    Fragkos, Michalis; Ganier, Olivier; Coulombe, Philippe; Méchali, Marcel

    2015-06-01

    DNA replication begins with the assembly of pre-replication complexes (pre-RCs) at thousands of DNA replication origins during the G1 phase of the cell cycle. At the G1-S-phase transition, pre-RCs are converted into pre-initiation complexes, in which the replicative helicase is activated, leading to DNA unwinding and initiation of DNA synthesis. However, only a subset of origins are activated during any S phase. Recent insights into the mechanisms underlying this choice reveal how flexibility in origin usage and temporal activation are linked to chromosome structure and organization, cell growth and differentiation, and replication stress.

  6. A DNA enzyme with N-glycosylase activity

    NASA Technical Reports Server (NTRS)

    Sheppard, T. L.; Ordoukhanian, P.; Joyce, G. F.

    2000-01-01

    In vitro evolution was used to develop a DNA enzyme that catalyzes the site-specific depurination of DNA with a catalytic rate enhancement of about 10(6)-fold. The reaction involves hydrolysis of the N-glycosidic bond of a particular deoxyguanosine residue, leading to DNA strand scission at the apurinic site. The DNA enzyme contains 93 nucleotides and is structurally complex. It has an absolute requirement for a divalent metal cation and exhibits optimal activity at about pH 5. The mechanism of the reaction was confirmed by analysis of the cleavage products by using HPLC and mass spectrometry. The isolation and characterization of an N-glycosylase DNA enzyme demonstrates that single-stranded DNA, like RNA and proteins, can form a complex tertiary structure and catalyze a difficult biochemical transformation. This DNA enzyme provides a new approach for the site-specific cleavage of DNA molecules.

  7. Effect of Culture System on Developmental Competence, Cryosurvival and DNA-Fragmentation of In Vitro Bovine Blastocysts

    PubMed Central

    Hajian, Mahdi; Hosseini, Seyed Morteza; Asgari, Vajiheh; Ostadhoosseini, Somayyeh; Forouzanfar, Mohsen; Nasr Esfahani, Mohammad Hossein

    2011-01-01

    Background This study investigated the effect of two in vitro embryo culture systems (co-culture system versus cell-free sequential-media) on developmental competence, cryosurvival and DNA- fragmentation of in vitro developed bovine blastocysts. Materials and Methods Bovine presumptive zygotes were cultured in Ménézo's B2 (B2) plus vero-cells or sequential synthetic oviductal fluid (SOF) for eight days. Subsequently, half of the expanded blastocysts developed in both groups were vitrified, warmed within 30 minutes and post- warming embryos along with their corresponding non-vitrified embryos were cultured for two additional days in the same medium used before vitrification. Embryo development, cryosurvival and apoptosis were compared between the groups. Results For non-vitrified embryos, culture in SOF significantly promoted the potency of embryos to develop into blastocysts compared with the co-culture system. The difference in post vitrification survival rate of SOF blastocysts (83.3%) was insignificant compared with co-culture (84.3%). However, while total cell number of warmed blastocysts in the co-culture system was significantly higher in the co-culture versus the sequential system (215.4 vs. 170.4), the quality of survived embryos in terms of hatching ability and apoptosis was adversely affected by co-culture compared with SOF (65.0% vs. 74.3%, and 13.5% vs. 10.0%, respectively; p<0.05). Conclusion Although co-culture system may increase the viability of embryos following cryopreservation, the potency and dynamics of blastocyst formation significantly increased with sequential media compared to the co-culture system which can compensate for the lower efficiency of sequential media for vitrification/warming purposes. PMID:24917920

  8. Assessment of sperm function parameters and DNA fragmentation in ejaculated alpaca sperm (Lama pacos) by flow cytometry.

    PubMed

    Cheuquemán, C; Merino, O; Giojalas, L; Von Baer, A; Sánchez, R; Risopatrón, J

    2013-06-01

    Flow cytometry has been shown to be an accurate and highly reproducible tool for the analysis of sperm function. The main objective of this study was to assess sperm function parameters in ejaculated alpaca sperm by flow cytometry. Semen samples were collected from six alpaca males and processed for flow cytometric analysis of sperm viability and plasma membrane integrity using SYBR-14⁄PI staining; acrosomal membrane integrity using FITC-conjugated Pisum Sativum Agglutinin⁄PI labelling; mitochondrial membrane potential (Δψm) by staining with JC-1 and DNA Fragmentation Index (DFI) by TUNEL. The results indicate that the mean value for sperm viability was 57 ± 8 %. Spermatozoa with intact acrosome membrane was 87.9 ± 5%, and viable sperm with intact acrosomal membrane was 46.8 ± 9%, high mitochondrial membrane potential (Δψm) was detected in 66.32 ± 9.51% of spermatozoa and mean DFI value was 0.91 ± 0.9%. The DFI was inversely correlated with high Δψm (p = 0.04; r = -0.41) and with plasma membrane integrity (p = 0.01; r = -0.47). To our knowledge, this is the first report of the assessment on the same sample of several parameters of sperm function in ejaculated alpaca sperm by flow cytometry. PMID:23082871

  9. DNA restriction fragment length polymorphism of HLA-DR2 haplotypes in normal individuals and in patients with rheumatoid arthritis.

    PubMed Central

    Singal, D P; Reid, B; Green, D; Bensen, W G; D'Souza, M

    1990-01-01

    A strong association between HLA-DR4 and rheumatoid arthritis (RA) has been found in a number of populations. In contrast, the incidence of DR2 is decreased in patients with RA, suggesting that this specificity may confer some protection against the disease. A number of subtypes of DR2 have been defined by serology, by responses in mixed lymphocyte culture reaction, and, more recently, by restriction fragment length polymorphism. These subtypes of DR2 are in linkage disequilibrium with different subspecificities of DQw1. It is thus likely that the distribution of these subtypic DR,DQ haplotypes in DR2 positive patients with RA may be important in understanding the genetic basis of susceptibility/resistance to RA. In this paper a study of the subtypes of DR2,DQw1 haplotypes in 18 patients with RA, who required sodium aurothiomalate as a disease remitting drug, and unrelated healthy individuals is reported. Three subtypes of DR2 haplotypes, DRw15 (Dw2),DQw1.2(DQw6), DRw15(Dw12),DQw1.12(DQw6), and DRw16(Dw21),DQw1, AZH (DQw5), were analysed with a cDNA probe for the DQ beta gene. The data show that DR2 positive patients with RA carried either the DRw15(Dw2),DQw6 or DRw15(Dw12),DQw6 haplotype. No patient with RA was positive for the DRw16(Dw21),DQw5 subspecificity. In contrast, six of 29 (21%) normal healthy DR2,DQw1 positive individuals carried the DRw16(Dw21),DQw5 haplotype. These data together with earlier results on the distribution of the DR4,DQw7 haplotype in patients with RA support the hypothesis that DQB1 chain polymorphism may be important in determining susceptibility to severe RA. Images PMID:1969727

  10. Enzymatic activities and DNA substrate specificity of Mycobacterium tuberculosis DNA helicase XPB.

    PubMed

    Balasingham, Seetha V; Zegeye, Ephrem Debebe; Homberset, Håvard; Rossi, Marie L; Laerdahl, Jon K; Bohr, Vilhelm A; Tønjum, Tone

    2012-01-01

    XPB, also known as ERCC3 and RAD25, is a 3' → 5' DNA repair helicase belonging to the superfamily 2 of helicases. XPB is an essential core subunit of the eukaryotic basal transcription factor complex TFIIH. It has two well-established functions: in the context of damaged DNA, XPB facilitates nucleotide excision repair by unwinding double stranded DNA (dsDNA) surrounding a DNA lesion; while in the context of actively transcribing genes, XPB facilitates initiation of RNA polymerase II transcription at gene promoters. Human and other eukaryotic XPB homologs are relatively well characterized compared to conserved homologs found in mycobacteria and archaea. However, more insight into the function of bacterial helicases is central to understanding the mechanism of DNA metabolism and pathogenesis in general. Here, we characterized Mycobacterium tuberculosis XPB (Mtb XPB), a 3'→5' DNA helicase with DNA-dependent ATPase activity. Mtb XPB efficiently catalyzed DNA unwinding in the presence of significant excess of enzyme. The unwinding activity was fueled by ATP or dATP in the presence of Mg(2+)/Mn(2+). Consistent with the 3'→5' polarity of this bacterial XPB helicase, the enzyme required a DNA substrate with a 3' overhang of 15 nucleotides or more. Although Mtb XPB efficiently unwound DNA model substrates with a 3' DNA tail, it was not active on substrates containing a 3' RNA tail. We also found that Mtb XPB efficiently catalyzed ATP-independent annealing of complementary DNA strands. These observations significantly enhance our understanding of the biological roles of Mtb XPB.

  11. Differential Roles of Cell Death-inducing DNA Fragmentation Factor-α-like Effector (CIDE) Proteins in Promoting Lipid Droplet Fusion and Growth in Subpopulations of Hepatocytes.

    PubMed

    Xu, Wenyi; Wu, Lizhen; Yu, Miao; Chen, Feng-Jung; Arshad, Muhammad; Xia, Xiayu; Ren, Hao; Yu, Jinhai; Xu, Li; Xu, Dijin; Li, John Zhong; Li, Peng; Zhou, Linkang

    2016-02-26

    Lipid droplets (LDs) are dynamic subcellular organelles whose growth is closely linked to obesity and hepatic steatosis. Cell death-inducing DNA fragmentation factor-α-like effector (CIDE) proteins, including Cidea, Cideb, and Cidec (also called Fsp27), play important roles in lipid metabolism. Cidea and Cidec are LD-associated proteins that promote atypical LD fusion in adipocytes. Here, we find that CIDE proteins are all localized to LD-LD contact sites (LDCSs) and promote lipid transfer, LD fusion, and growth in hepatocytes. We have identified two types of hepatocytes, one with small LDs (small LD-containing hepatocytes, SLHs) and one with large LDs (large LD-containing hepatocytes, LLHs) in the liver. Cideb is localized to LDCSs and promotes lipid exchange and LD fusion in both SLHs and LLHs, whereas Cidea and Cidec are specifically localized to the LDCSs and promote lipid exchange and LD fusion in LLHs. Cideb-deficient SLHs have reduced LD sizes and lower lipid exchange activities. Fasting dramatically induces the expression of Cidea/Cidec and increases the percentage of LLHs in the liver. The majority of the hepatocytes from the liver of obese mice are Cidea/Cidec-positive LLHs. Knocking down Cidea or Cidec significantly reduced lipid storage in the livers of obese animals. Our data reveal that CIDE proteins play differential roles in promoting LD fusion and lipid storage; Cideb promotes lipid storage under normal diet conditions, whereas Cidea and Cidec are responsible for liver steatosis under fasting and obese conditions. PMID:26733203

  12. Differential Roles of Cell Death-inducing DNA Fragmentation Factor-α-like Effector (CIDE) Proteins in Promoting Lipid Droplet Fusion and Growth in Subpopulations of Hepatocytes.

    PubMed

    Xu, Wenyi; Wu, Lizhen; Yu, Miao; Chen, Feng-Jung; Arshad, Muhammad; Xia, Xiayu; Ren, Hao; Yu, Jinhai; Xu, Li; Xu, Dijin; Li, John Zhong; Li, Peng; Zhou, Linkang

    2016-02-26

    Lipid droplets (LDs) are dynamic subcellular organelles whose growth is closely linked to obesity and hepatic steatosis. Cell death-inducing DNA fragmentation factor-α-like effector (CIDE) proteins, including Cidea, Cideb, and Cidec (also called Fsp27), play important roles in lipid metabolism. Cidea and Cidec are LD-associated proteins that promote atypical LD fusion in adipocytes. Here, we find that CIDE proteins are all localized to LD-LD contact sites (LDCSs) and promote lipid transfer, LD fusion, and growth in hepatocytes. We have identified two types of hepatocytes, one with small LDs (small LD-containing hepatocytes, SLHs) and one with large LDs (large LD-containing hepatocytes, LLHs) in the liver. Cideb is localized to LDCSs and promotes lipid exchange and LD fusion in both SLHs and LLHs, whereas Cidea and Cidec are specifically localized to the LDCSs and promote lipid exchange and LD fusion in LLHs. Cideb-deficient SLHs have reduced LD sizes and lower lipid exchange activities. Fasting dramatically induces the expression of Cidea/Cidec and increases the percentage of LLHs in the liver. The majority of the hepatocytes from the liver of obese mice are Cidea/Cidec-positive LLHs. Knocking down Cidea or Cidec significantly reduced lipid storage in the livers of obese animals. Our data reveal that CIDE proteins play differential roles in promoting LD fusion and lipid storage; Cideb promotes lipid storage under normal diet conditions, whereas Cidea and Cidec are responsible for liver steatosis under fasting and obese conditions.

  13. A study of aneuploidy and DNA fragmentation in spermatozoa of three men with sex chromosome mosaicism including a 45,X cell line.

    PubMed

    Nguyen, Minh Huong; Morel, Frederic; Bujan, Louis; May-Panloup, Pascale; De Braekeleer, Marc; Perrin, Aurore

    2015-06-01

    Meiotic segregation of mosaic males with a 45,X cell line has been little examined. In this study, we evaluated the risk of aneuploid gametes using fluorescence in situ hybridization (FISH) and DNA fragmentation in ejaculated spermatozoa of three men with sex chromosome mosaicism including a 45,X cell line. Triple- and dual-color FISH were performed. Sperm DNA fragmentation was detected using the TUNEL assay. A significantly increased frequency of XY disomic spermatozoa was observed for patients (P)1 and P2. A significant increase in diploidy and autosomal aneuploidy was found in P2 and P3, respectively. The rate of DNA fragmentation was not different from that observed in a control group. Data from the literature are scarce (only 3 cases reported), making comparison of the present data difficult, especially as the frequencies of the cell lines comprising the mosaicism differed between patients. Furthermore, the proportion of the different cell lines can differ from one tissue to another in the same patient. Whether the relative levels of the several cell lines present in the mosaicism can influence the rate of aneuploid spermatozoa remains unknown.

  14. Proteolytic fragmentation of inositol 1,4,5-trisphosphate receptors: a novel mechanism regulating channel activity?

    PubMed

    Wang, Liwei; Alzayady, Kamil J; Yule, David I

    2016-06-01

    Inositol 1,4,5-trisphosphate receptors (IP3 Rs) are a family of ubiquitously expressed intracellular Ca(2+) release channels. Regulation of channel activity by Ca(2+) , nucleotides, phosphorylation, protein binding partners and other cellular factors is thought to play a major role in defining the specific spatiotemporal characteristics of intracellular Ca(2+) signals. These properties are, in turn, believed pivotal for the selective and specific physiological activation of Ca(2+) -dependent effectors. IP3 Rs are also substrates for the intracellular cysteine proteases, calpain and caspase. Cleavage of the IP3 R has been proposed to play a role in apoptotic cell death by uncoupling regions important for IP3 binding from the channel domain, leaving an unregulated leaky Ca(2+) pore. Contrary to this hypothesis, we demonstrate following proteolysis that N- and C-termini of IP3 R1 remain associated, presumably through non-covalent interactions. Further, we show that complementary fragments of IP3 R1 assemble into tetrameric structures and retain their ability to be regulated robustly by IP3 . While peptide continuity is clearly not necessary for IP3 -gating of the channel, we propose that cleavage of the IP3 R peptide chain may alter other important regulatory events to modulate channel activity. In this scenario, stimulation of the cleaved IP3 R may support distinct spatiotemporal Ca(2+) signals and activation of specific effectors. Notably, in many adaptive physiological events, the non-apoptotic activities of caspase and calpain are demonstrated to be important, but the substrates of the proteases are poorly defined. We speculate that proteolytic fragmentation may represent a novel form of IP3 R regulation, which plays a role in varied adaptive physiological processes.

  15. [Line class retroposon is the component of the DNA polymorphic fragments pattern of trematode Himasthla elongata parthenitae].

    PubMed

    Solov'eva, A I; Galaktionov, N K; Podgornaia, O I

    2013-01-01

    We have determined that S-SAP method (Sequence specific amplification polymorphism) reveals clonal variability in the genomes of larvae of flatworm Himasthla elongata (Trematoda, Echinostomatidae). Being parthenogenetic the larvae were previously considered to be genetically homogeneous. Cloning and sequencing of a -500 bp conservative fragment (B1) from the fragments' pattern has been performed. Sequence analysis of B1 has shown that this fragment has maximum homology with LINE elements from CR1 family of Hydra and sparrow. In situ hybridization (FISH) has detected dispersed distribution of B1. Several other fragments cloned from the same lane of agarose electrophoresis correspond to conservative domain of reverse transcriptase (RT) from CR1 family. Thus, we have shown that 1) cercariae of trematode H. elongata have clonal variability; 2) the S-SAP method allows to obtaining patterns of fragment distribution characteristic of individual cercariae; 3) conservative domain of RT of CR1 family participates in the pattern of polymorphic fragments generation. Identification of the CR1 transcripts in cercariae of H. elongata transcriptome is the aim of the future work. Cloning of the variable fragments from the fragments' pattern is in progress. PMID:25509118

  16. Olesoxime suppresses calpain activation and mutant huntingtin fragmentation in the BACHD rat.

    PubMed

    Clemens, Laura E; Weber, Jonasz J; Wlodkowski, Tanja T; Yu-Taeger, Libo; Michaud, Magali; Calaminus, Carsten; Eckert, Schamim H; Gaca, Janett; Weiss, Andreas; Magg, Janine C D; Jansson, Erik K H; Eckert, Gunter P; Pichler, Bernd J; Bordet, Thierry; Pruss, Rebecca M; Riess, Olaf; Nguyen, Huu P

    2015-12-01

    Huntington's disease is a fatal human neurodegenerative disorder caused by a CAG repeat expansion in the HTT gene, which translates into a mutant huntingtin protein. A key event in the molecular pathogenesis of Huntington's disease is the proteolytic cleavage of mutant huntingtin, leading to the accumulation of toxic protein fragments. Mutant huntingtin cleavage has been linked to the overactivation of proteases due to mitochondrial dysfunction and calcium derangements. Here, we investigated the therapeutic potential of olesoxime, a mitochondria-targeting, neuroprotective compound, in the BACHD rat model of Huntington's disease. BACHD rats were treated with olesoxime via the food for 12 months. In vivo analysis covered motor impairments, cognitive deficits, mood disturbances and brain atrophy. Ex vivo analyses addressed olesoxime's effect on mutant huntingtin aggregation and cleavage, as well as brain mitochondria function. Olesoxime improved cognitive and psychiatric phenotypes, and ameliorated cortical thinning in the BACHD rat. The treatment reduced cerebral mutant huntingtin aggregates and nuclear accumulation. Further analysis revealed a cortex-specific overactivation of calpain in untreated BACHD rats. Treated BACHD rats instead showed significantly reduced levels of mutant huntingtin fragments due to the suppression of calpain-mediated cleavage. In addition, olesoxime reduced the amount of mutant huntingtin fragments associated with mitochondria, restored a respiration deficit, and enhanced the expression of fusion and outer-membrane transport proteins. In conclusion, we discovered the calpain proteolytic system, a key player in Huntington's disease and other neurodegenerative disorders, as a target of olesoxime. Our findings suggest that olesoxime exerts its beneficial effects by improving mitochondrial function, which results in reduced calpain activation. The observed alleviation of behavioural and neuropathological phenotypes encourages further

  17. Antithrombotic activities of fucosylated chondroitin sulfates and their depolymerized fragments from two sea cucumbers.

    PubMed

    Liu, Xiaoxiao; Hao, Jiejie; Shan, Xindi; Zhang, Xiao; Zhao, Xiaoliang; Li, Qinying; Wang, Xiaojiang; Cai, Chao; Li, Guoyun; Yu, Guangli

    2016-11-01

    Fucosylated chondroitin sulfate (FCS), a glycosaminoglycan extracted from the body wall of sea cucumber, is a promising antithrombotic agent. The chemical structures of FCSc isolated from sea cucumber Cucumaria frondosa and its depolymerized fragment (dFCSc) were characterized for the first time. Additionally, anticoagulant and antithrombotic activities were evaluated in vitro and in vivo. The results demonstrated that dFCSc exhibited better antithrombotic-hemorrhagic ratio than native FCSc on the electrical induced arterial thrombosis model in rats. Compared to FCSt obtained from Thelenota ananas, FCSc possessed different sulfation patterns but similar antithrombotic effects. Therefore, sulfation pattern of FCS might not affect anticoagulation and antithrombosis as much as molecular weight may. Our results proposed a new point of view to understand the structure-activity relationship of FCS as alternative agents.

  18. Antithrombotic activities of fucosylated chondroitin sulfates and their depolymerized fragments from two sea cucumbers.

    PubMed

    Liu, Xiaoxiao; Hao, Jiejie; Shan, Xindi; Zhang, Xiao; Zhao, Xiaoliang; Li, Qinying; Wang, Xiaojiang; Cai, Chao; Li, Guoyun; Yu, Guangli

    2016-11-01

    Fucosylated chondroitin sulfate (FCS), a glycosaminoglycan extracted from the body wall of sea cucumber, is a promising antithrombotic agent. The chemical structures of FCSc isolated from sea cucumber Cucumaria frondosa and its depolymerized fragment (dFCSc) were characterized for the first time. Additionally, anticoagulant and antithrombotic activities were evaluated in vitro and in vivo. The results demonstrated that dFCSc exhibited better antithrombotic-hemorrhagic ratio than native FCSc on the electrical induced arterial thrombosis model in rats. Compared to FCSt obtained from Thelenota ananas, FCSc possessed different sulfation patterns but similar antithrombotic effects. Therefore, sulfation pattern of FCS might not affect anticoagulation and antithrombosis as much as molecular weight may. Our results proposed a new point of view to understand the structure-activity relationship of FCS as alternative agents. PMID:27516281

  19. Environmental DNA (eDNA) Detection Probability Is Influenced by Seasonal Activity of Organisms

    PubMed Central

    de Souza, Lesley S.; Godwin, James C.; Renshaw, Mark A.; Larson, Eric

    2016-01-01

    Environmental DNA (eDNA) holds great promise for conservation applications like the monitoring of invasive or imperiled species, yet this emerging technique requires ongoing testing in order to determine the contexts over which it is effective. For example, little research to date has evaluated how seasonality of organism behavior or activity may influence detection probability of eDNA. We applied eDNA to survey for two highly imperiled species endemic to the upper Black Warrior River basin in Alabama, US: the Black Warrior Waterdog (Necturus alabamensis) and the Flattened Musk Turtle (Sternotherus depressus). Importantly, these species have contrasting patterns of seasonal activity, with N. alabamensis more active in the cool season (October-April) and S. depressus more active in the warm season (May-September). We surveyed sites historically occupied by these species across cool and warm seasons over two years with replicated eDNA water samples, which were analyzed in the laboratory using species-specific quantitative PCR (qPCR) assays. We then used occupancy estimation with detection probability modeling to evaluate both the effects of landscape attributes on organism presence and season of sampling on detection probability of eDNA. Importantly, we found that season strongly affected eDNA detection probability for both species, with N. alabamensis having higher eDNA detection probabilities during the cool season and S. depressus have higher eDNA detection probabilities during the warm season. These results illustrate the influence of organismal behavior or activity on eDNA detection in the environment and identify an important role for basic natural history in designing eDNA monitoring programs. PMID:27776150

  20. DNA fragmentation and oxidative stress compromise sperm motility and survival in late pregnancy exposure to omega-9 fatty acid in rats

    PubMed Central

    Oluwakemi, Oyelowo; Olufeyisipe, Adegoke

    2016-01-01

    Objective(s): The aim of this study was to evaluate the oxidative status and DNA integrity in testes of wistar rat offspring exposed to omega-9 monounsaturated (MUFA) at different times of late organogenesis. Materials and Methods: Sixty female rats were divided into six groups of 10 animals. The first group served as control and received the drug vehicle, olive oil (1 ml/kg/day). The second, third, fourth, fifth and sixth group received 1000 mg/kg of oleic acid on gestation day 15 (D15), 16 (D16), 17 (D17), 18 (D18) and 19 (D19), respectively. Male pups were allowed to attain puberty and thereafter, blood was taken for hormonal analyses. Sperm count and motility were assessed. Testes homogenate was used for the determination of biochemical variables. Testes DNA was also determined. Results: The results showed that sperm count and motility were significantly decreased in the treated groups as compared to the control. There was a marked increase in the malondialdehyde level in rat testes from all of the treated groups as compared to the control (P<0.05). DNA from the testes of rats of D19 had the highest level of fragmentation as compared to the control. Conclusion: Omega-9 MUFA exposure in utero imposes negative effects on sperm variables and increases the level of sperm DNA fragmentation and oxidative stress. PMID:27403258

  1. Paramecium putrinum (Ciliophora, Protozoa): the first insight into the variation of two DNA fragments - molecular support for the existence of cryptic species.

    PubMed

    Tarcz, Sebastian; Rautian, Maria; Potekhin, Alexey; Sawka, Natalia; Beliavskaya, Alexandra; Kiselev, Andrey; Nekrasova, Irina; Przyboś, Ewa

    2014-04-01

    Paramecium putrinum (Claparede & Lachmann 1858) is one of the smallest (80-140 μm long) species of the genus Paramecium. Although it commonly occurs in freshwater reservoirs, no molecular studies of P. putrinum have been conducted to date. Herein we present an assessment of molecular variation in 27 strains collected from widely separated populations by using two selected DNA fragments (ITS1-5.8S-ITS2-5'LSU rDNA and COI mtDNA). Both the trees and haplotype networks reconstructed for both genome fragments show that the studied strains of P. putrinum form five main haplogroups. The mean distance between the studied strains is p-distance=0.007/0.068 (rDNA/COI) and exhibits similar variability as that between P. bursaria syngens. Based on these data, one could hypothesize that the clusters revealed in the present study may correspond to previously reported syngens and that there are at least five cryptic species within P. putrinum.

  2. Sphingosine, a Modulator of Human Translesion DNA Polymerase Activity*

    PubMed Central

    Kamath-Loeb, Ashwini S.; Balakrishna, Sharath; Whittington, Dale; Shen, Jiang-Cheng; Emond, Mary J.; Okabe, Takayoshi; Masutani, Chikahide; Hanaoka, Fumio; Nishimura, Susumu; Loeb, Lawrence A.

    2014-01-01

    Translesion (TLS) DNA polymerases are specialized, error-prone enzymes that synthesize DNA across bulky, replication-stalling DNA adducts. In so doing, they facilitate the progression of DNA synthesis and promote cell proliferation. To potentiate the effect of cancer chemotherapeutic regimens, we sought to identify inhibitors of TLS DNA polymerases. We screened five libraries of ∼3000 small molecules, including one comprising ∼600 nucleoside analogs, for their effect on primer extension activity of DNA polymerase η (Pol η). We serendipitously identified sphingosine, a lipid-signaling molecule that robustly stimulates the activity of Pol η by ∼100-fold at low micromolar concentrations but inhibits it at higher concentrations. This effect is specific to the Y-family DNA polymerases, Pols η, κ, and ι. The addition of a single phosphate group on sphingosine completely abrogates this effect. Likewise, the inclusion of other sphingolipids, including ceramide and sphingomyelin to extension reactions does not elicit this response. Sphingosine increases the rate of correct and incorrect nucleotide incorporation while having no effect on polymerase processivity. Endogenous Pol η activity is modulated similarly as the recombinant enzyme. Importantly, sphingosine-treated cells exhibit increased lesion bypass activity, and sphingosine tethered to membrane lipids mimics the effects of free sphingosine. Our studies have uncovered sphingosine as a modulator of TLS DNA polymerase activity; this property of sphingosine may be associated with its known role as a signaling molecule in regulating cell proliferation in response to cellular stress. PMID:24928506

  3. Mechanism of release of active alpha subunit from dimeric alpha beta avian myeloblastosis virus DNA polymerase.

    PubMed Central

    Papas, T S; Marciani, D J; Samuel, K; Chirikjian, J G

    1976-01-01

    Storage of the dimeric (alphabeta) form of avian myeloblastosis virus (AMV) DNA polymerase in glycerol resulted in the release of the smaller alpha subunit, as detected by glycerol gradient sedimentation. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of enzyme stored in glycerol showed the concomitant appearance of several polypeptides and a lowering in the level of both beta and alpha components. This reduction appears to be the result of cleavages introduced by traces of hydrolytic activity present in glycerol samples. An enhancement of alpha subunit released, as detected by activity profile, was also achieved upon direct but limited exposure of purified avian myeloblastosis virus DNA polymerase to carboxymethyl-cellulose-bound trypsin matrix. Electrophoretic analysis of digested enzyme revealed a progressive fragmentation, with simultaneous increase in the alpha subunit and decrease in the beta subunit. PMID:58080

  4. DNA damage and estrogenic activity induced by the environmental pollutant 2-nitrotoluene and its metabolite

    PubMed Central

    Watanabe, Chigusa; Egami, Takashi; Midorikawa, Kaoru; Hiraku, Yusuke; Oikawa, Shinji; Kawanishi, Shosuke

    2010-01-01

    Objectives The environmental pollutant 2-nitrotoluene (2-NO2-T) is carcinogenic and reproductively toxic in animals. In this study, we elucidated the mechanisms of its carcinogenicity and reproductive toxicity. Methods We examined DNA damage induced by 2-NO2-T and its metabolite, 2-nitrosotoluene (2-NO-T), using 32P-5′-end-labeled DNA. We measured 8-oxo-7, 8-dihydro-2′-deoxyguanosine (8-oxodG), an indicator of oxidative DNA damage, in calf thymus DNA and cellular DNA in cultured human leukemia (HL-60) cells treated with 2-NO2-T and 2-NO-T. 8-Oxoguanine DNA glycosylase (OGG1) gene expression in HL-60 cells was measured by real-time polymerase chain reaction (PCR). We examined estrogenic activity using an E-screen assay and a surface plasmon resonance (SPR) sensor. Results In experiments with isolated DNA fragments, 2-NO-T induced oxidative DNA damage in the presence of Cu (II) and β-nicotinamide adenine dinucleotide disodium salt (reduced form) (NADH), while 2-NO2-T did not. 2-NO-T significantly increased levels of 8-oxodG in HL-60 cells. Real-time polymerase chain reaction (PCR) analysis revealed upregulation of OGG1 gene expression induced by 2-NO-T. An E-screen assay using the human breast cancer cell line MCF-7 revealed that 2-NO2-T induced estrogen-dependent cell proliferation. In contrast, 2-NO-T decreased the cell number and suppressed 17β-estradiol-induced cell proliferation. The data obtained with the SPR sensor using estrogen receptor α and the estrogen response element supported the results of the E-screen assay. Conclusions Oxidative DNA damage caused by 2-NO-T and estrogen-disrupting effects caused by 2-NO2-T and 2-NO-T may play a role in the reproductive toxicity and carcinogenicity of these entities. PMID:21432561

  5. A DNA 3′-phosphatase functions in active DNA demethylation in Arabidopsis

    PubMed Central

    Martínez-Macías, María Isabel; Qian, Weiqiang; Miki, Daisuke; Pontes, Olga; Liu, Yunhua; Tang, Kai; Liu, Renyi; Morales-Ruiz, Teresa; Ariza, Rafael R.; Roldán-Arjona, Teresa; Zhu, Jian-Kang

    2012-01-01

    SUMMARY DNA methylation is an important epigenetic mark established by the combined actions of methylation and demethylation reactions. Plants use a base excision repair pathway for active DNA demethylation. After 5-methylcytosine removal, the Arabidopsis DNA glycosylase/lyase ROS1 incises the DNA backbone and part of the product has a single-nucleotide gap flanked by 3′- and 5′-phosphate termini. Here we show that the DNA phosphatase ZDP removes the blocking 3′-phosphate, allowing subsequent DNA polymerization and ligation steps needed to complete the repair reactions. ZDP and ROS1 interact in vitro and co-localize in vivo in nucleoplasmic foci. Extracts from zdp mutant plants are unable to complete DNA demethylation in vitro, and the mutations cause DNA hypermethylation and transcriptional silencing of a reporter gene. Genome-wide methylation analysis in zdp mutant plants identified hundreds of hypermethylated endogenous loci. Our results show that ZDP functions downstream of ROS1 in one branch of the active DNA demethylation pathway. PMID:22325353

  6. Melatonin sensitizes human cervical cancer HeLa cells to cisplatin-induced cytotoxicity and apoptosis: effects on oxidative stress and DNA fragmentation.

    PubMed

    Pariente, Roberto; Pariente, José A; Rodríguez, Ana B; Espino, Javier

    2016-01-01

    Melatonin has antitumor activity via several mechanisms including its antiproliferative and pro-apoptotic effects as well as its potent antioxidant actions, although recent evidence has indicated that melatonin may perform pro-oxidant actions in tumor cells. Therefore, melatonin may be useful in the treatment of tumors in association with chemotherapy drugs. This study was intended to evaluate the in vitro effect of melatonin on the cytotoxic and pro-apoptotic actions of various chemotherapeutic agents in cervical cancer HeLa cells. Herein, we found that both melatonin and three of the chemotherapeutic drugs tested, namely cisplatin (CIS), 5-fluorouracil (5-FU), and doxorubicin, induced a decrease in HeLa cell viability. Furthermore, melatonin significantly increased the cytotoxic effect of such chemotherapeutic agents. Consistently, costimulation of HeLa cells with any chemotherapeutic agent in the presence of melatonin further increased caspase-3 activation, particularly in CIS- and 5-FU-challenged cells. Likewise, concomitant treatments with melatonin and CIS significantly enhanced the ratio of cells entering mitochondrial apoptosis due to reactive oxygen species (ROS) overproduction, substantially augmented the population of apoptotic cells, and markedly enlarged DNA fragmentation compared to the treatments with CIS alone. Nonetheless, melatonin only displayed moderate chemosensitizing effects in 5-FU-stimulated HeLa cells, as suggested by slight increments in the percentage of cells stimulated for ROS production and in the proportion of early apoptotic cells compared to the treatments with 5-FU alone. In summary, our findings provided evidence that in vitro melatonin strongly enhances CIS-induced cytotoxicity and apoptosis in HeLa cells and, hence, the indoleamine could be potentially applied to cervical cancer treatment as a powerful synergistic agent.

  7. Panax ginseng extract modulates oxidative stress, DNA fragmentation and up-regulate gene expression in rats sub chronically treated with aflatoxin B1 and fumonisin B 1.

    PubMed

    Hassan, Aziza M; Abdel-Aziem, Sekena H; El-Nekeety, Aziza A; Abdel-Wahhab, Mosaad A

    2015-10-01

    Aflatoxins and fumonisins are important food-borne mycotoxins implicated in human health and have cytotoxic effects. The aims of the current study were to evaluate the protective role of Panax ginseng extract (PGE) against the synergistic effect of subchronic administration of aflatoxin B1 (AFB1) and fumonisin B1 (FB1) on DNA and gene expression in rat. Female Sprague-Dawley rats were divided into eight groups (ten rats/group) and treated for 12 weeks including the control group, the group having received AFB1 (80 µg/kg bw), the group having received FB1 (100 µg/kg bw), the group having received AFB1 plus FB1 and the groups having received PGE (20 mg/kg bw) alone or with AFB1 and/or FB1. At the end of experiment, liver and kidney were collected for the determination of DNA fragmentation, lipid peroxidation (LP), glutathione (GSH) contents and alterations in gene expression. The results indicated that these mycotoxins increased DNA fragmentation, LP and decreased GSH content in liver and kidney and down-regulated gene expression of antioxidants enzymes. The combined treatments with AFB1 and/or FB1 plus PGE suppressed DNA fragmentation only in the liver, normalized LP and increased GSH in the liver and kidney as well as up-regulated the expression of GPx, SOD1 and CAT mRNA. It could be concluded that AFB1 and FB1 have synergistic genotoxic effects. PGE induced protective effects against their oxidative stress and genotoxicity through its antioxidant properties. PMID:24748134

  8. Inhibition of DNA topoisomerase I activity and induction of apoptosis by thiazacridine derivatives

    SciTech Connect

    Barros, Francisco W.A.; Bezerra, Daniel P.; Ferreira, Paulo M.P.; Cavalcanti, Bruno C.; Silva, Teresinha G.; Pitta, Marina G.R.; Lima, Maria do C.A. de; Galdino, Suely L.; Pitta, Ivan da R.; Costa-Lotufo, Letícia V.; Moraes, Manoel O.; Burbano, Rommel R.; Guecheva, Temenouga N.; Henriques, João A.P.; Pessoa, Cláudia

    2013-04-01

    Thiazacridine derivatives (ATZD) are a novel class of cytotoxic agents that combine an acridine and thiazolidine nucleus. In this study, the cytotoxic action of four ATZD were tested in human colon carcinoma HCT-8 cells: (5Z)-5-acridin-9-ylmethylene-3-(4-methylbenzyl)-thiazolidine-2,4-dione — AC-4; (5ZE)-5-acridin-9-ylmethylene-3-(4-bromo-benzyl)-thiazolidine-2,4-dione — AC-7; (5Z)-5-(acridin-9-ylmethylene)-3-(4-chloro-benzyl) -1,3-thiazolidine-2,4-dione — AC-10; and (5ZE)-5-(acridin-9-ylmethylene)-3-(4-fluoro-benzyl)-1,3-thiazolidine-2, 4-dione — AC-23. All of the ATZD tested reduced the proliferation of HCT-8 cells in a concentration- and time-dependent manner. There were significant increases in internucleosomal DNA fragmentation without affecting membrane integrity. For morphological analyses, hematoxylin–eosin and acridine orange/ethidium bromide were used to stain HCT-8 cells treated with ATZD, which presented the typical hallmarks of apoptosis. ATZD also induced mitochondrial depolarisation and phosphatidylserine exposure and increased the activation of caspases 3/7 in HCT-8 cells, suggesting that this apoptotic cell death was caspase-dependent. In an assay using Saccharomyces cerevisiae mutants with defects in DNA topoisomerases 1 and 3, the ATZD showed enhanced activity, suggesting an interaction between ATZD and DNA topoisomerase enzyme activity. In addition, ATZD inhibited DNA topoisomerase I action in a cell-free system. Interestingly, these ATZD did not cause genotoxicity or inhibit the telomerase activity in human lymphocyte cultures at the experimental levels tested. In conclusion, the ATZD inhibited the DNA topoisomerase I activity and induced tumour cell death through apoptotic pathways. - Highlights: ► Thiazacridine derivatives induce mitochondrial-dependent apoptotic cell death. ► Thiazacridine derivatives inhibit DNA topoisomerase I action. ► Thiazacridine derivatives failed to cause genotoxicity on human lymphocytes.

  9. Vanillin causes the activation of Yap1 and mitochondrial fragmentation in Saccharomyces cerevisiae.

    PubMed

    Nguyen, Trinh Thi My; Iwaki, Aya; Ohya, Yoshikazu; Izawa, Shingo

    2014-01-01

    Vanillin and furfural are derived from lignocellulosic biomass and inhibit yeast growth and fermentation as biomass conversion inhibitors. Furfural has been shown to induce oxidative stress in Saccharomyces cerevisiae. Since there has been no report on the relationship between vanillin and oxidative stress, we investigated whether vanillin caused oxidative stress in yeast cells. We showed that vanillin caused the nuclear accumulation of Yap1, an oxidative stress responsive transcription factor, and subsequent transcriptional activation of Yap1-target genes. The growth of the null mutant of the YAP1 gene (yap1Δ) was delayed in the presence of vanillin, which indicated that Yap1 plays a role in the acquisition of tolerance to vanillin. We also demonstrated that vanillin facilitated the fragmentation of mitochondria. These findings suggest that the toxicity of vanillin involves damage induced by oxidative stress.

  10. DNA binding, antioxidant activity, and DNA damage protection of chiral macrocyclic Mn(III) salen complexes.

    PubMed

    Pandya, Nirali; Khan, Noor-ul H; Prathap, K Jeya; Kureshy, Rukhsana I; Abdi, Sayed H R; Mishra, Sandhya; Bajaj, Hari C

    2012-12-01

    We are reporting the synthesis, characterization, and calf thymus DNA binding studies of novel chiral macrocyclic Mn(III) salen complexes S-1, R-1, S-2, and R-2. These chiral complexes showed ability to bind with DNA, where complex S-1 exhibits the highest DNA binding constant 1.20 × 10(6) M(-1). All the compounds were screened for superoxide and hydroxyl radical scavenging activities; among them, complex S-1 exhibited significant activity with IC(50) 1.36 and 2.37 μM, respectively. Further, comet assay was used to evaluate the DNA damage protection in white blood cells against the reactive oxygen species wherein complex S-1 was found effective in protecting the hydroxyl radicals mediated plasmid and white blood cells DNA damage.

  11. Fragment-based discovery of mexiletine derivatives as orally bioavailable inhibitors of urokinase-type plasminogen activator.

    PubMed

    Frederickson, Martyn; Callaghan, Owen; Chessari, Gianni; Congreve, Miles; Cowan, Suzanna R; Matthews, Julia E; McMenamin, Rachel; Smith, Donna-Michelle; Vinković, Mladen; Wallis, Nicola G

    2008-01-24

    Fragment-based lead discovery has been applied to urokinase-type plasminogen activator (uPA). The (R)-enantiomer of the orally active drug mexiletine 5 (a fragment hit from X-ray crystallographic screening) was the chemical starting point. Structure-aided design led to elaborated inhibitors that retained the key interactions of (R)-5 while gaining extra potency by simultaneously occupying neighboring regions of the active site. Subsequent optimization led to 15, a potent, selective, and orally bioavailable inhibitor of uPA. PMID:18163548

  12. Characterization of the genome of molluscum contagiosum virus type 1 between the genome coordinates 0.045 and 0.075 by DNA nucleotide sequence analysis of a 5.6-kb HindIII/MluI DNA fragment.

    PubMed

    Hadasch, R P; Bugert, J J; Janssen, W; Darai, G

    1993-01-01

    The complete DNA nucleotide sequence of a HindIII/MluI genomic DNA fragment (0.045-0.075 viral map units) from molluscum contagiosum virus type 1 (MCV-1) was determined. The HindIII/MluI DNA fragment comprises 5,646 bp with a base composition of 64.4% G + C and 35.6% A + T. The DNA sequence contains many perfect direct repeats. A cluster of three repetitive DNA elements R1, R2 and R3, with a complex structural arrangement was detected between nucleotide positions 1802 and 2107. The unit length (box) of the repetitive DNA sequences was found to be 6 bp (15 boxes) and 9 bp (24 boxes) for R1 and R2, respectively. The repetitive DNA element R3 is organized in fifteen boxes (15 bp) in which a unit length of R1 is combined with a unit length of R2. The arrangement of the repetition R3 within the DNA sequences of this particular region of the MCV-1 genome was found to be (5 x R3) + (2 x R2) + (1 x R3) + (6 x R2) + (1 x R3) + (1 x R2) + (8 x R3). Twenty-three open reading frames (ORFs) of 60-1,175 amino acid (AA) residues were detected. The largest ORF (number 17) comprises 1,175 AA with a predicted molecular weight of 126 kD. This ORF harbors a promoter signal which is located 21 nucleotides upstream from the start codon and is very similar to the early promoter signals known for vaccinia virus. This putative protein contains glutamine-enriched regions between AA residues 427 and 682 which show homologies to the corresponding glutamine-enriched regions of a variety of cellular genes like human transcriptional initiation factor (TFIID: TATA box factor).

  13. Cytotoxic activity and DNA-binding properties of isoeuxanthone derivatives.

    PubMed

    Wang, Hui Fang; Yan, Hong; Gao, Xianghua; Niu, Baolong; Guo, Ruijie; Wei, Liqiao; Xu, Bingshe; Tang, Ning

    2014-01-01

    In this study, the interactions of different groups substituted isoeuxanthone derivatives with calf thymus DNA (ct DNA) were investigated by spectrophotometric methods and viscosity measurements. Results indicated that the xanthone derivatives could intercalate into the DNA base pairs by the plane of xanthone ring and the various substituents may influence the binding affinity with DNA according to the calculated quenching constant values. Furthermore, two tumor cell lines including the human cervical cancer cell line (HeLa) and human hepatocellular liver carcinoma cell line (HepG2) were used to evaluate the cytotoxic activities of xanthone derivatives by acid phosphatase assay. Analyses showed that the oxiranylmethoxy substituted xanthone exhibited more effective cytotoxic activity against the cancer cells than the other substituted xanthones. The effects on the inhibition of tumor cells in vitro agreed with the studies of DNA-binding. PMID:24583780

  14. DNA hybridization activity of single-stranded DNA-conjugated gold nanoparticles used as probes for DNA detection

    NASA Astrophysics Data System (ADS)

    Kira, Atsushi; Matsuo, Kosuke; Nakajima, Shin-ichiro

    2016-02-01

    Colloidal nanoparticles (NPs) have potential applications in bio-sensing technologies as labels or signal enhancers. In order to meet demands for a development of biomolecular assays by a quantitative understanding of single-molecule, it is necessary to regulate accuracy of the NPs probes modified with biomolecules to optimize the characteristics of NPs. However, to our knowledge, there is little information about the structural effect of conjugated biomolecules to the NPs. In this study, we investigated the contribution of a density of single-stranded DNA (ssDNA) conjugating gold NP to hybridization activity. Hybridization activity decreased in accordance with increases in the density of attached ssDNAs, likely due to electrostatic repulsion generated by negatively charged phosphate groups in the ssDNA backbone. These results highlight the importance of controlling the density of ssDNAs attached to the surface of NPs used as DNA detection probes.

  15. Exogenous Alpha-Synuclein Alters Pre- and Post-Synaptic Activity by Fragmenting Lipid Rafts.

    PubMed

    Emanuele, Marco; Esposito, Alessandro; Camerini, Serena; Antonucci, Flavia; Ferrara, Silvia; Seghezza, Silvia; Catelani, Tiziano; Crescenzi, Marco; Marotta, Roberto; Canale, Claudio; Matteoli, Michela; Menna, Elisabetta; Chieregatti, Evelina

    2016-05-01

    Alpha-synuclein (αSyn) interferes with multiple steps of synaptic activity at pre-and post-synaptic terminals, however the mechanism/s by which αSyn alters neurotransmitter release and synaptic potentiation is unclear. By atomic force microscopy we show that human αSyn, when incubated with reconstituted membrane bilayer, induces lipid rafts' fragmentation. As a consequence, ion channels and receptors are displaced from lipid rafts with consequent changes in their activity. The enhanced calcium entry leads to acute mobilization of synaptic vesicles, and exhaustion of neurotransmission at later stages. At the post-synaptic terminal, an acute increase in glutamatergic transmission, with increased density of PSD-95 puncta, is followed by disruption of the interaction between N-methyl-d-aspartate receptor (NMDAR) and PSD-95 with ensuing decrease of long term potentiation. While cholesterol loading prevents the acute effect of αSyn at the presynapse; inhibition of casein kinase 2, which appears activated by reduction of cholesterol, restores the correct localization and clustering of NMDARs.

  16. Ambivalent incorporation of the fluorescent cytosine analogues tC and tCo by human DNA polymerase alpha and Klenow fragment.

    PubMed

    Stengel, Gudrun; Purse, Byron W; Wilhelmsson, L Marcus; Urban, Milan; Kuchta, Robert D

    2009-08-11

    We studied the incorporation of the fluorescent cytidine analogues 1,3-diaza-2-oxophenothiazine (tC) and 1,3-diaza-2-oxophenoxazine (tCo) by human DNA polymerase alpha and Klenow fragment of DNA polymerase I (Escherichia coli). These tricyclic nucleobases possess the regular hydrogen bonding interface of cytosine but are significantly expanded in size toward the major groove. Despite the size alteration, both DNA polymerases insert dtCTP and dtCoTP with remarkable catalytic efficiency. Polymerization opposite guanine is comparable to the insertion of dCTP, while the insertion opposite adenine is only approximately 4-11 times less efficient than the formation of a T-A base pair. Both enzymes readily extend the formed tC(o)-G and tC(o)-A base pairs and can incorporate at least four consecutive nucleotide analogues. Consistent with these results, both DNA polymerases efficiently polymerize dGTP and dATP when tC and tCo are in the template strand. Klenow fragment inserts dGTP with a 4-9-fold higher probability than dATP, while polymerase alpha favors dGTP over dATP by a factor of 30-65. Overall, the properties of tC(o) as a templating base and as an incoming nucleotide are surprisingly symmetrical and may be universal for A and B family DNA polymerases. This finding suggests that the aptitude for ambivalent base pairing is a consequence of the electronic properties of tC(o). PMID:19580325

  17. Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl-paper and rapid hybridization by using dextran sulfate.

    PubMed Central

    Wahl, G M; Stern, M; Stark, G R

    1979-01-01

    We describe a technique for transferring electrophoretically separated bands of double-stranded DNA from agarose gels to diazobenzyloxymethyl-paper. Controlled cleavage of the DNA in situ by sequential treatment with dilute acid, which causes partial depurination, and dilute alkali, which causes cleavage and separation of the strands, allows the DNA to leave the gel rapidly and completely, with an efficiency independent of its size. Covalent attachment of DNA to paper prevents losses during subsequent hybridization and washing steps and allows a single paper to be reused many times. Ten percent dextran sulfate, originally found to accelerate DNA hybridization in solution by about 10-fold [J.G. Wetmur (1975) Biopolymers 14, 2517-2524], accelerates the rate of hybridization of randomly cleaved double-stranded DNA probes to immobilized nucleic acids by as much as 100-fold, without increasing the background significantly. Images PMID:291033

  18. Stock Structure and Homing Fidelity in Gulf of Mexico Sturgeon (Acipenser Oxyrinchus Desotoi) Based on Restriction Fragment Length Polymorphism and Sequence Analyses of Mitochondrial DNA

    PubMed Central

    Stabile, J.; Waldman, J. R.; Parauka, F.; Wirgin, I.

    1996-01-01

    Efforts have been proposed worldwide to restore sturgeon populations through the use of hatcheries to supplement natural reproduction and to reintroduce sturgeon where they have become extinct. We examined the population structure and inferred the extent of homing in the anadromous Gulf of Mexico (Gulf) sturgeon (Acipenser oxyrinchus desotoi). Restriction fragment length polymorphism and control region sequence analyses of mitochondrial DNA (mtDNA) were used to identify haplotypes of Gulf sturgeon specimens obtained from eight drainages spanning the subspecies' entire distribution from Louisiana to Florida. Significant differences in haplotype frequencies indicated substantial geographic structuring of populations. A minimum of four regional or river-specific populations were identified (from west to east): (1) Pearl River, LA and Pascagoula River, MS, (2) Escambia and Yellow rivers, FL, (3) Choctawhatchee River, FL, and (4) Apalachicola, Ochlockonee, and Suwannee rivers, FL. Estimates of maternally mediated gene flow between any pair of the four regional or river-specific stocks ranged between 0.15 to 1.2. Tandem repeats in the mtDNA control region of Gulf sturgeon were not perfectly conserved. This result, together with an absence of heteroplasmy and length variation in Gulf sturgeon mtDNA, indicates that the molecular mechanisms of mtDNA control region sequence evolution differ among acipenserids. PMID:8889537

  19. Electrochemical detection of synthetic DNA and native 16S rRNA fragments on a microarray using a biotinylated intercalator as coupling site for an enzyme label.

    PubMed

    Zimdars, Andreas; Gebala, Magdalena; Hartwich, Gerhard; Neugebauer, Sebastian; Schuhmann, Wolfgang

    2015-10-01

    The direct electrochemical detection of synthetic DNA and native 16S rRNA fragments isolated from Escherichia coli is described. Oligonucleotides are detected via selective post-labeling of double stranded DNA and DNA-RNA duplexes with a biotinylated intercalator that enables high-specific binding of a streptavidin/alkaline phosphatase conjugate. The alkaline phosphatase catalyzes formation of p-aminophenol that is subsequently oxidized at the underlying gold electrode and hence enables the detection of complementary hybridization of the DNA capture strands due to the enzymatic signal amplification. The hybridization assay was performed on microarrays consisting of 32 individually addressable gold microelectrodes. Synthetic DNA strands with sequences representing six different pathogens which are important for the diagnosis of urinary tract infections could be detected at concentrations of 60 nM. Native 16S rRNA isolated from the different pathogens could be detected at a concentration of 30 fM. Optimization of the sensing surface is described and influences on the assay performance are discussed.

  20. Synchronization of DNA array replication kinetics

    NASA Astrophysics Data System (ADS)

    Manturov, Alexey O.; Grigoryev, Anton V.

    2016-04-01

    In the present work we discuss the features of the DNA replication kinetics at the case of multiplicity of simultaneously elongated DNA fragments. The interaction between replicated DNA fragments is carried out by free protons that appears at the every nucleotide attachment at the free end of elongated DNA fragment. So there is feedback between free protons concentration and DNA-polymerase activity that appears as elongation rate dependence. We develop the numerical model based on a cellular automaton, which can simulate the elongation stage (growth of DNA strands) for DNA elongation process with conditions pointed above and we study the possibility of the DNA polymerases movement synchronization. The results obtained numerically can be useful for DNA polymerase movement detection and visualization of the elongation process in the case of massive DNA replication, eg, under PCR condition or for DNA "sequencing by synthesis" sequencing devices evaluation.

  1. The influence of fibrin(ogen) fragments on the kinetic parameters of the tissue-type plasminogen-activator-mediated activation of different forms of plasminogen.

    PubMed

    Nieuwenhuizen, W; Voskuilen, M; Vermond, A; Hoegee-de Nobel, B; Traas, D W

    1988-05-16

    In the present work we have determined Km,app and kcat,app values for tissue-type plasminogen-activator-catalyzed activation of Glu-plasminogen, Lys-plasminogen and mini-plasminogen in the absence and in the presence of fibrinogen-derived fragments. These were CNBr fragment 2, the A alpha chain remnant of CNBr fragment 2 (A alpha 148-207) and plasmin-generated fragment D-EGTA. The time course of plasmin formation from the various types of plasminogen (plg) was measured spectrophotometrically in a coupled assay system where D-valyl-L-leucyl-L-lysine p-nitroanilide served as a plasmin substrate. The kinetic constants are summarized as follows. (Values in parentheses are concentrations at which the minimum Km,app and maximum kcat,app value is reached.) (Table: see text). In conclusion our results show that CNBr fragment 2, A alpha 148-207 and to some extent D-EGTA mimic the accelerating effect of fibrin. The first two of these fragments did not accelerate activation of mini-plasminogen, lacking the kringle structures I-IV. This suggests that the stimulating effects of these two fragments were dependent on the presence of kringles I-IV of the plasminogen molecule. PMID:3131143

  2. The antioxidant activity of sulphurous thermal water protects against oxidative DNA damage: a comet assay investigation.

    PubMed

    Braga, P C; Ceci, C; Marabini, L; Nappi, G

    2013-04-01

    Various studies have recently shown that sulphurous waters acts against the oxidants released during respiratory bursts of human neutrophils, and free radicals such as HO•, O2¯•, Tempol and Fremy's salt. However, there is still a lack of data concerning their direct protection of DNA. The aim of this study was to investigate the antigenotoxicity effects of sulphurous water, which has never been previously investigated for this purpose, using the alkaline single cell gel electrophoresis (SCGE) approach (comet assay). The comet assay is a sensitive method for assessing DNA fragmentation in individual cells in genotoxicity studies but can also be used to investigate the activity of agents that protect against DNA damage. The extent of migration was measured by means of SCGE, and DNA damage was expressed as tail moment. All of these assays were made using natural sulphurous water, degassed sulphurous water (no detectable HS), and reconstituted sulphurous water (degassed plus NaHS). DNA damages was significantly inhibited by natural water with HS concentrations of 5.0 and 2.5 μg/mL. The use of degassed water did not lead to any significant differences from baseline values, whereas the reconstituted water led to significant results overlapping those obtained using natural water. These findings confirm the importance of the presence of an HS group (reductive activity) and indicate that, in addition to their known mucolytic activity and trophic effects on respiratory mucosa, HS groups in sulphurous water also protect against oxidative DNA damage and contribute to the water's therapeutic effects on upper and lower airway inflammatory diseases.

  3. The enantioselective immunoaffinity extraction of an optically active ibuprofen-modified peptide fragment.

    PubMed

    Ikegawa, S; Isriyanthi, N M; Nagata, M; Yahata, K; Ito, H; Mano, N; Goto, J

    2001-09-01

    Acyl glucuronides are known to produce the covalently bound protein adducts which may be the cause of hypersensitivity and toxic responses to acidic drugs. The structural analysis of the drug-protein adducts is therefore needed. From this point of view, we developed an enantioselective immunoaffinity extraction method, which employs an immobilized antibody to specifically isolate peptide fragments that have been modified with optically active ibuprofen. Rabbits were immunized with (S)-ibuprofen coupled to bovine serum albumin through a beta-alanine group. The elicited antibody strongly recognizes the asymmetric center and the isobutylphenyl moiety of (S)-ibuprofen and its conjugates but has a low affinity for their anti podes. A 0.5-mL aliquot of the immunosorbent (11.5 mg of IgG/mL gel) prepared by immobilization of the antibody was capable of retaining up to 1 microg of (S)-ibuprofen. When a mixture of substance P with (R)- and (S)-ibuprofen-modified substance P was loaded on the immunosorbent, the (S)-ibuprofen-modified substance P was selectively retained. The modified peptide was quantitatively recovered by elution with 10 mM ammonium acetate buffer (pH 5.0)/methanol (5:95, v/v). The proposed method would be useful for the structural characterization of optically active ibuprofen-modified human serum albumin.

  4. Single Chain Variable Fragment against Nicastrin Inhibits the γ-Secretase Activity*

    PubMed Central

    Hayashi, Ikuo; Takatori, Sho; Urano, Yasuomi; Iwanari, Hiroko; Isoo, Noriko; Osawa, Satoko; Fukuda, Maiko A.; Kodama, Tatsuhiko; Hamakubo, Takao; Li, Tong; Wong, Philip C.; Tomita, Taisuke; Iwatsubo, Takeshi

    2009-01-01

    γ-Secretase is a membrane protein complex that catalyzes intramembrane proteolysis of a variety of substrates including the amyloid β precursor protein of Alzheimer disease. Nicastrin (NCT), a single-pass membrane glycoprotein that harbors a large extracellular domain, is an essential component of the γ-secretase complex. Here we report that overexpression of a single chain variable fragment (scFv) against NCT as an intrabody suppressed the γ-secretase activity. Biochemical analyses revealed that the scFv disrupted the proper folding and the appropriate glycosyl maturation of the endogenous NCT, which are required for the stability of the γ-secretase complex and the intrinsic proteolytic activity, respectively, implicating the dual role of NCT in the γ-secretase complex. Our results also highlight the importance of the calnexin cycle in the functional maturation of the γ-secretase complex. The engineered intrabodies may serve as rationally designed, molecular targeting tools for the discovery of novel actions of the membrane proteins. PMID:19684016

  5. Repositioning the substrate activity screening (SAS) approach as a fragment-based method for identification of weak binders.

    PubMed

    Gladysz, Rafaela; Cleenewerck, Matthias; Joossens, Jurgen; Lambeir, Anne-Marie; Augustyns, Koen; Van der Veken, Pieter

    2014-10-13

    Fragment-based drug discovery (FBDD) has evolved into an established approach for "hit" identification. Typically, most applications of FBDD depend on specialised cost- and time-intensive biophysical techniques. The substrate activity screening (SAS) approach has been proposed as a relatively cheap and straightforward alternative for identification of fragments for enzyme inhibitors. We have investigated SAS for the discovery of inhibitors of oncology target urokinase (uPA). Although our results support the key hypotheses of SAS, we also encountered a number of unreported limitations. In response, we propose an efficient modified methodology: "MSAS" (modified substrate activity screening). MSAS circumvents the limitations of SAS and broadens its scope by providing additional fragments and more coherent SAR data. As well as presenting and validating MSAS, this study expands existing SAR knowledge for the S1 pocket of uPA and reports new reversible and irreversible uPA inhibitor scaffolds.

  6. Repositioning the substrate activity screening (SAS) approach as a fragment-based method for identification of weak binders.

    PubMed

    Gladysz, Rafaela; Cleenewerck, Matthias; Joossens, Jurgen; Lambeir, Anne-Marie; Augustyns, Koen; Van der Veken, Pieter

    2014-10-13

    Fragment-based drug discovery (FBDD) has evolved into an established approach for "hit" identification. Typically, most applications of FBDD depend on specialised cost- and time-intensive biophysical techniques. The substrate activity screening (SAS) approach has been proposed as a relatively cheap and straightforward alternative for identification of fragments for enzyme inhibitors. We have investigated SAS for the discovery of inhibitors of oncology target urokinase (uPA). Although our results support the key hypotheses of SAS, we also encountered a number of unreported limitations. In response, we propose an efficient modified methodology: "MSAS" (modified substrate activity screening). MSAS circumvents the limitations of SAS and broadens its scope by providing additional fragments and more coherent SAR data. As well as presenting and validating MSAS, this study expands existing SAR knowledge for the S1 pocket of uPA and reports new reversible and irreversible uPA inhibitor scaffolds. PMID:25154878

  7. Gold nanorods-based FRET assay for ultrasensitive detection of DNA methylation and DNA methyltransferase activity.

    PubMed

    Wang, Gang Lin; Luo, Hong Qun; Li, Nian Bing

    2014-09-21

    A fluorescence method for the detection of DNA methylation and the assay of methyltransferase activity is proposed using gold nanorods as a fluorescence quencher on the basis of fluorescence resonance energy transfer. It is demonstrated that this method is capable of detecting methyltransferase with a detection limit of 0.25 U mL(-1), which might make this method a good candidate for monitoring DNA methylation in the future. PMID:25028809

  8. Differential response of human thymus cells to CD2 antibodies: fragmentation of DNA of CD45RO+ and proliferation of CD45RO- subsets.

    PubMed Central

    Li, J; Campbell, D; Hayward, A R

    1992-01-01

    Human thymocytes bearing the CD45RO 'memory' cell phenotype do not proliferate in concanavalin A (Con A)-stimulated cultures and may be destined for intrathymic death. To determine whether this subset would exhibit characteristics of programmed cell death (apoptosis), we examined the integrity of the nuclear DNA by gel electrophoresis. DNA fragmentation was restricted to the CD45RO+ subset of human thymocytes following exposure to stimulating concentrations of anti-CD2 antibodies. Both CD45RO- and CD45RO+ subsets mobilized cytoplasmic Ca2+ following cell-surface CD2 ligation, but entry into the cell cycle and vigorous thymidine uptake were restricted to the CD45RO- subset. Our results provide a mechanism which may account for the failure of thymic CD45RO+ cells to respond to stimuli which elicit proliferation by the reciprocal CD45RA+ subset. Images Figure 1 Figure 2 PMID:1348052

  9. Protective effect of dietary curcumin in Anabas testudineus (Bloch) with a special note on DNA fragmentation assay on hepatocytes and micronucleus assay on erythrocytes in vivo.

    PubMed

    Manju, Maniyan; Vijayasree, Appiyathu Saraswathy; Akbarsha, Mohammad Abdulkader; Oommen, Oommen Vilaverthottathil

    2013-10-01

    The present study was conducted to evaluate the safety of long-term dietary curcumin at doses 0.5 and 1% in Anabas testudineus employing hematological and cytological techniques. The fish were fed with curcumin-supplemented feed for 6 months. Fine blood smears were prepared and subjected to three different staining techniques. The erythrocyte micronucleus frequency (MN) and the cytometric measurements of erythrocytes were determined. Blood from the control and treated fish was subjected to the assessment of several hematological parameters. Also, DNA fragmentation assay on hepatocytes was conducted. The results showed that hemoglobin content, RBC count and hematocrit increased in the curcumin-fed fish compared to control, whereas WBC count, platelet count, mean corpuscular volume, mean corpuscular hemoglobin and mean corpuscular hemoglobin concentration were unaffected. WBC/RBC ratio was lower in the case of curcumin-treated fish. The cytometric measurements revealed no change in the erythrocytes and their nuclei after curcumin treatment. DNA fragmentation assay revealed intact DNA in curcumin-fed group, ruling out the possibility of curcumin-induced DNA damage. The positive control group showed a significant increase in MN frequency compared to negative control and curcumin-fed groups. In fact, the MN frequency decreased in 1% curcumin-fed group compared to the negative control and 0.5% curcumin groups. All these indicated a state of well-being of the curcumin-treated fish. Therefore, it is concluded that curcumin could be used as a safe feed ingredient to improve the growth of finfish in aquaculture.

  10. Mitochondrial DNA Fragmentation as a Molecular Tool to Monitor Thermal Processing of Plant-Derived, Low-Acid Foods, and Biomaterials.

    PubMed

    Caldwell, Jane M; Pérez-Díaz, Ilenys M; Sandeep, K P; Simunovic, Josip; Harris, Keith; Osborne, Jason A; Hassan, Hosni M

    2015-08-01

    Cycle threshold (Ct) increase, quantifying plant-derived DNA fragmentation, was evaluated for its utility as a time-temperature integrator. This novel approach to monitoring thermal processing of fresh, plant-based foods represents a paradigm shift. Instead of using quantitative polymerase chain reaction (qPCR) to detect pathogens, identify adulterants, or authenticate ingredients, this rapid technique was used to quantify the fragmentation of an intrinsic plant mitochondrial DNA (mtDNA) gene over time-temperature treatments. Universal primers were developed which amplified a mitochondrial gene common to plants (atp1). These consensus primers produced a robust qPCR signal in 10 vegetables, 6 fruits, 3 types of nuts, and a biofuel precursor. Using sweet potato (Ipomoea batatas) puree as a model low-acid product and simple linear regression, Ct value was highly correlated to time-temperature treatment (R(2) = 0.87); the logarithmic reduction (log CFU/mL) of the spore-forming Clostridium botulinum surrogate, Geobacillus stearothermophilus (R(2) = 0.87); and cumulative F-value (min) in a canned retort process (R(2) = 0.88), all comparisons conducted at 121 °C. D121 and z-values were determined for G. stearothermophilus ATCC 7953 and were 2.71 min and 11.0 °C, respectively. D121 and z-values for a 174-bp universal plant amplicon were 11.3 min and 9.17 °C, respectively, for mtDNA from sweet potato puree. We present these data as proof-of-concept for a molecular tool that can be used as a rapid, presumptive method for monitoring thermal processing in low-acid plant products. PMID:26235411

  11. Mitochondrial DNA Fragmentation as a Molecular Tool to Monitor Thermal Processing of Plant-Derived, Low-Acid Foods, and Biomaterials.

    PubMed

    Caldwell, Jane M; Pérez-Díaz, Ilenys M; Sandeep, K P; Simunovic, Josip; Harris, Keith; Osborne, Jason A; Hassan, Hosni M

    2015-08-01

    Cycle threshold (Ct) increase, quantifying plant-derived DNA fragmentation, was evaluated for its utility as a time-temperature integrator. This novel approach to monitoring thermal processing of fresh, plant-based foods represents a paradigm shift. Instead of using quantitative polymerase chain reaction (qPCR) to detect pathogens, identify adulterants, or authenticate ingredients, this rapid technique was used to quantify the fragmentation of an intrinsic plant mitochondrial DNA (mtDNA) gene over time-temperature treatments. Universal primers were developed which amplified a mitochondrial gene common to plants (atp1). These consensus primers produced a robust qPCR signal in 10 vegetables, 6 fruits, 3 types of nuts, and a biofuel precursor. Using sweet potato (Ipomoea batatas) puree as a model low-acid product and simple linear regression, Ct value was highly correlated to time-temperature treatment (R(2) = 0.87); the logarithmic reduction (log CFU/mL) of the spore-forming Clostridium botulinum surrogate, Geobacillus stearothermophilus (R(2) = 0.87); and cumulative F-value (min) in a canned retort process (R(2) = 0.88), all comparisons conducted at 121 °C. D121 and z-values were determined for G. stearothermophilus ATCC 7953 and were 2.71 min and 11.0 °C, respectively. D121 and z-values for a 174-bp universal plant amplicon were 11.3 min and 9.17 °C, respectively, for mtDNA from sweet potato puree. We present these data as proof-of-concept for a molecular tool that can be used as a rapid, presumptive method for monitoring thermal processing in low-acid plant products.

  12. Amiloride inhibits rat mucosal ornithine decarboxylase activity and DNA synthesis

    SciTech Connect

    Ulrich-Baker, M.G.; Wang, P.; Fitzpatrick, L.; Johnson, L.R. )

    1988-03-01

    Refeeding fasted rats induces a dramatic trophic response in gastrointestinal mucosa and is associated with elevations in both rate of DNA synthesis and ornithine decarboxylase (ODC) activity. The signal for these increases is unknown. Amiloride prevents cell alkalinization by blocking Na{sup +}-H{sup +} exchange at apical epithelial cell membranes. In study 1, rats were fasted 48 h, treated with amiloride (0.5 to 500 mg/kg), and refed for 4 h. Refeeding increased ODC activities in the jejunal mucosa (X8) and liver (X19) but not in the oxyntic gland mucosa. In the jejunum, but not the liver, the activation of ODC was completely abolished by 100 mg/kg amiloride. In study 2, the rate of DNA synthesis was determine by measuring the rate of ({sup 3}H)thymidine incorporation 16 h after refeeding. Refeeding resulted in significantly increased rates of DNA synthesis over fasted levels, and amiloride at 100 mg/kg significantly reduced the elevations in the jejenum and liver. In conclusion, amiloride inhibits the postprandial increases in jejunal ODC activity and DNA synthesis in the jejunum and liver. The results indicate that (1) the Na{sup +}-H{sup +} antiport is essential to the increased ODC activity in the jejunum and liver after a meal and (2) increases in DNA synthesis and their suppression by amiloride are not necessary linked to ODC activity.

  13. NCOA4 transcriptional coactivator inhibits activation of DNA replication origins.

    PubMed

    Bellelli, Roberto; Castellone, Maria Domenica; Guida, Teresa; Limongello, Roberto; Dathan, Nina Alayne; Merolla, Francesco; Cirafici, Anna Maria; Affuso, Andrea; Masai, Hisao; Costanzo, Vincenzo; Grieco, Domenico; Fusco, Alfredo; Santoro, Massimo; Carlomagno, Francesca

    2014-07-01

    NCOA4 is a transcriptional coactivator of nuclear hormone receptors that undergoes gene rearrangement in human cancer. By combining studies in Xenopus laevis egg extracts and mouse embryonic fibroblasts (MEFs), we show here that NCOA4 is a minichromosome maintenance 7 (MCM7)-interacting protein that is able to control DNA replication. Depletion-reconstitution experiments in Xenopus laevis egg extracts indicate that NCOA4 acts as an inhibitor of DNA replication origin activation by regulating CMG (CDC45/MCM2-7/GINS) helicase. NCOA4(-/-) MEFs display unscheduled origin activation and reduced interorigin distance; this results in replication stress, as shown by the presence of fork stalling, reduction of fork speed, and premature senescence. Together, our findings indicate that NCOA4 acts as a regulator of DNA replication origins that helps prevent inappropriate DNA synthesis and replication stress.

  14. Insights into the conformation of aminofluorene-deoxyguanine adduct in a DNA polymerase active site.

    PubMed

    Vaidyanathan, Vaidyanathan G; Liang, Fengting; Beard, William A; Shock, David D; Wilson, Samuel H; Cho, Bongsup P

    2013-08-01

    The active site conformation of the mutagenic fluoroaminofluorene-deoxyguanine adduct (dG-FAF, N-(2'-deoxyguanosin-8-yl)-7-fluoro-2-aminofluorene) has been investigated in the presence of Klenow fragment of Escherichia coli DNA polymerase I (Kfexo(-)) and DNA polymerase β (pol β) using (19)F NMR, insertion assay, and surface plasmon resonance. In a single nucleotide gap, the dG-FAF adduct adopts both a major-groove- oriented and base-displaced stacked conformation, and this heterogeneity is retained upon binding pol β. The addition of a non-hydrolysable 2'-deoxycytosine-5'-[(α,β)-methyleno]triphosphate (dCMPcPP) nucleotide analog to the binary complex results in an increase of the major groove conformation of the adduct at the expense of the stacked conformation. Similar results were obtained with the addition of an incorrect dAMPcPP analog but with formation of the minor groove binding conformer. In contrast, dG-FAF adduct at the replication fork for the Kfexo(-) complex adopts a mix of the major and minor groove conformers with minimal effect upon the addition of non-hydrolysable nucleotides. For pol β, the insertion of dCTP was preferred opposite the dG-FAF adduct in a single nucleotide gap assay consistent with (19)F NMR data. Surface plasmon resonance binding kinetics revealed that pol β binds tightly with DNA in the presence of correct dCTP, but the adduct weakens binding with no nucleotide specificity. These results provide molecular insights into the DNA binding characteristics of FAF in the active site of DNA polymerases and the role of DNA structure and sequence on its coding potential.

  15. Molecular variation analysis of Aspergillus flavus using polymerase chain reaction-restriction fragment length polymorphism of the internal transcribed spacer rDNA region

    PubMed Central

    Zarrin, Majid; Erfaninejad, Maryam

    2016-01-01

    Aspergillus flavus is the second most common disease-causing species of Aspergillus in humans. The fungus is frequently associated with life-threatening infections in immunocompromised hosts. The primary aim of the present study was to analyze the genetic variability among different isolates of A. flavus using polymerase chain reaction (PCR)-based restriction fragment length polymorphism (RFLP). A total of 62 A. flavus isolates were tested in the study. Molecular variability was searched for by analysis of the PCR amplification of the internal transcribed spacer (ITS) regions of ribosomal DNA using restriction enzymes. PCR using primers for ITS1 and ITS4 resulted in a product of ~600 bp. Amplicons were subjected to digestion with restriction endonucleases EcoRI, HaeIII and TaqI. Digestion of the PCR products using these restriction enzymes produced different patterns of fragments among the isolates, with different sizes and numbers of fragments, revealing genetic variability. In conclusion, ITS-RFLP is a useful molecular tool in screening for nucleotide polymorphisms among A. flavus isolates. PMID:27588085

  16. The role of chordin fragments generated by partial tolloid cleavage in regulating BMP activity

    PubMed Central

    Troilo, Helen; Barrett, Anne L.; Wohl, Alexander P.; Jowitt, Thomas A.; Collins, Richard F.; Bayley, Christopher P.; Zuk, Alexandra V.; Sengle, Gerhard; Baldock, Clair

    2015-01-01

    Chordin-mediated regulation of bone morphogenetic protein (BMP) family growth factors is essential in early embryogenesis and adult homoeostasis. Chordin binds to BMPs through cysteine-rich von Willebrand factor type C (vWC) homology domains and blocks them from interacting with their cell surface receptors. These domains also self-associate and enable chordin to target related proteins to fine-tune BMP regulation. The chordin–BMP inhibitory complex is strengthened by the secreted glycoprotein twisted gastrulation (Tsg); however, inhibition is relieved by cleavage of chordin at two specific sites by tolloid family metalloproteases. As Tsg enhances this cleavage process, it serves a dual role as both promoter and inhibitor of BMP signalling. Recent developments in chordin research suggest that rather than simply being by-products, the cleavage fragments of chordin continue to play a role in BMP regulation. In particular, chordin cleavage at the C-terminus potentiates its anti-BMP activity in a type-specific manner. PMID:26517884

  17. Random DNA fragmentation allows detection of single-copy, single-exon alterations of copy number by oligonucleotide array CGH in clinical FFPE samples.

    PubMed

    Hostetter, Galen; Kim, Su Young; Savage, Stephanie; Gooden, Gerald C; Barrett, Michael; Zhang, Jian; Alla, Lalitamba; Watanabe, April; Einspahr, Janine; Prasad, Anil; Nickoloff, Brian J; Carpten, John; Trent, Jeffrey; Alberts, David; Bittner, Michael

    2010-01-01

    Genomic technologies, such as array comparative genomic hybridization (aCGH), increasingly offer definitive gene dosage profiles in clinical samples. Historically, copy number profiling was limited to large fresh-frozen tumors where intact DNA could be readily extracted. Genomic analyses of pre-neoplastic tumors and diagnostic biopsies are often limited to DNA processed by formalin-fixation and paraffin-embedding (FFPE). We present specialized protocols for DNA extraction and processing from FFPE tissues utilizing DNase processing to generate randomly fragmented DNA. The protocols are applied to FFPE clinical samples of varied tumor types, from multiple institutions and of varied block age. Direct comparative analyses with regression coefficient were calculated on split-sample (portion fresh/portion FFPE) of colorectal tumor samples. We show equal detection of a homozygous loss of SMAD4 at the exon-level in the SW480 cell line and gene-specific alterations in the split tumor samples. aCGH application to a set of archival FFPE samples of skin squamous cell carcinomas detected a novel hemizygous deletion in INPP5A on 10q26.3. Finally we present data on derivative of log ratio, a particular sensitive detector of measurement variance, for 216 sequential hybridizations to assess protocol reliability over a wide range of FFPE samples.

  18. Expression of genes derived from the genomic DNA fragments of the brown-winged green bug (Plautia stali) symbiont in Escherichia coli.

    PubMed

    Fujii-Muramatsu, Rika; Kobayashi, Hideaki; Noda, Hiroaki; Takeishi, Keiichi

    2013-08-01

    Many insect species harbour symbiotic microorganisms (symbionts) that are generally unculturable in media. To utilize symbionts as genome resources, we examined whether insect symbiont genes can be expressed in Escherichia coli. 144 plasmid clones were isolated from gene libraries, which were constructed from the genomic DNA of the intestinal bacterial symbiont in the brown-winged green bug, Plautia stali, using an E. coli system. Proteins prepared from a culture of each clone were analysed using SDS-PAGE. A discrete symbiont-specific band was detected in six clones. From the structural analyses of the insert in each clone, the candidate gene encoding the symbiont-specific protein was predicted and the amino acid sequence of the protein was deduced. The amino acid sequence in the N-terminal region of each protein was identical to that deduced from the genomic DNA sequence of the symbiont, but not of the host. The promoter sequences of the symbiont genes, very similar to those of the corresponding E. coli genes, were found in the insert DNA. These findings clearly indicate that genes derived from genomic DNA fragments of the P. stali symbiont can be expressed in E. coli. PMID:23613025

  19. A DNA primase activity associated with DNA polymerase alpha from Drosophila melanogaster embryos.

    PubMed Central

    Conaway, R C; Lehman, I R

    1982-01-01

    Preparations of DNA polymerase alpha from early embryos of Drosophila melanogaster catalyze the ATP-dependent synthesis of DNA with single-stranded M13 DNA or poly(dT) templates. In the case of M13 DNA, GTP, but not UTP or CTP, can replace ATP. The reaction is completely dependent on added template and is not inhibited by alpha-amanitin. Alkaline hydrolysis of the product synthesized in the presence of [alpha-32P]dATP and poly(dT) generates 32P-labeled 3'(2') adenylate, showing that a covalent ribo-deoxynucleotide linkage is formed. Furthermore, incorporation of ribonucleotides occurs at the 5' end of the newly synthesized polynucleotide chain. These findings are consistent with the hypothesis that a ribo-oligonucleotide primer is synthesized by primase action and subsequently elongated by DNA polymerase. Under the appropriate conditions, DNA polymerase I from Escherichia coli can elongate primers formed by primase in the presence of ATP and poly(dT). Primase activity copurifies with DNA polymerase alpha and may be part of the multisubunit polymerase molecule. Images PMID:6806812

  20. Aniline mustard analogues of the DNA-intercalating agent amsacrine: DNA interaction and biological activity.

    PubMed

    Fan, J Y; Valu, K K; Woodgate, P D; Baguley, B C; Denny, W A

    1997-04-01

    Two series of analogues of the clinical antileukemic drug and DNA-intercalating ligand amsacrine have been prepared, containing aniline mustard sidechains of varying reactivity, linked either at the 4-position of the intercalating acridine chromophore (type A) or at the 1'-position of the 9-anilino group (type B). DNase I footprinting assays showed that compounds of type B had stronger reversible binding to DNA than did compounds of type A. Compounds of each type showed similar patterns of alkylation-induced cleavage of DNA, and alkylate at the N7 of guanines in runs of guanines (similar to the pattern for untargeted mustards) as well as some adenines. Both classes of compounds crosslinked DNA, although those bearing relatively inactive mustards did so only at high drug/base pair ratios. However, while the patterns of DNA alkylation were broadly similar, the compounds were considerably more cytotoxic than analogous untargeted mustards. Comparison of their cytotoxicities in wild-type and DNA repair-deficient lines indicated this toxicity was due to DNA crosslinks (except for the least reactive SO2-linked mustards). The 4-linked analogues showed slightly higher in vivo antileukemic activity than the corresponding 1'-linked analogues.

  1. Protective effect of nicotine through nicotinic acetylcholine receptor alpha 7 on hypoxia-induced membrane disintegration and DNA fragmentation of cultured PC12 cells.

    PubMed

    Tohgi, H; Utsugisawa, K; Nagane, Y

    2000-05-12

    To investigate the effect of nicotine on hypoxic neuronal damage, cultured PC12 cells were exposed to hypoxia for 9 h and then reoxygenated for 72 h. The cells were stained by propidium iodide (PI), a marker of cell membrane disintegration and the TUNEL method, which indicates DNA fragmentation. In control cultures, the ratio of PI-positive cells to total cells progressively increased during and after exposure to hypoxia, constituting 39% of total cells at 72 h posthypoxia. This increase in PI-positive cells was completely inhibited by nicotine until 12 h posthypoxia, and was partially and dose-dependently inhibited thereafter. The ratio of TUNEL-positive cells to total cells started to increase at 24 h posthypoxia and reached 36% at 72 h in control cultures. This ratio was also dose-dependently inhibited by nicotine. These inhibitory effects of nicotine on the increase in PI-positive and TUNEL-positive cells were abolished by the addition to the medium of alpha-bungarotoxin, an antagonistic ligand for nicotinic acetylcholine receptor (AChR) alpha7. These findings suggest that nicotine inhibits, through AChR alpha7, hypoxia-induced cell membrane disintegration and DNA fragmentation of cultured PC12 cells exposed to hypoxia.

  2. Using DNA devices to track anticancer drug activity.

    PubMed

    Kahanda, Dimithree; Chakrabarti, Gaurab; Mcwilliams, Marc A; Boothman, David A; Slinker, Jason D

    2016-06-15

    It is beneficial to develop systems that reproduce complex reactions of biological systems while maintaining control over specific factors involved in such processes. We demonstrated a DNA device for following the repair of DNA damage produced by a redox-cycling anticancer drug, beta-lapachone (β-lap). These chips supported ß-lap-induced biological redox cycle and tracked subsequent DNA damage repair activity with redox-modified DNA monolayers on gold. We observed drug-specific changes in square wave voltammetry from these chips at therapeutic ß-lap concentrations of high statistical significance over drug-free control. We also demonstrated a high correlation of this change with the specific ß-lap-induced redox cycle using rational controls. The concentration dependence of ß-lap revealed significant signal changes at levels of high clinical significance as well as sensitivity to sub-lethal levels of ß-lap. Catalase, an enzyme decomposing peroxide, was found to suppress DNA damage at a NQO1/catalase ratio found in healthy cells, but was clearly overcome at a higher NQO1/catalase ratio consistent with cancer cells. We found that it was necessary to reproduce key features of the cellular environment to observe this activity. Thus, this chip-based platform enabled tracking of ß-lap-induced DNA damage repair when biological criteria were met, providing a unique synthetic platform for uncovering activity normally confined to inside cells. PMID:26901461

  3. Activation of the DNA Damage Response by RNA Viruses

    PubMed Central

    Ryan, Ellis L.; Hollingworth, Robert; Grand, Roger J.

    2016-01-01

    RNA viruses are a genetically diverse group of pathogens that are responsible for some of the most prevalent and lethal human diseases. Numerous viruses introduce DNA damage and genetic instability in host cells during their lifecycles and some species also manipulate components of the DNA damage response (DDR), a complex and sophisticated series of cellular pathways that have evolved to detect and repair DNA lesions. Activation and manipulation of the DDR by DNA viruses has been extensively studied. It is apparent, however, that many RNA viruses can also induce significant DNA damage, even in cases where viral replication takes place exclusively in the cytoplasm. DNA damage can contribute to the pathogenesis of RNA viruses through the triggering of apoptosis, stimulation of inflammatory immune responses and the introduction of deleterious mutations that can increase the risk of tumorigenesis. In addition, activation of DDR pathways can contribute positively to replication of viral RNA genomes. Elucidation of the interactions between RNA viruses and the DDR has provided important insights into modulation of host cell functions by these pathogens. This review summarises the current literature regarding activation and manipulation of the DDR by several medically important RNA viruses. PMID:26751489

  4. The crystal structure of EcoRV endonuclease and of its complexes with cognate and non-cognate DNA fragments.

    PubMed Central

    Winkler, F K; Banner, D W; Oefner, C; Tsernoglou, D; Brown, R S; Heathman, S P; Bryan, R K; Martin, P D; Petratos, K; Wilson, K S

    1993-01-01

    The crystal structure of EcoRV endonuclease has been determined at 2.5 A resolution and that of its complexes with the cognate DNA decamer GGGATATCCC (recognition sequence underlined) and the non-cognate DNA octamer CGAGCTCG at 3.0 A resolution. Two octamer duplexes of the non-cognate DNA, stacked end-to-end, are bound to the dimeric enzyme in B-DNA-like conformations. The protein--DNA interactions of this complex are prototypic for non-specific DNA binding. In contrast, only one cognate decamer duplex is bound and deviates considerably from canonical B-form DNA. Most notably, a kink of approximately 50 degrees is observed at the central TA step with a concomitant compression of the major groove. Base-specific hydrogen bonds between the enzyme and the recognition base pairs occur exclusively in the major groove. These interactions appear highly co-operative as they are all made through one short surface loop comprising residues 182-186. Numerous contacts with the sugar phosphate backbone extending beyond the recognition sequence are observed in both types of complex. However, the total surface area buried on complex formation is > 1800 A2 larger in the case of cognate DNA binding. Two acidic side chains, Asp74 and Asp90, are close to the reactive phosphodiester group in the cognate complex and most probably provide oxygen ligands for binding the essential cofactor Mg2+. An important role is also indicated for Lys92, which together with the two acidic functions appears to be conserved in the otherwise unrelated structure of EcoRI endonuclease. The structural results give new insight into the physical basis of the remarkable sequence specificity of this enzyme. Images PMID:8491171

  5. Protein kinase C controls activation of the DNA integrity checkpoint

    PubMed Central

    Soriano-Carot, María; Quilis, Inma; Bañó, M. Carmen; Igual, J. Carlos

    2014-01-01

    The protein kinase C (PKC) superfamily plays key regulatory roles in numerous cellular processes. Saccharomyces cerevisiae contains a single PKC, Pkc1, whose main function is cell wall integrity maintenance. In this work, we connect the Pkc1 protein to the maintenance of genome integrity in response to genotoxic stresses. Pkc1 and its kinase activity are necessary for the phosphorylation of checkpoint kinase Rad53, histone H2A and Xrs2 protein after deoxyribonucleic acid (DNA) damage, indicating that Pkc1 is required for activation of checkpoint kinases Mec1 and Tel1. Furthermore, Pkc1 electrophoretic mobility is delayed after inducing DNA damage, which reflects that Pkc1 is post-translationally modified. This modification is a phosphorylation event mediated by Tel1. The expression of different mammalian PKC isoforms at the endogenous level in yeast pkc1 mutant cells revealed that PKCδ is able to activate the DNA integrity checkpoint. Finally, downregulation of PKCδ activity in HeLa cells caused a defective activation of checkpoint kinase Chk2 when DNA damage was induced. Our results indicate that the control of the DNA integrity checkpoint by PKC is a mechanism conserved from yeast to humans. PMID:24792164

  6. Semi-synthesis of biologically active nisin hybrids composed of the native lanthionine ABC-fragment and a cross-stapled synthetic DE-fragment.

    PubMed

    Slootweg, Jack C; Peters, Nienke; Quarles van Ufford, H Linda C; Breukink, Eefjan; Liskamp, Rob M J; Rijkers, Dirk T S

    2014-10-01

    The antimicrobial peptide nisin is a promising template for designing novel peptide-based antibiotics to improve its drug-like properties. First steps in that direction represent the synthesis of hybrid nisin derivatives that contain a native nisin ABC-part and synthesized cross-stapled DE-ring fragments and are described here. The biological activity of the newly synthesized nisin derivatives was evaluated in order to compare the bioactivity of the synthetic DE-ring containing mimic and native lanthionine-bridged DE-ring containing nisin. The native nisin ABC-ring system was obtained via chymotrypsin digestion of full-length nisin, and was subsequently functionalized at the C-terminal carboxylate with two different amino alkyne moieties. Next, nisin hybrids were successfully prepared using Cu(I)-catalyzed azide alkyne cycloaddition 'click' chemistry by chemo-selective ligation of the ABC-alkyne with the N-terminal azido functionalized dicarba-DE ring mimic. The newly synthesized compounds were active as potent lipid II binders and retained antimicrobial activity in a growth inhibition assay. However, pore formation was not observed, possibly either due to the different character of the 'staples' as compared to the parent sulfides, or due to the triazole moiety as a sub-optimal amide bond isostere.

  7. Semi-synthesis of biologically active nisin hybrids composed of the native lanthionine ABC-fragment and a cross-stapled synthetic DE-fragment.

    PubMed

    Slootweg, Jack C; Peters, Nienke; Quarles van Ufford, H Linda C; Breukink, Eefjan; Liskamp, Rob M J; Rijkers, Dirk T S

    2014-10-01

    The antimicrobial peptide nisin is a promising template for designing novel peptide-based antibiotics to improve its drug-like properties. First steps in that direction represent the synthesis of hybrid nisin derivatives that contain a native nisin ABC-part and synthesized cross-stapled DE-ring fragments and are described here. The biological activity of the newly synthesized nisin derivatives was evaluated in order to compare the bioactivity of the synthetic DE-ring containing mimic and native lanthionine-bridged DE-ring containing nisin. The native nisin ABC-ring system was obtained via chymotrypsin digestion of full-length nisin, and was subsequently functionalized at the C-terminal carboxylate with two different amino alkyne moieties. Next, nisin hybrids were successfully prepared using Cu(I)-catalyzed azide alkyne cycloaddition 'click' chemistry by chemo-selective ligation of the ABC-alkyne with the N-terminal azido functionalized dicarba-DE ring mimic. The newly synthesized compounds were active as potent lipid II binders and retained antimicrobial activity in a growth inhibition assay. However, pore formation was not observed, possibly either due to the different character of the 'staples' as compared to the parent sulfides, or due to the triazole moiety as a sub-optimal amide bond isostere. PMID:25199583

  8. Cloning and expression of a cDNA for the T-cell-activating protein TAP.

    PubMed Central

    Reiser, H; Coligan, J; Palmer, E; Benacerraf, B; Rock, K L

    1988-01-01

    The T-cell-activating protein TAP is a murine phosphatidylinositol-anchored glycoprotein whose expression is controlled by the Ly-6 locus. Previous studies have suggested an important role for this protein in physiological T-cell activation. Using oligonucleotide probes, we have now isolated a cDNA clone whose predicted sequence would encode a protein with an NH2-terminal sequence identical to that of the TAP molecule. Further analysis of the predicted protein sequence revealed a cysteine-rich protein with a hydrophobic domain at the COOH terminus and without N-linked glycosylation sites--all features consistent with our previous analysis of the TAP protein. In Southern blot analysis, the Ly-6.2 cDNA clone detects a multigene family and a restriction fragment length polymorphism that maps precisely to the Ly-6 locus. Expression of the cDNA clone in COS cells demonstrates that it codes for TAP and clarifies the relationship between the epitopes recognized by various alpha Ly-6 monoclonal antibodies. Finally, we have studied the expression of Ly-6 mRNA in a variety of cell lineages. Ly-6 transcripts were detected in all organs examined, including spleen, kidney, lung, brain, and heart. This demonstrates that the Ly-6 locus is transcriptionally active in a wide range of organs and suggests that the role of TAP or TAP-like proteins might extend to other tissues. Images PMID:2895473

  9. DNA polymerase-α regulates type I interferon activation through cytosolic RNA:DNA synthesis

    PubMed Central

    Starokadomskyy, Petro; Gemelli, Terry; Rios, Jonathan J.; Xing, Chao; Wang, Richard C.; Li, Haiying; Pokatayev, Vladislav; Dozmorov, Igor; Khan, Shaheen; Miyata, Naoteru; Fraile, Guadalupe; Raj, Prithvi; Xu, Zhe; Xu, Zigang; Ma, Lin; Lin, Zhimiao; Wang, Huijun; Yang, Yong; Ben-Amitai, Dan; Orenstein, Naama; Mussaffi, Huda; Baselga, Eulalia; Tadini, Gianluca; Grunebaum, Eyal; Sarajlija, Adrijan; Krzewski, Konrad; Wakeland, Edward K.; Yan, Nan; de la Morena, Maria Teresa; Zinn, Andrew R.; Burstein, Ezra

    2016-01-01

    Aberrant nucleic acids generated during viral replication are the main trigger for antiviral immunity, and mutations disrupting nucleic acid metabolism can lead to autoinflammatory disorders. Here we investigated the etiology of X-linked reticulate pigmentary disorder (XLPDR), a primary immunodeficiency with autoinflammatory features. We discovered that XLPDR is caused by an intronic mutation that disrupts expression of POLA1, the gene encoding the catalytic subunit of DNA polymerase-α. Unexpectedly, POLA1 deficiency results in increased type I interferon production. This enzyme is necessary for RNA:DNA primer synthesis during DNA replication and strikingly, POLA1 is also required for the synthesis of cytosolic RNA:DNA, which directly modulates interferon activation. Altogether, this work identified POLA1 as a critical regulator of the type I interferon response. PMID:27019227

  10. A DNA Fragment Mapped within the Submicroscopic Deletion of Ph1, a Chromosome Pairing Regulator Gene in Polyploid Wheat

    PubMed Central

    Gill, K. S.; Gill, B. S.

    1991-01-01

    Bread wheat is an allohexaploid consisting of three genetically related (homoeologous) genomes. The homoeologous chromosomes are capable of pairing but strict homologous pairing is observed at metaphase 1. The diploid-like pairing is regulated predominantly by Ph1, a gene mapped on long arm of chromosome 5B. We report direct evidence that a mutant of the gene (ph1b) arose from a submicroscopic deletion. A probe (XksuS1-5) detects the same missing fragment in two independent mutants ph1b and ph1c and a higher intensity fragment in a duplication of the Ph1 gene. It is likely that XksuS1-5 lies adjacent to Ph1 on the same chromosome fragment that is deleted in ph1b and ph1c. XksuS1-5 can be used to tag Ph1 gene to facilitate incorporation of genetic material from homoeologous genomes of the Triticeae. It may also be a useful marker in cloning Ph1 gene by chromosome walking. PMID:1936962

  11. Prothrombin activation fragment 1 + 2 as a marker of coagulation activation in cord blood collection for banking.

    PubMed

    Juutistenaho, S; Vahtera, E; Aranko, K; Kekomäki, R

    2010-08-01

    There have been efforts to increase the quality of cord blood (CB) collections aimed at banking and transplantation. Yet, the effect of CB collection techniques on haemostatic activation is scarcely studied, despite the unique nature of the neonatal haemostatic system. The aim of this study was to explore coagulation system and platelet (PLT) activation during CB collection at a national CB bank. At three time points over a 9-year period (in 1998, 2000 and 2006), CB collections were assessed to evaluate the collection process during bank setup and changes in procedures. Thrombin generation and PLT activation were assessed with prothrombin activation fragment 1 + 2 (F1 + 2) and PLT factor 4 (PF4), respectively. The median F1 + 2 level was 2.8 nmol L(-1) in 1998 (n = 11), 0.7 nmol L(-1) in 2000 (n = 10) and 0.7 nmol L(-1) in 2006 (n = 6), the decrease being statistically significant (1998 vs 2000, P < 0.001; 1998 vs 2006, P = 0.01). The median PF4 level was 117 IU mL(-1) in 1998 and 104 IU mL(-1) in 2000. PF4 was not measured in 2006. The level of F1 + 2 correlated with that of PF4 (n = 21; Spearman's Rho = 0.59, P = 0.006). Haemostatic activation, assessed as a part of CB bank process control, decreased from the first to the subsequent sample series. F1 + 2 may be a candidate for quality control in CB banking; however, further studies are needed to optimise the analyses and to assess the effect of haemostatic activation on CB quality. PMID:20345383

  12. Host density and human activities mediate increased parasite prevalence and richness in primates threatened by habitat loss and fragmentation.

    PubMed

    Mbora, David N M; McPeek, Mark A

    2009-01-01

    1. Habitat loss and fragmentation are the principal causes of the loss of biological diversity. In addition, parasitic diseases are an emerging threat to many animals. Nevertheless, relatively few studies have tested how habitat loss and fragmentation influence the prevalence and richness of parasites in animals. 2. Several studies of nonhuman primates have shown that measures of human activity and forest fragmentation correlate with parasitism in primates. However, these studies have not tested for the ecological mechanism(s) by which human activities or forest fragmentation influence the prevalence and richness of parasites. 3. We tested the hypothesis that increased host density due to forest fragmentation and loss mediates increases in the prevalence and richness of gastrointestinal parasites in two forest primates, the Tana River red colobus (Procolobus rufomitratus, Peters 1879) and mangabey (Cercocebus galeritus galeritus, Peters 1879). We focused on population density because epidemiological theory states that host density is a key determinant of the prevalence and richness of directly transmitted parasites in animals. 4. The Tana River red colobus and mangabey are endemic to a highly fragmented forest ecosystem in eastern Kenya where habitat changes are caused by a growing human population increasingly dependent on forest resources and on clearing forest for cultivation. 5. We found that the prevalence of parasites in the two monkeys was very high compared to primates elsewhere. Density of monkeys was positively associated with forest area and disturbance in forests. In turn, the prevalence and richness of parasites was significantly associated with monkey density, and attributes indicative of human disturbance in forests. 6. We also found significant differences in the patterns of parasitism between the colobus and the mangabey possibly attributable to differences in their behavioural ecology. Colobus are arboreal folivores while mangabeys are terrestrial

  13. Plasma-activated air mediates plasmid DNA delivery in vivo

    PubMed Central

    Edelblute, Chelsea M; Heller, Loree C; Malik, Muhammad A; Bulysheva, Anna; Heller, Richard

    2016-01-01

    Plasma-activated air (PAA) provides a noncontact DNA transfer platform. In the current study, PAA was used for the delivery of plasmid DNA in a 3D human skin model, as well as in vivo. Delivery of plasmid DNA encoding luciferase to recellularized dermal constructs was enhanced, resulting in a fourfold increase in luciferase expression over 120 hours compared to injection only (P < 0.05). Delivery of plasmid DNA encoding green fluorescent protein (GFP) was confirmed in the epidermal layers of the construct. In vivo experiments were performed in BALB/c mice, with skin as the delivery target. PAA exposure significantly enhanced luciferase expression levels 460-fold in exposed sites compared to levels obtained from the injection of plasmid DNA alone (P < 0.001). Expression levels were enhanced when the plasma reactor was positioned more distant from the injection site. Delivery of plasmid DNA encoding GFP to mouse skin was confirmed by immunostaining, where a 3-minute exposure at a 10 mm distance displayed delivery distribution deep within the dermal layers compared to an exposure at 3 mm where GFP expression was localized within the epidermis. Our findings suggest PAA-mediated delivery warrants further exploration as an alternative approach for DNA transfer for skin targets. PMID:27110584

  14. Plasma-activated air mediates plasmid DNA delivery in vivo.

    PubMed

    Edelblute, Chelsea M; Heller, Loree C; Malik, Muhammad A; Bulysheva, Anna; Heller, Richard

    2016-01-01

    Plasma-activated air (PAA) provides a noncontact DNA transfer platform. In the current study, PAA was used for the delivery of plasmid DNA in a 3D human skin model, as well as in vivo. Delivery of plasmid DNA encoding luciferase to recellularized dermal constructs was enhanced, resulting in a fourfold increase in luciferase expression over 120 hours compared to injection only (P < 0.05). Delivery of plasmid DNA encoding green fluorescent protein (GFP) was confirmed in the epidermal layers of the construct. In vivo experiments were performed in BALB/c mice, with skin as the delivery target. PAA exposure significantly enhanced luciferase expression levels 460-fold in exposed sites compared to levels obtained from the injection of plasmid DNA alone (P < 0.001). Expression levels were enhanced when the plasma reactor was positioned more distant from the injection site. Delivery of plasmid DNA encoding GFP to mouse skin was confirmed by immunostaining, where a 3-minute exposure at a 10 mm distance displayed delivery distribution deep within the dermal layers compared to an exposure at 3 mm where GFP expression was localized within the epidermis. Our findings suggest PAA-mediated delivery warrants further exploration as an alternative approach for DNA transfer for skin targets. PMID:27110584

  15. Boundary conditions for free A-DNA in solution and the relation of local to global DNA structures at reduced water activity.

    PubMed

    Porschke, Dietmar

    2016-07-01

    Because of repeated claims that A-DNA cannot exist without aggregation or condensation, the state of DNA restriction fragments with 84-859 bp has been analyzed in aqueous solutions upon reduction of the water activity. Rotational diffusion times τ (d) measured by electric dichroism at different water activities with a wide variation of viscosities are normalized to values τ (c) at the viscosity of water, which indicate DNA structures at a high sensitivity. For short helices (chain lengths [Formula: see text] ≤ persistence length p), cooperative formation of A-DNA is reflected by the expected reduction of the hydrodynamic length; the transition to the A-form is without aggregation or condensation upon addition of ethanol at monovalent salt ≤1 mM. The aggregation boundary, indicated by a strong increase of τ (c), is shifted to higher monovalent salt (≥4 mM) when ethanol is replaced by trifluoroethanol. The BA transition is not indicated anymore by a cooperative change of τ (c) for [Formula: see text] » p; τ (c) values for these long chains decrease upon reduction of the water activity continuously over the full range, including the BA transition interval. This suggests a non-cooperative BC transition, which induces DNA curvature. The resulting wide distribution of global structures hides changes of local length during the BA transition. Free A-DNA without aggregation/condensation is found at low-salt concentrations where aggregation is inhibited and/or very slow. In an intermediate range of solvent conditions, where the A-form starts to aggregate, a time window remains that can be used for analysis of free A-DNA in a quasi-equilibrium state. PMID:26872482

  16. Inhibition of thrombin activity with DNA-aptamers.

    PubMed

    Dobrovolsky, A B; Titaeva, E V; Khaspekova, S G; Spiridonova, V A; Kopylov, A M; Mazurov, A V

    2009-07-01

    The effects of two DNA aptamers (oligonucleotides) 15TBA and 31TBA (15- and 31-mer thrombin-binding aptamers, respectively) on thrombin activity were studied. Both aptamers added to human plasma dose-dependently increased thrombin time (fibrin formation upon exposure to exogenous thrombin), prothrombin time (clotting activation by the extrinsic pathway), and activated partial thromboplastin time (clotting activation by the intrinsic pathway). At the same time, these aptamers did not modify amidolytic activity of thrombin evaluated by cleavage of synthetic chromogenic substrate. Aptamers also inhibited thrombin-induced human platelet aggregation. The inhibitory effects of 31TBA manifested at lower concentrations than those of 15TBA in all tests. These data indicate that the studied antithrombin DNA aptamers effectively suppress its two key reactions, fibrin formation and stimulation of platelet aggregation, without modifying active center of the thrombin molecule. PMID:19902090

  17. Active DNA demethylation at enhancers during the vertebrate phylotypic period.

    PubMed

    Bogdanović, Ozren; Smits, Arne H; de la Calle Mustienes, Elisa; Tena, Juan J; Ford, Ethan; Williams, Ruth; Senanayake, Upeka; Schultz, Matthew D; Hontelez, Saartje; van Kruijsbergen, Ila; Rayon, Teresa; Gnerlich, Felix; Carell, Thomas; Veenstra, Gert Jan C; Manzanares, Miguel; Sauka-Spengler, Tatjana; Ecker, Joseph R; Vermeulen, Michiel; Gómez-Skarmeta, José Luis; Lister, Ryan

    2016-04-01

    The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage. However, the mechanisms that guide the epigenome through this transition and their evolutionary conservation remain elusive. Here we report widespread DNA demethylation of enhancers during the phylotypic period in zebrafish, Xenopus tropicalis and mouse. These enhancers are linked to developmental genes that display coordinated transcriptional and epigenomic changes in the diverse vertebrates during embryogenesis. Binding of Tet proteins to (hydroxy)methylated DNA and enrichment of 5-hydroxymethylcytosine in these regions implicated active DNA demethylation in this process. Furthermore, loss of function of Tet1, Tet2 and Tet3 in zebrafish reduced chromatin accessibility and increased methylation levels specifically at these enhancers, indicative of DNA methylation being an upstream regulator of phylotypic enhancer function. Overall, our study highlights a regulatory module associated with the most conserved phase of vertebrate embryogenesis and suggests an ancient developmental role for Tet dioxygenases. PMID:26928226

  18. Active DNA demethylation at enhancers during the vertebrate phylotypic period.

    PubMed

    Bogdanović, Ozren; Smits, Arne H; de la Calle Mustienes, Elisa; Tena, Juan J; Ford, Ethan; Williams, Ruth; Senanayake, Upeka; Schultz, Matthew D; Hontelez, Saartje; van Kruijsbergen, Ila; Rayon, Teresa; Gnerlich, Felix; Carell, Thomas; Veenstra, Gert Jan C; Manzanares, Miguel; Sauka-Spengler, Tatjana; Ecker, Joseph R; Vermeulen, Michiel; Gómez-Skarmeta, José Luis; Lister, Ryan

    2016-04-01

    The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage. However, the mechanisms that guide the epigenome through this transition and their evolutionary conservation remain elusive. Here we report widespread DNA demethylation of enhancers during the phylotypic period in zebrafish, Xenopus tropicalis and mouse. These enhancers are linked to developmental genes that display coordinated transcriptional and epigenomic changes in the diverse vertebrates during embryogenesis. Binding of Tet proteins to (hydroxy)methylated DNA and enrichment of 5-hydroxymethylcytosine in these regions implicated active DNA demethylation in this process. Furthermore, loss of function of Tet1, Tet2 and Tet3 in zebrafish reduced chromatin accessibility and increased methylation levels specifically at these enhancers, indicative of DNA methylation being an upstream regulator of phylotypic enhancer function. Overall, our study highlights a regulatory module associated with the most conserved phase of vertebrate embryogenesis and suggests an ancient developmental role for Tet dioxygenases.

  19. Use of cloned DNA fragments as reference materials for event specific quantification of genetically modified organisms (GMOs).

    PubMed

    Taverniers, I; Van Bockstaele, E; De Loose, M

    2001-01-01

    For the quantification of genetically modified organisms (GMOs) in foods and feeds, real-time PCR is currently the most widely applied technique. To obtain a % of GMO, a GMO-specific target sequence is quantified relatively to a species-specific sequence. The correctness and reliability of the obtained quantitative results fully depend on the reference materials used as standards for setting up external calibration curves. We introduced a completely new type of standards for quantification of GMOs, based on cloned plasmid DNA solutions with well-known amounts of the sequences of interest, expressed as copy numbers. Moreover, the junction sequence between inserted DNA and plant DNA was used as 'unique identifier'. In this study, the model was applied for Roundup Ready soybean.

  20. Synthesis and biological activity of benzamide DNA minor groove binders.

    PubMed

    Khan, Gul Shahzada; Pilkington, Lisa I; Barker, David

    2016-02-01

    A range of di- and triaryl benzamides were synthesised to investigate the effect of the presence and nature of a polar sidechain, bonding and substitution patterns and functionalisation of benzylic substituents. These compounds were tested for their antiproliferative activity as well as their DNA binding activity. The most active compounds in all assays were unsymmetrical triaryl benzamides with a bulky or alkylating benzylic substituent and a polar amino sidechain.

  1. The DNA methylation profile of activated human natural killer cells.

    PubMed

    Wiencke, John K; Butler, Rondi; Hsuang, George; Eliot, Melissa; Kim, Stephanie; Sepulveda, Manuel A; Siegel, Derick; Houseman, E Andres; Kelsey, Karl T

    2016-05-01

    Natural killer (NK) cells are now recognized to exhibit characteristics akin to cells of the adaptive immune system. The generation of adaptive memory is linked to epigenetic reprogramming including alterations in DNA methylation. The study herein found reproducible genome wide DNA methylation changes associated with human NK cell activation. Activation led predominately to CpG hypomethylation (81% of significant loci). Bioinformatics analysis confirmed that non-coding and gene-associated differentially methylated sites (DMS) are enriched for immune related functions (i.e., immune cell activation). Known DNA methylation-regulated immune loci were also identified in activated NK cells (e.g., TNFA, LTA, IL13, CSF2). Twenty-one loci were designated high priority and further investigated as potential markers of NK activation. BHLHE40 was identified as a viable candidate for which a droplet digital PCR assay for demethylation was developed. The assay revealed high demethylation in activated NK cells and low demethylation in naïve NK, T- and B-cells. We conclude the NK cell methylome is plastic with potential for remodeling. The differentially methylated region signature of activated NKs revealed similarities with T cell activation, but also provided unique biomarker candidates of NK activation, which could be useful in epigenome-wide association studies to interrogate the role of NK subtypes in global methylation changes associated with exposures and/or disease states. PMID:26967308

  2. Structural Characterization of a Therapeutic Anti-Methamphetamine Antibody Fragment: Oligomerization and Binding of Active Metabolites

    PubMed Central

    Gokulan, Kuppan; Varughese, Kottayil I.

    2013-01-01

    Vaccines and monoclonal antibodies (mAb) for treatment of (+)-methamphetamine (METH) abuse are in late stage preclinical and early clinical trial phases, respectively. These immunotherapies work as pharmacokinetic antagonists, sequestering METH and its metabolites away from sites of action in the brain and reduce the rewarding and toxic effects of the drug. A key aspect of these immunotherapy strategies is the understanding of the subtle molecular interactions important for generating antibodies with high affinity and specificity for METH. We previously determined crystal structures of a high affinity anti-METH therapeutic single chain antibody fragment (scFv6H4, KD = 10 nM) in complex with METH and the (+) stereoisomer of 3,4-methylenedioxymethamphetamine (MDMA, or “ecstasy”). Here we report the crystal structure of scFv6H4 in homo-trimeric unbound (apo) form (2.60Å), as well as monomeric forms in complex with two active metabolites; (+)-amphetamine (AMP, 2.38Å) and (+)-4-hydroxy methamphetamine (p-OH-METH, 2.33Å). The apo structure forms a trimer in the crystal lattice and it results in the formation of an intermolecular composite beta-sheet with a three-fold symmetry. We were also able to structurally characterize the coordination of the His-tags with Ni2+. Two of the histidine residues of each C-terminal His-tag interact with Ni2+ in an octahedral geometry. In the apo state the CDR loops of scFv6H4 form an open conformation of the binding pocket. Upon ligand binding, the CDR loops adopt a closed formation, encasing the drug almost completely. The structural information reported here elucidates key molecular interactions important in anti-methamphetamine abuse immunotherapy. PMID:24349338

  3. Anthocyanidins modulate the activity of human DNA topoisomerases I and II and affect cellular DNA integrity.

    PubMed

    Habermeyer, Michael; Fritz, Jessica; Barthelmes, Hans U; Christensen, Morten O; Larsen, Morten K; Boege, Fritz; Marko, Doris

    2005-09-01

    In the present study, we investigated the effect of anthocyanidins on human topoisomerases I and II and its relevance for DNA integrity within human cells. Anthocyanidins bearing vicinal hydroxy groups at the B-ring (delphinidin, DEL; cyanidin, CY) were found to potently inhibit the catalytic activity of human topoisomerases I and II, without discriminating between the IIalpha and the IIbeta isoforms. However, in contrast to topoisomerase poisons, DEL and CY did not stabilize the covalent DNA-topoisomerase intermediates (cleavable complex) of topoisomerase I or II. Using recombinant topoisomerase I, the presence of CY or DEL (> or = 1 microM) effectively prohibited the stabilization of the cleavable complex by the topoisomerase I poison camptothecin. We furthermore investigated whether the potential protective effect vs topoisomerase I poisons is reflected also on the cellular level, affecting the DNA damaging properties of camptothecin. Indeed, in HT29 cells, low micromolar concentrations of DEL (1-10 microM) significantly diminished the DNA strand breaking effect of camptothecin (100 microM). However, at concentrations > or = 50 microM, all anthocyanidins tested (delphinidin, cyanidin, malvidin, pelargonidin, and paeonidin), including those not interfering with topoisomerases, were found to induce DNA strand breaks in the comet assay. All of these analogues were able to compete with ethidium bromide for the intercalation into calf thymus DNA and to replace the minor groove binder Hoechst 33258. These data indicate substantial affinity to double-stranded DNA, which might contribute at least to the DNA strand breaking effect of anthocyanidins at higher concentrations (> or = 50 microM).

  4. Fuzzy electron density fragments in macromolecular quantum chemistry, combinatorial quantum chemistry, functional group analysis, and shape-activity relations.

    PubMed

    Mezey, Paul G

    2014-09-16

    Conspectus Just as complete molecules have no boundaries and have "fuzzy" electron density clouds approaching zero density exponentially at large distances from the nearest nucleus, a physically justified choice for electron density fragments exhibits similar behavior. Whereas fuzzy electron densities, just as any fuzzy object, such as a thicker cloud on a foggy day, do not lend themselves to easy visualization, one may partially overcome this by using isocontours. Whereas a faithful representation of the complete fuzzy density would need infinitely many such isocontours, nevertheless, by choosing a selected few, one can still obtain a limited pictorial representation. Clearly, such images are of limited value, and one better relies on more complete mathematical represent