Science.gov

Sample records for activity dna synthesis

  1. Replication stress activates DNA repair synthesis in mitosis.

    PubMed

    Minocherhomji, Sheroy; Ying, Songmin; Bjerregaard, Victoria A; Bursomanno, Sara; Aleliunaite, Aiste; Wu, Wei; Mankouri, Hocine W; Shen, Huahao; Liu, Ying; Hickson, Ian D

    2015-12-10

    Oncogene-induced DNA replication stress has been implicated as a driver of tumorigenesis. Many chromosomal rearrangements characteristic of human cancers originate from specific regions of the genome called common fragile sites (CFSs). CFSs are difficult-to-replicate loci that manifest as gaps or breaks on metaphase chromosomes (termed CFS 'expression'), particularly when cells have been exposed to replicative stress. The MUS81-EME1 structure-specific endonuclease promotes the appearance of chromosome gaps or breaks at CFSs following replicative stress. Here we show that entry of cells into mitotic prophase triggers the recruitment of MUS81 to CFSs. The nuclease activity of MUS81 then promotes POLD3-dependent DNA synthesis at CFSs, which serves to minimize chromosome mis-segregation and non-disjunction. We propose that the attempted condensation of incompletely duplicated loci in early mitosis serves as the trigger for completion of DNA replication at CFS loci in human cells. Given that this POLD3-dependent mitotic DNA synthesis is enhanced in aneuploid cancer cells that exhibit intrinsically high levels of chromosomal instability (CIN(+)) and replicative stress, we suggest that targeting this pathway could represent a new therapeutic approach. PMID:26633632

  2. Inaccurate DNA Synthesis in Cell Extracts of Yeast Producing Active Human DNA Polymerase Iota

    PubMed Central

    Makarova, Alena V.; Grabow, Corinn; Gening, Leonid V.; Tarantul, Vyacheslav Z.; Tahirov, Tahir H.; Bessho, Tadayoshi; Pavlov, Youri I.

    2011-01-01

    Mammalian Pol ι has an unusual combination of properties: it is stimulated by Mn2+ ions, can bypass some DNA lesions and misincorporates “G” opposite template “T” more frequently than incorporates the correct “A.” We recently proposed a method of detection of Pol ι activity in animal cell extracts, based on primer extension opposite the template T with a high concentration of only two nucleotides, dGTP and dATP (incorporation of “G” versus “A” method of Gening, abbreviated as “misGvA”). We provide unambiguous proof of the “misGvA” approach concept and extend the applicability of the method for the studies of variants of Pol ι in the yeast model system with different cation cofactors. We produced human Pol ι in baker's yeast, which do not have a POLI ortholog. The “misGvA” activity is absent in cell extracts containing an empty vector, or producing catalytically dead Pol ι, or Pol ι lacking exon 2, but is robust in the strain producing wild-type Pol ι or its catalytic core, or protein with the active center L62I mutant. The signature pattern of primer extension products resulting from inaccurate DNA synthesis by extracts of cells producing either Pol ι or human Pol η is different. The DNA sequence of the template is critical for the detection of the infidelity of DNA synthesis attributed to DNA Pol ι. The primer/template and composition of the exogenous DNA precursor pool can be adapted to monitor replication fidelity in cell extracts expressing various error-prone Pols or mutator variants of accurate Pols. Finally, we demonstrate that the mutation rates in yeast strains producing human DNA Pols ι and η are not elevated over the control strain, despite highly inaccurate DNA synthesis by their extracts. PMID:21304950

  3. Synthesis, characterization and chemoprotective activity of polyoxovanadates against DNA alkylation.

    PubMed

    Nunes, Giovana G; Bonatto, Ana C; de Albuquerque, Carla G; Barison, Andersson; Ribeiro, Ronny R; Back, Davi F; Andrade, André Vitor C; de Sá, Eduardo L; Pedrosa, Fábio de O; Soares, Jaísa F; de Souza, Emanuel M

    2012-03-01

    The alkylation of pUC19 plasmid DNA has been employed as a model reaction for the first studies on chemoprotective action by a mixed-valence (+IV/+V) polyoxovanadate. A new, non-hydrothermal route for the high yield preparation of the test compound is described. The deep green, microcrystalline solid A was isolated after a three-day reaction in water at 80°C and 1 atm, while the reaction at 100°C gave green crystals of B. Both solids were structurally characterized by X-ray diffractometry and FTIR, EPR, NMR and Raman spectroscopies. Product A was identified as (NH(4))(2)V(3)O(8), while B corresponds to the spherical polyoxoanion [V(15)O(36)(Cl)](6-), isolated as the NMe(4)(+) salt. The lack of solubility of A in water and buffers prevented its use in DNA interaction studies, which were then carried out with B. Complex B was also tested for its ability to react with DNA alkylating agents by incubation with diethylsulphate (DES) and dimethylsulphate (DMS) in both the absence and presence of pUC19. For DMS, the best results were obtained with 10 mM of B (48% protection); with DES, this percentage increased to 70%. The direct reaction of B with increasing amounts of DMS in both buffered (PIPES 50 mM) and non-buffered aqueous solutions revealed the sequential formation of several vanadium(IV), vanadium(V) and mixed-valence aggregates of different nuclearities, whose relevance to the DNA-protecting activity is discussed. PMID:22265837

  4. DNA polymerase-α regulates the activation of type I interferons through cytosolic RNA:DNA synthesis.

    PubMed

    Starokadomskyy, Petro; Gemelli, Terry; Rios, Jonathan J; Xing, Chao; Wang, Richard C; Li, Haiying; Pokatayev, Vladislav; Dozmorov, Igor; Khan, Shaheen; Miyata, Naoteru; Fraile, Guadalupe; Raj, Prithvi; Xu, Zhe; Xu, Zigang; Ma, Lin; Lin, Zhimiao; Wang, Huijun; Yang, Yong; Ben-Amitai, Dan; Orenstein, Naama; Mussaffi, Huda; Baselga, Eulalia; Tadini, Gianluca; Grunebaum, Eyal; Sarajlija, Adrijan; Krzewski, Konrad; Wakeland, Edward K; Yan, Nan; de la Morena, Maria Teresa; Zinn, Andrew R; Burstein, Ezra

    2016-05-01

    Aberrant nucleic acids generated during viral replication are the main trigger for antiviral immunity, and mutations that disrupt nucleic acid metabolism can lead to autoinflammatory disorders. Here we investigated the etiology of X-linked reticulate pigmentary disorder (XLPDR), a primary immunodeficiency with autoinflammatory features. We discovered that XLPDR is caused by an intronic mutation that disrupts the expression of POLA1, which encodes the catalytic subunit of DNA polymerase-α. Unexpectedly, POLA1 deficiency resulted in increased production of type I interferons. This enzyme is necessary for the synthesis of RNA:DNA primers during DNA replication and, strikingly, we found that POLA1 is also required for the synthesis of cytosolic RNA:DNA, which directly modulates interferon activation. Together this work identifies POLA1 as a critical regulator of the type I interferon response. PMID:27019227

  5. STRUCTURE-ACTIVITY STUDY OF PARACETAMOL ANALOGUES: INHIBITION OF REPLICATIVE DNA SYNTHESIS IN V79 CHINESE HAMSTER CELLS

    EPA Science Inventory

    Experimental and theoretical evidence pertaining to cytotoxic and genotoxic activity of paracetamol in biological systems was used to formulate a simple mechanistic hypothesis to explain the relative inhibition of replicative DNA synthesis by a series of 19 structurally similar p...

  6. Remote Activation of Host Cell DNA Synthesis in Uninfected Cells Signaled by Infected Cells in Advance of Virus Transmission

    PubMed Central

    Schmidt, Nora; Hennig, Thomas; Serwa, Remigiusz A.; Marchetti, Magda

    2015-01-01

    ABSTRACT Viruses modulate cellular processes and metabolism in diverse ways, but these are almost universally studied in the infected cell itself. Here, we study spatial organization of DNA synthesis during multiround transmission of herpes simplex virus (HSV) using pulse-labeling with ethynyl nucleotides and cycloaddition of azide fluorophores. We report a hitherto unknown and unexpected outcome of virus-host interaction. Consistent with the current understanding of the single-step growth cycle, HSV suppresses host DNA synthesis and promotes viral DNA synthesis in spatially segregated compartments within the cell. In striking contrast, during progressive rounds of infection initiated at a single cell, we observe that infection induces a clear and pronounced stimulation of cellular DNA replication in remote uninfected cells. This induced DNA synthesis was observed in hundreds of uninfected cells at the extended border, outside the perimeter of the progressing infection. Moreover, using pulse-chase analysis, we show that this activation is maintained, resulting in a propagating wave of host DNA synthesis continually in advance of infection. As the virus reaches and infects these activated cells, host DNA synthesis is then shut off and replaced with virus DNA synthesis. Using nonpropagating viruses or conditioned medium, we demonstrate a paracrine effector of uninfected cell DNA synthesis in remote cells continually in advance of infection. These findings have significant implications, likely with broad applicability, for our understanding of the ways in which virus infection manipulates cell processes not only in the infected cell itself but also now in remote uninfected cells, as well as of mechanisms governing host DNA synthesis. IMPORTANCE We show that during infection initiated by a single particle with progressive cell-cell virus transmission (i.e., the normal situation), HSV induces host DNA synthesis in uninfected cells, mediated by a virus-induced paracrine

  7. Metal-based biologically active compounds: synthesis, characterization, DNA interaction, antibacterial, cytotoxic and SOD mimic activities.

    PubMed

    Patel, Mohan N; Patel, Chintan R; Joshi, Hardik N

    2013-02-01

    The square pyramidal copper(II) complexes of N, O- donor ligand and ciprofloxacin have been synthesized. Synthesized complexes were characterized by physicochemical parameters like elemental analysis, electronic, FT-IR and LC-MS spectra. The complexes were screened for their antimicrobial activity against Gram(+Ve), i.e. Staphylococcus aureus, Bacillus subtilis, and Gram(-Ve), i.e. Serratia marcescens, Pseudomonas aeruginosa and Escherichia coli, microorganisms in terms of minimum inhibitory concentration and colony-forming unit. To determine the binding mode of complexes with Herring Sperm DNA, absorption titration and viscosity measurement were employed. DNA cleavage activity was carried out by gel electrophoresis experiment using supercoiled form of pUC19 DNA. The complexes were tested for their superoxide dismutase mimic activity in terms of IC(50) value. Synthesized complexes were also screened for their cytotoxicity using brine shrimp lethality assay method. PMID:23306896

  8. Antiproliferative activity of bicyclic benzimidazole nucleosides: synthesis, DNA-binding and cell cycle analysis.

    PubMed

    Sontakke, Vyankat A; Lawande, Pravin P; Kate, Anup N; Khan, Ayesha; Joshi, Rakesh; Kumbhar, Anupa A; Shinde, Vaishali S

    2016-04-26

    An efficient route was developed for synthesis of bicyclic benzimidazole nucleosides from readily available d-glucose. The key reactions were Vörbruggen glycosylation and ring closing metathesis (RCM). Primarily, to understand the mode of DNA binding, we performed a molecular docking study and the binding was found to be in the minor groove region. Based on the proposed binding model, UV-visible and fluorescence spectroscopic techniques using calf thymus DNA (CT-DNA) demonstrated a non-intercalative mode of binding. Antiproliferative activity of nucleosides was tested against MCF-7 and MDA-MB-231 breast cancer cell lines and found to be active at low micromolar concentrations. Compounds and displayed significant antiproliferative activity as compared to and with the reference anticancer drug, doxorubicin. Cell cycle analysis showed that nucleoside induced cell cycle arrest at the S-phase. Confocal microscopy has been performed to validate the induction of cellular apoptosis. Based on these findings, such modified bicyclic benzimidazole nucleosides will make a significant contribution to the development of anticancer drugs. PMID:27074628

  9. Arachidonic acid stimulates DNA synthesis in brown preadipocytes through the activation of protein kinase C and MAPK.

    PubMed

    Garcia, Bibian; Martinez-de-Mena, Raquel; Obregon, Maria-Jesus

    2012-10-01

    Arachidonic acid (AA) is a polyunsaturated fatty acid that stimulates the proliferation of many cellular types. We studied the mitogenic potential of AA in rat brown preadipocytes in culture and the signaling pathways involved. AA is a potent mitogen which induces 4-fold DNA synthesis in brown preadipocytes. The AA mitogenic effect increases by NE addition. AA also increases the mitogenic action of different growth factor combinations. Other unsaturated and saturated fatty acids do not stimulate DNA synthesis to the same extent as AA. We analyzed the role of PKC and MEK/MAPK signaling pathways. PKC inhibition by bisindolilmaleimide I (BIS) abolishes AA and phorbol ester stimulation of DNA synthesis and reduces the mitogenic activity of different growth factors in brown preadipocytes. Brown preadipocytes in culture express PKC α, δ, ε and ζ isoforms. Pretreatment with high doses of the phorbol ester PDBu, induces downregulation of PKCs ε and δ and reproduces the effect of BIS indicating that AA-dependent induction of DNA synthesis requires PKC activity. AA also activates MEK/MAPK pathway and the inhibition of MEK activity inhibits AA stimulation of DNA synthesis and brown adipocyte proliferation. Inhibition of PKC δ by rottlerin abolishes AA-dependent stimulation of DNA synthesis and MAPK activation, whereas PKC ε inhibition does not produce any effect. In conclusion, our results identify AA as a potent mitogen for brown adipocytes and demonstrate the involvement of the PDBu-sensitive PKC δ isoform and MEK/MAPK pathway in AA-induced proliferation of brown adipocytes. Increased proliferative activity might increase the thermogenic capacity of brown fat. PMID:22766489

  10. A versatile biosensing system for DNA-related enzyme activity assay via the synthesis of silver nanoclusters using enzymatically-generated DNA as template.

    PubMed

    Yuan, Yijia; Li, Wenhua; Liu, Zhuoliang; Nie, Zhou; Huang, Yan; Yao, Shouzhuo

    2014-11-15

    In the present day, oligonucleotide-encapsulated silver clusters (DNA-AgNCs) have been widely applied into bio-analysis as a signal producer. Herein, we developed a novel method to synthesize DNA-AgNCs encapsulated by long-chain cytosine (C)-rich DNA. Such DNA was polymerized in a template-free way by terminal deoxynucleotidyl transferase (TdT). We demonstrated that TdT-polymerized long chain C-rich DNA can serve as an excellent template for AgNCs synthesis. Based on this novel synthesis strategy, we developed a label-free and turn-on fluorescence assay to detect TdT activity with ultralow limit of detection (LOD) of 0.0318 U and ultrahigh signal to background (S/B) of 46.7. Furthermore, our proposed method was extended to a versatile biosensing strategy for turn-on nucleases activity assay based on the enzyme-activated TdT polymerization. Two nucleases, EcoRI and ExoIII as model of endonuclease and exonuclease, respectively, have been detected with high selectivity and competitive low LOD of 0.0629 U and 0.00867 U, respectively. Our work demonstrates the feasibility of TdT polymerization-based DNA-AgNCs synthesis strategy as a versatile and potent biosensing platform to detect the activity of DNA-related enzymes. PMID:24907540

  11. The trypanocidal activity of the alkaloid oliverine involves inhibition of DNA synthesis.

    PubMed

    Garro, H A; Juri Ayub, M; Nieto, M; Lucero Estrada, C; Pungitore, C R; Tonn, C E

    2010-01-01

    The Trypanosoma cruzi parasite is an etiologic agent of the American trypanosomiasis called Chagas disease. This pathology affects more than 24 million persons and represents one of the most important public health problems in Latin America. Taking into account this, it is necessary the search of new antitrypanosomal agents that show a major level of efficacy and minor indexes of toxicity in affected patients. Vast source of them are the natural products from plants with enormous structural diversity. A particular type of these compounds is represented by aporphinoid alkaloids. In our experiments, anonaine (2), oliverine (3) and guatterine (5) displayed antitrypanosomal activity. The compound 3 showed the most important activity with an IC50 = 12.00 ± 0.36 μM. Its mechanism of action may include inhibition of DNA synthesis. PMID:20937218

  12. Antibacterial activity of lichen secondary metabolite usnic acid is primarily caused by inhibition of RNA and DNA synthesis.

    PubMed

    Maciąg-Dorszyńska, Monika; Węgrzyn, Grzegorz; Guzow-Krzemińska, Beata

    2014-04-01

    Usnic acid, a compound produced by various lichen species, has been demonstrated previously to inhibit growth of different bacteria and fungi; however, mechanism of its antimicrobial activity remained unknown. In this report, we demonstrate that usnic acid causes rapid and strong inhibition of RNA and DNA synthesis in Gram-positive bacteria, represented by Bacillus subtilis and Staphylococcus aureus, while it does not inhibit production of macromolecules (DNA, RNA, and proteins) in Escherichia coli, which is resistant to even high doses of this compound. However, we also observed slight inhibition of RNA synthesis in a Gram-negative bacterium, Vibrio harveyi. Inhibition of protein synthesis in B. subtilis and S. aureus was delayed, which suggest indirect action (possibly through impairment of transcription) of usnic acid on translation. Interestingly, DNA synthesis was halted rapidly in B. subtilis and S. aureus, suggesting interference of usnic acid with elongation of DNA replication. We propose that inhibition of RNA synthesis may be a general mechanism of antibacterial action of usnic acid, with additional direct mechanisms, such as impairment of DNA replication in B. subtilis and S. aureus. PMID:24571086

  13. Translesion DNA synthesis

    PubMed Central

    Vaisman, Alexandra; McDonald, John P.; Woodgate, Roger

    2014-01-01

    All living organisms are continually exposed to agents that damage their DNA, which threatens the integrity of their genome. As a consequence, cells are equipped with a plethora of DNA repair enzymes to remove the damaged DNA. Unfortunately, situations nevertheless arise where lesions persist, and these lesions block the progression of the cell’s replicase. Under these situations, cells are forced to choose between recombination-mediated “damage avoidance” pathways, or use a specialized DNA polymerase (pol) to traverse the blocking lesion. The latter process is referred to as Translesion DNA Synthesis (TLS). As inferred by its name, TLS not only results in bases being (mis)incorporated opposite DNA lesions, but also downstream of the replicase-blocking lesion, so as to ensure continued genome duplication and cell survival. Escherichia coli and Salmonella typhimurium possess five DNA polymerases, and while all have been shown to facilitate TLS under certain experimental conditions, it is clear that the LexA-regulated and damage-inducible pols II, IV and V perform the vast majority of TLS under physiological conditions. Pol V can traverse a wide range of DNA lesions and performs the bulk of mutagenic TLS, whereas pol II and pol IV appear to be more specialized TLS polymerases. PMID:26442823

  14. Purification, characterization and biological activity of tulipin, a novel inhibitor of DNA synthesis of plant origin.

    PubMed

    Gasperi-Campani, A; Lorenzoni, E; Abbondanza, A; Perocco, P; Falasca, A I

    1987-01-01

    A DNA synthesis-inhibiting protein (for which the term tulipin is proposed) was isolated from the bulbs of Tulipa sp. The yield ranged from 3.4 to 4.1 per cent of total protein content of the crude extract. Mr, isoelectric point, neutral and amino sugar and amino acid composition were determined. Inhibition of DNA synthesis varied in intact cells according to the cellular types studied, with a minimum ID 50% (concentration giving 50% inhibition) of 400 ng/ml in neuroblastoma cells. The effect was reversible. No effect was obtained in cell-lysate. RNA and protein synthesis were unaffected. The acute toxicity, evaluated in Swiss mice, gave an LD of 6.1 mg/kg body wt. Results of electron microscopy are also given. A second protein, called tulipin 2, has been isolated and partially characterized. PMID:3592627

  15. Antibacterial activity and inhibition of protein synthesis in Escherichia coli by antisense DNA analogs.

    PubMed

    Rahman, M A; Summerton, J; Foster, E; Cunningham, K; Stirchak, E; Weller, D; Schaup, H W

    1991-01-01

    Protein synthesis, which takes place within ribosomes, is essential for the survival of any living organism. Ribosomes are composed of both proteins and RNA. Specific interaction between the 3' end CCUCC sequence of prokaryotic 16S rRNA and a partially complementary sequence preceding the initiating codon of mRNA is believed to be a prerequisite for initiation of protein synthesis. Here we report the use of short (three to six nucleotides) synthetic DNA analogs complementary to this sequence to block protein synthesis in vitro and in vivo in Escherichia coli. In the DNA analogs the normal phosphodiester bond in the antisense DNA was replaced by methylcarbamate internucleoside linkages to enhance transport across plasma membranes. Of the analogs tested, those with the sequence AGG and GGA inhibit protein synthesis and colony formation by E. coli strains lacking an outer cell wall. Polyethylene glycol 1000 (PEG 1000) was attached to the 5' end of some of the test methylcarbamate DNAs to enhance solubility. Analogs of AGG and GGAG with PEG 1000 attached inhibited colony formation in normal E. coli. These analogs may be useful food additives to control bacterial spoilage and biomedically as antibiotics. PMID:1821653

  16. Photoelectrochemical synthesis of DNA microarrays

    PubMed Central

    Chow, Brian Y.; Emig, Christopher J.; Jacobson, Joseph M.

    2009-01-01

    Optical addressing of semiconductor electrodes represents a powerful technology that enables the independent and parallel control of a very large number of electrical phenomena at the solid-electrolyte interface. To date, it has been used in a wide range of applications including electrophoretic manipulation, biomolecule sensing, and stimulating networks of neurons. Here, we have adapted this approach for the parallel addressing of redox reactions, and report the construction of a DNA microarray synthesis platform based on semiconductor photoelectrochemistry (PEC). An amorphous silicon photoconductor is activated by an optical projection system to create virtual electrodes capable of electrochemically generating protons; these PEC-generated protons then cleave the acid-labile dimethoxytrityl protecting groups of DNA phosphoramidite synthesis reagents with the requisite spatial selectivity to generate DNA microarrays. Furthermore, a thin-film porous glass dramatically increases the amount of DNA synthesized per chip by over an order of magnitude versus uncoated glass. This platform demonstrates that PEC can be used toward combinatorial bio-polymer and small molecule synthesis. PMID:19706433

  17. Synthesis, DNA-binding and biological activity of a double intercalating analog of ethidium bromide.

    PubMed Central

    Kuhlmann, K F; Charbeneau, N J; Mosher, C W

    1978-01-01

    A bis-phenanthridinium salt has been synthesized and its DNA-binding studied. Evidence provided by UV and CD spectra, by thermal denaturation profiles and by equilibrium dialysis of the drug-DNA complex lead to the conclusion that both phenanthridine moieties intercalate in the helix. The double intercalator appears to be less potent than ethidium chloride as an inhibitor of nucleic acid synthesis in cultured L1210 cells, though it is more potent than a monomeric analog. The low potency may be due to a low cell influx rate. PMID:673863

  18. Synthesis, DNA Binding, and Antiproliferative Activity of Novel Acridine-Thiosemicarbazone Derivatives.

    PubMed

    de Almeida, Sinara Mônica Vitalino; Lafayette, Elizabeth Almeida; da Silva, Lúcia Patrícia Bezerra Gomes; Amorim, Cézar Augusto da Cruz; de Oliveira, Tiago Bento; Ruiz, Ana Lucia Tasca Gois; de Carvalho, João Ernesto; de Moura, Ricardo Olímpio; Beltrão, Eduardo Isidoro Carneiro; de Lima, Maria do Carmo Alves; de Carvalho Júnior, Luiz Bezerra

    2015-01-01

    In this work, the acridine nucleus was used as a lead-compound for structural modification by adding different substituted thiosemicarbazide moieties. Eight new (Z)-2-(acridin-9-ylmethylene)-N-phenylhydrazinecarbothioamide derivatives (3a-h) were synthesized, their antiproliferative activities were evaluated, and DNA binding properties were performed with calf thymus DNA (ctDNA) by electronic absorption and fluorescence spectroscopies. Both hyperchromic and hypochromic effects, as well as red or blue shifts were demonstrated by addition of ctDNA to the derivatives. The calculated binding constants ranged from 1.74 × 10(4) to 1.0 × 10(6) M(-1) and quenching constants from -0.2 × 10(4) to 2.18 × 10(4) M(-1) indicating high affinity to ctDNA base pairs. The most efficient compound in binding to ctDNA in vitro was (Z)-2-(acridin-9-ylmethylene)-N- (4-chlorophenyl) hydrazinecarbothioamide (3f), while the most active compound in antiproliferative assay was (Z)-2-(acridin-9-ylmethylene)-N-phenylhydrazinecarbothioamide (3a). There was no correlation between DNA-binding and in vitro antiproliferative activity, but the results suggest that DNA binding can be involved in the biological activity mechanism. This study may guide the choice of the size and shape of the intercalating part of the ligand and the strategic selection of substituents that increase DNA-binding or antiproliferative properties. PMID:26068233

  19. Synthesis, DNA Binding, and Antiproliferative Activity of Novel Acridine-Thiosemicarbazone Derivatives

    PubMed Central

    de Almeida, Sinara Mônica Vitalino; Lafayette, Elizabeth Almeida; Gomes da Silva, Lúcia Patrícia Bezerra; Amorim, Cézar Augusto da Cruz; de Oliveira, Tiago Bento; Gois Ruiz, Ana Lucia Tasca; de Carvalho, João Ernesto; de Moura, Ricardo Olímpio; Beltrão, Eduardo Isidoro Carneiro; de Lima, Maria do Carmo Alves; de Carvalho Júnior, Luiz Bezerra

    2015-01-01

    In this work, the acridine nucleus was used as a lead-compound for structural modification by adding different substituted thiosemicarbazide moieties. Eight new (Z)-2-(acridin-9-ylmethylene)-N-phenylhydrazinecarbothioamide derivatives (3a–h) were synthesized, their antiproliferative activities were evaluated, and DNA binding properties were performed with calf thymus DNA (ctDNA) by electronic absorption and fluorescence spectroscopies. Both hyperchromic and hypochromic effects, as well as red or blue shifts were demonstrated by addition of ctDNA to the derivatives. The calculated binding constants ranged from 1.74 × 104 to 1.0 × 106 M−1 and quenching constants from −0.2 × 104 to 2.18 × 104 M−1 indicating high affinity to ctDNA base pairs. The most efficient compound in binding to ctDNA in vitro was (Z)-2-(acridin-9-ylmethylene)-N-(4-chlorophenyl) hydrazinecarbothioamide (3f), while the most active compound in antiproliferative assay was (Z)-2-(acridin-9-ylmethylene)-N-phenylhydrazinecarbothioamide (3a). There was no correlation between DNA-binding and in vitro antiproliferative activity, but the results suggest that DNA binding can be involved in the biological activity mechanism. This study may guide the choice of the size and shape of the intercalating part of the ligand and the strategic selection of substituents that increase DNA-binding or antiproliferative properties. PMID:26068233

  20. Novel Organotin(IV)-Schiff Base Complexes: Synthesis, Characterization, Antimicrobial Activity, and DNA Interaction Studies

    PubMed Central

    Prasad, K. Shiva; Kumar, L. Shiva; Prasad, Melvin; Revanasiddappa, Hosakere D.

    2010-01-01

    Four organotin(IV) complexes with 2-(2-hydroxybenzylideneamino)isoindoline-1,3-dione (L1), and 4-(4-hydroxy-3-methoxybenzylideneamino-N-(pyrimidin-2-yl)benzenesulfonamide (L2) were synthesized and well characterized by analytical and spectral studies. The synthesized compounds were tested for antimicrobial activity by disc diffusion method. The DNA binding of the complexes 1 and 3 with CT-DNA has been performed with absorption spectroscopy, which showed that both the complexes are avid binders of CT-DNA. Also the nuclease activity of complexes 1 and 3 with plasmid DNA (pUC19) was studied using agarose gel electrophoresis. The complex 1 can act as effective DNA cleaving agent when compared to complex 3 resulting in the nicked form of DNA under physiological conditions. The gel was run both in the absence and presence of the oxidizing agent. PMID:21253533

  1. Chemical synthesis of human papillomavirus type 16 E7 oncoprotein: autonomous protein domains for induction of cellular DNA synthesis and for trans activation.

    PubMed

    Rawls, J A; Pusztai, R; Green, M

    1990-12-01

    The human papillomavirus type 16 E7 protein belongs to a family of nuclear oncoproteins that share amino acid sequences and functional homology. To localize biochemical activities associated with E7, we chemically synthesized the full-length 98-amino-acid polypeptide and several deletion mutant peptides. We show that the E7 polypeptide is biologically active and possesses at least two functional domains; the first induces cellular DNA synthesis in quiescent rodent cells, and the second trans activates the adenovirus E1A-inducible early E2 promoter and binds zinc. Further, each domain is autonomous and can function on separate peptides. DNA synthesis induction activity maps within the N-terminal portion of the molecule, which contains sequences related to adenovirus E1A conserved domains 1 and 2 required for cell transformation and binding of the retinoblastoma gene product. trans-Activation and Zn-binding activities map within the C-terminal portion of the molecule, a region which contains Cys-X-X-Cys motifs. trans Activation does not require protein synthesis, implying a mechanism that involves interaction with a preexisting cellular factor(s). E7 trans activates the adenovirus E2 promoter but not other E1A-inducible viral promoters, suggesting the possibility that E7 trans activation involves interaction, directly or indirectly, with cellular transcription factor E2F. PMID:2173783

  2. Dithiocarbamate/piperazine bridged pyrrolobenzodiazepines as DNA-minor groove binders: synthesis, DNA-binding affinity and cytotoxic activity.

    PubMed

    Kamal, Ahmed; Sreekanth, Kokkonda; Shankaraiah, Nagula; Sathish, Manda; Nekkanti, Shalini; Srinivasulu, Vunnam

    2015-04-01

    A new series of C8-linked dithiocarbamate/piperazine bridged pyrrolo[2,1-c][1,4]benzodiazepine conjugates (5a-c, 6a,b) have been synthesized and evaluated for their cytotoxic potential and DNA-binding ability. The representative conjugates 5a and 5b have been screened for their cytotoxicity against a panel of 60 human cancer cell lines. Compound 5a has shown promising cytotoxic activity on selected cancer cell lines that display melanoma, leukemia, CNS, ovarian, breast and renal cancer phenotypes. The consequence of further replacement of the 3-cyano-3,3-diphenylpropyl 1-piperazinecarbodithioate in 5b and 5c with 4-methylpiperazine-1-carbodithioate yielded new conjugates 6a and 6b respectively. In addition, the compounds 5c and 6a,b have been evaluated for their in vitro cytotoxicity on some of the selected human cancer cell lines and these conjugates have exhibited significant cytotoxic activity. Further, the DNA-binding ability of these new conjugates has been evaluated by using thermal denaturation (ΔTm) studies. The correlation between structure and DNA-binding ability has been investigated by molecular modeling studies which predicted that 6b exhibits superior DNA-binding ability and these are in agreement with the experimental DNA-binding studies. PMID:25665519

  3. Synthesis of bisphosphonate derivatives of ATP by T4 DNA ligase, ubiquitin activating enzyme (E1) and other ligases.

    PubMed

    Günther Sillero, María A; de Diego, Anabel; Pérez-Zúñiga, Francisco J; Sillero, Antonio

    2008-05-15

    T4 DNA ligase and the ubiquitin activating enzyme (E1), catalyze the synthesis of ATP beta,gamma-bisphosphonate derivatives. Concerning T4 DNA ligase: (i) etidronate (pC(OH)(CH(3))p) displaced the AMP moiety of the complex E-AMP in a concentration dependent manner; (ii) the K(m) values and the rate of synthesis k(cat) (s(-1)), determined for the following compounds were, respectively: etidronate, 0.73+/-0.09 mM and (70+/-10)x10(-3) s(-1); clodronate (pCCl(2)p), 0.08+/-0.01 mM and (4.1+/-0.3)x10(-3) s(-1); methylenebisphosphonate (pCH(2)p), 0.024+/-0.001 mM and (0.6+/-0.1)x10(-3) s(-1); tripolyphosphate (P(3)) (in the synthesis of adenosine 5'-tetraphosphate, p(4)A), 1.30+/-0.30 mM and (6.2+/-1.1)x10(-3) s(-1); (iii) in the presence of GTP and ATP, inhibition of the synthesis of Ap(4)G was observed with clodronate but not with pamidronate (pC(OH)(CH(2)-CH(2)-NH(3))p). Concerning the ubiquitin activating enzyme (E1): methylenebisphosphonate was the only bisphosphonate, out of the ones tested, that served as substrate for the synthesis of an ATP derivative (K(m)=0.36+/-0.09 mM and k(cat)=0.15+/-0.02 s(-1)). None of the above bisphosphonates were substrates of the reaction catalyzed by luciferase or by acyl-CoA synthetase. The ability of acetyl-CoA synthetase to use methylenebisphosphonate as substrate depended on the commercial source of the enzyme. In our view this report widens our knowledge of the enzymes able to metabolize bisphosphonates, a therapeutic tool widely used in the treatment of osteoporosis. PMID:18378215

  4. Nicotine inhibits collagen synthesis and alkaline phosphatase activity, but stimulates DNA synthesis in osteoblast-like cells

    SciTech Connect

    Ramp, W.K.; Lenz, L.G.; Galvin, R.J. )

    1991-05-01

    Use of smokeless tobacco is associated with various oral lesions including periodontal damage and alveolar bone loss. This study was performed to test the effects of nicotine on bone-forming cells at concentrations that occur in the saliva of smokeless tobacco users. Confluent cultures of osteoblast-like cells isolated from chick embryo calvariae were incubated for 2 days with nicotine added to the culture medium (25-600 micrograms/ml). Nicotine inhibited alkaline phosphatase in the cell layer and released to the medium, whereas glycolysis (as indexed by lactate production) was unaffected or slightly elevated. The effects on medium and cell layer alkaline phosphatase were concentration dependent with maximal inhibition occurring at 600 micrograms nicotine/ml. Nicotine essentially did not affect the noncollagenous protein content of the cell layer, but did inhibit collagen synthesis (hydroxylation of ({sup 3}H)proline and collagenase-digestible protein) at 100, 300, and 600 micrograms/ml. Release of ({sup 3}H)hydroxyproline to the medium was also decreased in a dose-dependent manner, as was the collagenase-digestible protein for both the medium and cell layer. In contrast, DNA synthesis (incorporation of ({sup 3}H)thymidine) was more than doubled by the alkaloid, whereas total DNA content was slightly inhibited at 600 micrograms/ml, suggesting stimulated cell turnover. Morphologic changes occurred in nicotine-treated cells including rounding up, detachment, and the occurrence of numerous large vacuoles. These results suggest that steps to reduce the salivary concentration of nicotine in smokeless tobacco users might diminish damaging effects of this product on alveolar bone.

  5. Synthesis, characterization; DNA binding and antitumor activity of ruthenium(II) polypyridyl complexes.

    PubMed

    Srishailam, A; Gabra, Nazar Mohammed; Kumar, Yata Praveen; Reddy, Kotha Laxma; Devi, C Shobha; Anil Kumar, D; Singh, Surya S; Satyanarayana, S

    2014-12-01

    Three new ruthenium(II) polypyridyl complexes [Ru(phen)2BrIPC](2+) (1), [Ru(bpy)2 BrIPC](2+) (2) and [Ru(dmb)2BrIPC](2+) (3) where, BrIPC = (6-bromo-3-(1H-imidazo[4,5-f] [1,10]-phenanthroline, phen = 1,10-phenanthroline, bpy = 2,2' bipyridine, dmb = 4,4'-dimethyl 2,2' bipyridine, were synthesised and characterised. DNA-binding nature was investigated by spectroscopic titrations and mode of binding was assessed by viscosity measurements. The DNA-binding constants Kb of complexes 1, 2 and 3 were determined to be in the order of 10(5). Experimental results showed that these complexes interact with CT-DNA by intercalative mode. Photocleavage and antimicrobial activities were complex concentration dependent, at high concentration, high activity and vice versa. MTT assay was performed on HeLa cell lines, IC50 values of complexes in the order of 3 > 2 > 1 > cisplatin. From comet assay, cellular uptake studies, we observed that complexes could enter into the cell membrane and accumulate inside the nucleus. Molecular docking studies support the DNA binding affinity with hydrogen bonding and van der Waals attractions between base pairs and phosphate backbone of DNA with metal complexes. PMID:25318017

  6. Imidazolium tagged acridines: Synthesis, characterization and applications in DNA binding and anti-microbial activities

    NASA Astrophysics Data System (ADS)

    Raju, Gembali; Vishwanath, S.; Prasad, Archana; Patel, Basant K.; Prabusankar, Ganesan

    2016-03-01

    New water soluble 4,5-bis imidazolium tagged acridines have been synthesized and structurally characterized by multinuclear NMR and single crystal X-ray diffraction techniques. The DNA binding and anti-microbial activities of these acridine derivatives were investigated by fluorescence and far-UV circular dichroism studies.

  7. Different activities of unscheduled DNA synthesis in human melanoma and bone marrow cells

    SciTech Connect

    Lewensohn, R.; Ringborg, U.; Hansson, J.

    1982-01-01

    Unscheduled DNA synthesis (UDS) indicated by melphalan was studied in freshly collected tumor cells from human melanoma metastases. Comparative studies were done on human bone marrow blast cells. Significant levels of UDS comparable with those in myeloblasts were found in only two of eight melanoma cell populations. This difference between melanoma and blast cells was not related to different cellular uptake of melphalan. When UDS was induced by ultraviolet irradiation, significant levels of UDS were found in all melanoma and blast cell populations studied. Also, in a human melanoma cell line, high levels of UDS were found after exposure to ultraviolet irradiation, while treatment with melphalan did not result in detectable levels of UDS. Possible explanations for the divergent results of UDS in melphalan-exposed melanoma cells are discussed.

  8. Stimulation by endothelin-1 of mitogen-activated protein kinases and DNA synthesis in bovine tracheal smooth muscle cells.

    PubMed Central

    Malarkey, K.; Chilvers, E. R.; Lawson, M. F.; Plevin, R.

    1995-01-01

    1. In cultures of bovine tracheal smooth muscle cells, platelet-derived growth factor-BB (PDGF), bradykinin (BK) and endothelin-1 (ET-1) stimulated the tyrosine phosphorylation and activation of both pp42 and pp44 kDa forms of mitogen-activated protein (MAP) kinase. 2. Both ET-1 and PDGF stimulated a sustained activation of MAP kinase whilst the response to BK was transient. 3. Activation of MAP kinase occurred in a concentration-dependent manner (EC50 values: ET-1, 2.3 +/- 1.3 nM; BK, 8.7 +/- 4.1 nM, PDGF, 9.7 +/- 3.2 ng ml-1). 4. Pretreatment with the protein kinase C (PKC) inhibitor Ro-318220, significantly reduced ET-1 activation of MAP kinase at 2 and 5 min but enhanced MAP kinase activation at 60 min. 5. Following chronic phorbol ester pretreatment, BK-stimulated activation of MAP kinase was abolished whilst the responses to PDGF and ET-1 were only partly reduced (80 and 45% inhibition respectively). 6. Pretreatment with pertussis toxin reduced ET-1 stimulated activation of MAP kinase particularly at later times (60 min), but left the responses to both PDGF and BK unaffected. 7. ET-1 also stimulated a 3 fold increase in [3H]-thymidine incorporation which was abolished by pertussis toxin pretreatment. In contrast, PDGF stimulated a 131 fold increase in [3H]-thymidine incorporation which was not affected by pertussis toxin. 8. These results suggest that a pertussis toxin-sensitive activation of MAP kinase may play an important role in ET-1-stimulated DNA synthesis but that activation of MAP kinase alone is not sufficient to induce the magnitude of DNA synthesis observed in response to PDGF. Images Figure 1 Figure 2 Figure 5 Figure 6 Figure 7 PMID:8564258

  9. Synthesis of isatin thiosemicarbazones derivatives: In vitro anti-cancer, DNA binding and cleavage activities

    NASA Astrophysics Data System (ADS)

    Ali, Amna Qasem; Teoh, Siang Guan; Salhin, Abdussalam; Eltayeb, Naser Eltaher; Khadeer Ahamed, Mohamed B.; Majid, A. M. S. Abdul

    New derivatives of thiosemicarbazone Schiff base with isatin moiety were synthesized L1-L6. The structures of these compounds were characterized based on the spectroscopic techniques. Compound L6 was further characterized by XRD single crystal. The interaction of these compounds with calf thymus (CT-DNA) exhibited high intrinsic binding constant (kb = 5.03-33.00 × 105 M-1) for L1-L3 and L5 and (6.14-9.47 × 104 M-1) for L4 and L6 which reflect intercalative activity of these compounds toward CT-DNA. This result was also confirmed by the viscosity data. The electrophoresis studies reveal the higher cleavage activity of L1-L3 than L4-L6. The in vitro anti-proliferative activity of these compounds against human colon cancer cell line (HCT 116) revealed that the synthesized compounds (L3, L6 and L2) exhibited good anticancer potency.

  10. Synthesis of DNA

    DOEpatents

    Mariella, Jr., Raymond P.

    2008-11-18

    A method of synthesizing a desired double-stranded DNA of a predetermined length and of a predetermined sequence. Preselected sequence segments that will complete the desired double-stranded DNA are determined. Preselected segment sequences of DNA that will be used to complete the desired double-stranded DNA are provided. The preselected segment sequences of DNA are assembled to produce the desired double-stranded DNA.

  11. Synthesis, antiproliferative activity and DNA binding properties of novel 5-aminobenzimidazo[1,2-a]quinoline-6-carbonitriles.

    PubMed

    Perin, Nataša; Nhili, Raja; Ester, Katja; Laine, William; Karminski-Zamola, Grace; Kralj, Marijeta; David-Cordonnier, Marie-Hélène; Hranjec, Marijana

    2014-06-10

    The synthesis of 5-amino substituted benzimidazo[1,2-a]quinolines prepared by microwave assisted amination from halogeno substituted precursor was described. The majority of compounds were active at micromolar concentrations against colon, lung and breast carcinoma cell lines in vitro. The N,N-dimethylaminopropyl 9 and piperazinyl substituted derivative 19 showed the most pronounced activity towards all of the three tested tumor cell lines, which could be correlated to the presence of another N heteroatom and its potential interactions with biological targets. The DNA binding studies, consisting of UV/Visible absorbency, melting temperature studies, and fluorescence and circular dichroism titrations, revealed that compounds 9, 19 and 20 bind to DNA as strong intercalators. The cellular distribution analysis, based on compounds' intrinsic fluorescence, showed that compound 20 does not enter the cell, while compounds 9 and 19 do, which is in agreement with their cytotoxic effects. Compound 9 efficiently targets the nucleus whereas 19, which also showed DNA intercalating properties in vitro, was mostly localised in the cytoplasm suggesting that the antitumor mechanism of action is DNA-independent. PMID:24780599

  12. Synthesis, crystal structure, DNA interaction and anticancer activity of tridentate copper(II) complexes.

    PubMed

    Li, Guan-Ying; Du, Ke-Jie; Wang, Jin-Quan; Liang, Jie-Wen; Kou, Jun-Feng; Hou, Xiao-Juan; Ji, Liang-Nian; Chao, Hui

    2013-02-01

    Three new tridentate copper(II) complexes [Cu(dthp)Cl(2)] (1) (dthp=2,6-di(thiazol-2-yl)pyridine), [Cu(dmtp)Cl(2)] (2) (dmtp=2,6-di(5-methyl-4H-1,2,4-triazol-3-yl)pyridine) and [Cu(dtp)Cl(2)] (3) (dtp=2,6-di(4H-1,2,4-triazol-3-yl)pyridine) have been synthesized and characterized. Crystal structure of complex 1 shows that the complex existed as distorted square pyramid with five co-ordination sites occupied by the tridentate ligand and the two chlorine anions. Ethidium bromide displacement assay, viscosity measurements, circular dichroism studies and cyclic voltammetric experiments suggested that these complexes bound to DNA via an intercalative mode. Three Cu(II) complexes were found to efficiently cleave DNA in the presence of sodium ascorbate, and singlet oxygen ((1)O(2)) and hydrogen peroxide were proved to contribute to the DNA cleavage process. They exhibited anticancer activity against HeLa, Hep-G2 and BEL-7402 cell lines. Nuclear chromatin cleavage has also been observed with AO/EB staining assay and the alkaline single-cell gel electrophoresis (comet assay). The results demonstrated that three Cu(II) complexes cause DNA damage that can induce the apoptosis of BEL-7402 cells. PMID:23186647

  13. Synthesis, DNA-binding, photocleavage, cytotoxicity and antioxidant activity of ruthenium (II) polypyridyl complexes.

    PubMed

    Liu, Yun-Jun; Zeng, Cheng-Hui; Huang, Hong-Liang; He, Li-Xin; Wu, Fu-Hai

    2010-02-01

    Two new ligands maip (1a), paip (1b) with their ruthenium (II) complexes [Ru(bpy)(2)(maip)](ClO(4))(2) (2a) and [Ru(bpy)(2)(paip)](ClO(4))(2) (2b) have been synthesized and characterized. The results show that complexes 2a and 2b interact with DNA through intercalative mode. The cytotoxicity of these compounds has been evaluated by MTT assay. The experiments on antioxidant activity show that these compounds exhibit good antioxidant activity against hydroxyl radical (OH). PMID:19932529

  14. Synthesis, DNA binding and antiviral activity of new uracil, xanthine, and pteridine derivatives.

    PubMed

    El-Sabbagh, Osama I; El-Sadek, Mohamed E; El-Kalyoubi, Samar; Ismail, Ibrahim

    2007-01-01

    Some new 6-amino-1,3-dimethyl-5-(substituted methylidene)aminouracils were synthesized. Most of them were cyclized with triethyl orthoformate as a one-carbon source to afford 1,3-dime-thyl-6-substituted pteridine derivatives. Certain uracils gave xanthine instead of the expected pteridine derivatives upon using another one-carbon source such as triethyl orthoacetate or triethyl orthobenzoate. The nucleic acid binding assay revealed that some new compounds showed high affinity, chelation, and fragmentation of nucleic acids whether DNA or RNA contrary to acyclovir that has affinity to DNA only. The antiviral activity of these novel compounds showed that compounds 2e and 2f reduced the cytopathogencity of Peste des petits ruminant virus (PPRV) on Vero cell culture by 60 and 50%, respectively. PMID:17206606

  15. Hibiscus latent Fort Pierce virus in Brazil and synthesis of its biologically active full-length cDNA clone.

    PubMed

    Gao, Ruimin; Niu, Shengniao; Dai, Weifang; Kitajima, Elliot; Wong, Sek-Man

    2016-10-01

    A Brazilian isolate of Hibiscus latent Fort Pierce virus (HLFPV-BR) was firstly found in a hibiscus plant in Limeira, SP, Brazil. RACE PCR was carried out to obtain the full-length sequences of HLFPV-BR which is 6453 nucleotides and has more than 99.15 % of complete genomic RNA nucleotide sequence identity with that of HLFPV Japanese isolate. The genomic structure of HLFPV-BR is similar to other tobamoviruses. It includes a 5' untranslated region (UTR), followed by open reading frames encoding for a 128-kDa protein and a 188-kDa readthrough protein, a 38-kDa movement protein, 18-kDa coat protein, and a 3' UTR. Interestingly, the unique feature of poly(A) tract is also found within its 3'-UTR. Furthermore, from the total RNA extracted from the local lesions of HLFPV-BR-infected Chenopodium quinoa leaves, a biologically active, full-length cDNA clone encompassing the genome of HLFPV-BR was amplified and placed adjacent to a T7 RNA polymerase promoter. The capped in vitro transcripts from the cloned cDNA were infectious when mechanically inoculated into C. quinoa and Nicotiana benthamiana plants. This is the first report of the presence of an isolate of HLFPV in Brazil and the successful synthesis of a biologically active HLFPV-BR full-length cDNA clone. PMID:27139727

  16. Synthesis of chemically modified DNA.

    PubMed

    Shivalingam, Arun; Brown, Tom

    2016-06-15

    Naturally occurring DNA is encoded by the four nucleobases adenine, cytosine, guanine and thymine. Yet minor chemical modifications to these bases, such as methylation, can significantly alter DNA function, and more drastic changes, such as replacement with unnatural base pairs, could expand its function. In order to realize the full potential of DNA in therapeutic and synthetic biology applications, our ability to 'write' long modified DNA in a controlled manner must be improved. This review highlights methods currently used for the synthesis of moderately long chemically modified nucleic acids (up to 1000 bp), their limitations and areas for future expansion. PMID:27284032

  17. Peptidyl anthraquinones as potential antineoplastic drugs: synthesis, DNA binding, redox cycling, and biological activity.

    PubMed

    Gatto, B; Zagotto, G; Sissi, C; Cera, C; Uriarte, E; Palù, G; Capranico, G; Palumbo, M

    1996-08-01

    A series of new compounds containing a 9,10-anthracenedione moiety and one or two peptide chains at position 1 and/or 4 have been synthesized. The amino acid residues introduced are glycine (Gly), lysine (Lys), and tryptophan (Trp), the latter two in both the L- and D-configurations. The peptidyl anthraquinones maintain the ability of intercalating efficiently into DNA, even though the orientation within the base-pair pocket may change somewhat with reference to the parent drugs mitoxantrone (MX) and ametantrone (AM). The interaction constants of the mono-, di-, and triglycyl derivatives are well comparable to those found for AM but 5-10 times lower than the value reported for MX. On the other hand, the glycyl-lysyl compounds bind DNA to the same extent as (L-isomer) or even better than (D-isomer) MX. As for the parent drugs without peptidyl chains, the new compounds prefer alternating CG binding sites, although to different extents. The bis-Gly-Lys derivatives are the least sensitive to base composition, which may be due to extensive aspecific charged interactions with the polynucleotide backbone. As far as redox properties are concerned, all peptidyl anthraquinones show a reduction potential very close to that of AM and 60-80 mV less negative than that of MX; hence, they can produce free-radical-damaging species to an extent similar to the parent drugs. The biological activity has been tested in human tumor and murine leukemia cell lines. Most of the test anthraquinones exhibit cytotoxic properties close to those of AM and considerably lower than those of MX. Stimulation of topoisomerase-mediated DNA cleavage is moderately present in representatives of the glycylanthraquinone family, whereas inhibition of the background cleavage occurs when Lys is present in the peptide chain. For most of the test anthraquinones, the toxicity data are in line with the DNA affinity scale and the topoisomerase II stimulation activity. However, in the lysyl derivatives, for which

  18. Macrocyclic nickel(II) complexes: Synthesis, characterization, superoxide scavenging activity and DNA-binding

    NASA Astrophysics Data System (ADS)

    Ramadan, Abd El-Motaleb M.

    2012-05-01

    A new series of nickel(II) complexes with the tetraaza macrocyclic ligand have been synthesized as possible functional models for nickel-superoxide dismutase enzyme. The reaction of 5-amino-3-methyl-1-phenylpyrazole-4-carbaldehyde (AMPC) with itself in the presence of nickel(II) ion yields, the new macrocyclic cationic complex, [NiL(NO3)2], containing a ligand composed of the self-condensed AMPC (4 mol) bound to a single nickel(II) ion. A series of metathetical reactions have led to the isolation of a number of newly complexes of the types [NiL]X2; X = ClO4 and BF4, [NiLX2], X = Cl and Br (Scheme 1). Structures and characterizations of these complexes were achieved by several physicochemical methods namely, elemental analysis, magnetic moment, conductivity, and spectral (IR and UV-Vis) measurements. The electrochemical properties and thermal behaviors of these chelates were investigated by using cyclic voltammetry and thermogravimetric analysis (TGA and DTG) techniques. A distorted octahedral stereochemistry has been proposed for the six-coordinate nitrato, and halogeno complexes. For the four-coordinate, perchlorate and fluoroborate, complex species a square-planar geometry is proposed. The measured superoxide dismutase mimetic activities of the complexes indicated that they are potent NiSOD mimics and their activities are compared with those obtained previously for nickel(II) complexes. The probable mechanistic implications of the catalytic dismutation of O2rad - by the synthesized nickel(II) complexes are discussed. The DNA-binding properties of representative complexes [NiLCl2] and [NiL](PF4)2 have been investigated by the electronic absorption and fluorescence measurements. The results obtained suggest that these complexes bind to DNA via an intercalation binding mode and the binding affinity for DNA follows the order: [NiLCl2] □ [NiL](PF4)2.

  19. Pyridine and p-Nitrophenyl Oxime Esters with Possible Photochemotherapeutic Activity: Synthesis, DNA Photocleavage and DNA Binding Studies.

    PubMed

    Pasolli, Milena; Dafnopoulos, Konstantinos; Andreou, Nicolaos-Panagiotis; Gritzapis, Panagiotis S; Koffa, Maria; Koumbis, Alexandros E; Psomas, George; Fylaktakidou, Konstantina C

    2016-01-01

    Compared to standard treatments for various diseases, photochemotherapy and photo-dynamic therapy are less invasive approaches, in which DNA photocleavers represent promising tools for novel "on demand" chemotherapeutics. A series of p-nitrobenzoyl and p-pyridoyl ester conjugated aldoximes, amidoximes and ethanone oximes were subjected to UV irradiation at 312 nm with supercoiled circular plasmid DNA. The compounds which possessed appropriate properties were additionally subjected to UVA irradiation at 365 nm. The ability of most of the compounds to photocleave DNA was high at 312 nm, whereas higher concentrations were required at 365 nm as a result of their lower UV absorption. The affinity of selected compounds to calf-thymus (CT) DNA was studied by UV spectroscopy, viscosity experiments and competitive studies with ethidium bromide (EB) revealing that all compounds interacted with CT DNA. The fluorescence emission spectra of the pre-treated EB-DNA exhibited a moderate to significant quenching in the presence of the compounds indicating the binding of the compounds to CT DNA via intercalation as concluded also by DNA-viscosity experiments. For the oxime esters the DNA photocleavage and affinity studies aimed to clarify the role of the oxime nature (aldoxime, ketoxime, amidoxime) and the role of the pyridine and p-nitrophenyl moieties both as oxime substituents and ester conjugates. PMID:27376258

  20. Simulated Screens of DNA Encoded Libraries: The Potential Influence of Chemical Synthesis Fidelity on Interpretation of Structure-Activity Relationships.

    PubMed

    Satz, Alexander L

    2016-07-11

    Simulated screening of DNA encoded libraries indicates that the presence of truncated byproducts complicates the relationship between library member enrichment and equilibrium association constant (these truncates result from incomplete chemical reactions during library synthesis). Further, simulations indicate that some patterns observed in reported experimental data may result from the presence of truncated byproducts in the library mixture and not structure-activity relationships. Potential experimental methods of minimizing the presence of truncates are assessed via simulation; the relationship between enrichment and equilibrium association constant for libraries of differing purities is investigated. Data aggregation techniques are demonstrated that allow for more accurate analysis of screening results, in particular when the screened library contains significant quantities of truncates. PMID:27116029

  1. Study of DNA light switch Ru(II) complexes: synthesis, characterization, photocleavage and antimicrobial activity.

    PubMed

    Yata, Praveen Kumar; Shilpa, M; Nagababu, P; Reddy, M Rajender; Kotha, Laxma Reddy; Gabra, Nazar Md; Satyanarayana, S

    2012-05-01

    The three Ru(II) complexes of [Ru(phen)(2)dppca](2+) (1) [Ru(bpy)(2)dppca](2+) (2) and [Ru(dmb)(2)dppca](2+) (3) (where phen = 1,10 phenanthroline, bpy = 2,2-bipyridine, dmb = 2 ,2-dimethyl 2',2'-bipyridine and polypyridyl ligand containing a single carboxylate functionality dppca ligand (dipyridophenazine-11-carboxylic acid) have been synthesized and characterized. These complexes have been shown to act as promising calf thymus DNA intercalators and a new class of DNA light switches, as evidenced by UV-visible and luminescence titrations with Co(2+) and EDTA, steady-state emission quenching by [Fe(CN)(6)](4-) and KI, DNA competitive binding with ethidium bromide, viscosity measurements, and DNA melting experiments. The results suggest that 1, 2, and 3 complexes bind to CT-DNA through intercalation and follows the order 1 > 2 > 3. Under irradiation at 365 nm, the three complexes have also been found to promote the photocleavage of plasmid pBR322 DNA. PMID:22194001

  2. Synthesis, structure elucidation, DNA-PK and PI3K and anti-cancer activity of 8- and 6-aryl-substituted-1-3-benzoxazines.

    PubMed

    Morrison, Rick; Al-Rawi, Jasim M A; Jennings, Ian G; Thompson, Philip E; Angove, Michael J

    2016-03-01

    The synthesis of 6-aryl, 8- aryl, and 8-aryl-6-chloro-2-morpholino-1,3-benzoxazines with potent activity against PI3K and DNA-PK is described. Synthesis of thirty one analogues was facilitated by an improved synthesis of 3-bromo-2-hydroxybenzoic acid 13 by de-sulphonation of 3-bromo-2-hydroxy-5-sulfobenzoic acid 12 en route to 2-methylthio-substituted-benzoxazine intermediates 17-19. From this series, compound 20k (LTURM34) (dibenzo[b,d]thiophen-4-yl) (IC50 = 0.034 μM) was identified as a specific DNA-PK inhibitor, 170 fold more selective for DNA-PK activity compared to PI3K activity. Other compounds of the series show markedly altered selectivity for various PI3K isoforms including compound 20i (8-(naphthalen-1-yl) a potent and quite selective PI3Kδ inhibitor (IC50 = 0.64 μM). Finally, nine compounds were evaluated and showed antiproliferative activity against an NCI panel of cancer cell lines. Compound 20i (8-(naphthalen-1-yl) showed strong anti-proliferative activity against A498 renal cancer cells that warrants further investigation. PMID:26854431

  3. Metformin inhibition of mTORC1 activation, DNA synthesis and proliferation in pancreatic cancer cells: Dependence on glucose concentration and role of AMPK

    SciTech Connect

    Sinnett-Smith, James; Kisfalvi, Krisztina; Kui, Robert; Rozengurt, Enrique

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Metformin inhibits cancer cell growth but the mechanism(s) are not understood. Black-Right-Pointing-Pointer We show that the potency of metformin is sharply dependent on glucose in the medium. Black-Right-Pointing-Pointer AMPK activation was enhanced in cancer cells incubated in physiological glucose. Black-Right-Pointing-Pointer Reciprocally, metformin potently inhibited mTORC1, DNA synthesis and proliferation. Black-Right-Pointing-Pointer Metformin, at low concentrations, inhibited DNA synthesis through AMPK. -- Abstract: Metformin, a widely used anti-diabetic drug, is emerging as a potential anticancer agent but the mechanisms involved remain incompletely understood. Here, we demonstrate that the potency of metformin induced AMPK activation, as shown by the phosphorylation of its substrates acetyl-CoA carboxylase (ACC) at Ser{sup 79} and Raptor at Ser{sup 792}, was dramatically enhanced in human pancreatic ductal adenocarcinoma (PDAC) cells PANC-1 and MiaPaCa-2 cultured in medium containing physiological concentrations of glucose (5 mM), as compared with parallel cultures in medium with glucose at 25 mM. In physiological glucose, metformin inhibited mTORC1 activation, DNA synthesis and proliferation of PDAC cells stimulated by crosstalk between G protein-coupled receptors and insulin/IGF signaling systems, at concentrations (0.05-0.1 mM) that were 10-100-fold lower than those used in most previous reports. Using siRNA-mediated knockdown of the {alpha}{sub 1} and {alpha}{sub 2} catalytic subunits of AMPK, we demonstrated that metformin, at low concentrations, inhibited DNA synthesis through an AMPK-dependent mechanism. Our results emphasize the importance of using medium containing physiological concentrations of glucose to elucidate the anticancer mechanism of action of metformin in pancreatic cancer cells and other cancer cell types.

  4. Decreased synthesis of DNA in regenerating rat liver after the administration of reserpine

    PubMed Central

    Ćihák, A.; Vaptzarova, K.

    1973-01-01

    1. Reserpine given to rats before the enhanced synthesis of DNA begins 14h after partial hepatectomy markedly depresses thymidine uptake into DNA at 24 hours. 2. At this time decreased activity of liver thymidine kinase but unchanged thymidine 5′-nucleotidase were observed. 3. Reserpine has no effect on DNA synthesis when administered simultaneously with the labelled thymidine 2 h before killing. 4. With depressed DNA synthesis after reserpine administration there is no significant decrease of liver RNA synthesis. PMID:4793440

  5. DNA-binding affinity and anticancer activity of β-carboline-chalcone conjugates as potential DNA intercalators: Molecular modelling and synthesis.

    PubMed

    Shankaraiah, Nagula; Siraj, K P; Nekkanti, Shalini; Srinivasulu, Vunnam; Sharma, Pankaj; Senwar, Kishna Ram; Sathish, Manda; Vishnuvardhan, M V P S; Ramakrishna, Sistla; Jadala, Chetna; Nagesh, Narayana; Kamal, Ahmed

    2015-04-01

    A new series of DNA-interactive β-carboline-chalcone conjugates have been synthesized and evaluated for their in vitro cytotoxicity and DNA-binding affinity. It has been observed that most of these new hybrids have shown potent cytotoxic activities on A-549 (lung adenocarcinoma) cell lines with IC50 values lower than 10 μM. The hybrid 7b is more effective against some of the selected cancer cell lines with IC50 values less than 50 μM. In addition, compounds 7e, 7k, 7p-u has displayed significant elevation in ΔTm of DNA in comparison to Adriamycin, suggesting significant interaction and remarkable DNA stabilization. The DNA intercalation of these new hybrids has been investigated by fluorescence titration, DNA viscosity measurements, molecular docking as well as molecular dynamics and the results are in agreement with the thermal denaturation studies. PMID:25771335

  6. Hairpin-shaped tetranuclear palladium(II) complex: synthesis, crystal structure, DNA binding and cytotoxicity activity studies.

    PubMed

    Gao, En-Jun; Wang, Ke-Hua; Zhu, Ming-Chang; Liu, Lei

    2010-07-01

    A novel tetranuclear palladium(II) complex [Pd(4)(phen)(4) (micro-pydc)(4)].10H(2)O (phen = 1,10-phenanthroline, pydc = pyridine-3,4-dicarboxylate) has been synthesized and characterized. In the tetranuclear complex, two pairs of dipalladated [Pd(phen)] moieties are bridged together by four pydc, presenting a hairpin molecular shape. The binding of the title complex with fish sperm DNA (FS-DNA) has been investigated by UV spectrum and fluorescence spectrum. All the results indicate that the complex bind to DNA in an intercalative mode and considerating the molecular shape and size, the dipalladated phenanthroline moieties bisintercalate to the base pairs of DNA. Agarose gel electrophoresis assay demonstrates the ability of the complex to cleave the pBR322 plasmid DNA. Cytotoxic activity studies show the complex exhibited good cytotoxic activity against four different cancer cell lines. PMID:20359787

  7. Function of DNA polymerase I in RNA-primed synthesis of bacteriophage M-13 duplex DNA.

    PubMed Central

    Schneck, P K; Staudenbauer, W L; Hofschneider, P H

    1976-01-01

    Cell-free extracts from Escherichia coli contain a DNA polymerase activity resistant to SH-blocking agents, which is capable of synthesizing complementary strand DNA on a circular M-13 DNA template by extension of RNA primers. This activity is considered to be identical with DNA polymerase I (or some altered form of this enzyme) since it is missing in extracts from po1A- cells. DNA synthesis in the presence of SH-blocking agents occurs at a reduced rate as compared to untreated controls and leads to the formation of DNA chains of defined size (0.4-0.5 genome's length). It is concluded that efficient M-13 duplex DNA synthesis requires the cooperation of both DNA polymerase I and III. PMID:1272793

  8. Biological Impact of Pd (II) Complexes: Synthesis, Spectral Characterization, In Vitro Anticancer, CT-DNA Binding, and Antioxidant Activities

    PubMed Central

    Sharma, Nitin Kumar; Ameta, Rakesh Kumar; Singh, Man

    2016-01-01

    A new series of Pd (II) complexes of methyl substituted benzylamine ligands (BLs) has been synthesized and characterized via spectroscopic techniques such as UV/Vis. FTIR, LCMS, 1H, and 13C NMR. The UV/Vis study in DMSO, DMSO + water, and DMSO + PBS buffer (pH = 7.2) confirmed their molecular sustainability in liquids. Their in vitro anticancer activity against breast cancer cell lines such as MCF-7 and MDA-MB-231 makes them interesting for in vivo analysis. Their stronger DNA binding activity (DBA) compared with free ligand suggested them as a good DNA binder. DBA was further confirmed by physicochemical studies such as surface tension and viscosity of complex + DNA which inferred the disruption of DNA and intercalation of complexes, respectively. Their % binding activity, % disruption of DNA base pairs (DNABP), and % intercalating strength are reported in this paper for the first time for better understanding of DNA binding mechanism. Along with this, their scavenging activity (SA) determined through DPPH free radical and the results indicate good antioxidant behaviour of complexes. PMID:26989511

  9. Biological Impact of Pd (II) Complexes: Synthesis, Spectral Characterization, In Vitro Anticancer, CT-DNA Binding, and Antioxidant Activities.

    PubMed

    Sharma, Nitin Kumar; Ameta, Rakesh Kumar; Singh, Man

    2016-01-01

    A new series of Pd (II) complexes of methyl substituted benzylamine ligands (BLs) has been synthesized and characterized via spectroscopic techniques such as UV/Vis. FTIR, LCMS, (1)H, and (13)C NMR. The UV/Vis study in DMSO, DMSO + water, and DMSO + PBS buffer (pH = 7.2) confirmed their molecular sustainability in liquids. Their in vitro anticancer activity against breast cancer cell lines such as MCF-7 and MDA-MB-231 makes them interesting for in vivo analysis. Their stronger DNA binding activity (DBA) compared with free ligand suggested them as a good DNA binder. DBA was further confirmed by physicochemical studies such as surface tension and viscosity of complex + DNA which inferred the disruption of DNA and intercalation of complexes, respectively. Their % binding activity, % disruption of DNA base pairs (DNABP), and % intercalating strength are reported in this paper for the first time for better understanding of DNA binding mechanism. Along with this, their scavenging activity (SA) determined through DPPH free radical and the results indicate good antioxidant behaviour of complexes. PMID:26989511

  10. Inhibition of human carcinoma cell growth and DNA synthesis by silibinin, an active constituent of milk thistle: comparison with silymarin.

    PubMed

    Bhatia, N; Zhao, J; Wolf, D M; Agarwal, R

    1999-12-01

    Several studies from our laboratory have shown the cancer chemopreventive and anti-carcinogenic effects of silymarin, a flavonoid antioxidant isolated from milk thistle, in long-term tumorigenesis models and in human prostate, breast and cervical carcinoma cells. Since silymarin is composed mainly of silibinin with small amounts of other stereoisomers of silibinin, in the present communication, studies were performed to assess whether the cancer preventive and anti-carcinogenic effects of silymarin are due to its major component silibinin. Treatment of different prostate, breast, and cervical human carcinoma cells with silibinin resulted in a highly significant inhibition of both cell growth and DNA synthesis in a time-dependent manner with large loss of cell viability only in case of cervical carcinoma cells. When compared with silymarin, these effects of silibinin were consistent and comparable in terms of cell growth and DNA synthesis inhibition, and loss of cell viability. Based on the comparable results of silibinin and silymarin, we suggest that the cancer chemopreventive and anti-carcinogenic effects of silymarin reported earlier are due to the main constituent silibinin. PMID:10660092

  11. Synthesis, characterization and crystal structure of cobalt(III) complexes containing 2-acetylpyridine thiosemicarbazones: DNA/protein interaction, radical scavenging and cytotoxic activities.

    PubMed

    Manikandan, Rajendran; Viswanathamurthi, Periasamy; Velmurugan, Krishnaswamy; Nandhakumar, Raju; Hashimoto, Takeshi; Endo, Akira

    2014-01-01

    The synthesis, structure and biological studies of cobalt(III) complexes supported by NNS-tridentate ligands are reported. Reactions of 2-acetylpyridine N-substituted thiosemicarbazone (HL(1-3)) with [CoCl2(PPh3)2] resulted [Co(L(1-3))2]Cl (1-3) which were characterized by elemental analysis and various spectral studies. The molecular structure of the complex 1 has been determined by single crystal X-ray diffraction studies. In vitro DNA binding studies of complexes 1-3 carried out by fluorescence studies and the results revealed the binding of complexes to DNA via intercalation. The binding constant (Kb) values of complexes 1-3 from fluorescence experiments showed that the complex 3 has greater binding propensity for DNA. The DNA cleavage activity of the complexes 1 and 3 were ascertained by gel electrophoresis assay which revealed that the complexes are good DNA cleavage agents. Further, the interactions of the complexes with bovine serum albumin (BSA) were also investigated using fluorescence spectroscopic method, which showed that the complexes 1-3 could bind strongly with BSA. The antioxidant property of the complexes was evaluated to test their free-radical scavenging ability. Furthermore, in vitro cytotoxicity of the complexes against MCF-7 and A431 cell lines was assayed which showed higher activity and efficiently vanished the cancer cells even at low concentrations. PMID:24342132

  12. Mechanism for priming DNA synthesis by yeast DNA Polymerase α

    PubMed Central

    Perera, Rajika L; Torella, Rubben; Klinge, Sebastian; Kilkenny, Mairi L; Maman, Joseph D; Pellegrini, Luca

    2013-01-01

    The DNA Polymerase α (Pol α)/primase complex initiates DNA synthesis in eukaryotic replication. In the complex, Pol α and primase cooperate in the production of RNA-DNA oligonucleotides that prime synthesis of new DNA. Here we report crystal structures of the catalytic core of yeast Pol α in unliganded form, bound to an RNA primer/DNA template and extending an RNA primer with deoxynucleotides. We combine the structural analysis with biochemical and computational data to demonstrate that Pol α specifically recognizes the A-form RNA/DNA helix and that the ensuing synthesis of B-form DNA terminates primer synthesis. The spontaneous release of the completed RNA-DNA primer by the Pol α/primase complex simplifies current models of primer transfer to leading- and lagging strand polymerases. The proposed mechanism of nucleotide polymerization by Pol α might contribute to genomic stability by limiting the amount of inaccurate DNA to be corrected at the start of each Okazaki fragment. DOI: http://dx.doi.org/10.7554/eLife.00482.001 PMID:23599895

  13. Synthesis, characterization, DNA interactions, DNA cleavage, radical scavenging activity, antibacterial, anti-proliferative and docking studies of new transition metal complexes.

    PubMed

    Chennam, Kishan Prasad; Ravi, Mudavath; Ushaiah, B; Srinu, V; Eslavath, Ravi Kumar; Devi, Ch Sarala

    2016-01-01

    The compound N-(2-hydroxybenzylidene)-1-ethyl-1, 4-dihydro-7-methyl-4-oxo-1, 8 naphthyridine-3-carbohydrazide (LH) and its Cu (II), Co (II) and Zn (II) complexes were synthesized and characterized. The absorption spectral titrations and competitive DNA binding studies depicted those complexes of title compound bind to CT-DNA through intercalation. Interestingly [Cu (II)-(L2)] showed relatively high binding constant value (6.61 x 10(5) M(-1)) compared to [Co (II)-(L2)] (4.378× 10(5) M(-1)) and [Zn (II)-(L2)] (3.1x10(5) M(-1)). Ligand and its complexes were also examined for DNA nuclease activity against pBR-322 plasmid DNA, which showed that [Cu (II)-(L2)] had the best hydrolytic cleavage property displaying prominent double-strand DNA cleavage. In addition, antioxidant activities of the ligand and its metal complexes investigated through scavenging effects for DPPH radical in- vitro, indicated their potentiality as good antioxidants. The in vitro anti-bacterial study inferred the better anti-bacterial activity of [Cu (II)-(L2)] and this was also correlated theoretically by employing docking studies wherein [Cu (II)-(L2)] displayed good Gold score and Chem score. Finally the in vitro anti- proliferative activity of studied compounds was tested against HeLa and MCF-7 cell lines. Interestingly [Cu (II)-(L2)] displayed lower IC50 value and lower percentage of viability in both HeLa and MCF-7 cell lines. PMID:26545354

  14. Preclinical activity of 8-chloroadenosine with mantle cell lymphoma: roles of energy depletion and inhibition of DNA and RNA synthesis.

    PubMed

    Dennison, Jennifer B; Balakrishnan, Kumudha; Gandhi, Varsha

    2009-11-01

    8-Chloroadenosine (8-Cl-Ado), an RNA-directed nucleoside analogue, is currently under evaluation in phase I clinical trials for treatment of chronic lymphocytic leukaemia. In the current study, the efficacy of 8-Cl-Ado was evaluated using mantle cell lymphoma (MCL) cell lines: Granta 519, JeKo, Mino, and SP-53. After continuous exposure to 10 mumol/l 8-Cl-Ado for 24 h, loss of mitochondrial transmembrane potential and poly [adenosine diphosphate (ADP)-ribose] polymerase (PARP) cleavage were detected in three of four cell lines. Reduced ATP levels (30-60% reduction) and concurrent 8-Cl-ATP accumulation were highly associated with cell death (P < 0.01). The intracellular 8-Cl-ATP concentrations were also highly correlated with inhibition of global transcription (50-90%, r(2) = 0.90, P < 0.01). However, the inhibition of transcription only accounted for 30-40% of cell death as determined by equivalent inhibition with actinomycin D. Likewise, short-lived mRNAs, those encoding cyclin D1 and Mcl-1, were not consistently reduced after treatment. Unique to MCL as compared to other haematological malignancies, 8-Cl-Ado inhibited the rates of DNA synthesis and selectively depleted dATP pools (50-80%). We conclude that the DNA and RNA directed actions of 8-Cl-Ado in combination with depleted energetics may promote cell death and inhibit growth of MCL cell lines. PMID:19709085

  15. Synthesis, structure, DNA binding and DNA cleavage activity of oxovanadium(IV) N-salicylidene-S-methyldithiocarbazate complexes of phenanthroline bases.

    PubMed

    Sasmal, Pijus K; Patra, Ashis K; Chakravarty, Akhil R

    2008-07-01

    Ternary oxovanadium(IV) complexes [VO(salmdtc)(B)] (1-3), where salmdtc is dianionic N-salicylidene-S-methyldithiocarbazate and B is N,N-donor phenanthroline bases like 1,10-phenanthroline (phen, 1), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 2) and dipyrido[3,2-a:2',3'-c]phenazine (dppz, 3), are prepared, characterized and their DNA binding and DNA cleavage activity studied. Complex 3 is structurally characterized by single-crystal X-ray crystallography. The molecular structure shows the presence of a vanadyl group in six-coordinate VN(3)O(2)S coordination geometry. The S-methyldithiocarbazate Schiff base acts as a tridentate NSO-donor ligand in a meridional binding mode. The N,N-donor heterocyclic base displays a chelating mode of binding with an N-donor site trans to the vanadyl oxo-group. The complexes show a d-d band in the range of 675-707 nm in DMF. They exhibit an irreversible oxidative cyclic voltammetric response near 0.9 V due to the V(V)/V(IV) couple and a quasi-reversible reductive V(IV)/V(III) redox couple near -1.0 V vs. SCE in DMF-0.1M TBAP. The complexes show good binding propensity to calf thymus DNA giving binding constant values in the range of 7.4 x 10(4)-2.3 x 10(5)M(-1). The thermal denaturation and viscosity binding data suggest DNA surface and/or groove binding nature of the complexes. The complexes show poor chemical nuclease activity in dark in the presence of 3-mercaptopropionic acid (MPA) or hydrogen peroxide. The dpq and dppz complexes show efficient DNA cleavage activity in UV-A light of 365 nm via a type-II mechanistic pathway involving formation of singlet oxygen ((1)O(2)) as the reactive species. PMID:18279964

  16. Synthesis, characterization, antibacterial activity, SOD mimic and interaction with DNA of drug based copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Patel, Mohan N.; Dosi, Promise A.; Bhatt, Bhupesh S.; Thakkar, Vasudev R.

    2011-02-01

    Novel metal complexes of the second-generation quinolone antibacterial agent enrofloxacin with copper(II) and neutral bidentate ligands have been prepared and characterized with elemental analysis reflectance, IR and mass spectroscopy. Complexes have been screened for their in-vitro antibacterial activity against two Gram (+ve)Staphylococcus aureus, Bacillus subtilis, and three Gram (-ve)Serratia marcescens, Escherichia coli and Pseudomonas aeruginosa organisms using the double dilution technique. The binding of this complex with CT-DNA has been investigated by absorption titration, salt effect and viscosity measurements. Binding constant is ranging from 1.3 × 10 4-3.7 × 10 4. The cleavage ability of complexes has been assessed by gel electrophoresis using pUC19 DNA. The catalytic activity of the copper(II) complexes towards the superoxide anion (O 2rad -) dismutation was assayed by their ability to inhibit the reduction of nitroblue tetrazolium (NBT).

  17. Synthesis, characterization, antibacterial activity, SOD mimic and interaction with DNA of drug based copper(II) complexes.

    PubMed

    Patel, Mohan N; Dosi, Promise A; Bhatt, Bhupesh S; Thakkar, Vasudev R

    2011-02-01

    Novel metal complexes of the second-generation quinolone antibacterial agent enrofloxacin with copper(II) and neutral bidentate ligands have been prepared and characterized with elemental analysis reflectance, IR and mass spectroscopy. Complexes have been screened for their in-vitro antibacterial activity against two Gram(+ve) Staphylococcus aureus, Bacillus subtilis, and three Gram((-ve)) Serratia marcescens, Escherichia coli and Pseudomonas aeruginosa organisms using the double dilution technique. The binding of this complex with CT-DNA has been investigated by absorption titration, salt effect and viscosity measurements. Binding constant is ranging from 1.3×10(4)-3.7×10(4). The cleavage ability of complexes has been assessed by gel electrophoresis using pUC19 DNA. The catalytic activity of the copper(II) complexes towards the superoxide anion (O2.-) dismutation was assayed by their ability to inhibit the reduction of nitroblue tetrazolium (NBT). PMID:21212015

  18. Translesion DNA synthesis in the context of cancer research

    PubMed Central

    2011-01-01

    During cell division, replication of the genomic DNA is performed by high-fidelity DNA polymerases but these error-free enzymes can not synthesize across damaged DNA. Specialized DNA polymerases, so called DNA translesion synthesis polymerases (TLS polymerases), can replicate damaged DNA thereby avoiding replication fork breakdown and subsequent chromosomal instability. We focus on the involvement of mammalian TLS polymerases in DNA damage tolerance mechanisms. In detail, we review the discovery of TLS polymerases and describe the molecular features of all the mammalian TLS polymerases identified so far. We give a short overview of the mechanisms that regulate the selectivity and activity of TLS polymerases. In addition, we summarize the current knowledge how different types of DNA damage, relevant either for the induction or treatment of cancer, are bypassed by TLS polymerases. Finally, we elucidate the relevance of TLS polymerases in the context of cancer therapy. PMID:22047021

  19. Synthesis, crystal structure, DNA binding and photo-induced DNA cleavage activity of (S-methyl-L-cysteine)copper(II) complexes of heterocyclic bases.

    PubMed

    Patra, Ashis K; Nethaji, Munirathinam; Chakravarty, Akhil R

    2007-02-01

    Ternary S-methyl-L-cysteine (SMe-l-cys) copper(II) complexes [Cu(SMe-L-cys)(B)(H(2)O)](X) (1-4), where the heterocyclic base B is 2,2'-bipyridine (bpy, 1), 1,10-phenanthroline (phen, 2), dipyridoquinoxaline (dpq, 3) and dipyridophenazine (dppz, 4), and X is ClO(4)(-) (1-3) or NO(3)(-) (4), are prepared and their DNA binding and cleavage properties studied. Complexes 2 and 4 are structurally characterized by X-ray crystallography. Both the crystal structures show distorted square-pyramidal (4+1) CuN(3)O(2) coordination geometry of the complexes in which the N,O-donor S-methyl-L-cysteine and N,N-donor heterocyclic base bind at the basal plane with a water molecule as the axial ligand. In addition, the dppz structure shows the presence of a 1D-chain formed due to covalent linkage of the carboxylate oxygen atom belonging to another molecule at the elongated axial site. The crystal structures show chemically significant non-covalent interactions like hydrogen bonding involving the axial aqua ligand and pi-pi interactions between dppz ligands. The complexes display a d-d band in the range of 605-654 nm in aqueous dimethylformamide (DMF) solution (9:1 v/v). The redox active complexes show quasireversible cyclic voltammetric response near 0.1 V in DMF assignable to the Cu(II)/Cu(I) couple. The complexes show good binding affinity to calf thymus (CT) DNA giving the order: 4 (dppz)>3 (dpq)>2 (phen)>1 (bpy). The intrinsic binding constants, obtained from UV-visible spectroscopic studies, are 1.3x10(4) and 2.15 x 10(4) M(-1) for 3 and 4, respectively. Control DNA cleavage experiments using pUC19 supercoiled (SC) DNA and minor groove binder distamycin suggest major groove binding propensity for the dppz complex, while the phen and dpq complexes bind at the minor groove of DNA. Complexes 2-4 show DNA cleavage activity in dark in the presence of a reducing agent 3-mercaptopropionic acid (MPA) via a mechanistic pathway involving formation of hydroxyl radical as the reactive

  20. Novel imidazo[1,2-a]naphthyridinic systems (part 1): synthesis, antiproliferative and DNA-intercalating activities.

    PubMed

    Andaloussi, Mounir; Moreau, Emmanuel; Masurier, Nicolas; Lacroix, Jacques; Gaudreault, René C; Chezal, Jean-Michel; El Laghdach, Anas; Canitrot, Damien; Debiton, Eric; Teulade, Jean-Claude; Chavignon, Olivier

    2008-11-01

    Novel imidazo[1,2-a]naphthyridinic systems 6a-15a and 6b-15b were obtained from Friedländer's reaction in imidazo[1,2-a]pyridine series. Most of the compounds were evaluated for their antitumor activity in the NCIs in vitro human tumor cell line screening panel. Among them, pentacyclic derivatives 13b and 14a exhibited in vitro activity comparable to anticancer agent such as amsacrine. Their mechanism of cytotoxicity action was unrelated to poisoning or inhibiting abilities against topo1. On the contrary, we highlighted a direct intercalation of the drugs into DNA by electrophoresis on agarose gel. PMID:18403058

  1. Synthesis, spectroscopic characterisation, thermal analysis, DNA interaction and antibacterial activity of copper(I) complexes with N, N‧- disubstituted thiourea

    NASA Astrophysics Data System (ADS)

    Chetana, P. R.; Srinatha, B. S.; Somashekar, M. N.; Policegoudra, R. S.

    2016-02-01

    copper(I) complexes [Cu(4MTU)2Cl] (2), [Cu(4MTU) (B)Cl] (3), [Cu(6MTU)2Cl] (5) and [Cu(6MTU) (B)Cl] (6) where 4MTU = 1-Benzyl-3-(4-methyl-pyridin-2-yl)-thiourea (1) and 6MTU = 1-Benzyl-3-(6-methyl-pyridin-2-yl)-thiourea (4), B is a N,N-donor heterocyclic base, viz. 1,10-phenanthroline (phen 3, 6), were synthesized, characterized by various physico-chemical and spectroscopic techniques. The elemental analysis suggests that the stoichiometry to be 1:2 (metal:ligand) for 2, 5 1:1:1 (metal:ligand:B) for 3, 6. X-ray powder diffraction illustrates that the complexes have crystalline nature. IR data coupled with electronic spectra and molar conductance values suggest that the complex 2, 5 show the presence of a trigonal planar geometry and the complex 3, 6 show the presence of a tetrahedral geometry about the Cu(I) centre. The binding affinity towards calf thymus (CT) DNA was determined using UV-Vis, fluorescence spectroscopic titrations and viscosity studies. These studies showed that the tested phen complexes 3, 6 bind moderately (in the order of 105 M-1) to CT DNA. The complex 2, 5 does not show any apparent binding to the DNA and hence poor cleavage efficiency. Complex 3, 6 shows efficient oxidative cleavage of plasmid DNA in the presence of H2O2 involving hydroxyl radical species as evidenced from the control data showing inhibition of DNA cleavage in the presence of DMSO and KI. The in vitro antibacterial assay indicates that these complexes are good antimicrobial agents against various pathogens. Anti-bacterial activity is higher when thiourea coordinates to metal ion than the thiourea alone.

  2. Synthesis, interaction with DNA and antiproliferative activities of two novel Cu(II) complexes with norcantharidin and benzimidazole derivatives

    NASA Astrophysics Data System (ADS)

    Song, Wen-Ji; Lin, Qiu-Yue; Jiang, Wen-Jiao; Du, Fang-Yuan; Qi, Qing-Yuan; Wei, Qiong

    2015-02-01

    Two novel complexes [Cu(L)2(Ac)2]·3H2O (1) (L = N-2-methyl benzimidazole demethylcantharate imide, C16H15N3O3, Ac = acetate, C2H3O2) and [Cu(bimz)2(DCA)] (2) (bimz = benzimidazole, C7H6N2; DCA = demethylcantharate, C8H8O5) were synthesized and characterized by elemental analysis, infrared spectra and X-ray diffraction techniques. Cu(II) ion was four-coordinated in complex 1, Cu(II) ion was five-coordinated in complex 2. A large amount of intermolecular hydrogen-bonding and π-π stacking interactions were observed in these complex structures. The DNA-binding properties of these complexes were investigated using electronic absorption spectra, fluorescence spectra, viscosity measurements and agarose gel electrophoresis. The interactions between the complexes and bovine serum albumin (BSA) were investigated by fluorescence spectra. The antiproliferative activities of the complexes against human hepatoma cells (SMMC7721) were tested in vitro. And the results showed that these complexes could bind to DNA in moderate intensity via partial intercalation, and complexes 1 and 2 could cleave plasmid DNA through hydroxyl radical mechanism. Title complexes could effectively quench the fluorescence of BSA through static quenching. Meanwhile, title complexes had stronger antiproliferative effect compared to L and Na2(DCA) within the tested concentration range. And complex 1 possessed more antiproliferative active than complex 2.

  3. Mixed ligand ruthenium(III) complexes of benzaldehyde 4-methyl-3-thiosemicarbazones with triphenylphosphine/triphenylarsine co-ligands: Synthesis, DNA binding, DNA cleavage, antioxidative and cytotoxic activity

    NASA Astrophysics Data System (ADS)

    Sampath, K.; Sathiyaraj, S.; Raja, G.; Jayabalakrishnan, C.

    2013-08-01

    The new ruthenium(III) complexes with 4-methyl-3-thiosemicarbazone ligands, (E)-2-(2-chlorobenzylidene)-N-methylhydrazinecarbothioamide (HL1) and (E)-2-(2-nitrobenzylidene)-N-methylhydrazinecarbothioamide (HL2), were prepared and characterized by various physico-chemical and spectroscopic methods. The title compounds act as bidentate, monobasic chelating ligands with S and N as the donor sites and are preferably found in the thiol form in all the complexes studied. The molecular structure of HL1 and HL2 were determined by single crystal X-ray diffraction method. DNA binding of the ligands and complexes were investigated by absorption spectroscopy and IR spectroscopy. It reveals that the compounds bind to nitrogenous bases of DNA via intercalation. The oxidative cleavage of the complexes with CT-DNA inferred that the effects of cleavage are dose dependent. Antioxidant study of the ligands and complexes showed the significant antioxidant activity against DPPH radical. In addition, the in vitro cytotoxicity of the ligands and complexes against MCF-7 cell line was assayed which showed higher cytotoxic activity with the lower IC50 values indicating their efficiency in killing the cancer cells even at low concentrations.

  4. Synthesis and Structure of a Ternary Copper(II) Complex with Mixed Ligands of Diethylenetriamine and Picrate: DNA/Protein-Binding Property and In Vitro Anticancer Activity Studies.

    PubMed

    Shi, Ya-Ning; Zheng, Kang; Zhu, Ling; Li, Yan-Tuan; Wu, Zhi-Yong; Yan, Cui-Wei

    2015-05-01

    Based on the importance of the design and synthesis of transition metal complexes with noncovalent DNA/protein-binding abilities in the field of metallo pharmaceuticals, a new mononuclear ternary copper(II) complex with mixed ligands of diethylenetriamine (dien) and picrate anion (pic), identified as [Cu(dien)(pic)](pic), was synthesized and characterized by elemental analysis, molar conductivity measurement, infrared spectrum, electronic spectral studies, and single-crystal X-ray diffractometry. The structure analysis reveals that the copper(II) complex crystallizes in the monoclinic space group P21 /c, and the copper(II) ion has a distorted square pyramidal coordination geometry. A two-dimensional supramolecular structure is formed through hydrogen bonds. The DNA/bovine serum albumin (BSA)-binding properties of the complex are explored, indicating that the complex can interact with herring sperm DNA via intercalation mode and bind to BSA responsible for quenching of tryptophan fluorescence by static quenching mechanism. The in vitro anticancer activity shows that the copper(II) complex is active against the selected tumor cell lines. PMID:25652782

  5. Synthesis, interaction with DNA and antiproliferative activities of two novel Cu(II) complexes with Schiff base of benzimidazole

    NASA Astrophysics Data System (ADS)

    Song, Wen-Ji; Cheng, Jian-Ping; Jiang, Dong-Hua; Guo, Li; Cai, Meng-Fei; Yang, Hu-Bin; Lin, Qiu-Yue

    2014-03-01

    Two novel copper(II) complexes with Schiff base of benzimidazole [Cu(L)Cl]2·CH3OH have been synthesized. HL1 (N-(benzimidazol-2-ymethyl)-5-chlorosalicylideneimine, C15H11ClN3O) and HL2 (N-(benzimidazol-2-ymethyl)-salicylideneimine, C15H12N3O) are ligands of complex (1) and complex (2), respectively. The complexes were characterized by elemental analysis, IR, UV-Vis, TGA and X-ray diffraction. Within the complexes, Cu(II) ions were four coordinated by two nitrogen atom of azomethine and imine, one phenolic oxygen atom from HL and one chloride atom. A distorted quadrilateral structure was formed. Complex (1) crystallized in the triclinic crystal system. Results showed that π-π stacking effect occurred due to the existence of aromatic ring from Schiff base and hydrogen bonding between methanol and adjacent atoms. The DNA binding properties of the complexes were investigated by electronic absorption spectra, fluorescence spectra and viscosity measurements. Results indicated that complexes bound to DNA via partial intercalation mode. The DNA binding constants Kb/(L mol-1) were 1.81 × 104 (1), 1.37 × 104 (2), 6.27 × 103 (HL1) and 3.14 × 103 (HL2) at 298 K. The title complexes could quench the emission intensities of EB-DNA system significantly. The results of agarose gel electrophoresis indicated complex (1) could cleave supercoiled DNA through the oxidative mechanism. The inhibition ratios revealed that complex (1) and HL1 had strong antiproliferative activities against human breast cancer cells (MCF-7) lines and human colorectal cancer cells (COLO205) lines in vitro. The antiproliferative activities of complex (1) against MCF-7 lines (IC50 = 16.9 ± 1.5 μmol L-1) and against COLO205 lines (IC50 = 16.5 ± 3.4 μmol L-1) is much stronger than that of HL1, which had the potential to develop anti-cancer drug.

  6. Synthesis and characterization, antimicrobial activity, DNA binding and DNA cleavage studies of new 5-chloro-2-[4-phenylthiazol-2-yl-iminomethyl]phenol metal complexes

    NASA Astrophysics Data System (ADS)

    Alaghaz, Abdel-Nasser M. A.; Zayed, Mohamed E.; Alharbi, Suliman A.

    2015-02-01

    New Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Cd(II) complexes derived from bidentate Schiff base ligand, 5-chloro-2-[4-phenylthiazol-2-yl-iminomethyl]phenol (HL) have been synthesized. The molar ratio for all synthesized complexes is M: L = 1:2 which was established from the results of chemical analysis. The complexes have been characterized by elemental analysis, spectral (IR, UV-Vis, (1H and 13C) NMR, mass, ESR, XRD, CV, fluorescence, and magnetic as well as thermal analysis measurements. The IR spectra of the prepared complexes were suggested that the Schiff base ligand behaves as a bi-dentate ligand through the azomethine nitrogen atom and phenolic oxygen atom. The crystal field splitting, Racah repulsion and nepheloauxetic parameters and determined from the electronic spectra of the complexes. The presence of co-ordinated water molecules were confirmed by thermal studies. The spectroscopic studies suggest the octahedral geometry. From the modeling studies, the bond length, bond angle, core-core interaction, heat of formation, electronic energy, binding energy, HOMO, LUMO and dipole moment had been calculated to confirm the geometry of the ligand and their investigated complexes. Also, the thermal behavior and the kinetic parameters of degradation were determined using Coats-Redfern, Horowitz-Metzger and Piloyan-Novikova methods. Moreover, the in vitro antibacterial studies of all compounds screened against pathogenic bacteria (two Gram +ve and three Gram -ve) and three antifungal to assess their inhibiting potential. The assay indicated that the inhibition potential is metal ion dependent. The interaction of the complexes with calf thymus DNA (CT-DNA) has been investigated by UV absorption method, and the mode of CT-DNA binding to the complexes has been explored. Furthermore, the DNA cleavage activity by the complexes was performed.

  7. Cooperation between catalytic and DNA binding domains enhances thermostability and supports DNA synthesis at higher temperatures by thermostable DNA polymerases.

    PubMed

    Pavlov, Andrey R; Pavlova, Nadejda V; Kozyavkin, Sergei A; Slesarev, Alexei I

    2012-03-13

    We have previously introduced a general kinetic approach for comparative study of processivity, thermostability, and resistance to inhibitors of DNA polymerases [Pavlov, A. R., et al. (2002) Proc. Natl. Acad. Sci. U.S.A.99, 13510-13515]. The proposed method was successfully applied to characterize hybrid DNA polymerases created by fusing catalytic DNA polymerase domains with various sequence-nonspecific DNA binding domains. Here we use the developed kinetic analysis to assess basic parameters of DNA elongation by DNA polymerases and to further study the interdomain interactions in both previously constructed and new chimeric DNA polymerases. We show that connecting helix-hairpin-helix (HhH) domains to catalytic polymerase domains can increase thermostability, not only of DNA polymerases from extremely thermophilic species but also of the enzyme from a faculatative thermophilic bacterium Bacillus stearothermophilus. We also demonstrate that addition of Topo V HhH domains extends efficient DNA synthesis by chimerical polymerases up to 105 °C by maintaining processivity of DNA synthesis at high temperatures. We found that reversible high-temperature structural transitions in DNA polymerases decrease the rates of binding of these enzymes to the templates. Furthermore, activation energies and pre-exponential factors of the Arrhenius equation suggest that the mechanism of electrostatic enhancement of diffusion-controlled association plays a minor role in binding of templates to DNA polymerases. PMID:22320201

  8. Rare earth complexes with 3-carbaldehyde chromone-(benzoyl) hydrazone: synthesis, characterization, DNA binding studies and antioxidant activity.

    PubMed

    Li, Yong; Yang, Zheng-Yin

    2010-01-01

    A new ligand, 3-carbaldehyde chromone-(benzoyl) hydrazone (L), was prepared by condensation of 3-carbaldehyde chromone with benzoyl hydrazine. Its four rare earth complexes have been prepared and characterized on the basis of elemental analyses, molar conductivities, mass spectra, (1)H NMR spectra, UV-vis spectra, fluorescence studies and IR spectra. The Sm(III) complex exhibits red fluorescence under UV light and the fluorescent properties of Sm(III) complex in solid state and different solutions were investigated. In addition, the DNA binding properties of the ligand and its complexes have been investigated by electronic absorption spectroscopy, fluorescence spectra, ethidium bromide displacement experiments, iodide quenching experiments, salt effect and viscosity measurements. Experimental results suggest that all the compounds can bind to DNA via an intercalation binding mode. Furthermore, the antioxidant activities of the ligand and its complexes were determined by superoxide and hydroxyl radical scavenging methods in vitro. The rare earth complexes were found to possess potent antioxidant activities that are better than those of the ligand alone. PMID:19856083

  9. Synthesis, characterization, DNA binding properties, fluorescence studies and antioxidant activity of transition metal complexes with hesperetin-2-hydroxy benzoyl hydrazone.

    PubMed

    Li, Yong; Yang, Zheng-Yin; Wang, Ming-Fang

    2010-07-01

    A novel Schiff-base ligand (H(5)L), hesperetin-2-hydroxy benzoyl hydrazone, and its copper (II), zinc (II) and nickel (II) complexes (M.H(3)L) [M(II) = Cu, Zn, Ni], have been synthesized and characterized. The ligand and Zn (II) complex exhibit green and blue fluorescence under UV light and the fluorescent properties of the ligand and Zn (II) complex in solid state and different solutions were investigated. In addition, DNA binding properties of the ligand and its metal complexes have been investigated by electronic absorption spectroscopy, fluorescence spectra, ethidium bromide displacement experiments, iodide quenching experiments, salt effect and viscosity measurements. Results suggest that all the compounds bind to DNA via an intercalation binding mode. Furthermore, the antioxidant activity of the ligand and its metal complexes was determined by superoxide and hydroxyl radical scavenging methods in vitro. The metal complexes were found to possess potent antioxidant activity and be better than the free ligand alone and some standard antioxidants like vitamin C and mannitol. PMID:20352308

  10. The Yeast Mitochondrial RNA Polymerase and Transcription Factor Complex Catalyzes Efficient Priming of DNA Synthesis on Single-stranded DNA.

    PubMed

    Ramachandran, Aparna; Nandakumar, Divya; Deshpande, Aishwarya P; Lucas, Thomas P; R-Bhojappa, Ramanagouda; Tang, Guo-Qing; Raney, Kevin; Yin, Y Whitney; Patel, Smita S

    2016-08-01

    Primases use single-stranded (ss) DNAs as templates to synthesize short oligoribonucleotide primers that initiate lagging strand DNA synthesis or reprime DNA synthesis after replication fork collapse, but the origin of this activity in the mitochondria remains unclear. Herein, we show that the Saccharomyces cerevisiae mitochondrial RNA polymerase (Rpo41) and its transcription factor (Mtf1) is an efficient primase that initiates DNA synthesis on ssDNA coated with the yeast mitochondrial ssDNA-binding protein, Rim1. Both Rpo41 and Rpo41-Mtf1 can synthesize short and long RNAs on ssDNA template and prime DNA synthesis by the yeast mitochondrial DNA polymerase Mip1. However, the ssDNA-binding protein Rim1 severely inhibits the RNA synthesis activity of Rpo41, but not the Rpo41-Mtf1 complex, which continues to prime DNA synthesis efficiently in the presence of Rim1. We show that RNAs as short as 10-12 nt serve as primers for DNA synthesis. Characterization of the RNA-DNA products shows that Rpo41 and Rpo41-Mtf1 have slightly different priming specificity. However, both prefer to initiate with ATP from short priming sequences such as 3'-TCC, TTC, and TTT, and the consensus sequence is 3'-Pu(Py)2-3 Based on our studies, we propose that Rpo41-Mtf1 is an attractive candidate for serving as the primase to initiate lagging strand DNA synthesis during normal replication and/or to restart stalled replication from downstream ssDNA. PMID:27311715

  11. Magnetic isotope and magnetic field effects on the DNA synthesis

    PubMed Central

    Buchachenko, Anatoly L.; Orlov, Alexei P.; Kuznetsov, Dmitry A.; Breslavskaya, Natalia N.

    2013-01-01

    Magnetic isotope and magnetic field effects on the rate of DNA synthesis catalysed by polymerases β with isotopic ions 24Mg2+, 25Mg2+ and 26Mg2+ in the catalytic sites were detected. No difference in enzymatic activity was found between polymerases β carrying 24Mg2+ and 26Mg2+ ions with spinless, non-magnetic nuclei 24Mg and 26Mg. However, 25Mg2+ ions with magnetic nucleus 25Mg were shown to suppress enzymatic activity by two to three times with respect to the enzymatic activity of polymerases β with 24Mg2+ and 26Mg2+ ions. Such an isotopic dependence directly indicates that in the DNA synthesis magnetic mass-independent isotope effect functions. Similar effect is exhibited by polymerases β with Zn2+ ions carrying magnetic 67Zn and non-magnetic 64Zn nuclei, respectively. A new, ion–radical mechanism of the DNA synthesis is suggested to explain these effects. Magnetic field dependence of the magnesium-catalysed DNA synthesis is in a perfect agreement with the proposed ion–radical mechanism. It is pointed out that the magnetic isotope and magnetic field effects may be used for medicinal purposes (trans-cranial magnetic treatment of cognitive deceases, cell proliferation, control of the cancer cells, etc). PMID:23851636

  12. DNA (DEOXYRIBONUCLEIC ACID) SYNTHESIS FOLLOWING MICROINJECTION OF HETEROLOGOUS SPERM AND SOMATIC CELL NUCLEI INTO HAMSTER OOCYTES

    EPA Science Inventory

    The authors have investigated the ability of the hamster oocyte to initiate DNA synthesis in nuclei differing in basic protein content. DNA synthesis was studied by autoradiography in oocytes that had been incubated in 3H-thymidine after being parthenogenetically activated by sha...

  13. Synthesis, characterization, optical band gap, in vitro antimicrobial activity and DNA cleavage studies of some metal complexes of pyridyl thiosemicarbazone

    NASA Astrophysics Data System (ADS)

    Yousef, T. A.; Abu El-Reash, G. M.; El-Gammal, O. A.; Bedier, R. A.

    2013-03-01

    A new series of Cr(III), Mn(II), Ni(II), Zn(II) and Hg(II) complexes of Schiff-bases derived from the condensation of 4-(2-pyridyl)-3-thiosemicarbazide and pyruvic acid (H2PTP) have been synthesized and characterized by spectroscopic studies. Schiff-base exhibit thiol-thione tautomerism wherein sulfur plays an important role in the coordination. The coordination possibility of the Schiff-bases towards metal ions have been proposed in the light of elemental analysis, spectral (IR, UV-vis, 1H NMR and 13C NMR), magnetic and thermal studies. IR spectra show that H2PTP is coordinated to the metal ions in a mononegative tridentate manner except in Cr(III) complex in which the ligand exhibits mononegative bidentate manner. The parameters total energy, binding energy, isolated atomic energy, electronic energy, heat of formation, dipole moment, HOMO and LUMO were calculated for the ligand and its complexes. Furthermore, the kinetic and thermodynamic parameters for the different decomposition steps were calculated using the Coats-Redfern and Horowitz-Metzger methods. Also, the optical band gap (Eg) of the metal complexes has been calculated. The optical transition energy (Eg) is direct and equals 3.20, 3.27 and 3.26 eV for Cr, Mn and Ni complexes, respectively. The synthesized ligand, in comparison to its metal complexes is screened for its antibacterial activity against the bacterial species, Bacillus thuringiensis, Staphylococcus aureus, Pseudomonas aeuroginosa and Escherichia coli. The results show that the metal complexes be more potent in activity antibacterial than the parent Shciff base ligand towards one or more bacterial species. Finally, the biochemical studies showed that, Mn complex have powerful and complete degradation effect on DNA.

  14. Lack of stereospecificity of some cellular and viral enzymes involved in the synthesis of deoxyribonucleotides and DNA: molecular basis for the antiviral activity of unnatural L-beta-nucleosides.

    PubMed

    Spadari, S; Maga, G; Verri, A; Bendiscioli, A; Tondelli, L; Capobianco, M; Colonna, F; Garbesi, A; Focher, F

    1995-01-01

    Among enzymes involved in the synthesis of nucleotides and DNA, some exceptions have recently been found to the universal rule that enzymes act only on one enantiomer of a chiral substrate and that only one of the enantiomeric forms of chiral molecules may bind effectively at the catalytic site, displaying biological activity. The exceptions include: herpes virus thymidine kinases, cellular deoxycytidine kinase and deoxynucloside mono- and diphosphate kinases, cellular and viral DNA polymerases, such as DNA polymerase alpha, terminal transferase and HIV-1 reverse transcriptase. The ability of these enzymes to utilize unnatural L-beta-nucleosides or -nucleotides as substrate may be exploited from chemotherapeutic point of view. PMID:8824765

  15. Synthesis, Spectroscopy and Electrochemistry of Fe(II) and Fe(III) Quinonemonooxime Complexes and Their DNA Cleaving Activities

    PubMed Central

    Murugkar, Anupa; Deobagkar, Deepti

    1999-01-01

    Iron(II) and iron(III) complexes of 3,5-di-tert-butyl-o-benzoquinonemonooxime were synthesized and characterized by spectroscopic and electrochemical studies. Their ability to cleave DNA has been investigated under aerobic conditions at room temperature and in the presence and absence of H2 O2. The plasmid DNA pBR322 was effectively cleaved by these complexes in a concentration dependant manner. PMID:18475885

  16. Acetylation of Werner syndrome protein (WRN): relationships with DNA damage, DNA replication and DNA metabolic activities

    PubMed Central

    Lozada, Enerlyn; Yi, Jingjie; Luo, Jianyuan; Orren, David K.

    2014-01-01

    Loss of WRN function causes Werner Syndrome, characterized by increased genomic instability, elevated cancer susceptibility and premature aging. Although WRN is subject to acetylation, phosphorylation and sumoylation, the impact of these modifications on WRN’s DNA metabolic function remains unclear. Here, we examined in further depth the relationship between WRN acetylation and its role in DNA metabolism, particularly in response to induced DNA damage. Our results demonstrate that endogenous WRN is acetylated somewhat under unperturbed conditions. However, levels of acetylated WRN significantly increase after treatment with certain DNA damaging agents or the replication inhibitor hydroxyurea. Use of DNA repair-deficient cells or repair pathway inhibitors further increase levels of acetylated WRN, indicating that induced DNA lesions and their persistence are at least partly responsible for increased acetylation. Notably, acetylation of WRN correlates with inhibition of DNA synthesis, suggesting that replication blockage might underlie this effect. Moreover, WRN acetylation modulates its affinity for and activity on certain DNA structures, in a manner that may enhance its relative specificity for physiological substrates. Our results also show that acetylation and deacetylation of endogenous WRN is a dynamic process, with sirtuins and other histone deacetylases contributing to WRN deacetylation. These findings advance our understanding of the dynamics of WRN acetylation under unperturbed conditions and following DNA damage induction, linking this modification not only to DNA damage persistence but also potentially to replication stalling caused by specific DNA lesions. Our results are consistent with proposed metabolic roles for WRN and genomic instability phenotypes associated with WRN deficiency. PMID:24965941

  17. Synthesis, Characterization, and Biological Activities of Pendant Arm-Pyridyltetrazole Copper(II) Complexes: DNA Binding/Cleavage Activity and Cytotoxic Studies.

    PubMed

    Mustafa, Shaik; Rao, Bommuluri Umamaheswara; Surendrababu, Manubolu Surya; Raju, Kalidindi Krishnam; Rao, Gollapalli Nageswara

    2015-10-01

    2-(1H-Tetrazol-5-yl)pyridine (L) has been reacted separately with Me2NCH2CH2Cl⋅HCl and ClCH2CH2OH to yield two regioisomers in each case, N,N-dimethyl-2-[5-(pyridin-2-yl)-1H-tetrazol-1-yl]ethanamine (L1)/N,N-dimethyl-2-[5-(pyridin-2-yl)-2H-tetrazol-2-yl]ethanamine (L2) and 2-[5-(pyridin-2-yl)-1H-tetrazol-1-yl]ethanol (L3)/2-[5-(pyridin-2-yl)-2H-tetrazol-2-yl]ethanol (L4), respectively. These ligands, L1-L4, have been coordinated with CuCl2 ⋅H2O in 1 : 1 composition to furnish the corresponding complexes 1-4. EPR Spectra of Cu complexes 1 and 3 were characteristic of square planar geometry, with nuclear hyperfine spin 3/2. Single X-ray crystallographic studies of 3 revealed that the Cu center has a square planar structure. DNA binding studies were carried out by UV/VIS absorption; viscosity and thermal denaturation studies revealed that each of these complexes are avid binders of calf thymus DNA. Investigation of nucleolytic cleavage activities of the complexes was carried out on double-stranded pBR322 circular plasmid DNA by using a gel electrophoresis experiment under various conditions, where cleavage of DNA takes place by oxidative free-radical mechanism (OH(⋅)). In vitro anticancer activities of the complexes against MCF-7 (human breast adenocarcinoma) cells revealed that the complexes inhibit the growth of cancer cells. The IC50 values of the complexes showed that Cu complexes exhibit comparable cytotoxic activities compared to the standard drug cisplatin. PMID:26460557

  18. Inhibition of Cellular DNA Synthesis in Cells Infected with Infectious Pancreatic Necrosis Virus

    PubMed Central

    Lothrop, David; Nicholson, Bruce L.

    1974-01-01

    In asynchronous RTG-2 cell cultures infected with infectious pancreatic necrosis (IPN) virus, inhibition of cellular DNA synthesis, but not protein synthesis, was detected 5 to 6 h postinfection and was 80 to 90% complete by 7 to 8 h. Inhibition of DNA synthesis was largely abolished by UV irradiation of the virus. Sedimentation analyses of phenol-extracted DNA indicated that native cellular DNA was not degraded during infection. Sedimentation on alkaline sucrose gradients of DNA from cells pulsed with radioactive thymidine for varying periods indicated that elongation of nascent DNA chains proceeded normally in infected cells. These and previous results suggest that IPN virus infection results in a reduction of the number of chromosomal sites active in DNA synthesis but does not affect the rate of polymerization at active sites. Cells synchronized with excess thymidine and hydroxyurea and infected with virus at the time of release from the block demonstrated an inhibition of DNA synthesis 3 h postinfection. Cells infected 4 h prior to release continued to synthesize normal amounts of DNA for 1 to 2 h after release. These results indicated that DNA synthesis in early synthetic phase is relatively insensitive to inhibition by IPN virus. PMID:4852469

  19. Initiator RNA in Discontinuous Polyoma DNA Synthesis*

    PubMed Central

    Reichard, Peter; Eliasson, Rolf; Söderman, Gunilla

    1974-01-01

    During replication of polyoma DNA in isolated nuclei, RNA was found attached to the 5′ ends of growing progeny strands. This RNA starts with either ATP or GTP and can be labeled at its 5′ end with 32P from β-labeled nucleotides. Digestion of progeny strands with pancreatic DNase released 32P-labeled RNA that, on gel electrophoresis, gave a distinct peak in the position expected for a decanucleotide. We believe that this short RNA is involved in the initiation of the discontinuous synthesis of DNA and propose the name “initiator RNA” for it. The covalent linkage of initiator RNA to 5′ ends of growing DNA chains was substantiated by the finding that 32P was transferred to ribonucleotides by alkaline hydrolysis of purified initiator RNA obtained by DNase digestion of polyoma progeny strands synthesized from [α-32P]dTTP. While initiator RNA was quite homogeneous in size, it had no unique base sequence since digestion with pancreatic RNase of initiator RNA labeled at its 5′ end with 32P released a variety of different [32P]oligonucleotides. The switch from RNA to DNA synthesis during strand elongation may thus depend on the size of initiator RNA rather than on a specific base sequence. PMID:4373733

  20. Synthesis, in vitro antitumor activity, dihydrofolate reductase inhibition, DNA intercalation and structure-activity relationship studies of 1,3,5-triazine analogues.

    PubMed

    Singla, Prinka; Luxami, Vijay; Paul, Kamaldeep

    2016-01-15

    A series of triazine-benzimidazoles with 4-fluoroaniline substitution has been designed and synthesized. These compounds were further substituted with different primary and secondary amines. The structures of newly synthesized compounds were confirmed by (1)H, (13)C NMR, mass spectrometry and, in case of compound 18, by single crystal X-ray diffraction analysis. The newly synthesized compounds were evaluated against 60 human tumor cell lines at one dose and five dose concentration levels. Compounds 7, 8 and 22 have been found to be the most active antitumor agents with GI50 values of 1.77, 1.94 and 2.87μM, respectively. The synthesized compounds were then evaluated for their inhibitory activity to mammalian dihydrofolate reductase. Compound 22 was depicted as the most active compound for the inhibition of dihydrofolate reductase with IC50 value of 2.0nM. DNA binding studies were also revealed strong interacting properties of triazine derivatives towards calf thymus-DNA. PMID:26670841

  1. Association of DNA sequence variation in mitochondrial DNA polymerase with mitochondrial DNA synthesis and risk of oral cancer.

    PubMed

    Datta, Sayantan; Ray, Anindita; Roy, Roshni; Roy, Bidyut

    2016-01-10

    Enzymes responsible for mitochondrial (mt) DNA synthesis and transcription are encoded by nuclear genome and inherited mutations in these genes may play important roles in enhancing risk of precancer and cancer. Here, genetic variations in 23 functionally relevant tagSNPs in 6 genes responsible for mtDNA synthesis and transcription were studied in 522 cancer and 241 precancer (i.e. leukoplakia) patients and 525 healthy controls using Illumina Golden Gate assay to explore association with risk of oral precancer and cancer. Two SNPs, rs41553913 at POLRMT and rs9905016 at POLG2, significantly increased risk of oral leukoplakia and cancer, respectively, at both genotypic and allelic levels. Gene-environment interaction models also revealed that tobacco habits and SNPs at POLG2 and TFAM may modulate risk of both leukoplakia and cancer. In silico analysis of published data-set also revealed that variant heterozygote (TC) significantly increased transcription of POLG2 compared to wild genotype (p=0.03). Cancer tissues having variant allele genotypes (TC+CC) at POLG2 contained 1.6 times (p<0.01) more mtDNA compared to cancer tissues having wild genotype (TT). In conclusion, polymorphisms at POLG2 and POLRMT increased risk of oral cancer and leukoplakia, respectively, probably modulating synthesis and activity of the enzymes. Enhanced synthesis of mtDNA in cancer tissues may have implication in carcinogenesis, but the mechanism is yet to be explored. PMID:26403317

  2. DNA Nanoparticles for Improved Protein Synthesis In Vitro

    PubMed Central

    Galinis, Robertas; Stonyte, Greta; Kiseliovas, Vaidotas; Zilionis, Rapolas; Studer, Sabine; Hilvert, Donald; Janulaitis, Arvydas

    2016-01-01

    Abstract The amplification and digital quantification of single DNA molecules are important in biomedicine and diagnostics. Beyond quantifying DNA molecules in a sample, the ability to express proteins from the amplified DNA would open even broader applications in synthetic biology, directed evolution, and proteomics. Herein, a microfluidic approach is reported for the production of condensed DNA nanoparticles that can serve as efficient templates for in vitro protein synthesis. Using phi29 DNA polymerase and a multiple displacement amplification reaction, single DNA molecules were converted into DNA nanoparticles containing up to about 104 clonal gene copies of the starting template. DNA nanoparticle formation was triggered by accumulation of inorganic pyrophosphate (produced during DNA synthesis) and magnesium ions from the buffer. Transcription–translation reactions performed in vitro showed that individual DNA nanoparticles can serve as efficient templates for protein synthesis in vitro. PMID:26821778

  3. Inhibition of adenovirus DNA synthesis in vitro by sera from patients with systemic lupus erythematosus

    SciTech Connect

    Horwitz, M.S.; Friefeld, B.R.; Keiser, H.D.

    1982-12-01

    Sera containing antinuclear antibodies from patients with systemic lupus erythematosus (SLE) and related disorders were tested for their effect on the synthesis of adenovirus (Ad) DNA in an in vitro replication system. After being heated at 60/sup 0/C for 1 h, some sera from patients with SLE inhibited Ad DNA synthesis by 60 to 100%. Antibodies to double-stranded DNA were present in 15 of the 16 inhibitory sera, and inhibitory activity copurified with anti-double-stranded DNA in the immunoglobulin G fraction. These SLE sera did not inhibit the DNA polymerases ..cap alpha.., BETA, ..gamma.. and had no antibody to the 72,000-dalton DNA-binding protein necessary for Ad DNA synthesis. The presence of antibodies to single-stranded DNA and a variety of saline-extractable antigens (Sm, Ha, nRNP, and rRNP) did not correlate with SLE serum inhibitory activity. Methods previously developed for studying the individual steps in Ad DNA replication were used to determine the site of inhibition by the SLE sera that contained antibody to double-stranded DNA. Concentrations of the SLE inhibitor that decreased the elongation of Ad DNA by greater than 85% had no effect on either the initiation of Ad DNA synthesis or the polymerization of the first 26 deoxyribonucleotides.

  4. Integrating S-phase Checkpoint Signaling with Trans-Lesion Synthesis of Bulky DNA Adducts

    PubMed Central

    Barkley, Laura R.; Ohmori, Haruo; Vaziri, Cyrus

    2011-01-01

    Bulky adducts are DNA lesions generated in response to environmental agents including benzo[a]pyrene (a combustion product) and solar ultraviolet radiation. Error-prone replication of adducted DNA can cause mutations, which may result in cancer. To minimize the detrimental effects of bulky adducts and other DNA lesions, S-phase checkpoint mechanisms sense DNA damage and integrate DNA repair with ongoing DNA replication. The essential protein kinase Chk1 mediates the S-phase checkpoint, inhibiting initiation of new DNA synthesis and promoting stabilization and recovery of stalled replication forks. Here we review the mechanisms by which Chk1 is activated in response to bulky adducts and potential mechanisms by which Chk1 signaling inhibits the initiation stage of DNA synthesis. Additionally, we discuss mechanisms by which Chk1 signaling facilitates bypass of bulky lesions by specialized Y-family DNA polymerases, thereby attenuating checkpoint signaling and allowing resumption of normal cell cycle progression. PMID:17652783

  5. Synthesis, characterization, crystal structure and theoretical study of a compound with benzodiazole ring: Antimicrobial activity and DNA binding

    NASA Astrophysics Data System (ADS)

    Latha, P.; Kodisundaram, P.; Sundararajan, M. L.; Jeyakumar, T.

    2014-08-01

    2-(Thiophen-2-yl)-1-((thiophen-2-yl)methyl)-1H-1,3-benzodiazole (HL) is synthesized and characterized by elemental analysis, UV-Vis, FT-IR, 1H, 13C NMR, mass spectra, scanning electron microscope (SEM) and single crystal X-ray diffraction. The crystal structure is stabilized by intermolecular Csbnd H⋯N and Csbnd H⋯π interactions. The molecular structure is also optimized at the B3LYP/6-31G level using density functional theory (DFT). The structural parameters from the theory are nearer to those of crystal, the calculated total energy of coordination is -1522.814 a.u. The energy of HOMO-LUMO and the energy gap are -0.20718, -0.04314, 0.16404 a.u, respectively. All data obtained from the spectral studies support the structural properties of the compound HL. The benzimidazole ring is essentially planar. The in vitro biological screening effects of the synthesized compound is tested against four bacterial and four fungal strains by well diffusion method. Antioxidant property and DNA binding behaviour of the compound has been investigated using spectrophotometric method.

  6. Phosphorothioate primers improve the amplification of DNA sequences by DNA polymerases with proofreading activity.

    PubMed Central

    Skerra, A

    1992-01-01

    Two thermostable DNA polymerases with proofreading activity--Vent DNA polymerase and Pfu DNA polymerase--have attracted recent attention, mainly because of their enhanced fidelities during amplification of DNA sequences by the polymerase chain reaction. A severe disadvantage for their practical application, however, results from the observation that due to their 3' to 5' exonuclease activities these enzymes degrade the oligodeoxynucleotides serving as primers for the DNA synthesis. It is demonstrated that this exonucleolytic attack on the primer molecules can be efficiently prevented by the introduction of single phosphorothioate bonds at their 3' termini. This strategy, which can be easily accomplished using routine DNA synthesis methodology, may open the way to a widespread use of these novel enzymes in the polymerase chain reaction. Images PMID:1641322

  7. Synthesis, characterization, DNA interaction, antioxidant and anticancer activity of new ruthenium(II) complexes of thiosemicarbazone/semicarbazone bearing 9,10-phenanthrenequinone.

    PubMed

    Anitha, Panneerselvam; Chitrapriya, Nataraj; Jang, Yoon Jung; Viswanathamurthi, Periasamy

    2013-12-01

    A new series of octahedral ruthenium(II) complexes supported by tridentate ligands derived from phenanthrenequinone and derivatives of thiosemicarbazide/semicarbazide and other co-ligands have been synthesized and characterized. DNA binding experiments indicated that ruthenium(II) complexes can interact with DNA through non-intercalation and the apparent binding constant value (Kb) of [RuCl(CO)(PPh₃)(L₃)] (3) at room temperature was calculated to be 2.27 × 10(3)M(-1). The DNA cleavage studies showed that the complexes have better cleavage of pBR 322 DNA. Antioxidative activity proved that the complexes have significant radical scavenging activity against free radicals. Cytotoxic activities showed that the ruthenium(II) complexes exhibited more effective cytotoxic activity against selected cancer cells. PMID:24144689

  8. Neurotensin enhances estradiol induced DNA synthesis in immature rat uterus

    SciTech Connect

    Mistry, A.; Vijayan, E.

    1985-05-27

    Systemic administration of Neurotensin, a tridecapeptide, in immature rats treated with estradiol benzoate significantly enhances uterine DNA synthesis as reflected by the incorporation of /sup 3/H-thymidine. The peptide may have a direct action on the uterus. Substance P, a related peptide, had no effect on uterine DNA synthesis. 18 references, 4 tables.

  9. Synthesis and dissolution of hemicatenanes by type IA DNA topoisomerases

    PubMed Central

    Lee, Shun-Hsiao; Siaw, Grace Ee-Lu; Willcox, Smaranda; Griffith, Jack D.; Hsieh, Tao-Shih

    2013-01-01

    Type IA DNA topoisomerases work with a unique mechanism of strand passage through an enzyme-bridged, ssDNA gate, thus enabling them to carry out diverse reactions in processing structures important for replication, recombination, and repair. Here we report a unique reaction mediated by an archaeal type IA topoisomerase, the synthesis and dissolution of hemicatenanes. We cloned, purified, and characterized an unusual type IA enzyme from a hyperthermophilic archaeum, Nanoarchaeum equitans, which is split into two pieces. The recombinant heterodimeric enzyme has the expected activities in its preference of relaxing negatively supercoiled DNA. Its amino acid sequence and cleavage site sequence analysis suggest that it is topoisomerase III, and therefore we named it “NeqTop3.” At high enzyme concentrations, NeqTop3 can generate high-molecular-weight DNA networks. Biochemical and electron microscopic data indicate that the DNA networks are connected through hemicatenane linkages. The hemicatenane formation likely is mediated by the single-strand passage through denatured bubbles in the substrate DNA under high temperature. NeqTop3 at lower concentrations can reverse hemicatenanes. A complex of human topoisomerase 3α, Bloom helicase, and RecQ-mediated genome instability protein 1 and 2 can partially disentangle the hemicatenane network. Both the formation and dissolution of hemicatenanes by type IA topoisomerases demonstrate that these enzymes have an important role in regulating intermediates from replication, recombination, and repair. PMID:24003117

  10. Effect of. gamma. -irradiated DNA on the activity of DNA polymerase. [/sup 60/Co

    SciTech Connect

    Leadon, S.A.; Ward, J.F.

    1981-06-01

    A cell-free assay was developed to measure the effect of ..gamma..-irradiated DNA template on the ability of DNA polymerase to copy unirradiated template. Doses as low as 1 krad were able to decrease (approx. 15%) the activity of both bacterial and mammalian DNA polymerases in the assay. The percentage of polymerase activity decreased as the dose received by the template increased. The reduction in DNA polymerase activity was shown to be due to an inhibition of the enzyme by the irradiated DNA. Irradiated poly(dA-dT) was more effective in reducing polymerase activity than calf thymus DNA. Thus the polymerase-inhibition site(s) appears to be associated with base damage, specifically adenine or thymine. Using a free-radical scavenger, OH radicals were found to be involved in producing the damage sites. The interaction between irradiated DNA and DNA polymerase was found to be specific for the enzyme and not for other proteins present in the assay. The inhibition of DNA polymerase occurred prior to or during the initiation of DNA synthesis rather than after initiation of synthesis, i.e., during elongation.

  11. Inhibitory effect of benzene metabolites on nuclear DNA synthesis in bone marrow cells

    SciTech Connect

    Lee, E.W.; Johnson, J.T.; Garner, C.D. )

    1989-01-01

    Effects of endogenously produced and exogenously added benzene metabolites on the nuclear DNA synthetic activity were investigated using a culture system of mouse bone marrow cells. Effects of the metabolites were evaluated by a 30-min incorporation of ({sup 3}H)thymidine into DNA following a 30-min interaction with the cells in McCoy's 5a medium with 10% fetal calf serum. Phenol and muconic acid did not inhibit nuclear DNA synthesis. However, catechol, 1,2,4-benzenetriol, hydroquinone, and p-benzoquinone were able to inhibit 52, 64, 79, and 98% of the nuclear DNA synthetic activity, respectively, at 24 {mu}M. In a cell-free DNA synthetic system, catechol and hydroquinone did not inhibit the incorporation of ({sup 3}H)thymidine triphosphate into DNA up to 24 {mu}M but 1,2,4-benzenetriol and p-benzoquinone did. The effect of the latter two benzene metabolites was completely blocked in the presence of 1,4-dithiothreitol (1 mM) in the cell-free assay system. Furthermore, when DNA polymerase {alpha}, which requires a sulfhydryl (SH) group as an active site, was replaced by DNA polymerase 1, which does not require an SH group for its catalytic activity, p-benzoquinone and 1,2,4-benzenetriol were unable to inhibit DNA synthesis. Thus, the data imply the p-benzoquinone and 1,2,4-benzenetriol inhibited DNA polymerase {alpha}, consequently resulting in inhibition of DNA synthesis in both cellular and cell-free DNA synthetic systems. The present study identifies catechol, hydroquinone, p-benzoquinone, and 1,2,4-benzenetriol as toxic benzene metabolites in bone marrow cells and also suggests that their inhibitory action on DNA synthesis is mediated by mechanism(s) other than that involving DNA damage as a primary cause.

  12. DNA replication and unscheduled DNA synthesis in lungs of mice exposed to cigarette smoke

    SciTech Connect

    Rasmussen, R.E.; Boyd, C.H.; Dansie, D.R.; Kouri, R.E.; Henry, C.J.

    1981-07-01

    Mice of the hybrid strain BC3F1/Cum (C57BL/Cum X C3H/AnfCum) were chronically exposed to measured amounts of machine-generated whole Kentucky reference 2A1 cigarette smoke. DNA replication and unscheduled DNA synthesis (UDS) were measured in lung tissue in vitro using a short-term organ culture method. Within one week of beginning smoke exposure, DNA replicative activity, as indicated by incorporation of (3H)-thymidine into total lung DNA, was increased more than two-fold over sham-exposed controls and remained elevated as long as smoke exposure was continued. Treatment of lung tissues in vitro with either the lung carcinogen 4-nitroquinoline-1-oxide or methylmethane sulfonate stimulated UDS, measured as incorporation of (3H)thymidine into lung DNA in the presence of hydroxyurea, presumably as the result of DNA repair activity. Until the 10th to 12th week of smoke exposure, at which time the accumulated deposition of total particulate material in the lung was approximately 40 mg, the level of UDS stimulated by the alkylating chemicals declined to approximately 50% of that seen in lung tissue from sham-exposed control mice. If the mice were removed from smoke exposure, DNA replicative activity returned to normal levels within one week, but the UDS response to DNA damage remained depressed up to five months after ending smoke exposure. The results show that both transient and apparently permanent changes are produced in mouse lung as the result of exposure to cigarette smoke. The role of these changes in lung neoplasia is under investigation.

  13. Bio-sensitive activities of coordination compounds containing 1,10-phenanthroline as co-ligand: Synthesis, structural elucidation and DNA binding properties of metal(II) complexes

    NASA Astrophysics Data System (ADS)

    Raman, Natarajan; Mahalakshmi, Rajkumar; Mitu, Liviu

    2014-10-01

    Present work reports the DNA binding and cleavage characteristics of a series of mixed-ligand complexes having the composition [M(L)(phen)2]Cl2 (where M = Cu(II), Ni(II), Co(II) and Zn(II) and phen as co-ligand) in detail. Their structural features and other properties have been deduced from their elemental analyses, magnetic susceptibility and molar conductivity as well as from IR, UV-Vis, 1H NMR and EPR spectral studies. The UV-Vis, magnetic susceptibility and EPR spectral data of metal complexes suggest an octahedral geometry. The binding properties of these complexes with calf thymus DNA (CT-DNA) have been explored using electronic absorption spectroscopy, viscosity measurement, cyclic voltammetry and differential pulse voltammetry. The DNA-binding constants for Cu(II), Ni(II), Co(II), and Zn(II) complexes are 6.14 × 105 M-1, 1.8 × 105 M-1, 6.7 × 104 M-1 and 2.5 × 104 M-1 respectively. Detailed analysis reveals that these complexes interact with DNA through intercalation binding. Nuclease activity has also been investigated by gel electrophoresis. Moreover, the synthesized Schiff base and its mixed-ligand complexes have been screened for antibacterial and antifungal activities. The data reveal that the complexes exhibit higher activity than the parent ligand.

  14. Human CD4+ T cells require exogenous cystine for glutathione and DNA synthesis

    PubMed Central

    Levring, Trine B.; Kongsbak, Martin; Rode, Anna K. O.; Woetmann, Anders; Ødum, Niels; Bonefeld, Charlotte Menné; Geisler, Carsten

    2015-01-01

    Adaptive immune responses require activation and expansion of antigen-specific T cells. Whereas early T cell activation is independent of exogenous cystine (Cys2), T cell proliferation is dependent of Cys2. However, the exact roles of Cys2 in T cell proliferation still need to be determined. The aim of this study was to elucidate why activated human T cells require exogenous Cys2 in order to proliferate. We activated purified naïve human CD4+ T cells and found that glutathione (GSH) levels and DNA synthesis were dependent on Cys2 and increased in parallel with increasing concentrations of Cys2. Vice-versa, the GSH synthesis inhibitor L-buthionine-sulfoximine (BSO) and inhibition of Cys2 uptake with glutamate inhibited GSH and DNA synthesis in parallel. We further found that thioredoxin (Trx) can partly substitute for GSH during DNA synthesis. Finally, we show that GSH or Trx is required for the activity of ribonucleotide reductase (RNR), the enzyme responsible for generation of the deoxyribonucleotide DNA building blocks. In conclusion, we show that activated human T cells require exogenous Cys2 to proliferate and that this is partly explained by the fact that Cys2 is required for production of GSH, which in turn is required for optimal RNR-mediated deoxyribonucleotide synthesis and DNA replication. PMID:26392411

  15. Synthesis, DNA binding and cleavage activities of copper (II) thiocyanate complex with 4-( N, N-dimethylamino)pyridine and N, N-dimethylformamide

    NASA Astrophysics Data System (ADS)

    Chen, Feng-juan; Xu, Min; Xi, Pin-xian; Liu, Hong-yang; Zeng, Zheng-zhi

    2011-10-01

    Two novel copper(II) thiocyanate complexes with 4-( N, N-dimethylamino) pyridine and N, N-dimethylformamide( 1) and with4-( N, N-dimethylamino) pyridine ( 2) have been synthesized and characterized. The crystal and molecular structures of complexes 1 and 2 were determined by single-crystal X-ray diffraction. Antioxidative activity tests in vitro showed that complex 1 has significant antioxidative activity against hydroxyl free radicals from the Fenton reaction and also oxygen free radicals, which is better than standard antioxidants like vitamin C and mannitol. The interaction of complex 1 with calf thymus DNA was investigated by spectroscopic, cyclic voltammetry, and viscosity measurements. Results suggest that complex 1 can bind to DNA via partial intercalation mode. Moreover, complex 1 has been found to cleavage of plasmid DNA pBR322.

  16. Synthesis, DNA binding and cleavage activities of copper (II) thiocyanate complex with 4-(N,N-dimethylamino)pyridine and N,N-dimethylformamide.

    PubMed

    Chen, Feng-juan; Xu, Min; Xi, Pin-xian; Liu, Hong-yang; Zeng, Zheng-zhi

    2011-10-15

    Two novel copper(II) thiocyanate complexes with 4-(N,N-dimethylamino) pyridine and N,N-dimethylformamide (1) and with 4-(N,N-dimethylamino) pyridine (2) have been synthesized and characterized. The crystal and molecular structures of complexes 1 and 2 were determined by single-crystal X-ray diffraction. Antioxidative activity tests in vitro showed that complex 1 has significant antioxidative activity against hydroxyl free radicals from the Fenton reaction and also oxygen free radicals, which is better than standard antioxidants like vitamin C and mannitol. The interaction of complex 1 with calf thymus DNA was investigated by spectroscopic, cyclic voltammetry, and viscosity measurements. Results suggest that complex 1 can bind to DNA via partial intercalation mode. Moreover, complex 1 has been found to cleavage of plasmid DNA pBR322. PMID:21723777

  17. DNA synthesis in yeast cell-free extracts dependent on recombinant DNA plasmids purified from Escherichia coli.

    PubMed Central

    Jong, A Y; Scott, J F

    1985-01-01

    In our attempts to establish a cell-free DNA replication system for the yeast Saccharomyces cerevisiae, we have observed that recombinant DNA plasmids purified from Escherichia coli by a common procedure (lysozyme-detergent lysis and equilibrium banding in cesium chloride ethidium bromide gradients) often serve as templates for DNA synthesis by elongation enzymes. The templates could be elongated equally well by enzymes present in the yeast cell-free extracts, by the large proteolytic fragment of E. coli DNA polymerase I or by T4 DNA polymerase. The template activity of the purified plasmids was dependent on the presence of heterologous DNA segments in the bacterial vectors. The template activity could be diminished by treatment with alkali. We propose that the ability of recombinant plasmids isolated from bacterial hosts to serve as elongation templates may lead to erroneous conclusions when these plasmids are used as templates for in vitro replication or transcription reactions. Images PMID:3889851

  18. Synthesis of mononuclear copper(II) complexes of acyclic Schiff's base ligands: Spectral, structural, electrochemical, antibacterial, DNA binding and cleavage activity

    NASA Astrophysics Data System (ADS)

    Jayamani, Arumugam; Thamilarasan, Vijayan; Sengottuvelan, Nallathambi; Manisankar, Paramasivam; Kang, Sung Kwon; Kim, Young-Inn; Ganesan, Vengatesan

    2014-03-01

    The mononuclear copper(II) complexes (1&2) of ligands L1 [N,N";-bis(2-hydroxy-5-methylbenzyl)-1,4-bis(3-iminopropyl)piperazine] or L2 [N,N";-bis(2-hydroxy-5-bromobenzyl)-1,4-bis(3-iminopropyl) piperazine] have been synthesized and characterised. The single crystal X-ray study had shown that ligands L1 and L2 crystallize in a monoclinic crystal system with P21/c space group. The mononuclear copper(II) complexes show one quasireversible cyclic voltammetric response near cathodic region (-0.77 to -0.85 V) in DMF assignable to the Cu(II)/Cu(I) couple. Binding interaction of the complexes with calf thymus DNA (CT DNA) investigated by absorption studies and fluorescence spectral studies show good binding affinity to CT DNA, which imply both the copper(II) complexes can strongly interact with DNA efficiently. The copper(II) complexes showed efficient oxidative cleavage of plasmid pBR322 DNA in the presence of 3-mercaptopropionic acid as reducing agent through a mechanistic pathway involving formation of singlet oxygen as the reactive species. The Schiff bases and their Cu(II) complexes have been screened for antibacterial activities which indicates that the complexes exhibited higher antimicrobial activity than the free ligands.

  19. Synthesis, spectroscopic characterization and in vitro antimicrobial, anticancer and antileishmanial activities as well interaction with Salmon sperm DNA of newly synthesized carboxylic acid derivative, 4-(4-methoxy-2-nitrophenylamino)-4-oxobutanoic acid

    NASA Astrophysics Data System (ADS)

    Sirajuddin, Muhammad; Ali, Saqib; McKee, Vickie; Ullah, Hameed

    2015-03-01

    This paper stresses on the synthesis, characterization of novel carboxylic acid derivative and its application in pharmaceutics. Carboxylic acid derivatives have a growing importance in medicine, particularly in oncology. A novel carboxylic acid, 4-(4-methoxy-2-nitrophenylamino)-4-oxobutanoic acid, was synthesized and characterized by elemental analysis, FT-IR, NMR (1H, and 13C), mass spectrometry and single crystal X-ray structural analysis. The structure of the title compound, C11H12N2O6, shows the molecules dimerised by short intramolecular Osbnd H⋯O hydrogen bonds. The compound was screened for in vitro antimicrobial, anticancer, and antileishmanial activities as well as interaction with SS-DNA. The compound was also checked for in vitro anticancer activity against BHK-21, H-157 and HCEC cell lines, and showed significant anticancer activity. The compound was almost non-toxic towards human corneal epithelial cells (HCEC) and did not show more than 7.4% antiproliferative activity when used at the 2.0 μg/mL end concentration. It was also tested for antileishmanial activity against the promastigote form of leishmania major and obtained attractive result. DNA interaction study exposes that the binding mode of the compound with SS-DNA is an intercalative as it results in hypochromism along with minor red shift. A new and efficient strategy to identify pharmacophores sites in carboxylic acid derivative for antibacterial/antifungal activity using Petra, Osiris and Molinspiration (POM) analyses was also carried out.

  20. Synthesis, spectroscopic characterization and in vitro antimicrobial, anticancer and antileishmanial activities as well interaction with Salmon sperm DNA of newly synthesized carboxylic acid derivative, 4-(4-methoxy-2-nitrophenylamino)-4-oxobutanoic acid.

    PubMed

    Sirajuddin, Muhammad; Ali, Saqib; McKee, Vickie; Ullah, Hameed

    2015-03-01

    This paper stresses on the synthesis, characterization of novel carboxylic acid derivative and its application in pharmaceutics. Carboxylic acid derivatives have a growing importance in medicine, particularly in oncology. A novel carboxylic acid, 4-(4-methoxy-2-nitrophenylamino)-4-oxobutanoic acid, was synthesized and characterized by elemental analysis, FT-IR, NMR ((1)H, and (13)C), mass spectrometry and single crystal X-ray structural analysis. The structure of the title compound, C11H12N2O6, shows the molecules dimerised by short intramolecular OH⋯O hydrogen bonds. The compound was screened for in vitro antimicrobial, anticancer, and antileishmanial activities as well as interaction with SS-DNA. The compound was also checked for in vitro anticancer activity against BHK-21, H-157 and HCEC cell lines, and showed significant anticancer activity. The compound was almost non-toxic towards human corneal epithelial cells (HCEC) and did not show more than 7.4% antiproliferative activity when used at the 2.0μg/mL end concentration. It was also tested for antileishmanial activity against the promastigote form of leishmania major and obtained attractive result. DNA interaction study exposes that the binding mode of the compound with SS-DNA is an intercalative as it results in hypochromism along with minor red shift. A new and efficient strategy to identify pharmacophores sites in carboxylic acid derivative for antibacterial/antifungal activity using Petra, Osiris and Molinspiration (POM) analyses was also carried out. PMID:25536453

  1. Synthesis and antiproliferative activity of 9-benzylamino-6-chloro-2-methoxy-acridine derivatives as potent DNA-binding ligands and topoisomerase II inhibitors.

    PubMed

    Zhang, Wei; Zhang, Bin; Zhang, Wei; Yang, Ti; Wang, Ning; Gao, Chunmei; Tan, Chunyan; Liu, Hongxia; Jiang, Yuyang

    2016-06-30

    A series of 9-benzylamino acridine derivatives were synthesized as an extension of our discovery of acridine antitumor agents. Most of these acridine compounds displayed good antiproliferative activity with IC50 values in low micromole range and structure-activity relationships were studied. Topo I- and II- mediated relaxation studies suggested that all of our compounds displayed strong Topo II inhibitory activity at 100 μM, while only four exhibited moderate Topo I inhibitory activity. The typical compound 8p could penetrate A549 cancer cells efficiently. Compound 8p could intercalate within the double-stranded DNA structure and induce DNA damage. Moreover, compound 8p could induce A549 cells apoptosis through caspase-dependent intrinsic pathway and arrest A549 cells at the G2/M phase. PMID:27060757

  2. Synthesis of Amplified DNA That Codes for Ribosomal RNA

    PubMed Central

    Crippa, Marco; Tocchini-Valentini, Glauco P.

    1971-01-01

    During the amplification stage in ovaries, the complete repetitive unit of the DNA that codes for ribosomal RNA in Xenopus appears to be transcribed. This large RNA transcript is found in a complex with DNA. Substitution experiments with 5-bromodeoxyuridine do not show any evidence that a complete amplified cistron is used as a template for further amplification. A derivative of rifampicin, 2′,5′-dimethyl-N(4′)benzyl-N(4′)[desmethyl] rifampicin, preferentially inhibits the DNA synthesis responsible for ribosomal gene amplification. These results are consistent with the hypothesis that RNA-dependent DNA synthesis is involved in gene amplification. PMID:5288254

  3. Homologous DNA strand exchange activity of the human mitochondrial DNA helicase TWINKLE

    PubMed Central

    Sen, Doyel; Patel, Gayatri; Patel, Smita S.

    2016-01-01

    A crucial component of the human mitochondrial DNA replisome is the ring-shaped helicase TWINKLE—a phage T7-gene 4-like protein expressed in the nucleus and localized in the human mitochondria. Our previous studies showed that despite being a helicase, TWINKLE has unique DNA annealing activity. At the time, the implications of DNA annealing by TWINKLE were unclear. Herein, we report that TWINKLE uses DNA annealing function to actively catalyze strand-exchange reaction between the unwinding substrate and a homologous single-stranded DNA. Using various biochemical experiments, we demonstrate that the mechanism of strand-exchange involves active coupling of unwinding and annealing reactions by the TWINKLE. Unlike strand-annealing, the strand-exchange reaction requires nucleotide hydrolysis and greatly stimulated by short region of homology between the recombining DNA strands that promote joint molecule formation to initiate strand-exchange. Furthermore, we show that TWINKLE catalyzes branch migration by resolving homologous four-way junction DNA. These four DNA modifying activities of TWINKLE: strand-separation, strand-annealing, strand-exchange and branch migration suggest a dual role of TWINKLE in mitochondrial DNA maintenance. In addition to playing a major role in fork progression during leading strand DNA synthesis, we propose that TWINKLE is involved in recombinational repair of the human mitochondrial DNA. PMID:26887820

  4. Homologous DNA strand exchange activity of the human mitochondrial DNA helicase TWINKLE.

    PubMed

    Sen, Doyel; Patel, Gayatri; Patel, Smita S

    2016-05-19

    A crucial component of the human mitochondrial DNA replisome is the ring-shaped helicase TWINKLE-a phage T7-gene 4-like protein expressed in the nucleus and localized in the human mitochondria. Our previous studies showed that despite being a helicase, TWINKLE has unique DNA annealing activity. At the time, the implications of DNA annealing by TWINKLE were unclear. Herein, we report that TWINKLE uses DNA annealing function to actively catalyze strand-exchange reaction between the unwinding substrate and a homologous single-stranded DNA. Using various biochemical experiments, we demonstrate that the mechanism of strand-exchange involves active coupling of unwinding and annealing reactions by the TWINKLE. Unlike strand-annealing, the strand-exchange reaction requires nucleotide hydrolysis and greatly stimulated by short region of homology between the recombining DNA strands that promote joint molecule formation to initiate strand-exchange. Furthermore, we show that TWINKLE catalyzes branch migration by resolving homologous four-way junction DNA. These four DNA modifying activities of TWINKLE: strand-separation, strand-annealing, strand-exchange and branch migration suggest a dual role of TWINKLE in mitochondrial DNA maintenance. In addition to playing a major role in fork progression during leading strand DNA synthesis, we propose that TWINKLE is involved in recombinational repair of the human mitochondrial DNA. PMID:26887820

  5. Heterogeneity in the properties of burst-forming units of erythroid lineage in sickle cell anemia: DNA synthesis and burst-promoting activity production is related to peripheral hemoglobin F levels

    SciTech Connect

    Croizat, H.; Billett, H.H.; Nagel, R.L. )

    1990-02-15

    Circulating 14-day erythroid progenitors (BFU-E) from 28 sickle cell anemia (SS) patients with hemoglobin F (HbF) levels ranging from 2% to 16% were studied to determine their sensitivity to ({sup 3}H) thymidine kill and burst-promoting activity (BPA)-like factor production. We find that the proportion of BFU-E sensitive to 3H-dT kill, and hence active in DNA synthesis, was inversely correlated with the percent of peripheral HbF when light density (LD) mononuclear cells were used for plating. Regression analysis showed that the correlation between HbF level and BFU-E kill was highly significant (r = .88; P less than .00003). We confirmed the BPA-like factor(s) production by LD mononuclear cells of SS patients, and found, in addition, that this phenomenon is restricted to the population of SS patients with HbF levels lower than 9%. Circulating BFU-E of patients with high HbF levels are not sensitive to 3H-dT, and their mononuclear cells do not release BPA-like factor. In summary, SS patients exhibit differences in the capacity of their mononuclear cells to produce BPA activity according to their peripheral HbF level, as well as to the DNA synthesis-state of their circulating BFU-E. We conclude that erythroid progenitors differ among SS patients in relation to their peripheral HbF level.

  6. Effects of starvation and hormones on DNA synthesis in silk gland cells of the silkworm, Bombyx mori.

    PubMed

    Li, Yao-Feng; Chen, Xiang-Yun; Zhang, Chun-Dong; Tang, Xiao-Fang; Wang, La; Liu, Tai-Hang; Pan, Min-Hui; Lu, Cheng

    2016-08-01

    Silk gland cells of silkworm larvae undergo multiple cycles of endomitosis for the synthesis of silk proteins during the spinning phase. In this paper, we analyzed the endomitotic DNA synthesis of silk gland cells during larval development, and found that it was a periodic fluctuation, increasing during the vigorous feeding phase and being gradually inhibited in the next molting phase. That means it might be activated by a self-regulating process after molting. The expression levels of cyclin E, cdt1 and pcna were consistent with these developmental changes. Moreover, we further examined whether these changes in endomitotic DNA synthesis resulted from feeding or hormonal stimulation. The results showed that DNA synthesis could be inhibited by starvation and re-activated by re-feeding, and therefore appears to be dependent on nutrition. DNA synthesis was suppressed by in vivo treatment with 20-hydroxyecdysone (20E). However, there was no effect on DNA synthesis by in vitro 20E treatment or by either in vivo or in vitro juvenile hormone treatment. The levels of Akt and 4E-BP phosphorylation in the silk glands were also reduced by starvation and in vivo treatment with 20E. These results indicate that the activation of endomitotic DNA synthesis during the intermolt stages is related to feeding and DNA synthesis is inhibited indirectly by 20E. PMID:25558018

  7. Regulation of chloroplast number and DNA synthesis in higher plants. Final report, August 1995--August 1996

    SciTech Connect

    Mullet, J.E.

    1997-06-17

    The long term objective of this research is to understand the process of chloroplast development and its coordination with leaf development in higher plants. This is important because the photosynthetic capacity of plants is directly related to leaf and chloroplast development. This research focused on obtaining a detailed description of leaf development and the early steps in chloroplast development including activation of plastid DNA synthesis, changes in plastid DNA copy number, activation of chloroplast transcription and increases in plastid number per cell. The research focused on the isolation of the plastid DNA polymerase, and identification of genetic mutants which are altered in their accumulation of plastid DNA and plastid number per cell.

  8. DNA precursor compartmentation in mammalian cells: metabolic and antimetabolic studies of nuclear and mitochondrial DNA synthesis

    SciTech Connect

    Bestwick, R.K.

    1983-01-01

    HeLa cells were used for the quantitation of cellular and mitochondrial deoxyribonucleoside triphosphate (dNTP) and ribonucleoside triphosphate (rNTP) pools and of changes in pools in response to treatment with the antimetabolites methotrexate (mtx) and 5-fluorodeoxyuridine (FUdR). Use of an enzymatic assay of dNTPs and of improved nucleotide extraction methods allowed quantitation of mitochondrial dNTP pools. All four mitochondrial dNTP pools expand following treatment with mtx or FUdR whereas cellular dTTP and dGTP pools are depleted. Mitochrondrial rNTP pools were also found to expand in response to these antimetabolites. Mouse L-cells were used to determine the relative contributions of an exogenously supplied precursor to nuclear and mitochrondrial DNA replication. Cells were labeled to near steady state specific activities with /sup 32/P-orthophosphate and subsequently labeled with (/sup 3/H)uridine, a general pyrimidine precursor, in the continuing presence of /sup 32/P. Deoxyribonucleoside monophosphates derived from these DNAs were separated by HPLC and the /sup 3/H//sup 32/P ratio in each pyrimidine determined. The dCMP residues in mitochondrial DNA (mtDNA) were found to be derived exclusively from the exogenous supplied uridine. The dTMP residues from nuclear and mtDNA and the dCMP residues from nuclear DNA were seen to be synthesized partly from exogenous sources and partly from other sources, presumably de novo pyrimidine synthesis.

  9. Nucleotide excision repair DNA synthesis by excess DNA polymerase beta: a potential source of genetic instability in cancer cells.

    PubMed

    Canitrot, Y; Hoffmann, J S; Calsou, P; Hayakawa, H; Salles, B; Cazaux, C

    2000-09-01

    The nucleotide excision repair pathway contributes to genetic stability by removing a wide range of DNA damage through an error-free reaction. When the lesion is located, the altered strand is incised on both sides of the lesion and a damaged oligonucleotide excised. A repair patch is then synthesized and the repaired strand is ligated. It is assumed that only DNA polymerases delta and/or epsilon participate to the repair DNA synthesis step. Using UV and cisplatin-modified DNA templates, we measured in vitro that extracts from cells overexpressing the error-prone DNA polymerase beta exhibited a five- to sixfold increase of the ultimate DNA synthesis activity compared with control extracts and demonstrated the specific involvement of Pol beta in this step. By using a 28 nt gapped, double-stranded DNA substrate mimicking the product of the incision step, we showed that Pol beta is able to catalyze strand displacement downstream of the gap. We discuss these data within the scope of a hypothesis previously presented proposing that excess error-prone Pol beta in cancer cells could perturb the well-defined specific functions of DNA polymerases during error-free DNA transactions. PMID:10973926

  10. Synthesis, integration, and restriction and modification of mycoplasma virus L2 DNA

    SciTech Connect

    Dybvig, K.

    1981-01-01

    Mycoplasma virus L2 is an enveloped, nonlytic virus containing double-stranded, superhelical DNA. The L2 virion contains about 7 to 8 major proteins identified by SDS-polyacrylamide gel electrophoresis, but the virion has no discernible capsid structure. It has been suggested that the L2 virion is a DNA-protein condensation surrounded by a lipid-protein membrane. The host for mycoplasma virus L2 is Acholeplasma laidlawii. A. laidlawii has no cell wall and contains a small genome, 1 x 10/sup 9/ daltons, which is two to three times smaller than that of most bacteria. Infection of A. laidlawii by L2 is nonlytic. The studies in this thesis show that L2 DNA synthesis begins at about 1 hour of infection and lasts throughout the infection. Viral DNA synthesis is inhibited by chloramphenicol, streptomycin, and novobiocin. Packaging of L2 DNA into progeny virus is also inhibited by chloramphenicol and novobiocin. It is concluded that protein synthesis and probably DNA gyrase activity are required for L2 DNA synthesis, and for packaging of L2 DNA into progeny virus. DNA-DNA hybridization studies demonstrate that L2 DNA integrates into the host cell during infection, and subsequent to infection the cells are mycoplasma virus L2 lysogens. The viral site of integration has been roughly mapped. L2 virus is restricted and modified by A. laidlawii strains JA1 and K2. The nature of the modification in strain K2 has been elucidated. Two L2 variants containing insertions in the viral DNA were identified in these studies. Restriction endonuclease cleavage maps of these variants have been determined. DNA from L2 and another isolate of L2, MV-Lg-L 172, are compared in these studies. 74 references, 33 figures, 6 tables. (ACR)

  11. Method and apparatus for synthesis of arrays of DNA probes

    DOEpatents

    Cerrina, Francesco; Sussman, Michael R.; Blattner, Frederick R.; Singh-Gasson, Sangeet; Green, Roland

    2002-04-23

    The synthesis of arrays of DNA probes sequences, polypeptides, and the like is carried out using a patterning process on an active surface of a substrate. An image is projected onto the active surface of the substrate utilizing an image former that includes a light source that provides light to a micromirror device comprising an array of electronically addressable micromirrors, each of which can be selectively tilted between one of at least two positions. Projection optics receives the light reflected from the micromirrors along an optical axis and precisely images the micromirrors onto the active surface of the substrate, which may be used to activate the surface of the substrate. The first level of bases may then be applied to the substrate, followed by development steps, and subsequent exposure of the substrate utilizing a different pattern of micromirrors, with further repeats until the elements of a two dimensional array on the substrate surface have an appropriate base bound thereto. The micromirror array can be controlled in conjunction with a DNA synthesizer supplying appropriate reagents to a flow cell containing the active substrate to control the sequencing of images presented by the micromirror array in coordination of the reagents provided to the substrate.

  12. Active DNA demethylation by DNA repair: Facts and uncertainties.

    PubMed

    Schuermann, David; Weber, Alain R; Schär, Primo

    2016-08-01

    Pathways that control and modulate DNA methylation patterning in mammalian cells were poorly understood for a long time, although their importance in establishing and maintaining cell type-specific gene expression was well recognized. The discovery of proteins capable of converting 5-methylcytosine (5mC) to putative substrates for DNA repair introduced a novel and exciting conceptual framework for the investigation and ultimate discovery of molecular mechanisms of DNA demethylation. Against the prevailing notion that DNA methylation is a static epigenetic mark, it turned out to be dynamic and distinct mechanisms appear to have evolved to effect global and locus-specific DNA demethylation. There is compelling evidence that DNA repair, in particular base excision repair, contributes significantly to the turnover of 5mC in cells. By actively demethylating DNA, DNA repair supports the developmental establishment as well as the maintenance of DNA methylation landscapes and gene expression patterns. Yet, while the biochemical pathways are relatively well-established and reviewed, the biological context, function and regulation of DNA repair-mediated active DNA demethylation remains uncertain. In this review, we will thus summarize and critically discuss the evidence that associates active DNA demethylation by DNA repair with specific functional contexts including the DNA methylation erasure in the early embryo, the control of pluripotency and cellular differentiation, the maintenance of cell identity, and the nuclear reprogramming. PMID:27247237

  13. Requirement of E. coli DNA synthesis functions for the lytic replication of bacteriophage P1.

    PubMed

    Hay, N; Cohen, G

    1983-11-01

    P1 lytic growth was examined in a number of different temperature sensitive mutants of E. coli that affect chromosomal replication. Growth was analyzed by measurements of phage burst sizes and specific DNA synthesis. Efficient P1 growth required each of the bacterial elongation functions dnaE (polC), dnaZ (sub units of E. coli polymerase III holoenzyme), and dnaG (primase) but was not dependent on the elongation function dnaB (mobile promoter). Of two initiation functions tested the dnaA function was found to be dispensable for normal growth whereas the dnaC function was essential. Temperature shift experiments with different dnaC mutants showed that the initiation component of the dnaC function was needed continuously throughout at least the first half of the lytic cycle, while the dnaC elongation activity was probably required during the entire cycle for normal phage yields. In two respects the dependence of P1 lytic growth on E. coli DNA synthesis functions was significantly different from that reported for P1 plasmid replication (Scott and Vapnek, 1980). Thus, lytic replication was far more dependent on a functional polC gene product than was plasmid replication and did not require the bacterial dnaB product. PMID:6359668

  14. Mutagenesis in Oocytes of DROSOPHILA MELANOGASTER. I. Scheduled Synthesis of Nuclear and Mitochondrial DNA and Unscheduled DNA Synthesis

    PubMed Central

    Kelley, Mark R.; Lee, William R.

    1983-01-01

    As a model system for studying mutagenesis, the oocyte of Drosophila melanogaster has exhibited considerable complexity. Very few experiments have been conducted on the effect of exposing oocytes to chemical mutagens, presumably due to their lower mutational response relative to sperm and spermatids. This lower response may be due either to a change in probability of mutation induction per adduct due to a change in the type of DNA repair or to a lower dose of the mutagen to the female germ line. To study molecular dosimetry and DNA repair in the oocyte, the large number of intracellular constituents (mtDNA, RNA, nucleic acid precursors and large quantities of proteins and lipids) must be separated from nuclear DNA. In this paper we present results showing reliable separation of such molecules enabling us to detect scheduled nuclear and mitochondrial DNA synthesis. We also, by understanding the precise timing of such events, can detect unscheduled DNA synthesis (UDS) as a measure of DNA repair. Furthermore, by comparing the UDS results in a repair competent (Ore-R) vs. a repair deficient (mei-9L1 ) strain, we have shown the oocyte capable of DNA repair after treatment with ethyl methanesulfonate (EMS). We conclude that the important determinant of mutation induction in oocytes after treatment with EMS is the time interval between DNA alkylation and DNA synthesis after fertilization, i.e., the interruption of continuous DNA repair. PMID:17246137

  15. Mononuclear zinc(II) complexes of 2-((2-(piperazin-1-yl)ethylimino)methyl)-4-substituted phenols: Synthesis, structural characterization, DNA binding and cheminuclease activities

    NASA Astrophysics Data System (ADS)

    Ravichandran, J.; Gurumoorthy, P.; Karthick, C.; Kalilur Rahiman, A.

    2014-03-01

    Four new zinc(II) complexes [Zn(HL1-4)Cl2] (1-4), where HL1-4 = 2-((2-(piperazin-1-yl)ethylimino)methyl)-4-substituted phenols, have been isolated and fully characterized using various spectro-analytical techniques. The X-ray crystal structure of complex 4 shows the distorted trigonal-bipyramidal coordination geometry around zinc(II) ion. The crystal packing is stabilized by intermolecular NH⋯O hydrogen bonding interaction. The complexes display no d-d electronic band in the visible region due to d10 electronic configuration of zinc(II) ion. The electrochemical properties of the synthesized ligands and their complexes exhibit similar voltammogram at reduction potential due to electrochemically innocent Zn(II) ion, which evidenced that the electron transfer is due to the nature of the ligand. Binding interaction of complexes with calf thymus DNA was studied by UV-Vis absorption titration, viscometric titration and cyclic voltammetry. All complexes bind with CT DNA by intercalation, giving the binding affinity in the order of 2 > 1 ≫ 3 > 4. The prominent cheminuclease activity of complexes on plasmid DNA (pBR322 DNA) was observed in the absence and presence of H2O2. Oxidative pathway reveals that the underlying mechanism involves hydroxyl radical.

  16. Synthesis and Evaluation of In Vitro DNA/Protein Binding Affinity, Antimicrobial, Antioxidant and Antitumor Activity of Mononuclear Ru(II) Mixed Polypyridyl Complexes.

    PubMed

    Putta, Venkat Reddy; Chintakuntla, Nagamani; Mallepally, Rajender Reddy; Avudoddi, Srishailam; K, Nagasuryaprasad; Nancherla, Deepika; V V N, Yaswanth; R S, Prakasham; Surya, Satyanarayana Singh; Sirasani, Satyanarayana

    2016-01-01

    The four novel Ru(II) complexes [Ru(phen)2MAFIP](2+) (1) [MAFIP = 2-(5-(methylacetate)furan-2-yl)-1 H-imidazo[4,5-f] [1, 10]phenanthroline, phen = 1,10-Phenanthroline], [Ru(bpy)2MAFIP](2+) (2) (bpy = 2,2'-bipyridine) and [Ru(dmb)2MAFIP](2+) (3) (dmb = 4,4'-dimethyl-2,2'-bipyridine) and [Ru(hdpa)2MAFIP](2+) (4) (hdpa = 2,2-dipyridylamine) have been synthesized and fully characterized via elemental analysis, NMR spectroscopy, EI-MS and FT-IR spectroscopy. In addition, the DNA-binding behaviors of the complexes 1-4 with calf thymus DNA were investigated by UV-Vis absorption, fluorescence studies and viscosity measurement. The DNA-binding experiments showed that the complexes 1-4 interact with CT-DNA through an intercalative mode. BSA protein binding affinity of synthesized complexes was determined by UV/Vis absorption and fluorescence emission titrations. The binding affinity of ruthenium complexes was supported by molecular docking. The photoactivated cleavage of plasmid pBR322 DNA by ruthenium complexes 1-4 was investigated. All the synthesized compounds were tested for antimicrobial activity by using three Gram-negative (Escherichia coli, Salmonella typhi and Pseudomonas aeruginosa) and three Gram-positive (Micrococcus luteus, Bacillus subtilis and Bacillus megaterium) organisms, these results indicated that complex 3 was more activity compared to other complexes against all tested microbial strains while moderate antimicrobial activity profile was noticed for complex 4. The antioxidant activity experiments show that the complexes exhibit moderate antioxidant activity. The cytotoxicity of synthesized complexes on HeLa cell lines has been examined by MTT assay. The apoptosis assay was carried out with Acridine Orange (AO) staining methods and the results indicate that complexes can induce the apoptosis of HeLa cells. The cell cycle arrest investigated by flow cytometry and these results indicate that complexes 1-4 induce the cell cycle arrest at G0/G1

  17. Zonal differences in DNA synthesis activity and cytochrome P450 gene expression in livers of male F344 rats treated with five nongenotoxic carcinogens

    SciTech Connect

    Chen, Zhi-Ying; White, C.C.; He, Cheng-Yi; Liu, Ying-Fei; Eaton, D.L.

    1995-12-31

    Both increased cell proliferation and {open_quotes}altered{close_quotes}CYP gene expression are prominent phenomena associated with liver tumor promotion by nongenotoxic carcinogen treatment. BRDU-labeled parenchymal nuclei were observed primarily in the periportal area of groups of rats, independent of nongenotoxic carcinogen treatment. Treatment with each of the 5 nongenotoxic carcinogens resulted in profound alterations in CPY gene expression at both the transcriptional and translational levels. Expression of CYP1A1, 1A1/2, 3A1, 2B1/2, and 4A immunoproteins demonstrated nongenotoxic carcinogen-specific patterns in both magnitude and zonal distribution. In agreement with the CYP immunoprotein data, treatment with each of the five nongenotoxic carcinogens resulted in a unique composition of mRNAs of CYP2B1, 2B2, 2C6, 2C11, 3A1, 3A2, and 4A1, which were variably increased or decreased relative to the untreated control livers, depending on the treatment. Similarly, the rate and pattern of CYP enzyme-mediated hydroxylation toward testosterone, 17{beta}-estradiol, corticosterone, and lauric acid were greatly altered by nongenotoxic carcinogen treatment. Because many endogenous substrates are modulators of DNA and RNA synthesis, intracellular kinetics of endogenous substrates of CYP enzymes in the corresponding hepatocytes could contribute, at least in part, to the differences in gene expression, differentiation, and cell proliferation among the hepatocytes in the cell plate. 64 refs., 11 figs., 2 tabs.

  18. Synthesis of new piperazine derived Cu(II)/Zn(II) metal complexes, their DNA binding studies, electrochemistry and anti-microbial activity: Validation for specific recognition of Zn(II) complex to DNA helix by interaction with thymine base

    NASA Astrophysics Data System (ADS)

    Bhat, Irshad-ul-Haq; Tabassum, Sartaj

    2009-06-01

    New 3,4:9,10-dibenzo-2,11-dihydroxy-1,12-bispiperazine-5,8-dioxododecane complexes [C 24H 36N 4O 6Cu] ( 1), [C 24H 32N 4O 4Zn] ( 2) have been synthesized and characterized by elemental analysis, IR, NMR, Mass, EPR, UV-vis spectroscopy and molar conductance measurements. The complexes are non-ionic in nature and possess octahedral geometry around Cu 2+, Zn 2+ central metal ions. The binding studies of 1 and 2 with calf thymus DNA (CT-DNA) were investigated by UV-vis, fluorescence, cyclic voltammetery and viscosity measurements. The calculated binding constant Kb for 1 and 2 obtained from UV-vis absorption studies was 7.6 × 10 3 M -1, 80.8 × 10 4 M -1, respectively. The intrinsic binding constants were also estimated to be 7.0 × 10 4 M -1 and 7.53 × 10 5 M -1 for 1 and 2, respectively by using emission titrations. These experimental results suggest that complexes are groove binders and interact to CT-DNA with different affinities. Both the complexes in presence and absence of CT-DNA show quasireversible wave corresponding to Cu II/Cu I and Zn II/Zn I redox couple. The changes in E1/2, Δ E, Ipa/ Ipc ascertain the interaction of 1 and 2 with CT-DNA. Further, decrease in viscosity of CT-DNA with increasing concentration of complexes was observed. In vitro, antimicrobial activity against fungi A. brassicicola, A. niger and bacteria E. coli, P. aeruginosa of complexes were carried out, which indicate that complex 2 is more active against both fungal and bacterial strains as shown by % inhibition data.

  19. Synthesis and structure of dicopper(II) complexes bridged by N-(5-chloro-2-hydroxyphenyl)-N'-[3-(methy lamino)propyl]oxamide: evaluation of DNA/protein binding, DNA cleavage, and in vitro anticancer activity.

    PubMed

    Xu, Xiao-Wen; Li, Xue-Jie; Zhu, Ling; Li, Yan-Tuan; Wu, Zhi-Yong; Yan, Cui-Wei

    2015-06-01

    Three new dicopper(II) complexes bridged by N-(5-chloro-2-hydroxyphenyl)-N'-[3-(methylamino)-propyl]oxamide (H3chmpoxd) and end-capped with 1,10-phenanthroline (phen); 2,2'-diamino-4,4'-bithiazole (dabt); and 2,2'-bipyridine (bpy), namely [Cu2(chmpoxd)(H2O)(phen)](ClO4)⋅CH3CN (1), [Cu2(chmpoxd)(dabt)(C2H5OH)](NO3) (2) and [Cu2(chmpoxd)(H2O)(bpy)](NO3)⋅CH3CN (3), were synthesized and structurally characterized. The single-crystal X-ray diffraction analysis revealed that both the copper(II) ions bridged by the cis-chmpoxd(3-) ligands in the three complexes are in square-planar and square-pyramidal environments, respectively. The reactivity towards herring sperm DNA (HS-DNA) and protein bovine serum albumin (BSA) indicated that these copper(II) complexes can interact with the DNA in the mode of intercalation, and bind to BSA responsible for quenching of tryptophan fluorescence by the static quenching mechanism. The cytotoxicity and DNA cleavage suggested that all the dicopper(II) complexes are active against the selected tumor cell lines, and the complex 1 exhibits the cleavage capacity for plasmid DNA. PMID:25837411

  20. Unscheduled DNA Synthesis: The Clinical and Functional Assay for Global Genomic DNA Nucleotide Excision Repair

    PubMed Central

    Latimer, Jean J.; Kelly, Crystal M.

    2016-01-01

    The unscheduled DNA synthesis (UDS) assay measures the ability of a cell to perform global genomic nucleotide excision repair (NER). This chapter provides instructions for the application of this technique by creating 6-4 photoproducts and pyrimidine dimers using UV-C irradiation. This procedure is designed specifically for quantification of the 6-4 photoproducts. Repair is quantified by the amount of radioactive thymidine incorporated during repair synthesis after this insult, and radioactivity is evaluated by grain counting after autoradiography. The results are used to clinically diagnose human DNA repair deficiency disorders and provide a basis for investigation of repair deficiency in human tissues or tumors. No other functional assay is available that directly measures the capacity to perform NER on the entire genome without the use of specific antibodies. Since live cells are required for this assay, explant culture techniques must be previously established. Host cell reactivation (HCR), as discussed in Chapter 37, is not an equivalent technique, as it measures only transcription-coupled repair (TCR) at active genes, a small subset of total NER. PMID:24623250

  1. Synthesis and antitumor activity evaluation of a novel combi-nitrosourea prodrug: Designed to release a DNA cross-linking agent and an inhibitor of O(6)-alkylguanine-DNA alkyltransferase.

    PubMed

    Sun, Guohui; Zhang, Na; Zhao, Lijiao; Fan, Tengjiao; Zhang, Shufen; Zhong, Rugang

    2016-05-01

    The drug resistance of CENUs induced by O(6)-alkylguanine-DNA alkyltransferase (AGT), which repairs the O(6)-alkylated guanine and subsequently inhibits the formation of dG-dC cross-links, hinders the application of CENU chemotherapies. Therefore, the discovery of CENU analogs with AGT inhibiting activity is a promising approach leading to novel CENU chemotherapies with high therapeutic index. In this study, a new combi-nitrosourea prodrug 3-(3-(((2-amino-9H-purin-6-yl)oxy)methyl)benzyl)-1-(2-chloroethyl)-1-nitrosourea (6), designed to release a DNA cross-linking agent and an inhibitor of AGT, was synthesized and evaluated for its antitumor activity and ability to induce DNA interstrand cross-links (ICLs). The results indicated that 6 exhibited higher cytotoxicity against mer(+) glioma cells compared with ACNU, BCNU, and their respective combinations with O(6)-benzylguanine (O(6)-BG). Quantifications of dG-dC cross-links induced by 6 were performed using HPLC-ESI-MS/MS. Higher levels of dG-dC cross-link were observed in 6-treated human glioma SF763 cells (mer(+)), whereas lower levels of dG-dC cross-link were observed in 6-treated calf thymus DNA, when compared with the groups treated with BCNU and ACNU. The results suggested that the superiority of 6 might result from the AGT inhibitory moiety, which specifically functions in cells with AGT activity. Molecular docking studies indicated that five hydrogen bonds were formed between the O(6)-BG analogs released from 6 and the five residues in the active pocket of AGT, which provided a reasonable explanation for the higher AGT-inhibitory activity of 6 than O(6)-BG. PMID:27041398

  2. Sphingosine, a modulator of human translesion DNA polymerase activity.

    PubMed

    Kamath-Loeb, Ashwini S; Balakrishna, Sharath; Whittington, Dale; Shen, Jiang-Cheng; Emond, Mary J; Okabe, Takayoshi; Masutani, Chikahide; Hanaoka, Fumio; Nishimura, Susumu; Loeb, Lawrence A

    2014-08-01

    Translesion (TLS) DNA polymerases are specialized, error-prone enzymes that synthesize DNA across bulky, replication-stalling DNA adducts. In so doing, they facilitate the progression of DNA synthesis and promote cell proliferation. To potentiate the effect of cancer chemotherapeutic regimens, we sought to identify inhibitors of TLS DNA polymerases. We screened five libraries of ∼ 3000 small molecules, including one comprising ∼ 600 nucleoside analogs, for their effect on primer extension activity of DNA polymerase η (Pol η). We serendipitously identified sphingosine, a lipid-signaling molecule that robustly stimulates the activity of Pol η by ∼ 100-fold at low micromolar concentrations but inhibits it at higher concentrations. This effect is specific to the Y-family DNA polymerases, Pols η, κ, and ι. The addition of a single phosphate group on sphingosine completely abrogates this effect. Likewise, the inclusion of other sphingolipids, including ceramide and sphingomyelin to extension reactions does not elicit this response. Sphingosine increases the rate of correct and incorrect nucleotide incorporation while having no effect on polymerase processivity. Endogenous Pol η activity is modulated similarly as the recombinant enzyme. Importantly, sphingosine-treated cells exhibit increased lesion bypass activity, and sphingosine tethered to membrane lipids mimics the effects of free sphingosine. Our studies have uncovered sphingosine as a modulator of TLS DNA polymerase activity; this property of sphingosine may be associated with its known role as a signaling molecule in regulating cell proliferation in response to cellular stress. PMID:24928506

  3. Carbon nanotubes supported tyrosinase in the synthesis of lipophilic hydroxytyrosol and dihydrocaffeoyl catechols with antiviral activity against DNA and RNA viruses.

    PubMed

    Botta, Giorgia; Bizzarri, Bruno Mattia; Garozzo, Adriana; Timpanaro, Rossella; Bisignano, Benedetta; Amatore, Donatella; Palamara, Anna Teresa; Nencioni, Lucia; Saladino, Raffaele

    2015-09-01

    Hydroxytyrosol and dihydrocaffeoyl catechols with lipophilic properties have been synthesized in high yield using tyrosinase immobilized on multi-walled carbon nanotubes by the Layer-by-Layer technique. All synthesized catechols were evaluated against a large panel of DNA and RNA viruses, including Poliovirus type 1, Echovirus type 9, Herpes simplex virus type 1 (HSV-1), Herpes simplex virus type 2 (HSV-2), Coxsackievirus type B3 (Cox B3), Adenovirus type 2 and type 5 and Cytomegalovirus (CMV). A significant antiviral activity was observed in the inhibition of HSV-1, HSV-2, Cox B3 and CMV. The mechanism of action of the most active dihydrocaffeoyl derivative was investigated against a model of HSV-1 infection. PMID:26260341

  4. Synthesis, crystal structure, antioxidant activity, and DNA-binding studies of a novel Ni(II) [2x2] grid complex with a rigid bistridentate Schiff base ligand.

    PubMed

    Jia, Lei; Xu, Jun; Xu, Xi-Ming; Chen, Long-Hai; Jiang, Peng; Cheng, Fei-Xiang; Lu, Guang-Nong; Wang, Qin; Wu, Jin-Cai; Tang, Ning

    2010-08-01

    With a bistridentate Schiff-base ligand, N',N'(3)-bis[(1E)-1-(2-pyridinyl)ethylidene)] isophthalohydrazide (H(2)L), a [2x2]G grid complex, [Ni(4)(HL)(4)](ClO(4))(4).4H(2)O.0.5 CH(3)OH (1) has been synthesized and characterized spectroscopically and crystallographically. Spectrometric titrations, ethidium bromide displacement experiments, circular dichroism spectral analysis and viscosity measurements indicate that the compound 1 strongly binds with calf-thymus DNA, presumably via intercalation mechanism. Furthermore, the antioxidant activity (superoxide and hydroxyl radical) of the ligand and its nickel(II) complex is determined by using spectrophotometer methods in vitro. Complex 1 is found to possess potent antioxidant activity and be better than standard antioxidants like mannitol. PMID:20686262

  5. DNA synthesis in mouse brown adipose tissue is under. beta. -adrenergic control

    SciTech Connect

    Rehnmark, S.; Nedergaard, J. )

    1989-02-01

    The rate of DNA synthesis in mouse brown adipose tissue was followed with injections of ({sup 3}H)thymidine. Cold exposure led to a large increase in the rate of ({sup 3}H)thymidine incorporation, reaching a maximum after 8 days, after which the activity abruptly ceased. A series of norepinephrine injections was in itself able to increase ({sup 3}H)thymidine incorporation. When norepinephrine was injected in combination with the {alpha}-adrenergic antagonist phentolamine or with the {beta}-adrenergic antagonist propranolol, the stimulation was fully blocked by propranolol. It is suggested that stimulation of DNA synthesis in brown adipose tissue is a {beta}-adrenergically mediated process and that the tissue is an interesting model for studies of physiological control of DNA synthesis.

  6. Inhibition of DNA synthesis by chemical carcinogens in cultures of initiated and normal proliferating rat hepatocytes

    SciTech Connect

    Novicki, D.L.; Rosenberg, M.R.; Michalopoulos, G.

    1985-01-01

    Rat hepatocytes in primary culture can be stimulated to replicate under the influence of rat serum and sparse plating conditions. Higher replication rates are induced by serum from two-thirds partially hepatectomized rats. The effects of carcinogens and noncarcinogens on the ability of hepatocytes to synthesize DNA were examined by measuring the incorporation of (3H)thymidine by liquid scintillation counting and autoradiography. Hepatocyte DNA synthesis was not decreased by ethanol or dimethyl sulfoxide at concentrations less than 0.5%. No effect was observed when 0.1 mM ketamine, Nembutal, hypoxanthine, sucrose, ascorbic acid, or benzo(e)pyrene was added to cultures of replicating hepatocytes. Estrogen, testosterone, tryptophan, and vitamin E inhibited DNA synthesis by approximately 50% at 0.1 mM, a concentration at which toxicity was noticeable. Several carcinogens requiring metabolic activation as well as the direct-acting carcinogen N-methyl-N'-nitro-N-nitrosoguanidine interfered with DNA synthesis. Aflatoxin B1 inhibited DNA synthesis by 50% (ID50) at concentrations between 1 X 10(-8) and 1 X 10(-7) M. The ID50 for 2-acetylaminofluorene was between 1 X 10(-7) and 1 X 10(-6) M. Benzo(a)pyrene and 3'-methyl-4-dimethylaminoazobenzene inhibited DNA synthesis 50% between 1 X 10(-5) and 1 X 10(-4) M. Diethylnitrosamine and dimethylnitrosamine (ID50 between 1 X 10(-4) and 5 X 10(-4) M) and 1- and 2-naphthylamine (ID50 between 1 X 10(-5) and 5 X 10(-4) M) caused inhibition of DNA synthesis at concentrations which overlapped with concentrations that caused measurable toxicity.

  7. Synthesis, structure, DNA/BSA interaction and in vitro cytotoxic activity of nickel(II) complexes derived from S-allyldithiocarbazate.

    PubMed

    Nanjundan, Nanjan; Selvakumar, Ponnusamy; Narayanasamy, Ramaswamy; Haque, Rosenani A; Velmurugan, Krishnaswamy; Nandhakumar, Raju; Silambarasan, Tamilselvan; Dhandapani, Ramamurthy

    2014-12-01

    Two nickel(II) complexes with formula NiL1 and NiL2 (HL1 = S-allyl-4-methoxybenzylidene hydrazinecarbodithioate, HL2 = S-allyl-1-napthylidenehydrazinecarbodithioate) have been synthesized and characterized by elemental analysis, FT-IR, NMR, UV-vis spectroscopy and ESI mass spectrometry. The crystal structure of complex 1 has been determined by single crystal X-ray diffractometry. Both HL1 and HL2 ligands are coordinated to the metal in thiolate form. In complexes, squareplanar geometry of the nickel is coordinated with two bidentate ligand units acting through azomethine nitrogen and thiolato sulfur atoms. To explore the potential medicinal value of the complexes with calf thymus DNA and bovine serum albumin (BSA) were studied at normal physiological conditions using fluorescence spectral techniques. The DNA binding constant values of the complexes were found in the range from 5.02 × 10(4), 3.54 × 10(4), and the binding affinities are in the following order 1 > 2. In addition, nickel complexes 1 and 2 shows better binding propensity to the bovine serum albumin (BSA) protein, giving a Ksv value 5.8 × 10(4), 4.47 × 10(4) respectively. From the oxidative cleavage of the complexes with pBR322 DNA, it is inferred that the effects of cleavage are dose-dependent. In addition, in vitro cytotoxicity of the complexes assayed against Vero and HeLa cell lines have shown higher cytotoxic activity with the lower IC50 values indicating their efficiency in killing cancer cells even at various concentrations. PMID:25463665

  8. Synthesis and structure of a new tetracopper(II) complex bridged both by oxamido and phenolato groups: Cytotoxic activity, and reactivity towards DNA and BSA

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Wen; Li, Xue-Jie; Zhan, Shu-Hui; Li, Yan-Tuan; Wu, Zhi-Yong; Yan, Cui-Wei

    2013-05-01

    A new tetracopper(II) complex bridged both by oxamido and phenolato groups, namely [Cu4(chmpoxd)2(dabt)2](ClO4)2, where H3chmpoxd and dabt stand for N-(5-chloro-2-hydroxyl-phenyl)-N'-[3-(methylamino)propyl]oxamide and 2,2'-diamino-4,4'-bithiazole, respectively, has been synthesized and characterized by elemental analyses, molar conductance measurements, IR and electronic spectra studies, and single-crystal X-ray diffraction. The crystal structure reveals a centrosymmetric circular tetranuclear cation [Cu4(chmpoxd)2(dabt)2]2+ assembled by a pair of cis-oxamido-bridged bicopper(II) units via μ2-phenolato bridges, in which one copper(II) atom is located in a slightly distorted square-planar environment, while the other is in a square-pyramidal geometry. The Cu⋯Cu separations through the oxamido and the phenolato bridges are 5.2217(12) and 3.7042(11) Å, respectively. In vitro cytotoxicity experiment shows that the tetracopper(II) complex exhibits cytotoxic activity against the SMMC7721 and A549 cell lines. The reactivities towards HS-DNA and protein BSA revealed that the tetracopper(II) complex can interact with HS-DNA in the mode of intercalation, and the complex binds to BSA responsible for quenching of tryptophan fluorescence by static quenching mechanism.

  9. The DNA intercalating alkaloid cryptolepine interferes with topoisomerase II and inhibits primarily DNA synthesis in B16 melanoma cells.

    PubMed

    Bonjean, K; De Pauw-Gillet, M C; Defresne, M P; Colson, P; Houssier, C; Dassonneville, L; Bailly, C; Greimers, R; Wright, C; Quetin-Leclercq, J; Tits, M; Angenot, L

    1998-04-14

    Cryptolepine hydrochloride is an indoloquinoline alkaloid isolated from the roots of Cryptolepis sanguinolenta. It is characterized by a multiplicity of host-mediated biological activities, including antibacterial, antiviral, and antimalarial properties. To date, the molecular basis for its diverse biological effects remains largely uncertain. Several lines of evidence strongly suggest that DNA might correspond to its principal cellular target. Consequently, we studied the strength and mode of binding to DNA of cryptolepine by means of absorption, fluorescence, circular, and linear dichroism, as well as by a relaxation assay using DNA topoisomerases. The results of various optical and gel electrophoresis techniques converge to reveal that the alkaloid binds tightly to DNA and behaves as a typical intercalating agent. In DNAase I footprinting experiments it was found that the drug interacts preferentially with GC-rich sequences and discriminates against homo-oligomeric runs of A and T. This study has also led to the discovery that cryptolepine is a potent topoisomerase II inhibitor and a promising antitumor agent. It stabilizes topoisomerase II-DNA covalent complexes and stimulates the cutting of DNA at a subset of preexisting topoisomerase II cleavage sites. Taking advantage of the fluorescence of the indoloquinoline chromophore, fluorescence microscopy was used to map cellular uptake of the drug. Cryptolepine easily crosses the cell membranes and accumulates selectively into the nuclei rather than in the cytoplasm of B16 melanoma cells. Quantitative analyses of DNA in cells after Feulgen reaction and image cytometry reveal that the drug blocks the cell cycle in G2/M phases. It is also shown that the alkaloid is more potent at inhibiting DNA synthesis rather than RNA and protein synthesis. Altogether, the results provide direct evidence that DNA is the primary target of cryptolepine and suggest that this alkaloid is a valid candidate for the development of tumor

  10. DNA-Encoded Solid-Phase Synthesis: Encoding Language Design and Complex Oligomer Library Synthesis

    PubMed Central

    2015-01-01

    The promise of exploiting combinatorial synthesis for small molecule discovery remains unfulfilled due primarily to the “structure elucidation problem”: the back-end mass spectrometric analysis that significantly restricts one-bead-one-compound (OBOC) library complexity. The very molecular features that confer binding potency and specificity, such as stereochemistry, regiochemistry, and scaffold rigidity, are conspicuously absent from most libraries because isomerism introduces mass redundancy and diverse scaffolds yield uninterpretable MS fragmentation. Here we present DNA-encoded solid-phase synthesis (DESPS), comprising parallel compound synthesis in organic solvent and aqueous enzymatic ligation of unprotected encoding dsDNA oligonucleotides. Computational encoding language design yielded 148 thermodynamically optimized sequences with Hamming string distance ≥ 3 and total read length <100 bases for facile sequencing. Ligation is efficient (70% yield), specific, and directional over 6 encoding positions. A series of isomers served as a testbed for DESPS’s utility in split-and-pool diversification. Single-bead quantitative PCR detected 9 × 104 molecules/bead and sequencing allowed for elucidation of each compound’s synthetic history. We applied DESPS to the combinatorial synthesis of a 75 645-member OBOC library containing scaffold, stereochemical and regiochemical diversity using mixed-scale resin (160-μm quality control beads and 10-μm screening beads). Tandem DNA sequencing/MALDI-TOF MS analysis of 19 quality control beads showed excellent agreement (<1 ppt) between DNA sequence-predicted mass and the observed mass. DESPS synergistically unites the advantages of solid-phase synthesis and DNA encoding, enabling single-bead structural elucidation of complex compounds and synthesis using reactions normally considered incompatible with unprotected DNA. The widespread availability of inexpensive oligonucleotide synthesis, enzymes, DNA sequencing, and

  11. Capture of a third Mg²⁺ is essential for catalyzing DNA synthesis.

    PubMed

    Gao, Yang; Yang, Wei

    2016-06-10

    It is generally assumed that an enzyme-substrate (ES) complex contains all components necessary for catalysis and that conversion to products occurs by rearrangement of atoms, protons, and electrons. However, we find that DNA synthesis does not occur in a fully assembled DNA polymerase-DNA-deoxynucleoside triphosphate complex with two canonical metal ions bound. Using time-resolved x-ray crystallography, we show that the phosphoryltransfer reaction takes place only after the ES complex captures a third divalent cation that is not coordinated by the enzyme. Binding of the third cation is incompatible with the basal ES complex and requires thermal activation of the ES for entry. It is likely that the third cation provides the ultimate boost over the energy barrier to catalysis of DNA synthesis. PMID:27284197

  12. A euryarchaeal histone modulates strand displacement synthesis by replicative DNA polymerases.

    PubMed

    Sun, Fei; Huang, Li

    2016-07-01

    Euryarchaeota and Crenarchaeota, the two main lineages of the domain Archaea, encode different chromatin proteins and differ in the use of replicative DNA polymerases. Crenarchaea possess a single family B DNA polymerase (PolB), which is capable of strand displacement modulated by the chromatin proteins Cren7 and Sul7d. Euryarchaea have two distinct replicative DNA polymerases, PolB and PolD, a family D DNA polymerase. Here we characterized the strand displacement activities of PolB and PolD from the hyperthermophilic euryarchaeon Pyrococcus furiosus and investigated the influence of HPfA1, a homolog of eukaryotic histones from P. furiosus, on these activities. We showed that both PolB and PolD were efficient in strand displacement. HPfA1 inhibited DNA strand displacement by both DNA polymerases but exhibited little effect on the displacement of a RNA strand annealed to single-stranded template DNA. This is consistent with the finding that HPfA1 bound more tightly to double-stranded DNA than to a RNA:DNA hybrid. Our results suggest that, although crenarchaea and euryarchaea differ in chromosomal packaging, they share similar mechanisms in modulating strand displacement by DNA polymerases during lagging strand DNA synthesis. PMID:27333783

  13. Polyaniline nanowire synthesis templated by DNA

    NASA Astrophysics Data System (ADS)

    Nickels, Patrick; Dittmer, Wendy U.; Beyer, Stefan; Kotthaus, Jörg P.; Simmel, Friedrich C.

    2004-11-01

    DNA-templated polyaniline nanowires and networks are synthesized using three different methods. The resulting DNA/polyaniline hybrids are fully characterized using atomic force microscopy, UV-vis spectroscopy and current-voltage measurements. Oxidative polymerization of polyaniline at moderate pH values is accomplished using ammonium persulfate as an oxidant, or alternatively in an enzymatic oxidation by hydrogen peroxide using horseradish peroxidase, or by photo-oxidation using a ruthenium complex as photo-oxidant. Atomic force microscopy shows that all three methods lead to the preferential growth of polyaniline along DNA templates. With ammonium persulfate, polyaniline can be grown on DNA templates already immobilized on a surface. Current-voltage measurements are successfully conducted on DNA/polyaniline networks synthesized by the enzymatic method and the photo-oxidation method. The conductance is found to be consistent with values measured for undoped polyaniline films.

  14. On-Flow Synthesis of Co-Polymerizable Oligo-Microspheres and Application in ssDNA Amplification

    PubMed Central

    Lee, Se Hee; Lee, Jae Ha; Lee, Ho Won; Kim, Yang-Hoon; Jeong, Ok Chan; Ahn, Ji-Young

    2016-01-01

    We fabricated droplet-based microfluidic platform for copolymerizable microspheres with acrydite modified DNA probe. The copolymerizable 3-D polyacrylamide microspheres were successfully produced from microcontinuous-flow synthesis with on-channel solidification. DNA copolymerization activity, surface presentation and thermostability were assessed by using fluorescent labeled complementary probe. The binding performance was only visible on the surface area of oligo-microspheres. We show that the resulting oligo-microspheres can be directly integrated into a streamlined microsphere-PCR protocol for amplifying ssDNA. Our microspheres could be utilized as a potential material for ssDNA analysis such as DNA microarray and automatic DNA SELEX process. PMID:27447941

  15. Lability of DNA polymerase alpha correlated with decreased DNA synthesis and increased age in human cells

    SciTech Connect

    Busbee, D.; Sylvia, V.; Stec, J.; Cernosek, Z.; Norman, J.

    1987-12-01

    DNA excision repair and mitogen-initiated blastogenesis in human cells declined in efficiency as an apparent function of decreased DNA polymerase alpha specific activity with increased age of the cell donor. DNA polymerase alpha isolated from fetal cells contained a single, high-specific-activity enzyme form that could not be further activated and that was stable with regard to enzyme activity and affinity for DNA template-primer. DNA polymerase alpha isolated from adult-derived cells contained both low-specific-activity and high-specific-activity forms. The low-activity enzyme form, which showed low affinity of binding to DNA template-primer, was activated by treatment with phosphatidylinositol, /sup 32/P-ATP, and phosphatidylinositol kinase, resulting in a /sup 32/P-labeled enzyme that exhibited high affinity of binding to DNA template-primer. The activated enzyme was unstable, exhibiting a loss of /sup 32/P-label correlated with the loss of both specific activity and high affinity of binding to DNA template-primer. The data suggest that DNA polymerase alpha isolated from adult-derived human cells has low-activity and high-activity forms. Decreased specific activity of DNA polymerase alpha correlated with increased age of the donor appears to be a function of loss of an enzyme activator molecule resulting in diminished ability of the enzyme to bind DNA template-primer.

  16. Metal based pharmacologically active agents: Synthesis, structural characterization, molecular modeling, CT-DNA binding studies and in vitro antimicrobial screening of iron(II) bromosalicylidene amino acid chelates

    NASA Astrophysics Data System (ADS)

    Abdel-Rahman, Laila H.; El-Khatib, Rafat M.; Nassr, Lobna A. E.; Abu-Dief, Ahmed M.; Ismael, Mohamed; Seleem, Amin Abdou

    2014-01-01

    In recent years, great interest has been focused on Fe(II) Schiff base amino acid complexes as cytotoxic and antitumor drugs. Thus a series of new iron(II) complexes based on Schiff bases amino acids ligands have been designed and synthesized from condensation of 5-bromosalicylaldehyde (bs) and α-amino acids (L-alanine (ala), L-phenylalanine (phala), L-aspartic acid (aspa), L-histidine (his) and L-arginine (arg)). The structure of the investigated iron(II) complexes was elucidated using elemental analyses, infrared, ultraviolet-visible, thermogravimetric analysis, as well as conductivity and magnetic susceptibility measurements. Moreover, the stoichiometry and the stability constants of the prepared complexes have been determined spectrophotometrically. The results suggest that 5-bromosalicylaldehyde amino acid Schiff bases (bs:aa) behave as dibasic tridentate ONO ligands and coordinate to Fe(II) in octahedral geometry according to the general formula [Fe(bs:aa)2]ṡnH2O. The conductivity values between 37 and 64 ohm-1 mol-1 cm2 in ethanol imply the presence of nonelectrolyte species. The structure of the complexes was validated using quantum mechanics calculations based on accurate DFT methods. Geometry optimization of the Fe-Schiff base amino acid complexes showed that all complexes had octahedral coordination. In addition, the interaction of these complexes with (CT-DNA) was investigated at pH = 7.2, by using UV-vis absorption, viscosity and agarose gel electrophoresis measurements. Results indicated that the investigated complexes strongly bind to calf thymus DNA via intercalative mode and showed a different DNA binding according to the sequence: bsari > bshi > bsali > bsasi > bsphali. Moreover, the prepared compounds are screened for their in vitro antibacterial and antifungal activity against three types of bacteria, Escherichia coli, Pseudomonas aeruginosa and Bacillus cereus and three types of anti fungal cultures, Penicillium purpurogenium, Aspergillus

  17. The coordinate induction of DNA synthesis after tuber wounding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tuber wounding induces a cascade of biological responses involved in processes required to heal and protect surviving plant issues. Little is known about the coordination of these processes, including essential wound-induced DNA synthesis, yet they play critical roles in maintaining marketability o...

  18. Synthesis, spectroscopic characterisation, DNA cleavage, superoxidase dismutase activity and antibacterial properties of some transition metal complexes of a novel bidentate Schiff base derived from isatin and 2-aminopyrimidine.

    PubMed

    Nitha, L P; Aswathy, R; Mathews, Niecy Elsa; Kumari, B Sindhu; Mohanan, K

    2014-01-24

    Complexes of manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) with a Schiff base, formed by the condensation of isatin with 2-aminopyrimidine have been synthesised and characterised through elemental analysis, molar conductance measurements, magnetic susceptibility, IR, UV-Vis, (1)HNMR, FAB mass and EPR spectral studies. The spectral data revealed that the ligand acts as neutral bidentate, coordinating to the metal ion through the carbonyl oxygen and azomethine nitrogen. Molar conductance values adequately support the electrolytic nature of the complexes. On the basis of the above observations the complexes have been formulated as [M(ISAP)2]X2, where M=Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); X=Cl, OAc; ISAP=2-[N-indole-2-one]aminopyrimidine. The ligand and copper(II) complex were subjected to X-ray diffraction studies. The DNA cleavage study was monitored by gel electrophoresis method. The superoxide dismutase (SOD) mimetic activities of the ligand and the metal complexes were checked using NBT assay. The in vitro antibacterial activity of the synthesized compounds has been tested against gram negative and gram positive bacteria. PMID:24051284

  19. Synthesis, spectroscopic characterisation, DNA cleavage, superoxidase dismutase activity and antibacterial properties of some transition metal complexes of a novel bidentate Schiff base derived from isatin and 2-aminopyrimidine

    NASA Astrophysics Data System (ADS)

    Nitha, L. P.; Aswathy, R.; Mathews, Niecy Elsa; Sindhu kumari, B.; Mohanan, K.

    2014-01-01

    Complexes of manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) with a Schiff base, formed by the condensation of isatin with 2-aminopyrimidine have been synthesised and characterised through elemental analysis, molar conductance measurements, magnetic susceptibility, IR, UV-Vis, 1HNMR, FAB mass and EPR spectral studies. The spectral data revealed that the ligand acts as neutral bidentate, coordinating to the metal ion through the carbonyl oxygen and azomethine nitrogen. Molar conductance values adequately support the electrolytic nature of the complexes. On the basis of the above observations the complexes have been formulated as [M(ISAP)2]X2, where M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); X = Cl, OAc; ISAP = 2-[N-indole-2-one]aminopyrimidine. The ligand and copper(II) complex were subjected to X-ray diffraction studies. The DNA cleavage study was monitored by gel electrophoresis method. The superoxide dismutase (SOD) mimetic activities of the ligand and the metal complexes were checked using NBT assay. The in vitro antibacterial activity of the synthesized compounds has been tested against gram negative and gram positive bacteria.

  20. L-arginine improves DNA synthesis in LPS-challenged enterocytes.

    PubMed

    Tan, Bi'e; Xiao, Hao; Xiong, Xia; Wang, Jing; Li, Guangran; Yin, Yulong; Huang, Bo; Hou, Yongqing; Wu, Guoyao

    2015-01-01

    The neonatal small intestine is susceptible to damage by endotoxin, and this cytotoxicity may involve intracellular generation of reactive oxygen species (ROS), resulting in DNA damage and mitochondrial dysfunction. L-Arginine (Arg) confers a cytoprotective effect on lipopolysaccharide (LPS)-treated enterocytes through activation of the mammalian target of the rapamycin (mTOR) signaling pathway. Arg improves DNA synthesis and mitochondrial bioenergetics, which may also be responsible for beneficial effects of Arg on intestinal mucosal cells. In support of this notion, results of recent studies indicate that elevated Arg concentrations enhances DNA synthesis, cell-cycle progression, and mitochondrial bioenergetics in LPS-treated intestinal epithelial cells through mechanisms involving activation of the PI3K-Akt pathway. These findings provide a biochemical basis for dietary Arg supplementation to improve the regeneration and repair of the small-intestinal mucosa in both animals and humans. PMID:25961538

  1. DNA Methyltransferase Activity Assays: Advances and Challenges

    PubMed Central

    Poh, Wan Jun; Wee, Cayden Pang Pee; Gao, Zhiqiang

    2016-01-01

    DNA methyltransferases (MTases), a family of enzymes that catalyse the methylation of DNA, have a profound effect on gene regulation. A large body of evidence has indicated that DNA MTase is potentially a predictive biomarker closely associated with genetic disorders and genetic diseases like cancer. Given the attention bestowed onto DNA MTases in molecular biology and medicine, highly sensitive detection of DNA MTase activity is essential in determining gene regulation, epigenetic modification, clinical diagnosis and therapeutics. Conventional techniques such as isotope labelling are effective, but they often require laborious sample preparation, isotope labelling, sophisticated equipment and large amounts of DNA, rendering them unsuitable for uses at point-of-care. Simple, portable, highly sensitive and low-cost assays are urgently needed for DNA MTase activity screening. In most recent technological advances, many alternative DNA MTase activity assays such as fluorescent, electrochemical, colorimetric and chemiluminescent assays have been proposed. In addition, many of them are coupled with nanomaterials and/or enzymes to significantly enhance their sensitivity. Herein we review the progress in the development of DNA MTase activity assays with an emphasis on assay mechanism and performance with some discussion on challenges and perspectives. It is hoped that this article will provide a broad coverage of DNA MTase activity assays and their latest developments and open new perspectives toward the development of DNA MTase activity assays with much improved performance for uses in molecular biology and clinical practice. PMID:26909112

  2. Induction of DNA synthesis in isolated nuclei by cytoplasmic factors: inhibition by protease inhibitors.

    PubMed Central

    Wong, R L; Gutowski, J K; Katz, M; Goldfarb, R H; Cohen, S

    1987-01-01

    Cytoplasmic extracts from spontaneously proliferating and mitogen-activated lymphoid cells contain a protein factor called ADR (activator of DNA replication) that induces DNA synthesis in isolated quiescent nuclei. ADR-containing preparations have proteolytic activity, as indicated by their ability to degrade fibrin in a plasminogen-independent and plasminogen-dependent manner. In addition, aprotinin, a nonspecific protease inhibitor, abrogates ADR-induced DNA synthesis in a dose-dependent fashion. Preincubation studies demonstrated that the effect of aprotinin is not due to its suppressive effects on the nuclei themselves. Other protease inhibitors such as leupeptin, p-aminobenzamidine, and N-alpha-tosyllysine chloromethyl ketone are also inhibitory, but soybean trypsin inhibitor is without effect. ADR activity can be removed from active extracts by adsorption with aprotinin-conjugated agarose beads and can be recovered by elution with an acetate buffer (pH 5). These findings are consistent with the interpretation that the initiation of DNA synthesis in resting nuclei may be protease dependent and, further, that the cytoplasmic stimulatory factor we have called ADR may be a protease itself. PMID:3540956

  3. A rapid, comprehensive system for assaying DNA repair activity and cytotoxic effects of DNA-damaging reagents.

    PubMed

    Jia, Nan; Nakazawa, Yuka; Guo, Chaowan; Shimada, Mayuko; Sethi, Mieran; Takahashi, Yoshito; Ueda, Hiroshi; Nagayama, Yuji; Ogi, Tomoo

    2015-01-01

    DNA repair systems protect cells from genomic instability and carcinogenesis. Therefore, assays for measuring DNA repair activity are valuable, not only for clinical diagnoses of DNA repair deficiency disorders but also for basic research and anticancer drug development. Two commonly used assays are UDS (unscheduled DNA synthesis, requiring a precise measurement of an extremely small amount of repair DNA synthesis) and RRS (recovery of RNA synthesis after DNA damage). Both UDS and RRS are major endpoints for assessing the activity of nucleotide excision repair (NER), the most versatile DNA repair process. Conventional UDS and RRS assays are laborious and time-consuming, as they measure the incorporation of radiolabeled nucleosides associated with NER. Here we describe a comprehensive protocol for monitoring nonradioactive UDS and RRS by studying the incorporation of alkyne-conjugated nucleoside analogs followed by a fluorescent azide-coupling click-chemistry reaction. The system is also suitable for quick measurement of cell sensitivity to DNA-damaging reagents and for lentivirus-based complementation assays, which can be used to systematically determine the pathogenic genes associated with DNA repair deficiency disorders. A typical UDS or RRS assay using primary fibroblasts, including a virus complementation test, takes 1 week to complete. PMID:25474029

  4. Microarrays Made Simple: "DNA Chips" Paper Activity

    ERIC Educational Resources Information Center

    Barnard, Betsy

    2006-01-01

    DNA microarray technology is revolutionizing biological science. DNA microarrays (also called DNA chips) allow simultaneous screening of many genes for changes in expression between different cells. Now researchers can obtain information about genes in days or weeks that used to take months or years. The paper activity described in this article…

  5. Electrochemical DNA sensor-based strategy for sensitive detection of DNA demethylation and DNA demethylase activity.

    PubMed

    Shen, Qingming; Fan, Mengxing; Yang, Yin; Zhang, Hui

    2016-08-31

    DNA demethylation and demethylase activity play important roles in DNA self-repair, and their detection is key to early diagnosis of fatal diseases. Herein, a facile electrochemical DNA (E-DNA) sensor was developed for the sensitive detection of DNA demethylation and demethylase activity based on an enzyme cleavage strategy. The thiol modified hemi-methylated hairpin probe DNA (pDNA) was self-assembled on a Au electrode surface through the formation of AuS bonds. The hemi-methylated pDNA served as the substrate of DNA demethylase (using methyl-CpG-binding domain protein 2 (MBD2) as an example). Following demethylation, the hairpin stem was then recognized and cleaved by BstUI endonuclease. The ferrocene carboxylic acid (FcA)-tagged pDNA strands were released into the buffer solution from the electrode surface, resulting in a significant decrease of electrochemical signal and providing a means to observe DNA demethylation. The activity of DNA demethylase was analyzed in the concentration ranging from 0.5 to 500 ng mL(-1) with a limit of detection as low as 0.17 ng mL(-1). With high specificity and sensitivity, rapid response, and low cost, this simple E-DNA sensor provides a unique platform for the sensitive detection of DNA demethylation, DNA demethylase activity, and related molecular diagnostics and drug screening. PMID:27506345

  6. Synthesis, spectroscopic characterization and antimicrobial activity of binuclear metal complexes of a new asymmetrical Schiff base ligand: DNA binding affinity of copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Shebl, Magdy

    2014-01-01

    The 1:1 condensation of o-acetoacetylphenol and 1,2-diaminopropane under condition of high dilution gives the mono-condensed Schiff base, (E)-3-(1-aminopropan-2-ylimino)-1-(2-hydroxyphenyl)butan-1-one. The mono-condensed Schiff base has been used for further condensation with isatin to obtain the new asymmetrical dicompartmental Schiff base ligand, (E)-3-(2-((E)-4-(2-hydroxyphenyl)-4-oxobutan-2-ylideneamino) propylimino)indolin-2-one (H3L) with a N2O3 donor set. Reactions of the ligand with metal salts give a series of new binuclear complexes. The ligand and its metal complexes were characterized by elemental analyses, IR, 1H and 13C NMR, electronic, ESR and mass spectra, conductivity and magnetic susceptibility measurements as well as thermal analyses. The analytical and spectroscopic tools showed that the complexes can be formulated as: [(HL)(VO)2(SO4)(H2O)]·4H2O, [(HL)Fe2Cl4(H2O)3]·EtOH, [(HL)Fe2(ox)Cl2(H2O)3]·2H2O, [(L)M2(OAc)(H2O)m]·nH2O; M = Co, Ni or Cu, m = 4, 0 and n = 2, 3, [(HL)Cu2Cl]Cl·6H2O and [(L)(UO2)2(OAc)(H2O)3]·6H2O. The metal complexes exhibited octahedral geometrical arrangements except copper complexes that exhibited tetrahedral geometries and uranyl complex in which the metal ion is octa-coordinated. The Schiff base and its metal complexes were evaluated for antimicrobial activity against Gram positive bacteria (Staphylococcus aureus), Gram negative bacteria (Escherichia coli) and fungi (Candida albicans and Aspergillus flavus). The ligand and some of its complexes were found to be biologically active. The DNA-binding properties of the copper complexes (6 and 7) have been investigated by electronic absorption, fluorescence and viscosity measurements. The results obtained indicate that these complexes bind to DNA via an intercalation binding mode with an intrinsic binding constant, Kb of 1.34 × 104 and 2.5 × 104 M-1, respectively.

  7. Seasonal variations of DNA synthesis in intestinal epithelial cells of hibernating animals--I. DNA synthesis in intestinal epithelial cells of ground squirrel (Citellus undulatus) during deep hibernation.

    PubMed

    Kruman, I I; Kolaeva, S G; Iljasova, E N; Zubrikhina, G N; Khachko, V N; Petrova, A S

    1986-01-01

    The conditions for obtaining crypt cells from ground squirrel small intestine were chosen which allow flow-through cytofluorometric analysis of the DNA synthesis of this tissue. DNA synthesis was found to be greatly reduced in the intestinal crypt cells of ground squirrel during deep hibernation in torpid animals, in animals during spontaneous arousals and in animals prevented from hibernation. The conclusion is made about endogenous control of the DNA synthesis in the cells of true hibernators. PMID:3943302

  8. Sickle erythrocytes inhibit human endothelial cell DNA synthesis

    SciTech Connect

    Weinstein, R.; Zhou, M.A.; Bartlett-Pandite, A.; Wenc, K. )

    1990-11-15

    Patients with sickle cell anemia experience severe vascular occlusive phenomena including acute pain crisis and cerebral infarction. Obstruction occurs at both the microvascular and the arterial level, and the clinical presentation of vascular events is heterogeneous, suggesting a complex etiology. Interaction between sickle erythrocytes and the endothelium may contribute to vascular occlusion due to alteration of endothelial function. To investigate this hypothesis, human vascular endothelial cells were overlaid with sickle or normal erythrocytes and stimulated to synthesize DNA. The erythrocytes were sedimented onto replicate monolayers by centrifugation for 10 minutes at 17 g to insure contact with the endothelial cells. Incorporation of 3H-thymidine into endothelial cell DNA was markedly inhibited during contact with sickle erythrocytes. This inhibitory effect was enhanced more than twofold when autologous sickle plasma was present during endothelial cell labeling. Normal erythrocytes, with or without autologous plasma, had a modest effect on endothelial cell DNA synthesis. When sickle erythrocytes in autologous sickle plasma were applied to endothelial monolayers for 1 minute, 10 minutes, or 1 hour and then removed, subsequent DNA synthesis by the endothelial cells was inhibited by 30% to 40%. Although adherence of sickle erythrocytes to the endothelial monolayers was observed under these experimental conditions, the effect of sickle erythrocytes on endothelial DNA synthesis occurred in the absence of significant adherence. Hence, human endothelial cell DNA synthesis is partially inhibited by contact with sickle erythrocytes. The inhibitory effect of sickle erythrocytes occurs during a brief (1 minute) contact with the endothelial monolayers, and persists for at least 6 hours of 3H-thymidine labeling.

  9. The structure and duplex context of DNA interstrand crosslinks affects the activity of DNA polymerase η

    PubMed Central

    Roy, Upasana; Mukherjee, Shivam; Sharma, Anjali; Frank, Ekaterina G.; Schärer, Orlando D.

    2016-01-01

    Several important anti-tumor agents form DNA interstrand crosslinks (ICLs), but their clinical efficiency is counteracted by multiple complex DNA repair pathways. All of these pathways require unhooking of the ICL from one strand of a DNA duplex by nucleases, followed by bypass of the unhooked ICL by translesion synthesis (TLS) polymerases. The structures of the unhooked ICLs remain unknown, yet the position of incisions and processing of the unhooked ICLs significantly influence the efficiency and fidelity of bypass by TLS polymerases. We have synthesized a panel of model unhooked nitrogen mustard ICLs to systematically investigate how the state of an unhooked ICL affects pol η activity. We find that duplex distortion induced by a crosslink plays a crucial role in translesion synthesis, and length of the duplex surrounding an unhooked ICL critically affects polymerase efficiency. We report the synthesis of a putative ICL repair intermediate that mimics the complete processing of an unhooked ICL to a single crosslinked nucleotide, and find that it provides only a minimal obstacle for DNA polymerases. Our results raise the possibility that, depending on the structure and extent of processing of an ICL, its bypass may not absolutely require TLS polymerases. PMID:27257072

  10. Translesion synthesis past acrolein-derived DNA adducts by human mitochondrial DNA polymerase γ.

    PubMed

    Kasiviswanathan, Rajesh; Minko, Irina G; Lloyd, R Stephen; Copeland, William C

    2013-05-17

    Acrolein, a mutagenic aldehyde, is produced endogenously by lipid peroxidation and exogenously by combustion of organic materials, including tobacco products. Acrolein reacts with DNA bases forming exocyclic DNA adducts, such as γ-hydroxy-1,N(2)-propano-2'-deoxyguanosine (γ-HOPdG) and γ-hydroxy-1,N(6)-propano-2'-deoxyadenosine (γ-HOPdA). The bulky γ-HOPdG adduct blocks DNA synthesis by replicative polymerases but can be bypassed by translesion synthesis polymerases in the nucleus. Although acrolein-induced adducts are likely to be formed and persist in mitochondrial DNA, animal cell mitochondria lack specialized translesion DNA synthesis polymerases to tolerate these lesions. Thus, it is important to understand how pol γ, the sole mitochondrial DNA polymerase in human cells, acts on acrolein-adducted DNA. To address this question, we investigated the ability of pol γ to bypass the minor groove γ-HOPdG and major groove γ-HOPdA adducts using single nucleotide incorporation and primer extension analyses. The efficiency of pol γ-catalyzed bypass of γ-HOPdG was low, and surprisingly, pol γ preferred to incorporate purine nucleotides opposite the adduct. Pol γ also exhibited ∼2-fold lower rates of excision of the misincorporated purine nucleotides opposite γ-HOPdG compared with the corresponding nucleotides opposite dG. Extension of primers from the termini opposite γ-HOPdG was accomplished only following error-prone purine nucleotide incorporation. However, pol γ preferentially incorporated dT opposite the γ-HOPdA adduct and efficiently extended primers from the correctly paired terminus, indicating that γ-HOPdA is probably nonmutagenic. In summary, our data suggest that acrolein-induced exocyclic DNA lesions can be bypassed by mitochondrial DNA polymerase but, in the case of the minor groove γ-HOPdG adduct, at the cost of unprecedented high mutation rates. PMID:23543747

  11. Mechanism of Concerted RNA-DNA Primer Synthesis by the Human Primosome.

    PubMed

    Baranovskiy, Andrey G; Babayeva, Nigar D; Zhang, Yinbo; Gu, Jianyou; Suwa, Yoshiaki; Pavlov, Youri I; Tahirov, Tahir H

    2016-05-01

    The human primosome, a 340-kilodalton complex of primase and DNA polymerase α (Polα), synthesizes chimeric RNA-DNA primers to be extended by replicative DNA polymerases δ and ϵ. The intricate mechanism of concerted primer synthesis by two catalytic centers was an enigma for over three decades. Here we report the crystal structures of two key complexes, the human primosome and the C-terminal domain of the primase large subunit (p58C) with bound DNA/RNA duplex. These structures, along with analysis of primase/polymerase activities, provide a plausible mechanism for all transactions of the primosome including initiation, elongation, accurate counting of RNA primer length, primer transfer to Polα, and concerted autoregulation of alternate activation/inhibition of the catalytic centers. Our findings reveal a central role of p58C in the coordinated actions of two catalytic domains in the primosome and ultimately could impact the design of anticancer drugs. PMID:26975377

  12. Regulation of chloroplast number and DNA synthesis in higher plants. Final report

    SciTech Connect

    Mullet, J.E.

    1995-11-10

    The long term objective of this research is to understand the process of chloroplast development and its coordination with leaf development in higher plants. This is important because the photosynthetic capacity of plants is directly related to leaf and chloroplast development. This research focuses on obtaining a detailed description of leaf development and the early steps in chloroplast development including activation of plastid DNA synthesis, changes in plastid DNA copy number, activation of chloroplast transcription and increases in plastid number per cell. The grant will also begin analysis of specific biochemical mechanisms by isolation of the plastid DNA polymerase, and identification of genetic mutants which are altered in their accumulation of plastid DNA and plastid number per cell.

  13. Regulation of chloroplast number and DNA synthesis in higher plants. Final report

    SciTech Connect

    Mullet, J.E.

    1995-11-10

    The long term objective of this research is to understand the process of chloroplast development and its coordination with leaf development in higher plants. This is important because the photosynthetic capacity of plants is directly related to leaf and chloroplast development. This research focuses on obtaining a detailing description of leaf development and the early steps in chloroplast development including activation of plastid DNA synthesis, changes in plastid DNA copy number, activation of chloroplast transcription and increases in plastid number per cell. The grant will also begin analysis of specific biochemical mechanisms by isolation of the plastid DNA polymerase, and identification of genetic mutants which are altered in their accumulation of plastid DNA and plastid number per cell.

  14. DNA (deoxyribonucleic acid) synthesis following microinjection of heterologous sperm and somatic cell nuclei into hamster oocytes

    SciTech Connect

    Naish, S.J.; Perreault, S.D.; Zirkin, B.R.

    1987-01-01

    The authors investigated the ability of the hamster oocyte to initiate DNA synthesis in nuclei differing in basic protein content. DNA synthesis was studied by autoradiography in oocytes that had been incubated in /sup 3/H-thymidine after being parthenogenetically activated by sham microinjection, or microinjected with hamster, mouse, rabbit, or fish sperm nuclei, or hamster hepatocyte nuclei. Within 6 hr of sham or nucleus microinjection, nuclei of each type underwent transformation into pronuclei and synthesized DNA. These results demonstrated that the hamster egg can access and utilize its own and each type of template provided, whether homologous or heterologous. However, pronuclei derived from hamster sperm nuclei were more likely to be synthesizing DNA at 6 hr than pronuclei derived from sperm nuclei of other species. The authors conclude that the mechanisms employed by the hamster oocyte to transform hamster sperm nuclei into pronuclei and to effect DNA synthesis in these nuclei are not specific for the hamster sperm nucleus. Nevertheless, these mechanisms apparently operate more efficiently when the hamster sperm nucleus, rather than a heterologous sperm nucleus, is present.

  15. Synthesis, spectroscopic characterization and DNA nuclease activity of Cu(II) complexes derived from pyrazolone based NSO-donor Schiff base ligands

    NASA Astrophysics Data System (ADS)

    Vyas, Komal M.; Joshi, Rushikesh G.; Jadeja, R. N.; Ratna Prabha, C.; Gupta, Vivek K.

    2011-12-01

    Two neutral mononuclear Cu(II) complexes have been prepared in EtOH using Schiff bases derived from 4-toluoyl pyrazolone and thiosemicarbazide. Both the ligands have been characterized on the basis of elemental analysis, IR, 1H NMR, 13C NMR and mass spectral data. The molecular geometry of one of these ligands has been determined by single crystal X-ray study. It reveals that these ligands exist in amine-one tautomeric form in the solid state. Microanalytical data, Cu-estimation, molar conductivity, magnetic measurements, IR, UV-Visible, FAB-Mass, TG-DTA data and ESR spectral studies were used to confirm the structures of the complexes. Electronic absorption and IR spectra of the complexes suggest a square-planar geometry around the central metal ion. The interaction of complexes with pET30a plasmid DNA was investigated by spectroscopic measurements. Results suggest that the copper complexes bind to DNA via an intercalative mode and can quench the fluorescence intensity of EB bound to DNA. The interaction between the complexes and DNA has also been investigated by agarose gel electrophoresis, interestingly, we found that the copper(II) complexes can cleave circular plasmid DNA to nicked and linear forms.

  16. 5,5-Diphenyl-2-thiohydantoin-N10 (DPTH-N10) suppresses proliferation of cultured colon cancer cell line COLO-205 by inhibiting DNA synthesis and activating apoptosis.

    PubMed

    Lee, Tong-Sheng; Chen, Li-Ching; Liu, Yuan; Wu, Jender; Liang, Yu-Chih; Lee, Wen-Sen

    2010-07-01

    The aim of this study was to investigate the potential applications of 5,5-diphenyl-2-thiohydantoin-N10 (DPTH-N10) in the treatment of human colon cancer. Subcultured human colon cancer cell line, COLO-205, was used for examining the antiproliferation effect of DPTH-N10 on colon cancer. Thymidine incorporation and cell count were conducted to examine the antiproliferation effect of DPTH-N10. Western blot analysis was performed to examine the protein levels of cell cycle-related proteins. DNA fragmentation assay was performed to examine the occurrence of apoptosis. DPTH-N10 at a range of concentrations (0-30 microM) inhibits the proliferation but did not cause the cell death of COLO-205, indicating that it may have an inhibitory effect on the cell proliferation in COLO-205. The apoptosis was observed in COLO-205 when the DPTH-N10 concentrations were higher than 30 muM. Western blot analysis showed that the protein level of the cell cycle inhibitory protein, p21, in COLO-205 increased after DPTH-N10 treatment. Immunoprecipitation showed that the formation of the cyclin-dependent kinase (CDK)2-p21 complex was increased in the DPTH-N10-treated COLO-205. Kinase assay further demonstrated that the CDK2 activity was decreased in the DPTH-N10-treated COLO-205. DPTH-N10 caused growth inhibition in COLO-205 by inhibiting DNA synthesis and activating apoptosis. The findings from our previous in vitro studies in DPTH-N10-induced anti-angiogenic effect and from the present in vitro studies in DPTH-N10-induced antiproliferation effect on colon cancer cell line strongly suggest the potential applications of DPTH-N10 in the treatment of human colon cancer. PMID:20449574

  17. Synthesis, biological activity, DNA binding and anion sensors, molecular structure and quantum chemical studies of a novel bidentate Schiff base derived from 3,5-bis(triflouromethyl)aniline and salicylaldehyde

    NASA Astrophysics Data System (ADS)

    Yıldız, Mustafa; Karpuz, Özge; Zeyrek, Celal Tuğrul; Boyacıoğlu, Bahadır; Dal, Hakan; Demir, Neslihan; Yıldırım, Nuray; Ünver, Hüseyin

    2015-08-01

    Synthesis, biological activity, spectroscopic and crystallographic characterization and density functional theory (DFT) studies of the Schiff base 3,5-bis(triflouromethyl)aniline and salicylaldehyde are reported. It crystallizes as a monoclinic space group P21/c with a = 7.7814(3) Å, b = 26.8674(9) Å, c = 7.4520(2) Å, V = 1379.98(8), Z = 4, Dc = 1.6038 g cm-3, and μ = 0.156 mm-1. The molecular structure obtained from X-ray single-crystal analysis of the investigated compound in the ground state was compared using Hartree-Fock (HF) and density functional theory (DFT) with the functionals B3LYP and B1B95 using the 6-311++G(d,p) basis set. The antimicrobial activities of the compound were investigated for its minimum inhibitory concentration (MIC). The interaction of the Schiff base with calf thymus DNA was investigated using UV-visible spectra. The colorimetric response of the Schiff base receptors in DMSO was investigated before and after the addition of an equivalent amount of each anion to evaluate the anion recognition properties.

  18. Structural specificity of steroids in stimulating DNA synthesis and protooncogene expression in primary rat hepatocyte cultures.

    PubMed

    Lee, C H; Edwards, A M

    2002-05-01

    Among the chemical compounds of varied structure which possess liver tumour-promoting are steroids, such as estrogens, pregnenolone derivatives and anabolic steroids. Although the mechanism(s) of tumour promotion in liver by these xenobiotics is not well understood, it is clear that growth stimulation is one important element in their action. As a basis for better defining whether steroids stimulate growth by a common mechanism or fall into sub-groups with differing actions, the effects of 46 steroids on DNA synthesis and the expression of protooncogenes c-fos and c-myc were examined in primary cultures of normal rat hepatocytes. Tentative groupings of steroids have been identified based on apparent structural requirements for stimulation of DNA synthesis, and effects of auxiliary factors in modulating this growth stimulus. For a "progestin" group, insulin appeared to be permissive for stimulation of DNA synthesis, and presence of an ester or hydroxyl group at 17alpha-position in combination with a non-polar group at C(6) appeared to be required for stimulation. For the pregnenes, dexamethasone was stimulatory. Structural requirements include a non-polar substitution at 16alpha-position and presence of a 6alpha-methyl group. Androgens were weak or ineffective stimulators of DNA synthesis. Anabolic steroids were weak to strong stimulators and alteration to A ring structure in combination with non-polar substitution at 17alpha-position appeared to be required for the activity. With the exception of the anabolic steroid, dianabol, there do not appear to be strong correlation between ability to stimulate DNA synthesis and ability to induce protooncogene expression among the steroids. This study provides a starting point for future more detailed examination of growth-stimulatory mechanism(s) of action of steroids in the liver. PMID:12127039

  19. Pif1 helicase and Polδ promote recombination-coupled DNA synthesis via bubble migration

    PubMed Central

    Wilson, Marenda A.; Kwon, YoungHo; Xu, Yuanyuan; Chung, Woo-Hyun; Chi, Peter; Niu, Hengyao; Mayle, Ryan; Chen, Xuefeng; Malkova, Anna; Sung, Patrick; Ira, Grzegorz

    2013-01-01

    During DNA repair by homologous recombination (HR), DNA synthesis copies information from a template DNA molecule. Multiple DNA polymerases have been implicated in repair-specific DNA synthesis1–3, but it has remained unclear whether a DNA helicase is involved in this reaction. A good candidate is Pif1, an evolutionarily conserved helicase in S. cerevisiae important for break-induced replication (BIR)4 as well as HR-dependent telomere maintenance in the absence of telomerase5 found in 10–15% of all cancers6. Pif1 plays a role in DNA synthesis across hard-to-replicate sites7, 8 and in lagging strand synthesis with Polδ9–11. Here we provide evidence that Pif1 stimulates DNA synthesis during BIR and crossover recombination. The initial steps of BIR occur normally in Pif1-deficient cells, but Polδ recruitment and DNA synthesis are decreased, resulting in premature resolution of DNA intermediates into half crossovers. Purified Pif1 protein strongly stimulates Polδ-mediated DNA synthesis from a D-loop made by the Rad51 recombinase. Importantly, Pif1 liberates the newly synthesized strand to prevent the accumulation of topological constraint and to facilitate extensive DNA synthesis via the establishment of a migrating D-loop structure. Our results uncover a novel function of Pif1 and provide insights into the mechanism of HR. PMID:24025768

  20. The adenovirus E1A protein overrides the requirement for cellular ras in initiating DNA synthesis.

    PubMed Central

    Stacey, D W; Dobrowolski, S F; Piotrkowski, A; Harter, M L

    1994-01-01

    The adenovirus E1A protein can induce cellular DNA synthesis in growth-arrested cells by interacting with the cellular protein p300 or pRb. In addition, serum- and growth factor-dependent cells require ras activity to initiate DNA synthesis and recently we have shown that Balb/c 3T3 cells can be blocked in either early or late G1 following microinjection of an anti-ras antibody. In this study, the E1A 243 amino acid protein is shown through microinjection not only to shorten the G0 to S phase interval but, what is more important, to override the inhibitory effects exerted by the anti-ras antibody in either early or late G1. Specifically, whether E1A is co-injected with anti-ras into quiescent cells or injected 18 h following a separate injection of anti-ras after serum stimulation, it efficiently induces cellular DNA synthesis in cells that would otherwise be blocked in G0/G1. Moreover, injection of a mutant form of E1A that can no longer associate with p300 is just as efficient as wild-type E1A in stimulating DNA synthesis in cells whose ras activity has been neutralized by anti-ras. The results presented here show that E1A is capable of overriding the requirement of cellular ras activity in promoting the entry of cells into S phase. Moreover, the results suggest the possibility that pRb and/or pRb-related proteins may function in a ras-dependent pathway that enables E1A to achieve this activity. Images PMID:7813447

  1. Active, motor-driven mechanics in a DNA gel

    PubMed Central

    Bertrand, Olivier J. N.; Fygenson, Deborah Kuchnir; Saleh, Omar A.

    2012-01-01

    Cells are capable of a variety of dramatic stimuli-responsive mechanical behaviors. These capabilities are enabled by the pervading cytoskeletal network, an active gel composed of structural filaments (e.g., actin) that are acted upon by motor proteins (e.g., myosin). Here, we describe the synthesis and characterization of an active gel using noncytoskeletal components. We use methods of base-pair-templated DNA self assembly to create a hybrid DNA gel containing stiff tubes and flexible linkers. We then activate the gel by adding the motor FtsK50C, a construct derived from the bacterial protein FtsK that, in vitro, has a strong and processive DNA contraction activity. The motors stiffen the gel and create stochastic contractile events that affect the positions of attached beads. We quantify the fluctuations of the beads and show that they are comparable both to measurements of cytoskeletal systems and to theoretical predictions for active gels. Thus, we present a DNA-based active gel whose behavior highlights the universal aspects of nonequilibrium, motor-driven networks. PMID:23045635

  2. Computational method and system for modeling, analyzing, and optimizing DNA amplification and synthesis

    DOEpatents

    Vandersall, Jennifer A.; Gardner, Shea N.; Clague, David S.

    2010-05-04

    A computational method and computer-based system of modeling DNA synthesis for the design and interpretation of PCR amplification, parallel DNA synthesis, and microarray chip analysis. The method and system include modules that address the bioinformatics, kinetics, and thermodynamics of DNA amplification and synthesis. Specifically, the steps of DNA selection, as well as the kinetics and thermodynamics of DNA hybridization and extensions, are addressed, which enable the optimization of the processing and the prediction of the products as a function of DNA sequence, mixing protocol, time, temperature and concentration of species.

  3. Synthesis and Structure of a New Copper(II) Coordination Polymer Alternately Bridged by Oxamido and Carboxylate Groups: Evaluation of DNA/BSA Binding and Cytotoxic Activities.

    PubMed

    Jin, Xiao-Ting; Zheng, Kang; Li, Yan-Tuan; Wu, Zhi-Yong; Yan, Cui-Wei

    2015-08-01

    A new one-dimensional (1D) copper(II) coordination polymer {[Cu2 (dmaepox)(dabt)](NO3) · 0.5 H2 O}n , where H3 dmaepox and dabt denote N-benzoato-N'-(3-methylaminopropyl)oxamide and 2,2'-diamino-4,4'-bithiazole, respectively, was synthesized and characterized by single-crystal X-ray diffraction and other methods. The crystal structure analysis revealed that the two copper(II) ions are bridged alternately by cis-oxamido and carboxylato groups to form a 1-D coordination polymer with the corresponding Cu · · · Cu separations of 5.1946(19) and 5.038(2) Å. There is a three-dimensional supramolecular structure constructed by hydrogen bonding and π-π stacking interactions in the crystal. The reactivity towards herring sperm DNA (HS-DNA) and bovine serum albumin (BSA) indicated that the copper(II) polymer can interact with the DNA in the mode of intercalation, and bind to BSA responsible for quenching of tryptophan fluorescence by the static quenching mechanism. The in vitro cytotoxicity suggested that the copper(II) polymer exhibits cytotoxic effects against the selected tumor cell lines. PMID:25940657

  4. Synthesis and antimicrobial activity of squalamine analogue.

    PubMed

    Kim, H S; Choi, B S; Kwon, K C; Lee, S O; Kwak, H J; Lee, C H

    2000-08-01

    Synthesis and antimicrobial activity of squalamine analogue 2 are reported. The synthesis of 2 was accomplished from bisnoralcohol 3. The spermidine moiety was introduced via reductive amination of an appropriately functionalized 3beta-aminosterol with spermidinyl aldehyde 17 utilizing sodium triacetoxyborohydride as the reducing agent. Compound 2 shows weaker antimicrobial activity than squalamine. PMID:11003150

  5. A new paradigm of DNA synthesis: three-metal-ion catalysis.

    PubMed

    Yang, Wei; Weng, Peter J; Gao, Yang

    2016-01-01

    Enzyme catalysis has been studied for over a century. How it actually occurs has not been visualized until recently. By combining in crystallo reaction and X-ray diffraction analysis of reaction intermediates, we have obtained unprecedented atomic details of the DNA synthesis process. Contrary to the established theory that enzyme-substrate complexes and transition states have identical atomic composition and catalysis occurs by the two-metal-ion mechanism, we have discovered that an additional divalent cation has to be captured en route to product formation. Unlike the canonical two metal ions, which are coordinated by DNA polymerases, this third metal ion is free of enzyme coordination. Its location between the α- and β-phosphates of dNTP suggests that the third metal ion may drive the phosphoryltransfer from the leaving group opposite to the 3'-OH nucleophile. Experimental data indicate that binding of the third metal ion may be the rate-limiting step in DNA synthesis and the free energy associated with the metal-ion binding can overcome the activation barrier to the DNA synthesis reaction. PMID:27602203

  6. Srs2 mediates PCNA-SUMO-dependent inhibition of DNA repair synthesis

    PubMed Central

    Burkovics, Peter; Sebesta, Marek; Sisakova, Alexandra; Plault, Nicolas; Szukacsov, Valeria; Robert, Thomas; Pinter, Lajos; Marini, Victoria; Kolesar, Peter; Haracska, Lajos; Gangloff, Serge; Krejci, Lumir

    2013-01-01

    Completion of DNA replication needs to be ensured even when challenged with fork progression problems or DNA damage. PCNA and its modifications constitute a molecular switch to control distinct repair pathways. In yeast, SUMOylated PCNA (S-PCNA) recruits Srs2 to sites of replication where Srs2 can disrupt Rad51 filaments and prevent homologous recombination (HR). We report here an unexpected additional mechanism by which S-PCNA and Srs2 block the synthesis-dependent extension of a recombination intermediate, thus limiting its potentially hazardous resolution in association with a cross-over. This new Srs2 activity requires the SUMO interaction motif at its C-terminus, but neither its translocase activity nor its interaction with Rad51. Srs2 binding to S-PCNA dissociates Polδ and Polη from the repair synthesis machinery, thus revealing a novel regulatory mechanism controlling spontaneous genome rearrangements. Our results suggest that cycling cells use the Siz1-dependent SUMOylation of PCNA to limit the extension of repair synthesis during template switch or HR and attenuate reciprocal DNA strand exchanges to maintain genome stability. PMID:23395907

  7. Srs2 mediates PCNA-SUMO-dependent inhibition of DNA repair synthesis.

    PubMed

    Burkovics, Peter; Sebesta, Marek; Sisakova, Alexandra; Plault, Nicolas; Szukacsov, Valeria; Robert, Thomas; Pinter, Lajos; Marini, Victoria; Kolesar, Peter; Haracska, Lajos; Gangloff, Serge; Krejci, Lumir

    2013-03-01

    Completion of DNA replication needs to be ensured even when challenged with fork progression problems or DNA damage. PCNA and its modifications constitute a molecular switch to control distinct repair pathways. In yeast, SUMOylated PCNA (S-PCNA) recruits Srs2 to sites of replication where Srs2 can disrupt Rad51 filaments and prevent homologous recombination (HR). We report here an unexpected additional mechanism by which S-PCNA and Srs2 block the synthesis-dependent extension of a recombination intermediate, thus limiting its potentially hazardous resolution in association with a cross-over. This new Srs2 activity requires the SUMO interaction motif at its C-terminus, but neither its translocase activity nor its interaction with Rad51. Srs2 binding to S-PCNA dissociates Polδ and Polη from the repair synthesis machinery, thus revealing a novel regulatory mechanism controlling spontaneous genome rearrangements. Our results suggest that cycling cells use the Siz1-dependent SUMOylation of PCNA to limit the extension of repair synthesis during template switch or HR and attenuate reciprocal DNA strand exchanges to maintain genome stability. PMID:23395907

  8. Chromium reduces the in vitro activity and fidelity of DNA replication mediated by the human cell DNA synthesome

    SciTech Connect

    Dai Heqiao; Liu Jianying; Malkas, Linda H.; Catalano, Jennifer; Alagharu, Srilakshmi

    2009-04-15

    Hexavalent chromium Cr(VI) is known to be a carcinogenic metal ion, with a complicated mechanism of action. It can be found within our environment in soil and water contaminated by manufacturing processes. Cr(VI) ion is readily taken up by cells, and is recognized to be both genotoxic and cytotoxic; following its reduction to the stable trivalent form of the ion, chromium(Cr(III)), within cells. This form of the ion is known to impede the activity of cellular DNA polymerase and polymerase-mediated DNA replication. Here, we report the effects of chromium on the activity and fidelity of the DNA replication process mediated by the human cell DNA synthesome. The DNA synthesome is a functional multiprotein complex that is fully competent to carry-out each phase of the DNA replication process. The IC{sub 50} of Cr(III) toward the activity of DNA synthesome-associated DNA polymerases {alpha}, {delta} and {epsilon} is 15, 45 and 125 {mu}M, respectively. Cr(III) inhibits synthesome-mediated DNA synthesis (IC{sub 50} = 88 {mu}M), and significantly reduces the fidelity of synthesome-mediated DNA replication. The mutation frequency induced by the different concentrations of Cr(III) ion used in our assays ranges from 2-13 fold higher than that which occurs spontaneously, and the types of mutations include single nucleotide substitutions, insertions, and deletions. Single nucleotide substitutions are the predominant type of mutation, and they occur primarily at GC base-pairs. Cr(III) ion produces a lower number of transition and a higher number of transversion mutations than occur spontaneously. Unlike Cr(III), Cr(VI) ion has little effect on the in vitro DNA synthetic activity and fidelity of the DNA synthesome, but does significantly inhibit DNA synthesis in intact cells. Cell growth and proliferation is also arrested by increasing concentrations of Cr(VI) ion. Our studies provide evidence indicating that the chromium ion induced decrease in the fidelity and activity of

  9. Design and synthesis of efficient fluorescent dyes for incorporation into DNA backbone and biomolecule detection.

    PubMed

    Wang, Wei; Li, Alexander D Q

    2007-01-01

    We report here the design and synthesis of a series of pi-conjugated fluorescent dyes with D-A-D (D, donor; A, acceptor), D-pi-D, A-pi-A, and D-pi-A for applications as the signaling motif in biological-synthetic hybrid foldamers for DNA detection. The Horner-Wadsworth-Emmons (HWE) reaction and Knoevenagel condensation were demonstrated as the optimum ways for construction of long pi-conjugated systems. Such rodlike chromophores have distinct advantages, as their fluorescence properties are not quenched by the presence of DNA. To be incorporated into the backbone of DNA, the chromophores need to be reasonably soluble in organic solvent for solid-phase synthesis, and therefore a strategy of using flexible tetraethylene glycol (TEG) linkers at either end of these rodlike dyes was developed. The presence of TEG facilitates the protection of the chain-growing hydroxyl group with DMTrCl (dimethoxytrityl chloride) as well as the activation of the coupling step with phosphoramidite chemistry on an automated DNA synthesizer. To form fluorescence resonance energy transfer (FRET) pairs, six synthetic chromophores with blue to red fluorescence have been developed, and those with orthogonal fluorescent emission were chosen for incorporation into DNA-chromophore hybrid foldamers. PMID:17508711

  10. Nuclease activity of Saccharomyces cerevisiae Dna2 inhibits its potent DNA helicase activity

    PubMed Central

    Levikova, Maryna; Klaue, Daniel; Seidel, Ralf; Cejka, Petr

    2013-01-01

    Dna2 is a nuclease-helicase involved in several key pathways of eukaryotic DNA metabolism. The potent nuclease activity of Saccharomyces cerevisiae Dna2 was reported to be required for all its in vivo functions tested to date. In contrast, its helicase activity was shown to be weak, and its inactivation affected only a subset of Dna2 functions. We describe here a complex interplay of the two enzymatic activities. We show that the nuclease of Dna2 inhibits its helicase by cleaving 5′ flaps that are required by the helicase domain for loading onto its substrate. Mutational inactivation of Dna2 nuclease unleashes unexpectedly vigorous DNA unwinding activity, comparable with that of the most potent eukaryotic helicases. Thus, the ssDNA-specific nuclease activity of Dna2 limits and controls the enzyme's capacity to unwind dsDNA. We postulate that regulation of this interplay could modulate the biochemical properties of Dna2 and thus license it to carry out its distinct cellular functions. PMID:23671118

  11. Synthesis, photochemical properties and DNA binding studies of dna cleaving agents based on chiral dipyridine dihydrodioxins salts

    NASA Astrophysics Data System (ADS)

    Shamaev, Alexei

    activated by UV-light. The mechanism of o-quinone release and intramolecular ET was studied in detail by methods of Ultrafast Transient Absortion Spectroscopy and supported by high-level quantum mechanical calculations. The binding properties of chiral intercalators based on PDHD to various DNA oligonucleotides were studied by various methods and DNA cleavage properties indicating strong binding and cleaving ability of the synthesized PDHDs. Also, a new method for synthesis of cyclohexa[e]pyrenes which possibly capable of intramolecular ET and electron transfer-oxidative stress (ET-OS) DNA cleavage was developed and partially accomplished.

  12. Synthesis of Mitochondrial DNA Precursors during Myogenesis, an Analysis in Purified C2C12 Myotubes*

    PubMed Central

    Frangini, Miriam; Franzolin, Elisa; Chemello, Francesco; Laveder, Paolo; Romualdi, Chiara; Bianchi, Vera; Rampazzo, Chiara

    2013-01-01

    During myogenesis, myoblasts fuse into multinucleated myotubes that acquire the contractile fibrils and accessory structures typical of striated skeletal muscle fibers. To support the high energy requirements of muscle contraction, myogenesis entails an increase in mitochondrial (mt) mass with stimulation of mtDNA synthesis and consumption of DNA precursors (dNTPs). Myotubes are quiescent cells and as such down-regulate dNTP production despite a high demand for dNTPs. Although myogenesis has been studied extensively, changes in dNTP metabolism have not been examined specifically. In differentiating cultures of C2C12 myoblasts and purified myotubes, we analyzed expression and activities of enzymes of dNTP biosynthesis, dNTP pools, and the expansion of mtDNA. Myotubes exibited pronounced post-mitotic modifications of dNTP synthesis with a particularly marked down-regulation of de novo thymidylate synthesis. Expression profiling revealed the same pattern of enzyme down-regulation in adult murine muscles. The mtDNA increased steadily after myoblast fusion, turning over rapidly, as revealed after treatment with ethidium bromide. We individually down-regulated p53R2 ribonucleotide reductase, thymidine kinase 2, and deoxyguanosine kinase by siRNA transfection to examine how a further reduction of these synthetic enzymes impacted myotube development. Silencing of p53R2 had little effect, but silencing of either mt kinase caused 50% mtDNA depletion and an unexpected decrease of all four dNTP pools independently of the kinase specificity. We suggest that during development of myotubes the shortage of even a single dNTP may affect all four pools through dysregulation of ribonucleotide reduction and/or dissipation of the non-limiting dNTPs during unproductive elongation of new DNA chains. PMID:23297407

  13. Replication Protein A: Single-stranded DNA's first responder : Dynamic DNA-interactions allow Replication Protein A to direct single-strand DNA intermediates into different pathways for synthesis or repair

    PubMed Central

    Chen, Ran; Wold, Marc S.

    2015-01-01

    Summary Replication Protein A (RPA), the major single-stranded DNA-binding protein in eukaryotic cells, is required for processing of single-stranded DNA (ssDNA) intermediates found in replication, repair and recombination. Recent studies have shown that RPA binding to ssDNA is highly dynamic and that more than high-affinity binding is needed for function. Analysis of DNA binding mutants identified forms of RPA with reduced affinity for ssDNA that are fully active, and other mutants with higher affinity that are inactive. Single molecule studies showed that while RPA binds ssDNA with high affinity, the RPA complex can rapidly diffuse along ssDNA and be displaced by other proteins that act on ssDNA. Finally, dynamic DNA binding allows RPA to prevent error-prone repair of double-stranded breaks and promote error-free repair. Together, these findings suggest a new paradigm where RPA acts as a first responder at sites with ssDNA, thereby actively coordinating DNA repair and DNA synthesis. PMID:25171654

  14. Centrosomal Localization of Cyclin E-Cdk2 is Required for Initiation of DNA Synthesis

    PubMed Central

    Ferguson, Rebecca L.; Maller, James L.

    2010-01-01

    Summary Cyclin E-Cdk2 is known to regulate both DNA replication and centrosome duplication during the G1-S transition in the cell cycle [1–4], and disruption of centrosomes results in a G1 arrest in some cell types [5–7]. Localization of cyclin E on centrosomes is mediated by a 20 amino acid domain termed the centrosomal localization sequence (CLS), and expression of the GFP-tagged CLS displaces both cyclin E and cyclin A from the centrosome [8]. In asynchronous cells CLS expression inhibits the incorporation of bromodeoxyuridine (BrdU) into DNA, an effect proposed to reflect a G1 arrest. Here we show in synchronized cells that the reduction in BrdU incorporation reflects not a G1 arrest but rather direct inhibition of the initiation of DNA replication in S phase. The loading of essential DNA replication factors such as Cdc45 and PCNA onto chromatin is blocked by CLS expression, but DNA synthesis can be rescued by retargeting active cyclin E-Cdk2 to the centrosome. These results suggest that initial steps of DNA replication require centrosomally localized Cdk activity and link the nuclear cycle with the centrosome cycle at the G1-S transition. PMID:20399658

  15. [The biological effect of Y-family DNA polymerases on the translesion synthesis].

    PubMed

    Gong, Yi; Yang, Jin

    2013-02-01

    A common DNA polymerase can replicate DNA which functions normally. However, if DNA suffers damage, the genome can not be replicated by a common DNA polymerase because DNA lesions will block the replication apparatus. Another kind of DNA polymerases in organism, Y-family DNA polymerases which is also called translesion synthesis (TLS) polymerases, can deal with this problem. Their main functions are bypassing the lesions in DNA, replicating the genome and saving the dying cells. This thesis presents a historical review of the literature pertinent to the structure, functions and roles of Y-family DNA polymerases. PMID:23488167

  16. SYNTHESIS, IN VITRO METABOLISM, MUTAGENICITY, AND DNA-ADDUCTION OF NAPHTHO[1,2-E]PYRENE

    EPA Science Inventory

    SYNTHESIS, IN V1TRO METABOLISM, MUTAGENICITY , AND DNA-ADDUCnON OF NAPHTHO[l ,2-e ]PYRENE

    Literature data, although limited, underscore the contribution of C24HI4 polycyclic aromatic hydrocarbons to the biological activity of the extracts of complex environmental samples....

  17. Activity and Regulation of Archaeal DNA Alkyltransferase

    PubMed Central

    Perugino, Giuseppe; Vettone, Antonella; Illiano, Giuseppina; Valenti, Anna; Ferrara, Maria C.; Rossi, Mosè; Ciaramella, Maria

    2012-01-01

    Agents that form methylation adducts in DNA are highly mutagenic and carcinogenic, and organisms have evolved specialized cellular pathways devoted to their repair, including DNA alkyltransferases. These are proteins conserved in eucarya, bacteria and archaea, acting by a unique reaction mechanism, which leads to direct repair of DNA alkylation damage and irreversible protein alkylation. The alkylated form of DNA alkyltransferases is inactive, and in eukaryotes, it is rapidly directed to degradation. We report here in vitro and in vivo studies on the DNA alkyltransferase from the thermophilic archaeon Sulfolobus solfataricus (SsOGT). The development of a novel, simple, and sensitive fluorescence-based assay allowed a careful characterization of the SsOGT biochemical and DNA binding activities. In addition, transcriptional and post-translational regulation of SsOGT by DNA damage was studied. We show that although the gene transcription is induced by alkylating agent treatment, the protein is degraded in vivo by an alkylation-dependent mechanism. These experiments suggest a striking conservation, from archaea to humans, of this important pathway safeguarding genome stability. PMID:22167184

  18. Synthesis of type 2 Adenovirus DNA in the Presence of Cycloheximide

    PubMed Central

    Horwitz, Marshall S.; Brayton, Carol; Baum, Stephen G.

    1973-01-01

    Adenovirus type 2 DNA synthesis, either in permissive human cells or nonpermissive monkey cells, becomes independent of protein synthesis after the appearance of progeny viral DNA. In the presence of cycloheximide, semiconservative replication and initiation of progeny molecules can occur. PMID:4349494

  19. Non-transcriptional action of oestradiol and progestin triggers DNA synthesis.

    PubMed Central

    Castoria, G; Barone, M V; Di Domenico, M; Bilancio, A; Ametrano, D; Migliaccio, A; Auricchio, F

    1999-01-01

    The recent findings that oestradiol and progestins activate the Src/Ras/Erks signalling pathway raise the question of the role of this stimulation. Microinjection experiments of human mammary cancer-derived cells (MCF-7 and T47D) with cDNA of catalytically inactive Src or anti-Ras antibody prove that Src and Ras are required for oestradiol and progestin-dependent progression of cells through the cell cycle. The antitumoral ansamycin antibiotic, geldanamycin, disrupts the steroid-induced Ras-Raf-1 association and prevents Raf-1 activation and steroid-induced DNA synthesis. Furthermore, the selective MEK 1 inhibitor, PD 98059, inhibits oestradiol and progestin stimulation of Erk-2 and the steroid-dependent S-phase entry. The MDA-MB231 cells, which do not express oestradiol receptor, fail to respond to oestradiol in terms of Erk-2 activation and S-phase entry. Fibroblasts are made equally oestradiol-responsive in terms of DNA synthesis by transient transfection with either the wild-type or the transcriptionally inactive mutant oestradiol receptor (HE241G). Co-transfection of catalytically inactive Src as well as treatment with PD98059 inhibit the oestradiol-dependent S-phase entry of fibroblasts expressing either the wild-type oestrogen receptor or its transcriptionally inactive mutant. The data presented support the view that non-transcriptional action of the two steroids plays a major role in cell cycle progression. PMID:10228164

  20. ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells.

    PubMed

    Lewis, Samantha C; Uchiyama, Lauren F; Nunnari, Jodi

    2016-07-15

    Mitochondrial DNA (mtDNA) encodes RNAs and proteins critical for cell function. In human cells, hundreds to thousands of mtDNA copies are replicated asynchronously, packaged into protein-DNA nucleoids, and distributed within a dynamic mitochondrial network. The mechanisms that govern how nucleoids are chosen for replication and distribution are not understood. Mitochondrial distribution depends on division, which occurs at endoplasmic reticulum (ER)-mitochondria contact sites. These sites were spatially linked to a subset of nucleoids selectively marked by mtDNA polymerase and engaged in mtDNA synthesis--events that occurred upstream of mitochondrial constriction and division machine assembly. Our data suggest that ER tubules proximal to nucleoids are necessary but not sufficient for mtDNA synthesis. Thus, ER-mitochondria contacts coordinate licensing of mtDNA synthesis with division to distribute newly replicated nucleoids to daughter mitochondria. PMID:27418514

  1. A Transcriptional Repressor ZBTB1 Promotes Chromatin Remodeling and Translesion DNA Synthesis

    PubMed Central

    Kim, Hyungjin; Dejsuphong, Donniphat; Adelmant, Guillaume; Ceccaldi, Raphael; Yang, Kailin; Marto, Jarrod A.; D’Andrea, Alan D.

    2014-01-01

    SUMMARY Timely DNA replication across damaged DNA is critical for maintaining genomic integrity. Translesion DNA synthesis (TLS) allows bypass of DNA lesions using error-prone TLS polymerases. The E3 ligase RAD18 is necessary for PCNA monoubiquitination and TLS polymerase recruitment; however, the regulatory steps upstream of RAD18 activation are less understood. Here, we show that the UBZ4 domain-containing transcriptional repressor ZBTB1 is a critical upstream regulator of TLS. The UBZ4 motif is required for PCNA monoubiquitination and survival after UV damage. ZBTB1 associates with KAP-1, a transcriptional repressor whose phosphorylation relaxes chromatin after DNA damage. ZBTB1 depletion impairs formation of phospho-KAP-1 at UV damage sites and reduces RAD18 recruitment. Furthermore, phosphorylation of KAP-1 is necessary for efficient PCNA modification. We propose that ZBTB1 is required for PCNA monoubiquitination, by localizing phospho-KAP-1 to chromatin and enhancing RAD18 accessibility. Collectively, our study implicates a new ubiquitin-binding protein in orchestrating chromatin remodeling during DNA repair. PMID:24657165

  2. Further verification of the isotope dilution approach for estimating the degree of participation of (/sup 3/H)thymidine in DNA synthesis in studies of aquatic bacterial production

    SciTech Connect

    Bell, R.T.

    1986-11-01

    The optimal concentration of (/sup 3/H)thymidine (i.e., the maximal degree of participation in DNA synthesis) as determined by adding increasing amounts of labeled thymidine at the same specific activity was similar to the concentration of thymidine inhibiting the de novo pathway as determined by isotope dilution plots. These experiments provide further verification of the isotope dilution approach for determining the degree of participation of (/sup 3/H)thymidine in DNA synthesis.

  3. Misincorporation during DNA synthesis, analyzed by gel electrophoresis.

    PubMed Central

    Hillebrand, G G; McCluskey, A H; Abbott, K A; Revich, G G; Beattie, K L

    1984-01-01

    A method has been developed for simultaneous comparison of the propensity of a DNA polymerase to misincorporate at different points on a natural template-primer. In this method elongation of a [5'-32P] primer, annealed to a bacteriophage template strand, is carried out in the presence of only three dNTPs (highly purified by HPLC). Under these conditions the rate of primer elongation (monitored by gel electrophoresis/autoradiography) is limited by the rate of misincorporation at template positions complementary to the missing dNTP. Variations in the rate of elongation (revealed by autoradiographic banding patterns) reflect variations in the propensity for misincorporation at different positions along the template. The effect on primer elongation produced by addition of a chemically modified dNTP to 'minus' reactions reveals the mispairing potential of the modified nucleotide during DNA synthesis. By use of this electrophoretic assay of misincorporation we have demonstrated that the fidelity of E. coli DNA polymerase I varies greatly at different positions along a natural template, and that BrdUTP and IodUTP can be incorporated in place of dCTP during chain elongation catalyzed by this enzyme. Images PMID:6326053

  4. Synthesis and photobiological activity of new methylpsoralen derivatives.

    PubMed

    Gia, O; Uriarte, E; Zagotto, G; Baccichetti, F; Antonello, C; Marciani-Magno, S

    1992-06-30

    The synthesis and the photobiological activity of two new derivatives of psoralen (3,4'-dimethylpsoralen and 3,4',8-trimethylpsoralen) has been described. They are congeners of the monofunctional linear furocoumarin 3,4'-dimethyl-8-methoxypsoralen. Both compounds bind very efficiently to DNA, the extent of this process being modulated by the nature of substituents at position 8. The number of photolesions is linearly related to adenine-thymine content of the nucleic acid which indicates lack of specificity for particular sequences of the nucleic acid. The structural arrangement of DNA (single stranded, double stranded, nucleosomes and chromatin) plays an additional role in affecting the photobinding process. Unlike their 8-methoxy congener the new derivatives cross-link DNA to a substantial extent. Their photobiological properties, including erythema formation, reflect very closely those of 8-methoxypsoralen (8-MOP). The conclusion can be drawn that 3,4'-dimethyl-8-MOP represents a unique derivative in its family. PMID:1432387

  5. In vivo measurement of unscheduled DNA synthesis and S-phase synthesis as an indicator of hepatocarcinogenesis in rodents.

    PubMed

    Mirsalis, J C

    1987-06-01

    Measurement of chemically induced DNA repair as unscheduled DNA synthesis in rodent liver following in vivo treatment is a useful screen for potential hepatocarcinogens. In addition to measurement of unscheduled DNA synthesis, examination of S-phase synthesis provides an indicator of chemically induced cell proliferation in the liver, which may be a basis for hepatic tumor promotion. Several chemicals and classes of chemicals have been examined using these end points. The pyrrolizidine alkaloid riddelline is a potent genotoxic agent in vitro, and in vivo studies confirm this response as riddelline induces significant elevations in unscheduled DNA synthesis and S-phase synthesis in rat liver. Conversely, H.C. Blue dyes #1 and #2 are both potent genotoxic agents in vitro but fail to express this genotoxicity in vivo. H.C. Blue #1 induces significant increases in S-phase synthesis in B6C3F1 mouse liver, which correlates with the observed carcinogenicity of this compound. Halogenated hydrocarbons likewise fail to induce unscheduled DNA synthesis in vivo, but many of these compounds do increase hepatic cell proliferation in mice, which may be the principal mechanism of hepatocarcinogenesis in this species. PMID:3507253

  6. Structural basis of high-fidelity DNA synthesis by yeast DNA polymerase [delta

    SciTech Connect

    Swan, Michael K.; Johnson, Robert E.; Prakash, Louise; Prakash, Satya; Aggarwal, Aneel K.

    2009-09-25

    DNA polymerase {delta} (Pol {delta}) is a high-fidelity polymerase that has a central role in replication from yeast to humans. We present the crystal structure of the catalytic subunit of yeast Pol {delta} in ternary complex with a template primer and an incoming nucleotide. The structure, determined at 2.0-{angstrom} resolution, catches the enzyme in the act of replication, revealing how the polymerase and exonuclease domains are juxtaposed relative to each other and how a correct nucleotide is selected and incorporated. The structure also reveals the 'sensing' interactions near the primer terminus, which signal a switch from the polymerizing to the editing mode. Taken together, the structure provides a chemical basis for the bulk of DNA synthesis in eukaryotic cells and a framework for understanding the effects of cancer-causing mutations in Pol {delta}.

  7. Relationship between DNA adduct formation and unscheduled DNA synthesis (UDS) in cultured mouse epidermal keratinocytes

    SciTech Connect

    Gill, R.D.; Nettikumara, A.N.; DiGiovanni, J. ); Butterworth, B.E. )

    1991-01-01

    Primary cultures of mouse epidermal keratinocytes from SENCAR mice were treated with 7,12-dimethylbenz(a)anthracene (DMBA), benzo(a)pyrene (B(a)P), ({plus minus}) 7{beta}-8{alpha}-dihydroxy-9{alpha},10{alpha}-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene (({plus minus}) anti-BPDE), and ({plus minus}) 7{beta},8{alpha}-dihydroxy-9{beta},10{beta}-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene (({plus minus})syn-BPDE) to examine the relationship between DNA adduct formation and the induction of unscheduled DNA synthesis (UDS). DNA adducts were measured as pmol hydrocarbon bound per mg of DNA, and UDS was quantitated autoradiographically as net grains per nucleus. A good correlation was observed between the levels of UDS detected and the amount of DNA adducts present int he cell population when comparing similar compounds within the linear dose-response range of 0.005 {mu}g/ml-0.25 {mu}g/ml. These results suggest that the present UDS assay with MEKs is a useful assay for the rapid screening of potential genotoxic agents. However, the limits of sensitivity are such that the current assay may be unable to detect a low level of DNA damage induced by some weakly genotoxic (carcinogenic) agents. In addition, while the limits of sensitivity determined in these experiments apply to the polycyclic aromatic hydrocarbon class, other classes of genotoxic compounds such as alkylating agents or crosslinking agents may exhibit different thresholds of detection.

  8. Synthesis and self-assembly of DNA-chromophore hybrid amphiphiles.

    PubMed

    Albert, Shine K; Golla, Murali; Thelu, Hari Veera Prasad; Krishnan, Nithiyanandan; Deepak, Perapaka; Varghese, Reji

    2016-08-01

    DNA based spherical nanostructures are one of the promising nanostructures for several biomedical and biotechnological applications due to their excellent biocompatibility and DNA-directed surface addressability. Herein, we report the synthesis and amphiphilicity-driven self-assembly of two classes of DNA (hydrophilic)-chromophore (hydrophobic) hybrid amphiphiles into spherical nanostructures. A solid-phase "click" chemistry based modular approach is demonstrated for the synthesis of DNA-chromophore amphiphiles. Various spectroscopic and microscopic analyses reveal the self-assembly of the amphiphiles into vesicular and micellar assemblies with the corona made of hydrophilic DNA and the hydrophobic chromophoric unit as the core of the spherical nanostructures. PMID:27241196

  9. The structure-based design, synthesis and biological evaluation of DNA-binding bisintercalating bisanthrapyrazole anticancer compounds

    PubMed Central

    Hasinoff, Brian B.; Liang, Hong; Wu, Xing; Guziec, Lynn J.; Guziec, Frank S.; Marshall, Kyle; Yalowich, Jack C.

    2008-01-01

    Anticancer drugs that bind to DNA and inhibit DNA-processing enzymes represent an important class of anticancer drugs. In order to find stronger DNA binding and more potent cytotoxic compounds, a series of ester-coupled bisanthrapyrazole derivatives of 7-chloro-2-[2-[(2-hydroxyethyl)methylamino]ethyl]anthra[1,9-cd]pyrazol-6(2H)-one (AP9) were designed and evaluated by molecular docking techniques. Because the anthrapyrazoles are unable to be reductively activated like doxorubicin and other anthracyclines, they should not be cardiotoxic like the anthracyclines. Based on the docking scores of a series of bisanthrapyrazoles with different numbers of methylene linkers (n) that were docked into an X-ray structure of double-stranded DNA, five bisanthrapyrazoles (n = 1 to 5) were selected for synthesis and physical and biological evaluation. The synthesized compounds were evaluated for DNA binding and bisintercalation by measuring the DNA melting temperature increase, for growth inhibitory effects on the human erythroleukemic K562 cell line, and for DNA topoisomerase IIα-mediated cleavage of DNA and inhibition of DNA topoisomerase IIα decatenation activities. The results suggest that the bisanthrapyrazoles with n = 2 to 5 formed bisintercalation complexes with DNA. In conclusion, a novel group of bisintercalating anthrapyrazole compounds have been designed, synthesized and biologically evaluated as possible anticancer agents. PMID:18258442

  10. DNA-based control of protein activity

    PubMed Central

    Engelen, W.; Janssen, B. M. G.

    2016-01-01

    DNA has emerged as a highly versatile construction material for nanometer-sized structures and sophisticated molecular machines and circuits. The successful application of nucleic acid based systems greatly relies on their ability to autonomously sense and act on their environment. In this feature article, the development of DNA-based strategies to dynamically control protein activity via oligonucleotide triggers is discussed. Depending on the desired application, protein activity can be controlled by directly conjugating them to an oligonucleotide handle, or expressing them as a fusion protein with DNA binding motifs. To control proteins without modifying them chemically or genetically, multivalent ligands and aptamers that reversibly inhibit their function provide valuable tools to regulate proteins in a noncovalent manner. The goal of this feature article is to give an overview of strategies developed to control protein activity via oligonucleotide-based triggers, as well as hurdles yet to be taken to obtain fully autonomous systems that interrogate, process and act on their environments by means of DNA-based protein control. PMID:26812623

  11. DNA-based control of protein activity.

    PubMed

    Engelen, W; Janssen, B M G; Merkx, M

    2016-03-01

    DNA has emerged as a highly versatile construction material for nanometer-sized structures and sophisticated molecular machines and circuits. The successful application of nucleic acid based systems greatly relies on their ability to autonomously sense and act on their environment. In this feature article, the development of DNA-based strategies to dynamically control protein activity via oligonucleotide triggers is discussed. Depending on the desired application, protein activity can be controlled by directly conjugating them to an oligonucleotide handle, or expressing them as a fusion protein with DNA binding motifs. To control proteins without modifying them chemically or genetically, multivalent ligands and aptamers that reversibly inhibit their function provide valuable tools to regulate proteins in a noncovalent manner. The goal of this feature article is to give an overview of strategies developed to control protein activity via oligonucleotide-based triggers, as well as hurdles yet to be taken to obtain fully autonomous systems that interrogate, process and act on their environments by means of DNA-based protein control. PMID:26812623

  12. Microinjection of fos-specific antibodies blocks DNA synthesis in fibroblast cells

    SciTech Connect

    Riabowol, K.T.; Vosatka, R.J.; Ziff, E.B.; Lamb, N.J.; Feramisco, J.R.

    1988-04-01

    Transcription of the protooncogene c-fos is increased >10-fold within minutes of treatment of fibroblasts with serum or purified growth factors. Recent experiments with mouse 3T3 cell lines containing inducible fos antisense RNA constructs have shown that induced fos antisense RNA transcripts cause either a marked inhibition of growth in continuously proliferating cells or, conversely, a minimal effect except during the transition from a quiescent (G/sub o/) state into the cell cycle. Since intracellular production of large amounts of antisense RNA does not completely block gene expression, the authors microinjected affinity-purified antibodies raised against fos to determine whether and when during the cell cycle c-fos expression was required for cell proliferation. Using this independent method, they found that microinjected fos antibodies efficiently blocked serum-stimulated DNA synthesis when injected up to 6 to 8 h after serum stimulation of quiescent REF-52 fibroblasts. Furthermore, when fos antibodies were injected into asynchronously growing cells, a consistently greater number of cells was prevented from synthesizing DNA than when cells were injected with nonspecific immunoglobulins. Thus, whereas the activity of c-fos may be necessary for transition of fibroblasts from G/sub o/ to G/sub 1/ of the cell cycle, its function is also required during the early G/sub 1/ portion of the cell cycle to allow subsequent DNA synthesis.

  13. Xanthane sesquiterpenoids: structure, synthesis and biological activity.

    PubMed

    Vasas, Andrea; Hohmann, Judit

    2011-04-01

    The aim of this review is to survey the naturally occurring xanthanes and xanthanolides, their structures, biological activities, structure–activity relationships and synthesis. There has been no comprehensive review of this topic previously. On the basis of 126 references, 112 compounds are summarized. PMID:21321751

  14. Synthesis and properties of mirror-image DNA.

    PubMed Central

    Urata, H; Ogura, E; Shinohara, K; Ueda, Y; Akagi, M

    1992-01-01

    We have investigated the conformations of the hexadeoxyribonucleotide, L-d(CGCGCG) composed of L-deoxyribose, the mirror image molecule of natural D-deoxyribose. In this paper, we report the synthesis of four L-deoxynucleosides and the L-oligonucleotide-ethidium bromide interactions. The L-deoxyribose synthon 9 was synthesized from L-arabinose with an over all yield of 28.5% via the Barton-McCombie reaction. The L-deoxynucleosides were obtained by a glycosylation of appropriate nucleobase derivatives with the 1-chloro sugar 9. After derivatization to nucleoside phosphoramidites, L-deoxycytidine and L-deoxyguanosine were incorporated into a hexadeoxynucleotide, L-d(CGCGCG) by a solid-phase beta-cyanoethylphosphoramidite method. This L-hexanucleotide was resistant to digestion with nuclease P1. The conformations of L-d(CGCGCG) were an exact mirror image of that of the corresponding natural one as described previously, and the conformations of the L-d(CGCGCG)-ethidium bromide complex were also the mirror images of those of the D-d(CGCGCG)-ethidium bromide complex under both low and high salt conditions. These results suggest that ethidium bromide prefers not a right-handed helical sense, but the base-base stacking geometry of the B-form rather than that of the Z-form. Thus, L-DNA would be a useful tool for studying DNA-drug interactions. PMID:1630904

  15. Serine Metabolism Supports the Methionine Cycle and DNA/RNA Methylation through De Novo ATP Synthesis in Cancer Cells.

    PubMed

    Maddocks, Oliver D K; Labuschagne, Christiaan F; Adams, Peter D; Vousden, Karen H

    2016-01-21

    Crosstalk between cellular metabolism and the epigenome regulates epigenetic and metabolic homeostasis and normal cell behavior. Changes in cancer cell metabolism can directly impact epigenetic regulation and promote transformation. Here we analyzed the contribution of methionine and serine metabolism to methylation of DNA and RNA. Serine can contribute to this pathway by providing one-carbon units to regenerate methionine from homocysteine. While we observed this contribution under methionine-depleted conditions, unexpectedly, we found that serine supported the methionine cycle in the presence and absence of methionine through de novo ATP synthesis. Serine starvation increased the methionine/S-adenosyl methionine ratio, decreasing the transfer of methyl groups to DNA and RNA. While serine starvation dramatically decreased ATP levels, this was accompanied by lower AMP and did not activate AMPK. This work highlights the difference between ATP turnover and new ATP synthesis and defines a vital function of nucleotide synthesis beyond making nucleic acids. PMID:26774282

  16. Serine Metabolism Supports the Methionine Cycle and DNA/RNA Methylation through De Novo ATP Synthesis in Cancer Cells

    PubMed Central

    Maddocks, Oliver D.K.; Labuschagne, Christiaan F.; Adams, Peter D.; Vousden, Karen H.

    2016-01-01

    Summary Crosstalk between cellular metabolism and the epigenome regulates epigenetic and metabolic homeostasis and normal cell behavior. Changes in cancer cell metabolism can directly impact epigenetic regulation and promote transformation. Here we analyzed the contribution of methionine and serine metabolism to methylation of DNA and RNA. Serine can contribute to this pathway by providing one-carbon units to regenerate methionine from homocysteine. While we observed this contribution under methionine-depleted conditions, unexpectedly, we found that serine supported the methionine cycle in the presence and absence of methionine through de novo ATP synthesis. Serine starvation increased the methionine/S-adenosyl methionine ratio, decreasing the transfer of methyl groups to DNA and RNA. While serine starvation dramatically decreased ATP levels, this was accompanied by lower AMP and did not activate AMPK. This work highlights the difference between ATP turnover and new ATP synthesis and defines a vital function of nucleotide synthesis beyond making nucleic acids. PMID:26774282

  17. INCORPORATION OF 5-IODO-2'-DEOXYURIDINE AND 5-BROMO-2'DEOXYURIDINE INTO RODENT DNA AS DETERMINED BY NEUTRON ACTIVATION ANALYSIS

    EPA Science Inventory

    Using 5-iodo-2'-deoxyuridine (IdU) and 5-bromo-2'-deoxyuridine (BrdU) an DNA precursors, neutron activation analysis (NAA) of iodine and Br was developed as a quantitative method for determining DNA synthesis. ndogenous tissue concentrations of bromine (Br) and iodine ranged from...

  18. Synthesis, characterization, antimicrobial, DNA-cleavage and antioxidant activities of 3-((5-chloro-2-phenyl-1H-indol-3-ylimino)methyl)quinoline-2(1H)-thione and its metal complexes

    NASA Astrophysics Data System (ADS)

    Vivekanand, B.; Mahendra Raj, K.; Mruthyunjayaswamy, B. H. M.

    2015-01-01

    Schiff base 3-((5-chloro-2-phenyl-1H-indol-3-ylimino)methyl)quinoline-2(1H)-thione and its Cu(II), Co(II), Ni(II), Zn(II) and Fe(III), complexes have been synthesized and characterized by elemental analysis, UV-Visible, IR, 1H NMR, 13C NMR and mass spectra, molar conductance, magnetic susceptibility, ESR and TGA data. The ligand and its metal complexes have been screened for their antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa, antifungal activity against Aspergillus niger and Aspergillus flavus in minimum inhibition concentration (MIC) by cup plate method respectively, antioxidant activity using 1,1-diphenyl-2-picryl hydrazyl (DPPH), which was compared with that of standard drugs vitamin-C and vitamin-E and DNA cleavage activity using calf-thymus DNA.

  19. Divalent ions attenuate DNA synthesis by human DNA polymerase α by changing the structure of the template/primer or by perturbing the polymerase reaction.

    PubMed

    Zhang, Yinbo; Baranovskiy, Andrey G; Tahirov, Emin T; Tahirov, Tahir H; Pavlov, Youri I

    2016-07-01

    DNA polymerases (pols) are sophisticated protein machines operating in the replication, repair and recombination of genetic material in the complex environment of the cell. DNA pol reactions require at least two divalent metal ions for the phosphodiester bond formation. We explore two understudied roles of metals in pol transactions with emphasis on polα, a crucial enzyme in the initiation of DNA synthesis. We present evidence that the combination of many factors, including the structure of the template/primer, the identity of the metal, the metal turnover in the pol active site, and the influence of the concentration of nucleoside triphosphates, affect DNA pol synthesis. On the poly-dT70 template, the increase of Mg(2+) concentration within the range typically used for pol reactions led to the severe loss of the ability of pol to extend DNA primers and led to a decline in DNA product sizes when extending RNA primers, simulating the effect of "counting" of the number of nucleotides in nascent primers by polα. We suggest that a high Mg(2+) concentration promotes the dynamic formation of unconventional DNA structure(s), thus limiting the apparent processivity of the enzyme. Next, we found that Zn(2+) supported robust polα reactions when the concentration of nucleotides was above the concentration of ions; however, there was only one nucleotide incorporation by the Klenow fragment of DNA pol I. Zn(2+) drastically inhibited polα, but had no effect on Klenow, when Mg(2+) was also present. It is possible that Zn(2+) perturbs metal-mediated transactions in pol active site, for example affecting the step of pyrophosphate removal at the end of each pol cycle necessary for continuation of polymerization. PMID:27235627

  20. Sequence rearrangement and duplication of double stranded fibronectin cDNA probably occurring during cDNA synthesis by AMV reverse transcriptase and Escherichia coli DNA polymerase I.

    PubMed Central

    Fagan, J B; Pastan, I; de Crombrugghe, B

    1980-01-01

    Two cloned cDNAs derived from the mRNA for cell fibronectin have been sequenced, providing evidence that transcription with AMV reverse transcriptase or Escherichia coli DNA polymerase I may not always result in double stranded cDNA that is exactly homologous with its mRNA template. Instead, the sequences of these cloned cDNAs are consistent with the duplication and rearrangement of sequences during synthesis of double stranded cDNA. PMID:6159581

  1. Assessment of DNA synthesis in Islet-1{sup +} cells in the adult murine heart

    SciTech Connect

    Weinberger, Florian Mehrkens, Dennis Starbatty, Jutta Nicol, Philipp Eschenhagen, Thomas

    2015-01-02

    Highlights: • Islet-1 was expressed in the adult heart. • Islet-1-positive cells did not proliferate in the adult heart. • Sinoatrial node cells did not proliferate in the adult heart. - Abstract: Rationale: Islet-1 positive (Islet-1{sup +}) cardiac progenitor cells give rise to the right ventricle, atria and outflow tract during murine cardiac development. In the adult heart Islet-1 expression is limited to parasympathetic neurons, few cardiomyocytes, smooth muscle cells, within the proximal aorta and pulmonary artery and sinoatrial node cells. Its role in these cells is unknown. Here we tested the hypothesis that Islet-1{sup +} cells retain proliferative activity and may therefore play a role in regenerating specialized regions in the heart. Methods and results: DNA synthesis was analyzed by the incorporation of tritiated thymidine ({sup 3}H-thymidine) in Isl-1-nLacZ mice, a transgenic model with an insertion of a nuclear beta-galactosidase in the Islet-1 locus. Mice received daily injections of {sup 3}H-thymidine for 5 days. DNA synthesis was visualized throughout the heart by dipping autoradiography of cryosections. Colocalization of an nLacZ-signal and silver grains would indicate DNA synthesis in Islet-1{sup +} cells. Whereas Islet{sup −} non-myocyte nuclei were regularly marked by accumulation of silver grains, colocalization with nLacZ-signals was not detected in >25,000 cells analyzed. Conclusions: Islet-1{sup +} cells are quiescent in the adult heart, suggesting that, under normal conditions, even pacemaking cells do not proliferate at higher rates than normal cardiac myocytes.

  2. DNA and RNA Synthesis in Animal Cells in Culture--Methods for Use in Schools

    ERIC Educational Resources Information Center

    Godsell, P. M.; Balls, M.

    1973-01-01

    Describes the experimental procedures used for detecting DNA and RNA synthesis in xenopus cells by autoradiography. The method described is suitable for senior high school laboratory classes or biology projects, if supervised by a teacher qualified to handle radioisotopes. (JR)

  3. Synthesis and Characterization of DNA Minor Groove Binding Alkylating Agents

    PubMed Central

    Iyer, Prema; Srinivasan, Ajay; Singh, Sreelekha K.; Mascara, Gerard P.; Zayitova, Sevara; Sidone, Brian; Fouquerel, Elise; Svilar, David; Sobol, Robert W.; Bobola, Michael S.; Silber, John R.; Gold, Barry

    2012-01-01

    Derivatives of methyl 3-(1-methyl-5-(1-methyl-5-(propylcarbamoyl)-1H-pyrrol-3-ylcarbamoyl)-1H-pyrrol-3-ylamino)-3-oxopropane-1-sulfonate (1), a peptide-based DNA minor groove binding methylating agent, were synthesized and characterized. In all cases the N-terminus was appended with a O-methyl sulfonate ester while the C-terminus group was varied with non-polar and polar sidechains. In addition, the number of pyrrole rings was varied from 2 (dipeptide) to 3 (tripeptide). The ability of the different analogues to efficiently generate N3-methyladenine was demonstrated as was their selectivity for minor groove (N3-methyladenine) vs. major groove (N7-methylguanine) methylation. Induced circular dichroism studies were used to measure the DNA equilibrium binding properties of the stable sulfone analogues; the tripeptide binds with affinity that is > 10-fold higher than the dipeptide. The toxicities of the compounds were evaluated in alkA/tag glycosylase mutant E. coli and in human WT glioma cells and in cells over-expressing and under-expressing N-methylpurine-DNA glycosylase, which excises N3-methyladenine from DNA. The results show that equilibrium binding correlates with the levels of N3-methyladenine produced and cellular toxicity. The toxicity of 1 was inversely related to expression of MPG in both the bacterial and mammalian cell lines. The enhanced toxicity parallels the reduced activation of PARP and diminished rate of formation of aldehyde reactive sites observed in the MPG knockdown cells. It is proposed that unrepaired N3-methyladenine is toxic due to its ability to directly block DNA polymerization. PMID:23234400

  4. Synthesis and characterization of DNA minor groove binding alkylating agents.

    PubMed

    Iyer, Prema; Srinivasan, Ajay; Singh, Sreelekha K; Mascara, Gerard P; Zayitova, Sevara; Sidone, Brian; Fouquerel, Elise; Svilar, David; Sobol, Robert W; Bobola, Michael S; Silber, John R; Gold, Barry

    2013-01-18

    Derivatives of methyl 3-(1-methyl-5-(1-methyl-5-(propylcarbamoyl)-1H-pyrrol-3-ylcarbamoyl)-1H-pyrrol-3-ylamino)-3-oxopropane-1-sulfonate (1), a peptide-based DNA minor groove binding methylating agent, were synthesized and characterized. In all cases, the N-terminus was appended with an O-methyl sulfonate ester, while the C-terminus group was varied with nonpolar and polar side chains. In addition, the number of pyrrole rings was varied from 2 (dipeptide) to 3 (tripeptide). The ability of the different analogues to efficiently generate N3-methyladenine was demonstrated as was their selectivity for minor groove (N3-methyladenine) versus major groove (N7-methylguanine) methylation. Induced circular dichroism studies were used to measure the DNA equilibrium binding properties of the stable sulfone analogues; the tripeptide binds with affinity that is >10-fold higher than that of the dipeptide. The toxicities of the compounds were evaluated in alkA/tag glycosylase mutant E. coli and in human WT glioma cells and in cells overexpressing and under-expressing N-methylpurine-DNA glycosylase, which excises N3-methyladenine from DNA. The results show that equilibrium binding correlates with the levels of N3-methyladenine produced and cellular toxicity. The toxicity of 1 was inversely related to the expression of MPG in both the bacterial and mammalian cell lines. The enhanced toxicity parallels the reduced activation of PARP and the diminished rate of formation of aldehyde reactive sites observed in the MPG knockdown cells. It is proposed that unrepaired N3-methyladenine is toxic due to its ability to directly block DNA polymerization. PMID:23234400

  5. Cyclic GMP-AMP Synthase is Activated by Double-stranded DNA-Induced Oligomerization

    PubMed Central

    Li, Xin; Shu, Chang; Yi, Guanghui; Chaton, Catherine T.; Shelton, Catherine L.; Diao, Jiasheng; Zuo, Xiaobing; Kao, C Cheng; Herr, Andrew B.; Li, Pingwei

    2013-01-01

    Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor mediating innate antimicrobial immunity. It catalyzes the synthesis of a noncanonical cyclic dinucleotide 2′,5′ cGAMP that binds to STING and mediates the activation of TBK1 and IRF-3. Activated IRF-3 translocates to the nucleus and initiates the transcription of the IFN-β gene. The structure of mouse cGAS bound to an 18 bp dsDNA revealed that cGAS interacts with dsDNA through two binding sites, forming a 2:2 complex. Enzyme assays and IFN-β reporter assays of cGAS mutants demonstrated that interactions at both DNA binding sites are essential for cGAS activation. Mutagenesis and DNA binding studies showed that the two sites bind dsDNA cooperatively and site B plays a critical role in DNA binding. The structure of mouse cGAS bound to dsDNA and 2′,5′ cGAMP provided insight into the catalytic mechanism of cGAS. These results demonstrated that cGAS is activated by dsDNA-induced oligomerization. PMID:24332030

  6. Polymerase/DNA interactions and enzymatic activity: multi-parameter analysis with electro-switchable biosurfaces

    NASA Astrophysics Data System (ADS)

    Langer, Andreas; Schräml, Michael; Strasser, Ralf; Daub, Herwin; Myers, Thomas; Heindl, Dieter; Rant, Ulrich

    2015-07-01

    The engineering of high-performance enzymes for future sequencing and PCR technologies as well as the development of many anticancer drugs requires a detailed analysis of DNA/RNA synthesis processes. However, due to the complex molecular interplay involved, real-time methodologies have not been available to obtain comprehensive information on both binding parameters and enzymatic activities. Here we introduce a chip-based method to investigate polymerases and their interactions with nucleic acids, which employs an electrical actuation of DNA templates on microelectrodes. Two measurement modes track both the dynamics of the induced switching process and the DNA extension simultaneously to quantitate binding kinetics, dissociation constants and thermodynamic energies. The high sensitivity of the method reveals previously unidentified tight binding states for Taq and Pol I (KF) DNA polymerases. Furthermore, the incorporation of label-free nucleotides can be followed in real-time and changes in the DNA polymerase conformation (finger closing) during enzymatic activity are observable.

  7. Convergent DNA synthesis: a non-enzymatic dimerization approach to circular oligodeoxynucleotides.

    PubMed Central

    Rubin, E; Rumney, S; Wang, S; Kool, E T

    1995-01-01

    We report a novel convergent approach to the construction of circular DNA oligonucleotides from two smaller linear precursors. Circular DNAs 34-74 nucleotides (nt) in size are constructed non-enzymatically in a single step from two half-length oligomers. A DNA template is used to assemble the constituent parts into a triple helical complex which brings the four reactive ends together for chemical ligation with BrCN/imidazole/Ni2+. A homodimerization reaction strategy is successfully used on a small scale to construct circles 42, 58 and 74 nt in size. In addition, a heterodimerization strategy is successfully used in two cases to construct circular 34mers from different 16mer and 18mer precursors. Measurement of preparative yields for one biologically active 34mer circle shows that the dimerization strategy gives a yield higher than that from conventional cyclization and nearly as high as that for a normally synthesized linear DNA, establishing that there is not necessarily a yield penalty for circle construction. Six additional preparative circle constructions, giving conversions of approximately 33-85% from precursors to circular product, are also described. Convergent strategies allow the construction of medium and large size DNA molecules in higher yields than can be achieved by standard linear synthesis alone. Images PMID:7567468

  8. Radiation effects on DNA synthesis in a defined chromosomal replicon

    SciTech Connect

    Larner, J.M.; Lee, H.; Hamlin, J.L. )

    1994-03-01

    It has recently been shown that the tumor suppressor p53 mediates a signal transduction pathway that responds to DNA damage by arresting cells in the late G[sub 1] period of the cell cycle. However, the operation of this pathway alone cannot explain the 50% reduction in the rate of DNA synthesis that occurs within 30 min of irradiation of an asynchronous cell population. The authors are using the amplified dihydrofolate reductase (DHFR) domain in the methotrexate-resistance CHO cell line, CHOC 400, as a model replicon in which to study this acute radiation effect. They first show that the CHOC-400 cell line retains the classical acute-phase response but does not display the late G[sub 1] arrest that characterizes the p53-mediated checkpoint. Using a two-dimensional gel replicon-mapping method, they then show that when asynchronous cultures are irradiated with 900 cGy, initiation in the DHFR locus is completely inhibited within 30 min and does not resume for 3 to 4 h. Since initiation in this locus occurs throughout the first 2 h of the S period, this result implies the existence of a p53-independent S-phase damage-sensing pathway that functions at the level of individual origins. Results obtained with the replication inhibitor mimosine define a position near the G[sub 1]/S boundary beyond which cells are unable to prevent initiation at early-firing origins in response to irradiation. This is the first direct demonstration at a defined chromosomal origin that radiation quantitatively down-regulates initiation. 42 refs., 9 figs.

  9. Short-step chemical synthesis of DNA by use of MMTrS group for protection of 5'-hydroxyl group.

    PubMed

    Shiraishi, Miyuki; Utagawa, Eri; Ohkubo, Akihiro; Sekine, Mitsuo; Seio, Kohji

    2007-01-01

    4-methoxytrithylthio (MMTrS) group was applied for the appropriately protected four canonical nucleosides. We prepared the phosphoroamidite units by use of these nucleosides and developed the synthesis of oligodeoxynucleotides without any acidic treatment. Moreover, the new DNA synthesis protocol was applied to an automated DNA synthesizer for the synthesis of longer oligodeoxynucleotides. PMID:18029620

  10. RecG Directs DNA Synthesis during Double-Strand Break Repair

    PubMed Central

    Azeroglu, Benura; Mawer, Julia S. P.; Cockram, Charlotte A.; White, Martin A.; Hasan, A. M. Mahedi; Filatenkova, Milana; Leach, David R. F.

    2016-01-01

    Homologous recombination provides a mechanism of DNA double-strand break repair (DSBR) that requires an intact, homologous template for DNA synthesis. When DNA synthesis associated with DSBR is convergent, the broken DNA strands are replaced and repair is accurate. However, if divergent DNA synthesis is established, over-replication of flanking DNA may occur with deleterious consequences. The RecG protein of Escherichia coli is a helicase and translocase that can re-model 3-way and 4-way DNA structures such as replication forks and Holliday junctions. However, the primary role of RecG in live cells has remained elusive. Here we show that, in the absence of RecG, attempted DSBR is accompanied by divergent DNA replication at the site of an induced chromosomal DNA double-strand break. Furthermore, DNA double-stand ends are generated in a recG mutant at sites known to block replication forks. These double-strand ends, also trigger DSBR and the divergent DNA replication characteristic of this mutant, which can explain over-replication of the terminus region of the chromosome. The loss of DNA associated with unwinding joint molecules previously observed in the absence of RuvAB and RecG, is suppressed by a helicase deficient PriA mutation (priA300), arguing that the action of RecG ensures that PriA is bound correctly on D-loops to direct DNA replication rather than to unwind joint molecules. This has led us to put forward a revised model of homologous recombination in which the re-modelling of branched intermediates by RecG plays a fundamental role in directing DNA synthesis and thus maintaining genomic stability. PMID:26872352

  11. Inhibition of mouse peritoneal macrophage DNA synthesis by infection with the arenavirus Pichinde.

    PubMed Central

    Friedlander, A M; Jahrling, P B; Merrill, P; Tobery, S

    1984-01-01

    Macrophage DNA synthesis and proliferation occur during the development of cell-mediated immunity and in the early nonspecific reaction to infection. Arenaviruses have a predilection for infection of cells of the reticuloendothelial system, and in this study we have examined the effect of the arenavirus Pichinde on macrophage DNA synthesis. We have found that infection of mouse peritoneal macrophages with Pichinde caused a profound dose-dependent inhibition of the DNA synthesis induced by macrophage growth factor-colony stimulating factor. At a multiplicity of inoculum of 5, there is a 75 to 95% inhibition of DNA synthesis. Viable virus is necessary for inhibition since Pichinde inactivated by heat or cobalt irradiation had no effect. Similarly, virus pretreated with an antiserum to Pichinde was without inhibitory effect. Inhibition was demonstrated by measuring DNA synthesis spectrofluorometrically as well as by [3H]thymidine incorporation. The inhibition of DNA synthesis was not associated with any cytopathology. There was no evidence that the inhibition was due to soluble factors, such as prostaglandins or interferon, released by infected cells. These studies demonstrate, for the first time in vitro, a significant alteration in macrophage function caused by infection with an arenavirus. It is possible that inhibition of macrophage proliferation represents a mechanism by which some microorganisms interfere with host resistance. PMID:6690404

  12. Synthesis and crystal structure of new dicopper(II) complexes having asymmetric N,N'-bis(substituted)oxamides with DNA/protein binding ability: In vitro anticancer activity and molecular docking studies.

    PubMed

    Zheng, Kang; Zhu, Ling; Li, Yan-Tuan; Wu, Zhi-Yong; Yan, Cui-Wei

    2015-08-01

    Two new dicopper(II) complexes bridged by asymmetric N,N'-bis(substituted)oxamide ligands: N-(5-chloro-2-hydroxyphenyl)-N'-[2-(dimethylamino)ethyl]oxamide (H3chdoxd) and N-hydroxypropyl-N'-(2-carboxylatophenyl)oxamide (H3oxbpa), and end-capped with 2,2'-bipyridine (bpy), namely [Cu2(ClO4)(chdoxd)(CH3OH)(bpy)]·H2O (1) and [Cu2(pic)(oxbpa)(CH3OH)(bpy)]·0.5CH3OH (2) (pic denotes picrate anion), have been synthesized and characterized by elemental analysis, molar conductivity measurement, IR and electronic spectral studies, and single-crystal X-ray diffraction. The X-ray diffraction analysis revealed that both the copper(II) ions bridged by the cis-oxamido ligands in dicopper(II) complexes 1 and 2 are all in square-pyramidal environments with the corresponding Cu⋯Cu separations of 5.194(3) and 5.1714(8)Å, respectively. In the crystals of the two complexes, there are abundant hydrogen bonds and π-π stacking interactions contributing to the supramolecular structure. The reactivities toward herring sperm DNA (HS-DNA) and bovine serum albumin (BSA) of the two complexes are studied both theoretically and experimentally, indicating that both the two complexes can interact with the DNA in the mode of intercalation, and effectively bind to BSA via the favored binding sites Trp134 for the complex 1 and Trp213 for the complex 2. Interestingly, the in vitro anticancer activities of the two complexes against the selected tumor cell lines are consistent with their DNA/BSA-binding affinities following the order of 1>2. The effects of coordinated counterions in the two complexes on DNA/BSA-binding ability and in vitro anticancer activity are preliminarily discussed. PMID:26057022

  13. Synthesis and structural characterization of ternary Cu (II) complexes of glycine with 2,2'-bipyridine and 2,2'-dipyridylamine. The DNA-binding studies and biological activity

    NASA Astrophysics Data System (ADS)

    Mohamed, Mervat S.; Shoukry, Azza A.; Ali, Ayat G.

    2012-02-01

    In this study two new complexes [Cu(bpy)(Gly)Cl]·2H 2O ( 1) and [Cu(dpa)(Gly)Cl]·2H 2O ( 2) (bpy = 2,2'-bipyridine; dpa = 2,2'-dipyridylamine, Gly = glycine) have been synthesized and characterized by elemental analysis, IR, TGA, UV-vis and magnetic susceptibility measurements. The binding properties of the complexes with CT-DNA were investigated by electronic absorption spectra. The intrinsic binding constants ( Kb) calculated from UV-vis absorption studies were 1.84 × 10 3 M -1 and 3.1 × 10 3 M -1 for complexes 1 and 2 respectively. Thermal denaturation has been systematically studied by spectrophotometric method and the calculated Δ Tm was nearly 5 °C for each complex. All the results suggest that the interaction modes between the complexes and CT-DNA were electrostatic and/or groove binding. The redox behavior of the two complexes was investigated by cyclic voltammetry. Both complexes, in presence and absence of CT-DNA show a quasi-reversible wave corresponding to Cu II/Cu I redox couple. The change in E1/2, Δ E and Ipc/ Ipa ascertain the interaction of complexes 1 and 2 with CT-DNA. Further insight into the binding of complexes with CT-DNA has been made by gel electrophoresis, where the binding of complexes is confirmed through decreasing the mobility and intensity of DNA bands. In addition, the antitumor activity of the complexes was tested on two cancer cell lines; the breast cancer (MCF7) and the human hepatocellular carcinoma (HEPG2), as well as one normal cell line; the human normal melanocytes (HFB4). The results showed that complex 1 was more potent antitumor agent than complex 2. The in-vitro antimicrobial activity of the two complexes was carried out using the disc diffusion method against different species of pathogenic bacteria and fungi. The activity data showed that complex 2 was more active in inhibiting the growth of the tested organisms.

  14. Ruthenium(III) S-methylisothiosemicarbazone Schiff base complexes bearing PPh3/AsPh3 coligand: synthesis, structure and biological investigations, including antioxidant, DNA and protein interaction, and in vitro anticancer activities.

    PubMed

    Prakash, Govindan; Manikandan, Rajendran; Viswanathamurthi, Periasamy; Velmurugan, Krishnaswamy; Nandhakumar, Raju

    2014-09-01

    New Ru(III) isothiosemicarbazone complexes [RuCl(EPh3)L(1-4)] (E=P or As) were obtained from the reactions between [RuCl3(EPh3)3] and bis(salicylaldehyde)-S-methylisothiosemicarbazone (H2L(1-3))/bis(2-hydroxy-naphthaldehyde)-S-methylisothiosemicarbazone (H2L(4)) ligands. The new complexes were characterized by using elemental analyses and various spectral (UV-Vis, IR, (1)H NMR, FAB-Mass and EPR) methods. The redox properties of the complexes were studied by using cyclic voltammetric method. The new complexes were subjected to various biological investigations such as antioxidant assays involving DPPH radical, hydroxyl radical, nitric oxide radical and hydrogen peroxide, DNA/protein interaction studies and in vitro cytotoxic studies against human breast cancer cell line (MCF-7). New complexes showed excellent free radicals scavenging ability and could bind with DNA via intercalation. Protein binding studies using fluorescence spectroscopy showed that the new complexes could bind strongly with bovine serum albumin (BSA). Photo cleavage experiments using DNA of E-coli bacterium exhibited the DNA cleavage ability of the complexes. Further, the in vitro anticancer activity studies on the new complexes against MCF-7 cell line exhibited the ability of Ru(III) isothiosemicarbazone complexes to suppress the development of malignant neoplastic disease cells. PMID:24911273

  15. In vivo evidence for translesion synthesis by the replicative DNA polymerase δ

    PubMed Central

    Hirota, Kouji; Tsuda, Masataka; Mohiuddin; Tsurimoto, Toshiki; Cohen, Isadora S.; Livneh, Zvi; Kobayashi, Kaori; Narita, Takeo; Nishihara, Kana; Murai, Junko; Iwai, Shigenori; Guilbaud, Guillaume; Sale, Julian E.; Takeda, Shunichi

    2016-01-01

    The intolerance of DNA polymerase δ (Polδ) to incorrect base pairing contributes to its extremely high accuracy during replication, but is believed to inhibit translesion synthesis (TLS). However, chicken DT40 cells lacking the POLD3 subunit of Polδ are deficient in TLS. Previous genetic and biochemical analysis showed that POLD3 may promote lesion bypass by Polδ itself independently of the translesion polymerase Polζ of which POLD3 is also a subunit. To test this hypothesis, we have inactivated Polδ proofreading in pold3 cells. This significantly restored TLS in pold3 mutants, enhancing dA incorporation opposite abasic sites. Purified proofreading-deficient human Polδ holoenzyme performs TLS of abasic sites in vitro much more efficiently than the wild type enzyme, with over 90% of TLS events resulting in dA incorporation. Furthermore, proofreading deficiency enhances the capability of Polδ to continue DNA synthesis over UV lesions both in vivo and in vitro. These data support Polδ contributing to TLS in vivo and suggest that the mutagenesis resulting from loss of Polδ proofreading activity may in part be explained by enhanced lesion bypass. PMID:27185888

  16. Adenovirus preterminal protein synthesized in COS cells from cloned DNA is active in DNA replication in vitro.

    PubMed Central

    Pettit, S C; Horwitz, M S; Engler, J A

    1988-01-01

    Replication of the DNA genome of human adenovirus serotype 2 requires three virus-encoded proteins. Two of these proteins, the preterminal protein (pTP) and the adenovirus DNA polymerase, are transcribed from a single promoter at early times after virus infection. The mRNAs for these proteins share several exons, including one encoded near adenovirus genome coordinate 39. By using plasmids containing DNA fragments postulated to encode the various exons of pTP mRNA, the contributions of each exon to the synthesis of an active pTP have been measured. Only plasmids that contain both the open reading frame for pTP (genome coordinates 29.4 to 23.9) and the HindIII J fragment that contains the exon at genome coordinate 39 can express functional pTP. Images PMID:3336069

  17. Synthesis, crystal structures and characterization of late first row transition metal complexes derived from benzothiazole core: anti-tuberculosis activity and special emphasis on DNA binding and cleavage property.

    PubMed

    Netalkar, Priya P; Netalkar, Sandeep P; Budagumpi, Srinivasa; Revankar, Vidyanand K

    2014-05-22

    Air and moisture stable coordination compounds of late first row transition metals, viz. Co(II), Ni(II), Cu(II) and Zn(II), with a newly designed ligand, 2-(2-benzo[d]thiazol-2-yl)hydrazono)propan-1-ol (LH), were prepared and successfully characterized using various spectro-analytical techniques. The molecular structures of the ligand and nickel complex were unambiguously determined by single-crystal X-ray diffraction method. The [Ni(LH)2]Cl2.3H2O complex is stabilized by intermolecular CH⋯π stacking interactions between the methyl hydrogen and the C18 atom of the phenyl ring (C11-H11B⋯C18) forming 1D zig-zag chain structure. Both, the ligand and its copper complex, were electrochemically active in the working potential range, showing quasi-reversible redox system. The interactions of all the compounds with calf thymus DNA have been comprehensively investigated using electronic absorption spectroscopy, viscosity, electrochemistry and thermal denaturation studies. The cleavage reaction on pBR322 DNA has been monitored by agarose gel electrophoresis. The results showed that the ligand can bind to CT-DNA through partial intercalation, whereas the complexes bind electrostatically. Further, [Ni(LH)2]Cl2.3H2O and [CuLCl(H2O)2] complexes in the series have high binding and cleavage affinity towards pBR322 DNA. Additionally, all the compounds were screened for anti-tuberculosis activity. All the complexes revealed an MIC value of 0.8 μg/mL, which is almost 8 times active than standard used (Streptomycin, 6.25 μg/mL). PMID:24721314

  18. DNA SYNTHESIS IN THE FERTILIZING HAMSTER SPERM NUCLEUS: SPERM TEMPLATE AVAILABILITY AND EGG CYTOPLASMIC CONTROL

    EPA Science Inventory

    To assess the role of sperm template availability in the regulation of DNA synthesis, the morphological status of the fertilizing hamster sperm nucleus was correlated with its ability to synthesize DNA after in vivo and in vitro fertilization. Fertilized hamster eggs were incubat...

  19. Synthesis, characterization, DNA binding, cleavage activity, cytotoxicity and molecular docking of new nano water-soluble [M(5-CH₂PPh₃-3,4-salpyr)](ClO₄)₂ (M = Ni, Zn) complexes.

    PubMed

    Mandegani, Zeinab; Asadi, Zahra; Asadi, Mozaffar; Karbalaei-Heidari, Hamid Reza; Rastegari, Banafsheh

    2016-04-21

    theory (DFT) studies were performed using the GAUSSIAN 03 program. The DFT method with B3LYP functional, LANL2DZ basis set for metal centers and 6-311g* for other atoms was used. The synthesized compounds and DNA were simulated by molecular docking to explore more details of the ligands conformation and their orientations in the active site of the receptor. PMID:26961248

  20. A DNA polymerase activity is associated with Cauliflower Mosaic Virus.

    PubMed Central

    Menissier, J; Laquel, P; Lebeurier, G; Hirth, L

    1984-01-01

    A DNA polymerase activity is found within the Cauliflower Mosaic Virus (CaMV) particle. Analysis of the reaction product reveals that the linear form of the virion DNA is preferentially labelled. The molecular weight of the DNA polymerase as determined on an "activity gel" is 76 kDa. Images PMID:6514573

  1. The Polymerase Activity of Mammalian DNA Pol ζ Is Specifically Required for Cell and Embryonic Viability

    PubMed Central

    Lange, Sabine S.; Tomida, Junya; Boulware, Karen S.; Bhetawal, Sarita; Wood, Richard D.

    2016-01-01

    DNA polymerase ζ (pol ζ) is exceptionally important for maintaining genome stability. Inactivation of the Rev3l gene encoding the polymerase catalytic subunit causes a high frequency of chromosomal breaks, followed by lethality in mouse embryos and in primary cells. Yet it is not known whether the DNA polymerase activity of pol ζ is specifically essential, as the large REV3L protein also serves as a multiprotein scaffold for translesion DNA synthesis via multiple conserved structural domains. We report that Rev3l cDNA rescues the genomic instability and DNA damage sensitivity of Rev3l-null immortalized mouse fibroblast cell lines. A cDNA harboring mutations of conserved catalytic aspartate residues in the polymerase domain of REV3L could not rescue these phenotypes. To investigate the role of REV3L DNA polymerase activity in vivo, a Rev3l knock-in mouse was constructed with this polymerase-inactivating alteration. No homozygous mutant mice were produced, with lethality occurring during embryogenesis. Primary fibroblasts from mutant embryos showed growth defects, elevated DNA double-strand breaks and cisplatin sensitivity similar to Rev3l-null fibroblasts. We tested whether the severe Rev3l-/- phenotypes could be rescued by deletion of DNA polymerase η, as has been reported with chicken DT40 cells. However, Rev3l-/- Polh-/- mice were inviable, and derived primary fibroblasts were as sensitive to DNA damage as Rev3l-/- Polh+/+ fibroblasts. Therefore, the functions of REV3L in maintaining cell viability, embryonic viability and genomic stability are directly dependent on its polymerase activity, and cannot be ameliorated by an additional deletion of pol η. These results validate and encourage the approach of targeting the DNA polymerase activity of pol ζ to sensitize tumors to DNA damaging agents. PMID:26727495

  2. Cellular integrity is required for inhibition of initiation of cellular DNA synthesis by reovirus type 3.

    PubMed Central

    Roner, M R; Cox, D C

    1985-01-01

    Synchronized HeLa cells, primed for entry into the synthesis phase by amethopterin, were prevented from initiating DNA synthesis 9 h after infection with reovirus type 3. However, nuclei isolated from synchronized cells infected with reovirus for 9 or 16 h demonstrated a restored ability to synthesize DNA. The addition of enucleated cytoplasmic extracts from infected or uninfected cells did not affect this restored capacity for synthesis. The addition of ribonucleotide triphosphates to nuclei isolated from infected cells stimulated additional DNA synthesis, suggesting that these nuclei were competent to initiate new rounds of DNA replication. Permeabilization of infected cells did not restore the ability of these cells to synthesize DNA. Nucleoids isolated from intact or permeabilized cells, infected for 9 or 16 h displayed an increased rate of sedimentation when compared with nucleoids isolated from uninfected cells. Nucleoids isolated from the nuclei of infected cells demonstrated a rate of sedimentation similar to that of nucleoids isolated from the nuclei of uninfected cells. The inhibition of initiation of cellular DNA synthesis by reovirus type 3 appears not to have been due to a permanent alteration of the replication complex, but this inhibition could be reversed by the removal of that complex from factors unique to the structural or metabolic integrity of the infected cell. Images PMID:3968718

  3. Insights into eukaryotic primer synthesis from structures of the p48 subunit of human DNA primase

    PubMed Central

    Vaithiyalingam, Sivaraja; Arnett, Diana R.; Aggarwal, Amit; Eichman, Brandt F.; Fanning, Ellen; Chazin, Walter J.

    2013-01-01

    DNA replication in all organisms requires polymerases to synthesize copies of the genome. DNA polymerases are unable to function on a bare template and require a primer. Primases are crucial RNA polymerases that perform the initial de novo synthesis, generating the first 8–10 nucleotides of the primer. Although structures of archaeal and bacterial primases have provided insights into general priming mechanisms, these proteins are not well conserved with heterodimeric (p48/p58) primases in eukaryotes. Here, we present X-ray crystal structures of the catalytic engine of a eukaryotic primase, which is contained in the p48 subunit. The structures of p48 reveal eukaryotic primases maintain the conserved catalytic prim fold domain, but with a unique sub-domain not found in the archaeal and bacterial primases. Calorimetry experiments reveal Mn2+ but not Mg2+ significantly enhances the binding of nucleotide to primase, which correlates with in vitro higher catalytic efficiency. The structure of p48 with bound UTP and Mn2+ provides insights into the mechanism of nucleotide synthesis by primase. Substitution of conserved residues involved in either metal or nucleotide binding altered nucleotide binding affinities, and yeast strains containing the corresponding Pri1p substitutions were not viable. Our results revealed two residues (S160 and H166) in direct contact with the nucleotide that were previously unrecognized as critical to the human primase active site. Comparing p48 structures to those of similar polymerases in different states of action suggests changes that would be required to attain a catalytically competent conformation capable of initiating dinucleotide synthesis. PMID:24239947

  4. Effects of 3-aminobenzamide on DNA synthesis and cell cycle progression in Chinese hamster ovary cells

    SciTech Connect

    Schwartz, J.L.; Morgan, W.F.; Kapp, L.N.; Wolff, S.

    1983-01-01

    3-Aminobenzamide (3AB), in inhibitor of poly(ADP-ribose) polymerase, is a potent inducer of sister chromatid exchanges (SCEs). Because of the possible relation between SCEs and DNA synthesis, the effects of 3AB on DNA synthesis and cell cycle progression in Chinese hamster ovary (CHO) cells were examined. Unlike all other SCE-inducing agents whose effects on DNA synthesis have been studied, short term exposures (30-120 min) of 3AB did not inhibit the overall rate of DNA synthesis and this result was independent of the amount of bromodeoxyuridine (BrdU) in the DNA. Longer exposure times (>24 h) did result in an extended S phase, but this was not due to an effect on the rate of DNA chain elongation. 3AB also delayed the entry of cells into S phase. The overall cell cycle delay was dose dependent, approaching 9 h after a 54 h exposure to 10 mM 3AB. Earlier reports that 3AB is neither mutagenic nor cytotoxic were confirmed. Thus 3AB acts to increase SCE frequency by a mechanism distinct from that which causes cytotoxicity and mutagenicity, and does not involve any inhibition in the rate of DNA chain growth. 25 references, 3 figures, 2 tables.

  5. Marine Natural Meroterpenes: Synthesis and Antiproliferative Activity

    PubMed Central

    Simon-Levert, Annabel; Menniti, Christophe; Soulère, Laurent; Genevière, Anne-Marie; Barthomeuf, Chantal; Banaigs, Bernard; Witczak, Anne

    2010-01-01

    Meroterpenes are compounds of mixed biogenesis, isolated from plants, microorganisms and marine invertebrates. We have previously isolated and determined the structure for a series of meroterpenes extracted from the ascidian Aplidium aff. densum. Here, we demonstrate the chemical synthesis of three of them and their derivatives, and evaluate their biological activity on two bacterial strains, on sea urchin eggs, and on cancerous and healthy human cells. PMID:20390109

  6. V-shaped ligand 1,3-bis(1-ethylbenzimidazol-2-yl)-2-thiapropane and manganese(II), cobalt(II) and copper(II) complexes: Synthesis, crystal structure, DNA-binding properties and antioxidant activities.

    PubMed

    Wu, Huilu; Yang, Zaihui; Wang, Fei; Peng, Hongping; Zhang, Han; Wang, Cuiping; Wang, Kaitong

    2015-07-01

    A V-shaped ligand 1,3-bis(1-ethylbenzimidazol-2-yl)-2-thiapropane (bebt) and its transition metal complexes, [Mn(bebt)(pic)2]·CH3OH (pic=picrate) 1, [Co(bebt)2](pic)22 and [Cu(bebt)2](pic)2·2DMF 3, have been synthesized and characterized. The coordinate forms of complexes 1 and 2 are basically alike, which can be described as six-coordinated distorted octahedron. The geometric structure around Cu(II) atom can be described as distorted tetrahedral in complex 3. The DNA-binding properties of the ligand bebt and complexes have been investigated by electronic absorption, fluorescence, and viscosity measurements. The results suggest that bebt and complexes bind to DNA via an intercalative binding mode and the order of the binding affinity is 1<2<3DNA-binding properties are also discussed. Moreover, the complex 3 possess significant antioxidant activity against superoxide and hydroxyl radicals, and the scavenging effects of it are stronger than standard mannitol and vitamin C. PMID:25981187

  7. Synthesis and structure elucidation of new μ-oxamido-bridged dicopper(II) complex with in vitro anticancer activity: A combined study from experiment verification and docking calculation on DNA/protein-binding property.

    PubMed

    Zhu, Ling; Zheng, Kang; Li, Yan-Tuan; Wu, Zhi-Yong; Yan, Cui-Wei

    2016-02-01

    A new oxamido-bridged dicopper(II) complex with formula of [Cu2(deap)(pic)2], where H2deap and pic represent N,N'-bis[3-(diethylamino)propyl]oxamide and picrate, respectively, was synthesized and characterized by elemental analyses, molar conductance measurements, IR and electronic spectral study, and single-crystal X-ray diffraction. The crystal structure analyses revealed that the two copper(II) atoms in the dicopper(II) complex are bridged by the trans-deap(2-) ligand with the distances of 5.2116(17)Å, and the coordination environment around the copper(II) atoms can be described as a square-planar geometry. Hydrogen bonding and π-π stacking interactions link the dicopper(II) complex into a three-dimensional infinite network. The DNA/protein-binding properties of the complex are investigated by molecular docking and experimental assays. The results indicate that the dicopper(II) complex can interact with HS-DNA in the mode of intercalation and effectively quench the intrinsic fluorescence of protein BSA by 1:1 binding with the most possible binding site in the proximity of Trp134. The in vitro anticancer activities suggest that the complex is active against the selected tumor cell lines, and IC50 values for SMMC-7721 and HepG2 are lower than cisplatin. The effects of the electron density distribution of the terminal ligand and the chelate ring arrangement around copper(II) ions bridged by symmetric N,N'-bis(substituted)oxamides on DNA/BSA-binding ability and in vitro anticancer activity are preliminarily discussed. PMID:26773872

  8. Synthesis, Biological Evaluation, and Structure–Activity Relationships of Novel Substituted N-Phenyl Ureidobenzenesulfonate Derivatives Blocking Cell Cycle Progression in S-Phase and Inducing DNA Double-Strand Breaks

    PubMed Central

    2012-01-01

    Twenty-eight new substituted N-phenyl ureidobenzenesulfonate (PUB-SO) and 18 N-phenylureidobenzenesulfonamide (PUB-SA) derivatives were prepared. Several PUB-SOs exhibited antiproliferative activity at the micromolar level against the HT-29, M21, and MCF-7 cell lines and blocked cell cycle progression in S-phase similarly to cisplatin. In addition, PUB-SOs induced histone H2AX (γH2AX) phosphorylation, indicating that these molecules induce DNA double-strand breaks. In contrast, PUB-SAs were less active than PUB-SOs and did not block cell cycle progression in S-phase. Finally, PUB-SOs 4 and 46 exhibited potent antitumor activity in HT-1080 fibrosarcoma cells grafted onto chick chorioallantoic membranes, which was similar to cisplatin and combretastatin A-4 and without significant toxicity toward chick embryos. These new compounds are members of a promising new class of anticancer agents. PMID:22694057

  9. Synthesis of pharmacologically active indoles.

    PubMed

    Hishmat, O H; Ebeid, M Y; Nakkady, S S; Fathy, M M; Mahmoud, S S

    1999-06-01

    Formylation of 6-methoxy-1-methyl and 5-methyl,2,3-diphenyl-1H-indole (Ib and IX) gave the 5- and 6- carboxaldehyde derivatives (II and X) respectively, which were treated with ethyl cyanoacetate to form the corresponding 2-cyano-3-substituted acrylic acid ethyl ester (III and XI). The latter compounds reacted with hydrazine hydrate, urea and thiourea to form the corresponding 5-amino-4-substituted 2,4,dihydropyrazol-3- one (IV), 6-indolyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidine-5-carbonitrile s (V and XII) and 6-indolyl-4-oxo-2-thixo-1,2,3,4-tetrahydropyrimidine-5-ca rbonitriles (VI and XIII). Reaction of the 5- and 6-carboxaldehyde derivatives with malononitrile afforded the 2-substituted malononitrile derivatives (VII and XIV). VII and XIV reacted readilly with aromatic ketones to give the 2-amino4,6-disubstituted nicotinonitriles (VIII a,b and XVa,b). The biological activity of compounds Ia, Ib, II, III, IX and X was tested for antiinflammatory, ulcerogenic and antispasmodic activities. PMID:10464975

  10. Synthesis and crystal structure of new dicopper(II) complexes with N,N'-bis-(dipropylenetriamine)oxamide as bridging ligand: effects of the counterions on DNA/protein-binding property and in vitro antitumor activity.

    PubMed

    Zhao, Feng-Jia; Zhao, Hong-Qin; Liu, Fang; Li, Yan-Tuan; Wu, Zhi-Yong; Yan, Cui-Wei

    2015-02-01

    Two new dicopper(II) complexes bridged by N,N'-bis(dipropylenetriamine)oxamide (H2oxdipn), namely, [Cu2(oxdipn)](pic)2(1) and [Cu2(oxdipn)(ClO4)2] (2), where pic represents picrate ion, have been synthesized and characterized by elemental analyses, molar conductance measurements, IR and electronic spectral studies, and X-ray single crystal diffraction. In both dicopper(II) complexes, the two copper(II) ions are bridged by trans-oxdipn ligand with the Cu⋯Cu separations of 5.2536(15) and 5.231(2)Å, respectively. The copper(II) ion in complex 1 has a square-planar coordination geometry, while that in 2, a square-pyramidal. Linked with classical hydrogen bonds, the molecules of complex 1 consist of a one-dimensional chain, while complex 2 molecules result in a two-dimensional structure. Numerous hydrogen bonds link complex 1 or 2 into a 2-D infinite network. In vitro cytotoxicity experiment shows that the two dicopper(II) complexes exhibit cytotoxic effects against the selected tumor cell lines. The reactivity towards herring sperm DNA (HS-DNA) and bovine serum albumin (BSA) reveals that the two dicopper(II) complexes can interact with the DNA in the mode of intercalation, and effectively quench the intrinsic fluorescence of BSA via a static mechanism. The influence of different counterions in this kind of dicopper(II) complexes on DNA/BSA-binding properties, and the in vitro cytotoxic activities was investigated. PMID:25635907

  11. Synthesis, characterization and DNA cleaving studies of new organocobaloxime derivatives.

    PubMed

    Erdem-Tuncmen, Mukadder; Karipcin, Fatma; Ozmen, Ismail

    2013-01-01

    Dioxime ligand (H2L) was synthesized by condensation reaction between 4-biphenylchloroglyoxime and 4-chloroaniline. The metal complexes of the types, [Co(HL)2(i-Pr)Py], [CoL2(i-Pr)PyB2F4] and [CoL2(i-Pr)Py(Cu(phen))2](ClO4)2 [H2L = 4-(4-chlorophenylamino)biphenylglyoxime; phen = 1,10-phenanthroline; i-Pr = isopropyl; Py = pyridine] were synthesized and characterized by elemental analysis, FT-IR, 1H NMR and magnetic susceptibility, conductivity measurements. The results of elemental analyses, IR and NMR confirmed the stoichiometry of the complexes and the formation of ligand frameworks around the metal ions. The magnetic moment measurements of the complexes indicated that the complexes are diamagnetic (low-spin d6 octahedral) except trinuclear complex. Furthermore the interaction between the dioxime ligand and its complexes with DNA has also been investigated by agarose gel electrophoresis. The trinuclear Cu2Co complex with H2O2 as a cooxidant exhibited the strongest DNA cleaving activity. PMID:23841342

  12. Coumarin heterocyclic derivatives: chemical synthesis and biological activity.

    PubMed

    Medina, Fernanda G; Marrero, Joaquín G; Macías-Alonso, Mariana; González, Magdalena C; Córdova-Guerrero, Iván; Teissier García, Ariana G; Osegueda-Robles, Soraya

    2015-09-23

    This review highlights the broad range of science that has arisen from the synthesis of coumarin-linked and fused heterocycle derivatives. Specific topics include their synthesis and biological activity. PMID:26151411

  13. Long-lived crowded-litter mice have an age-dependent increase in protein synthesis to DNA synthesis ratio and mTORC1 substrate phosphorylation

    PubMed Central

    Bruns, Danielle R.; Peelor, Frederick F.; Biela, Laurie M.; Miller, Richard A.; Hamilton, Karyn L.; Miller, Benjamin F.

    2014-01-01

    Increasing mouse litter size [crowded litter (CL)] presumably imposes a transient nutrient stress during suckling and extends lifespan through unknown mechanisms. Chronic calorically restricted and rapamycin-treated mice have decreased DNA synthesis and mTOR complex 1 (mTORC1) signaling but maintained protein synthesis, suggesting maintenance of existing cellular structures. We hypothesized that CL would exhibit similar synthetic and signaling responses to other long-lived models and, by comparing synthesis of new protein to new DNA, that insight may be gained into the potential preservation of existing cellular structures in the CL model. Protein and DNA synthesis was assessed in gastroc complex, heart, and liver of 4- and 7-mo CL mice. We also examined mTORC1 signaling in 3- and 7-mo aged animals. Compared with controls, 4-mo CL had greater DNA synthesis in gastroc complex with no differences in protein synthesis or mTORC1 substrate phosphorylation across tissues. Seven-month CL had less DNA synthesis than controls in heart and greater protein synthesis and mTORC1 substrate phosphorylation across tissues. The increased new protein-to-new DNA synthesis ratio suggests that new proteins are synthesized more so in existing cells at 7 mo, differing from 4 mo, in CL vs. controls. We propose that, in CL, protein synthesis shifts from being directed toward new cells (4 mo) to maintenance of existing cellular structures (7 mo), independently of decreased mTORC1. PMID:25205819

  14. Fractional synthesis rates of DNA and protein in rabbit skin are not correlated.

    PubMed

    Zhang, Xiao-jun; Chinkes, David L; Wu, Zhanpin; Martini, Wenjun Z; Wolfe, Robert R

    2004-09-01

    We developed a method for measurement of skin DNA synthesis, reflecting cell division, in conscious rabbits by infusing D-[U-(13)C(6)]glucose and L-[(15)N]glycine. Cutaneous protein synthesis was simultaneously measured by infusion of L-[ring-(2)H(5)]phenylalanine. Rabbits were fitted with jugular venous and carotid arterial catheters, and were studied during the infusion of an amino acid solution (10% Travasol). The fractional synthetic rate (FSR) of DNA from the de novo nucleotide synthesis pathway, a reflection of total cell division, was 3.26 +/- 0.59%/d in whole skin and 3.08 +/- 1.86%/d in dermis (P = 0.38). The de novo base synthesis pathway accounted for 76 and 60% of the total DNA FSR in whole skin and dermis, respectively; the contribution from the base salvage pathway was 24% in whole skin and 40% in dermis. The FSR of protein in whole skin was 5.35 +/- 4.42%/d, which was greater (P < 0.05) than that in dermis (2.91 +/- 2.52%/d). The FSRs of DNA and protein were not correlated (P = 0.33), indicating that cell division and protein synthesis are likely regulated by different mechanisms. This new approach enables investigations of metabolic disorders of skin diseases and regulation of skin wound healing by distinguishing the 2 principal components of skin metabolism, which are cell division and protein synthesis. PMID:15333735

  15. Purification of total DNA extracted from activated sludge.

    PubMed

    Shan, Guobin; Jin, Wenbiao; Lam, Edward K H; Xing, Xinhui

    2008-01-01

    Purification of the total DNA extracted from activated sludge samples was studied. The effects of extraction buffers and lysis treatments (lysozyme, sodium dodecyl sulfate (SDS), sonication, mechanical mill and thermal shock) on yield and purity of the total DNA extracted from activated sludge were investigated. It was found that SDS and mechanical mill were the most effective ways for cell lysis, and both gave the highest DNA yields, while by SDS and thermal shock, the purest DNA extract could be obtained. The combination of SDS with other lysis treatment, such as sonication and thermal shock, could apparently increase the DNA yields but also result in severe shearing. For the purification of the crude DNA extract, polyvinyl polypyrrolidone was used for the removal of humic contaminants. Cetyltrimethyl ammonium bromide, potassium acetate and phenol/chloroform were used to remove proteins and polysaccharides from crude DNA. Crude DNA was further purified by isopropanol precipitation. Thus, a suitable protocol was proposed for DNA extraction, yielding about 49.9 mg (total DNA)/g volatile suspended solids, and the DNA extracts were successfully used in PCR amplifications for 16S rDNA and 16S rDNA V3 region. The PCR products of 16S rDNA V3 region allowed the DGGE analysis (denatured gradient gel electrophoresis) to be possible. PMID:18572527

  16. DNA-Based Synthesis and Assembly of Organized Iron Oxide Nanostructures

    NASA Astrophysics Data System (ADS)

    Khomutov, Gennady B.

    Organized bio-inorganic and hybrid bio-organic-inorganic nanostructures consisting of iron oxide nanoparticles and DNA complexes have been formed using methods based on biomineralization, interfacial and bulk phase assembly, ligand exchange and substitution, Langmuir-Blodgett technique, DNA templating and scaffolding. Interfacially formed planar DNA complexes with water-insoluble amphiphilic polycation or intercalator Langmuir monolayers were prepared and deposited on solid substrates to form immobilized DNA complexes. Those complexes were then used for the synthesis of organized DNA-based iron oxide nanostructures. Planar net-like and circular nanostructures of magnetic Fe3O4 nanoparticles were obtained via interaction of cationic colloid magnetite nanoparticles with preformed immobilized DNA/amphiphilic polycation complexes of net-like and toroidal morphologies. The processes of the generation of iron oxide nanoparticles in immobilized DNA complexes via redox synthesis with various iron sources of biological (ferritin) and artificial (FeCl3) nature have been studied. Bulk-phase complexes of magnetite nanoparticles with biomolecular ligands (DNA, spermine) were formed and studied. Novel nano-scale organized bio-inorganic nanostructures - free-floating sheet-like spermine/magnetite nanoparticle complexes and DNA/spermine/magnetite nanoparticle complexes were synthesized in bulk aqueous phase and the effect of DNA molecules on the structure of complexes was discovered.

  17. Integrity and Biological Activity of DNA after UV Exposure

    NASA Astrophysics Data System (ADS)

    Lyon, Delina Y.; Monier, Jean-Michel; Dupraz, Sébastien; Freissinet, Caroline; Simonet, Pascal; Vogel, Timothy M.

    2010-04-01

    The field of astrobiology lacks a universal marker with which to indicate the presence of life. This study supports the proposal to use nucleic acids, specifically DNA, as a signature of life (biosignature). In addition to its specificity to living organisms, DNA is a functional molecule that can confer new activities and characteristics to other organisms, following the molecular biology dogma, that is, DNA is transcribed to RNA, which is translated into proteins. Previous criticisms of the use of DNA as a biosignature have asserted that DNA molecules would be destroyed by UV radiation in space. To address this concern, DNA in plasmid form was deposited onto different surfaces and exposed to UVC radiation. The surviving DNA was quantified via the quantitative polymerase chain reaction (qPCR). Results demonstrate increased survivability of DNA attached to surfaces versus non-adsorbed DNA. The DNA was also tested for biological activity via transformation into the bacterium Acinetobacter sp. and assaying for antibiotic resistance conferred by genes encoded by the plasmid. The success of these methods to detect DNA and its gene products after UV exposure (254 nm, 3.5 J/m2s) not only supports the use of the DNA molecule as a biosignature on mineral surfaces but also demonstrates that the DNA retained biological activity.

  18. Integrity and biological activity of DNA after UV exposure.

    PubMed

    Lyon, Delina Y; Monier, Jean-Michel; Dupraz, Sébastien; Freissinet, Caroline; Simonet, Pascal; Vogel, Timothy M

    2010-04-01

    The field of astrobiology lacks a universal marker with which to indicate the presence of life. This study supports the proposal to use nucleic acids, specifically DNA, as a signature of life (biosignature). In addition to its specificity to living organisms, DNA is a functional molecule that can confer new activities and characteristics to other organisms, following the molecular biology dogma, that is, DNA is transcribed to RNA, which is translated into proteins. Previous criticisms of the use of DNA as a biosignature have asserted that DNA molecules would be destroyed by UV radiation in space. To address this concern, DNA in plasmid form was deposited onto different surfaces and exposed to UVC radiation. The surviving DNA was quantified via the quantitative polymerase chain reaction (qPCR). Results demonstrate increased survivability of DNA attached to surfaces versus non-adsorbed DNA. The DNA was also tested for biological activity via transformation into the bacterium Acinetobacter sp. and assaying for antibiotic resistance conferred by genes encoded by the plasmid. The success of these methods to detect DNA and its gene products after UV exposure (254 nm, 3.5 J/m(2)s) not only supports the use of the DNA molecule as a biosignature on mineral surfaces but also demonstrates that the DNA retained biological activity. PMID:20446869

  19. Further Studies on Bacteriophage T4 DNA Synthesis in Sucrose-Plasmolyzed Cells

    PubMed Central

    Stafford, Mary E.; Reddy, G. Prem Veer; Mathews, Christopher K.

    1977-01-01

    This paper describes several technical improvements in the sucrose-plasmolyzed cell system used in earlier experiments on DNA synthesis in situ with Escherichia coli infected by DNA-defective mutants of bacteriophage T4 (W. L. Collinsworth and C. K. Mathews, J. Virol. 13:908-915, 1974). Using this system, which is based primarily on that of M. G. Wovcha et al. (Proc. Natl. Acad. Sci. U.S.A. 70:2196-2200, 1973), we reinvestigated the properties of mutants bearing lesions in genes 1, 41, and 62, and we resolved some disagreements with data reported from that laboratory. We also asked whether the DNA-delay phenotype of T4 mutants is related to possible early leakage of DNA precursors from infected cells. Such cells display defective DNA synthesis in situ, even when ample DNA precursors are made available. Thus, the lesions associated with these mutations seem to manifest themselves at the level of macromolecular metabolism. Similarly, we examined an E. coli mutant defective in its ability to support T4 production, apparently because of a lesion affecting DNA synthesis (L. Simon et al., Nature [London] 252:451-455). In the plasmolyzed cell system, reduced nucleotide incorporation is seen, indicating also that the genetic defect does not involve DNA precursor synthesis. The plasmolyzed cell system incorporates deoxynucleotide 5′-monophosphates into DNA severalfold more rapidly than the corresponding 5′-triphosphates. This is consistent with the idea that DNA precursor-synthesizing enzymes are functionally organized to shuttle substrates to their sites of utilization. PMID:328926

  20. Perylenequinones: Isolation, Synthesis, and Biological Activity

    PubMed Central

    Mulrooey, Carol A.; O'Brien, Erin M.; Morgan, Barbara J.

    2013-01-01

    The perylenequinones are a novel class of natural products characterized by pentacyclic conjugated chromophore giving rise to photoactivity. Potentially useful light-activated biological activity, targeting protein kinase C (PKC), has been identified for several of the natural products. Recently discovered new members of this class of compound, as well as several related phenanthroperylenequinones, are reviewed. Natural product modifications that improve biological profiles, and avenues for the total synthesis of analogs, which are not available from the natural product series, are outlined. An overview of structure/function relationships is provided. PMID:24039544

  1. Inhibitor of DNA synthesis is present in normal chicken serum

    SciTech Connect

    Franklin, R.A.; Davila, D.R.; Westly, H.J.; Kelley, K.W.

    1986-03-05

    The authors have found that heat-inactivated serum (57/sup 0/C for 1 hour) from normal chickens reduces the proliferation of mitogen-stimulated chicken and murine splenocytes as well as some transformed mammalian lymphoblastoid cell lines. Greater than a 50% reduction in /sup 3/H-thymidine incorporation was observed when concanavalin A (Con A)-activated chicken splenocytes that were cultured in the presence of 10% autologous or heterologous serum were compared to mitogen-stimulated cells cultured in the absence of serum. Normal chicken serum (10%) also caused greater than 95% suppression of /sup 3/H-thymidine incorporation by bovine (EBL-1 and BL-3) and gibbon ape (MLA 144) transformed lymphoblastoid cell lines. The only cell line tested that was not inhibited by chicken serum was an IL-2-dependent, murine cell line. Chicken serum also inhibited both /sup 3/H-thymidine incorporation and IL-2 synthesis by Con A-activated murine splenocytes. Suppression was caused by actions other than cytotoxicity because viability of chicken splenocytes was unaffected by increasing levels of chicken serum. Furthermore, dialyzed serum retained its activity, which suggested that thymidine in the serum was not inhibiting uptake of radiolabeled thymidine. Suppressive activity was not due to adrenal glucocorticoids circulating in plasma because neither physiologic nor pharmacologic doses of corticosterone had inhibitory effects on mitogen-stimulated chicken splenocytes. These data demonstrate that an endogenous factor that is found in normal chicken serum inhibits proliferation of T-cells from chickens and mice as well as some transformed mammalian lymphoblastoid cell lines.

  2. Genomic assay reveals tolerance of DNA damage by both translesion DNA synthesis and homology-dependent repair in mammalian cells.

    PubMed

    Izhar, Lior; Ziv, Omer; Cohen, Isadora S; Geacintov, Nicholas E; Livneh, Zvi

    2013-04-16

    DNA lesions can block replication forks and lead to the formation of single-stranded gaps. These replication complications are mitigated by DNA damage tolerance mechanisms, which prevent deleterious outcomes such as cell death, genomic instability, and carcinogenesis. The two main tolerance strategies are translesion DNA synthesis (TLS), in which low-fidelity DNA polymerases bypass the blocking lesion, and homology-dependent repair (HDR; postreplication repair), which is based on the homologous sister chromatid. Here we describe a unique high-resolution method for the simultaneous analysis of TLS and HDR across defined DNA lesions in mammalian genomes. The method is based on insertion of plasmids carrying defined site-specific DNA lesions into mammalian chromosomes, using phage integrase-mediated integration. Using this method we show that mammalian cells use HDR to tolerate DNA damage in their genome. Moreover, analysis of the tolerance of the UV light-induced 6-4 photoproduct, the tobacco smoke-induced benzo[a]pyrene-guanine adduct, and an artificial trimethylene insert shows that each of these three lesions is tolerated by both TLS and HDR. We also determined the specificity of nucleotide insertion opposite these lesions during TLS in human genomes. This unique method will be useful in elucidating the mechanism of DNA damage tolerance in mammalian chromosomes and their connection to pathological processes such as carcinogenesis. PMID:23530190

  3. Escherichia coli DnaE Polymerase Couples Pyrophosphatase Activity to DNA Replication

    PubMed Central

    Lapenta, Fabio; Montón Silva, Alejandro; Brandimarti, Renato; Lanzi, Massimiliano; Gratani, Fabio Lino; Vellosillo Gonzalez, Perceval; Perticarari, Sofia; Hochkoeppler, Alejandro

    2016-01-01

    DNA Polymerases generate pyrophosphate every time they catalyze a step of DNA elongation. This elongation reaction is generally believed as thermodynamically favoured by the hydrolysis of pyrophosphate, catalyzed by inorganic pyrophosphatases. However, the specific action of inorganic pyrophosphatases coupled to DNA replication in vivo was never demonstrated. Here we show that the Polymerase-Histidinol-Phosphatase (PHP) domain of Escherichia coli DNA Polymerase III α subunit features pyrophosphatase activity. We also show that this activity is inhibited by fluoride, as commonly observed for inorganic pyrophosphatases, and we identified 3 amino acids of the PHP active site. Remarkably, E. coli cells expressing variants of these catalytic residues of α subunit feature aberrant phenotypes, poor viability, and are subject to high mutation frequencies. Our findings indicate that DNA Polymerases can couple DNA elongation and pyrophosphate hydrolysis, providing a mechanism for the control of DNA extension rate, and suggest a promising target for novel antibiotics. PMID:27050298

  4. Synthesis, spectral investigations, antimicrobial activity and DNA-binding studies of novel charge transfer complex of 1,10-phenanthroline as an electron donor with π-acceptor p-Nitrophenol

    NASA Astrophysics Data System (ADS)

    Khan, Ishaat M.; Ahmad, Afaq

    2010-08-01

    Proton or charge transfer (CT) complex of donor, 1,10-phenanthroline (Phen) with π-acceptor, p-Nitrophenol (PNP) has been studied spectrophotometrically in methanol at room temperature. The binding of the CT complex with calf thymus (ct) DNA has been investigated by fluorescence spectrum, to establish the ability of the CT complex of its interaction with DNA. Stern-Volmer quenching constant ( Ksv) has also been calculated. The formation constant ( KCT), molar extinction coefficient ( ɛCT), free energy (Δ Go) and stoichiometric ratio of the CT complex have been determined by Benesi-Hildebrand equation. The stoichiometry was found to be 1:1. The CT complex was screened for its pharmacology as antibacterial and antifungal activity against various bacterial and fungal strains, showing excellent antibacterial and antifungal activity. The newly synthesized CT complex has been characterized by FTIR spectra, elemental analysis, 1H NMR, electronic absorption spectra. TGA-DTA studies were also carried out to check the stability of CT complex.

  5. Engineered DNA ligases with improved activities in vitro.

    PubMed

    Wilson, Robert H; Morton, Susan K; Deiderick, Heather; Gerth, Monica L; Paul, Hayden A; Gerber, Ilana; Patel, Ankita; Ellington, Andrew D; Hunicke-Smith, Scott P; Patrick, Wayne M

    2013-07-01

    The DNA ligase from bacteriophage T4 is one of the most widely used enzymes in molecular biology. It has evolved to seal single-stranded nicks in double-stranded DNA, but not to join double-stranded fragments with cohesive or blunt ends. Its poor activity in vitro, particularly with blunt-ended substrates, can lead to failed or sub-optimal experimental outcomes. We have fused T4 DNA ligase to seven different DNA-binding proteins, including eukaryotic transcription factors, bacterial DNA repair proteins and archaeal DNA-binding domains. Representatives from each of these classes improved the activity of T4 DNA ligase, by up to 7-fold, in agarose gel-based screens for cohesive- and blunt-ended fragment joining. Overall, the most active variants were p50-ligase (i.e. NF-κB p50 fused to T4 DNA ligase) and ligase-cTF (T4 DNA ligase fused to an artificial, chimeric transcription factor). Ligase-cTF out-performed T4 DNA ligase by ∼160% in blunt end 'vector + insert' cloning assays, and p50-ligase showed an improvement of a similar magnitude when it was used to construct a library for Illumina sequencing. The activity of the Escherichia coli DNA ligase was also enhanced by fusion to p50. Together, these results suggest that our protein design strategy is a generalizable one for engineering improved DNA ligases. PMID:23754529

  6. Flexible double-headed cytosine-linked 2'-deoxycytidine nucleotides. Synthesis, polymerase incorporation to DNA and interaction with DNA methyltransferases.

    PubMed

    Kielkowski, Pavel; Cahová, Hana; Pohl, Radek; Hocek, Michal

    2016-03-15

    New types of double-headed 2'-deoxycytidine 5'-O-triphosphates (dC(XC)TPs) bearing another cytosine or 5-fluorocytosine linked through a flexible propargyl, homopropargyl or pent-1-ynyl linker to position 5 were prepared by the aqueous Sonogashira cross-coupling reactions of 5-iodo-dCTP with the corresponding (fluoro)cytosine-alkynes. The modified dC(XC)TPs were good substrates for DNA polymerases and were used for enzymatic synthesis of cytosine-functionalized DNA by primer extension or PCR. The cytosine- or fluorocytosine-linked DNA probes did not significantly inhibit DNA methyltransferases and did not cross-link to these proteins. PMID:26899597

  7. Mutations for Worse or Better: Low-Fidelity DNA Synthesis by SOS DNA Polymerase V Is a Tightly Regulated Double-Edged Sword.

    PubMed

    Jaszczur, Malgorzata; Bertram, Jeffrey G; Robinson, Andrew; van Oijen, Antoine M; Woodgate, Roger; Cox, Michael M; Goodman, Myron F

    2016-04-26

    1953, the year of Watson and Crick, bore witness to a less acclaimed yet highly influential discovery. Jean Weigle demonstrated that upon infection of Escherichia coli, λ phage deactivated by UV radiation, and thus unable to form progeny, could be reactivated by irradiation of the bacterial host. Evelyn Witkin and Miroslav Radman later revealed the presence of the SOS regulon. The more than 40 regulon genes are repressed by LexA protein and induced by the coproteolytic cleavage of LexA, catalyzed by RecA protein bound to single-stranded DNA, the RecA* nucleoprotein filament. Several SOS-induced proteins are engaged in repairing both cellular and extracellular damaged DNA. There's no "free lunch", however, because error-free repair is accompanied by error-prone translesion DNA synthesis (TLS), involving E. coli DNA polymerase V (UmuD'2C) and RecA*. This review describes the biochemical mechanisms of pol V-mediated TLS. pol V is active only as a mutasomal complex, pol V Mut = UmuD'2C-RecA-ATP. RecA* donates a single RecA subunit to pol V. We highlight three recent insights. (1) pol V Mut has an intrinsic DNA-dependent ATPase activity that governs polymerase binding and dissociation from DNA. (2) Active and inactive states of pol V Mut are determined at least in part by the distinct interactions between RecA and UmuC. (3) pol V is activated by RecA*, not at a blocked replisome, but at the inner cell membrane. PMID:27043933

  8. Loss of Smu1 function de-represses DNA replication and over-activates ATR-dependent replication checkpoint.

    PubMed

    Ren, Laifeng; Liu, Yao; Guo, Liandi; Wang, Haibin; Ma, Lei; Zeng, Ming; Shao, Xin; Yang, Chunlei; Tang, Yaxiong; Wang, Lei; Liu, Cong; Li, Mingyuan

    2013-06-28

    Smu1 is an evolutionarily conserved gene that encodes a member of the WD40-repeat protein family. Disruption of Smu1 function leads to multiple cellular defects including chromosomal instability, aberrant DNA replication and alternative RNA splicing events. In this paper, we show that Smu1 is a chromatin-bound protein that functions as a negative regulator of DNA replication. Knockdown of Smu1 gene expression promotes excessive incorporation of dNTP analogue, implicating the acceleration of DNA synthesis. Smu1-silenced cells show an excessive activation of replication checkpoint in response to ultraviolate (UV) or hydroxyurea treatment, indicating that abnormal stimulation of DNA replication leads to instability of genomic structure. Hence, we propose that Smu1 participates in the protection of genomic integrity by negatively regulating the process of DNA synthesis. PMID:23727573

  9. Rational design, synthesis, and DNA binding properties of novel sequence-selective peptidyl congeners of ametantrone.

    PubMed

    Gianoncelli, Alessandra; Basili, Serena; Scalabrin, Matteo; Sosic, Alice; Moro, Stefano; Zagotto, Giuseppe; Palumbo, Manlio; Gresh, Nohad; Gatto, Barbara

    2010-07-01

    Natural and synthetic compounds characterized by an anthraquinone nucleus represent an important class of anti-neoplastic agents, the mechanism of action of which is related to intercalation into DNA. Ametantrone (AM) is a synthetic 9,10-anthracenedione bearing two (hydroxyethylamino)ethylamino residues at positions 1 and 4; along with other anthraquinones and anthracyclines, it shares a polycyclic intercalating moiety and charged side chains that stabilize DNA binding. All these drugs elicit adverse side effects, which represent a challenge for antitumor chemotherapy. In the present work the structure of AM was augmented with appropriate groups that target well-defined base pairs in the major groove. These should endow AM with DNA sequence selectivity. We describe the rationale for the synthesis and the evaluation of activity of a new series of compounds in which the planar anthraquinone is conjugated at positions 1 and 4 through the side chains of AM or other bioisosteric linkers to appropriate dipeptides. The designed novel AM derivatives were shown to selectively stabilize two oligonucleotide duplexes that both have a palindromic GC-rich hexanucleotide core, but their stabilizing effects on a random DNA sequence was negligible. In the case of the most effective compound, the 1,4-bis-[Gly-(L-Lys)] derivative of AM, the experimental results confirm the predictions of earlier theoretical computations. In contrast, AM had equal stabilizing effects on all three sequences and showed no preferential binding. This novel peptide derivative can be classified as a strong binder regarding the sequences that it selectively targets, possibly opening the exploitation of less cytotoxic conjugates of AM to the targeted treatment of oncological and viral diseases. PMID:20458714

  10. DNA polymerase beta-catalyzed-PCNA independent long patch base excision repair synthesis: a mechanism for repair of oxidatively damaged DNA ends in post-mitotic brain.

    PubMed

    Wei, Wei; Englander, Ella W

    2008-11-01

    Oxidative DNA damage incidental to normal respiratory metabolism poses a particular threat to genomes of highly metabolic-long lived cells. We show that post-mitotic brain has capacity to repair oxidatively damaged DNA ends, which are targets of the long patch (LP) base excision repair (BER) subpathway. LP-BER relies, in part, on proteins associated with DNA replication, including proliferating cell nuclear antigen and is inherent to proliferating cells. Nonetheless, repair products are generated with brain extracts, albeit at slow rates, in the case of 5'-DNA ends modeled with tetrahydrofuran (THF). THF at this position is refractory to DNA polymerase beta 5'-deoxyribose 5-phosphate lyase activity and drives repair into the LP-BER subpathway. Comparison of repair of 5'-THF-blocked termini in the post-mitotic rat brain and proliferative intestinal mucosa, revealed that in mucosa, resolution of damaged 5'-termini is accompanied by formation of larger repair products. In contrast, adducts targeted by the single nucleotide BER are proficiently repaired with both extracts. Our findings reveal mechanistic differences in BER processes selective for the brain versus proliferative tissues. The differences highlight the physiological relevance of the recently proposed 'Hit and Run' mechanism of alternating cleavage/synthesis steps, in the proliferating cell nuclear antigen-independent LP-BER process. PMID:18752643

  11. Synthesis, spectroscopic characterization, DNA interaction and biological activities of Mn(II), Co(II), Ni(II) and Cu(II) complexes with [(1H-1,2,4-triazole-3-ylimino)methyl]naphthalene-2-ol

    NASA Astrophysics Data System (ADS)

    Gaber, Mohamed; El-Wakiel, Nadia A.; El-Ghamry, Hoda; Fathalla, Shaimaa K.

    2014-11-01

    Manganese(II), cobalt(II), nickel(II) and copper(II) complexes of [(1H-1,2,4-triazole-3-ylimino)methyl]naphthalene-2-ol have been synthesized. The structure of complexes have been characterized by elemental analysis, molar conductance, magnetic moment measurements and spectral (IR, 1H NMR, EI-mass, UV-Vis and ESR), and thermal studies. The results showed that the chloro and nitrato Cu(II) complexes have octahedral geometry while Ni(II), Co(II) and Mn(II) complexes in addition to acetato Cu(II) complex have tetrahedral geometry. The possible structures of the metal complexes have been computed using the molecular mechanic calculations using the hyper chem. 8.03 molecular modeling program to confirm the proposed structures. The kinetic and thermodynamic parameters of the thermal decomposition steps were calculated from the TG curves. The binding modes of the complexes with DNA have been investigated by UV-Vis absorption titration. The results showed that the mode of binding of the complexes to DNA is intercalative or non-intercalative binding modes. Schiff base and its metal complexes have been screened for their in vitro antimicrobial activities against Gram positive bacteria (Staphylococcus aureus), Gram negative bacteria (Escherichia coli and Pesudomonas aeruginosa), fungi (Asperigllus flavus and Mucer) and yeast (Candida albicans and Malassezia furfur).

  12. cis-active elements from mouse chromosomal DNA suppress simian virus 40 DNA replication.

    PubMed Central

    Hartl, M; Willnow, T; Fanning, E

    1990-01-01

    Simian virus 40 (SV40)-containing DNA was rescued after the fusion of SV40-transformed VLM cells with permissive COS1 monkey cells and cloned, and prototype plasmid clones were characterized. A 2-kilobase mouse DNA fragment fused with the rescued SV40 DNA, and derived from mouse DNA flanking the single insert of SV40 DNA in VLM cells, was sequenced. Insertion of the intact rescued mouse sequence, or two nonoverlapping fragments of it, into wild-type SV40 plasmid DNA suppressed replication of the plasmid in TC7 monkey cells, although the plasmids expressed replication-competent T antigen. Rat cells were transformed with linearized wild-type SV40 plasmid DNA with or without fragments of the mouse DNA in cis. Although all of the rat cell lines expressed approximately equal amounts of T antigen and p53, transformants carrying SV40 DNA linked to either of the same two replication suppressor fragments produced significantly less free SV40 DNA after fusion with permissive cells than those transformed by SV40 DNA without a cellular insert or with a cellular insert lacking suppressor activity. The results suggest that two independent segments of cellular DNA act in cis to suppress SV40 replication in vivo, either as a plasmid or integrated in chromosomal DNA. Images PMID:2159549

  13. CGG repeats associated with DNA instability and chromosome fragility form structures that block DNA synthesis in vitro.

    PubMed Central

    Usdin, K; Woodford, K J

    1995-01-01

    A large increase in the length of a CGG tandem array is associated with a number of triplet expansion diseases, including fragile X syndrome, the most common cause of heritable mental retardation in humans. Expansion results in the appearance of a fragile site on the X chromosome in the region of the CGG array. We show here that CGG repeats readily form a series of barriers to DNA synthesis in vitro. There barriers form only when the (CGG)n strand is used as the template, are K(+)-dependent, template concentration-independent, and involve hydrogen bonding between guanines. Chemical modification experiments suggest these blocks to DNA synthesis result from the formation of a series of intrastrand tetraplexes. A number of lines of evidence suggest that both triplet expansion and chromosome fragility are the result of replication defects. Our data are discussed in the light of such evidence. Images PMID:7479085

  14. Efficient Synthesis of Topologically Linked Three-Ring DNA Catenanes.

    PubMed

    Li, Qi; Wu, Guangqi; Wu, Wei; Liang, Xingguo

    2016-06-16

    Topologically controlled DNA catenanes are promising elements for the construction of molecular machines but present a significant effort in DNA nanotechnology. We report an efficient approach for preparing linear three-ring catenanes (L3C) composed of single-stranded DNA. The linking number was strictly controlled by using short complementary regions (6 nt) between each two DNA rings. High efficiency of forming three-ring catenanes (yield as high as 63 %) was obtained by using an 80 nt oligonucleotide as the scaffold to draw close the three pre-rings for hybridization between short complementary DNA. After assembly, three pre-rings were closed by DNA ligation using three 12 nt oligonucleotides as splints to form interlocked three-ring catenanes. L3C nanostructures were imaged in air by AFM: the catenane exhibited a smooth circular shape and was arranged in a line with well-defined structure, as expected. PMID:27214092

  15. Cell division and subsequent radicle protrusion in tomato seeds are inhibited by osmotic stress but DNA synthesis and formation of microtubular cytoskeleton are not.

    PubMed

    de Castro, R D; van Lammeren, A A; Groot, S P; Bino, R J; Hilhorst, H W

    2000-02-01

    We studied cell cycle events in embryos of tomato (Lycopersicon esculentum Mill. cv Moneymaker) seeds during imbibition in water and during osmoconditioning ("priming") using both quantitative and cytological analysis of DNA synthesis and beta-tubulin accumulation. Most embryonic nuclei of dry, untreated control seeds were arrested in the G(1) phase of the cell cycle. This indicated the absence of DNA synthesis (the S-phase), as confirmed by the absence of bromodeoxyuridine incorporation. In addition, beta-tubulin was not detected on western blots and microtubules were not present. During imbibition in water, DNA synthesis was activated in the radicle tip and then spread toward the cotyledons, resulting in an increase in the number of nuclei in G(2). Concomitantly, beta-tubulin accumulated and was assembled into microtubular cytoskeleton networks. Both of these cell cycle events preceded cell expansion and division and subsequent growth of the radicle through the seed coat. The activation of DNA synthesis and the formation of microtubular cytoskeleton networks were also observed throughout the embryo when seeds were osmoconditioned. However, this pre-activation of the cell cycle appeared to become arrested in the G(2) phase since no mitosis was observed. The pre-activation of cell cycle events in osmoconditioned seeds appeared to be correlated with enhanced germination performance during re-imbibition in water. PMID:10677426

  16. Isolation of Chinese hamster ovary cells with reduced unscheduled DNA synthesis after UV irradiation

    SciTech Connect

    Stefanini, M.; Reuser, A.; Bootsma, D.

    1982-09-01

    A simple procedure has been worked out to obtain UV-sensitive mutants of Chinese hamster ovary (CHO) cells. In this procedure, conventional mutagenesis is followed by BrdU--light treatment to enrich the population for UV-sensitive cells. Colonies that are allowed to form subsequently are duplicated by replica plating and screened on the master plate for their UV sensitivity and their capacity to carry out UV-induced DNA repair synthesis. Putative mutants are isolated from the replica. With this combination of methods, we succeeded in isolating CHO mutants with an 85-95% reduced level of UV-induced DNA synthesis in combination with an increased UV sensitivity.

  17. Stimulation of adrenal DNA synthesis in cadmium-treated male rats

    SciTech Connect

    Nishiyama, S.; Nakamura, K.

    1984-07-01

    Cadmium chloride (CdCl2) at a dose of 1 mg/kg body wt was injected into male rats of the Wistar strain, weighing 250 g on the average, twice a day (12-hr intervals) for 7 consecutive days. DNA and RNA contents and (/sup 3/H)-thymidine and (/sup 3/H)-uridine incorporation into the acid-insoluble fraction significantly increased in the adrenals of rats treated with Cd for 2 and 7 consecutive days. Adrenal protein content and weight also significantly increased. These results indicate that continued treatment with Cd stimulates DNA and RNA synthesis in the adrenal cortex, which in turn results in the increase of the total protein contents of the adrenal gland and subsequently in the enlargement of the gland. Serum adrenocorticotrophin (ACTH) and insulin levels in Cd-treated rats were not higher than control levels, suggesting that the stimulation of DNA synthesis in the adrenals of Cd-treated rats is due to factor(s) other than serum ACTH and insulin. Treatment with Cd inhibited DNA synthesis in cultured adrenocortical cells at concentrations of 10(-4) to 10(-8) M, suggesting that Cd does not directly stimulate DNA synthesis in the adrenal gland in vivo. Although the adrenal gland became enlarged, the total adrenal corticosterone content decreased significantly. The decrease of total adrenal corticosterone content may be due to the fall in serum ACTH level of Cd-treated rats.

  18. In vivo measurement of DNA synthesis rates of colon epithelial cells in carcinogenesis

    SciTech Connect

    Kim, Sylvia Jeewon; Turner, Scott; Killion, Salena; Hellerstein, Marc K. . E-mail: march@nature.berkeley.edu

    2005-05-27

    We describe here a highly sensitive technique for measuring DNA synthesis rates of colon epithelial cells in vivo. Male SD rats were given {sup 2}H{sub 2}O (heavy water). Colon epithelial cells were isolated, DNA was extracted, hydrolyzed to deoxyribonucleosides, and the deuterium enrichment of the deoxyribose moiety was determined by gas chromatographic/mass spectrometry. Turnover time of colon crypts and the time for migration of cells from basal to top fraction of the crypts were measured. These data were consistent with cell cycle analysis and bromodeoxyuridine labeling. By giving different concentrations of a promoter, dose-dependent increases in DNA synthesis rates were detected, demonstrating the sensitivity of the method. Administration of a carcinogen increased DNA synthesis rates cell proliferation in all fractions of the crypt. In conclusion, DNA synthesis rates of colon epithelial cells can be measured directly in vivo using stable-isotope labeling. Potential applications in humans include use as a biomarker for cancer chemoprevention studies.

  19. The Transcription Factor TFII-I Promotes DNA Translesion Synthesis and Genomic Stability

    PubMed Central

    Fattah, Farjana J.; Hara, Kodai; Fattah, Kazi R.; Yang, Chenyi; Wu, Nan; Warrington, Ross; Chen, David J.; Zhou, Pengbo; Boothman, David A.; Yu, Hongtao

    2014-01-01

    Translesion synthesis (TLS) enables DNA replication through damaged bases, increases cellular DNA damage tolerance, and maintains genomic stability. The sliding clamp PCNA and the adaptor polymerase Rev1 coordinate polymerase switching during TLS. The polymerases Pol η, ι, and κ insert nucleotides opposite damaged bases. Pol ζ, consisting of the catalytic subunit Rev3 and the regulatory subunit Rev7, then extends DNA synthesis past the lesion. Here, we show that Rev7 binds to the transcription factor TFII-I in human cells. TFII-I is required for TLS and DNA damage tolerance. The TLS function of TFII-I appears to be independent of its role in transcription, but requires homodimerization and binding to PCNA. We propose that TFII-I bridges PCNA and Pol ζ to promote TLS. Our findings extend the general principle of component sharing among divergent nuclear processes and implicate TLS deficiency as a possible contributing factor in Williams-Beuren syndrome. PMID:24922507

  20. Solid-phase synthesis of DNA binding polyamides on oxime resin.

    PubMed

    Belitsky, J M; Nguyen, D H; Wurtz, N R; Dervan, Peter B

    2002-08-01

    Control of the energetics and specificity of DNA binding polyamides is necessary for inhibition of protein-DNA complex formation and gene regulation studies. Typically, solid-phase methods using Boc monomers for synthesis have depended on Boc-beta-Ala-PAM resin which affords a beta-alanine-Dp tail at the C-terminus, after cleavage with N,N-dimethylaminopropylamine (Dp). To address the energetic consequences of this tail for DNA minor groove binding, we describe an alternative solid phase method employing the Kaiser oxime resin which allows the synthesis of polyamides with incrementally shortened C-terminal tails. Polyamides without Dp and having methyl amide tails rather than beta-alanine show similar affinity relative to the standard beta-Dp tail. The truncated tail diminishes the A,T base pair energetic preference of the beta-Dp tail which will allow a greater variety of DNA sequences to be targeted by hairpin polyamides. PMID:12057666

  1. Synthesis and cell-free cloning of DNA libraries using programmable microfluidics

    PubMed Central

    Yehezkel, Tuval Ben; Rival, Arnaud; Raz, Ofir; Cohen, Rafael; Marx, Zipora; Camara, Miguel; Dubern, Jean-Frédéric; Koch, Birgit; Heeb, Stephan; Krasnogor, Natalio; Delattre, Cyril; Shapiro, Ehud

    2016-01-01

    Microfluidics may revolutionize our ability to write synthetic DNA by addressing several fundamental limitations associated with generating novel genetic constructs. Here we report the first de novo synthesis and cell-free cloning of custom DNA libraries in sub-microliter reaction droplets using programmable digital microfluidics. Specifically, we developed Programmable Order Polymerization (POP), Microfluidic Combinatorial Assembly of DNA (M-CAD) and Microfluidic In-vitro Cloning (MIC) and applied them to de novo synthesis, combinatorial assembly and cell-free cloning of genes, respectively. Proof-of-concept for these methods was demonstrated by programming an autonomous microfluidic system to construct and clone libraries of yeast ribosome binding sites and bacterial Azurine, which were then retrieved in individual droplets and validated. The ability to rapidly and robustly generate designer DNA molecules in an autonomous manner should have wide application in biological research and development. PMID:26481354

  2. Synthesis and cell-free cloning of DNA libraries using programmable microfluidics.

    PubMed

    Ben Yehezkel, Tuval; Rival, Arnaud; Raz, Ofir; Cohen, Rafael; Marx, Zipora; Camara, Miguel; Dubern, Jean-Frédéric; Koch, Birgit; Heeb, Stephan; Krasnogor, Natalio; Delattre, Cyril; Shapiro, Ehud

    2016-02-29

    Microfluidics may revolutionize our ability to write synthetic DNA by addressing several fundamental limitations associated with generating novel genetic constructs. Here we report the first de novo synthesis and cell-free cloning of custom DNA libraries in sub-microliter reaction droplets using programmable digital microfluidics. Specifically, we developed Programmable Order Polymerization (POP), Microfluidic Combinatorial Assembly of DNA (M-CAD) and Microfluidic In-vitro Cloning (MIC) and applied them to de novo synthesis, combinatorial assembly and cell-free cloning of genes, respectively. Proof-of-concept for these methods was demonstrated by programming an autonomous microfluidic system to construct and clone libraries of yeast ribosome binding sites and bacterial Azurine, which were then retrieved in individual droplets and validated. The ability to rapidly and robustly generate designer DNA molecules in an autonomous manner should have wide application in biological research and development. PMID:26481354

  3. Synthesis and biological activity of polyprenols.

    PubMed

    Zhang, Qiong; Huang, Lixin; Zhang, Caihong; Xie, Pujun; Zhang, Yaolei; Ding, Shasha; Xu, Feng

    2015-10-01

    The polyprenols and their derivatives are highlighted in this study. These lipid linear polymers of isoprenoid residues are widespread in nature from bacteria to human cells. This review primarily presents the synthesis and biological activities of polyprenyl derivatives. Attention is focused on the synthesis and biological activity of dolichols, polyprenyl ester derivatives and polyprenyl amines. Other polyprenyl derivatives, such as oxides of polyprenols, aromatic polyprenols, polyprenyl bromide and polyprenyl sulphates, are mentioned. It is noted that polyprenyl phosphates and polyprenyl-linked glycosylation have better antibacterial, gene therapy and immunomodulating performance, whereas polyprenyl amines have better for antibacterial and antithrombotic activity. Dolichols, polyprenyl acetic esters, polyprenyl phosphates and polyprenyl-linked glycosylation have pharmacological anti-tumour effects. Finally, the postulated prospect of polyprenols and their derivatives are discussed. Further in vivo studies on the above derivatives are needed. The compatibility of polyprenols and their derivatives with other drugs should be studied, and new preparations of polyprenyl derivatives, such as hydrogel glue and release-controlled drugs, are suggested for future research and development. PMID:26358482

  4. A DNA enzyme with N-glycosylase activity

    NASA Technical Reports Server (NTRS)

    Sheppard, T. L.; Ordoukhanian, P.; Joyce, G. F.

    2000-01-01

    In vitro evolution was used to develop a DNA enzyme that catalyzes the site-specific depurination of DNA with a catalytic rate enhancement of about 10(6)-fold. The reaction involves hydrolysis of the N-glycosidic bond of a particular deoxyguanosine residue, leading to DNA strand scission at the apurinic site. The DNA enzyme contains 93 nucleotides and is structurally complex. It has an absolute requirement for a divalent metal cation and exhibits optimal activity at about pH 5. The mechanism of the reaction was confirmed by analysis of the cleavage products by using HPLC and mass spectrometry. The isolation and characterization of an N-glycosylase DNA enzyme demonstrates that single-stranded DNA, like RNA and proteins, can form a complex tertiary structure and catalyze a difficult biochemical transformation. This DNA enzyme provides a new approach for the site-specific cleavage of DNA molecules.

  5. Accurate multiplex gene synthesis from programmable DNA microchips

    NASA Astrophysics Data System (ADS)

    Tian, Jingdong; Gong, Hui; Sheng, Nijing; Zhou, Xiaochuan; Gulari, Erdogan; Gao, Xiaolian; Church, George

    2004-12-01

    Testing the many hypotheses from genomics and systems biology experiments demands accurate and cost-effective gene and genome synthesis. Here we describe a microchip-based technology for multiplex gene synthesis. Pools of thousands of `construction' oligonucleotides and tagged complementary `selection' oligonucleotides are synthesized on photo-programmable microfluidic chips, released, amplified and selected by hybridization to reduce synthesis errors ninefold. A one-step polymerase assembly multiplexing reaction assembles these into multiple genes. This technology enabled us to synthesize all 21 genes that encode the proteins of the Escherichia coli 30S ribosomal subunit, and to optimize their translation efficiency in vitro through alteration of codon bias. This is a significant step towards the synthesis of ribosomes in vitro and should have utility for synthetic biology in general.

  6. Exploration of cellular DNA lesion, DNA-binding and biocidal ordeal of novel curcumin based Knoevenagel Schiff base complexes incorporating tryptophan: Synthesis and structural validation

    NASA Astrophysics Data System (ADS)

    Chandrasekar, Thiravidamani; Raman, Natarajan

    2016-07-01

    A few novel Schiff base transition metal complexes of general formula [MLCl] (where, L = Schiff base, obtained by the condensation reaction of Knoevenagel condensate of curcumin, L-tryptophan and M = Cu(II), Ni(II), Co(II), and Zn(II)), were prepared by stencil synthesis. They were typified using UV-vis, IR, EPR spectral techniques, micro analytical techniques, magnetic susceptibility and molar conductivity. Geometry of the metal complexes was examined and recognized as square planar. DNA binding and viscosity studies revealed that the metal(II) complexes powerfully bound via an intercalation mechanism with the calf thymus DNA. Gel-electrophoresis technique was used to investigate the DNA cleavage competence of the complexes and they establish to approve the cleavage of pBR322 DNA in presence of oxidant H2O2. This outcome inferred that the synthesized complexes showed better nuclease activity. Moreover, the complexes were monitored for antimicrobial activities. The results exposed that the synthesized compounds were forceful against all the microbes under exploration.

  7. Exploration of cellular DNA lesion, DNA-binding and biocidal ordeal of novel curcumin based Knoevenagel Schiff base complexes incorporating tryptophan: Synthesis and structural validation

    NASA Astrophysics Data System (ADS)

    Chandrasekar, Thiravidamani; Raman, Natarajan

    2016-07-01

    A few novel Schiff base transition metal complexes of general formula [MLCl] (where, L = Schiff base, obtained by the condensation reaction of Knoevenagel condensate of curcumin, L-tryptophan and M = Cu(II), Ni(II), Co(II), and Zn(II)), were prepared by stencil synthesis. They were typified using UV-vis, IR, EPR spectral techniques, micro analytical techniques, magnetic susceptibility and molar conductivity. Geometry of the metal complexes was examined and recognized as square planar. DNA binding and viscosity studies revealed that the metal(II) complexes powerfully bound via an intercalation mechanism with the calf thymus DNA. Gel-electrophoresis technique was used to investigate the DNA cleavage competence of the complexes and they establish to approve the cleavage of pBR322 DNA in presence of oxidant H2O2. This outcome inferred that the synthesized complexes showed better nuclease activity. Moreover, the complexes were monitored for antimicrobial activities. The results exposed that the synthesized compounds were forceful against all the microbes under exploration.

  8. PDIP46 (DNA polymerase δ interacting protein 46) is an activating factor for human DNA polymerase δ

    PubMed Central

    Zheng, Rong; Yue, Fu; Lin, Szu Hua Sharon; Rahmeh, Amal A.; Lee, Ernest Y. C.; Zhang, Zhongtao; Lee, Marietta Y. W. T.

    2016-01-01

    PDIP46 (SKAR, POLDIP3) was discovered through its interaction with the p50 subunit of human DNA polymerase δ (Pol δ). Its functions in DNA replication are unknown. PDIP46 associates with Pol δ in cell extracts both by immunochemical and protein separation methods, as well as by ChIP analyses. PDIP46 also interacts with PCNA via multiple copies of a novel PCNA binding motif, the APIMs (AlkB homologue-2 PCNA-Interacting Motif). Sites for both p50 and PCNA binding were mapped to the N-terminal region containing the APIMs. Functional assays for the effects of PDIP46 on Pol δ activity on singly primed ssM13 DNA templates revealed that it is a novel and potent activator of Pol δ. The effects of PDIP46 on Pol δ in primer extension, strand displacement and synthesis through simple hairpin structures reveal a mechanism where PDIP46 facilitates Pol δ4 synthesis through regions of secondary structure on complex templates. In addition, evidence was obtained that PDIP46 is also capable of exerting its effects by a direct interaction with Pol δ, independent of PCNA. Mutation of the Pol δ and PCNA binding region resulted in a loss of PDIP46 functions. These studies support the view that PDIP46 is a novel accessory protein for Pol δ that is involved in cellular DNA replication. This raises the possibility that altered expression of PDIP46 or its mutation may affect Pol δ functions in vivo, and thereby be a nexus for altered genomic stability. PMID:26819372

  9. The mitochondrial outer membrane protein MDI promotes local protein synthesis and mtDNA replication.

    PubMed

    Zhang, Yi; Chen, Yong; Gucek, Marjan; Xu, Hong

    2016-05-17

    Early embryonic development features rapid nuclear DNA replication cycles, but lacks mtDNA replication. To meet the high-energy demands of embryogenesis, mature oocytes are furnished with vast amounts of mitochondria and mtDNA However, the cellular machinery driving massive mtDNA replication in ovaries remains unknown. Here, we describe a Drosophila AKAP protein, MDI that recruits a translation stimulator, La-related protein (Larp), to the mitochondrial outer membrane in ovaries. The MDI-Larp complex promotes the synthesis of a subset of nuclear-encoded mitochondrial proteins by cytosolic ribosomes on the mitochondrial surface. MDI-Larp's targets include mtDNA replication factors, mitochondrial ribosomal proteins, and electron-transport chain subunits. Lack of MDI abolishes mtDNA replication in ovaries, which leads to mtDNA deficiency in mature eggs. Targeting Larp to the mitochondrial outer membrane independently of MDI restores local protein synthesis and rescues the phenotypes of mdi mutant flies. Our work suggests that a selective translational boost by the MDI-Larp complex on the outer mitochondrial membrane might be essential for mtDNA replication and mitochondrial biogenesis during oogenesis. PMID:27053724

  10. Nerve growth factor inhibits the synthesis of a single-stranded DNA binding protein in pheochromocytoma cells (clone PC12).

    PubMed Central

    Biocca, S; Cattaneo, A; Calissano, P

    1984-01-01

    Arrest of mitosis and neurite outgrowth induced by nerve growth factor (NGF) in rat pheochromocytoma cells (clone PC12) is accompanied by a progressive inhibition of the synthesis of a protein that binds to single-stranded but not to double-stranded DNA. Time course experiments show that this inhibition is already apparent after a 2-day incubation with NGF and is maximum (85-95%) upon achievement of complete PC12 cell differentiation. Inhibition of the synthesis of this single-stranded DNA binding protein after 48 hr of incubation with NGF is potentiated by concomitant treatment of PC12 cells with antimitotic drugs acting at different levels of DNA replication. Purification on a preparative scale of this protein and analysis of its major physicochemical properties show that: (i) it constitutes 0.5% of total soluble proteins of naive PC12 cells; (ii) its molecular weight measured by NaDodSO4/PAGE is Mr 34,000 (sucrose gradient centrifugation under nondenaturing conditions yields a sedimentation coefficient s20,w of 8.1 S, indicating that the native protein is an oligomer); (iii) amino acid analysis demonstrates a preponderance of acidic over basic residues, while electrofocusing experiments show that it has an isoelectric point around 8.0; (iv) approximately 15% of the protein is phosphorylated in vivo. It is postulated that control of the synthesis of this protein is connected with activation of a differentiative program triggered by NGF in the PC12 neoplastic cell line at some step(s) of DNA activity. Images PMID:6585787

  11. Association between early inhibition of DNA synthesis and the MICs and MBCs of carboxyquinolone antimicrobial agents for wild-type and mutant [gyrA nfxB(ompF) acrA] Escherichia coli K-12.

    PubMed Central

    Chow, R T; Dougherty, T J; Fraimow, H S; Bellin, E Y; Miller, M H

    1988-01-01

    Quinolone antimicrobial agents are known to interact with DNA gyrase, but the mechanism by which bacterial cell death occurs is not fully understood. In order to determine whether there is a correlation between quinolone-induced inhibition of early (i.e., 10 to 15 min) DNA synthesis and potency (MICs and MBCs), we measured the rate of DNA synthesis in log-phase Escherichia coli K-12 by using [3H]thymidine incorporation. Three quinolones (ciprofloxacin, norfloxacin, and difloxacin) were selected based on their decreasing activity against reference strain KL16. All three quinolones caused an early 50% inhibition of DNA synthesis which was proportional to MICs and MBCs (r greater than 0.99). Furthermore, 50% inhibition of DNA synthesis and MICs were nearly identical for mutant strains with an altered quinolone target (gyrA) or with decreased [nfxB(ompF)] or increased (acrA) permeability. There were significant differences (P less than 0.001) between individual quinolones in the degree of DNA synthesis inhibition in nalidixic acid-resistant gyrA and nfxB(ompF) mutant strains. The comparison of the three mutants with the wild-type strain permitted an in vivo examination of the effects of alterations of the drug target or entry on the activity determined by DNA synthesis inhibition and MICs. PMID:3056251

  12. Enzymatic Activities and DNA Substrate Specificity of Mycobacterium tuberculosis DNA Helicase XPB

    PubMed Central

    Balasingham, Seetha V.; Zegeye, Ephrem Debebe; Homberset, Håvard; Rossi, Marie L.; Laerdahl, Jon K.; Bohr, Vilhelm A.; Tønjum, Tone

    2012-01-01

    XPB, also known as ERCC3 and RAD25, is a 3′→5′ DNA repair helicase belonging to the superfamily 2 of helicases. XPB is an essential core subunit of the eukaryotic basal transcription factor complex TFIIH. It has two well-established functions: in the context of damaged DNA, XPB facilitates nucleotide excision repair by unwinding double stranded DNA (dsDNA) surrounding a DNA lesion; while in the context of actively transcribing genes, XPB facilitates initiation of RNA polymerase II transcription at gene promoters. Human and other eukaryotic XPB homologs are relatively well characterized compared to conserved homologs found in mycobacteria and archaea. However, more insight into the function of bacterial helicases is central to understanding the mechanism of DNA metabolism and pathogenesis in general. Here, we characterized Mycobacterium tuberculosis XPB (Mtb XPB), a 3′→5′ DNA helicase with DNA-dependent ATPase activity. Mtb XPB efficiently catalyzed DNA unwinding in the presence of significant excess of enzyme. The unwinding activity was fueled by ATP or dATP in the presence of Mg2+/Mn2+. Consistent with the 3′→5′ polarity of this bacterial XPB helicase, the enzyme required a DNA substrate with a 3′ overhang of 15 nucleotides or more. Although Mtb XPB efficiently unwound DNA model substrates with a 3′ DNA tail, it was not active on substrates containing a 3′ RNA tail. We also found that Mtb XPB efficiently catalyzed ATP-independent annealing of complementary DNA strands. These observations significantly enhance our understanding of the biological roles of Mtb XPB. PMID:22615856

  13. Induction of unscheduled DNA synthesis in HeLa cells by allylic compounds.

    PubMed

    Schiffmann, D; Eder, E; Neudecker, T; Henschler, D

    1983-10-01

    Thirteen allylic compounds, mostly with close structural relationship, were tested for their ability to induce unscheduled DNA synthesis (UDS) in HeLa cells and mutations in the Ames test; 11 induced UDS in dose dependence. Allyl isothiocyanate was negative in UDS (borderline in the Ames test) and acrolein (positive in the Ames test) proved toxic to HeLa cells, therefore UDS measurement was excluded. In general, positive qualitative and quantitative correlation between UDS, Ames test and alkylating properties (as measured in the 4-nitrobenzyl-pyridine test, NBP) were found. Among structural analogs and typical allylic compounds with various leaving groups, the amount of induced DNA repair at equimolar concentrations decreased in the same order as the mutagenic and alkylating activities in the other 2 test systems: 1,3-dichloropropene (cis) greater than 1,3-dichloropropene (trans) greater than 2,3-dichloro-1-propene; 1-chloro-2-butene greater than 3-chloro-1-butene greater than 3-chloro-2-methyl-1-propene greater than allyl chloride; allyl-methane-sulfonate greater than -iodide greater than -bromide greater than -chloride. PMID:6627227

  14. Role of amidation in bile acid effect on DNA synthesis by regenerating mouse liver.

    PubMed

    Barbero, E R; Herrera, M C; Monte, M J; Serrano, M A; Marin, J J

    1995-06-01

    Effect of bile acids on DNA synthesis by the regenerating liver was investigated in mice in vivo after partial hepatectomy (PH). Radioactivity incorporation into DNA after [14C]thymidine intraperitoneal administration peaked at 48 h after PH. At this time a significant taurocholate-induced dose-dependent reduction in DNA synthesis without changes in total liver radioactivity content was found (half-maximal effect at approximately 0.1 mumol/g body wt). Effect of taurocholate (0.5 mumol/g body wt) was mimicked by chocolate, ursodeoxycholate, deoxycholate, dehydrocholate, tauroursodeoxycholate, taurochenodeoxycholate, and taurodeoxycholate. In contrast, chenodeoxycholate, glycocholate, glycochenodeoxycholate, glycoursodeoxycholate, glycodeoxycholate, 5 beta-cholestane, bromosulfophthalein, and free taurine lacked this effect. No relationship between hydrophobic-hydrophilic balance and inhibitory effect was observed. Analysis by high-performance liquid chromatography indicated that inhibition of thymidine incorporation into DNA was not accompanied by an accumulation of phosphorylated DNA precursors in the liver but rather by a parallel increase in nucleotide catabolism. Bile acid-induced modifications in DNA synthesis were observed in vivo even in the absence of changes in toxicity tests, which suggests that the inhibitory effect shared by most unconjugated and tauroconjugated bile acids but not by glycoconjugated bile acids should be accounted for by mechanisms other than nonselective liver cell injury. PMID:7611405

  15. The influence of the ratio of protein energy to total energy in the feed on the activity of protein synthesis in vitro, the level of ribosomal RNA and the RNA-DNA ratio in white trunk muscle of Atlantic cod (Gadus morhua).

    PubMed

    Lied, E; Rosenlund, G

    1984-01-01

    Cod (Gadus morhua) were fed diets containing protein energy to total energy levels (PE/TE) of 10.0, 20.6, 29.6, 38.4, 56.2 and 74.1% for 21 days. Ribosomes were isolated from the white trunk muscle tissue, the capacity for protein synthesis in vitro determined and related to muscle tissue wet weight rRNA and DNA. Protein concentrations of less than 47.4% PE/TE in the diets reduce the ribosomal capacity for protein synthesis per g wet weight and per mg DNA, and the tissue contents of rRNA and ratio of rRNA/DNA. The capacity for muscle protein synthesis in vitro is a significant and sensitive parameter of protein inadequacy in fish diets. PMID:6200270

  16. Synthesis, cytostatic activity and ADME properties of C-5 substituted and N-acyclic pyrimidine derivatives.

    PubMed

    Kraljević, Tatjana Gazivoda; Klika, Mateja; Kralj, Marijeta; Martin-Kleiner, Irena; Jurmanović, Stella; Milić, Astrid; Padovan, Jasna; Raić-Malić, Silvana

    2012-01-01

    The synthesis of the novel 5-alkyl pyrimidine derivatives, 5,6-dihydrofuro[2,3-d]pyrimidines and 5-alkyl N-methoxymethyl pyrimidine derivatives and evaluation of their cytostatic activities are described. The mechanism of antiproliferative effect of 5-(2-chloroethyl)-substituted pyrimidine 3 that exerted the pronounced cytostatic activity was studied in further details on colon carcinoma (HCT116) cells. The cell cycle perturbation analysis demonstrated severe DNA damage (G2/M arrest) pointing to a potential DNA alkylating ability of 3. Preliminary ADME data of 3 and its 6-methylated structural congener (6-Me-3) showed their high permeability and good metabolic stability. PMID:22130132

  17. Induction of human beta-interferon synthesis with poly(rI . rC) in mouse cells transfected with cloned cDNA plasmids.

    PubMed Central

    Pitha, P M; Ciufo, D M; Kellum, M; Raj, N B; Reyes, G R; Hayward, G S

    1982-01-01

    Human genomic DNA and plasmids carrying portions of the cDNA gene for human beta-interferon have been introduced into mouse Ltk- cells by cotransfection with a herpes simplex virus thymidine kinase (TK) gene. One plasmid contains 840 base pairs of human DNA complementary to pre-beta-interferon mRNA inserted into pBR322, whereas the other plasmids have hybrid genes containing only the 560-base pair coding region inserted under the transcriptional control of the TK promoter. Constitutive interferon production could not be detected in any of the mouse TK+ cell lines tested. Nevertheless, synthesis of interferon could be induced by poly(rI . rC) treatment in at least 16 of these cell lines, including clones transfected with genomic DNA, the beta-interferon cDNA, and the TK-beta-interferon cDNA hybrid gene. The interferon produced was specific for human cells and could be neutralized by antiserum against human beta-interferon. In contrast to human fibroblast cells, in which the synthesis of induced beta-interferon is transient, the poly(rI . rC)-induced TK+ lines continued to produce beta-interferon for prolonged periods of time and did not respond to superinduction conditions. Therefore, in transfected mouse cells, the coding DNA sequence from the human beta-interferon gene, without any of the adjacent 3' or 5' flanking human DNA sequences, was sufficient both to direct synthesis of biologically active product and to respond to the specific induction system that operates in human cells. However, the mechanism that switches off the synthesis of induced interferon in human cells appears not to operate in mouse cells transfected with beta-interferon cDNA. PMID:6956863

  18. Synthesis of novel MMT/acyl-protected nucleo alanine monomers for the preparation of DNA/alanyl-PNA chimeras

    PubMed Central

    Roviello, G. N.; Gröschel, S.; Pedone, C.

    2009-01-01

    Alanyl-peptide nucleic acid (alanyl-PNA)/DNA chimeras are oligomers envisaged to be beneficial in efficient DNA diagnostics based on an improved molecular beacon concept. A synthesis of alanyl-PNA/DNA chimera can be based on the solid phase assembly of the oligomer with mixed oligonucleotide/peptide backbone under DNA synthesis conditions, in which the nucleotides are introduced as phosphoramidites, whereas the nucleo amino acids make use of the acid labile monomethoxytrityl (MMT) group for temporary protection of the α-amino groups and acyl protecting groups for the exocyclic amino functions of the nucleobases. In this work, we realized for the first time the synthesis of all four MMT/acyl-protected nucleo alanines, achieved by deprotection/reprotection of the newly synthesized Boc/acyl intermediates, useful monomers for the obtainment of (alanyl-PNA)/DNA chimeras by conditions fully compatible with the standard phosphoramidite DNA synthesis strategy. PMID:19629638

  19. Cdt2-mediated XPG degradation promotes gap-filling DNA synthesis in nucleotide excision repair.

    PubMed

    Han, Chunhua; Wani, Gulzar; Zhao, Ran; Qian, Jiang; Sharma, Nidhi; He, Jinshan; Zhu, Qianzheng; Wang, Qi-En; Wani, Altaf A

    2015-01-01

    Xeroderma pigmentosum group G (XPG) protein is a structure-specific repair endonuclease, which cleaves DNA strands on the 3' side of the DNA damage during nucleotide excision repair (NER). XPG also plays a crucial role in initiating DNA repair synthesis through recruitment of PCNA to the repair sites. However, the fate of XPG protein subsequent to the excision of DNA damage has remained unresolved. Here, we show that XPG, following its action on bulky lesions resulting from exposures to UV irradiation and cisplatin, is subjected to proteasome-mediated proteolytic degradation. Productive NER processing is required for XPG degradation as both UV and cisplatin treatment-induced XPG degradation is compromised in NER-deficient XP-A, XP-B, XP-C, and XP-F cells. In addition, the NER-related XPG degradation requires Cdt2, a component of an E3 ubiquitin ligase, CRL4(Cdt2). Micropore local UV irradiation and in situ Proximity Ligation assays demonstrated that Cdt2 is recruited to the UV-damage sites and interacts with XPG in the presence of PCNA. Importantly, Cdt2-mediated XPG degradation is crucial to the subsequent recruitment of DNA polymerase δ and DNA repair synthesis. Collectively, our data support the idea of PCNA recruitment to damage sites which occurs in conjunction with XPG, recognition of the PCNA-bound XPG by CRL4(Cdt2) for specific ubiquitylation and finally the protein degradation. In essence, XPG elimination from DNA damage sites clears the chromatin space needed for the subsequent recruitment of DNA polymerase δ to the damage site and completion of gap-filling DNA synthesis during the final stage of NER. PMID:25483071

  20. Assessment of potential damage to DNA in urine of coke oven workers: an assay of unscheduled DNA synthesis.

    PubMed Central

    Roos, F; Renier, A; Ettlinger, J; Iwatsubo, Y; Letourneux, M; Haguenoer, J M; Jaurand, M C; Pairon, J C

    1997-01-01

    OBJECTIVES: A study was conducted in coke oven workers to evaluate the biological consequences of the exposure of these workers, particularly production of potential genotoxic factors. METHODS: 60 coke oven workers and 40 controls were recruited in the same iron and steel works. Exposure to polycyclic aromatic hydrocarbons (PAHs) was assessed by job and measurement of 1-hydroxypyrene (1OHP) in urine samples. An unscheduled DNA synthesis assay was performed on rat pleural mesothelial cells used as a test system to evaluate the effect of the workers' filtered urine on the DNA repair capacity of rat cells to determine whether DNA damaging agents are present in the urine of these workers. RESULTS: Urinary concentrations of 1OHP ranged from 0.06 to 24.2 (mean (SD) 2.1 (3.6)) mumol/mol creatinine in exposed coke oven workers, and from 0.01 to 0.9 in controls (0.12 (0.15)). These high concentrations in coke oven workers reflected recent exposure to PAHs and were in agreement with the assessment of exposure by job. No significant difference was found between coke oven workers and controls in the DNA repair level of rat cells treated with urine samples. However, the rat cell repair capacity decreased with increasing 1OHP concentrations in the exposed population (r = -0.28, P < 0.05). CONCLUSIONS: As high concentrations of 1OHP were found in the urine of some workers, a more stringent control of exposures to PAHs in the workplace is required. Exposure to PAHs was not associated with a clear cut modification of the urinary excretion of DNA damaging factors in this test, as shown by the absence of increased unscheduled DNA synthesis in rat cells. However, impairment of some repair mechanisms by urinary constituents is suspected. PMID:9470892

  1. New bioactive 2,6-diacetylpyridine bis(p-chlorophenylthiosemicarbazone) ligand and its Pd(II) and Pt(II) complexes: synthesis, characterization, cytotoxic activity and DNA binding ability.

    PubMed

    Matesanz, Ana I; Hernández, Carolina; Souza, Pilar

    2014-09-01

    Preparation and characterization of 2,6-diacetylpyridine bis((4)N-p-chlorophenylthiosemicarbazone) ligand, H2L, and its palladium(II) and platinum(II) complexes [PdL] and [PtL], is described. The molecular structure of the two new complexes has been determined by single crystal X-ray diffraction. The ligand acts as dianionic tetradentate donor coordinating to the metal center in a square planar geometry through the pyridine nitrogen atom and the azomethine nitrogen and thione sulfur atoms from one thiosemicarbazone arm, the fourth coordination position is occupied by the hydrazine nitrogen atom of the other arm. New free ligand and its metal complexes have been evaluated for antiproliferative activity in vitro against NCI-H460, T-47D, A2780 and A2780cisR human cancer cell lines. The cytotoxicity data suggest that these compounds may be endowed with important antitumor properties, especially H2L and [PtL] since they are capable of not only circumvent cisplatin resistance in A2780cisR cells but also exhibit high antiproliferative activity in breast cancer T-47D cells. The interaction of H2L with calf thymus DNA was also investigated and its binding constant (Kb) determined. PMID:24857803

  2. Betulin Phosphonates; Synthesis, Structure, and Cytotoxic Activity.

    PubMed

    Chrobak, Elwira; Bębenek, Ewa; Kadela-Tomanek, Monika; Latocha, Małgorzata; Jelsch, Christian; Wenger, Emmanuel; Boryczka, Stanisław

    2016-01-01

    Betulin derivatives are a widely studied group of compounds of natural origin due to their wide spectrum of biological activities. This paper describes new betulin derivatives, containing a phosphonate group. The allyl-vinyl isomerization and synthesis of acetylenic derivatives have been reported. Structural identification of products as E and Z isomers has been carried out using ¹H-, (13)C-, (31)P-NMR, and crystallographic analysis. The crystal structure in the orthorhombic space group and analysis of crystal packing contacts for 29-diethoxyphosphoryl-28-cyclopropylpropynoyloxy-lup-20E(29)-en-3β-ol 8a are reported. All new compounds were tested in vitro for their antiproliferative activity against human T47D (breast cancer), SNB-19 (glioblastoma), and C32 (melanoma) cell lines. PMID:27571057

  3. Baculovirus DNA Replication-Specific Expression Factors Trigger Apoptosis and Shutoff of Host Protein Synthesis during Infection▿

    PubMed Central

    Schultz, Kimberly L. W.; Friesen, Paul D.

    2009-01-01

    Apoptosis is an important antivirus defense. To define the poorly understood pathways by which invertebrates respond to viruses by inducing apoptosis, we have identified replication events that trigger apoptosis in baculovirus-infected cells. We used RNA silencing to ablate factors required for multiplication of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV). Transfection with double-stranded RNA (dsRNA) complementary to the AcMNPV late expression factors (lefs) that are designated as replicative lefs (lef-1, lef-2, lef-3, lef-11, p143, dnapol, and ie-1/ie-0) blocked virus DNA synthesis and late gene expression in permissive Spodoptera frugiperda cells. dsRNAs specific to designated nonreplicative lefs (lef-8, lef-9, p47, and pp31) blocked late gene expression without affecting virus DNA replication. Thus, both classes of lefs functioned during infection as defined. Silencing the replicative lefs prevented AcMNPV-induced apoptosis of Spodoptera cells, whereas silencing the nonreplicative lefs did not. Thus, the activity of replicative lefs or virus DNA replication is sufficient to trigger apoptosis. Confirming this conclusion, AcMNPV-induced apoptosis was suppressed by silencing the replicative lefs in cells from a divergent species, Drosophila melanogaster. Silencing replicative but not nonreplicative lefs also abrogated AcMNPV-induced shutdown of host protein synthesis, suggesting that virus DNA replication triggers inhibition of host biosynthetic processes and that apoptosis and translational arrest are linked. Our findings suggest that baculovirus DNA replication triggers a host cell response similar to the DNA damage response in vertebrates, which causes translational arrest and apoptosis. Pathways for detecting virus invasion and triggering apoptosis may therefore be conserved between insects and mammals. PMID:19706708

  4. An arcane role of DNA in transcription activation.

    PubMed Central

    Ryu, S; Garges, S; Adhya, S

    1994-01-01

    The mechanism by which the cAMP receptor protein (CRP) activates transcription has been investigated using the lac promoter of Escherichia coli. For transcription activation, an interaction between DNA-bound CRP and RNA polymerase is not sufficient. CRP must bind to a site in the same DNA and close to the promoter. CRP action requires an intact spacer DNA to provide a rigid support in building a CRP-RNA polymerase protein bridge or to allow a conformational change in the DNA to be transmitted to the lac promoter using the protein bridge as a structural support. Images PMID:7811325

  5. Cucurbitacin I blocks cerebrospinal fluid and platelet derived growth factor-BB stimulation of leptomeningeal and meningioma DNA synthesis

    PubMed Central

    2013-01-01

    Background Currently, there are no consistently effective chemotherapies for recurrent and inoperable meningiomas. Recently, cucurbitacin I (JSI-124), a naturally occurring tetracyclic triterpenoid compound used as folk medicines has been found to have cytoxic and anti-proliferative properties in several malignancies thru inhibition of activator of transcription (STAT3) activation. Previously, we have found STAT3 to be activated in meningiomas, particularly higher grade tumors. Methods Primary leptomeningeal cultures were established from 17, 20 and 22 week human fetuses and meningioma cell cultures were established from 6 World Health Organization (WHO) grade I or II meningiomas. Cells were treated with cerebrospinal fluid from patients without neurologic disease. The effects of cucurbitacin I on cerebrospinal fluid stimulation of meningioma cell DNA synthesis phosphorylation/activation of JAK1, STAT3, pMEK1/2, p44/42MAPK, Akt, mTOR, Rb and caspase 3 activation were analyzed in human leptomeningeal and meningioma cells. Results Cerebrospinal fluid significantly stimulated DNA synthesis in leptomeningeal cells. Co-administration of cucurbitacin I (250 nM) produces a significant blockade of this effect. Cucurbitacin I alone also produced a significant reduction in basal DNA synthesis. In grade I and II meningiomas, cerebrospinal fluid also significantly stimulated DNA synthesis. Co-administration of cucurbitacin I (250 nM) blocked this effect. In the leptomeningeal cultures, cerebrospinal fluid stimulated STAT3 phosphorylation but not p44/42MAPK, Akt or mTOR. Cucurbitacin I had no effect on basal STAT3 phosphorylation but co-administration with cerebrospinal fluid blocked cerebrospinal fluid stimulation of STAT3 phosphorylation in each. In the grade I meningiomas, cerebrospinal fluid stimulated phosphorylation of STAT3 and decreased MEK1/2 and cucurbitacin I had no effect on basal STAT3, p44/42MAPK, Akt, JAK1, mTOR, or Rb phosphorylation. In the grade II

  6. ES936 stimulates DNA synthesis in HeLa cells independently on NAD(P)H:quinone oxidoreductase 1 inhibition, through a mechanism involving p38 MAPK.

    PubMed

    González-Aragón, David; Alcaín, Francisco J; Ariza, Julia; Jódar, Laura; Barbarroja, Nuria; López-Pedrera, Chary; Villalba, José M

    2010-07-30

    The indolequinone ES936 (5-methoxy-1,2-dimethyl-3-[(4-nitrophenol)methyl]-indole-4,7-dione) is a potent mechanism-based inhibitor of NAD(P)H:quinone oxidoreductase 1 (NQO1). Here, we report that ES936 significantly stimulated thymidine incorporation in sparse cultures of human adenocarcinoma HeLa cells, but was without effect in dense cultures. Stimulation of DNA synthesis was not related with a DNA repair response because an increase in thymidine incorporation was not observed in cells treated with 2,5 bis-[1-aziridyl]-1,4 benzoquinone, a well-established antitumor quinone that causes DNA damage. Conversely, it was related with an increase of cell growth. NQO1 inhibition was not involved in ES936 stimulation of DNA synthesis, because the same response was observed in cells where NQO1 expression had been knocked down by small interfering RNA. Stimulation of DNA synthesis was reverted by treatment with ambroxol, a SOD mimetic, and by pyruvate, an efficient peroxide scavenger, supporting the involvement of alterations in cellular redox state. Pharmacological inhibition of p38 with either SB203580 or PD169316 completely abolished ES936-stimulated DNA synthesis, indicating the requirement of p38 activity. This is the first report that demonstrates the existence of an ES936-sensitive system which is separate from NQO1, modulating the redox state and cell growth in HeLa cells through a p38-dependent mechanism. Our results show that the effect ES936 exerts on DNA synthesis may be either positive or negative depending on the cellular context and growth conditions. PMID:20433816

  7. Synthesis and characterization of DNA nano-meso-microspheres as drug delivery carriers for intratumoral chemotherapy

    NASA Astrophysics Data System (ADS)

    Enriquez Schumacher, Iris Vanessa

    Conventional cancer chemotherapy results in systemic toxicity which severely limits effectiveness and often adversely affects patient quality of life. There is a need to find new drugs and delivery methods for less toxic therapy. Previous studies concerning DNA complexing with chemotherapy drugs suggest unique opportunities for DNA as a mesosphere drug carrier. The overall objective of this research was devoted to the synthesis and evaluation of novel DNA-drug nano-mesospheres designed for localized chemotherapy via intratumoral injection. My research presents DNA nano-meso-microspheres (DNA-MS) that were prepared using a modified steric stabilization method originally developed in this lab for the preparation of albumin MS. DNA-MS were prepared with glutaraldehyde covalent crosslinking (genipin crosslinking was attempted) through the DNA base pairs. In addition, novel crosslinking of DNA-MS was demonstrated using chromium, gadolinium, or iron cations through the DNA phosphate groups. Covalent and ionic crosslinked DNA-MS syntheses yielded smooth and spherical particle morphologies with multimodal size distributions. Optimized DNA-MS syntheses produced particles with narrow and normal size distributions in the 50nm to 5mum diameter size range. In aqueous dispersions approximately 200% swelling was observed with dispersion stability for more than 48 hours. Typical process conditions included a 1550rpm initial mixing speed and particle filtration through 20mum filters to facilitate preparation. DNA-MS were in situ loaded during synthesis for the first time with mitoxantrone, 5-fluorouracil, and methotrexate. DNA-MS drug incorporation was 12%(w/w) for mitoxantrone, 9%(w/w) for methotrexate, and 5%(w/w) for 5-fluorouracil. In vitro drug release into phosphate buffered saline was observed for over 35 days by minimum sink release testing. The effect of gadolinium crosslink concentration on mitoxantrone release was evaluated at molar equivalences in the range of 20% to

  8. NOREPINEPHRINE AND EPIDERMAL GROWTH FACTOR: DYNAMICS OF THEIR INTERACTION IN THE STIMULATION OF HEPATOCYTE DNA SYNTHESIS

    EPA Science Inventory

    Primary cultures of adult rat hepatocytes are stimulated to enter DNA synthesis by norepinephrine (NE). This stimulation is maximal if the hepatocytes are incubated with NE for more than 12 hr, beginning no later than 2-4 hr after the cells are first plated. After 24 hr in cultur...

  9. EFFECT OF NONGENOTOXIC ENVIRONMENTAL CONTAMINATION ON CHOLESTEROL AND DNA SYNTHESIS IN CULTURED PRIMARY RAT HEPATOCYTES

    EPA Science Inventory

    The effect of certain reputedly non genotoxic agents on cholesterol and DNA synthesis was investigated in cultured rat primary hepatocytes and liver slices. epatocytes in culture were incubated for 48, 60, and 72 hrs with one of the following chemicals; namely, chloroform (CHCl3)...

  10. Heparin effect on DNA synthesis in a murine fibrosarcoma cell line: influence of anionic density

    SciTech Connect

    Piepkorn, M.W.; Daynes, R.A.

    1983-09-01

    The effects of heparin subfractions on DNA synthesis in a murine cutaneous fibrosarcoma cell line were examined. Porcine mucosal heparin was preparatively fractionated for anionic charge density by DEAE-Sephadex chromatography and for molecular weight by Sephadex G-100 filtration. The cell line was plated from confluent monolayer cultures and grown in medium and fetal bovine serum, with or without a heparin fraction at a final concentration of 10 micrograms/ml. At intervals thereafter, the cells were pulsed with (/sup 3/H)thymidine. A low-charge density heparin fraction stimulated (/sup 3/H)thymidine incorporation (cpm/mg protein and cpm/cell) during the first 3 days of growth compared to control values without added heparin, whereas a high-charge density heparin fraction had little of this effect (186 +/- 35% of control vs. 101 +/- 14%, respectively; P less than .05). The augmentation of DNA synthesis observed with the low-charge density fraction correlated with increased proportions of cells in S and G2 phases compared with those of the controls, as determined by flow cytofluorometry. Low- and high-molecular-weight heparin fractions did not significantly alter DNA synthesis. Heparin subfractions are thus heterogeneous with respect to their effect on cellular DNA synthesis in this tumor line.

  11. Synthesis and Properties of Novel Silver-Containing DNA Molecules.

    PubMed

    Eidelshtein, Gennady; Fardian-Melamed, Natalie; Gutkin, Vitaly; Basmanov, Dmitry; Klinov, Dmitry; Rotem, Dvir; Levi-Kalisman, Yael; Porath, Danny; Kotlyar, Alexander

    2016-06-01

    Migration of silver atoms from silver nano-particles selectively to a double-stranded poly(dG)-poly(dC) polymer leads to metallization of the DNA. As a result the DNA molecules become shorter and thicker (higher), as evident from the atomic force microscopy imaging analysis. The metalized molecules can be detected by transmission and scanning electron microscopy in contrast to the initial non-metalized ones. PMID:27116695

  12. Deoxyribonucleotide synthesis and the emergence of DNA in molecular evolution

    NASA Astrophysics Data System (ADS)

    Follmann, Hartmut

    1982-02-01

    DNA replication requires monomeric deoxyribonucleotides, which cannot be regarded as primary products of organic syntheses on a primitive earth. However, the present biosynthetic pathway — reductive elimination of the 2'-OH group from ribonucleotides, catalyzed by ribonucleotide reductases and thioredoxins — suggests an early, polyphyletic combination of protein-nucleotide interactions and metal catalysis. That key process had to precede the upcome of RNA-DNA dualism on the way from RNA-protein protocells to true organisms.

  13. Ribosome Synthesis and MAPK Activity Modulate Ionizing Radiation-Induced Germ Cell Apoptosis in Caenorhabditis elegans

    PubMed Central

    Eberhard, Ralf; Stergiou, Lilli; Hofmann, E. Randal; Hofmann, Jen; Haenni, Simon; Teo, Youjin; Furger, André; Hengartner, Michael O.

    2013-01-01

    Synthesis of ribosomal RNA by RNA polymerase I (RNA pol I) is an elemental biological process and is key for cellular homeostasis. In a forward genetic screen in C. elegans designed to identify DNA damage-response factors, we isolated a point mutation of RNA pol I, rpoa-2(op259), that leads to altered rRNA synthesis and a concomitant resistance to ionizing radiation (IR)-induced germ cell apoptosis. This weak apoptotic IR response could be phenocopied when interfering with other factors of ribosome synthesis. Surprisingly, despite their resistance to DNA damage, rpoa-2(op259) mutants present a normal CEP-1/p53 response to IR and increased basal CEP-1 activity under normal growth conditions. In parallel, rpoa-2(op259) leads to reduced Ras/MAPK pathway activity, which is required for germ cell progression and physiological germ cell death. Ras/MAPK gain-of-function conditions could rescue the IR response defect in rpoa-2(op259), pointing to a function for Ras/MAPK in modulating DNA damage-induced apoptosis downstream of CEP-1. Our data demonstrate that a single point mutation in an RNA pol I subunit can interfere with multiple key signalling pathways. Ribosome synthesis and growth-factor signalling are perturbed in many cancer cells; such an interplay between basic cellular processes and signalling might be critical for how tumours evolve or respond to treatment. PMID:24278030

  14. Synthesis, spectroscopic characterization, biological screenings, DNA binding study and POM analyses of transition metal carboxylates

    NASA Astrophysics Data System (ADS)

    Uddin, Noor; Sirajuddin, Muhammad; Uddin, Nizam; Tariq, Muhammad; Ullah, Hameed; Ali, Saqib; Tirmizi, Syed Ahmed; Khan, Abdur Rehman

    2015-04-01

    This article contains the synthesis of a novel carboxylic acid derivative, its transition metal complexes and evaluation of biological applications. Six carboxylate complexes of transition metals, Zn(II) and Hg(II), have been successfully synthesized and characterized by FT-IR and NMR (1H, 13C). The ligand, HL, (4-[(2,6-Diethylphenyl)amino]-4-oxobutanoic acid) was also characterized by single crystal X-ray analysis. The complexation occurs via oxygen atoms of the carboxylate moiety. FT-IR date show the bidentate nature of the carboxylate moiety of the ligand as the Δν value in all complexes is less than that of the free ligand. The ligand and its complexes were screened for antifungal and antileishmanial activities. The results showed that the ligand and its complexes are active with few exceptions. UV-visible spectroscopy and viscometry results reveal that the ligand and its complexes interact with the DNA via intercalative mode of interaction. A new and efficient strategy to identify the pharmacophores and anti-pharmacophores sites in carboxylate derivatives for the antibacterial/antifungal activity using Petra, Osiris and Molinspiration (POM) analyses was also carried out.

  15. Synthesis, spectroscopic characterization, biological screenings, DNA binding study and POM analyses of transition metal carboxylates.

    PubMed

    Uddin, Noor; Sirajuddin, Muhammad; Uddin, Nizam; Tariq, Muhammad; Ullah, Hameed; Ali, Saqib; Tirmizi, Syed Ahmed; Khan, Abdur Rehman

    2015-04-01

    This article contains the synthesis of a novel carboxylic acid derivative, its transition metal complexes and evaluation of biological applications. Six carboxylate complexes of transition metals, Zn(II) and Hg(II), have been successfully synthesized and characterized by FT-IR and NMR (1H, 13C). The ligand, HL, (4-[(2,6-Diethylphenyl)amino]-4-oxobutanoic acid) was also characterized by single crystal X-ray analysis. The complexation occurs via oxygen atoms of the carboxylate moiety. FT-IR date show the bidentate nature of the carboxylate moiety of the ligand as the Δν value in all complexes is less than that of the free ligand. The ligand and its complexes were screened for antifungal and antileishmanial activities. The results showed that the ligand and its complexes are active with few exceptions. UV-visible spectroscopy and viscometry results reveal that the ligand and its complexes interact with the DNA via intercalative mode of interaction. A new and efficient strategy to identify the pharmacophores and anti-pharmacophores sites in carboxylate derivatives for the antibacterial/antifungal activity using Petra, Osiris and Molinspiration (POM) analyses was also carried out. PMID:25646895

  16. DNA polymerases drive DNA sequencing-by-synthesis technologies: both past and present

    PubMed Central

    Chen, Cheng-Yao

    2014-01-01

    Next-generation sequencing (NGS) technologies have revolutionized modern biological and biomedical research. The engines responsible for this innovation are DNA polymerases; they catalyze the biochemical reaction for deriving template sequence information. In fact, DNA polymerase has been a cornerstone of DNA sequencing from the very beginning. Escherichia coli DNA polymerase I proteolytic (Klenow) fragment was originally utilized in Sanger’s dideoxy chain-terminating DNA sequencing chemistry. From these humble beginnings followed an explosion of organism-specific, genome sequence information accessible via public database. Family A/B DNA polymerases from mesophilic/thermophilic bacteria/archaea were modified and tested in today’s standard capillary electrophoresis (CE) and NGS sequencing platforms. These enzymes were selected for their efficient incorporation of bulky dye-terminator and reversible dye-terminator nucleotides respectively. Third generation, real-time single molecule sequencing platform requires slightly different enzyme properties. Enterobacterial phage ϕ29 DNA polymerase copies long stretches of DNA and possesses a unique capability to efficiently incorporate terminal phosphate-labeled nucleoside polyphosphates. Furthermore, ϕ29 enzyme has also been utilized in emerging DNA sequencing technologies including nanopore-, and protein-transistor-based sequencing. DNA polymerase is, and will continue to be, a crucial component of sequencing technologies. PMID:25009536

  17. Synthesis and evaluation of new spacers for use as dsDNA endcaps

    PubMed Central

    Ng, Pei-Sze; Laing, Brian M.; Balasundarum, Ganesan; Pingle, Maneesh; Friedman, Alan; Bergstrom, Donald E.

    2010-01-01

    A series of aliphatic and aromatic spacer molecules designed to cap the ends of DNA duplexes have been synthesized. The spacers were converted into dimethoxytrityl protected phosphoramidites as synthons for oligonucleotides synthesis. The effect of the spacers on the stability of short DNA duplexes was assessed by melting temperature studies. Endcaps containing amide groups were found to be less stabilizing than the hexaethylene glycol spacer. Endcaps containing either a terthiophene or a naphthalene tetracarboxylic acid dimide were found to be significantly more stabilizing. The former showed a preference for stacking above an A•T base pair. Spacers containing only methylene (-CH2-) and amide (-CONH-) groups interact weakly with DNA and consequently may be optimal for applications that require minimal influence on DNA structure but require a way to hold the ends of double-stranded DNA together. PMID:20715857

  18. Mitochondrial DNA, RNA and protein synthesis in normal, hypothyroid and mildly hyperthyroid rat liver during cold exposure.

    PubMed

    Goglia, F; Liverini, G; Lanni, A; Barletta, A

    1988-02-01

    We have examined in isolated liver mitochondria the effect of cold exposure on DNA, RNA and protein synthesis in normal, hypothyroid and mildly hyperthyroid rats. In normal rats DNA polymerase activity increased from the first day of cold exposure remaining high up to the fifteenth day. RNA polymerase and protein synthesis were stimulated from the fifth day of cold exposure, maintaining a high level up to the fifteenth day. These activities were related to serum triiodothyronine (T3) levels. Indeed propylthiouracil (PTU) administration to cold-exposed rats drastically depressed the above activities, whereas T3 administration to PTU-treated cold-exposed rats restored them to about the values prevalent in normal cold-exposed rats. The translation products analyzed by gel electrophoresis showed that different effects may be exerted by T3 depending on whether its circulating levels are physiologically or pharmacologically modified. These findings suggest that T3 may be involved in the regulation of the acclimation process by acting, presumably with a permissive role, on those activities which determine a modification of the mitochondrial morphometric features and an increase in mitochondria number and turnover. PMID:2451625

  19. Synthesis, characterization, and antitumor activity of water-soluble (arene)ruthenium(II) derivatives of 1,3-dimethyl-4-acylpyrazolon-5-ato ligands. First example of Ru(arene)(ligand) antitumor species involving simultaneous Ru-N7(guanine) bonding and ligand intercalation to DNA.

    PubMed

    Caruso, Francesco; Monti, Elena; Matthews, Julian; Rossi, Miriam; Gariboldi, Marzia Bruna; Pettinari, Claudio; Pettinari, Riccardo; Marchetti, Fabio

    2014-04-01

    We report on the synthesis of novel water-soluble [(arene)Ru(II)(Q)Cl] and [(arene)Ru(II)(Q)(X)]BF4 compounds (arene = p-cymene, benzene, hexamethylbenzene; HQ = 1,3-dimethyl-4-R-(C═O)-5-pyrazolone, HQ(Me), R = methyl, HQ(Ph), R = phenyl, HQ(Naph), R = naphthyl; X = H2O, 9-ethylguanine), and their in vitro antitumor activity toward the cell lines MCF7 (HTB-22, human breast adenocarcinoma), HCT116 (CCL-247, human colorectal carcinoma), A2780 (human ovarian carcinoma), A549 (CCL-185, human lung carcinoma), and U87 MG (HTB-1, human glioblastoma). The X-ray crystal structures of two complexes were determined. One of them, {chlorido-(p-cymene)-[(1,3-dimethyl-4-(1-naphthoyl)-pyrazolon-5-ato]ruthenium(II)}, was also studied with density functional theory methods and was selected for docking on a DNA octamer showing intercalation between DNA bases by the naphthyl moiety and for Ru-N7(guanine) bonding. PMID:24611608

  20. Sonochemical synthesis, DNA binding, antimicrobial evaluation and in vitro anticancer activity of three new nano-sized Cu(II), Co(II) and Ni(II) chelates based on tri-dentate NOO imine ligands as precursors for metal oxides.

    PubMed

    Abdel-Rahman, Laila H; Abu-Dief, Ahmed M; El-Khatib, Rafat M; Abdel-Fatah, Shimaa Mahdy

    2016-09-01

    Three new nano sized Cu(II), Co(II) and Ni(II) complexes of imine ligand derived from the condensation of 2-amino-3-hydroxypyridine and 3-methoxysalicylaldehyde have been prepared and investigated using various chemical techniques such as NMR, elemental analysis, molar conductance, IR, electronic spectra, TGA and magnetic moment measurements. The obtained chemical analysis data showed that the synthesis of 1:1 (metal:ligand) ratio and octahedral geometry was proposed on the basis of magnetic moment and spectral data studies except the Cu(II) complex which is tetrahedral geometry. Nano-sized particles of the investigated complexes were prepared by sonochemistry method. Furthermore, metal oxides nanoparticles were gained by calcination of the prepared corresponding complexes at 500°C and their structures were characterized by powder x-ray and transmittance electron microscopy. Moreover, the free ligand, its complexes and their metal oxides have been checked in vitro against a number of bacteria and fungi in order to assess their antimicrobial activities. In addition to that, DNA binding of the prepared complexes was tested by many routes such as electronic spectra, viscosity and gel electrophoresis. The results showed that the investigated complexes could bind to DNA via an intercalative mode. The cytotoxicity of the Schiff base complexes on human colon carcinoma cells, (HCT-116 cell line) and Breast carcinoma cells, (MCF-7 cell line) showed potent cytotoxicity effect against growth of carcinoma cells compared to the clinically used Vinblastine standard. PMID:27395793

  1. In vivo effects of T-2 mycotoxin on synthesis of proteins and DNA in rat tissues

    SciTech Connect

    Thompson, W.L.; Wannemacher, R.W. Jr. )

    1990-09-15

    Rats were given an ip injection of T-2 mycotoxin (T-2), the T-2 metabolite, T-2 tetraol (tetraol), or cycloheximide. Serum, liver, heart, kidney, spleen, muscle, and intestine were collected at 3, 6, and 9 hr postinjection after a 2-hr pulse at each time with (14C)leucine and (3H)thymidine. Protein and DNA synthesis levels in rats were determined by dual-label counting of the acid-precipitable fraction of tissue homogenates. Rats given a lethal dose of T-2, tetraol, or cycloheximide died between 14 and 20 hr. Maximum inhibition of protein synthesis at the earliest time period was observed in additional rats given the same lethal dose of the three treatments and continued for the duration of the study (9 hr). With sublethal doses of T-2 or tetraol, the same early decrease in protein synthesis was observed but, in most of the tissues, recovery was seen with time. In the T-2-treated rats. DNA synthesis in the six tissues studied was also suppressed, although to a lesser degree. With sublethal doses, complete recovery of DNA synthesis took place in four of the six tissues by 9 hr after toxin exposure. The appearance of newly translated serum proteins did not occur in the animals treated with T-2 mycotoxin or cycloheximide, as evidenced by total and PCA-soluble serum levels of labeled leucine. An increase in tissue-pool levels of free leucine and thymidine in response to T-2 mycotoxin was also noted. T-2 mycotoxin, its metabolite, T-2 tetraol, and cycloheximide cause a rapid inhibition of protein and DNA synthesis in all tissue types studied. These results are compared with the responses seen in in vitro studies.

  2. A DNA-recombinogenic activity in human cells.

    PubMed Central

    Kenne, K; Ljungquist, S

    1984-01-01

    A DNA recombining protein has been partly purified from cell lines derived from patients suffering from the hereditary disease, Bloom's syndrome. The protein induces the formation of displacement loops in phi X174 RFI DNA molecules after the addition of single-stranded DNA fragments. A filter binding method and electron microscopy were used to determine the reaction. The recombinogenic protein is dependent on divalent cations and ATP for activity. Images PMID:6232501

  3. Reversible Condensation of DNA using a Redox-Active Surfactant

    PubMed Central

    Hays, Melissa E.; Jewell, Christopher M.; Lynn, David M.; Abbott, Nicholas L.

    2008-01-01

    We report characterization of aqueous solutions of dilute Lambda phage DNA containing the redox-active surfactant (11-ferrocenylundecyl)trimethylammonium bromide (FTMA) as a function of the oxidation state of the FTMA. FTMA undergoes a reversible one-electron oxidation from a reduced state that forms micelles in aqueous solution to an oxidized state (containing the ferrocenium cation) that does not selfassociate in solution. This investigation sought to test the hypothesis that FTMA can be used to achieve reversible control over the conformation of DNA-surfactant complexes in solution. Whereas DNA adopts extended coil conformations in aqueous solutions, our measurements revealed that addition of reduced FTMA (2–5μM) to aqueous solutions of DNA (5 μM in nucleotide units) resulted in coexistence of extended coils and compact globules in solution. At higher concentrations of reduced FTMA (up to 30μM), the DNA was present as compact globules only. In contrast, oxidized FTMA had no measurable effect on the conformation of DNA, allowing DNA to maintain an extended coil state up to a concentration of 75μM oxidized FTMA. We further demonstrate that it is possible to chemically or electrochemically transform the oxidation state of FTMA in preformed complexes of FTMA and DNA, thus achieving in situ control over the conformations of the DNA in solution. These results provide guidance for the design of surfactant systems that permit active control of DNA-surfactant interactions. PMID:17428073

  4. Hepatitis B virus: DNA polymerase activity of deletion mutants.

    PubMed

    Kim, Y; Hong, Y B; Jung, G

    1999-02-01

    The hepadnavirus P gene product is a multifunctional protein with priming, DNA- and RNA-dependent DNA polymerase, and RNase H activities. Nested N- or C-terminal deletion mutations and deletions of domain(s) in human HBV polymerase have been made. Wild-type and deletion forms of MBP-fused HBV polymerase were expressed in E. coli, purified by amylose column chromatography, and the DNA-dependent DNA polymerase activities of the purified proteins were compared. Deletion of the terminal protein or spacer regions reduced enzyme activity to 70%, respectively. However, deletion of the RNase H domain affected polymerase activity more than that of the terminal protein or spacer region. The polymerase domain alone or the N-terminal deletion of the polymerase domain still exhibited enzymatic activity. In this report, it is demonstrated that the minimal domain for the polymerizing activity of the HBV polymerase is smaller than the polymerase domain. PMID:10205676

  5. Base J glucosyltransferase does not regulate the sequence specificity of J synthesis in trypanosomatid telomeric DNA.

    PubMed

    Bullard, Whitney; Cliffe, Laura; Wang, Pengcheng; Wang, Yinsheng; Sabatini, Robert

    2015-12-01

    Telomeric DNA of trypanosomatids possesses a modified thymine base, called base J, that is synthesized in a two-step process; the base is hydroxylated by a thymidine hydroxylase forming hydroxymethyluracil (hmU) and a glucose moiety is then attached by the J-associated glucosyltransferase (JGT). To examine the importance of JGT in modifiying specific thymine in DNA, we used a Leishmania episome system to demonstrate that the telomeric repeat (GGGTTA) stimulates J synthesis in vivo while mutant telomeric sequences (GGGTTT, GGGATT, and GGGAAA) do not. Utilizing an in vitro GT assay we find that JGT can glycosylate hmU within any sequence with no significant change in Km or kcat, even mutant telomeric sequences that are unable to be J-modified in vivo. The data suggests that JGT possesses no DNA sequence specificity in vitro, lending support to the hypothesis that the specificity of base J synthesis is not at the level of the JGT reaction. PMID:26815240

  6. Synthesis and NMR of {sup 15}N-labeled DNA fragments

    SciTech Connect

    Jones, R.A.

    1994-12-01

    DNA fragments labeled with {sup 15}N at the ring nitrogens and at the exocyclic amino groups can be used to obtain novel insight into interactions such as base pairing, hydration, drug binding, and protein binding. A number of synthetic routes to {sup 15}N-labeled pyrimidine nucleosides, purines, and purine nucleosides have been reported. Moreover, many of these labeled bases or monomers have been incorporated into nucleic acids, either by chemical synthesis or by biosynthetic procedures. The focus of this chapter will be on the preparation of {sup 15}N-labeled purine 2{prime}-deoxynucleosides, their incorporation into DNA fragments by chemical synthesis, and the results of NMR studies using these labeled DNA fragments.

  7. Sequential addition of short DNA oligos in DNA-polymerase-based synthesis reactions

    DOEpatents

    Gardner, Shea N; Mariella, Jr., Raymond P; Christian, Allen T; Young, Jennifer A; Clague, David S

    2013-06-25

    A method of preselecting a multiplicity of DNA sequence segments that will comprise the DNA molecule of user-defined sequence, separating the DNA sequence segments temporally, and combining the multiplicity of DNA sequence segments with at least one polymerase enzyme wherein the multiplicity of DNA sequence segments join to produce the DNA molecule of user-defined sequence. Sequence segments may be of length n, where n is an odd integer. In one embodiment the length of desired hybridizing overlap is specified by the user and the sequences and the protocol for combining them are guided by computational (bioinformatics) predictions. In one embodiment sequence segments are combined from multiple reading frames to span the same region of a sequence, so that multiple desired hybridizations may occur with different overlap lengths.

  8. Metabolic activation of carcinogenic ethylbenzene leads to oxidative DNA damage.

    PubMed

    Midorikawa, Kaoru; Uchida, Takafumi; Okamoto, Yoshinori; Toda, Chitose; Sakai, Yoshie; Ueda, Koji; Hiraku, Yusuke; Murata, Mariko; Kawanishi, Shosuke; Kojima, Nakao

    2004-12-01

    Ethylbenzene is carcinogenic to rats and mice, while it has no mutagenic activity. We have investigated whether ethylbenzene undergoes metabolic activation, leading to DNA damage. Ethylbenzene was metabolized to 1-phenylethanol, acetophenone, 2-ethylphenol and 4-ethylphenol by rat liver microsomes. Furthermore, 2-ethylphenol and 4-ethylphenol were metabolically transformed to ring-dihydroxylated metabolites such as ethylhydroquinone and 4-ethylcatechol, respectively. Experiment with 32P-labeled DNA fragment revealed that both ethylhydroquinone and 4-ethylcatechol caused DNA damage in the presence of Cu(II). These dihydroxylated compounds also induced the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine in calf thymus DNA in the presence of Cu(II). Catalase, methional and Cu(I)-specific chelator, bathocuproine, significantly (P<0.05) inhibited oxidative DNA damage, whereas free hydroxyl radical scavenger and superoxide dismutase did not. These results suggest that Cu(I) and H2O2 produced via oxidation of ethylhydroquinone and 4-ethylcatechol are involved in oxidative DNA damage. Addition of an endogenous reductant NADH dramatically enhanced 4-ethylcatechol-induced oxidative DNA damage, whereas ethylhydroquinone-induced DNA damage was slightly enhanced. Enhancing effect of NADH on oxidative DNA damage by 4-ethylcatechol may be explained by assuming that reactive species are generated from the redox cycle. In conclusion, these active dihydroxylated metabolites would be involved in the mechanism of carcinogenesis by ethylbenzene. PMID:15560893

  9. DNA-gold nanoparticles network based electrochemical biosensors for DNA MTase activity.

    PubMed

    Hong, Lu; Wan, Jing; Zhang, Xiaojun; Wang, Guangfeng

    2016-05-15

    In this work, a highly sensitive electrochemical DNA methyltransferase (MTase) activity assay was fabricated with DNA-gold nanoparticles (Au NPs) network as signal amplification unit and an easy assembly method by the linkage of benzenedithiol bridge. By two complementary AuNPs modified single-stranded DNA, DNA-gold nanoparticles network was self-assembled. With the linkage of benzenedithiol bridge, the DNA network structure was immobilized on the surface of gold electrode through the covalent Au-S bond. In the presence of Dam MTase, the special sites of DNA-AuNPs network were methylated and could not be digested by restriction endonuclease Mbo I. Thus the loaded electrochemical indicator Methylene blue (MB) was MB molecules still remained on the DNA-Au NPs network. The electrochemical response depended on the methylated degree, which could be used to detect MTase activity. By the differential pulse voltammetry (DPV), it was demonstrated that a linear relationship between the DPV response and logarithm of Dam concentration ranged from 0.075 to 30U/mL, achieving a low detection limit of 0.02U/mL. The use of benzenedithiol avoided the direct incubation of the solid electrode with the capture DNA probe under complex and harsh conditions. Therefore the immobilization of DNA-AuNPs network was easy to be carried out, which is favorable for the specially high stability and reproducibility of the electrochemical biosensor. PMID:26992515

  10. : Synthesis, Characterization, and Enhanced Photocatalytic Activity

    NASA Astrophysics Data System (ADS)

    Gao, Xiaoming; Fu, Feng; Li, Wenhong

    2014-12-01

    3D hierarchical microspheres of Cu-loaded Bi2WO6 are successfully prepared by the hydrothermal synthesis method on a large scale. The as-prepared samples are characterized by UV-Vis DRS, BET, XRD, XPS, and SEM. The results reveal that the light absorption of Cu-loaded Bi2WO6 has higher intensity in the visible range and a bathochromic shift of the absorption edge compared to that of pure Bi2WO6. The photocatalytic activity is evaluated by phenol removal from aqueous solution under visible-light irradiation. The results demonstrate that loaded Cu significantly enhances the photocatalytic activity of Bi2WO6, for the loaded Cu acts as the electron receptor on the surface of Bi2WO6, and inhibits the recombination of photogenerated electron-hole. The content of loaded Cu has an impact on the catalytic activity, and the 1.0 wt.% Cu-loaded Bi2WO6 exhibits the best photocatalytic activity in the degradation of phenol. Furthermore, the reaction kinetics of phenol removal from aqueous solution over the Cu-loaded Bi2WO6 is established by the way of the Langmuir-Hinshelwood model. The results indicate that the process of photodegradation of phenol on Cu-loaded Bi2WO6 match the Langmuir-Hinshelwood kinetic model.

  11. Design and Synthesis of Triangulated DNA Origami Trusses.

    PubMed

    Matthies, Michael; Agarwal, Nayan P; Schmidt, Thorsten L

    2016-03-01

    DNA nanotechnology offers unique control over matter on the nanoscale. Here, we extend the DNA origami method to cover a range of wireframe truss structures composed of equilateral triangles, which use less material per volume than standard multiple-helix bundles. From a flat truss design, we folded tetrahedral, octahedral, or irregular dodecahedral trusses by exchanging few connector strands. Other than standard origami designs, the trusses can be folded in low-salt buffers that make them compatible with cell culture buffers. The structures also have defined cavities that may in the future be used to precisely position functional elements such as metallic nanoparticles or enzymes. Our graph routing program and a simple design pipeline will enable other laboratories to make use of this valuable and potent new construction principle for DNA-based nanoengineering. PMID:26883285

  12. Inhibition of DNA damage repair by artificial activation of PARP with siDNA.

    PubMed

    Croset, Amelie; Cordelières, Fabrice P; Berthault, Nathalie; Buhler, Cyril; Sun, Jian-Sheng; Quanz, Maria; Dutreix, Marie

    2013-08-01

    One of the major early steps of repair is the recruitment of repair proteins at the damage site, and this is coordinated by a cascade of modifications controlled by phosphatidylinositol 3-kinase-related kinases and/or poly (ADP-ribose) polymerase (PARP). We used short interfering DNA molecules mimicking double-strand breaks (called Dbait) or single-strand breaks (called Pbait) to promote DNA-dependent protein kinase (DNA-PK) and PARP activation. Dbait bound and induced both PARP and DNA-PK activities, whereas Pbait acts only on PARP. Therefore, comparative study of the two molecules allows analysis of the respective roles of the two signaling pathways: both recruit proteins involved in single-strand break repair (PARP, XRCC1 and PCNA) and prevent their recruitment at chromosomal damage. Dbait, but not Pbait, also inhibits recruitment of proteins involved in double-strand break repair (53BP1, NBS1, RAD51 and DNA-PK). By these ways, Pbait and Dbait disorganize DNA repair, thereby sensitizing cells to various treatments. Single-strand breaks repair inhibition depends on direct trapping of the main proteins on both molecules. Double-strand breaks repair inhibition may be indirect, resulting from the phosphorylation of double-strand breaks repair proteins and chromatin targets by activated DNA-PK. The DNA repair inhibition by both molecules is confirmed by their synthetic lethality with BRCA mutations. PMID:23761435

  13. Synthesis, structural characterization and catalytic activity of a multifunctional enzyme mimetic oxoperoxovanadium(V) complex.

    PubMed

    Si, Tapan K; Paul, Shiv S; Drew, Michael G B; Mukherjea, Kalyan K

    2012-05-21

    The synthesis and structural characterization of a novel oxoperoxovanadium(V) complex [VO(O(2))(PAH)(phen)] containing the ligands 2-phenylacetohydroxamic acid (PAHH) and 1,10-phenanthroline (phen) has been accomplished. The oxoperoxovanadium(V) complex was found to mimic both vanadate-dependent haloperoxidase (VHPO) activity as well as nuclease activity through effective interaction with DNA. The complex is the first example of a structurally characterized stable oxoperoxovanadium(V) complex with a coordinated bi-dentate hydroximate moiety (-CONHO(-)) from 2-phenylacetohydroximate (PAH). The oxoperoxovanadium(V) complex has been used as catalyst for the peroxidative bromination reaction of some unsaturated alcohols (e.g. 4-pentene-1-ol, 1-octene-3-ol and 9-decene-1-ol) in the presence of H(2)O(2) and KBr. The catalytic products have been characterized by GC-MS analysis and spectrophotometric methods. The DNA binding of this complex has been established with CT DNA whereas the DNA cleavage was demonstrated with plasmid DNA. The interactions of the complex with DNA have been monitored by electronic absorption and fluorescence emission spectroscopy. Viscometric measurements suggest that the compound is a DNA intercalator. The nuclease activity of this complex was confirmed by gel electrophoresis studies. PMID:22441646

  14. Synthesis of DNA Oligodeoxynucleotides Containing Site-Specific 1,3-Butadiene- Deoxyadenosine Lesions

    PubMed Central

    Wickramaratne, Susith; Seiler, Christopher L.

    2016-01-01

    Post-oligomerization synthesis is a useful technique for preparing site-specifically modified DNA oligomers. This approach involves site-specific incorporation of inherently reactive halogenated nucleobases into DNA strands using standard solid phase synthesis, followed by post-oligomerization nucleophilic aromatic substitution (SNAr) reactions with carcinogen-derived synthons. In these reactions, the inherent reactivities of DNA and carcinogen-derived species are reversed: the modified DNA nucleobase acts as an electrophile, while the carcinogen-derived species acts as a nucleophile. In the present protocol, we describe the use of the post-oligomerization approach to prepare DNA strands containing site- and stereospecific N6-adenine and N1, N6-adenine adducts induced by epoxide metabolites of the known human and animal carcinogen, 1,3-butadiene (BD). The resulting oligomers containing site specific, structurally defined DNA adducts can be used in structural and biological studies to reveal the roles of specific BD adducts in carcinogenesis and mutagenesis. PMID:26344227

  15. The DNA methylation inhibitor 5-azacytidine decreases melanin synthesis by inhibiting CREB phosphorylation.

    PubMed

    Shin, Jun Seob; Jeong, Hyo-Soon; Kim, Myo-Kyoung; Yun, Hye-Young; Baek, Kwang Jin; Kwon, Nyoun Soo; Kim, Dong-Seok

    2015-10-01

    Here we examined the effects of a DNA methylation inhibitor, 5-azacytidine, on melanogenesis in Mel-Ab cells. We found that 5-azacytidine decreased the melanin content and tyrosinase activity in these cells in a dose-dependent manner; importantly, 5-azacytidine was not cytotoxic at the concentrations used in these experiments. On the other hand, 5-azacytidine did not affect tyrosinase activity in a cell-free system, indicating that 5-azacytidine is not a direct tyrosinase inhibitor. Instead, 5-azacytidine decreased the protein levels of microphthalmia-associated transcription factor (MITF) and tyrosinase. Thus, we investigated the effects of 5-azacytidine on signal transduction pathways related to melanogenesis. However, 5-azacytidine did not have any effect on either Akt or glycogen synthase kinase 3β (GSK3β) phosphorylation. The phosphorylation of cAMP response element-binding protein (CREB) is well known to regulate MITF expression, thereby also regulating tyrosinase expression. We found that 5-azacytidine decreased the phosphorylation of CREB. Therefore, we propose that 5-azacytidine may decrease melanin synthesis by downregulating MITF and tyrosinase via CREB inactivation. PMID:26601420

  16. Glutamylation of the DNA sensor cGAS regulates its binding and synthase activity in antiviral immunity.

    PubMed

    Xia, Pengyan; Ye, Buqing; Wang, Shuo; Zhu, Xiaoxiao; Du, Ying; Xiong, Zhen; Tian, Yong; Fan, Zusen

    2016-04-01

    Cyclic GMP-AMP synthase (cGAS) senses cytosolic DNA during viral infection and catalyzes synthesis of the dinucleotide cGAMP, which activates the adaptor STING to initiate antiviral responses. Here we found that deficiency in the carboxypeptidase CCP5 or CCP6 led to susceptibility to DNA viruses. CCP5 and CCP6 were required for activation of the transcription factor IRF3 and interferons. Polyglutamylation of cGAS by the enzyme TTLL6 impeded its DNA-binding ability, whereas TTLL4-mediated monoglutamylation of cGAS blocked its synthase activity. Conversely, CCP6 removed the polyglutamylation of cGAS, whereas CCP5 hydrolyzed the monoglutamylation of cGAS, which together led to the activation of cGAS. Therefore, glutamylation and deglutamylation of cGAS tightly modulate immune responses to infection with DNA viruses. PMID:26829768

  17. Structural Basis of High-Fidelity DNA Synthesis by Yeast DNA Polymerase δ

    SciTech Connect

    Swan, M.; Johnson, R; Prakash, L; Prakash, S; Aggarwal, A

    2009-01-01

    DNA polymerase ? (Pol ?) has a crucial role in eukaryotic replication. Now the crystal structure of the yeast DNA Pol ? catalytic subunit in complex with template primer and incoming nucleotide is presented at 2.0-A resolution, providing insight into its high fidelity and a framework to understand the effects of mutations involved in tumorigenesis.

  18. Synthesis of site-specific DNA-protein conjugates and their effects on DNA replication.

    PubMed

    Yeo, Jung Eun; Wickramaratne, Susith; Khatwani, Santoshkumar; Wang, Yen-Chih; Vervacke, Jeffrey; Distefano, Mark D; Tretyakova, Natalia Y

    2014-08-15

    DNA-protein cross-links (DPCs) are bulky, helix-distorting DNA lesions that form in the genome upon exposure to common antitumor drugs, environmental/occupational toxins, ionizing radiation, and endogenous free-radical-generating systems. As a result of their considerable size and their pronounced effects on DNA-protein interactions, DPCs can interfere with DNA replication, transcription, and repair, potentially leading to mutagenesis, genotoxicity, and cytotoxicity. However, the biological consequences of these ubiquitous lesions are not fully understood due to the difficulty of generating DNA substrates containing structurally defined, site-specific DPCs. In the present study, site-specific cross-links between the two biomolecules were generated by copper-catalyzed [3 + 2] Huisgen cycloaddition (click reaction) between an alkyne group from 5-(octa-1,7-diynyl)-uracil in DNA and an azide group within engineered proteins/polypeptides. The resulting DPC substrates were subjected to in vitro primer extension in the presence of human lesion bypass DNA polymerases η, κ, ν, and ι. We found that DPC lesions to the green fluorescent protein and a 23-mer peptide completely blocked DNA replication, while the cross-link to a 10-mer peptide was bypassed. These results indicate that the polymerases cannot read through the larger DPC lesions and further suggest that proteolytic degradation may be required to remove the replication block imposed by bulky DPC adducts. PMID:24918113

  19. Efficiency, error and yield in light-directed maskless synthesis of DNA microarrays

    PubMed Central

    2011-01-01

    Background Light-directed in situ synthesis of DNA microarrays using computer-controlled projection from a digital micromirror device--maskless array synthesis (MAS)--has proved to be successful at both commercial and laboratory scales. The chemical synthetic cycle in MAS is quite similar to that of conventional solid-phase synthesis of oligonucleotides, but the complexity of microarrays and unique synthesis kinetics on the glass substrate require a careful tuning of parameters and unique modifications to the synthesis cycle to obtain optimal deprotection and phosphoramidite coupling. In addition, unintended deprotection due to scattering and diffraction introduce insertion errors that contribute significantly to the overall error rate. Results Stepwise phosphoramidite coupling yields have been greatly improved and are now comparable to those obtained in solid phase synthesis of oligonucleotides. Extended chemical exposure in the synthesis of complex, long oligonucleotide arrays result in lower--but still high--final average yields which approach 99%. The new synthesis chemistry includes elimination of the standard oxidation until the final step, and improved coupling and light deprotection. Coupling Insertions due to stray light are the limiting factor in sequence quality for oligonucleotide synthesis for gene assembly. Diffraction and local flare are by far the largest contributors to loss of optical contrast. Conclusions Maskless array synthesis is an efficient and versatile method for synthesizing high density arrays of long oligonucleotides for hybridization- and other molecular binding-based experiments. For applications requiring high sequence purity, such as gene assembly, diffraction and flare remain significant obstacles, but can be significantly reduced with straightforward experimental strategies. PMID:22152062

  20. Inactivation efficiencies of radical reactions with biologically active DNA

    NASA Astrophysics Data System (ADS)

    Lafleur, M. V. M.; Retèl, J.; Loman, H.

    Dilute aqueous solutions of biologically active θX174 DNA may serve as a simplified model system of the cell. Damage to the DNA after irradiation with γ-rays, may be ascribed to reactions with .OH, .H and e -aq or secondary radicals, arising from reactions of water radicals with added scavengers. Conversion of primary (water) radicals into secondary (scavenger) radicals leads to a considerable protection of the DNA, which, however, would have been larger if these secondary radicals did not contribute to DNA inactivation. The inactivation yield due to isopropanol or formate (secondary) radicals depends on dose rate as well as DNA concentration. Furthermore the inactivation efficiencies of the reactions of both the primary and the secondary radicals with single-stranded DNA could be established.

  1. An improved method of gene synthesis based on DNA works software and overlap extension PCR.

    PubMed

    Dong, Bingxue; Mao, Runqian; Li, Baojian; Liu, Qiuyun; Xu, Peilin; Li, Gang

    2007-11-01

    A bottleneck in recent gene synthesis technologies is the high cost of oligonucleotide synthesis and post-synthesis sequencing. In this article, a simple and rapid method for low-cost gene synthesis technology was developed based on DNAWorks program and an improved single-step overlap extension PCR (OE-PCR). This method enables any DNA sequence to be synthesized with few errors, then any mutated sites could be corrected by site-specific mutagenesis technology or PCR amplification-assembly method, which can amplify different DNA fragments of target gene followed by assembly into an entire gene through their overlapped region. Eventually, full-length DNA sequence without error was obtained via this novel method. Our method is simple, rapid and low-cost, and also easily amenable to automation based on a DNAWorks design program and defined set of OE-PCR reaction conditions suitable for different genes. Using this method, several genes including Manganese peroxidase gene (Mnp) of Phanerochaete chrysosporium (P. chrysosporium), Laccase gene (Lac) of Trametes versicolor (T. versicolor) and Cip1 peroxidase gene (cip 1) of Coprinus cinereus (C. cinereus) with sizes ranging from 1.0 kb to 1.5 kb have been synthesized successfully. PMID:17952664

  2. Synthesis of Cross-Linked DNA Containing Oxidized Abasic Site Analogues

    PubMed Central

    2015-01-01

    DNA interstrand cross-links are an important family of DNA damage that block replication and transcription. Recently, it was discovered that oxidized abasic sites react with the opposing strand of DNA to produce interstrand cross-links. Some of the cross-links between 2′-deoxyadenosine and the oxidized abasic sites, 5′-(2-phosphoryl-1,4-dioxobutane) (DOB) and the C4-hydroxylated abasic site (C4-AP), are formed reversibly. Chemical instability hinders biochemical, structural, and physicochemical characterization of these cross-linked duplexes. To overcome these limitations, we developed methods for preparing stabilized analogues of DOB and C4-AP cross-links via solid-phase oligonucleotide synthesis. Oligonucleotides of any sequence are attainable by synthesizing phosphoramidites in which the hydroxyl groups of the cross-linked product were orthogonally protected using photochemically labile and hydrazine labile groups. Selective unmasking of a single hydroxyl group precedes solid-phase synthesis of one arm of the cross-linked DNA. The method is compatible with commercially available phosphoramidites and other oligonucleotide synthesis reagents. Cross-linked duplexes containing as many as 54 nt were synthesized on solid-phase supports. Subsequent enzyme ligation of one cross-link product provided a 60 bp duplex, which is suitable for nucleotide excision repair studies. PMID:24949656

  3. Activation and Regulation of DNA-Driven Immune Responses

    PubMed Central

    2015-01-01

    SUMMARY The innate immune system provides early defense against infections and also plays a key role in monitoring alterations of homeostasis in the body. DNA is highly immunostimulatory, and recent advances in this field have led to the identification of the innate immune sensors responsible for the recognition of DNA as well as the downstream pathways that are activated. Moreover, information on how cells regulate DNA-driven immune responses to avoid excessive inflammation is now emerging. Finally, several reports have demonstrated how defects in DNA sensing, signaling, and regulation are associated with susceptibility to infections or inflammatory diseases in humans and model organisms. In this review, the current literature on DNA-stimulated innate immune activation is discussed, and important new questions facing this field are proposed. PMID:25926682

  4. Cytotoxic activity and DNA-binding properties of isoeuxanthone derivatives.

    PubMed

    Wang, Hui Fang; Yan, Hong; Gao, Xianghua; Niu, Baolong; Guo, Ruijie; Wei, Liqiao; Xu, Bingshe; Tang, Ning

    2014-01-01

    In this study, the interactions of different groups substituted isoeuxanthone derivatives with calf thymus DNA (ct DNA) were investigated by spectrophotometric methods and viscosity measurements. Results indicated that the xanthone derivatives could intercalate into the DNA base pairs by the plane of xanthone ring and the various substituents may influence the binding affinity with DNA according to the calculated quenching constant values. Furthermore, two tumor cell lines including the human cervical cancer cell line (HeLa) and human hepatocellular liver carcinoma cell line (HepG2) were used to evaluate the cytotoxic activities of xanthone derivatives by acid phosphatase assay. Analyses showed that the oxiranylmethoxy substituted xanthone exhibited more effective cytotoxic activity against the cancer cells than the other substituted xanthones. The effects on the inhibition of tumor cells in vitro agreed with the studies of DNA-binding. PMID:24583780

  5. First total synthesis of prasinic acid and its anticancer activity.

    PubMed

    Chakor, Narayan; Patil, Ganesh; Writer, Diana; Periyasamy, Giridharan; Sharma, Rajiv; Roychowdhury, Abhijit; Mishra, Prabhu Dutt

    2012-11-01

    The first total synthesis of prasinic acid is being reported along with its biological evaluation. The ten step synthesis involved readily available and cheap starting materials and can easily be transposed to large scale manufacturing. The crucial steps of the synthesis included the formation of two different aromatic units (7 and 9) and their coupling reaction. The synthetic prasinic acid exhibited moderate antitumor activity (IC(50) 4.3-9.1 μM) in different lines of cancer cells. PMID:23031589

  6. DNA hybridization activity of single-stranded DNA-conjugated gold nanoparticles used as probes for DNA detection

    NASA Astrophysics Data System (ADS)

    Kira, Atsushi; Matsuo, Kosuke; Nakajima, Shin-ichiro

    2016-02-01

    Colloidal nanoparticles (NPs) have potential applications in bio-sensing technologies as labels or signal enhancers. In order to meet demands for a development of biomolecular assays by a quantitative understanding of single-molecule, it is necessary to regulate accuracy of the NPs probes modified with biomolecules to optimize the characteristics of NPs. However, to our knowledge, there is little information about the structural effect of conjugated biomolecules to the NPs. In this study, we investigated the contribution of a density of single-stranded DNA (ssDNA) conjugating gold NP to hybridization activity. Hybridization activity decreased in accordance with increases in the density of attached ssDNAs, likely due to electrostatic repulsion generated by negatively charged phosphate groups in the ssDNA backbone. These results highlight the importance of controlling the density of ssDNAs attached to the surface of NPs used as DNA detection probes.

  7. Sequential addition of short DNA oligos in DNA-polymerase-based synthesis reactions

    DOEpatents

    Gardner, Shea N.; Mariella, Jr., Raymond P.; Christian, Allen T.; Young, Jennifer A.; Clague, David S.

    2011-01-18

    A method of fabricating a DNA molecule of user-defined sequence. The method comprises the steps of preselecting a multiplicity of DNA sequence segments that will comprise the DNA molecule of user-defined sequence, separating the DNA sequence segments temporally, and combining the multiplicity of DNA sequence segments with at least one polymerase enzyme wherein the multiplicity of DNA sequence segments join to produce the DNA molecule of user-defined sequence. Sequence segments may be of length n, where n is an even or odd integer. In one embodiment the length of desired hybridizing overlap is specified by the user and the sequences and the protocol for combining them are guided by computational (bioinformatics) predictions. In one embodiment sequence segments are combined from multiple reading frames to span the same region of a sequence, so that multiple desired hybridizations may occur with different overlap lengths. In one embodiment starting sequence fragments are of different lengths, n, n+1, n+2, etc.

  8. Endotoxin or cytokines attenuate ozone-induced DNA synthesis in rat nasal transitional epithelium

    SciTech Connect

    Hotchkiss, J.A.; Harkema, J.R. )

    1992-06-01

    Pretreatment of rats with endotoxin (E), a potent inducer of tumor necrosis factor alpha (TNF), and interleukin 1 beta (IL 1), or a combination of TNF and IL1, has been shown to increase levels of lung antioxidant enzymes and protect against pulmonary toxicity associated with hyperoxia. Inhalation of ozone (O3) induces cell injury, followed by increased DNA synthesis, cell proliferation, and secretory cell metaplasia in rat nasal transitional epithelium (NTE). This study was designed to test the effects of E, TNF, and IL1 pretreatment on acute O3-induced NTE cell injury as measured by changes in NTE cell DNA synthesis. Rats were exposed to either 0.8 ppm O3 or air for 6 hr in whole-body inhalation chambers. Immediately before exposure, rats in each group were injected intraperitoneally (ip) with either saline alone or saline containing E, TNF, IL1, or both TNF and IL1. Eighteen hours postexposure, rats were injected ip with bromodeoxyuridine to label cells undergoing DNA synthesis and were euthanized 2 hr later. NTE was processed for light microscopy and immunochemically stained to identify cells that had incorporated BrdU into nuclear DNA. The number of BrdU-labeled NTE nuclei per millimeter of basal lamina was quantitated. There were no significant differences in the number of BrdU-labeled NTE nuclei in air-exposed rats that were injected with E, TNF, IL1, or TNF/IL1 compared with those in saline-injected, air-exposed controls. Rats that were injected with saline and exposed to O3 had approximately 10 times the number of BrdU-labeled NTE nuclei than saline-injected, air-exposed control rats. O3 exposure also induced a significant increase in labeled nuclei in rats that were pretreated with TNF alone. In contrast, pretreatment with E, IL1, or TNF/IL1 attenuated the O3-induced increase in NTE DNA synthesis.

  9. Real-time single-molecule electronic DNA sequencing by synthesis using polymer-tagged nucleotides on a nanopore array

    PubMed Central

    Fuller, Carl W.; Kumar, Shiv; Porel, Mintu; Chien, Minchen; Bibillo, Arek; Stranges, P. Benjamin; Dorwart, Michael; Tao, Chuanjuan; Li, Zengmin; Guo, Wenjing; Shi, Shundi; Korenblum, Daniel; Trans, Andrew; Aguirre, Anne; Liu, Edward; Harada, Eric T.; Pollard, James; Bhat, Ashwini; Cech, Cynthia; Yang, Alexander; Arnold, Cleoma; Palla, Mirkó; Hovis, Jennifer; Chen, Roger; Morozova, Irina; Kalachikov, Sergey; Russo, James J.; Kasianowicz, John J.; Davis, Randy; Roever, Stefan; Church, George M.; Ju, Jingyue

    2016-01-01

    DNA sequencing by synthesis (SBS) offers a robust platform to decipher nucleic acid sequences. Recently, we reported a single-molecule nanopore-based SBS strategy that accurately distinguishes four bases by electronically detecting and differentiating four different polymer tags attached to the 5′-phosphate of the nucleotides during their incorporation into a growing DNA strand catalyzed by DNA polymerase. Further developing this approach, we report here the use of nucleotides tagged at the terminal phosphate with oligonucleotide-based polymers to perform nanopore SBS on an α-hemolysin nanopore array platform. We designed and synthesized several polymer-tagged nucleotides using tags that produce different electrical current blockade levels and verified they are active substrates for DNA polymerase. A highly processive DNA polymerase was conjugated to the nanopore, and the conjugates were complexed with primer/template DNA and inserted into lipid bilayers over individually addressable electrodes of the nanopore chip. When an incoming complementary-tagged nucleotide forms a tight ternary complex with the primer/template and polymerase, the tag enters the pore, and the current blockade level is measured. The levels displayed by the four nucleotides tagged with four different polymers captured in the nanopore in such ternary complexes were clearly distinguishable and sequence-specific, enabling continuous sequence determination during the polymerase reaction. Thus, real-time single-molecule electronic DNA sequencing data with single-base resolution were obtained. The use of these polymer-tagged nucleotides, combined with polymerase tethering to nanopores and multiplexed nanopore sensors, should lead to new high-throughput sequencing methods. PMID:27091962

  10. Real-time single-molecule electronic DNA sequencing by synthesis using polymer-tagged nucleotides on a nanopore array.

    PubMed

    Fuller, Carl W; Kumar, Shiv; Porel, Mintu; Chien, Minchen; Bibillo, Arek; Stranges, P Benjamin; Dorwart, Michael; Tao, Chuanjuan; Li, Zengmin; Guo, Wenjing; Shi, Shundi; Korenblum, Daniel; Trans, Andrew; Aguirre, Anne; Liu, Edward; Harada, Eric T; Pollard, James; Bhat, Ashwini; Cech, Cynthia; Yang, Alexander; Arnold, Cleoma; Palla, Mirkó; Hovis, Jennifer; Chen, Roger; Morozova, Irina; Kalachikov, Sergey; Russo, James J; Kasianowicz, John J; Davis, Randy; Roever, Stefan; Church, George M; Ju, Jingyue

    2016-05-10

    DNA sequencing by synthesis (SBS) offers a robust platform to decipher nucleic acid sequences. Recently, we reported a single-molecule nanopore-based SBS strategy that accurately distinguishes four bases by electronically detecting and differentiating four different polymer tags attached to the 5'-phosphate of the nucleotides during their incorporation into a growing DNA strand catalyzed by DNA polymerase. Further developing this approach, we report here the use of nucleotides tagged at the terminal phosphate with oligonucleotide-based polymers to perform nanopore SBS on an α-hemolysin nanopore array platform. We designed and synthesized several polymer-tagged nucleotides using tags that produce different electrical current blockade levels and verified they are active substrates for DNA polymerase. A highly processive DNA polymerase was conjugated to the nanopore, and the conjugates were complexed with primer/template DNA and inserted into lipid bilayers over individually addressable electrodes of the nanopore chip. When an incoming complementary-tagged nucleotide forms a tight ternary complex with the primer/template and polymerase, the tag enters the pore, and the current blockade level is measured. The levels displayed by the four nucleotides tagged with four different polymers captured in the nanopore in such ternary complexes were clearly distinguishable and sequence-specific, enabling continuous sequence determination during the polymerase reaction. Thus, real-time single-molecule electronic DNA sequencing data with single-base resolution were obtained. The use of these polymer-tagged nucleotides, combined with polymerase tethering to nanopores and multiplexed nanopore sensors, should lead to new high-throughput sequencing methods. PMID:27091962

  11. 5' modification of duplex DNA with a ruthenium electron donor-acceptor pair using solid-phase DNA synthesis

    NASA Technical Reports Server (NTRS)

    Frank, Natia L.; Meade, Thomas J.

    2003-01-01

    Incorporation of metalated nucleosides into DNA through covalent modification is crucial to measurement of thermal electron-transfer rates and the dependence of these rates with structure, distance, and position. Here, we report the first synthesis of an electron donor-acceptor pair of 5' metallonucleosides and their subsequent incorporation into oligonucleotides using solid-phase DNA synthesis techniques. Large-scale syntheses of metal-containing oligonucleotides are achieved using 5' modified phosporamidites containing [Ru(acac)(2)(IMPy)](2+) (acac is acetylacetonato; IMPy is 2'-iminomethylpyridyl-2'-deoxyuridine) (3) and [Ru(bpy)(2)(IMPy)](2+) (bpy is 2,2'-bipyridine; IMPy is 2'-iminomethylpyridyl-2'-deoxyuridine) (4). Duplexes formed with the metal-containing oligonucleotides exhibit thermal stability comparable to the corresponding unmetalated duplexes (T(m) of modified duplex = 49 degrees C vs T(m) of unmodified duplex = 47 degrees C). Electrochemical (3, E(1/2) = -0.04 V vs NHE; 4, E(1/2) = 1.12 V vs NHE), absorption (3, lambda(max) = 568, 369 nm; 4, lambda(max) = 480 nm), and emission (4, lambda(max) = 720 nm, tau = 55 ns, Phi = 1.2 x 10(-)(4)) data for the ruthenium-modified nucleosides and oligonucleotides indicate that incorporation into an oligonucleotide does not perturb the electronic properties of the ruthenium complex or the DNA significantly. In addition, the absence of any change in the emission properties upon metalated duplex formation suggests that the [Ru(bpy)(2)(IMPy)](2+)[Ru(acac)(2)(IMPy)](2+) pair will provide a valuable probe for DNA-mediated electron-transfer studies.

  12. Inhibition of macrophage DNA synthesis by immunomodulators. II. Characterization of the suppression by muramyl dipeptide or lipopolysaccharide (/sup 3/H)thymidine incorporation into macrophages

    SciTech Connect

    Nagao, S.; Ikegami, S.; Tanaka, A.

    1984-12-01

    Guinea pig peritoneal exudate macrophages actively incorporated (/sup 3/H)thymidine into trichloroacetic acid-insoluble fraction in vitro. The incorporation of (/sup 3/H)thymidine was almost completely inhibited by aphidicolin, an inhibitor of DNA polymerase alpha and an autoradiograph showed heavy labeling in nuclei of 15% of macrophage populations. These results indicate that the observed thymidine incorporation was due to a nuclear DNA synthesis. The (/sup 3/H)thymidine incorporation was markedly suppressed when macrophages were activated by immunoadjuvants such as muramyl dipeptide (MDP) or bacterial lipopolysaccharide (LPS). The suppression of (/sup 3/H)thymidine incorporation by MDP was neither due to the decrease in thymidine transport through the cell membrane, nor due to dilution by newly synthesized cold thymidine. An autoradiograph revealed that MDP markedly decreased the number of macrophages the nuclei of which were labeled by (/sup 3/H)thymidine. These results suggest that the suppression of (/sup 3/H)thymidine incorporation by the immunoadjuvants reflects a true inhibition of DNA synthesis. The inhibition of DNA synthesis by MDP was also observed in vivo. Further, it was strongly suggested that the inhibition was not caused by some mediators, such as prostaglandin E2, released from macrophages stimulated by the immunoadjuvants but caused by a direct triggering of the adjuvants at least at the early stage of activation. Cyclic AMP appears to be involved in the inhibitory reaction.

  13. The carbocyclic analog of 2'-deoxyguanosine induces a prolonged inhibition of duck hepatitis B virus DNA synthesis in primary hepatocyte cultures and in the liver.

    PubMed Central

    Fourel, I; Saputelli, J; Schaffer, P; Mason, W S

    1994-01-01

    The carbocyclic analog of 2'-deoxyguanosine (2'-CDG) is a strong inhibitor of hepatitis B virus (HBV) DNA synthesis in HepG2 cells (P.M. Price, R. Banerjee, and G. Acs, Proc. Natl. Acad. USA 86:8543-8544, 1989). We now report that 2'-CDG inhibited duck hepatitis B virus (DHBV) DNA synthesis in primary cultures of duck hepatocytes and in experimentally infected ducks. Like foscarnet (phosphonoformic acid [PFA]) and 2'-,3'-dideoxycytidine (ddC), 2'-CDG blocked viral DNA replication in primary hepatocyte cultures when present during an infection but failed to inhibit the DNA repair reaction that occurs during the initiation of infection to convert virion relaxed circular DNA to covalently closed circular DNA, the template for viral mRNA transcription. Moreover, as for PFA and ddC, viral RNA synthesis was detected when infection was initiated in the presence 2'-CDG. In another respect, however, 2'-CDG exhibited antiviral activity unlike that of ddC or PFA: a single 1-day treatment of hepatocytes with 2'-CDG blocked initiation of viral DNA synthesis for at least 8 days, irrespective of whether DHBV infection was carried out at the time of drug treatment or several days later. Furthermore, orally administered 2'-CDG was long-acting against DHBV in experimentally infected ducklings. Virus replication was delayed by up to 4 days in ducklings infected after administration of 2'-CDG. These observations of long-lasting efficacy in vitro and in vivo even after oral administration suggest that this inhibitor or a nucleoside with similar pharmacological properties may be ideal for reducing virus replication in patients with chronic HBV infection. Images PMID:8289335

  14. UvrD Participation in Nucleotide Excision Repair Is Required for the Recovery of DNA Synthesis following UV-Induced Damage in Escherichia coli.

    PubMed

    Newton, Kelley N; Courcelle, Charmain T; Courcelle, Justin

    2012-01-01

    UvrD is a DNA helicase that participates in nucleotide excision repair and several replication-associated processes, including methyl-directed mismatch repair and recombination. UvrD is capable of displacing oligonucleotides from synthetic forked DNA structures in vitro and is essential for viability in the absence of Rep, a helicase associated with processing replication forks. These observations have led others to propose that UvrD may promote fork regression and facilitate resetting of the replication fork following arrest. However, the molecular activity of UvrD at replication forks in vivo has not been directly examined. In this study, we characterized the role UvrD has in processing and restoring replication forks following arrest by UV-induced DNA damage. We show that UvrD is required for DNA synthesis to recover. However, in the absence of UvrD, the displacement and partial degradation of the nascent DNA at the arrested fork occur normally. In addition, damage-induced replication intermediates persist and accumulate in uvrD mutants in a manner that is similar to that observed in other nucleotide excision repair mutants. These data indicate that, following arrest by DNA damage, UvrD is not required to catalyze fork regression in vivo and suggest that the failure of uvrD mutants to restore DNA synthesis following UV-induced arrest relates to its role in nucleotide excision repair. PMID:23056919

  15. The POLD3 subunit of DNA polymerase δ can promote translesion synthesis independently of DNA polymerase ζ.

    PubMed

    Hirota, Kouji; Yoshikiyo, Kazunori; Guilbaud, Guillaume; Tsurimoto, Toshiki; Murai, Junko; Tsuda, Masataka; Phillips, Lara G; Narita, Takeo; Nishihara, Kana; Kobayashi, Kaori; Yamada, Kouich; Nakamura, Jun; Pommier, Yves; Lehmann, Alan; Sale, Julian E; Takeda, Shunichi

    2015-02-18

    The replicative DNA polymerase Polδ consists of a catalytic subunit POLD1/p125 and three regulatory subunits POLD2/p50, POLD3/p66 and POLD4/p12. The ortholog of POLD3 in Saccharomyces cerevisiae, Pol32, is required for a significant proportion of spontaneous and UV-induced mutagenesis through its additional role in translesion synthesis (TLS) as a subunit of DNA polymerase ζ. Remarkably, chicken DT40 B lymphocytes deficient in POLD3 are viable and able to replicate undamaged genomic DNA with normal kinetics. Like its counterpart in yeast, POLD3 is required for fully effective TLS, its loss resulting in hypersensitivity to a variety of DNA damaging agents, a diminished ability to maintain replication fork progression after UV irradiation and a significant decrease in abasic site-induced mutagenesis in the immunoglobulin loci. However, these defects appear to be largely independent of Polζ, suggesting that POLD3 makes a significant contribution to TLS independently of Polζ in DT40 cells. Indeed, combining polη, polζ and pold3 mutations results in synthetic lethality. Additionally, we show in vitro that POLD3 promotes extension beyond an abasic by the Polδ holoenzyme suggesting that while POLD3 is not required for normal replication, it may help Polδ to complete abasic site bypass independently of canonical TLS polymerases. PMID:25628356

  16. Rapid restriction enzyme free detection of DNA methyltransferase activity based on DNA-templated silver nanoclusters.

    PubMed

    Kermani, Hanie Ahmadzade; Hosseini, Morteza; Dadmehr, Mehdi; Ganjali, Mohammad Reza

    2016-06-01

    DNA methylation has significant roles in gene regulation. DNA methyltransferase (MTase) enzyme characterizes DNA methylation and also induces an aberrant methylation pattern that is related to many diseases, especially cancers. Thus, it is required to develop a method to detect the DNA MTase activity. In this study, we developed a new sensitive and reliable method for methyltransferase activity assay by employing DNA-templated silver nanoclusters (DNA/Ag NCs) without using restriction enzymes. The Ag NCs have been utilized for the determination of M.SssI MTase activity and its inhibition. We designed an oligonucleotide probe which contained an inserted six-cytosine loop as Ag NCs formation template. The changes in fluorescence intensity were monitored to quantify the M.SssI activity. The fluorescence spectra showed a linear decrease in the range of 0.4 to 20 U/ml with a detection limit of 0.1 U/ml, which was significant compared with previous reports. The proposed method was applied successfully for demonstrating the Gentamicin effect as MTase inhibitor. The proposed method showed convenient reproducibility and sensitivity indicating its potential for the determination of methyltransferase activity. PMID:27052776

  17. Nuclear reorganization of mammalian DNA synthesis prior to cell cycle exit.

    PubMed

    Barbie, David A; Kudlow, Brian A; Frock, Richard; Zhao, Jiyong; Johnson, Brett R; Dyson, Nicholas; Harlow, Ed; Kennedy, Brian K

    2004-01-01

    In primary mammalian cells, DNA replication initiates in a small number of perinucleolar, lamin A/C-associated foci. During S-phase progression in proliferating cells, replication foci distribute to hundreds of sites throughout the nucleus. In contrast, we find that the limited perinucleolar replication sites persist throughout S phase as cells prepare to exit the cell cycle in response to contact inhibition, serum starvation, or replicative senescence. Proteins known to be involved in DNA synthesis, such as PCNA and DNA polymerase delta, are concentrated in perinucleolar foci throughout S phase under these conditions. Moreover, chromosomal loci are redirected toward the nucleolus and overlap with the perinucleolar replication foci in cells poised to undergo cell cycle exit. These same loci remain in the periphery of the nucleus during replication under highly proliferative conditions. These results suggest that mammalian cells undergo a large-scale reorganization of chromatin during the rounds of DNA replication that precede cell cycle exit. PMID:14701733

  18. Synthesis and hybridization properties of an acyclic achiral phosphonate DNA analogue.

    PubMed

    Kehler, J; Henriksen, U; Vejbjerg, H; Dahl, O

    1998-03-01

    Protected N-(2-hydroxyethyl)-N-(nucleobase-acetyl)aminomethanephosphonic+ ++ acid (6a-d) of all four DNA nucleobases have been prepared and oligomerized by solid-phase synthesis. Four DNA decamers containing 1-10 of these 'PPNA' monomers were prepared and evaluated by Tm measurements (medium salt) for binding to their DNA and RNA complements. One central modification reduced the binding strongly (delta Tm = -10 degrees C), but contiguous PPNA monomers gave smaller effects, and the all-PPNA decamer bound to RNA with a delta Tm of -1.2 degrees C per modification. Thus PPNA oligomers are inferior DNA and RNA binders compared to the closely related and strongly binding PNA oligomers. PMID:9568285

  19. Synthesis of hybrid bacterial plasmids containing highly repeated satellite DNA.

    PubMed

    Brutlag, D; Fry, K; Nelson, T; Hung, P

    1977-03-01

    Hybrid plasmid molecules containing tandemly repeated Drosophila satellite DNA were constructed using a modification of the (dA)-(dT) homopolymer procedure of Lobban and Kaiser (1973). Recombinant plasmids recovered after transformation of recA bacteria contained 10% of the amount of satellite DNA present in the transforming molecules. The cloned plasmids were not homogenous in size. Recombinant plasmids isolated from a single colony contained populations of circular molecules which varied both in the length of the satellite region and in the poly(dA)-(dt) regions linking satellite and vector. While subcloning reduced the heterogeneity of these plasmid populations, continued cell growth caused further variations in the size of the repeated regions. Two different simple sequence satellites of Drosophila melanogaster (1.672 and 1.705 g/cm3) were unstable in both recA and recBC hosts and in both pSC101 and pCR1 vectors. We propose that this recA-independent instability of tandemly repeated sequences is due to unequal intramolecular recombination events in replicating DNA molecules, a mechanism analogous to sister chromatid exchange in eucaryotes. PMID:403010

  20. Self-assembled catalytic DNA nanostructures for synthesis of para-directed polyaniline.

    PubMed

    Wang, Zhen-Gang; Zhan, Pengfei; Ding, Baoquan

    2013-02-26

    Templated synthesis has been considered as an efficient approach to produce polyaniline (PANI) nanostructures. The features of DNA molecules enable a DNA template to be an intriguing template for fabrication of emeraldine PANI. In this work, we assembled HRP-mimicking DNAzyme with different artificial DNA nanostructures, aiming to manipulate the molecular structures and morphologies of PANI nanostructures through the controlled DNA self-assembly. UV-vis absorption spectra were used to investigate the molecular structures of PANI and monitor kinetic growth of PANI. It was found that PANI was well-doped at neutral pH and the redox behaviors of the resultant PANI were dependent on the charge density of the template, which was controlled by the template configurations. CD spectra indicated that the PANI threaded tightly around the helical DNA backbone, resulting in the right handedness of PANI. These reveal the formation of the emeraldine form of PANI that was doped by the DNA. The morphologies of the resultant PANI were studied by AFM and SEM. It was concluded from the imaging and spectroscopic kinetic results that PANI grew preferably from the DNAzyme sites and then expanded over the template to form 1D PANI nanostructures. The strategy of the DNAzyme-DNA template assembly brings several advantages in the synthesis of para-coupling PANI, including the region-selective growth of PANI, facilitating the formation of a para-coupling structure and facile regulation. We believe this study contributes significantly to the fabrication of doped PANI nanopatterns with controlled complexity, and the development of DNA nanotechnology. PMID:23272944

  1. Scorpion (Odontobuthus doriae) venom induces apoptosis and inhibits DNA synthesis in human neuroblastoma cells.

    PubMed

    Zargan, Jamil; Sajad, Mir; Umar, Sadiq; Naime, M; Ali, Shakir; Khan, Haider A

    2011-02-01

    Scorpion and its organs have been used to cure epilepsy, rheumatism, and male impotency since medieval times. Scorpion venom which contains different compounds like enzyme and non-enzyme proteins, ions, free amino acids, and other organic inorganic substances have been reported to posses antiproliferative, cytotoxic, apoptogenic, and immunosuppressive properties. We for the first time report the apoptotic and antiproliferative effects of scorpion venom (Odontobuthus doriae) in human neuroblastoma cells. After exposure of cells to medium containing varying concentrations of venom (10, 25, 50, 100, and 200 μg/ml), cell viability decreased to 90.75, 75.53, 55.52, 37.85, and 14.30%, respectively, after 24 h. Cells expressed morphological changes like swelling, inhibition of neurite outgrowth, irregular shape, aggregation, rupture of membrane, and release of cytosolic contents after treatment with venom. Lactate dehydrogenase (LDH) level increased in 50 and 100 μg/ml as compared to control, but there was no significant increase in LDH level at a dose of 10 and 20 μg/ml. Two concentrations viz. 50 and 100 μ/ml were selected because of the profound effect of these concentrations on the cellular health and population. Treatment with these two concentrations induced reactive nitrogen intermediates and depolarization in mitochondria. While caspase-3 activity increased in a concentration-dependent manner, only 50 μg/ml was able to fragment DNA. It was interesting to note that at higher dose, i.e., 100 μg/ml, the cells were killed, supposedly by acute necrosis. DNA synthesis evidenced by bromodeoxyuridine (BrdU) incorporation was inhibited in a concentration-dependent manner. The cells without treatment incorporated BrdU with high affinity confirming their cancerous nature whereas very less incorporation was noticed in treated cells. Our results show apoptotic and antiproliferative potential of scorpion venom (O. doriae) in human neuroblastoma cells. These properties

  2. Translesion synthesis is the main component of SOS repair in bacteriophage lambda DNA.

    PubMed Central

    Defais, M; Lesca, C; Monsarrat, B; Hanawalt, P

    1989-01-01

    Agents that interfere with DNA replication in Escherichia coli induce physiological adaptations that increase the probability of survival after DNA damage and the frequency of mutants among the survivors (the SOS response). Such agents also increase the survival rate and mutation frequency of irradiated bacteriophage after infection of treated bacteria, a phenomenon known as Weigle reactivation. In UV-irradiated single-stranded DNA phage, Weigle reactivation is thought to occur via induced, error-prone replication through template lesions (translesion synthesis [P. Caillet-Fauquet, M: Defais, and M. Radman, J. Mol. Biol. 117:95-112, 1977]). Weigle reactivation occurs with higher efficiency in double-stranded DNA phages such as lambda, and we therefore asked if another process, recombination between partially replicated daughter molecules, plays a major role in this case. To distinguish between translesion synthesis and recombinational repair, we studied the early replication of UV-irradiated bacteriophage lambda in SOS-induced and uninduced bacteria. To avoid complications arising from excision of UV lesions, we used bacterial uvrA mutants, in which such excision does not occur. Our evidence suggests that translesion synthesis is the primary component of Weigle reactivation of lambda phage in the absence of excision repair. The greater efficiency in Weigle reactivation of double-stranded DNA phage could thus be attributed to some inducible excision repair unable to occur on single-stranded DNA. In addition, after irradiation, lambda phage replication seems to switch prematurely from the theta mode to the rolling circle mode. Images PMID:2527845

  3. Mutagenicity and pausing of HIV reverse transcriptase during HIV plus-strand DNA synthesis.

    PubMed Central

    Ji, J; Hoffmann, J S; Loeb, L

    1994-01-01

    The unusually high frequency of misincorporation by HIV-1 reverse transcriptase (HIV RT) is likely to be the major factor in the rapid accumulation of viral mutations in AIDS, especially in the env gene. To investigate the ability of HIV RT to copy the env gene, we subcloned an HIV env gene fragment into a single-stranded DNA vector and measured the progression of synthesis by HIV RT. We observed that HIV RT, but not RT from avian myeloblastosis virus, DNA polymerase-alpha or T7 DNA polymerase, pauses specifically at poly-deoxyadenosine stretches within the env gene. The frequency of bypassing the polyadenosine stretches by HIV RT is enhanced by increasing the ratio of enzyme to template. We measured the fidelity of DNA synthesis within a segment of the hypervariable region 1 of the env gene (V-1) containing a poly-deoxyadenosine sequence by repetitively copying the DNA by HIV RT, and then cloning and sequencing the copied fragments. We found that 27% of the errors identified in V-1 sequence were frameshift mutations opposite the poly-adenosine tract, a site where strong pausing was observed. Pausing of HIV RT at the polyadenosine tract could be enhanced by either distamycin A or netropsin, (A-T)-rich minor groove binding peptides. Moreover, netropsin increases the frequency of frameshift mutations in experiments in which HIV RT catalyzes gap filling synthesis within the lacZ gene in double-stranded circular M13mp2 DNA. These combined results suggest that the enhanced mutation frequency may be due to increased pausing at netropsin-modified polyadenosine tracts. Therefore, netropsin and related A-T binding chemicals may selectively enhance frameshift mutagenesis induced by HIV RT and yield predominantly non-viable virus. Images PMID:7510388

  4. Synthesis of a duplex oligonucleotide containing a nitrogen mustard interstrand DNA-DNA cross-link.

    PubMed

    Ojwang, J O; Grueneberg, D A; Loechler, E L

    1989-12-01

    Many cancer chemotherapeutic agents react with DNA and give adducts that block DNA replication, which is thought to result in cytotoxicity, especially in rapidly proliferating cells such as cancer cells. One class of these agents is bifunctionally reactive (e.g., the nitrogen mustards) and forms DNA-DNA cross-links. It is unknown whether inter- or intrastrand cross-links are more effective at blocking DNA replication. To evaluate this, a DNA shuttle vector is being constructed with an interstrand cross-link at a unique site. In the first step of this project, a duplex oligonucleotide containing an interstrand cross-link is isolated by denaturing polyacrylamide gel electrophoresis from the reaction of nitrogen mustard with two partially complementary oligodeoxynucleotides. The purified oligonucleotide product is characterized and shown to be cross-linked in a 5'-GAC-3' 3'-CTG-5' sequence by a nitrogen mustard moiety that is bound at the N(7)-position of the guanines in the opposing strands; the glycosylic bonds of these guanine adducts are stabilized in their corresponding imidazole ring-opened form. Nitrogen mustard is shown to react with a variety of oligonucleotides and, based upon these results, its preferred targets for interstrand cross-linking are 5'-GXC-3' sequences, where X can be any of the four deoxyribonucleotide bases. PMID:2819709

  5. Isohelical DNA-Binding Oligomers: Antiviral Activity and Application for the Design of Nanostructured Devices

    NASA Astrophysics Data System (ADS)

    Gursky, Georgy; Nikitin, Alexei; Surovaya, Anna; Grokhovsky, Sergey; Andronova, Valeria; Galegov, Georgy

    We performed a systematic search for new structural motifs isohelical to double-stranded DNA and found five motifs that can be used for the design and synthesis of new DNA-binding oligomers. Some of the DNA-binding oligomers can be equipped with fluorescence chromophores and metal-chelating groups and may serve as conductive wires in nano-scaled electric circuits. A series of new DNA-binding ligands were synthesized by a modular assembly of pyrrole carboxamides and novel pseudopeptides of the form (XY)n. Here, Y is a glycine residue; n is the degree of polymerization. X is an unusual amino acid residue containing a five-membered aromatic ring. Antiviral activity of bis-linked netropsin derivatives is studied. Bis-netropsins containing 15 and 31 lysine residues at the N-termini inhibit most effectively reproduction of the herpes virus type 1 in the Vero cell culture, including virus variants resistant to acyclovir and its analogues. Antiviral activity of bis-linked netropsin derivatives is correlated with their ability to interact with long clusters of AT-base pairs in the origin of replication of the viral DNA.

  6. Recent Advances in the Synthesis and Functions of Reconfigurable Interlocked DNA Nanostructures.

    PubMed

    Lu, Chun-Hua; Cecconello, Alessandro; Willner, Itamar

    2016-04-27

    Interlocked circular DNA nanostructures, e.g., catenanes or rotaxanes, provide functional materials within the area of DNA nanotechnology. Specifically, the triggered reversible reconfiguration of the catenane or rotaxane structures provides a means to yield new DNA switches and to use them as dynamic scaffolds for controlling chemical functions and positioning functional cargoes. The synthesis of two-ring catenanes and their switchable reconfiguration by pH, metal ions, or fuel/anti-fuel stimuli are presented, and the functions of these systems, as pendulum or rotor devices or as switchable catalysts, are described. Also, the synthesis of three-, five-, and seven-ring catenanes is presented, and their switchable reconfiguration using fuel/anti-fuel strands is addressed. Implementation of the dynamically reconfigured catenane structures for the programmed organization of Au nanoparticle (NP) assemblies, which allows the plasmonic control of the fluorescence properties of Au NP/fluorophore loads associated with the scaffold, and for the operation of logic gates is discussed. Interlocked DNA rotaxanes and their different synthetic approaches are presented, and their switchable reconfiguration by means of fuel/anti-fuel strands or photonic stimuli is described. Specifically, the use of the rotaxane as a scaffold to organize Au NP assemblies, and the control of the fluorescence properties with Au NP/fluorophore hybrids loaded on the rotaxane scaffold, are introduced. The future prospectives and challenges in the field of interlocked DNA nanostructures and the possible applications are discussed. PMID:27019201

  7. Synthesis, antimicrobial, and antiproliferative activities of substituted phenylfuranylnicotinamidines

    PubMed Central

    Youssef, Magdy M; Arafa, Reem K; Ismail, Mohamed A

    2016-01-01

    This research work deals with the design and synthesis of a series of substituted phenylfuranylnicotinamidines 4a–i. Facile preparation of the target compounds was achieved by Suzuki coupling-based synthesis of the nitrile precursors 3a–i, followed by their conversion to the corresponding nicotinamidines 4a–i utilizing LiN(TMS)2. The antimicrobial activities of the newly synthesized nicotinamidine derivatives were evaluated against the Gram-negative bacterial strains Escherichia coli and Pseudomonas aeruginosa as well as the Gram-positive bacterial strains Staphylococcus aureus and Bacillus megaterium. The minimum inhibitory concentration values of nicotinamidines against all tested microorganisms were in the range of 10–20 μM. In specific, compounds 4a and 4b showed excellent minimum inhibitory concentration values of 10 μM against Staphylococcus aureus bacterial strain and were similar to ampicillin as an antibacterial reference. On the other hand, selected nicotinamidine derivatives were biologically screened for their cytotoxic activities against a panel of 60 cell lines representing nine types of human cancer at a single high dose at National Cancer Institute, Bethesda, MD, USA. Nicotinamidines showing promising activities were further assessed in a five-dose screening assay to determine their compound concentration causing 50% growth inhibition of tested cell (GI50), compound concentration causing 100% growth inhibition of tested cell (TGI), and compound concentration causing 50% lethality of tested cell (LC50) values. Structure-activity relationship studies demonstrated that the activity of members of this series can be modulated from cytostatic to cytotoxic based on the substitution pattern/nature on the terminal phenyl ring. The most active compound was found to be 4e displaying a submicromolar GI50 value of 0.83 μM, with TGI and LC50 values of 2.51 and 100 μM, respectively. Finally, the possible underlying mechanism of action of this series of

  8. Synthesis, antimicrobial, and antiproliferative activities of substituted phenylfuranylnicotinamidines.

    PubMed

    Youssef, Magdy M; Arafa, Reem K; Ismail, Mohamed A

    2016-01-01

    This research work deals with the design and synthesis of a series of substituted phenylfuranylnicotinamidines 4a-i. Facile preparation of the target compounds was achieved by Suzuki coupling-based synthesis of the nitrile precursors 3a-i, followed by their conversion to the corresponding nicotinamidines 4a-i utilizing LiN(TMS)2. The antimicrobial activities of the newly synthesized nicotinamidine derivatives were evaluated against the Gram-negative bacterial strains Escherichia coli and Pseudomonas aeruginosa as well as the Gram-positive bacterial strains Staphylococcus aureus and Bacillus megaterium. The minimum inhibitory concentration values of nicotinamidines against all tested microorganisms were in the range of 10-20 μM. In specific, compounds 4a and 4b showed excellent minimum inhibitory concentration values of 10 μM against Staphylococcus aureus bacterial strain and were similar to ampicillin as an antibacterial reference. On the other hand, selected nicotinamidine derivatives were biologically screened for their cytotoxic activities against a panel of 60 cell lines representing nine types of human cancer at a single high dose at National Cancer Institute, Bethesda, MD, USA. Nicotinamidines showing promising activities were further assessed in a five-dose screening assay to determine their compound concentration causing 50% growth inhibition of tested cell (GI50), compound concentration causing 100% growth inhibition of tested cell (TGI), and compound concentration causing 50% lethality of tested cell (LC50) values. Structure-activity relationship studies demonstrated that the activity of members of this series can be modulated from cytostatic to cytotoxic based on the substitution pattern/nature on the terminal phenyl ring. The most active compound was found to be 4e displaying a submicromolar GI50 value of 0.83 μM, with TGI and LC50 values of 2.51 and 100 μM, respectively. Finally, the possible underlying mechanism of action of this series of

  9. Synthesis of peptide-conjugated light-driven molecular motors and evaluation of their DNA-binding properties.

    PubMed

    Nagatsugi, Fumi; Takahashi, Yusuke; Kobayashi, Maiko; Kuwahara, Shunsuke; Kusano, Shuhei; Chikuni, Tomoko; Hagihara, Shinya; Harada, Nobuyuki

    2013-05-01

    Synthetic light-driven molecular motors are molecular machines capable of rotation under photo-irradiation. In this paper, we report the synthesis of peptide-conjugated molecular motors and evaluate their DNA-binding properties. PMID:23324812

  10. Akt activation enhances ribosomal RNA synthesis through casein kinase II and TIF-IA

    PubMed Central

    Nguyen, Le Xuan Truong; Mitchell, Beverly S.

    2013-01-01

    Transcription initiation factor I (TIF-IA) plays an essential role in regulating ribosomal RNA (rRNA) synthesis by tethering RNA polymerase I (Pol I) to the rDNA promoter. We have found that activated Akt enhances rRNA synthesis through the phosphorylation of casein kinase IIα (CK2α) on a threonine residue near its N terminus. CK2 in turn phosphorylates TIF-IA, thereby increasing rDNA transcription. Activated Akt also stabilizes TIF-IA, induces its translocation to the nucleolus, and enhances its interaction with Pol I. Treatment with AZD8055, an inhibitor of both Akt and mammalian target of rapamycin phosphorylation, but not with rapamycin, disrupts Akt-mediated TIF-IA stability, translocation, and activity. These data support a model in which activated Akt enhances rRNA synthesis both by preventing TIF-IA degradation and phosphorylating CK2α, which in turn phosphorylates TIF-IA. This model provides an explanation for the ability of activated Akt to promote cell proliferation and, potentially, transformation. PMID:24297901

  11. Stimulators and inhibitors of lymphocyte DNA synthesis in supernatants from human lymphoid cell lines.

    PubMed

    Vesole, D H; Goust, J M; Fett, J W; Fudenberg, H H

    1979-09-01

    Some T and B lymphoid cell lines (LCL) were found to secrete into their supernatants a substance able to stimulate lymphocyte proliferation. This substance produced an increase in [3H]thymidine uptake by mononuclear cells when added to unstimulated cultures (mitogenic effect) or when added to cultures stimulated with phytohemagglutinin (PHA) or pokeweed mitogen (PWM) (potentiating effect). When complete supernatants were used, the potentiating effect was sometimes masked by an inhibitor of DNA synthesis. Fractionation on Sephadex G-100 separated these two activities. The stimulatory substance eluted at a m.w. range of 15,000 to 30,000, and the inhibitor eluted with the albumin peak. B cells with or without monocytes were the most sensitive to the mitogenic effect, whereas T cells were unaffected. Responses to PHA and PWM were potentiated when T cells were present, but the maximum effect was observed when the proportion of T cells was less than 50%. The stimulatory material may be similar to lymphocyte mitogenic factor and may function as a T cell-replacing factor in B cell stimulation. PMID:313950

  12. Synthesis of Programmable Reaction-Diffusion Fronts Using DNA Catalyzers

    NASA Astrophysics Data System (ADS)

    Zadorin, Anton S.; Rondelez, Yannick; Galas, Jean-Christophe; Estevez-Torres, André

    2015-02-01

    We introduce a DNA-based reaction-diffusion (RD) system in which reaction and diffusion terms can be precisely and independently controlled. The effective diffusion coefficient of an individual reaction component, as we demonstrate on a traveling wave, can be reduced up to 2.7-fold using a self-assembled hydrodynamic drag. The intrinsic programmability of this RD system allows us to engineer, for the first time, orthogonal autocatalysts that counterpropagate with minimal interaction. Our results are in excellent quantitative agreement with predictions of the Fisher-Kolmogorov-Petrovskii-Piscunov model. These advances open the way for the rational engineering of pattern formation in pure chemical RD systems.

  13. [Intensity of DNA synthesis in animal organs after a flight on the Kosmos-782 biosatellite].

    PubMed

    Guseĭnov, F T; Egorov, I A; Komolova, G S; Tigranian, R A

    1979-01-01

    With respect to H3-thymidine incorporation the rate of DNA synthesis in the liver, spleen and thymus of rats was determined in flight and synchronous rats. Six hours post-flight the rate of H3-thymidine incorporation into the liver of flight rats did not differ from the normal (vivarium controls) and was 50% higher than in the synchronous rats. In the spleen and thymus of flight animals this parameter was 60 and 33% below the norm. Similar but less pronounced changes in the spleen were found in the synchronous rats. Twenty-five days postflight the rate of DNA synthesis in lymph organs recovered completely and tended to increase, whereas in the liver it remained significantly below the norm. PMID:459398

  14. A new synthesis in epigenetics: towards a unified function of DNA methylation from invertebrates to vertebrates.

    PubMed

    Mandrioli, M

    2007-10-01

    DNA methylation is generally limited to CpG doublets located at the gene promoter with an involvement in gene silencing. Surprisingly, two recent papers showed an extensive methylation affecting coding portions of transcriptionally active genes in human and plants prompting a rethink of DNA methylation in eukaryotes. Actually, gene body methylation is not surprising since it has been repeatedly reported in invertebrates, where it interferes with transcriptional elongation preventing aberrant transcription initiations. As a whole, the published data suggest that the most ancestral function of DNA methylation is the control of genes that are susceptible to transcriptional interference and not to gene silencing. The recruitment of DNA methylation for silencing represents a successive tinkered use. In view of this additional function, the invertebrate-vertebrate transition has been accompanied by new constraints on DNA methylation that resulted in the strong conservation of the DNA methylation machinery in vertebrates and in the non-viability of mutants lacking DNA methylation. PMID:17712527

  15. Protein synthesis directly from PCR: progress and applications of cell-free protein synthesis with linear DNA.

    PubMed

    Schinn, Song-Min; Broadbent, Andrew; Bradley, William T; Bundy, Bradley C

    2016-06-25

    A rapid, versatile method of protein expression and screening can greatly facilitate the future development of therapeutic biologics, proteomic drug targets and biocatalysts. An attractive candidate is cell-free protein synthesis (CFPS), a cell-lysate-based in vitro expression system, which can utilize linear DNA as expression templates, bypassing time-consuming cloning steps of plasmid-based methods. Traditionally, such linear DNA expression templates (LET) have been vulnerable to degradation by nucleases present in the cell lysate, leading to lower yields. This challenge has been significantly addressed in the recent past, propelling LET-based CFPS as a useful tool for studying, screening and engineering proteins in a high-throughput manner. Currently, LET-based CFPS has promise in fields such as functional proteomics, protein microarrays, and the optimization of complex biological systems. PMID:27085957

  16. DNA-templated microwave-hydrothermal synthesis of nanostructured hydroxyapatite for storing and sustained release of an antibacterial protein.

    PubMed

    Chen, Xi; Yang, Bin; Qi, Chao; Sun, Tuan-Wei; Chen, Feng; Wu, Jin; Feng, Xi-Ping; Zhu, Ying-Jie

    2016-01-28

    Hydroxyapatite (HA) is promising in various biomedical applications owing to its similar chemical composition, structure and properties to the inorganic component in natural hard tissues. Herein, we report a DNA-templated microwave-assisted hydrothermal strategy for the preparation of HA nanostructured materials. As a kind of natural biomacromolecule, DNA molecules open up a new way to the synthesis of HA nanostructured materials with well-defined structures and morphologies. The HA nanostructured materials with a nanosheet-assembled hierarchical structure and a HA nanorod ordered structure are successfully prepared. The important roles of DNA molecules and pH values in the formation of HA nanostructured materials are investigated, and a possible formation mechanism is proposed. The as-prepared HA nanostructured materials exhibit a relatively high adsorption ability for chicken immunoglobulin Y (IgY) protein and a sustained protein release behavior. The as-prepared HA nanostructured materials after loading the IgY protein show a high antimicrobial activity. Thus, the HA nanostructured materials prepared by the DNA-templated microwave hydrothermal method are promising for the applications in various areas such as the prevention and treatment of dental caries. PMID:26696032

  17. Kinetics of mouse jejunum radiosensitization by 2',2'-difluorodeoxycytidine (gemcitabine) and its relationship with pharmacodynamics of DNA synthesis inhibition and cell cycle redistribution in crypt cells.

    PubMed Central

    Grégoire, V.; Beauduin, M.; Rosier, J. F.; De Coster, B.; Bruniaux, M.; Octave-Prignot, M.; Scalliet, P.

    1997-01-01

    Gemcitabine (dFdC), a deoxycitidine nucleoside analogue, inhibits DNA synthesis and repair of radiation-induced chromosome breaks in vitro, radiosensitizes various human and mouse cells in vitro and shows clinical activity in several tumours. Limited data are however available on the effect of dFdC on normal tissue radiotolerance and on factors associated with dFdC's radiosensitization in vivo. The purpose of this study was to determine the effect of dFdC on mouse jejunum radiosensitization and to investigate the kinetics of DNA synthesis inhibition and cell cycle redistribution in the jejunal crypts as surrogates of radiosensitization in vivo. For assessment of jejunum tolerance, the mice were irradiated on the whole body with 60Co gamma rays (3.5-18 Gy single dose) with or without prior administration of dFdC (150 mg kg-1). Jejunum tolerance was evaluated by the number of regenerated crypts per circumference at 86 h after irradiation. For pharmacodynamic studies, dFdC (150 or 600 mg kg-1) was given i.p. and jejunum was harvested at various times (0-48 h), preceded by a pulse BrdUrd labelling. Labelled cells were detected by immunohistochemistry on paraffin-embedded sections. DNA synthesis was inhibited within 3 h after dFdC administration. After an early wave of apoptosis (3-6 h), DNA synthesis recovered by 6 h, and crypt cells became synchronized. At 48 h, the labelling index returned almost to background level. At a level of 40 regenerated crypts, radiosensitization was observed for a 3 h time interval (dose modification factor of 1.3) and was associated with DNA synthesis inhibition, whereas a slight radioprotection was observed for a 48-h time interval (dose modification factor of 0.9) when DNA synthesis has reinitiated. In conclusion, dFdC altered the radioresponse of the mouse jejunum in a schedule-dependent fashion. Our data tend to support the hypothesis that DNA synthesis inhibition and cell cycle redistribution are surrogates for radiosensitization

  18. The Foundry: the DNA synthesis and construction Foundry at Imperial College

    PubMed Central

    Chambers, Stephen; Kitney, Richard; Freemont, Paul

    2016-01-01

    The establishment of a DNA synthesis and construction foundry at Imperial College in London heralds a new chapter in the development of synthetic biology to meet new global challenges. The Foundry employs the latest technology to make the process of engineering biology easier, faster and scalable. The integration of advanced software, automation and analytics allows the rapid design, build and testing of engineered organisms. PMID:27284027

  19. Polyanionic Carboxyethyl Peptide Nucleic Acids (ce-PNAs): Synthesis and DNA Binding

    PubMed Central

    Kirillova, Yuliya; Boyarskaya, Nataliya; Dezhenkov, Andrey; Tankevich, Mariya; Prokhorov, Ivan; Varizhuk, Anna; Eremin, Sergei; Esipov, Dmitry; Smirnov, Igor; Pozmogova, Galina

    2015-01-01

    New polyanionic modifications of polyamide nucleic acid mimics were obtained. Thymine decamers were synthesized from respective chiral α- and γ-monomers, and their enantiomeric purity was assessed. Here, we present the decamer synthesis, purification and characterization by MALDI-TOF mass spectrometry and an investigation of the hybridization properties of the decamers. We show that the modified γ-S-carboxyethyl-T10 PNA forms a stable triplex with polyadenine DNA. PMID:26469337

  20. The Foundry: the DNA synthesis and construction Foundry at Imperial College.

    PubMed

    Chambers, Stephen; Kitney, Richard; Freemont, Paul

    2016-06-15

    The establishment of a DNA synthesis and construction foundry at Imperial College in London heralds a new chapter in the development of synthetic biology to meet new global challenges. The Foundry employs the latest technology to make the process of engineering biology easier, faster and scalable. The integration of advanced software, automation and analytics allows the rapid design, build and testing of engineered organisms. PMID:27284027

  1. Bombesin stimulation of DNA synthesis and cell division in cultures of Swiss 3T3 cells.

    PubMed Central

    Rozengurt, E; Sinnett-Smith, J

    1983-01-01

    Bombesin is shown to be a potent mitogen for Swiss 3T3 cells. At nanomolar concentrations the peptide markedly enhances the ability of fresh serum to stimulate DNA synthesis in confluent and quiescent cultures of these cells. In the presence of a low concentration (3.5%) of serum, bombesin stimulates 3T3 cell proliferation. In serum-free medium, bombesin induces DNA synthesis in the absence of any other added growth factor; half-maximal effect is obtained at 1 nM. The mitogenic effect of bombesin is dependent on dose and time, is mimicked by litorin, and is markedly potentiated by insulin, colchicine, platelet-derived growth factor, and fibroblast-derived growth factor. These mitogens increase the maximal response elicited by bombesin and decrease the bombesin concentration required to produce half-maximal effect (from 1 nM to 0.3 nM). In contrast, vasopressin, phorbol esters, or cAMP increasing agents fail to enhance the maximal level of DNA synthesis induced by bombesin. Bombesin and litorin may provide useful model peptides for studies on the mechanism(s) by which extracellular ligands control cell proliferation. PMID:6344074

  2. Stimulation of DNA synthesis in human epidermis by UVB radiation and its inhibition by difluoromethylornithine

    SciTech Connect

    Eshbaugh, W.G. Jr.; Forley, B.G.; Ritter, E.F.; Serafin, D.; Klitzman, B. )

    1990-04-01

    The purpose of this study was to determine whether the rate of DNA synthesis in human skin could be increased by UVB radiation and to determine the potential for reversing the stimulatory effects of UVB radiation by alpha-difluoromethylornithine (DFMO). Split-thickness facial skin was grafted onto athymic CD-1 Nu/Nu mice on the anterolateral dorsal surface. Following graft healing for 6 weeks, grafts were treated with 0%, 2%, or 5% DFMO (a potent inhibitor of polyamine biosynthesis) and subsequently irradiated with 0.15 J/cm2 of UVB light. Two days after UVB exposure, ({sup 3}H)thymidine was injected and the grafts were dissected and counted. Ultraviolet radiation significantly increased thymidine incorporation, indicating increased DNA synthesis. The stimulatory effects of UV radiation were significantly reduced by topical application of 5% DFMO. Thus administration of DFMO most likely decreased the polyamine level and decreased the rate of DNA synthesis, which may have caused a decreased rate of epidermal proliferation. Thus the topical application of DFMO may prove beneficial for UVB exposure and other hyperproliferative states where a decrease in the rate of cell turnover might be desirable.

  3. Deoxyadenosine family: improved synthesis, DNA damage and repair, analogs as drugs.

    PubMed

    Biswas, Himadri; Kar, Indrani; Chattopadhyaya, Rajagopal

    2013-08-01

    Improved synthesis of 2'-deoxyadenosine using Escherichia coli overexpressing some enzymes and gram-scale chemical synthesis of 2'-deoxynucleoside 5'-triphosphates reported recently are described in this review. Other topics include DNA damage induced by chromium(VI), Fenton chemistry, photoinduction with lumazine, or by ultrasound in neutral solution; 8,5'-cyclo-2'-deoxyadenosine isomers as potential biomarkers; and a recapitulation of purine 5',8-cyclonucleoside studies. The mutagenicities of some products generated by oxidizing 2'-deoxyadenosine 5'-triphosphate, nucleotide pool sanitization, and translesion synthesis are also reviewed. Characterizing cross-linking between nucleosides in opposite strands of DNA and endonuclease V-mediated deoxyinosine excision repair are discussed. The use of purine nucleoside analogs in the treatment of rarer chronic lymphoid leukemias is reviewed. Some analogs at the C8 position induced delayed polymerization arrest during HIV-1 reverse transcription. The susceptibility of clinically metronidazole-resistant Trichomonas vaginalis to two analogs, toyocamycin and 2-fluoro-2'-deoxyadenosine, were tested in vitro. GS-9148, a dAMP analog, was translocated to the priming site in a complex with reverse transcriptase and double-stranded DNA to gain insight into the mechanism of reverse transcriptase inhibition. PMID:25436589

  4. Amplified and multiplexed detection of DNA using the dendritic rolling circle amplified synthesis of DNAzyme reporter units.

    PubMed

    Wang, Fuan; Lu, Chun-Hua; Liu, Xiaoqing; Freage, Lina; Willner, Itamar

    2014-02-01

    The amplified, highly sensitive detection of DNA using the dendritic rolling circle amplification (RCA) is introduced. The analytical platform includes a circular DNA and a structurally tailored hairpin structure. The circular nucleic acid template includes a recognition sequence for the analyte DNA (the Tay-Sachs mutant gene), a complementary sequence to the Mg(2+)-dependent DNAzyme, and a sequence identical to the loop region of the coadded hairpin structure. The functional hairpin in the system consists of the analyte-sequence that is caged in the stem region and a single-stranded loop domain that communicates with the RCA product. The analyte activates the RCA process, leading to DNA chains consisting of the Mg(2+)-dependent DNAzyme and sequences that are complementary to the loop of the functional hairpin structure. Opening of the coadded hairpin releases the caged analyte sequence, resulting in the dendritic RCA-induced synthesis of the Mg(2+)-dependent DNAzyme units. The DNAzyme-catalyzed cleavage of a fluorophore/quencher-modified substrate leads to a fluorescence readout signal. The method enabled the analysis of the target DNA with a detection limit corresponding to 1 aM. By the design of two different circular DNAs that include recognition sites for two different target genes, complementary sequences for two different Mg(2+)-dependent DNAzyme sequences and two different functional hairpin structures, the dendritic RCA-stimulated multiplexed analysis of two different genes is demonstrated. The amplified dendritic RCA detection of DNA is further implemented to yield the hemin/G-quadruplex horseradish peroxidase (HRP)-mimicking DNAzyme as catalytic labels that provide colorimetric or chemiluminescent readout signals. PMID:24377284

  5. Stimulation of DNA synthesis in rat and mouse liver by various tumor promoters.

    PubMed

    Büsser, M T; Lutz, W K

    1987-10-01

    In order to investigate whether the stimulation of liver DNA synthesis might be used to detect one class of hepatic tumor promoters, the incorporation of orally administered radiolabelled thymidine into liver DNA was determined in rats and mice 24 h after a single oral gavage of test compounds at various dose levels. Three DNA-binding hepatocarcinogens, aflatoxin B1, benzidine and carbon tetrachloride, did not stimulate but rather inhibited DNA synthesis (not for CCl4). Four hepatic tumor promoters, clofibrate, DDT, phenobarbital and thioacetamide, gave rise to a stimulation in a dose-dependent manner. Single oral doses between 0.02 and 0.3 mmol/kg were required to double the level of thymidine incorporation into liver DNA (= doubling dose, DD). Differences between species or sex as observed in long-term carcinogenicity studies were reflected by a different stimulation of liver DNA synthesis. In agreement with the bioassay data, aldrin was positive only in male mice (DD = 0.007 mmol/kg) but not in male rats of female mice. 2,3,7,8-TCDD was positive in male mice (DD = 10(-6) mmol/kg) and in female rats (DD = 2 X 10(-6) mmol/kg) but not in male rats. The assay was also able to distinguish between structural isomers with different carcinogenicities. [alpha]Hexachlorocyclohexane stimulated liver DNA synthesis with a doubling dose of about 0.2 mmol/kg in male rats whereas the [gamma]-isomer was ineffective even at 1 mmol/kg. So far, only one result was inconsistent with carcinogenicity bioassay data. The different carcinogenicity of di(2-ethylhexyl)adipate (negative in rats) and di(2-ethylhexyl)phthalate (positive) was not detectable. Both plasticizers were positive in this short-term system with DD's of 0.7 mmol/kg for DEHA and 0.5 mmol/kg for DEHP. The proposed assay is discussed as an attempt to devise short-term assays for carcinogens not detected by the routine genotoxicity test systems. PMID:2443263

  6. Improving the specific synthetic activity of a penicillin g acylase using DNA family shuffling.

    PubMed

    Zhou, Zheng; Zhang, Ai-Hui; Wang, Jing-Ru; Chen, Mao-Lin; Li, Ren-Bao; Yang, Sheng; Yuan, Zhong-Yi

    2003-06-01

    Penicillin G Acylas (PGA) of Providencia rettgeri (ATCC 25599) was evolved using a modified DNA family shuffling method. The identity of pga genes from Escherichia coli, Kluyvera citrophila and Providencia rettgeri ranges from 62.5% to 96.9%. The pga genes from above three species were recombined and shuffled to create interspecies pga gene fusion libraries. By substituting assembled chimaeras for corresponding region of pETPPGA, different recombinants were constructed and expressed in E. coli JM109(DE3). Mutants with obvious beta-lactam synthetic activity were selected from the plates and the ratios of synthesis to hydrolysis (S/H) were determined subsequently. It was shown that the primary structures of selected positives exhibited significant diversity among each library. The best mutant possessed 40% higher synthetic activity than the wild type enzyme of PrPGA. It was further proved in this study that the domain of alpha subunit contributed much more to improve the specific activity of synthesis. Results showed a recombinant PGA with higher synthetic activity was acquired by the method of DNA shuffling. PMID:12796820

  7. PolDIP2 interacts with human PrimPol and enhances its DNA polymerase activities.

    PubMed

    Guilliam, Thomas A; Bailey, Laura J; Brissett, Nigel C; Doherty, Aidan J

    2016-04-20

    Translesion synthesis (TLS) employs specialized DNA polymerases to bypass replication fork stalling lesions. PrimPol was recently identified as a TLS primase and polymerase involved in DNA damage tolerance. Here, we identify a novel PrimPol binding partner, PolDIP2, and describe how it regulates PrimPol's enzymatic activities. PolDIP2 stimulates the polymerase activity of PrimPol, enhancing both its capacity to bind DNA and the processivity of the catalytic domain. In addition, PolDIP2 stimulates both the efficiency and error-free bypass of 8-oxo-7,8-dihydrodeoxyguanosine (8-oxoG) lesions by PrimPol. We show that PolDIP2 binds to PrimPol's catalytic domain and identify potential binding sites. Finally, we demonstrate that depletion of PolDIP2 in human cells causes a decrease in replication fork rates, similar to that observed in PrimPol(-/-)cells. However, depletion of PolDIP2 in PrimPol(-/-)cells does not produce a further decrease in replication fork rates. Together, these findings establish that PolDIP2 can regulate the TLS polymerase and primer extension activities of PrimPol, further enhancing our understanding of the roles of PolDIP2 and PrimPol in eukaryotic DNA damage tolerance. PMID:26984527

  8. PolDIP2 interacts with human PrimPol and enhances its DNA polymerase activities

    PubMed Central

    Guilliam, Thomas A.; Bailey, Laura J.; Brissett, Nigel C.; Doherty, Aidan J.

    2016-01-01

    Translesion synthesis (TLS) employs specialized DNA polymerases to bypass replication fork stalling lesions. PrimPol was recently identified as a TLS primase and polymerase involved in DNA damage tolerance. Here, we identify a novel PrimPol binding partner, PolDIP2, and describe how it regulates PrimPol's enzymatic activities. PolDIP2 stimulates the polymerase activity of PrimPol, enhancing both its capacity to bind DNA and the processivity of the catalytic domain. In addition, PolDIP2 stimulates both the efficiency and error-free bypass of 8-oxo-7,8-dihydrodeoxyguanosine (8-oxoG) lesions by PrimPol. We show that PolDIP2 binds to PrimPol's catalytic domain and identify potential binding sites. Finally, we demonstrate that depletion of PolDIP2 in human cells causes a decrease in replication fork rates, similar to that observed in PrimPol−/− cells. However, depletion of PolDIP2 in PrimPol−/− cells does not produce a further decrease in replication fork rates. Together, these findings establish that PolDIP2 can regulate the TLS polymerase and primer extension activities of PrimPol, further enhancing our understanding of the roles of PolDIP2 and PrimPol in eukaryotic DNA damage tolerance. PMID:26984527

  9. Regulation of Mutagenic DNA Polymerase V Activation in Space and Time

    PubMed Central

    Robinson, Andrew; McDonald, John P.; Caldas, Victor E. A.; Patel, Meghna; Wood, Elizabeth A.; Punter, Christiaan M.; Ghodke, Harshad; Cox, Michael M.; Woodgate, Roger; Goodman, Myron F.; van Oijen, Antoine M.

    2015-01-01

    Spatial regulation is often encountered as a component of multi-tiered regulatory systems in eukaryotes, where processes are readily segregated by organelle boundaries. Well-characterized examples of spatial regulation are less common in bacteria. Low-fidelity DNA polymerase V (UmuD′2C) is produced in Escherichia coli as part of the bacterial SOS response to DNA damage. Due to the mutagenic potential of this enzyme, pol V activity is controlled by means of an elaborate regulatory system at transcriptional and posttranslational levels. Using single-molecule fluorescence microscopy to visualize UmuC inside living cells in space and time, we now show that pol V is also subject to a novel form of spatial regulation. After an initial delay (~ 45 min) post UV irradiation, UmuC is synthesized, but is not immediately activated. Instead, it is sequestered at the inner cell membrane. The release of UmuC into the cytosol requires the RecA* nucleoprotein filament-mediated cleavage of UmuD→UmuD′. Classic SOS damage response mutants either block [umuD(K97A)] or constitutively stimulate [recA(E38K)] UmuC release from the membrane. Foci of mutagenically active pol V Mut (UmuD′2C-RecA-ATP) formed in the cytosol after UV irradiation do not co-localize with pol III replisomes, suggesting a capacity to promote translesion DNA synthesis at lesions skipped over by DNA polymerase III. In effect, at least three molecular mechanisms limit the amount of time that pol V has to access DNA: (1) transcriptional and posttranslational regulation that initially keep the intracellular levels of pol V to a minimum; (2) spatial regulation via transient sequestration of UmuC at the membrane, which further delays pol V activation; and (3) the hydrolytic activity of a recently discovered pol V Mut ATPase function that limits active polymerase time on the chromosomal template. PMID:26317348

  10. Regulation of Mutagenic DNA Polymerase V Activation in Space and Time.

    PubMed

    Robinson, Andrew; McDonald, John P; Caldas, Victor E A; Patel, Meghna; Wood, Elizabeth A; Punter, Christiaan M; Ghodke, Harshad; Cox, Michael M; Woodgate, Roger; Goodman, Myron F; van Oijen, Antoine M

    2015-08-01

    Spatial regulation is often encountered as a component of multi-tiered regulatory systems in eukaryotes, where processes are readily segregated by organelle boundaries. Well-characterized examples of spatial regulation are less common in bacteria. Low-fidelity DNA polymerase V (UmuD'2C) is produced in Escherichia coli as part of the bacterial SOS response to DNA damage. Due to the mutagenic potential of this enzyme, pol V activity is controlled by means of an elaborate regulatory system at transcriptional and posttranslational levels. Using single-molecule fluorescence microscopy to visualize UmuC inside living cells in space and time, we now show that pol V is also subject to a novel form of spatial regulation. After an initial delay (~ 45 min) post UV irradiation, UmuC is synthesized, but is not immediately activated. Instead, it is sequestered at the inner cell membrane. The release of UmuC into the cytosol requires the RecA* nucleoprotein filament-mediated cleavage of UmuD→UmuD'. Classic SOS damage response mutants either block [umuD(K97A)] or constitutively stimulate [recA(E38K)] UmuC release from the membrane. Foci of mutagenically active pol V Mut (UmuD'2C-RecA-ATP) formed in the cytosol after UV irradiation do not co-localize with pol III replisomes, suggesting a capacity to promote translesion DNA synthesis at lesions skipped over by DNA polymerase III. In effect, at least three molecular mechanisms limit the amount of time that pol V has to access DNA: (1) transcriptional and posttranslational regulation that initially keep the intracellular levels of pol V to a minimum; (2) spatial regulation via transient sequestration of UmuC at the membrane, which further delays pol V activation; and (3) the hydrolytic activity of a recently discovered pol V Mut ATPase function that limits active polymerase time on the chromosomal template. PMID:26317348

  11. Alteration of mitochondrial DNA and RNA level in human fibroblasts with impaired vitamin B12 coenzyme synthesis.

    PubMed

    Cantatore, P; Petruzzella, V; Nicoletti, C; Papadia, F; Fracasso, F; Rustin, P; Gadaleta, M N

    1998-08-01

    Alterations of mitochondrial (mt) nucleic acid metabolism in methylmalonic aciduria (MMA) were studied in two cell lines from skin fibroblasts of patients with mitochondrial (GM00595) or cytosolic (GM10011) defects in the biosynthesis pathways of cobalamin coenzymes. The mtDNA level increased two-fold in GM00595 cells, which carry a mt defect in the adenosylcobalamin synthesis, whereas no appreciable change was found in GM10011 cells. The content of the two rRNAs 16S and 12S mtRNAs, normalized for the mtDNA copy number, decreased by 70% and 50% in GM00595 and GM10011, respectively. The normalized content of ND1, ND2 and CO I mRNAs decreased in GM00595, but was unchanged in GM10011. Respiratory chain complex activities measured in these two cell lines were not different from control activities. These data suggest that the maintenance of the mt function is due to doubling of mtDNA and that this compensatory response takes place only in those cells in which the greater reduction of the level of rRNA might have brought the content of these transcripts below the threshold value for optimal expression of the mt genome. PMID:9720919

  12. Effects of 8-halo-7-deaza-2'-deoxyguanosine triphosphate on DNA synthesis by DNA polymerases and cell proliferation.

    PubMed

    Yin, Yizhen; Sasaki, Shigeki; Taniguchi, Yosuke

    2016-08-15

    8-OxodG (8-oxo-2'-deoxyguanosine) is representative of nucleoside damage and shows a genotoxicity. To significantly reveal the contributions of 7-NH and C8-oxygen to the mutagenic effect of 8-oxodG by DNA polymerases, we evaluated the effects of the 8-halo-7-deaza-dG (8-halogenated 7-deaza-2'-deoxyguanosine) derivatives by DNA polymerases. 8-Halo-7-deaza-dGTPs were poorly incorporated by both KF(exo(-)) and human DNA polymerase β opposite dC or dA into the template DNA. Furthermore, it was found that KF(exo(-)) was very sensitive to the introduction of the C8-halogen, while polymerase β can accommodate the C8-halogen resulting in an efficient dCTP insertion opposite the 8-halo-7-deaza-dG in the template DNA. These results indicate that strong hydrogen bonding between 7-NH in the 8-oxo-G nucleobase and 1-N in the adenine at the active site of the DNA polymerase is required for the mutagenic effects. Whereas, I-deaza-dGTP shows an antiproliferative effect for the HeLa cells, suggesting that it could become a candidate as a new antitumor agent. PMID:27372838

  13. Activation of the DNA Damage Response by RNA Viruses.

    PubMed

    Ryan, Ellis L; Hollingworth, Robert; Grand, Roger J

    2016-01-01

    RNA viruses are a genetically diverse group of pathogens that are responsible for some of the most prevalent and lethal human diseases. Numerous viruses introduce DNA damage and genetic instability in host cells during their lifecycles and some species also manipulate components of the DNA damage response (DDR), a complex and sophisticated series of cellular pathways that have evolved to detect and repair DNA lesions. Activation and manipulation of the DDR by DNA viruses has been extensively studied. It is apparent, however, that many RNA viruses can also induce significant DNA damage, even in cases where viral replication takes place exclusively in the cytoplasm. DNA damage can contribute to the pathogenesis of RNA viruses through the triggering of apoptosis, stimulation of inflammatory immune responses and the introduction of deleterious mutations that can increase the risk of tumorigenesis. In addition, activation of DDR pathways can contribute positively to replication of viral RNA genomes. Elucidation of the interactions between RNA viruses and the DDR has provided important insights into modulation of host cell functions by these pathogens. This review summarises the current literature regarding activation and manipulation of the DDR by several medically important RNA viruses. PMID:26751489

  14. Using DNA devices to track anticancer drug activity.

    PubMed

    Kahanda, Dimithree; Chakrabarti, Gaurab; Mcwilliams, Marc A; Boothman, David A; Slinker, Jason D

    2016-06-15

    It is beneficial to develop systems that reproduce complex reactions of biological systems while maintaining control over specific factors involved in such processes. We demonstrated a DNA device for following the repair of DNA damage produced by a redox-cycling anticancer drug, beta-lapachone (β-lap). These chips supported ß-lap-induced biological redox cycle and tracked subsequent DNA damage repair activity with redox-modified DNA monolayers on gold. We observed drug-specific changes in square wave voltammetry from these chips at therapeutic ß-lap concentrations of high statistical significance over drug-free control. We also demonstrated a high correlation of this change with the specific ß-lap-induced redox cycle using rational controls. The concentration dependence of ß-lap revealed significant signal changes at levels of high clinical significance as well as sensitivity to sub-lethal levels of ß-lap. Catalase, an enzyme decomposing peroxide, was found to suppress DNA damage at a NQO1/catalase ratio found in healthy cells, but was clearly overcome at a higher NQO1/catalase ratio consistent with cancer cells. We found that it was necessary to reproduce key features of the cellular environment to observe this activity. Thus, this chip-based platform enabled tracking of ß-lap-induced DNA damage repair when biological criteria were met, providing a unique synthetic platform for uncovering activity normally confined to inside cells. PMID:26901461

  15. Activation of the DNA Damage Response by RNA Viruses

    PubMed Central

    Ryan, Ellis L.; Hollingworth, Robert; Grand, Roger J.

    2016-01-01

    RNA viruses are a genetically diverse group of pathogens that are responsible for some of the most prevalent and lethal human diseases. Numerous viruses introduce DNA damage and genetic instability in host cells during their lifecycles and some species also manipulate components of the DNA damage response (DDR), a complex and sophisticated series of cellular pathways that have evolved to detect and repair DNA lesions. Activation and manipulation of the DDR by DNA viruses has been extensively studied. It is apparent, however, that many RNA viruses can also induce significant DNA damage, even in cases where viral replication takes place exclusively in the cytoplasm. DNA damage can contribute to the pathogenesis of RNA viruses through the triggering of apoptosis, stimulation of inflammatory immune responses and the introduction of deleterious mutations that can increase the risk of tumorigenesis. In addition, activation of DDR pathways can contribute positively to replication of viral RNA genomes. Elucidation of the interactions between RNA viruses and the DDR has provided important insights into modulation of host cell functions by these pathogens. This review summarises the current literature regarding activation and manipulation of the DDR by several medically important RNA viruses. PMID:26751489

  16. Chemical synthesis and characterization of branched oligodeoxyribonucleotides (bDNA) for use as signal amplifiers in nucleic acid quantification assays.

    PubMed Central

    Horn, T; Chang, C A; Urdea, M S

    1997-01-01

    The divergent synthesis of bDNA structures is described. This new type of branched DNA contains one unique oligonucleotide, the primary sequence, covalently attached through a comb-like branching network to many identical copies of a different oligonucleotide, the secondary sequence. The bDNA comb molecules were assembled on a solid support using parameters optimized for bDNA synthesis. The chemistry was used to synthesize bDNA comb molecules containing 15 secondary sequences. The bDNA comb molecules were elaborated by enzymatic ligation into branched amplification multimers, large bDNA molecules (a total of 1068 nt) containing an average of 36 repeated DNA oligomer sequences, each capable of hybridizing specifically to an alkaline phosphatase-labeled oligonucleotide. The bDNA comb molecules were characterized by electrophoretic methods and by controlled cleavage at periodate-cleavable moieties incorporated during synthesis. The branched amplification multimers have been used as signal amplifiers in nucleic acid quantification assays for detection of viral infection. It is possible to detect as few as 50 molecules with bDNA technology. PMID:9365266

  17. Growth of optically active chiral inorganic films through DNA self-assembly and silica mineralisation.

    PubMed

    Liu, Ben; Han, Lu; Duan, Yingying; Cao, Yunayuan; Feng, Ji; Yao, Yuan; Che, Shunai

    2014-01-01

    The circularly polarized reflection of nature is due to their distinct azimuthally twisted or helical character in the nanostructure of the surface films. Although many chiral inorganic powders have been successfully synthesised, the artificial synthesis of chiral inorganic films is rare. Herein, we reported a facile synthetic route for the growth of monolayered chiral film on the quaternary ammonium-modified silicon substrate. The films grew on the substrate surface because of the strong electrostatic interaction between positively charged quaternary ammonium groups and negatively charged phosphate groups of DNA, with subsequent growth to right-handed, vertically aligned, impeller-like helical architectures with left-handed two-dimensional square p4mm-structured DNA chiral packing. The DNA-silica composite films exhibited strong optical activity at 295 nm and in the range of 400-800 nm, corresponding to DNA chiral packing (absorption) and to the helical blade in the impeller (scattering), respectively. Upon removal of DNA templates, the pure inorganic impeller-like helical morphology was maintained; consequently, the scattering-based optical response was blue-shifted approximately 200 nm as a result of a decrease in the effective average refractive index. The hierarchical structures were reflected from the surfaces by cross-polarised light, which confirmed that the films were strongly birefringent, with long-range anisotropy. PMID:24784912

  18. Growth of Optically Active Chiral Inorganic Films through DNA Self-Assembly and Silica Mineralisation

    NASA Astrophysics Data System (ADS)

    Liu, Ben; Han, Lu; Duan, Yingying; Cao, Yunayuan; Feng, Ji; Yao, Yuan; Che, Shunai

    2014-05-01

    The circularly polarized reflection of nature is due to their distinct azimuthally twisted or helical character in the nanostructure of the surface films. Although many chiral inorganic powders have been successfully synthesised, the artificial synthesis of chiral inorganic films is rare. Herein, we reported a facile synthetic route for the growth of monolayered chiral film on the quaternary ammonium-modified silicon substrate. The films grew on the substrate surface because of the strong electrostatic interaction between positively charged quaternary ammonium groups and negatively charged phosphate groups of DNA, with subsequent growth to right-handed, vertically aligned, impeller-like helical architectures with left-handed two-dimensional square p4mm-structured DNA chiral packing. The DNA-silica composite films exhibited strong optical activity at 295 nm and in the range of 400-800 nm, corresponding to DNA chiral packing (absorption) and to the helical blade in the impeller (scattering), respectively. Upon removal of DNA templates, the pure inorganic impeller-like helical morphology was maintained; consequently, the scattering-based optical response was blue-shifted approximately 200 nm as a result of a decrease in the effective average refractive index. The hierarchical structures were reflected from the surfaces by cross-polarised light, which confirmed that the films were strongly birefringent, with long-range anisotropy.

  19. Rapid synthesis of DNA-cysteine conjugates for expressed protein ligation

    SciTech Connect

    Lovrinovic, Marina; Niemeyer, Christof M. . E-mail: christof.niemeyer@uni-dortmund.de

    2005-09-30

    We report a rapid method for the covalent modification of commercially available amino-modified DNA oligonucleotides with a cysteine moiety. The resulting DNA-cysteine conjugates are versatile reagents for the efficient preparation of covalent DNA-protein conjugates by means of expressed protein ligation (EPL). The EPL method allows for the site-specific coupling of cysteine-modified DNA oligomers with recombinant intein-fusion proteins, the latter of which contain a C-terminal thioester enabling the mild and highly specific reaction with N-terminal cysteine compounds. We prepared a cysteine-modifier reagent in a single-step reaction which allows for the rapid and near quantitative synthesis of cysteine-DNA conjugates. The latter were ligated with the green fluorescent protein mutant EYFP, recombinantly expressed as an intein-fusion protein, allowing for the mild and selective formation of EYFP-DNA conjugates in high yields of about 60%. We anticipate many applications of our approach, ranging from protein microarrays to the arising field of nanobiotechnology.

  20. In vitro synthesis of large peptide molecules using glucosylated single-stranded bacteriophage T4D DNA template.

    PubMed Central

    Hulen, C; Legault-Demare, J

    1975-01-01

    Denatured Bacteriophage T4D DNA is able to stimulate aminoacid incorporation into TCA-precipitable material in an in vitro protein synthesis system according to base DNA sequences. Newly synthesized polypeptides remain associated with ribosomes and have a molecular weight in range of 15,000 to 45,000 Daltons. PMID:1052527

  1. Requirement for the Kinase Activity of Human DNA-Dependent Protein Kinase Catalytic Subunit in DNA Strand Break Rejoining

    PubMed Central

    Kurimasa, Akihiro; Kumano, Satoshi; Boubnov, Nikolai V.; Story, Michael D.; Tung, Chang-Shung; Peterson, Scott R.; Chen, David J.

    1999-01-01

    The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is an enormous, 470-kDa protein serine/threonine kinase that has homology with members of the phosphatidylinositol (PI) 3-kinase superfamily. This protein contributes to the repair of DNA double-strand breaks (DSBs) by assembling broken ends of DNA molecules in combination with the DNA-binding factors Ku70 and Ku80. It may also serve as a molecular scaffold for recruiting DNA repair factors to DNA strand breaks. This study attempts to better define the role of protein kinase activity in the repair of DNA DSBs. We constructed a contiguous 14-kb human DNA-PKcs cDNA and demonstrated that it can complement the DNA DSB repair defects of two mutant cell lines known to be deficient in DNA-PKcs (M059J and V3). We then created deletion and site-directed mutations within the conserved PI 3-kinase domain of the DNA-PKcs gene to test the importance of protein kinase activity for DSB rejoining. These DNA-PKcs mutant constructs are able to express the protein but fail to complement the DNA DSB or V(D)J recombination defects of DNA-PKcs mutant cells. These results indicate that the protein kinase activity of DNA-PKcs is essential for the rejoining of DNA DSBs in mammalian cells. We have also determined a model structure for the DNA-PKcs kinase domain based on comparisons to the crystallographic structure of a cyclic AMP-dependent protein kinase. This structure gives some insight into which amino acid residues are crucial for the kinase activity in DNA-PKcs. PMID:10207111

  2. Synthesis of a novel water-soluble zinc phthalocyanine and its CT DNA-damaging studies

    NASA Astrophysics Data System (ADS)

    Wang, Tianhui; Wang, Ao; Zhou, Lin; Lu, Shan; Jiang, Weiwei; Lin, Yun; Zhou, Jiahong; Wei, Shaohua

    2013-11-01

    A novel 3-(4-methoxybenzylamino) propanoic acid substituted water-soluble zinc phthalocyanine (CNPcZn) was synthesized. The interaction between CNPcZn with calf thymus DNA (CT DNA) was studied using spectroscopic methods. The studies indicated that CNPcZn has strong affinity to CT DNA, and furthermore, CNZnPc showed excellent photodamaging activity to CT DNA. Above results indicated that such CNPcZn has great potential to be used as an effective photosensitizer in the field of photodynamic therapy.

  3. Bovine papillomavirus type 1 DNA replication: the transcriptional activator E2 acts in vitro as a specificity factor.

    PubMed Central

    Bonne-Andréa, C; Tillier, F; McShan, G D; Wilson, V G; Clertant, P

    1997-01-01

    We previously devised cell-free conditions supporting efficient replication of bovine papillomavirus type 1 (BPV1) DNA (C. Bonne-Andréa, S. Santucci, and P. Clertant, J. Virol. 69:3201-3205, 1995): the use of highly active preparations of viral initiator protein E1, together with extract from a particular cell source, allowed the synthesis of complete DNA circles through successive rounds of replication; this occurred in the absence of the viral transcriptional activator E2, required in vivo for the replication of viral genomes. We now report that adding E2 to cell-free assays produced only slight effects both on the yield of E1-dependent DNA synthesis and on the quality of newly made DNA molecules when a template carrying a wild-type BPV1 replication origin (ori) was used. The performance of mouse cell extracts, unable to sustain efficient BPV1 DNA replication in the presence of E1 only, was likewise not improved by the addition of E2. In a proper in vitro environment, E1 is thus fully capable of efficiently initiating viral DNA synthesis by itself, an activity which is not enhanced by interaction with E2. An important effect, however, was detected: E2 totally suppressed the nonspecific replication of ori-defective DNA templates, otherwise observed in high E1 concentrations. We examined the requirements for building a minimal DNA sequence behaving in vitro as a specific ori sequence under stringent recognition conditions, i.e., in the presence of both E1 and E2. Only two elements, the 18-bp E1 binding palindrome and an AT-rich sequence, were required in cis to allow specific cell-free DNA replication; there seemed to be no need for an E2 binding site to ensure discrimination between specific ori templates and other DNA molecules, even in the presence of E2. This suggests that during the initiation of BPV1 DNA replication, at least in vitro, E2 acts as a specificity factor restricting the action of E1 to a defined ori sequence; this function, likely not demanding

  4. A Fatal Combination: A Thymidylate Synthase Inhibitor with DNA Damaging Activity

    PubMed Central

    Ligasová, Anna; Strunin, Dmytro; Friedecký, David; Adam, Tomáš; Koberna, Karel

    2015-01-01

    2′-deoxy-5-ethynyluridine (EdU) has been previously shown to be a cell poison whose toxicity depends on the particular cell line. The reason is not known. Our data indicates that different efficiency of EdU incorporation plays an important role. The EdU-mediated toxicity was elevated by the inhibition of 2′-deoxythymidine 5′-monophosphate synthesis. EdU incorporation resulted in abnormalities of the cell cycle including the slowdown of the S phase and a decrease in DNA synthesis. The slowdown but not the cessation of the first cell division after EdU administration was observed in all of the tested cell lines. In HeLa cells, a 10 μM EdU concentration led to the cell death in the 100% of cells probably due to the activation of an intra S phase checkpoint in the subsequent S phase. Our data also indicates that this EdU concentration induces interstrand DNA crosslinks in HeLa cells. We suppose that these crosslinks are the primary DNA damage resulting in cell death. According to our results, the EdU-mediated toxicity is further increased by the inhibition of thymidylate synthase by EdU itself at its higher concentrations. PMID:25671308

  5. Purification of a Factor from Human Placenta That Stimulates Capillary Endothelial Cell Protease Production, DNA Synthesis, and Migration

    NASA Astrophysics Data System (ADS)

    Moscatelli, David; Presta, Marco; Rifkin, Daniel B.

    1986-04-01

    A protein that stimulates the production of plasminogen activator and latent collagenase in cultured bovine capillary endothelial cells has been purified 106-fold from term human placenta by using a combination of heparin affinity chromatography, ion-exchange chromatography, and gel chromatography. The purified molecule has a molecular weight of 18,700 as determined by NaDodSO4/PAGE under both reducing and nonreducing conditions. The purified molecule stimulates the production of plasminogen activator and latent collagenase in a dose-dependent manner between 0.1 and 10 ng of protein/ml. The purified protein also stimulates DNA synthesis and chemotaxis in capillary endothelial cells in the same concentration range. Thus, this molecule has all of the properties predicted for an angiogenic factor.

  6. A Novel Styryldehydropyridocolinium Homodimer: Synthesis and Fluorescence Properties Upon Interaction with DNA.

    PubMed

    Yao, Huirong; Chang, Lifang; Liu, Chang; Jiao, Xiaojie; He, Song; Liu, Haijun; Zeng, Xianshun

    2015-11-01

    A novel homodimer of the styryldehydropyridocolinium dye (TPTP) has been synthesized and characterized. Free TPTP exhibited low fluorescence quantum yield and large Stokes shift (over 160 nm) in water. However, it showed a significant fluorescence turn-on effect upon intercalation into DNA base pairs. Meanwhile, the fluorescence intensity of the intercalated structures formed by TPTP and DNA decreased quickly upon addition of deoxyribonuclease I, indicating that the dye can be used to monitor deoxyribonuclease I activity and DNA hydrolysis. Electrophoresis analysis revealed that the dye had intercalative binding to DNA and can potentially be used for DNA staining in electrophoresis. Thus, the innate nature of large Stokes shift and excellent fluorescence turn on effect upon interaction with DNA endue the dye with a wide range of applications. PMID:26384336

  7. Plasma-activated air mediates plasmid DNA delivery in vivo.

    PubMed

    Edelblute, Chelsea M; Heller, Loree C; Malik, Muhammad A; Bulysheva, Anna; Heller, Richard

    2016-01-01

    Plasma-activated air (PAA) provides a noncontact DNA transfer platform. In the current study, PAA was used for the delivery of plasmid DNA in a 3D human skin model, as well as in vivo. Delivery of plasmid DNA encoding luciferase to recellularized dermal constructs was enhanced, resulting in a fourfold increase in luciferase expression over 120 hours compared to injection only (P < 0.05). Delivery of plasmid DNA encoding green fluorescent protein (GFP) was confirmed in the epidermal layers of the construct. In vivo experiments were performed in BALB/c mice, with skin as the delivery target. PAA exposure significantly enhanced luciferase expression levels 460-fold in exposed sites compared to levels obtained from the injection of plasmid DNA alone (P < 0.001). Expression levels were enhanced when the plasma reactor was positioned more distant from the injection site. Delivery of plasmid DNA encoding GFP to mouse skin was confirmed by immunostaining, where a 3-minute exposure at a 10 mm distance displayed delivery distribution deep within the dermal layers compared to an exposure at 3 mm where GFP expression was localized within the epidermis. Our findings suggest PAA-mediated delivery warrants further exploration as an alternative approach for DNA transfer for skin targets. PMID:27110584

  8. Plasma-activated air mediates plasmid DNA delivery in vivo

    PubMed Central

    Edelblute, Chelsea M; Heller, Loree C; Malik, Muhammad A; Bulysheva, Anna; Heller, Richard

    2016-01-01

    Plasma-activated air (PAA) provides a noncontact DNA transfer platform. In the current study, PAA was used for the delivery of plasmid DNA in a 3D human skin model, as well as in vivo. Delivery of plasmid DNA encoding luciferase to recellularized dermal constructs was enhanced, resulting in a fourfold increase in luciferase expression over 120 hours compared to injection only (P < 0.05). Delivery of plasmid DNA encoding green fluorescent protein (GFP) was confirmed in the epidermal layers of the construct. In vivo experiments were performed in BALB/c mice, with skin as the delivery target. PAA exposure significantly enhanced luciferase expression levels 460-fold in exposed sites compared to levels obtained from the injection of plasmid DNA alone (P < 0.001). Expression levels were enhanced when the plasma reactor was positioned more distant from the injection site. Delivery of plasmid DNA encoding GFP to mouse skin was confirmed by immunostaining, where a 3-minute exposure at a 10 mm distance displayed delivery distribution deep within the dermal layers compared to an exposure at 3 mm where GFP expression was localized within the epidermis. Our findings suggest PAA-mediated delivery warrants further exploration as an alternative approach for DNA transfer for skin targets. PMID:27110584

  9. Brain feminization requires active repression of masculinization via DNA methylation

    PubMed Central

    Nugent, Bridget M.; Wright, Christopher L.; Shetty, Amol C.; Hodes, Georgia E.; Lenz, Kathryn M.; Mahurkar, Anup; Russo, Scott J.; Devine, Scott E.; McCarthy, Margaret M.

    2015-01-01

    The developing mammalian brain is destined for a female phenotype unless exposed to gonadal hormones during a perinatal sensitive period. It has been assumed that the undifferentiated brain is masculinized by direct induction of transcription by ligand-activated nuclear steroid receptors. We found that a primary effect of gonadal steroids in the highly sexually-dimorphic preoptic area (POA) is to reduce activity of DNA methyltransferase (Dnmt) enzymes, thereby decreasing DNA methylation and releasing masculinizing genes from epigenetic repression. Pharmacological inhibition of Dnmts mimicked gonadal steroids, resulting in masculinized neuronal markers and male sexual behavior in females. Conditional knockout of the de novo Dnmt isoform, Dnmt3a, also masculinized sexual behavior in female mice. RNA sequencing revealed gene and isoform variants modulated by methylation that may underlie the divergent reproductive behaviors of males versus females. Our data show that brain feminization is maintained by the active suppression of masculinization via DNA methylation. PMID:25821913

  10. Effects of Glyprolines on DNA Synthesis and Free Radical Oxidation in Mouse Gastric Mucosa Under Physiological Conditions and During Therapy with Oral Non-Steroid Anti-Inflammatory Drugs.

    PubMed

    Fleishman, M Yu; Tolstenok, I V; Lebed'ko, O A; Andreeva, L A; Myasoedov, N F; Timoshin, S S

    2015-08-01

    Studies by (3)H-thymidin autoradiography showed that injections of Pro-Gly-Pro and Arg-Gly-Pro peptides caused no changes in the DNA synthesis processes in the gastric mucosa. Both peptides induced a reduction of free radical oxidation activity, which was shown by chemiluminescence. Indomethacin induced lesions in the gastric mucosa, triggered oxidative stress, and reduced proliferative activity. Injection of Pro-Gly-Pro peptide before indomethacin corrected disorders in oxidative status and normalized DNA synthesis. Preinjection of Arg-Gly-Pro led to enlargement (by 4.6 times) of the focus of lesions in animals treated by indomethacin and augmented oxidative stress. PMID:26388565

  11. p53-dependent but ATM-independent inhibition of DNA synthesis and G2 arrest in cadmium-treated human fibroblasts

    SciTech Connect

    Cao Feng |; Zhou Tong; Simpson, Dennis; Zhou Yingchun; Boyer, Jayne; Chen Bo |; Jin Taiyi; Cordeiro-Stone, Marila; Kaufmann, William . E-mail: wkarlk@med.unc.edu

    2007-01-15

    This study focused on the activation of cell cycle checkpoint responses in diploid human fibroblasts that were treated with cadmium chloride and the potential roles of ATM and p53 signaling pathways in cadmium-induced responses. The alkaline comet assay indicated that cadmium caused a dose-dependent increase in DNA damage. Cells that were rendered p53-defective by expression of a dominant-negative p53 allele or knockdown of p53 mRNA were more resistant to cadmium-induced inactivation of colony formation than normal and ataxia telangiectasia (AT) cells. Synchronized fibroblasts in S were more sensitive to cadmium toxicity than cells in G1, suggesting that cadmium may target some element of DNA replication. Cadmium produced a dose- and time-dependent inhibition of DNA synthesis. An immediate inhibition was associated with severe delay in progression through S phase and a delayed inhibition seen 24 h after treatment was associated with accumulation of cells in G2. AT and normal cells displayed similar patterns of inhibition of DNA synthesis and G2 delay after treatment with cadmium, while p53-defective cells displayed significantly less of the delayed inhibition of DNA synthesis and accumulation in G2 post-treatment. Total p53 protein and ser15-phosphorylated p53 were induced by cadmium in normal and AT cells. The p53 transactivation target Gadd45{alpha} was induced in both p53-effective and p53-defective cells after 4 h cadmium treatment, and this was associated with an acute inhibition of mitosis. Cadmium produced a very unusual pattern of toxicity in human fibroblasts, inhibiting DNA replication and inducing p53-dependent growth arrest but without induction of p21{sup Cip1/Waf1} or activation of Chk1.

  12. Synthesis of DNA containing the simian virus 40 origin of replication by the combined action of DNA polymerases alpha and delta.

    PubMed Central

    Lee, S H; Eki, T; Hurwitz, J

    1989-01-01

    Proliferating-cell nuclear antigen (PCNA) mediates the replication of simian virus 40 (SV40) DNA by reversing the effects of a protein that inhibits the elongation reaction. Two other protein fractions, activator I and activator II, were also shown to play important roles in this process. We report that activator II isolated from HeLa cell extracts is a PCNA-dependent DNA polymerase delta that is required for efficient replication of DNA containing the SV40 origin of replication. PCNA-dependent DNA polymerase delta on a DNA singly primed phi X174 single-stranded circular DNA template required PCNA, a complex of the elongation inhibitor and activator I, and the single-stranded DNA-binding protein essential for SV40 DNA replication. DNA polymerase delta, in contrast to DNA polymerase alpha, hardly used RNA-primed DNA templates. These results indicate that both DNA polymerase alpha and delta are involved in SV40 DNA replication in vitro and their activity depends on PCNA, the elongation inhibitor, and activator I. Images PMID:2571990

  13. Synthesis, characterization, crystal structure, DNA and BSA binding, molecular docking and in vitro anticancer activities of a mononuclear dioxido-uranium(VI) complex derived from a tridentate ONO aroylhydrazone.

    PubMed

    Mohamadi, Maryam; Ebrahimipour, S Yousef; Castro, Jesus; Torkzadeh-Mahani, Masoud

    2016-05-01

    A mononuclear dioxido-uranium(IV) complex [UO2(L)(DMSO)2], was prepared from the reaction of (2-hydroxy-3-methoxybenzylidene)benzohydrazide [HL] with UO2(OAc)2·2H2O in DMSO. The obtained complex was fully characterized. Single crystal X-ray diffraction analysis of [UO2(L)(DMSO)2] revealed that U(VI) ion has been coordinated by ONO donor atoms of the dianionic ligand (L(2-)), oxo groups and two DMSO molecules in a pentagonal bipyramid geometry. In addition, interactions of the complex with salmon sperm DNA and bovine serum albumin (BSA) were thoroughly investigated using UV-vis absorption, voltammetry and molecular docking methods. The experimental studies showed an intercalative mode of interaction between the complex and DNA. Experiments on BSA interaction indicated a change in the polarity of the environment surrounded the complex as a result of the interaction between BSA and [UO2(L)(DMSO)2]. Finally, MTT assays indicated that the U(VI) complex had excellent cytotoxicity against human carcinoma cell lines of MCF-7, HPG-2, and HT-29, with IC50 values of 8.4, 10.6 and 10.0μM, respectively. PMID:26985736

  14. Active DNA demethylation at enhancers during the vertebrate phylotypic period.

    PubMed

    Bogdanović, Ozren; Smits, Arne H; de la Calle Mustienes, Elisa; Tena, Juan J; Ford, Ethan; Williams, Ruth; Senanayake, Upeka; Schultz, Matthew D; Hontelez, Saartje; van Kruijsbergen, Ila; Rayon, Teresa; Gnerlich, Felix; Carell, Thomas; Veenstra, Gert Jan C; Manzanares, Miguel; Sauka-Spengler, Tatjana; Ecker, Joseph R; Vermeulen, Michiel; Gómez-Skarmeta, José Luis; Lister, Ryan

    2016-04-01

    The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage. However, the mechanisms that guide the epigenome through this transition and their evolutionary conservation remain elusive. Here we report widespread DNA demethylation of enhancers during the phylotypic period in zebrafish, Xenopus tropicalis and mouse. These enhancers are linked to developmental genes that display coordinated transcriptional and epigenomic changes in the diverse vertebrates during embryogenesis. Binding of Tet proteins to (hydroxy)methylated DNA and enrichment of 5-hydroxymethylcytosine in these regions implicated active DNA demethylation in this process. Furthermore, loss of function of Tet1, Tet2 and Tet3 in zebrafish reduced chromatin accessibility and increased methylation levels specifically at these enhancers, indicative of DNA methylation being an upstream regulator of phylotypic enhancer function. Overall, our study highlights a regulatory module associated with the most conserved phase of vertebrate embryogenesis and suggests an ancient developmental role for Tet dioxygenases. PMID:26928226

  15. Inhibition of thrombin activity with DNA-aptamers.

    PubMed

    Dobrovolsky, A B; Titaeva, E V; Khaspekova, S G; Spiridonova, V A; Kopylov, A M; Mazurov, A V

    2009-07-01

    The effects of two DNA aptamers (oligonucleotides) 15TBA and 31TBA (15- and 31-mer thrombin-binding aptamers, respectively) on thrombin activity were studied. Both aptamers added to human plasma dose-dependently increased thrombin time (fibrin formation upon exposure to exogenous thrombin), prothrombin time (clotting activation by the extrinsic pathway), and activated partial thromboplastin time (clotting activation by the intrinsic pathway). At the same time, these aptamers did not modify amidolytic activity of thrombin evaluated by cleavage of synthetic chromogenic substrate. Aptamers also inhibited thrombin-induced human platelet aggregation. The inhibitory effects of 31TBA manifested at lower concentrations than those of 15TBA in all tests. These data indicate that the studied antithrombin DNA aptamers effectively suppress its two key reactions, fibrin formation and stimulation of platelet aggregation, without modifying active center of the thrombin molecule. PMID:19902090

  16. Simultaneous measurement of unscheduled and replicating DNA synthesis by means of a new cell culture insert DNA retention method: rapid induction of replicating DNA synthesis in response to genotoxic carcinogens.

    PubMed

    Okumura, A; Tanaka, T; Mori, H

    1996-08-01

    In order to measure simultaneously replicating DNA synthesis (RDS) and unscheduled DNA synthesis (UDS) in rat hepatocytes responding to exposure to carcinogens, a new method, namely the "cell culture insert DNA retention (CDR)" method, was developed. All CDR procedures for cell culture, digestion of cytoplasm and retention of DNA were performed on membranes attached to cell culture containers. Four subgroups of primary cultures of hepatocytes prepared from rats were exposed to a genotoxic or non-genotoxic carcinogen with or without 10 mM hydroxyurea and incubated for 4 h with 10 microCi/ml [3H]thymidine. The membranes were then processed for both liquid scintillation and autoradiography. Among seven tested chemicals, three genotoxic agents, 3,2'-dimethyl-4-aminobiphenyl, 2-acetylaminofluorene and diethylnitrosamine, and two non-genotoxic carcinogens, nafenopin and phenobarbital, induced RDS within 4 h after the exposure, indicating that these carcinogenic agents induce cell proliferation is non-proliferating rat hepatocytes prior to the emergence of genotoxic changes. Several indices were devised to characterize the genotoxicity of the tested chemicals. The induction patterns obtained showed a wide variation in the individual characteristics of carcinogen-induced genotoxicity and mitogenicity in the early phase of initiation. This is the first report of simultaneous measurement, by using a combination of autoradiography and liquid scintillation, of UDS and RDS induced in rat hepatocytes. The described CDR approach will be useful for risk assessment and characterization of carcinogenic and tumor-promoting agents. PMID:8797886

  17. Dual regulation of heat-shock transcription factor (HSF) activation and DNA-binding activity by H2O2: role of thioredoxin.

    PubMed Central

    Jacquier-Sarlin, M R; Polla, B S

    1996-01-01

    The heat-shock (HS) response is a ubiquitous cellular response to stress, involving the transcriptional activation of HS genes. Reactive oxygen species (ROS) have been shown to regulate the activity of a number of transcription factors. We investigated the redox regulation of the stress response and report here that in the human pre-monocytic line U937 cells, H2O2 induced a concentration-dependent transactivation and DNA-binding activity of heat-shock factor-1 (HSF-1). DNA-binding activity was, however, lower with H2O2 than with HS. We thus hypothesized a dual regulation of HSF by oxidants. We found that oxidizing agents, such as H2O2 and diamide, as well as alkylating agents, such as iodoacetic acid, abolished, in vitro, the HSF-DNA-binding activity induced by HS in vivo. The effects of H2O2 in vitro were reversed by the sulphydryl reducing agent dithiothreitol and the endogenous reductor thioredoxin (TRX), while the effects of iodoacetic acid were irreversible. In addition, TRX also restored the DNA-binding activity of HSF oxidized in vivo, while it was found to be itself induced in vivo by both HS and H2O2. Thus, H2O2 exerts dual effects on the activation and the DNA-binding activity of HSF: on the one hand, H2O2 favours the nuclear translocation of HSF, while on the other, it alters HSF-DNA-binding activity, most likely by oxidizing critical cysteine residues within the DNA-binding domain. HSF thus belongs to the group of ROS-modulated transcription factors. We propose that the time required for TRX induction, which may restore the DNA-binding activity of oxidized HSF, provides an explanation for the delay in heat-shock protein synthesis upon exposure of cells to ROS. PMID:8761470

  18. DNA repair and induction of plasminogen activator in human fetal cells treated with ultraviolet light

    SciTech Connect

    Ben-Ishai, R.; Sharon, R.; Rothman, M.; Miskin, R.

    1984-03-01

    We have tested human fetal fibroblasts for development associated changes in DNA repair by utilizing nucleoid sedimentation as an assay for excision repair. Among skin fibroblasts the rate of excision repair was significantly higher in non-fetal cells than in fibroblasts derived from an 8 week fetus; this was evident by a delay in both the relaxation and the restoration of DNA supercoiling in nucleoids after irradiation. Skin fibroblasts derived at 12 week gestation were more repair proficient than those derived at 8 week gestation. However, they exhibited a somewhat lower rate of repair than non-fetal cells. The same fetal and non-fetal cells were also tested for induction of the protease plasminogen activator (PA) after u.v. irradiation. Enhancement of PA was higher in skin fibroblasts derived at 8 week than in those derived at 12 week gestation and was absent in non-fetal skin fibroblasts. These results are consistent with our previous findings that in human cells u.v. light-induced PA synthesis is correlated with reduced DNA repair capacity. Excision repair and PA inducibility were found to depend on tissue of origin in addition to gestational stage, as shown for skin and lung fibroblasts from the same 12 week fetus. Lung compared to skin fibroblasts exhibited lower repair rates and produced higher levels of PA after irradiation. The sedimentation velocity of nucleoids, prepared from unirradiated fibroblasts, in neutral sucrose gradients with or without ethidium bromide, indicated the presence of DNA strand breaks in fetal cells. It is proposed that reduced DNA repair in fetal cells may result from alterations in DNA supercoiling, and that persistent DNA strand breaks enhance transcription of PA gene(s).

  19. Association of differentially expressed genes with activation of mouse hepatic stellate cells by high-density cDNA mircoarray

    PubMed Central

    Liu, Xiao-Jing; Yang, Li; Luo, Feng-Ming; Wu, Hong-Bin; Qu-Qiang

    2004-01-01

    AIM: To characterize the gene expression profiles associated with activation of mouse hepatic stellate cell (HSC) and provide novel insights into the pathogenesis of hepatic fibrosis. METHODS: Mice HSCs were isolated from BALB/c mice by in situ perfusion of collagenase and pronase and single-step density Nycodenz gradient. Total RNA and mRNA of quiescent HSC and culture-activated HSC were extracted, quantified and reversely transcripted into cDNA. cDNAs from activated HSC were labeled with Cy5 and cDNAs from the quiescent HSC were labeled with Cy3, which were mixed with equal quantity, then hybridized with cDNA chips containing 4000 genes. Chips were washed, scanned and analyzed. Increased expression of 4 genes and decreased expression of one gene in activated HSC were confirmed by reverse transcription- polymerase chain reaction (RT-PCR). RESULTS: A total of 835 differentially expressed genes were identified by cDNA chip between activated and quiescent HSC, and 465 genes were highly expressed in activated HSC. The differentially expressed genes included those involved in protein synthesis, cell-cycle regulation, apoptosis, and DNA damage response. CONCLUSION: Many genes implicated in intrahepatic inflammation, fibrosis and proliferation were up-regulated in activated HSC. cDNA microarray is an effective technique in screening for differentially expressed genes between two different situations of the HSC. Further analysis of the obtained genes will help understand the molecular mechanism of activation of HSC and hepatic fibrosis. PMID:15162533

  20. Directed evolution of DNA polymerase, RNA polymerase and reverse transcriptase activity in a single polypeptide.

    PubMed

    Ong, Jennifer L; Loakes, David; Jaroslawski, Szymon; Too, Kathleen; Holliger, Philipp

    2006-08-18

    DNA polymerases enable key technologies in modern biology but for many applications, native polymerases are limited by their stringent substrate recognition. Here we describe short-patch compartmentalized self-replication (spCSR), a novel strategy to expand the substrate spectrum of polymerases in a targeted way. spCSR is based on the previously described CSR, but unlike CSR only a short region (a "patch") of the gene under investigation is diversified and replicated. This allows the selection of polymerases under conditions where catalytic activity and processivity are compromised to the extent that full self-replication is inefficient. We targeted two specific motifs involved in substrate recognition in the active site of DNA polymerase I from Thermus aquaticus (Taq) and selected for incorporation of both ribonucleotide- (NTP) and deoxyribonucleotide-triphosphates (dNTPs) using spCSR. This allowed the isolation of multiple variants of Taq with apparent dual substrate specificity. They were able to synthesize RNA, while still retaining essentially wild-type (wt) DNA polymerase activity as judged by PCR. One such mutant (AA40: E602V, A608V, I614M, E615G) was able to incorporate both NTPs and dNTPs with the same catalytic efficiency as the wt enzyme incorporates dNTPs. AA40 allowed the generation of mixed RNA-DNA amplification products in PCR demonstrating DNA polymerase, RNA polymerase as well as reverse transcriptase activity within the same polypeptide. Furthermore, AA40 displayed an expanded substrate spectrum towards other 2'-substituted nucleotides and was able to synthesize nucleic acid polymers in which each base bore a different 2'-substituent. Our results suggest that spCSR will be a powerful strategy for the generation of polymerases with altered substrate specificity for applications in nano- and biotechnology and in the enzymatic synthesis of antisense and RNAi probes. PMID:16859707

  1. The DNA methylation profile of activated human natural killer cells.

    PubMed

    Wiencke, John K; Butler, Rondi; Hsuang, George; Eliot, Melissa; Kim, Stephanie; Sepulveda, Manuel A; Siegel, Derick; Houseman, E Andres; Kelsey, Karl T

    2016-05-01

    Natural killer (NK) cells are now recognized to exhibit characteristics akin to cells of the adaptive immune system. The generation of adaptive memory is linked to epigenetic reprogramming including alterations in DNA methylation. The study herein found reproducible genome wide DNA methylation changes associated with human NK cell activation. Activation led predominately to CpG hypomethylation (81% of significant loci). Bioinformatics analysis confirmed that non-coding and gene-associated differentially methylated sites (DMS) are enriched for immune related functions (i.e., immune cell activation). Known DNA methylation-regulated immune loci were also identified in activated NK cells (e.g., TNFA, LTA, IL13, CSF2). Twenty-one loci were designated high priority and further investigated as potential markers of NK activation. BHLHE40 was identified as a viable candidate for which a droplet digital PCR assay for demethylation was developed. The assay revealed high demethylation in activated NK cells and low demethylation in naïve NK, T- and B-cells. We conclude the NK cell methylome is plastic with potential for remodeling. The differentially methylated region signature of activated NKs revealed similarities with T cell activation, but also provided unique biomarker candidates of NK activation, which could be useful in epigenome-wide association studies to interrogate the role of NK subtypes in global methylation changes associated with exposures and/or disease states. PMID:26967308

  2. Anthocyanidins modulate the activity of human DNA topoisomerases I and II and affect cellular DNA integrity.

    PubMed

    Habermeyer, Michael; Fritz, Jessica; Barthelmes, Hans U; Christensen, Morten O; Larsen, Morten K; Boege, Fritz; Marko, Doris

    2005-09-01

    In the present study, we investigated the effect of anthocyanidins on human topoisomerases I and II and its relevance for DNA integrity within human cells. Anthocyanidins bearing vicinal hydroxy groups at the B-ring (delphinidin, DEL; cyanidin, CY) were found to potently inhibit the catalytic activity of human topoisomerases I and II, without discriminating between the IIalpha and the IIbeta isoforms. However, in contrast to topoisomerase poisons, DEL and CY did not stabilize the covalent DNA-topoisomerase intermediates (cleavable complex) of topoisomerase I or II. Using recombinant topoisomerase I, the presence of CY or DEL (> or = 1 microM) effectively prohibited the stabilization of the cleavable complex by the topoisomerase I poison camptothecin. We furthermore investigated whether the potential protective effect vs topoisomerase I poisons is reflected also on the cellular level, affecting the DNA damaging properties of camptothecin. Indeed, in HT29 cells, low micromolar concentrations of DEL (1-10 microM) significantly diminished the DNA strand breaking effect of camptothecin (100 microM). However, at concentrations > or = 50 microM, all anthocyanidins tested (delphinidin, cyanidin, malvidin, pelargonidin, and paeonidin), including those not interfering with topoisomerases, were found to induce DNA strand breaks in the comet assay. All of these analogues were able to compete with ethidium bromide for the intercalation into calf thymus DNA and to replace the minor groove binder Hoechst 33258. These data indicate substantial affinity to double-stranded DNA, which might contribute at least to the DNA strand breaking effect of anthocyanidins at higher concentrations (> or = 50 microM). PMID:16167831

  3. Timing of initiation of macronuclear DNA synthesis is set during the preceding cell cycle in Paramecium tetraurelia: analysis of the effects of abrupt changes in nutrient level

    SciTech Connect

    Ching, A.S.L.; Berger, J.D.

    1986-11-01

    In many eukaryotic organisms, initiation of DNA synthesis is associated with a major control point within the cell cycle and reflects the commitment of the cell to the DNA replication-division portion of the cell cycle. In paramecium, the timing of DNA synthesis initiation is established prior to fission during the preceding cell cycle. DNA synthesis normally starts at 0.25 in the cell cycle. When dividing cells are subjected to abrupt nutrient shift-up by transfer from a chemostat culture to medium with excess food, or shift-down from a well-fed culture to exhausted medium, DNA synthesis initiation in the post-shift cell cycle occurs at 0.25 of the parental cell cycle and not at either 0.25 in the post-shift cell cycle or at 0.25 in the equilibrium cell cycle produced under the post-shift conditions. The long delay prior to initiation of DNA synthesis following nutritional shift-up is not a consequence of continued slow growth because the rate of protein synthesis increases rapidly to the normal level after shift-up. Analysis of the relation between increase in cell mass and initiation of DNA synthesis following nutritional shifts indicates that increase in cell mass, per se, is neither a necessary nor a sufficient condition for initiation of DNA synthesis, in spite of the strong association between accumulation of cell mass and initiation of DNA synthesis in cells growing under steady-state conditions.

  4. DNA synthesis and tritiated thymidine incorporation by heterotrophic freshwater bacteria in continuous culture

    SciTech Connect

    Ellenbroek, F.M.; Cappenberg, T.E. )

    1991-06-01

    Continuous cultivation of heterotrophic freshwater bacteria was used to assess the relationship between DNA synthesis and tritiated thymidine incorporation. In six different continuous cultures, each inoculated with a grazer-free mixed bacterial sample from Lake Vechten (The Netherlands), tritiated thymidine incorporation into a cold trichloroacetic acid precipitate and bacterial cell production were measured simultaneously. Empirical conversion factors were determined by division of both parameters. They ranged from 0.25 {times} 10{sup 18} to 1.31 {times} 10{sup 18} cells mol of tritiated thymidine{sup {minus}1}. In addition, DNA concentrations were measured by fluorometry with Heochst 33258. The validity of this technique was confirmed. Down to a generation time of 0.67 day, bacterial DNA content showed little variation, with values of 3.8 to 4.9 fg of DNA cell{sup {minus}1}. Theoretical conversion factors, which can be derived from DNA content under several assumptions, were between 0.26 {times} 10{sup 18} and 0.34 {times} 10{sup 18} cells mol of thymidine{sup {minus}1}. Isotope dilution was considered the main factor in the observed discrepancy between the conversion factors. In all experiments, a tritiated thymidine concentration of 20 nM was used. It was concluded that the observed difference resulted from intracellular isotope dilution which cannot be detected by current techniques for isotope dilution analysis.

  5. Excision of translesion synthesis errors orchestrates responses to helix-distorting DNA lesions

    PubMed Central

    Tsaalbi-Shtylik, Anastasia; Ferrás, Cristina; Pauw, Bea; Hendriks, Giel; Temviriyanukul, Piya; Carlée, Leone; Calléja, Fabienne; van Hees, Sandrine; Akagi, Jun-Ichi; Iwai, Shigenori; Hanaoka, Fumio; Jansen, Jacob G.

    2015-01-01

    In addition to correcting mispaired nucleotides, DNA mismatch repair (MMR) proteins have been implicated in mutagenic, cell cycle, and apoptotic responses to agents that induce structurally aberrant nucleotide lesions. Here, we investigated the mechanistic basis for these responses by exposing cell lines with single or combined genetic defects in nucleotide excision repair (NER), postreplicative translesion synthesis (TLS), and MMR to low-dose ultraviolet light during S phase. Our data reveal that the MMR heterodimer Msh2/Msh6 mediates the excision of incorrect nucleotides that are incorporated by TLS opposite helix-distorting, noninstructive DNA photolesions. The resulting single-stranded DNA patches induce canonical Rpa–Atr–Chk1-mediated checkpoints and, in the next cell cycle, collapse to double-stranded DNA breaks that trigger apoptosis. In conclusion, a novel MMR-related DNA excision repair pathway controls TLS a posteriori, while initiating cellular responses to environmentally relevant densities of genotoxic lesions. These results may provide a rationale for the colorectal cancer tropism in Lynch syndrome, which is caused by inherited MMR gene defects. PMID:25869665

  6. Excision of translesion synthesis errors orchestrates responses to helix-distorting DNA lesions.

    PubMed

    Tsaalbi-Shtylik, Anastasia; Ferrás, Cristina; Pauw, Bea; Hendriks, Giel; Temviriyanukul, Piya; Carlée, Leone; Calléja, Fabienne; van Hees, Sandrine; Akagi, Jun-Ichi; Iwai, Shigenori; Hanaoka, Fumio; Jansen, Jacob G; de Wind, Niels

    2015-04-13

    In addition to correcting mispaired nucleotides, DNA mismatch repair (MMR) proteins have been implicated in mutagenic, cell cycle, and apoptotic responses to agents that induce structurally aberrant nucleotide lesions. Here, we investigated the mechanistic basis for these responses by exposing cell lines with single or combined genetic defects in nucleotide excision repair (NER), postreplicative translesion synthesis (TLS), and MMR to low-dose ultraviolet light during S phase. Our data reveal that the MMR heterodimer Msh2/Msh6 mediates the excision of incorrect nucleotides that are incorporated by TLS opposite helix-distorting, noninstructive DNA photolesions. The resulting single-stranded DNA patches induce canonical Rpa-Atr-Chk1-mediated checkpoints and, in the next cell cycle, collapse to double-stranded DNA breaks that trigger apoptosis. In conclusion, a novel MMR-related DNA excision repair pathway controls TLS a posteriori, while initiating cellular responses to environmentally relevant densities of genotoxic lesions. These results may provide a rationale for the colorectal cancer tropism in Lynch syndrome, which is caused by inherited MMR gene defects. PMID:25869665

  7. Temporal and topographic changes in DNA synthesis after induced follicular atresia

    SciTech Connect

    Greenwald, G.S. )

    1989-07-01

    Hamsters were hypophysectomized on the morning of estrus (Day 1) and injected immediately with 30 IU pregnant mare's serum (PMS). This was followed on Day 4 by the injection of an antiserum to PMS (PMS-AS) that initiated follicular atresia (Time zero). From 0 to 72 h after PMS-AS, the animals were injected with (3H)thymidine and killed 4 h later. One ovary was saved for autoradiography and histology; from the other ovary, 5-10 large antral follicles were dissected and pooled, and incorporation into DNA was determined by scintillation counting. DNA synthesis dropped sharply between 12 and 18 h, coinciding with a fall in labeling index of the cumulus oophorus and thecal endothelial cells and a sharp fall in thecal vascularity. In contrast, for the mural granulosa cells bordering on the antral cavity, labeling index dropped sharply between 8 and 12 h when thecal vascularity was still high. The earliest sign of atresia was evident by 4 h in cumulus cells when, paradoxically, DNA synthesis was still high. It took 3 days for atresia of the antral follicles to progress to advanced stages, as evidenced by pseudo-pronuclei in the free floating ovum, further erosion of the mural granulosa, and minimal DNA/follicle. However, the theca still retained its histological integrity and contained no pyknotic cells. Although by 48 h the granulosal compartment was in disarray (DNA/follicle significantly different from earlier values), the egg was still viable, as judged by maximal fluorescence after the addition of fluoroscein diacetate.

  8. Inhibition by 2-deoxy-D-ribose of DNA synthesis and growth in Raji cells

    SciTech Connect

    Ulrich, F.

    1988-04-01

    When Raji cells were cultured for 3 days in serum-free medium, addition of 2-deoxy-D-ribose at the start of culture inhibited incorporation of (/sup 3/H)thymidine and cell division. At deoxyribose concentrations between 1 and 5 mM, viability was 80% or greater after 3 days of culture even though 5 mM deoxyribose inhibited thymidine incorporation 95-99%. Inhibition by deoxyribose could be completely reversed if the culture medium was replaced with fresh medium up to 8 hr after the start of culture. The inhibition was specific for deoxyribose since other monosaccharides had no effect. Inhibition of DNA synthesis did not appear to be due to depletion of essential nutrients in the medium since the percentage inhibition of thymidine incorporation by cells cultured either in suboptimal serum-free media or in media supplemented with 0.025-5% human AB serum was similar. When DNA repair synthesis was measured as hydroxyurea-resistant thymidine incorporation, addition of deoxyribose to Raji cultures caused increased thymidine incorporation. These results, together with data from others,suggest that deoxyribose damages DNA.

  9. Construction of DNA recognition sites active in Haemophilus transformation.

    PubMed Central

    Danner, D B; Smith, H O; Narang, S A

    1982-01-01

    Competent Haemophilus cells recognize and preferentially take up Haemophilus DNA during genetic transformation. This preferential uptake is correlated with the presence on incoming DNA of an 11-base-pair (bp) sequence, 5'-A-A-G-T-G-C-G-G-T-C-A-3'. To prove that this sequence is the recognition site that identifies Haemophilus DNA to the competent cell, we have now constructed a series of plasmids, each of which contains the 11-bp sequence. Using two different assay systems we have tested the ability of fragments from these plasmids to compete with cloned Haemophilus DNA fragments that naturally contain the 11-bp sequence. We find that the addition of the 11-bp sequence to a DNA fragment is necessary and sufficient for preferential uptake of that fragment. However, plasmid DNAs containing this sequence may vary as much as 48-fold in uptake activity, and this variation correlates with the A+T-richness of the DNA flanking the 11-mer. Images PMID:6285382

  10. Enhanced unscheduled DNA synthesis in UV-irradiated human skin explants treated with T4N5 liposomes

    SciTech Connect

    Yarosh, D.B.; Kibitel, J.T.; Green, L.A.; Spinowitz, A. )

    1991-07-01

    Epidermal keratinocytes cultured from explants of skin cancer patients, including biopsies from xeroderma pigmentosum patients, were ultraviolet light-irradiated and DNA repair synthesis was measured. Repair capacity was much lower in xeroderma pigmentosum patients than in normal patients. The extent of DNA repair replication did not decline with the age of the normal patient. Treatment with T4N5 liposomes containing a DNA repair enzyme enhanced repair synthesis in both normal and xeroderma pigmentosum keratinocytes in an irradiation- and liposome-dose dependent manner. These results provide no evidence that aging people or skin cancer patients are predisposed to cutaneous malignancy by a DNA repair deficiency, but do demonstrate that T4N5 liposomes enhance DNA repair in the keratinocytes of the susceptible xeroderma pigmentosum and skin cancer population.

  11. Genetically encoded optical activation of DNA recombination in human cells.

    PubMed

    Luo, J; Arbely, E; Zhang, J; Chou, C; Uprety, R; Chin, J W; Deiters, A

    2016-06-30

    We developed two tightly regulated, light-activated Cre recombinase enzymes through site-specific incorporation of two genetically-encoded photocaged amino acids in human cells. Excellent optical off to on switching of DNA recombination was achieved. Furthermore, we demonstrated precise spatial control of Cre recombinase through patterned illumination. PMID:27277957

  12. ATPase activity measurement of DNA replicative helicase from Bacillus stearothermophilus by malachite green method.

    PubMed

    Yang, Mu; Wang, Ganggang

    2016-09-15

    The DnaB helicase from Bacillus stearothermophilus (DnaBBst) was a model protein for studying the bacterial DNA replication. In this work, a non-radioactive method for measuring ATPase activity of DnaBBst helicase was described. The working parameters and conditions were optimized. Furthermore, this method was applied to investigate effects of DnaG primase, ssDNA and helicase loader protein (DnaI) on ATPase activity of DnaBBst. Our results showed this method was sensitive and efficient. Moreover, it is suitable for the investigation of functional interaction between DnaB and related factors. PMID:27372608

  13. Growth of Optically Active Chiral Inorganic Films through DNA Self-Assembly and Silica Mineralisation

    PubMed Central

    Liu, Ben; Han, Lu; Duan, Yingying; Cao, Yunayuan; Feng, Ji; Yao, Yuan; Che, Shunai

    2014-01-01

    The circularly polarized reflection of nature is due to their distinct azimuthally twisted or helical character in the nanostructure of the surface films. Although many chiral inorganic powders have been successfully synthesised, the artificial synthesis of chiral inorganic films is rare. Herein, we reported a facile synthetic route for the growth of monolayered chiral film on the quaternary ammonium-modified silicon substrate. The films grew on the substrate surface because of the strong electrostatic interaction between positively charged quaternary ammonium groups and negatively charged phosphate groups of DNA, with subsequent growth to right-handed, vertically aligned, impeller-like helical architectures with left-handed two-dimensional square p4mm-structured DNA chiral packing. The DNA–silica composite films exhibited strong optical activity at 295 nm and in the range of 400–800 nm, corresponding to DNA chiral packing (absorption) and to the helical blade in the impeller (scattering), respectively. Upon removal of DNA templates, the pure inorganic impeller-like helical morphology was maintained; consequently, the scattering-based optical response was blue-shifted approximately 200 nm as a result of a decrease in the effective average refractive index. The hierarchical structures were reflected from the surfaces by cross-polarised light, which confirmed that the films were strongly birefringent, with long-range anisotropy. PMID:24784912

  14. 75 FR 42114 - Office of Biotechnology Activities; Recombinant DNA Research: Proposed Action Under the NIH...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-20

    ... HUMAN SERVICES National Institutes of Health Office of Biotechnology Activities; Recombinant DNA Research: Proposed Action Under the NIH Guidelines for Research Involving Recombinant DNA Molecules (NIH... transgenic rodents by recombinant DNA technology must be registered with the Institutional...

  15. Modulation of the equilibrative nucleoside transporter by inhibitors of DNA synthesis.

    PubMed Central

    Pressacco, J.; Wiley, J. S.; Jamieson, G. P.; Erlichman, C.; Hedley, D. W.

    1995-01-01

    Expression of the equilibrative, S-(p-nitrobenzyl)-6-thioinosine (NBMPR)-sensitive nucleoside transporter (es), a component of the nucleoside salvage pathway, was measured during unperturbed growth and following exposure to various antimetabolites at growth-inhibitory concentrations. The probe 5-(SAENTA-x8)-fluorescein is a highly modified form of adenosine incorporating a fluorescein molecule. It binds. with high affinity and specificity to the (es) nucleoside transporter at a 1:1 stoichiometry, allowing reliable estimates of es expression by flow cytometry. Using a dual labelling technique which combined the vital DNA dye Hoechst-33342 and 5-(SAENTA-x8)-fluorescein, we found that surface expression of es approximately doubled between G1 and G2 + M phases of the cell cycle. To address the question of whether es expression could be modulated in cells exposed to drugs which inhibit de novo synthesis of nucleotides, cells were exposed to antimetabolite drugs having different modes of action. Hydroxyurea and 5-fluorouracil (5-FU), which inhibit the de novo synthesis of DNA precursors, produced increases in the expression of es. In contrast, cytosine arabinoside (ara-C) and aphidicolin, which directly inhibit DNA synthesis, produced no significant increase in es expression. Thymidine (TdR), which is an allosteric inhibitor of ribonucleotide reductase that depletes dATP, dCTP and dGTP pools while repleting the dTTP pool, had no significant effect on es expression. These data suggest that surface expression of the es nucleoside transporter is regulated by a mechanism which is sensitive to the supply of deoxynucleotides. Because 5-FU (which specifically depletes dTTP pools) causes a large increase in expression whereas TdR (which depletes all precursors except dTTP) does not, this mechanism might be particularly sensitive to dTTP pools. PMID:7547244

  16. Directed enzymatic activation of 1-D DNA tiles.

    PubMed

    Garg, Sudhanshu; Chandran, Harish; Gopalkrishnan, Nikhil; LaBean, Thomas H; Reif, John

    2015-02-24

    The tile assembly model is a Turing universal model of self-assembly where a set of square shaped tiles with programmable sticky sides undergo coordinated self-assembly to form arbitrary shapes, thereby computing arbitrary functions. Activatable tiles are a theoretical extension to the Tile assembly model that enhances its robustness by protecting the sticky sides of tiles until a tile is partially incorporated into a growing assembly. In this article, we experimentally demonstrate a simplified version of the Activatable tile assembly model. In particular, we demonstrate the simultaneous assembly of protected DNA tiles where a set of inert tiles are activated via a DNA polymerase to undergo linear assembly. We then demonstrate stepwise activated assembly where a set of inert tiles are activated sequentially one after another as a result of attachment to a growing 1-D assembly. We hope that these results will pave the way for more sophisticated demonstrations of activated assemblies. PMID:25625898

  17. Oxygen tension limits nitric oxide synthesis by activated macrophages.

    PubMed Central

    McCormick, C C; Li, W P; Calero, M

    2000-01-01

    Previous studies have established that constitutive calcium-dependent ('low-output') nitric oxide synthase (NOS) is regulated by oxygen tension. We have investigated the role of oxygen tension in the synthesis of NO by the 'high-output' calcium-independent NOS in activated macrophages. Hypoxia increased macrophage NOS gene expression in the presence of one additional activator, such as lipopolysaccharide or interferon-gamma, but not in the presence of both. Hypoxia markedly reduced the synthesis of NO by activated macrophages (as measured by accumulation of nitrite and citrulline), such that, at 1% oxygen tension, NO accumulation was reduced by 80-90%. The apparent K(m) for oxygen calculated from cells exposed to a range of oxygen tensions was found to be 10.8%, or 137 microM, O(2) This value is considerably higher than the oxygen tension in tissues, and is virtually identical to that reported recently for purified recombinant macrophage NOS. The decrease in NO synthesis did not appear to be due to diminished arginine or cofactor availability, since arginine transport and NO synthesis during recovery in normoxia were normal. Analysis of NO synthesis during hypoxia as a function of extracellular arginine indicated that an altered V(max), but not K(m)(Arg), accounted for the observed decrease in NO synthesis. We conclude that oxygen tension regulates the synthesis of NO in macrophages by a mechanism similar to that described previously for the calcium-dependent low-output NOS. Our data suggest that oxygen tension may be an important physiological regulator of macrophage NO synthesis in vivo. PMID:10970783

  18. Enhanced GSH synthesis by Bisphenol A exposure promoted DNA methylation process in the testes of adult rare minnow Gobiocypris rarus.

    PubMed

    Yuan, Cong; Zhang, Yingying; Liu, Yan; Zhang, Ting; Wang, Zaizhao

    2016-09-01

    DNA methylation is a commonly studied epigenetic modification. The mechanism of BPA on DNA methylation is poorly understood. The present study aims to explore whether GSH synthesis affects DNA methylation in the testes of adult male rare minnow Gobiocypris rarus in response to Bisphenol A (BPA). Male G. rarus was exposed to 1, 15 and 225μgL(-1) BPA for 7 days. The levels of global DNA methylation, hydrogen peroxide (H2O2) and glutathione (GSH) in the testes were analyzed. Meanwhile, the levels of enzymes involved in DNA methylation and de novo GSH synthesis, and the substrate contents for GSH production were measured. Furthermore, gene expression profiles of the corresponding genes of all studied enzymes were analyzed. Results indicated that BPA at 15 and 225μgL(-1) caused hypermethylation of global DNA in the testes. The 15μgL(-1) BPA resulted in significant decrease of ten-eleven translocation proteins (TETs) while 225μgL(-1) BPA caused significant increase of DNA methyltransferase proteins (DNMTs). Moreover, 225μgL(-1) BPA caused significant increase of H2O2 and GSH levels, and the de novo GSH synthesis was enhanced. These results indicated that the significant decrease of the level of TETs may be sufficient to cause the DNA hypermethylation by 15μgL(-1) BPA. However, the significantly increased of DNMTs contributed to the significant increase of DNA methylation levels by 225μgL(-1) BPA. Moreover, the elevated de novo GSH synthesis may promote the DNA methylation process. PMID:27474941

  19. Constitutive stable DNA replication in Escherichia coli cells lacking type 1A topoisomerase activity.

    PubMed

    Martel, Makisha; Balleydier, Aurélien; Sauriol, Alexandre; Drolet, Marc

    2015-11-01

    Type 1A topoisomerases (topos) are ubiquitous enzymes involved in supercoiling regulation and in the maintenance of genome stability. Escherichia coli possesses two type 1A enzymes, topo I (topA) and topo III (topB). Cells lacking both enzymes form very long filaments and have severe chromosome segregation and growth defects. We previously found that RNase HI overproduction or a dnaT::aph mutation could significantly correct these phenotypes. This leads us to hypothesize that they were related to unregulated replication originating from R-loops, i.e. constitutive stable DNA replication (cSDR). cSDR, first observed in rnhA (RNase HI) mutants, is characterized by its persistence for several hours following protein synthesis inhibition and by its requirement for primosome components, including DnaT. Here, to visualize and measure cSDR, the incorporation of the nucleotide analog ethynyl deoxyuridine (EdU) during replication in E. coli cells pre-treated with protein synthesis inhibitors, was revealed by "click" labeling with Alexa Fluor(®) 488 in fixed cells, and flow cytometry analysis. cSDR was detected in rnhA mutants, but not in wild-type strains, and the number of cells undergoing cSDR was significantly reduced by the introduction of the dnaT::aph mutation. cSDR was also found in topA, double topA topB but not in topB null cells. This result is consistent with the established function of topo I in the inhibition of R-loop formation. Moreover, our finding that topB rnhA mutants are perfectly viable demonstrates that topo III is not uniquely required during cSDR. Thus, either topo I or III can provide the type 1A topo activity that is specifically required during cSDR to allow chromosome segregation. PMID:26444226

  20. Optimal cooperative control synthesis of active displays

    NASA Technical Reports Server (NTRS)

    Garg, S.; Schmidt, D. K.

    1986-01-01

    The utility of augmenting displays to aid the human operator in controlling high order complex systems is well known. Analytical evaluation of various display designs for a simple k/s sup 2 plant in a compensatory tracking task using an optimal Control Model (OCM) of human behavior is carried out. This analysis reveals that significant improvement in performance should be obtained by skillful integration of key information into the display dynamics. The cooperative control synthesis technique previously developed to design pilot-optimal control augmentation is extended to incorporate the simultaneous design of performance enhancing augmented displays. The application of the cooperative control synthesis technique to the design of augmented displays is discussed for the simple k/s sup 2 plant. This technique is intended to provide a systematic approach to design optimally augmented displays tailored for specific tasks.

  1. Optimal cooperative control synthesis of active displays

    NASA Technical Reports Server (NTRS)

    Garg, S.; Schmidt, D. K.

    1985-01-01

    The utility of augmenting displays to aid the human operator in controlling high order complex systems is well known. Analytical evaluations of various display designs for a simple k/s-squared plant in a compensatory tracking task using an Optimal Control Model (OCM) of human behavior is carried out. This analysis reveals that significant improvement in performance should be obtained by skillful integration of key information into the display dynamics. The cooperative control synthesis technique previously developed to design pilot-optimal control augmentation is extended to incorporate the simultaneous design of performance enhancing augmented displays. The application of the cooperative control synthesis technique to the design of augmented displays is discussed for the simple k/s-squared plant. This technique is intended to provide a systematic approach to design optimally augmented displays tailored for specific tasks.

  2. Binding-activated localization microscopy of DNA structures.

    PubMed

    Schoen, Ingmar; Ries, Jonas; Klotzsch, Enrico; Ewers, Helge; Vogel, Viola

    2011-09-14

    Many nucleic acid stains show a strong fluorescence enhancement upon binding to double-stranded DNA. Here we exploit this property to perform superresolution microscopy based on the localization of individual binding events. The dynamic labeling scheme and the optimization of fluorophore brightness yielded a resolution of ∼14 nm (fwhm) and a spatial sampling of 1/nm. We illustrate our approach with two different DNA-binding dyes and apply it to visualize the organization of the bacterial chromosome in fixed Escherichia coli cells. In general, the principle of binding-activated localization microscopy (BALM) can be extended to other dyes and targets such as protein structures. PMID:21838238

  3. Activation of catalysts for synthesizing methanol from synthesis gas

    DOEpatents

    Blum, David B.; Gelbein, Abraham P.

    1985-01-01

    A method for activating a methanol synthesis catalyst is disclosed. In this method, the catalyst is slurried in an inert liquid and is activated by a reducing gas stream. The activation step occurs in-situ. That is, it is conducted in the same reactor as is the subsequent step of synthesizing methanol from a methanol gas stream catalyzed by the activated catalyst still dispersed in a slurry.

  4. Fabrication of polyurethane molecular stamps for the synthesis of DNA microarray

    NASA Astrophysics Data System (ADS)

    Liu, Zhengchun; He, Quanguo; Xiao, Pengfeng; He, Nongyao; Lu, Zuhong; Bo, Liang

    2001-10-01

    Polyurethane based on polypropylene glycol (PPG) and Toluene diisocyanate (TDI) using 3,3'-dichloride-4,4'- methylenedianiline (MOCA) as the crosslinker is presented for the first time to fabricate molecular stamps (PU stamps) for the synthesis of DNA microarray with contact procedure. The predictability of the process is achieved by utilizing commercially available starting materials. SEM analysis of the morphology of PU stamps and master showed that PU elastometer could replicate subtly the motherboard's patterns with high fidelity. It was proved from the contact angle measurement that PU stamps surface has good affinity with acetonitrile, which guarantee the well-distribution of DNA monomers on patterned stamps. Laser confocal fluorescence microscopy images of oligonucleotide arrays confirmed polyurethane is an excellent material for molecular stamps.

  5. Inositol stimulates DNA and protein synthesis, and expansion by rabbit blastocysts in vitro.

    PubMed

    Fahy, M M; Kane, M T

    1992-04-01

    The effect of different concentrations (0, 0.6, 3, 15, 75 and 375 microM) of myo-inositol on the development of rabbit morulae to expanded blastocysts was investigated in terms of blastocyst expansion and synthesis of DNA and protein, as measured by incorporation of [3H]thymidine and [14C]amino acids into acid-precipitable material. A concentration of 15 microM inositol caused a 2.8-fold increase in blastocyst expansion (P less than 0.01), a 9.9-fold increase in thymidine incorporation into DNA (P less than 0.01) and a 3.6-fold increase in amino acid incorporation into protein (P less than 0.01). There were no significant differences in the range from 15 to 375 microM inositol. PMID:1522201

  6. N-terminal domains of human DNA polymerase lambda promote primer realignment during translesion DNA synthesis

    PubMed Central

    Taggart, David J.; Dayeh, Daniel M.; Fredrickson, Saul W.; Suo, Zucai

    2014-01-01

    The X-family DNA polymerases λ (Polλ) and β (Polβ) possess similar 5′-2-deoxyribose-5-phosphatelyase (dRPase) and polymerase domains. Besides these domains, Polλ also possesses a BRCA1 C-terminal (BRCT) domain and a proline-rich domain at its N terminus. However, it is unclear how these non-enzymatic domains contribute to the unique biological functions of Polλ. Here, we used primer extension assays and a newly developed high-throughput short oligonucleotide sequencing assay (HT-SOSA) to compare the efficiency of lesion bypass and fidelity of human Polβ, Polλ and two N-terminal deletion constructs of Polλ during the bypass of either an abasic site or a 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) lesion. We demonstrate that the BRCT domain of Polλ enhances the efficiency of abasic site bypass by approximately 1.6-fold. In contrast, deletion of the N-terminal domains of Polλ did not affect the efficiency of 8-oxodG bypass relative to nucleotide incorporations opposite undamaged dG. HT-SOSA analysis demonstrated that Polλ and Polβ preferentially generated −1 or −2 frameshift mutations when bypassing an abasic site and the single or double base deletion frequency was highly sequence dependent. Interestingly, the BRCT and proline-rich domains of Polλ cooperatively promoted the generation of −2 frameshift mutations when the abasic site was situated within a sequence context that was susceptible to homology-driven primer realignment. Furthermore, both N-terminal domains of Polλ increased the generation of −1 frameshift mutations during 8-oxodG bypass and influenced the frequency of substitution mutations produced by Polλ opposite the 8-oxodG lesion. Overall, our data support a model wherein the BRCT and proline-rich domains of Polλ act cooperatively to promote primer/template realignment between DNA strands of limited sequence homology. This function of the N-terminal domains may facilitate the role of Polλ as a gap-filling polymerase

  7. DNA repair by the cryptic endonuclease activity of Mu transposase.

    PubMed

    Choi, Wonyoung; Harshey, Rasika M

    2010-06-01

    Phage Mu transposes by two distinct pathways depending on the specific stage of its life cycle. A common strand transfer intermediate is resolved differentially in the two pathways. During lytic growth, the intermediate is resolved by replication of Mu initiated within the flanking target DNA; during integration of infecting Mu, it is resolved without replication, by removal and repair of DNA from a previous host that is still attached to the ends of the incoming Mu genome. We have discovered that the cryptic endonuclease activity reported for the isolated C-terminal domain of the transposase MuA [Wu Z, Chaconas G (1995) A novel DNA binding and nuclease activity in domain III of Mu transposase: Evidence for a catalytic region involved in donor cleavage. EMBO J 14:3835-3843], which is not observed in the full-length protein or in the assembled transpososome in vitro, is required in vivo for removal of the attached host DNA or "5'flap" after the infecting Mu genome has integrated into the E. coli chromosome. Efficient flap removal also requires the host protein ClpX, which is known to interact with the C-terminus of MuA to remodel the transpososome for replication. We hypothesize that ClpX constitutes part of a highly regulated mechanism that unmasks the cryptic nuclease activity of MuA specifically in the repair pathway. PMID:20167799

  8. Radiofrequency (microwave) radiation exposure of mammalian cells during UV-induced DNA repair synthesis

    SciTech Connect

    Meltz, M.L.; Walker, K.A.; Erwin, D.N.

    1987-05-01

    The effect of continuous-wave (CW) and pulsed-wave (PW) radiofrequency radiation (RFR) in the microwave range on UV-induced DNA repair has been investigated in MRC-5 normal human diploid fibroblasts. RFR exposure at power densities of 1 (or 5) and 10 mW/cm2 gave a maximum specific absorption rate (SAR) (at 10 mW/cm2) of 0.39 +/- 0.15 W/kg for 350 MHz RFR, 4.5 +/- 3.0 W/kg for 850 MHz RFR, and 2.7 +/- 1.6 W/kg for 1.2 GHz RFR. RFR exposures for 1 to 3 h at 37 degrees C, in either continuous-wave or pulsed-wave modes, had no effect on the rate of repair replication label incorporated into preexisting UV-damaged DNA. RFR exposures (PW), with a constant medium temperature of 39 degrees C at 350 and 850 MHz during the repair period after UV damage, also had no effect. Assay for induction of repair synthesis by RFR exposure alone in non-UV irradiated cells was negative for the 350-, 850-, and 1200-MHz CW and PW RFR at 37 degrees C and the 350- and 850-MHz PW RFR at 39 degrees C. RFR does not induce DNA repair under these exposure conditions. In preliminary experiments--with the tissue culture medium maintained at 39 degrees C and RFR exposures (PW) at the frequencies of 350, 850, and 1200 MHz--no effect on incorporation of (/sup 3/H)thymidine into DNA undergoing semiconservative synthesis was observed.

  9. DNA-binding activity of rat DNA topoisomerase II α C-terminal domain contributes to efficient DNA catenation in vitro.

    PubMed

    Kawano, Shinji; Kato, Yuri; Okada, Natsumi; Sano, Kuniaki; Tsutsui, Ken; Tsutsui, Kimiko M; Ikeda, Shogo

    2016-03-01

    DNA topoisomerase IIα (topo IIα) is an essential enzyme for resolution of DNA topologies arising in DNA metabolic reactions. In proliferating cells, topo II activities of DNA catenation or decatenation are required for condensation of chromosomes and segregation of chromatids. Recent studies suggest that the C-terminal domain (CTD) of human topo IIα is required for localization to mitotic chromosomes. Here, we show that the CTD of topo IIα is also associated with efficient DNA catenation in vitro, based on comparison of wild-type (WT) rat topo IIα and its deletion mutants. Unlike WT, the CTD truncated mutant (ΔCTD) lacked linear DNA binding activity, but could bind to negatively supercoiled DNA similarly to WT. The CTD alone showed linear DNA-binding activity. ΔCTD mediated formation of a DNA catenane in the presence of polyethylene glycol, which enhances macromolecular association. These results indicate that DNA-binding activity in the CTD of topo IIα concentrates the enzyme in the vicinity of condensed DNA and allows topo IIα to efficiently form a DNA catenane. PMID:26527691

  10. Hemi-methylated DNA regulates DNA methylation inheritance through allosteric activation of H3 ubiquitylation by UHRF1.

    PubMed

    Harrison, Joseph S; Cornett, Evan M; Goldfarb, Dennis; DaRosa, Paul A; Li, Zimeng M; Yan, Feng; Dickson, Bradley M; Guo, Angela H; Cantu, Daniel V; Kaustov, Lilia; Brown, Peter J; Arrowsmith, Cheryl H; Erie, Dorothy A; Major, Michael B; Klevit, Rachel E; Krajewski, Krzysztof; Kuhlman, Brian; Strahl, Brian D; Rothbart, Scott B

    2016-01-01

    The epigenetic inheritance of DNA methylation requires UHRF1, a histone- and DNA-binding RING E3 ubiquitin ligase that recruits DNMT1 to sites of newly replicated DNA through ubiquitylation of histone H3. UHRF1 binds DNA with selectivity towards hemi-methylated CpGs (HeDNA); however, the contribution of HeDNA sensing to UHRF1 function remains elusive. Here, we reveal that the interaction of UHRF1 with HeDNA is required for DNA methylation but is dispensable for chromatin interaction, which is governed by reciprocal positive cooperativity between the UHRF1 histone- and DNA-binding domains. HeDNA recognition activates UHRF1 ubiquitylation towards multiple lysines on the H3 tail adjacent to the UHRF1 histone-binding site. Collectively, our studies are the first demonstrations of a DNA-protein interaction and an epigenetic modification directly regulating E3 ubiquitin ligase activity. They also define an orchestrated epigenetic control mechanism involving modifications both to histones and DNA that facilitate UHRF1 chromatin targeting, H3 ubiquitylation, and DNA methylation inheritance. PMID:27595565

  11. Hemi-methylated DNA regulates DNA methylation inheritance through allosteric activation of H3 ubiquitylation by UHRF1

    PubMed Central

    Harrison, Joseph S; Cornett, Evan M; Goldfarb, Dennis; DaRosa, Paul A; Li, Zimeng M; Yan, Feng; Dickson, Bradley M; Guo, Angela H; Cantu, Daniel V; Kaustov, Lilia; Brown, Peter J; Arrowsmith, Cheryl H; Erie, Dorothy A; Major, Michael B; Klevit, Rachel E; Krajewski, Krzysztof; Kuhlman, Brian; Strahl, Brian D; Rothbart, Scott B

    2016-01-01

    The epigenetic inheritance of DNA methylation requires UHRF1, a histone- and DNA-binding RING E3 ubiquitin ligase that recruits DNMT1 to sites of newly replicated DNA through ubiquitylation of histone H3. UHRF1 binds DNA with selectivity towards hemi-methylated CpGs (HeDNA); however, the contribution of HeDNA sensing to UHRF1 function remains elusive. Here, we reveal that the interaction of UHRF1 with HeDNA is required for DNA methylation but is dispensable for chromatin interaction, which is governed by reciprocal positive cooperativity between the UHRF1 histone- and DNA-binding domains. HeDNA recognition activates UHRF1 ubiquitylation towards multiple lysines on the H3 tail adjacent to the UHRF1 histone-binding site. Collectively, our studies are the first demonstrations of a DNA-protein interaction and an epigenetic modification directly regulating E3 ubiquitin ligase activity. They also define an orchestrated epigenetic control mechanism involving modifications both to histones and DNA that facilitate UHRF1 chromatin targeting, H3 ubiquitylation, and DNA methylation inheritance. DOI: http://dx.doi.org/10.7554/eLife.17101.001 PMID:27595565

  12. Effect of nitroso-chloramphenicol on mitochondrial DNA polymerase activity

    SciTech Connect

    Lim, L.O.; Abou-Khalil, W.H.; Yunis, A.A.; Abou-Khalil, S.

    1984-08-01

    A study was made of the effects of nitroso-chloramphenicol, chloramphenicol, amino-chloramphenicol, and thiamphenicol on the activity of mitochondrial DNA polymerase of rat liver. /sup 3/H-thymidine triphosphate incorporation into DNA was used to measure the DNA polymerase activity in the mitochondrial matrix fraction. This fraction was in the supernatant of sonicated mitochondria obtained by ultracentrifugation. Under standard experimental conditions, thymidine triphosphate incorporation was time dependent up to 10 minutes. This activity was enhanced by ..beta..-mercaptoethanol and was blocked by the known polymerase inhibitors ethidium bromide and 2',3'-dideoxythymidine 5'-triphosphate. Chloramphenicol and its analogues, amino-chloramphenicol and thiamphenicol, did not have a significant effect on the polymerase activity, whereas nitroso-chloramphenicol was inhibitory. The degree of inhibition was dependent on the experimental conditions. Thus, in the absence of ..beta..-mercaptoethanol, nitroso-chloramphenicol was inhibitory. The degree of inhibition was dependent on the experimental conditions. Under similar conditions, the addition of dithiothreitol also provided partial protection. On the other hand, the inhibition by nitroso-chloramphenicol was significantly enhanced with its preincubation in the mitochondrial matrix fraction before the addition of nucleotides and DNA; thus after 40 minutes of preincubation, nitroso-chloramphenicol at a concentration of 200 ..mu..mol/L gave 53% inhibition, and produced total inhibition at 600 ..mu..mol/L. The addition of NADH or NADPH to the preincubation medium produced substantial protection against nitroso-chloramphenicol, whereas nicotinamide-adenine dinucleotide had no effect. These results suggest that mitochondrial DNA polymerase may be a target for nitroso-chloramphenicol action.

  13. DNA damage processing by human 8-oxoguanine-DNA glycosylase mutants with the occluded active site.

    PubMed

    Lukina, Maria V; Popov, Alexander V; Koval, Vladimir V; Vorobjev, Yuri N; Fedorova, Olga S; Zharkov, Dmitry O

    2013-10-01

    8-Oxoguanine-DNA glycosylase (OGG1) removes premutagenic lesion 8-oxoguanine (8-oxo-G) from DNA and then nicks the nascent abasic (apurinic/apyrimidinic) site by β-elimination. Although the structure of OGG1 bound to damaged DNA is known, the dynamic aspects of 8-oxo-G recognition are not well understood. To comprehend the mechanisms of substrate recognition and processing, we have constructed OGG1 mutants with the active site occluded by replacement of Cys-253, which forms a wall of the base-binding pocket, with bulky leucine or isoleucine. The conformational dynamics of OGG1 mutants were characterized by single-turnover kinetics and stopped-flow kinetics with fluorescent detection. Additionally, the conformational mobility of wild type and the mutant OGG1 substrate complex was assessed using molecular dynamics simulations. Although pocket occlusion distorted the active site and greatly decreased the catalytic activity of OGG1, it did not fully prevent processing of 8-oxo-G and apurinic/apyrimidinic sites. Both mutants were notably stimulated in the presence of free 8-bromoguanine, indicating that this base can bind to the distorted OGG1 and facilitate β-elimination. The results agree with the concept of enzyme plasticity, suggesting that the active site of OGG1 is flexible enough to compensate partially for distortions caused by mutation. PMID:23955443

  14. Urinary tract infection drives genome instability in uropathogenic Escherichia coli and necessitates translesion synthesis DNA polymerase IV for virulence

    PubMed Central

    Gawel, Damian

    2011-01-01

    Uropathogenic Escherichia coli (UPEC) produces ∼80% of community-acquired UTI, the second most common infection in humans. During UTI, UPEC has a complex life cycle, replicating and persisting in intracellular and extracellular niches. Host and environmental stresses may affect the integrity of the UPEC genome and threaten its viability. We determined how the host inflammatory response during UTI drives UPEC genome instability and evaluated the role of multiple factors of genome replication and repair for their roles in the maintenance of genome integrity and thus virulence during UTI. The urinary tract environment enhanced the mutation frequency of UPEC ∼100-fold relative to in vitro levels. Abrogation of inflammation through a host TLR4-signaling defect significantly reduced the mutation frequency, demonstrating in the importance of the host response as a driver of UPEC genome instability. Inflammation induces the bacterial SOS response, leading to the hypothesis that the UPEC SOS-inducible translesion synthesis (TLS) DNA polymerases would be key factors in UPEC genome instability during UTI. However, while the TLS DNA polymerases enhanced in vitro, they did not increase in vivo mutagenesis. Although it is not a source of enhanced mutagenesis in vivo, the TLS DNA polymerase IV was critical for the survival of UPEC during UTI during an active inflammatory assault. Overall, this study provides the first evidence of a TLS DNA polymerase being critical for UPEC survival during urinary tract infection and points to independent mechanisms for genome instability and the maintenance of genome replication of UPEC under host inflammatory stress. PMID:21597325

  15. Biochemical analysis of the substrate specificity and sequence preference of endonuclease IV from bacteriophage T4, a dC-specific endonuclease implicated in restriction of dC-substituted T4 DNA synthesis

    PubMed Central

    Hirano, Nobutaka; Ohshima, Hiroyuki; Takahashi, Hideo

    2006-01-01

    Endonuclease IV encoded by denB of bacteriophage T4 is implicated in restriction of deoxycytidine (dC)-containing DNA in the host Escherichia coli. The enzyme was synthesized with the use of a wheat germ cell-free protein synthesis system, given a lethal effect of its expression in E.coli cells, and was purified to homogeneity. The purified enzyme showed high activity with single-stranded (ss) DNA and denatured dC-substituted T4 genomic double-stranded (ds) DNA but exhibited no activity with dsDNA, ssRNA or denatured T4 genomic dsDNA containing glucosylated deoxyhydroxymethylcytidine. Characterization of Endo IV activity revealed that the enzyme catalyzed specific endonucleolytic cleavage of the 5′ phosphodiester bond of dC in ssDNA with an efficiency markedly dependent on the surrounding nucleotide sequence. The enzyme preferentially targeted 5′-dTdCdA-3′ but tolerated various combinations of individual nucleotides flanking this trinucleotide sequence. These results suggest that Endo IV preferentially recognizes short nucleotide sequences containing 5′-dTdCdA-3′, which likely accounts for the limited digestion of ssDNA by the enzyme and may be responsible in part for the indispensability of a deficiency in denB for stable synthesis of dC-substituted T4 genomic DNA. PMID:16971463

  16. Synthesis and anti-DNA viral activities in vitro of certain 2,4-disubstituted-7-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)pyrrolo[2,3-d d pyrimidine nucleosides.

    PubMed

    Bhattacharya, B K; Ojwang, J O; Rando, R F; Huffman, J H; Revankar, G R

    1995-09-29

    Several novel 2,4-disubstituted-7-(2-deoxy-2-fluoro-beta-D- arabinofuranosyl)pyrrolo[2,3-d]pyrimidines have been synthesized and evaluated for their anti-human cytomegalovirus (HCMV), anti-hepatitis B virus (HBV), and anti-herpes simplex virus (HSV) activities in vitro. These nucleosides were prepared starting from 2-amino-4-chloro-7-(2-deoxy-2-fluoro- 3,5-di-O-benzoyl-beta-D-arabinofuranosyl)pyrrolo[2,3-d]pyrimidine (3), which in turn was synthesized by direct glycosylation of the sodium salt of 2-amino-4-chloropyrrolo[2,3-d]pyrimidine (1) with 2-deoxy-2-fluoro-3,5-di-O-benzoyl-alpha-D-arabinofuranosyl bromide (2). Displacement of the 4-chloro group of 3 with OH, NH2, NHOH, SH, and SeH nucleophiles furnished the corresponding nucleosides 6-8, 12, and 14, respectively. The 3'-deoxygenation of 2-amino-4-chloro-7- (2-deoxy-2-fluoro-beta-D-arabinofuranosyl)pyrrolo[2,3-d]pyrimidine (4) and subsequent amination gave 2,4-diamino-2',3'-dideoxy derivative 19. Catalytic hydrogenation of 3 followed by debenzoylation afforded 2-aminopyrrolo[2,3-d]pyrimidine nucleoside 23. Among the compounds evaluated for their ability to inhibit the growth of HCMV (strain AD169) in MRC-5 cells using a plaque reduction assay, only 7 was significantly active in vitro with a 50% inhibitory concentration (IC50) of 3.7 micrograms/mL (TI > 125), whereas the IC50 value of ganciclovir (DHPG) was 3.2 micrograms/mL. Strain D16 of HCMV was more resistant to 7 (IC50 11 micrograms/mL) than the AD169 strain. When 7 was tested in combination with DHPG, the resultant anti-HCMV activity was found to be moderately synergistic with no evidence of antagonism. Nucleoside 7 also reduced episomal HBV replication in human hepatoblastoma 2.2.15 cells with an IC50 of 0.7 micrograms/mL (TI > 143). Development of cells harboring HBV which had become resistant to the drug was not observed with 7. Compound 7 also exhibited significant activity against herpes simplex virus types 1 and 2 (IC50 of 4.1 and 6.3 micrograms

  17. Synthesis of europium-activated calcium tungstate phosphor

    NASA Astrophysics Data System (ADS)

    Popovici, Elisabeth-Jeanne; Forgaciu, Flavia; Nemes, Miloslava; Ursu, Veronica

    1998-07-01

    The purpose of this study is to establish the way in which different synthesis conditions influence on the structural and luminescent characteristics of europium activated calcium tungstate powder phosphor. CaWO4:Eu3+ samples were prepared by thermal synthesis from mixtures consisting of precipitated-CaWO4, equivalent amounts of Eu2O3 and WO3 (activating system) and CaCl2 or Na2WO4 as flux. Calcination was performed at 800 - 1000 degree(s)C for 2 h, in air. The crystalline structure (XRD-patterns) and luminescent characteristics (emission and excitation spectra of phosphor samples were determined and interpreted.

  18. Synthesis and antitumour activity of 4-aminoquinazoline derivatives

    NASA Astrophysics Data System (ADS)

    Lipunova, G. N.; Nosova, E. V.; Charushin, V. N.; Chupakhin, O. N.

    2016-07-01

    Pieces of data on the synthesis and antitumour activity of 4-aminoquinazolines are summarized and analyzed. Key methods for the synthesis of these compounds are considered, primarily cyclocondensation of carboxylic acid derivatives, as well as the oxidation of quinazolines and the cyclization of disubstituted thioureas. Improvements of synthetic schemes for erlotinib, gefitinib and lapatinib, which are the best-known pharmaceuticals based on compounds of the title class, are also considered. Synthetic strategies and biological activities for new 4-aminoquinazoline derivatives that are EGFR-tyrosine kinase inhibitors, multiactive compounds, and labelled compounds for use as positron emission tomography (PET) imaging agents are discussed. The bibliography includes 263 references.

  19. Dss1 Release Activates DNA Binding Potential in Brh2

    PubMed Central

    Zhou, Qingwen; Kojic, Milorad; Holloman, William K.

    2013-01-01

    Dss1 is an intrinsically unstructured polypeptide that partners with the much larger Brh2 protein, the BRCA2 ortholog in Ustilago maydis, to form a tight complex. Mutants lacking Dss1 have essentially the same phenotype as mutants defective in Brh2, implying that through physical interaction Dss1 serves as a positive activator of Brh2. Dss1 associates with Brh2 through an interaction surface in the carboxy-terminal region. Certain derivatives of Brh2 lacking this interaction surface remain highly competent in DNA repair as long as a DNA-binding domain is present. However, the Dss1-independent activity raises the question of what function might be met in the native protein by having Brh2 under Dss1 control. Using a set of Brh2 fusions and truncated derivatives, we show here that Dss1 is capable of exerting control when there is a cognate Dss1-interacting surface present. We find that association of Dss1 attenuates the DNA binding potential of Brh2 and that the amino-terminal domain of Brh2 helps evict Dss1 from its carboxy-terminal interaction surface. The findings presented here add to the notion that Dss1 serves in a regulatory capacity to dictate order in association of Brh2’s amino-terminal and carboxy-terminal domains with DNA. PMID:23094644

  20. Protein, RNA, and DNA synthesis in cultures of skin fibroblasts from healthy subjects and patients with rheumatic diseases

    SciTech Connect

    Abakumova, O.Y.; Kutsenko, N.G.; Panasyuk, A.F.

    1985-07-01

    To study the mechanism of the lasting disturbance of fibroblast function, protein, RNA and DNA synthesis was investigated in skin fibroblasts from patients with rheumatoid arthritis (RA) and systemic scleroderma (SS). The labeled precursors used to analyze synthesis of protein, RNA, and DNA were /sup 14/C-protein hydrolysate, (/sup 14/C)uridine, and (/sup 14/C) thymidine. Stimulation was determined by measuring incorporation of (/sup 14/C)proline into fibroblast proteins. During analysis of stability of fast-labeled RNA tests were carried out to discover whether all measurable radioactivity belonged to RNA molecules.

  1. Prediction of fine-tuned promoter activity from DNA sequence

    PubMed Central

    Siwo, Geoffrey; Rider, Andrew; Tan, Asako; Pinapati, Richard; Emrich, Scott; Chawla, Nitesh; Ferdig, Michael

    2016-01-01

    The quantitative prediction of transcriptional activity of genes using promoter sequence is fundamental to the engineering of biological systems for industrial purposes and understanding the natural variation in gene expression. To catalyze the development of new algorithms for this purpose, the Dialogue on Reverse Engineering Assessment and Methods (DREAM) organized a community challenge seeking predictive models of promoter activity given normalized promoter activity data for 90 ribosomal protein promoters driving expression of a fluorescent reporter gene. By developing an unbiased modeling approach that performs an iterative search for predictive DNA sequence features using the frequencies of various k-mers, inferred DNA mechanical properties and spatial positions of promoter sequences, we achieved the best performer status in this challenge. The specific predictive features used in the model included the frequency of the nucleotide G, the length of polymeric tracts of T and TA, the frequencies of 6 distinct trinucleotides and 12 tetranucleotides, and the predicted protein deformability of the DNA sequence. Our method accurately predicted the activity of 20 natural variants of ribosomal protein promoters (Spearman correlation r = 0.73) as compared to 33 laboratory-mutated variants of the promoters (r = 0.57) in a test set that was hidden from participants. Notably, our model differed substantially from the rest in 2 main ways: i) it did not explicitly utilize transcription factor binding information implying that subtle DNA sequence features are highly associated with gene expression, and ii) it was entirely based on features extracted exclusively from the 100 bp region upstream from the translational start site demonstrating that this region encodes much of the overall promoter activity. The findings from this study have important implications for the engineering of predictable gene expression systems and the evolution of gene expression in naturally occurring

  2. Synthesis and biological evaluation of optically active Ki16425.

    PubMed

    Sato, Takanao; Sugimoto, Kenji; Inoue, Asuka; Okudaira, Shinichi; Aoki, Junken; Tokuyama, Hidetoshi

    2012-07-01

    An enantionselective synthesis of both enantiomers of Ki16425, which possesses selective LPA antagonistic activity, was achieved. The isoxazole core was constructed by a 1,3-dipolar cycloaddition of nitrile oxide with alkyne and condensation with the optically active α-phenethyl alcohol segment, which was prepared by an enantioselective reduction of arylmethylketone. Biological evaluation of both enantiomers of Ki16425 revealed that the (R)-isomer showed much higher antagonistic activity for LPA(1) and LPA(3) receptors. PMID:22658556

  3. Synergistic template-free synthesis of dsDNA by Thermococcus nautili primase PolpTN2, DNA polymerase PolB, and pTN2 helicase.

    PubMed

    Béguin, Pierre; Gill, Sukhvinder; Charpin, Nicole; Forterre, Patrick

    2015-01-01

    A combination of three enzymes from the hyperthermophilic archaeon Thermococcus nautili, DNA primase PolpTN2, DNA polymerase PolB, and pTN2 DNA helicase, was found to synthesize up to 300-400 ng/µl dsDNA from deoxynucleotide triphosphates in less than 30 min in the absence of added template DNA and oligonucleotide primer. The reaction did not occur below 64 °C. No synthesis was observed if PolpTN2 or PolB were left out; helicase was not essential but accelerated the reaction. The DNA synthesized consisted of highly reiterated palindromic sequences reaching up to more that 10 kb. Sequence analysis of three independent reaction products synthesized at different temperatures showed that the palindromes shared a common pentanucleotide core, suggesting that random nucleic acid fragments were not responsible for priming the reaction. When enzymes were added sequentially, preincubation with primase plus helicase followed by PolB led to a shorter delay before the onset of the reaction as compared to preincubation with PolB plus helicase followed by primase. This suggests that the primase generates seeds that are subsequently amplified and elongated in synergy with PolB by a mechanism involving hairpin formation and slippage synthesis. PMID:25420601

  4. Induction of unscheduled DNA synthesis in suspensions of rat hepatocytes by an environmental toxicant, 3,3'4,4'-tetrachloroazobenzene.

    PubMed

    Hsia, M T; Kreamer, B L

    1979-04-01

    Unscheduled DNA synthesis was induced by 3,3'4,4'-tetrachloroazobenzene (TCAB)) in freshly isolated suspensions of rat hepatocytes. A dose-dependent response was demonstrated. Hepatocellular DNA was obtained after the chloroform-isoamyl alchohol-phenol extraction of the isolated nuclei. The induction of unscheduled DNA synthesis was measured by the incorporation of [3H]-thymidine in the presence of hydroxyurea as determined by the scintillation counting assay. DNA repair data obtained in this study on benzo[a]pyrene and methyl methanesulfonate are comparable to a previous report using primary cultures of hepatocytes and cesium chloride gradients. Hence, the present method offers promise as a rapid and sensitive screen for chemical carcinogens. PMID:436117

  5. Estrogen-induced DNA synthesis in vascular endothelial cells is mediated by ROS signaling

    PubMed Central

    Felty, Quentin

    2006-01-01

    Background Since estrogen is known to increase vascular endothelial cell growth, elevated estrogen exposure from hormone replacement therapy or oral contraceptives has the potential to contribute in the development of abnormal proliferative vascular lesions and subsequent thickening of the vasculature. How estrogen may support or promote vascular lesions is not clear. We have examined in this study whether estrogen exposure to vascular endothelial cells increase the formation of reactive oxygen species (ROS), and estrogen-induced ROS is involved in the growth of endothelial cells. Methods The effect of estrogen on the production of intracellular oxidants and the role of estrogen-induced ROS on cell growth was studied in human umbilical vein endothelial cells. ROS were measured by monitoring the oxidation of 2'7'-dichlorofluorescin by spectrofluorometry. Endothelial cell growth was measured by a colorimetric immunoassay based on BrdU incorporation into DNA. Results Physiological concentrations of estrogen (367 fmol and 3.67 pmol) triggered a rapid 2-fold increase in intracellular oxidants in endothelial cells. E2-induced ROS formation was inhibited to basal levels by cotreatment with the mitochondrial inhibitor rotenone (2 μM) and xanthine oxidase inhibitor allopurinol (50 μM). Inhibitors of NAD(P)H oxidase, apocynin and DPI, did not block E2-induced ROS formation. Furthermore, the NOS inhibitor, L-NAME, did not prevent the increase in E2-induced ROS. These findings indicate both mitochondria and xanthine oxidase are the source of ROS in estrogen treated vascular endothelial cells. E2 treated cells showed a 2-fold induction of BrdU incorporation at 18 h which was not observed in cells exposed to vehicle alone. Cotreatment with ebselen (20 μM) and NAC (1 mM) inhibited E2-induced BrdU incorporation without affecting the basal levels of DNA synthesis. The observed inhibitory effect of NAC and ebselen on E2-induced DNA synthesis was also shown to be dose dependent

  6. Synthesis of an apionucleoside family and discovery of a prodrug with anti-HIV activity.

    PubMed

    Toti, Kiran S; Derudas, Marco; Pertusati, Fabrizio; Sinnaeve, Davy; Van den Broeck, Freya; Margamuljana, Lia; Martins, José C; Herdewijn, Piet; Balzarini, Jan; McGuigan, Christopher; Van Calenbergh, Serge

    2014-06-01

    We report the synthesis of a family of D- and L-furano-D-apionucleosides, their 3'-deoxy, as well as their 2',3'-dideoxy analogues with thymine and adenine nucleobases. Single carbon homologation of 1,2-O-isopropylidene-D-glycero-tetrafuranos-3-ulose (15) and optimized glycosylation conditions involving microwave irradiation were key to the successful synthesis of the target compounds. While all target nucleosides failed to show significant antiviral activity, we demonstrated that the triphosphate of 2',3'-deoxy-D-apio-D-furanoadenosine (1), in contrast to that of its D-apio-L-furanose epimer 2, was readily incorporated into a DNA template by HIV reverse transcriptase to act as a DNA chain terminator. This led us to convert adenine derivative 1 into two phosphoramidate prodrugs. ProTide 9b was found active against HIV-1 and HIV-2 (EC50 = 0.5-1.5 μM), indicating that the lack of activity of the parent nucleoside, and possibly also other members of the D-apio-D-furanose nucleoside family must be sought in the inefficient cellular conversion to the monophosphate. PMID:24804575

  7. Inhibition of DNA Methylation Alters Chromatin Organization, Nuclear Positioning and Activity of 45S rDNA Loci in Cycling Cells of Q. robur

    PubMed Central

    Horvat, Tomislav; Maglica, Željka; Vojta, Aleksandar; Zoldoš, Vlatka

    2014-01-01

    Around 2200 copies of genes encoding ribosomal RNA (rRNA) in pedunculate oak, Quercus robur, are organized into two rDNA loci, the major (NOR-1) and the minor (NOR-2) locus. We present the first cytogenetic evidence indicating that the NOR-1 represents the active nucleolar organizer responsible for rRNA synthesis, while the NOR-2 probably stays transcriptionally silent and does not participate in the formation of the nucleolus in Q. robur, which is a situation resembling the well-known phenomenon of nucleolar dominance. rDNA chromatin topology analyses in cycling root tip cells by light and electron microscopy revealed the minor locus to be highly condensed and located away from the nucleolus, while the major locus was consistently associated with the nucleolus and often exhibited different levels of condensation. In addition, silver precipitation was confined exclusively to the NOR-1 locus. Also, NOR-2 was highly methylated at cytosines and rDNA chromatin was marked with histone modifications characteristic for repressive state. After treatment of the root cells with the methylation inhibitor 5-aza-2′-deoxycytidine, we observed an increase in the total level of rRNA transcripts and a decrease in DNA methylation level at the NOR-2 locus. Also, NOR-2 sites relocalized with respect to the nuclear periphery/nucleolus, however, the relocation did not affect the contribution of this locus to nucleolar formation, nor did it affect rDNA chromatin decondensation, strongly suggesting that NOR-2 has lost the function of rRNA synthesis and nucleolar organization. PMID:25093501

  8. Inhibition of DNA methylation alters chromatin organization, nuclear positioning and activity of 45S rDNA loci in cycling cells of Q. robur.

    PubMed

    Bočkor, Vedrana Vičić; Barišić, Darko; Horvat, Tomislav; Maglica, Željka; Vojta, Aleksandar; Zoldoš, Vlatka

    2014-01-01

    Around 2200 copies of genes encoding ribosomal RNA (rRNA) in pedunculate oak, Quercus robur, are organized into two rDNA loci, the major (NOR-1) and the minor (NOR-2) locus. We present the first cytogenetic evidence indicating that the NOR-1 represents the active nucleolar organizer responsible for rRNA synthesis, while the NOR-2 probably stays transcriptionally silent and does not participate in the formation of the nucleolus in Q. robur, which is a situation resembling the well-known phenomenon of nucleolar dominance. rDNA chromatin topology analyses in cycling root tip cells by light and electron microscopy revealed the minor locus to be highly condensed and located away from the nucleolus, while the major locus was consistently associated with the nucleolus and often exhibited different levels of condensation. In addition, silver precipitation was confined exclusively to the NOR-1 locus. Also, NOR-2 was highly methylated at cytosines and rDNA chromatin was marked with histone modifications characteristic for repressive state. After treatment of the root cells with the methylation inhibitor 5-aza-2'-deoxycytidine, we observed an increase in the total level of rRNA transcripts and a decrease in DNA methylation level at the NOR-2 locus. Also, NOR-2 sites relocalized with respect to the nuclear periphery/nucleolus, however, the relocation did not affect the contribution of this locus to nucleolar formation, nor did it affect rDNA chromatin decondensation, strongly suggesting that NOR-2 has lost the function of rRNA synthesis and nucleolar organization. PMID:25093501

  9. Phylogenomically Guided Identification of Industrially Relevant GH1 β-Glucosidases through DNA Synthesis and Nanostructure-Initiator Mass Spectrometry

    PubMed Central

    2015-01-01

    Harnessing the biotechnological potential of the large number of proteins available in sequence databases requires scalable methods for functional characterization. Here we propose a workflow to address this challenge by combining phylogenomic guided DNA synthesis with high-throughput mass spectrometry and apply it to the systematic characterization of GH1 β-glucosidases, a family of enzymes necessary for biomass hydrolysis, an important step in the conversion of lignocellulosic feedstocks to fuels and chemicals. We synthesized and expressed 175 GH1s, selected from over 2000 candidate sequences to cover maximum sequence diversity. These enzymes were functionally characterized over a range of temperatures and pHs using nanostructure-initiator mass spectrometry (NIMS), generating over 10,000 data points. When combined with HPLC-based sugar profiling, we observed GH1 enzymes active over a broad temperature range and toward many different β-linked disaccharides. For some GH1s we also observed activity toward laminarin, a more complex oligosaccharide present as a major component of macroalgae. An area of particular interest was the identification of GH1 enzymes compatible with the ionic liquid 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]), a next-generation biomass pretreatment technology. We thus searched for GH1 enzymes active at 70 °C and 20% (v/v) [C2mim][OAc] over the course of a 24-h saccharification reaction. Using our unbiased approach, we identified multiple enzymes of different phylogentic origin with such activities. Our approach of characterizing sequence diversity through targeted gene synthesis coupled to high-throughput screening technologies is a broadly applicable paradigm for a wide range of biological problems. PMID:24984213

  10. Phylogenomically guided identification of industrially relevant GH1 β-glucosidases through DNA synthesis and nanostructure-initiator mass spectrometry.

    PubMed

    Heins, Richard A; Cheng, Xiaoliang; Nath, Sangeeta; Deng, Kai; Bowen, Benjamin P; Chivian, Dylan C; Datta, Supratim; Friedland, Gregory D; D'Haeseleer, Patrik; Wu, Dongying; Tran-Gyamfi, Mary; Scullin, Chessa S; Singh, Seema; Shi, Weibing; Hamilton, Matthew G; Bendall, Matthew L; Sczyrba, Alexander; Thompson, John; Feldman, Taya; Guenther, Joel M; Gladden, John M; Cheng, Jan-Fang; Adams, Paul D; Rubin, Edward M; Simmons, Blake A; Sale, Kenneth L; Northen, Trent R; Deutsch, Samuel

    2014-09-19

    Harnessing the biotechnological potential of the large number of proteins available in sequence databases requires scalable methods for functional characterization. Here we propose a workflow to address this challenge by combining phylogenomic guided DNA synthesis with high-throughput mass spectrometry and apply it to the systematic characterization of GH1 β-glucosidases, a family of enzymes necessary for biomass hydrolysis, an important step in the conversion of lignocellulosic feedstocks to fuels and chemicals. We synthesized and expressed 175 GH1s, selected from over 2000 candidate sequences to cover maximum sequence diversity. These enzymes were functionally characterized over a range of temperatures and pHs using nanostructure-initiator mass spectrometry (NIMS), generating over 10,000 data points. When combined with HPLC-based sugar profiling, we observed GH1 enzymes active over a broad temperature range and toward many different β-linked disaccharides. For some GH1s we also observed activity toward laminarin, a more complex oligosaccharide present as a major component of macroalgae. An area of particular interest was the identification of GH1 enzymes compatible with the ionic liquid 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]), a next-generation biomass pretreatment technology. We thus searched for GH1 enzymes active at 70 °C and 20% (v/v) [C2mim][OAc] over the course of a 24-h saccharification reaction. Using our unbiased approach, we identified multiple enzymes of different phylogentic origin with such activities. Our approach of characterizing sequence diversity through targeted gene synthesis coupled to high-throughput screening technologies is a broadly applicable paradigm for a wide range of biological problems. PMID:24984213

  11. A DNA enzyme with Mg(2+)-Dependent RNA Phosphoesterase Activity

    NASA Technical Reports Server (NTRS)

    Breaker, Ronald R.; Joyce, Gerald F.

    1995-01-01

    Previously we demonstrated that DNA can act as an enzyme in the Pb(2+)-dependent cleavage of an RNA phosphoester. This is a facile reaction, with an uncatalyzed rate for a typical RNA phosphoester of approx. 10(exp -4)/ min in the presence of 1 mM Pb(OAc)2 at pH 7.0 and 23 C. The Mg(2+) - dependent reaction is more difficult, with an uncatalyzed rate of approx. 10(exp -7)/ min under comparable conditions. Mg(2+) - dependent cleavage has special relevance to biology because it is compatible with intracellular conditions. Using in vitro selection, we sought to develop a family of phosphoester-cleaving DNA enzymes that operate in the presence of various divalent metals, focusing particularly on the Mg(2+) - dependent reaction. Results: We generated a population of greater than 10(exp 13) DNAs containing 40 random nucleotides and carried out repeated rounds of selective amplification, enriching for molecules that cleave a target RNA phosphoester in the presence of 1 mM Mg(2+), Mn(2+), Zn(2+) or Pb(2+). Examination of individual clones from the Mg(2+) lineage after the sixth round revealed a catalytic motif comprised of a three-stem junction.This motif was partially randomized and subjected to seven additional rounds of selective amplification, yielding catalysts with a rate of 0.01/ min. The optimized DNA catalyst was divided into separate substrate and enzyme domains and shown to have a similar level of activity under multiple turnover conditions. Conclusions: We have generated a Mg(2+) - dependent DNA enzyme that cleaves a target RNA phosphoester with a catalytic rate approx. 10(exp 5) - fold greater than that of the uncatalyzed reaction. This activity is compatible with intracellular conditions, raising the possibility that DNA enzymes might be made to operate in vivo.

  12. Measuring DNA synthesis rates with [1-13C]glycine.

    PubMed

    Chen, P; Abramson, F P

    1998-05-01

    We have devised and evaluated a stable-isotopic method for measuring DNA synthesis rates. The probe is [1-13C]-glycine that is incorporated into purines via de novo biosynthesis. The human hepatoma cell line HEP G2 was grown in medium containing [1-13C]glycine, the cells were harvested at various times, and the DNA was extracted. Following hydrolysis to the nucleosides, a reversed-phase HPLC separation was used to provide separate peaks for deoxythymidine (dT), deoxyadenosine (dA), and deoxyguanosine (dG). The HPLC effluent was continuously fed into a chemical reaction interface and an isotope ratio mass spectrometer (HPLC/CRI/IRMS). The isotope ratio of the CO2 produced in the CRI was used to monitor for enrichment. The cells were grown continuously for 5 days in labeled medium and also in a 1-day pulse labeling experiment where the washout of label was observed for the subsequent 9 days. As predicted from the role of glycine in de novo purine biosynthesis, the isotope ratio of the pyrimidine dT did not change. However, for the two purines, dA and dG, the characteristic log growth behavior of the cells was observed in their 13C/12C ratios and good agreement in the doubling time was obtained for each type of experiment. Parallel experiments that measured the HEP G2 doubling time in culture using tritiated thymidine incorporation and direct cell counts were carried out compare to our new method with established ones. We believe that the use of [1-13C]-glycine and the HPLC/CRI/IRMS is a highly sensitive and selective approach that forms the basis of a method that can measure DNA synthesis rates using a nonradioactive, nontoxic tracer. PMID:9599574

  13. Optimal cooperative control synthesis of active displays

    NASA Technical Reports Server (NTRS)

    Garg, S.; Schmidt, D. K.

    1985-01-01

    A technique is developed that is intended to provide a systematic approach to synthesizing display augmentation for optimal manual control in complex, closed-loop tasks. A cooperative control synthesis technique, previously developed to design pilot-optimal control augmentation for the plant, is extended to incorporate the simultaneous design of performance enhancing displays. The technique utilizes an optimal control model of the man in the loop. It is applied to the design of a quickening control law for a display and a simple K/s(2) plant, and then to an F-15 type aircraft in a multi-channel task. Utilizing the closed loop modeling and analysis procedures, the results from the display design algorithm are evaluated and an analytical validation is performed. Experimental validation is recommended for future efforts.

  14. Optimal cooperative control synthesis of active displays

    NASA Technical Reports Server (NTRS)

    Gary, Sanjay; Schmidt, David K.

    1987-01-01

    A technique is developed that is intended to provide a systematic approach to synthesizing display augmentation for optimal manual control in complex, closed-loop tasks. A cooperative control synthesis technique, previously developed to design pilot-optimal control augmentation for the plant, is extended to incorporate the simultaneous design of performance enhancing displays. The technique utilizes an optimal control model of the man in the loop. It is applied to the design of a quickening control law for a display and a simple K/(s squared) plant, and then to an F-15 type aircraft in a multichannel task. Utilizing the closed-loop modeling and analysis procedures, the results from the display design algorithm are evaluated and an analytical validation is performed. Experimental validation is recommended for future efforts.

  15. Impaired coenzyme A synthesis in fission yeast causes defective mitosis, quiescence-exit failure, histone hypoacetylation and fragile DNA

    PubMed Central

    Nakamura, Takahiro; Pluskal, Tomáš; Nakaseko, Yukinobu; Yanagida, Mitsuhiro

    2012-01-01

    Biosynthesis of coenzyme A (CoA) requires a five-step process using pantothenate and cysteine in the fission yeast Schizosaccharomyces pombe. CoA contains a thiol (SH) group, which reacts with carboxylic acid to form thioesters, giving rise to acyl-activated CoAs such as acetyl-CoA. Acetyl-CoA is essential for energy metabolism and protein acetylation, and, in higher eukaryotes, for the production of neurotransmitters. We isolated a novel S. pombe temperature-sensitive strain ppc1-537 mutated in the catalytic region of phosphopantothenoylcysteine synthetase (designated Ppc1), which is essential for CoA synthesis. The mutant becomes auxotrophic to pantothenate at permissive temperature, displaying greatly decreased levels of CoA, acetyl-CoA and histone acetylation. Moreover, ppc1-537 mutant cells failed to restore proliferation from quiescence. Ppc1 is thus the product of a super-housekeeping gene. The ppc1-537 mutant showed combined synthetic lethal defects with five of six histone deacetylase mutants, whereas sir2 deletion exceptionally rescued the ppc1-537 phenotype. In synchronous cultures, ppc1-537 cells can proceed to the S phase, but lose viability during mitosis failing in sister centromere/kinetochore segregation and nuclear division. Additionally, double-strand break repair is defective in the ppc1-537 mutant, producing fragile broken DNA, probably owing to diminished histone acetylation. The CoA-supported metabolism thus controls the state of chromosome DNA. PMID:23091701

  16. Targeted expression of transforming growth factor-beta 1 in intracardiac grafts promotes vascular endothelial cell DNA synthesis.

    PubMed Central

    Koh, G Y; Kim, S J; Klug, M G; Park, K; Soonpaa, M H; Field, L J

    1995-01-01

    Intracardiac grafts comprised of genetically modified skeletal myoblasts were assessed for their ability to effect long-term delivery of recombinant transforming growth factor-beta (TGF-beta) to the heart. C2C12 myoblasts were stably transfected with a construct comprised of an inducible metallothionein promoter fused to a modified TGF-beta 1 cDNA. When cultured in medium supplemented with zinc sulfate, cells carrying this transgene constitutively secrete active TGF-beta 1. These genetically modified myoblasts were used to produce intracardiac grafts in syngeneic C3Heb/FeJ hosts. Viable grafts were observed as long as three months after implantation, and immunohistological analyses of mice maintained on water supplemented with zinc sulfate revealed the presence of grafted cells which stably expressed TGF-beta 1. Regions of apparent neovascularization, as evidenced by tritiated thymidine incorporation into vascular endothelial cells, were observed in the myocardium which bordered grafts expressing TGF-beta 1. The extent of vascular endothelial cell DNA synthesis could be modulated by altering dietary zinc. Similar effects on the vascular endothelial cells were not seen in mice with grafts comprised of nontransfected cells. This study indicates that genetically modified skeletal myoblast grafts can be used to effect the local, long-term delivery of recombinant molecules to the heart. Images PMID:7529257

  17. The Arabidopsis DNA Polymerase δ Has a Role in the Deposition of Transcriptionally Active Epigenetic Marks, Development and Flowering

    PubMed Central

    Iglesias, Francisco M.; Bruera, Natalia A.; Dergan-Dylon, Sebastián; Marino-Buslje, Cristina; Lorenzi, Hernán; Mateos, Julieta L.; Turck, Franziska; Coupland, George; Cerdán, Pablo D.

    2015-01-01

    DNA replication is a key process in living organisms. DNA polymerase α (Polα) initiates strand synthesis, which is performed by Polε and Polδ in leading and lagging strands, respectively. Whereas loss of DNA polymerase activity is incompatible with life, viable mutants of Polα and Polε were isolated, allowing the identification of their functions beyond DNA replication. In contrast, no viable mutants in the Polδ polymerase-domain were reported in multicellular organisms. Here we identify such a mutant which is also thermosensitive. Mutant plants were unable to complete development at 28°C, looked normal at 18°C, but displayed increased expression of DNA replication-stress marker genes, homologous recombination and lysine 4 histone 3 trimethylation at the SEPALLATA3 (SEP3) locus at 24°C, which correlated with ectopic expression of SEP3. Surprisingly, high expression of SEP3 in vascular tissue promoted FLOWERING LOCUS T (FT) expression, forming a positive feedback loop with SEP3 and leading to early flowering and curly leaves phenotypes. These results strongly suggest that the DNA polymerase δ is required for the proper establishment of transcriptionally active epigenetic marks and that its failure might affect development by affecting the epigenetic control of master genes. PMID:25693187

  18. Synthesis and anticancer activity studies of cyclopamine derivatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A diversity-oriented synthesis has been developed for facile construction of a library of carbohydrate-cyclopamine conjugates. The synthetic protocol is suitable for generating cyclopamine derivatives with various structural motifs for exploring the desired activity. From this initial library, we ...

  19. Sequence-specific DNA primer effects on telomerase polymerization activity.

    PubMed Central

    Lee, M S; Blackburn, E H

    1993-01-01

    The ribonucleoprotein enzyme telomerase synthesizes one strand of telomeric DNA by copying a template sequence within the RNA moiety of the enzyme. Kinetic studies of this polymerization reaction were used to analyze the mechanism and properties of the telomerase from Tetrahymena thermophila. This enzyme synthesizes TTGGGG repeats, the telomeric DNA sequence of this species, by elongating a DNA primer whose 3' end base pairs with the template-forming domain of the RNA. The enzyme was found to act nonprocessively with short (10- to 12-nucleotide) primers but to become processive as TTGGGG repeats were added. Variation of the 5' sequences of short primers with a common 3' end identified sequence-specific effects which are distinct from those involving base pairing of the 3' end of the primer with the RNA template and which can markedly induce enzyme activity by increasing the catalytic rate of the telomerase polymerization reaction. These results identify an additional mechanistic basis for telomere and DNA end recognition by telomerase in vivo. Images PMID:8413255

  20. Powdered Activated Carbon: An Alternative Approach to Genomic DNA Purification.

    PubMed

    Barbarić, Lucija; Bačić, Ivana; Grubić, Zorana

    2015-07-01

    Forensic evidence samples are routinely found as stains on various substrates, which may contain substances known to inhibit polymerase chain reaction (PCR). The goal of this study was to evaluate post-Chelex(®) 100 purification using powdered activated carbon (PAC). Mock crime scene DNA extracts were analyzed using quantitative PCR and short tandem repeat (STR) profiling to test the DNA recovery and inhibitor removal using PAC with those of the Amicon(®) Ultra 100K. For extracted bloodstains on soil and wood substrates, PAC and Amicon(®) Ultra 100K generated similar DNA yield and quality. Moreover, the two methods significantly decreased the concentration of humic substances and tannins compared to nonpurified extracts (p < 0.001). In instances where extracts contained indigo dye (bloodstains on denim), Amicon(®) Ultra 100K performed better than PAC due to improved amplifiability. Efficient adsorption of humic substances and tannins, which are common inhibitors, indicates PAC's potential application in the purification of high-template DNA extracts. PMID:25929735

  1. Involvement of budding yeast Rad5 in translesion DNA synthesis through physical interaction with Rev1

    PubMed Central

    Xu, Xin; Lin, Aiyang; Zhou, Cuiyan; Blackwell, Susan R.; Zhang, Yiran; Wang, Zihao; Feng, Qianqian; Guan, Ruifang; Hanna, Michelle D.; Chen, Zhucheng; Xiao, Wei

    2016-01-01

    DNA damage tolerance (DDT) is responsible for genomic stability and cell viability by bypassing the replication block. In Saccharomyces cerevisiae DDT employs two parallel branch pathways to bypass the DNA lesion, namely translesion DNA synthesis (TLS) and error-free lesion bypass, which are mediated by sequential modifications of PCNA. Rad5 has been placed in the error-free branch of DDT because it contains an E3 ligase domain required for PCNA polyubiquitination. Rad5 is a multi-functional protein and may also play a role in TLS, since it interacts with the TLS polymerase Rev1. In this study we mapped the Rev1-interaction domain in Rad5 to the amino acid resolution and demonstrated that Rad5 is indeed involved in TLS possibly through recruitment of Rev1. Genetic analyses show that the dual functions of Rad5 can be separated and reconstituted. Crystal structure analysis of the Rad5–Rev1 interaction reveals a consensus RFF motif in the Rad5 N-terminus that binds to a hydrophobic pocket within the C-terminal domain of Rev1 that is highly conserved in eukaryotes. This study indicates that Rad5 plays a critical role in pathway choice between TLS and error-free DDT. PMID:27001510

  2. Enzymatic synthesis of modified oligonucleotides by PEAR using Phusion and KOD DNA polymerases.

    PubMed

    Wang, Xuxiang; Zhang, Jianye; Li, Yingjia; Chen, Gang; Wang, Xiaolong

    2015-02-01

    Antisense synthetic oligonucleotides have been developed as potential gene-targeted therapeutics. We previously reported polymerase-endonuclease amplification reaction (PEAR) for amplification of natural and 5'-O-(1-thiotriphosphate) (S)-modified oligonucleotides. Here, we extended the PEAR technique for enzymatic preparation of 2'-deoxy-2'-fluoro-(2'-F) and 2'-F/S double-modified oligonucleotides. The result showed that KOD and Phusion DNA polymerase could synthesize oligonucleotides with one or two modified nucleotides, and KOD DNA polymerase is more suitable than Phusion DNA polymerase for PEAR amplification of 2'-F and 2'-F/S double modified oligonucleotides. The composition of PEAR products were analyzed by electrospray ionization liquid chromatography mass spectrometry (ESI/LC/MS) detection and showed that the sequence of the PEAR products are maintained at an extremely high accuracy (>99.9%), and after digestion the area percent of full-length modified oligonucleotides reaches 89.24%. PEAR is suitable for synthesis of modified oligonucleotides efficiently and with high purity. PMID:25517220

  3. Involvement of budding yeast Rad5 in translesion DNA synthesis through physical interaction with Rev1.

    PubMed

    Xu, Xin; Lin, Aiyang; Zhou, Cuiyan; Blackwell, Susan R; Zhang, Yiran; Wang, Zihao; Feng, Qianqian; Guan, Ruifang; Hanna, Michelle D; Chen, Zhucheng; Xiao, Wei

    2016-06-20

    DNA damage tolerance (DDT) is responsible for genomic stability and cell viability by bypassing the replication block. In Saccharomyces cerevisiae DDT employs two parallel branch pathways to bypass the DNA lesion, namely translesion DNA synthesis (TLS) and error-free lesion bypass, which are mediated by sequential modifications of PCNA. Rad5 has been placed in the error-free branch of DDT because it contains an E3 ligase domain required for PCNA polyubiquitination. Rad5 is a multi-functional protein and may also play a role in TLS, since it interacts with the TLS polymerase Rev1. In this study we mapped the Rev1-interaction domain in Rad5 to the amino acid resolution and demonstrated that Rad5 is indeed involved in TLS possibly through recruitment of Rev1. Genetic analyses show that the dual functions of Rad5 can be separated and reconstituted. Crystal structure analysis of the Rad5-Rev1 interaction reveals a consensus RFF motif in the Rad5 N-terminus that binds to a hydrophobic pocket within the C-terminal domain of Rev1 that is highly conserved in eukaryotes. This study indicates that Rad5 plays a critical role in pathway choice between TLS and error-free DDT. PMID:27001510

  4. Synthesis, antioxidant, enzyme inhibition and DNA binding studies of novel N-benzylated derivatives of sulfonamide

    NASA Astrophysics Data System (ADS)

    Abbas, Aadil; Murtaza, Shahzad; Tahir, Muhammad Nawaz; Shamim, Saima; Sirajuddin, Muhammad; Rana, Usman Ali; Naseem, Khadija; Rafique, Hummera

    2016-08-01

    A series of novel N-benzylated derivatives of sulfonamide were synthesized and characterized by FT-IR, NMR and XRD analysis. The synthesized compounds were assayed for their biological potential. The biological studies involved antioxidant, enzyme inhibition, and DNA interaction studies. Antioxidant potential was investigated by Ferric Reducing Antioxidant Power assay (FRAP) and DPPH free radical scavenging method, the capacity of synthesized compounds to inhibit the enzyme's activity was assayed by using the well-known Elman method whereas DNA interaction studies were carried out with the help UV-Vis absorption titration method. Moreover, a direct correlation between enzyme inhibition activity and concentration of the compounds was observed both in experimental and molecular docking studies. DNA interaction studies of the synthesized compounds showed weak interaction.

  5. DNA-AuNPs based signal amplification for highly sensitive detection of DNA methylation, methyltransferase activity and inhibitor screening.

    PubMed

    Jing, Xiaoying; Cao, Xianqing; Wang, Li; Lan, Tian; Li, Yiyan; Xie, Guoming

    2014-08-15

    A sensitive and selective electrochemical method was developed for the detection of DNA methylation, determination of DNA methyltransferase (MTase) activity and screening of MTase inhibitor. Methylene blue (MB) was employed as electrochemical indicator and DNA-modified gold nanoparticles (AuNPs) were used as signal amplification unit because the DNA strands in this composite have strong adsorption ability for MB. First, the thiolated single-stranded DNA S1 was self-assembled on gold electrode, hybridization between the lower portion of DNA S1 and its complementary DNA S2 formed an identical double-stranded tetranucleotide target sequence for both DNA adenine methylation (Dam) MTase and methylation-resistant endonuclease Mbo I, then the upper portion of DNA S1 was hybridized with its complementary DNA S3 modified on AuNPs to bring the DNA S3-AuNPs amplification units onto the electrode. The DNA S1/S2/S3-AuNPs bioconjugate has lots of DNA strands, and they can adsorb abundant MB. Mbo I endounuclease could not cleave the identical target sequence after it was methylated by Dam MTase. On the contrary, the sequence without methylation could be cleaved, which would decrease the amount of adsorbed MB. The presence of redox-active MB was detected electrochemically by differential pulse voltammetry (DPV). Thus, the activity of Dam MTase and methylation status were sensitively converted to the DNA S3-AuNPs amplified DPV signals. The DPV signal demonstrated a linear relationship with logarithm of Dam concentration ranging from 0.075 to 30U/mL, achieving a detection limit of 0.02U/mL (S/N=3). Also, screening of Dam MTase inhibitor 5-fluorouracil was successfully investigated using this fabricated sensor. PMID:24613968

  6. Pif1 removes a Rap1-dependent barrier to the strand displacement activity of DNA polymerase δ

    PubMed Central

    Koc, Katrina N.; Singh, Saurabh P.; Stodola, Joseph L.; Burgers, Peter M.; Galletto, Roberto

    2016-01-01

    Using an in vitro reconstituted system in this work we provide direct evidence that the yeast repressor/activator protein 1 (Rap1), tightly bound to its consensus site, forms a strong non-polar barrier for the strand displacement activity of DNA polymerase δ. We propose that relief of inhibition may be mediated by the activity of an accessory helicase. To this end, we show that Pif1, a 5′–3′ helicase, not only stimulates the strand displacement activity of Pol δ but it also allows efficient replication through the block, by removing bound Rap1 in front of the polymerase. This stimulatory activity of Pif1 is not limited to the displacement of a single Rap1 molecule; Pif1 also allows Pol δ to carry out DNA synthesis across an array of bound Rap1 molecules that mimics a telomeric DNA-protein assembly. This activity of Pif1 represents a novel function of this helicase during DNA replication. PMID:27001517

  7. Synthesis and evaluation of phase detectors for active bit synchronizers

    NASA Technical Reports Server (NTRS)

    Mcbride, A. L.

    1974-01-01

    Self-synchronizing digital data communication systems usually use active or phase-locked loop (PLL) bit synchronizers. The three main elements of PLL synchronizers are the phase detector, loop filter, and the voltage controlled oscillator. Of these three elements, phase detector synthesis is the main source of difficulty, particularly when the received signals are demodulated square-wave signals. A phase detector synthesis technique is reviewed that provides a physically realizable design for bit synchronizer phase detectors. The development is based upon nonlinear recursive estimation methods. The phase detector portion of the algorithm is isolated and analyzed.

  8. Unscheduled deoxyribonucleic acid (DNA) synthesis assays for toxicological studies. May 1977-March 1990 (A Bibliography from the NTIS data base). Report for May 1977-March 1990

    SciTech Connect

    Not Available

    1990-04-01

    This bibliography contains citations concerning the unscheduled DNA synthesis (UDS) assay for toxicological studies. UDS assays provide very sensitive measures of damage to DNA by detecting induction of DNA synthesis in non-S-phase cells. UDS toxicological studies analyzing gamma radiation, drugs, pesticides, nerve gas, jet engine fuels, ultraviolet light, chlorated organic compounds, and aromatic compounds are discussed. UDS studies using both human and animal tissue cultures are described. (Contains 57 citations fully indexed and including a title list.)

  9. Synthesis of actively adjustable springs by antagonistic redundant actuation

    NASA Technical Reports Server (NTRS)

    Yi, Byung-Ju; Freeman, Robert A.

    1992-01-01

    A methodology for active spring generation is presented based on antagonistic redundant actuation. Antagonistic properties are characterized using an effective system stiffness. 'Antagonistic stiffness' is generated by preloading a closed-chain (parallel) linkage system. Internal load distribution is investigated along with the necessary conditions for spring synthesis. The performance and stability of a proposed active spring are shown by simulation, and applications are discussed.

  10. Synthesis and anti-inflammatory activity of aromatic glucosinolates.

    PubMed

    Vo, Quan V; Trenerry, Craige; Rochfort, Simone; Wadeson, Jenny; Leyton, Carolina; Hughes, Andrew B

    2013-10-01

    Aromatic GLs are important members of the glucosinolate family of compounds because of their potential biological activity and medicinal properties. This study has shown success in the high yielding synthesis of some important aromatic GLs as well as the results of testing for anti-inflammatory properties of the synthetic GLs. 3,4-Dimethoxyphenylglucosinolate was found to be the most active anti-inflammatory of the seven glucosinolates assayed. PMID:23978357

  11. Insulin-like growth factor binding protein-2 mediates the inhibition of DNA synthesis by transforming growth factor-beta in mink lung epithelial cells.

    PubMed

    Dong, Feng; Wu, Hai-Bin; Hong, Jiang; Rechler, Matthew M

    2002-01-01

    Insulin-like growth factor binding protein-3 (IGFBP-3) has been proposed to mediate the growth inhibitory effects of transforming growth factor (TGF)-beta in breast and prostate cancer cells. Both TGF-beta and exogenous IGFBP-3 inhibit DNA synthesis in Mv1 mink lung epithelial cells (CCL64). The present study asks whether IGFBPs synthesized by CCL64 cells mediate growth inhibition by TGF-beta. CCL64 cells synthesize and secrete a single 34-kDa IGFBP that was identified as IGFBP-2 by immunoprecipitation and immunodepletion. Recombinant bovine IGFBP-2 inhibited CCL64 DNA synthesis in serum-free media in an IGF-independent manner. Coincubation with Leu(60)-IGF-I, an IGF-I analog that binds to IGFBPs with higher affinity than to IGF-I receptors, decreased the inhibition by bIGFBP-2. Leu(60)-IGF-I also decreased the inhibition of CCL64 DNA synthesis by TGF-beta by up to 70%, whereas Long-R3-IGF-I, an IGF-I analog with higher affinity for IGF-I receptors than for IGFBPs, did not decrease inhibition, suggesting that the effect of Leu(60)-IGF-I resulted from its forming complexes with endogenous IGFBPs. Leu(60)-IGF-I did not decrease TGF-beta stimulation of a Smad3-dependent reporter gene. Following incubation of intact CCL64 cells with bIGFBP-2 at 0 degrees C, bIGFBP-2 was recovered in membrane fractions; membrane association was abolished by coincubation with Leu(60)-IGF-I. If exogenous and secreted IGFBP-2 must bind to CCL64 cells to inhibit DNA synthesis, Leu(60)-IGF-I might reduce the inhibition of DNA synthesis by bIGFBP-2 or TGF-beta by inhibiting the association of IGFBP-2 in the media with CCL64 cells. Since TGF-beta does not increase IGFBP-2 abundance, we propose that TGF-beta sensitizes CCL64 cells to the latent growth inhibitory activity of endogenous IGFBP-2 by potentiating an intracellular IGFBP-2 signaling pathway or by promoting the association of secreted IGFBP-2 with the plasma membrane. PMID:11807812

  12. Repair synthesis by human cell extracts in cisplatin-damaged DNA is preferentially determined by minor adducts.

    PubMed Central

    Calsou, P; Frit, P; Salles, B

    1992-01-01

    During reaction of cis-diamminedichloroplatinum(II) (cis-DDP) with DNA, a number of adducts are formed which may be discriminated by the excision-repair system. An in vitro excision-repair assay with human cell-free extracts has been used to assess the relative repair extent of monofunctional adducts, intrastrand and interstrand cross-links of cis-DDP on plasmid DNA. Preferential removal of cis-DDP 1,2-intrastrand diadducts occurred in the presence of cyanide ions. In conditions where cyanide treatment removed 85% of total platinum adducts while approximately 70% of interstrand cross-links remained in plasmid DNA, no significant variation in repair synthesis by human cell extracts was observed. Then, we constructed three types of plasmid DNA substrates containing mainly either monoadducts, 1,2-intrastrand cross-links or interstrand cross-links lesions. The three plasmid species were modified in order to obtain the same extent of total platinum DNA adducts per plasmid. No DNA repair synthesis was detected with monofunctional adducts during incubation with human whole cell extracts. However, a two-fold increase in repair synthesis was found when the proportion of interstrand cross-links in plasmid DNA was increased by 2-3 fold. These findings suggest that (i) cis-DDP 1,2-intrastrand diadducts are poorly repaired by human cell extracts in vitro, (ii) among other minor lesions potentially cyanide-resistant, cis-DDP interstrand cross-links represent a major lesion contributing to the repair synthesis signal in the in vitro assay. These results could account for the drug efficiency in vivo. Images PMID:1475197

  13. Synthesis and evaluation of gold(III) complexes as efficient DNA binders and cytotoxic agents

    NASA Astrophysics Data System (ADS)

    Patel, Mohan N.; Bhatt, Bhupesh S.; Dosi, Promise A.

    2013-06-01

    In recent years, great interest has been focused on gold(III) complexes as cytotoxic and antitumor drugs. Recent studies demonstrated that simple bidentate or polydentate ligands containing nitrogen donor atoms may offer sufficient redox stabilization to produce viable Au(III) anticancer drug targets under physiologic conditions. So, we have synthesized square planer Au(III) complexes of type [Au(An)Clx]·Cly and characterized them using UV-Vis absorption, C, H, N elemental analysis, FT-IR, LC-MS, 1H and 13C NMR spectroscopy. These compounds manifested significant cytotoxic properties in vitro for brine shrimp lethality bioassay. The metal complexes were screened for series of DNA binding activity using UV-Vis absorption titration, hydrodynamic measurement and thermal DNA denaturation study. The nucleolytic activity was performed on plasmid pUC19 DNA. The Michaelis-Menten kinetic studies were performed to evaluate rate of enhancement in metal complexes mediated DNA cleavage over the non-catalyzed DNA cleavage.

  14. Fission Yeast Pxd1 Promotes Proper DNA Repair by Activating Rad16XPF and Inhibiting Dna2

    PubMed Central

    Zhang, Jia-Min; Liu, Xiao-Man; Ding, Yue-He; Xiong, Liang-Yao; Ren, Jing-Yi; Zhou, Zhi-Xiong; Wang, Hai-Tao; Zhang, Mei-Jun; Yu, Yang; Dong, Meng-Qiu; Du, Li-Lin

    2014-01-01

    Structure-specific nucleases play crucial roles in many DNA repair pathways. They must be precisely controlled to ensure optimal repair outcomes; however, mechanisms of their regulation are not fully understood. Here, we report a fission yeast protein, Pxd1, that binds to and regulates two structure-specific nucleases: Rad16XPF-Swi10ERCC1 and Dna2-Cdc24. Strikingly, Pxd1 influences the activities of these two nucleases in opposite ways: It activates the 3′ endonuclease activity of Rad16-Swi10 but inhibits the RPA-mediated activation of the 5′ endonuclease activity of Dna2. Pxd1 is required for Rad16-Swi10 to function in single-strand annealing, mating-type switching, and the removal of Top1-DNA adducts. Meanwhile, Pxd1 attenuates DNA end resection mediated by the Rqh1-Dna2 pathway. Disabling the Dna2-inhibitory activity of Pxd1 results in enhanced use of a break-distal repeat sequence in single-strand annealing and a greater loss of genetic information. We propose that Pxd1 promotes proper DNA repair by differentially regulating two structure-specific nucleases. PMID:25203555

  15. Nonenzymatic synthesis of RNA and DNA oligomers on hexitol nucleic acid templates: the importance of the A structure

    NASA Technical Reports Server (NTRS)

    Kozlov, I. A.; Politis, P. K.; Van Aerschot, A.; Busson, R.; Herdewijn, P.; Orgel, L. E.; Bada, J. L. (Principal Investigator); Dolan, M. (Principal Investigator)

    1999-01-01

    Hexitol nucleic acid (HNA) is an analogue of DNA containing the standard nucleoside bases, but with a phosphorylated 1,5-anhydrohexitol backbone. HNA oligomers form duplexes having the nucleic acid A structure with complementary DNA or RNA oligomers. The HNA decacytidylate oligomer is an efficient template for the oligomerization of the 5'-phosphoroimidazolides of guanosine or deoxyguanosine. Comparison of the oligomerization efficiencies on HNA, RNA, and DNA decacytidylate templates under various conditions suggests strongly that only nucleic acid double helices with the A structure support efficient template-directed synthesis when 5'-phosphoroimidazolides of nucleosides are used as substrates.

  16. Synthesis of herpes simplex virus, vaccinia virus, and adenovirus DNA in isolated HeLa cell nuclei. I. Effect of viral-specific antisera and phosphonoacetic acid.

    PubMed Central

    Bolden, A; Aucker, J; Weissbach, A

    1975-01-01

    Purified nuclei, isolated from appropriately infected HeLa cells, are shown to synthesize large amounts of either herpes simplex virus (HSV) or vaccinia virus DNA in vitro. The rate of synthesis of DNA by nuclei from infected cells is up to 30 times higher than the synthesis of host DNA in vitro by nuclei isolated from uninfected HeLa cells. Thus HSV nuclei obtained from HSV-infected cells make DNA in vitro at a rate comparable to that seen in the intact, infected cell. Molecular hybridization studies showed that 80% of the DNA sequences synthesized in vitro by nuclei from herpesvirus-infected cells are herpesvirus specific. Vaccinia virus nuclei from vaccinia virus-infected cells, also produce comparable percentages of vaccinia virus-specific DNA sequences. Adenovirus nuclei from adenovirus 2-infected HeLa cells, which also synthesize viral DNA in vitro, have been included in this study. Synthesis of DNA by HSV or vaccinia virus nuclei is markedly inhibited by the corresponding viral-specific antisera. These antisera inhibit in a similar fashion the purified herpesvirus-induced or vaccinia virus-induced DNA polymerase isolated from infected cells. Phosphonoacetic acid, reported to be a specific inhibitor of herpesvirus formation and the herpesvirus-induced DNA polymerase, is equally effective as an inhibitor of HSV DNA synthesis in isolated nuclei in vitro. However, we also find phosphonoacetic acid to be an effective inhibitor of vaccinia virus nuclear DNA synthesis and the purified vaccinia virus-induced DNA polymerase. In addition, this compound shows significant inhibition of DNA synthesis in isolated nuclei obtained from adenovirus-infected or uninfected cells and is a potent inhibitor of HeLa cell DNA polymerase alpha. PMID:172658

  17. Detection of DNA methyltransferase activity using allosteric molecular beacons.

    PubMed

    Zhang, Weiting; Zu, Xiaolong; Song, Yanling; Zhu, Zhi; Yang, Chaoyong James

    2016-01-21

    Abnormal DNA methylation patterns caused by altered DNA methyltransferase (MTase) activity are closely associated with cancer. Herein, using DNA adenine methylation methyltransferase (Dam MTase) as a model analyte, we designed an allosteric molecular beacon (aMB) for sensitive detection of Dam MTase activity. When the specific site in an aMB is methylated by Dam MTase,