Sample records for activity emg-based control

  1. Comparison between sEMG and force as control interfaces to support planar arm movements in adults with Duchenne: a feasibility study.

    PubMed

    Lobo-Prat, Joan; Nizamis, Kostas; Janssen, Mariska M H P; Keemink, Arvid Q L; Veltink, Peter H; Koopman, Bart F J M; Stienen, Arno H A

    2017-07-12

    Adults with Duchenne muscular dystrophy (DMD) can benefit from devices that actively support their arm function. A critical component of such devices is the control interface as it is responsible for the human-machine interaction. Our previous work indicated that surface electromyography (sEMG) and force-based control with active gravity and joint-stiffness compensation were feasible solutions for the support of elbow movements (one degree of freedom). In this paper, we extend the evaluation of sEMG- and force-based control interfaces to simultaneous and proportional control of planar arm movements (two degrees of freedom). Three men with DMD (18-23 years-old) with different levels of arm function (i.e. Brooke scores of 4, 5 and 6) performed a series of line-tracing tasks over a tabletop surface using an experimental active arm support. The arm movements were controlled using three control methods: sEMG-based control, force-based control with stiffness compensation (FSC), and force-based control with no compensation (FNC). The movement performance was evaluated in terms of percentage of task completion, tracing error, smoothness and speed. For subject S1 (Brooke 4) FNC was the preferred method and performed better than FSC and sEMG. FNC was not usable for subject S2 (Brooke 5) and S3 (Brooke 6). Subject S2 presented significantly lower movement speed with sEMG than with FSC, yet he preferred sEMG since FSC was perceived to be too fatiguing. Subject S3 could not successfully use neither of the two force-based control methods, while with sEMG he could reach almost his entire workspace. Movement performance and subjective preference of the three control methods differed with the level of arm function of the participants. Our results indicate that all three control methods have to be considered in real applications, as they present complementary advantages and disadvantages. The fact that the two weaker subjects (S2 and S3) experienced the force-based control interfaces as fatiguing suggests that sEMG-based control interfaces could be a better solution for adults with DMD. Yet force-based control interfaces can be a better alternative for those cases in which voluntary forces are higher than the stiffness forces of the arms.

  2. Muscle activity during leg strengthening exercise using free weights and elastic resistance: effects of ballistic vs controlled contractions.

    PubMed

    Jakobsen, Markus Due; Sundstrup, Emil; Andersen, Christoffer H; Aagaard, Per; Andersen, Lars L

    2013-02-01

    The present study's aim was to evaluate muscle activity during leg exercises using elastic vs. isoinertial resistance at different exertion and loading levels, respectively. Twenty-four women and eighteen men aged 26-67 years volunteered to participate in the experiment. Electromyographic (EMG) activity was recorded in nine muscles during a standardized forward lunge movement performed with dumbbells and elastic bands during (1) ballistic vs. controlled exertion, and (2) at low, medium and high loads (33%, 66% and 100% of 10 RM, respectively). The recorded EMG signals were normalized to MVC EMG. Knee joint angle was measured using electronic inclinometers. The following results were obtained. Loading intensity affected EMG amplitude in the order: low

  3. Adaptive neuron-to-EMG decoder training for FES neuroprostheses

    NASA Astrophysics Data System (ADS)

    Ethier, Christian; Acuna, Daniel; Solla, Sara A.; Miller, Lee E.

    2016-08-01

    Objective. We have previously demonstrated a brain-machine interface neuroprosthetic system that provided continuous control of functional electrical stimulation (FES) and restoration of grasp in a primate model of spinal cord injury (SCI). Predicting intended EMG directly from cortical recordings provides a flexible high-dimensional control signal for FES. However, no peripheral signal such as force or EMG is available for training EMG decoders in paralyzed individuals. Approach. Here we present a method for training an EMG decoder in the absence of muscle activity recordings; the decoder relies on mapping behaviorally relevant cortical activity to the inferred EMG activity underlying an intended action. Monkeys were trained at a 2D isometric wrist force task to control a computer cursor by applying force in the flexion, extension, ulnar, and radial directions and execute a center-out task. We used a generic muscle force-to-endpoint force model based on muscle pulling directions to relate each target force to an optimal EMG pattern that attained the target force while minimizing overall muscle activity. We trained EMG decoders during the target hold periods using a gradient descent algorithm that compared EMG predictions to optimal EMG patterns. Main results. We tested this method both offline and online. We quantified both the accuracy of offline force predictions and the ability of a monkey to use these real-time force predictions for closed-loop cursor control. We compared both offline and online results to those obtained with several other direct force decoders, including an optimal decoder computed from concurrently measured neural and force signals. Significance. This novel approach to training an adaptive EMG decoder could make a brain-control FES neuroprosthesis an effective tool to restore the hand function of paralyzed individuals. Clinical implementation would make use of individualized EMG-to-force models. Broad generalization could be achieved by including data from multiple grasping tasks in the training of the neuron-to-EMG decoder. Our approach would make it possible for persons with SCI to grasp objects with their own hands, using near-normal motor intent.

  4. Human joint motion estimation for electromyography (EMG)-based dynamic motion control.

    PubMed

    Zhang, Qin; Hosoda, Ryo; Venture, Gentiane

    2013-01-01

    This study aims to investigate a joint motion estimation method from Electromyography (EMG) signals during dynamic movement. In most EMG-based humanoid or prosthetics control systems, EMG features were directly or indirectly used to trigger intended motions. However, both physiological and nonphysiological factors can influence EMG characteristics during dynamic movements, resulting in subject-specific, non-stationary and crosstalk problems. Particularly, when motion velocity and/or joint torque are not constrained, joint motion estimation from EMG signals are more challenging. In this paper, we propose a joint motion estimation method based on muscle activation recorded from a pair of agonist and antagonist muscles of the joint. A linear state-space model with multi input single output is proposed to map the muscle activity to joint motion. An adaptive estimation method is proposed to train the model. The estimation performance is evaluated in performing a single elbow flexion-extension movement in two subjects. All the results in two subjects at two load levels indicate the feasibility and suitability of the proposed method in joint motion estimation. The estimation root-mean-square error is within 8.3% ∼ 10.6%, which is lower than that being reported in several previous studies. Moreover, this method is able to overcome subject-specific problem and compensate non-stationary EMG properties.

  5. Alternative Control Technologies: Human Factors Issues

    DTIC Science & Technology

    1998-10-01

    that instant. This removes the workload associated and, over a long period, apply painful pressure to the face. with having to remember which words...shown that phonetically-relevant orofacial motions can be estimated from the underlying EMG activity. 4.4. EMG-BASED CONTROL APPLICATION EXAMPLES 30

  6. The Bionic Clicker Mark I & II

    PubMed Central

    Magee, Elliott G.; Ourselin, S.; Nikitichev, Daniil; Vercauteren, T.; Vanhoestenberghe, Anne

    2017-01-01

    In this manuscript, we present two 'Bionic Clicker' systems, the first designed to demonstrate electromyography (EMG) based control systems for educational purposes and the second for research purposes. EMG based control systems pick up electrical signals generated by muscle activation and use these as inputs for controllers. EMG controllers are widely used in prosthetics to control limbs. The Mark I (MK I) clicker allows the wearer to change the slide of a presentation by raising their index finger. It is built around a microcontroller and a bio-signals shield. It generated a lot of interest from both the public and research community. The Mark II (MK II) device presented here was designed to be a cheaper, sleeker, and more customizable system that can be easily modified and directly transmit EMG data. It is built using a wireless capable microcontroller and a muscle sensor. PMID:28829413

  7. The Bionic Clicker Mark I & II.

    PubMed

    Magee, Elliott G; Ourselin, S; Nikitichev, Daniil; Vercauteren, T; Vanhoestenberghe, Anne

    2017-08-14

    In this manuscript, we present two 'Bionic Clicker' systems, the first designed to demonstrate electromyography (EMG) based control systems for educational purposes and the second for research purposes. EMG based control systems pick up electrical signals generated by muscle activation and use these as inputs for controllers. EMG controllers are widely used in prosthetics to control limbs. The Mark I (MK I) clicker allows the wearer to change the slide of a presentation by raising their index finger. It is built around a microcontroller and a bio-signals shield. It generated a lot of interest from both the public and research community. The Mark II (MK II) device presented here was designed to be a cheaper, sleeker, and more customizable system that can be easily modified and directly transmit EMG data. It is built using a wireless capable microcontroller and a muscle sensor.

  8. Finite State Machine with Adaptive Electromyogram (EMG) Feature Extraction to Drive Meal Assistance Robot

    NASA Astrophysics Data System (ADS)

    Zhang, Xiu; Wang, Xingyu; Wang, Bei; Sugi, Takenao; Nakamura, Masatoshi

    Surface electromyogram (EMG) from elbow, wrist and hand has been widely used as an input of multifunction prostheses for many years. However, for patients with high-level limb deficiencies, muscle activities in upper-limbs are not strong enough to be used as control signals. In this paper, EMG from lower-limbs is acquired and applied to drive a meal assistance robot. An onset detection method with adaptive threshold based on EMG power is proposed to recognize different muscle contractions. Predefined control commands are output by finite state machine (FSM), and applied to operate the robot. The performance of EMG control is compared with joystick control by both objective and subjective indices. The results show that FSM provides the user with an easy-performing control strategy, which successfully operates robots with complicated control commands by limited muscle motions. The high accuracy and comfortableness of the EMG-control meal assistance robot make it feasible for users with upper limbs motor disabilities.

  9. Anticipatory and compensatory postural adjustments in sitting in children with cerebral palsy.

    PubMed

    Bigongiari, Aline; de Andrade e Souza, Flávia; Franciulli, Patrícia Martins; Neto, Semaan El Razi; Araujo, Rubens Correa; Mochizuki, Luis

    2011-06-01

    The aim of this study was to examine postural control in children with cerebral palsy performing a bilateral shoulder flexion to grasp a ball from a sitting posture. The participants were 12 typically developing children (control) without cerebral palsy and 12 children with cerebral palsy (CP). We analyzed the effect of ball mass (1 kg and 0.18 kg), postural adjustment (anticipatory, APA, and compensatory, CPA), and groups (control and CP) on the electrical activity of shoulder and trunk muscles with surface electromyography (EMG). Greater mean iEMG was seen in CPA, with heavy ball, and for posterior trunk muscles (p<.05). The children with CP presented the highest EMG and level of co-activation (p<.05). Linear regression indicated a positive relationship between EMG and aging for the control group, whereas that relationship was negative for participants with CP. We suggest that the main postural control strategy in children is based on corrections after the beginning of the movement. The linear relationship between EMG and aging suggests that postural control development is affected by central nervous disease which may lead to an increase in muscle co-activation. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Quantifying Forearm Muscle Activity during Wrist and Finger Movements by Means of Multi-Channel Electromyography

    PubMed Central

    Gazzoni, Marco; Celadon, Nicolò; Mastrapasqua, Davide; Paleari, Marco; Margaria, Valentina; Ariano, Paolo

    2014-01-01

    The study of hand and finger movement is an important topic with applications in prosthetics, rehabilitation, and ergonomics. Surface electromyography (sEMG) is the gold standard for the analysis of muscle activation. Previous studies investigated the optimal electrode number and positioning on the forearm to obtain information representative of muscle activation and robust to movements. However, the sEMG spatial distribution on the forearm during hand and finger movements and its changes due to different hand positions has never been quantified. The aim of this work is to quantify 1) the spatial localization of surface EMG activity of distinct forearm muscles during dynamic free movements of wrist and single fingers and 2) the effect of hand position on sEMG activity distribution. The subjects performed cyclic dynamic tasks involving the wrist and the fingers. The wrist tasks and the hand opening/closing task were performed with the hand in prone and neutral positions. A sensorized glove was used for kinematics recording. sEMG signals were acquired from the forearm muscles using a grid of 112 electrodes integrated into a stretchable textile sleeve. The areas of sEMG activity have been identified by a segmentation technique after a data dimensionality reduction step based on Non Negative Matrix Factorization applied to the EMG envelopes. The results show that 1) it is possible to identify distinct areas of sEMG activity on the forearm for different fingers; 2) hand position influences sEMG activity level and spatial distribution. This work gives new quantitative information about sEMG activity distribution on the forearm in healthy subjects and provides a basis for future works on the identification of optimal electrode configuration for sEMG based control of prostheses, exoskeletons, or orthoses. An example of use of this information for the optimization of the detection system for the estimation of joint kinematics from sEMG is reported. PMID:25289669

  11. Implementation of a Surface Electromyography-Based Upper Extremity Exoskeleton Controller Using Learning from Demonstration.

    PubMed

    Siu, Ho Chit; Arenas, Ana M; Sun, Tingxiao; Stirling, Leia A

    2018-02-05

    Upper-extremity exoskeletons have demonstrated potential as augmentative, assistive, and rehabilitative devices. Typical control of upper-extremity exoskeletons have relied on switches, force/torque sensors, and surface electromyography (sEMG), but these systems are usually reactionary, and/or rely on entirely hand-tuned parameters. sEMG-based systems may be able to provide anticipatory control, since they interface directly with muscle signals, but typically require expert placement of sensors on muscle bodies. We present an implementation of an adaptive sEMG-based exoskeleton controller that learns a mapping between muscle activation and the desired system state during interaction with a user, generating a personalized sEMG feature classifier to allow for anticipatory control. This system is robust to novice placement of sEMG sensors, as well as subdermal muscle shifts. We validate this method with 18 subjects using a thumb exoskeleton to complete a book-placement task. This learning-from-demonstration system for exoskeleton control allows for very short training times, as well as the potential for improvement in intent recognition over time, and adaptation to physiological changes in the user, such as those due to fatigue.

  12. Implementation of a Surface Electromyography-Based Upper Extremity Exoskeleton Controller Using Learning from Demonstration

    PubMed Central

    Arenas, Ana M.; Sun, Tingxiao

    2018-01-01

    Upper-extremity exoskeletons have demonstrated potential as augmentative, assistive, and rehabilitative devices. Typical control of upper-extremity exoskeletons have relied on switches, force/torque sensors, and surface electromyography (sEMG), but these systems are usually reactionary, and/or rely on entirely hand-tuned parameters. sEMG-based systems may be able to provide anticipatory control, since they interface directly with muscle signals, but typically require expert placement of sensors on muscle bodies. We present an implementation of an adaptive sEMG-based exoskeleton controller that learns a mapping between muscle activation and the desired system state during interaction with a user, generating a personalized sEMG feature classifier to allow for anticipatory control. This system is robust to novice placement of sEMG sensors, as well as subdermal muscle shifts. We validate this method with 18 subjects using a thumb exoskeleton to complete a book-placement task. This learning-from-demonstration system for exoskeleton control allows for very short training times, as well as the potential for improvement in intent recognition over time, and adaptation to physiological changes in the user, such as those due to fatigue. PMID:29401754

  13. Wiener Filtering of Surface EMG with a priori SNR Estimation Toward Myoelectric Control for Neurological Injury Patients

    PubMed Central

    Liu, Jie; Ying, Dongwen; Zhou, Ping

    2014-01-01

    Voluntary surface electromyogram (EMG) signals from neurological injury patients are often corrupted by involuntary background interference or spikes, imposing difficulties for myoelectric control. We present a novel framework to suppress involuntary background spikes during voluntary surface EMG recordings. The framework applies a Wiener filter to restore voluntary surface EMG signals based on tracking a priori signal to noise ratio (SNR) by using the decision-directed method. Semi-synthetic surface EMG signals contaminated by different levels of involuntary background spikes were constructed from a database of surface EMG recordings in a group of spinal cord injury subjects. After the processing, the onset detection of voluntary muscle activity was significantly improved against involuntary background spikes. The magnitude of voluntary surface EMG signals can also be reliably estimated for myoelectric control purpose. Compared with the previous sample entropy analysis for suppressing involuntary background spikes, the proposed framework is characterized by quick and simple implementation, making it more suitable for application in a myoelectric control system toward neurological injury rehabilitation. PMID:25443536

  14. Masticatory Muscle Sleep Background EMG Activity is Elevated in Myofascial TMD Patients

    PubMed Central

    Raphael, Karen G.; Janal, Malvin N.; Sirois, David A.; Dubrovsky, Boris; Wigren, Pia E.; Klausner, Jack J.; Krieger, Ana C.; Lavigne, Gilles J.

    2013-01-01

    Despite theoretical speculation and strong clinical belief, recent research using laboratory polysomnographic (PSG) recording has provided new evidence that frequency of sleep bruxism (SB) masseter muscle events, including grinding or clenching of the teeth during sleep, is not increased for women with chronic myofascial temporomandibular disorder (TMD). The current case-control study compares a large sample of women suffering from chronic myofascial TMD (n=124) with a demographically matched control group without TMD (n=46) on sleep background electromyography (EMG) during a laboratory PSG study. Background EMG activity was measured as EMG root mean square (RMS) from the right masseter muscle after lights out. Sleep background EMG activity was defined as EMG RMS remaining after activity attributable to SB, other orofacial activity, other oromotor activity and movement artifacts were removed. Results indicated that median background EMG during these non SB-event periods was significantly higher (p<.01) for women with myofascial TMD (median=3.31 μV and mean=4.98 μV) than for control women (median=2.83 μV and mean=3.88 μV) with median activity in 72% of cases exceeding control activity. Moreover, for TMD cases, background EMG was positively associated and SB event-related EMG was negatively associated with pain intensity ratings (0–10 numerical scale) on post sleep waking. These data provide the foundation for a new focus on small, but persistent, elevations in sleep EMG activity over the course of the night as a mechanism of pain induction or maintenance. PMID:24237356

  15. Game-Based Rehabilitation for Myoelectric Prosthesis Control

    PubMed Central

    Vujaklija, Ivan; Kayali, Fares; Purgathofer, Peter; Aszmann, Oskar C

    2017-01-01

    Background A high number of upper extremity myoelectric prosthesis users abandon their devices due to difficulties in prosthesis control and lack of motivation to train in absence of a physiotherapist. Virtual training systems, in the form of video games, provide patients with an entertaining and intuitive method for improved muscle coordination and improved overall control. Complementary to established rehabilitation protocols, it is highly beneficial for this virtual training process to start even before receiving the final prosthesis, and to be continued at home for as long as needed. Objective The aim of this study is to evaluate (1) the short-term effects of a commercially available electromyographic (EMG) system on controllability after a simple video game-based rehabilitation protocol, and (2) different input methods, control mechanisms, and games. Methods Eleven able-bodied participants with no prior experience in EMG control took part in this study. Participants were asked to perform a surface EMG test evaluating their provisional maximum muscle contraction, fine accuracy and isolation of electrode activation, and endurance control over at least 300 seconds. These assessments were carried out (1) in a Pregaming session before interacting with three EMG-controlled computer games, (2) in a Postgaming session after playing the games, and (3) in a Follow-Up session two days after the gaming protocol to evaluate short-term retention rate. After each game, participants were given a user evaluation survey for the assessment of the games and their input mechanisms. Participants also received a questionnaire regarding their intrinsic motivation (Intrinsic Motivation Inventory) at the end of the last game. Results Results showed a significant improvement in fine accuracy electrode activation (P<.01), electrode separation (P=.02), and endurance control (P<.01) from Pregaming EMG assessments to the Follow-Up measurement. The deviation around the EMG goal value diminished and the opposing electrode was activated less frequently. Participants had the most fun playing the games when collecting items and facing challenging game play. Conclusions Most upper limb amputees use a 2-channel myoelectric prosthesis control. This study demonstrates that this control can be effectively trained by employing a video game-based rehabilitation protocol. PMID:28183689

  16. EMG-Torque correction on Human Upper extremity using Evolutionary Computation

    NASA Astrophysics Data System (ADS)

    JL, Veronica; Parasuraman, S.; Khan, M. K. A. Ahamed; Jeba DSingh, Kingsly

    2016-09-01

    There have been many studies indicating that control system of rehabilitative robot plays an important role in determining the outcome of the therapy process. Existing works have done the prediction of feedback signal in the controller based on the kinematics parameters and EMG readings of upper limb's skeletal system. Kinematics and kinetics based control signal system is developed by reading the output of the sensors such as position sensor, orientation sensor and F/T (Force/Torque) sensor and there readings are to be compared with the preceding measurement to decide on the amount of assistive force. There are also other works that incorporated the kinematics parameters to calculate the kinetics parameters via formulation and pre-defined assumptions. Nevertheless, these types of control signals analyze the movement of the upper limb only based on the movement of the upper joints. They do not anticipate the possibility of muscle plasticity. The focus of the paper is to make use of the kinematics parameters and EMG readings of skeletal system to predict the individual torque of upper extremity's joints. The surface EMG signals are fed into different mathematical models so that these data can be trained through Genetic Algorithm (GA) to find the best correlation between EMG signals and torques acting on the upper limb's joints. The estimated torque attained from the mathematical models is called simulated output. The simulated output will then be compared with the actual individual joint which is calculated based on the real time kinematics parameters of the upper movement of the skeleton when the muscle cells are activated. The findings from this contribution are extended into the development of the active control signal based controller for rehabilitation robot.

  17. Control of an optimal finger exoskeleton based on continuous joint angle estimation from EMG signals.

    PubMed

    Ngeo, Jimson; Tamei, Tomoya; Shibata, Tomohiro; Orlando, M F Felix; Behera, Laxmidhar; Saxena, Anupam; Dutta, Ashish

    2013-01-01

    Patients suffering from loss of hand functions caused by stroke and other spinal cord injuries have driven a surge in the development of wearable assistive devices in recent years. In this paper, we present a system made up of a low-profile, optimally designed finger exoskeleton continuously controlled by a user's surface electromyographic (sEMG) signals. The mechanical design is based on an optimal four-bar linkage that can model the finger's irregular trajectory due to the finger's varying lengths and changing instantaneous center. The desired joint angle positions are given by the predictive output of an artificial neural network with an EMG-to-Muscle Activation model that parameterizes electromechanical delay (EMD). After confirming good prediction accuracy of multiple finger joint angles we evaluated an index finger exoskeleton by obtaining a subject's EMG signals from the left forearm and using the signal to actuate a finger on the right hand with the exoskeleton. Our results show that our sEMG-based control strategy worked well in controlling the exoskeleton, obtaining the intended positions of the device, and that the subject felt the appropriate motion support from the device.

  18. Gastrocnemius myoelectric control of a robotic hip exoskeleton.

    PubMed

    Grazi, Lorenzo; Crea, Simona; Parri, Andrea; Yan, Tingfang; Cortese, Mario; Giovacchini, Francesco; Cempini, Marco; Pasquini, Guido; Micera, Silvestro; Vitiello, Nicola

    2015-01-01

    In this paper we present a novel EMG-based assistive control strategy for lower-limb exoskeletons. An active pelvis orthosis (APO) generates torque profiles for the hip flexion motion assistance, according to the Gastrocnemius Medialis EMG signal. The strategy has been tested on one healthy subject: experimental results show that the user is able to reduce his muscular activation when the assistance is switched on with respect to the free walking condition.

  19. Continuous movement decoding using a target-dependent model with EMG inputs.

    PubMed

    Sachs, Nicholas A; Corbett, Elaine A; Miller, Lee E; Perreault, Eric J

    2011-01-01

    Trajectory-based models that incorporate target position information have been shown to accurately decode reaching movements from bio-control signals, such as muscle (EMG) and cortical activity (neural spikes). One major hurdle in implementing such models for neuroprosthetic control is that they are inherently designed to decode single reaches from a position of origin to a specific target. Gaze direction can be used to identify appropriate targets, however information regarding movement intent is needed to determine when a reach is meant to begin and when it has been completed. We used linear discriminant analysis to classify limb states into movement classes based on recorded EMG from a sparse set of shoulder muscles. We then used the detected state transitions to update target information in a mixture of Kalman filters that incorporated target position explicitly in the state, and used EMG activity to decode arm movements. Updating the target position initiated movement along new trajectories, allowing a sequence of appropriately timed single reaches to be decoded in series and enabling highly accurate continuous control.

  20. sEMG-based joint force control for an upper-limb power-assist exoskeleton robot.

    PubMed

    Li, Zhijun; Wang, Baocheng; Sun, Fuchun; Yang, Chenguang; Xie, Qing; Zhang, Weidong

    2014-05-01

    This paper investigates two surface electromyogram (sEMG)-based control strategies developed for a power-assist exoskeleton arm. Different from most of the existing position control approaches, this paper develops force control methods to make the exoskeleton robot behave like humans in order to provide better assistance. The exoskeleton robot is directly attached to a user's body and activated by the sEMG signals of the user's muscles, which reflect the user's motion intention. In the first proposed control method, the forces of agonist and antagonist muscles pair are estimated, and their difference is used to produce the torque of the corresponding joints. In the second method, linear discriminant analysis-based classifiers are introduced as the indicator of the motion type of the joints. Then, the classifier's outputs together with the estimated force of corresponding active muscle determine the torque control signals. Different from the conventional approaches, one classifier is assigned to each joint, which decreases the training time and largely simplifies the recognition process. Finally, the extensive experiments are conducted to illustrate the effectiveness of the proposed approaches.

  1. Artificial neural network EMG classifier for functional hand grasp movements prediction.

    PubMed

    Gandolla, Marta; Ferrante, Simona; Ferrigno, Giancarlo; Baldassini, Davide; Molteni, Franco; Guanziroli, Eleonora; Cotti Cottini, Michele; Seneci, Carlo; Pedrocchi, Alessandra

    2017-12-01

    Objective To design and implement an electromyography (EMG)-based controller for a hand robotic assistive device, which is able to classify the user's motion intention before the effective kinematic movement execution. Methods Multiple degrees-of-freedom hand grasp movements (i.e. pinching, grasp an object, grasping) were predicted by means of surface EMG signals, recorded from 10 bipolar EMG electrodes arranged in a circular configuration around the forearm 2-3 cm from the elbow. Two cascaded artificial neural networks were then exploited to detect the patient's motion intention from the EMG signal window starting from the electrical activity onset to movement onset (i.e. electromechanical delay). Results The proposed approach was tested on eight healthy control subjects (4 females; age range 25-26 years) and it demonstrated a mean ± SD testing performance of 76% ± 14% for correctly predicting healthy users' motion intention. Two post-stroke patients tested the controller and obtained 79% and 100% of correctly classified movements under testing conditions. Conclusion A task-selection controller was developed to estimate the intended movement from the EMG measured during the electromechanical delay.

  2. Masticatory muscle sleep background electromyographic activity is elevated in myofascial temporomandibular disorder patients.

    PubMed

    Raphael, K G; Janal, M N; Sirois, D A; Dubrovsky, B; Wigren, P E; Klausner, J J; Krieger, A C; Lavigne, G J

    2013-12-01

    Despite theoretical speculation and strong clinical belief, recent research using laboratory polysomnographic (PSG) recording has provided new evidence that frequency of sleep bruxism (SB) masseter muscle events, including grinding or clenching of the teeth during sleep, is not increased for women with chronic myofascial temporomandibular disorder (TMD). The current case-control study compares a large sample of women suffering from chronic myofascial TMD (n = 124) with a demographically matched control group without TMD (n = 46) on sleep background electromyography (EMG) during a laboratory PSG study. Background EMG activity was measured as EMG root mean square (RMS) from the right masseter muscle after lights out. Sleep background EMG activity was defined as EMG RMS remaining after activity attributable to SB, other orofacial activity, other oromotor activity and movement artefacts were removed. Results indicated that median background EMG during these non-SB event periods was significantly higher (P < 0·01) for women with myofascial TMD (median = 3·31 μV and mean = 4·98 μV) than for control women (median = 2·83 μV and mean = 3·88 μV) with median activity in 72% of cases exceeding control activity. Moreover, for TMD cases, background EMG was positively associated and SB event-related EMG was negatively associated with pain intensity ratings (0-10 numerical scale) on post-sleep waking. These data provide the foundation for a new focus on small, but persistent, elevations in sleep EMG activity over the course of the night as a mechanism of pain induction or maintenance. © 2013 John Wiley & Sons Ltd.

  3. Game-Based Rehabilitation for Myoelectric Prosthesis Control.

    PubMed

    Prahm, Cosima; Vujaklija, Ivan; Kayali, Fares; Purgathofer, Peter; Aszmann, Oskar C

    2017-02-09

    A high number of upper extremity myoelectric prosthesis users abandon their devices due to difficulties in prosthesis control and lack of motivation to train in absence of a physiotherapist. Virtual training systems, in the form of video games, provide patients with an entertaining and intuitive method for improved muscle coordination and improved overall control. Complementary to established rehabilitation protocols, it is highly beneficial for this virtual training process to start even before receiving the final prosthesis, and to be continued at home for as long as needed. The aim of this study is to evaluate (1) the short-term effects of a commercially available electromyographic (EMG) system on controllability after a simple video game-based rehabilitation protocol, and (2) different input methods, control mechanisms, and games. Eleven able-bodied participants with no prior experience in EMG control took part in this study. Participants were asked to perform a surface EMG test evaluating their provisional maximum muscle contraction, fine accuracy and isolation of electrode activation, and endurance control over at least 300 seconds. These assessments were carried out (1) in a Pregaming session before interacting with three EMG-controlled computer games, (2) in a Postgaming session after playing the games, and (3) in a Follow-Up session two days after the gaming protocol to evaluate short-term retention rate. After each game, participants were given a user evaluation survey for the assessment of the games and their input mechanisms. Participants also received a questionnaire regarding their intrinsic motivation (Intrinsic Motivation Inventory) at the end of the last game. Results showed a significant improvement in fine accuracy electrode activation (P<.01), electrode separation (P=.02), and endurance control (P<.01) from Pregaming EMG assessments to the Follow-Up measurement. The deviation around the EMG goal value diminished and the opposing electrode was activated less frequently. Participants had the most fun playing the games when collecting items and facing challenging game play. Most upper limb amputees use a 2-channel myoelectric prosthesis control. This study demonstrates that this control can be effectively trained by employing a video game-based rehabilitation protocol. ©Cosima Prahm, Ivan Vujaklija, Fares Kayali, Peter Purgathofer, Oskar C Aszmann. Originally published in JMIR Serious Games (http://games.jmir.org), 09.02.2017.

  4. Wireless sEMG-Based Body-Machine Interface for Assistive Technology Devices.

    PubMed

    Fall, Cheikh Latyr; Gagnon-Turcotte, Gabriel; Dube, Jean-Francois; Gagne, Jean Simon; Delisle, Yanick; Campeau-Lecours, Alexandre; Gosselin, Clement; Gosselin, Benoit

    2017-07-01

    Assistive technology (AT) tools and appliances are being more and more widely used and developed worldwide to improve the autonomy of people living with disabilities and ease the interaction with their environment. This paper describes an intuitive and wireless surface electromyography (sEMG) based body-machine interface for AT tools. Spinal cord injuries at C5-C8 levels affect patients' arms, forearms, hands, and fingers control. Thus, using classical AT control interfaces (keypads, joysticks, etc.) is often difficult or impossible. The proposed system reads the AT users' residual functional capacities through their sEMG activity, and converts them into appropriate commands using a threshold-based control algorithm. It has proven to be suitable as a control alternative for assistive devices and has been tested with the JACO arm, an articulated assistive device of which the vocation is to help people living with upper-body disabilities in their daily life activities. The wireless prototype, the architecture of which is based on a 3-channel sEMG measurement system and a 915-MHz wireless transceiver built around a low-power microcontroller, uses low-cost off-the-shelf commercial components. The embedded controller is compared with JACO's regular joystick-based interface, using combinations of forearm, pectoral, masseter, and trapeze muscles. The measured index of performance values is 0.88, 0.51, and 0.41 bits/s, respectively, for correlation coefficients with the Fitt's model of 0.75, 0.85, and 0.67. These results demonstrate that the proposed controller offers an attractive alternative to conventional interfaces, such as joystick devices, for upper-body disabled people using ATs such as JACO.

  5. Artificial neural network EMG classifier for functional hand grasp movements prediction

    PubMed Central

    Ferrante, Simona; Ferrigno, Giancarlo; Baldassini, Davide; Molteni, Franco; Guanziroli, Eleonora; Cotti Cottini, Michele; Seneci, Carlo; Pedrocchi, Alessandra

    2016-01-01

    Objective To design and implement an electromyography (EMG)-based controller for a hand robotic assistive device, which is able to classify the user's motion intention before the effective kinematic movement execution. Methods Multiple degrees-of-freedom hand grasp movements (i.e. pinching, grasp an object, grasping) were predicted by means of surface EMG signals, recorded from 10 bipolar EMG electrodes arranged in a circular configuration around the forearm 2–3 cm from the elbow. Two cascaded artificial neural networks were then exploited to detect the patient's motion intention from the EMG signal window starting from the electrical activity onset to movement onset (i.e. electromechanical delay). Results The proposed approach was tested on eight healthy control subjects (4 females; age range 25–26 years) and it demonstrated a mean ± SD testing performance of 76% ± 14% for correctly predicting healthy users' motion intention. Two post-stroke patients tested the controller and obtained 79% and 100% of correctly classified movements under testing conditions. Conclusion A task-selection controller was developed to estimate the intended movement from the EMG measured during the electromechanical delay. PMID:27677300

  6. Surface electromyographic patterns of masticatory, neck, and trunk muscles in temporomandibular joint dysfunction patients undergoing anterior repositioning splint therapy.

    PubMed

    Tecco, Simona; Tetè, Stefano; D'Attilio, Michele; Perillo, Letizia; Festa, Felice

    2008-12-01

    The aim of this study was to investigate the surface electromyographic (sEMG) activity of neck, trunk, and masticatory muscles in subjects with temporomandibular joint (TMJ) internal derangement treated with anterior mandibular repositioning splints. sEMG activities of the muscles in 34 adult subjects (22 females and 12 males; mean age 30.4 years) with TMJ internal derangement were compared with a control group of 34 untreated adults (20 females and 14 males; mean age 31.8 years). sEMG activities of seven muscles (anterior and posterior temporalis, masseter, posterior cervicals, sternocleidomastoid, and upper and lower trapezius) were studied bilaterally, with the mandible in the rest position and during maximal voluntary clenching (MVC), at the beginning of therapy (T0) and after 10 weeks of treatment (T1). Paired and Student's t-tests were undertaken to determine differences between the T0 and T1 data and in sEMG activity between the study and control groups. At T0, paired masseter, sternocleidomastoid, and cervical muscles, in addition to the left anterior temporal and right lower trapezius, showed significantly greater sEMG activity (P = 0.0001; P = 0.0001; for left cervical, P = 0.03; for right cervical, P = 0.0001; P = 0.006 and P = 0.007 muscles, respectively) compared with the control group. This decreased over the remaining study period, such that after treatment, sEMG activity revealed no statistically significant difference when compared with the control group. During MVC at T0, paired masseter and anterior and posterior temporalis muscles showed significantly lower sEMG activity (P = 0.03; P = 0.005 and P = 0.04, respectively) compared with the control group. In contrast, at T1 sEMG activity significantly increased (P = 0.02; P = 0.004 and P = 0.04, respectively), but no difference was observed in relation to the control group. Splint therapy in subjects with internal disk derangement seems to affect sEMG activity of the masticatory, neck, and trunk muscles.

  7. Task constraints and minimization of muscle effort result in a small number of muscle synergies during gait.

    PubMed

    De Groote, Friedl; Jonkers, Ilse; Duysens, Jacques

    2014-01-01

    Finding muscle activity generating a given motion is a redundant problem, since there are many more muscles than degrees of freedom. The control strategies determining muscle recruitment from a redundant set are still poorly understood. One theory of motor control suggests that motion is produced through activating a small number of muscle synergies, i.e., muscle groups that are activated in a fixed ratio by a single input signal. Because of the reduced number of input signals, synergy-based control is low dimensional. But a major criticism on the theory of synergy-based control of muscles is that muscle synergies might reflect task constraints rather than a neural control strategy. Another theory of motor control suggests that muscles are recruited by optimizing performance. Optimization of performance has been widely used to calculate muscle recruitment underlying a given motion while assuming independent recruitment of muscles. If synergies indeed determine muscle recruitment underlying a given motion, optimization approaches that do not model synergy-based control could result in muscle activations that do not show the synergistic muscle action observed through electromyography (EMG). If, however, synergistic muscle action results from performance optimization and task constraints (joint kinematics and external forces), such optimization approaches are expected to result in low-dimensional synergistic muscle activations that are similar to EMG-based synergies. We calculated muscle recruitment underlying experimentally measured gait patterns by optimizing performance assuming independent recruitment of muscles. We found that the muscle activations calculated without any reference to synergies can be accurately explained by on average four synergies. These synergies are similar to EMG-based synergies. We therefore conclude that task constraints and performance optimization explain synergistic muscle recruitment from a redundant set of muscles.

  8. An EMG-controlled neuroprosthesis for daily upper limb support: a preliminary study.

    PubMed

    Ambrosini, Emilia; Ferrante, Simona; Tibiletti, Marta; Schauer, Thomas; Klauer, Christian; Ferrigno, Giancarlo; Pedrocchi, Alessandra

    2011-01-01

    MUNDUS is an assistive platform for recovering direct interaction capability of severely impaired people based on upper limb motor functions. Its main concept is to exploit any residual control of the end-user, thus being suitable for long term utilization in daily activities. MUNDUS integrates multimodal information (EMG, eye tracking, brain computer interface) to control different actuators, such as a passive exoskeleton for weight relief, a neuroprosthesis for arm motion and small motors for grasping. Within this project, the present work integreted a commercial passive exoskeleton with an EMG-controlled neuroprosthesis for supporting hand-to-mouth movements. Being the stimulated muscle the same from which the EMG was measured, first it was necessary to develop an appropriate digital filter to separate the volitional EMG and the stimulation response. Then, a control method aimed at exploiting as much as possible the residual motor control of the end-user was designed. The controller provided a stimulation intensity proportional to the volitional EMG. An experimental protocol was defined to validate the filter and the controller operation on one healthy volunteer. The subject was asked to perform a sequence of hand-to-mouth movements holding different loads. The movements were supported by both the exoskeleton and the neuroprosthesis. The filter was able to detect an increase of the volitional EMG as the weight held by the subject increased. Thus, a higher stimulation intensity was provided in order to support a more intense exercise. The study demonstrated the feasibility of an EMG-controlled neuroprosthesis for daily upper limb support on healthy subjects, providing a first step forward towards the development of the final MUNDUS platform.

  9. Relationship between grasping force and features of single-channel intramuscular EMG signals.

    PubMed

    Kamavuako, Ernest Nlandu; Farina, Dario; Yoshida, Ken; Jensen, Winnie

    2009-12-15

    The surface electromyographic (sEMG) signal can be used for force prediction and control in prosthetic devices. Because of technological advances on implantable sensors, the use of intramuscular EMG (iEMG) is becoming a potential alternative to sEMG for the control of multiple degrees-of-freedom (DOF). An invasive system is not affected by crosstalk, typical of sEMG, and provides more stable and independent control sites. However, intramuscular recordings provide more local information because of their high selectivity, and may thus be less representative of the global muscle activity with respect to sEMG. This study investigates the capacity of selective single-channel iEMG recordings to represent the grasping force with respect to the use of sEMG with the aim of assessing if iEMG can be an effective method for proportional myoelectric control. sEMG and iEMG were recorded concurrently from 10 subjects who exerted six grasping force profiles from 0 to 25/50N. The linear correlation coefficient between features extracted from iEMG and force was approximately 0.9 and was not significantly different from the degree of correlation between sEMG and force. This result indicates that a selective iEMG recording is representative of the applied grasping force and can be used for proportional control.

  10. Gesture recognition by instantaneous surface EMG images.

    PubMed

    Geng, Weidong; Du, Yu; Jin, Wenguang; Wei, Wentao; Hu, Yu; Li, Jiajun

    2016-11-15

    Gesture recognition in non-intrusive muscle-computer interfaces is usually based on windowed descriptive and discriminatory surface electromyography (sEMG) features because the recorded amplitude of a myoelectric signal may rapidly fluctuate between voltages above and below zero. Here, we present that the patterns inside the instantaneous values of high-density sEMG enables gesture recognition to be performed merely with sEMG signals at a specific instant. We introduce the concept of an sEMG image spatially composed from high-density sEMG and verify our findings from a computational perspective with experiments on gesture recognition based on sEMG images with a classification scheme of a deep convolutional network. Without any windowed features, the resultant recognition accuracy of an 8-gesture within-subject test reached 89.3% on a single frame of sEMG image and reached 99.0% using simple majority voting over 40 frames with a 1,000 Hz sampling rate. Experiments on the recognition of 52 gestures of NinaPro database and 27 gestures of CSL-HDEMG database also validated that our approach outperforms state-of-the-arts methods. Our findings are a starting point for the development of more fluid and natural muscle-computer interfaces with very little observational latency. For example, active prostheses and exoskeletons based on high-density electrodes could be controlled with instantaneous responses.

  11. An open and configurable embedded system for EMG pattern recognition implementation for artificial arms.

    PubMed

    Jun Liu; Fan Zhang; Huang, He Helen

    2014-01-01

    Pattern recognition (PR) based on electromyographic (EMG) signals has been developed for multifunctional artificial arms for decades. However, assessment of EMG PR control for daily prosthesis use is still limited. One of the major barriers is the lack of a portable and configurable embedded system to implement the EMG PR control. This paper aimed to design an open and configurable embedded system for EMG PR implementation so that researchers can easily modify and optimize the control algorithms upon our designed platform and test the EMG PR control outside of the lab environments. The open platform was built on an open source embedded Linux Operating System running a high-performance Gumstix board. Both the hardware and software system framework were openly designed. The system was highly flexible in terms of number of inputs/outputs and calibration interfaces used. Such flexibility enabled easy integration of our embedded system with different types of commercialized or prototypic artificial arms. Thus far, our system was portable for take-home use. Additionally, compared with previously reported embedded systems for EMG PR implementation, our system demonstrated improved processing efficiency and high system precision. Our long-term goals are (1) to develop a wearable and practical EMG PR-based control for multifunctional artificial arms, and (2) to quantify the benefits of EMG PR-based control over conventional myoelectric prosthesis control in a home setting.

  12. Electromyogram whitening for improved classification accuracy in upper limb prosthesis control.

    PubMed

    Liu, Lukai; Liu, Pu; Clancy, Edward A; Scheme, Erik; Englehart

    2013-09-01

    Time and frequency domain features of the surface electromyogram (EMG) signal acquired from multiple channels have frequently been investigated for use in controlling upper-limb prostheses. A common control method is EMG-based motion classification. We propose the use of EMG signal whitening as a preprocessing step in EMG-based motion classification. Whitening decorrelates the EMG signal and has been shown to be advantageous in other EMG applications including EMG amplitude estimation and EMG-force processing. In a study of ten intact subjects and five amputees with up to 11 motion classes and ten electrode channels, we found that the coefficient of variation of time domain features (mean absolute value, average signal length and normalized zero crossing rate) was significantly reduced due to whitening. When using these features along with autoregressive power spectrum coefficients, whitening added approximately five percentage points to classification accuracy when small window lengths were considered.

  13. Agonist and Antagonist Muscle EMG Activity Pattern Changes with Skill Acquisition.

    ERIC Educational Resources Information Center

    Engelhorn, Richard

    1983-01-01

    Using electromyography (EMG), researchers studied changes in the control of biceps and triceps brachii muscles that occurred as women college students learned two elbow flexion tasks. Data on EMG activity, angular kinematics, training, and angular displacement were analyzed. (Author/PP)

  14. [Recognition of walking stance phase and swing phase based on moving window].

    PubMed

    Geng, Xiaobo; Yang, Peng; Wang, Xinran; Geng, Yanli; Han, Yu

    2014-04-01

    Wearing transfemoral prosthesis is the only way to complete daily physical activity for amputees. Motion pattern recognition is important for the control of prosthesis, especially in the recognizing swing phase and stance phase. In this paper, it is reported that surface electromyography (sEMG) signal is used in swing and stance phase recognition. sEMG signal of related muscles was sampled by Infiniti of a Canadian company. The sEMG signal was then filtered by weighted filtering window and analyzed by height permitted window. The starting time of stance phase and swing phase is determined through analyzing special muscles. The sEMG signal of rectus femoris was used in stance phase recognition and sEMG signal of tibialis anterior is used in swing phase recognition. In a certain tolerating range, the double windows theory, including weighted filtering window and height permitted window, can reach a high accuracy rate. Through experiments, the real walking consciousness of the people was reflected by sEMG signal of related muscles. Using related muscles to recognize swing and stance phase is reachable. The theory used in this paper is useful for analyzing sEMG signal and actual prosthesis control.

  15. Cosmos 2229

    NASA Technical Reports Server (NTRS)

    Edgerton, V. Reggie; Roy, Roland R.; Hodgson, John A.

    1993-01-01

    The 6 weeks preflight activities of the Cosmos project during 1993 included: modification of EMG connector to improve the reliability of EMG recording; 24 hour cage activity recording from all but two of the flight animals (monkeys); attempts to record from flight candidates during foot lever task; and force transducer calibrations on all flight candidate animals. The 4 week postflight recordings included: postflight recordings from flight animals; postflight recordings on 3 control (non-flight) animals; postflight recalibration of force transducers on 1 flight and 4 control (non-flight) animals; and attempts to record EMG and video data from the flight animals during postflight locomotion and postural activity. The flight EMG recordings suggest that significant changes in muscle control may occur in spaceflight. It is also clear from recordings that levels of EMG recorded during spaceflight can attain values similar to those measured on earth. Amplifier gain settings should therefore probably not be changed for spaceflight.

  16. A two-dimensional matrix image based feature extraction method for classification of sEMG: A comparative analysis based on SVM, KNN and RBF-NN.

    PubMed

    Wen, Tingxi; Zhang, Zhongnan; Qiu, Ming; Zeng, Ming; Luo, Weizhen

    2017-01-01

    The computer mouse is an important human-computer interaction device. But patients with physical finger disability are unable to operate this device. Surface EMG (sEMG) can be monitored by electrodes on the skin surface and is a reflection of the neuromuscular activities. Therefore, we can control limbs auxiliary equipment by utilizing sEMG classification in order to help the physically disabled patients to operate the mouse. To develop a new a method to extract sEMG generated by finger motion and apply novel features to classify sEMG. A window-based data acquisition method was presented to extract signal samples from sEMG electordes. Afterwards, a two-dimensional matrix image based feature extraction method, which differs from the classical methods based on time domain or frequency domain, was employed to transform signal samples to feature maps used for classification. In the experiments, sEMG data samples produced by the index and middle fingers at the click of a mouse button were separately acquired. Then, characteristics of the samples were analyzed to generate a feature map for each sample. Finally, the machine learning classification algorithms (SVM, KNN, RBF-NN) were employed to classify these feature maps on a GPU. The study demonstrated that all classifiers can identify and classify sEMG samples effectively. In particular, the accuracy of the SVM classifier reached up to 100%. The signal separation method is a convenient, efficient and quick method, which can effectively extract the sEMG samples produced by fingers. In addition, unlike the classical methods, the new method enables to extract features by enlarging sample signals' energy appropriately. The classical machine learning classifiers all performed well by using these features.

  17. Rhesus leg muscle EMG activity during a foot pedal pressing task on Bion 11

    NASA Technical Reports Server (NTRS)

    Hodgson, J. A.; Riazansky, S. N.; Goulet, C.; Badakva, A. M.; Kozlovskaya, I. B.; Recktenwald, M. R.; McCall, G.; Roy, R. R.; Fanton, J. W.; Edgerton, V. R.

    2000-01-01

    Rhesus monkeys (Macaca mulatta) were trained to perform a foot lever pressing task for a food reward. EMG activity was recorded from selected lower limb muscles of 2 animals before, during, and after a 14-day spaceflight and from 3 animals during a ground-based simulation of the flight. Integrated EMG activity was calculated for each muscle during the 20-min test. Comparisons were made between data recorded before any experimental manipulations and during flight or flight simulation. Spaceflight reduced soleus (Sol) activity to 25% of preflight levels, whereas it was reduced to 50% of control in the flight simulation. During flight, medial gastrocnemius (MG) activity was reduced to 25% of preflight activity, whereas the simulation group showed normal activity levels throughout all tests. The change in MG activity was apparent in the first inflight recording, suggesting that some effect of microgravity on MG activity was immediate.

  18. Activity of masticatory muscles in subjects with different orofacial pain conditions.

    PubMed

    Bodéré, Céline; Téa, Say Hack; Giroux-Metges, Marie Agnes; Woda, Alain

    2005-07-01

    The existence of a pathophysiological link between tonic muscle activity and chronic muscle pain is still being debated. The purpose of this retrospective, controlled study was to evaluate the electromyographic (EMG) activity of masticatory muscles in subjects with different orofacial pain conditions. The temporal and masseter EMG activity at rest and the masseteric reflex were recorded in two groups of patients with either myofascial pain (n=33) or neuropathic pain (n=20), one group of non-pain patients with disc derangement disorders (n=27) and one control group of healthy, asymptomatic subjects (n=32). The EMG activities of both muscles at rest were significantly higher in the pain patient groups compared to the asymptomatic control group. There was no significant difference between the disc derangement disorder group and the control group. The masseteric reflex amplitude was reduced in all patient groups when compared with the control group. In pain patient groups, the increased EMG activity at rest and the reduction of the masseteric reflex amplitude were equally distributed in the pain and non-pain sides. In addition, subjects presenting with bilateral pain showed higher EMG activity at rest than those with unilateral pain. These results suggested that the modulation of muscle activity was not the direct consequence of a peripheral nociceptive mechanism and seemed to indicate that a central mechanism was at work. The contrast between the increased EMG activity at rest and the reduction of the masseteric reflex amplitude may reflect modulations of motoneurones that differed in tonic versus phasic conditions in chronic pain patients.

  19. [Evaluation of the electromyography activity of pelvic floor muscle during postural exercises using the Wii Fit Plus©. Analysis and perspectives in rehabilitation].

    PubMed

    Steenstrup, B; Giralte, F; Bakker, E; Grise, P

    2014-12-01

    The aim of this work was to evaluate the effect of postural awareness by using the Wii Fit Plus© on the quality of the baseline (automatic) activity of the pelvic floor muscles (PFM) measured by intravaginal surface electromyography (sEMG). Four healthy continent female subjects, all able to perform a voluntary contraction, undertook 2 sets of 3 various exercises offered by the software Wii Fit Plus© using the Wii balance board© (WBB): one set without any visual control and the second set with postural control and sEMG visual feedback. Simultaneously, we recorded the sEMG activity of the PFM. Mean baseline activity of PFM in standing position at start was 2.87 mV, at submaximal voluntary contraction the sEMG activity raised at a mean of 14.43 mV (7.87-21.89). In the first set of exercises on the WBB without any visual feedback, the automatic activity of the PFM increased from 2.87 mV to 8.75 mV (7.96-9.59). In the second set, with visual postural and sEMG control, mean baseline sEMG activity even raised at 11.39 mV (10.17-11.58). Among women able of a voluntary contraction of PFM, visualisation of posture with the help of the WBB and of sEMG activity of the PFM during static and dynamic Wii Fit Plus© activities, may improve the automatic activation of the PFMs. 4. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  20. Continuous and simultaneous estimation of finger kinematics using inputs from an EMG-to-muscle activation model.

    PubMed

    Ngeo, Jimson G; Tamei, Tomoya; Shibata, Tomohiro

    2014-08-14

    Surface electromyography (EMG) signals are often used in many robot and rehabilitation applications because these reflect motor intentions of users very well. However, very few studies have focused on the accurate and proportional control of the human hand using EMG signals. Many have focused on discrete gesture classification and some have encountered inherent problems such as electro-mechanical delays (EMD). Here, we present a new method for estimating simultaneous and multiple finger kinematics from multi-channel surface EMG signals. In this study, surface EMG signals from the forearm and finger kinematic data were extracted from ten able-bodied subjects while they were tasked to do individual and simultaneous multiple finger flexion and extension movements in free space. Instead of using traditional time-domain features of EMG, an EMG-to-Muscle Activation model that parameterizes EMD was used and shown to give better estimation performance. A fast feed forward artificial neural network (ANN) and a nonparametric Gaussian Process (GP) regressor were both used and evaluated to estimate complex finger kinematics, with the latter rarely used in the other related literature. The estimation accuracies, in terms of mean correlation coefficient, were 0.85 ± 0.07, 0.78 ± 0.06 and 0.73 ± 0.04 for the metacarpophalangeal (MCP), proximal interphalangeal (PIP) and the distal interphalangeal (DIP) finger joint DOFs, respectively. The mean root-mean-square error in each individual DOF ranged from 5 to 15%. We show that estimation improved using the proposed muscle activation inputs compared to other features, and that using GP regression gave better estimation results when using fewer training samples. The proposed method provides a viable means of capturing the general trend of finger movements and shows a good way of estimating finger joint kinematics using a muscle activation model that parameterizes EMD. The results from this study demonstrates a potential control strategy based on EMG that can be applied for simultaneous and continuous control of multiple DOF(s) devices such as robotic hand/finger prostheses or exoskeletons.

  1. Using State-Space Model with Regime Switching to Represent the Dynamics of Facial Electromyography (EMG) Data

    ERIC Educational Resources Information Center

    Yang, Manshu; Chow, Sy-Miin

    2010-01-01

    Facial electromyography (EMG) is a useful physiological measure for detecting subtle affective changes in real time. A time series of EMG data contains bursts of electrical activity that increase in magnitude when the pertinent facial muscles are activated. Whereas previous methods for detecting EMG activation are often based on deterministic or…

  2. Local Wavelet-Based Filtering of Electromyographic Signals to Eliminate the Electrocardiographic-Induced Artifacts in Patients with Spinal Cord Injury

    PubMed Central

    Nitzken, Matthew; Bajaj, Nihit; Aslan, Sevda; Gimel’farb, Georgy; Ovechkin, Alexander

    2013-01-01

    Surface Electromyography (EMG) is a standard method used in clinical practice and research to assess motor function in order to help with the diagnosis of neuromuscular pathology in human and animal models. EMG recorded from trunk muscles involved in the activity of breathing can be used as a direct measure of respiratory motor function in patients with spinal cord injury (SCI) or other disorders associated with motor control deficits. However, EMG potentials recorded from these muscles are often contaminated with heart-induced electrocardiographic (ECG) signals. Elimination of these artifacts plays a critical role in the precise measure of the respiratory muscle electrical activity. This study was undertaken to find an optimal approach to eliminate the ECG artifacts from EMG recordings. Conventional global filtering can be used to decrease the ECG-induced artifact. However, this method can alter the EMG signal and changes physiologically relevant information. We hypothesize that, unlike global filtering, localized removal of ECG artifacts will not change the original EMG signals. We develop an approach to remove the ECG artifacts without altering the amplitude and frequency components of the EMG signal by using an externally recorded ECG signal as a mask to locate areas of the ECG spikes within EMG data. These segments containing ECG spikes were decomposed into 128 sub-wavelets by a custom-scaled Morlet Wavelet Transform. The ECG-related sub-wavelets at the ECG spike location were removed and a de-noised EMG signal was reconstructed. Validity of the proposed method was proven using mathematical simulated synthetic signals and EMG obtained from SCI patients. We compare the Root-mean Square Error and the Relative Change in Variance between this method, global, notch and adaptive filters. The results show that the localized wavelet-based filtering has the benefit of not introducing error in the native EMG signal and accurately removing ECG artifacts from EMG signals. PMID:24307920

  3. Local Wavelet-Based Filtering of Electromyographic Signals to Eliminate the Electrocardiographic-Induced Artifacts in Patients with Spinal Cord Injury.

    PubMed

    Nitzken, Matthew; Bajaj, Nihit; Aslan, Sevda; Gimel'farb, Georgy; El-Baz, Ayman; Ovechkin, Alexander

    2013-07-18

    Surface Electromyography (EMG) is a standard method used in clinical practice and research to assess motor function in order to help with the diagnosis of neuromuscular pathology in human and animal models. EMG recorded from trunk muscles involved in the activity of breathing can be used as a direct measure of respiratory motor function in patients with spinal cord injury (SCI) or other disorders associated with motor control deficits. However, EMG potentials recorded from these muscles are often contaminated with heart-induced electrocardiographic (ECG) signals. Elimination of these artifacts plays a critical role in the precise measure of the respiratory muscle electrical activity. This study was undertaken to find an optimal approach to eliminate the ECG artifacts from EMG recordings. Conventional global filtering can be used to decrease the ECG-induced artifact. However, this method can alter the EMG signal and changes physiologically relevant information. We hypothesize that, unlike global filtering, localized removal of ECG artifacts will not change the original EMG signals. We develop an approach to remove the ECG artifacts without altering the amplitude and frequency components of the EMG signal by using an externally recorded ECG signal as a mask to locate areas of the ECG spikes within EMG data. These segments containing ECG spikes were decomposed into 128 sub-wavelets by a custom-scaled Morlet Wavelet Transform. The ECG-related sub-wavelets at the ECG spike location were removed and a de-noised EMG signal was reconstructed. Validity of the proposed method was proven using mathematical simulated synthetic signals and EMG obtained from SCI patients. We compare the Root-mean Square Error and the Relative Change in Variance between this method, global, notch and adaptive filters. The results show that the localized wavelet-based filtering has the benefit of not introducing error in the native EMG signal and accurately removing ECG artifacts from EMG signals.

  4. Gesture recognition by instantaneous surface EMG images

    PubMed Central

    Geng, Weidong; Du, Yu; Jin, Wenguang; Wei, Wentao; Hu, Yu; Li, Jiajun

    2016-01-01

    Gesture recognition in non-intrusive muscle-computer interfaces is usually based on windowed descriptive and discriminatory surface electromyography (sEMG) features because the recorded amplitude of a myoelectric signal may rapidly fluctuate between voltages above and below zero. Here, we present that the patterns inside the instantaneous values of high-density sEMG enables gesture recognition to be performed merely with sEMG signals at a specific instant. We introduce the concept of an sEMG image spatially composed from high-density sEMG and verify our findings from a computational perspective with experiments on gesture recognition based on sEMG images with a classification scheme of a deep convolutional network. Without any windowed features, the resultant recognition accuracy of an 8-gesture within-subject test reached 89.3% on a single frame of sEMG image and reached 99.0% using simple majority voting over 40 frames with a 1,000 Hz sampling rate. Experiments on the recognition of 52 gestures of NinaPro database and 27 gestures of CSL-HDEMG database also validated that our approach outperforms state-of-the-arts methods. Our findings are a starting point for the development of more fluid and natural muscle-computer interfaces with very little observational latency. For example, active prostheses and exoskeletons based on high-density electrodes could be controlled with instantaneous responses. PMID:27845347

  5. Control of movement distance in Parkinson's disease.

    PubMed

    Pfann, K D; Buchman, A S; Comella, C L; Corcos, D M

    2001-11-01

    Studies of electromyographic (EMG) patterns during movements in Parkinson's disease (PD) have often yielded contradictory results, making it impossible to derive a set of rules to explain how muscles are activated to perform different movement tasks. We sought to clarify the changes in modulation of EMG parameters associated with control of movement distance during fast movements in patients with PD. Specifically, we studied surface EMG activity during rapid elbow flexion movements over a wide range of distances (5-72 degrees) in 14 patients with relatively mild symptoms of PD and 14 control subjects of similar age, sex, height, and weight. The PD group exhibited several changes in EMG modulation including impaired modulation of agonist burst duration; increased number of agonist bursts; reduced scaling of agonist EMG magnitude in the more severely impaired subjects; and increased temporal overlap of the antagonist and agonist signals in the most severely impaired subjects. These findings suggest that progressive motor dysfunction in PD is accompanied by increasing deficits in modulating muscle activation. These results help clarify previous disparate and sometimes contradictory results of EMG patterns in subjects with PD. Copyright 2001 Movement Disorder Society.

  6. An EMG-based robot control scheme robust to time-varying EMG signal features.

    PubMed

    Artemiadis, Panagiotis K; Kyriakopoulos, Kostas J

    2010-05-01

    Human-robot control interfaces have received increased attention during the past decades. With the introduction of robots in everyday life, especially in providing services to people with special needs (i.e., elderly, people with impairments, or people with disabilities), there is a strong necessity for simple and natural control interfaces. In this paper, electromyographic (EMG) signals from muscles of the human upper limb are used as the control interface between the user and a robot arm. EMG signals are recorded using surface EMG electrodes placed on the user's skin, making the user's upper limb free of bulky interface sensors or machinery usually found in conventional human-controlled systems. The proposed interface allows the user to control in real time an anthropomorphic robot arm in 3-D space, using upper limb motion estimates based only on EMG recordings. Moreover, the proposed interface is robust to EMG changes with respect to time, mainly caused by muscle fatigue or adjustments of contraction level. The efficiency of the method is assessed through real-time experiments, including random arm motions in the 3-D space with variable hand speed profiles.

  7. Immediate effects of a high-velocity spine manipulation in paraspinal muscles activity of nonspecific chronic low-back pain subjects.

    PubMed

    Bicalho, Eduardo; Setti, João Antônio Palma; Macagnan, Jones; Cano, José Luis Rivas; Manffra, Elisangela Ferretti

    2010-10-01

    High-velocity spinal manipulation is commonly adopted for treating chronic low-back pain (CLBP) and has been associated with changes in muscle activity, but the evidence is controversial. The aim of this study was to analyse the immediate effects of high-velocity spine manipulation on paraspinal activity during flexion-extension trunk movements. Forty nonspecific CLBP patients were randomised into two groups, manipulation (n = 20) and control (n = 20). While the manipulation group received high-velocity spine manipulation at the L4-L5 level, the control group remained lying in the same position. EMG-related variables, perceived pain intensity (100 mm VAS) and finger-floor distance were collected before and after spinal manipulation at the L4-L5 level. EMG surface signals from the right and left paraspinal muscles (L5-S1 level) were acquired during trunk flexion-extension cycles. EMG activity during the static relaxation phase was significantly reduced following intervention for the manipulation group but not for the control group. The extension-phase EMG activity was also reduced after manipulation, but the flexion-phase EMG levels remained unchanged. Accordingly, the percent changes in FRR and ERR were significantly larger for the manipulation group compared to the control. The results suggest that a high-velocity spinal manipulation is able to acutely reduce abnormal EMG activity during the full-flexion static phase and activation during the extension phase. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Effect of a jig on EMG activity in different orofacial pain conditions.

    PubMed

    Bodere, Celine; Woda, Alain

    2008-01-01

    The bite stop (jig) is commonly used in clinical practice. It has been recommended as a simple means to routinely record or provide centric relation closure and, more recently, to reduce migraines and tension-type headaches. However, the reason for the jig effect has yet to be explained. This study tested the hypothesis that it works through a decrease in masticatory muscle activity. The effect of a jig placed on the maxillary anterior teeth was investigated by recording the electromyographic (EMG) activity of the superficial masseter and anterior temporal muscles at postural position and when swallowing on the jig. EMG recordings were obtained from 2 groups of pain patients (myofascial and neuropathic) and from 2 groups of pain-free patients (disc derangement and controls) unaware of the role of dental occlusion treatments. EMG activity in postural position was higher in pain groups than in pain-free groups. The jig strongly but temporarily decreased the postural EMG activity for masseter muscles in all groups except for the neuropathic group and for temporal muscles in the myofascial group. The EMG activity when swallowing with the jig was reduced in control, disc derangement, and myofascial groups; however, EMG "hyperactivity" in the neuropathic pain group seemed to be locked. The decrease of postural EMG activity, especially in the myofascial group, was short lasting and cannot be considered as evidence to support the hypothesis of a long-term muscle relaxation jig effect. However, the results may uphold certain short-term clinical approaches.

  9. Surface EMG signals in very late-stage of Duchenne muscular dystrophy: a case study.

    PubMed

    Lobo-Prat, Joan; Janssen, Mariska M H P; Koopman, Bart F J M; Stienen, Arno H A; de Groot, Imelda J M

    2017-08-29

    Robotic arm supports aim at improving the quality of life for adults with Duchenne muscular dystrophy (DMD) by augmenting their residual functional abilities. A critical component of robotic arm supports is the control interface, as is it responsible for the human-machine interaction. Our previous studies showed the feasibility of using surface electromyography (sEMG) as a control interface to operate robotic arm supports in adults with DMD (22-24 years-old). However, in the biomedical engineering community there is an often raised skepticism on whether adults with DMD at the last stage of their disease have sEMG signals that can be measured and used for control. In this study sEMG signals from Biceps and Triceps Brachii muscles were measured for the first time in a 37 year-old man with DMD (Brooke 6) that lost his arm function 15 years ago. The sEMG signals were measured during maximal and sub-maximal voluntary isometric contractions and evaluated in terms of signal-to-noise ratio and co-activation ratio. Beyond the profound deterioration of the muscles, we found that sEMG signals from both Biceps and Triceps muscles were measurable in this individual, although with a maximum signal amplitude 100 times lower compared to sEMG from healthy subjects. The participant was able to voluntarily modulate the required level of muscle activation during the sub-maximal voluntary isometric contractions. Despite the low sEMG amplitude and a considerable level of muscle co-activation, simulations of an elbow orthosis using the measured sEMG as driving signal indicated that the sEMG signals of the participant had the potential to provide control of elbow movements. To the best of our knowledge this is the first time that sEMG signals from a man with DMD at the last-stage of the disease were measured, analyzed and reported. These findings offer promising perspectives to the use of sEMG as an intuitive and natural control interface for robotic arm supports in adults with DMD until the last stage of the disease.

  10. Effect of vibrotactile feedback on an EMG-based proportional cursor control system.

    PubMed

    Li, Shunchong; Chen, Xingyu; Zhang, Dingguo; Sheng, Xinjun; Zhu, Xiangyang

    2013-01-01

    Surface electromyography (sEMG) has been introduced into the bio-mechatronics systems, however, most of them are lack of the sensory feedback. In this paper, the effect of vibrotactile feedback for a myoelectric cursor control system is investigated quantitatively. Simultaneous and proportional control signals are extracted from EMG using a muscle synergy model. Different types of feedback including vibrotactile feedback and visual feedback are added, assessed and compared with each other. The results show that vibrotactile feedback is capable of improving the performance of EMG-based human machine interface.

  11. Electromyographic decoding of response to command in disorders of consciousness.

    PubMed

    Lesenfants, Damien; Habbal, Dina; Chatelle, Camille; Schnakers, Caroline; Laureys, Steven; Noirhomme, Quentin

    2016-11-15

    To propose a new methodology based on single-trial analysis for detecting residual response to command with EMG in patients with disorders of consciousness (DOC), overcoming the issue of trial dependency and decreasing the influence of a patient's fluctuation of vigilance or arousal over time on diagnostic accuracy. Forty-five patients with DOC (18 with vegetative/unresponsive wakefulness syndrome [VS/UWS], 22 in a minimally conscious state [MCS], 3 who emerged from MCS [EMCS], and 2 with locked-in syndrome [LIS]) and 20 healthy controls were included in the study. Patients were randomly instructed to either move their left or right hand or listen to a control command ("It is a sunny day") while EMG activity was recorded on both arms. Differential EMG activity was detected in all MCS cases displaying reproducible response to command at bedside on multiple assessments, even though only 6 of the 14 individuals presented a behavioral response to command on the day of the EMG assessment. An EMG response was also detected in all EMCS and LIS patients, and 2 MCS patients showing nonreflexive movements without command following at the bedside. None of the VS/UWS presented a response to command with this method. This method allowed us to reliably distinguish between different levels of consciousness and could potentially help decrease diagnostic errors in patients with motor impairment but presenting residual motor activity. © 2016 American Academy of Neurology.

  12. Which nerve conduction parameters can predict spontaneous electromyographic activity in carpal tunnel syndrome?

    PubMed

    Chang, Chia-Wei; Lee, Wei-Ju; Liao, Yi-Chu; Chang, Ming-Hong

    2013-11-01

    We investigate electrodiagnostic markers to determine which parameters are the best predictors of spontaneous electromyographic (EMG) activity in carpal tunnel syndrome (CTS). We enrolled 229 patients with clinically proven and nerve conduction study (NCS)-proven CTS, as well as 100 normal control subjects. All subjects were evaluated using electrodiagnostic techniques, including median distal sensory latencies (DSLs), sensory nerve action potentials (SNAPs), distal motor latencies (DMLs), compound muscle action potentials (CMAPs), forearm median nerve conduction velocities (FMCVs) and wrist-palm motor conduction velocities (W-P MCVs). All CTS patients underwent EMG examination of the abductor pollicis brevis (APB) muscle, and the presence or absence of spontaneous EMG activities was recorded. Normal limits were determined by calculating the means ± 2 standard deviations from the control data. Associations between parameters from the NCS and EMG findings were investigated. In patients with clinically diagnosed CTS, abnormal median CMAP amplitudes were the best predictors of spontaneous activity during EMG examination (p<0.001; OR 36.58; 95% CI 15.85-84.43). If the median CMAP amplitude was ≤ 2.1 mV, the rate of occurrence of spontaneous EMG activity was >95% (positive predictive rate >95%). If the median CMAP amplitude was higher than the normal limit (>4.9 mV), the rate of no spontaneous EMG activity was >94% (negative predictive rate >94%). An abnormal SNAP amplitude was the second best predictor of spontaneous EMG activity (p<0.001; OR 4.13; 95% CI 2.16-7.90), and an abnormal FMCV was the third best predictor (p=0.01; OR 2.10; 95% CI 1.20-3.67). No other nerve conduction parameters had significant power to predict spontaneous activity upon EMG examination. The CMAP amplitudes of the APB are the most powerful predictors of the occurrence of spontaneous EMG activity. Low CMAP amplitudes are strongly associated with spontaneous activity, whereas high CMAP amplitude are less associated with spontaneous activity, implying that needle EMG examination should be recommended for the detection of spontaneous activity in those CTS patients whose NCS reveals CMAP amplitudes between 2.1 mV and the lower normal limit (4.9mV in the present study). Using NCS, electromyographers can predict the presence of spontaneous EMG activity in CTS patients. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  13. Natural mediotrusive contact: does it affect the masticatory and neck EMG activity during tooth grinding?

    PubMed

    Fuentes, Aler D; Martin, Conchita; Bull, Ricardo; Santander, Hugo; Gutiérrez, Mario F; Miralles, Rodolfo

    2015-12-29

    There is scarce knowledge regarding the influence of a natural mediotrusive contact on mandibular and cervical muscular activity. The purpose of this study was to analyze the EMG activity of the anterior temporalis (AT) and sternocleidomastoid (SCM) muscles during awake grinding in healthy subjects with or without a natural mediotrusive occlusal contact. 15 subjects with natural mediotrusive occlusal contact (Group 1) and 15 subjects without natural mediotrusive occlusal contact (Group 2) participated. Bilateral surface EMG activity of AT and SCM muscles was recorded during unilateral eccentric or concentric tooth grinding tasks. EMG activity was normalized against the activity recorded during maximal voluntary clenching in intercuspal position (IP) for AT muscles and during maximal intentional isometric head-neck rotation to each side, for SCM muscles. EMG activity of AT and SCM muscles showed no statistical difference between groups. EMG activity of AT muscle was higher in the working side (WS) than in the non-WS (NWS) in Group 1 during concentric grinding (0.492 vs 0.331, P = 0.047), whereas no difference was observed in Group 2. EMG activity of SCM was similar between working and NWSs in both groups and tasks. Asymmetry indexes (AIs) were not significantly different between groups. These findings in healthy subjects support the assumption that during awake tooth grinding, central nerve control predominates over peripheral inputs, and reinforce the idea of a functional link between the motor-neuron pools that control jaw and neck muscles.

  14. Natural mediotrusive contact: does it affect the masticatory and neck EMG activity during tooth grinding?

    PubMed

    Fuentes, Aler D; Martin, Conchita; Bull, Ricardo; Santander, Hugo; Gutiérrez, Mario F; Miralles, Rodolfo

    2016-07-01

    There is scarce knowledge regarding the influence of a natural mediotrusive contact on mandibular and cervical muscular activity. The purpose of this study was to analyze the EMG activity of the anterior temporalis (AT) and sternocleidomastoid (SCM) muscles during awake grinding in healthy subjects with or without a natural mediotrusive occlusal contact. Fifteen subjects with natural mediotrusive occlusal contact (Group 1) and 15 subjects without natural mediotrusive occlusal contact (Group 2) participated. Bilateral surface EMG activity of AT and SCM muscles was recorded during unilateral eccentric or concentric tooth grinding tasks. EMG activity was normalized against the activity recorded during maximal voluntary clenching in intercuspal position (IP) for AT muscles and during maximal intentional isometric head-neck rotation to each side, for SCM muscles. EMG activity of AT and SCM muscles showed no statistical difference between groups. EMG activity of AT muscle was higher in the working side (WS) than in the non-WS (NWS) in Group 1 during concentric grinding (0.492 vs 0.331, p = 0.047), whereas no difference was observed in Group 2. EMG activity of SCM was similar between working and NWSs in both groups and tasks. Asymmetry indexes (AIs) were not significantly different between groups. These findings in healthy subjects support the assumption that during awake tooth grinding, central nerve control predominates over peripheral inputs, and reinforce the idea of a functional link between the motor-neuron pools that control jaw and neck muscles.

  15. An equilibrium-point model of electromyographic patterns during single-joint movements based on experimentally reconstructed control signals.

    PubMed

    Latash, M L; Goodman, S R

    1994-01-01

    The purpose of this work has been to develop a model of electromyographic (EMG) patterns during single-joint movements based on a version of the equilibrium-point hypothesis, a method for experimental reconstruction of the joint compliant characteristics, the dual-strategy hypothesis, and a kinematic model of movement trajectory. EMG patterns are considered emergent properties of hypothetical control patterns that are equally affected by the control signals and peripheral feedback reflecting actual movement trajectory. A computer model generated the EMG patterns based on simulated movement kinematics and hypothetical control signals derived from the reconstructed joint compliant characteristics. The model predictions have been compared to published recordings of movement kinematics and EMG patterns in a variety of movement conditions, including movements over different distances, at different speeds, against different-known inertial loads, and in conditions of possible unexpected decrease in the inertial load. Changes in task parameters within the model led to simulated EMG patterns qualitatively similar to the experimentally recorded EMG patterns. The model's predictive power compares it favourably to the existing models of the EMG patterns. Copyright © 1994. Published by Elsevier Ltd.

  16. Analysis of EMG Signals in Aggressive and Normal Activities by Using Higher-Order Spectra

    PubMed Central

    Sezgin, Necmettin

    2012-01-01

    The analysis and classification of electromyography (EMG) signals are very important in order to detect some symptoms of diseases, prosthetic arm/leg control, and so on. In this study, an EMG signal was analyzed using bispectrum, which belongs to a family of higher-order spectra. An EMG signal is the electrical potential difference of muscle cells. The EMG signals used in the present study are aggressive or normal actions. The EMG dataset was obtained from the machine learning repository. First, the aggressive and normal EMG activities were analyzed using bispectrum and the quadratic phase coupling of each EMG episode was determined. Next, the features of the analyzed EMG signals were fed into learning machines to separate the aggressive and normal actions. The best classification result was 99.75%, which is sufficient to significantly classify the aggressive and normal actions. PMID:23193379

  17. Muscle Performance Investigated With a Novel Smart Compression Garment Based on Pressure Sensor Force Myography and Its Validation Against EMG.

    PubMed

    Belbasis, Aaron; Fuss, Franz Konstantin

    2018-01-01

    Muscle activity and fatigue performance parameters were obtained and compared between both a smart compression garment and the gold-standard, a surface electromyography (EMG) system during high-speed cycling in seven participants. The smart compression garment, based on force myography (FMG), comprised of integrated pressure sensors that were sandwiched between skin and garment, located on five thigh muscles. The muscle activity was assessed by means of crank cycle diagrams (polar plots) that displayed the muscle activity relative to the crank cycle. The fatigue was assessed by means of the median frequency of the power spectrum of the EMG signal; the fractal dimension (FD) of the EMG signal; and the FD of the pressure signal. The smart compression garment returned performance parameters (muscle activity and fatigue) comparable to the surface EMG. The major differences were that the EMG measured the electrical activity, whereas the pressure sensor measured the mechanical activity. As such, there was a phase shift between electrical and mechanical signals, with the electrical signals preceding the mechanical counterparts in most cases. This is specifically pronounced in high-speed cycling. The fatigue trend over the duration of the cycling exercise was clearly reflected in the fatigue parameters (FDs and median frequency) obtained from pressure and EMG signals. The fatigue parameter of the pressure signal (FD) showed a higher time dependency ( R 2 = 0.84) compared to the EMG signal. This reflects that the pressure signal puts more emphasis on the fatigue as a function of time rather than on the origin of fatigue (e.g., peripheral or central fatigue). In light of the high-speed activity results, caution should be exerted when using data obtained from EMG for biomechanical models. In contrast to EMG data, activity data obtained from FMG are considered more appropriate and accurate as an input for biomechanical modeling as they truly reflect the mechanical muscle activity. In summary, the smart compression garment based on FMG is a valid alternative to EMG-garments and provides more accurate results at high-speed activity (avoiding the electro-mechanical delay), as well as clearly measures the progress of muscle fatigue over time.

  18. Muscle Performance Investigated With a Novel Smart Compression Garment Based on Pressure Sensor Force Myography and Its Validation Against EMG

    PubMed Central

    Belbasis, Aaron; Fuss, Franz Konstantin

    2018-01-01

    Muscle activity and fatigue performance parameters were obtained and compared between both a smart compression garment and the gold-standard, a surface electromyography (EMG) system during high-speed cycling in seven participants. The smart compression garment, based on force myography (FMG), comprised of integrated pressure sensors that were sandwiched between skin and garment, located on five thigh muscles. The muscle activity was assessed by means of crank cycle diagrams (polar plots) that displayed the muscle activity relative to the crank cycle. The fatigue was assessed by means of the median frequency of the power spectrum of the EMG signal; the fractal dimension (FD) of the EMG signal; and the FD of the pressure signal. The smart compression garment returned performance parameters (muscle activity and fatigue) comparable to the surface EMG. The major differences were that the EMG measured the electrical activity, whereas the pressure sensor measured the mechanical activity. As such, there was a phase shift between electrical and mechanical signals, with the electrical signals preceding the mechanical counterparts in most cases. This is specifically pronounced in high-speed cycling. The fatigue trend over the duration of the cycling exercise was clearly reflected in the fatigue parameters (FDs and median frequency) obtained from pressure and EMG signals. The fatigue parameter of the pressure signal (FD) showed a higher time dependency (R2 = 0.84) compared to the EMG signal. This reflects that the pressure signal puts more emphasis on the fatigue as a function of time rather than on the origin of fatigue (e.g., peripheral or central fatigue). In light of the high-speed activity results, caution should be exerted when using data obtained from EMG for biomechanical models. In contrast to EMG data, activity data obtained from FMG are considered more appropriate and accurate as an input for biomechanical modeling as they truly reflect the mechanical muscle activity. In summary, the smart compression garment based on FMG is a valid alternative to EMG-garments and provides more accurate results at high-speed activity (avoiding the electro-mechanical delay), as well as clearly measures the progress of muscle fatigue over time. PMID:29725306

  19. Quantitative differences among EMG activities of muscles innervated by subpopulations of hypoglossal and upper spinal motoneurons during non-REM sleep - REM sleep transitions: a window on neural processes in the sleeping brain.

    PubMed

    Rukhadze, I; Kamani, H; Kubin, L

    2011-12-01

    In the rat, a species widely used to study the neural mechanisms of sleep and motor control, lingual electromyographic activity (EMG) is minimal during non-rapid eye movement (non-REM) sleep and then phasic twitches gradually increase after the onset of REM sleep. To better characterize the central neural processes underlying this pattern, we quantified EMG of muscles innervated by distinct subpopulations of hypoglossal motoneurons and nuchal (N) EMG during transitions from non-REM sleep to REM sleep. In 8 chronically instrumented rats, we recorded cortical EEG, EMG at sites near the base of the tongue where genioglossal and intrinsic muscle fibers predominate (GG-I), EMG of the geniohyoid (GH) muscle, and N EMG. Sleep-wake states were identified and EMGs quantified relative to their mean levels in wakefulness in successive 10 s epochs. During non-REM sleep, the average EMG levels differed among the three muscles, with the order being N>GH>GG-I. During REM sleep, due to different magnitudes of phasic twitches, the order was reversed to GG-I>GH>N. GG-I and GH exhibited a gradual increase of twitching that peaked at 70-120 s after the onset of REM sleep and then declined if the REM sleep episode lasted longer. We propose that a common phasic excitatory generator impinges on motoneuron pools that innervate different muscles, but twitching magnitudes are different due to different levels of tonic motoneuronal hyperpolarization. We also propose that REM sleep episodes of average durations are terminated by intense activity of the central generator of phasic events, whereas long REM sleep episodes end as a result of a gradual waning of the tonic disfacilitatory and inhibitory processes.

  20. Uses of electromyography in dentistry: An overview with meta-analysis.

    PubMed

    Nishi, Shamima Easmin; Basri, Rehana; Alam, Mohammad Khursheed

    2016-01-01

    The purpose of this study was to review the uses of electromyography (EMG) in dentistry in the last few years in related research. EMG is an advanced technique to record and evaluate muscle activity. In the previous days, EMG was only used for medical sciences, but now EMG playing a tremendous role in medical as well as dental sector. Several electronic databases such as Google Scholar, PubMed, Science Direct, and Web of Science were systematically searched for studies published until July 2015. EMG can be used in both diagnosis and treatment purpose to record neuromuscular activity. In dentistry, we can utilize EMG to evaluate muscular activity in function such as chewing and biting or parafunctional activities such as clenching and bruxism. In case of TMJ and myofascial pain disorders, EMG widely is used in the last few years. EMG is one of biometric tests that occur in the modern evidence-based dentistry practice.

  1. Real-time estimation of FES-induced joint torque with evoked EMG : Application to spinal cord injured patients.

    PubMed

    Li, Zhan; Guiraud, David; Andreu, David; Benoussaad, Mourad; Fattal, Charles; Hayashibe, Mitsuhiro

    2016-06-22

    Functional electrical stimulation (FES) is a neuroprosthetic technique for restoring lost motor function of spinal cord injured (SCI) patients and motor-impaired subjects by delivering short electrical pulses to their paralyzed muscles or motor nerves. FES induces action potentials respectively on muscles or nerves so that muscle activity can be characterized by the synchronous recruitment of motor units with its compound electromyography (EMG) signal is called M-wave. The recorded evoked EMG (eEMG) can be employed to predict the resultant joint torque, and modeling of FES-induced joint torque based on eEMG is an essential step to provide necessary prediction of the expected muscle response before achieving accurate joint torque control by FES. Previous works on FES-induced torque tracking issues were mainly based on offline analysis. However, toward personalized clinical rehabilitation applications, real-time FES systems are essentially required considering the subject-specific muscle responses against electrical stimulation. This paper proposes a wireless portable stimulator used for estimating/predicting joint torque based on real time processing of eEMG. Kalman filter and recurrent neural network (RNN) are embedded into the real-time FES system for identification and estimation. Prediction results on 3 able-bodied subjects and 3 SCI patients demonstrate promising performances. As estimators, both Kalman filter and RNN approaches show clinically feasible results on estimation/prediction of joint torque with eEMG signals only, moreover RNN requires less computational requirement. The proposed real-time FES system establishes a platform for estimating and assessing the mechanical output, the electromyographic recordings and associated models. It will contribute to open a new modality for personalized portable neuroprosthetic control toward consolidated personal healthcare for motor-impaired patients.

  2. Effects of Patient-Controlled Epidural Analgesia on Uterine Electromyography During Spontaneous Onset of Labor in Term Nulliparous Women.

    PubMed

    Ye, Yuanjuan; Song, Xingrong; Liu, Lei; Shi, Shao-Qing; Garfield, Robert E; Zhang, Guozheng; Liu, Huishu

    2015-11-01

    To investigate the effect of patient-controlled epidural analgesia (PCEA) on uterine electromyography (EMG) activity in term pregnant women during labor. Nulliparous pregnant women in spontaneous term labor (N = 30) were enrolled (PCEA group, n = 20 and control group, n = 10). Five time periods (30 minutes each) were defined for noninvasive abdominal recordings and analysis of uterine EMG activity, that is, period I: before PCEA treatment with 2-cm cervical dilation; periods II to IV: each period successively at 30, 60, and 120 minutes after PCEA; and period V: second stage of labor with cervix at 10 cm dilation. Control patients without PCEA were monitored during the same times. The number of bursts/30 min, power density spectrum peak frequency, mean amplitude, and duration of uterine EMG bursts were measured to assess uterine EMG activity. Maternal, fetal, and labor characteristics were also recorded. Data were analyzed by analysis of variance followed by other tests. Electromyography parameters are significantly lower (P < .001) after PCEA (periods II to IV) compared to controls but similar between groups by period V (P > .05). Also, patients with PCEA have a slower rate of cervical dilation (P < .003, period IV only) and longer labor in both stage 1 and stage 2 (P < .05). All patients have similar (P > .05) positive labor outcomes. Patient-controlled epidural analgesia initially suppresses uterine EMG and slows cervical dilation thereby prolonging labor. However, the EMG activity recovers with labor progress with no effects on delivery outcomes. © The Author(s) 2015.

  3. Electromyographic Control of a Hands-Free Electrolarynx Using Neck Strap Muscles

    ERIC Educational Resources Information Center

    Kubert, Heather L.; Stepp, Cara E.; Zeitels, Steven M.; Gooey, John E.; Walsh, Michael J.; Prakash, S. R.; Hillman, Robert E.; Heaton, James T.

    2009-01-01

    Three individuals with total laryngectomy were studied for their ability to control a hands-free electrolarynx (EL) using neck surface electromyography (EMG) for on/off and pitch modulation. The laryngectomy surgery of participants was modified to preserve neck strap musculature for EMG-based EL control (EMG-EL), with muscles on one side…

  4. Analysis of surface EMG baseline for detection of hidden muscle activity

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Zhou, Ping

    2014-02-01

    Objective. This study explored the feasibility of detecting hidden muscle activity in surface electromyogram (EMG) baseline. Approach. Power spectral density (PSD) analysis and multi-scale entropy (MSE) analysis were used. Both analyses were applied to computer simulations of surface EMG baseline with the presence (representing activity data) or absence (representing reference data) of hidden muscle activity, as well as surface electrode array EMG baseline recordings of healthy control and amyotrophic lateral sclerosis (ALS) subjects. Main results. Although the simulated reference data and the activity data yielded no distinguishable difference in the time domain, they demonstrated a significant difference in the frequency and signal complexity domains with the PSD and MSE analyses. For a comparison using pooled data, such a difference was also observed when the PSD and MSE analyses were applied to surface electrode array EMG baseline recordings of healthy control and ALS subjects, which demonstrated no distinguishable difference in the time domain. Compared with the PSD analysis, the MSE analysis appeared to be more sensitive for detecting the difference in surface EMG baselines between the two groups. Significance. The findings implied the presence of a hidden muscle activity in surface EMG baseline recordings from the ALS subjects. To promote the presented analysis as a useful diagnostic or investigatory tool, future studies are necessary to assess the pathophysiological nature or origins of the hidden muscle activity, as well as the baseline difference at the individual subject level.

  5. Analysis of Surface EMG Baseline for Detection of Hidden Muscle Activity

    PubMed Central

    Zhang, Xu; Zhou, Ping

    2014-01-01

    Objective This study explored the feasibility of detecting hidden muscle activity in surface electromyogram (EMG) baseline. Approach Power spectral density (PSD) analysis and multi-scale entropy (MSE) analysis were used respectively. Both analyses were applied to computer simulations of surface EMG baseline with presence (representing activity data) or absence (representing reference data) of hidden muscle activity, as well as surface electrode array EMG baseline recordings of healthy control and amyotrophic lateral sclerosis (ALS) subjects. Main results Although the simulated reference data and the activity data yielded no distinguishable difference in the time domain, they demonstrated a significant difference in the frequency and signal complexity domains with the PSD and MSE analyses. For a comparison using pooled data, such a difference was also observed when the PSD and MSE analyses were applied to surface electrode array EMG baseline recordings of healthy control and ALS subjects, which demonstrated no distinguishable difference in the time domain. Compared with the PSD analysis, the MSE analysis appeared to be more sensitive for detecting the difference in surface EMG baselines between the two groups. Significance The findings implied presence of hidden muscle activity in surface EMG baseline recordings from the ALS subjects. To promote the presented analysis as a useful diagnostic or investigatory tool, future studies are necessary to assess the pathophysiological nature or origins of the hidden muscle activity, as well as the baseline difference at the individual subject level. PMID:24445526

  6. Human facial neural activities and gesture recognition for machine-interfacing applications.

    PubMed

    Hamedi, M; Salleh, Sh-Hussain; Tan, T S; Ismail, K; Ali, J; Dee-Uam, C; Pavaganun, C; Yupapin, P P

    2011-01-01

    The authors present a new method of recognizing different human facial gestures through their neural activities and muscle movements, which can be used in machine-interfacing applications. Human-machine interface (HMI) technology utilizes human neural activities as input controllers for the machine. Recently, much work has been done on the specific application of facial electromyography (EMG)-based HMI, which have used limited and fixed numbers of facial gestures. In this work, a multipurpose interface is suggested that can support 2-11 control commands that can be applied to various HMI systems. The significance of this work is finding the most accurate facial gestures for any application with a maximum of eleven control commands. Eleven facial gesture EMGs are recorded from ten volunteers. Detected EMGs are passed through a band-pass filter and root mean square features are extracted. Various combinations of gestures with a different number of gestures in each group are made from the existing facial gestures. Finally, all combinations are trained and classified by a Fuzzy c-means classifier. In conclusion, combinations with the highest recognition accuracy in each group are chosen. An average accuracy >90% of chosen combinations proved their ability to be used as command controllers.

  7. Multimodal Neuroelectric Interface Development

    NASA Technical Reports Server (NTRS)

    Trejo, Leonard J.; Wheeler, Kevin R.; Jorgensen, Charles C.; Totah, Joseph (Technical Monitor)

    2001-01-01

    This project aims to improve performance of NASA missions by developing multimodal neuroelectric technologies for augmented human-system interaction. Neuroelectric technologies will add completely new modes of interaction that operate in parallel with keyboards, speech, or other manual controls, thereby increasing the bandwidth of human-system interaction. We recently demonstrated the feasibility of real-time electromyographic (EMG) pattern recognition for a direct neuroelectric human-computer interface. We recorded EMG signals from an elastic sleeve with dry electrodes, while a human subject performed a range of discrete gestures. A machine-teaming algorithm was trained to recognize the EMG patterns associated with the gestures and map them to control signals. Successful applications now include piloting two Class 4 aircraft simulations (F-15 and 757) and entering data with a "virtual" numeric keyboard. Current research focuses on on-line adaptation of EMG sensing and processing and recognition of continuous gestures. We are also extending this on-line pattern recognition methodology to electroencephalographic (EEG) signals. This will allow us to bypass muscle activity and draw control signals directly from the human brain. Our system can reliably detect P-rhythm (a periodic EEG signal from motor cortex in the 10 Hz range) with a lightweight headset containing saline-soaked sponge electrodes. The data show that EEG p-rhythm can be modulated by real and imaginary motions. Current research focuses on using biofeedback to train of human subjects to modulate EEG rhythms on demand, and to examine interactions of EEG-based control with EMG-based and manual control. Viewgraphs on these neuroelectric technologies are also included.

  8. Muscle-tendon units localization and activation level analysis based on high-density surface EMG array and NMF algorithm

    NASA Astrophysics Data System (ADS)

    Huang, Chengjun; Chen, Xiang; Cao, Shuai; Zhang, Xu

    2016-12-01

    Objective. Some skeletal muscles can be subdivided into smaller segments called muscle-tendon units (MTUs). The purpose of this paper is to propose a framework to locate the active region of the corresponding MTUs within a single skeletal muscle and to analyze the activation level varieties of different MTUs during a dynamic motion task. Approach. Biceps brachii and gastrocnemius were selected as targeted muscles and three dynamic motion tasks were designed and studied. Eight healthy male subjects participated in the data collection experiments, and 128-channel surface electromyographic (sEMG) signals were collected with a high-density sEMG electrode grid (a grid consists of 8 rows and 16 columns). Then the sEMG envelopes matrix was factorized into a matrix of weighting vectors and a matrix of time-varying coefficients by nonnegative matrix factorization algorithm. Main results. The experimental results demonstrated that the weightings vectors, which represent invariant pattern of muscle activity across all channels, could be used to estimate the location of MTUs and the time-varying coefficients could be used to depict the variation of MTUs activation level during dynamic motion task. Significance. The proposed method provides one way to analyze in-depth the functional state of MTUs during dynamic tasks and thus can be employed on multiple noteworthy sEMG-based applications such as muscle force estimation, muscle fatigue research and the control of myoelectric prostheses. This work was supported by the National Nature Science Foundation of China under Grant 61431017 and 61271138.

  9. Prediction of isometric motor tasks and effort levels based on high-density EMG in patients with incomplete spinal cord injury

    NASA Astrophysics Data System (ADS)

    Jordanić, Mislav; Rojas-Martínez, Mónica; Mañanas, Miguel Angel; Francesc Alonso, Joan

    2016-08-01

    Objective. The development of modern assistive and rehabilitation devices requires reliable and easy-to-use methods to extract neural information for control of devices. Group-specific pattern recognition identifiers are influenced by inter-subject variability. Based on high-density EMG (HD-EMG) maps, our research group has already shown that inter-subject muscle activation patterns exist in a population of healthy subjects. The aim of this paper is to analyze muscle activation patterns associated with four tasks (flexion/extension of the elbow, and supination/pronation of the forearm) at three different effort levels in a group of patients with incomplete Spinal Cord Injury (iSCI). Approach. Muscle activation patterns were evaluated by the automatic identification of these four isometric tasks along with the identification of levels of voluntary contractions. Two types of classifiers were considered in the identification: linear discriminant analysis and support vector machine. Main results. Results show that performance of classification increases when combining features extracted from intensity and spatial information of HD-EMG maps (accuracy = 97.5%). Moreover, when compared to a population with injuries at different levels, a lower variability between activation maps was obtained within a group of patients with similar injury suggesting stronger task-specific and effort-level-specific co-activation patterns, which enable better prediction results. Significance. Despite the challenge of identifying both the four tasks and the three effort levels in patients with iSCI, promising results were obtained which support the use of HD-EMG features for providing useful information regarding motion and force intention.

  10. The combined action of a passive exoskeleton and an EMG-controlled neuroprosthesis for upper limb stroke rehabilitation: First results of the RETRAINER project.

    PubMed

    Ambrosini, E; Ferrante, S; Zajc, J; Bulgheroni, M; Baccinelli, W; d'Amico, E; Schauer, T; Wiesener, C; Russold, M; Gfoehler, M; Puchinger, M; Weber, M; Becker, S; Krakow, K; Rossini, M; Proserpio, D; Gasperini, G; Molteni, F; Ferrigno, G; Pedrocchi, A

    2017-07-01

    The combined use of Functional Electrical Stimulation (FES) and robotic technologies is advocated to improve rehabilitation outcomes after stroke. This work describes an arm rehabilitation system developed within the European project RETRAINER. The system consists of a passive 4-degrees-of-freedom exoskeleton equipped with springs to provide gravity compensation and electromagnetic brakes to hold target positions. FES is integrated in the system to provide additional support to the most impaired muscles. FES is triggered based on the volitional EMG signal of the same stimulated muscle; in order to encourage the active involvement of the patient the volitional EMG is also monitored throughout the task execution and based on it a happy or sad emoji is visualized at the end of each task. The control interface control of the system provides a GUI and multiple software tools to organize rehabilitation exercises and monitor rehabilitation progress. The functionality and the usability of the system was evaluated on four stroke patients. All patients were able to use the system and judged positively its wearability and the provided support. They were able to trigger the stimulation based on their residual muscle activity and provided different levels of active involvement in the exercise, in agreement with their level of impairment. A randomized controlled trial aimed at evaluating the effectiveness of the RETRAINER system to improve arm function after stroke is currently ongoing.

  11. Persistence of improvements in postural strategies following motor control training in people with recurrent low back pain.

    PubMed

    Tsao, Henry; Hodges, Paul W

    2008-08-01

    This study investigated long-term effects of training on postural control using the model of deficits in activation of transversus abdominis (TrA) in people with recurrent low back pain (LBP). Nine volunteers with LBP attended four sessions for assessment and/or training (initial, two weeks, four weeks and six months). Training of repeated isolated voluntary TrA contractions were performed at the initial and two-week session with feedback from real-time ultrasound imaging. Home program involved training twice daily for four weeks. Electromyographic activity (EMG) of trunk and deltoid muscles was recorded with surface and fine-wire electrodes. Rapid arm movement and walking were performed at each session, and immediately after training on the first two sessions. Onset of trunk muscle activation relative to prime mover deltoid during arm movements, and the coefficient of variation (CV) of EMG during averaged gait cycle were calculated. Over four weeks of training, onset of TrA EMG was earlier during arm movements and CV of TrA EMG was reduced (consistent with more sustained EMG activity). Changes were retained at six months follow-up (p<0.05). These results show persistence of motor control changes following training and demonstrate that this training approach leads to motor learning of automatic postural control strategies.

  12. The course of lung inflation alters the central pattern of tracheobronchial cough in cat-The evidence for volume feedback during cough.

    PubMed

    Poliacek, Ivan; Simera, Michal; Veternik, Marcel; Kotmanova, Zuzana; Pitts, Teresa; Hanacek, Jan; Plevkova, Jana; Machac, Peter; Visnovcova, Nadezda; Misek, Jakub; Jakus, Jan

    2016-07-15

    The effect of volume-related feedback and output airflow resistance on the cough motor pattern was studied in 17 pentobarbital anesthetized spontaneously-breathing cats. Lung inflation during tracheobronchial cough was ventilator controlled and triggered by the diaphragm electromyographic (EMG) signal. Altered lung inflations during cough resulted in modified cough motor drive and temporal features of coughing. When tidal volume was delivered (via the ventilator) there was a significant increase in the inspiratory and expiratory cough drive (esophageal pressures and EMG amplitudes), inspiratory phase duration (CTI), total cough cycle duration, and the duration of all cough related EMGs (Tactive). When the cough volume was delivered (via the ventilator) during the first half of inspiratory period (at CTI/2-early over inflation), there was a significant reduction in the inspiratory and expiratory EMG amplitude, peak inspiratory esophageal pressure, CTI, and the overlap between inspiratory and expiratory EMG activity. Additionally, there was significant increase in the interval between the maximum inspiratory and expiratory EMG activity and the active portion of the expiratory phase (CTE1). Control inflations coughs and control coughs with additional expiratory resistance had increased maximum expiratory esophageal pressure and prolonged CTE1, the duration of cough abdominal activity, and Tactive. There was no significant difference in control coughing and/or control coughing when sham ventilation was employed. In conclusion, modified lung inflations during coughing and/or additional expiratory airflow resistance altered the spatio-temporal features of cough motor pattern via the volume related feedback mechanism similar to that in breathing. Copyright © 2016. Published by Elsevier B.V.

  13. New method of neck surface electromyography for the evaluation of tongue-lifting activity.

    PubMed

    Manda, Y; Maeda, N; Pan, Q; Sugimoto, K; Hashimoto, Y; Tanaka, Y; Kodama, N; Minagi, S

    2016-06-01

    Elevation of the posterior part of the tongue is important for normal deglutition and speech. The purpose of this study was to develop a new surface electromyography (EMG) method to non-invasively and objectively evaluate activity in the muscles that control lifting movement in the posterior tongue. Neck surface EMG (N-EMG) was recorded using differential surface electrodes placed on the neck, 1 cm posterior to the posterior border of the mylohyoid muscle on a line orthogonal to the lower border of the mandible. Experiment 1: Three healthy volunteers (three men, mean age 37·7 years) participated in an evaluation of detection method of the posterior tongue lifting up movement. EMG recordings from the masseter, temporalis and submental muscles and N-EMG revealed that i) N-EMG was not affected by masseter muscle EMG and ii) N-EMG activity was not observed during simple jaw opening and tongue protrusion, revealing the functional difference between submental surface EMG and N-EMG. Experiment 2: Seven healthy volunteers (six men and one woman, mean age 27·9 years) participated in a quantitative evaluation of muscle activity. Tongue-lifting tasks were perfor-med, exerting a prescribed force of 20, 50, 100 and 150 gf with visual feedback. For all subjects, a significant linear relationship was observed bet-ween the tongue-lifting force and N-EMG activity (P < 0·01). These findings indicate that N-EMG can be used to quantify the force of posterior tongue lifting and could be useful to evaluate the effect of tongue rehabilitation in future studies. © 2016 John Wiley & Sons Ltd.

  14. Value of Free-Run Electromyographic Monitoring of Extraocular Cranial Nerves during Expanded Endonasal Surgery (EES) of the Skull Base.

    PubMed

    Thirumala, Parthasarathy D; Mohanraj, Santhosh Kumar; Habeych, Miguel; Wichman, Kelley; Chang, Yue-Fang; Gardner, Paul; Snyderman, Carl; Crammond, Donald J; Balzer, Jeffrey

    2013-06-01

    Objective To evaluate the value of free-run electromyography (f-EMG) monitoring of extraocular cranial nerves (EOCN) III, IV, and VI during expanded endonasal surgery (EES) of the skull base in reducing iatrogenic cranial nerve (CN) deficits. Design We retrospectively identified 200 patients out of 990 who had at least one EOCN monitored during EES. We further separated patients into groups according to the specific CN monitored. In each CN group, we classified patients who had significant (SG) f-EMG activity as Group I and those who did not as Group II. Results A total of 696 EOCNs were monitored. The number of muscles supplied by EOCNs that had SG f-EMG activity was 88, including CN III = 46, CN IV = 21, and CN VI = 21. There were two deficits involving CN VI in patients who had SG f-EMG activity during surgery. There were 14 deficits observed, including CN III = 3, CN IV = 2, and CN VI = 9 in patients who did not have SG f-EMG activity during surgery. Conclusions f-EMG monitoring of EOCN during EES can be useful in identifying the location of the nerve. It seems to have limited value in predicting postoperative neurological deficits. Future studies to evaluate the EMG of EOCN during EES need to be done with both f-EMG and triggered EMG.

  15. Value of Free-Run Electromyographic Monitoring of Extraocular Cranial Nerves during Expanded Endonasal Surgery (EES) of the Skull Base

    PubMed Central

    Thirumala, Parthasarathy D.; Mohanraj, Santhosh Kumar; Habeych, Miguel; Wichman, Kelley; Chang, Yue-fang; Gardner, Paul; Snyderman, Carl; Crammond, Donald J.; Balzer, Jeffrey

    2013-01-01

    Objective To evaluate the value of free-run electromyography (f-EMG) monitoring of extraocular cranial nerves (EOCN) III, IV, and VI during expanded endonasal surgery (EES) of the skull base in reducing iatrogenic cranial nerve (CN) deficits. Design We retrospectively identified 200 patients out of 990 who had at least one EOCN monitored during EES. We further separated patients into groups according to the specific CN monitored. In each CN group, we classified patients who had significant (SG) f-EMG activity as Group I and those who did not as Group II. Results A total of 696 EOCNs were monitored. The number of muscles supplied by EOCNs that had SG f-EMG activity was 88, including CN III = 46, CN IV = 21, and CN VI = 21. There were two deficits involving CN VI in patients who had SG f-EMG activity during surgery. There were 14 deficits observed, including CN III = 3, CN IV = 2, and CN VI = 9 in patients who did not have SG f-EMG activity during surgery. Conclusions f-EMG monitoring of EOCN during EES can be useful in identifying the location of the nerve. It seems to have limited value in predicting postoperative neurological deficits. Future studies to evaluate the EMG of EOCN during EES need to be done with both f-EMG and triggered EMG. PMID:23943720

  16. Effects of innovative virtual reality game and EMG biofeedback on neuromotor control in cerebral palsy.

    PubMed

    Yoo, Ji Won; Lee, Dong Ryul; Sim, Yon Ju; You, Joshua H; Kim, Cheol J

    2014-01-01

    Sensorimotor control dysfunction or dyskinesia is a hallmark of neuromuscular impairment in children with cerebral palsy (CP), and is often implicated in reaching and grasping deficiencies due to a neuromuscular imbalance between the triceps and biceps. To mitigate such muscle imbalances, an innovative electromyography (EMG)-virtual reality (VR) biofeedback system were designed to provide accurate information about muscle activation and motivation. However, the clinical efficacy of this approach has not yet been determined in children with CP. The purpose of this study was to investigate the effectiveness of a combined EMG biofeedback and VR (EMG-VR biofeedback) intervention system to improve muscle imbalance between triceps and biceps during reaching movements in children with spastic CP. Raw EMG signals were recorded at a sampling rate of 1,000 Hz, band-pass filtered between 20-450 Hz, and notch-filtered at 60 Hz during elbow flexion and extension movements. EMG data were then processed using MyoResearch Master Edition 1.08 XP software. All participants underwent both interventions consisting of the EMG-VR biofeedback combination and EMG biofeedback alone. EMG analysis resulted in improved muscle activation in the underactive triceps while decreasing overactive or hypertonic biceps in the EMG-VR biofeedback compared with EMG biofeedback. The muscle imbalance ratio between the triceps and biceps was consistently improved. The present study is the first clinical trial to provide evidence for the additive benefits of VR intervention for enhancing the upper limb function of children with spastic CP.

  17. Trunk postural adjustments: Medium-term reliability and correlation with changes of clinical outcomes following an 8-week lumbar stabilization exercise program.

    PubMed

    Boucher, Jean-Alexandre; Preuss, Richard; Henry, Sharon M; Nugent, Marilee; Larivière, Christian

    2018-04-22

    Low back pain (LBP) has been previously associated with delayed anticipatory postural adjustments (APAs) determined by trunk muscle activation. Lumbar stabilization exercise programs (LSEP) for patients with LBP may restore the trunk neuromuscular control of the lumbar spine, and normalize APAs. This exploratory study aimed at testing the reliability of EMG and kinematics-based postural adjustment measures over an 8-week interval, assessing their sensitivity to LBP status and treatment and examining their relationship with clinical outcomes. Muscle activation of 10 trunk muscles, using surface electromyography (EMG), and lumbar angular kinematics were recorded during a rapid arm-raising/lowering task. Patients with LBP were tested before and after an 8-week LSEP. Healthy controls receiving no treatment were assessed over the same interval to determine the reliability of the measures and act as a control group at baseline. Muscle activation onsets and reactive range of motion, range of velocities and accelerations were assessed for between group differences at baseline and pre- to post-treatment effects within patients with LBP using t-tests. Correlations between these dependent variables and the change of clinical outcomes (pain, disability) over treatment were also explored. Kinematic-based measures showed comparable reliability to EMG-based measures. Between-group differences were found in lumbar lateral flexion ROM at baseline (patients < controls). In the patients with LBP, lateral flexion velocity and acceleration significantly increased following the LSEP. Correlational analyses revealed that lumbar angular kinematics were more sensitive to changes in pain intensity following the LSEP compared to EMG measures. These findings are interpreted in from the perspective of guarding behaviors and lumbar stability hypotheses. Future clinical trials are needed to target patients with and without delayed APAs at baseline and to explore the sensitivity of different outcome measures related to APAs. Different tasks more challenging to postural stability may need to be explored to more effectively reveal APA dysfunction. Copyright © 2018. Published by Elsevier Ltd.

  18. Decoding subtle forearm flexions using fractal features of surface electromyogram from single and multiple sensors.

    PubMed

    Arjunan, Sridhar Poosapadi; Kumar, Dinesh Kant

    2010-10-21

    Identifying finger and wrist flexion based actions using a single channel surface electromyogram (sEMG) can lead to a number of applications such as sEMG based controllers for near elbow amputees, human computer interface (HCI) devices for elderly and for defence personnel. These are currently infeasible because classification of sEMG is unreliable when the level of muscle contraction is low and there are multiple active muscles. The presence of noise and cross-talk from closely located and simultaneously active muscles is exaggerated when muscles are weakly active such as during sustained wrist and finger flexion. This paper reports the use of fractal properties of sEMG to reliably identify individual wrist and finger flexion, overcoming the earlier shortcomings. SEMG signal was recorded when the participant maintained pre-specified wrist and finger flexion movements for a period of time. Various established sEMG signal parameters such as root mean square (RMS), Mean absolute value (MAV), Variance (VAR) and Waveform length (WL) and the proposed fractal features: fractal dimension (FD) and maximum fractal length (MFL) were computed. Multi-variant analysis of variance (MANOVA) was conducted to determine the p value, indicative of the significance of the relationships between each of these parameters with the wrist and finger flexions. Classification accuracy was also computed using the trained artificial neural network (ANN) classifier to decode the desired subtle movements. The results indicate that the p value for the proposed feature set consisting of FD and MFL of single channel sEMG was 0.0001 while that of various combinations of the five established features ranged between 0.009 - 0.0172. From the accuracy of classification by the ANN, the average accuracy in identifying the wrist and finger flexions using the proposed feature set of single channel sEMG was 90%, while the average accuracy when using a combination of other features ranged between 58% and 73%. The results show that the MFL and FD of a single channel sEMG recorded from the forearm can be used to accurately identify a set of finger and wrist flexions even when the muscle activity is very weak. A comparison with other features demonstrates that this feature set offers a dramatic improvement in the accuracy of identification of the wrist and finger movements. It is proposed that such a system could be used to control a prosthetic hand or for a human computer interface.

  19. Decoding subtle forearm flexions using fractal features of surface electromyogram from single and multiple sensors

    PubMed Central

    2010-01-01

    Background Identifying finger and wrist flexion based actions using a single channel surface electromyogram (sEMG) can lead to a number of applications such as sEMG based controllers for near elbow amputees, human computer interface (HCI) devices for elderly and for defence personnel. These are currently infeasible because classification of sEMG is unreliable when the level of muscle contraction is low and there are multiple active muscles. The presence of noise and cross-talk from closely located and simultaneously active muscles is exaggerated when muscles are weakly active such as during sustained wrist and finger flexion. This paper reports the use of fractal properties of sEMG to reliably identify individual wrist and finger flexion, overcoming the earlier shortcomings. Methods SEMG signal was recorded when the participant maintained pre-specified wrist and finger flexion movements for a period of time. Various established sEMG signal parameters such as root mean square (RMS), Mean absolute value (MAV), Variance (VAR) and Waveform length (WL) and the proposed fractal features: fractal dimension (FD) and maximum fractal length (MFL) were computed. Multi-variant analysis of variance (MANOVA) was conducted to determine the p value, indicative of the significance of the relationships between each of these parameters with the wrist and finger flexions. Classification accuracy was also computed using the trained artificial neural network (ANN) classifier to decode the desired subtle movements. Results The results indicate that the p value for the proposed feature set consisting of FD and MFL of single channel sEMG was 0.0001 while that of various combinations of the five established features ranged between 0.009 - 0.0172. From the accuracy of classification by the ANN, the average accuracy in identifying the wrist and finger flexions using the proposed feature set of single channel sEMG was 90%, while the average accuracy when using a combination of other features ranged between 58% and 73%. Conclusions The results show that the MFL and FD of a single channel sEMG recorded from the forearm can be used to accurately identify a set of finger and wrist flexions even when the muscle activity is very weak. A comparison with other features demonstrates that this feature set offers a dramatic improvement in the accuracy of identification of the wrist and finger movements. It is proposed that such a system could be used to control a prosthetic hand or for a human computer interface. PMID:20964863

  20. Wireless powering and data telemetry for biomedical implants.

    PubMed

    Young, Darrin J

    2009-01-01

    Wireless powering and data telemetry techniques for two biomedical implant studies based on (1) wireless in vivo EMG sensor for intelligent prosthetic control and (2) adaptively RF powered implantable bio-sensing microsystem for real-time genetically engineered mice monitoring are presented. Inductive-coupling-based RF powering and passive data telemetry is effective for wireless in vivo EMG sensing, where the internal and external RF coils are positioned with a small separation distance and fixed orientation. Adaptively controlled RF powering and active data transmission are critical for mobile implant application such as real-time physiological monitoring of untethered laboratory animals. Animal implant studies have been successfully completed to demonstrate the wireless and batteryless in vivo sensing capabilities.

  1. The effects of whole body vibration on EMG activity of the upper extremity muscles in static modified push up position.

    PubMed

    Ashnagar, Zinat; Shadmehr, Azadeh; Hadian, Mohammadreza; Talebian, Saeed; Jalaei, Shohreh

    2016-08-10

    Whole Body Vibration (WBV) has been reported to change neuromuscular activity which indirectly assessed by electromyography (EMG). Although researches regarding the influence of WBV on EMG activity of the upper extremity muscles are in their infancy, contradictory findings have been reported as a result of dissimilar protocols. The purpose of this study was to investigate the effects of WBV on electromyography (EMG) activity of upper extremity muscles in static modified push up position. Forty recreationally active females were randomly assigned in WBV and control groups. Participants in WBV group received 5 sets of 30 seconds vibration at 5 mm (peak to peak) and 30 Hz by using vibratory platform. No vibration stimulus was used in the control group. Surface EMG was recorded from Upper Trapezius (UT), Serratus Anterior (SA), Biceps Brachii (BB) and Triceps Brachii (TB) muscles before, during and after the vibration protocol while the subjects maintained the static modified push up position. EMG signals were expressed as root mean square (EMGrms) and normalized by maximum voluntary exertion (MVE). EMGrms activity of the studied muscles increased significantly during the vibration protocol in the WBV group comparing to the control group (P ≤ 0.05). The results indicated that vibration stimulus transmitting via hands increased muscle activity of UT, SA, BB and TB muscles by an average of 206%, 60%, 106% and 120%, respectively, comparing to pre vibration values. These findings suggest that short exposure to the WBV could increase the EMGrms activity of the upper extremity muscles in the static modified push-up position. However, more sessions of WBV application require for a proper judgment.

  2. Quantitative differences among EMG activities of muscles innervated by subpopulations of hypoglossal and upper spinal motoneurons during non-REM sleep - REM sleep transitions: a window on neural processes in the sleeping brain

    PubMed Central

    RUKHADZE, I.; KAMANI, H.; KUBIN, L.

    2017-01-01

    In the rat, a species widely used to study the neural mechanisms of sleep and motor control, lingual electromyographic activity (EMG) is minimal during non-rapid eye movement (non-REM) sleep and then phasic twitches gradually increase after the onset of REM sleep. To better characterize the central neural processes underlying this pattern, we quantified EMG of muscles innervated by distinct subpopulations of hypoglossal motoneurons and nuchal (N) EMG during transitions from non-REM sleep to REM sleep. In 8 chronically instrumented rats, we recorded cortical EEG, EMG at sites near the base of the tongue where genioglossal and intrinsic muscle fibers predominate (GG-I), EMG of the geniohyoid (GH) muscle, and N EMG. Sleep-wake states were identified and EMGs quantified relative to their mean levels in wakefulness in successive 10 s epochs. During non-REM sleep, the average EMG levels differed among the three muscles, with the order being N > GH > GG-I. During REM sleep, due to different magnitudes of phasic twitches, the order was reversed to GG-I > GH > N. GG-I and GH exhibited a gradual increase of twitching that peaked at 70–120 s after the onset of REM sleep and then declined if the REM sleep episode lasted longer. We propose that a common phasic excitatory generator impinges on motoneuron pools that innervate different muscles, but twitching magnitudes are different due to different levels of tonic motoneuronal hyperpolarization. We also propose that REM sleep episodes of average durations are terminated by intense activity of the central generator of phasic events, whereas long REM sleep episodes end as a result of a gradual waning of the tonic disfacilitatory and inhibitory processes. PMID:22205596

  3. Extrinsic finger and thumb muscles command a virtual hand to allow individual finger and grasp control.

    PubMed

    Birdwell, J Alexander; Hargrove, Levi J; Weir, Richard F ff; Kuiken, Todd A

    2015-01-01

    Fine-wire intramuscular electrodes were used to obtain electromyogram (EMG) signals from six extrinsic hand muscles associated with the thumb, index, and middle fingers. Subjects' EMG activity was used to control a virtual three-degree-of-freedom (DOF) hand as they conformed the hand to a sequence of hand postures testing two controllers: direct EMG control and pattern recognition control. Subjects tested two conditions using each controller: starting the hand from a predefined neutral posture before each new posture and starting the hand from the previous posture in the sequence. Subjects demonstrated their abilities to simultaneously, yet individually, move all three DOFs during the direct EMG control trials; however, results showed subjects did not often utilize this feature. Performance metrics such as failure rate and completion time showed no significant difference between the two controllers.

  4. Augmented effects of EMG biofeedback interfaced with virtual reality on neuromuscular control and movement coordination during reaching in children with cerebral palsy.

    PubMed

    Yoo, Ji Won; Lee, Dong Ryul; Cha, Young Joo; You, Sung Hyun

    2017-01-01

    The purpose of the present study was to compare therapeutic effects of an electromyography (EMG) biofeedback augmented by virtual reality (VR) and EMG biofeedback alone on the triceps and biceps (T:B) muscle activity imbalance and elbow joint movement coordination during a reaching motor taskOBJECTIVE: To compare therapeutic effects of an electromyography (EMG) biofeedback augmented by virtual reality (VR) and EMG biofeedback alone on the triceps and biceps muscle activity imbalance and elbow joint movement coordination during a reaching motor task in normal children and children with spastic cerebral palsy (CP). 18 children with spastic CP (2 females; mean±standard deviation = 9.5 ± 1.96 years) and 8 normal children (3 females; mean ± standard deviation = 9.75 ± 2.55 years) were recruited from a local community center. All children with CP first underwent one intensive session of EMG feedback (30 minutes), followed by one session of the EMG-VR feedback (30 minutes) after a 1-week washout period. Clinical tests included elbow extension range of motion (ROM), biceps muscle strength, and box and block test. EMG triceps and biceps (T:B) muscle activity imbalance and reaching movement acceleration coordination were concurrently determined by EMG and 3-axis accelerometer measurements respectively. Independent t-test and one-way repeated analysis of variance (ANOVA) were performed at p < 0.05. The one-way repeated ANOVA was revealed to be significantly effective in elbow extension ROM (p = 0.01), biceps muscle strength (p = 0.01), and box and block test (p = 0.03). The one-way repeated ANOVA also revealed to be significantly effective in the peak triceps muscle activity (p = 0.01). However, one-way repeated ANOVA produced no statistical significance in the composite 3-dimensional movement acceleration coordination data (p = 0.12). The present study is a first clinical trial that demonstrated the superior benefits of the EMG biofeedback when augmented by virtual reality exercise games in children with spastic CP. The augmented EMG and VR feedback produced better neuromuscular balance control in the elbow joint than the EMG biofeedback alone.

  5. 24 DOF EMG controlled hybrid actuated prosthetic hand.

    PubMed

    Atasoy, A; Kaya, E; Toptas, E; Kuchimov, S; Kaplanoglu, E; Ozkan, M

    2016-08-01

    A complete mechanical design concept of an electromyogram (EMG) controlled hybrid prosthetic hand, with 24 degree of freedom (DOF) anthropomorphic structure is presented. Brushless DC motors along with Shape Memory Alloy (SMA) actuators are used to achieve dexterous functionality. An 8 channel EMG is used for detecting 7 basic hand gestures for control purposes. The prosthetic hand will be integrated with the Neural Network (NNE) based controller in the next phase of the study.

  6. An intelligent system with EMG-based joint angle estimation for telemanipulation.

    PubMed

    Suryanarayanan, S; Reddy, N P; Gupta, V

    1996-01-01

    Bio-control of telemanipulators is being researched as an alternate control strategy. This study investigates the use of surface EMG from the biceps to predict joint angle during flexion of the arm that can be used to control an anthropomorphic telemanipulator. An intelligent system based on neural networks and fuzzy logic has been developed to use the processed surface EMG signal and predict the joint angle. The system has been tested on various angles of flexion-extension of the arm and at several speeds of flexion-extension. Preliminary results show the RMS error between the predicted angle and the actual angle to be less than 3% during training and less than 15% during testing. The technique of direct bio-control using EMG has the potential as an interface for telemanipulation applications.

  7. Extraction of the brachialis muscle activity using HD-sEMG technique and canonical correlation analysis.

    PubMed

    Al Harrach, M; Afsharipour, B; Boudaoud, S; Carriou, V; Marin, F; Merletti, R

    2016-08-01

    The Brachialis (BR) is placed under the Biceps Brachii (BB) deep in the upper arm. Therefore, the detection of the corresponding surface Electromyogram (sEMG) is a complex task. The BR is an important elbow flexor, but it is usually not considered in the sEMG based force estimation process. The aim of this study was to attempt to separate the two sEMG activities of the BR and the BB by using a High Density sEMG (HD-sEMG) grid placed at the upper arm and Canonical Component Analysis (CCA) technique. For this purpose, we recorded sEMG signals from seven subjects with two 8 × 4 electrode grids placed over BB and BR. Four isometric voluntary contraction levels were recorded (5, 10, 30 and 50 %MVC) for 90° elbow angle. Then using CCA and image processing tools the sources of each muscle activity were separated. Finally, the corresponding sEMG signals were reconstructed using the remaining canonical components in order to retrieve the activity of the BB and the BR muscles.

  8. Simultaneous Recording and Analysis of Uterine and Abdominal Muscle Electromyographic Activity in Nulliparous Women During Labor.

    PubMed

    Qian, Xueya; Li, Pin; Shi, Shao-Qing; Garfield, Robert E; Liu, Huishu

    2017-03-01

    To record and characterize electromyography (EMG) from the uterus and abdominal muscles during the nonlabor to first and second stages of labor and to define relationships to contractions. Nulliparous patients without any treatments were used (n = 12 nonlabor stage, 48 during first stage and 33 during second stage). Electromyography of both uterine and abdominal muscles was simultaneously recorded from electrodes placed on patients' abdominal surface using filters to separate uterine and abdominal EMG. Contractions of muscles were also recorded using tocodynamometry. Electromyography was characterized by analysis of various parameters. During the first stage of labor, when abdominal EMG is absent, uterine EMG bursts temporally correspond to contractions. In the second stage, uterine EMG bursts usually occur at same frequency as groups of abdominal bursts and precede abdominal bursts, whereas abdominal EMG bursts correspond to contractions and are accompanied by feelings of "urge to push." Uterine EMG increases progressively from nonlabor to second stage of labor. (1) Uterine EMG activity can be separated from abdominal EMG events by filtering. (2) Uterine EMG gradually evolves from the antepartum stage to the first and second stages of labor. (3) Uterine and abdominal EMG reflect electrical activity of the muscles during labor and are valuable to assess uterine and abdominal muscle events that control labor. (4) During the first stage of labor uterine, EMG is responsible for contractions, and during the second stage, both uterine and abdominal muscle participate in labor.

  9. Value of free-run electromyographic monitoring of lower cranial nerves in endoscopic endonasal approach to skull base surgeries.

    PubMed

    Thirumala, Parthasarathy D; Mohanraj, Santhosh Kumar; Habeych, Miguel; Wichman, Kelley; Chang, Yue-Fang; Gardner, Paul; Snyderman, Carl; Crammond, Donald J; Balzer, Jeffrey

    2012-08-01

    Objective The main objective of this study was to evaluate the value of free-run electromyography (f-EMG) monitoring of cranial nerves (CNs) VII, IX, X, XI, and XII in skull base surgeries performed using endoscopic endonasal approach (EEA) to reduce iatrogenic CN deficits. Design We retrospectively identified 73 patients out of 990 patients who had EEA in our institution who had at least one CN monitored. In each CN group, we classified patients who had significant (SG) f-EMG activity as group I and those who did not as group II. Results We monitored a total of 342 CNs. A total of 62 nerves had SG f-EMG activity including CN VII = 18, CN IX = 16, CN X = 13, CN XI = 5, and CN XII = 10. No nerve deficit was found in the nerves that had significant activity during procedure. A total of five nerve deficits including (CN IX = 1, CN X = 2, CN XII = 2) were observed in the group that did not display SG f-EMG activity during surgery. Conclusions f-EMG seems highly sensitive to surgical manipulations and in locating CNs. It seems to have limited value in predicting postoperative neurological deficits. Future studies to evaluate the EMG of lower CNs during EEA procedures need to be done with both f-EMG and triggered EMG.

  10. Value of Free-Run Electromyographic Monitoring of Lower Cranial Nerves in Endoscopic Endonasal Approach to Skull Base Surgeries

    PubMed Central

    Thirumala, Parthasarathy D.; Mohanraj, Santhosh Kumar; Habeych, Miguel; Wichman, Kelley; Chang, Yue-Fang; Gardner, Paul; Snyderman, Carl; Crammond, Donald J.; Balzer, Jeffrey

    2012-01-01

    Objective The main objective of this study was to evaluate the value of free-run electromyography (f-EMG) monitoring of cranial nerves (CNs) VII, IX, X, XI, and XII in skull base surgeries performed using endoscopic endonasal approach (EEA) to reduce iatrogenic CN deficits. Design We retrospectively identified 73 patients out of 990 patients who had EEA in our institution who had at least one CN monitored. In each CN group, we classified patients who had significant (SG) f-EMG activity as group I and those who did not as group II. Results We monitored a total of 342 CNs. A total of 62 nerves had SG f-EMG activity including CN VII = 18, CN IX = 16, CN X = 13, CN XI = 5, and CN XII = 10. No nerve deficit was found in the nerves that had significant activity during procedure. A total of five nerve deficits including (CN IX = 1, CN X = 2, CN XII = 2) were observed in the group that did not display SG f-EMG activity during surgery. Conclusions f-EMG seems highly sensitive to surgical manipulations and in locating CNs. It seems to have limited value in predicting postoperative neurological deficits. Future studies to evaluate the EMG of lower CNs during EEA procedures need to be done with both f-EMG and triggered EMG. PMID:23904999

  11. Control of a Robotic Hand Using a Tongue Control System-A Prosthesis Application.

    PubMed

    Johansen, Daniel; Cipriani, Christian; Popovic, Dejan B; Struijk, Lotte N S A

    2016-07-01

    The aim of this study was to investigate the feasibility of using an inductive tongue control system (ITCS) for controlling robotic/prosthetic hands and arms. This study presents a novel dual modal control scheme for multigrasp robotic hands combining standard electromyogram (EMG) with the ITCS. The performance of the ITCS control scheme was evaluated in a comparative study. Ten healthy subjects used both the ITCS control scheme and a conventional EMG control scheme to complete grasping exercises with the IH1 Azzurra robotic hand implementing five grasps. Time to activate a desired function or grasp was used as the performance metric. Statistically significant differences were found when comparing the performance of the two control schemes. On average, the ITCS control scheme was 1.15 s faster than the EMG control scheme, corresponding to a 35.4% reduction in the activation time. The largest difference was for grasp 5 with a mean AT reduction of 45.3% (2.38 s). The findings indicate that using the ITCS control scheme could allow for faster activation of specific grasps or functions compared with a conventional EMG control scheme. For transhumeral and especially bilateral amputees, the ITCS control scheme could have a significant impact on the prosthesis control. In addition, the ITCS would provide bilateral amputees with the additional advantage of environmental and computer control for which the ITCS was originally developed.

  12. Fractal based modelling and analysis of electromyography (EMG) to identify subtle actions.

    PubMed

    Arjunan, Sridhar P; Kumar, Dinesh K

    2007-01-01

    The paper reports the use of fractal theory and fractal dimension to study the non-linear properties of surface electromyogram (sEMG) and to use these properties to classify subtle hand actions. The paper reports identifying a new feature of the fractal dimension, the bias that has been found to be useful in modelling the muscle activity and of sEMG. Experimental results demonstrate that the feature set consisting of bias values and fractal dimension of the recordings is suitable for classification of sEMG against the different hand gestures. The scatter plots demonstrate the presence of simple relationships of these features against the four hand gestures. The results indicate that there is small inter-experimental variation but large inter-subject variation. This may be due to differences in the size and shape of muscles for different subjects. The possible applications of this research include use in developing prosthetic hands, controlling machines and computers.

  13. In Your Face: Risk of Punishment Enhances Cognitive Control and Error-Related Activity in the Corrugator Supercilii Muscle.

    PubMed

    Lindström, Björn R; Mattsson-Mårn, Isak Berglund; Golkar, Armita; Olsson, Andreas

    2013-01-01

    Cognitive control is needed when mistakes have consequences, especially when such consequences are potentially harmful. However, little is known about how the aversive consequences of deficient control affect behavior. To address this issue, participants performed a two-choice response time task where error commissions were expected to be punished by electric shocks during certain blocks. By manipulating (1) the perceived punishment risk (no, low, high) associated with error commissions, and (2) response conflict (low, high), we showed that motivation to avoid punishment enhanced performance during high response conflict. As a novel index of the processes enabling successful cognitive control under threat, we explored electromyographic activity in the corrugator supercilii (cEMG) muscle of the upper face. The corrugator supercilii is partially controlled by the anterior midcingulate cortex (aMCC) which is sensitive to negative affect, pain and cognitive control. As hypothesized, the cEMG exhibited several key similarities with the core temporal and functional characteristics of the Error-Related Negativity (ERN) ERP component, the hallmark index of cognitive control elicited by performance errors, and which has been linked to the aMCC. The cEMG was amplified within 100 ms of error commissions (the same time-window as the ERN), particularly during the high punishment risk condition where errors would be most aversive. Furthermore, similar to the ERN, the magnitude of error cEMG predicted post-error response time slowing. Our results suggest that cEMG activity can serve as an index of avoidance motivated control, which is instrumental to adaptive cognitive control when consequences are potentially harmful.

  14. In Your Face: Risk of Punishment Enhances Cognitive Control and Error-Related Activity in the Corrugator Supercilii Muscle

    PubMed Central

    Lindström, Björn R.; Mattsson-Mårn, Isak Berglund; Golkar, Armita; Olsson, Andreas

    2013-01-01

    Cognitive control is needed when mistakes have consequences, especially when such consequences are potentially harmful. However, little is known about how the aversive consequences of deficient control affect behavior. To address this issue, participants performed a two-choice response time task where error commissions were expected to be punished by electric shocks during certain blocks. By manipulating (1) the perceived punishment risk (no, low, high) associated with error commissions, and (2) response conflict (low, high), we showed that motivation to avoid punishment enhanced performance during high response conflict. As a novel index of the processes enabling successful cognitive control under threat, we explored electromyographic activity in the corrugator supercilii (cEMG) muscle of the upper face. The corrugator supercilii is partially controlled by the anterior midcingulate cortex (aMCC) which is sensitive to negative affect, pain and cognitive control. As hypothesized, the cEMG exhibited several key similarities with the core temporal and functional characteristics of the Error-Related Negativity (ERN) ERP component, the hallmark index of cognitive control elicited by performance errors, and which has been linked to the aMCC. The cEMG was amplified within 100 ms of error commissions (the same time-window as the ERN), particularly during the high punishment risk condition where errors would be most aversive. Furthermore, similar to the ERN, the magnitude of error cEMG predicted post-error response time slowing. Our results suggest that cEMG activity can serve as an index of avoidance motivated control, which is instrumental to adaptive cognitive control when consequences are potentially harmful. PMID:23840356

  15. Anismus: fact or fiction?

    PubMed

    Schouten, W R; Briel, J W; Auwerda, J J; van Dam, J H; Gosselink, M J; Ginai, A Z; Hop, W C

    1997-09-01

    Although anismus has been considered to be the principal cause of anorectal outlet obstruction, it is doubtful whether contraction of the puborectalis muscle during straining is paradoxical. The present study was conducted to answer this question. During the first part of the study, we retrospectively reviewed 121 patients with constipation and/or obstructed defecation (male:female, 10/111; median age, 51 years). All of these patients underwent electromyography (EMG) of the pelvic floor and the balloon expulsion test (BET) in the left lateral position. Evacuation proctography was performed in all of these patients in the sitting position. Both the posterior anorectal angle and the central anorectal angle were measured. EMG and BET were also performed in ten controls (male:female, 4/6; median age, 47). In 147 patients with fecal incontinence (male:female, 24/123; median age, 58) only EMG activity was recorded. Criteria for anismus during straining were increase or insufficient (<20 percent) decrease of EMG activity, failure to expel an air-filled balloon on BET, and decrease or insufficient (<5 percent) increase of anorectal angle on evacuation proctography. Between June 1994 and March 1995, we conducted a second prospective study in a consecutive series of 49 patients with constipation and/or obstructed defecation and 28 patients with fecal incontinence. Both groups were compared with 19 control subjects. In this study, all three tests were performed. EMG and BET were performed both in the left lateral position and in the sitting position. The retrospective study was undertaken by comparing the constipated patients with the incontinent patients and the controls, and the anismus detected by EMG was found in, respectively, 60, 46, and 60 percent. Failure to expel the air-filled balloon was observed in 80 constipated patients (66 percent) and in 9 control subjects (90 percent). Based on posterior anorectal angle and central anorectal angle measurements, anismus was diagnosed in, respectively, 21 and 35 percent of constipated patients. In the prospective study, none of the tests showed significant differences regarding the prevalence of anismus between the two subgroups of patients and the control subjects. The prevalence of anismus only differed between constipated and incontinent patients when the diagnosis was based on BET in the sitting position (67 vs. 32 percent; P < 0.005). Our study shows that contraction of the puborectalis muscle during straining is not exclusively found in patients with constipation and/or obstructed defecation. The three tests most commonly used for the diagnosis of anismus showed an extremely poor agreement. Based on these findings, we doubt the clinical significance of anismus.

  16. EMG-based visual-haptic biofeedback: a tool to improve motor control in children with primary dystonia.

    PubMed

    Casellato, Claudia; Pedrocchi, Alessandra; Zorzi, Giovanna; Vernisse, Lea; Ferrigno, Giancarlo; Nardocci, Nardo

    2013-05-01

    New insights suggest that dystonic motor impairments could also involve a deficit of sensory processing. In this framework, biofeedback, making covert physiological processes more overt, could be useful. The present work proposes an innovative integrated setup which provides the user with an electromyogram (EMG)-based visual-haptic biofeedback during upper limb movements (spiral tracking tasks), to test if augmented sensory feedbacks can induce motor control improvement in patients with primary dystonia. The ad hoc developed real-time control algorithm synchronizes the haptic loop with the EMG reading; the brachioradialis EMG values were used to modify visual and haptic features of the interface: the higher was the EMG level, the higher was the virtual table friction and the background color proportionally moved from green to red. From recordings on dystonic and healthy subjects, statistical results showed that biofeedback has a significant impact, correlated with the local impairment, on the dystonic muscular control. These tests pointed out the effectiveness of biofeedback paradigms in gaining a better specific-muscle voluntary motor control. The flexible tool developed here shows promising prospects of clinical applications and sensorimotor rehabilitation.

  17. EMG synchrony to assess impaired corticomotor control of locomotion after stroke.

    PubMed

    Lodha, Neha; Chen, Yen-Ting; McGuirk, Theresa E; Fox, Emily J; Kautz, Steven A; Christou, Evangelos A; Clark, David J

    2017-12-01

    Adapting one's gait pattern requires a contribution from cortical motor commands. Evidence suggests that frequency-based analysis of electromyography (EMG) can be used to detect this cortical contribution. Specifically, increased EMG synchrony between synergistic muscles in the Piper frequency band has been linked to heightened corticomotor contribution to EMG. Stroke-related damage to cerebral motor pathways would be expected to diminish EMG Piper synchrony. The objective of this study is therefore to test the hypothesis that EMG Piper synchrony is diminished in the paretic leg relative to nonparetic and control legs, particularly during a long-step task of walking adaptability. Twenty adults with post-stroke hemiparesis and seventeen healthy controls participated in this study. EMG Piper synchrony increased more for the control legs compare to the paretic legs when taking a non-paretic long step (5.02±3.22% versus 0.86±2.62%), p<0.01) and when taking a paretic long step (2.04±1.98% versus 0.70±2.34%, p<0.05). A similar but non-significant trend was evident when comparing non-paretic and paretic legs. No statistically significant differences in EMG Piper synchrony were found between legs for typical walking. EMG Piper synchrony was positively associated with walking speed and step length within the stroke group. These findings support the assertion that EMG Piper synchrony indicates corticomotor contribution to walking. Published by Elsevier Ltd.

  18. Altered EMG patterns in diabetic neuropathic and not neuropathic patients during step ascending and descending.

    PubMed

    Spolaor, Fabiola; Sawacha, Zimi; Guarneri, Gabriella; Del Din, Silvia; Avogaro, Angelo; Cobelli, Claudio

    2016-12-01

    Diabetic peripheral neuropathy (DPN) causes motor control alterations during daily life activities. Tripping during walking or stair climbing is the predominant cause of falls in the elderly subjects with DPN and without (NoDPN). Surface Electromyography (sEMG) has been shown to be a valid tool for detecting alterations of motor functions in subjects with DPN. This study aims at investigating the presence of functional alterations in diabetic subjects during stair climbing and at exploring the relationship between altered muscle activation and temporal parameter. Lower limb muscle activities, temporal parameters and speed were evaluated in 50 subjects (10 controls, 20 with DPN, 20 without DPN), while climbing up and down a stair, using sEMG, three-dimentional motion capture and force plates. Magnitude and timing of sEMG linear envelopes peaks were extracted. Level walking was used as reference condition for the comparison with step negotiation. sEMG, speed and temporal parameters revealed significant differences among all groups of patients. Results showed an association between earlier activation of lower limb muscles and reduced speed in subjects with DPN. Speed and temporal parameters significantly correlated with sEMG (p<0.05). The findings of this study are encouraging and could be used to improve rehabilitation programs aiming at reducing falls risk in diabetic subjects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Long-term effect of prednisolone on functional blink recovery after transient peripheral facial motor paralysis.

    PubMed

    VanderWerf, Frans; Reits, Dik; Metselaar, Mick; De Zeeuw, Chris I

    2012-03-01

    To determine the functional recovery in patients with severe transient peripheral facial motor paralysis (Bell palsy). Prospective controlled trial. Academic medical center. Blink recovery was studied in 2 groups of severely affected Bell palsy patients during a follow-up period of 84 weeks. The patients in one group received prednisolone within the first week after the onset of symptoms. No medication was given to the other group. A control group of healthy subjects was also included. Simultaneous orbicularis oculi muscle activity and eyelid kinematics were recorded by surface electromyographic (EMG) recording and eyelid search coils, respectively. At the beginning of the paralysis, very little integrated orbicularis oculi muscle activity and eyelid movement was measured at the palsied side of the face. Thirteen weeks later, the integrated orbicularis oculi EMG and functional blink recovery gradually improved until 39 weeks. Beyond, only the integrated orbicularis oculi EMG slightly increased. At 84 weeks, the integrated orbicularis oculi EMG was significantly larger in the prednisolone group compared with the control group. The integrated EMG of the nonmedicated group recovered to normal values. Curiously enough, the functional blink recovery at the palsied side remained reduced to 64% compared with the healthy controls in the prednisolone-treated group and to 36% in the nonmedicated group. The authors demonstrate that prednisolone significantly increased the orbicularis oculi muscle activity and significantly improved functional blink recovery in severely affected Bell palsy patients. However, the increase of muscle activity was insufficient to restore functional blinking to normal values.

  20. The effect of hip abduction on the EMG activity of vastus medialis obliquus, vastus lateralis longus and vastus lateralis obliquus in healthy subjects

    PubMed Central

    Bevilaqua-Grossi, Débora; Monteiro-Pedro, Vanessa; de Vasconcelos, Rodrigo Antunes; Arakaki, Juliano Coelho; Bérzin, Fausto

    2006-01-01

    Study design Controlled laboratory study. Objectives The purposes of this paper were to investigate (d) whether vastus medialis obliquus (VMO), vastus lateralis longus (VLL) and vastus lateralis obliquus (VLO) EMG activity can be influenced by hip abduction performed by healthy subjects. Background Some clinicians contraindicate hip abduction for patellofemoral patients (with) based on the premise that hip abduction could facilitate the VLL muscle activation leading to a VLL and VMO imbalance Methods and measures Twenty-one clinically healthy subjects were involved in the study, 10 women and 11 men (aged X = 23.3 ± 2.9). The EMG signals were collected using a computerized EMG VIKING II, with 8 channels and three pairs of surface electrodes. EMG activity was obtained from MVIC knee extension at 90° of flexion in a seated position and MVIC hip abduction at 0° and 30° with patients in side-lying position with the knee in full extension. The data were normalized in the MVIC knee extension at 50° of flexion in a seated position, and were submitted to ANOVA test with subsequent application of the Bonferroni multiple comparisons analysis test. The level of significance was defined as p ≤ 0.05. Results The VLO muscle demonstrated a similar pattern to the VMO muscle showing higher EMG activity in MVIC knee extension at 90° of flexion compared with MVIC hip abduction at 0° and 30° of abduction for male (p < 0.0007) and MVIC hip abduction at 0° of abduction for female subjects (p < 0.02196). There were no statistically significant differences in the VLL EMG activity among the three sets of exercises tested. Conclusion The results showed that no selective EMG activation was observed when comparison was made between the VMO, VLL and VLO muscles while performing MVIC hip abduction at 0° and 30° of abduction and MVIC knee extension at 90° of flexion in both male and female subjects. Our findings demonstrate that hip abduction do not facilitated VLL and VLO activity in relation to the VMO, however, this study included only healthy subjects performing maximum voluntary isometric contraction contractions, therefore much remains to be discovered by future research PMID:16817971

  1. Control of Leg Movements Driven by EMG Activity of Shoulder Muscles

    PubMed Central

    La Scaleia, Valentina; Sylos-Labini, Francesca; Hoellinger, Thomas; Wang, Letian; Cheron, Guy; Lacquaniti, Francesco; Ivanenko, Yuri P.

    2014-01-01

    During human walking, there exists a functional neural coupling between arms and legs, and between cervical and lumbosacral pattern generators. Here, we present a novel approach for associating the electromyographic (EMG) activity from upper limb muscles with leg kinematics. Our methodology takes advantage of the high involvement of shoulder muscles in most locomotor-related movements and of the natural co-ordination between arms and legs. Nine healthy subjects were asked to walk at different constant and variable speeds (3–5 km/h), while EMG activity of shoulder (deltoid) muscles and the kinematics of walking were recorded. To ensure a high level of EMG activity in deltoid, the subjects performed slightly larger arm swinging than they usually do. The temporal structure of the burst-like EMG activity was used to predict the spatiotemporal kinematic pattern of the forthcoming step. A comparison of actual and predicted stride leg kinematics showed a high degree of correspondence (r > 0.9). This algorithm has been also implemented in pilot experiments for controlling avatar walking in a virtual reality setup and an exoskeleton during over-ground stepping. The proposed approach may have important implications for the design of human–machine interfaces and neuroprosthetic technologies such as those of assistive lower limb exoskeletons. PMID:25368569

  2. Control of Leg Movements Driven by EMG Activity of Shoulder Muscles.

    PubMed

    La Scaleia, Valentina; Sylos-Labini, Francesca; Hoellinger, Thomas; Wang, Letian; Cheron, Guy; Lacquaniti, Francesco; Ivanenko, Yuri P

    2014-01-01

    During human walking, there exists a functional neural coupling between arms and legs, and between cervical and lumbosacral pattern generators. Here, we present a novel approach for associating the electromyographic (EMG) activity from upper limb muscles with leg kinematics. Our methodology takes advantage of the high involvement of shoulder muscles in most locomotor-related movements and of the natural co-ordination between arms and legs. Nine healthy subjects were asked to walk at different constant and variable speeds (3-5 km/h), while EMG activity of shoulder (deltoid) muscles and the kinematics of walking were recorded. To ensure a high level of EMG activity in deltoid, the subjects performed slightly larger arm swinging than they usually do. The temporal structure of the burst-like EMG activity was used to predict the spatiotemporal kinematic pattern of the forthcoming step. A comparison of actual and predicted stride leg kinematics showed a high degree of correspondence (r > 0.9). This algorithm has been also implemented in pilot experiments for controlling avatar walking in a virtual reality setup and an exoskeleton during over-ground stepping. The proposed approach may have important implications for the design of human-machine interfaces and neuroprosthetic technologies such as those of assistive lower limb exoskeletons.

  3. Emg Amplitude Estimators Based on Probability Distribution for Muscle-Computer Interface

    NASA Astrophysics Data System (ADS)

    Phinyomark, Angkoon; Quaine, Franck; Laurillau, Yann; Thongpanja, Sirinee; Limsakul, Chusak; Phukpattaranont, Pornchai

    To develop an advanced muscle-computer interface (MCI) based on surface electromyography (EMG) signal, the amplitude estimations of muscle activities, i.e., root mean square (RMS) and mean absolute value (MAV) are widely used as a convenient and accurate input for a recognition system. Their classification performance is comparable to advanced and high computational time-scale methods, i.e., the wavelet transform. However, the signal-to-noise-ratio (SNR) performance of RMS and MAV depends on a probability density function (PDF) of EMG signals, i.e., Gaussian or Laplacian. The PDF of upper-limb motions associated with EMG signals is still not clear, especially for dynamic muscle contraction. In this paper, the EMG PDF is investigated based on surface EMG recorded during finger, hand, wrist and forearm motions. The results show that on average the experimental EMG PDF is closer to a Laplacian density, particularly for male subject and flexor muscle. For the amplitude estimation, MAV has a higher SNR, defined as the mean feature divided by its fluctuation, than RMS. Due to a same discrimination of RMS and MAV in feature space, MAV is recommended to be used as a suitable EMG amplitude estimator for EMG-based MCIs.

  4. On the Efficiency of Individualized Theta/Beta Ratio Neurofeedback Combined with Forehead EMG Training in ADHD Children.

    PubMed

    Bazanova, Olga M; Auer, Tibor; Sapina, Elena A

    2018-01-01

    Background: Neurofeedback training (NFT) to decrease the theta/beta ratio (TBR) has been used for treating hyperactivity and impulsivity in attention deficit hyperactivity disorder (ADHD); however, often with low efficiency. Individual variance in EEG profile can confound NFT, because it may lead to influencing non-relevant activity, if ignored. More importantly, it may lead to influencing ADHD-related activities adversely, which may even result in worsening ADHD symptoms. Electromyogenic (EMG) signal resulted from forehead muscles can also explain the low efficiency of the NFT in ADHD from both practical and psychological point-of-view. The first aim of this study was to determine EEG and EMG biomarkers most related to the main ADHD characteristics, such as impulsivity and hyperactivity. The second aim was to confirm our hypothesis that the efficiency of the TBR NFT can be increased by individual adjustment of the frequency bands and simultaneous training on forehead muscle tension. Methods: We recruited 94 children diagnosed with ADHD (ADHD) and 23 healthy controls (HC). All participants were male and aged between six and nine. Impulsivity and attention were assessed with Go/no-Go task and delayed gratification task, respectively; and 19-channel EEG and forehead EMG were recorded. Then, the ADHD group was randomly subdivided into (1) standard, (2) individualized, (3) individualized+EMG, and (4) sham NFT (control) groups. The groups were compared based on TBR and EEG alpha activity, as well as hyperactivity and impulsivity three times: pre-NFT, post-NFT and 6 months after the NFT (follow-up). Results: ADHD children were characterized with decreased individual alpha peak frequency, alpha bandwidth and alpha amplitude suppression magnitude, as well as with increased alpha1/alpha2 (a1/a2) ratio and scalp muscle tension when c (η 2 ≥ 0.212). All contingent TBR NFT groups exhibited significant NFT-related decrease in TBR not evident in the control group. Moreover, we detected a higher overall alpha activity in the individualized but not in the standard NFT group. Mixed MANOVA considering between-subject factor GROUP and within-subject factor TIME showed that the individualized+EMG group exhibited the highest level of clinical improvement, which was associated with increase in the individual alpha activity at the 6 months follow-up when comparing with the other approaches (post hoc t = 3.456, p = 0.011). Conclusions: This study identified various (adjusted) alpha activity metrics as biomarkers with close relationship with ADHD symptoms, and demonstrated that TBR NFT individually adjusted for variances in alpha activity is more successful and clinically more efficient than standard, non-individualized NFT. Moreover, these training effects of the individualized TBR NFT lasted longer when combined with EMG.

  5. Age Related Differences in the Surface EMG Signals on Adolescent's Muscle during Contraction

    NASA Astrophysics Data System (ADS)

    Uddin Ahamed, Nizam; Taha, Zahari; Alqahtani, Mahdi; Altwijri, Omar; Rahman, Matiur; Deboucha, Abdelhakim

    2016-02-01

    The aim of this study was to investigate whether there are differences in the amplitude of the EMG signal among five different age groups of adolescent's muscle. Fifteen healthy adolescents participated in this study and they were divided into five age groups (13, 14, 15, 16 and 17 years). Subjects were performed dynamic contraction during lifting a standard weight (3-kg dumbbell) and EMG signals were recorded from their Biceps Brachii (BB) muscle. Two common EMG analysis techniques namely root mean square (RMS) and mean absolute values (MAV) were used to find the differences. The statistical analysis was included: linear regression to examine the relationships between EMG amplitude and age, repeated measures ANOVA to assess differences among the variables, and finally Coefficient of Variation (CoV) for signal steadiness among the groups of subjects during contraction. The result from RMS and MAV analysis shows that the 17-years age groups exhibited higher activity (0.28 and 0.19 mV respectively) compare to other groups (13-Years: 0.26 and 0.17 mV, 14-years: 0.25 and 0.23 mV, 15-Years: 0.23 and 0.16 mV, 16-years: 0.23 and 0.16 mV respectively). Also, this study shows modest correlation between age and signal activities among all age group's muscle. The experiential results can play a pivotal role for developing EMG prosthetic hand controller, neuromuscular system, EMG based rehabilitation aid and movement biomechanics, which may help to separate age groups among the adolescents.

  6. Grip Force and 3D Push-Pull Force Estimation Based on sEMG and GRNN

    PubMed Central

    Wu, Changcheng; Zeng, Hong; Song, Aiguo; Xu, Baoguo

    2017-01-01

    The estimation of the grip force and the 3D push-pull force (push and pull force in the three dimension space) from the electromyogram (EMG) signal is of great importance in the dexterous control of the EMG prosthetic hand. In this paper, an action force estimation method which is based on the eight channels of the surface EMG (sEMG) and the Generalized Regression Neural Network (GRNN) is proposed to meet the requirements of the force control of the intelligent EMG prosthetic hand. Firstly, the experimental platform, the acquisition of the sEMG, the feature extraction of the sEMG and the construction of GRNN are described. Then, the multi-channels of the sEMG when the hand is moving are captured by the EMG sensors attached on eight different positions of the arm skin surface. Meanwhile, a grip force sensor and a three dimension force sensor are adopted to measure the output force of the human's hand. The characteristic matrix of the sEMG and the force signals are used to construct the GRNN. The mean absolute value and the root mean square of the estimation errors, the correlation coefficients between the actual force and the estimated force are employed to assess the accuracy of the estimation. Analysis of variance (ANOVA) is also employed to test the difference of the force estimation. The experiments are implemented to verify the effectiveness of the proposed estimation method and the results show that the output force of the human's hand can be correctly estimated by using sEMG and GRNN method. PMID:28713231

  7. Grip Force and 3D Push-Pull Force Estimation Based on sEMG and GRNN.

    PubMed

    Wu, Changcheng; Zeng, Hong; Song, Aiguo; Xu, Baoguo

    2017-01-01

    The estimation of the grip force and the 3D push-pull force (push and pull force in the three dimension space) from the electromyogram (EMG) signal is of great importance in the dexterous control of the EMG prosthetic hand. In this paper, an action force estimation method which is based on the eight channels of the surface EMG (sEMG) and the Generalized Regression Neural Network (GRNN) is proposed to meet the requirements of the force control of the intelligent EMG prosthetic hand. Firstly, the experimental platform, the acquisition of the sEMG, the feature extraction of the sEMG and the construction of GRNN are described. Then, the multi-channels of the sEMG when the hand is moving are captured by the EMG sensors attached on eight different positions of the arm skin surface. Meanwhile, a grip force sensor and a three dimension force sensor are adopted to measure the output force of the human's hand. The characteristic matrix of the sEMG and the force signals are used to construct the GRNN. The mean absolute value and the root mean square of the estimation errors, the correlation coefficients between the actual force and the estimated force are employed to assess the accuracy of the estimation. Analysis of variance (ANOVA) is also employed to test the difference of the force estimation. The experiments are implemented to verify the effectiveness of the proposed estimation method and the results show that the output force of the human's hand can be correctly estimated by using sEMG and GRNN method.

  8. Gastrocnemius Myoelectric Control of a Robotic Hip Exoskeleton Can Reduce the User's Lower-Limb Muscle Activities at Push Off

    PubMed Central

    Grazi, Lorenzo; Crea, Simona; Parri, Andrea; Molino Lova, Raffaele; Micera, Silvestro; Vitiello, Nicola

    2018-01-01

    We present a novel assistive control strategy for a robotic hip exoskeleton for assisting hip flexion/extension, based on a proportional Electromyography (EMG) strategy. The novelty of the proposed controller relies on the use of the Gastrocnemius Medialis (GM) EMG signal instead of a hip flexor muscle, to control the hip flexion torque. This strategy has two main advantages: first, avoiding the placement of the EMG electrodes at the human–robot interface can reduce discomfort issues for the user and motion artifacts of the recorded signals; second, using a powerful signal for control, such as the GM, could improve the reliability of the control system. The control strategy has been tested on eight healthy subjects, walking with the robotic hip exoskeleton on the treadmill. We evaluated the controller performance and the effect of the assistance on muscle activities. The tuning of the assistance timing in the controller was subject dependent and varied across subjects. Two muscles could benefit more from the assistive strategy, namely the Rectus Femoris (directly assisted) and the Tibialis Anterior (indirectly assisted). A significant correlation was found between the timing of the delivered assistance (i.e., synchronism with the biological hip torque), and reduction of the hip flexors muscular activity during walking; instead, no significant correlations were found for peak torque and peak power. Results suggest that the timing of the assistance is the most significant parameter influencing the effectiveness of the control strategy. The findings of this work could be important for future studies aimed at developing assistive strategies for walking assistance exoskeletons. PMID:29491830

  9. Gastrocnemius Myoelectric Control of a Robotic Hip Exoskeleton Can Reduce the User's Lower-Limb Muscle Activities at Push Off.

    PubMed

    Grazi, Lorenzo; Crea, Simona; Parri, Andrea; Molino Lova, Raffaele; Micera, Silvestro; Vitiello, Nicola

    2018-01-01

    We present a novel assistive control strategy for a robotic hip exoskeleton for assisting hip flexion/extension, based on a proportional Electromyography (EMG) strategy. The novelty of the proposed controller relies on the use of the Gastrocnemius Medialis (GM) EMG signal instead of a hip flexor muscle, to control the hip flexion torque. This strategy has two main advantages: first, avoiding the placement of the EMG electrodes at the human-robot interface can reduce discomfort issues for the user and motion artifacts of the recorded signals; second, using a powerful signal for control, such as the GM, could improve the reliability of the control system. The control strategy has been tested on eight healthy subjects, walking with the robotic hip exoskeleton on the treadmill. We evaluated the controller performance and the effect of the assistance on muscle activities. The tuning of the assistance timing in the controller was subject dependent and varied across subjects. Two muscles could benefit more from the assistive strategy, namely the Rectus Femoris (directly assisted) and the Tibialis Anterior (indirectly assisted). A significant correlation was found between the timing of the delivered assistance (i.e., synchronism with the biological hip torque), and reduction of the hip flexors muscular activity during walking; instead, no significant correlations were found for peak torque and peak power. Results suggest that the timing of the assistance is the most significant parameter influencing the effectiveness of the control strategy. The findings of this work could be important for future studies aimed at developing assistive strategies for walking assistance exoskeletons.

  10. A novel command signal for motor neuroprosthetic control.

    PubMed

    Moss, Christa W; Kilgore, Kevin L; Peckham, P Hunter

    2011-01-01

    Neuroprostheses can restore functions such as hand grasp or standing to individuals with spinal cord injury (SCI) using electrical stimulation to elicit movements in paralyzed muscles. Implanted neuroprostheses currently use electromyographic (EMG) activity from muscles above the lesion that remain under volitional control as a command input. Systems in development use a networked approach and will allow for restoration of multiple functions but will require additional command signals to control the system, especially in individuals with high-level tetraplegia. The objective of this study was to investigate the feasibility of using muscles innervated below the injury level as command sources for a neuroprosthesis. Recent anatomical and physiological studies have demonstrated the presence of intact axons across the lesion, even in those diagnosed with a clinically complete SCI; hence, EMG activity may be present in muscles with no sign of movement. Twelve participants with motor complete SCI were enrolled and EMG was recorded with surface electrodes from 8 muscles below the knee in each leg. Significant activity was evident in 89% of the 192 muscles studied during attempted movements of the foot and lower limb. At least 2 muscles from each participant were identified as potential command signals for a neuroprosthesis based on 2-state, threshold classification. Results suggest that voluntary activity is present and recordable in below lesion muscles even after clinically complete SCI.

  11. Neurophysiological Identification of Cranial Nerves During Endoscopic Endonasal Surgery of Skull Base Tumors: Pilot Study Technical Report.

    PubMed

    Shkarubo, Alexey Nikolaevich; Chernov, Ilia Valerievich; Ogurtsova, Anna Anatolievna; Moshchev, Dmitry Aleksandrovich; Lubnin, Andrew Jurievich; Andreev, Dmitry Nicolaevich; Koval, Konstantin Vladimirovich

    2017-02-01

    Intraoperative identification of cranial nerves is crucial for safe surgery of skull base tumors. Currently, only a small number of published papers describe the technique of trigger electromyography (t-EMG) in endoscopic endonasal removal of such tumors. To assess the effectiveness of t-EMG in preventing intraoperative cranial nerve damage in endoscopic endonasal surgery of skull base tumors. Nine patients were operated on using the endoscopic endonasal approach within a 1-year period. The tumors included large skull base chordomas and trigeminal neurinomas localized in the cavernous sinus. During the surgical process, cranial nerve identification was carried out using monopolar and bipolar t-EMG methods. Assessment of cranial nerve functional activity was conducted both before and after tumor removal. We mapped 17 nerves in 9 patients. Third, fifth, and sixth cranial nerves were identified intraoperatively. There were no cases of postoperative functional impairment of the mapped cranial nerves. In one case we were unable to get an intraoperative response from the fourth cranial nerve and observed its postoperative transient plegia (the function was normal before surgery). t-EMG allows surgeons to control the safety of cranial nerves both during and after skull base tumor removal. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Patterns of arm muscle activation involved in octopus reaching movements.

    PubMed

    Gutfreund, Y; Flash, T; Fiorito, G; Hochner, B

    1998-08-01

    The extreme flexibility of the octopus arm allows it to perform many different movements, yet octopuses reach toward a target in a stereotyped manner using a basic invariant motor structure: a bend traveling from the base of the arm toward the tip (Gutfreund et al., 1996a). To study the neuronal control of these movements, arm muscle activation [electromyogram (EMG)] was measured together with the kinematics of reaching movements. The traveling bend is associated with a propagating wave of muscle activation, with maximal muscle activation slightly preceding the traveling bend. Tonic activation was occasionally maintained afterward. Correlation of the EMG signals with the kinematic variables (velocities and accelerations) reveals that a significant part of the kinematic variability can be explained by the level of muscle activation. Furthermore, the EMG level measured during the initial stages of movement predicts the peak velocity attained toward the end of the reaching movement. These results suggest that feed-forward motor commands play an important role in the control of movement velocity and that simple adjustment of the excitation levels at the initial stages of the movement can set the velocity profile of the whole movement. A simple model of octopus arm extension is proposed in which the driving force is set initially and is then decreased in proportion to arm diameter at the bend. The model qualitatively reproduces the typical velocity profiles of octopus reaching movements, suggesting a simple control mechanism for bend propagation in the octopus arm.

  13. EMG of the hip adductor muscles in six clinical examination tests.

    PubMed

    Lovell, Gregory A; Blanch, Peter D; Barnes, Christopher J

    2012-08-01

    To assess activation of muscles of hip adduction using EMG and force analysis during standard clinical tests, and compare athletes with and without a prior history of groin pain. Controlled laboratory study. 21 male athletes from an elite junior soccer program. Bilateral surface EMG recordings of the adductor magnus, adductor longus, gracilis and pectineus as well as a unilateral fine-wire EMG of the pectineus were made during isometric holds in six clinical examination tests. A load cell was used to measure force data. Test type was a significant factor in the EMG output for all four muscles (all muscles p < 0.01). EMG activation was highest in Hips 0 or Hips 45 for adductor magnus, adductor longus and gracilis. EMG activation for pectineus was highest in Hips 90. Injury history was a significant factor in the EMG output for the adductor longus (p < 0.05), pectineus (p < 0.01) and gracilis (p < 0.01) but not adductor magnus. For force data, clinical test type was a significant factor (p < 0.01) with Hips 0 being significantly stronger than Hips 45, Hips 90 and Side lay. BMI (body mass index) was a significant factor (p < 0.01) for producing a higher force. All other factors had no significant effect on the force outputs. Hip adduction strength assessment is best measured at hips 0 (which produced most force) or 45° flexion (which generally gave the highest EMG output). Muscle EMG varied significantly with clinical test position. Athletes with previous groin injury had a significant fall in some EMG outputs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Cortical effect and functional recovery by the electromyography-triggered neuromuscular stimulation in chronic stroke patients.

    PubMed

    Shin, Hwa Kyung; Cho, Sang Hyun; Jeon, Hye-seon; Lee, Young-Hee; Song, Jun Chan; Jang, Sung Ho; Lee, Chu-Hee; Kwon, Yong Hyun

    2008-09-19

    We investigated the effect of electromyography (EMG)-triggered neuromuscular electrical stimulation (NMES; EMG-stim) on functional recovery of the hemiparetic hand and the related cortical activation pattern in chronic stroke patients. We enrolled 14 stroke patients, who were randomly assigned to the EMG-stim (n=7) or the control groups (n=7). The EMG-stim was applied to the wrist extensor of the EMG-stim group for two sessions (30 min/session) a day, five times per week for 10 weeks. Four functional tests (box and block, strength, the accuracy index, and the on/offset time of muscle contraction) and functional MRI (fMRI) were performed before and after treatment. fMRI was measured at 1.5 T in parallel with timed finger flexion-extension movements at a fixed rate. Following treatment, the EMG-stim group showed a significant improvement in all functional tests. The main cortical activation change with such functional improvement was shifted from the ipsilateral sensorimotor cortex (SMC) to the contralateral SMC. We demonstrated that 10-week EMG-stim can induce functional recovery and change of cortical activation pattern in the hemiparetic hand of chronic stroke patients.

  15. Quantitative analysis of surface electromyography during epileptic and nonepileptic convulsive seizures.

    PubMed

    Beniczky, Sándor; Conradsen, Isa; Moldovan, Mihai; Jennum, Poul; Fabricius, Martin; Benedek, Krisztina; Andersen, Noémi; Hjalgrim, Helle; Wolf, Peter

    2014-07-01

    To investigate the characteristics of sustained muscle activation during convulsive epileptic and psychogenic nonepileptic seizures (PNES), as compared to voluntary muscle activation. The main goal was to find surface electromyography (EMG) features that can distinguish between convulsive epileptic seizures and convulsive PNES. In this case-control study, surface EMG was recorded from the deltoid muscles during long-term video-electroencephalography (EEG) monitoring in 25 patients and in 21 healthy controls. A total of 46 clinical episodes were recorded: 28 generalized tonic-clonic seizures (GTCS) from 14 patients with epilepsy, and 18 convulsive PNES from 12 patients (one patient had both GTCS and PNES). The healthy controls were simulating GTCS. To quantitatively characterize the signals we calculated the following parameters: root mean square (RMS) of the amplitude, median frequency (MF), coherence, and duration of the seizures, of the clonic EMG discharges, and of the silent periods between the cloni. Based on wavelet analysis, we distinguished between a low-frequency component (LF 2-8 Hz) and a high-frequency component (HF 64-256 Hz). Duration of the seizure, and separation between the tonic and the clonic phases distinguished at group-level but not at individual level between convulsive PNES and GTCS. RMS, temporal dynamics of the HF/LF ratio, and the evolution of the silent periods differentiated between epileptic and nonepileptic convulsive seizures at the individual level. A combination between HF/LF ratio and RMS separated all PNES from the GTCS. A blinded review of the EMG features distinguished correctly between GTCS and convulsive PNES in all cases. The HF/LF ratio and the RMS of the PNES were smaller compared to the simulated seizures. In addition to providing insight into the mechanism of muscle activation during convulsive PNES, these results have diagnostic significance, at the individual level. Surface EMG features can accurately distinguish convulsive epileptic from nonepileptic psychogenic seizures, even in PNES cases without rhythmic clonic movements. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.

  16. The effects of electromyography-controlled functional electrical stimulation on upper extremity function and cortical perfusion in stroke patients.

    PubMed

    Hara, Yukihiro; Obayashi, Shigeru; Tsujiuchi, Kazuhito; Muraoka, Yoshihiro

    2013-10-01

    The relation was investigated between hemiparetic arm function improvement and brain cortical perfusion (BCP) change during voluntary muscle contraction (VOL), EMG-controlled FES (EMG-FES) and simple electrical muscle stimulation (ES) before and after EMG-FES therapy in chronic stroke patients. Sixteen chronic stroke patients with moderate residual hemiparesis underwent 5 months of task-orientated EMG-FES therapy of the paretic arm once or twice a week. Before and after treatment, arm function was clinically evaluated and BCP during VOL, ES and EMG-FES were assessed using multi-channel near-infrared spectroscopy. BCP in the ipsilesional sensory-motor cortex (SMC) was greater during EMG-FES than during VOL or ES; therefore, EMG-FES caused a shift in the dominant BCP from the contralesional to ipsilesional SMC. After EMG-FES therapy, arm function improved in most patients, with some individual variability, and there was significant improvement in Fugl-Meyer (FM) score and maximal grip strength (GS). Clinical improvement was accompanied by an increase in ipsilesional SMC activation during VOL and EMG-FES condition. The EMG-FES may have more influence on ipsilesional BCP than VOL or ES alone. The sensory motor integration during EMG-FES therapy might facilitate BCP of the ipsilesional SMC and result in functional improvement of hemiparetic upper extremity. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  17. Modeling Nonlinear Errors in Surface Electromyography Due To Baseline Noise: A New Methodology

    PubMed Central

    Law, Laura Frey; Krishnan, Chandramouli; Avin, Keith

    2010-01-01

    The surface electromyographic (EMG) signal is often contaminated by some degree of baseline noise. It is customary for scientists to subtract baseline noise from the measured EMG signal prior to further analyses based on the assumption that baseline noise adds linearly to the observed EMG signal. The stochastic nature of both the baseline and EMG signal, however, may invalidate this assumption. Alternately, “true” EMG signals may be either minimally or nonlinearly affected by baseline noise. This information is particularly relevant at low contraction intensities when signal-to-noise ratios (SNR) may be lowest. Thus, the purpose of this simulation study was to investigate the influence of varying levels of baseline noise (approximately 2 – 40 % maximum EMG amplitude) on mean EMG burst amplitude and to assess the best means to account for signal noise. The simulations indicated baseline noise had minimal effects on mean EMG activity for maximum contractions, but increased nonlinearly with increasing noise levels and decreasing signal amplitudes. Thus, the simple baseline noise subtraction resulted in substantial error when estimating mean activity during low intensity EMG bursts. Conversely, correcting EMG signal as a nonlinear function of both baseline and measured signal amplitude provided highly accurate estimates of EMG amplitude. This novel nonlinear error modeling approach has potential implications for EMG signal processing, particularly when assessing co-activation of antagonist muscles or small amplitude contractions where the SNR can be low. PMID:20869716

  18. Influence of different attentional focus on EMG amplitude and contraction duration during the bench press at different speeds.

    PubMed

    Calatayud, Joaquin; Vinstrup, Jonas; Jakobsen, Markus D; Sundstrup, Emil; Colado, Juan Carlos; Andersen, Lars L

    2018-05-01

    The purpose of this study was to investigate whether using different focus affects electromyographic (EMG) amplitude and contraction duration during bench press performed at explosive and controlled speeds. Eighteen young male individuals were familiarized with the procedure and performed the one-maximum repetition (1RM) test in the first session. In the second session, participants performed the bench press exercise at 50% of the 1RM with 3 different attentional focuses (regular focus on moving the load vs contracting the pectoralis vs contracting the triceps) at 2 speed conditions (controlled vs maximal speed). During the controlled speed condition, focusing on using either the pectoralis or the triceps muscles increased pectoralis normalized EMG (nEMG) by 6% (95% CI 3-8%; p = 0.0001) and 4% nEMG (95% CI 1-7%; p = 0.0096), respectively, compared with the regular focus condition. Triceps activity was increased by 4% nEMG (95% CI 0-7%; p = 0.0308) at the controlled speed condition during the triceps focus. During the explosive speed condition, the use of different focuses had no effect. The different attentional focus resulted in comparable contraction duration for the measured muscles when the exercise was performed explosively. Using internal focus to increase EMG amplitude seems to function only during conditions of controlled speed.

  19. Three-Way Analysis of Spectrospatial Electromyography Data: Classification and Interpretation

    PubMed Central

    Kauppi, Jukka-Pekka; Hahne, Janne; Müller, Klaus-Robert; Hyvärinen, Aapo

    2015-01-01

    Classifying multivariate electromyography (EMG) data is an important problem in prosthesis control as well as in neurophysiological studies and diagnosis. With modern high-density EMG sensor technology, it is possible to capture the rich spectrospatial structure of the myoelectric activity. We hypothesize that multi-way machine learning methods can efficiently utilize this structure in classification as well as reveal interesting patterns in it. To this end, we investigate the suitability of existing three-way classification methods to EMG-based hand movement classification in spectrospatial domain, as well as extend these methods by sparsification and regularization. We propose to use Fourier-domain independent component analysis as preprocessing to improve classification and interpretability of the results. In high-density EMG experiments on hand movements across 10 subjects, three-way classification yielded higher average performance compared with state-of-the art classification based on temporal features, suggesting that the three-way analysis approach can efficiently utilize detailed spectrospatial information of high-density EMG. Phase and amplitude patterns of features selected by the classifier in finger-movement data were found to be consistent with known physiology. Thus, our approach can accurately resolve hand and finger movements on the basis of detailed spectrospatial information, and at the same time allows for physiological interpretation of the results. PMID:26039100

  20. Jaw tremor as a physiological biomarker of bruxism.

    PubMed

    Laine, C M; Yavuz, Ş U; D'Amico, J M; Gorassini, M A; Türker, K S; Farina, D

    2015-09-01

    To determine if sleep bruxism is associated with abnormal physiological tremor of the jaw during a visually-guided bite force control task. Healthy participants and patients with sleep bruxism were given visual feedback of their bite force and asked to trace triangular target trajectories (duration=20s, peak force <35% maximum voluntary force). Bite force control was quantified in terms of the power spectra of force fluctuations, masseter EMG activity, and force-to-EMG coherence. Patients had greater jaw force tremor at ∼8 Hz relative to controls, along with increased masseter EMG activity and force-to-EMG coherence in the same frequency range. Patients also showed lower force-to-EMG coherence at low frequencies (<3 Hz), but greater coherence at high frequencies (20-40 Hz). Finally, patients had greater 6-10 Hz force tremor during periods of descending vs. ascending force, while controls showed no difference in tremor with respect to force dynamics. Patients with bruxism have abnormal jaw tremor when engaged in a visually-guided bite force task. Measurement of jaw tremor may aid in the detection/evaluation of bruxism. In light of previous literature, our results also suggest that bruxism is marked by abnormal or mishandled peripheral feedback from the teeth. Copyright © 2015. Published by Elsevier Ireland Ltd.

  1. Mechanisms of quadriceps muscle weakness in knee joint osteoarthritis: the effects of prolonged vibration on torque and muscle activation in osteoarthritic and healthy control subjects.

    PubMed

    Rice, David A; McNair, Peter J; Lewis, Gwyn N

    2011-01-01

    A consequence of knee joint osteoarthritis (OA) is an inability to fully activate the quadriceps muscles, a problem termed arthrogenic muscle inhibition (AMI). AMI leads to marked quadriceps weakness that impairs physical function and may hasten disease progression. The purpose of the present study was to determine whether γ-loop dysfunction contributes to AMI in people with knee joint OA. Fifteen subjects with knee joint OA and 15 controls with no history of knee joint pathology participated in this study. Quadriceps and hamstrings peak isometric torque (Nm) and electromyography (EMG) amplitude were collected before and after 20 minutes of 50 Hz vibration applied to the infrapatellar tendon. Between-group differences in pre-vibration torque were analysed using a one-way analysis of covariance, with age, gender and body mass (kg) as the covariates. If the γ-loop is intact, vibration should decrease torque and EMG levels in the target muscle; if dysfunctional, then torque and EMG levels should not change following vibration. One-sample t tests were thus undertaken to analyse whether percentage changes in torque and EMG differed from zero after vibration in each group. In addition, analyses of covariance were utilised to analyse between-group differences in the percentage changes in torque and EMG following vibration. Pre-vibration quadriceps torque was significantly lower in the OA group compared with the control group (P = 0.005). Following tendon vibration, quadriceps torque (P < 0.001) and EMG amplitude (P ≤0.001) decreased significantly in the control group but did not change in the OA group (all P > 0.299). Hamstrings torque and EMG amplitude were unchanged in both groups (all P > 0.204). The vibration-induced changes in quadriceps torque and EMG were significantly different between the OA and control groups (all P < 0.011). No between-group differences were observed for the change in hamstrings torque or EMG (all P > 0.554). γ-loop dysfunction may contribute to AMI in individuals with knee joint OA, partially explaining the marked quadriceps weakness and atrophy that is often observed in this population.

  2. Mechanisms of quadriceps muscle weakness in knee joint osteoarthritis: the effects of prolonged vibration on torque and muscle activation in osteoarthritic and healthy control subjects

    PubMed Central

    2011-01-01

    Introduction A consequence of knee joint osteoarthritis (OA) is an inability to fully activate the quadriceps muscles, a problem termed arthrogenic muscle inhibition (AMI). AMI leads to marked quadriceps weakness that impairs physical function and may hasten disease progression. The purpose of the present study was to determine whether γ-loop dysfunction contributes to AMI in people with knee joint OA. Methods Fifteen subjects with knee joint OA and 15 controls with no history of knee joint pathology participated in this study. Quadriceps and hamstrings peak isometric torque (Nm) and electromyography (EMG) amplitude were collected before and after 20 minutes of 50 Hz vibration applied to the infrapatellar tendon. Between-group differences in pre-vibration torque were analysed using a one-way analysis of covariance, with age, gender and body mass (kg) as the covariates. If the γ-loop is intact, vibration should decrease torque and EMG levels in the target muscle; if dysfunctional, then torque and EMG levels should not change following vibration. One-sample t tests were thus undertaken to analyse whether percentage changes in torque and EMG differed from zero after vibration in each group. In addition, analyses of covariance were utilised to analyse between-group differences in the percentage changes in torque and EMG following vibration. Results Pre-vibration quadriceps torque was significantly lower in the OA group compared with the control group (P = 0.005). Following tendon vibration, quadriceps torque (P < 0.001) and EMG amplitude (P ≤0.001) decreased significantly in the control group but did not change in the OA group (all P > 0.299). Hamstrings torque and EMG amplitude were unchanged in both groups (all P > 0.204). The vibration-induced changes in quadriceps torque and EMG were significantly different between the OA and control groups (all P < 0.011). No between-group differences were observed for the change in hamstrings torque or EMG (all P > 0.554). Conclusions γ-loop dysfunction may contribute to AMI in individuals with knee joint OA, partially explaining the marked quadriceps weakness and atrophy that is often observed in this population. PMID:21933392

  3. Young, Healthy Subjects Can Reduce the Activity of Calf Muscles When Provided with EMG Biofeedback in Upright Stance

    PubMed Central

    Vieira, Taian M.; Baudry, Stéphane; Botter, Alberto

    2016-01-01

    Recent evidence suggests the minimization of muscular effort rather than of the size of bodily sway may be the primary, nervous system goal when regulating the human, standing posture. Different programs have been proposed for balance training; none however has been focused on the activation of postural muscles during standing. In this study we investigated the possibility of minimizing the activation of the calf muscles during standing through biofeedback. By providing subjects with an audio signal that varied in amplitude and frequency with the amplitude of surface electromyograms (EMG) recorded from different regions of the gastrocnemius and soleus muscles, we expected them to be able to minimize the level of muscle activation during standing without increasing the excursion of the center of pressure (CoP). CoP data and surface EMG from gastrocnemii, soleus and tibialis anterior muscles were obtained from 10 healthy participants while standing at ease and while standing with EMG biofeedback. Four sensitivities were used to test subjects' responsiveness to the EMG biofeedback. Compared with standing at ease, the two most sensitive feedback conditions induced a decrease in plantar flexor activity (~15%; P < 0.05) and an increase in tibialis anterior EMG (~10%; P < 0.05). Furthermore, CoP mean position significantly shifted backward (~30 mm). In contrast, the use of less sensitive EMG biofeedback resulted in a significant decrease in EMG activity of ankle plantar flexors with a marginal increase in TA activity compared with standing at ease. These changes were not accompanied by greater CoP displacements or significant changes in mean CoP position. Key results revealed subjects were able to keep standing stability while reducing the activity of gastrocnemius and soleus without loading their tibialis anterior muscle when standing with EMG biofeedback. These results may therefore posit the basis for the development of training protocols aimed at assisting subjects in more efficiently controlling leg muscle activity during standing. PMID:27199773

  4. Gesture Based Control and EMG Decomposition

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin R.; Chang, Mindy H.; Knuth, Kevin H.

    2005-01-01

    This paper presents two probabilistic developments for use with Electromyograms (EMG). First described is a new-electric interface for virtual device control based on gesture recognition. The second development is a Bayesian method for decomposing EMG into individual motor unit action potentials. This more complex technique will then allow for higher resolution in separating muscle groups for gesture recognition. All examples presented rely upon sampling EMG data from a subject's forearm. The gesture based recognition uses pattern recognition software that has been trained to identify gestures from among a given set of gestures. The pattern recognition software consists of hidden Markov models which are used to recognize the gestures as they are being performed in real-time from moving averages of EMG. Two experiments were conducted to examine the feasibility of this interface technology. The first replicated a virtual joystick interface, and the second replicated a keyboard. Moving averages of EMG do not provide easy distinction between fine muscle groups. To better distinguish between different fine motor skill muscle groups we present a Bayesian algorithm to separate surface EMG into representative motor unit action potentials. The algorithm is based upon differential Variable Component Analysis (dVCA) [l], [2] which was originally developed for Electroencephalograms. The algorithm uses a simple forward model representing a mixture of motor unit action potentials as seen across multiple channels. The parameters of this model are iteratively optimized for each component. Results are presented on both synthetic and experimental EMG data. The synthetic case has additive white noise and is compared with known components. The experimental EMG data was obtained using a custom linear electrode array designed for this study.

  5. Neuromuscular mechanisms and neural strategies in the control of time-varying muscle contractions.

    PubMed

    Erimaki, Sophia; Agapaki, Orsalia M; Christakos, Constantinos N

    2013-09-01

    The organization of the neural input to motoneurons that underlies time-varying muscle force is assumed to depend on muscle transfer characteristics and neural strategies or control modes utilizing sensory signals. We jointly addressed these interlinked, but previously studied individually and partially, issues for sinusoidal (range 0.5-5.0 Hz) force-tracking contractions of a human finger muscle. Using spectral and correlation analyses of target signal, force signal, and motor unit (MU) discharges, we studied 1) patterns of such discharges, allowing inferences on the motoneuronal input; 2) transformation of MU population activity (EMG) into quasi-sinusoidal force; and 3) relation of force oscillation to target, carrying information on the input's organization. A broad view of force control mechanisms and strategies emerged. Specifically, synchronized MU and EMG modulations, reflecting a frequency-modulated motoneuronal input, accompanied the force variations. Gain and delay drops between EMG modulation and force oscillation, critical for the appropriate organization of this input, occurred with increasing target frequency. According to our analyses, gain compensation was achieved primarily through rhythmical activation/deactivation of higher-threshold MUs and secondarily through the adaptation of the input's strength expected during tracking tasks. However, the input's timing was not adapted to delay behaviors and seemed to depend on the control modes employed. Thus, for low-frequency targets, the force oscillation was highly coherent with, but led, a target, this timing error being compatible with predictive feedforward control partly based on the target's derivatives. In contrast, the force oscillation was weakly coherent, but in phase, with high-frequency targets, suggesting control mainly based on a target's rhythm.

  6. Eversion Strength and Surface Electromyography Measures With and Without Chronic Ankle Instability Measured in 2 Positions.

    PubMed

    Donnelly, Lindsy; Donovan, Luke; Hart, Joseph M; Hertel, Jay

    2017-07-01

    Individuals with chronic ankle instability (CAI) have demonstrated strength deficits compared to healthy controls; however, the influence of ankle position on force measures and surface electromyography (sEMG) activation of the peroneus longus and brevis has not been investigated. The purpose of this study was to compare sEMG amplitudes of the peroneus longus and brevis and eversion force measures in 2 testing positions, neutral and plantarflexion, in groups with and without CAI. Twenty-eight adults (19 females, 9 males) with CAI and 28 healthy controls (19 females, 9 males) participated. Hand-held dynamometer force measures were assessed during isometric eversion contractions in 2 testing positions (neutral, plantarflexion) while surface sEMG amplitudes of the peroneal muscles were recorded. Force measures were normalized to body mass, and sEMG amplitudes were normalized to a resting period. The group with CAI demonstrated less force when compared to the control group ( P < .001) in both the neutral and plantarflexion positions: neutral position, CAI: 1.64 Nm/kg and control: 2.10 Nm/kg) and plantarflexion position, CAI: 1.40 Nm/kg and control: 1.73 Nm/kg). There were no differences in sEMG amplitudes between the groups or muscles ( P > .05). Force measures correlated with both muscles' sEMG amplitudes in the healthy group (neutral peroneus longus: r = 0.42, P = .03; plantarflexion peroneus longus: r = 0.56, P = .002; neutral peroneus brevis: r = 0.38, P = .05; plantarflexion peroneus longus: r = 0.40, P = .04), but not in the group with CAI ( P > .05). The group with CAI generated less force when compared to the control group during both testing positions. There was no selective activation of the peroneal muscles with testing in both positions, and force output and sEMG activity was only related in the healthy group. Clinicians should assess eversion strength and implement strength training exercises in different sagittal plane positions and evaluate for other pathologies that may contribute to reduced eversion strength in patients with CAI. Level III, cross-sectional.

  7. Prosthetic EMG control enhancement through the application of man-machine principles

    NASA Technical Reports Server (NTRS)

    Simcox, W. A.

    1977-01-01

    An area in medicine that appears suitable to man-machine principles is rehabilitation research, particularly when the motor aspects of the body are involved. If one considers the limb, whether functional or not, as the machine, the brain as the controller and the neuromuscular system as the man-machine interface, the human body is reduced to a man-machine system that can benefit from the principles behind such systems. The area of rehabilitation that this paper deals with is that of an arm amputee and his prosthetic device. Reducing this area to its man-machine basics, the problem becomes one of attaining natural multiaxis prosthetic control using Electromyographic activity (EMG) as the means of communication between man and prothesis. In order to use EMG as the communication channel it must be amplified and processed to yield a high information signal suitable for control. The most common processing scheme employed is termed Mean Value Processing. This technique for extracting the useful EMG signal consists of a differential to single ended conversion to the surface activity followed by a rectification and smoothing.

  8. Does gender influence neuromotor control of the knee and hip?

    PubMed

    Cowan, Sallie M; Crossley, Kay M

    2009-04-01

    Patellofemoral pain (PFP) is a common condition that occurs more frequently in females. Anatomical, hormonal and neuromuscular factors have been proposed to contribute to the increased incidence of PFP in females, with neuromuscular factors considered to be of particular importance. This cross-sectional study aimed to evaluate differences in the neuromotor control of the knee and hip muscles between genders and to investigate whether clinical measures of hip rotation range and strength were associated with EMG measures of hip and thigh motor control. Twenty-nine (16 female and 13 male) asymptomatic participants completed a visual choice reaction-time stair stepping task. EMG activity was recorded from vastus medialis oblique, vastus lateralis, anterior and posterior gluteus medius muscles. In addition hip rotation range of motion and hip external rotation, abduction and trunk strength were assessed. There were no differences in the timing or peak of EMG activation of the vasti or gluteus medius muscle between genders during the stepping task. There were however significant associations between EMG measures of motor control of the vasti and hip strength in both females and males. These findings are suggestive of a link between hip muscle control and vasti neuromotor control.

  9. A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements

    NASA Astrophysics Data System (ADS)

    Kawase, Toshihiro; Sakurada, Takeshi; Koike, Yasuharu; Kansaku, Kenji

    2017-02-01

    Objective. Brain-machine interface (BMI) technologies have succeeded in controlling robotic exoskeletons, enabling some paralyzed people to control their own arms and hands. We have developed an exoskeleton asynchronously controlled by EEG signals. In this study, to enable real-time control of the exoskeleton for paresis, we developed a hybrid system with EEG and EMG signals, and the EMG signals were used to estimate its joint angles. Approach. Eleven able-bodied subjects and two patients with upper cervical spinal cord injuries (SCIs) performed hand and arm movements, and the angles of the metacarpophalangeal (MP) joint of the index finger, wrist, and elbow were estimated from EMG signals using a formula that we derived to calculate joint angles from EMG signals, based on a musculoskeletal model. The formula was exploited to control the elbow of the exoskeleton after automatic adjustments. Four able-bodied subjects and a patient with upper cervical SCI wore an exoskeleton controlled using EMG signals and were required to perform hand and arm movements to carry and release a ball. Main results. Estimated angles of the MP joints of index fingers, wrists, and elbows were correlated well with the measured angles in 11 able-bodied subjects (correlation coefficients were 0.81  ±  0.09, 0.85  ±  0.09, and 0.76  ±  0.13, respectively) and the patients (e.g. 0.91  ±  0.01 in the elbow of a patient). Four able-bodied subjects successfully positioned their arms to adequate angles by extending their elbows and a joint of the exoskeleton, with root-mean-square errors  <6°. An upper cervical SCI patient, empowered by the exoskeleton, successfully carried a ball to a goal in all 10 trials. Significance. A BMI-based exoskeleton for paralyzed arms and hands using real-time control was realized by designing a new method to estimate joint angles based on EMG signals, and these may be useful for practical rehabilitation and the support of daily actions.

  10. A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements.

    PubMed

    Kawase, Toshihiro; Sakurada, Takeshi; Koike, Yasuharu; Kansaku, Kenji

    2017-02-01

    Brain-machine interface (BMI) technologies have succeeded in controlling robotic exoskeletons, enabling some paralyzed people to control their own arms and hands. We have developed an exoskeleton asynchronously controlled by EEG signals. In this study, to enable real-time control of the exoskeleton for paresis, we developed a hybrid system with EEG and EMG signals, and the EMG signals were used to estimate its joint angles. Eleven able-bodied subjects and two patients with upper cervical spinal cord injuries (SCIs) performed hand and arm movements, and the angles of the metacarpophalangeal (MP) joint of the index finger, wrist, and elbow were estimated from EMG signals using a formula that we derived to calculate joint angles from EMG signals, based on a musculoskeletal model. The formula was exploited to control the elbow of the exoskeleton after automatic adjustments. Four able-bodied subjects and a patient with upper cervical SCI wore an exoskeleton controlled using EMG signals and were required to perform hand and arm movements to carry and release a ball. Estimated angles of the MP joints of index fingers, wrists, and elbows were correlated well with the measured angles in 11 able-bodied subjects (correlation coefficients were 0.81  ±  0.09, 0.85  ±  0.09, and 0.76  ±  0.13, respectively) and the patients (e.g. 0.91  ±  0.01 in the elbow of a patient). Four able-bodied subjects successfully positioned their arms to adequate angles by extending their elbows and a joint of the exoskeleton, with root-mean-square errors  <6°. An upper cervical SCI patient, empowered by the exoskeleton, successfully carried a ball to a goal in all 10 trials. A BMI-based exoskeleton for paralyzed arms and hands using real-time control was realized by designing a new method to estimate joint angles based on EMG signals, and these may be useful for practical rehabilitation and the support of daily actions.

  11. Human muscle fascicle behavior in agonist and antagonist isometric contractions.

    PubMed

    Simoneau, Emilie M; Longo, Stefano; Seynnes, Olivier R; Narici, Marco V

    2012-01-01

    The aim of this study was to compare, at a given level of electromyographic (EMG) activity, the behavior of dorsiflexor and plantarflexor muscles as assessed via their architecture (pennation angle and fiber length) during agonist or antagonist isometric contractions. Real-time ultrasonography and EMG activity of gastrocnemius medialis (GM) and tibialis anterior (TA) muscles were obtained while young males performed ramp isometric contractions in dorsi- and plantarflexion. For both muscles, at a similar level of EMG activity, fiber length was longer, and pennation angle was smaller, during antagonist than during agonist contractions. These results indicate that, at similar levels of EMG activity, GM and TA muscles elicit a higher mechanical output while acting as an antagonist. These findings have important implications for muscle function testing. They show that estimation of antagonistic force using the common method based on the EMG/net torque relationship yields underestimated values. Copyright © 2011 Wiley Periodicals, Inc.

  12. Comparing electro- and mechano-myographic muscle activation patterns in self-paced pediatric gait.

    PubMed

    Plewa, Katherine; Samadani, Ali; Chau, Tom

    2017-10-01

    Electromyography (EMG) is the standard modality for measuring muscle activity. However, the convenience and availability of low-cost accelerometer-based wearables makes mechanomyography (MMG) an increasingly attractive alternative modality for clinical applications. Literature to date has demonstrated a strong association between EMG and MMG temporal alignment in isometric and isokinetic contractions. However, the EMG-MMG relationship has not been studied in gait. In this study, the concurrence of EMG- and MMG-detected contractions in the tibialis anterior, lateral gastrocnemius, vastus lateralis, and biceps femoris muscles were investigated in children during self-paced gait. Furthermore, the distribution of signal power over the gait cycle was statistically compared between EMG-MMG modalities. With EMG as the reference, muscular contractions were detected based on MMG with balanced accuracies between 88 and 94% for all muscles except the gastrocnemius. MMG signal power differed from that of EMG during certain phases of the gait cycle in all muscles except the biceps femoris. These timing and power distribution differences between the two modalities may in part be related to muscle fascicle length changes that are unique to muscle motion during gait. Our findings suggest that the relationship between EMG and MMG appears to be more complex during gait than in isometric and isokinetic contractions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Sex differences in kinetic and neuromuscular control during jumping and landing

    PubMed Central

    Márquez, G.; Alegre, L.M.; Jaén, D.; Martin-Casado, L.; Aguado, X.

    2017-01-01

    In the present study, we analysed the kinetic profile together with the lower limb EMG activation pattern during a countermovement jump and its respective landing phase in males and females. Twenty subjects (10 males and 10 females) took part in the study. One experimental session was conducted in order to record kinetic and electromyographic (EMG) parameters during a countermovement jump (CMJ) and the subsequent landing phase. During the CMJ, males recorded a higher (p<0.001) performance than females in terms of jump height and power production. Stiffness values were lower in males than females due to greater centre of mass displacement during the countermovement (p<0.01). According to the EMG activity, males demonstrated greater (p<0.05) activation during the concentric phase of the jump. However, females revealed a higher co-contraction ratio in the plantar flexors during the push-off phase. During landings males showed higher (p<0.01) peak ground reaction forces (Fpeak), greater (p<0.05) stiffness and a higher maximal displacement of the CoM (p<0.05) than females. EMG analysis revealed greater EMG activity in the tibialis anterior (p<0.05) and rectus femoris (p=0.05) muscles in males. Higher plantar flexor co-activation during landing has also been found in males. Our findings demonstrated different neuromuscular control in males and females during jumping and landing. PMID:28250245

  14. Sex differences in kinetic and neuromuscular control during jumping and landing.

    PubMed

    Márquez, G; Alegre, L M; Jaén, D; Martin-Casado, L; Aguado, X

    2017-03-01

    In the present study, we analysed the kinetic profile together with the lower limb EMG activation pattern during a countermovement jump and its respective landing phase in males and females. Twenty subjects (10 males and 10 females) took part in the study. One experimental session was conducted in order to record kinetic and electromyographic (EMG) parameters during a countermovement jump (CMJ) and the subsequent landing phase. During the CMJ, males recorded a higher (p<0.001) performance than females in terms of jump height and power production. Stiffness values were lower in males than females due to greater centre of mass displacement during the countermovement (p<0.01). According to the EMG activity, males demonstrated greater (p<0.05) activation during the concentric phase of the jump. However, females revealed a higher co-contraction ratio in the plantar flexors during the push-off phase. During landings males showed higher (p<0.01) peak ground reaction forces (F peak ), greater (p<0.05) stiffness and a higher maximal displacement of the CoM (p<0.05) than females. EMG analysis revealed greater EMG activity in the tibialis anterior (p<0.05) and rectus femoris (p=0.05) muscles in males. Higher plantar flexor co-activation during landing has also been found in males. Our findings demonstrated different neuromuscular control in males and females during jumping and landing.

  15. Increased Motor Activity During REM Sleep Is Linked with Dopamine Function in Idiopathic REM Sleep Behavior Disorder and Parkinson Disease.

    PubMed

    Zoetmulder, Marielle; Nikolic, Miki; Biernat, Heidi; Korbo, Lise; Friberg, Lars; Jennum, Poul

    2016-06-15

    Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia characterized by impaired motor inhibition during REM sleep, and dream-enacting behavior. RBD is especially associated with α-synucleinopathies, such as Parkinson disease (PD). Follow-up studies have shown that patients with idiopathic RBD (iRBD) have an increased risk of developing an α-synucleinopathy in later life. Although abundant studies have shown that degeneration of the nigrostriatal dopaminergic system is associated with daytime motor function in Parkinson disease, only few studies have investigated the relation between this system and electromyographic (EMG) activity during sleep. The objective of this study was to investigate the relationship between the nigrostriatal dopamine system and muscle activity during sleep in iRBD and PD. 10 iRBD patients, 10 PD patients with PD, 10 PD patients without RBD, and 10 healthy controls were included and assessed with (123)I-N-omega-fluoropropyl-2-beta-carboxymethoxy-3beta-(4-iodophenyl) nortropane ((123)I-FP-CIT) Single-photon emission computed tomography (SPECT) scanning ((123)I-FP-CIT SPECT), neurological examination, and polysomnography. iRBD patients and PD patients with RBD had increased EMG-activity compared to healthy controls. (123)I-FP-CIT uptake in the putamen-region was highest in controls, followed by iRBD patients, and lowest in PD patients. In iRBD patients, EMG-activity in the mentalis muscle was correlated to (123)I-FP-CIT uptake in the putamen. In PD patients, EMG-activity was correlated to anti-Parkinson medication. Our results support the hypothesis that increased EMG-activity during REM sleep is at least partly linked to the nigrostriatal dopamine system in iRBD, and with dopamine function in PD. © 2016 American Academy of Sleep Medicine.

  16. Short-term transcutaneous electrical nerve stimulation reduces pain and improves the masticatory muscle activity in temporomandibular disorder patients: a randomized controlled trial.

    PubMed

    Ferreira, Ana Paula de Lima; Costa, Dayse Regina Alves da; Oliveira, Ana Izabela Sobral de; Carvalho, Elyson Adam Nunes; Conti, Paulo César Rodrigues; Costa, Yuri Martins; Bonjardim, Leonardo Rigoldi

    2017-01-01

    To investigate the short-term effect of transcutaneous electrical nerve stimulation (TENS) by examining pain intensity, pressure pain threshold (PPT) and electromyography (EMG) activity in patients with temporomandibular disorder (TMD). Forty patients with myofascial TMD were enrolled in this randomized placebo-controlled trial and were divided into two groups: active (n=20) and placebo (n=20) TENS. Outcome variables assessed at baseline (T0), immediately after (T2) and 48 hours after treatment (T1) were: pain intensity with the aid of a visual analogue scale (VAS); PPT of masticatory and cervical structures; EMG activity during mandibular rest position (MR), maximal voluntary contraction (MVC) and habitual chewing (HC). Two-way ANOVA for repeated measures was applied to the data and the significance level was set at 5%. There was a decrease in the VAS values at T1 and T2 when compared with T0 values in the active TENS group (p<0.050). The PPT between-group differences were significant at T1 assessment of the anterior temporalis and sternocleidomastoid (SCM) and T2 for the masseter and the SCM (p<0.050). A significant EMG activity reduction of the masseter and anterior temporalis was presented in the active TENS during MR at T1 assessment when compared with T0 (p<0.050). The EMG activity of the anterior temporalis was significantly higher in the active TENS during MVC at T1 and T2 when compared with placebo (p<0.050). The EMG activity of the masseter and anterior temporalis muscle was significantly higher in the active TENS during HC at T1 when compared with placebo (p<0.050). The short-term therapeutic effects of TENS are superior to those of the placebo, because of reported facial pain, deep pain sensitivity and masticatory muscle EMG activity improvement.

  17. Surface EMG system for use in long-term vigorous activities

    NASA Astrophysics Data System (ADS)

    de Luca, G.; Bergman, P.; de Luca, C.

    The purpose of the project was to develop an advanced surface electromyographic (EMG) system that is portable, un-tethered, and able to detect high-fidelity EMG signals from multiple channels. The innovation was specifically designed to extend NASA's capability to perform neurological status monitoring for long-term, vigorous activities. These features are a necessary requirement of ground-based and in-flight studies planned for the International Space Station and human expeditions to Mars. The project consisted of developing 1) a portable EMG digital data logger using a handheld PC for acquiring the signal and storing the data from as many as 8 channels, and 2) an EMG electrode/skin interface to improve signal fidelity and skin adhesion in the presence of sweat and mechanical disturbances encountered during vigorous activities. The system, referred to as a MyoMonitor, was configured with a communication port for downloading the data from the data logger to the PC computer workstation. Software specifications were developed and implemented for programming of acquisition protocols, power management, and transferring data to the PC for processing and graphical display. The prototype MyoMonitor was implemented using a handheld PC that features a color LCD screen, enhanced keyboard, extended Lithium Ion battery and recharger, and 128 Mbytes of F ash Memory. The system was designed to be belt-worn,l thereby allowing its use under vigorous activities. The Monitor utilizes up to 8 differential surface EMG sensors. The prototype allowed greater than 2 hours of continuous 8-channel EMG data to be collected, or 17.2 hours of continuous single channel EMG data. Standardized tests in human subjects were conducted to develop the mechanical and electrical properties of the prototype electrode/interface system. Tests conducted during treadmill running and repetitive lifting demonstrated that the prototype interface significantly reduced the detrimental effects of sweat accumulation on signal fidelity. The average number of artifacts contaminating the EMG signals during treadmill running was reduced approximat ely three-fold by the prototype electrode/interface, when compared to methods currently available. Peel adhesion of the interface to the skin was significantly improved for treadmill running. Similarly, the artifacts from controlled impacts on the electrode housing were significantly reduced for both treadmill running and for the repetitive lifting task.

  18. Classification of Anticipatory Signals for Grasp and Release from Surface Electromyography.

    PubMed

    Siu, Ho Chit; Shah, Julie A; Stirling, Leia A

    2016-10-25

    Surface electromyography (sEMG) is a technique for recording natural muscle activation signals, which can serve as control inputs for exoskeletons and prosthetic devices. Previous experiments have incorporated these signals using both classical and pattern-recognition control methods in order to actuate such devices. We used the results of an experiment incorporating grasp and release actions with object contact to develop an intent-recognition system based on Gaussian mixture models (GMM) and continuous-emission hidden Markov models (HMM) of sEMG data. We tested this system with data collected from 16 individuals using a forearm band with distributed sEMG sensors. The data contain trials with shifted band alignments to assess robustness to sensor placement. This study evaluated and found that pattern-recognition-based methods could classify transient anticipatory sEMG signals in the presence of shifted sensor placement and object contact. With the best-performing classifier, the effect of label lengths in the training data was also examined. A mean classification accuracy of 75.96% was achieved through a unigram HMM method with five mixture components. Classification accuracy on different sub-movements was found to be limited by the length of the shortest sub-movement, which means that shorter sub-movements within dynamic sequences require larger training sets to be classified correctly. This classification of user intent is a potential control mechanism for a dynamic grasping task involving user contact with external objects and noise. Further work is required to test its performance as part of an exoskeleton controller, which involves contact with actuated external surfaces.

  19. Classification of Anticipatory Signals for Grasp and Release from Surface Electromyography

    PubMed Central

    Siu, Ho Chit; Shah, Julie A.; Stirling, Leia A.

    2016-01-01

    Surface electromyography (sEMG) is a technique for recording natural muscle activation signals, which can serve as control inputs for exoskeletons and prosthetic devices. Previous experiments have incorporated these signals using both classical and pattern-recognition control methods in order to actuate such devices. We used the results of an experiment incorporating grasp and release actions with object contact to develop an intent-recognition system based on Gaussian mixture models (GMM) and continuous-emission hidden Markov models (HMM) of sEMG data. We tested this system with data collected from 16 individuals using a forearm band with distributed sEMG sensors. The data contain trials with shifted band alignments to assess robustness to sensor placement. This study evaluated and found that pattern-recognition-based methods could classify transient anticipatory sEMG signals in the presence of shifted sensor placement and object contact. With the best-performing classifier, the effect of label lengths in the training data was also examined. A mean classification accuracy of 75.96% was achieved through a unigram HMM method with five mixture components. Classification accuracy on different sub-movements was found to be limited by the length of the shortest sub-movement, which means that shorter sub-movements within dynamic sequences require larger training sets to be classified correctly. This classification of user intent is a potential control mechanism for a dynamic grasping task involving user contact with external objects and noise. Further work is required to test its performance as part of an exoskeleton controller, which involves contact with actuated external surfaces. PMID:27792155

  20. Cross Time-Frequency Analysis of Gastrocnemius Electromyographic Signals in Hypertensive and Nonhypertensive Subjects

    NASA Astrophysics Data System (ADS)

    Mitchell, Patrick; Krotish, Debra; Shin, Yong-June; Hirth, Victor

    2010-12-01

    The effects of hypertension are chronic and continuous; it affects gait, balance, and fall risk. Therefore, it is desirable to assess gait health across hypertensive and nonhypertensive subjects in order to prevent or reduce the risk of falls. Analysis of electromyography (EMG) signals can identify age related changes of neuromuscular activation due to various neuropathies and myopathies, but it is difficult to translate these medical changes to clinical diagnosis. To examine and compare geriatrics patients with these gait-altering diseases, we acquire EMG muscle activation signals, and by use of a timesynchronized mat capable of recording pressure information, we localize the EMG data to the gait cycle, ensuring identical comparison across subjects. Using time-frequency analysis on the EMG signal, in conjunction with several parameters obtained from the time-frequency analyses, we can determine the statistical discrepancy between diseases. We base these parameters on physiological manifestations caused by hypertension, as well as other comorbities that affect the geriatrics community. Using these metrics in a small population, we identify a statistical discrepancy between a control group and subjects with hypertension, neuropathy, diabetes, osteoporosis, arthritis, and several other common diseases which severely affect the geriatrics community.

  1. A Framework of Temporal-Spatial Descriptors-Based Feature Extraction for Improved Myoelectric Pattern Recognition.

    PubMed

    Khushaba, Rami N; Al-Timemy, Ali H; Al-Ani, Ahmed; Al-Jumaily, Adel

    2017-10-01

    The extraction of the accurate and efficient descriptors of muscular activity plays an important role in tackling the challenging problem of myoelectric control of powered prostheses. In this paper, we present a new feature extraction framework that aims to give an enhanced representation of muscular activities through increasing the amount of information that can be extracted from individual and combined electromyogram (EMG) channels. We propose to use time-domain descriptors (TDDs) in estimating the EMG signal power spectrum characteristics; a step that preserves the computational power required for the construction of spectral features. Subsequently, TDD is used in a process that involves: 1) representing the temporal evolution of the EMG signals by progressively tracking the correlation between the TDD extracted from each analysis time window and a nonlinearly mapped version of it across the same EMG channel and 2) representing the spatial coherence between the different EMG channels, which is achieved by calculating the correlation between the TDD extracted from the differences of all possible combinations of pairs of channels and their nonlinearly mapped versions. The proposed temporal-spatial descriptors (TSDs) are validated on multiple sparse and high-density (HD) EMG data sets collected from a number of intact-limbed and amputees performing a large number of hand and finger movements. Classification results showed significant reductions in the achieved error rates in comparison to other methods, with the improvement of at least 8% on average across all subjects. Additionally, the proposed TSDs achieved significantly well in problems with HD-EMG with average classification errors of <5% across all subjects using windows lengths of 50 ms only.

  2. A three-dimensional muscle activity imaging technique for assessing pelvic muscle function

    NASA Astrophysics Data System (ADS)

    Zhang, Yingchun; Wang, Dan; Timm, Gerald W.

    2010-11-01

    A novel multi-channel surface electromyography (EMG)-based three-dimensional muscle activity imaging (MAI) technique has been developed by combining the bioelectrical source reconstruction approach and subject-specific finite element modeling approach. Internal muscle activities are modeled by a current density distribution and estimated from the intra-vaginal surface EMG signals with the aid of a weighted minimum norm estimation algorithm. The MAI technique was employed to minimally invasively reconstruct electrical activity in the pelvic floor muscles and urethral sphincter from multi-channel intra-vaginal surface EMG recordings. A series of computer simulations were conducted to evaluate the performance of the present MAI technique. With appropriate numerical modeling and inverse estimation techniques, we have demonstrated the capability of the MAI technique to accurately reconstruct internal muscle activities from surface EMG recordings. This MAI technique combined with traditional EMG signal analysis techniques is being used to study etiologic factors associated with stress urinary incontinence in women by correlating functional status of muscles characterized from the intra-vaginal surface EMG measurements with the specific pelvic muscle groups that generated these signals. The developed MAI technique described herein holds promise for eliminating the need to place needle electrodes into muscles to obtain accurate EMG recordings in some clinical applications.

  3. Facilitation handlings induce increase in electromyographic activity of muscles involved in head control of cerebral palsy children.

    PubMed

    Simon, Anelise de Saldanha; do Pinho, Alexandre Severo; Grazziotin Dos Santos, Camila; Pagnussat, Aline de Souza

    2014-10-01

    This study aimed to investigate the electromyographic (EMG) activation of the main cervical muscles involved in the head control during two postures widely used for the facilitation of head control in children with Cerebral Palsy (CP). A crossover trial involving 31 children with clinical diagnosis of CP and spastic quadriplegia was conducted. Electromyography was used to measure muscular activity in randomized postures. Three positions were at rest: (a) lateral decubitus, (b) ventral decubitus on the floor and (c) ventral decubitus on the wedge. Handlings for facilitating the head control were performed using the hip joint as key point of control in two postures: (a) lateral decubitus and (b) ventral decubitus on wedge. All children underwent standardized handlings, performed by the same researcher with experience in the neurodevelopmental treatment. EMG signal was recorded from muscles involved in the head control (paraspinal and sternocleidomastoid muscles) in sagittal, frontal and transverse planes, at the fourth cervical vertebra (C4), tenth thoracic vertebra (T10) and sternocleidomastoid muscle (SCM) levels. The results showed a significant increase in muscle activation when handling was performed in the lateral decubitus at C4 (P<0.001), T10 (P<0.001) and SCM (P=0.02) levels. A significant higher muscle activation was observed when handling was performed in lateral decubitus when compared to ventral decubitus at C4 level (P<0.001). Handling in ventral decubitus also induced an increase in EMG activation at T10 (P=0.018) and SCM (P=0.004) levels but not at C4 level (P=0.38). In conclusion, handlings performed in both positions may induce the facilitation of head control, as evaluated by the activity of cervical and upper trunk muscles. Handling performed in lateral decubitus may induce a slightly better facilitation of head control. These findings contribute to evidence-based physiotherapy practice for the rehabilitation of severely spastic quadriplegic CP children. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Treatment with Riluzole Restores Normal Control of Soleus and Extensor Digitorum Longus Muscles during Locomotion in Adult Rats after Sciatic Nerve Crush at Birth

    PubMed Central

    Cabaj, Anna M.; Sławińska, Urszula

    2017-01-01

    The effects of sciatic nerve crush (SNC) and treatment with Riluzole on muscle activity during unrestrained locomotion were identified in an animal model by analysis of the EMG activity recorded from soleus (Sol) and extensor digitorum longus (EDL) muscles of both hindlimbs; in intact rats (IN) and in groups of rats treated for 14 days with saline (S) or Riluzole (R) after right limb nerve crush at the 1st (1S and 1R) or 2nd (2S and 2R) day after birth. Changes in the locomotor pattern of EMG activity were correlated with the numbers of survived motor units (MUs) identified in investigated muscles. S rats with 2–8 and 10–28 MUs that survived in Sol and EDL muscles respectively showed increases in the duration and duty factor of muscle EMG activity and a loss of correlation between the duty factors of muscle activity, and abnormal flexor-extensor co-activation 3 months after SNC. R rats with 5, 6 (Sol) and 15–29 MUs (EDL) developed almost normal EMG activity of both Sol and control EDL muscles, whereas EDL muscles with SNC showed a lack of recovery. R rats with 8 (Sol) and 23–33 (EDL) MUs developed almost normal EMG activities of all four muscles. A subgroup of S rats with a lack of recovery and R rats with almost complete recovery that had similar number of MUs (8 and 24–28 vs 8 and 23–26), showed that the number of MUs was not the only determinant of treatment effectiveness. The results demonstrated that rats with SNC failed to develop normal muscle activity due to malfunction of neuronal circuits attenuating EDL muscle activity during the stance phase, whereas treatment with Riluzole enabled almost normal EMG activity of Sol and EDL muscles during locomotor movement. PMID:28095499

  5. Treatment with Riluzole Restores Normal Control of Soleus and Extensor Digitorum Longus Muscles during Locomotion in Adult Rats after Sciatic Nerve Crush at Birth.

    PubMed

    Zmysłowski, Wojciech; Cabaj, Anna M; Sławińska, Urszula

    2017-01-01

    The effects of sciatic nerve crush (SNC) and treatment with Riluzole on muscle activity during unrestrained locomotion were identified in an animal model by analysis of the EMG activity recorded from soleus (Sol) and extensor digitorum longus (EDL) muscles of both hindlimbs; in intact rats (IN) and in groups of rats treated for 14 days with saline (S) or Riluzole (R) after right limb nerve crush at the 1st (1S and 1R) or 2nd (2S and 2R) day after birth. Changes in the locomotor pattern of EMG activity were correlated with the numbers of survived motor units (MUs) identified in investigated muscles. S rats with 2-8 and 10-28 MUs that survived in Sol and EDL muscles respectively showed increases in the duration and duty factor of muscle EMG activity and a loss of correlation between the duty factors of muscle activity, and abnormal flexor-extensor co-activation 3 months after SNC. R rats with 5, 6 (Sol) and 15-29 MUs (EDL) developed almost normal EMG activity of both Sol and control EDL muscles, whereas EDL muscles with SNC showed a lack of recovery. R rats with 8 (Sol) and 23-33 (EDL) MUs developed almost normal EMG activities of all four muscles. A subgroup of S rats with a lack of recovery and R rats with almost complete recovery that had similar number of MUs (8 and 24-28 vs 8 and 23-26), showed that the number of MUs was not the only determinant of treatment effectiveness. The results demonstrated that rats with SNC failed to develop normal muscle activity due to malfunction of neuronal circuits attenuating EDL muscle activity during the stance phase, whereas treatment with Riluzole enabled almost normal EMG activity of Sol and EDL muscles during locomotor movement.

  6. Aircraft control forces and EMG activity in a C-130 Hercules during strength-critical maneuvers.

    PubMed

    Hewson, D J; McNair, P J; Marshall, R N

    2001-03-01

    The force levels required to operate aircraft controls should be readily generated by pilots, without undue fatigue or exertion. However, maximum pilot applied forces, as specified in aircraft design standards, were empirically derived from the subjective comments of test pilots, and may not be applicable for the majority of pilots. Further, experienced RNZAF Hercules flying instructors have indicated that endurance and fatigue are problems for Hercules pilots. The aim of this study was to quantify aircraft control forces during emergency maneuvers in a Hercules aircraft and compare these forces with design standards. In addition, EMG data were recorded as an indicator of muscle fatigue during flight. Six subjects were tested in a C-130 Hercules aircraft. The maneuvers performed were low-level dynamic flight, one engine-off straight-and-level flight, and a two-engines-off simulated approach. The variables recorded were pilot-applied forces and EMG activity. Left rudder pedal force and vastus lateralis activity were both significantly greater during engine-off maneuvers than during low-level dynamic flight (p < 0.05). Maximum aircraft control forces for all controls were within 10% of the design standards. The mean EMG activity across all muscles and maneuvers was 26% MVC, with a peak of 61% MVC in vastus lateralis during the two-engine-off approach. The median frequency of the vastus lateralis EMG signal decreased 13.0% and 16.0% for the one engine-off and two-engine-off maneuvers, respectively. The forces required to fly a Hercules aircraft during emergency maneuvers are similar to the aircraft design standards. However, the levels of vastus lateralis muscle activation observed during the engine-off maneuvers can be sustained for approximately 1 min only. Thus, if two engines fail more than 1 min before landing, pilots may have to alternate control of the aircraft to share the workload and enable the aircraft to land safely.

  7. A motion-classification strategy based on sEMG-EEG signal combination for upper-limb amputees.

    PubMed

    Li, Xiangxin; Samuel, Oluwarotimi Williams; Zhang, Xu; Wang, Hui; Fang, Peng; Li, Guanglin

    2017-01-07

    Most of the modern motorized prostheses are controlled with the surface electromyography (sEMG) recorded on the residual muscles of amputated limbs. However, the residual muscles are usually limited, especially after above-elbow amputations, which would not provide enough sEMG for the control of prostheses with multiple degrees of freedom. Signal fusion is a possible approach to solve the problem of insufficient control commands, where some non-EMG signals are combined with sEMG signals to provide sufficient information for motion intension decoding. In this study, a motion-classification method that combines sEMG and electroencephalography (EEG) signals were proposed and investigated, in order to improve the control performance of upper-limb prostheses. Four transhumeral amputees without any form of neurological disease were recruited in the experiments. Five motion classes including hand-open, hand-close, wrist-pronation, wrist-supination, and no-movement were specified. During the motion performances, sEMG and EEG signals were simultaneously acquired from the skin surface and scalp of the amputees, respectively. The two types of signals were independently preprocessed and then combined as a parallel control input. Four time-domain features were extracted and fed into a classifier trained by the Linear Discriminant Analysis (LDA) algorithm for motion recognition. In addition, channel selections were performed by using the Sequential Forward Selection (SFS) algorithm to optimize the performance of the proposed method. The classification performance achieved by the fusion of sEMG and EEG signals was significantly better than that obtained by single signal source of either sEMG or EEG. An increment of more than 14% in classification accuracy was achieved when using a combination of 32-channel sEMG and 64-channel EEG. Furthermore, based on the SFS algorithm, two optimized electrode arrangements (10-channel sEMG + 10-channel EEG, 10-channel sEMG + 20-channel EEG) were obtained with classification accuracies of 84.2 and 87.0%, respectively, which were about 7.2 and 10% higher than the accuracy by using only 32-channel sEMG input. This study demonstrated the feasibility of fusing sEMG and EEG signals towards improving motion classification accuracy for above-elbow amputees, which might enhance the control performances of multifunctional myoelectric prostheses in clinical application. The study was approved by the ethics committee of Institutional Review Board of Shenzhen Institutes of Advanced Technology, and the reference number is SIAT-IRB-150515-H0077.

  8. An isometric muscle force estimation framework based on a high-density surface EMG array and an NMF algorithm

    NASA Astrophysics Data System (ADS)

    Huang, Chengjun; Chen, Xiang; Cao, Shuai; Qiu, Bensheng; Zhang, Xu

    2017-08-01

    Objective. To realize accurate muscle force estimation, a novel framework is proposed in this paper which can extract the input of the prediction model from the appropriate activation area of the skeletal muscle. Approach. Surface electromyographic (sEMG) signals from the biceps brachii muscle during isometric elbow flexion were collected with a high-density (HD) electrode grid (128 channels) and the external force at three contraction levels was measured at the wrist synchronously. The sEMG envelope matrix was factorized into a matrix of basis vectors with each column representing an activation pattern and a matrix of time-varying coefficients by a nonnegative matrix factorization (NMF) algorithm. The activation pattern with the highest activation intensity, which was defined as the sum of the absolute values of the time-varying coefficient curve, was considered as the major activation pattern, and its channels with high weighting factors were selected to extract the input activation signal of a force estimation model based on the polynomial fitting technique. Main results. Compared with conventional methods using the whole channels of the grid, the proposed method could significantly improve the quality of force estimation and reduce the electrode number. Significance. The proposed method provides a way to find proper electrode placement for force estimation, which can be further employed in muscle heterogeneity analysis, myoelectric prostheses and the control of exoskeleton devices.

  9. A Comparison of the Effects of Electrode Implantation and Targeting on Pattern Classification Accuracy for Prosthesis Control

    PubMed Central

    Farrell, Todd R.; Weir, Richard F. ff.

    2011-01-01

    The use of surface versus intramuscular electrodes as well as the effect of electrode targeting on pattern-recognition-based multifunctional prosthesis control was explored. Surface electrodes are touted for their ability to record activity from relatively large portions of muscle tissue. Intramuscular electromyograms (EMGs) can provide focal recordings from deep muscles of the forearm and independent signals relatively free of crosstalk. However, little work has been done to compare the two. Additionally, while previous investigations have either targeted electrodes to specific muscles or used untargeted (symmetric) electrode arrays, no work has compared these approaches to determine if one is superior. The classification accuracies of pattern-recognition-based classifiers utilizing surface and intramuscular as well as targeted and untargeted electrodes were compared across 11 subjects. A repeated-measures analysis of variance revealed that when only EMG amplitude information was used from all available EMG channels, the targeted surface, targeted intramuscular, and untargeted surface electrodes produced similar classification accuracies while the untargeted intramuscular electrodes produced significantly lower accuracies. However, no statistical differences were observed between any of the electrode conditions when additional features were extracted from the EMG signal. It was concluded that the choice of electrode should be driven by clinical factors, such as signal robustness/stability, cost, etc., instead of by classification accuracy. PMID:18713689

  10. Elbow flexor fatigue modulates central excitability of the knee extensors.

    PubMed

    Aboodarda, Saied Jalal; Copithorne, David B; Power, Kevin E; Drinkwater, Eric; Behm, David G

    2015-09-01

    The present study investigated the effects of exercise-induced elbow flexor fatigue on voluntary force output, electromyographic (EMG) activity and motoneurone excitability of the nonexercised knee extensor muscles. Eleven participants attended 3 testing sessions: (i) control, (ii) unilateral fatiguing elbow flexion and (iii) bilateral fatiguing elbow flexion (BiFlex). The nonfatigued knee extensor muscles were assessed with thoracic motor evoked potentials (TMEPs), maximal compound muscle action potential (Mmax), knee extensor maximal voluntary contractions (MVCs), and normalized EMG activity before and at 30 s, 3 min, and 5 min postexercise. BiFlex showed significantly lower (Δ = -18%, p = 0.03) vastus lateralis (VL) normalized EMG activity compared with the control session whereas knee extension MVC force did not show any statistical difference between the 3 conditions (p = 0.12). The TMEP·Mmax(-1) ratio measured at the VL showed a significantly higher value (Δ = +46%, p = 0.003) following BiFlex compared with the control condition at 30 s postexercise. The results suggest that the lower VL normalized EMG following BiFlex might have been due to a reduction in supraspinal motor output because spinal motoneuronal responses demonstrated substantially higher value (30 s postexercise) and peripheral excitability (compound muscle action potential) showed no change following BiFelex than control condition.

  11. Bouncing on Mars and the Moon-the role of gravity on neuromuscular control: correlation of muscle activity and rate of force development.

    PubMed

    Ritzmann, Ramona; Freyler, Kathrin; Krause, Anne; Gollhofer, Albert

    2016-11-01

    On our astronomical neighbors Mars and the Moon, bouncing movements are the preferred locomotor techniques. During bouncing, the stretch-shortening cycle describes the muscular activation pattern. This study aimed to identify gravity-dependent changes in kinematic and neuromuscular characteristics in the stretch-shortening cycle. Hence, neuromuscular control of limb muscles as well as correlations between the muscles' pre-activation, reflex components, and force output were assessed in lunar, Martian, and Earth gravity. During parabolic flights, peak force (F max ), ground-contact-time, rate of force development (RFD), height, and impulse were measured. Electromyographic (EMG) activities in the m. soleus (SOL) and gastrocnemius medialis (GM) were assessed before (PRE) and during bounces for the reflex phases short-, medium-, and long-latency response (SLR, MLR, LLR). With gradually decreasing gravitation, F max , RFD, and impulse were reduced, whereas ground-contact time and height increased. Concomitantly, EMG_GM decreased for PRE, SLR, MLR, and LLR, and in EMG_SOL in SLR, MLR, and LLR. For SLR and MLR, F max and RFD were positively correlated to EMG_SOL. For PRE and LLR, RFD and F max were positively correlated to EMG_GM. Findings emphasize that biomechanically relevant kinematic adaptations in response to gravity variation were accompanied by muscle- and phase-specific modulations in neural control. Gravitational variation is anticipated and compensated for by gravity-adjusted muscle activities. Importantly, the pre-activation and reflex phases were differently affected: in SLR and MLR, SOL is assumed to contribute to the decline in force output with a decreasing load, and, complementary in PRE and LLR, GM seems to be of major importance for force generation. Copyright © 2016 the American Physiological Society.

  12. Patterns of muscle activity underlying object-specific grasp by the macaque monkey.

    PubMed

    Brochier, T; Spinks, R L; Umilta, M A; Lemon, R N

    2004-09-01

    During object grasp, a coordinated activation of distal muscles is required to shape the hand in relation to the physical properties of the object. Despite the fundamental importance of the grasping action, little is known of the muscular activation patterns that allow objects of different sizes and shapes to be grasped. In a study of two adult macaque monkeys, we investigated whether we could distinguish between EMG activation patterns associated with grasp of 12 differently shaped objects, chosen to evoke a wide range of grasping postures. Each object was mounted on a horizontal shuttle held by a weak spring (load force 1-2 N). Objects were located in separate sectors of a "carousel," and inter-trial rotation of the carousel allowed sequential presentation of the objects in pseudorandom order. EMG activity from 10 to 12 digit, hand, and arm muscles was recorded using chronically implanted electrodes. We show that the grasp of different objects was characterized by complex but distinctive patterns of EMG activation. Cluster analysis shows that these object-related EMG patterns were specific and consistent enough to identify the object unequivocally from the EMG recordings alone. EMG-based object identification required a minimum of six EMGs from simultaneously recorded muscles. EMG patterns were consistent across recording sessions in a given monkey but showed some differences between animals. These results identify the specific patterns of activity required to achieve distinct hand postures for grasping, and they open the way to our understanding of how these patterns are generated by the central motor network.

  13. Asymmetric activation of temporalis, masseter, and sternocleidomastoid muscles in temporomandibular disorder patients.

    PubMed

    Ries, Lilian Gerdi Kittel; Alves, Marcelo Correa; Bérzin, Fausto

    2008-01-01

    The aim of this study was to analyze the symmetry of the electromyographic (EMG) activity of the temporalis, masseter, and sternocleidomastoid (SCM) muscles in volunteers divided into a control group and a temporomandibular disorder (TMD) group. The surface EMG recordings were made during mandibular rest position, maximal intercuspal position, and during the chewing cycle. Normalized EMG waves of paired muscles were compared by computing a percentage overlapping coefficient (POC). The difference between the groups and between the static and dynamic clenching tests was analyzed through repeated measures, ANOVA. Symmetry of the temporalis, masseter, and SCM muscles activity was smaller in the TMD group compared to the control group. The mandibular postures were also significantly different among themselves. The asymmetric activation of jaw and neck muscles was interpreted as a compensatory strategy to achieve stability for the mandibular and cervical systems during masticatory function.

  14. An Analysis of EMG Electrode Configuration for Targeted Muscle Reinnervation Based Neural Machine Interface

    PubMed Central

    Huang, He; Zhou, Ping; Li, Guanglin; Kuiken, Todd A.

    2015-01-01

    Targeted muscle reinnervation (TMR) is a novel neural machine interface for improved myoelectric prosthesis control. Previous high-density (HD) surface electromyography (EMG) studies have indicated that tremendous neural control information can be extracted from the reinnervated muscles by EMG pattern recognition (PR). However, using a large number of EMG electrodes hinders clinical application of the TMR technique. This study investigated a reduced number of electrodes and the placement required to extract sufficient neural control information for accurate identification of user movement intents. An electrode selection algorithm was applied to the HD EMG recordings from each of 4 TMR amputee subjects. The results show that when using only 12 selected bipolar electrodes the average accuracy over subjects for classifying 16 movement intents was 93.0(±3.3)%, just 1.2% lower than when using the entire HD electrode complement. The locations of selected electrodes were consistent with the anatomical reinnervation sites. Additionally, a practical protocol for clinical electrode placement was developed, which does not rely on complex HD EMG experiment and analysis while maintaining a classification accuracy of 88.7±4.5%. These outcomes provide important guidelines for practical electrode placement that can promote future clinical application of TMR and EMG PR in the control of multifunctional prostheses. PMID:18303804

  15. Motor unit recruitment and derecruitment induced by brief increase in contraction amplitude of the human trapezius muscle

    PubMed Central

    Westad, C; Westgaard, R H; De Luca, C J

    2003-01-01

    The activity pattern of low-threshold human trapezius motor units was examined in response to brief, voluntary increases in contraction amplitude (‘EMG pulse’) superimposed on a constant contraction at 4–7% of the surface electromyographic (EMG) response at maximal voluntary contraction (4–7% EMGmax). EMG pulses at 15–20% EMGmax were superimposed every minute on contractions of 5, 10, or 30 min duration. A quadrifilar fine-wire electrode recorded single motor unit activity and a surface electrode recorded simultaneously the surface EMG signal. Low-threshold motor units recruited at the start of the contraction were observed to stop firing while motor units of higher recruitment threshold stayed active. Derecruitment of a motor unit coincided with the end of an EMG pulse. The lowest-threshold motor units showed only brief silent periods. Some motor units with recruitment threshold up to 5% EMGmax higher than the constant contraction level were recruited during an EMG pulse and kept firing throughout the contraction. Following an EMG pulse, there was a marked reduction in motor unit firing rates upon return of the surface EMG signal to the constant contraction level, outlasting the EMG pulse by 4 s on average. The reduction in firing rates may serve as a trigger to induce derecruitment. We speculate that the silent periods following derecruitment may be due to deactivation of non-inactivating inward current (‘plateau potentials’). The firing behaviour of trapezius motor units in these experiments may thus illustrate a mechanism and a control strategy to reduce fatigue of motor units with sustained activity patterns. PMID:14561844

  16. EMG-based speech recognition using hidden markov models with global control variables.

    PubMed

    Lee, Ki-Seung

    2008-03-01

    It is well known that a strong relationship exists between human voices and the movement of articulatory facial muscles. In this paper, we utilize this knowledge to implement an automatic speech recognition scheme which uses solely surface electromyogram (EMG) signals. The sequence of EMG signals for each word is modelled by a hidden Markov model (HMM) framework. The main objective of the work involves building a model for state observation density when multichannel observation sequences are given. The proposed model reflects the dependencies between each of the EMG signals, which are described by introducing a global control variable. We also develop an efficient model training method, based on a maximum likelihood criterion. In a preliminary study, 60 isolated words were used as recognition variables. EMG signals were acquired from three articulatory facial muscles. The findings indicate that such a system may have the capacity to recognize speech signals with an accuracy of up to 87.07%, which is superior to the independent probabilistic model.

  17. Evaluation of jaw and neck muscle activities while chewing using EMG-EMG transfer function and EMG-EMG coherence function analyses in healthy subjects.

    PubMed

    Ishii, Tomohiro; Narita, Noriyuki; Endo, Hiroshi

    2016-06-01

    This study aims to quantitatively clarify the physiological features in rhythmically coordinated jaw and neck muscle EMG activities while chewing gum using EMG-EMG transfer function and EMG-EMG coherence function analyses in 20 healthy subjects. The chewing side masseter muscle EMG signal was used as the reference signal, while the other jaw (non-chewing side masseter muscle, bilateral anterior temporal muscles, and bilateral anterior digastric muscles) and neck muscle (bilateral sternocleidomastoid muscles) EMG signals were used as the examined signals in EMG-EMG transfer function and EMG-EMG coherence function analyses. Chewing-related jaw and neck muscle activities were aggregated in the first peak of the power spectrum in rhythmic chewing. The gain in the peak frequency represented the power relationships between jaw and neck muscle activities during rhythmic chewing. The phase in the peak frequency represented the temporal relationships between the jaw and neck muscle activities, while the non-chewing side neck muscle presented a broad range of distributions across jaw closing and opening phases. Coherence in the peak frequency represented the synergistic features in bilateral jaw closing muscles and chewing side neck muscle activities. The coherence and phase in non-chewing side neck muscle activities exhibited a significant negative correlation. From above, the bilateral coordination between the jaw and neck muscle activities is estimated while chewing when the non-chewing side neck muscle is synchronously activated with the jaw closing muscles, while the unilateral coordination is estimated when the non-chewing side neck muscle is irregularly activated in the jaw opening phase. Thus, the occurrence of bilateral or unilateral coordinated features in the jaw and neck muscle activities may correspond to the phase characteristics in the non-chewing side neck muscle activities during rhythmical chewing. Considering these novel findings in healthy subjects, EMG-EMG transfer function and EMG-EMG coherence function analyses may also be useful to diagnose the pathologically in-coordinated features in jaw and neck muscle activities in temporomandibular disorders and whiplash-associated disorders during critical chewing performance. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. The Impact of Ergometer Design on Hip and Trunk Muscle Activity Patterns in Elite Rowers: An Electromyographic Assessment

    PubMed Central

    Nowicky, Alex V.; Horne, Sara; Burdett, Richard

    2005-01-01

    This study used surface electromyography (sEMG) to examine whether there were differences in hip and trunk muscle activation during the rowing cycle on two of the most widely used air braked ergometers: the Concept 2C and the Rowperfect. sEMG methods were used to record the muscle activity patterns from the right: m. Erector spinae (ES), m. Rectus Abdominus (RA), m. Rectus Femoris (RF) and m. Biceps Femoris (BF) for their contributions as agonist-antagonist pairs underlying hip and trunk extension/flexion. The sEMG activity patterns of these muscles were examined in six young male elite rowers completing a 2 minute set at a moderate training intensity (23 stroke·min-1 and 1:47.500 m-1 split time, 300W). The rowers closely maintained the required target pace through visual inspection of the standard LCD display of each ergometer. The measurements of duration of each rowing cycle and onset of each stroke during the test were recorded simultaneously with the sEMG activity through the additional instrumentation of a foot-pressure switch and handle accelerometry. There were no significant differences between the two ergometer designs in group means for: work rate (i.e., rowing speed and stroke rate), metabolic load as measured by mean heart rate, rowing cycle duration, or timing of the stroke in the cycle. 2-D motion analysis of hip and knee motion for the rowing cycle from the video footage taken during the test also revealed no significant differences in the joint range of motion between the ergometers. Ensemble average sEMG activity profiles based on 30+ strokes were obtained for each participant and normalised per 10% intervals of the cycle duration as well as for peak mean sEMG amplitude for each muscle. A repeated measures ANOVA on the sEMG activity per 10% interval for the four muscles contributing to hip and trunk motion during the rowing cycle revealed no significant differences between the Concept 2C and Rowperfect (F = 0.070, df = 1,5, p = 0.802). The outcome of this study suggests that the two different ergometer designs are equally useful for dry land training. Key Points The effects of endurance training on HR recovery after exercise and cardiac ANS modulation were investigated in female marathon runners by comparing with untrained controls. Time and frequency domain analysis of HRV was used to investigate cardiac ANS modulation. As compared with untrained controls, the female marathon runners showed faster HR recovery after exercise, which should result from their higher levels of HRV, higher aerobic capacity and exaggerated blood pressure response to exercise. PMID:24431957

  19. An EMG-Based Control for an Upper-Limb Power-Assist Exoskeleton Robot.

    PubMed

    Kiguchi, K; Hayashi, Y

    2012-08-01

    Many kinds of power-assist robots have been developed in order to assist self-rehabilitation and/or daily life motions of physically weak persons. Several kinds of control methods have been proposed to control the power-assist robots according to user's motion intention. In this paper, an electromyogram (EMG)-based impedance control method for an upper-limb power-assist exoskeleton robot is proposed to control the robot in accordance with the user's motion intention. The proposed method is simple, easy to design, humanlike, and adaptable to any user. A neurofuzzy matrix modifier is applied to make the controller adaptable to any users. Not only the characteristics of EMG signals but also the characteristics of human body are taken into account in the proposed method. The effectiveness of the proposed method was evaluated by the experiments.

  20. Specific Diurnal EMG Activity Pattern Observed in Occlusal Collapse Patients: Relationship between Diurnal Bruxism and Tooth Loss Progression

    PubMed Central

    Kawakami, Shigehisa; Kumazaki, Yohei; Manda, Yosuke; Oki, Kazuhiro; Minagi, Shogo

    2014-01-01

    Aim The role of parafunctional masticatory muscle activity in tooth loss has not been fully clarified. This study aimed to reveal the characteristic activity of masseter muscles in bite collapse patients while awake and asleep. Materials and Methods Six progressive bite collapse patients (PBC group), six age- and gender-matched control subjects (MC group), and six young control subjects (YC group) were enrolled. Electromyograms (EMG) of the masseter muscles were continuously recorded with an ambulatory EMG recorder while patients were awake and asleep. Diurnal and nocturnal parafunctional EMG activity was classified as phasic, tonic, or mixed using an EMG threshold of 20% maximal voluntary clenching. Results Highly extended diurnal phasic activity was observed only in the PBC group. The three groups had significantly different mean diurnal phasic episodes per hour, with 13.29±7.18 per hour in the PBC group, 0.95±0.97 per hour in the MC group, and 0.87±0.98 per hour in the YC group (p<0.01). ROC curve analysis suggested that the number of diurnal phasic episodes might be used to predict bite collapsing tooth loss. Conclusion Extensive bite loss might be related to diurnal masticatory muscle parafunction but not to parafunction during sleep. Clinical Relevance: Scientific rationale for study Although mandibular parafunction has been implicated in stomatognathic system breakdown, a causal relationship has not been established because scientific modalities to evaluate parafunctional activity have been lacking. Principal findings This study used a newly developed EMG recording system that evaluates masseter muscle activity throughout the day. Our results challenge the stereotypical idea of nocturnal bruxism as a strong destructive force. We found that diurnal phasic masticatory muscle activity was most characteristic in patients with progressive bite collapse. Practical implications The incidence of diurnal phasic contractions could be used for the prognostic evaluation of stomatognathic system stability. PMID:25010348

  1. Reduced task-induced variations in the distribution of activity across back muscle regions in individuals with low back pain.

    PubMed

    Falla, Deborah; Gizzi, Leonardo; Tschapek, Marika; Erlenwein, Joachim; Petzke, Frank

    2014-05-01

    This study investigated change in the distribution of lumbar erector spinae muscle activity and pressure pain sensitivity across the low back in individuals with low back pain (LBP) and healthy controls. Surface electromyographic (EMG) signals were recorded from multiple locations over the lumbar erector spinae muscle with a 13×5 grid of electrodes from 19 people with chronic nonspecific LBP and 17 control subjects as they performed a repetitive lifting task. The EMG root mean square (RMS) was computed for each location of the grid to form a map of the EMG amplitude distribution. Pressure pain thresholds (PPT) were recorded before and after the lifting task over a similar area of the back. For the control subjects, the EMG RMS progressively increased more in the caudal region of the lumbar erector spinae during the repetitive task, resulting in a shift in the distribution of muscle activity. In contrast, the distribution of muscle activity remained unaltered in the LBP group despite an overall increase in EMG amplitude. PPT was lower in the LBP group after completion of the repetitive task compared to baseline (average across all locations: pre: 268.0±165.9 kPa; post: 242.0±166.7 kPa), whereas no change in PPT over time was observed for the control group (320.1±162.1 kPa; post: 322.0±179.5 kPa). The results demonstrate that LBP alters the normal adaptation of lumbar erector spinae muscle activity to exercise, which occurs in the presence of exercise-induced hyperalgesia. Reduced variability of muscle activity may have important implications for the provocation and recurrence of LBP due to repetitive tasks. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  2. Comparison of Antagonist Muscle Activity During Walking Between Total Knee Replacement and Control Subjects Using Unnormalized Electromyography.

    PubMed

    Lundberg, Hannah J; Rojas, Idubijes L; Foucher, Kharma C; Wimmer, Markus A

    2016-06-01

    Although satisfactory outcomes have been reported after total knee replacement (TKR), full recovery of muscle strength and physical function is rare. We developed a relative activation index (RAI) to compare leg muscle activity from unnormalized surface electromyography (sEMG) between TKR and control subjects. Nineteen TKR and 19 control subjects underwent gait analysis and sEMG. RAIs were calculated by dividing the average sEMG for 2 consecutive subphases of stance defined by the direction of the external sagittal plane moment (flexion or extension). RAIs and external moments indicate TKR subjects have less initial stance antagonist rectus femoris activity (P = .004), greater middle stance antagonist biceps femoris activity (P < .001), and less late stance agonist biceps femoris activity (P < .001) than control subjects. Individuals with TKR demonstrate increased flexor muscle activation during weight bearing, potentially contributing to altered gait patterns found during the stance phase of gait. The RAI helps detail whether decreased external moments correspond to less agonist or more antagonist muscle activity to determine true muscle activity differences between subject groups. Identifying the mechanisms underlying altered muscle function both before and after TKR is critical for developing rehabilitation strategies to address functional deficits and disability found in this patient population. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Electromyogram biofeedback training for daytime clenching and its effect on sleep bruxism.

    PubMed

    Sato, M; Iizuka, T; Watanabe, A; Iwase, N; Otsuka, H; Terada, N; Fujisawa, M

    2015-02-01

    Bruxism contributes to the development of temporomandibular disorders as well as causes dental problems. Although it is an important issue in clinical dentistry, no treatment approaches have been proven effective. This study aimed to use electromyogram (EMG) biofeedback (BF) training to improve awake bruxism (AB) and examine its effect on sleep bruxism (SB). Twelve male participants (mean age, 26·8 ± 2·5 years) with subjective symptoms of AB or a diagnosis of SB were randomly divided into BF (n = 7) and control (CO, n = 5) groups to undergo 5-h daytime and night-time EMG measurements for three consecutive weeks. EMG electrodes were placed over the temporalis muscle on the habitual masticatory side. Those in the BF group underwent BF training to remind them of the occurrence of undesirable clenching activity when excessive EMG activity of certain burst duration was generated in week 2. Then, EMGs were recorded at week 3 as the post-BF test. Those in the CO group underwent EMG measurement without any EMG BF training throughout the study period. Although the number of tonic EMG events did not show statistically significant differences among weeks 1-3 in the CO group, events in weeks 2 and 3 decreased significantly compared with those in week 1, both daytime and night-time, in the BF group (P < 0·05, Scheffé's test). This study results suggest that EMG BF to improve AB tonic EMG events can also provide an effective approach to regulate SB tonic EMG events. © 2014 John Wiley & Sons Ltd.

  4. Low-power polling mode of the next-generation IMES2 implantable wireless EMG sensor.

    PubMed

    DeMichele, Glenn A; Hu, Zhe; Troyk, Philip R; Chen, Hongnan; Weir, Richard F ff

    2014-01-01

    The IMES1 Implantable MyoElectric Sensor device is currently in human clinical trials led by the Alfred Mann Foundation. The IMES is implanted in a residual limb and is powered wirelessly using a magnetic field. EMG signals resulting from the amputee's voluntary movement are amplified and transmitted wirelessly by the IMES to an external controller which controls movement of an external motorized prosthesis. Development of the IMES technology is on-going, producing the next-generation IMES2. Among various improvements, a new feature of the IMES2 is a low-power polling mode. In this low-power mode, the IMES2 power consumption can be dramatically reduced when the limb is inactive through the use of a polled sampling. With the onset of EMG activity, the IMES2 system can switch to the normal higher sample rate to allow the acquisition of high-fidelity EMG data for prosthesis control.

  5. Low-Power Polling Mode of the Next-Generation IMES2 Implantable Wireless EMG Sensor

    PubMed Central

    DeMichele, Glenn A.; Hu, Zhe; Troyk, Philip R.; Chen, Hongnan; Weir, Richard F. ff.

    2015-01-01

    The IMES1 Implantable MyoElectric Sensor device is currently in human clinical trials led by the Alfred Mann Foundation. The IMES is implanted in a residual limb and is powered wirelessly using a magnetic field. EMG signals resulting from the amputee’s voluntary movement are amplified and transmitted wirelessly by the IMES to an external controller which controls movement of an external motorized prosthesis. Development of the IMES technology is on-going, producing the next-generation IMES2. Among various improvements, a new feature of the IMES2 is a lowpower polling mode. In this low-power mode, the IMES2 power consumption can be dramatically reduced when the limb is inactive through the use of a polled sampling. With the onset of EMG activity, the IMES2 system can switch to the normal higher sample rate to allow the acquisition of high-fidelity EMG data for prosthesis control. PMID:25570642

  6. Evoked EMG-based torque prediction under muscle fatigue in implanted neural stimulation

    NASA Astrophysics Data System (ADS)

    Hayashibe, Mitsuhiro; Zhang, Qin; Guiraud, David; Fattal, Charles

    2011-10-01

    In patients with complete spinal cord injury, fatigue occurs rapidly and there is no proprioceptive feedback regarding the current muscle condition. Therefore, it is essential to monitor the muscle state and assess the expected muscle response to improve the current FES system toward adaptive force/torque control in the presence of muscle fatigue. Our team implanted neural and epimysial electrodes in a complete paraplegic patient in 1999. We carried out a case study, in the specific case of implanted stimulation, in order to verify the corresponding torque prediction based on stimulus evoked EMG (eEMG) when muscle fatigue is occurring during electrical stimulation. Indeed, in implanted stimulation, the relationship between stimulation parameters and output torques is more stable than external stimulation in which the electrode location strongly affects the quality of the recruitment. Thus, the assumption that changes in the stimulation-torque relationship would be mainly due to muscle fatigue can be made reasonably. The eEMG was proved to be correlated to the generated torque during the continuous stimulation while the frequency of eEMG also decreased during fatigue. The median frequency showed a similar variation trend to the mean absolute value of eEMG. Torque prediction during fatigue-inducing tests was performed based on eEMG in model cross-validation where the model was identified using recruitment test data. The torque prediction, apart from the potentiation period, showed acceptable tracking performances that would enable us to perform adaptive closed-loop control through implanted neural stimulation in the future.

  7. Three components of postural control associated with pushing in symmetrical and asymmetrical stance.

    PubMed

    Lee, Yun-Ju; Aruin, Alexander S

    2013-07-01

    A number of occupational and leisure activities that involve pushing are performed in symmetrical or asymmetrical stance. The goal of this study was to investigate early postural adjustments (EPAs), anticipatory postural adjustments (APAs), and compensatory postural adjustments (CPAs) during pushing performed while standing. Ten healthy volunteers stood in symmetrical stance (with feet parallel) or in asymmetrical stance (staggered stance with one foot forward) and were instructed to use both hands to push forward the handle of a pendulum attached to the ceiling. Bilateral EMG activity of the trunk and leg muscles and the center of pressure (COP) displacements in the anterior-posterior (AP) and medial-lateral (ML) directions were recorded and analyzed during the EPAs, APAs, and CPAs. The EMG activity and the COP displacement were different between the symmetrical and asymmetrical stance conditions. The COP displacements in the ML direction were significantly larger in staggered stance than in symmetrical stance. In staggered stance, the EPAs and APAs in the thigh muscles of the backward leg were significantly larger, and the CPAs were smaller than in the forward leg. There was no difference in the EMG activity of the trunk muscles between the stance conditions. The study outcome confirmed the existence of the three components of postural control (EPAs, APAs, and CPAs) in pushing. Moreover, standing asymmetrically was associated with asymmetrical patterns of EMG activity in the lower extremities reflecting the stance-related postural control during pushing. The study outcome provides a basis for studying postural control during other daily activities involving pushing.

  8. An artificial EMG generation model based on signal-dependent noise and related application to motion classification

    PubMed Central

    Hayashi, Hideaki; Nakamura, Go; Chin, Takaaki; Tsuji, Toshio

    2017-01-01

    This paper proposes an artificial electromyogram (EMG) signal generation model based on signal-dependent noise, which has been ignored in existing methods, by introducing the stochastic construction of the EMG signals. In the proposed model, an EMG signal variance value is first generated from a probability distribution with a shape determined by a commanded muscle force and signal-dependent noise. Artificial EMG signals are then generated from the associated Gaussian distribution with a zero mean and the generated variance. This facilitates representation of artificial EMG signals with signal-dependent noise superimposed according to the muscle activation levels. The frequency characteristics of the EMG signals are also simulated via a shaping filter with parameters determined by an autoregressive model. An estimation method to determine EMG variance distribution using rectified and smoothed EMG signals, thereby allowing model parameter estimation with a small number of samples, is also incorporated in the proposed model. Moreover, the prediction of variance distribution with strong muscle contraction from EMG signals with low muscle contraction and related artificial EMG generation are also described. The results of experiments conducted, in which the reproduction capability of the proposed model was evaluated through comparison with measured EMG signals in terms of amplitude, frequency content, and EMG distribution demonstrate that the proposed model can reproduce the features of measured EMG signals. Further, utilizing the generated EMG signals as training data for a neural network resulted in the classification of upper limb motion with a higher precision than by learning from only measured EMG signals. This indicates that the proposed model is also applicable to motion classification. PMID:28640883

  9. Using Covert Response Activation to Test Latent Assumptions of Formal Decision-Making Models in Humans.

    PubMed

    Servant, Mathieu; White, Corey; Montagnini, Anna; Burle, Borís

    2015-07-15

    Most decisions that we make build upon multiple streams of sensory evidence and control mechanisms are needed to filter out irrelevant information. Sequential sampling models of perceptual decision making have recently been enriched by attentional mechanisms that weight sensory evidence in a dynamic and goal-directed way. However, the framework retains the longstanding hypothesis that motor activity is engaged only once a decision threshold is reached. To probe latent assumptions of these models, neurophysiological indices are needed. Therefore, we collected behavioral and EMG data in the flanker task, a standard paradigm to investigate decisions about relevance. Although the models captured response time distributions and accuracy data, EMG analyses of response agonist muscles challenged the assumption of independence between decision and motor processes. Those analyses revealed covert incorrect EMG activity ("partial error") in a fraction of trials in which the correct response was finally given, providing intermediate states of evidence accumulation and response activation at the single-trial level. We extended the models by allowing motor activity to occur before a commitment to a choice and demonstrated that the proposed framework captured the rate, latency, and EMG surface of partial errors, along with the speed of the correction process. In return, EMG data provided strong constraints to discriminate between competing models that made similar behavioral predictions. Our study opens new theoretical and methodological avenues for understanding the links among decision making, cognitive control, and motor execution in humans. Sequential sampling models of perceptual decision making assume that sensory information is accumulated until a criterion quantity of evidence is obtained, from where the decision terminates in a choice and motor activity is engaged. The very existence of covert incorrect EMG activity ("partial error") during the evidence accumulation process challenges this longstanding assumption. In the present work, we use partial errors to better constrain sequential sampling models at the single-trial level. Copyright © 2015 the authors 0270-6474/15/3510371-15$15.00/0.

  10. Bioelectrical activity of the pelvic floor muscles during synchronous whole-body vibration--a randomized controlled study.

    PubMed

    Stania, Magdalena; Chmielewska, Daria; Kwaśna, Krystyna; Smykla, Agnieszka; Taradaj, Jakub; Juras, Grzegorz

    2015-10-24

    More and more frequently stress urinary incontinence affects young healthy women. Hence, early implementation of effective preventive strategies in nulliparous continent women is essential, including pelvic floor muscle training. An initial evaluation based on the bioelectrical activity of the pelvic floor muscles (PFM) during whole-body vibration (WBV) would help to devise the best individualized training for prevention of stress urinary incontinence in woman. We hypothesized that synchronous WBV enhances bioelectrical activity of the PFM which depends on vibration frequency and peak-to-peak vibration displacement. The sample consisted of 36 nulliparous continent women randomly allocated to three comparative groups. Group I and II subjects participated in synchronous whole-body vibrations on a vibration platform; the frequency and peak-to-peak displacement of vibration were set individually for each group. Control participants performed exercises similar to those used in the study groups but without the concurrent application of vibrations. Pelvic floor surface electromyography (sEMG) activity was recorded using a vaginal probe during three experimental trials limited to 30s, 60s and 90 s. The mean amplitude and variability of the signal were normalized to the Maximal Voluntary Contraction - MVC. Friedman's two-way ANOVA revealed a statistically significant difference in the mean normalized amplitudes (%MVC) of the sEMG signal from the PFM during 60s- and 90 s-trials between the group exposed to high-intensity WBV and control participants (p < 0.05). Longer trial duration was associated with a statistically significant decrease in the variability of sEMG signal amplitude in the study and control groups (p < 0.05). Synchronous high-intensity WBV (40 Hz, 4 mm) of long duration (60s, 90 s) significantly enhances the activation of the PFM in young continent women. Prolonged maintenance of a static position significantly decreases the variability of sEMG signal amplitude independent of whole-body vibrations. Single whole-body vibrations in nulliparous continent women does not cause pelvic floor muscle fatigue. The trial was registered in the Australian and New Zealand Clinical Trials Registry (no. ACTRN12615000966594); registration date: 15/09/2015.

  11. A frequency and pulse-width co-modulation strategy for transcutaneous neuromuscular electrical stimulation based on sEMG time-domain features

    NASA Astrophysics Data System (ADS)

    Zhou, Yu-Xuan; Wang, Hai-Peng; Bao, Xue-Liang; Lü, Xiao-Ying; Wang, Zhi-Gong

    2016-02-01

    Objective. Surface electromyography (sEMG) is often used as a control signal in neuromuscular electrical stimulation (NMES) systems to enhance the voluntary control and proprioceptive sensory feedback of paralyzed patients. Most sEMG-controlled NMES systems use the envelope of the sEMG signal to modulate the stimulation intensity (current amplitude or pulse width) with a constant frequency. The aims of this study were to develop a strategy that co-modulates frequency and pulse width based on features of the sEMG signal and to investigate the torque-reproduction performance and the level of fatigue resistance achieved with our strategy. Approach. We examined the relationships between wrist torque and two stimulation parameters (frequency and pulse width) and between wrist torque and two sEMG time-domain features (mean absolute value (MAV) and number of slope sign changes (NSS)) in eight healthy volunteers. By using wrist torque as an intermediate variable, customized and generalized transfer functions were constructed to convert the two features of the sEMG signal into the two stimulation parameters, thereby establishing a MAV/NSS dual-coding (MNDC) algorithm. Wrist torque reproduction performance was assessed by comparing the torque generated by the algorithms with that originally recorded during voluntary contractions. Muscle fatigue was assessed by measuring the decline percentage of the peak torque and by comparing the torque time integral of the response to test stimulation trains before and after fatigue sessions. Main Results. The MNDC approach could produce a wrist torque that closely matched the voluntary wrist torque. In addition, a smaller decay in the wrist torque was observed after the MNDC-coded fatigue stimulation was applied than after stimulation using pulse-width modulation alone. Significance. Compared with pulse-width modulation stimulation strategies that are based on sEMG detection, the MNDC strategy is more effective for both voluntary muscle force reproduction and muscle fatigue reduction.

  12. Optimizing pattern recognition-based control for partial-hand prosthesis application.

    PubMed

    Earley, Eric J; Adewuyi, Adenike A; Hargrove, Levi J

    2014-01-01

    Partial-hand amputees often retain good residual wrist motion, which is essential for functional activities involving use of the hand. Thus, a crucial design criterion for a myoelectric, partial-hand prosthesis control scheme is that it allows the user to retain residual wrist motion. Pattern recognition (PR) of electromyographic (EMG) signals is a well-studied method of controlling myoelectric prostheses. However, wrist motion degrades a PR system's ability to correctly predict hand-grasp patterns. We studied the effects of (1) window length and number of hand-grasps, (2) static and dynamic wrist motion, and (3) EMG muscle source on the ability of a PR-based control scheme to classify functional hand-grasp patterns. Our results show that training PR classifiers with both extrinsic and intrinsic muscle EMG yields a lower error rate than training with either group by itself (p<0.001); and that training in only variable wrist positions, with only dynamic wrist movements, or with both variable wrist positions and movements results in lower error rates than training in only the neutral wrist position (p<0.001). Finally, our results show that both an increase in window length and a decrease in the number of grasps available to the classifier significantly decrease classification error (p<0.001). These results remained consistent whether the classifier selected or maintained a hand-grasp.

  13. Robust myoelectric signal detection based on stochastic resonance using multiple-surface-electrode array made of carbon nanotube composite paper

    NASA Astrophysics Data System (ADS)

    Shirata, Kento; Inden, Yuki; Kasai, Seiya; Oya, Takahide; Hagiwara, Yosuke; Kaeriyama, Shunichi; Nakamura, Hideyuki

    2016-04-01

    We investigated the robust detection of surface electromyogram (EMG) signals based on the stochastic resonance (SR) phenomenon, in which the response to weak signals is optimized by adding noise, combined with multiple surface electrodes. Flexible carbon nanotube composite paper (CNT-cp) was applied to the surface electrode, which showed good performance that is comparable to that of conventional Ag/AgCl electrodes. The SR-based EMG signal system integrating an 8-Schmitt-trigger network and the multiple-CNT-cp-electrode array successfully detected weak EMG signals even when the subject’s body is in the motion, which was difficult to achieve using the conventional technique. The feasibility of the SR-based EMG detection technique was confirmed by demonstrating its applicability to robot hand control.

  14. Real-Time Classification of Hand Motions Using Ultrasound Imaging of Forearm Muscles.

    PubMed

    Akhlaghi, Nima; Baker, Clayton A; Lahlou, Mohamed; Zafar, Hozaifah; Murthy, Karthik G; Rangwala, Huzefa S; Kosecka, Jana; Joiner, Wilsaan M; Pancrazio, Joseph J; Sikdar, Siddhartha

    2016-08-01

    Surface electromyography (sEMG) has been the predominant method for sensing electrical activity for a number of applications involving muscle-computer interfaces, including myoelectric control of prostheses and rehabilitation robots. Ultrasound imaging for sensing mechanical deformation of functional muscle compartments can overcome several limitations of sEMG, including the inability to differentiate between deep contiguous muscle compartments, low signal-to-noise ratio, and lack of a robust graded signal. The objective of this study was to evaluate the feasibility of real-time graded control using a computationally efficient method to differentiate between complex hand motions based on ultrasound imaging of forearm muscles. Dynamic ultrasound images of the forearm muscles were obtained from six able-bodied volunteers and analyzed to map muscle activity based on the deformation of the contracting muscles during different hand motions. Each participant performed 15 different hand motions, including digit flexion, different grips (i.e., power grasp and pinch grip), and grips in combination with wrist pronation. During the training phase, we generated a database of activity patterns corresponding to different hand motions for each participant. During the testing phase, novel activity patterns were classified using a nearest neighbor classification algorithm based on that database. The average classification accuracy was 91%. Real-time image-based control of a virtual hand showed an average classification accuracy of 92%. Our results demonstrate the feasibility of using ultrasound imaging as a robust muscle-computer interface. Potential clinical applications include control of multiarticulated prosthetic hands, stroke rehabilitation, and fundamental investigations of motor control and biomechanics.

  15. Design, development and testing of a low-cost sEMG system and its use in recording muscle activity in human gait.

    PubMed

    Supuk, Tamara Grujic; Skelin, Ana Kuzmanic; Cic, Maja

    2014-05-07

    Surface electromyography (sEMG) is an important measurement technique used in biomechanical, rehabilitation and sport environments. In this article the design, development and testing of a low-cost wearable sEMG system are described. The hardware architecture consists of a two-cascade small-sized bioamplifier with a total gain of 2,000 and band-pass of 3 to 500 Hz. The sampling frequency of the system is 1,000 Hz. Since real measured EMG signals are usually corrupted by various types of noises (motion artifacts, white noise and electromagnetic noise present at 50 Hz and higher harmonics), we have tested several denoising techniques, both on artificial and measured EMG signals. Results showed that a wavelet-based technique implementing Daubechies5 wavelet and soft sqtwolog thresholding is the most appropriate for EMG signals denoising. To test the system performance, EMG activities of six dominant muscles of ten healthy subjects during gait were measured (gluteus maximus, biceps femoris, sartorius, rectus femoris, tibialis anterior and medial gastrocnemius). The obtained EMG envelopes presented against the duration of gait cycle were compared favourably with the EMG data available in the literature, suggesting that the proposed system is suitable for a wide range of applications in biomechanics.

  16. Design, Development and Testing of a Low-Cost sEMG System and Its Use in Recording Muscle Activity in Human Gait

    PubMed Central

    Supuk, Tamara Grujic; Skelin, Ana Kuzmanic; Cic, Maja

    2014-01-01

    Surface electromyography (sEMG) is an important measurement technique used in biomechanical, rehabilitation and sport environments. In this article the design, development and testing of a low-cost wearable sEMG system are described. The hardware architecture consists of a two-cascade small-sized bioamplifier with a total gain of 2,000 and band-pass of 3 to 500 Hz. The sampling frequency of the system is 1,000 Hz. Since real measured EMG signals are usually corrupted by various types of noises (motion artifacts, white noise and electromagnetic noise present at 50 Hz and higher harmonics), we have tested several denoising techniques, both on artificial and measured EMG signals. Results showed that a wavelet—based technique implementing Daubechies5 wavelet and soft sqtwolog thresholding is the most appropriate for EMG signals denoising. To test the system performance, EMG activities of six dominant muscles of ten healthy subjects during gait were measured (gluteus maximus, biceps femoris, sartorius, rectus femoris, tibialis anterior and medial gastrocnemius). The obtained EMG envelopes presented against the duration of gait cycle were compared favourably with the EMG data available in the literature, suggesting that the proposed system is suitable for a wide range of applications in biomechanics. PMID:24811078

  17. Short-term transcutaneous electrical nerve stimulation reduces pain and improves the masticatory muscle activity in temporomandibular disorder patients: a randomized controlled trial

    PubMed Central

    FERREIRA, Ana Paula de Lima; da COSTA, Dayse Regina Alves; de OLIVEIRA, Ana Izabela Sobral; CARVALHO, Elyson Adam Nunes; CONTI, Paulo César Rodrigues; COSTA, Yuri Martins; BONJARDIM, Leonardo Rigoldi

    2017-01-01

    Abstract Studies to assess the effects of therapies on pain and masticatory muscle function are scarce. Objective To investigate the short-term effect of transcutaneous electrical nerve stimulation (TENS) by examining pain intensity, pressure pain threshold (PPT) and electromyography (EMG) activity in patients with temporomandibular disorder (TMD). Material and Methods Forty patients with myofascial TMD were enrolled in this randomized placebo-controlled trial and were divided into two groups: active (n=20) and placebo (n=20) TENS. Outcome variables assessed at baseline (T0), immediately after (T2) and 48 hours after treatment (T1) were: pain intensity with the aid of a visual analogue scale (VAS); PPT of masticatory and cervical structures; EMG activity during mandibular rest position (MR), maximal voluntary contraction (MVC) and habitual chewing (HC). Two-way ANOVA for repeated measures was applied to the data and the significance level was set at 5%. Results There was a decrease in the VAS values at T1 and T2 when compared with T0 values in the active TENS group (p<0.050). The PPT between-group differences were significant at T1 assessment of the anterior temporalis and sternocleidomastoid (SCM) and T2 for the masseter and the SCM (p<0.050). A significant EMG activity reduction of the masseter and anterior temporalis was presented in the active TENS during MR at T1 assessment when compared with T0 (p<0.050). The EMG activity of the anterior temporalis was significantly higher in the active TENS during MVC at T1 and T2 when compared with placebo (p<0.050). The EMG activity of the masseter and anterior temporalis muscle was significantly higher in the active TENS during HC at T1 when compared with placebo (p<0.050). Conclusions The short-term therapeutic effects of TENS are superior to those of the placebo, because of reported facial pain, deep pain sensitivity and masticatory muscle EMG activity improvement. PMID:28403351

  18. Letting Thoughts Take Wing

    NASA Technical Reports Server (NTRS)

    Jorgensen, Chuck; Wheeler, Kevin

    2002-01-01

    Scientists are conducting research into electroencephalograms (EEGs) of brainwave activity, and electromyography (EMG) of muscle activity, in order to develop systems which can control an aircraft with only a pilot's thoughts. This article describes some EEG and EMG signals, and how they might be analyzed and interpreted to operate an aircraft. The development of a system to detect and interpret fine muscle movements is also profiled in the article.

  19. A dynamical model improves reconstruction of handwriting from multichannel electromyographic recordings

    PubMed Central

    Okorokova, Elizaveta; Lebedev, Mikhail; Linderman, Michael; Ossadtchi, Alex

    2015-01-01

    In recent years, several assistive devices have been proposed to reconstruct arm and hand movements from electromyographic (EMG) activity. Although simple to implement and potentially useful to augment many functions, such myoelectric devices still need improvement before they become practical. Here we considered the problem of reconstruction of handwriting from multichannel EMG activity. Previously, linear regression methods (e.g., the Wiener filter) have been utilized for this purpose with some success. To improve reconstruction accuracy, we implemented the Kalman filter, which allows to fuse two information sources: the physical characteristics of handwriting and the activity of the leading hand muscles, registered by the EMG. Applying the Kalman filter, we were able to convert eight channels of EMG activity recorded from the forearm and the hand muscles into smooth reconstructions of handwritten traces. The filter operates in a causal manner and acts as a true predictor utilizing the EMGs from the past only, which makes the approach suitable for real-time operations. Our algorithm is appropriate for clinical neuroprosthetic applications and computer peripherals. Moreover, it is applicable to a broader class of tasks where predictive myoelectric control is needed. PMID:26578856

  20. Pattern learning with deep neural networks in EMG-based speech recognition.

    PubMed

    Wand, Michael; Schultz, Tanja

    2014-01-01

    We report on classification of phones and phonetic features from facial electromyographic (EMG) data, within the context of our EMG-based Silent Speech interface. In this paper we show that a Deep Neural Network can be used to perform this classification task, yielding a significant improvement over conventional Gaussian Mixture models. Our central contribution is the visualization of patterns which are learned by the neural network. With increasing network depth, these patterns represent more and more intricate electromyographic activity.

  1. Pain-evoked trunk muscle activity changes during fatigue and DOMS.

    PubMed

    Larsen, L H; Hirata, R P; Graven-Nielsen, T

    2017-05-01

    Muscle pain may reorganize trunk muscle activity but interactions with exercise-related muscle fatigue and delayed onset muscle soreness (DOMS) is to be clarified. In 19 healthy participants, the trunk muscle activity during 20 multi-directional unpredictable surface perturbations were recorded after bilateral isotonic saline injections (control) and during unilateral and bilateral hypertonic saline-induced low back pain (LBP) in conditions of back muscle fatigue (Day-1) and DOMS (Day-2). Pain intensity and distribution were assessed by visual analogue scale (VAS) scores and pain drawings. The degree of fatigue and DOMS were assessed by Likert scale scores. Root-mean-square electromyographic (RMS-EMG) signals were recorded post-perturbation from six bilateral trunk muscles and the difference from baseline conditions (Delta-RMS-EMG) was extracted and averaged across abdominal and back muscles. In DOMS, peak VAS scores were higher during bilateral control and bilateral saline-induced pain than fatigue (p < 0.001) and during bilateral compared with unilateral pain (p < 0.001). The saline-induced pain areas were larger during DOMS than fatigue (p < 0.01). In response to surface perturbations during fatigue and DOMS, the back muscle Delta-RMS-EMG increased during bilateral compared with unilateral pain and control injections (p < 0.001) and decreased during unilateral pain compared with control injections (p < 0.04). In DOMS compared with fatigue, the post-perturbation Delta-RMS-EMG in back muscles was higher during bilateral pain and lower during unilateral pain (p < 0.001). The abdominal Delta-RMS-EMG was not significantly affected. Facilitated and attenuated back muscle responses to surface perturbations in bilateral and unilateral LBP, respectively, was more expressed during exercise-induced back muscle soreness compared with fatigue. Back muscle activity decreased during unilateral and increased during bilateral pain after unpredictable surface perturbations during muscle fatigue and DOMS. Accumulation effects of DOMS on pain intensity and spreading and trunk muscle activity after pain-induction. © 2017 European Pain Federation - EFIC®.

  2. The Effect of Involuntary Motor Activity on Myoelectric Pattern Recognition: A Case Study with Chronic Stroke Patients

    PubMed Central

    Zhang, Xu; Li, Yun; Chen, Xiang; Li, Guanglin; Rymer, William Zev; Zhou, Ping

    2013-01-01

    This study investigates the effect of involuntary motor activity of paretic-spastic muscles on classification of surface electromyography (EMG) signals. Two data collection sessions were designed for 8 stroke subjects to voluntarily perform 11 functional movements using their affected forearm and hand at a relatively slow and fast speed. For each stroke subject, the degree of involuntary motor activity present in voluntary surface EMG recordings was qualitatively described from such slow and fast experimental protocols. Myoelectric pattern recognition analysis was performed using different combinations of voluntary surface EMG data recorded from slow and fast sessions. Across all tested stroke subjects, our results revealed that when involuntary surface EMG was absent or present in both training and testing datasets, high accuracies (> 96%, > 98%, respectively, averaged over all the subjects) can be achieved in classification of different movements using surface EMG signals from paretic muscles. When involuntary surface EMG was solely involved in either training or testing datasets, the classification accuracies were dramatically reduced (< 89%, < 85%, respectively). However, if both training and testing datasets contained EMG signals with presence and absence of involuntary EMG interference, high accuracies were still achieved (> 97%). The findings of this study can be used to guide appropriate design and implementation of myoelectric pattern recognition based systems or devices toward promoting robot-aided therapy for stroke rehabilitation. PMID:23860192

  3. Effects of experimental muscle pain on muscle activity and co-ordination during static and dynamic motor function.

    PubMed

    Graven-Nielsen, T; Svensson, P; Arendt-Nielsen, L

    1997-04-01

    The relation between muscle pain, muscle activity, and muscle co-ordination is still controversial. The present human study investigates the influence of experimental muscle pain on resting, static, and dynamic muscle activity. In the resting and static experiments, the electromyography (EMG) activity and the contraction force of m. tibialis anterior were assessed before and after injection of 0.5 ml hypertonic saline (5%) into the same muscle. In the dynamic experiment, injections of 0.5 ml hypertonic saline (5%) were performed into either m. tibialis anterior (TA) or m. gastrocnemius (GA) and the muscle activity and co-ordination were investigated during gait on a treadmill by EMG recordings from m. TA and m. GA. At rest no evidence of EMG hyperactivity was found during muscle pain. The maximal voluntary contraction (MVC) during muscle pain was significantly lower than the control condition (P < 0.05). During a static contraction at 80% of the pre-pain MVC muscle pain caused a significant reduction in endurance time (P < 0.043). During dynamic contractions, muscle pain resulted in a significant decrease of the EMG activity in the muscle, agonistic to the painful muscle (P < 0.05), and a significant increase of the EMG activity of the muscle, antagonistic to the painful muscle (P < 0.05). Muscle pain seems to cause a general protection of painful muscles during both static and dynamic contractions. The increased EMG activity of the muscle antagonistic to the painful muscle is probably a functional adaptation of muscle co-ordination in order to limit movements. Modulation of muscle activity by muscle pain could be controlled via inhibition of muscles agonistic to the movement and/or excitation of muscles antagonistic to the movement. The present results are in accordance with the pain-adaptation model (Lund, J.P., Stohler, C.S. and Widmer, C.G. In: H. Vaerøy and H. Merskey (Eds.), Progress in Fibromyalgia and Myofascial Pain. Elsevier, Amsterdam, 1993, pp. 311-327.) which predicts increased activity of antagonistic muscle and decreased activity of agonistic muscle during experimental and clinical muscle pain.

  4. The extraction of neural strategies from the surface EMG: an update

    PubMed Central

    Merletti, Roberto; Enoka, Roger M.

    2014-01-01

    A surface EMG signal represents the linear transformation of motor neuron discharge times by the compound action potentials of the innervated muscle fibers and is often used as a source of information about neural activation of muscle. However, retrieving the embedded neural code from a surface EMG signal is extremely challenging. Most studies use indirect approaches in which selected features of the signal are interpreted as indicating certain characteristics of the neural code. These indirect associations are constrained by limitations that have been detailed previously (Farina D, Merletti R, Enoka RM. J Appl Physiol 96: 1486–1495, 2004) and are generally difficult to overcome. In an update on these issues, the current review extends the discussion to EMG-based coherence methods for assessing neural connectivity. We focus first on EMG amplitude cancellation, which intrinsically limits the association between EMG amplitude and the intensity of the neural activation and then discuss the limitations of coherence methods (EEG-EMG, EMG-EMG) as a way to assess the strength of the transmission of synaptic inputs into trains of motor unit action potentials. The debated influence of rectification on EMG spectral analysis and coherence measures is also discussed. Alternatively, there have been a number of attempts to identify the neural information directly by decomposing surface EMG signals into the discharge times of motor unit action potentials. The application of this approach is extremely powerful, but validation remains a central issue. PMID:25277737

  5. Effective force control by muscle synergies.

    PubMed

    Berger, Denise J; d'Avella, Andrea

    2014-01-01

    Muscle synergies have been proposed as a way for the central nervous system (CNS) to simplify the generation of motor commands and they have been shown to explain a large fraction of the variation in the muscle patterns across a variety of conditions. However, whether human subjects are able to control forces and movements effectively with a small set of synergies has not been tested directly. Here we show that muscle synergies can be used to generate target forces in multiple directions with the same accuracy achieved using individual muscles. We recorded electromyographic (EMG) activity from 13 arm muscles and isometric hand forces during a force reaching task in a virtual environment. From these data we estimated the force associated to each muscle by linear regression and we identified muscle synergies by non-negative matrix factorization. We compared trajectories of a virtual mass displaced by the force estimated using the entire set of recorded EMGs to trajectories obtained using 4-5 muscle synergies. While trajectories were similar, when feedback was provided according to force estimated from recorded EMGs (EMG-control) on average trajectories generated with the synergies were less accurate. However, when feedback was provided according to recorded force (force-control) we did not find significant differences in initial angle error and endpoint error. We then tested whether synergies could be used as effectively as individual muscles to control cursor movement in the force reaching task by providing feedback according to force estimated from the projection of the recorded EMGs into synergy space (synergy-control). Human subjects were able to perform the task immediately after switching from force-control to EMG-control and synergy-control and we found no differences between initial movement direction errors and endpoint errors in all control modes. These results indicate that muscle synergies provide an effective strategy for motor coordination.

  6. Preliminary investigation of an electromyography-controlled video game as a home program for persons in the chronic phase of stroke recovery.

    PubMed

    Donoso Brown, Elena V; McCoy, Sarah Westcott; Fechko, Amber S; Price, Robert; Gilbertson, Torey; Moritz, Chet T

    2014-08-01

    To investigate the preliminary effectiveness of surface electromyography (sEMG) biofeedback delivered via interaction with a commercial computer game to improve motor control in chronic stroke survivors. Single-blinded, 1-group, repeated-measures design: A1, A2, B, A3 (A, assessment; B, intervention). Laboratory and participants' homes. A convenience sample of persons (N=9) between 40 and 75 years of age with moderate to severe upper extremity motor impairment and at least 6 months poststroke completed the study. The electromyography-controlled video game system targeted the wrist muscle activation with the goal of increasing selective muscle activation. Participants received several laboratory training sessions with the system and then were instructed to use the system at home for 45 minutes, 5 times per week for the following 4 weeks. Primary outcome measures included duration of system use, sEMG during home play, and pre/post sEMG measures during active wrist motion. Secondary outcomes included kinematic analysis of movement and functional outcomes, including the Wolf Motor Function Test and the Chedoke Arm and Hand Activity Inventory-9. One third of participants completed or exceeded the recommended amount of system use. Statistically significant changes were observed on both game play and pre/post sEMG outcomes. Limited carryover, however, was observed on kinematic or functional outcomes. This preliminary investigation indicates that use of the electromyography-controlled video game impacts muscle activation. Limited changes in kinematic and activity level outcomes, however, suggest that the intervention may benefit from the inclusion of a functional activity component. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  7. Scapular Bracing and Alteration of Posture and Muscle Activity in Overhead Athletes With Poor Posture

    PubMed Central

    Cole, Ashley K; McGrath, Melanie L; Harrington, Shana E; Padua, Darin A; Rucinski, Terri J; Prentice, William E

    2013-01-01

    Context Overhead athletes commonly have poor posture. Commercial braces are used to improve posture and function, but few researchers have examined the effects of shoulder or scapular bracing on posture and scapular muscle activity. Objective To examine whether a scapular stabilization brace acutely alters posture and scapular muscle activity in healthy overhead athletes with forward-head, rounded-shoulder posture (FHRSP). Design Randomized controlled clinical trial. Setting Applied biomechanics laboratory. Patients or Other Participants Thirty-eight healthy overhead athletes with FHRSP. Intervention(s) Participants were assigned randomly to 2 groups: compression shirt with no strap tension (S) and compression shirt with the straps fully tensioned (S + T). Posture was measured using lateral-view photography with retroreflective markers. Electromyography (EMG) of the upper trapezius (UT), middle trapezius (MT), lower trapezius (LT), and serratus anterior (SA) in the dominant upper extremity was measured during 4 exercises (scapular punches, W's, Y's, T's) and 2 glenohumeral motions (forward flexion, shoulder extension). Posture and exercise EMG measurements were taken with and without the brace applied. Main Outcome Measure(s) Head and shoulder angles were measured from lateral-view digital photographs. Normalized surface EMG was used to assess mean muscle activation of the UT, MT, LT, and SA. Results Application of the brace decreased forward shoulder angle in the S + T condition. Brace application also caused a small increase in LT EMG during forward flexion and Y's and a small decrease in UT and MT EMG during shoulder extension. Brace application in the S + T group decreased UT EMG during W's, whereas UT EMG increased during W's in the S group. Conclusions Application of the scapular brace improved shoulder posture and scapular muscle activity, but EMG changes were highly variable. Use of a scapular brace might improve shoulder posture and muscle activity in overhead athletes with poor posture. PMID:23672321

  8. Clinical and computerized evaluation in study of temporo-mandibular joint intracapsular disease.

    PubMed

    Ciavarella, D; Mastrovincenzo, M; Sabatucci, A; Parziale, V; Granatelli, F; Violante, F; Bossù, M; Lo Muzio, L; Chimenti, C

    2010-03-01

    In this work authors show a diagnostic criteria in study of TMID: neuro occlusal clinical evaluation (NOE), T-Scan 2 system and surface electromyography (sEMG). Nine patients 25-30 years old with TMID problem and 9 healthy group control have been selected and examined. On each patients it has been performed NOE, T-Scan and sEMG test. NOE has been calculated on each patient photos lateral mandibular excursion angle called: masticatory functional angle (AFM). T-Scan System is a computerized occlusal analyzer that provide in-depth understanding of the overall balance of the occlusion. At the same time of T-Scan record sEMG tests, in resting position and in maximum clench, have been performed. In healthy control there were no AFM difference. In no healthy group there were difference between the two AFM greater than 6 degrees. T-Scan COF showed how in healthy group control there was never a difference of COF greater than 5%. In no healthy group the difference were greater than 5% P<0.05. T-scan showed difference of time force in maximum intercuspidation (MIFT) in healthy respect TMID patients. In healthy patients MIFT was higher than TMID patients P<0.05. sEMG test showed in non healthy group a great asymmetrical activation of masseter (MM). MM activation were greater on side affected by joint sound than the balance side P<0.001. sEMG show how in TMID patients maximum masseter activation is always lower than maximum masseter activation of healthy subjects P<0.001. Neuro occlusal clinical evaluation (NOE) in TMID patients is supported by instrumental evaluation.

  9. Aircraft control forces and EMG activity: comparison of novice and experienced pilots during simulated rolls, loops and turns.

    PubMed

    Hewson, D J; McNair, P J; Marshall, R N

    2000-08-01

    Flying an aircraft requires a considerable degree of coordination, particularly during aerobatic activities such as rolls, loops and turns. Only one previous study has examined the magnitude of muscle activity required to fly an aircraft, and that was restricted to takeoff and landing maneuvers. The aim of this study was to examine the phasing of muscle activation and control forces of novice and experienced pilots during more complex simulated flight maneuvers. There were 12 experienced and 9 novice pilots who were tested on an Aermacchi flight simulator while performing a randomized set of rolling, looping, and turning maneuvers. Four different runaway trim settings were used to increase the difficulty of the turns (elevator-up, elevator-down, aileron-left, and aileron-right). Variables recorded included aircraft attitude, pilot applied forces, and electromyographic (EMG) activity. Discriminant function analysis was used to distinguish between novice and experienced pilots. Over all maneuvers, 70% of pilots were correctly classified as novice or experienced. Better levels of classification were achieved when maneuvers were analyzed individually (67-91%), although the maneuvers that required the greatest force application, elevator-up turns, were unable to discriminate between novice and experienced pilots. There were no differences in the phasing of muscle activity between experienced and novice pilots. The only consistent difference in EMG activity between novice and experienced pilots was the reduced EMG activity in the wrist extensors of experienced pilots (p < 0.05). The increased wrist extensor activity of the novice pilots is indicative of a distal control strategy, whereby distal muscles with smaller motor units are used to perform a task that requires precise control. Muscle activity sensors could be used to detect the onset of high G maneuvers prior to any change in aircraft attitude and control G-suit inflation accordingly.

  10. A Spiking Neural Network in sEMG Feature Extraction.

    PubMed

    Lobov, Sergey; Mironov, Vasiliy; Kastalskiy, Innokentiy; Kazantsev, Victor

    2015-11-03

    We have developed a novel algorithm for sEMG feature extraction and classification. It is based on a hybrid network composed of spiking and artificial neurons. The spiking neuron layer with mutual inhibition was assigned as feature extractor. We demonstrate that the classification accuracy of the proposed model could reach high values comparable with existing sEMG interface systems. Moreover, the algorithm sensibility for different sEMG collecting systems characteristics was estimated. Results showed rather equal accuracy, despite a significant sampling rate difference. The proposed algorithm was successfully tested for mobile robot control.

  11. An Implanted Upper-Extremity Neuroprosthesis Using Myoelectric Control

    PubMed Central

    Kilgore, Kevin L.; Hoyen, Harry A.; Bryden, Anne M.; Hart, Ronald L.; Keith, Michael W.; Peckham, P. Hunter

    2009-01-01

    Purpose The purpose of this study was evaluate the potential of a second-generation implantable neuroprosthesis that provides improved control of hand grasp and elbow extension for individuals with cervical level spinal cord injury. The key feature of this system is that users control their stimulated function through electromyographic (EMG) signals. Methods The second-generation neuroprosthesis consists of 12 stimulating electrodes, 2 EMG signal recording electrodes, an implanted stimulator-telemeter device, an external control unit, and a transmit/receive coil. The system was implanted in a single surgical procedure. Functional outcomes for each subject were evaluated in the domains of body functions and structures, activity performance, and societal participation. Results Three individuals with C5/C6 spinal cord injury received system implantation with subsequent prospective evaluation for a minimum of 2 years. All 3 subjects demonstrated that EMG signals can be recorded from voluntary muscles in the presence of electrical stimulation of nearby muscles. Significantly increased pinch force and grasp function was achieved for each subject. Functional evaluation demonstrated improvement in at least 5 activities of daily living using the Activities of Daily Living Abilities Test. Each subject was able to use the device at home. There were no system failures. Two of 6 EMG electrodes required surgical revision because of suboptimal location of the recording electrodes. Conclusions These results indicate that a neuroprosthesis with implanted myoelectric control is an effective method for restoring hand function in midcervical level spinal cord injury. Type of study/level of evidence Therapeutic IV. PMID:18406958

  12. Embroidered Electromyography: A Systematic Design Guide.

    PubMed

    Shafti, Ali; Ribas Manero, Roger B; Borg, Amanda M; Althoefer, Kaspar; Howard, Matthew J

    2017-09-01

    Muscle activity monitoring or electromyography (EMG) is a useful tool. However, EMG is typically invasive, expensive and difficult to use for untrained users. A possible solution is textile-based surface EMG (sEMG) integrated into clothing as a wearable device. This is, however, challenging due to 1) uncertainties in the electrical properties of conductive threads used for electrodes, 2) imprecise fabrication technologies (e.g., embroidery, sewing), and 3) lack of standardization in design variable selection. This paper, for the first time, provides a design guide for such sensors by performing a thorough examination of the effect of design variables on sEMG signal quality. Results show that imprecisions in digital embroidery lead to a trade-off between low electrode impedance and high manufacturing consistency. An optimum set of variables for this trade-off is identified and tested with sEMG during a variable force isometric grip exercise with n = 12 participants, compared with conventional gel-based electrodes. Results show that thread-based electrodes provide a similar level of sensitivity to force variation as gel-based electrodes with about 90% correlation to expected linear behavior. As proof of concept, jogging leggings with integrated embroidered sEMG are made and successfully tested for detection of muscle fatigue while running on different surfaces.

  13. The effect of yoga on puborectalis paradox.

    PubMed

    Dolk, A; Holmström, B; Johansson, C; Frostell, C; Nilsson, B Y

    1991-08-01

    Nine patients with severe defaecation difficulties primarily considered to be due to puborectalis dysfunction (puborectalis paradox), verified by electromyography (EMG) of the striated anal sphincter muscles, were offered training in Yogic techniques of relaxation and muscle control in order to change the activity of the pelvic floor muscles during attempted defaecation. Five patients completed the training program of 20 2-hour sessions and were re-examined clinically and with EMG. One patient regained a normal EMG pattern but none of the patients improved clinically.

  14. Recruitment of discrete regions of the psoas major and quadratus lumborum muscles is changed in specific sitting postures in individuals with recurrent low back pain.

    PubMed

    Park, Rachel J; Tsao, Henry; Claus, Andrew; Cresswell, Andrew G; Hodges, Paul W

    2013-11-01

    Cross-sectional controlled laboratory study. To investigate potential changes in the function of discrete regions of the psoas major (PM) and quadratus lumborum (QL) with changes in spinal curvatures and hip positions in sitting, in people with recurrent low back pain (LBP). Although the PM and QL contribute to control of spinal curvature in sitting, whether activity of these muscles is changed in individuals with LBP is unknown. Ten volunteers with recurrent LBP (pain free at the time of testing) and 9 pain-free individuals in a comparison group participated. Participants with LBP were grouped into those with high and low erector spinae (ES) electromyographic (EMG) signal amplitude, recorded when sitting with a lumbar lordosis. Data were recorded as participants assumed 3 sitting postures. Fine-wire electrodes were inserted with ultrasound guidance into fascicles of the PM arising from the transverse process and vertebral body, and the anterior and posterior layers of the QL. When data from those with recurrent LBP were analyzed as 1 group, PM and QL EMG signal amplitudes did not differ between groups in any of the sitting postures. However, when subgrouped, those with low ES EMG had greater EMG signal amplitude of the PM vertebral body and QL posterior layer in flat posture and greater EMG signal amplitude of the QL posterior layer in short lordotic posture, compared to those in the pain-free group. For the group with high ES EMG, the PM transverse process and PM vertebral body EMG was less than that of the other LBP group in short lordotic posture. The findings suggest a redistribution of activity between muscles that have a potential extensor moment in individuals with LBP. The modification of EMG of discrete fascicles of the PM and QL was related to changes in ES EMG signal amplitude recorded in sitting.

  15. Analysis of statistical and standard algorithms for detecting muscle onset with surface electromyography.

    PubMed

    Tenan, Matthew S; Tweedell, Andrew J; Haynes, Courtney A

    2017-01-01

    The timing of muscle activity is a commonly applied analytic method to understand how the nervous system controls movement. This study systematically evaluates six classes of standard and statistical algorithms to determine muscle onset in both experimental surface electromyography (EMG) and simulated EMG with a known onset time. Eighteen participants had EMG collected from the biceps brachii and vastus lateralis while performing a biceps curl or knee extension, respectively. Three established methods and three statistical methods for EMG onset were evaluated. Linear envelope, Teager-Kaiser energy operator + linear envelope and sample entropy were the established methods evaluated while general time series mean/variance, sequential and batch processing of parametric and nonparametric tools, and Bayesian changepoint analysis were the statistical techniques used. Visual EMG onset (experimental data) and objective EMG onset (simulated data) were compared with algorithmic EMG onset via root mean square error and linear regression models for stepwise elimination of inferior algorithms. The top algorithms for both data types were analyzed for their mean agreement with the gold standard onset and evaluation of 95% confidence intervals. The top algorithms were all Bayesian changepoint analysis iterations where the parameter of the prior (p0) was zero. The best performing Bayesian algorithms were p0 = 0 and a posterior probability for onset determination at 60-90%. While existing algorithms performed reasonably, the Bayesian changepoint analysis methodology provides greater reliability and accuracy when determining the singular onset of EMG activity in a time series. Further research is needed to determine if this class of algorithms perform equally well when the time series has multiple bursts of muscle activity.

  16. Stereotypic Laryngeal and Respiratory Motor Patterns Generate Different Call Types in Rat Ultrasound Vocalization

    PubMed Central

    RIEDE, TOBIAS

    2014-01-01

    Rodents produce highly variable ultrasound whistles as communication signals unlike many other mammals, who employ flow-induced vocal fold oscillations to produce sound. The role of larynx muscles in controlling sound features across different call types in ultrasound vocalization (USV) was investigated using laryngeal muscle electromyographic (EMG) activity, subglottal pressure measurements and vocal sound output in awake and spontaneously behaving Sprague–Dawley rats. Results support the hypothesis that glottal shape determines fundamental frequency. EMG activities of thyroarytenoid and cricothyroid muscles were aligned with call duration. EMG intensity increased with fundamental frequency. Phasic activities of both muscles were aligned with fast changing fundamental frequency contours, for example in trills. Activities of the sternothyroid and sternohyoid muscles, two muscles involved in vocal production in other mammals, are not critical for the production of rat USV. To test how stereotypic laryngeal and respiratory activity are across call types and individuals, sets of ten EMG and subglottal pressure parameters were measured in six different call types from six rats. Using discriminant function analysis, on average 80% of parameter sets were correctly assigned to their respective call type. This was significantly higher than the chance level. Since fundamental frequency features of USV are tightly associated with stereotypic activity of intrinsic laryngeal muscles and muscles contributing to build-up of subglottal pressure, USV provide insight into the neurophysiological control of peripheral vocal motor patterns. PMID:23423862

  17. Using Gastrocnemius sEMG and Plasma α-Synuclein for the Prediction of Freezing of Gait in Parkinson's Disease Patients

    PubMed Central

    Yang, Qiong; Zhang, Lin-Yuan; Chen, Sheng-Di; Liu, Jun

    2014-01-01

    Freezing of gait (FOG) is a complicated gait disturbance in Parkinson's disease (PD) and a relevant subclinical predictor algorithm is lacking. The main purpose of this study is to explore the potential value of surface electromyograph (sEMG) and plasma α-synuclein levels as predictors of the FOG seen in PD. 21 PD patients and 15 normal controls were recruited. Motor function was evaluated using the Unified Parkinson's Disease Rating Scale (UPDRS) and Freezing of gait questionnaire (FOG-Q). Simultaneously, gait analysis was also performed using VICON capture system in PD patients and sEMG data was recorded as well. Total plasma α-synuclein was quantitatively assessed by Luminex assay in all participants. Recruited PD patients were classified into two groups: PD patients with FOG (PD+FOG) and without FOG (PD-FOG), based on clinical manifestation, the results of the FOG-Q and VICON capture system. PD+FOG patients displayed higher FOG-Q scores, decreased walking speed, smaller step length, smaller stride length and prolonged double support time compared to the PD-FOG in the gait trial. sEMG data indicated that gastrocnemius activity in PD+FOG patients was significantly reduced compared to PD-FOG patients. In addition, plasma α-synuclein levels were significantly decreased in the PD+FOG group compared to control group; however, no significant difference was found between the PD+FOG and PD-FOG groups. Our study revealed that gastrocnemius sEMG could be used to evaluate freezing gait in PD patients, while plasma α-synuclein might discriminate freezing of gait in PD patients from normal control, though no difference was found between the PD+FOG and PD-FOG groups. PMID:24586710

  18. Simultaneous, proportional, multi-axis prosthesis control using multichannel surface EMG.

    PubMed

    Yatsenko, Dimitri; McDonnall, Daniel; Guillory, K Shane

    2007-01-01

    Most upper limb prosthesis controllers only allow the individual selection and control of single joints of the limb. The main limiting factor for simultaneous multi-joint control is usually the availability of reliable independent control signals that can intuitively be used. In this paper, a novel method is presented for extraction of individual muscle source signals from surface EMG array recordings, based on EMG energy orthonormalization along principle movement vectors. In cases where independently-controllable muscles are present in residual limbs, this method can be used to provide simultaneous, multi-axis, proportional control of prosthetic systems. Initial results are presented for simultaneous control of wrist rotation, wrist flexion/extension, and grip open/close for two intact subjects under both isometric and non-isometric conditions and for one subject with transradial amputation.

  19. Sleep bruxism in individuals with and without attrition-type tooth wear: An exploratory matched case-control electromyographic study.

    PubMed

    Jonsgar, Christine; Hordvik, Paul-Arne; Berge, Morten E; Johansson, Ann-Katrin; Svensson, Peter; Johansson, Anders

    2015-12-01

    To examine if there is a difference in possible sleep bruxism activity (SB) in subjects with or without attrition-type tooth wear. Sixteen individuals with pronounced attritional-type tooth wear were compared with sex and aged matched controls without tooth wear by means of measurement of electromyographic (EMG) activity during a minimum of four consecutive nights of sleep. Mean age and range for the study- and control- group was 23.7 years (range 19.9-28.5) and 23.6 years (range 20.3-27.9), respectively. There were 11 females and five males in each of the two groups. The attrition group presented incisal/occlusal attrition wear into dentin and matching wear facets between opposing anterior teeth. The controls had negligible signs of incisal/occlusal wear and a minimal number of matching wear facets. The prevalence of both self-reported and partner-reported SB was significantly more common in the attrition group compared to the controls (P=0.04 and P=0.007, respectively). Self-reported morning facial pain was similarly more common in the attrition group (P=0.014). Maximum opening capacity, number of muscles painful to palpation, salivary flow rate and buffering capacity were not significantly different between the groups. Interestingly, none of the measures of jaw muscle EMG activity during sleep, as recorded by the portable EMG equipment, differed significantly between the attrition group and the matched controls (P>0.05). The results from this exploratory study suggest that there is no difference in EMG activity between subjects with and without attrition-type tooth wear. Further research is needed in order to substantiate these preliminary findings. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Hybrid Assistive Neuromuscular Dynamic Stimulation Therapy: A New Strategy for Improving Upper Extremity Function in Patients with Hemiparesis following Stroke.

    PubMed

    Fujiwara, Toshiyuki; Kawakami, Michiyuki; Honaga, Kaoru; Tochikura, Michi; Abe, Kaoru

    2017-01-01

    Hybrid Assistive Neuromuscular Dynamic Stimulation (HANDS) therapy is one of the neurorehabilitation therapeutic approaches that facilitates the use of the paretic upper extremity (UE) in daily life by combining closed-loop electromyography- (EMG-) controlled neuromuscular electrical stimulation (NMES) with a wrist-hand splint. This closed-loop EMG-controlled NMES can change its stimulation intensity in direct proportion to the changes in voluntary generated EMG amplitudes recorded with surface electrodes placed on the target muscle. The stimulation was applied to the paretic finger extensors. Patients wore a wrist-hand splint and carried a portable stimulator in an arm holder for 8 hours during the daytime. The system was active for 8 hours, and patients were instructed to use their paretic hand as much as possible. HANDS therapy was conducted for 3 weeks. The patients were also instructed to practice bimanual activities in their daily lives. Paretic upper extremity motor function improved after 3 weeks of HANDS therapy. Functional improvement of upper extremity motor function and spasticity with HANDS therapy is based on the disinhibition of the affected hemisphere and modulation of reciprocal inhibition. HANDS therapy may offer a promising option for the management of the paretic UE in patients with stroke.

  1. Reconstructing for joint angles on the shoulder and elbow from non-invasive electroencephalographic signals through electromyography

    PubMed Central

    Choi, Kyuwan

    2013-01-01

    In this study, first the cortical activities over 2240 vertexes on the brain were estimated from 64 channels electroencephalography (EEG) signals using the Hierarchical Bayesian estimation while 5 subjects did continuous arm reaching movements. From the estimated cortical activities, a sparse linear regression method selected only useful features in reconstructing the electromyography (EMG) signals and estimated the EMG signals of 9 arm muscles. Then, a modular artificial neural network was used to estimate four joint angles from the estimated EMG signals of 9 muscles: one for movement control and the other for posture control. The estimated joint angles using this method have the correlation coefficient (CC) of 0.807 (±0.10) and the normalized root-mean-square error (nRMSE) of 0.176 (±0.29) with the actual joint angles. PMID:24167469

  2. The role in masseter muscle activities of functionally elicited periodontal afferents from abutment teeth under overdentures.

    PubMed

    Mushimoto, E

    1981-09-01

    Five overdenture wearers with a small number of remaining natural teeth were selected to evaluate the effect of the afferent input from periodontal mechanoreceptors on masseter activity in man. As a control, a full denture wearer was included. The subjects were instructed to chew a piece of gum, and/or tap their teeth. Surface EmG from the bilateral masseter muscles were recorded and analysed. When functional pressure was applied, during chewing, to the abutment teeth as well as to mucosa through the denture base, masseter activities were encouraged. Following application of anaesthesia to the periodontal membrane of the abutments, masseter activities were reduced. The duration of the silent period (SP) appearing in the EMG burst following tooth tapping was significantly increased with root support compared to mucosal support only. With topical anaesthesia of the periodontal tissues, SP duration decreased significantly. In conclusion, it has become apparent that the pressure sensibility of abutment teeth bearing functional pressure under an overdenture base is capable of facilitating masseter activity, as one of the sources of oral sensory input during mastication.

  3. Towards the control of individual fingers of a prosthetic hand using surface EMG signals.

    PubMed

    Tenore, Francesco; Ramos, Ander; Fahmy, Amir; Acharya, Soumyadipta; Etienne-Cummings, Ralph; Thakor, Nitish V

    2007-01-01

    The fast pace of development of upper-limb prostheses requires a paradigm shift in EMG-based controls. Traditional control schemes are only capable of providing 2 degrees of freedom, which is insufficient for dexterous control of individual fingers. We present a framework where myoelectric signals from natural hand and finger movements can be decoded with a high accuracy. 32 surface-EMG electrodes were placed on the forearm of an able-bodied subject while performing individual finger movements. Using time-domain feature extraction methods as inputs to a neural network classifier, we show that 12 individuated flexion and extension movements of the fingers can be decoded with an accuracy higher than 98%. To our knowledge, this is the first instance in which such movements have been successfully decoded using surface-EMG. These preliminary findings provide a framework that will allow the results to be extended to non-invasive control of the next generation of upper-limb prostheses for amputees.

  4. Modular Control of Treadmill vs Overground Running

    PubMed Central

    Farina, Dario; Kersting, Uwe Gustav

    2016-01-01

    Motorized treadmills have been widely used in locomotion studies, although a debate remains concerning the extrapolation of results obtained from treadmill experiments to overground locomotion. Slight differences between treadmill (TRD) and overground running (OVG) kinematics and muscle activity have previously been reported. However, little is known about differences in the modular control of muscle activation in these two conditions. Therefore, we aimed at investigating differences between motor modules extracted from TRD and OVG by factorization of multi-muscle electromyographic (EMG) signals. Twelve healthy men ran on a treadmill and overground at their preferred speed while we recorded tibial acceleration and surface EMG from 11 ipsilateral lower limb muscles. We extracted motor modules representing relative weightings of synergistic muscle activations by non-negative matrix factorization from 20 consecutive gait cycles. Four motor modules were sufficient to accurately reconstruct the EMG signals in both TRD and OVG (average reconstruction quality = 92±3%). Furthermore, a good reconstruction quality (80±7%) was obtained also when muscle weightings of one condition (either OVG or TRD) were used to reconstruct the EMG data from the other condition. The peak amplitudes of activation signals showed a similar timing (pattern) across conditions. The magnitude of peak activation for the module related to initial contact was significantly greater for OVG, whereas peak activation for modules related to leg swing and preparation to landing were greater for TRD. We conclude that TRD and OVG share similar muscle weightings throughout motion. In addition, modular control for TRD and OVG is achieved with minimal temporal adjustments, which were dependent on the phase of the running cycle. PMID:27064978

  5. Dynamic Clinical Assessment of Femoral Acetabular Impingement

    PubMed Central

    Maak, Travis; Kraszewski, Andrew; Ranawat, Anil S.; Backus, Sherry I.; Magennis, Erin; Hillstrom, Howard; Kelly, Bryan T.

    2013-01-01

    Objectives: There has been a recent interest in the non-arthritic hip and its associated complex pathologies. Passive range of motion and static specialty tests are the corner stone of diagnosis and assessment of treatment. Little information exists on the use of dynamic functional measurements to assess non-arthritic hip function. The aims of this study were: (1) to measure and identify objective and reliable functional parameters to assess dynamic hip function, and (2) to compare functional kinematic and kinetic parameters among healthy controls and subjects with symptomatic diagnosed femoral acetabular impingement (FAI). Methods: An ongoing cross-sectional study was conducted on male healthy non-arthritic control and symptomatic, diagnosed FAI subjects. Functional kinematic and kinetic data were acquired with dynamic 3D motion analysis during stair ascent, stair descent, and a sit-to-stand maneuver. Joint kinematics were measured in degrees and joint kinetic moments were normalized by body mass (N-m/kg). Surface electromyographic (EMG) activity was measured for hip and trunk musculature. Measurement reliability was quantified with the adjusted coefficient of multiple correlation (CMC), and was calculated for angle, moment and EMG per subject, and averaged across subjects. Control and FAI subjects were compared with differences in kinematic and kinetic waveforms. Results: Data from ten healthy subjects (Age=25±4 years; BMI=24.3±3.6); and six FAI subjects (Age=32±10 years; BMI=25±4) have been recorded. Control and FAI subject CMC values are listed in Table 1. Kinematic and kinetic behavior differed (>1 SD) between control and FAI for multiple joints and planes of motion. Increased internal hip rotation moments were recorded in FAI subjects during both stair ascent and descent tasks, as compared to healthy controls. Increased external rotation moments were recorded in FAI subjects during the sit-to-stand task. Electromyographic data demonstrated notable differences (>1 SD) between healthy and FAI subjects (Figure 1). The stair ascent task elicited increased medial hamstring EMG activity, stair descent produced decreased gluteus medius EMG activity, and early sit-to-stand produced decreased rectus femoris EMG activity in FAI subjects, as compared to healthy controls. Conclusion: Overall the kinematic, kinetic and EMG repeatability was very reliable; these measures are sufficiently reliable to objectively assess dynamic function in healthy and pathologic subjects. Kinematic and kinetic data have shown striking differences between the kinematic and kinetic data of control and FAI subjects, particularly the increased external rotation moments and pelvic flexion during sit to stand for subjects with FAI. We hypothesize that increased pelvic flexion with FAI may be a reason why patients develop impingement and symptoms. Likewise, the decreased medial hamstring and rectus femoris activation in FAI subjects may be an attempt to decrease lumbar lordosis, which may be a compensatory behavior to decrease anterior impingement. In addition, we hypothesize that decreased gluteus medius EMG activity in FAI patients is a sign of abductor fatigue. This study provides a foundation to assess specific gait abnormalities associated with FAI, which will advance the understanding of this pathology and direct future treatment regimens.

  6. Feedforward neural control of toe walking in humans.

    PubMed

    Lorentzen, Jakob; Willerslev-Olsen, Maria; Hüche Larsen, Helle; Svane, Christian; Forman, Christian; Frisk, Rasmus; Farmer, Simon Francis; Kersting, Uwe; Nielsen, Jens Bo

    2018-03-23

    Activation of ankle muscles at ground contact during toe walking is unaltered when sensory feedback is blocked or the ground is suddenly dropped. Responses in the soleus muscle to transcranial magnetic stimulation, but not peripheral nerve stimulation, are facilitated at ground contact during toe walking. We argue that toe walking is supported by feedforward control at ground contact. Toe walking requires careful control of the ankle muscles in order to absorb the impact of ground contact and maintain a stable position of the joint. The present study aimed to clarify the peripheral and central neural mechanisms involved. Fifteen healthy adults walked on a treadmill (3.0 km h -1 ). Tibialis anterior (TA) and soleus (Sol) EMG, knee and ankle joint angles, and gastrocnemius-soleus muscle fascicle lengths were recorded. Peripheral and central contributions to the EMG activity were assessed by afferent blockade, H-reflex testing, transcranial magnetic brain stimulation (TMS) and sudden unloading of the planter flexor muscle-tendon complex. Sol EMG activity started prior to ground contact and remained high throughout stance. TA EMG activity, which is normally seen around ground contact during heel strike walking, was absent. Although stretch of the Achilles tendon-muscle complex was observed after ground contact, this was not associated with lengthening of the ankle plantar flexor muscle fascicles. Sol EMG around ground contact was not affected by ischaemic blockade of large-diameter sensory afferents, or the sudden removal of ground support shortly after toe contact. Soleus motor-evoked potentials elicited by TMS were facilitated immediately after ground contact, whereas Sol H-reflexes were not. These findings indicate that at the crucial time of ankle stabilization following ground contact, toe walking is governed by centrally mediated motor drive rather than sensory driven reflex mechanisms. These findings have implications for our understanding of the control of human gait during voluntary toe walking. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  7. The effect of involuntary motor activity on myoelectric pattern recognition: a case study with chronic stroke patients

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Li, Yun; Chen, Xiang; Li, Guanglin; Zev Rymer, William; Zhou, Ping

    2013-08-01

    Objective. This study investigates the effect of the involuntary motor activity of paretic-spastic muscles on the classification of surface electromyography (EMG) signals. Approach. Two data collection sessions were designed for 8 stroke subjects to voluntarily perform 11 functional movements using their affected forearm and hand at relatively slow and fast speeds. For each stroke subject, the degree of involuntary motor activity present in the voluntary surface EMG recordings was qualitatively described from such slow and fast experimental protocols. Myoelectric pattern recognition analysis was performed using different combinations of voluntary surface EMG data recorded from the slow and fast sessions. Main results. Across all tested stroke subjects, our results revealed that when involuntary surface EMG is absent or present in both the training and testing datasets, high accuracies (>96%, >98%, respectively, averaged over all the subjects) can be achieved in the classification of different movements using surface EMG signals from paretic muscles. When involuntary surface EMG was solely involved in either the training or testing datasets, the classification accuracies were dramatically reduced (<89%, <85%, respectively). However, if both the training and testing datasets contained EMG signals with the presence and absence of involuntary EMG interference, high accuracies were still achieved (>97%). Significance. The findings of this study can be used to guide the appropriate design and implementation of myoelectric pattern recognition based systems or devices toward promoting robot-aided therapy for stroke rehabilitation.

  8. A combined sEMG and accelerometer system for monitoring functional activity in stroke.

    PubMed

    Roy, Serge H; Cheng, M Samuel; Chang, Shey-Sheen; Moore, John; De Luca, Gianluca; Nawab, S Hamid; De Luca, Carlo J

    2009-12-01

    Remote monitoring of physical activity using body-worn sensors provides an alternative to assessment of functional independence by subjective, paper-based questionnaires. This study investigated the classification accuracy of a combined surface electromyographic (sEMG) and accelerometer (ACC) sensor system for monitoring activities of daily living in patients with stroke. sEMG and ACC data (eight channels each) were recorded from 10 hemiparetic patients while they carried out a sequence of 11 activities of daily living (identification tasks), and 10 activities used to evaluate misclassification errors (nonidentification tasks). The sEMG and ACC sensor data were analyzed using a multilayered neural network and an adaptive neuro-fuzzy inference system to identify the minimal sensor configuration needed to accurately classify the identification tasks, with a minimal number of misclassifications from the nonidentification tasks. The results demonstrated that the highest sensitivity and specificity for the identification tasks was achieved using a subset of four ACC sensors and adjacent sEMG sensors located on both upper arms, one forearm, and one thigh, respectively. This configuration resulted in a mean sensitivity of 95.0%, and a mean specificity of 99.7% for the identification tasks, and a mean misclassification error of < 10% for the nonidentification tasks. The findings support the feasibility of a hybrid sEMG and ACC wearable sensor system for automatic recognition of motor tasks used to assess functional independence in patients with stroke.

  9. A Combined sEMG and Accelerometer System for Monitoring Functional Activity in Stroke.

    PubMed

    Roy, S; Cheng, M; Chang, S; Moore, J; De Luca, G; Nawab, S; De Luca, C

    2014-04-23

    Remote monitoring of physical activity using bodyworn sensors provides an alternative to assessment of functional independence by subjective, paper-based questionnaires. This study investigated the classification accuracy of a combined surface electromyographic (sEMG) and accelerometer (ACC) sensor system for monitoring activities of daily living in patients with stroke. sEMG and ACC data were recorded from 10 hemi paretic patients while they carried out a sequence of 11 activities of daily living (Identification tasks), and 10 activities used to evaluate misclassification errors (non-Identification tasks). The sEMG and ACC sensor data were analyzed using a multilayered neural network and an adaptive neuro-fuzzy inference system to identify the minimal sensor configuration needed to accurately classify the identification tasks, with a minimal number of misclassifications from the non-Identification tasks. The results demonstrated that the highest sensitivity and specificity for the identification tasks was achieved using a subset of 4 ACC sensors and adjacent sEMG sensors located on both upper arms, one forearm, and one thigh, respectively. This configuration resulted in a mean sensitivity of 95.0 %, and a mean specificity of 99.7 % for the identification tasks, and a mean misclassification error of < 10% for the non-Identification tasks. The findings support the feasibility of a hybrid sEMG and ACC wearable sensor system for automatic recognition of motor tasks used to assess functional independence in patients with stroke.

  10. Surface EMG crosstalk during phasic involuntary muscle activation in the nociceptive withdrawal reflex.

    PubMed

    Frahm, Ken S; Jensen, Michael B; Farina, Dario; Andersen, Ole K

    2012-08-01

    The human nociceptive withdrawal reflex is typically assessed using surface electromyography (sEMG). Based on sEMG, the reflex receptive field (RRF) can be mapped. However, EMG crosstalk can cause erroneous results in the RRF determination. Single differential (SD) vs. double differential (DD) surface EMG were evaluated. Different electrode areas and inter-electrode-distances (IED) were evaluated. The reflexes were elicited by electrical stimulation of the sole of the foot. EMG was obtained from both tibialis anterior (TA) and soleus (SOL) using both surface and intramuscular EMG (iEMG). The amount of crosstalk was significantly higher in SD recordings than in DD recordings (P < 0.05). Crosstalk increased when electrode measuring area increased (P < 0.05) and when IED increased (P < 0.05). Reflex detection sensitivity decreases with increasing measuring area and increasing IED. These results stress that for determination of RRF and similar tasks, DD recordings should be applied. Copyright © 2012 Wiley Periodicals, Inc.

  11. Obstacle avoidance locomotor tasks: adaptation, memory and skill transfer.

    PubMed

    Kloter, Evelyne; Dietz, Volker

    2012-05-01

    The aim of this study was to explore the neural basis of adaptation, memory and skill transfer during human stepping over obstacles. Whilst walking on a treadmill, subjects had to perform uni- and bilateral obstacle steps. Acoustic feedback information about foot clearance was provided. Non-noxious electrical stimuli were applied to the right tibial nerve during the mid-stance phase of the right leg, i.e. 'prior' to the right or 'during' the left leg swing over the obstacle. The electromyogram (EMG) responses evoked by these stimuli in arm and leg muscles are known to reflect the neural coordination during normal and obstacle steps. The leading and trailing legs rapidly adapted foot clearance during obstacle steps with small further changes when the same obstacle condition was repeated. This adaptation was associated with a corresponding decrease in arm and leg muscle reflex EMG responses. Arm (but not leg) muscle EMG responses were greater when the stimulus was applied 'during' obstacle crossing by the left leg leading compared with stimulation 'prior' to right leg swing over the obstacle. A corresponding difference existed in arm muscle background EMG. The results indicate that, firstly, the somatosensory information gained by the performance and adaptation of uni- and bilateral obstacle stepping becomes transferred to the trailing leg in a context-specific manner. Secondly, EMG activity in arm and leg muscles parallels biomechanical adaptation of foot clearance. Thirdly, a consistently high EMG activity in the arm muscles during swing over the obstacle is required for equilibrium control. Thus, such a precision locomotor task is achieved by a context-specific, coordinated activation of arm and leg muscles for performance and equilibrium control that includes adaptation, memory and skill transfer. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  12. Multi-modal myocontrol: Testing combined force- and electromyography.

    PubMed

    Nowak, Markus; Eiband, Thomas; Castellini, Claudio

    2017-07-01

    Myocontrol, that is control of prostheses using bodily signals, has proved in the decades to be a surprisingly hard problem for the scientific community of assistive and rehabilitation robotics. In particular, traditional surface electromyography (sEMG) seems to be no longer enough to guarantee dexterity (i.e., control over several degrees of freedom) and, most importantly, reliability. Multi-modal myocontrol is concerned with the idea of using novel signal gathering techniques as a replacement of, or alongside, sEMG, to provide high-density and diverse signals to improve dexterity and make the control more reliable. In this paper we present an offline and online assessment of multi-modal sEMG and force myography (FMG) targeted at hand and wrist myocontrol. A total number of twenty sEMG and FMG sensors were used simultaneously, in several combined configurations, to predict opening/closing of the hand and activation of two degrees of freedom of the wrist of ten intact subjects. The analysis was targeted at determining the optimal sensor combination and control parameters; the experimental results indicate that sEMG sensors alone perform worst, yielding a nRMSE of 9.1%, while mixing FMG and sEMG or using FMG only reduces the nRMSE to 5.2-6.6%. To validate these results, we engaged the subject with median performance in an online goal-reaching task. Analysis of this further experiment reveals that the online behaviour is similar to the offline one.

  13. Electromyographic activation reveals cortical and sub-cortical dissociation during emergence from general anesthesia.

    PubMed

    Hight, Darren F; Voss, Logan J; García, Paul S; Sleigh, Jamie W

    2017-08-01

    During emergence from anesthesia patients regain their muscle tone (EMG). In a typical population of surgical patients the actual volatile gas anesthetic concentrations in the brain (C e MAC) at which EMG activation occurs remains unknown, as is whether EMG activation at higher C e MACs is correlated with subsequent severe pain, or with cortical activation. Electroencephalographic (EEG) and EMG activity was recorded from the forehead of 273 patients emerging from general anesthesia following surgery. We determined C e MAC at time of EMG activation and at return of consciousness. Pain was assessed immediately after return of consciousness using an 11 point numerical rating scale. The onset of EMG activation during emergence was associated with neither discernible muscle movement nor with the presence of exogenous stimulation in half the patients. EMG activation could be modelled as two distinct processes; termed high- and low-C e MAC (occurring higher or lower than 0.07 C e MAC). Low-C e MAC activation was typically associated with simultaneous EMG activation and consciousness, and the presence of a laryngeal mask. In contrast, high-C e MAC EMG activation occurred independently of return of consciousness, and was not associated with severe post-operative pain, but was more common in the presence of an endotracheal tube. Patients emerging from general anesthesia with an endotracheal tube in place are more likely to have an EMG activation at higher C e MAC concentrations. These activations are not associated with subsequent high-pain, nor with cortical arousal, as evidenced by continuing delta waves in the EEG. Conversely, patients emerging from general anesthesia with a laryngeal mask demonstrate marked neural inertia-EMG activation occurs at a low C e MAC, and is closely temporally associated with return of consciousness.

  14. Online myoelectric control of a dexterous hand prosthesis by transradial amputees.

    PubMed

    Cipriani, Christian; Antfolk, Christian; Controzzi, Marco; Lundborg, Göran; Rosen, Birgitta; Carrozza, Maria Chiara; Sebelius, Fredrik

    2011-06-01

    A real-time pattern recognition algorithm based on k-nearest neighbors and lazy learning was used to classify, voluntary electromyography (EMG) signals and to simultaneously control movements of a dexterous artificial hand. EMG signals were superficially recorded by eight pairs of electrodes from the stumps of five transradial amputees and forearms of five able-bodied participants and used online to control a robot hand. Seven finger movements (not involving the wrist) were investigated in this study. The first objective was to understand whether and to which extent it is possible to control continuously and in real-time, the finger postures of a prosthetic hand, using superficial EMG, and a practical classifier, also taking advantage of the direct visual feedback of the moving hand. The second objective was to calculate statistical differences in the performance between participants and groups, thereby assessing the general applicability of the proposed method. The average accuracy of the classifier was 79% for amputees and 89% for able-bodied participants. Statistical analysis of the data revealed a difference in control accuracy based on the aetiology of amputation, type of prostheses regularly used and also between able-bodied participants and amputees. These results are encouraging for the development of noninvasive EMG interfaces for the control of dexterous prostheses.

  15. Power independent EMG based gesture recognition for robotics.

    PubMed

    Li, Ling; Looney, David; Park, Cheolsoo; Rehman, Naveed U; Mandic, Danilo P

    2011-01-01

    A novel method for detecting muscle contraction is presented. This method is further developed for identifying four different gestures to facilitate a hand gesture controlled robot system. It is achieved based on surface Electromyograph (EMG) measurements of groups of arm muscles. The cross-information is preserved through a simultaneous processing of EMG channels using a recent multivariate extension of Empirical Mode Decomposition (EMD). Next, phase synchrony measures are employed to make the system robust to different power levels due to electrode placements and impedances. The multiple pairwise muscle synchronies are used as features of a discrete gesture space comprising four gestures (flexion, extension, pronation, supination). Simulations on real-time robot control illustrate the enhanced accuracy and robustness of the proposed methodology.

  16. Muscle synergies obtained from comprehensive mapping of the primary motor cortex forelimb representation using high-frequency, long-duration ICMS.

    PubMed

    Amundsen Huffmaster, Sommer L; Van Acker, Gustaf M; Luchies, Carl W; Cheney, Paul D

    2017-07-01

    Simplifying neuromuscular control for movement has previously been explored by extracting muscle synergies from voluntary movement electromyography (EMG) patterns. The purpose of this study was to investigate muscle synergies represented in EMG recordings associated with direct electrical stimulation of single sites in primary motor cortex (M1). We applied single-electrode high-frequency, long-duration intracortical microstimulation (HFLD-ICMS) to the forelimb region of M1 in two rhesus macaques using parameters previously found to produce forelimb movements to stable spatial end points (90-150 Hz, 90-150 μA, 1,000-ms stimulus train lengths). To develop a comprehensive representation of cortical output, stimulation was applied systematically across the full extent of M1. We recorded EMG activity from 24 forelimb muscles together with movement kinematics. Nonnegative matrix factorization (NMF) was applied to the mean stimulus-evoked EMG, and the weighting coefficients associated with each synergy were mapped to the cortical location of the stimulating electrode. Synergies were found for three data sets including 1 ) all stimulated sites in the cortex, 2 ) a subset of sites that produced stable movement end points, and 3 ) EMG activity associated with voluntary reaching. Two or three synergies accounted for 90% of the overall variation in voluntary movement EMG whereas four or five synergies were needed for HFLD-ICMS-evoked EMG data sets. Maps of the weighting coefficients from the full HFLD-ICMS data set show limited regional areas of higher activation for particular synergies. Our results demonstrate fundamental NMF-based muscle synergies in the collective M1 output, but whether and how the central nervous system might coordinate movements using these synergies remains unclear. NEW & NOTEWORTHY While muscle synergies have been investigated in various muscle activity sets, it is unclear whether and how synergies may be organized in the cortex. We have investigated muscle synergies resulting from high-frequency, long-duration intracortical microstimulation (HFLD-ICMS) applied throughout M1. We compared HFLD-ICMS synergies to synergies from voluntary movement. While synergies can be identified from M1 stimulation, they are not clearly related to voluntary movement synergies and do not show an orderly topographic organization across M1. Copyright © 2017 the American Physiological Society.

  17. A canonical correlation analysis based EMG classification algorithm for eliminating electrode shift effect.

    PubMed

    Zhe Fan; Zhong Wang; Guanglin Li; Ruomei Wang

    2016-08-01

    Motion classification system based on surface Electromyography (sEMG) pattern recognition has achieved good results in experimental condition. But it is still a challenge for clinical implement and practical application. Many factors contribute to the difficulty of clinical use of the EMG based dexterous control. The most obvious and important is the noise in the EMG signal caused by electrode shift, muscle fatigue, motion artifact, inherent instability of signal and biological signals such as Electrocardiogram. In this paper, a novel method based on Canonical Correlation Analysis (CCA) was developed to eliminate the reduction of classification accuracy caused by electrode shift. The average classification accuracy of our method were above 95% for the healthy subjects. In the process, we validated the influence of electrode shift on motion classification accuracy and discovered the strong correlation with correlation coefficient of >0.9 between shift position data and normal position data.

  18. Analysis of statistical and standard algorithms for detecting muscle onset with surface electromyography

    PubMed Central

    Tweedell, Andrew J.; Haynes, Courtney A.

    2017-01-01

    The timing of muscle activity is a commonly applied analytic method to understand how the nervous system controls movement. This study systematically evaluates six classes of standard and statistical algorithms to determine muscle onset in both experimental surface electromyography (EMG) and simulated EMG with a known onset time. Eighteen participants had EMG collected from the biceps brachii and vastus lateralis while performing a biceps curl or knee extension, respectively. Three established methods and three statistical methods for EMG onset were evaluated. Linear envelope, Teager-Kaiser energy operator + linear envelope and sample entropy were the established methods evaluated while general time series mean/variance, sequential and batch processing of parametric and nonparametric tools, and Bayesian changepoint analysis were the statistical techniques used. Visual EMG onset (experimental data) and objective EMG onset (simulated data) were compared with algorithmic EMG onset via root mean square error and linear regression models for stepwise elimination of inferior algorithms. The top algorithms for both data types were analyzed for their mean agreement with the gold standard onset and evaluation of 95% confidence intervals. The top algorithms were all Bayesian changepoint analysis iterations where the parameter of the prior (p0) was zero. The best performing Bayesian algorithms were p0 = 0 and a posterior probability for onset determination at 60–90%. While existing algorithms performed reasonably, the Bayesian changepoint analysis methodology provides greater reliability and accuracy when determining the singular onset of EMG activity in a time series. Further research is needed to determine if this class of algorithms perform equally well when the time series has multiple bursts of muscle activity. PMID:28489897

  19. The impact of ergometer design on hip and trunk muscle activity patterns in elite rowers: an electromyographic assessment.

    PubMed

    Nowicky, Alex V; Horne, Sara; Burdett, Richard

    2005-03-01

    THIS STUDY USED SURFACE ELECTROMYOGRAPHY (SEMG) TO EXAMINE WHETHER THERE WERE DIFFERENCES IN HIP AND TRUNK MUSCLE ACTIVATION DURING THE ROWING CYCLE ON TWO OF THE MOST WIDELY USED AIR BRAKED ERGOMETERS: the Concept 2C and the Rowperfect. sEMG methods were used to record the muscle activity patterns from the right: m. Erector spinae (ES), m. Rectus Abdominus (RA), m. Rectus Femoris (RF) and m. Biceps Femoris (BF) for their contributions as agonist-antagonist pairs underlying hip and trunk extension/flexion. The sEMG activity patterns of these muscles were examined in six young male elite rowers completing a 2 minute set at a moderate training intensity (23 stroke·min(-1) and 1:47.500 m(-1) split time, 300W). The rowers closely maintained the required target pace through visual inspection of the standard LCD display of each ergometer. The measurements of duration of each rowing cycle and onset of each stroke during the test were recorded simultaneously with the sEMG activity through the additional instrumentation of a foot-pressure switch and handle accelerometry. There were no significant differences between the two ergometer designs in group means for: work rate (i.e., rowing speed and stroke rate), metabolic load as measured by mean heart rate, rowing cycle duration, or timing of the stroke in the cycle. 2-D motion analysis of hip and knee motion for the rowing cycle from the video footage taken during the test also revealed no significant differences in the joint range of motion between the ergometers. Ensemble average sEMG activity profiles based on 30+ strokes were obtained for each participant and normalised per 10% intervals of the cycle duration as well as for peak mean sEMG amplitude for each muscle. A repeated measures ANOVA on the sEMG activity per 10% interval for the four muscles contributing to hip and trunk motion during the rowing cycle revealed no significant differences between the Concept 2C and Rowperfect (F = 0.070, df = 1,5, p = 0.802). The outcome of this study suggests that the two different ergometer designs are equally useful for dry land training. Key PointsThe effects of endurance training on HR recovery after exercise and cardiac ANS modulation were investigated in female marathon runners by comparing with untrained controls.Time and frequency domain analysis of HRV was used to investigate cardiac ANS modulation.As compared with untrained controls, the female marathon runners showed faster HR recovery after exercise, which should result from their higher levels of HRV, higher aerobic capacity and exaggerated blood pressure response to exercise.

  20. Multi-step EMG Classification Algorithm for Human-Computer Interaction

    NASA Astrophysics Data System (ADS)

    Ren, Peng; Barreto, Armando; Adjouadi, Malek

    A three-electrode human-computer interaction system, based on digital processing of the Electromyogram (EMG) signal, is presented. This system can effectively help disabled individuals paralyzed from the neck down to interact with computers or communicate with people through computers using point-and-click graphic interfaces. The three electrodes are placed on the right frontalis, the left temporalis and the right temporalis muscles in the head, respectively. The signal processing algorithm used translates the EMG signals during five kinds of facial movements (left jaw clenching, right jaw clenching, eyebrows up, eyebrows down, simultaneous left & right jaw clenching) into five corresponding types of cursor movements (left, right, up, down and left-click), to provide basic mouse control. The classification strategy is based on three principles: the EMG energy of one channel is typically larger than the others during one specific muscle contraction; the spectral characteristics of the EMG signals produced by the frontalis and temporalis muscles during different movements are different; the EMG signals from adjacent channels typically have correlated energy profiles. The algorithm is evaluated on 20 pre-recorded EMG signal sets, using Matlab simulations. The results show that this method provides improvements and is more robust than other previous approaches.

  1. Nonlinear parameters of surface EMG in schizophrenia patients depend on kind of antipsychotic therapy

    PubMed Central

    Meigal, Alexander Yu.; Miroshnichenko, German G.; Kuzmina, Anna P.; Rissanen, Saara M.; Georgiadis, Stefanos D.; Karjalainen, Pasi A.

    2015-01-01

    We compared a set of surface EMG (sEMG) parameters in several groups of schizophrenia (SZ, n = 74) patients and healthy controls (n = 11) and coupled them with the clinical data. sEMG records were quantified with spectral, mutual information (MI) based and recurrence quantification analysis (RQA) parameters, and with approximate and sample entropies (ApEn and SampEn). Psychotic deterioration was estimated with Positive and Negative Syndrome Scale (PANSS) and with the positive subscale of PANSS. Neuroleptic-induced parkinsonism (NIP) motor symptoms were estimated with Simpson-Angus Scale (SAS). Dyskinesia was measured with Abnormal Involuntary Movement Scale (AIMS). We found that there was no difference in values of sEMG parameters between healthy controls and drug-naïve SZ patients. The most specific group was formed of SZ patients who were administered both typical and atypical antipsychotics (AP). Their sEMG parameters were significantly different from those of SZ patients taking either typical or atypical AP or taking no AP. This may represent a kind of synergistic effect of these two classes of AP. For the clinical data we found that PANSS, SAS, and AIMS were not correlated to any of the sEMG parameters. Conclusion: with nonlinear parameters of sEMG it is possible to reveal NIP in SZ patients, and it may help to discriminate between different clinical groups of SZ patients. Combined typical and atypical AP therapy has stronger effect on sEMG than a therapy with AP of only one class. PMID:26217236

  2. Nonlinear parameters of surface EMG in schizophrenia patients depend on kind of antipsychotic therapy.

    PubMed

    Meigal, Alexander Yu; Miroshnichenko, German G; Kuzmina, Anna P; Rissanen, Saara M; Georgiadis, Stefanos D; Karjalainen, Pasi A

    2015-01-01

    We compared a set of surface EMG (sEMG) parameters in several groups of schizophrenia (SZ, n = 74) patients and healthy controls (n = 11) and coupled them with the clinical data. sEMG records were quantified with spectral, mutual information (MI) based and recurrence quantification analysis (RQA) parameters, and with approximate and sample entropies (ApEn and SampEn). Psychotic deterioration was estimated with Positive and Negative Syndrome Scale (PANSS) and with the positive subscale of PANSS. Neuroleptic-induced parkinsonism (NIP) motor symptoms were estimated with Simpson-Angus Scale (SAS). Dyskinesia was measured with Abnormal Involuntary Movement Scale (AIMS). We found that there was no difference in values of sEMG parameters between healthy controls and drug-naïve SZ patients. The most specific group was formed of SZ patients who were administered both typical and atypical antipsychotics (AP). Their sEMG parameters were significantly different from those of SZ patients taking either typical or atypical AP or taking no AP. This may represent a kind of synergistic effect of these two classes of AP. For the clinical data we found that PANSS, SAS, and AIMS were not correlated to any of the sEMG parameters. with nonlinear parameters of sEMG it is possible to reveal NIP in SZ patients, and it may help to discriminate between different clinical groups of SZ patients. Combined typical and atypical AP therapy has stronger effect on sEMG than a therapy with AP of only one class.

  3. Muscle and intensity based hamstring exercise classification in elite female track and field athletes: implications for exercise selection during rehabilitation.

    PubMed

    Tsaklis, Panagiotis; Malliaropoulos, Nikos; Mendiguchia, Jurdan; Korakakis, Vasileios; Tsapralis, Kyriakos; Pyne, Debasish; Malliaras, Peter

    2015-01-01

    Hamstring injuries are common in many sports, including track and field. Strains occur in different parts of the hamstring muscle but very little is known about whether common hamstring loading exercises specifically load different hamstring components. The purpose of this study was to investigate muscle activation of different components of the hamstring muscle during common hamstring loading exercises. Twenty elite female track and field athletes were recruited into this study, which had a single-sample, repeated-measures design. Each athlete performed ten hamstring loading exercises, and an electromyogram (EMG) was recorded from the biceps femoris and semitendinosus components of the hamstring. Hamstring EMG during maximal voluntary isometric contraction (MVIC) was used to normalize the mean data across ten repetitions of each exercise. An electrogoniometer synchronized to the EMG was used to determine whether peak EMG activity occurred during muscle-tendon unit lengthening, shortening, or no change in length. Mean EMG values were compared between the two recording sites for each exercise using the Student's t-test. The lunge, dead lift, and kettle swings were low intensity (<50% MVIC) and all showed higher EMG activity for semitendinosus than for biceps femoris. Bridge was low but approaching medium intensity, and the TRX, hamstring bridge, and hamstring curl were all medium intensity exercises (≥50% or <80% MVIC). The Nordic, fitball, and slide leg exercises were all high intensity exercises. Only the fitball exercise showed higher EMG activity in the biceps femoris compared with the semitendinosus. Only lunge and kettle swings showed peak EMG in the muscle-tendon unit lengthening phase and both these exercises involved faster speed. Some exercises selectively activated the lateral and medial distal hamstrings. Low, medium, and high intensity exercises were demonstrated. This information enables the clinician, strength and conditioning coach and physiotherapist to better understand intensity- and muscle-specific activation during hamstring muscle rehabilitation. Therefore, these results may help in designing progressive strengthening and rehabilitation and prevention programs.

  4. Electromyography (EMG) signal recognition using combined discrete wavelet transform based adaptive neuro-fuzzy inference systems (ANFIS)

    NASA Astrophysics Data System (ADS)

    Arozi, Moh; Putri, Farika T.; Ariyanto, Mochammad; Khusnul Ari, M.; Munadi, Setiawan, Joga D.

    2017-01-01

    People with disabilities are increasing from year to year either due to congenital factors, sickness, accident factors and war. One form of disability is the case of interruptions of hand function. The condition requires and encourages the search for solutions in the form of creating an artificial hand with the ability as a human hand. The development of science in the field of neuroscience currently allows the use of electromyography (EMG) to control the motion of artificial prosthetic hand into the necessary use of EMG as an input signal to control artificial prosthetic hand. This study is the beginning of a significant research planned in the development of artificial prosthetic hand with EMG signal input. This initial research focused on the study of EMG signal recognition. Preliminary results show that the EMG signal recognition using combined discrete wavelet transform and Adaptive Neuro-Fuzzy Inference System (ANFIS) produces accuracy 98.3 % for training and 98.51% for testing. Thus the results can be used as an input signal for Simulink block diagram of a prosthetic hand that will be developed on next study. The research will proceed with the construction of artificial prosthetic hand along with Simulink program controlling and integrating everything into one system.

  5. Body position effects on sternocleidomastoid and masseter EMG pattern activity in patients undergoing occlusal splint therapy.

    PubMed

    Ormeño, G; Miralles, R; Santander, H; Casassus, R; Ferrer, P; Palazzi, C; Moya, H

    1997-10-01

    This study was conducted in order to determine the effects of body position on electromyographic (EMG) activity of sternocleidomastoid and masseter muscles, in 15 patients with myogenic cranio-cervical-mandibular dysfunction undergoing occlusal splint therapy. EMG activity was recorded by placing surface electrodes on the sternocleidomastoid and masseter muscles (contralateral to the habitual sleeping side of each patient). EMG activity at rest and during swallowing of saliva and maximal voluntary clenching was recorded in the following body positions: standing, supine and lateral decubitus. In the sternocleidomastoid muscle significant higher EMG activities at rest and during swallowing were recorded in the lateral decubitus position, whereas during maximal voluntary clenching EMG activity did not change. In the masseter muscle significant higher EMG activity during maximal voluntary clenching in a standing position was observed, whereas EMG activity at rest and during swallowing did not change. The opposite pattern of EMG activity supports the idea that there may exist a differential modulation of the motor neuron pools of the sternocleidomastoid and masseter muscles, of peripheral and/or central origin. This suggests that the presence of parafunctional habits and body position could be closely correlated with the clinical symptomatology in these muscles in patients with myogenic craniomandibular dysfunction.

  6. Biomechanical and neuromuscular adaptations during the landing phase of a stepping-down task in patients with early or established knee osteoarthritis.

    PubMed

    Sanchez-Ramirez, Diana C; Malfait, Bart; Baert, Isabel; van der Leeden, Marike; van Dieën, Jaap; Lems, Willem F; Dekker, Joost; Luyten, Frank P; Verschueren, Sabine

    2016-06-01

    To compare the knee joint kinematics, kinetics and EMG activity patterns during a stepping-down task in patients with knee osteoarthritis (OA) with control subjects. 33 women with knee OA (early OA, n=14; established OA n=19) and 14 female control subjects performed a stepping-down task from a 20cm step. Knee joint kinematics, kinetics and EMG activity were recorded on the stepping-down leg during the loading phase. During the stepping-down task patients with established knee OA showed greater normalized medial hamstrings activity (p=0.034) and greater vastus lateralis-medial hamstrings co-contraction (p=0.012) than controls. Greater vastus medialis-medial hamstrings co-contraction was found in patients with established OA compared to control subjects (p=0.040) and to patients with early OA (p=0.023). Self-reported knee instability was reported in 7% and 32% of the patients with early and established OA, respectively. The greater EMG co-activity found in established OA might suggest a less efficient use of knee muscles or an attempt to compensate for greater knee laxity usually present in patients with established OA. In the early stage of the disease, the biomechanical and neuromuscular control of stepping-down is not altered compared to healthy controls. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Separation of electrocardiographic from electromyographic signals using dynamic filtration.

    PubMed

    Christov, Ivaylo; Raikova, Rositsa; Angelova, Silvija

    2018-07-01

    Trunk muscle electromyographic (EMG) signals are often contaminated by the electrical activity of the heart. During low or moderate muscle force, these electrocardiographic (ECG) signals disturb the estimation of muscle activity. Butterworth high-pass filters with cut-off frequency of up to 60 Hz are often used to suppress the ECG signal. Such filters disturb the EMG signal in both frequency and time domain. A new method based on the dynamic application of Savitzky-Golay filter is proposed. EMG signals of three left trunk muscles and pure ECG signal were recorded during different motor tasks. The efficiency of the method was tested and verified both with the experimental EMG signals and with modeled signals obtained by summing the pure ECG signal with EMG signals at different levels of signal-to-noise ratio. The results were compared with those obtained by application of high-pass, 4th order Butterworth filter with cut-off frequency of 30 Hz. The suggested method is separating the EMG signal from the ECG signal without EMG signal distortion across its entire frequency range regardless of amplitudes. Butterworth filter suppresses the signals in the 0-30 Hz range thus preventing the low-frequency analysis of the EMG signal. An additional disadvantage is that it passes high-frequency ECG signal components which is apparent at equal and higher amplitudes of the ECG signal as compared to the EMG signal. The new method was also successfully verified with abnormal ECG signals. Copyright © 2018. Published by Elsevier Ltd.

  8. Humeral external rotation handling by using the Bobath concept approach affects trunk extensor muscles electromyography in children with cerebral palsy.

    PubMed

    Grazziotin Dos Santos, C; Pagnussat, Aline S; Simon, A S; Py, Rodrigo; Pinho, Alexandre Severo do; Wagner, Mário B

    2014-10-20

    This study aimed to investigate the electromyographic activity of cervical and trunk extensors muscles in children with cerebral palsy during two handlings according to the Bobath concept. A crossover trial involving 40 spastic diplegic children was conducted. Electromyography (EMG) was used to measure muscular activity at sitting position (SP), during shoulder internal rotation (IR) and shoulder external rotation (ER) handlings, which were performed using the elbow joint as key point of control. Muscle recordings were performed at the fourth cervical (C4) and at the tenth thoracic (T10) vertebral levels. The Gross Motor Function Classification System (GMFCS) was used to assess whether muscle activity would vary according to different levels of severity. Humeral ER handling induced an increase on EMG signal of trunk extensor muscles at the C4 (P=0.007) and T10 (P<0.001) vertebral levels. No significant effects were observed between SP and humeral IR handling at C4 level; However at T10 region, humeral IR handling induced an increase of EMG signal (P=0.019). Humeral ER resulted in an increase of EMG signal at both levels, suggesting increase of extensor muscle activation. Furthermore, the humeral ER handling caused different responses on EMG signal at T10 vertebra level, according to the GMFCS classification (P=0.017). In summary, an increase of EMG signal was observed during ER handling in both evaluated levels, suggesting an increase of muscle activation. These results indicate that humeral ER handling can be used for diplegic CP children rehabilitation to facilitate cervical and trunk extensor muscles activity in a GMFCS level-dependent manner. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. A simple highly efficient non invasive EMG-based HMI.

    PubMed

    Vitiello, N; Olcese, U; Oddo, C M; Carpaneto, J; Micera, S; Carrozza, M C; Dario, P

    2006-01-01

    Muscle activity recorded non-invasively is sufficient to control a mobile robot if it is used in combination with an algorithm for its asynchronous analysis. In this paper, we show that several subjects successfully can control the movements of a robot in a structured environment made up of six rooms by contracting two different muscles using a simple algorithm. After a small training period, subjects were able to control the robot with performances comparable to those achieved manually controlling the robot.

  10. Quantization of Motor Activity into Primitives and Time-Frequency Atoms Using Independent Component Analysis and Matching Pursuit Algorithms

    DTIC Science & Technology

    2001-10-25

    form: (1) A is a scaling factor, t is time and r a coordinate vector describing the limb configuration. We...combination of limb state and EMG. In our early examination of EMG we detected underlying groups of muscles and phases of activity by inspection and...representations of EEG or other biological signals has been thoroughly explored. Such components might be used as a basis for neuroprosthetic control

  11. Learning an Intermittent Control Strategy for Postural Balancing Using an EMG-Based Human-Computer Interface

    PubMed Central

    Asai, Yoshiyuki; Tateyama, Shota; Nomura, Taishin

    2013-01-01

    It has been considered that the brain stabilizes unstable body dynamics by regulating co-activation levels of antagonist muscles. Here we critically reexamined this established theory of impedance control in a postural balancing task using a novel EMG-based human-computer interface, in which subjects were asked to balance a virtual inverted pendulum using visual feedback information on the pendulum's position. The pendulum was actuated by a pair of antagonist joint torques determined in real-time by activations of the corresponding pair of antagonist ankle muscles of subjects standing upright. This motor-task raises a frustrated environment; a large feedback time delay in the sensorimotor loop, as a source of instability, might favor adopting the non-reactive, preprogrammed impedance control, but the ankle muscles are relatively hard to co-activate, which hinders subjects from adopting the impedance control. This study aimed at discovering how experimental subjects resolved this frustrated environment through motor learning. One third of subjects adapted to the balancing task in a way of the impedance-like control. It was remarkable, however, that the majority of subjects did not adopt the impedance control. Instead, they acquired a smart and energetically efficient strategy, in which two muscles were inactivated simultaneously at a sequence of optimal timings, leading to intermittent appearance of periods of time during which the pendulum was not actively actuated. Characterizations of muscle inactivations and the pendulum¡Çs sway showed that the strategy adopted by those subjects was a type of intermittent control that utilizes a stable manifold of saddle-type unstable upright equilibrium that appeared in the state space of the pendulum when the active actuation was turned off. PMID:23717398

  12. Classification of motor intent in transradial amputees using sonomyography and spatio-temporal image analysis

    NASA Astrophysics Data System (ADS)

    Hariharan, Harishwaran; Aklaghi, Nima; Baker, Clayton A.; Rangwala, Huzefa; Kosecka, Jana; Sikdar, Siddhartha

    2016-04-01

    In spite of major advances in biomechanical design of upper extremity prosthetics, these devices continue to lack intuitive control. Conventional myoelectric control strategies typically utilize electromyography (EMG) signal amplitude sensed from forearm muscles. EMG has limited specificity in resolving deep muscle activity and poor signal-to-noise ratio. We have been investigating alternative control strategies that rely on real-time ultrasound imaging that can overcome many of the limitations of EMG. In this work, we present an ultrasound image sequence classification method that utilizes spatiotemporal features to describe muscle activity and classify motor intent. Ultrasound images of the forearm muscles were obtained from able-bodied subjects and a trans-radial amputee while they attempted different hand movements. A grid-based approach is used to test the feasibility of using spatio-temporal features by classifying hand motions performed by the subjects. Using the leave-one-out cross validation on image sequences acquired from able-bodied subjects, we observe that the grid-based approach is able to discern four hand motions with 95.31% accuracy. In case of the trans-radial amputee, we are able to discern three hand motions with 80% accuracy. In a second set of experiments, we study classification accuracy by extracting spatio-temporal sub-sequences the depict activity due to the motion of local anatomical interfaces. Short time and space limited cuboidal sequences are initially extracted and assigned an optical flow behavior label, based on a response function. The image space is clustered based on the location of cuboids and features calculated from the cuboids in each cluster. Using sequences of known motions, we extract feature vectors that describe said motion. A K-nearest neighbor classifier is designed for classification experiments. Using the leave-one-out cross validation on image sequences for an amputee subject, we demonstrate that the classifier is able to discern three important hand motions with an accuracy of 93.33% accuracy, 91-100% precision and 80-100% recall rate. We anticipate that ultrasound imaging based methods will address some limitations of conventional myoelectric sensing, while adding advantages inherent to ultrasound imaging.

  13. Force Control Is Related to Low-Frequency Oscillations in Force and Surface EMG

    PubMed Central

    Moon, Hwasil; Kim, Changki; Kwon, Minhyuk; Chen, Yen Ting; Onushko, Tanya; Lodha, Neha; Christou, Evangelos A.

    2014-01-01

    Force variability during constant force tasks is directly related to oscillations below 0.5 Hz in force. However, it is unknown whether such oscillations exist in muscle activity. The purpose of this paper, therefore, was to determine whether oscillations below 0.5 Hz in force are evident in the activation of muscle. Fourteen young adults (21.07±2.76 years, 7 women) performed constant isometric force tasks at 5% and 30% MVC by abducting the left index finger. We recorded the force output from the index finger and surface EMG from the first dorsal interosseous (FDI) muscle and quantified the following outcomes: 1) variability of force using the SD of force; 2) power spectrum of force below 2 Hz; 3) EMG bursts; 4) power spectrum of EMG bursts below 2 Hz; and 5) power spectrum of the interference EMG from 10–300 Hz. The SD of force increased significantly from 5 to 30% MVC and this increase was significantly related to the increase in force oscillations below 0.5 Hz (R 2 = 0.82). For both force levels, the power spectrum for force and EMG burst was similar and contained most of the power from 0–0.5 Hz. Force and EMG burst oscillations below 0.5 Hz were highly coherent (coherence = 0.68). The increase in force oscillations below 0.5 Hz from 5 to 30% MVC was related to an increase in EMG burst oscillations below 0.5 Hz (R 2 = 0.51). Finally, there was a strong association between the increase in EMG burst oscillations below 0.5 Hz and the interference EMG from 35–60 Hz (R 2 = 0.95). In conclusion, this finding demonstrates that bursting of the EMG signal contains low-frequency oscillations below 0.5 Hz, which are associated with oscillations in force below 0.5 Hz. PMID:25372038

  14. Effective force control by muscle synergies

    PubMed Central

    Berger, Denise J.; d'Avella, Andrea

    2014-01-01

    Muscle synergies have been proposed as a way for the central nervous system (CNS) to simplify the generation of motor commands and they have been shown to explain a large fraction of the variation in the muscle patterns across a variety of conditions. However, whether human subjects are able to control forces and movements effectively with a small set of synergies has not been tested directly. Here we show that muscle synergies can be used to generate target forces in multiple directions with the same accuracy achieved using individual muscles. We recorded electromyographic (EMG) activity from 13 arm muscles and isometric hand forces during a force reaching task in a virtual environment. From these data we estimated the force associated to each muscle by linear regression and we identified muscle synergies by non-negative matrix factorization. We compared trajectories of a virtual mass displaced by the force estimated using the entire set of recorded EMGs to trajectories obtained using 4–5 muscle synergies. While trajectories were similar, when feedback was provided according to force estimated from recorded EMGs (EMG-control) on average trajectories generated with the synergies were less accurate. However, when feedback was provided according to recorded force (force-control) we did not find significant differences in initial angle error and endpoint error. We then tested whether synergies could be used as effectively as individual muscles to control cursor movement in the force reaching task by providing feedback according to force estimated from the projection of the recorded EMGs into synergy space (synergy-control). Human subjects were able to perform the task immediately after switching from force-control to EMG-control and synergy-control and we found no differences between initial movement direction errors and endpoint errors in all control modes. These results indicate that muscle synergies provide an effective strategy for motor coordination. PMID:24860489

  15. Synergic co-activation of muscles in elbow flexion via fractional Brownian motion.

    PubMed

    Chang, Shyang; Hsyu, Ming-Chun; Cheng, Hsiu-Yao; Hsieh, Sheng-Hwu

    2008-12-31

    In reflex and volitional actions, co-activations of agonist and antagonist muscles are believed to be present. Recent studies indicate that such co-activations can be either synergic or dyssynergic. The aim of this paper is to investigate if the co-activations of biceps brachii, brachialis, and triceps brachii during volitional elbow flexion are in the synergic or dyssynergic state. In this study, two groups with each containing six healthy male volunteers participated. Each person of the first group performed 30 trials of volitional elbow flexion while each of the second group performed 30 trials of passive elbow flexion as control experiments. Based on the model of fractional Brownian motion, the intensity and frequency information of the surface electromyograms (EMGs) could be extracted simultaneously. No statistically significant changes were found in the control group. As to the other group, results indicated that the surface EMGs of all five muscle groups were temporally synchronized in frequencies with persistent intensities during each elbow flexion. In addition, the mean values of fractal dimensions for rest and volitional flexion states revealed significant differences with P < 0.01. The obtained positive results suggest that these muscle groups work together synergically to facilitate elbow flexion during the co-activations.

  16. Associations between motor unit action potential parameters and surface EMG features.

    PubMed

    Del Vecchio, Alessandro; Negro, Francesco; Felici, Francesco; Farina, Dario

    2017-10-01

    The surface interference EMG signal provides some information on the neural drive to muscles. However, the association between neural drive to muscle and muscle activation has long been debated with controversial indications due to the unavailability of motor unit population data. In this study, we clarify the potential and limitations of interference EMG analysis to infer motor unit recruitment strategies with an experimental investigation of several concurrently active motor units and of the associated features of the surface EMG. For this purpose, we recorded high-density surface EMG signals during linearly increasing force contractions of the tibialis anterior muscle, up to 70% of maximal force. The recruitment threshold (RT), conduction velocity (MUCV), median frequency (MDF MU ), and amplitude (RMS MU ) of action potentials of 587 motor units from 13 individuals were assessed and associated with features of the interference EMG. MUCV was positively associated with RT ( R 2 = 0.64 ± 0.14), whereas MDF MU and RMS MU showed a weaker relation with RT ( R 2 = 0.11 ± 0.11 and 0.39 ± 0.24, respectively). Moreover, the changes in average conduction velocity estimated from the interference EMG predicted well the changes in MUCV ( R 2 = 0.71), with a strong association to ankle dorsiflexion force ( R 2 = 0.81 ± 0.12). Conversely, both the average EMG MDF and RMS were poorly associated with motor unit recruitment. These results clarify the limitations of EMG spectral and amplitude analysis in inferring the neural strategies of muscle control and indicate that, conversely, the average conduction velocity could provide relevant information on these strategies. NEW & NOTEWORTHY The surface EMG provides information on the neural drive to muscles. However, the associations between EMG features and neural drive have been long debated due to unavailability of motor unit population data. Here, by using novel highly accurate decomposition of the EMG, we related motor unit population behavior to a wide range of voluntary forces. The results fully clarify the potential and limitation of the surface EMG to provide estimates of the neural drive to muscles. Copyright © 2017 the American Physiological Society.

  17. The role of vertebral column muscles in level versus upslope treadmill walking-an electromyographic and kinematic study.

    PubMed

    Wada, Naomi; Akatani, Junko; Miyajima, Noriko; Shimojo, Kengo; Kanda, Kenro

    2006-05-23

    To gain insight into the neural mechanisms controlling vertebral column movement and its role in walking, we performed kinematic and electromyographic (EMG) studies on cats during level and upslope treadmill walking. Kinematic data of the limbs and vertebral column were obtained with a high-speed camera synchronized with EMG recordings from levels T10, L1, and L5 of m. longissimus dorsi (Long). During a single-step cycle at all upslope angles, vertebral movement in the lateral (left-right), cranial-caudal (forward-backward), and dorsal-ventral (upward-downward) directions was observed. Lateral movements were produced by forelimb take-off and hindlimb landing, and forward and upward movements were produced by hindlimb extension. During the single-step cycle, each of the three epaxial muscles, m. multifidus, m. iliocostalis, and Long, showed two bilateral EMG bursts. The onset of the EMG bursts coincided with the left-right movements, suggesting that epaxial muscle activity depresses lateral movement. The termination of the EMG bursts correlated with the forward and downward phase of the step cycle, suggesting that contraction of the epaxial muscles produces forward and downward movements. EMG bursts of the epaxial muscles increase the stiffness and produce inwardly movements to decrease the lateral movements of the vertebral column and the termination of EMG bursts control the movements into cranial and ventral direction of the vertebral column. The results suggest that the rhythmic EMG bursts in the epaxial muscles are produced by pattern generators, and the timing of EMG bursts among the different levels of the epaxial muscles are altered by walking condition input via peripheral afferents and descending pathways.

  18. Acoustic (loudspeaker) facial EMG monitoring: II. Use of evoked EMG activity during acoustic neuroma resection.

    PubMed

    Prass, R L; Kinney, S E; Hardy, R W; Hahn, J F; Lüders, H

    1987-12-01

    Facial electromyographic (EMG) activity was continuously monitored via loudspeaker during eleven translabyrinthine and nine suboccipital consecutive unselected acoustic neuroma resections. Ipsilateral facial EMG activity was synchronously recorded on the audio channels of operative videotapes, which were retrospectively reviewed in order to allow detailed evaluation of the potential benefit of various acoustic EMG patterns in the performance of specific aspects of acoustic neuroma resection. The use of evoked facial EMG activity was classified and described. Direct local mechanical (surgical) stimulation and direct electrical stimulation were of benefit in the localization and/or delineation of the facial nerve contour. Burst and train acoustic patterns of EMG activity appeared to indicate surgical trauma to the facial nerve that would not have been appreciated otherwise. Early results of postoperative facial function of monitored patients are presented, and the possible value of burst and train acoustic EMG activity patterns in the intraoperative assessment of facial nerve function is discussed. Acoustic facial EMG monitoring appears to provide a potentially powerful surgical tool for delineation of the facial nerve contour, the ongoing use of which may lead to continued improvement in facial nerve function preservation through modification of dissection strategy.

  19. Safety of LigaSure in recurrent laryngeal nerve dissection-porcine model using continuous monitoring.

    PubMed

    Dionigi, Gianlorenzo; Chiang, Feng-Yu; Kim, Hoon Yub; Randolph, Gregory W; Mangano, Alberto; Chang, Pi-Ying; Lu, I-Cheng; Lin, Yi-Chu; Chen, Hui-Chun; Wu, Che-Wei

    2017-07-01

    This study investigated recurrent laryngeal nerve (RLN) real-time electromyography (EMG) data to define optimal safety parameters of the LigaSure Small Jaw (LSJ) instrument during thyroidectomy. Prospective animal model. Dynamic EMG tracings were recorded from 32 RLNs (16 piglets) during various applications of LSJ around using continuous electrophysiologic monitoring. At varying distances from the RLN, the LSJ was activated (activation study). The LSJ was also applied to the RLN at timed intervals after activation and after a cooling maneuver through placement on the sternocleidomastoid muscle (cooling study). In the activation study, there was no adverse EMG event at 2 to 5 mm distance (16 RLNs, 96 tests). In the cooling study, there was no adverse EMG event after 2-second cooling time (16 RLNs, 96 tests) or after the LSJ cooling maneuver on the surrounding muscle before reaching the RLNs (8 RLNs, 24 tests). Based on EMG functional assessment, the safe distance for LSJ activation was 2 mm. Further LSJ-RLN contact was safe if the LSJ was cooled for more than 2 seconds or cooled by touch muscle maneuver. The LSJ should be used with these distance and time parameters in mind to avoid RLN injury. N/A. Laryngoscope, 127:1724-1729, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  20. Effects of cathodal trans-spinal direct current stimulation on lower urinary tract function in normal and spinal cord injury mice with overactive bladder

    NASA Astrophysics Data System (ADS)

    Ahmed, Zaghloul

    2017-10-01

    Objective. Lower urinary tract (LUT) dysfunction is a monumental problem affecting quality of life following neurotrauma, such as spinal cord injury (SCI). Proper function of the bladder and its associated structures depends on coordinated activity of the neuronal circuitry in the spinal cord and brain. Disconnection between the spinal and brain centers controlling the LUT causes fundamental changes in the mechanisms involved in the micturition and storage reflexes. We investigated the effects of cathodal trans-spinal direct current stimulation (c-tsDCS) of the lumbosacral spine on bladder and external urinary sphincter (EUS) functions. Approach. We used cystometry and electromyography (EMG), in mice with and without SCI. Main results. c-tsDCS caused initiation of the micturition reflex in urethane-anesthetized normal mice with depressed micturition reflexes. This effect was associated with normalized EUS-EMG activity. Moreover, in urethane-anesthetized normal mice with expressed micturition reflexes, c-tsDCS increased the firing frequency, amplitude, and duration of EUS-EMG activity. These effects were associated with increased maximum intravesical pressure (P max) and intercontraction interval (ICI). In conscious normal animals, c-tsDCS caused significant increases in P max, ICI, threshold pressure (P thres), baseline pressure (P base), and number and amplitude of non-voiding contractions (NVCnumb and P im, respectively). In conscious mice with severe contusive SCI and overactive bladder, c-tsDCS increased P max, ICI, and P thres, but decreased P base, NVCnumb, and P im. c-tsDCS reduced the detrusor-overactivity/cystometry ratio, which is a measure of bladder overactivity associated with renal deterioration. Significance. These results indicate that c-tsDCS induces robust modulation of the lumbosacral spinal-cord circuitry that controls the LUT.

  1. Radiofrequency cordotomy for the relief of spasticity in decerebrate cats1

    PubMed Central

    Soriano, Daniel; Herman, Richard

    1971-01-01

    The effectiveness of radiofrequency (RF) cordotomy of segmental motoneurone pools of the lumbosacral cord in reducing spasticity of decerebrate cats is evaluated. The need for a new form of therapy for clinical spasticity is based upon the limitations of contemporary methods, including surgical and pharmacological techniques. In man, spasticity of spinal origin may be treated effectively by intrathecal administration of hyperbaric phenol solutions. The advantages and disadvantages are described. Difficulty in controlling the lesion is emphasized. Tension and EMG-length curves of the spastic triceps surae muscle in acute and chronic animals show that RF lesions (fixed amperage and duration) of the segmental motoneurone pools reduces myotatic reflex activity in accordance with the number of segments cordotomized. Clinical examination including cinematography and electromyography complement the physiological interpretation. RF lesions of the internuncial pool induce spontaneous EMG discharges. This finding is related to similar observations of EMG discharges and alterations in muscle tone after asphyxiation of the spinal cord. Images PMID:5287593

  2. Kinematic, muscular, and metabolic responses during exoskeletal-, elliptical-, or therapist-assisted stepping in people with incomplete spinal cord injury.

    PubMed

    Hornby, T George; Kinnaird, Catherine R; Holleran, Carey L; Rafferty, Miriam R; Rodriguez, Kelly S; Cain, Julie B

    2012-10-01

    Robotic-assisted locomotor training has demonstrated some efficacy in individuals with neurological injury and is slowly gaining clinical acceptance. Both exoskeletal devices, which control individual joint movements, and elliptical devices, which control endpoint trajectories, have been utilized with specific patient populations and are available commercially. No studies have directly compared training efficacy or patient performance during stepping between devices. The purpose of this study was to evaluate kinematic, electromyographic (EMG), and metabolic responses during elliptical- and exoskeletal-assisted stepping in individuals with incomplete spinal cord injury (SCI) compared with therapist-assisted stepping. Design A prospective, cross-sectional, repeated-measures design was used. Participants with incomplete SCI (n=11) performed 3 separate bouts of exoskeletal-, elliptical-, or therapist-assisted stepping. Unilateral hip and knee sagittal-plane kinematics, lower-limb EMG recordings, and oxygen consumption were compared across stepping conditions and with control participants (n=10) during treadmill stepping. Exoskeletal stepping kinematics closely approximated normal gait patterns, whereas significantly greater hip and knee flexion postures were observed during elliptical-assisted stepping. Measures of kinematic variability indicated consistent patterns in control participants and during exoskeletal-assisted stepping, whereas therapist- and elliptical-assisted stepping kinematics were more variable. Despite specific differences, EMG patterns generally were similar across stepping conditions in the participants with SCI. In contrast, oxygen consumption was consistently greater during therapist-assisted stepping. Limitations Limitations included a small sample size, lack of ability to evaluate kinetics during stepping, unilateral EMG recordings, and sagittal-plane kinematics. Despite specific differences in kinematics and EMG activity, metabolic activity was similar during stepping in each robotic device. Understanding potential differences and similarities in stepping performance with robotic assistance may be important in delivery of repeated locomotor training using robotic or therapist assistance and for consumers of robotic devices.

  3. The use of electromyography and magnetic resonance imaging to evaluate a core strengthening exercise programme.

    PubMed

    Rutkowska-Kucharska, Alicja; Szpala, Agnieszka

    2018-01-01

    The question that was asked in the study was whether a training routine based on curl-up exercises with a load provided by body mass of the person increases local muscle strength or local muscle endurance. The aim of this study was to evaluate the effect of 4 weeks training based on a small load and low movement velocity on electrical activity (EMG), cross-sectional area (CSA) of core stabilisers. The EMG activity was measured in the rectus abdominis (RA), obliquus abdominis externus and erector spinae (ES) muscles. CSA of the muscles: RA, anterolateral abdominal, psoas major, quadratus lumborum, ES, and multifidus at the level of L3-L4 were measured too. The training increased the CSA and thickness in most of the muscles studied. Statistically significant correlation was found only for the ES circumference (left side) and EMG activity for the right side (r= 0.627, p= 0.022) and left side (r= 0.624, p= 0.023). The training programme resulted in a increase in the number of curl-up repetitions revealing an endurance increase in abdominal muscles. Furthermore, there was a increase in the EMG activity of the RA. An increase of the CSA of all tested muscles showed an increase of muscle active force.

  4. Electromyographic analysis of the masseter and buccinator muscles with the pro-fono facial exerciser use in bruxers.

    PubMed

    Jardini, Renata S R; Ruiz, Lydia S R; Moysés, Maria A A

    2006-01-01

    The aim of this study was to evaluate the efficiency of the Pró-Fono Facial Exerciser (Pró-Fono Productos Especializados para Fonoaudiologia Ltda., Barueri/SP, Brazil) to decrease bruxism, as well as the correlation between the masseter and the buccinator muscles using electromyography (EMG). In this study, 39 individuals ranging from 23 to 48 years of age were selected from a dental school and then underwent surface EMG at three different periods of time: 0, 10, and 70 days. They were divided into a normal control group, a bruxer control group (without device), and an experimental bruxer group who used the device. The bruxer group showed a greater masseter EMG amplitude when compared to the normal group, while the experimental group had deceased activity with a reduction in symptoms. The buccinator EMG spectral analysis of the experimental bruxist group showed asynchronous contractions of the masseter muscle (during jaw opening) after using the Pró-Fono Facial Exerciser. The normal group also showed asynchronous contractions. Upon correlation of the data between these muscles, the inference is that there is a reduction in bruxism when activating the buccinator muscle.

  5. Electrotactile EMG feedback improves the control of prosthesis grasping force

    NASA Astrophysics Data System (ADS)

    Schweisfurth, Meike A.; Markovic, Marko; Dosen, Strahinja; Teich, Florian; Graimann, Bernhard; Farina, Dario

    2016-10-01

    Objective. A drawback of active prostheses is that they detach the subject from the produced forces, thereby preventing direct mechanical feedback. This can be compensated by providing somatosensory feedback to the user through mechanical or electrical stimulation, which in turn may improve the utility, sense of embodiment, and thereby increase the acceptance rate. Approach. In this study, we compared a novel approach to closing the loop, namely EMG feedback (emgFB), to classic force feedback (forceFB), using electrotactile interface in a realistic task setup. Eleven intact-bodied subjects and one transradial amputee performed a routine grasping task while receiving emgFB or forceFB. The two feedback types were delivered through the same electrotactile interface, using a mixed spatial/frequency coding to transmit 8 discrete levels of the feedback variable. In emgFB, the stimulation transmitted the amplitude of the processed myoelectric signal generated by the subject (prosthesis input), and in forceFB the generated grasping force (prosthesis output). The task comprised 150 trials of routine grasping at six forces, randomly presented in blocks of five trials (same force). Interquartile range and changes in the absolute error (AE) distribution (magnitude and dispersion) with respect to the target level were used to assess precision and overall performance, respectively. Main results. Relative to forceFB, emgFB significantly improved the precision of myoelectric commands (min/max of the significant levels) for 23%/36% as well as the precision of force control for 12%/32%, in intact-bodied subjects. Also, the magnitude and dispersion of the AE distribution were reduced. The results were similar in the amputee, showing considerable improvements. Significance. Using emgFB, the subjects therefore decreased the uncertainty of the forward pathway. Since there is a correspondence between the EMG and force, where the former anticipates the latter, the emgFB allowed for predictive control, as the subjects used the feedback to adjust the desired force even before the prosthesis contacted the object. In conclusion, the online emgFB was superior to the classic forceFB in realistic conditions that included electrotactile stimulation, limited feedback resolution (8 levels), cognitive processing delay, and time constraints (fast grasping).

  6. The effect of early physiotherapy on the recovery of mandibular function after orthognathic surgery for class III correction. Part II: electromyographic activity of masticatory muscles.

    PubMed

    Ko, Ellen Wen-Ching; Teng, Terry Te-Yi; Huang, Chiung Shing; Chen, Yu-Ray

    2015-01-01

    The study was conducted to evaluate the effect of early physical rehabilitation by comparing the differences of surface electromyographic (sEMG) activity in the masseter and anterior temporalis muscles after surgical correction of skeletal class III malocclusion. The prospective study included 63 patients; the experimental groups contained 31 patients who received early systematic physical rehabilitation; the control group (32 patients) did not receive physiotherapy. The amplitude of sEMG in the masticatory muscles reached 72.6-121.3% and 37.5-64.6% of pre-surgical values in the experimental and control groups respectively at 6 weeks after orthognathic surgery (OGS). At 6 months after OGS, the sEMG reached 135.1-233.4% and 89.6-122.5% of pre-surgical values in the experimental and control groups respectively. Most variables in the sEMG examination indicated that recovery of the masticatory muscles in the experimental group was better than the control group as estimated in the early phase (T1 to T2) and the total phase (T1 to T3); there were no significant differences between the mean recovery percentages in the later phase (T2 to T3). Early physical rehabilitative therapy is helpful for early recovery of muscle activity in masticatory muscles after OGS. After termination of physical therapy, no significant difference in recovery was indicated in patients with or without early physiotherapy. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  7. Electrocorticographic activity over sensorimotor cortex and motor function in awake behaving rats.

    PubMed

    Boulay, Chadwick B; Chen, Xiang Yang; Wolpaw, Jonathan R

    2015-04-01

    Sensorimotor cortex exerts both short-term and long-term control over the spinal reflex pathways that serve motor behaviors. Better understanding of this control could offer new possibilities for restoring function after central nervous system trauma or disease. We examined the impact of ongoing sensorimotor cortex (SMC) activity on the largely monosynaptic pathway of the H-reflex, the electrical analog of the spinal stretch reflex. In 41 awake adult rats, we measured soleus electromyographic (EMG) activity, the soleus H-reflex, and electrocorticographic activity over the contralateral SMC while rats were producing steady-state soleus EMG activity. Principal component analysis of electrocorticographic frequency spectra before H-reflex elicitation consistently revealed three frequency bands: μβ (5-30 Hz), low γ (γ1; 40-85 Hz), and high γ (γ2; 100-200 Hz). Ongoing (i.e., background) soleus EMG amplitude correlated negatively with μβ power and positively with γ1 power. In contrast, H-reflex size correlated positively with μβ power and negatively with γ1 power, but only when background soleus EMG amplitude was included in the linear model. These results support the hypothesis that increased SMC activation (indicated by decrease in μβ power and/or increase in γ1 power) simultaneously potentiates the H-reflex by exciting spinal motoneurons and suppresses it by decreasing the efficacy of the afferent input. They may help guide the development of new rehabilitation methods and of brain-computer interfaces that use SMC activity as a substitute for lost or impaired motor outputs. Copyright © 2015 the American Physiological Society.

  8. Evaluation of Feature Extraction and Recognition for Activity Monitoring and Fall Detection Based on Wearable sEMG Sensors.

    PubMed

    Xi, Xugang; Tang, Minyan; Miran, Seyed M; Luo, Zhizeng

    2017-05-27

    As an essential subfield of context awareness, activity awareness, especially daily activity monitoring and fall detection, plays a significant role for elderly or frail people who need assistance in their daily activities. This study investigates the feature extraction and pattern recognition of surface electromyography (sEMG), with the purpose of determining the best features and classifiers of sEMG for daily living activities monitoring and fall detection. This is done by a serial of experiments. In the experiments, four channels of sEMG signal from wireless, wearable sensors located on lower limbs are recorded from three subjects while they perform seven activities of daily living (ADL). A simulated trip fall scenario is also considered with a custom-made device attached to the ankle. With this experimental setting, 15 feature extraction methods of sEMG, including time, frequency, time/frequency domain and entropy, are analyzed based on class separability and calculation complexity, and five classification methods, each with 15 features, are estimated with respect to the accuracy rate of recognition and calculation complexity for activity monitoring and fall detection. It is shown that a high accuracy rate of recognition and a minimal calculation time for daily activity monitoring and fall detection can be achieved in the current experimental setting. Specifically, the Wilson Amplitude (WAMP) feature performs the best, and the classifier Gaussian Kernel Support Vector Machine (GK-SVM) with Permutation Entropy (PE) or WAMP results in the highest accuracy for activity monitoring with recognition rates of 97.35% and 96.43%. For fall detection, the classifier Fuzzy Min-Max Neural Network (FMMNN) has the best sensitivity and specificity at the cost of the longest calculation time, while the classifier Gaussian Kernel Fisher Linear Discriminant Analysis (GK-FDA) with the feature WAMP guarantees a high sensitivity (98.70%) and specificity (98.59%) with a short calculation time (65.586 ms), making it a possible choice for pre-impact fall detection. The thorough quantitative comparison of the features and classifiers in this study supports the feasibility of a wireless, wearable sEMG sensor system for automatic activity monitoring and fall detection.

  9. Evaluation of Feature Extraction and Recognition for Activity Monitoring and Fall Detection Based on Wearable sEMG Sensors

    PubMed Central

    Xi, Xugang; Tang, Minyan; Miran, Seyed M.; Luo, Zhizeng

    2017-01-01

    As an essential subfield of context awareness, activity awareness, especially daily activity monitoring and fall detection, plays a significant role for elderly or frail people who need assistance in their daily activities. This study investigates the feature extraction and pattern recognition of surface electromyography (sEMG), with the purpose of determining the best features and classifiers of sEMG for daily living activities monitoring and fall detection. This is done by a serial of experiments. In the experiments, four channels of sEMG signal from wireless, wearable sensors located on lower limbs are recorded from three subjects while they perform seven activities of daily living (ADL). A simulated trip fall scenario is also considered with a custom-made device attached to the ankle. With this experimental setting, 15 feature extraction methods of sEMG, including time, frequency, time/frequency domain and entropy, are analyzed based on class separability and calculation complexity, and five classification methods, each with 15 features, are estimated with respect to the accuracy rate of recognition and calculation complexity for activity monitoring and fall detection. It is shown that a high accuracy rate of recognition and a minimal calculation time for daily activity monitoring and fall detection can be achieved in the current experimental setting. Specifically, the Wilson Amplitude (WAMP) feature performs the best, and the classifier Gaussian Kernel Support Vector Machine (GK-SVM) with Permutation Entropy (PE) or WAMP results in the highest accuracy for activity monitoring with recognition rates of 97.35% and 96.43%. For fall detection, the classifier Fuzzy Min-Max Neural Network (FMMNN) has the best sensitivity and specificity at the cost of the longest calculation time, while the classifier Gaussian Kernel Fisher Linear Discriminant Analysis (GK-FDA) with the feature WAMP guarantees a high sensitivity (98.70%) and specificity (98.59%) with a short calculation time (65.586 ms), making it a possible choice for pre-impact fall detection. The thorough quantitative comparison of the features and classifiers in this study supports the feasibility of a wireless, wearable sEMG sensor system for automatic activity monitoring and fall detection. PMID:28555016

  10. Alterations in Masticatory Muscle Activation in People with Persistent Neck Pain Despite the Absence of Orofacial Pain or Temporomandibular Disorders.

    PubMed

    Testa, Marco; Geri, Tommaso; Gizzi, Leonardo; Petzke, Frank; Falla, Deborah

    2015-01-01

    To assess whether patients with persistent neck pain display evidence of altered masticatory muscle behavior during a jaw-clenching task, despite the absence of orofacial pain or temporomandibular disorders. Ten subjects with persistent, nonspecific neck pain and 10 age- and sex-matched healthy controls participated. Maximal voluntary contractions (MVCs) of unilateral jaw clenching followed by 5-second submaximal contractions at 10%, 30%, 50%, and 70% MVC were recorded by two flexible force transducers positioned between the first molar teeth. Task performance was quantified by mean distance and offset error from the reference target force as error indices, and standard deviation of force was used as an index of force steadiness. Electromyographic (EMG) activity was recorded bilaterally from the masseter muscle with 13 X 5 grids of electrodes and from the anterior temporalis with bipolar electrodes. Normalized EMG root mean square (RMS) was computed for each location of the grid to form a map of the EMG amplitude distribution, and the average normalized RMS was determined for the bipolar acquisition. Between-group differences were analyzed with the Kruskal Wallis analysis of variance. Task performance was similar in patients and controls. However, patients displayed greater masseter EMG activity bilaterally at higher force levels (P<.05). This study has provided novel evidence of altered motor control of the jaw in people with neck pain despite the absence of orofacial pain or temporomandibular disorders.

  11. Slipping during side-step cutting: anticipatory effects and familiarization.

    PubMed

    Oliveira, Anderson Souza Castelo; Silva, Priscila Brito; Lund, Morten Enemark; Farina, Dario; Kersting, Uwe Gustav

    2014-04-01

    The aim of the present study was to verify whether the expectation of perturbations while performing side-step cutting manoeuvres influences lower limb EMG activity, heel kinematics and ground reaction forces. Eighteen healthy men performed two sets of 90° side-step cutting manoeuvres. In the first set, 10 unperturbed trials (Base) were performed while stepping over a moveable force platform. In the second set, subjects were informed about the random possibility of perturbations to balance throughout 32 trials, of which eight were perturbed (Pert, 10cm translation triggered at initial contact), and the others were "catch" trials (Catch). Center of mass velocity (CoMVEL), heel acceleration (HAC), ground reaction forces (GRF) and surface electromyography (EMG) from lower limb and trunk muscles were recorded for each trial. Surface EMG was analyzed prior to initial contact (PRE), during load acceptance (LA) and propulsion (PRP) periods of the stance phase. In addition, hamstrings-quadriceps co-contraction ratios (CCR) were calculated for these time-windows. The results showed no changes in CoMVEL, HAC, peak GRF and surface EMG PRE among conditions. However, during LA, there were increases in tibialis anterior EMG (30-50%) concomitant to reduced EMG for quadriceps muscles, gluteus and rectus abdominis for Catch and Pert conditions (15-40%). In addition, quadriceps EMG was still reduced during PRP (p<.05). Consequently, CCR was greater for Catch and Pert in comparison to Base (p<.05). These results suggest that there is modulation of muscle activity towards anticipating potential instability in the lower limb joints and assure safety to complete the task. Copyright © 2014. Published by Elsevier B.V.

  12. Feature Extraction and Selection for Myoelectric Control Based on Wearable EMG Sensors.

    PubMed

    Phinyomark, Angkoon; N Khushaba, Rami; Scheme, Erik

    2018-05-18

    Specialized myoelectric sensors have been used in prosthetics for decades, but, with recent advancements in wearable sensors, wireless communication and embedded technologies, wearable electromyographic (EMG) armbands are now commercially available for the general public. Due to physical, processing, and cost constraints, however, these armbands typically sample EMG signals at a lower frequency (e.g., 200 Hz for the Myo armband) than their clinical counterparts. It remains unclear whether existing EMG feature extraction methods, which largely evolved based on EMG signals sampled at 1000 Hz or above, are still effective for use with these emerging lower-bandwidth systems. In this study, the effects of sampling rate (low: 200 Hz vs. high: 1000 Hz) on the classification of hand and finger movements were evaluated for twenty-six different individual features and eight sets of multiple features using a variety of datasets comprised of both able-bodied and amputee subjects. The results show that, on average, classification accuracies drop significantly ( p.

  13. Feasibility of EMG-Based Control of Shoulder Muscle FNS Via Artificial Neural Network

    DTIC Science & Technology

    2001-10-25

    assuming that just two paralyzed muscles (pectoralis major and latissimus dorsi ) were stimulated. Further, the needed activations of these “stimulated...injuries at C5-C6 typically result in paralysis of several important shoulder muscles (e.g., pectoralis major, latissimus dorsi , and serratus anterior...of several important muscles (e.g., pectoralis major and latissimus dorsi ),but retain at least partial voluntary control over a number of other

  14. Use of sEMG in identification of low level muscle activities: features based on ICA and fractal dimension.

    PubMed

    Naik, Ganesh R; Kumar, Dinesh K; Arjunan, Sridhar

    2009-01-01

    This paper has experimentally verified and compared features of sEMG (Surface Electromyogram) such as ICA (Independent Component Analysis) and Fractal Dimension (FD) for identification of low level forearm muscle activities. The fractal dimension was used as a feature as reported in the literature. The normalized feature values were used as training and testing vectors for an Artificial neural network (ANN), in order to reduce inter-experimental variations. The identification accuracy using FD of four channels sEMG was 58%, and increased to 96% when the signals are separated to their independent components using ICA.

  15. Features extraction of EMG signal using time domain analysis for arm rehabilitation device

    NASA Astrophysics Data System (ADS)

    Jali, Mohd Hafiz; Ibrahim, Iffah Masturah; Sulaima, Mohamad Fani; Bukhari, W. M.; Izzuddin, Tarmizi Ahmad; Nasir, Mohamad Na'im

    2015-05-01

    Rehabilitation device is used as an exoskeleton for people who had failure of their limb. Arm rehabilitation device may help the rehab program whom suffers from arm disability. The device that is used to facilitate the tasks of the program should improve the electrical activity in the motor unit and minimize the mental effort of the user. Electromyography (EMG) is the techniques to analyze the presence of electrical activity in musculoskeletal systems. The electrical activity in muscles of disable person is failed to contract the muscle for movements. In order to prevent the muscles from paralysis becomes spasticity, the force of movements should minimize the mental efforts. Therefore, the rehabilitation device should analyze the surface EMG signal of normal people that can be implemented to the device. The signal is collected according to procedure of surface electromyography for non-invasive assessment of muscles (SENIAM). The EMG signal is implemented to set the movements' pattern of the arm rehabilitation device. The filtered EMG signal was extracted for features of Standard Deviation (STD), Mean Absolute Value (MAV) and Root Mean Square (RMS) in time-domain. The extraction of EMG data is important to have the reduced vector in the signal features with less of error. In order to determine the best features for any movements, several trials of extraction methods are used by determining the features with less of errors. The accurate features can be use for future works of rehabilitation control in real-time.

  16. Intraoperative neurophysiological monitoring during endoscopic endonasal surgery for pediatric skull base tumors.

    PubMed

    Elangovan, Cheran; Singh, Supriya Palwinder; Gardner, Paul; Snyderman, Carl; Tyler-Kabara, Elizabeth C; Habeych, Miguel; Crammond, Donald; Balzer, Jeffrey; Thirumala, Parthasarathy D

    2016-02-01

    OBJECT The aim of this study was to evaluate the value of intraoperative neurophysiological monitoring (IONM) using electromyography (EMG), brainstem auditory evoked potentials (BAEPs), and somatosensory evoked potentials (SSEPs) to predict and/or prevent postoperative neurological deficits in pediatric patients undergoing endoscopic endonasal surgery (EES) for skull base tumors. METHODS All consecutive pediatric patients with skull base tumors who underwent EES with at least 1 modality of IONM (BAEP, SSEP, and/or EMG) at our institution between 1999 and 2013 were retrospectively reviewed. Staged procedures and repeat procedures were identified and analyzed separately. To evaluate the diagnostic accuracy of significant free-run EMG activity, the prevalence of cranial nerve (CN) deficits and the sensitivity, specificity, and positive and negative predictive values were calculated. RESULTS A total of 129 patients underwent 159 procedures; 6 patients had a total of 9 CN deficits. The incidences of CN deficits based on the total number of nerves monitored in the groups with and without significant free-run EMG activity were 9% and 1.5%, respectively. The incidences of CN deficits in the groups with 1 staged and more than 1 staged EES were 1.5% and 29%, respectively. The sensitivity, specificity, and negative predictive values (with 95% confidence intervals) of significant EMG to detect CN deficits in repeat procedures were 0.55 (0.22-0.84), 0.86 (0.79-0.9), and 0.97 (0.92-0.99), respectively. Two patients had significant changes in their BAEPs that were reversible with an increase in mean arterial pressure. CONCLUSIONS IONM can be applied effectively and reliably during EES in children. EMG monitoring is specific for detecting CN deficits and can be an effective guide for dissecting these procedures. Triggered EMG should be elicited intraoperatively to check the integrity of the CNs during and after tumor resection. Given the anatomical complexity of pediatric EES and the unique challenges encountered, multimodal IONM can be a valuable adjunct to these procedures.

  17. EMG based FES for post-stroke rehabilitation

    NASA Astrophysics Data System (ADS)

    Piyus, Ceethal K.; Anjaly Cherian, V.; Nageswaran, Sharmila

    2017-11-01

    Annually, 15 million in world population experiences stroke. Nearly 9 million stroke survivors every year experience mild to severe disability. The loss of upper extremity function in stroke survivors still remains a major rehabilitation challenge. The proposed EMG Abstract—Annually, 15 million in world population experiences stroke. Nearly 9 million stroke survivors every year experience mild to severe disability. The loss of upper extremity function in stroke survivors still remains a major rehabilitation challenge. The proposed EMG based FES system can be used for effective upper limb motor re-education in post stroke upper limb rehabilitation. The governing feature of the designed system is its synchronous activation, in which the FES stimulation is dependent on the amplitude of the EMG signal acquired from the unaffected upper limb muscle of the hemiplegic patient. This proportionate operation eliminates the undesirable damage to the patient’s skin by generating stimulus in proportion to voluntary EMG signals. This feature overcomes the disadvantages of currently available manual motor re-education systems. This model can be used in home-based post stroke rehabilitation, to effectively improve the upper limb functions.

  18. The extraction of neural information from the surface EMG for the control of upper-limb prostheses: emerging avenues and challenges.

    PubMed

    Farina, Dario; Jiang, Ning; Rehbaum, Hubertus; Holobar, Aleš; Graimann, Bernhard; Dietl, Hans; Aszmann, Oskar C

    2014-07-01

    Despite not recording directly from neural cells, the surface electromyogram (EMG) signal contains information on the neural drive to muscles, i.e., the spike trains of motor neurons. Using this property, myoelectric control consists of the recording of EMG signals for extracting control signals to command external devices, such as hand prostheses. In commercial control systems, the intensity of muscle activity is extracted from the EMG and used for single degrees of freedom activation (direct control). Over the past 60 years, academic research has progressed to more sophisticated approaches but, surprisingly, none of these academic achievements has been implemented in commercial systems so far. We provide an overview of both commercial and academic myoelectric control systems and we analyze their performance with respect to the characteristics of the ideal myocontroller. Classic and relatively novel academic methods are described, including techniques for simultaneous and proportional control of multiple degrees of freedom and the use of individual motor neuron spike trains for direct control. The conclusion is that the gap between industry and academia is due to the relatively small functional improvement in daily situations that academic systems offer, despite the promising laboratory results, at the expense of a substantial reduction in robustness. None of the systems so far proposed in the literature fulfills all the important criteria needed for widespread acceptance by the patients, i.e. intuitive, closed-loop, adaptive, and robust real-time ( 200 ms delay) control, minimal number of recording electrodes with low sensitivity to repositioning, minimal training, limited complexity and low consumption. Nonetheless, in recent years, important efforts have been invested in matching these criteria, with relevant steps forwards.

  19. Determination of optimal whole body vibration amplitude and frequency parameters with plyometric exercise and its influence on closed-chain lower extremity acute power output and EMG activity in resistance trained males

    NASA Astrophysics Data System (ADS)

    Hughes, Nikki J.

    The optimal combination of Whole body vibration (WBV) amplitude and frequency has not been established. Purpose. To determine optimal combination of WBV amplitude and frequency that will enhance acute mean and peak power (MP and PP) output EMG activity in the lower extremity muscles. Methods. Resistance trained males (n = 13) completed the following testing sessions: On day 1, power spectrum testing of bilateral leg press (BLP) movement was performed on the OMNI. Days 2 and 3 consisted of WBV testing with either average (5.8 mm) or high (9.8 mm) amplitude combined with either 0 (sham control), 10, 20, 30, 40 and 50 Hz frequency. Bipolar surface electrodes were placed on the rectus femoris (RF), vastus lateralis (VL), bicep femoris (BF) and gastrocnemius (GA) muscles for EMG analysis. MP and PP output and EMG activity of the lower extremity were assessed pre-, post-WBV treatments and after sham-controls on the OMNI while participants performed one set of five repetitions of BLP at the optimal resistance determined on Day 1. Results. No significant differences were found between pre- and sham-control on MP and PP output and on EMG activity in RF, VL, BF and GA. Completely randomized one-way ANOVA with repeated measures demonstrated no significant interaction of WBV amplitude and frequency on MP and PP output and peak and mean EMGrms amplitude and EMG rms area under the curve. RF and VL EMGrms area under the curve significantly decreased (p < 0.05) with high WBV amplitude, whereas low amplitude significantly decreased GA mean and peak EMGrms amplitude and EMGrms area under the curve. VL mean EMGrms amplitude and BF mean and peak EMGrms amplitudes were significantly decreased (p < 0.05) with high WBV amplitude when compared to sham-control. WBV frequency significantly decreased (p < 0.05) VL mean and peak EMGrms amplitude. WBV frequency at 30 and 40 Hz significantly decreased (p < 0.05) GA mean EMGrms amplitude and 20 and 30 Hz significantly decreased GA peak EMGrms amplitude. MP and PP output was not significantly effected by either treatment. Conclusions. It is concluded that WBV combined with plyometric exercise does not induce alterations in subsequent MP and PP output and EMGrms activity of the lower extremity. Future studies need to address the time of WBV exposure and magnitude of external loads that will maximize strength and/or power output.

  20. An ICA-EBM-Based sEMG Classifier for Recognizing Lower Limb Movements in Individuals With and Without Knee Pathology.

    PubMed

    Naik, Ganesh R; Selvan, S Easter; Arjunan, Sridhar P; Acharyya, Amit; Kumar, Dinesh K; Ramanujam, Arvind; Nguyen, Hung T

    2018-03-01

    Surface electromyography (sEMG) data acquired during lower limb movements has the potential for investigating knee pathology. Nevertheless, a major challenge encountered with sEMG signals generated by lower limb movements is the intersubject variability, because the signals recorded from the leg or thigh muscles are contingent on the characteristics of a subject such as gait activity and muscle structure. In order to cope with this difficulty, we have designed a three-step classification scheme. First, the multichannel sEMG is decomposed into activities of the underlying sources by means of independent component analysis via entropy bound minimization. Next, a set of time-domain features, which would best discriminate various movements, are extracted from the source estimates. Finally, the feature selection is performed with the help of the Fisher score and a scree-plot-based statistical technique, prior to feeding the dimension-reduced features to the linear discriminant analysis. The investigation involves 11 healthy subjects and 11 individuals with knee pathology performing three different lower limb movements, namely, walking, sitting, and standing, which yielded an average classification accuracy of 96.1% and 86.2%, respectively. While the outcome of this study per se is very encouraging, with suitable improvement, the clinical application of such an sEMG-based pattern recognition system that distinguishes healthy and knee pathological subjects would be an attractive consequence.

  1. Surface EMG and intra-socket force measurement to control a prosthetic device

    NASA Astrophysics Data System (ADS)

    Sanford, Joe; Patterson, Rita; Popa, Dan

    2015-06-01

    Surface electromyography (SEMG) has been shown to be a robust and reliable interaction method allowing for basic control of powered prosthetic devices. Research has shown a marked decrease in EMG-classification efficiency throughout activities of daily life due to socket shift and movement and fatigue as well as changes in degree of fit of the socket throughout the subject's lifetime. Users with the most severe levels of amputation require the most complex devices with the greatest number of degrees of freedom. Controlling complex dexterous devices with limited available inputs requires the addition of sensing and interaction modalities. However, the larger the amputation severity, the fewer viable SEMG sites are available as control inputs. Previous work reported the use of intra-socket pressure, as measured during wrist flexion and extension, and has shown that it is possible to control a powered prosthetic device with pressure sensors. In this paper, we present data correlations of SEMG data with intra-socket pressure data. Surface EMG sensors and force sensors were housed within a simulated prosthetic cuff fit to a healthy-limbed subject. EMG and intra-socket force data was collected from inside the cuff as a subject performed pre-defined grip motions with their dominant hand. Data fusion algorithms were explored and allowed a subject to use both intra-socket pressure and SEMG data as control inputs for a powered prosthetic device. This additional input modality allows for an improvement in input classification as well as information regarding socket fit through out activities of daily life.

  2. A systematic review of surface electromyography analyses of the bench press movement task.

    PubMed

    Stastny, Petr; Gołaś, Artur; Blazek, Dusan; Maszczyk, Adam; Wilk, Michał; Pietraszewski, Przemysław; Petr, Miroslav; Uhlir, Petr; Zając, Adam

    2017-01-01

    The bench press exercise (BP) plays an important role in recreational and professional training, in which muscle activity is an important multifactorial phenomenon. The objective of this paper is to systematically review electromyography (EMG) studies performed on the barbell BP exercise to answer the following research questions: Which muscles show the greatest activity during the flat BP? Which changes in muscle activity are related to specific conditions under which the BP movement is performed? PubMed, Scopus, Web of Science and Cochrane Central Register of Controlled Trials (CENTRAL) in the Cochrane Library were searched through June 10, 2016. A combination of the following search terms was used: bench press, chest press, board press, test, measure, assessment, dynamometer, kinematics and biomechanics. Only original, full-text articles were considered. The search process resulted in 14 relevant studies that were included in the discussion. The triceps brachii (TB) and pectoralis major (PM) muscles were found to have similar activity during the BP, which was significantly higher than the activity of the anterior deltoid. During the BP movement, muscle activity changes with exercise intensity, velocity of movement, fatigue, mental focus, movement phase and stability conditions, such as bar vibration or unstable surfaces. Under these circumstances, TB is the most common object of activity change. PM and TB EMG activity is more dominant and shows greater EMG amplitude than anterior deltoid during the BP. There are six factors that can influence muscle activity during the BP; however, the most important factor is exercise intensity, which interacts with all other factors. The research on muscle activity in the BP has several unresolved areas, such as clearly and strongly defined guidelines to perform EMG measurements (e.g., how to elaborate with surface EMG limits) or guidelines for the use of exact muscle models.

  3. Wavelet Packet Feature Assessment for High-Density Myoelectric Pattern Recognition and Channel Selection toward Stroke Rehabilitation.

    PubMed

    Wang, Dongqing; Zhang, Xu; Gao, Xiaoping; Chen, Xiang; Zhou, Ping

    2016-01-01

    This study presents wavelet packet feature assessment of neural control information in paretic upper limb muscles of stroke survivors for myoelectric pattern recognition, taking advantage of high-resolution time-frequency representations of surface electromyogram (EMG) signals. On this basis, a novel channel selection method was developed by combining the Fisher's class separability index and the sequential feedforward selection analyses, in order to determine a small number of appropriate EMG channels from original high-density EMG electrode array. The advantages of the wavelet packet features and the channel selection analyses were further illustrated by comparing with previous conventional approaches, in terms of classification performance when identifying 20 functional arm/hand movements implemented by 12 stroke survivors. This study offers a practical approach including paretic EMG feature extraction and channel selection that enables active myoelectric control of multiple degrees of freedom with paretic muscles. All these efforts will facilitate upper limb dexterity restoration and improved stroke rehabilitation.

  4. Surface electromyography and ultrasound evaluation of pelvic floor muscles in hyperandrogenic women.

    PubMed

    Vassimon, Flávia Ignácio Antonio; Ferreira, Cristine Homsi Jorge; Martins, Wellington Paula; Ferriani, Rui Alberto; Batista, Roberta Leopoldino de Andrade; Bo, Kari

    2016-04-01

    High levels of androgens increase muscle mass. Due to the characteristics of hyperandrogenism in polycystic ovary syndrome (PCOS), it is plausible that women with PCOS may have increased pelvic floor muscle (PFM) thickness and neuromuscular activity levels compared with controls. The aim of this study was to assess PFM thickness and neuromuscular activity among hyperandrogenic women with PCOS and controls. This was an observational, cross-sectional, case-control study evaluating PFM by ultrasound (US) and surface electromyography (sEMG) in nonobese women with and without PCOS. Seventy-two women were divided into two groups: PCOS (n = 33) and controls (n = 39). PFM thickness during contraction was assessed by US (Vingmed CFM 800). Pelvic floor muscle activity was assessed by sEMG (MyoTrac Infinit) during contractions at different time lengths: quick, and 8 and 60 s. Descriptive analysis, analysis of variance (ANOVA), and Student's t test were used for statistical analyses. There were no significant differences in PFM sEMG activity between PCOS and controls in any of the contractions: quick contraction (73.23 mV/ 71.56 mV; p = 0.62), 8 s (55.77 mV/ 54.17 mV; p = 0.74), and 60 s (49.26 mV/ 47.32 mV; p = 0.68), respectively. There was no difference in PFM thickness during contractions evaluated by US between PCOS and controls (12.78 mm/ 13.43 mm; p =  .48). This study did not find statistically significant differences in pelvic floor muscle thickness or in muscle activity between PCOS women and controls.

  5. Effect of feedback techniques for lower back pain on gluteus maximus and oblique abdominal muscle activity and angle of pelvic rotation during the clam exercise.

    PubMed

    Koh, Eun-Kyung; Park, Kyue-Nam; Jung, Do-Young

    2016-11-01

    This study was conducted in order to determine the effect of feedback tools on activities of the gluteus maximus (Gmax) and oblique abdominal muscles and the angle of pelvic rotation during clam exercise (CE). Comparative study using repeated measures. University laboratory. Sixteen subjects with lower back pain. Each subject performed the CE without feedback, the CE using a pressure biofeedback unit (CE-PBU), and the CE with palpation and visual feedback (CE-PVF). Electromyographic (EMG) activity and the angles of pelvic rotation were measured using surface EMG and a three-dimensional motion-analysis system, respectively. One-way repeated-measures ANOVA followed by the Bonferroni post hoc test were used to compare the EMG activity in each muscle as well as the angle of pelvic rotation during the CE, CE-PBU, and CE-PVF. The results of post-hoc testing showed a significantly reduced angle of pelvic rotation and significantly more Gmax EMG activity during the CE-PVF compared with during the CE and CE-PBU. These findings suggest that palpation and visual feedback is effective for activating the Gmax and controlling pelvic rotation during the CE in subjects with lower back pain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Timing of cortical excitability changes during the reaction time of movements superimposed on tonic motor activity.

    PubMed

    Schneider, Cyril; Lavoie, Brigitte A; Barbeau, Hugues; Capaday, Charles

    2004-12-01

    Seated subjects were instructed to react to an auditory cue by simultaneously contracting the tibialis anterior (TA) muscle of each ankle isometrically. Focal transcranial magnetic stimulation of the leg area of the motor cortex (MCx) was used to determine the time course of changes in motor-evoked potential amplitude (MEP) during the reaction time (RT). In one condition the voluntary contraction was superimposed on tonic EMG activity maintained at 10% of maximal voluntary contraction. In the other condition the voluntary contraction was made starting from rest. MEPs in the TA contralateral to the stimulation coil were evoked at various times during the RT in each condition. These were compared to the control MEPs evoked during tonic voluntary activity or with the subject at rest. The RT was measured trial by trial from the EMG activity of the TA ipsilateral to the magnetic stimulus, taking into account the nearly constant time difference between the two sides. The MEPs became far greater than control MEPs during the RT (mean = 332%, SD = 44 %, of control MEPs, P < 0.001) without any measurable change in the background level of EMG activity. The onset of this facilitation occurred on average 12.80 ms (SD = 7.55 ms) before the RT. There was no difference in the onset of facilitation between the two conditions. Because MEPs were facilitated without a change in the background EMG activity, it is concluded that this facilitation is specifically due to an increase of MCx excitability just before voluntary muscle activation. This conclusion is further reinforced by the observation that MEPs evoked by near-threshold anodal stimuli to the MCx were not facilitated during the RT, in contrast to those evoked by near-threshold transcranial magnetic stimulation. However, several observations in the present and previous studies indicate that MEP amplitude may be more sensitive to alpha-motoneuron activity than to motor cortical neuron activity, an idea that has important methodological implications.

  7. Electromyographic analysis of the serratus anterior and trapezius muscles during push-ups on stable and unstable bases in subjects with scapular dyskinesis.

    PubMed

    Pirauá, André Luiz Torres; Pitangui, Ana Carolina Rodarti; Silva, Juliana Pereira; Pereira dos Passos, Muana Hiandra; Alves de Oliveira, Valéria Mayaly; Batista, Laísla da Silva Paixão; Cappato de Araújo, Rodrigo

    2014-10-01

    The present study was performed to assess the electromyographic activity of the scapular muscles during push-ups on a stable and unstable surface, in subjects with scapular dyskinesis. Muscle activation (upper trapezius [UT]; lower trapezius [LT]; upper serratus anterior [SA_5th]; lower serratus anterior [SA_7th]) and ratios (UT/LT; UT/SA_5th; UT/ SA_7th) levels were determined by surface EMG in 30 asymptomatic men with scapular dyskinesis, during push-up performed on a stable and unstable surface. Multivariate analysis of variance with repeated measures was used for statistical analyses. The unstable surface caused a decrease in the EMG activity of the serratus anterior and an increase in EMG activity of the trapezius (p=0.001). UT/SA_5th and UT/ SA_7th ratios were higher during unstable push-ups (p=0.001). The results suggest that, in individuals with scapular dyskinesis, there is increased EMG activity of the trapezius and decreased EMG activity of the serratus anterior in response to an unstable surface. These results suggest that the performance of the push up exercise on an unstable surface may be more favorable to produce higher levels of trapezius activation and lower levels of serratus anterior activation. However, if the goal of the exercise program is the strengthening of the SA muscle, it is suggested to perform the push up on a stable surface. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Polar-phase indices of perioral muscle reciprocity during syllable production in Parkinson's disease.

    PubMed

    Chu, Shin Ying; Barlow, Steven M; Lee, Jaehoon; Wang, Jingyan

    2017-12-01

    This research characterised perioral muscle reciprocity and amplitude ratio in lower lip during bilabial syllable production [pa] at three rates to understand the neuromotor dynamics and scaling of motor speech patterns in individuals with Parkinson's disease (PD). Electromyographic (EMG) signals of the orbicularis oris superior [OOS], orbicularis oris inferior [OOI] and depressor labii inferioris [DLI] were recorded during syllable production and expressed as polar-phase notations. PD participants exhibited the general features of reciprocity between OOS, OOI and DLI muscles as reflected in the EMG during syllable production. The control group showed significantly higher integrated EMG amplitude ratio in the DLI:OOS muscle pairs than PD participants. No speech rate effects were found in EMG muscle reciprocity and amplitude magnitude across all muscle pairs. Similar patterns of muscle reciprocity in PD and controls suggest that corticomotoneuronal output to the facial nucleus and respective perioral muscles is relatively well-preserved in our cohort of mild idiopathic PD participants. Reduction of EMG amplitude ratio among PD participants is consistent with the putative reduction in the thalamocortical activation characteristic of this disease which limits motor cortex drive from generating appropriate commands which contributes to bradykinesia and hypokinesia of the orofacial mechanism.

  9. Low-cost assistive device for hand gesture recognition using sEMG

    NASA Astrophysics Data System (ADS)

    Kainz, Ondrej; Cymbalák, Dávid; Kardoš, Slavomír.; Fecil'ak, Peter; Jakab, František

    2016-07-01

    In this paper a low-cost solution for surface EMG (sEMG) signal retrieval is presented. The principal goal is to enable reading the temporal parameters of muscles activity by a computer device, with its further processing. Paper integrates design and deployment of surface electrodes and amplifier following the prior researches. Bearing in mind the goal of creating low-cost solution, the Arduino micro-controller was utilized for analog-to-digital conversion and communication. The software part of the system employs support vector machine (SVM) to classify the EMG signal, as acquired from sensors. Accuracy of the proposed solution achieves over 90 percent for six hand movements. Proposed solution is to be tested as an assistive device for several cases, involving people with motor disabilities and amputees.

  10. An inverse dynamics approach to face animation.

    PubMed

    Pitermann, M; Munhall, K G

    2001-09-01

    Muscle-based models of the human face produce high quality animation but rely on recorded muscle activity signals or synthetic muscle signals that are often derived by trial and error. This paper presents a dynamic inversion of a muscle-based model (Lucero and Munhall, 1999) that permits the animation to be created from kinematic recordings of facial movements. Using a nonlinear optimizer (Powell's algorithm), the inversion produces a muscle activity set for seven muscles in the lower face that minimize the root mean square error between kinematic data recorded with OPTOTRAK and the corresponding nodes of the modeled facial mesh. This inverted muscle activity is then used to animate the facial model. In three tests of the inversion, strong correlations were observed for kinematics produced from synthetic muscle activity, for OPTOTRAK kinematics recorded from a talker for whom the facial model is morphologically adapted and finally for another talker with the model morphology adapted to a different individual. The correspondence between the animation kinematics and the three-dimensional OPTOTRAK data are very good and the animation is of high quality. Because the kinematic to electromyography (EMG) inversion is ill posed, there is no relation between the actual EMG and the inverted EMG. The overall redundancy of the motor system means that many different EMG patterns can produce the same kinematic output.

  11. Does a SLAP lesion affect shoulder muscle recruitment as measured by EMG activity during a rugby tackle?

    PubMed Central

    2010-01-01

    Background The study objective was to assess the influence of a SLAP lesion on onset of EMG activity in shoulder muscles during a front on rugby football tackle within professional rugby players. Methods Mixed cross-sectional study evaluating between and within group differences in EMG onset times. Testing was carried out within the physiotherapy department of a university sports medicine clinic. The test group consisted of 7 players with clinically diagnosed SLAP lesions, later verified on arthroscopy. The reference group consisted of 15 uninjured and full time professional rugby players from within the same playing squad. Controlled tackles were performed against a tackle dummy. Onset of EMG activity was assessed from surface EMG of Pectorialis Major, Biceps Brachii, Latissimus Dorsi, Serratus Anterior and Infraspinatus muscles relative to time of impact. Analysis of differences in activation timing between muscles and limbs (injured versus non-injured side and non injured side versus matched reference group). Results Serratus Anterior was activated prior to all other muscles in all (P = 0.001-0.03) subjects. In the SLAP injured shoulder Biceps was activated later than in the non-injured side. Onset times of all muscles of the non-injured shoulder in the injured player were consistently earlier compared with the reference group. Whereas, within the injured shoulder, all muscle activation timings were later than in the reference group. Conclusions This study shows that in shoulders with a SLAP lesion there is a trend towards delay in activation time of Biceps and other muscles with the exception of an associated earlier onset of activation of Serratus anterior, possibly due to a coping strategy to protect glenohumeral stability and thoraco-scapular stability. This trend was not statistically significant in all cases PMID:20184752

  12. Selectivity of conventional electrodes for recording motor evoked potentials: An investigation with high-density surface electromyography.

    PubMed

    Gallina, Alessio; Peters, Sue; Neva, Jason L; Boyd, Lara A; Garland, S Jayne

    2017-06-01

    The objective of this study was to determine whether motor evoked potentials (MEPs) elicited with transcranial magnetic stimulation and measured with conventional bipolar electromyography (EMG) are influenced by crosstalk from non-target muscles. MEPs were recorded in healthy participants using conventional EMG electrodes placed over the extensor carpi radialis muscle (ECR) and high-density surface EMG (HDsEMG). Fifty MEPs at 120% resting and active motor threshold were recorded. To determine the contribution of ECR to the MEPs, the amplitude distribution across HDsEMG channels was correlated with EMG activity recorded during a wrist extension task. Whereas the conventional EMG identified MEPs from ECR in >90% of the stimulations, HDsEMG revealed that spatial amplitude distribution representative of ECR activation was observed less frequently at rest than while holding a contraction (P < 0.001). MEPs recorded with conventional EMG may contain crosstalk from non-target muscles, especially when the stimulation is applied at rest. Muscle Nerve 55: 828-834, 2017. © 2016 Wiley Periodicals, Inc.

  13. Simultaneous scalp electroencephalography (EEG), electromyography (EMG), and whole-body segmental inertial recording for multi-modal neural decoding.

    PubMed

    Bulea, Thomas C; Kilicarslan, Atilla; Ozdemir, Recep; Paloski, William H; Contreras-Vidal, Jose L

    2013-07-26

    Recent studies support the involvement of supraspinal networks in control of bipedal human walking. Part of this evidence encompasses studies, including our previous work, demonstrating that gait kinematics and limb coordination during treadmill walking can be inferred from the scalp electroencephalogram (EEG) with reasonably high decoding accuracies. These results provide impetus for development of non-invasive brain-machine-interface (BMI) systems for use in restoration and/or augmentation of gait- a primary goal of rehabilitation research. To date, studies examining EEG decoding of activity during gait have been limited to treadmill walking in a controlled environment. However, to be practically viable a BMI system must be applicable for use in everyday locomotor tasks such as over ground walking and turning. Here, we present a novel protocol for non-invasive collection of brain activity (EEG), muscle activity (electromyography (EMG)), and whole-body kinematic data (head, torso, and limb trajectories) during both treadmill and over ground walking tasks. By collecting these data in the uncontrolled environment insight can be gained regarding the feasibility of decoding unconstrained gait and surface EMG from scalp EEG.

  14. An EMG Interface for the Control of Motion and Compliance of a Supernumerary Robotic Finger

    PubMed Central

    Hussain, Irfan; Spagnoletti, Giovanni; Salvietti, Gionata; Prattichizzo, Domenico

    2016-01-01

    In this paper, we propose a novel electromyographic (EMG) control interface to control motion and joints compliance of a supernumerary robotic finger. The supernumerary robotic fingers are a recently introduced class of wearable robotics that provides users additional robotic limbs in order to compensate or augment the existing abilities of natural limbs without substituting them. Since supernumerary robotic fingers are supposed to closely interact and perform actions in synergy with the human limbs, the control principles of extra finger should have similar behavior as human’s ones including the ability of regulating the compliance. So that, it is important to propose a control interface and to consider the actuators and sensing capabilities of the robotic extra finger compatible to implement stiffness regulation control techniques. We propose EMG interface and a control approach to regulate the compliance of the device through servo actuators. In particular, we use a commercial EMG armband for gesture recognition to be associated with the motion control of the robotic device and surface one channel EMG electrodes interface to regulate the compliance of the robotic device. We also present an updated version of a robotic extra finger where the adduction/abduction motion is realized through ball bearing and spur gears mechanism. We have validated the proposed interface with two sets of experiments related to compensation and augmentation. In the first set of experiments, different bimanual tasks have been performed with the help of the robotic device and simulating a paretic hand since this novel wearable system can be used to compensate the missing grasping abilities in chronic stroke patients. In the second set, the robotic extra finger is used to enlarge the workspace and manipulation capability of healthy hands. In both sets, the same EMG control interface has been used. The obtained results demonstrate that the proposed control interface is intuitive and can successfully be used, not only to control the motion of a supernumerary robotic finger but also to regulate its compliance. The proposed approach can be exploited also for the control of different wearable devices that has to actively cooperate with the human limbs. PMID:27891088

  15. EMG-based pattern recognition approach in post stroke robot-aided rehabilitation: a feasibility study

    PubMed Central

    2013-01-01

    Background Several studies investigating the use of electromyographic (EMG) signals in robot-based stroke neuro-rehabilitation to enhance functional recovery. Here we explored whether a classical EMG-based patterns recognition approach could be employed to predict patients’ intentions while attempting to generate goal-directed movements in the horizontal plane. Methods Nine right-handed healthy subjects and seven right-handed stroke survivors performed reaching movements in the horizontal plane. EMG signals were recorded and used to identify the intended motion direction of the subjects. To this aim, a standard pattern recognition algorithm (i.e., Support Vector Machine, SVM) was used. Different tests were carried out to understand the role of the inter- and intra-subjects’ variability in affecting classifier accuracy. Abnormal muscular spatial patterns generating misclassification were evaluated by means of an assessment index calculated from the results achieved with the PCA, i.e., the so-called Coefficient of Expressiveness (CoE). Results Processing the EMG signals of the healthy subjects, in most of the cases we were able to build a static functional map of the EMG activation patterns for point-to-point reaching movements on the horizontal plane. On the contrary, when processing the EMG signals of the pathological subjects a good classification was not possible. In particular, patients’ aimed movement direction was not predictable with sufficient accuracy either when using the general map extracted from data of normal subjects and when tuning the classifier on the EMG signals recorded from each patient. Conclusions The experimental findings herein reported show that the use of EMG patterns recognition approach might not be practical to decode movement intention in subjects with neurological injury such as stroke. Rather than estimate motion from EMGs, future scenarios should encourage the utilization of these signals to detect and interpret the normal and abnormal muscle patterns and provide feedback on their correct recruitment. PMID:23855907

  16. Muscle and intensity based hamstring exercise classification in elite female track and field athletes: implications for exercise selection during rehabilitation

    PubMed Central

    Tsaklis, Panagiotis; Malliaropoulos, Nikos; Mendiguchia, Jurdan; Korakakis, Vasileios; Tsapralis, Kyriakos; Pyne, Debasish; Malliaras, Peter

    2015-01-01

    Background Hamstring injuries are common in many sports, including track and field. Strains occur in different parts of the hamstring muscle but very little is known about whether common hamstring loading exercises specifically load different hamstring components. The purpose of this study was to investigate muscle activation of different components of the hamstring muscle during common hamstring loading exercises. Methods Twenty elite female track and field athletes were recruited into this study, which had a single-sample, repeated-measures design. Each athlete performed ten hamstring loading exercises, and an electromyogram (EMG) was recorded from the biceps femoris and semitendinosus components of the hamstring. Hamstring EMG during maximal voluntary isometric contraction (MVIC) was used to normalize the mean data across ten repetitions of each exercise. An electrogoniometer synchronized to the EMG was used to determine whether peak EMG activity occurred during muscle-tendon unit lengthening, shortening, or no change in length. Mean EMG values were compared between the two recording sites for each exercise using the Student’s t-test. Results The lunge, dead lift, and kettle swings were low intensity (<50% MVIC) and all showed higher EMG activity for semitendinosus than for biceps femoris. Bridge was low but approaching medium intensity, and the TRX, hamstring bridge, and hamstring curl were all medium intensity exercises (≥50% or <80% MVIC). The Nordic, fitball, and slide leg exercises were all high intensity exercises. Only the fitball exercise showed higher EMG activity in the biceps femoris compared with the semitendinosus. Only lunge and kettle swings showed peak EMG in the muscle-tendon unit lengthening phase and both these exercises involved faster speed. Conclusion Some exercises selectively activated the lateral and medial distal hamstrings. Low, medium, and high intensity exercises were demonstrated. This information enables the clinician, strength and conditioning coach and physiotherapist to better understand intensity- and muscle-specific activation during hamstring muscle rehabilitation. Therefore, these results may help in designing progressive strengthening and rehabilitation and prevention programs. PMID:26170726

  17. Changes in Locomotor Muscle Activity After Treadmill Training in Subjects With Incomplete Spinal Cord Injury

    PubMed Central

    Gorassini, Monica A.; Norton, Jonathan A.; Nevett-Duchcherer, Jennifer; Roy, Francois D.; Yang, Jaynie F.

    2009-01-01

    Intensive treadmill training after incomplete spinal cord injury can improve functional walking abilities. To determine the changes in muscle activation patterns that are associated with improvements in walking, we measured the electromyography (EMG) of leg muscles in 17 individuals with incomplete spinal cord injury during similar walking conditions both before and after training. Specific differences were observed between subjects that eventually gained functional improvements in overground walking (responders), compared with subjects where treadmill training was ineffective (nonresponders). Although both groups developed a more regular and less clonic EMG pattern on the treadmill, it was only the tibialis anterior and hamstring muscles in the responders that displayed increases in EMG activation. Likewise, only the responders demonstrated decreases in burst duration and cocontraction of proximal (hamstrings and quadriceps) muscle activity. Surprisingly, the proximal muscle activity in the responders, unlike nonresponders, was three- to fourfold greater than that in uninjured control subjects walking at similar speeds and level of body weight support, suggesting that the ability to modify muscle activation patterns after injury may predict the ability of subjects to further compensate in response to motor training. In summary, increases in the amount and decreases in the duration of EMG activity of specific muscles are associated with functional recovery of walking skills after treadmill training in subjects that are able to modify muscle activity patterns following incomplete spinal cord injury. PMID:19073799

  18. Towards limb position invariant myoelectric pattern recognition using time-dependent spectral features.

    PubMed

    Khushaba, Rami N; Takruri, Maen; Miro, Jaime Valls; Kodagoda, Sarath

    2014-07-01

    Recent studies in Electromyogram (EMG) pattern recognition reveal a gap between research findings and a viable clinical implementation of myoelectric control strategies. One of the important factors contributing to the limited performance of such controllers in practice is the variation in the limb position associated with normal use as it results in different EMG patterns for the same movements when carried out at different positions. However, the end goal of the myoelectric control scheme is to allow amputees to control their prosthetics in an intuitive and accurate manner regardless of the limb position at which the movement is initiated. In an attempt to reduce the impact of limb position on EMG pattern recognition, this paper proposes a new feature extraction method that extracts a set of power spectrum characteristics directly from the time-domain. The end goal is to form a set of features invariant to limb position. Specifically, the proposed method estimates the spectral moments, spectral sparsity, spectral flux, irregularity factor, and signals power spectrum correlation. This is achieved through using Fourier transform properties to form invariants to amplification, translation and signal scaling, providing an efficient and accurate representation of the underlying EMG activity. Additionally, due to the inherent temporal structure of the EMG signal, the proposed method is applied on the global segments of EMG data as well as the sliced segments using multiple overlapped windows. The performance of the proposed features is tested on EMG data collected from eleven subjects, while implementing eight classes of movements, each at five different limb positions. Practical results indicate that the proposed feature set can achieve significant reduction in classification error rates, in comparison to other methods, with ≈8% error on average across all subjects and limb positions. A real-time implementation and demonstration is also provided and made available as a video supplement (see Appendix A). Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Self-Recalibrating Surface EMG Pattern Recognition for Neuroprosthesis Control Based on Convolutional Neural Network

    PubMed Central

    Zhai, Xiaolong; Jelfs, Beth; Chan, Rosa H. M.; Tin, Chung

    2017-01-01

    Hand movement classification based on surface electromyography (sEMG) pattern recognition is a promising approach for upper limb neuroprosthetic control. However, maintaining day-to-day performance is challenged by the non-stationary nature of sEMG in real-life operation. In this study, we propose a self-recalibrating classifier that can be automatically updated to maintain a stable performance over time without the need for user retraining. Our classifier is based on convolutional neural network (CNN) using short latency dimension-reduced sEMG spectrograms as inputs. The pretrained classifier is recalibrated routinely using a corrected version of the prediction results from recent testing sessions. Our proposed system was evaluated with the NinaPro database comprising of hand movement data of 40 intact and 11 amputee subjects. Our system was able to achieve ~10.18% (intact, 50 movement types) and ~2.99% (amputee, 10 movement types) increase in classification accuracy averaged over five testing sessions with respect to the unrecalibrated classifier. When compared with a support vector machine (SVM) classifier, our CNN-based system consistently showed higher absolute performance and larger improvement as well as more efficient training. These results suggest that the proposed system can be a useful tool to facilitate long-term adoption of prosthetics for amputees in real-life applications. PMID:28744189

  20. Self-Recalibrating Surface EMG Pattern Recognition for Neuroprosthesis Control Based on Convolutional Neural Network.

    PubMed

    Zhai, Xiaolong; Jelfs, Beth; Chan, Rosa H M; Tin, Chung

    2017-01-01

    Hand movement classification based on surface electromyography (sEMG) pattern recognition is a promising approach for upper limb neuroprosthetic control. However, maintaining day-to-day performance is challenged by the non-stationary nature of sEMG in real-life operation. In this study, we propose a self-recalibrating classifier that can be automatically updated to maintain a stable performance over time without the need for user retraining. Our classifier is based on convolutional neural network (CNN) using short latency dimension-reduced sEMG spectrograms as inputs. The pretrained classifier is recalibrated routinely using a corrected version of the prediction results from recent testing sessions. Our proposed system was evaluated with the NinaPro database comprising of hand movement data of 40 intact and 11 amputee subjects. Our system was able to achieve ~10.18% (intact, 50 movement types) and ~2.99% (amputee, 10 movement types) increase in classification accuracy averaged over five testing sessions with respect to the unrecalibrated classifier. When compared with a support vector machine (SVM) classifier, our CNN-based system consistently showed higher absolute performance and larger improvement as well as more efficient training. These results suggest that the proposed system can be a useful tool to facilitate long-term adoption of prosthetics for amputees in real-life applications.

  1. Preterm labor--modeling the uterine electrical activity from cellular level to surface recording.

    PubMed

    Rihana, S; Marque, C

    2008-01-01

    Uterine electrical activity is correlated to the appearance of uterine contractions. forceful contractions appear at the end of term. Therefore, understanding the genesis and the propagation of uterine electrical activity may provide an efficient tool to diagnose preterm labor. Moreover, the control of uterine excitability seems to have important consequences in the control of preterm labor. Modeling the electrical activity in uterine tissue is thus an important step in understanding physiological uterine contractile mechanisms and to permit uterine EMG simulation. Our model presented in this paper, incorporates ion channel models at the cell level, the reaction diffusion equations at the tissue level and the spatiotemporal integration at the uterine EMG reconstructed level. This model validates some key physiological observation hypotheses concerning uterine excitability and propagation.

  2. EMG Versus Torque Control of Human-Machine Systems: Equalizing Control Signal Variability Does not Equalize Error or Uncertainty.

    PubMed

    Johnson, Reva E; Kording, Konrad P; Hargrove, Levi J; Sensinger, Jonathon W

    2017-06-01

    In this paper we asked the question: if we artificially raise the variability of torque control signals to match that of EMG, do subjects make similar errors and have similar uncertainty about their movements? We answered this question using two experiments in which subjects used three different control signals: torque, torque+noise, and EMG. First, we measured error on a simple target-hitting task in which subjects received visual feedback only at the end of their movements. We found that even when the signal-to-noise ratio was equal across EMG and torque+noise control signals, EMG resulted in larger errors. Second, we quantified uncertainty by measuring the just-noticeable difference of a visual perturbation. We found that for equal errors, EMG resulted in higher movement uncertainty than both torque and torque+noise. The differences suggest that performance and confidence are influenced by more than just the noisiness of the control signal, and suggest that other factors, such as the user's ability to incorporate feedback and develop accurate internal models, also have significant impacts on the performance and confidence of a person's actions. We theorize that users have difficulty distinguishing between random and systematic errors for EMG control, and future work should examine in more detail the types of errors made with EMG control.

  3. Toward attenuating the impact of arm positions on electromyography pattern-recognition based motion classification in transradial amputees

    PubMed Central

    2012-01-01

    Background Electromyography (EMG) pattern-recognition based control strategies for multifunctional myoelectric prosthesis systems have been studied commonly in a controlled laboratory setting. Before these myoelectric prosthesis systems are clinically viable, it will be necessary to assess the effect of some disparities between the ideal laboratory setting and practical use on the control performance. One important obstacle is the impact of arm position variation that causes the changes of EMG pattern when performing identical motions in different arm positions. This study aimed to investigate the impacts of arm position variation on EMG pattern-recognition based motion classification in upper-limb amputees and the solutions for reducing these impacts. Methods With five unilateral transradial (TR) amputees, the EMG signals and tri-axial accelerometer mechanomyography (ACC-MMG) signals were simultaneously collected from both amputated and intact arms when performing six classes of arm and hand movements in each of five arm positions that were considered in the study. The effect of the arm position changes was estimated in terms of motion classification error and compared between amputated and intact arms. Then the performance of three proposed methods in attenuating the impact of arm positions was evaluated. Results With EMG signals, the average intra-position and inter-position classification errors across all five arm positions and five subjects were around 7.3% and 29.9% from amputated arms, respectively, about 1.0% and 10% low in comparison with those from intact arms. While ACC-MMG signals could yield a similar intra-position classification error (9.9%) as EMG, they had much higher inter-position classification error with an average value of 81.1% over the arm positions and the subjects. When the EMG data from all five arm positions were involved in the training set, the average classification error reached a value of around 10.8% for amputated arms. Using a two-stage cascade classifier, the average classification error was around 9.0% over all five arm positions. Reducing ACC-MMG channels from 8 to 2 only increased the average position classification error across all five arm positions from 0.7% to 1.0% in amputated arms. Conclusions The performance of EMG pattern-recognition based method in classifying movements strongly depends on arm positions. This dependency is a little stronger in intact arm than in amputated arm, which suggests that the investigations associated with practical use of a myoelectric prosthesis should use the limb amputees as subjects instead of using able-body subjects. The two-stage cascade classifier mode with ACC-MMG for limb position identification and EMG for limb motion classification may be a promising way to reduce the effect of limb position variation on classification performance. PMID:23036049

  4. An EMG-CT method using multiple surface electrodes in the forearm.

    PubMed

    Nakajima, Yasuhiro; Keeratihattayakorn, Saran; Yoshinari, Satoshi; Tadano, Shigeru

    2014-12-01

    Electromyography computed tomography (EMG-CT) method is proposed for visualizing the individual muscle activities in the human forearm. An EMG conduction model was formulated for reverse-estimation of muscle activities using EMG signals obtained with multi surface electrodes. The optimization process was calculated using sequential quadratic programming by comparing the estimated EMG values from the model with the measured values. The individual muscle activities in the deep region were estimated and used to produce an EMG tomographic image. For validation of the method, isometric contractions of finger muscles were examined for three subjects, applying a flexion load (4.9, 7.4 and 9.8 N) to the proximal interphalangeal joint of the middle finger. EMG signals in the forearm were recorded during the tasks using multiple surface electrodes, which were bound around the subject's forearm. The EMG-CT method illustrates the distribution of muscle activities within the forearm. The change in amplitude and area of activated muscles can be observed. The normalized muscle activities of all three subjects appear to increase monotonically with increases in the load. Kinesiologically, this method was able to estimate individual muscle activation values and could provide a novel tool for studying hand function and development of an examination for evaluating rehabilitation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Respiratory muscle activity and patient–ventilator asynchrony during different settings of noninvasive ventilation in stable hypercapnic COPD: does high inspiratory pressure lead to respiratory muscle unloading?

    PubMed Central

    Duiverman, Marieke L; Huberts, Anouk S; van Eykern, Leo A; Bladder, Gerrie; Wijkstra, Peter J

    2017-01-01

    Introduction High-intensity noninvasive ventilation (NIV) has been shown to improve outcomes in stable chronic obstructive pulmonary disease patients. However, there is insufficient knowledge about whether with this more controlled ventilatory mode optimal respiratory muscle unloading is provided without an increase in patient–ventilator asynchrony (PVA). Patients and methods Ten chronic obstructive pulmonary disease patients on home mechanical ventilation were included. Four different ventilatory settings were investigated in each patient in random order, each for 15 min, varying the inspiratory positive airway pressure and backup breathing frequency. With surface electromyography (EMG), activities of the intercostal muscles, diaphragm, and scalene muscles were determined. Furthermore, pressure tracings were derived simultaneously in order to assess PVA. Results Compared to spontaneous breathing, the most pronounced decrease in EMG activity was achieved with the high-pressure settings. Adding a high breathing frequency did reduce EMG activity per breath, while the decrease in EMG activity over 1 min was comparable with the high-pressure, low-frequency setting. With high backup breathing frequencies less breaths were pressure supported (25% vs 97%). PVAs occurred more frequently with the low-frequency settings (P=0.017). Conclusion High-intensity NIV might provide optimal unloading of respiratory muscles, without undue increases in PVA. PMID:28138234

  6. Respiratory muscle activity and patient-ventilator asynchrony during different settings of noninvasive ventilation in stable hypercapnic COPD: does high inspiratory pressure lead to respiratory muscle unloading?

    PubMed

    Duiverman, Marieke L; Huberts, Anouk S; van Eykern, Leo A; Bladder, Gerrie; Wijkstra, Peter J

    2017-01-01

    High-intensity noninvasive ventilation (NIV) has been shown to improve outcomes in stable chronic obstructive pulmonary disease patients. However, there is insufficient knowledge about whether with this more controlled ventilatory mode optimal respiratory muscle unloading is provided without an increase in patient-ventilator asynchrony (PVA). Ten chronic obstructive pulmonary disease patients on home mechanical ventilation were included. Four different ventilatory settings were investigated in each patient in random order, each for 15 min, varying the inspiratory positive airway pressure and backup breathing frequency. With surface electromyography (EMG), activities of the intercostal muscles, diaphragm, and scalene muscles were determined. Furthermore, pressure tracings were derived simultaneously in order to assess PVA. Compared to spontaneous breathing, the most pronounced decrease in EMG activity was achieved with the high-pressure settings. Adding a high breathing frequency did reduce EMG activity per breath, while the decrease in EMG activity over 1 min was comparable with the high-pressure, low-frequency setting. With high backup breathing frequencies less breaths were pressure supported (25% vs 97%). PVAs occurred more frequently with the low-frequency settings ( P =0.017). High-intensity NIV might provide optimal unloading of respiratory muscles, without undue increases in PVA.

  7. Diaphragmatic and intercostal electromyographic activity during neostigmine, sugammadex and neostigmine-sugammadex-enhanced recovery after neuromuscular blockade: A randomised controlled volunteer study.

    PubMed

    Cammu, Guy; Schepens, Tom; De Neve, Nikolaas; Wildemeersch, Davina; Foubert, Luc; Jorens, Philippe G

    2017-01-01

    Electromyographic activity of the diaphragm (EMGdi) during weaning from mechanical ventilation is increased after sugammadex compared with neostigmine. To determine the effect of neostigmine on EMGdi and surface EMG (sEMG) of the intercostal muscles during antagonism of rocuronium block with neostigmine, sugammadex and neostigmine followed by sugammadex. Randomised, controlled, double-blind study. Intensive care research unit. Eighteen male volunteers. A transoesophageal EMGdi recorder was inserted into three groups of six anaesthetised study participants, and sEMG was recorded on their intercostal muscles. To reverse rocuronium, volunteers received 50 μg kg neostigmine, 2 mg kg sugammadex or 50 μg kg neostigmine, followed 3 min later by 2 mg kg sugammadex. We examined the EMGdi and sEMG at the intercostal muscles during recovery enhanced by neostigmine or sugammadex or neostigmine-sugammadex as primary outcomes. Secondary objectives were the tidal volume, PaO2 recorded between the onset of spontaneous breathing and extubation of the trachea and SpO2 during and after anaesthesia. During weaning, median peak EMGdi was 0.76 (95% confidence interval: 1.20 to 1.80) μV in the neostigmine group, 1.00 (1.23 to 1.82) μV in the sugammadex group and 0.70 (0.91 to 1.21) μV in the neostigmine-sugammadex group (P < 0.0001 with EMGdi increased after sugammadex vs. neostigmine and neostigmine-sugammadex). The median peak intercostal sEMG for the neostigmine group was 0.39 (0.65 to 0.93) μV vs. 0.77 (1.15 to 1.51) μV in the sugammadex group and 0.82 (1.28 to 2.38) μV in the neostigmine-sugammadex group (P < 0.0001 with sEMG higher after sugammadex and after neostigmine-sugammadex vs. neostigmine). EMGdi and sEMG on the intercostal muscles were increased after sugammadex alone compared with neostigmine. Adding sugammadex after neostigmine reduced the EMGdi compared with sugammadex alone. Unlike the diaphragm, intercostal EMG was preserved with neostigmine followed by sugammadex. EudraCT: 2015-001278-16; ClinicalTrials.gov: NCT02403063.

  8. Movement Performance of Human-Robot Cooperation Control Based on EMG-Driven Hill-Type and Proportional Models for an Ankle Power-Assist Exoskeleton Robot.

    PubMed

    Ao, Di; Song, Rong; Gao, JinWu

    2017-08-01

    Although the merits of electromyography (EMG)-based control of powered assistive systems have been certified, the factors that affect the performance of EMG-based human-robot cooperation, which are very important, have received little attention. This study investigates whether a more physiologically appropriate model could improve the performance of human-robot cooperation control for an ankle power-assist exoskeleton robot. To achieve the goal, an EMG-driven Hill-type neuromusculoskeletal model (HNM) and a linear proportional model (LPM) were developed and calibrated through maximum isometric voluntary dorsiflexion (MIVD). The two control models could estimate the real-time ankle joint torque, and HNM is more accurate and can account for the change of the joint angle and muscle dynamics. Then, eight healthy volunteers were recruited to wear the ankle exoskeleton robot and complete a series of sinusoidal tracking tasks in the vertical plane. With the various levels of assist based on the two calibrated models, the subjects were instructed to track the target displayed on the screen as accurately as possible by performing ankle dorsiflexion and plantarflexion. Two measurements, the root mean square error (RMSE) and root mean square jerk (RMSJ), were derived from the assistant torque and kinematic signals to characterize the movement performances, whereas the amplitudes of the recorded EMG signals from the tibialis anterior (TA) and the gastrocnemius (GAS) were obtained to reflect the muscular efforts. The results demonstrated that the muscular effort and smoothness of tracking movements decreased with an increase in the assistant ratio. Compared with LPM, subjects made lower physical efforts and generated smoother movements when using HNM, which implied that a more physiologically appropriate model could enable more natural and human-like human-robot cooperation and has potential value for improvement of human-exoskeleton interaction in future applications.

  9. Electromyographic Patterns during Golf Swing: Activation Sequence Profiling and Prediction of Shot Effectiveness.

    PubMed

    Verikas, Antanas; Vaiciukynas, Evaldas; Gelzinis, Adas; Parker, James; Olsson, M Charlotte

    2016-04-23

    This study analyzes muscle activity, recorded in an eight-channel electromyographic (EMG) signal stream, during the golf swing using a 7-iron club and exploits information extracted from EMG dynamics to predict the success of the resulting shot. Muscles of the arm and shoulder on both the left and right sides, namely flexor carpi radialis, extensor digitorum communis, rhomboideus and trapezius, are considered for 15 golf players (∼5 shots each). The method using Gaussian filtering is outlined for EMG onset time estimation in each channel and activation sequence profiling. Shots of each player revealed a persistent pattern of muscle activation. Profiles were plotted and insights with respect to player effectiveness were provided. Inspection of EMG dynamics revealed a pair of highest peaks in each channel as the hallmark of golf swing, and a custom application of peak detection for automatic extraction of swing segment was introduced. Various EMG features, encompassing 22 feature sets, were constructed. Feature sets were used individually and also in decision-level fusion for the prediction of shot effectiveness. The prediction of the target attribute, such as club head speed or ball carry distance, was investigated using random forest as the learner in detection and regression tasks. Detection evaluates the personal effectiveness of a shot with respect to the player-specific average, whereas regression estimates the value of target attribute, using EMG features as predictors. Fusion after decision optimization provided the best results: the equal error rate in detection was 24.3% for the speed and 31.7% for the distance; the mean absolute percentage error in regression was 3.2% for the speed and 6.4% for the distance. Proposed EMG feature sets were found to be useful, especially when used in combination. Rankings of feature sets indicated statistics for muscle activity in both the left and right body sides, correlation-based analysis of EMG dynamics and features derived from the properties of two highest peaks as important predictors of personal shot effectiveness. Activation sequence profiles helped in analyzing muscle orchestration during golf shot, exposing a specific avalanche pattern, but data from more players are needed for stronger conclusions. Results demonstrate that information arising from an EMG signal stream is useful for predicting golf shot success, in terms of club head speed and ball carry distance, with acceptable accuracy. Surface EMG data, collected with a goal to automatically evaluate golf player's performance, enables wearable computing in the field of ambient intelligence and has potential to enhance exercising of a long carry distance drive.

  10. Electromyographic Patterns during Golf Swing: Activation Sequence Profiling and Prediction of Shot Effectiveness

    PubMed Central

    Verikas, Antanas; Vaiciukynas, Evaldas; Gelzinis, Adas; Parker, James; Olsson, M. Charlotte

    2016-01-01

    This study analyzes muscle activity, recorded in an eight-channel electromyographic (EMG) signal stream, during the golf swing using a 7-iron club and exploits information extracted from EMG dynamics to predict the success of the resulting shot. Muscles of the arm and shoulder on both the left and right sides, namely flexor carpi radialis, extensor digitorum communis, rhomboideus and trapezius, are considered for 15 golf players (∼5 shots each). The method using Gaussian filtering is outlined for EMG onset time estimation in each channel and activation sequence profiling. Shots of each player revealed a persistent pattern of muscle activation. Profiles were plotted and insights with respect to player effectiveness were provided. Inspection of EMG dynamics revealed a pair of highest peaks in each channel as the hallmark of golf swing, and a custom application of peak detection for automatic extraction of swing segment was introduced. Various EMG features, encompassing 22 feature sets, were constructed. Feature sets were used individually and also in decision-level fusion for the prediction of shot effectiveness. The prediction of the target attribute, such as club head speed or ball carry distance, was investigated using random forest as the learner in detection and regression tasks. Detection evaluates the personal effectiveness of a shot with respect to the player-specific average, whereas regression estimates the value of target attribute, using EMG features as predictors. Fusion after decision optimization provided the best results: the equal error rate in detection was 24.3% for the speed and 31.7% for the distance; the mean absolute percentage error in regression was 3.2% for the speed and 6.4% for the distance. Proposed EMG feature sets were found to be useful, especially when used in combination. Rankings of feature sets indicated statistics for muscle activity in both the left and right body sides, correlation-based analysis of EMG dynamics and features derived from the properties of two highest peaks as important predictors of personal shot effectiveness. Activation sequence profiles helped in analyzing muscle orchestration during golf shot, exposing a specific avalanche pattern, but data from more players are needed for stronger conclusions. Results demonstrate that information arising from an EMG signal stream is useful for predicting golf shot success, in terms of club head speed and ball carry distance, with acceptable accuracy. Surface EMG data, collected with a goal to automatically evaluate golf player’s performance, enables wearable computing in the field of ambient intelligence and has potential to enhance exercising of a long carry distance drive. PMID:27120604

  11. Excitability Changes in Intracortical Neural Circuits Induced by Differentially Controlled Walking Patterns

    PubMed Central

    Ito, Tomotaka; Tsubahara, Akio; Shinkoda, Koichi; Yoshimura, Yosuke; Kobara, Kenichi; Osaka, Hiroshi

    2015-01-01

    Our previous single-pulse transcranial magnetic stimulation (TMS) study revealed that excitability in the motor cortex can be altered by conscious control of walking relative to less conscious normal walking. However, substantial elements and underlying mechanisms for inducing walking-related cortical plasticity are still unknown. Hence, in this study we aimed to examine the characteristics of electromyographic (EMG) recordings obtained during different walking conditions, namely, symmetrical walking (SW), asymmetrical walking 1 (AW1), and asymmetrical walking 2 (AW2), with left to right stance duration ratios of 1:1, 1:2, and 2:1, respectively. Furthermore, we investigated the influence of three types of walking control on subsequent changes in the intracortical neural circuits. Prior to each type of 7-min walking task, EMG analyses of the left tibialis anterior (TA) and soleus (SOL) muscles during walking were performed following approximately 3 min of preparative walking. Paired-pulse TMS was used to measure short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) in the left TA and SOL at baseline, immediately after the 7-min walking task, and 30 min post-task. EMG activity in the TA was significantly increased during AW1 and AW2 compared to during SW, whereas a significant difference in EMG activity of the SOL was observed only between AW1 and AW2. As for intracortical excitability, there was a significant alteration in SICI in the TA between SW and AW1, but not between SW and AW2. For the same amount of walking exercise, we found that the different methods used to control walking patterns induced different excitability changes in SICI. Our research shows that activation patterns associated with controlled leg muscles can alter post-exercise excitability in intracortical circuits. Therefore, how leg muscles are activated in a clinical setting could influence the outcome of walking in patients with stroke. PMID:25688972

  12. The myth of the 'unaffected' side after unilateral stroke: is reorganisation of the non-infarcted corticospinal system to re-establish balance the price for recovery?

    PubMed

    Graziadio, S; Tomasevic, L; Assenza, G; Tecchio, F; Eyre, J A

    2012-12-01

    Bilateral changes in the hemispheric reorganisation have been observed chronically after unilateral stroke. Our hypotheses were that activity dependent competition between the lesioned and non-lesioned corticospinal systems would result in persisting asymmetry and be associated with poor recovery. Eleven subjects (medium 6.5 years after stroke) were compared to 9 age-matched controls. The power spectral density (PSD) of the sensorimotor electroencephalogram (SM1-EEG) and electromyogram (EMG) and corticomuscular coherence (CMC) were studied during rest and isometric contraction of right or left opponens pollicis (OP). Global recovery was assessed using NIH score. There was bilateral loss of beta frequency activity in the SM1-EEGs and OP-EMGs in strokes compared to controls. There was no difference between strokes and controls in symmetry indices estimated between the two corticospinal systems for SM1-EEG, OP-EMG and CMC. Performance correlated with preservation of beta frequency power in OP-EMG in both hands. Symmetry indices for the SM1-EEG, OP-EMG and CMC correlated with recovery. Significant changes occurred at both cortical and spinomuscular levels after stroke but to the same degree and in the same direction in both the lesioned and non-lesioned corticospinal systems. Global recovery correlated with the degree of symmetry between corticospinal systems at all three levels - cortical and spinomuscular levels and their connectivity (CMC), but not with the absolute degree of abnormality. Re-establishing balance between the corticospinal systems may be important for overall motor function, even if it is achieved at the expense of the non-lesioned system. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Core muscle activity in a series of balance exercises with different stability conditions.

    PubMed

    Calatayud, Joaquin; Borreani, Sebastien; Martin, Julio; Martin, Fernando; Flandez, Jorge; Colado, Juan C

    2015-07-01

    Literature that provides progression models based on core muscle activity and postural manipulations is scarce. The purpose of this study was to investigate the core muscle activity in a series of balance exercises with different stability levels and additional elastic resistance. A descriptive study of electromyography (EMG) was performed with forty-four healthy subjects that completed 12 exercises in a random order. Exercises were performed unipedally or bipedally with or without elastic tubing as resistance on various unstable (uncontrolled multiaxial and uniaxial movement) and stable surfaces. Surface EMG on the lumbar multífidus spinae (LM), thoracic multífidus spinae (TM), lumbar erector spinae (LE), thoracic erector spinae (TE) and gluteus maximus (GM), on the dominant side of the body were collected to quantify the amount of muscle activity and were expressed as a % of the maximum voluntary isometric contraction (MVIC). Significant differences (p<.001) were found between exercises. The three unipedal standing exercises with additional elastic resistance generated the greatest EMG values, ranging from 19% MVIC to 30% MVIC. Postural manipulations with additional elastic resistance and/or unstable devices increase core muscle activity. An adequate exercise progression based on global core EMG could start with seated positions, progressing to bipedal standing stance (i.e., from either multiaxial or stable surface to uniaxial surface). Following this, unipedal standing positions may be performed (i.e., from either multiaxial or stable surface to uniaxial surface) and finally, elastic resistance must be added in order to increase EMG levels (i.e., from stable surface progressing to any of the used unstable surfaces). Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Assessment of electromyographic activity in patients with temporomandibular disorders and natural mediotrusive occlusal contact during chewing and tooth grinding.

    PubMed

    Fuentes, Aler D; Sforza, Chiarella; Miralles, Rodolfo; Ferreira, Cláudia L; Mapelli, Andrea; Lodetti, Gianluigi; Martin, Conchita

    2017-05-01

    The aim of this study was to investigate whether the presence of a natural mediotrusive contact influences electromyographic (EMG) pattern activity in patients with temporomandibular disorders (TMDs). Bilateral surface EMG activity of the anterior temporalis (AT), masseter (MM), and sternocleidomastoid (SCM) muscles was recorded in 43 subjects during unilateral chewing and tooth grinding. Thirteen patients had TMD and a natural mediotrusive contact (Group 1), 15 had TMD without a natural mediotrusive contact (Group 2), and 15 were healthy subjects without mediotrusive contacts (Group 3). All subjects were examined according to the Research Diagnostic Criteria for TMD (RDC/TMD). All EMG values were standardized as the percentage of EMG activity recorded during maximum isometric contraction on cotton rolls. EMG activity from all muscles measured showed no significant differences between groups during chewing and grinding. Overall, in all groups, the EMG activity during chewing was higher in the working side than the non-working side in AT and MM muscles. During grinding, these differences were only found in masseter muscles (mainly in eccentric grinding). SCM EMG activity did not show significant differences during chewing and grinding tasks. Symmetry, muscular balance, and absence of lateral jaw displacement were common findings in all groups. EMG results suggest that the contribution of a natural mediotrusive occlusal contact to EMG patterns in TMD patients is minor. Therefore, the elimination of this occlusal feature for therapeutic purposes could be not indicated.

  15. Electromyographic analysis of an eccentric calf muscle exercise in persons with and without Achilles tendinopathy.

    PubMed

    Reid, Duncan; McNair, Peter J; Johnson, Shelley; Potts, Geoff; Witvrouw, Erik; Mahieu, Nele

    2012-08-01

    To compare surface electromyographic (EMG) activity of the gastrocnemius and soleus muscles between persons with and without Achilles tendinopathy (AT) during an eccentric muscle exercise in different knee joint positions. Repeated measures design. Research laboratory. Participants (n = 18) diagnosed with AT and 18 control subjects were recruited. Gastrocnemius and soleus muscle activity was examined by surface (EMG) during extended and flexed knee joint conditions while performing the eccentric training technique. The EMG data were expressed as a percentage of a maximum voluntary contraction (MVC). EMG activity was notably higher (mean difference: 10%, effect size: 0.59) in those subjects with AT. Irrespective of the presence of AT, there was a significant interaction effect between muscle and joint position. The gastrocnemius muscle was significantly more active in the extended knee condition and soleus muscle activity was unchanged across joint positions. The results indicated that the presence of AT influenced calf muscle activity levels during performance of the eccentric exercise. There were differences in muscle activity during the extended and flexed knee conditions. This result does support performing Alfredson, Pietila, Jonsson, and Lorentzon (1998) eccentric exercise in an extended knee position but the specific effects of the knee flexed position on the Achilles tendon during eccentric exercise have yet to be determined, particularly in those with AT. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. An evaluation of the utility and limitations of counting motor unit action potentials in the surface electromyogram

    NASA Astrophysics Data System (ADS)

    Zhou, Ping; Zev Rymer, William

    2004-12-01

    The number of motor unit action potentials (MUAPs) appearing in the surface electromyogram (EMG) signal is directly related to motor unit recruitment and firing rates and therefore offers potentially valuable information about the level of activation of the motoneuron pool. In this paper, based on morphological features of the surface MUAPs, we try to estimate the number of MUAPs present in the surface EMG by counting the negative peaks in the signal. Several signal processing procedures are applied to the surface EMG to facilitate this peak counting process. The MUAP number estimation performance by this approach is first illustrated using the surface EMG simulations. Then, by evaluating the peak counting results from the EMG records detected by a very selective surface electrode, at different contraction levels of the first dorsal interosseous (FDI) muscles, the utility and limitations of such direct peak counts for MUAP number estimation in surface EMG are further explored.

  17. Does insertion of intramuscular electromyographic electrodes alter motor behavior during locomotion?

    PubMed

    Armour Smith, Jo; Kulig, Kornelia

    2015-06-01

    Intramuscular electromyography (EMG) is commonly used to quantify activity in the trunk musculature. However, it is unclear if the discomfort or fear of pain associated with insertion of intramuscular EMG electrodes results in altered motor behavior. This study examined whether intramuscular EMG affects locomotor speed and trunk motion, and examined the anticipated and actual pain associated with electrode insertion in healthy individuals and individuals with a history of low back pain (LBP). Before and after insertion of intramuscular electrodes into the lumbar and thoracic paraspinals, participants performed multiple repetitions of a walking turn at self-selected and controlled average speed. Low levels of anticipated and actual pain were reported in both groups. Self-selected locomotor speed was significantly increased following insertion of the electrodes. At the controlled speed, the amplitude of sagittal plane lumbo-pelvic motion decreased significantly post-insertion, but the extent of this change was the same in both groups. Lumbo-pelvic motion in the frontal and axial planes and thoraco-lumbar motion in all planes were not affected by the insertions. This study demonstrates that intramuscular EMG is an appropriate methodology to selectively quantify the activation patterns of the individual muscles in the paraspinal group, both in healthy individuals and individuals with a history of LBP. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Different mechanisms may generate sustained hypertonic and rhythmic bursting muscle activity in idiopathic dystonia.

    PubMed

    Liu, Xuguang; Yianni, John; Wang, Shouyan; Bain, Peter G; Stein, John F; Aziz, Tipu Z

    2006-03-01

    Despite that deep brain stimulation (DBS) of the globus pallidus internus (GPi) is emerging as the favored intervention for patients with medically intractable dystonia, the pathophysiological mechanisms of dystonia are largely unclear. In eight patients with primary dystonia who were treated with bilateral chronic pallidal stimulation, we correlated symptom-related electromyogram (EMG) activity of the most affected muscles with the local field potentials (LFPs) recorded from the globus pallidus electrodes. In 5 dystonic patients with mobile involuntary movements, rhythmic EMG bursts in the contralateral muscles were coherent with the oscillations in the pallidal LFPs at the burst frequency. In contrast, no significant coherence was seen between EMG and LFPs either for the sustained activity separated out from the compound EMGs in those 5 cases, or in the EMGs in 3 other cases without mobile involuntary movements and rhythmic EMG bursts. In comparison with the resting condition, in both active and passive movements, significant modulation in the GPi LFPs was seen in the range of 8-16 Hz. The finding of significant coherence between GPi oscillations and rhythmic EMG bursts but not sustained tonic EMG activity suggests that the synchronized pallidal activity may be directly related to the rhythmic involuntary movements. In contrast, the sustained hypertonic muscle activity may be represented by less synchronized activity in the pallidum. Thus, the pallidum may play different roles in generating different components of the dystonic symptom complex.

  19. [Electromyographic study of mastication muscles in patients with TMG osteoarthrosis].

    PubMed

    Silin, A V; Satygo, E A; Semeleva, E I; Lila, A M

    2014-01-01

    The aim of this study was to determine the functional activity of cranio-mandibular system in patients with TMG osteoarthrosis. The study included 20 patients with TMG osteoarthrosis and 20 healthy subjects representing control group. The EMG examination was performed according to standard protocol developed in Milan University. The symmetry index values in the group with TMG osteoarthrosis were lower than in the control group (78.76±12.29%), while Torque values were higher (8.53±14.62%). EMG standardized indexes allowed differentiating TMG osteoarthrosis.

  20. Sensorimotor adaptations to microgravity in humans.

    PubMed

    Edgerton, V R; McCall, G E; Hodgson, J A; Gotto, J; Goulet, C; Fleischmann, K; Roy, R R

    2001-09-01

    Motor function is altered by microgravity, but little detail is available as to what these changes are and how changes in the individual components of the sensorimotor system affect the control of movement. Further, there is little information on whether the changes in motor performance reflect immediate or chronic adaptations to changing gravitational environments. To determine the effects of microgravity on the neural control properties of selected motor pools, four male astronauts from the NASA STS-78 mission performed motor tasks requiring the maintenance of either ankle dorsiflexor or plantarflexor torque. Torques of 10 or 50% of a maximal voluntary contraction (MVC) were requested of the subjects during 10 degrees peak-to-peak sinusoidal movements at 0.5 Hz. When 10% MVC of the plantarflexors was requested, the actual torques generated in-flight were similar to pre-flight values. Post-flight torques were higher than pre- and in-flight torques. The actual torques when 50% MVC was requested were higher in- and post-flight than pre-flight. Soleus (Sol) electromyographic (EMG) amplitudes during plantarflexion were higher in-flight than pre- or post-flight for both the 10 and 50% MVC tasks. No differences in medial gastrocnemius (MG) EMG amplitudes were observed for either the 10 or 50% MVC tasks. The EMG amplitudes of the tibialis anterior (TA), an antagonist to plantarflexion, were higher in- and post-flight than pre-flight for the 50% MVC task. During the dorsiflexion tasks, the torques generated in both the 10 and 50% MVC tasks did not differ pre-, in- and post-flight. TA EMG amplitudes were significantly higher in- than pre-flight for both the 10 or 50% MVC tasks, and remained elevated post-flight for the 50% MVC test. Both the Sol and MG EMG amplitudes were significantly higher in-flight than either pre- or post-flight for both the 10 and 50% MVC tests. These data suggest that the most consistent response to space flight was an elevation in the level of contractions of agonists and antagonists when attempting to maintain constant torques at a given level of MVC. Also, the chronic levels of EMG activity in selected ankle flexor and extensor muscles during space flight and during routine activities on Earth were recorded. Compared with pre- and post-flight values, there was a marked increase in the total EMG activity of the TA and the Sol and no change in the MG EMG activity in-flight. These data indicate that space flight, as occurs on shuttle missions, is a model of elevated activation of both flexor and extensor muscles, probably reflecting the effects of programmed work schedules in flight rather than a direct effect of microgravity.

  1. Sensorimotor adaptations to microgravity in humans

    NASA Technical Reports Server (NTRS)

    Edgerton, V. R.; McCall, G. E.; Hodgson, J. A.; Gotto, J.; Goulet, C.; Fleischmann, K.; Roy, R. R.

    2001-01-01

    Motor function is altered by microgravity, but little detail is available as to what these changes are and how changes in the individual components of the sensorimotor system affect the control of movement. Further, there is little information on whether the changes in motor performance reflect immediate or chronic adaptations to changing gravitational environments. To determine the effects of microgravity on the neural control properties of selected motor pools, four male astronauts from the NASA STS-78 mission performed motor tasks requiring the maintenance of either ankle dorsiflexor or plantarflexor torque. Torques of 10 or 50% of a maximal voluntary contraction (MVC) were requested of the subjects during 10 degrees peak-to-peak sinusoidal movements at 0.5 Hz. When 10% MVC of the plantarflexors was requested, the actual torques generated in-flight were similar to pre-flight values. Post-flight torques were higher than pre- and in-flight torques. The actual torques when 50% MVC was requested were higher in- and post-flight than pre-flight. Soleus (Sol) electromyographic (EMG) amplitudes during plantarflexion were higher in-flight than pre- or post-flight for both the 10 and 50% MVC tasks. No differences in medial gastrocnemius (MG) EMG amplitudes were observed for either the 10 or 50% MVC tasks. The EMG amplitudes of the tibialis anterior (TA), an antagonist to plantarflexion, were higher in- and post-flight than pre-flight for the 50% MVC task. During the dorsiflexion tasks, the torques generated in both the 10 and 50% MVC tasks did not differ pre-, in- and post-flight. TA EMG amplitudes were significantly higher in- than pre-flight for both the 10 or 50% MVC tasks, and remained elevated post-flight for the 50% MVC test. Both the Sol and MG EMG amplitudes were significantly higher in-flight than either pre- or post-flight for both the 10 and 50% MVC tests. These data suggest that the most consistent response to space flight was an elevation in the level of contractions of agonists and antagonists when attempting to maintain constant torques at a given level of MVC. Also, the chronic levels of EMG activity in selected ankle flexor and extensor muscles during space flight and during routine activities on Earth were recorded. Compared with pre- and post-flight values, there was a marked increase in the total EMG activity of the TA and the Sol and no change in the MG EMG activity in-flight. These data indicate that space flight, as occurs on shuttle missions, is a model of elevated activation of both flexor and extensor muscles, probably reflecting the effects of programmed work schedules in flight rather than a direct effect of microgravity.

  2. Leg surface electromyography patterns in children with neuro-orthopedic disorders walking on a treadmill unassisted and assisted by a robot with and without encouragement

    PubMed Central

    2013-01-01

    Background Robot-assisted gait training and treadmill training can complement conventional physical therapy in children with neuro-orthopedic movement disorders. The aim of this study was to investigate surface electromyography (sEMG) activity patterns during robot-assisted gait training (with and without motivating instructions from a therapist) and unassisted treadmill walking and to compare these with physiological sEMG patterns. Methods Nine children with motor impairments and eight healthy children walked in various conditions: (a) on a treadmill in the driven gait orthosis Lokomat®, (b) same condition, with additional motivational instructions from a therapist, and (c) on the treadmill without assistance. sEMG recordings were made of the tibialis anterior, gastrocnemius lateralis, vastus medialis, and biceps femoris muscles. Differences in sEMG amplitudes between the three conditions were analyzed for the duration of stance and swing phase (for each group and muscle separately) using non-parametric tests. Spearman’s correlation coefficients illustrated similarity of muscle activation patterns between conditions, between groups, and with published reference trajectories. Results The relative duration of stance and swing phase differed between patients and controls, and between driven gait orthosis conditions and treadmill walking. While sEMG amplitudes were higher when being encouraged by a therapist compared to robot-assisted gait training without instructions (0.008 ≤ p-value ≤ 0.015), muscle activation patterns were highly comparable (0.648 ≤ Spearman correlation coefficients ≤ 0.969). In general, comparisons of the sEMG patterns with published reference data of over-ground walking revealed that walking in the driven gait orthosis could induce more physiological muscle activation patterns compared to unsupported treadmill walking. Conclusions Our results suggest that robotic-assisted gait training with therapeutic encouragement could appropriately increase muscle activity. Robotic-assisted gait training in general could induce physiological muscle activation patterns, which might indicate that this training exploits restorative rather than compensatory mechanisms. PMID:23867005

  3. Efficacy of EMG-triggered electrical arm stimulation in chronic hemiparetic stroke patients.

    PubMed

    von Lewinski, Friederike; Hofer, Sabine; Kaus, Jürgen; Merboldt, Klaus-Dietmar; Rothkegel, Holger; Schweizer, Renate; Liebetanz, David; Frahm, Jens; Paulus, Walter

    2009-01-01

    EMG-triggered electrostimulation (EMG-ES) may improve the motor performance of affected limbs of hemiparetic stroke patients even in the chronic stage. This study was designed to characterize cortical activation changes following intensified EMG-ES in chronic stroke patients and to identify predictors for successful rehabilitation depending on disease severity. We studied 9 patients with severe residual hemiparesis, who underwent 8 weeks of daily task-orientated multi-channel EMG-ES of the paretic arm. Before and after treatment, arm function was evaluated clinically and cortical activation patterns were assessed with functional MRI (fMRI) and/or transcranial magnetic stimulation (TMS). As response to therapy, arm function improved in a subset of patients with more capacity in less affected subjects, but there was no significant gain for those with Box & Block test values below 4 at inception. The clinical improvement, if any, was accompanied by an ipsilesional increase in the sensorimotor cortex (SMC) activation area in fMRI and enhanced intracortical facilitation (ICF) as revealed by paired TMS. The SMC activation change in fMRI was predicted by the presence or absence of motor-evoked potentials (MEPs) on the affected side. The present findings support the notion that intensified EMG-ES may improve the arm function in individual chronic hemiparetic stroke patients but not in more severely impaired individuals. Functional improvements are paralleled by increased ipsilesional SMC activation and enhanced ICF supporting neuroplasticity as contributor to rehabilitation. The clinical score at inception and the presence of MEPs have the best predictive potential.

  4. Noninvasive Electroencephalogram Based Control of a Robotic Arm for Writing Task Using Hybrid BCI System.

    PubMed

    Gao, Qiang; Dou, Lixiang; Belkacem, Abdelkader Nasreddine; Chen, Chao

    2017-01-01

    A novel hybrid brain-computer interface (BCI) based on the electroencephalogram (EEG) signal which consists of a motor imagery- (MI-) based online interactive brain-controlled switch, "teeth clenching" state detector, and a steady-state visual evoked potential- (SSVEP-) based BCI was proposed to provide multidimensional BCI control. MI-based BCI was used as single-pole double throw brain switch (SPDTBS). By combining the SPDTBS with 4-class SSEVP-based BCI, movement of robotic arm was controlled in three-dimensional (3D) space. In addition, muscle artifact (EMG) of "teeth clenching" condition recorded from EEG signal was detected and employed as interrupter, which can initialize the statement of SPDTBS. Real-time writing task was implemented to verify the reliability of the proposed noninvasive hybrid EEG-EMG-BCI. Eight subjects participated in this study and succeeded to manipulate a robotic arm in 3D space to write some English letters. The mean decoding accuracy of writing task was 0.93 ± 0.03. Four subjects achieved the optimal criteria of writing the word "HI" which is the minimum movement of robotic arm directions (15 steps). Other subjects had needed to take from 2 to 4 additional steps to finish the whole process. These results suggested that our proposed hybrid noninvasive EEG-EMG-BCI was robust and efficient for real-time multidimensional robotic arm control.

  5. Noninvasive Electroencephalogram Based Control of a Robotic Arm for Writing Task Using Hybrid BCI System

    PubMed Central

    Gao, Qiang

    2017-01-01

    A novel hybrid brain-computer interface (BCI) based on the electroencephalogram (EEG) signal which consists of a motor imagery- (MI-) based online interactive brain-controlled switch, “teeth clenching” state detector, and a steady-state visual evoked potential- (SSVEP-) based BCI was proposed to provide multidimensional BCI control. MI-based BCI was used as single-pole double throw brain switch (SPDTBS). By combining the SPDTBS with 4-class SSEVP-based BCI, movement of robotic arm was controlled in three-dimensional (3D) space. In addition, muscle artifact (EMG) of “teeth clenching” condition recorded from EEG signal was detected and employed as interrupter, which can initialize the statement of SPDTBS. Real-time writing task was implemented to verify the reliability of the proposed noninvasive hybrid EEG-EMG-BCI. Eight subjects participated in this study and succeeded to manipulate a robotic arm in 3D space to write some English letters. The mean decoding accuracy of writing task was 0.93 ± 0.03. Four subjects achieved the optimal criteria of writing the word “HI” which is the minimum movement of robotic arm directions (15 steps). Other subjects had needed to take from 2 to 4 additional steps to finish the whole process. These results suggested that our proposed hybrid noninvasive EEG-EMG-BCI was robust and efficient for real-time multidimensional robotic arm control. PMID:28660211

  6. Kinesiology Taping does not Modify Electromyographic Activity or Muscle Flexibility of Quadriceps Femoris Muscle: A Randomized, Placebo-Controlled Pilot Study in Healthy Volleyball Players

    PubMed Central

    Halski, Tomasz; Dymarek, Robert; Ptaszkowski, Kuba; Słupska, Lucyna; Rajfur, Katarzyna; Rajfur, Joanna; Pasternok, Małgorzata; Smykla, Agnieszka; Taradaj, Jakub

    2015-01-01

    Background Kinesiology taping (KT) is a popular method of supporting professional athletes during sports activities, traumatic injury prevention, and physiotherapeutic procedures after a wide range of musculoskeletal injuries. The effectiveness of KT in muscle strength and motor units recruitment is still uncertain. The objective of this study was to assess the effect of KT on surface electromyographic (sEMG) activity and muscle flexibility of the rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM) muscles in healthy volleyball players. Material/Methods Twenty-two healthy volleyball players (8 men and 14 women) were included in the study and randomly assigned to 2 comparative groups: “kinesiology taping” (KT; n=12; age: 22.30±1.88 years; BMI: 22.19±4.00 kg/m2) in which KT application over the RF muscle was used, and “placebo taping” (PT; n=10; age: 21.50±2.07 years; BMI: 22.74±2.67 kg/m2) in which adhesive nonelastic tape over the same muscle was used. All subjects were analyzed for resting sEMG activity of the VL and VM muscles, resting and functional sEMG activity of RF muscle, and muscle flexibility of RF muscle. Results No significant differences in muscle flexibility of the RF muscle and sEMG activity of the RF, VL, and VM muscles were registered before and after interventions in both groups, and between the KT and PT groups (p>0.05). Conclusions The results show that application of the KT to the RF muscle is not useful to improve sEMG activity. PMID:26232122

  7. Stretchable human-machine interface based on skin-conformal sEMG electrodes with self-similar geometry

    NASA Astrophysics Data System (ADS)

    Dong, Wentao; Zhu, Chen; Hu, Wei; Xiao, Lin; Huang, Yong'an

    2018-01-01

    Current stretchable surface electrodes have attracted increasing attention owing to their potential applications in biological signal monitoring, wearable human-machine interfaces (HMIs) and the Internet of Things. The paper proposed a stretchable HMI based on a surface electromyography (sEMG) electrode with a self-similar serpentine configuration. The sEMG electrode was transfer-printed onto the skin surface conformally to monitor biological signals, followed by signal classification and controlling of a mobile robot. Such electrodes can bear rather large deformation (such as >30%) under an appropriate areal coverage. The sEMG electrodes have been used to record electrophysiological signals from different parts of the body with sharp curvature, such as the index finger, back of the neck and face, and they exhibit great potential for HMI in the fields of robotics and healthcare. The electrodes placed onto the two wrists would generate two different signals with the fist clenched and loosened. It is classified to four kinds of signals with a combination of the gestures from the two wrists, that is, four control modes. Experiments demonstrated that the electrodes were successfully used as an HMI to control the motion of a mobile robot remotely. Project supported by the National Natural Science Foundation of China (Nos. 51635007, 91323303).

  8. Learning an EMG Controlled Game: Task-Specific Adaptations and Transfer

    PubMed Central

    van Dijk, Ludger; van der Sluis, Corry K.; van Dijk, Hylke W.; Bongers, Raoul M.

    2016-01-01

    Video games that aim to improve myoelectric control (myogames) are gaining popularity and are often part of the rehabilitation process following an upper limb amputation. However, direct evidence for their effect on prosthetic skill is limited. This study aimed to determine whether and how myogaming improves EMG control and whether performance improvements transfer to a prosthesis-simulator task. Able-bodied right-handed participants (N = 28) were randomly assigned to 1 of 2 groups. The intervention group was trained to control a video game (Breakout-EMG) using the myosignals of wrist flexors and extensors. Controls played a regular Mario computer game. Both groups trained 20 minutes a day for 4 consecutive days. Before and after training, two tests were conducted: one level of the Breakout-EMG game, and grasping objects with a prosthesis-simulator. Results showed a larger increase of in-game accuracy for the Breakout-EMG group than for controls. The Breakout-EMG group moreover showed increased adaptation of the EMG signal to the game. No differences were found in using a prosthesis-simulator. This study demonstrated that myogames lead to task-specific myocontrol skills. Transfer to a prosthesis task is therefore far from easy. We discuss several implications for future myogame designs. PMID:27556154

  9. Learning an EMG Controlled Game: Task-Specific Adaptations and Transfer.

    PubMed

    van Dijk, Ludger; van der Sluis, Corry K; van Dijk, Hylke W; Bongers, Raoul M

    2016-01-01

    Video games that aim to improve myoelectric control (myogames) are gaining popularity and are often part of the rehabilitation process following an upper limb amputation. However, direct evidence for their effect on prosthetic skill is limited. This study aimed to determine whether and how myogaming improves EMG control and whether performance improvements transfer to a prosthesis-simulator task. Able-bodied right-handed participants (N = 28) were randomly assigned to 1 of 2 groups. The intervention group was trained to control a video game (Breakout-EMG) using the myosignals of wrist flexors and extensors. Controls played a regular Mario computer game. Both groups trained 20 minutes a day for 4 consecutive days. Before and after training, two tests were conducted: one level of the Breakout-EMG game, and grasping objects with a prosthesis-simulator. Results showed a larger increase of in-game accuracy for the Breakout-EMG group than for controls. The Breakout-EMG group moreover showed increased adaptation of the EMG signal to the game. No differences were found in using a prosthesis-simulator. This study demonstrated that myogames lead to task-specific myocontrol skills. Transfer to a prosthesis task is therefore far from easy. We discuss several implications for future myogame designs.

  10. Utility of multi-channel surface electromyography in assessment of focal hand dystonia.

    PubMed

    Sivadasan, Ajith; Sanjay, M; Alexander, Mathew; Devasahayam, Suresh R; Srinivasa, Babu K

    2013-09-01

    Surface electromyography (SEMG) allows objective assessment and guides selection of appropriate treatment in focal hand dystonia (FHD). Sixteen-channel SEMG obtained during different phases of a writing task was used to study timing, activation patterns, and spread of muscle contractions in FHD compared with normal controls. Customized software was developed to acquire and analyze EMG signals. SEMG of FHD subjects (20) showed "early onset" during motor imagery, rapid proximal muscle recruitment, agonist-antagonist co-contraction involving proximal muscle groups, "delayed offset" after stopping writing, higher rectified mean amplitudes, and mirror activity in contralateral limb compared with controls (16). Muscle activation latencies were heterogenous in FHD. Anticipation, delayed relaxation, and mirror EMG activation were noted in FHD. A clear pattern of muscle activation cannot be ascertained. Multi-channel SEMG can aid in objective assessment of temporal-spatial distribution of activity and can refine targeted therapies like chemodenervation and biofeedback. Copyright © 2013 Wiley Periodicals, Inc.

  11. Surface EMG signals based motion intent recognition using multi-layer ELM

    NASA Astrophysics Data System (ADS)

    Wang, Jianhui; Qi, Lin; Wang, Xiao

    2017-11-01

    The upper-limb rehabilitation robot is regard as a useful tool to help patients with hemiplegic to do repetitive exercise. The surface electromyography (sEMG) contains motion information as the electric signals are generated and related to nerve-muscle motion. These sEMG signals, representing human's intentions of active motions, are introduced into the rehabilitation robot system to recognize upper-limb movements. Traditionally, the feature extraction is an indispensable part of drawing significant information from original signals, which is a tedious task requiring rich and related experience. This paper employs a deep learning scheme to extract the internal features of the sEMG signals using an advanced Extreme Learning Machine based auto-encoder (ELMAE). The mathematical information contained in the multi-layer structure of the ELM-AE is used as the high-level representation of the internal features of the sEMG signals, and thus a simple ELM can post-process the extracted features, formulating the entire multi-layer ELM (ML-ELM) algorithm. The method is employed for the sEMG based neural intentions recognition afterwards. The case studies show the adopted deep learning algorithm (ELM-AE) is capable of yielding higher classification accuracy compared to the Principle Component Analysis (PCA) scheme in 5 different types of upper-limb motions. This indicates the effectiveness and the learning capability of the ML-ELM in such motion intent recognition applications.

  12. A new method for the noninvasive determination of abdominal muscle feedforward activity based on tissue velocity information from tissue Doppler imaging.

    PubMed

    Mannion, A F; Pulkovski, N; Schenk, P; Hodges, P W; Gerber, H; Loupas, T; Gorelick, M; Sprott, H

    2008-04-01

    Rapid arm movements elicit anticipatory activation of the deep-lying abdominal muscles; this appears modified in back pain, but the invasive technique used for its assessment [fine-wire electromyography (EMG)] has precluded its widespread investigation. We examined whether tissue-velocity changes recorded with ultrasound (M-mode) tissue Doppler imaging (TDI) provided a viable noninvasive alternative. Fourteen healthy subjects rapidly flexed, extended, and abducted the shoulder; recordings were made of medial deltoid (MD) surface EMG and of fine-wire EMG and TDI tissue-velocity changes of the contralateral transversus abdominis, obliquus internus, and obliquus externus. Muscle onsets were determined by blinded visual analysis of EMG and TDI data. TDI could not distinguish between the relative activation of the three muscles, so in subsequent analyses only the onset of the earliest abdominal muscle activity was used. The latter occurred <50 ms after the onset of medial deltoid EMG (i.e., was feedforward) and correlated with the corresponding EMG onsets (r = 0.47, P < 0.0001). The mean difference between methods was 20 ms and was likely explained by electromechanical delay; limits of agreement were wide (-40 to +80 ms) but no greater than those typical of repeated measurements using either technique. The between-day standard error of measurement of the TDI onsets (examined in 16 further subjects) was 16 ms. TDI yielded reliable and valid measures of the earliest onset of feedforward activity within the anterolateral abdominal muscle group. The method can be used to assess muscle dysfunction in large groups of back-pain patients and may also be suitable for the noninvasive analysis of other deep-lying or small/thin muscles.

  13. Spatiotemporal distribution of location and object effects in the electromyographic activity of upper extremity muscles during reach-to-grasp

    PubMed Central

    Rouse, Adam G.

    2016-01-01

    In reaching to grasp an object, proximal muscles that act on the shoulder and elbow classically have been viewed as transporting the hand to the intended location, while distal muscles that act on the fingers simultaneously shape the hand to grasp the object. Prior studies of electromyographic (EMG) activity in upper extremity muscles therefore have focused, by and large, either on proximal muscle activity during reaching to different locations or on distal muscle activity as the subject grasps various objects. Here, we examined the EMG activity of muscles from the shoulder to the hand, as monkeys reached and grasped in a task that dissociated location and object. We quantified the extent to which variation in the EMG activity of each muscle depended on location, on object, and on their interaction—all as a function of time. Although EMG variation depended on both location and object beginning early in the movement, an early phase of substantial location effects in muscles from proximal to distal was followed by a later phase in which object effects predominated throughout the extremity. Interaction effects remained relatively small. Our findings indicate that neural control of reach-to-grasp may occur largely in two sequential phases: the first, serving to project the entire upper extremity toward the intended location, and the second, acting predominantly to shape the entire extremity for grasping the object. PMID:27009156

  14. Biomimetic NMES controller for arm movements supported by a passive exoskeleton.

    PubMed

    Ferrante, S; Ambrosini, E; Ferrigno, G; Pedrocchi, A

    2012-01-01

    The European Project MUltimodal Neuroprosthesis for Daily Upper limb Support (MUNDUS) aims at the development of an assistive platform for recovering direct interaction capability during daily life activities based on arm reaching and hand functions. Within this project the present study is focused on the design of a biomimetic controller able to modulate the neuromuscular electrical stimulation needed to perform reaching movements supported by a commercial passive exoskeleton for weight relief. Once defined the activities of daily life to be supported by the MUNDUS system, an experimental campaign on healthy subjects was carried out to identify the repeatable kinematics and muscular solution adopted during the target movements. The kinematics resulted to be highly stereotyped, a root mean squared error lower than 5° was found between all the trajectories obtained by healthy subjects in the same movement. A principal component analysis was performed on the EMG signals: less than 5 components explained more than the 85% of the signal variance. This result suggested that the muscular strategy adopted by healthy subjects was stereotyped and can be replicated by a biomimetic NMES controller. The controller was based on a time-delay artificial neural network which mapped the dynamic and non-linear relationship between kinematics and EMG activations to determine the stimulation timing. The stimulation levels reproduced the same scaling factors found between muscles in the stereotyped strategy. The controller was tested on 2 healthy subjects and though it was a feedforward controller, it showed good accuracy in reaching the desired target positions. The integration of a feedback controller is foreseen to ensure the complete accomplishment of the task and to compensate for unpredictable conditions such as muscular fatigue.

  15. Electroencephalogram–Electromyography Coupling Analysis in Stroke Based on Symbolic Transfer Entropy

    PubMed Central

    Gao, Yunyuan; Ren, Leilei; Li, Rihui; Zhang, Yingchun

    2018-01-01

    The coupling strength between electroencephalogram (EEG) and electromyography (EMG) signals during motion control reflects the interaction between the cerebral motor cortex and muscles. Therefore, neuromuscular coupling characterization is instructive in assessing motor function. In this study, to overcome the limitation of losing the characteristics of signals in conventional time series symbolization methods, a variable scale symbolic transfer entropy (VS-STE) analysis approach was proposed for corticomuscular coupling evaluation. Post-stroke patients (n = 5) and healthy volunteers (n = 7) were recruited and participated in various tasks (left and right hand gripping, elbow bending). The proposed VS-STE was employed to evaluate the corticomuscular coupling strength between the EEG signal measured from the motor cortex and EMG signal measured from the upper limb in both the time-domain and frequency-domain. Results showed a greater strength of the bi-directional (EEG-to-EMG and EMG-to-EEG) VS-STE in post-stroke patients compared to healthy controls. In addition, the strongest EEG–EMG coupling strength was observed in the beta frequency band (15–35 Hz) during the upper limb movement. The predefined coupling strength of EMG-to-EEG in the affected side of the patient was larger than that of EEG-to-EMG. In conclusion, the results suggested that the corticomuscular coupling is bi-directional, and the proposed VS-STE can be used to quantitatively characterize the non-linear synchronization characteristics and information interaction between the primary motor cortex and muscles. PMID:29354091

  16. Simultaneous Force Regression and Movement Classification of Fingers via Surface EMG within a Unified Bayesian Framework.

    PubMed

    Baldacchino, Tara; Jacobs, William R; Anderson, Sean R; Worden, Keith; Rowson, Jennifer

    2018-01-01

    This contribution presents a novel methodology for myolectric-based control using surface electromyographic (sEMG) signals recorded during finger movements. A multivariate Bayesian mixture of experts (MoE) model is introduced which provides a powerful method for modeling force regression at the fingertips, while also performing finger movement classification as a by-product of the modeling algorithm. Bayesian inference of the model allows uncertainties to be naturally incorporated into the model structure. This method is tested using data from the publicly released NinaPro database which consists of sEMG recordings for 6 degree-of-freedom force activations for 40 intact subjects. The results demonstrate that the MoE model achieves similar performance compared to the benchmark set by the authors of NinaPro for finger force regression. Additionally, inherent to the Bayesian framework is the inclusion of uncertainty in the model parameters, naturally providing confidence bounds on the force regression predictions. Furthermore, the integrated clustering step allows a detailed investigation into classification of the finger movements, without incurring any extra computational effort. Subsequently, a systematic approach to assessing the importance of the number of electrodes needed for accurate control is performed via sensitivity analysis techniques. A slight degradation in regression performance is observed for a reduced number of electrodes, while classification performance is unaffected.

  17. Electromyographic activity associated with spontaneous functional recovery after spinal cord injury in rats.

    PubMed

    Kaegi, Sibille; Schwab, Martin E; Dietz, Volker; Fouad, Karim

    2002-07-01

    This investigation was designed to study the spontaneous functional recovery of adult rats with incomplete spinal cord injury (SCI) at thoracic level during a time course of 2 weeks. Daily testing sessions included open field locomotor examination and electromyographic (EMG) recordings from a knee extensor (vastus lateralis, VL) and an ankle flexor muscle (tibialis anterior, TA) in the hindlimbs of treadmill walking rats. The BBB score (a locomotor score named after Basso et al., 1995, J. Neurotrauma, 12, 1-21) and various measures from EMG recordings were analysed (i.e. step cycle duration, rhythmicity of limb movements, flexor and extensor burst duration, EMG amplitude, root-mean-square, activity overlap between flexor and extensor muscles and hindlimb coupling). Directly after SCI, a marked drop in locomotor ability occurred in all rats with subsequent partial recovery over 14 days. The recovery was most pronounced during the first week. Significant changes were noted in the recovery of almost all analysed EMG measures. Within the 14 days of recovery, many of these measures approached control levels. Persistent abnormalities included a prolonged flexor burst and increased activity overlap between flexor and extensor muscles. Activity overlap between flexor and extensor muscles might be directly caused by altered descending input or by maladaptation of central pattern generating networks and/or sensory feedback.

  18. The clinical and EMG assessment of the effects of stabilization exercise on nonspecific chronic neck pain: A randomized controlled trial.

    PubMed

    Ghaderi, Fariba; Jafarabadi, Mohammad Asghari; Javanshir, Khodabakhsh

    2017-01-01

    Neck pain is an important cause of disability. In spite of its high prevalence rate, treatment of the disorder is a challenging topic. Stabilization exercise has been the topic of many studies. To compare the effects of stabilization and routine exercises on chronic neck pain. Forty patients were randomly assigned into either stabilization or routine exercise groups and undertook a 10-week training program. Electromyographic (EMG) activity was recorded from Sternocleidomastoid (SCM), Anterior Scalene (AS) and Splenius Capitis (SC) muscles bilaterally. Endurance time of deep flexor muscles was measured by chronometer.Pain and disability were measured using Visual Analogue Scale (VAS) and neck disability index (NDI) questionnaire, respectively before and after training period. Findings revealed significant decreased pain and disability in both groups after intervention (P< 0/001). Flexor muscles endurance of stabilization group was significantly increased compared with that of routine (P< 0/001). Also EMG activity of SCM, AS and SC muscles were significantly decreased in stabilization group compared with routine (P< 0/001). Increased deep flexor endurance and decreased EMG activity of SCM, AS and SC muscles suggest an important role for stabilizing exercises on reducing the activity of superficial muscles in chronic neck pain.

  19. Decreased torque and electromyographic activity in the extensor thigh muscles in chondromalacia patellae.

    PubMed

    Väätäinen, U; Airaksinen, O; Jaroma, H; Kiviranta, I

    1995-01-01

    The alterations in thigh muscle properties of chondromalacia patellae patients during isometric and dynamic endurance tests were studied using a variokinetic knee testing system linked to surface EMG. A total of 41 patients (chondromalacia group) with arthroscopically certified chondromalacia of the patella were studied. The control group consisted of 31 healthy adult volunteers with no history of knee pain or trauma. Peak torque values were 21% (p < 0.01) and force output values 25% (p < 0.05) lower on the symptomatic side of the chondromalacia group than in the control group. The decrease in the ratio between integrated EMG (IEMG) and measured force were found in all parts of the quadriceps femoris muscle in patients with chondromalacia of the patella in isometric extension. No change in the normalized IEMG levels of the thigh muscles were found between chondromalacia patients and controls in dynamic endurance test. The severity of the chondromalacia of the patella did not affect the level of electromyographic activation in thigh muscles. The ratio of normalized EMG levels of vastus medialis and vastus lateralis did not differ between the groups. The present study showed that chondromalacia patellae patients have reduced force and electromyographic activation levels of quadriceps femoris muscle. Especially, the explosive strength of the quadriceps femoris muscle is reduced.

  20. The effects of self-controlled feedback on learning of a "relaxed phonation task".

    PubMed

    Ma, Estella P-M; Yiu, Gigi K-Y; Yiu, Edwin M-L

    2013-11-01

    This study examined the effects of self-controlled feedback paradigm on motor learning of a relaxed phonation task. It investigated whether providing the learner with more control over practice condition has positive influences on the performance and learning of "relaxed phonation" skill. Vocally healthy individuals were randomly assigned into either self-controlled feedback group (SELF) or clinician-controlled feedback group (YOKED). All participants were engaged in a reading aloud task. Throughout the task, their perilaryngeal muscle activities were measured at thyrohyoid (TH) and orofacial (OF) sites using surface electromyography (EMG). The EMG values measured at the TH site were provided to participants as terminal biofeedback. Participants were required to minimize the EMG values. The SELF group received EMG biofeedback whenever they requested it, whereas the YOKED group received the same feedback schedule as chosen by their self-controlled counterparts. The pooled data for all participants revealed that there was a significant reduction of muscle tension across baseline, training, and retention phases. Generalization was shown to reading of untrained passage. Interestingly, significant reduction of muscle tension across training and retention tests was found in the control OF site but not in the target TH site. The results failed to demonstrate significant differences between SELF and YOKED groups. It provided no clear evidence to conclude that self-controlled feedback paradigm was beneficial to learning of relaxed phonation. Copyright © 2013 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  1. Extracting time-frequency feature of single-channel vastus medialis EMG signals for knee exercise pattern recognition.

    PubMed

    Zhang, Yi; Li, Peiyang; Zhu, Xuyang; Su, Steven W; Guo, Qing; Xu, Peng; Yao, Dezhong

    2017-01-01

    The EMG signal indicates the electrophysiological response to daily living of activities, particularly to lower-limb knee exercises. Literature reports have shown numerous benefits of the Wavelet analysis in EMG feature extraction for pattern recognition. However, its application to typical knee exercises when using only a single EMG channel is limited. In this study, three types of knee exercises, i.e., flexion of the leg up (standing), hip extension from a sitting position (sitting) and gait (walking) are investigated from 14 healthy untrained subjects, while EMG signals from the muscle group of vastus medialis and the goniometer on the knee joint of the detected leg are synchronously monitored and recorded. Four types of lower-limb motions including standing, sitting, stance phase of walking, and swing phase of walking, are segmented. The Wavelet Transform (WT) based Singular Value Decomposition (SVD) approach is proposed for the classification of four lower-limb motions using a single-channel EMG signal from the muscle group of vastus medialis. Based on lower-limb motions from all subjects, the combination of five-level wavelet decomposition and SVD is used to comprise the feature vector. The Support Vector Machine (SVM) is then configured to build a multiple-subject classifier for which the subject independent accuracy will be given across all subjects for the classification of four types of lower-limb motions. In order to effectively indicate the classification performance, EMG features from time-domain (e.g., Mean Absolute Value (MAV), Root-Mean-Square (RMS), integrated EMG (iEMG), Zero Crossing (ZC)) and frequency-domain (e.g., Mean Frequency (MNF) and Median Frequency (MDF)) are also used to classify lower-limb motions. The five-fold cross validation is performed and it repeats fifty times in order to acquire the robust subject independent accuracy. Results show that the proposed WT-based SVD approach has the classification accuracy of 91.85%±0.88% which outperforms other feature models.

  2. sEMG Signal Acquisition Strategy towards Hand FES Control.

    PubMed

    Toledo-Peral, Cinthya Lourdes; Gutiérrez-Martínez, Josefina; Mercado-Gutiérrez, Jorge Airy; Martín-Vignon-Whaley, Ana Isabel; Vera-Hernández, Arturo; Leija-Salas, Lorenzo

    2018-01-01

    Due to damage of the nervous system, patients experience impediments in their daily life: severe fatigue, tremor or impaired hand dexterity, hemiparesis, or hemiplegia. Surface electromyography (sEMG) signal analysis is used to identify motion; however, standardization of electrode placement and classification of sEMG patterns are major challenges. This paper describes a technique used to acquire sEMG signals for five hand motion patterns from six able-bodied subjects using an array of recording and stimulation electrodes placed on the forearm and its effects over functional electrical stimulation (FES) and volitional sEMG combinations, in order to eventually control a sEMG-driven FES neuroprosthesis for upper limb rehabilitation. A two-part protocol was performed. First, personalized templates to place eight sEMG bipolar channels were designed; with these data, a universal template, called forearm electrode set (FELT), was built. Second, volitional and evoked movements were recorded during FES application. 95% classification accuracy was achieved using two sessions per movement. With the FELT, it was possible to perform FES and sEMG recordings simultaneously. Also, it was possible to extract the volitional and evoked sEMG from the raw signal, which is highly important for closed-loop FES control.

  3. Reduced servo-control of fatigued human finger extensor and flexor muscles.

    PubMed Central

    Hagbarth, K E; Bongiovanni, L G; Nordin, M

    1995-01-01

    1. In healthy human subjects holding the index finger semi-extended at the metacarpophalangeal joint against a moderate load, electromyographic (EMG) activity was recorded from the finger extensor and flexor muscles during different stages of muscle fatigue. The aim was to study the effect of muscle fatigue on the level of background EMG activity and on the reflex responses to torque pulses causing sudden extensor unloadings. Paired comparisons were made between the averaged EMG and finger deflection responses under two conditions: (1) at a stage of fatigue (following a sustained co-contraction) when great effort was required to maintain the finger position, and (2) under non-fatigue conditions while the subject tried to produce similar background EMG levels to those in the corresponding fatigue trials. 2. Both the unloading reflex in the extensor and the concurrent stretch reflex in the flexor were significantly less pronounced and had a longer latency in the fatigue trials. Consequently, the finger deflections had a larger amplitude and were arrested later in the fatigue trials. 3. It is concluded that--with avoidance of 'automatic gain compensation', i.e. reflex modifications attributable to differences in background EMG levels--the servo-like action of the unloading and stretch reflexes is reduced in fatigued finger extensor and flexor muscles. PMID:7562624

  4. Kinematic, Muscular, and Metabolic Responses During Exoskeletal-, Elliptical-, or Therapist-Assisted Stepping in People With Incomplete Spinal Cord Injury

    PubMed Central

    Kinnaird, Catherine R.; Holleran, Carey L.; Rafferty, Miriam R.; Rodriguez, Kelly S.; Cain, Julie B.

    2012-01-01

    Background Robotic-assisted locomotor training has demonstrated some efficacy in individuals with neurological injury and is slowly gaining clinical acceptance. Both exoskeletal devices, which control individual joint movements, and elliptical devices, which control endpoint trajectories, have been utilized with specific patient populations and are available commercially. No studies have directly compared training efficacy or patient performance during stepping between devices. Objective The purpose of this study was to evaluate kinematic, electromyographic (EMG), and metabolic responses during elliptical- and exoskeletal-assisted stepping in individuals with incomplete spinal cord injury (SCI) compared with therapist-assisted stepping. Design A prospective, cross-sectional, repeated-measures design was used. Methods Participants with incomplete SCI (n=11) performed 3 separate bouts of exoskeletal-, elliptical-, or therapist-assisted stepping. Unilateral hip and knee sagittal-plane kinematics, lower-limb EMG recordings, and oxygen consumption were compared across stepping conditions and with control participants (n=10) during treadmill stepping. Results Exoskeletal stepping kinematics closely approximated normal gait patterns, whereas significantly greater hip and knee flexion postures were observed during elliptical-assisted stepping. Measures of kinematic variability indicated consistent patterns in control participants and during exoskeletal-assisted stepping, whereas therapist- and elliptical-assisted stepping kinematics were more variable. Despite specific differences, EMG patterns generally were similar across stepping conditions in the participants with SCI. In contrast, oxygen consumption was consistently greater during therapist-assisted stepping. Limitations Limitations included a small sample size, lack of ability to evaluate kinetics during stepping, unilateral EMG recordings, and sagittal-plane kinematics. Conclusions Despite specific differences in kinematics and EMG activity, metabolic activity was similar during stepping in each robotic device. Understanding potential differences and similarities in stepping performance with robotic assistance may be important in delivery of repeated locomotor training using robotic or therapist assistance and for consumers of robotic devices. PMID:22700537

  5. Design of sEMG assembly to detect external anal sphincter activity: a proof of concept.

    PubMed

    Shiraz, Arsam; Leaker, Brian; Mosse, Charles Alexander; Solomon, Eskinder; Craggs, Michael; Demosthenous, Andreas

    2017-10-31

    Conditional trans-rectal stimulation of the pudendal nerve could provide a viable solution to treat hyperreflexive bladder in spinal cord injury. A set threshold of the amplitude estimate of the external anal sphincter surface electromyography (sEMG) may be used as the trigger signal. The efficacy of such a device should be tested in a large scale clinical trial. As such, a probe should remain in situ for several hours while patients attend to their daily routine; the recording electrodes should be designed to be large enough to maintain good contact while observing design constraints. The objective of this study was to arrive at a design for intra-anal sEMG recording electrodes for the subsequent clinical trials while deriving the possible recording and processing parameters. Having in mind existing solutions and based on theoretical and anatomical considerations, a set of four multi-electrode probes were designed and developed. These were tested in a healthy subject and the measured sEMG traces were recorded and appropriately processed. It was shown that while comparatively large electrodes record sEMG traces that are not sufficiently correlated with the external anal sphincter contractions, smaller electrodes may not maintain a stable electrode tissue contact. It was shown that 3 mm wide and 1 cm long electrodes with 5 mm inter-electrode spacing, in agreement with Nyquist sampling, placed 1 cm from the orifice may intra-anally record a sEMG trace sufficiently correlated with external anal sphincter activity. The outcome of this study can be used in any biofeedback, treatment or diagnostic application where the activity of the external anal sphincter sEMG should be detected for an extended period of time.

  6. Objective models of EMG signals for cyclic processes such as a human gait

    NASA Astrophysics Data System (ADS)

    Babska, Luiza; Selegrat, Monika; Dusza, Jacek J.

    2016-09-01

    EMG signals are small potentials appearing at the surface of human skin during muscle work. They arise due to changes in the physiological state of cell membranes in the muscle fibers. They are characterized by a relatively low frequency range (500 Hz) and a low amplitude signal (of the order of μV), making it difficult to record. Raw EMG signal is inherently random shape. However we can distinguish certain features related to the activation of the muscles of a deterministic or quasi-deterministic associated with the movement and its parametric description. Objective models of EMG signals were created on the base of actual data obtained from the VICON system installed at the University of Physical Education in Warsaw. The object of research (healthy woman) moved repeatedly after a fixed track. On her body 35 reflective markers to record the gait kinematics and 8 electrodes to record EMG signals were placed. We obtained research data included more than 1,000 EMG signals synchronized with the phases of gait. Test result of the work is an algorithm for obtaining the average EMG signal received from the multiple registration gait cycles carried out in the same reproducible conditions. The method described in the article is essentially a pre-finding measurement data from the two quasi-synchronous signals at different sampling frequencies for further processing. This signal is characterized by a significant reduction of high frequency noise and emphasis on the specific characteristics of individual records found in muscle activity.

  7. [Research on Control System of an Exoskeleton Upper-limb Rehabilitation Robot].

    PubMed

    Wang, Lulu; Hu, Xin; Hu, Jie; Fang, Youfang; He, Rongrong; Yu, Hongliu

    2016-12-01

    In order to help the patients with upper-limb disfunction go on rehabilitation training,this paper proposed an upper-limb exoskeleton rehabilitation robot with four degrees of freedom(DOF),and realized two control schemes,i.e.,voice control and electromyography control.The hardware and software design of the voice control system was completed based on RSC-4128 chips,which realized the speech recognition technology of a specific person.Besides,this study adapted self-made surface eletromyogram(sEMG)signal extraction electrodes to collect sEMG signals and realized pattern recognition by conducting sEMG signals processing,extracting time domain features and fixed threshold algorithm.In addition,the pulse-width modulation(PWM)algorithm was used to realize the speed adjustment of the system.Voice control and electromyography control experiments were then carried out,and the results showed that the mean recognition rate of the voice control and electromyography control reached 93.1%and 90.9%,respectively.The results proved the feasibility of the control system.This study is expected to lay a theoretical foundation for the further improvement of the control system of the upper-limb rehabilitation robot.

  8. Evaluation of Bioelectrical Activity of Pelvic Floor Muscles and Synergistic Muscles Depending on Orientation of Pelvis in Menopausal Women with Symptoms of Stress Urinary Incontinence: A Preliminary Observational Study

    PubMed Central

    Halski, Tomasz; Słupska, Lucyna; Dymarek, Robert; Bartnicki, Janusz; Halska, Urszula; Król, Agata; Paprocka-Borowicz, Małgorzata; Dembowski, Janusz; Zdrojowy, Romuald

    2014-01-01

    Objectives. Evaluation of resting and functional bioelectrical activity of the pelvic floor muscles (PFM) and the synergistic muscles, depending on the orientation of the pelvis, in anterior (P1) and posterior (P2) pelvic tilt. Design. Preliminary, prospective observational study. Setting. Department and Clinic of Urology, University Hospital in Wroclaw, Poland. Participants. Thirty-two menopausal and postmenopausal women with stress urinary incontinence were recruited. Based on inclusion and exclusion criteria, sixteen women aged 55 to 70 years were enrolled in the study. Primary Outcome Measures. Evaluation of resting and functional bioelectrical activity of the pelvic floor muscles by electromyography (sEMG) and vaginal probe. Secondary Outcome Measures. Evaluation of activity of the synergistic muscles by sEMG and surface electrodes. Results. No significant differences between orientations P1 and P2 were found in functional and resting sEMG activity of the PFM. During resting and functional PFM activity, higher electrical activity in P2 than in P1 has been recorded in some of the synergistic muscles. Conclusions. This preliminary study does not provide initial evidence that pelvic tilt influences PFM activation. Although different activity of synergistic muscles occurs in various orientations of the pelvic tilt, it does not have to affect the sEMG activity of the PFM. PMID:24701567

  9. Long-term surface EMG monitoring using K-means clustering and compressive sensing

    NASA Astrophysics Data System (ADS)

    Balouchestani, Mohammadreza; Krishnan, Sridhar

    2015-05-01

    In this work, we present an advanced K-means clustering algorithm based on Compressed Sensing theory (CS) in combination with the K-Singular Value Decomposition (K-SVD) method for Clustering of long-term recording of surface Electromyography (sEMG) signals. The long-term monitoring of sEMG signals aims at recording of the electrical activity produced by muscles which are very useful procedure for treatment and diagnostic purposes as well as for detection of various pathologies. The proposed algorithm is examined for three scenarios of sEMG signals including healthy person (sEMG-Healthy), a patient with myopathy (sEMG-Myopathy), and a patient with neuropathy (sEMG-Neuropathr), respectively. The proposed algorithm can easily scan large sEMG datasets of long-term sEMG recording. We test the proposed algorithm with Principal Component Analysis (PCA) and Linear Correlation Coefficient (LCC) dimensionality reduction methods. Then, the output of the proposed algorithm is fed to K-Nearest Neighbours (K-NN) and Probabilistic Neural Network (PNN) classifiers in order to calclute the clustering performance. The proposed algorithm achieves a classification accuracy of 99.22%. This ability allows reducing 17% of Average Classification Error (ACE), 9% of Training Error (TE), and 18% of Root Mean Square Error (RMSE). The proposed algorithm also reduces 14% clustering energy consumption compared to the existing K-Means clustering algorithm.

  10. Bench press and push-up at comparable levels of muscle activity results in similar strength gains.

    PubMed

    Calatayud, Joaquin; Borreani, Sebastien; Colado, Juan C; Martin, Fernando; Tella, Victor; Andersen, Lars L

    2015-01-01

    Electromyography (EMG) exercise evaluation is commonly used to measure the intensity of muscle contraction. Although researchers assume that biomechanically comparable resistance exercises with similar high EMG levels will produce similar strength gains over the long term, no studies have actually corroborated this hypothesis. This study evaluated EMG levels during 6 repetition maximum (6RM) bench press and push-up, and subsequently performed a 5-week training period where subjects were randomly divided into 3 groups (i.e., 6RM bench press group, 6RM elastic band push-up group, or control group) to evaluate muscle strength gains. Thirty university students with advanced resistance training experience participated in the 2-part study. During the training period, exercises were performed using the same loads and variables that were used during the EMG data collection. At baseline, EMG amplitude showed no significant difference between 6RM bench press and band push-up. Significant differences among the groups were found for percent change (Δ) between pretest and posttest for 6RM (p = 0.017) and for 1 repetition maximum (1RM) (p < 0.001). Six repetition maximum bench press group and 6RM elastic band push-up group improved their 1RM and 6RM (Δ ranging from 13.65 to 22.21) tests significantly with similar gains, whereas control group remains unchanged. Thus, when the EMG values are comparable and the same conditions are reproduced, the aforementioned exercises can provide similar muscle strength gains.

  11. A Biomechanical Investigation of A Single-Limb Squat: Implications for Lower Extremity Rehabilitation Exercise

    PubMed Central

    Richards, Jim; Thewlis, Dominic; Selfe, James; Cunningham, Andrew; Hayes, Colin

    2008-01-01

    Context: Single-limb squats on a decline angle have been suggested as a rehabilitative intervention to target the knee extensors. Investigators, however, have presented very little empirical research in which they have documented the biomechanics of these exercises or have determined the optimum angle of decline used. Objective: To determine the involvement of the gastrocnemius and rectus femoris muscles and the external ankle and knee joint moments at 60° of knee flexion while performing a single-limb squat at different decline angles. Design: Participants acted as their own controls in a repeated-measures design. Patients or Other Participants: We recruited 10 participants who had no pain, injury, or neurologic disorder. Intervention(s): Participants performed single-limb squats at different decline angles. Main Outcome Measure(s): Angle-specific knee and ankle moments were calculated at 60° of knee flexion. Angle-specific electromyography (EMG) activity was calculated at 60° of knee flexion. Integrated EMG also was calculated to determine the level of muscle activity over the entire squat. Results: An increase was seen in the knee moments (P < .05) and integrated EMG in the rectus femoris (P < .001) as the decline angle increased. A decrease was seen in the ankle moments as the decline angle increased (P  =  .001), but EMG activity in the gastrocnemius increased between 16° and 24° (P  =  .018). Conclusions: As the decline angle increased, the knee extensor moment and EMG activity increased. As the decline angle increased, the ankle plantar-flexor moments decreased; however, an increase in the EMG activity was seen with the 24° decline angle compared with the 16° decline angle. This indicates that decline squats at an angle greater than 16° may not reduce passive calf tension, as was suggested previously, and may provide no mechanical advantage for the knee. PMID:18833310

  12. Iterative Assessment of Statistically-Oriented and Standard Algorithms for Determining Muscle Onset with Intramuscular Electromyography.

    PubMed

    Tenan, Matthew S; Tweedell, Andrew J; Haynes, Courtney A

    2017-12-01

    The onset of muscle activity, as measured by electromyography (EMG), is a commonly applied metric in biomechanics. Intramuscular EMG is often used to examine deep musculature and there are currently no studies examining the effectiveness of algorithms for intramuscular EMG onset. The present study examines standard surface EMG onset algorithms (linear envelope, Teager-Kaiser Energy Operator, and sample entropy) and novel algorithms (time series mean-variance analysis, sequential/batch processing with parametric and nonparametric methods, and Bayesian changepoint analysis). Thirteen male and 5 female subjects had intramuscular EMG collected during isolated biceps brachii and vastus lateralis contractions, resulting in 103 trials. EMG onset was visually determined twice by 3 blinded reviewers. Since the reliability of visual onset was high (ICC (1,1) : 0.92), the mean of the 6 visual assessments was contrasted with the algorithmic approaches. Poorly performing algorithms were stepwise eliminated via (1) root mean square error analysis, (2) algorithm failure to identify onset/premature onset, (3) linear regression analysis, and (4) Bland-Altman plots. The top performing algorithms were all based on Bayesian changepoint analysis of rectified EMG and were statistically indistinguishable from visual analysis. Bayesian changepoint analysis has the potential to produce more reliable, accurate, and objective intramuscular EMG onset results than standard methodologies.

  13. Involvement of NMDA receptor mechanisms in jaw electromyographic activity and plasma extravasation induced by inflammatory irritant application to temporomandibular joint region of rats.

    PubMed

    Yu, X M; Sessle, B J; Haas, D A; Izzo, A; Vernon, H; Hu, J W

    1996-11-01

    The aim of this study was to examine the possible role of N-methyl-D-aspartate (NMDA) receptor mechanisms in responses induced by the small-fibre excitant and inflammatory irritant mustard oil injected into the temporomandibular joint (TMJ) region of rats. The effects of the non-competitive NMDA antagonist MK-801 were tested on the mustard oil-evoked increases in electromyographic (EMG) activity of the masseter and digastric muscles and Evans Blue plasma extravasation. Five minutes before the mustard oil injection, MK-801 or its vehicle was administered systemically (i.v.), into the third ventricle (i.c.v.), or locally into the TMJ region. Compared with control animals receiving vehicle, the rats receiving MK-801 at an i.v. dose of 0.5 mg/kg (n = 5) showed a significant reduction in the incidence and magnitude of EMG responses as well as in the plasma extravasation evoked by mustard oil; MK-801 at an i.v. dose of 0.1 mg/kg (n = 5) had no significant effect on plasma extravasation or on the incidence and magnitude of EMG responses but did significantly increase the latency of EMG responses. An i.c.v. dose of 0.1 mg/kg (n = 5) or 0.01 mg/kg (n = 5) had no significant effect on plasma extravasation or incidence of EMG responses but did significantly reduce the magnitudes of the masseter EMG response; the 0.01 mg/kg dose also significantly increased the latency of the digastric EMG response. The magnitudes of both the masseter and digastric EMG responses were also significantly reduced by MK-801 administered into the TMJ region at a dose of 0.1 mg/kg (n = 5) but not by 0.01 mg/kg (n = 5); neither dose significantly affected the incidence of EMG responses or the plasma extravasation. These data suggest that both central and peripheral NMDA receptor mechanisms may play an important role in EMG responses evoked by the small-fibre excitant and inflammatory irritant mustard oil, but that different neurochemical mechanisms may be involved in the plasma extravasation induced by mustard oil.

  14. EMG Activity of Selected Trunk and Hip Muscles During a Squat Lift: Effect of Varying the Lumbar Posture

    DTIC Science & Technology

    1990-01-01

    8 Posterior Ligamentous System..........11 Stoop Lift vs. Squat Lift...............17 Kyphosis.....................18 Lordosis ...of EMG electrodes .. ........... . 27 3. Plot of the EMG activity (% MVIC) recorded during a squat lift with the lumbar spine in lordosis . . 31 4...during a squat lift with the lumbar spine in lordosis . . . 33 6. Plot of the EMG activity (% MDA) recorded during a squat lift with the lumbar spine in

  15. Microwave control of the superconducting proximity effect and minigap in magnetic and normal metals

    PubMed Central

    Linder, Jacob; Amundsen, Morten; Ouassou, Jabir Ali

    2016-01-01

    We demonstrate theoretically that microwave radiation applied to superconducting proximity structures controls the minigap and other spectral features in the density of states of normal and magnetic metals, respectively. Considering both a bilayer and Josephson junction geometry, we show that microwaves with frequency ω qualitatively alters the spectral properties of the system: inducing a series of resonances, controlling the minigap size Emg, and even replacing the minigap with a strong peak of quasiparticle accumulation at zero energy when ω = Emg. The interaction between light and Cooper pairs may thus open a route to active control of quantum coherent phenomena in superconducting proximity structures. PMID:27982128

  16. Effect of oxygenation on breath-by-breath response of the genioglossus muscle during occlusion.

    PubMed

    Gauda, E B; Carroll, J L; McColley, S; Smith, P L

    1991-10-01

    We investigated the effect of different levels of O2 tension (hypoxia, normoxia, and hyperoxia) on the breath-by-breath onset and peak electromyographic (EMG) activity of the genioglossus (GG) muscle during a five-breath end-expiratory tracheal occlusion of 20- to 30-s duration. GG and diaphragmatic (DIA) EMG activity were measured with needle electrodes in eight anesthetized tracheotomized adult cats. In response to occlusion, the increase in the number of animals with GG EMG activity was different during hypoxia, normoxia, and hyperoxia (P = 0.003, Friedman). During hypoxia, eight of eight of the animals had GG EMG activity by the third occluded effort. In contrast, during normoxia, only four of eight and, during hyperoxia, only three of eight animals had GG EMG activity throughout the entire five-breath occlusion. Similarly, at release of the occlusion, more animals had persistent GG EMG activity on the postocclusion breaths during hypoxia than during normoxia or hyperoxia. Breath-by-breath augmentation of peak amplitude of the GG and DIA EMGs on each occluded effort was accentuated during hypoxia (P less than 0.01) and abolished during hyperoxia (P = 0.10). These results suggest that hypoxemia is a major determinant of the rapidity of onset, magnitude, and sustained activity of upper airway muscles during airway occlusion.

  17. Simultaneous Scalp Electroencephalography (EEG), Electromyography (EMG), and Whole-body Segmental Inertial Recording for Multi-modal Neural Decoding

    PubMed Central

    Bulea, Thomas C.; Kilicarslan, Atilla; Ozdemir, Recep; Paloski, William H.; Contreras-Vidal, Jose L.

    2013-01-01

    Recent studies support the involvement of supraspinal networks in control of bipedal human walking. Part of this evidence encompasses studies, including our previous work, demonstrating that gait kinematics and limb coordination during treadmill walking can be inferred from the scalp electroencephalogram (EEG) with reasonably high decoding accuracies. These results provide impetus for development of non-invasive brain-machine-interface (BMI) systems for use in restoration and/or augmentation of gait- a primary goal of rehabilitation research. To date, studies examining EEG decoding of activity during gait have been limited to treadmill walking in a controlled environment. However, to be practically viable a BMI system must be applicable for use in everyday locomotor tasks such as over ground walking and turning. Here, we present a novel protocol for non-invasive collection of brain activity (EEG), muscle activity (electromyography (EMG)), and whole-body kinematic data (head, torso, and limb trajectories) during both treadmill and over ground walking tasks. By collecting these data in the uncontrolled environment insight can be gained regarding the feasibility of decoding unconstrained gait and surface EMG from scalp EEG. PMID:23912203

  18. Are muscle activation patterns altered during shod and barefoot running with a forefoot footfall pattern?

    PubMed

    Ervilha, Ulysses Fernandes; Mochizuki, Luis; Figueira, Aylton; Hamill, Joseph

    2017-09-01

    This study aimed to investigate the activation of lower limb muscles during barefoot and shod running with forefoot or rearfoot footfall patterns. Nine habitually shod runners were asked to run straight for 20 m at self-selected speed. Ground reaction forces and thigh and shank muscle surface electromyographic (EMG) were recorded. EMG outcomes (EMG intensity [iEMG], latency between muscle activation and ground reaction force, latency between muscle pairs and co-activation index between muscle pairs) were compared across condition (shod and barefoot), running cycle epochs (pre-strike, strike, propulsion) and footfall (rearfoot and forefoot) by ANOVA. Condition affected iEMG at pre-strike epoch. Forefoot and rearfoot strike patterns induced different EMG activation time patterns affecting co-activation index for pairs of thigh and shank muscles. All these timing changes suggest that wearing shoes or not is less important for muscle activation than the way runners strike the foot on the ground. In conclusion, the guidance for changing external forces applied on lower limbs should be pointed to the question of rearfoot or forefoot footfall patterns.

  19. Principal components analysis based control of a multi-DoF underactuated prosthetic hand.

    PubMed

    Matrone, Giulia C; Cipriani, Christian; Secco, Emanuele L; Magenes, Giovanni; Carrozza, Maria Chiara

    2010-04-23

    Functionality, controllability and cosmetics are the key issues to be addressed in order to accomplish a successful functional substitution of the human hand by means of a prosthesis. Not only the prosthesis should duplicate the human hand in shape, functionality, sensorization, perception and sense of body-belonging, but it should also be controlled as the natural one, in the most intuitive and undemanding way. At present, prosthetic hands are controlled by means of non-invasive interfaces based on electromyography (EMG). Driving a multi degrees of freedom (DoF) hand for achieving hand dexterity implies to selectively modulate many different EMG signals in order to make each joint move independently, and this could require significant cognitive effort to the user. A Principal Components Analysis (PCA) based algorithm is used to drive a 16 DoFs underactuated prosthetic hand prototype (called CyberHand) with a two dimensional control input, in order to perform the three prehensile forms mostly used in Activities of Daily Living (ADLs). Such Principal Components set has been derived directly from the artificial hand by collecting its sensory data while performing 50 different grasps, and subsequently used for control. Trials have shown that two independent input signals can be successfully used to control the posture of a real robotic hand and that correct grasps (in terms of involved fingers, stability and posture) may be achieved. This work demonstrates the effectiveness of a bio-inspired system successfully conjugating the advantages of an underactuated, anthropomorphic hand with a PCA-based control strategy, and opens up promising possibilities for the development of an intuitively controllable hand prosthesis.

  20. Time-related interdependence between low-frequency cortical electrical activity and respiratory activity in lizard, Gallotia galloti.

    PubMed

    de Vera, Luis; Pereda, Ernesto; Santana, Alejandro; González, Julián J

    2005-03-01

    Electroencephalograms of medial cortex and electromyograms of intercostal muscles (EMG-icm) were simultaneously recorded in the lizard, Gallotia galloti, during two daily time periods (at daytime, DTP: 1200-1600 h; by night, NTP: 0000-0400 h), to investigate whether a relationship exists between the respiratory and cortical electrical activity of reptiles, and, if so, how this relationship changes during the night rest period. Testing was carried out by studying interdependence between cortical electrical and respiratory activities, by means of linear and nonlinear signal analysis techniques. Both physiological activities were evaluated through simultaneous power signals, derived from the power of the low-frequency band of the electroencephalogram (pEEG-LF), and from the power of the EMG-icm (pEMG-icm), respectively. During both DTP and NTP, there was a significant coherence between both signals in the main frequency band of pEMG-icm. During both DTP and NTP, the nonlinear index N measured significant linear asymmetric interdependence between pEEG-LF and pEMG-icm. The N value obtained between pEEG-LF vs. pEMG-icm was greater than the one between pEMG-icm vs. pEEG-LF. This means that the system that generates the pEEG-LF is more complex than the one that generates the pEMG-icm, and suggests that the temporal variability of power in the low-frequency cortical electrical activity is driven by the power of the respiratory activity.

  1. A systematic review of surface electromyography analyses of the bench press movement task

    PubMed Central

    Gołaś, Artur; Blazek, Dusan; Maszczyk, Adam; Wilk, Michał; Pietraszewski, Przemysław; Petr, Miroslav; Uhlir, Petr; Zając, Adam

    2017-01-01

    Background The bench press exercise (BP) plays an important role in recreational and professional training, in which muscle activity is an important multifactorial phenomenon. The objective of this paper is to systematically review electromyography (EMG) studies performed on the barbell BP exercise to answer the following research questions: Which muscles show the greatest activity during the flat BP? Which changes in muscle activity are related to specific conditions under which the BP movement is performed? Strategy PubMed, Scopus, Web of Science and Cochrane Central Register of Controlled Trials (CENTRAL) in the Cochrane Library were searched through June 10, 2016. A combination of the following search terms was used: bench press, chest press, board press, test, measure, assessment, dynamometer, kinematics and biomechanics. Only original, full-text articles were considered. Results The search process resulted in 14 relevant studies that were included in the discussion. The triceps brachii (TB) and pectoralis major (PM) muscles were found to have similar activity during the BP, which was significantly higher than the activity of the anterior deltoid. During the BP movement, muscle activity changes with exercise intensity, velocity of movement, fatigue, mental focus, movement phase and stability conditions, such as bar vibration or unstable surfaces. Under these circumstances, TB is the most common object of activity change. Conclusions PM and TB EMG activity is more dominant and shows greater EMG amplitude than anterior deltoid during the BP. There are six factors that can influence muscle activity during the BP; however, the most important factor is exercise intensity, which interacts with all other factors. The research on muscle activity in the BP has several unresolved areas, such as clearly and strongly defined guidelines to perform EMG measurements (e.g., how to elaborate with surface EMG limits) or guidelines for the use of exact muscle models. PMID:28170449

  2. Characteristics of Lower Leg Muscle Activity in Patients with Cerebral Palsy during Cycling on an Ergometer.

    PubMed

    Roy, Susmita; Alves-Pinto, Ana; Lampe, Renée

    2018-01-01

    Cycling on ergometer is often part of rehabilitation programs for patients with cerebral palsy (CP). The present study analyzed activity patterns of individual lower leg muscle during active cycling on ergometer in patients with CP and compared them to similar recordings in healthy participants. Electromyographic (EMG) recordings of lower leg muscle activity were collected from 14 adult patients and 10 adult healthy participants. Activity of the following muscles was recorded: Musculus tibialis anterior, Musculus gastrocnemius, Musculus rectus femoris, and Musculus biceps femoris. Besides qualitative analysis also quantitative analysis of individual muscle activity was performed by computing the coefficient of variation of EMG signal amplitude. More irregular EMG patterns were observed in patients in comparison to healthy participants: agonist-antagonist cocontractions were more frequent, muscle activity measured at specific points of the cycle path was more variable, and dynamic range of muscle activity along the cycle path was narrower in patients. Hypertonicity was also more frequent in patients. Muscle activity patterns during cycling differed substantially across patients. It showed irregular nature and occasional sharp high peaks. Dynamic range was also narrower than in controls. Observations underline the need for individualized cycling training to optimize rehabilitation effects.

  3. Assessment of Muscle Fatigue Associated with Prolonged Standing in the Workplace

    PubMed Central

    Omar, Abdul Rahman; Saman, Alias Mohd; Othman, Ibrahim

    2012-01-01

    Objectives The objectives of this study were to determine the psychological fatigue and analyze muscle activity of production workers who are performing processes jobs while standing for prolonged time periods. Methods The psychological fatigue experienced by the workers was obtained through questionnaire surveys. Meanwhile, muscle activity has been analyzed using surface electromyography (sEMG) measurement. Lower extremities muscles include: erector spinae, tibialis anterior, and gastrocnemius were concurrently measured for more than five hours of standing. Twenty male production workers in a metal stamping company participated as subjects in this study. The subjects were required to undergo questionnaire surveys and sEMG measurement. Results Results of the questionnaire surveys found that all subjects experienced psychological fatigue due to prolonged standing jobs. Similarly, muscle fatigue has been identified through sEMG measurement. Based on the non-parametric statistical test using the Spearman's rank order correlation, the left erector spinae obtained a moderate positive correlation and statistically significant (rs = 0.552, p < 0.05) between the results of questionnaire surveys and sEMG measurement. Conclusion Based on this study, the authors concluded that prolonged standing was contributed to psychological fatigue and to muscle fatigue among the production workers. PMID:22953228

  4. Effects of load position and force direction on back muscle loading in one-wheeled wheelbarrow tasks.

    PubMed

    Chen, Su-Huang; Lee, Yung-Hui; Lin, Chiuhsiang Joe

    2015-01-01

    Various parameters related to pushing/pulling tasks have been examined yet the effects of changing the load position in one-wheeled wheelbarrow task has not been examined. To explore the effects of load position and force direction on muscle activity during wheelbarrow tasks. Nine participants were recruited to take part in the experiment. Each participant performed 18 trials consisting of 2 force directions (push and pull) and 9 load positions. The dependent variables were EMG of erector spinae and gripping force. ANOVA was used to identify significant differences between force direction and load position in EMG and gripping force data. Results showed that peak EMG was lowest for the left and right erector spinae when the load was positioned farther from the participant. Peak EMG of the bilateral erector spinae increased when the weight was near the participant and on the ipsilateral hand. Based on the EMG results, we suggest that loads be arranged in the anterior part of the bin in order to reduce muscle activity on the spine during the wheelbarrow task. This finding also provides some directions in the improvement and ergonomic redesign of the one-wheeled wheelbarrow.

  5. Age-associated changes in muscle activity during isometric contraction.

    PubMed

    Arjunan, Sridhar P; Kumar, Dinesh K

    2013-04-01

    We investigated the effect of age on the complexity of muscle activity and the variance in the force of isometric contraction. Surface electromyography (sEMG) from biceps brachii muscle and force of contraction were recorded from 96 subjects (20-70 years of age) during isometric contractions. There was a reduction in the complexity of sEMG associated with aging. The relationship of age and complexity was approximated using a bilinear fit, with the average knee point at 45 years. There was an age-associated increase in the coefficient of variation (CoV) of the force of muscle contraction, and this increase was correlated with the decrease in complexity of sEMG (r(2) = 0.76). There was an age-associated increase in CoV and also a reduction in the complexity of sEMG. The correlation between these 2 factors can be explained based on the age-associated increase in motor unit density. Copyright © 2012 Wiley Periodicals, Inc.

  6. Simulation of facial expressions using person-specific sEMG signals controlling a biomechanical face model.

    PubMed

    Eskes, Merijn; Balm, Alfons J M; van Alphen, Maarten J A; Smeele, Ludi E; Stavness, Ian; van der Heijden, Ferdinand

    2018-01-01

    Functional inoperability in advanced oral cancer is difficult to assess preoperatively. To assess functions of lips and tongue, biomechanical models are required. Apart from adjusting generic models to individual anatomy, muscle activation patterns (MAPs) driving patient-specific functional movements are necessary to predict remaining functional outcome. We aim to evaluate how volunteer-specific MAPs derived from surface electromyographic (sEMG) signals control a biomechanical face model. Muscle activity of seven facial muscles in six volunteers was measured bilaterally with sEMG. A triple camera set-up recorded 3D lip movement. The generic face model in ArtiSynth was adapted to our needs. We controlled the model using the volunteer-specific MAPs. Three activation strategies were tested: activating all muscles [Formula: see text], selecting the three muscles showing highest muscle activity bilaterally [Formula: see text]-this was calculated by taking the mean of left and right muscles and then selecting the three with highest variance-and activating the muscles considered most relevant per instruction [Formula: see text], bilaterally. The model's lip movement was compared to the actual lip movement performed by the volunteers, using 3D correlation coefficients [Formula: see text]. The correlation coefficient between simulations and measurements with [Formula: see text] resulted in a median [Formula: see text] of 0.77. [Formula: see text] had a median [Formula: see text] of 0.78, whereas with [Formula: see text] the median [Formula: see text] decreased to 0.45. We demonstrated that MAPs derived from noninvasive sEMG measurements can control movement of the lips in a generic finite element face model with a median [Formula: see text] of 0.78. Ultimately, this is important to show the patient-specific residual movement using the patient's own MAPs. When the required treatment tools and personalisation techniques for geometry and anatomy become available, this may enable surgeons to test the functional results of wedge excisions for lip cancer in a virtual environment and to weigh surgery versus organ-sparing radiotherapy or photodynamic therapy.

  7. Comparison of sEMG-Based Feature Extraction and Motion Classification Methods for Upper-Limb Movement

    PubMed Central

    Guo, Shuxiang; Pang, Muye; Gao, Baofeng; Hirata, Hideyuki; Ishihara, Hidenori

    2015-01-01

    The surface electromyography (sEMG) technique is proposed for muscle activation detection and intuitive control of prostheses or robot arms. Motion recognition is widely used to map sEMG signals to the target motions. One of the main factors preventing the implementation of this kind of method for real-time applications is the unsatisfactory motion recognition rate and time consumption. The purpose of this paper is to compare eight combinations of four feature extraction methods (Root Mean Square (RMS), Detrended Fluctuation Analysis (DFA), Weight Peaks (WP), and Muscular Model (MM)) and two classifiers (Neural Networks (NN) and Support Vector Machine (SVM)), for the task of mapping sEMG signals to eight upper-limb motions, to find out the relation between these methods and propose a proper combination to solve this issue. Seven subjects participated in the experiment and six muscles of the upper-limb were selected to record sEMG signals. The experimental results showed that NN classifier obtained the highest recognition accuracy rate (88.7%) during the training process while SVM performed better in real-time experiments (85.9%). For time consumption, SVM took less time than NN during the training process but needed more time for real-time computation. Among the four feature extraction methods, WP had the highest recognition rate for the training process (97.7%) while MM performed the best during real-time tests (94.3%). The combination of MM and NN is recommended for strict real-time applications while a combination of MM and SVM will be more suitable when time consumption is not a key requirement. PMID:25894941

  8. Voluntary EMG-to-force estimation with a multi-scale physiological muscle model

    PubMed Central

    2013-01-01

    Background EMG-to-force estimation based on muscle models, for voluntary contraction has many applications in human motion analysis. The so-called Hill model is recognized as a standard model for this practical use. However, it is a phenomenological model whereby muscle activation, force-length and force-velocity properties are considered independently. Perreault reported Hill modeling errors were large for different firing frequencies, level of activation and speed of contraction. It may be due to the lack of coupling between activation and force-velocity properties. In this paper, we discuss EMG-force estimation with a multi-scale physiology based model, which has a link to underlying crossbridge dynamics. Differently from the Hill model, the proposed method provides dual dynamics of recruitment and calcium activation. Methods The ankle torque was measured for the plantar flexion along with EMG measurements of the medial gastrocnemius (GAS) and soleus (SOL). In addition to Hill representation of the passive elements, three models of the contractile parts have been compared. Using common EMG signals during isometric contraction in four able-bodied subjects, torque was estimated by the linear Hill model, the nonlinear Hill model and the multi-scale physiological model that refers to Huxley theory. The comparison was made in normalized scale versus the case in maximum voluntary contraction. Results The estimation results obtained with the multi-scale model showed the best performances both in fast-short and slow-long term contraction in randomized tests for all the four subjects. The RMS errors were improved with the nonlinear Hill model compared to linear Hill, however it showed limitations to account for the different speed of contractions. Average error was 16.9% with the linear Hill model, 9.3% with the modified Hill model. In contrast, the error in the multi-scale model was 6.1% while maintaining a uniform estimation performance in both fast and slow contractions schemes. Conclusions We introduced a novel approach that allows EMG-force estimation based on a multi-scale physiology model integrating Hill approach for the passive elements and microscopic cross-bridge representations for the contractile element. The experimental evaluation highlights estimation improvements especially a larger range of contraction conditions with integration of the neural activation frequency property and force-velocity relationship through cross-bridge dynamics consideration. PMID:24007560

  9. Non-Stationarity and Power Spectral Shifts in EMG Activity Reflect Motor Unit Recruitment in Rat Diaphragm Muscle

    PubMed Central

    Seven, Yasin B.; Mantilla, Carlos B.; Zhan, Wen-Zhi; Sieck, Gary C.

    2012-01-01

    We hypothesized that diaphragm muscle (DIAm) by a shift in the EMG power spectral density (PSD) to higher frequencies reflects recruitment of more fatigable fast-twitch motor units and motor unit recruitment is reflected by EMG non-stationarity. DIAm EMG was recorded in anesthetized rats during eupnea, hypoxia-hypercapnia (10% O2-5% CO2), airway occlusion, and sneezing (maximal DIAm force). Although power in all frequency bands increased progressively across motor behaviors, PSD centroid frequency increased only during sneezing (p<0.05). The non-stationary period at the onset of EMG activity ranged from ~70 ms during airway occlusion to ~150 ms during eupnea. Within the initial non-stationary period of EMG activity 80–95% of motor units were recruited during different motor behaviors. Motor units augmented their discharge frequencies progressively beyond the non-stationary period; yet, EMG signal became stationary. In conclusion, non-stationarity of DIAm EMG reflects the period of motor unit recruitment, while a shift in the PSD towards higher frequencies reflects recruitment of more fatigable fast-twitch motor units. PMID:22986086

  10. High efficiency and simple technique for controlling mechanisms by EMG signals

    NASA Astrophysics Data System (ADS)

    Dugarte, N.; Álvarez, A.; Balacco, J.; Mercado, G.; Gonzalez, A.; Dugarte, E.; Javier, F.; Ceballos, G.; Olivares, A.

    2016-04-01

    This article reports the development of a simple and efficient system that allows control of mechanisms through electromyography (EMG) signals. The novelty about this instrument is focused on individual control of each motion vector mechanism through independent electronic circuits. Each of electronic circuit does positions a motor according to intensity of EMG signal captured. This action defines movement in one mechanical axis considered from an initial point, based on increased muscle tension. The final displacement of mechanism depends on individual’s ability to handle the levels of muscle tension at different body parts. This is the design of a robotic arm where each degree of freedom is handled with a specific microcontroller that responds to signals taken from a defined muscle. The biophysical interaction between the person and the final positioning of the robotic arm is used as feedback. Preliminary tests showed that the control operates with minimal positioning error margins. The constant use of system with the same operator showed that the person adapts and progressively improves at control technique.

  11. Abstract and proportional myoelectric control for multi-fingered hand prostheses.

    PubMed

    Pistohl, Tobias; Cipriani, Christian; Jackson, Andrew; Nazarpour, Kianoush

    2013-12-01

    Powered hand prostheses with many degrees of freedom are moving from research into the market for prosthetics. In order to make use of the prostheses' full functionality, it is essential to study efficient ways of high dimensional myoelectric control. Human subjects can rapidly learn to employ electromyographic (EMG) activity of several hand and arm muscles to control the position of a cursor on a computer screen, even if the muscle-cursor map contradicts directions in which the muscles would act naturally. But can a similar control scheme be translated into real-time operation of a dexterous robotic hand? We found that despite different degrees of freedom in the effector output, the learning process for controlling a robotic hand was surprisingly similar to that for a virtual two-dimensional cursor. Control signals were derived from the EMG in two different ways, with a linear and a Bayesian filter, to test how stable user intentions could be conveyed through them. Our analysis indicates that without visual feedback, control accuracy benefits from filters that reject high EMG amplitudes. In summary, we conclude that findings on myoelectric control principles, studied in abstract, virtual tasks can be transferred to real-life prosthetic applications.

  12. Use of electromyography for the diagnosis of equine hyperkalemic periodic paresis.

    PubMed Central

    Robinson, J A; Naylor, J M; Crichlow, E C

    1990-01-01

    The use of electromyography (EMG) as a diagnostic aid for equine hyperkalemic periodic paresis (EHPP) was investigated in seven affected and seven control horses. Affected horses were confirmed positive for EHPP either by elevated serum potassium concentration with clinical signs of myotonia, or by inducing hyperkalemia and clinical signs using oral potassium chloride challenge. All horses were asymptomatic at the time EMG was performed, using bipolar fine wire needle electrodes. The myopotentials were recorded on magnetic tape and displayed on paper charts for analysis. Insertional and resting activity were recorded from the right supraspinatus, triceps, extensor carpi radialis and gluteal muscles in standing horses. Myotonic discharges were seen in six of seven affected horses but not in any of the controls. All seven affected horses and two control horses had prolonged insertional activity. Five out of seven affected horses and one control horse displayed spontaneous motor unit discharges unrelated to recording electrode movement. Myoelectrical potentials containing closely timed muscle potentials, i.e. doublets, were found in all affected horses, with four of seven affected horses also showing triplets. These potentials were not observed in any of the controls. No obvious difference in activity was observed among the four muscle sites tested. It is concluded that EMG is a safe and useful tool for diagnosing EHPP in horses not currently displaying clinical signs. Myotonic discharges and doublets appear to be the most diagnostically significant electromyographic abnormalities in EHPP affected horses. PMID:2249182

  13. Evaluating skeletal muscle electromechanical delay with intramuscular pressure.

    PubMed

    Go, Shanette A; Litchy, William J; Evertz, Loribeth Q; Kaufman, Kenton R

    2018-06-08

    Intramuscular pressure (IMP) is the fluid pressure generated within skeletal muscle and directly reflects individual muscle tension. The purpose of this study was to assess the development of force, IMP, and electromyography (EMG) in the tibialis anterior (TA) muscle during ramped isometric contractions and evaluate electromechanical delay (EMD). Force, EMG, and IMP were simultaneously measured during ramped isometric contractions in eight young, healthy human subjects. The EMD between the onset of force and EMG activity (Δt-EMG force) and the onset of IMP and EMG activity (Δt EMG-IMP) were calculated. A statistically significant difference (p < 0.05) was found between the mean force-EMG EMD (36 ± 31 ms) and the mean IMP-EMG EMD (3 ± 21 ms). IMP reflects changes in muscle tension due to the contractile muscle elements. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Changes in muscle activity determine progression of clinical symptoms in patients with chronic spine-related muscle pain. A complex clinical and neurophysiological approach

    PubMed Central

    Wytra̦żek, Marcin; Huber, Juliusz; Lisiński, Przemysław

    Summary Spine-related muscle pain can affect muscle strength and motor unit activity. This study was undertaken to investigate whether surface electromyographic (sEMG) recordings performed during relaxation and maximal contraction reveal differences in the activity of muscles with or without trigger points (TRPs). We also analyzed the possible coexistence of characteristic spontaneous activity in needle electromyographic (eEMG) recordings with the presence of TRPs. Thirty patients with non-specific cervical and back pain were evaluated using clinical, neuroimaging and electroneurographic examinations. Muscle pain was measured using a visual analog scale (VAS), and strength using Lovett’s scale; trigger points were detected by palpation. EMG was used to examine motor unit activity. Trigger points were found mainly in the trapezius muscles in thirteen patients. Their presence was accompanied by increased pain intensity, decreased muscle strength, increased resting sEMG amplitude, and decreased sEMG amplitude during muscle contraction. eEMG revealed characteristic asynchronous discharges in TRPs. The results of EMG examinations point to a complexity of muscle pain that depends on progression of the myofascial syndrome PMID:22152435

  15. Coordination of intrinsic and extrinsic hand muscle activity as a function of wrist joint angle during two-digit grasping.

    PubMed

    Johnston, Jamie A; Bobich, Lisa R; Santello, Marco

    2010-04-26

    Fingertip forces result from the activation of muscles that cross the wrist and muscles whose origins and insertions reside within the hand (extrinsic and intrinsic hand muscles, respectively). Thus, tasks that involve changes in wrist angle affect the moment arm and length, hence the force-producing capabilities, of extrinsic muscles only. If a grasping task requires the exertion of constant fingertip forces, the Central Nervous System (CNS) may respond to changes in wrist angle by modulating the neural drive to extrinsic or intrinsic muscles only or by co-activating both sets of muscles. To distinguish between these scenarios, we recorded electromyographic (EMG) activity of intrinsic and extrinsic muscles of the thumb and index finger as a function of wrist angle during a two-digit object hold task. We hypothesized that changes in wrist angle would elicit EMG amplitude modulation of the extrinsic and intrinsic hand muscles. In one experimental condition we asked subjects to exert the same digit forces at each wrist angle, whereas in a second condition subjects could choose digit forces for holding the object. EMG activity was significantly modulated in both extrinsic and intrinsic muscles as a function of wrist angle (both p<0.05) but only for the constant force condition. Furthermore, EMG modulation resulted from uniform scaling of EMG amplitude across all muscles. We conclude that the CNS controlled both extrinsic and intrinsic muscles as a muscle synergy. These findings are discussed within the theoretical frameworks of synergies and common neural input across motor nuclei of hand muscles. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  16. Training of support afferentation in postmenopausal women.

    PubMed

    Bazanova, O M; Kholodina, N V; Nikolenko, E D; Payet, J

    2017-12-01

    We have recently shown a diminishing of the Menopause Index in old-aged women who underwent special training directed at the enhancement of support afferentation by increasing the plantar forefoot sensitivity (Bazanova et al., 2015). Based on these results we hypothesized, that purposeful training of support afferentation through stimulation of plantar graviceptors by Aikido practice will decrease excessive postural and psychoemotional tension not only in rest condition, but during cognitive and manual task performance too. Fluency of cognitive and motor task performance, EEG alpha power as an index of neuronal efficiency of cognitive control, amount of alpha power suppression as a visual activation measure and EMG power of forehead muscles as a sign of psychoemotional tension were compared in three groups of post-menopausal women: i) 8years training with forefeet support afferentation with Aikido practice (A), ii) 8years fitness training (F) and iii) no dedicated fitness training for past 8years (N). Simultaneous stabilometry, EEG, and frontal EMG recording were performed in sitting and standing up position in eyes closed and eyes open condition. Recording done at rest and while performing cognitive and finger motor tasks. We compared studied parameters between groups with one- and two-way analyses of variance (ANOVAs) with Bonferroni correction for multiple comparisons, followed by post hoc two-tailed unpaired t-tests. The fluency of tasks performance, EMG and alpha-EEG-activity displayed similar values in all groups in a sitting position. Center of pressure (CoP) sway length, velocity and energy demands for saving balance increased when standing up, more in group N than in groups F and A (all contrasts p values<0.002, η 2 >0.89). Post hoc t-tests showed increased fluency in standing in both Aikido (p<0.01) and Fitness (p<0.05) subjects in relation to untrained subjects. Increasing fluency in motor task performance was in parallel with enhancing the EEG alpha-2-power and decreasing EMG power only in A group (η 2 >0.77). Fluency in motor task and alpha EEG power decreased, but frontal EMG power increased in response to standing in untrained women (group N) and did not change in F group. Post hoc t-tests showed that EEG amount of alpha-2 power suppression in response to visual activation and frontal EMG power was lower in A than F and N groups (p<0.004) during motor task performance in the standing position. These results were interpreted as showing that training of forefoot plantar surface sensitivity in postmenopausal women decreases levels of psychoemotional tension and increases cognitive control caused by the psychomotor and postural challenges. Thus, Aikido training aimed at learning coordination between manual task performance and balance control by increasing the plantar support zones sensation decreases the cost of maintained vertical position and dependence of motor coordination on visual contribution. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Effect of substance P injection into the nucleus tractus solitarius of rats on cricothyroid and thyroarytenoid motor activity and cardiovascular and respiratory systems.

    PubMed

    Bauman, Nancy M; Wang, DeQiang; Luschei, Erich S; Talman, William T

    2002-10-01

    Identification of central neurotransmitters that mediate laryngeal adductor and/or tensor activity may prove useful in managing pathological laryngeal adduction as occurs in laryngospasm or apparent life-threatening events. The putative transmitter substance P (SP) is found in the nucleus tractus solitarius (NTS), in which laryngeal afferents terminate. Therefore, we studied the laryngeal, cardiovascular, and respiratory effects of SP injected into the NTS of rats. We completed bilateral stereotactic injections of 20 nL of SP (15 micromol) or control solution into the region of the NTS, the dorsal motor nucleus (DMN), or the nucleus gracilis (GR) in 30 anesthetized rats. Changes in diaphragm, cricothyroid (CT), and thyroarytenoid (TA) electromyography (EMG), as well as blood pressure (BP), were compared. The injection sites were verified histologically. Injection of SP into the NTS altered CT and/or TA EMG activity in all animals. The change ranged from complete inhibition, to a phasic increase, to a tonic increase. No change in laryngeal adductor EMG activity was seen in 8 of 9 animals after SP injections into the DMN (4/5) or GR (4/4), but 1 animal demonstrated brief inhibition of CT and TA EMG activity after SP injection into the DMN. Injection of SP into the NTS induced central apnea and a significant decrease in BP in all animals. The duration of apnea tended to be longer after NTS injections than after DMN or GR injections (p < .10 and p < .05, respectively). We conclude that stereotactic injections of putative neurotransmitters in rats may be accomplished to identify effects on laryngeal motor activity. Direct application of SP into the NTS consistently elicits a change in CT and/or TA EMG activity, ranging from inhibition to excitation. This model may prove useful in evaluating pharmacological targets of central reflex activity to manage life-threatening laryngeal reflex activity.

  18. Calibration of the Leg Muscle Responses Elicited by Predictable Perturbations of Stance and the Effect of Vision

    PubMed Central

    Sozzi, Stefania; Nardone, Antonio; Schieppati, Marco

    2016-01-01

    Motor adaptation due to task practice implies a gradual shift from deliberate control of behavior to automatic processing, which is less resource- and effort-demanding. This is true both for deliberate aiming movements and for more stereotyped movements such as locomotion and equilibrium maintenance. Balance control under persisting critical conditions would require large conscious and motor effort in the absence of gradual modification of the behavior. We defined time-course of kinematic and muscle features of the process of adaptation to repeated, predictable perturbations of balance eliciting both reflex and anticipatory responses. Fifty-nine sinusoidal (10 cm, 0.6 Hz) platform displacement cycles were administered to 10 subjects eyes-closed (EC) and eyes-open (EO). Head and Center of Mass (CoM) position, ankle angle and Tibialis Anterior (TA) and Soleus (Sol) EMG were assessed. EMG bursts were classified as reflex or anticipatory based on the relationship between burst amplitude and ankle angular velocity. Muscle activity decreased over time, to a much larger extent for TA than Sol. The attenuation was larger for the reflex than the anticipatory responses. Regardless of muscle activity attenuation, latency of muscle bursts and peak-to-peak CoM displacement did not change across perturbation cycles. Vision more than doubled speed and the amount of EMG adaptation particularly for TA activity, rapidly enhanced body segment coordination, and crucially reduced head displacement. The findings give new insight on the mode of amplitude- and time-modulation of motor output during adaptation in a balancing task, advocate a protocol for assessing flexibility of balance strategies, and provide a reference for addressing balance problems in patients with movement disorders. PMID:27625599

  19. An Ankle-Foot Orthosis Powered by Artificial Pneumatic Muscles

    PubMed Central

    Ferris, Daniel P.; Czerniecki, Joseph M.; Hannaford, Blake

    2005-01-01

    We developed a pneumatically powered orthosis for the human ankle joint. The orthosis consisted of a carbon fiber shell, hinge joint, and two artificial pneumatic muscles. One artificial pneumatic muscle provided plantar flexion torque and the second one provided dorsiflexion torque. Computer software adjusted air pressure in each artificial muscle independently so that artificial muscle force was proportional to rectified low-pass-filtered electromyography (EMG) amplitude (i.e., proportional myoelectric control). Tibialis anterior EMG activated the artificial dorsiflexor and soleus EMG activated the artificial plantar flexor. We collected joint kinematic and artificial muscle force data as one healthy participant walked on a treadmill with the orthosis. Peak plantar flexor torque provided by the orthosis was 70 Nm, and peak dorsiflexor torque provided by the orthosis was 38 Nm. The orthosis could be useful for basic science studies on human locomotion or possibly for gait rehabilitation after neurological injury. PMID:16082019

  20. Orofacial muscular activity and related skin movement during the preparatory and sustained phases of tone production on the French horn.

    PubMed

    Hirano, Takeshi; Kudo, Kazutoshi; Ohtsuki, Tatsuyuki; Kinoshita, Hiroshi

    2013-07-01

    This study investigated activity of the embouchure-related orofacial muscles during pre- and postattack phases of sound production by 10 trained French-horn players. Surface electromyogram (EMG) from five selected facial muscles, and related facial skin kinematics were examined in relation to pitch and intensity of a tone produced. No difference in EMGs and facial kinematics between the two phases was found, indicating importance of appropriate formation of preattack embouchure. EMGs in all muscles during the postattack phase increased linearly with an increase in pitch, and they also increased with tone intensity without interacting with the pitch effect. Orofacial skin movement remained constant across all pitches and intensities except for lateral retraction of the lips during high-pitch tone production. Contraction of the orofacial muscles is fundamentally isometric by which tension on the lips and the cheeks is regulated for flexible sound parameter control.

  1. Continuous detection and decoding of dexterous finger flexions with implantable myoelectric sensors.

    PubMed

    Baker, Justin J; Scheme, Erik; Englehart, Kevin; Hutchinson, Douglas T; Greger, Bradley

    2010-08-01

    A rhesus monkey was trained to perform individuated and combined finger flexions of the thumb, index, and middle finger. Nine implantable myoelectric sensors (IMES) were then surgically implanted into the finger muscles of the monkey's forearm, without any adverse effects over two years postimplantation. Using an inductive link, EMG was wirelessly recorded from the IMES as the monkey performed a finger flexion task. The EMG from the different IMES implants showed very little cross correlation. An offline parallel linear discriminant analysis (LDA) based algorithm was used to decode finger activity based on features extracted from continuously presented frames of recorded EMG. The offline parallel LDA was run on intraday sessions as well as on sessions where the algorithm was trained on one day and tested on following days. The performance of the algorithm was evaluated continuously by comparing classification output by the algorithm to the current state of the finger switches. The algorithm detected and classified seven different finger movements, including individual and combined finger flexions, and a no-movement state (chance performance = 12.5%) . When the algorithm was trained and tested on data collected the same day, the average performance was 43.8+/-3.6% n=10. When the training-testing separation period was five months, the average performance of the algorithm was 46.5+/-3.4% n=8. These results demonstrated that using EMG recorded and wirelessly transmitted by IMES offers a promising approach for providing intuitive, dexterous control of artificial limbs where human patients have sufficient, functional residual muscle following amputation.

  2. Impairment of Postural Control in Rabbits With Extensive Spinal Lesions

    PubMed Central

    Lyalka, V. F.; Orlovsky, G. N.; Deliagina, T. G.

    2009-01-01

    Our previous studies on rabbits demonstrated that the ventral spinal pathways are of primary importance for postural control in the hindquarters. After ventral hemisection, postural control did not recover, whereas after dorsal or lateral hemisection it did. The aim of this study was to examine postural capacity of rabbits after more extensive lesion (3/4 section of the spinal cord at T12 level), that is, with only one ventral quadrant spared (VQ animals). They were tested before (control) and after lesion on the platform periodically tilted in the frontal plane. In control animals, tilts of the platform regularly elicited coordinated electromyographic (EMG) responses in the hindlimbs, which resulted in generation of postural corrections and in maintenance of balance. In VQ rabbits, the EMG responses appeared only in a part of tilt cycles, and they could be either correctly or incorrectly phased in relation to tilts. Because of a reduced value and incorrect phasing of EMG responses on both sides, this muscle activity did not cause postural corrective movements in the majority of rabbits, and the body swayed together with the platform. In these rabbits, the ability to perform postural corrections did not recover during the whole period of observation (≤30 days). Low probability of correct EMG responses to tilts in most rabbits as well as an appearance of incorrect responses to tilts suggest that the spinal reflex chains, necessary for postural control, have not been specifically selected by a reduced supraspinal drive transmitted via a single ventral quadrant. PMID:19164112

  3. A real-time, practical sensor fault-tolerant module for robust EMG pattern recognition.

    PubMed

    Zhang, Xiaorong; Huang, He

    2015-02-19

    Unreliability of surface EMG recordings over time is a challenge for applying the EMG pattern recognition (PR)-controlled prostheses in clinical practice. Our previous study proposed a sensor fault-tolerant module (SFTM) by utilizing redundant information in multiple EMG signals. The SFTM consists of multiple sensor fault detectors and a self-recovery mechanism that can identify anomaly in EMG signals and remove the recordings of the disturbed signals from the input of the pattern classifier to recover the PR performance. While the proposed SFTM has shown great promise, the previous design is impractical. A practical SFTM has to be fast enough, lightweight, automatic, and robust under different conditions with or without disturbances. This paper presented a real-time, practical SFTM towards robust EMG PR. A novel fast LDA retraining algorithm and a fully automatic sensor fault detector based on outlier detection were developed, which allowed the SFTM to promptly detect disturbances and recover the PR performance immediately. These components of SFTM were then integrated with the EMG PR module and tested on five able-bodied subjects and a transradial amputee in real-time for classifying multiple hand and wrist motions under different conditions with different disturbance types and levels. The proposed fast LDA retraining algorithm significantly shortened the retraining time from nearly 1 s to less than 4 ms when tested on the embedded system prototype, which demonstrated the feasibility of a nearly "zero-delay" SFTM that is imperceptible to the users. The results of the real-time tests suggested that the SFTM was able to handle different types of disturbances investigated in this study and significantly improve the classification performance when one or multiple EMG signals were disturbed. In addition, the SFTM could also maintain the system's classification performance when there was no disturbance. This paper presented a real-time, lightweight, and automatic SFTM, which paved the way for reliable and robust EMG PR for prosthesis control.

  4. Real time estimation of generation, extinction and flow of muscle fibre action potentials in high density surface EMG.

    PubMed

    Mesin, Luca

    2015-02-01

    Developing a real time method to estimate generation, extinction and propagation of muscle fibre action potentials from bi-dimensional and high density surface electromyogram (EMG). A multi-frame generalization of an optical flow technique including a source term is considered. A model describing generation, extinction and propagation of action potentials is fit to epochs of surface EMG. The algorithm is tested on simulations of high density surface EMG (inter-electrode distance equal to 5mm) from finite length fibres generated using a multi-layer volume conductor model. The flow and source term estimated from interference EMG reflect the anatomy of the muscle, i.e. the direction of the fibres (2° of average estimation error) and the positions of innervation zone and tendons under the electrode grid (mean errors of about 1 and 2mm, respectively). The global conduction velocity of the action potentials from motor units under the detection system is also obtained from the estimated flow. The processing time is about 1 ms per channel for an epoch of EMG of duration 150 ms. A new real time image processing algorithm is proposed to investigate muscle anatomy and activity. Potential applications are proposed in prosthesis control, automatic detection of optimal channels for EMG index extraction and biofeedback. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Comparison of shock transmission and forearm electromyography between experienced and recreational tennis players during backhand strokes.

    PubMed

    Wei, Shun-Hwa; Chiang, Jinn-Yen; Shiang, Tzyy-Yuang; Chang, Hsiao-Yun

    2006-03-01

    To test the hypothesis that recreational tennis players transmit more shock impact from the racket to the elbow joint than experienced tennis players during the backhand stroke. Also, to test whether recreational tennis players used higher electromyographic (EMG) activities in common wrist extensor and flexor around epicondylar region at follow-through phase. A repeated-measure, cross-sectional study. National College of Physical Education and Sports at Taipei, Taiwan. Twenty-four male tennis players with no abnormal forearm musculoskeletal injury participated in the study. According to performance level, subjects were categorized into 2 groups: experienced and recreational. Impact transmission and wrist extensor-flexor EMG for backhand acceleration, impact, and follow-through phases were recorded for each player. An independent t test with a significance level of 0.05 was used to examine mean differences of shock impact and EMG between the 2 test groups. One-way ANOVA associated with Tukey multiple comparisons was used to identify differences among different impact locations and EMG phases. Experienced athletes reduced the racket impact to the elbow joint by 89.2%, but recreational players reduced it by only 61.8%. The largest EMG differences were found in the follow-through phase (P<0.05). Experienced athletes showed that their extensor and flexor EMGs were at submaximal level for follow-through phase, whereas recreational players maintained their flexor and extensor EMGs at either supramaximal or maximal level. Our results support the hypothesis that recreational players transmit more shock impact from the racket to the elbow joint and use larger wrist flexor and extensor EMG activities at follow-through phase of the backhand stroke. Follow-through control is proposed as a critical factor for reduction of shock transmission. Clinicians or trainers should instruct beginners to quickly release their grip tightness after ball-to-racket impact to reduce shock impact transmission to the wrist and elbow.

  6. The electrophysiology of thyroid surgery: electrophysiologic and muscular responses with stimulation of the vagus nerve, recurrent laryngeal nerve, and external branch of the superior laryngeal nerve.

    PubMed

    Liddy, Whitney; Barber, Samuel R; Cinquepalmi, Matteo; Lin, Brian M; Patricio, Stephanie; Kyriazidis, Natalia; Bellotti, Carlo; Kamani, Dipti; Mahamad, Sadhana; Dralle, Henning; Schneider, Rick; Dionigi, Gianlorenzo; Barczynski, Marcin; Wu, Che-Wei; Chiang, Feng Yu; Randolph, Gregory

    2017-03-01

    Correlation of physiologically important electromyographic (EMG) waveforms with demonstrable muscle activation is important for the reliable interpretation of evoked waveforms during intraoperative neural monitoring (IONM) of the vagus nerve, recurrent laryngeal nerve (RLN), and external branch of the superior laryngeal nerve (EBSLN) in thyroid surgery. Retrospective chart review. Data were reviewed retrospectively for thyroid surgery patients with laryngeal nerve IONM from January to December, 2015. EMG responses to monopolar stimulation of the vagus/RLN and EBSLN were recorded in bilateral vocalis, cricothyroid (CTM), and strap muscles using endotracheal tube-based surface and intramuscular hook electrodes, respectively. Target muscles for vagal/RLN and EBSLN stimulation were the ipsilateral vocalis and CTM, respectively. All other recording channels were nontarget muscles. Fifty surgical sides were identified in 37 subjects. All target muscle mean amplitudes were significantly higher than in nontarget muscles. With vagal/RLN stimulation, target ipsilateral vocalis mean amplitude was 1,095.7 μV (mean difference range = -814.1 to -1,078 μV, P < .0001). For EBSLN stimulation, target ipsilateral CTM mean amplitude was 6,379.3 μV (mean difference range = -6,222.6 to -6,362.3 μV, P < .0001). Target muscle large-amplitude EMG responses correlated with meaningful visual or palpable muscular responses, whereas nontarget EMG responses showed no meaningful muscle activation. Target and nontarget laryngeal muscles are differentiated based on divergence of EMG response directly correlating with presence or absence of visual and palpable muscle activation. Low-amplitude EMG waveforms in nontarget muscles with neural stimulation can be explained by the concept of far-field artifactual waveforms and do not correspond to a true muscular response. The surgeon should be aware of these nonphysiologic waveforms when interpreting and applying IONM during thyroid surgery. 4 Laryngoscope, 127:764-771, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  7. Masticatory muscle activity assessment and reliability of a portable electromyographic instrument.

    PubMed

    Bowley, J F; Marx, D B

    2001-03-01

    Masticatory muscle hyperactivity is thought to produce muscle pain and tension headaches and can cause excessive wear or breakage of restorative dental materials used in the treatment of prosthodontic patients. The quantification and identification of this type of activity is an important consideration in the preoperative diagnosis and treatment planning phase of prosthodontic care. This study investigated the quantification process in complete denture/overdenture patients with natural mandibular tooth abutments and explored the reliability of instrumentation used to assess this parafunctional activity. The nocturnal EMG activity in asymptomatic complete denture/overdenture subjects was assessed with and without prostheses worn during sleep. Because of the large variance within and between subjects, the investigators evaluated the reliability of the 3 instruments used to test nocturnal EMG activity in the sample. Electromyographic activity data of denture/overdenture subjects revealed no differences between prostheses worn versus not worn during sleep but demonstrated a very large variance factor. Further investigation of the instrumentation demonstrated a consistent in vitro as well as in vivo reliability in controlled laboratory studies. The portable EMG instrumentation used in this study revealed a large, uncontrollable variance factor within and between subjects that greatly complicated the diagnosis of parafunctional activity in prosthodontic patients.

  8. The impact of shoulder abduction loading on EMG-based intention detection of hand opening and closing after stroke.

    PubMed

    Lan, Yiyun; Yao, Jun; Dewald, Julius P A

    2011-01-01

    Many stroke patients are subject to limited hand functions in the paretic arm due to a significant loss of Corticospinal Tract (CST) fibers. A possible solution for this problem is to classify surface Electromyography (EMG) signals generated by hand movements and uses that to implement Functional Electrical Stimulation (FES). However, EMG usually presents an abnormal muscle coactivation pattern shown as increased coupling between muscles within and/or across joints after stroke. The resulting Abnormal Muscle Synergies (AMS) could make the classification more difficult in individuals with stroke, especially when attempting to use the hand together with other joints in the paretic arm. Therefore, this study is aimed at identifying the impact of AMS following stroke on EMG pattern recognition between two hand movements. In an effort to achieve this goal, 7 chronic hemiparetic chronic stroke subjects were recruited and asked to perform hand opening and closing movements at their paretic arm while being either fully supported by a virtual table or loaded with 25% of subject's maximum shoulder abduction force. During the execution of motor tasks EMG signals from the wrist flexors and extensors were simultaneously acquired. Our results showed that increased synergy-induced activity at elbow flexors, induced by increasing shoulder abduction loading, deteriorated the performance of EMG pattern recognition for hand opening for those with a weak grasp strength and EMG activity. However, no such impact on hand closing has yet been observed possibly because finger/wrist flexion is facilitated by the shoulder abduction-induced flexion synergy.

  9. Motor unit number index (MUNIX) derivation from the relationship between the area and power of surface electromyogram: a computer simulation and clinical study

    NASA Astrophysics Data System (ADS)

    Miralles, Francesc

    2018-06-01

    Objective. The motor unit number index (MUNIX) is a technique based on the surface electromyogram (sEMG) that is gaining acceptance as a method for monitoring motor neuron loss, because it is reliable and produces less discomfort than other electrodiagnostic techniques having the same intended purpose. MUNIX assumes that the relationship between the area of sEMG obtained at increasing levels of muscle activation and the values of a variable called ‘ideal case motor unit count’ (ICMUC), defined as the product of the ratio between area and power of the compound muscle action potential (CMAP) by that of the sEMG, is described by a decreasing power function. Nevertheless, the reason for this comportment is unknown. The objective of this work is to investigate if the definition of MUNIX could derive from more basic properties of the sEMG. Approach. The CMAP and sEMG epochs obtained at different levels of muscle activation from (1) the abductor pollicis brevis (APB) muscle of persons with and without a carpal tunnel syndrome (CTS) and (2) from a computer model of sEMG generation previously published were analysed. Main results. MUNIX reflects the power relationship existing between the area and power of a sEMG. The exponent of this function was smaller in patients with motor CTS than in the rest of the subjects. The analysis of the relationship between the area and power of a sEMG could aid in distinguishing a MUNIX reduction due to a motoneuron loss from that due to a loss of muscle fibre. Significance. MUNIX is derived from the relationship between the area and power of a sEMG. This relationship changes when there is a loss of motor units (MUs), which partially explains the diagnostic sensibility of MUNIX. Although the reasons for this change are unknown, it could reflect an increase in the proportion of MUs of great amplitude.

  10. A masked least-squares smoothing procedure for artifact reduction in scanning-EMG recordings.

    PubMed

    Corera, Íñigo; Eciolaza, Adrián; Rubio, Oliver; Malanda, Armando; Rodríguez-Falces, Javier; Navallas, Javier

    2018-01-11

    Scanning-EMG is an electrophysiological technique in which the electrical activity of the motor unit is recorded at multiple points along a corridor crossing the motor unit territory. Correct analysis of the scanning-EMG signal requires prior elimination of interference from nearby motor units. Although the traditional processing based on the median filtering is effective in removing such interference, it distorts the physiological waveform of the scanning-EMG signal. In this study, we describe a new scanning-EMG signal processing algorithm that preserves the physiological signal waveform while effectively removing interference from other motor units. To obtain a cleaned-up version of the scanning signal, the masked least-squares smoothing (MLSS) algorithm recalculates and replaces each sample value of the signal using a least-squares smoothing in the spatial dimension, taking into account the information of only those samples that are not contaminated with activity of other motor units. The performance of the new algorithm with simulated scanning-EMG signals is studied and compared with the performance of the median algorithm and tested with real scanning signals. Results show that the MLSS algorithm distorts the waveform of the scanning-EMG signal much less than the median algorithm (approximately 3.5 dB gain), being at the same time very effective at removing interference components. Graphical Abstract The raw scanning-EMG signal (left figure) is processed by the MLSS algorithm in order to remove the artifact interference. Firstly, artifacts are detected from the raw signal, obtaining a validity mask (central figure) that determines the samples that have been contaminated by artifacts. Secondly, a least-squares smoothing procedure in the spatial dimension is applied to the raw signal using the not contaminated samples according to the validity mask. The resulting MLSS-processed scanning-EMG signal (right figure) is clean of artifact interference.

  11. Feasibility and safety of early lower limb robot-assisted training in sub-acute stroke patients: a pilot study.

    PubMed

    Gandolfi, Marialuisa; Geroin, Christian; Tomelleri, Christopher; Maddalena, Isacco; Kirilova Dimitrova, Eleonora; Picelli, Alessandro; Smania, Nicola; Waldner, Andreas

    2017-12-01

    So far, the development of robotic devices for the early lower limb mobilization in the sub-acute phase after stroke has received limited attention. To explore the feasibility of a newly robotic-stationary gait training in sub-acute stroke patients. To report the training effects on lower limb function and muscle activation. A pilot study. Rehabilitation ward. Two sub-acute stroke inpatients and ten age-matched healthy controls were enrolled. Healthy controls served as normative data. Patients underwent 10 robot-assisted training sessions (20 minutes, 5 days/week) in alternating stepping movements (500 repetitions/session) on a hospital bed in addition to conventional rehabilitation. Feasibility outcome measures were compliance, physiotherapist time, and responses to self-report questionnaires. Efficacy outcomes were bilateral lower limb muscle activation pattern as measured by surface electromyography (sEMG), Motricity Index (MI), Medical Research Council (MRC) grade, and Ashworth Scale (AS) scores before and after training. No adverse events occurred. No significant differences in sEMG activity between patients and healthy controls were observed. Post-training improvement in MI and MRC scores, but no significant changes in AS scores, were recorded. Post-treatment sEMG analysis of muscle activation patterns showed a significant delay in rectus femoris offset (P=0.02) and prolonged duration of biceps femoris (P=0.04) compared to pretreatment. The robot-assisted training with our device was feasible and safe. It induced physiological muscle activations pattern in both stroke patients and healthy controls. Full-scale studies are needed to explore its potential role in post-stroke recovery. This robotic device may enrich early rehabilitation in subacute stroke patients by inducing physiological muscle activation patterns. Future studies are warranted to evaluate its effects on promoting restorative mechanisms involved in lower limb recovery after stroke.

  12. Decoding Lower Limb Muscle Activity and Kinematics from Cortical Neural Spike Trains during Monkey Performing Stand and Squat Movements

    PubMed Central

    Ma, Xuan; Ma, Chaolin; Huang, Jian; Zhang, Peng; Xu, Jiang; He, Jiping

    2017-01-01

    Extensive literatures have shown approaches for decoding upper limb kinematics or muscle activity using multichannel cortical spike recordings toward brain machine interface (BMI) applications. However, similar topics regarding lower limb remain relatively scarce. We previously reported a system for training monkeys to perform visually guided stand and squat tasks. The current study, as a follow-up extension, investigates whether lower limb kinematics and muscle activity characterized by electromyography (EMG) signals during monkey performing stand/squat movements can be accurately decoded from neural spike trains in primary motor cortex (M1). Two monkeys were used in this study. Subdermal intramuscular EMG electrodes were implanted to 8 right leg/thigh muscles. With ample data collected from neurons from a large brain area, we performed a spike triggered average (SpTA) analysis and got a series of density contours which revealed the spatial distributions of different muscle-innervating neurons corresponding to each given muscle. Based on the guidance of these results, we identified the locations optimal for chronic electrode implantation and subsequently carried on chronic neural data recordings. A recursive Bayesian estimation framework was proposed for decoding EMG signals together with kinematics from M1 spike trains. Two specific algorithms were implemented: a standard Kalman filter and an unscented Kalman filter. For the latter one, an artificial neural network was incorporated to deal with the nonlinearity in neural tuning. High correlation coefficient and signal to noise ratio between the predicted and the actual data were achieved for both EMG signals and kinematics on both monkeys. Higher decoding accuracy and faster convergence rate could be achieved with the unscented Kalman filter. These results demonstrate that lower limb EMG signals and kinematics during monkey stand/squat can be accurately decoded from a group of M1 neurons with the proposed algorithms. Our findings provide new insights for extending current BMI design concepts and techniques on upper limbs to lower limb circumstances. Brain controlled exoskeleton, prostheses or neuromuscular electrical stimulators for lower limbs are expected to be developed, which enables the subject to manipulate complex biomechatronic devices with mind in more harmonized manner. PMID:28223914

  13. Comparison of joint angles and electromyographic activity of the lower extremities during standing with wearing standard and revised high-heeled shoes: A pilot study.

    PubMed

    Bae, Young-Hyeon; Ko, Mansoo; Lee, Suk Min

    2016-04-29

    Revised high-heeled shoes (HHSs) were designed to improve the shortcomings of standard HHSs. This study was conducted to compare revised and standard HHSs with regard to joint angles and electromyographic (EMG) activity of the lower extremities during standing. The participants were five healthy young women. Data regarding joint angles and EMG activity of the lower extremities were obtained under three conditions: barefoot, when wearing revised HHSs, and when wearing standard HHSs. Lower extremity joint angles in the three dimensional plane were confirmed using a VICON motion capture system. EMG activity of the lower extremities was measured using active bipolar surface EMG. Kruskal-Wallis one-way analysis of variance by rank applied to analyze differences during three standing conditions. Compared with the barefoot condition, the standard HHSs condition was more different than the revised HHSs condition with regard to lower extremity joint angles during standing. EMG activity of the lower extremities was different for the revised HHSs condition, but the differences among the three conditions were not significant. Wearing revised HHSs may positively impact joint angles and EMG activity of the lower extremities by improving body alignment while standing.

  14. Assessment of the paraspinal muscles of subjects presenting an idiopathic scoliosis: an EMG pilot study

    PubMed Central

    Gaudreault, Nathaly; Arsenault, A Bertrand; Larivière, Christian; DeSerres, Sophie J; Rivard, Charles-Hilaire

    2005-01-01

    Background It is known that the back muscles of scoliotic subjects present abnormalities in their fiber type composition. Some researchers have hypothesized that abnormal fiber composition can lead to paraspinal muscle dysfunction such as poor neuromuscular efficiency and muscle fatigue. EMG parameters were used to evaluate these impairments. The purpose of the present study was to examine the clinical potential of different EMG parameters such as amplitude (RMS) and median frequency (MF) of the power spectrum in order to assess the back muscles of patients presenting idiopathic scoliosis in terms of their neuromuscular efficiency and their muscular fatigue. Methods L5/S1 moments during isometric efforts in extension were measured in six subjects with idiopathic scoliosis and ten healthy controls. The subjects performed three 7 s ramp contractions ranging from 0 to 100% maximum voluntary contraction (MVC) and one 30 s sustained contraction at 75% MVC. Surface EMG activity was recorded bilaterally from the paraspinal muscles at L5, L3, L1 and T10. The slope of the EMG RMS/force (neuromuscular efficiency) and MF/force (muscle composition) relationships were computed during the ramp contractions while the slope of the EMG RMS/time and MF/time relationships (muscle fatigue) were computed during the sustained contraction. Comparisons were performed between the two groups and between the left and right sides for the EMG parameters. Results No significant group or side differences between the slopes of the different measures used were found at the level of the apex (around T10) of the major curve of the spine. However, a significant side difference was seen at a lower level (L3, p = 0.01) for the MF/time parameter. Conclusion The EMG parameters used in this study could not discriminate between the back muscles of scoliotic subjects and those of control subject regarding fiber type composition, neuromuscular efficiency and muscle fatigue at the level of the apex. The results of this pilot study indicate that compensatory strategies are potentially seen at lower level of the spine with these EMG parameters. PMID:15760468

  15. Surface EMG characteristics of people with multiple sclerosis during static contractions of the knee extensors.

    PubMed

    Scott, Sasha M; Hughes, Adrienne R; Galloway, Stuart D R; Hunter, Angus M

    2011-01-01

    This study was designed to determine whether any alterations existed in surface electromyography (sEMG) in people with multiple sclerosis (MS) during isometric contractions of the knee extensors. Fifteen people with MS and 14 matched controls (mean ± SD age and body mass index 53·7 ± 10·5 versus 54·6 ± 9·6 years and 27·7 ± 6·1 versus 26·5 ± 4, respectively) completed 20%, 40%, 60% and 80% of their maximal voluntary contraction (MVC) of the knee extensors. sEMG was recorded from the vastus lateralis where muscle fibre conduction velocity (MFCV) and sEMG amplitude (RMS) were assessed. Body composition was determined using dual-energy X-ray absorptiometry and physical activity with the use of accelerometry. People with MS showed significantly (P<0·05) faster MFCV during MVC (6·6 ± 2·7 versus 4·7 ± 1·4 m s(-1) ) and all submaximal contractions, while RMS was significantly (P<0·05) less (0·11 ± 0·03 versus 0·24 ± 0·06 mV) in comparison with the controls. MVC along with specific thigh lean mass to torque, rate of force development and mean physical activity were significantly (P<0·01) less in PwMS. People with MS have elevated MFCV alongside reduced RMS during isometric contraction. This elevation in MFCV should be accounted for when interpreting sEMG from people with MS. © 2010 University of Stirling. Clinical physiology and Functional Imaging © 2010 Scandinavian Society of Clinical Physiology and Nuclear Medicine.

  16. Linking Theoretical Decision-making Mechanisms in the Simon Task with Electrophysiological Data: A Model-based Neuroscience Study in Humans.

    PubMed

    Servant, Mathieu; White, Corey; Montagnini, Anna; Burle, Borís

    2016-10-01

    A current challenge for decision-making research is in extending models of simple decisions to more complex and ecological choice situations. Conflict tasks (e.g., Simon, Stroop, Eriksen flanker) have been the focus of much interest, because they provide a decision-making context representative of everyday life experiences. Modeling efforts have led to an elaborated drift diffusion model for conflict tasks (DMC), which implements a superimposition of automatic and controlled decision activations. The DMC has proven to capture the diversity of behavioral conflict effects across various task contexts. This study combined DMC predictions with EEG and EMG measurements to test a set of linking propositions that specify the relationship between theoretical decision-making mechanisms involved in the Simon task and brain activity. Our results are consistent with a representation of the superimposed decision variable in the primary motor cortices. The decision variable was also observed in the EMG activity of response agonist muscles. These findings provide new insight into the neurophysiology of human decision-making. In return, they provide support for the DMC model framework.

  17. Dual-joint modeling for estimation of total knee replacement contact forces during locomotion.

    PubMed

    Hast, Michael W; Piazza, Stephen J

    2013-02-01

    Model-based estimation of in vivo contact forces arising between components of a total knee replacement is challenging because such forces depend upon accurate modeling of muscles, tendons, ligaments, contact, and multibody dynamics. Here we describe an approach to solving this problem with results that are tested by comparison to knee loads measured in vivo for a single subject and made available through the Grand Challenge Competition to Predict in vivo Tibiofemoral Loads. The approach makes use of a "dual-joint" paradigm in which the knee joint is alternately represented by (1) a ball-joint knee for inverse dynamic computation of required muscle controls and (2) a 12 degree-of-freedom (DOF) knee with elastic foundation contact at the tibiofemoral and patellofemoral articulations for forward dynamic integration. Measured external forces and kinematics were applied as a feedback controller and static optimization attempted to track measured knee flexion angles and electromyographic (EMG) activity. The resulting simulations showed excellent tracking of knee flexion (average RMS error of 2.53 deg) and EMG (muscle activations within ±10% envelopes of normalized measured EMG signals). Simulated tibiofemoral contact forces agreed qualitatively with measured contact forces, but their RMS errors were approximately 25% of the peak measured values. These results demonstrate the potential of a dual-joint modeling approach to predict joint contact forces from kinesiological data measured in the motion laboratory. It is anticipated that errors in the estimation of contact force will be reduced as more accurate subject-specific models of muscles and other soft tissues are developed.

  18. Electromyogenic Artifacts and Electroencephalographic Inferences Revisited

    PubMed Central

    McMenamin, Brenton W.; Shackman, Alexander J.; Greischar, Lawrence L.; Davidson, Richard J.

    2010-01-01

    Recent years have witnessed a renewed interest in using oscillatory brain electrical activity to understand the neural bases of cognition and emotion. Electrical signals originating from pericranial muscles represent a profound threat to the validity of such research. Recently, McMenamin et al (2010) examined whether independent component analysis (ICA) provides a sensitive and specific means of correcting electromyogenic (EMG) artifacts. This report sparked the accompanying commentary (Olbrich, Jödicke, Sander, Himmerich & Hegerl, in press), and here we revisit the question of how EMG can alter inferences drawn from the EEG and what can be done to minimize its pernicious effects. Accordingly, we briefly summarize salient features of the EMG problem and review recent research investigating the utility of ICA for correcting EMG and other artifacts. We then directly address the key concerns articulated by Olbrich and provide a critique of their efforts at validating ICA. We conclude by identifying key areas for future methodological work and offer some practical recommendations for intelligently addressing EMG artifact. PMID:20981275

  19. Surface electromyogram for the control of anthropomorphic teleoperator fingers.

    PubMed

    Gupta, V; Reddy, N P

    1996-01-01

    Growing importance of telesurgery has led to the need for the development of synergistic control of anthropomorphic teleoperators. Synergistic systems can be developed using direct biological control. The purpose of this study was to develop techniques for direct biocontrol of anthropomorphic teleoperators using surface electromyogram (EMG). A computer model of a two finger teleoperator was developed and controlled using surface EMG from the flexor digitorum superficialis during flexion-extension of the index finger. The results of the study revealed a linear relationship between the RMS EMG and the flexion-extension of the finger model. Therefore, surface EMG can be used as a direct biocontrol for teleoperators and in VR applications.

  20. Real-time evaluation of a noninvasive neuroprosthetic interface for control of reach.

    PubMed

    Corbett, Elaine A; Körding, Konrad P; Perreault, Eric J

    2013-07-01

    Injuries of the cervical spinal cord can interrupt the neural pathways controlling the muscles of the arm, resulting in complete or partial paralysis. For individuals unable to reach due to high-level injuries, neuroprostheses can restore some of the lost function. Natural, multidimensional control of neuroprosthetic devices for reaching remains a challenge. Electromyograms (EMGs) from muscles that remain under voluntary control can be used to communicate intended reach trajectories, but when the number of available muscles is limited control can be difficult and unintuitive. We combined shoulder EMGs with target estimates obtained from gaze. Natural gaze data were integrated with EMG during closed-loop robotic control of the arm, using a probabilistic mixture model. We tested the approach with two different sets of EMGs, as might be available to subjects with C4- and C5-level spinal cord injuries. Incorporating gaze greatly improved control of reaching, particularly when there were few EMG signals. We found that subjects naturally adapted their eye-movement precision as we varied the set of available EMGs, attaining accurate performance in both tested conditions. The system performs a near-optimal combination of both physiological signals, making control more intuitive and allowing a natural trajectory that reduces the burden on the user.

  1. The change in deep cervical flexor activity after training is associated with the degree of pain reduction in patients with chronic neck pain.

    PubMed

    Falla, Deborah; O'Leary, Shaun; Farina, Dario; Jull, Gwendolen

    2012-09-01

    Altered activation of the deep cervical flexors (longus colli and longus capitis) has been found in individuals with neck pain disorders but the response to training has been variable. Therefore, this study investigated the relationship between change in deep cervical flexor muscle activity and symptoms in response to specific training. Fourteen women with chronic neck pain undertook a 6-week program of specific training that consisted of a craniocervical flexion exercise performed twice per day (10 to 20 min) for the duration of the trial. The exercise targets the deep flexor muscles of the upper cervical region. At baseline and follow-up, measures were taken of neck pain intensity (visual analogue scale, 0 to 10), perceived disability (Neck Disability Index, 0 to 50) and electromyography (EMG) of the deep cervical flexors (by a nasopharyngeal electrode suctioned over the posterior oropharyngeal wall) during performance of craniocervical flexion. After training, the activation of the deep cervical flexors increased (P<0.0001) with the greatest change occurring in patients with the lowest values of deep cervical flexor EMG amplitude at baseline (R(2)=0.68; P<0.001). There was a significant relationship between initial pain intensity, change in pain level with training, and change in EMG amplitude for the deep cervical flexors during craniocervical flexion (R(2)=0.34; P<0.05). Specific training of the deep cervical flexor muscles in women with chronic neck pain reduces pain and improves the activation of these muscles, especially in those with the least activation of their deep cervical flexors before training. This finding suggests that the selection of exercise based on a precise assessment of the patients' neuromuscular control and targeted exercise interventions based on this assessment are likely to be the most beneficial to patients with neck pain.

  2. Non-stationarity and power spectral shifts in EMG activity reflect motor unit recruitment in rat diaphragm muscle.

    PubMed

    Seven, Yasin B; Mantilla, Carlos B; Zhan, Wen-Zhi; Sieck, Gary C

    2013-01-15

    We hypothesized that a shift in diaphragm muscle (DIAm) EMG power spectral density (PSD) to higher frequencies reflects recruitment of more fatigable fast-twitch motor units and motor unit recruitment is reflected by EMG non-stationarity. DIAm EMG was recorded in anesthetized rats during eupnea, hypoxia-hypercapnia (10% O(2)-5% CO(2)), airway occlusion, and sneezing (maximal DIAm force). Although power in all frequency bands increased progressively across motor behaviors, PSD centroid frequency increased only during sneezing (p<0.05). The non-stationary period at the onset of EMG activity ranged from ∼80 ms during airway occlusion to ∼150 ms during eupnea. Within the initial non-stationary period of EMG activity 80-95% of motor units were recruited during different motor behaviors. Motor units augmented their discharge frequencies progressively beyond the non-stationary period; yet, EMG signal became stationary. In conclusion, non-stationarity of DIAm EMG reflects the period of motor unit recruitment, while a shift in the PSD towards higher frequencies reflects recruitment of more fatigable fast-twitch motor units. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Surface electromyography in animals: A systematic review

    PubMed Central

    Valentin, Stephanie; Zsoldos, Rebeka R.

    2017-01-01

    The study of muscle activity using surface electromyography (sEMG) is commonly used for investigations of the neuromuscular system in man. Although sEMG has faced methodological challenges, considerable technical advances have been made in the last few decades. Similarly, the field of animal biomechanics, including sEMG, has grown despite being confronted with often complex experimental conditions. In human sEMG research, standardised protocols have been developed, however these are lacking in animal sEMG. Before standards can be proposed in this population group, the existing research in animal sEMG should be collated and evaluated. Therefore the aim of this review is to systematically identify and summarise the literature in animal sEMG focussing on (1) species, breeds, activities and muscles investigated, and (2) electrode placement and normalisation methods used. The databases PubMed, Web of Science, Scopus, and Vetmed Resource were searched systematically for sEMG studies in animals and 38 articles were included in the final review. Data on methodological quality was collected and summarised. The findings from this systematic review indicate the divergence in animal sEMG methodology and as a result, future steps required to develop standardisation in animal sEMG are proposed. PMID:26763600

  4. Surface electromyography in animal biomechanics: A systematic review.

    PubMed

    Valentin, Stephanie; Zsoldos, Rebeka R

    2016-06-01

    The study of muscle activity using surface electromyography (sEMG) is commonly used for investigations of the neuromuscular system in man. Although sEMG has faced methodological challenges, considerable technical advances have been made in the last few decades. Similarly, the field of animal biomechanics, including sEMG, has grown despite being confronted with often complex experimental conditions. In human sEMG research, standardised protocols have been developed, however these are lacking in animal sEMG. Before standards can be proposed in this population group, the existing research in animal sEMG should be collated and evaluated. Therefore the aim of this review is to systematically identify and summarise the literature in animal sEMG focussing on (1) species, breeds, activities and muscles investigated, and (2) electrode placement and normalisation methods used. The databases PubMed, Web of Science, Scopus, and Vetmed Resource were searched systematically for sEMG studies in animals and 38 articles were included in the final review. Data on methodological quality was collected and summarised. The findings from this systematic review indicate the divergence in animal sEMG methodology and as a result, future steps required to develop standardisation in animal sEMG are proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. A Variance Distribution Model of Surface EMG Signals Based on Inverse Gamma Distribution.

    PubMed

    Hayashi, Hideaki; Furui, Akira; Kurita, Yuichi; Tsuji, Toshio

    2017-11-01

    Objective: This paper describes the formulation of a surface electromyogram (EMG) model capable of representing the variance distribution of EMG signals. Methods: In the model, EMG signals are handled based on a Gaussian white noise process with a mean of zero for each variance value. EMG signal variance is taken as a random variable that follows inverse gamma distribution, allowing the representation of noise superimposed onto this variance. Variance distribution estimation based on marginal likelihood maximization is also outlined in this paper. The procedure can be approximated using rectified and smoothed EMG signals, thereby allowing the determination of distribution parameters in real time at low computational cost. Results: A simulation experiment was performed to evaluate the accuracy of distribution estimation using artificially generated EMG signals, with results demonstrating that the proposed model's accuracy is higher than that of maximum-likelihood-based estimation. Analysis of variance distribution using real EMG data also suggested a relationship between variance distribution and signal-dependent noise. Conclusion: The study reported here was conducted to examine the performance of a proposed surface EMG model capable of representing variance distribution and a related distribution parameter estimation method. Experiments using artificial and real EMG data demonstrated the validity of the model. Significance: Variance distribution estimated using the proposed model exhibits potential in the estimation of muscle force. Objective: This paper describes the formulation of a surface electromyogram (EMG) model capable of representing the variance distribution of EMG signals. Methods: In the model, EMG signals are handled based on a Gaussian white noise process with a mean of zero for each variance value. EMG signal variance is taken as a random variable that follows inverse gamma distribution, allowing the representation of noise superimposed onto this variance. Variance distribution estimation based on marginal likelihood maximization is also outlined in this paper. The procedure can be approximated using rectified and smoothed EMG signals, thereby allowing the determination of distribution parameters in real time at low computational cost. Results: A simulation experiment was performed to evaluate the accuracy of distribution estimation using artificially generated EMG signals, with results demonstrating that the proposed model's accuracy is higher than that of maximum-likelihood-based estimation. Analysis of variance distribution using real EMG data also suggested a relationship between variance distribution and signal-dependent noise. Conclusion: The study reported here was conducted to examine the performance of a proposed surface EMG model capable of representing variance distribution and a related distribution parameter estimation method. Experiments using artificial and real EMG data demonstrated the validity of the model. Significance: Variance distribution estimated using the proposed model exhibits potential in the estimation of muscle force.

  6. History dependence of the EMG-torque relationship.

    PubMed

    Paquin, James; Power, Geoffrey A

    2018-05-28

    The influence of active lengthening (residual force enhancement: RFE) and shortening (force depression: FD) on the electromyography (EMG)-torque relationship was investigated by matching torque and activation at 20%, 40%, 60%, 80% and 100% maximal voluntary contraction (MVC). Sixteen males performed lengthening and shortening contractions of the dorsiflexors over 25° into an isometric steady-state. There was 5% greater torque, with no change in agonist EMG during the RFE condition as compared to the isometric condition. Sub-maximally, in the force enhanced state, there was less agonist EMG during the torque clamp at all intensities relative to isometric, and greater torque during the activation clamps relative to isometric was observed across all intensities except 20% MVC. During the FD state compared to isometric, there was less torque produced during MVC (∼15%) with no change in agonist EMG. Sub-maximally, in the FD state, there was greater agonist EMG during the torque clamp and less torque during the activation clamp relative to the isometric condition across all intensities. The EMG-torque relationship was bilinear for all contraction types but was shifted to the left and right for FD and RFE, respectively as compared with isometric, indicating altered neuromuscular activation strategies in the history-dependent states of RFE and FD. Copyright © 2018. Published by Elsevier Ltd.

  7. Abdominothoracic mechanisms of functional abdominal distension and correction by biofeedback.

    PubMed

    Barba, Elizabeth; Burri, Emanuel; Accarino, Anna; Cisternas, Daniel; Quiroga, Sergi; Monclus, Eva; Navazo, Isabel; Malagelada, Juan-R; Azpiroz, Fernando

    2015-04-01

    In patients with functional gut disorders, abdominal distension has been associated with descent of the diaphragm and protrusion of the anterior abdominal wall. We investigated mechanisms of abdominal distension in these patients. We performed a prospective study of 45 patients (42 women, 24-71 years old) with functional intestinal disorders (27 with irritable bowel syndrome with constipation, 15 with functional bloating, and 3 with irritable bowel syndrome with alternating bowel habits) and discrete episodes of visible abdominal distension. Subjects were assessed by abdominothoracic computed tomography (n = 39) and electromyography (EMG) of the abdominothoracic wall (n = 32) during basal conditions (without abdominal distension) and during episodes of severe abdominal distension. Fifteen patients received a median of 2 sessions (range, 1-3 sessions) of EMG-guided, respiratory-targeted biofeedback treatment; 11 received 1 control session before treatment. Episodes of abdominal distension were associated with diaphragm contraction (19% ± 3% increase in EMG score and 12 ± 2 mm descent; P < .001 vs basal values) and intercostal contraction (14% ± 3% increase in EMG scores and 6 ± 1 mm increase in thoracic antero-posterior diameter; P < .001 vs basal values). They were also associated with increases in lung volume (501 ± 93 mL; P < .001 vs basal value) and anterior abdominal wall protrusion (32 ± 3 mm increase in girth; P < .001 vs basal). Biofeedback treatment, but not control sessions, reduced the activity of the intercostal muscles (by 19% ± 2%) and the diaphragm (by 18% ± 4%), activated the internal oblique muscles (by 52% ± 13%), and reduced girth (by 25 ± 3 mm) (P ≤ .009 vs pretreatment for all). In patients with functional gut disorders, abdominal distension is a behavioral response that involves activity of the abdominothoracic wall. This distension can be reduced with EMG-guided, respiratory-targeted biofeedback therapy. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.

  8. An EMG-Controlled SMA Device for the Rehabilitation of the Ankle Joint in Post-Acute Stroke

    NASA Astrophysics Data System (ADS)

    Pittaccio, S.; Viscuso, S.

    2011-07-01

    The capacity of flexing one's ankle is an indispensible segment of gait re-learning, as imbalance, wrong compensatory use of other joints and risk of falling may depend on the so-called drop-foot. The rehabilitation of ankle dorsiflexion may be achieved through active exercising of the relevant musculature (especially tibialis anterior, TA). This can be troublesome for patients affected by weakness and flaccid paresis. Thus, as needs evolve during patient's improvements, a therapeutic device should be able to guide and sustain gradual recovery by providing commensurate aid. This includes exploiting even initial attempts at voluntary motion and turns those into effective workout. An active orthosis powered by two rotary actuators containing NiTi wire was designed to obtain ankle dorsiflexion. A computer routine that analyzes the electromyographic (sEMG) signal from TA muscle is used to control the orthosis and trigger its activation. The software also provides instructions and feed-back for the patient. Tests on the orthosis proved that it can produce strokes up to 36° against resisting torques exceeding 180 Ncm. Three healthy subjects were able to control the orthosis by modulating their TA sEMG activity. The movement produced in the preliminary tests is interesting for lower limb rehabilitation, and will be further improved by optimizing body-orthosis interface. It is hoped that this device will enhance early rehabilitation and recovery of ankle mobility in stroke patients.

  9. Adaptive Control of Exoskeleton Robots for Periodic Assistive Behaviours Based on EMG Feedback Minimisation.

    PubMed

    Peternel, Luka; Noda, Tomoyuki; Petrič, Tadej; Ude, Aleš; Morimoto, Jun; Babič, Jan

    2016-01-01

    In this paper we propose an exoskeleton control method for adaptive learning of assistive joint torque profiles in periodic tasks. We use human muscle activity as feedback to adapt the assistive joint torque behaviour in a way that the muscle activity is minimised. The user can then relax while the exoskeleton takes over the task execution. If the task is altered and the existing assistive behaviour becomes inadequate, the exoskeleton gradually adapts to the new task execution so that the increased muscle activity caused by the new desired task can be reduced. The advantage of the proposed method is that it does not require biomechanical or dynamical models. Our proposed learning system uses Dynamical Movement Primitives (DMPs) as a trajectory generator and parameters of DMPs are modulated using Locally Weighted Regression. Then, the learning system is combined with adaptive oscillators that determine the phase and frequency of motion according to measured Electromyography (EMG) signals. We tested the method with real robot experiments where subjects wearing an elbow exoskeleton had to move an object of an unknown mass according to a predefined reference motion. We further evaluated the proposed approach on a whole-arm exoskeleton to show that it is able to adaptively derive assistive torques even for multiple-joint motion.

  10. Adaptive Control of Exoskeleton Robots for Periodic Assistive Behaviours Based on EMG Feedback Minimisation

    PubMed Central

    Peternel, Luka; Noda, Tomoyuki; Petrič, Tadej; Ude, Aleš; Morimoto, Jun; Babič, Jan

    2016-01-01

    In this paper we propose an exoskeleton control method for adaptive learning of assistive joint torque profiles in periodic tasks. We use human muscle activity as feedback to adapt the assistive joint torque behaviour in a way that the muscle activity is minimised. The user can then relax while the exoskeleton takes over the task execution. If the task is altered and the existing assistive behaviour becomes inadequate, the exoskeleton gradually adapts to the new task execution so that the increased muscle activity caused by the new desired task can be reduced. The advantage of the proposed method is that it does not require biomechanical or dynamical models. Our proposed learning system uses Dynamical Movement Primitives (DMPs) as a trajectory generator and parameters of DMPs are modulated using Locally Weighted Regression. Then, the learning system is combined with adaptive oscillators that determine the phase and frequency of motion according to measured Electromyography (EMG) signals. We tested the method with real robot experiments where subjects wearing an elbow exoskeleton had to move an object of an unknown mass according to a predefined reference motion. We further evaluated the proposed approach on a whole-arm exoskeleton to show that it is able to adaptively derive assistive torques even for multiple-joint motion. PMID:26881743

  11. Quantitative Evaluation of Electrodes for External Urethral Sphincter Electromyography during Bladder-to-Urethral Guarding Reflex

    PubMed Central

    Steward, James E.; Clemons, Jessica D.; Zaszczurynski, Paul J.; Butler, Robert S.; Damaser, Margot S.; Jiang, Hai-Hong

    2009-01-01

    Purpose Accuracy in the recording of external urethral sphincter (EUS) electromyography (EMG) is an important goal in the quantitative evaluation of urethral function. This study aim was to quantitatively compare electrode recordings taken during tonic activity and leak point pressure (LPP) testing. Methods Several electrodes, including the surface electrode (SE), concentric electrode (CE), and wire electrode (WE), were placed on the EUS singly and simultaneously in six female Sprague-Dawley rats under urethane anesthesia. The bladder was filled via a retropubic catheter while LPP testing and EUS EMG recording were done. Quantitative baseline correction of the EUS EMG signal was performed to reduce baseline variation. Amplitude and frequency of one-second samples of the EUS EMG signal were measured before LPP (tonic activity) and during peak LPP activity. Results The SE, CE, and WE signals demonstrated tonic activity before LPP and an increase in activity during LPP, suggesting that the electrodes accurately recorded EUS activity during tonic activity and during the bladder-to-EUS guarding reflex, regardless of the size or location of detection areas. SE recordings required significantly less baseline correction than both CE and WE recordings. The activity in CE-recorded EMG was significantly higher than that of the SE and WE both in single and simultaneous recordings. Conclusions These electrodes may be suitable for testing EUS EMG activity. The SE signal had significantly less baseline variation and the CE detected local activity more sensitively than the other electrodes, which may provide insight into choosing an appropriate electrode for EUS EMG recording. PMID:19680661

  12. EMG analysis tuned for determining the timing and level of activation in different motor units

    PubMed Central

    Lee, Sabrina S.M.; de Boef Miara, Maria; Arnold, Allison S.; Biewener, Andrew A.; Wakeling, James M.

    2011-01-01

    Recruitment patterns and activation dynamics of different motor units greatly influence the temporal pattern and magnitude of muscle force development, yet these features are not often considered in muscle models. The purpose of this study was to characterize the recruitment and activation dynamics of slow and fast motor units from electromyographic (EMG) recordings and twitch force profiles recorded directly from animal muscles. EMG and force data from the gastrocnemius muscles of seven goats were recorded during in vivo tendon-tap reflex and in situ nerve stimulation experiments. These experiments elicited EMG signals with significant differences in frequency content (p<0.001). The frequency content was characterized using wavelet and principal components analysis, and optimized wavelets with centre frequencies, 149.94Hz and 323.13Hz, were obtained. The optimized wavelets were used to calculate the EMG intensities and, with the reconstructed twitch force profiles, to derive transfer functions for slow and fast motor units that estimate the activation state of the muscle from the EMG signal. The resulting activation-deactivation time constants gave r values of 0.98 to 0.99 between the activation state and the force profiles. This work establishes a framework for developing improved muscle models that consider the intrinsic properties of slow and fast fibres within a mixed muscle, and that can more accurately predict muscle force output from EMG. PMID:21570317

  13. Expiratory Muscle Strength Training Evaluated With Simultaneous High Resolution Manometry and Electromyography

    PubMed Central

    Hutcheson, Katherine A.; Hammer, Michael J.; Rosen, Sarah P.; Jones, Corinne A.; McCulloch, Timothy M.

    2017-01-01

    Objective To examine feasibility of a simultaneous high-resolution pharyngeal manometry (HRM) and electromyography (EMG) experimental paradigm to detect swallowing-related patterns of palatal, laryngeal, and pharyngeal muscle activity during expiratory training. Study Design Technical report. Methods Simultaneous HRM, surface submental, and intramuscular EMG were acquired in two healthy participants during five tasks: 10-cc water swallow, maximum expiratory pressure (MEP) testing, and expiratory muscle strength training (EMST) at three pressure levels (sham, 50%, and 75% MEP). Results Experimental conditions were feasible. Velopharyngeal closing pressure, palate EMG activity, and pharyngeal EMG activity increased as expiratory load increased. In contrast, thyroarytenoid EMG activity was low during the expiratory task, consistent with glottic opening during exhalation. Submental EMG patterns were more variable during expiratory tasks. Intraluminal air pressures recorded with HRM were correlated with measured expiratory pressures and target valve-opening pressures of the EMST device. Conclusion Results suggest that a simultaneous HRM/EMG/EMST paradigm may be used to detect previously unquantified swallowing-related muscle activity during EMST, particularly in the palate and pharynx. Our approach and initial findings will be helpful to guide future hypothesis-driven studies and may enable investigators to evaluate other muscle groups active during these tasks. Defining mechanisms of action is a critical next step toward refining therapeutic algorithms using EMST and other targeted treatments for populations with dysphagia and airway disorders. PMID:28083946

  14. EMG analysis tuned for determining the timing and level of activation in different motor units.

    PubMed

    Lee, Sabrina S M; Miara, Maria de Boef; Arnold, Allison S; Biewener, Andrew A; Wakeling, James M

    2011-08-01

    Recruitment patterns and activation dynamics of different motor units greatly influence the temporal pattern and magnitude of muscle force development, yet these features are not often considered in muscle models. The purpose of this study was to characterize the recruitment and activation dynamics of slow and fast motor units from electromyographic (EMG) recordings and twitch force profiles recorded directly from animal muscles. EMG and force data from the gastrocnemius muscles of seven goats were recorded during in vivo tendon-tap reflex and in situ nerve stimulation experiments. These experiments elicited EMG signals with significant differences in frequency content (p<0.001). The frequency content was characterized using wavelet and principal components analysis, and optimized wavelets with centre frequencies, 149.94 Hz and 323.13 Hz, were obtained. The optimized wavelets were used to calculate the EMG intensities and, with the reconstructed twitch force profiles, to derive transfer functions for slow and fast motor units that estimate the activation state of the muscle from the EMG signal. The resulting activation-deactivation time constants gave r values of 0.98-0.99 between the activation state and the force profiles. This work establishes a framework for developing improved muscle models that consider the intrinsic properties of slow and fast fibres within a mixed muscle, and that can more accurately predict muscle force output from EMG. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. EMG-Torque Dynamics Change With Contraction Bandwidth.

    PubMed

    Golkar, Mahsa A; Jalaleddini, Kian; Kearney, Robert E

    2018-04-01

    An accurate model for ElectroMyoGram (EMG)-torque dynamics has many uses. One of its applications which has gained high attention among researchers is its use, in estimating the muscle contraction level for the efficient control of prosthesis. In this paper, the dynamic relationship between the surface EMG and torque during isometric contractions at the human ankle was studied using system identification techniques. Subjects voluntarily modulated their ankle torque in dorsiflexion direction, by activating their tibialis anterior muscle, while tracking a pseudo-random binary sequence in a torque matching task. The effects of contraction bandwidth, described by torque spectrum, on EMG-torque dynamics were evaluated by varying the visual command switching time. Nonparametric impulse response functions (IRF) were estimated between the processed surface EMG and torque. It was demonstrated that: 1) at low contraction bandwidths, the identified IRFs had unphysiological anticipatory (i.e., non-causal) components, whose amplitude decreased as the contraction bandwidth increased. We hypothesized that this non-causal behavior arose, because the EMG input contained a component due to feedback from the output torque, i.e., it was recorded from within a closed-loop. Vision was not the feedback source since the non-causal behavior persisted when visual feedback was removed. Repeating the identification using a nonparametric closed-loop identification algorithm yielded causal IRFs at all bandwidths, supporting this hypothesis. 2) EMG-torque dynamics became faster and the bandwidth of system increased as contraction modulation rate increased. Thus, accurate prediction of torque from EMG signals must take into account the contraction bandwidth sensitivity of this system.

  16. Does hip joint positioning affect maximal voluntary contraction in the gluteus maximus, gluteus medius, tensor fasciae latae and sartorius muscles?

    PubMed

    Bernard, J; Beldame, J; Van Driessche, S; Brunel, H; Poirier, T; Guiffault, P; Matsoukis, J; Billuart, F

    2017-11-01

    Minimally invasive total hip arthroplasty (THA) is presumed to provide functional and clinical benefits, whereas in fact the literature reveals that gait and posturographic parameters following THA do not recover values found in the general population. There is a significant disturbance of postural sway in THA patients, regardless of the surgical approach, although with some differences between approaches compared to controls: the anterior and anterolateral minimally invasive approaches seem to be more disruptive of postural parameters than the posterior approach. Electromyographic (EMG) study of the hip muscles involved in surgery [gluteus maximus (GMax), gluteus medius (GMed), tensor fasciae latae (TFL), and sartorius (S)] could shed light, the relevant literature involves discordant methodologies. We developed a methodology to assess EMG activity during maximal voluntary contraction (MVC) of the GMax, GMed, TFL and sartorius muscles as a reference for normalization. A prospective study aimed to assess whether hip joint positioning and the learning curve on an MVC test affect the EMG signal during a maximal voluntary contraction. Hip positioning and the learning curve on an MVC test affect EMG signal during MVC of GMax, GMed, TFL and S. Thirty young asymptomatic subjects participated in the study. Each performed 8 hip muscle MVCs in various joint positions recorded with surface EMG sensors. Each MVC was performed 3 times in 1 week, with the same schedule every day, controlling for activity levels in the preceding 24h. EMG activity during MVC was expressed as a ratio of EMG activity during unipedal stance. Non-parametric tests were applied. Statistical analysis showed no difference according to hip position for abductors or flexors in assessing EMG signal during MVC over the 3 sessions. Hip abductors showed no difference between abduction in lateral decubitus with hip straight versus hip flexed: GMax (19.8±13.7 vs. 14.5±7.8, P=0.78), GMed (13.4±9.0 vs. 9.9±6.6, P=0.21) and TFL (69.5±61.7 vs. 65.9±51.3, P=0.50). Flexors showed no difference between hip flexion/abduction/lateral rotation performed in supine or sitting position: TFL (70.6±45.9 vs. 61.6±45.8, P=0.22) and S (101.1±67.9 vs. 72.6±44.6, P=0.21). The most effective tests to assess EMG signal during MVC were for the hip abductors: hip abduction performed in lateral decubitus (36.7% for GMax, 76.7% for GMed), and for hip flexors: hip flexion/abduction/lateral rotation performed in supine decubitus (50% for TFL, 76.7% for S). The study hypothesis was not confirmed, since hip joint positioning and the learning curve on an MVC test did not affect EMG signal during MVC of GMax, GMed, TFL and S muscles. Therefore, a single session and one specific test is enough to assess MVC in hip abductors (abduction in lateral decubitus) and flexors (hip flexion/abduction/lateral rotation in supine position). This method could be applied to assess muscle function after THA, and particularly to compare different approaches. III, case-matched study. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Psychophysiological effects of massage-myofascial release after exercise: a randomized sham-control study.

    PubMed

    Arroyo-Morales, Manuel; Olea, Nicolas; Martínez, Marin Manuel; Hidalgo-Lozano, Amparo; Ruiz-Rodríguez, Concepción; Díaz-Rodríguez, Lourdes

    2008-12-01

    The aim of this study was to evaluate the effect of massage on neuromuscular recruitment, mood state, and mechanical nociceptive threshold (MNT) after high-intensity exercise. This was a prospective randomized clinical trial using between-groups design. The study was conducted at a university-based sports medicine clinic. Sixty-two (62) healthy active students age 18-26 participated. Participants, randomized into two groups, performed three 30-second Wingate tests and immediately received whole-body massage-myofascial induction or placebo (sham ultrasound/magnetotherapy) treatment. The duration (40 minutes), position, and therapist were the same for both treatments. Dependent variables were surface electromyography (sEMG) of quadriceps, profile of mood states (POMS) and mechanical nociceptive threshold (MNT) of trapezius and masseter muscles. These data were assessed at baseline and after exercise and recovery periods. Generalized estimating equations models were performed on dependent variables to assess differences between groups. Significant differences were found in effects of treatment on sEMG of Vastus Medialis (VM) (p = 0.02) and vigor subscale (p = 0.04). After the recovery period, there was a significant decrease in electromyographic (EMG) activity of VM (p = 0.02) in the myofascial-release group versus a nonsignificant increase in the placebo group (p = 0.32), and a decrease in vigor (p < 0.01) in the massage group versus no change in the placebo group (p = 0.86). Massage reduces EMG amplitude and vigor when applied as a passive recovery technique after a high-intensity exercise protocol. Massage may induce a transient loss of muscle strength or a change in the muscle fiber tension-length relationship, influenced by alterations of muscle function and a psychological state of relaxation.

  18. Predicting muscle forces during the propulsion phase of single leg triple hop test.

    PubMed

    Alvim, Felipe Costa; Lucareli, Paulo Roberto Garcia; Menegaldo, Luciano Luporini

    2018-01-01

    Functional biomechanical tests allow the assessment of musculoskeletal system impairments in a simple way. Muscle force synergies associated with movement can provide additional information for diagnosis. However, such forces cannot be directly measured noninvasively. This study aims to estimate muscle activations and forces exerted during the preparation phase of the single leg triple hop test. Two different approaches were tested: static optimization (SO) and computed muscle control (CMC). As an indirect validation, model-estimated muscle activations were compared with surface electromyography (EMG) of selected hip and thigh muscles. Ten physically healthy active women performed a series of jumps, and ground reaction forces, kinematics and EMG data were recorded. An existing OpenSim model with 92 musculotendon actuators was used to estimate muscle forces. Reflective markers data were processed using the OpenSim Inverse Kinematics tool. Residual Reduction Algorithm (RRA) was applied recursively before running the SO and CMC. For both, the same adjusted kinematics were used as inputs. Both approaches presented similar residuals amplitudes. SO showed a closer agreement between the estimated activations and the EMGs of some muscles. Due to inherent EMG methodological limitations, the superiority of SO in relation to CMC can be only hypothesized. It should be confirmed by conducting further studies comparing joint contact forces. The workflow presented in this study can be used to estimate muscle forces during the preparation phase of the single leg triple hop test and allows investigating muscle activation and coordination. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. An Analysis of Intrinsic and Extrinsic Hand Muscle EMG for Improved Pattern Recognition Control.

    PubMed

    Adewuyi, Adenike A; Hargrove, Levi J; Kuiken, Todd A

    2016-04-01

    Pattern recognition control combined with surface electromyography (EMG) from the extrinsic hand muscles has shown great promise for control of multiple prosthetic functions for transradial amputees. There is, however, a need to adapt this control method when implemented for partial-hand amputees, who possess both a functional wrist and information-rich residual intrinsic hand muscles. We demonstrate that combining EMG data from both intrinsic and extrinsic hand muscles to classify hand grasps and finger motions allows up to 19 classes of hand grasps and individual finger motions to be decoded, with an accuracy of 96% for non-amputees and 85% for partial-hand amputees. We evaluated real-time pattern recognition control of three hand motions in seven different wrist positions. We found that a system trained with both intrinsic and extrinsic muscle EMG data, collected while statically and dynamically varying wrist position increased completion rates from 73% to 96% for partial-hand amputees and from 88% to 100% for non-amputees when compared to a system trained with only extrinsic muscle EMG data collected in a neutral wrist position. Our study shows that incorporating intrinsic muscle EMG data and wrist motion can significantly improve the robustness of pattern recognition control for application to partial-hand prosthetic control.

  20. Improving Functional Magnetic Resonance Imaging Motor Studies Through Simultaneous Electromyography Recordings

    PubMed Central

    MacIntosh, Bradley J.; Baker, S. Nicole; Mraz, Richard; Ives, John R.; Martel, Anne L.; McIlroy, William E.; Graham, Simon J.

    2016-01-01

    Specially designed optoelectronic and data postprocessing methods are described that permit electromyography (EMG) of muscle activity simultaneous with functional MRI (fMRI). Hardware characterization and validation included simultaneous EMG and event-related fMRI in 17 healthy participants during either ankle (n = 12), index finger (n = 3), or wrist (n = 2) contractions cued by visual stimuli. Principal component analysis (PCA) and independent component analysis (ICA) were evaluated for their ability to remove residual fMRI gradient-induced signal contamination in EMG data. Contractions of ankle tibialis anterior and index finger abductor were clearly distinguishable, although observing contractions from the wrist flexors proved more challenging. To demonstrate the potential utility of simultaneous EMG and fMRI, data from the ankle experiments were analyzed using two approaches: 1) assuming contractions coincided precisely with visual cues, and 2) using EMG to time the onset and offset of muscle contraction precisely for each participant. Both methods produced complementary activation maps, although the EMG-guided approach recovered more active brain voxels and revealed activity better in the basal ganglia and cerebellum. Furthermore, numerical simulations confirmed that precise knowledge of behavioral responses, such as those provided by EMG, are much more important for event-related experimental designs compared to block designs. This simultaneous EMG and fMRI methodology has important applications where the amplitude or timing of motor output is impaired, such as after stroke. PMID:17133382

  1. Improving functional magnetic resonance imaging motor studies through simultaneous electromyography recordings.

    PubMed

    MacIntosh, Bradley J; Baker, S Nicole; Mraz, Richard; Ives, John R; Martel, Anne L; McIlroy, William E; Graham, Simon J

    2007-09-01

    Specially designed optoelectronic and data postprocessing methods are described that permit electromyography (EMG) of muscle activity simultaneous with functional MRI (fMRI). Hardware characterization and validation included simultaneous EMG and event-related fMRI in 17 healthy participants during either ankle (n = 12), index finger (n = 3), or wrist (n = 2) contractions cued by visual stimuli. Principal component analysis (PCA) and independent component analysis (ICA) were evaluated for their ability to remove residual fMRI gradient-induced signal contamination in EMG data. Contractions of ankle tibialis anterior and index finger abductor were clearly distinguishable, although observing contractions from the wrist flexors proved more challenging. To demonstrate the potential utility of simultaneous EMG and fMRI, data from the ankle experiments were analyzed using two approaches: 1) assuming contractions coincided precisely with visual cues, and 2) using EMG to time the onset and offset of muscle contraction precisely for each participant. Both methods produced complementary activation maps, although the EMG-guided approach recovered more active brain voxels and revealed activity better in the basal ganglia and cerebellum. Furthermore, numerical simulations confirmed that precise knowledge of behavioral responses, such as those provided by EMG, are much more important for event-related experimental designs compared to block designs. This simultaneous EMG and fMRI methodology has important applications where the amplitude or timing of motor output is impaired, such as after stroke. (c) 2006 Wiley-Liss, Inc.

  2. Electromyographic evaluation of a low-level laser protocol for the treatment of temporomandibular disorder: a randomized, controlled, blind trial

    PubMed Central

    Leal de Godoy, Camila Haddad; Motta, Lara Jansiski; Garcia, Eugenio Jose; Fernandes, Kristianne Porta Santos; Mesquita-Ferrari, Raquel Agnelli; Sfalcin, Ravana Angelini; Motta, Pamella de Barros; Politti, Fabiano; Bussadori, Sandra Kalil

    2017-01-01

    [Purpose] Problems involving the temporomandibular joint and associated structures can lead to temporomandibular disorder (TMD). The aim of the present study was to evaluate muscle activity in individuals with a diagnosis of TMD before and after treatment with low-level laser therapy (LLLT) through the use of electromyography (EMG). [Subjects and Methods] Male and female individuals aged 14 to 23 years were evaluated. TMD was determined by a clinical examination and the administration of the Research Diagnostic Criteria for Temporomandibular Disorders, followed by the evaluation of sensitivity to palpation of the masseter and anterior temporal muscles as well as the EMG determination of muscle activity. The participants were randomly allocated to an active LLLT group (n=9) and sham group (n=7). Twelve sessions of LLLT were conducted using a wavelength of 780 nm, energy density of 25 J/cm2, power of 50 mW, power density of 1.25 W/cm2 and a 20-second exposure time or sham LLLT. Muscle activity was determined prior to treatment and after the last session. [Results] During the isometric evaluation of the masseter and anterior temporal muscles, an increase in the mean EMG signal was found in the group submitted to active LLLT. When evaluated individually, some participants in the active LLLT group demonstrated a reduction in muscle activity, but no significant differences were found in the mean EMG signal between the initial and final evaluations. [Conclusion] Further studies with a larger sample size are needed to confirm the present findings. PMID:29643585

  3. Optimal spatio-temporal filter for the reduction of crosstalk in surface electromyogram

    NASA Astrophysics Data System (ADS)

    Mesin, Luca

    2018-02-01

    Objective. Crosstalk can pose limitations to the applications of surface electromyogram (EMG). Its reduction can help in the identification of the activity of specific muscles. The selectivity of different spatial filters was tested in the literature both in simulations and experiments: their performances are affected by many factors (e.g. anatomy, conduction properties of the tissues and dimension/location of the electrodes); moreover, they reduce crosstalk by decreasing the detection volume, recording data that represent only the activity of a small portion of the muscle of interest. In this study, an alternative idea is proposed, based on a spatio-temporal filter. Approach. An adaptive method is applied, which filters both in time and among different channels, providing a signal that maximally preserves the energy of the EMG of interest and discards that of nearby muscles (increasing the signal to crosstalk ratio, SCR). Main results. Tests with simulations and experimental data show an average increase of the SCR of about 2 dB with respect to the single or double differential data processed by the filter. This allows to reduce the bias induced by crosstalk in conduction velocity and force estimation. Significance. The method can be applied to few channels, so that it is useful in applicative studies (e.g. clinics, gate analysis, rehabilitation protocols with EMG biofeedback and prosthesis control) where limited and not selective information is usually available.

  4. Inter-individual variability and pattern recognition of surface electromyography in front crawl swimming.

    PubMed

    Martens, Jonas; Daly, Daniel; Deschamps, Kevin; Staes, Filip; Fernandes, Ricardo J

    2016-12-01

    Variability of electromyographic (EMG) recordings is a complex phenomenon rarely examined in swimming. Our purposes were to investigate inter-individual variability in muscle activation patterns during front crawl swimming and assess if there were clusters of sub patterns present. Bilateral muscle activity of rectus abdominis (RA) and deltoideus medialis (DM) was recorded using wireless surface EMG in 15 adult male competitive swimmers. The amplitude of the median EMG trial of six upper arm movement cycles was used for the inter-individual variability assessment, quantified with the coefficient of variation, coefficient of quartile variation, the variance ratio and mean deviation. Key features were selected based on qualitative and quantitative classification strategies to enter in a k-means cluster analysis to examine the presence of strong sub patterns. Such strong sub patterns were found when clustering in two, three and four clusters. Inter-individual variability in a group of highly skilled swimmers was higher compared to other cyclic movements which is in contrast to what has been reported in the previous 50years of EMG research in swimming. This leads to the conclusion that coaches should be careful in using overall reference EMG information to enhance the individual swimming technique of their athletes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Detection of compensatory balance responses using wearable electromyography sensors for fall-risk assessment.

    PubMed

    Nouredanesh, Mina; Kukreja, Sunil L; Tung, James

    2016-08-01

    Loss of balance is prevalent in older adults and populations with gait and balance impairments. The present paper aims to develop a method to automatically distinguish compensatory balance responses (CBRs) from normal gait, based on activity patterns of muscles involved in maintaining balance. In this study, subjects were perturbed by lateral pushes while walking and surface electromyography (sEMG) signals were recorded from four muscles in their right leg. To extract sEMG time domain features, several filtering characteristics and segmentation approaches are examined. The performance of three classification methods, i.e., k-nearest neighbor, support vector machines, and random forests, were investigated for accurate detection of CBRs. Our results show that features extracted in the 50-200Hz band, segmented using peak sEMG amplitudes, and a random forest classifier detected CBRs with an accuracy of 92.35%. Moreover, our results support the important role of biceps femoris and rectus femoris muscles in stabilization and consequently discerning CBRs. This study contributes towards the development of wearable sensor systems to accurately and reliably monitor gait and balance control behavior in at-home settings (unsupervised conditions), over long periods of time, towards personalized fall risk assessment tools.

  6. Impact of visual and somatosensory deprivation on dynamic balance in adolescent idiopathic scoliosis.

    PubMed

    Kuo, Fang-Chuan; Wang, Nai-Hwei; Hong, Chang-Zern

    2010-11-01

    A cross-sectional study of balance control in adolescents with idiopathic scoliosis (AIS). To investigate the impact of visual and somatosensory deprivation on the dynamic balance in AIS patients and to discuss electromyographic (EMG) and posture sway findings. Most studies focus on posture sway in quiet standing controls with little effort on examining muscle-activated patterns in dynamic standing controls. Twenty-two AIS patients and 22 age-matched normal subjects were studied. To understand how visual and somatosensory information could modulate standing balance, balance tests with the Biodex stability system were performed on a moving platform under 3 conditions: visual feedback provided (VF), eyes closed (EC), and standing on a sponge pad with visual feedback provided (SV). Muscular activities of bilateral lumbar multifidi, gluteus medii, and gastrocnemii muscles were recorded with a telemetry EMG system. AIS patients had normal balance index and amplitude and duration of EMG similar to those of normal subjects in the balance test. However, the onset latency of right gastrocnemius was earlier in AIS patients than in normal subjects. In addition, body-side asymmetry was noted on muscle strength and onset latency in AIS subjects. Under EC condition, lumbar multifidi, and gluteus medii activities were higher than those under SV and VF conditions (P < 0.05). Under SV condition, the medial-lateral tilting angle was less than that under VF and EC conditions. In addition, the active duration of right gluteus medius was shorter under SV condition (P < 0.05). The dynamic balance control is particularly disruptive under visual deprivation with increasing lumbar multifidi and gluteus medii activities for compensation. Sponge pad can cause decrease in frontal plane tilting and gluteus medii effort. The asymmetric muscle strength and onset timing are attributed to anatomic deformation as opposed to neurologic etiological factors.

  7. A comparative study of surface EMG classification by fuzzy relevance vector machine and fuzzy support vector machine.

    PubMed

    Xie, Hong-Bo; Huang, Hu; Wu, Jianhua; Liu, Lei

    2015-02-01

    We present a multiclass fuzzy relevance vector machine (FRVM) learning mechanism and evaluate its performance to classify multiple hand motions using surface electromyographic (sEMG) signals. The relevance vector machine (RVM) is a sparse Bayesian kernel method which avoids some limitations of the support vector machine (SVM). However, RVM still suffers the difficulty of possible unclassifiable regions in multiclass problems. We propose two fuzzy membership function-based FRVM algorithms to solve such problems, based on experiments conducted on seven healthy subjects and two amputees with six hand motions. Two feature sets, namely, AR model coefficients and room mean square value (AR-RMS), and wavelet transform (WT) features, are extracted from the recorded sEMG signals. Fuzzy support vector machine (FSVM) analysis was also conducted for wide comparison in terms of accuracy, sparsity, training and testing time, as well as the effect of training sample sizes. FRVM yielded comparable classification accuracy with dramatically fewer support vectors in comparison with FSVM. Furthermore, the processing delay of FRVM was much less than that of FSVM, whilst training time of FSVM much faster than FRVM. The results indicate that FRVM classifier trained using sufficient samples can achieve comparable generalization capability as FSVM with significant sparsity in multi-channel sEMG classification, which is more suitable for sEMG-based real-time control applications.

  8. Comparison of hamstring muscle behavior for anterior cruciate ligament (ACL) patient and normal subject during local marching

    NASA Astrophysics Data System (ADS)

    Amineldin@Aminudin, Nurul Izzaty Bt.; Rambely, A. S.

    2014-09-01

    This study aims to investigate the hamstring muscle activity after the surgery by carrying out an electromyography experiment on the hamstring and to compare the behavior of the ACL muscle activity between ACL patient and control subject. Electromyography (EMG) is used to study the behavior of muscles during walking activity. Two hamstring muscles involved which are semitendinosus and bicep femoris. The EMG data for both muscles were recorded while the subject did maximum voluntary contraction (MVC) and marching. The study concluded that there were similarities between bicep femoris of the ACL and control subjects. The analysis showed that the biceps femoris muscle of the ACL subject had no abnormality and the pattern is as normal as the control subject. However, ACL patient has poor semitendinosus muscle strength compared to that of control subject because the differences of the forces produced. The force of semitendinosus value for control subject was two times greater than that of the ACL subject as the right semitendinosus muscle of ACL subject was used to replace the anterior cruciate ligament (ACL) that was injured.

  9. A Novel Hybrid Model for Drawing Trace Reconstruction from Multichannel Surface Electromyographic Activity.

    PubMed

    Chen, Yumiao; Yang, Zhongliang

    2017-01-01

    Recently, several researchers have considered the problem of reconstruction of handwriting and other meaningful arm and hand movements from surface electromyography (sEMG). Although much progress has been made, several practical limitations may still affect the clinical applicability of sEMG-based techniques. In this paper, a novel three-step hybrid model of coordinate state transition, sEMG feature extraction and gene expression programming (GEP) prediction is proposed for reconstructing drawing traces of 12 basic one-stroke shapes from multichannel surface electromyography. Using a specially designed coordinate data acquisition system, we recorded the coordinate data of drawing traces collected in accordance with the time series while 7-channel EMG signals were recorded. As a widely-used time domain feature, Root Mean Square (RMS) was extracted with the analysis window. The preliminary reconstruction models can be established by GEP. Then, the original drawing traces can be approximated by a constructed prediction model. Applying the three-step hybrid model, we were able to convert seven channels of EMG activity recorded from the arm muscles into smooth reconstructions of drawing traces. The hybrid model can yield a mean accuracy of 74% in within-group design (one set of prediction models for all shapes) and 86% in between-group design (one separate set of prediction models for each shape), averaged for the reconstructed x and y coordinates. It can be concluded that it is feasible for the proposed three-step hybrid model to improve the reconstruction ability of drawing traces from sEMG.

  10. Circadian force and EMG activity in hindlimb muscles of rhesus monkeys

    NASA Technical Reports Server (NTRS)

    Hodgson, J. A.; Wichayanuparp, S.; Recktenwald, M. R.; Roy, R. R.; McCall, G.; Day, M. K.; Washburn, D.; Fanton, J. W.; Kozlovskaya, I.; Edgerton, V. R.; hide

    2001-01-01

    Continuous intramuscular electromyograms (EMGs) were recorded from the soleus (Sol), medial gastrocnemius (MG), tibialis anterior (TA), and vastus lateralis (VL) muscles of Rhesus during normal cage activity throughout 24-h periods and also during treadmill locomotion. Daily levels of MG tendon force and EMG activity were obtained from five monkeys with partial datasets from three other animals. Activity levels correlated with the light-dark cycle with peak activities in most muscles occurring between 08:00 and 10:00. The lowest levels of activity generally occurred between 22:00 and 02:00. Daily EMG integrals ranged from 19 mV/s in one TA muscle to 3339 mV/s in one Sol muscle: average values were 1245 (Sol), 90 (MG), 65 (TA), and 209 (VL) mV/s. The average Sol EMG amplitude per 24-h period was 14 microV, compared with 246 microV for a short burst of locomotion. Mean EMG amplitudes for the Sol, MG, TA, and VL during active periods were 102, 18, 20, and 33 microV, respectively. EMG amplitudes that approximated recruitment of all fibers within a muscle occurred for 5-40 s/day in all muscles. The duration of daily activation was greatest in the Sol [151 +/- 45 (SE) min] and shortest in the TA (61 +/- 19 min). The results show that even a "postural" muscle such as the Sol was active for only approximately 9% of the day, whereas less active muscles were active for approximately 4% of the day. MG tendon forces were generally very low, consistent with the MG EMG data but occasionally reached levels close to estimates of the maximum force generating potential of the muscle. The Sol and TA activities were mutually exclusive, except at very low levels, suggesting very little coactivation of these antagonistic muscles. In contrast, the MG activity usually accompanied Sol activity suggesting that the MG was rarely used in the absence of Sol activation. The results clearly demonstrate a wide range of activation levels among muscles of the same animal as well as among different animals during normal cage activity.

  11. Muscle activity during knee-extension strengthening exercise performed with elastic tubing and isotonic resistance.

    PubMed

    Jakobsen, Markus Due; Sundstrup, Emil; Andersen, Christoffer H; Bandholm, Thomas; Thorborg, Kristian; Zebis, Mette K; Andersen, Lars L

    2012-12-01

    While elastic resistance training, targeting the upper body is effective for strength training, the effect of elastic resistance training on lower body muscle activity remains questionable. The purpose of this study was to evaluate the EMG-angle relationship of the quadriceps muscle during 10-RM knee-extensions performed with elastic tubing and an isotonic strength training machine. 7 women and 9 men aged 28-67 years (mean age 44 and 41 years, respectively) participated. Electromyographic (EMG) activity was recorded in 10 muscles during the concentric and eccentric contraction phase of a knee extension exercise performed with elastic tubing and in training machine and normalized to maximal voluntary isometric contraction (MVC) EMG (nEMG). Knee joint angle was measured during the exercises using electronic inclinometers (range of motion 0-90°). When comparing the machine and elastic resistance exercises there were no significant differences in peak EMG of the rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM) during the concentric contraction phase. However, during the eccentric phase, peak EMG was significantly higher (p<0.01) in RF and VM when performing knee extensions using the training machine. In VL and VM the EMG-angle pattern was different between the two training modalities (significant angle by exercise interaction). When using elastic resistance, the EMG-angle pattern peaked towards full knee extension (0°), whereas angle at peak EMG occurred closer to knee flexion position (90°) during the machine exercise. Perceived loading (Borg CR10) was similar during knee extensions performed with elastic tubing (5.7±0.6) compared with knee extensions performed in training machine (5.9±0.5). Knee extensions performed with elastic tubing induces similar high (>70% nEMG) quadriceps muscle activity during the concentric contraction phase, but slightly lower during the eccentric contraction phase, as knee extensions performed using an isotonic training machine. During the concentric contraction phase the two different conditions displayed reciprocal EMG-angle patterns during the range of motion. 5.

  12. Muscle Activation During Grasping With and Without Motor Imagery in Healthy Volunteers and Patients After Stroke or With Parkinson's Disease

    PubMed Central

    Kobelt, Manuela; Wirth, Brigitte; Schuster-Amft, Corina

    2018-01-01

    Introduction: The present study assessed whether motor imagery (MI) produces electromyographic activation in specific muscles of the upper limb during a hand grasping and arm-lifting task in healthy volunteers, patients after stroke, or with Parkinson's disease. Electromyographic (EMG) activation was compared under three conditions: MI, physical execution (PE), and rest. The task is clinically relevant unilateral executed movement using open muscle chains. Methods: In a cross-sectional study EMG activation was measured in four muscles: M. deltoideus pars clavicularis, M. biceps brachii, M. extensor digitorum, M. flexor carpi radialis. MI ability was evaluated with mental rotation, mental chronometry and the Kinaesthetic and Visual Imagery Questionnaire. Cognitive performance was screened with the Mini-Mental State Examination. Results: Twenty-two participants (11 females, age 52.6 ±15.8, age range 21 to 72) were included: ten healthy volunteers, seven patients after stroke (time after stroke onset 16.3 ± 24.8 months), and five patients with Parkinson's disease (disease duration 60.4 ± 24.5 months). Overall Mini-Mental State Examination scores ranged between 27 and 30. An increased EMG activation during MI compared to rest condition was observed in M. deltoideus pars clavicularis and M. biceps brachii across all participants (p-value = 0.001, p = 0.007). Seven participants (two healthy volunteers, three patients after stroke and two patients with Parkinson's disease) showed a EMG activation during MI of the hand grasping and arm-lifting task in at least one of the target muscles. No correlation between EMG activation during MI and scores of three MI ability assessments were found. Conclusions: The findings suggest that MI can yield subliminal EMG activation. However, that might vary on individual basis. It remains unclear what parameters contribute to or inhibit an EMG activation during MI. Future investigations should determine factors that influence EMG activation, e.g. MI instructions, tasks to imagine, amount of MI training, and longitudinal changes after an MI training period. PMID:29740377

  13. High-density force myography: A possible alternative for upper-limb prosthetic control.

    PubMed

    Radmand, Ashkan; Scheme, Erik; Englehart, Kevin

    2016-01-01

    Several multiple degree-of-freedom upper-limb prostheses that have the promise of highly dexterous control have recently been developed. Inadequate controllability, however, has limited adoption of these devices. Introducing more robust control methods will likely result in higher acceptance rates. This work investigates the suitability of using high-density force myography (HD-FMG) for prosthetic control. HD-FMG uses a high-density array of pressure sensors to detect changes in the pressure patterns between the residual limb and socket caused by the contraction of the forearm muscles. In this work, HD-FMG outperforms the standard electromyography (EMG)-based system in detecting different wrist and hand gestures. With the arm in a fixed, static position, eight hand and wrist motions were classified with 0.33% error using the HD-FMG technique. Comparatively, classification errors in the range of 2.2%-11.3% have been reported in the literature for multichannel EMG-based approaches. As with EMG, position variation in HD-FMG can introduce classification error, but incorporating position variation into the training protocol reduces this effect. Channel reduction was also applied to the HD-FMG technique to decrease the dimensionality of the problem as well as the size of the sensorized area. We found that with informed, symmetric channel reduction, classification error could be decreased to 0.02%.

  14. Real-time simultaneous and proportional myoelectric control using intramuscular EMG

    PubMed Central

    Kuiken, Todd A; Hargrove, Levi J

    2014-01-01

    Objective Myoelectric prostheses use electromyographic (EMG) signals to control movement of prosthetic joints. Clinically available myoelectric control strategies do not allow simultaneous movement of multiple degrees of freedom (DOFs); however, the use of implantable devices that record intramuscular EMG signals could overcome this constraint. The objective of this study was to evaluate the real-time simultaneous control of three DOFs (wrist rotation, wrist flexion/extension, and hand open/close) using intramuscular EMG. Approach We evaluated task performance of five able-bodied subjects in a virtual environment using two control strategies with fine-wire EMG: (i) parallel dual-site differential control, which enabled simultaneous control of three DOFs and (ii) pattern recognition control, which required sequential control of DOFs. Main Results Over the course of the experiment, subjects using parallel dual-site control demonstrated increased use of simultaneous control and improved performance in a Fitts' Law test. By the end of the experiment, performance using parallel dual-site control was significantly better (up to a 25% increase in throughput) than when using sequential pattern recognition control for tasks requiring multiple DOFs. The learning trends with parallel dual-site control suggested that further improvements in performance metrics were possible. Subjects occasionally experienced difficulty in performing isolated single-DOF movements with parallel dual-site control but were able to accomplish related Fitts' Law tasks with high levels of path efficiency. Significance These results suggest that intramuscular EMG, used in a parallel dual-site configuration, can provide simultaneous control of a multi-DOF prosthetic wrist and hand and may outperform current methods that enforce sequential control. PMID:25394366

  15. Real-time simultaneous and proportional myoelectric control using intramuscular EMG

    NASA Astrophysics Data System (ADS)

    Smith, Lauren H.; Kuiken, Todd A.; Hargrove, Levi J.

    2014-12-01

    Objective. Myoelectric prostheses use electromyographic (EMG) signals to control movement of prosthetic joints. Clinically available myoelectric control strategies do not allow simultaneous movement of multiple degrees of freedom (DOFs); however, the use of implantable devices that record intramuscular EMG signals could overcome this constraint. The objective of this study was to evaluate the real-time simultaneous control of three DOFs (wrist rotation, wrist flexion/extension, and hand open/close) using intramuscular EMG. Approach. We evaluated task performance of five able-bodied subjects in a virtual environment using two control strategies with fine-wire EMG: (i) parallel dual-site differential control, which enabled simultaneous control of three DOFs and (ii) pattern recognition control, which required sequential control of DOFs. Main results. Over the course of the experiment, subjects using parallel dual-site control demonstrated increased use of simultaneous control and improved performance in a Fitts’ Law test. By the end of the experiment, performance using parallel dual-site control was significantly better (up to a 25% increase in throughput) than when using sequential pattern recognition control for tasks requiring multiple DOFs. The learning trends with parallel dual-site control suggested that further improvements in performance metrics were possible. Subjects occasionally experienced difficulty in performing isolated single-DOF movements with parallel dual-site control but were able to accomplish related Fitts’ Law tasks with high levels of path efficiency. Significance. These results suggest that intramuscular EMG, used in a parallel dual-site configuration, can provide simultaneous control of a multi-DOF prosthetic wrist and hand and may outperform current methods that enforce sequential control.

  16. Effect of stance width on multidirectional postural responses

    NASA Technical Reports Server (NTRS)

    Henry, S. M.; Fung, J.; Horak, F. B.; Peterson, B. W. (Principal Investigator)

    2001-01-01

    The effect of stance width on postural responses to 12 different directions of surface translations was examined. Postural responses were characterized by recording 11 lower limb and trunk muscles, body kinematics, and forces exerted under each foot of 7 healthy subjects while they were subjected to horizontal surface translations in 12 different, randomly presented directions. A quasi-static approach of force analysis was done, examining force integrals in three different epochs (background, passive, and active periods). The latency and amplitude of muscle responses were quantified for each direction, and muscle tuning curves were used to determine the spatial activation patterns for each muscle. The results demonstrate that the horizontal force constraint exerted at the ground was lessened in the wide, compared with narrow, stance for humans, a similar finding to that reported by Macpherson for cats. Despite more trunk displacement in narrow stance, there were no significant changes in body center of mass (CoM) displacement due to large changes in center of pressure (CoP), especially in response to lateral translations. Electromyographic (EMG) magnitude decreased for all directions in wide stance, particularly for the more proximal muscles, whereas latencies remained the same from narrow to wide stance. Equilibrium control in narrow stance was more of an active postural strategy that included regulating the loading/unloading of the limbs and the direction of horizontal force vectors. In wide stance, equilibrium control relied more on an increase in passive stiffness resulting from changes in limb geometry. The selective latency modulation of the proximal muscles with translation direction suggests that the trunk was being actively controlled in all directions. The similar EMG latencies for both narrow and wide stance, with modulation of only the muscle activation magnitude as stance width changed, suggest that the same postural synergy was only slightly modified for a change in stance width. Nevertheless, the magnitude of the trunk displacement, as well as of CoP displacement, was modified based on the degree of passive stiffness in the musculoskeletal system, which increased with stance width. The change from a more passive to an active horizontal force constraint, to larger EMG magnitudes especially in the trunk muscles and larger trunk and CoP excursions in narrow stance are consistent with a more effortful response for equilibrium control in narrow stance to perturbations in all directions.

  17. Respiratory motor training and neuromuscular plasticity in patients with chronic obstructive pulmonary disease: A pilot study.

    PubMed

    Ovechkin, Alexander V; Sayenko, Dimitry G; Ovechkina, Elena N; Aslan, Sevda C; Pitts, Teresa; Folz, Rodney J

    2016-07-15

    The objective of this study was to examine the feasibility of a full-scale investigation of the neurophysiological mechanisms of COPD-induced respiratory neuromuscular control deficits. Characterization of respiratory single- and multi-muscle activation patterns using surface electromyography (sEMG) were assessed along with functional measures at baseline and following 21±2 (mean±SD) sessions of respiratory motor training (RMT) performed during a one-month period in four patients with GOLD stage II or III COPD. Pre-training, the individuals with COPD showed significantly increased (p<0.05) overall respiratory muscle activity and disorganized multi-muscle activation patterns in association with lowered spirometrical measures and decreased fast- and slow-twitch fiber activity as compared to healthy controls (N=4). Following RMT, functional and respiratory sEMG activation outcomes during quite breathing and forced expiratory efforts were improved suggesting that functional improvements, induced by task-specific RMT, are evidence respiratory neuromuscular networks re-organization. Published by Elsevier B.V.

  18. Central nervous system abnormalities in vaginismus.

    PubMed

    Frasson, Emma; Graziottin, Alessandra; Priori, Alberto; Dall'ora, Elisa; Didonè, Giuseppe; Garbin, Emilio Luigi; Vicentini, Silvana; Bertolasi, Laura

    2009-01-01

    To investigate possible altered CNS excitability in vaginismus. In 10 patients with primary idiopathic lifelong vaginismus, 10 with vulvar vestibulitis syndrome accompanied by vaginismus and healthy controls we recorded EMG activity from the levator ani (LA) and external anal sphincter (EAS) muscles and tested bulbocavernosus reflex (BCR). Pudendal-nerve somatosensory evoked potentials (SEPs) were tested after a single stimulus. Pudendal-nerve SEP recovery functions were assessed using a paired conditioning-test paradigm at interstimulus intervals (ISIs) of 5, 20 and 40ms. EMG in patients showed muscular hyperactivity at rest and reduced inhibition during straining. The BCR polysynaptic R2 had larger amplitude (p<0.01) and longer duration (p<0.01) in patients from both groups than in controls. In controls, paired-pulse SEPs were suppressed at the 5ms ISI for N35-P40 (p<0.05) and P40-N50 ms (p<0.001) and facilitated at the 20ms ISI for N35-P40 (p<0.05) and P40-N50 (p<0.05). No significant differences were found in the paired-pulse N35-P40 in patients and controls but the cortical P40-N50 at 20 ISI was facilitated in patients (p<0.05). EMG activity is enhanced and the cortical SEP recovery cycle and BCR are hyperexcitable in vaginismus. The neurophysiological abnormalities in patients with vaginismus indicate concomitant CNS changes in this disorder.

  19. Surface Electromyographic Activity of the Upper Trapezius Before and After a Single Dry Needling Session in Female Office Workers With Trapezius Myalgia.

    PubMed

    De Meulemeester, Kayleigh; Calders, Patrick; Dewitte, Vincent; Barbe, Tom; Danneels, Lieven; Cagnie, Barbara

    2017-12-01

    Myofascial pain can be accompanied by a disturbed surface electromyographic (sEMG) activity. Nevertheless, the effect of myofascial treatment techniques, such as dry needling (DN), on the sEMG activity is poorly investigated. Several DN studies also emphasize the importance of eliciting local twitch responses (LTRs) during treatment. However, studies investigating the added value of LTRs are scarce. Therefore, the aims of this study were first to evaluate the effect of DN on the sEMG activity of myalgic muscle tissue, compared with no intervention (rest), and secondly to identify whether this effect is dependent of eliciting LTRs during DN. Twenty-four female office workers with work-related trapezius myalgia were included. After completion of a typing task, changes in sEMG activity were evaluated after a DN treatment of the upper trapezius, compared with rest. The sEMG activity increased after rest and after DN, but this increase was significantly smaller 10 minutes after DN, compared with rest. These differences were independent whether LTRs were elicited or not. Dry needling leads to a significantly lower increase in sEMG activity of the upper trapezius, compared with no intervention, after a typing task. This difference was independent of eliciting LTRs.

  20. An Embedded, Eight Channel, Noise Canceling, Wireless, Wearable sEMG Data Acquisition System With Adaptive Muscle Contraction Detection.

    PubMed

    Ergeneci, Mert; Gokcesu, Kaan; Ertan, Erhan; Kosmas, Panagiotis

    2018-02-01

    Wearable technology has gained increasing popularity in the applications of healthcare, sports science, and biomedical engineering in recent years. Because of its convenient nature, the wearable technology is particularly useful in the acquisition of the physiological signals. Specifically, the (surface electromyography) sEMG systems, which measure the muscle activation potentials, greatly benefit from this technology in both clinical and industrial applications. However, the current wearable sEMG systems have several drawbacks including inefficient noise cancellation, insufficient measurement quality, and difficult integration to customized applications. Additionally, none of these sEMG data acquisition systems can detect sEMG signals (i.e., contractions), which provides a valuable environment for further studies such as human machine interaction, gesture recognition, and fatigue tracking. To this end, we introduce an embedded, eight channel, noise canceling, wireless, wearable sEMG data acquisition system with adaptive muscle contraction detection. Our design consists of two stages, which are the sEMG sensors and the multichannel data acquisition unit. For the first stage, we propose a low cost, dry, and active sEMG sensor that captures the muscle activation potentials, a data acquisition unit that evaluates these captured multichannel sEMG signals and transmits them to a user interface. In the data acquisition unit, the sEMG signals are processed through embedded, adaptive methods in order to reject the power line noise and detect the muscle contractions. Through extensive experiments, we demonstrate that our sEMG sensor outperforms a widely used commercially available product and our data acquisition system achieves 4.583 dB SNR gain with accuracy in the detection of the contractions.

  1. Bilateral force transients in the upper limbs evoked by single-pulse microstimulation in the pontomedullary reticular formation.

    PubMed

    Hirschauer, Thomas J; Buford, John A

    2015-04-01

    Neurons in the pontomedullary reticular formation (PMRF) give rise to the reticulospinal tract. The motor output of the PMRF was investigated using stimulus-triggered averaging of electromyography (EMG) and force recordings in two monkeys (M. fascicularis). EMG was recorded from 12 pairs of upper limb muscles, and forces were detected using two isometric force-sensitive handles. Of 150 stimulation sites, 105 (70.0%) produced significant force responses, and 139 (92.5%) produced significant EMG responses. Based on the average flexor EMG onset latency of 8.3 ms and average force onset latency of 15.9 ms poststimulation, an electromechanical delay of ∼7.6 ms was calculated. The magnitude of force responses (∼10 mN) was correlated with the average change in EMG activity (P < 0.001). A multivariate linear regression analysis was used to estimate the contribution of each muscle to force generation, with flexors and extensors exhibiting antagonistic effects. A predominant force output pattern of ipsilateral flexion and contralateral extension was observed in response to PMRF stimulation, with 65.3% of significant ipsilateral force responses directed medially and posteriorly (P < 0.001) and 78.6% of contralateral responses directed laterally and anteriorly (P < 0.001). This novel approach permits direct measurement of force outputs evoked by central nervous system microstimulation. Despite the small magnitude of poststimulus EMG effects, low-intensity single-pulse microstimulation of the PMRF evoked detectable forces. The forces, showing the combined effect of all muscle activity in the arms, are consistent with reciprocal pattern of force outputs from the PMRF detectable with stimulus-triggered averaging of EMG. Copyright © 2015 the American Physiological Society.

  2. Estimation of continuous multi-DOF finger joint kinematics from surface EMG using a multi-output Gaussian Process.

    PubMed

    Ngeo, Jimson; Tamei, Tomoya; Shibata, Tomohiro

    2014-01-01

    Surface electromyographic (EMG) signals have often been used in estimating upper and lower limb dynamics and kinematics for the purpose of controlling robotic devices such as robot prosthesis and finger exoskeletons. However, in estimating multiple and a high number of degrees-of-freedom (DOF) kinematics from EMG, output DOFs are usually estimated independently. In this study, we estimate finger joint kinematics from EMG signals using a multi-output convolved Gaussian Process (Multi-output Full GP) that considers dependencies between outputs. We show that estimation of finger joints from muscle activation inputs can be improved by using a regression model that considers inherent coupling or correlation within the hand and finger joints. We also provide a comparison of estimation performance between different regression methods, such as Artificial Neural Networks (ANN) which is used by many of the related studies. We show that using a multi-output GP gives improved estimation compared to multi-output ANN and even dedicated or independent regression models.

  3. An implantable myoelectric sensor based prosthesis control system.

    PubMed

    DeMichele, Glenn A; Troyk, Philip R; Kerns, Douglas A; Weir, Richard

    2006-01-01

    We present progress on the design and testing of an upper-extremity prosthesis control system based on implantable myoelectric sensors. The implant consists of a single silicon chip packaged with transmit and receive coils. Forward control telemetry to, and reverse EMG data telemetry from multiple implants has been demonstrated.

  4. Electromyographic evaluation of abdominal-muscle function with and without concomitant pelvic-floor-muscle contraction.

    PubMed

    Tahan, Nahid; Arab, Amir Massoud; Vaseghi, Bita; Khademi, Khosro

    2013-05-01

    Coactivation of abdominal and pelvic-floor muscles (PFM) is an issue considered by researchers recently. Electromyography (EMG) studies have shown that the abdominal-muscle activity is a normal response to PFM activity, and increase in EMG activity of the PFM concomitant with abdominal-muscle contraction was also reported. The purpose of this study was to compare the changes in EMG activity of the deep abdominal muscles during abdominal-muscle contraction (abdominal hollowing and bracing) with and without concomitant PFM contraction in healthy and low-back-pain (LBP) subjects. A 2 × 2 repeated-measures design. Laboratory. 30 subjects (15 with LBP, 15 without LBP). Peak rectified EMG of abdominal muscles. No difference in EMG of abdominal muscles with and without concomitant PFM contraction in abdominal hollowing (P = .84) and abdominal bracing (P = .53). No difference in EMG signal of abdominal muscles with and without PFM contraction between LBP and healthy subjects in both abdominal hollowing (P = .88) and abdominal bracing (P = .98) maneuvers. Adding PFM contraction had no significant effect on abdominal-muscle contraction in subjects with and without LBP.

  5. A learning scheme for reach to grasp movements: on EMG-based interfaces using task specific motion decoding models.

    PubMed

    Liarokapis, Minas V; Artemiadis, Panagiotis K; Kyriakopoulos, Kostas J; Manolakos, Elias S

    2013-09-01

    A learning scheme based on random forests is used to discriminate between different reach to grasp movements in 3-D space, based on the myoelectric activity of human muscles of the upper-arm and the forearm. Task specificity for motion decoding is introduced in two different levels: Subspace to move toward and object to be grasped. The discrimination between the different reach to grasp strategies is accomplished with machine learning techniques for classification. The classification decision is then used in order to trigger an EMG-based task-specific motion decoding model. Task specific models manage to outperform "general" models providing better estimation accuracy. Thus, the proposed scheme takes advantage of a framework incorporating both a classifier and a regressor that cooperate advantageously in order to split the task space. The proposed learning scheme can be easily used to a series of EMG-based interfaces that must operate in real time, providing data-driven capabilities for multiclass problems, that occur in everyday life complex environments.

  6. A Novel Percutaneous Electrode Implant for Improving Robustness in Advanced Myoelectric Control

    PubMed Central

    Hahne, Janne M.; Farina, Dario; Jiang, Ning; Liebetanz, David

    2016-01-01

    Despite several decades of research, electrically powered hand and arm prostheses are still controlled with very simple algorithms that process the surface electromyogram (EMG) of remnant muscles to achieve control of one prosthetic function at a time. More advanced machine learning methods have shown promising results under laboratory conditions. However, limited robustness has largely prevented the transfer of these laboratory advances to clinical applications. In this paper, we introduce a novel percutaneous EMG electrode to be implanted chronically with the aim of improving the reliability of EMG detection in myoelectric control. The proposed electrode requires a minimally invasive procedure for its implantation, similar to a cosmetic micro-dermal implant. Moreover, being percutaneous, it does not require power and data telemetry modules. Four of these electrodes were chronically implanted in the forearm of an able-bodied human volunteer for testing their characteristics. The implants showed significantly lower impedance and greater robustness against mechanical interference than traditional surface EMG electrodes used for myoelectric control. Moreover, the EMG signals detected by the proposed systems allowed more stable control performance across sessions in different days than that achieved with classic EMG electrodes. In conclusion, the proposed implants may be a promising interface for clinically available prostheses. PMID:27065783

  7. An Analysis of Intrinsic and Extrinsic Hand Muscle EMG for Improved Pattern Recognition Control

    PubMed Central

    Adewuyi, Adenike A.; Hargrove, Levi J.; Kuiken, Todd A.

    2015-01-01

    Pattern recognition control combined with surface electromyography (EMG) from the extrinsic hand muscles has shown great promise for control of multiple prosthetic functions for transradial amputees. There is, however, a need to adapt this control method when implemented for partial-hand amputees, who possess both a functional wrist and information-rich residual intrinsic hand muscles. We demonstrate that combining EMG data from both intrinsic and extrinsic hand muscles to classify hand grasps and finger motions allows up to 19 classes of hand grasps and individual finger motions to be decoded, with an accuracy of 96% for non-amputees and 85% for partial-hand amputees. We evaluated real-time pattern recognition control of three hand motions in seven different wrist positions. We found that a system trained with both intrinsic and extrinsic muscle EMG data, collected while statically and dynamically varying wrist position increased completion rates from 73% to 96% for partial-hand amputees and from 88% to 100% for non-amputees when compared to a system trained with only extrinsic muscle EMG data collected in a neutral wrist position. Our study shows that incorporating intrinsic muscle EMG data and wrist motion can significantly improve the robustness of pattern recognition control for partial-hand applications. PMID:25955989

  8. EMG-Based Estimation of Limb Movement Using Deep Learning With Recurrent Convolutional Neural Networks.

    PubMed

    Xia, Peng; Hu, Jie; Peng, Yinghong

    2017-10-25

    A novel model based on deep learning is proposed to estimate kinematic information for myoelectric control from multi-channel electromyogram (EMG) signals. The neural information of limb movement is embedded in EMG signals that are influenced by all kinds of factors. In order to overcome the negative effects of variability in signals, the proposed model employs the deep architecture combining convolutional neural networks (CNNs) and recurrent neural networks (RNNs). The EMG signals are transformed to time-frequency frames as the input to the model. The limb movement is estimated by the model that is trained with the gradient descent and backpropagation procedure. We tested the model for simultaneous and proportional estimation of limb movement in eight healthy subjects and compared it with support vector regression (SVR) and CNNs on the same data set. The experimental studies show that the proposed model has higher estimation accuracy and better robustness with respect to time. The combination of CNNs and RNNs can improve the model performance compared with using CNNs alone. The model of deep architecture is promising in EMG decoding and optimization of network structures can increase the accuracy and robustness. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  9. A patient-specific EMG-driven neuromuscular model for the potential use of human-inspired gait rehabilitation robots.

    PubMed

    Ma, Ye; Xie, Shengquan; Zhang, Yanxin

    2016-03-01

    A patient-specific electromyography (EMG)-driven neuromuscular model (PENm) is developed for the potential use of human-inspired gait rehabilitation robots. The PENm is modified based on the current EMG-driven models by decreasing the calculation time and ensuring good prediction accuracy. To ensure the calculation efficiency, the PENm is simplified into two EMG channels around one joint with minimal physiological parameters. In addition, a dynamic computation model is developed to achieve real-time calculation. To ensure the calculation accuracy, patient-specific muscle kinematics information, such as the musculotendon lengths and the muscle moment arms during the entire gait cycle, are employed based on the patient-specific musculoskeletal model. Moreover, an improved force-length-velocity relationship is implemented to generate accurate muscle forces. Gait analysis data including kinematics, ground reaction forces, and raw EMG signals from six adolescents at three different speeds were used to evaluate the PENm. The simulation results show that the PENm has the potential to predict accurate joint moment in real-time. The design of advanced human-robot interaction control strategies and human-inspired gait rehabilitation robots can benefit from the application of the human internal state provided by the PENm. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Electromyographic study of hip muscles involved in total hip arthroplasty: Surprising results using the direct anterior minimally invasive approach.

    PubMed

    Bernard, Jules; Razanabola, Fredson; Beldame, Julien; Van Driessche, Stéphane; Brunel, Helena; Poirier, Thomas; Matsoukis, Jean; Billuart, Fabien

    2018-05-16

    The functional and clinical benefit of minimally invasive total hip arthroplasty (THA) is well-known, but the literature reports impaired gait and posture parameters as compared to the general population, especially following use of the anterior minimally invasive approach, which has more severe impact on posture than the posterior approach. The reasons for this impairment, however, remain unexplained. We therefore conducted a surface electromyography (sEMG) study of the hip muscles liable to be affected by arthroplasty surgery: gluteus maximus (GMax), gluteus medius (GMed), tensor fasciae latae (TFL), and sartorius (S). The study addressed the following questions: (1) Is bipodal and unipodal GMed activity greater following anterior THA than in asymptomatic subjects? (2) Is a single manual test sufficient to assess maximal voluntary contraction (MVC) in hip abductors (GMax, GMed, TFL) and flexors (TFL, S)? Bipodal and unipodal GMed activity is greater following anterior THA than in asymptomatic subjects. Eleven patients with anterior THA and 11 asymptomatic subjects, matched for age, gender and body-mass index, were included. Subjects underwent 3 postural tests: bipodal, eyes closed (BEC), unipodal on the operated side (UOP), and unipodal on the non-operated side (UnOP), with unipodal results averaged between both sides in the asymptomatic subjects. Data were recorded from 4-channel EMG and a force plate. EMG test activity was normalized as a ratio of MVC activity. Postural parameters (mean center of pressure displacement speed) were poorer and sEMG activity higher in anterior THA than asymptomatic subjects (p<0.005). On the BEC test, GMax and GMed activity was higher on both operated and non-operated sides than in asymptomatic controls (respectively, 0.15±0.12 and 0.12±0.6 versus 0.07±0.06 for GMax, and 0.13±0.08 and 0.13±0.08 versus 0.08±0.05 for GMed; p<0.05). On unipodal tests, both UOP and UnOP GMed activities were higher than in controls (respectively, 0.51±0.3 and 0.48±0.27 versus 0.28±0.13; p<0.04); GMax and TFL activities were higher than in controls only on the UOP tests (respectively, 0.49±0.43 versus 0.24±0.18, and 0.23±0.17 versus 0.12±0.16; p<0.05). sEMG activity in the hip abductors, which are the main stabilizing muscles for the pelvis, is increased following anterior THA, in parallel with impaired postural parameters. This finding may be due to intraoperative TFL and S neuromuscular spindle lesion. The present preliminary study is to be followed up by a comparison of all 3 common minimally invasive approaches (anterior, anterolateral and posterior) using the same study protocol. III, prospective case-control study. Copyright © 2018. Published by Elsevier Masson SAS.

  11. Immature Spinal Locomotor Output in Children with Cerebral Palsy.

    PubMed

    Cappellini, Germana; Ivanenko, Yury P; Martino, Giovanni; MacLellan, Michael J; Sacco, Annalisa; Morelli, Daniela; Lacquaniti, Francesco

    2016-01-01

    Detailed descriptions of gait impairments have been reported in cerebral palsy (CP), but it is still unclear how maturation of the spinal motoneuron output is affected. Spatiotemporal alpha-motoneuron activation during walking can be assessed by mapping the electromyographic activity profiles from several, simultaneously recorded muscles onto the anatomical rostrocaudal location of the motoneuron pools in the spinal cord, and by means of factor analysis of the muscle activity profiles. Here, we analyzed gait kinematics and EMG activity of 11 pairs of bilateral muscles with lumbosacral innervation in 35 children with CP (19 diplegic, 16 hemiplegic, 2-12 years) and 33 typically developing (TD) children (1-12 years). TD children showed a progressive reduction of EMG burst durations and a gradual reorganization of the spatiotemporal motoneuron output with increasing age. By contrast, children with CP showed very limited age-related changes of EMG durations and motoneuron output, as well as of limb intersegmental coordination and foot trajectory control (on both sides for diplegic children and the affected side for hemiplegic children). Factorization of the EMG signals revealed a comparable structure of the motor output in children with CP and TD children, but significantly wider temporal activation patterns in children with CP, resembling the patterns of much younger TD infants. A similar picture emerged when considering the spatiotemporal maps of alpha-motoneuron activation. Overall, the results are consistent with the idea that early injuries to developing motor regions of the brain substantially affect the maturation of the spinal locomotor output and consequently the future locomotor behavior.

  12. Immature Spinal Locomotor Output in Children with Cerebral Palsy

    PubMed Central

    Cappellini, Germana; Ivanenko, Yury P.; Martino, Giovanni; MacLellan, Michael J.; Sacco, Annalisa; Morelli, Daniela; Lacquaniti, Francesco

    2016-01-01

    Detailed descriptions of gait impairments have been reported in cerebral palsy (CP), but it is still unclear how maturation of the spinal motoneuron output is affected. Spatiotemporal alpha-motoneuron activation during walking can be assessed by mapping the electromyographic activity profiles from several, simultaneously recorded muscles onto the anatomical rostrocaudal location of the motoneuron pools in the spinal cord, and by means of factor analysis of the muscle activity profiles. Here, we analyzed gait kinematics and EMG activity of 11 pairs of bilateral muscles with lumbosacral innervation in 35 children with CP (19 diplegic, 16 hemiplegic, 2–12 years) and 33 typically developing (TD) children (1–12 years). TD children showed a progressive reduction of EMG burst durations and a gradual reorganization of the spatiotemporal motoneuron output with increasing age. By contrast, children with CP showed very limited age-related changes of EMG durations and motoneuron output, as well as of limb intersegmental coordination and foot trajectory control (on both sides for diplegic children and the affected side for hemiplegic children). Factorization of the EMG signals revealed a comparable structure of the motor output in children with CP and TD children, but significantly wider temporal activation patterns in children with CP, resembling the patterns of much younger TD infants. A similar picture emerged when considering the spatiotemporal maps of alpha-motoneuron activation. Overall, the results are consistent with the idea that early injuries to developing motor regions of the brain substantially affect the maturation of the spinal locomotor output and consequently the future locomotor behavior. PMID:27826251

  13. Quantitative assessment of isolated rapid eye movement (REM) sleep without atonia without clinical REM sleep behavior disorder: clinical and research implications.

    PubMed

    Sasai-Sakuma, Taeko; Frauscher, Birgit; Mitterling, Thomas; Ehrmann, Laura; Gabelia, David; Brandauer, Elisabeth; Inoue, Yuichi; Poewe, Werner; Högl, Birgit

    2014-09-01

    Rapid eye movement (REM) sleep without atonia (RWA) is observed in some patients without a clinical history of REM sleep behavior disorder (RBD). It remains unknown whether these patients meet the refined quantitative electromyographic (EMG) criteria supporting a clinical RBD diagnosis. We quantitatively evaluated EMG activity and investigated its overnight distribution in patients with isolated qualitative RWA. Fifty participants with an incidental polysomnographic finding of RWA (isolated qualitative RWA) were included. Tonic, phasic, and 'any' EMG activity during REM sleep on PSG were quantified retrospectively. Referring to the quantitative cut-off values for a polysomnographic diagnosis of RBD, 7/50 (14%) and 6/50 (12%) of the patients showed phasic and 'any' EMG activity in the mentalis muscle above the respective cut-off values. No patient was above the cut-off value for tonic EMG activity or phasic EMG activity in the anterior tibialis muscles. Patients with RWA above the cut-off value showed higher amounts of RWA during later REM sleep periods. This is the first study showing that some subjects with incidental RWA meet the refined quantitative EMG criteria for a diagnosis of RBD. Future longitudinal studies must investigate whether this subgroup with isolated qualitative RWA is at an increased risk of developing fully expressed RBD and/or neurodegenerative disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Comparison of ambulatory and polysomnographic recording of jaw muscle activity during sleep in normal subjects.

    PubMed

    Yamaguchi, T; Abe, S; Rompré, P H; Manzini, C; Lavigne, G J

    2012-01-01

    Clinicians and investigators need a simple and reliable recording device to diagnose or monitor sleep bruxism (SB). The aim of this study was to compare recordings made with an ambulatory electromyographic telemetry recorder (TEL-EMG) with those made with standard sleep laboratory polysomnography with synchronised audio-visual recording (PSG-AV). Eight volunteer subjects without current history of tooth grinding spent one night in a sleep laboratory. Simultaneous bilateral masseter EMG recordings were made with a TEL-EMG and standard PSG. All types of oromotor activity and rhythmic masseter muscle activity (RMMA), typical of SB, were independently scored by two individuals. Correlation and intra-class coefficient (ICC) were estimated for scores on each system. The TEL-EMG was highly sensitive to detect RMMA (0·988), but with low positive predictive value (0·231) because of a high rate of oromotor activity detection (e.g. swallowing and scratching). Almost 72% of false-positive oromotor activity scored with the TEL-EMG occurred during the transient wake period of sleep. A non-significant correlation between recording systems was found (r = 0·49). Because of the high frequency of wake periods during sleep, ICC was low (0·47), and the removal of the influence of wake periods improved the detection reliability of the TEL-EMG (ICC = 0·88). The TEL-EMG is sensitive to detect RMMA in normal subjects. However, it obtained a high rate of false-positive detections because of the presence of frequent oromotor activities and transient wake periods of sleep. New algorithms are needed to improve the validity of TEL-EMG recordings. © 2011 Blackwell Publishing Ltd.

  15. Embodied simulation as part of affective evaluation processes: task dependence of valence concordant EMG activity.

    PubMed

    Weinreich, André; Funcke, Jakob Maria

    2014-01-01

    Drawing on recent findings, this study examines whether valence concordant electromyography (EMG) responses can be explained as an unconditional effect of mere stimulus processing or as somatosensory simulation driven by task-dependent processing strategies. While facial EMG over the Corrugator supercilii and the Zygomaticus major was measured, each participant performed two tasks with pictures of album covers. One task was an affective evaluation task and the other was to attribute the album covers to one of five decades. The Embodied Emotion Account predicts that valence concordant EMG is more likely to occur if the task necessitates a somatosensory simulation of the evaluative meaning of stimuli. Results support this prediction with regard to Corrugator supercilii in that valence concordant EMG activity was only present in the affective evaluation task but not in the non-evaluative task. Results for the Zygomaticus major were ambiguous. Our findings are in line with the view that EMG activity is an embodied part of the evaluation process and not a mere physical outcome.

  16. Expiratory muscle strength training evaluated with simultaneous high-resolution manometry and electromyography.

    PubMed

    Hutcheson, Katherine A; Hammer, Michael J; Rosen, Sarah P; Jones, Corinne A; McCulloch, Timothy M

    2017-04-01

    To examine feasibility of a simultaneous high-resolution pharyngeal manometry (HRM) and electromyography (EMG) experimental paradigm to detect swallowing-related patterns of palatal, laryngeal, and pharyngeal muscle activity during expiratory training. Technical report. Simultaneous HRM, surface submental, and intramuscular EMG were acquired in two healthy participants during five tasks: 10-cc water swallow, maximum expiratory pressure (MEP) testing, and expiratory muscle strength training (EMST) at three pressure levels (sham, 50%, and 75% MEP). Experimental conditions were feasible. Velopharyngeal closing pressure, palate EMG activity, and pharyngeal EMG activity increased as expiratory load increased. In contrast, thyroarytenoid EMG activity was low during the expiratory task, consistent with glottic opening during exhalation. Submental EMG patterns were more variable during expiratory tasks. Intraluminal air pressures recorded with HRM were correlated with measured expiratory pressures and target valve-opening pressures of the EMST device. Results suggest that a simultaneous HRM/EMG/EMST paradigm may be used to detect previously unquantified swallowing-related muscle activity during EMST, particularly in the palate and pharynx. Our approach and initial findings will be helpful to guide future hypothesis-driven studies and may enable investigators to evaluate other muscle groups active during these tasks. Defining mechanisms of action is a critical next step toward refining therapeutic algorithms using EMST and other targeted treatments for populations with dysphagia and airway disorders. 4. Laryngoscope, 127:797-804, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  17. Effects of head and neck inclination on bilateral sternocleidomastoid EMG activity in healthy subjects and in patients with myogenic cranio-cervical-mandibular dysfunction.

    PubMed

    Santander, H; Miralles, R; Pérez, J; Valenzuela, S; Ravera, M J; Ormeño, G; Villegas, R

    2000-07-01

    This study was conducted in order to determine the effect of head and neck position on bilateral electromyographic (EMG) activity of the sternocleidomastoid muscles. The study was performed on 16 patients with myogenic cranio-cervical-mandibular dysfunction (CMD) and 16 healthy subjects. EMG recordings at rest and during swallowing of saliva and maximal voluntary clenching were performed by placing surface electrodes on the right and left sternocleidomastoid muscles. EMG activity was recorded in the left lateral decubitus position, in a darkened room and with the individual's eyes closed, under the following experimental conditions: 1. Head, neck, and body horizontally aligned; 2. Head and neck upwardly inclined with respect to the body, simulating the effect of a thick pillow, 3. Head and neck downwardly inclined with respect to the body, simulating the effect of a thin pillow. Variation of head and neck positions was determined by measuring the distance from the angle of neck and shoulder and the apex of the shoulder (SND = shoulder-neck distance) of each individual. Then, head and neck were forward or downwardly inclined with respect to the body at one-third of SND. A significantly higher contralateral EMG activity and a more asymmetric EMG activity were observed in the CMD group than in the healthy subjects (Kruskal-Wallis Test). These results suggest a different behavior of bilateral sternocleidomastoid EMG activity in CMD patients than in healthy subjects depending on the positioning of the head and neck.

  18. Handedness-related asymmetry in transmission in a system of human cervical premotoneurones.

    PubMed

    Marchand-Pauvert, V; Mazevet, D; Pierrot-Deseilligny, E; Pol, S; Pradat-Diehl, P

    1999-04-01

    The possibility was investigated that human handedness is associated with an asymmetrical cortical and/or peripheral control of the cervical premotoneurones (PreMNs) that have been shown to mediate part of the descending command to motoneurones of forearm muscles. Heteronymous facilitation evoked in the ongoing voluntary extensor carpi radialis (ECR) electromyographic activity (EMG) by weak (0.8 times motor threshold) stimulation of the musculo-cutaneous (MC) nerve was assessed during tonic co-contraction of biceps and ECR. Suppression evoked by stimulation of a cutaneous nerve (superficial radial, SR) at 4 times perception threshold in both the voluntary EMG and in the motor evoked potential (MEP) elicited in ECR by transcranial magnetic stimulation (TMS) was investigated during isolated ECR contraction. Measurements were performed within time windows or at interstimulus intervals where peripheral and cortical inputs may interact at the level of PreMNs. Results obtained on both sides were compared in consistent right- and left-handers. MC-induced facilitation of the voluntary ECR EMG was significantly larger on the preferred side, whereas there was no asymmetry in the SR-evoked depression of the ongoing ECR EMG. In addition, the suppression of the ECR MEP by the same SR stimulation was more pronounced on the dominant side during unilateral, but not during bilateral, ECR contraction. It is argued that (1) asymmetry in MC-induced facilitation of the voluntary EMG reflects a greater efficiency of the peripheral heteronymous volley in facilitating PreMNs on the dominant side; (2) asymmetry in SR-induced suppression of the MEP during unilateral ECR contraction, which is not paralleled by a similar asymmetry of voluntary EMG suppression, reflects a higher excitability of cortical neurones controlling inhibitory spinal pathways to cervical PreMNs on the preferred side.

  19. Neuromuscular coordination of masticatory muscles in subjects with two types of implant-supported prostheses.

    PubMed

    Ferrario, Virgilio F; Tartaglia, Gianluca M; Maglione, Michele; Simion, Massimo; Sforza, Chiarella

    2004-04-01

    To compare the electromyographic (EMG) characteristics of masticatory muscles in patients with fixed implant-supported prostheses and implant overdentures. Nineteen subjects aged 45-79 years were examined. Fourteen were edentulous and had been successfully rehabilitated with (a) maxillary and mandibular implant-supported fixed prostheses (seven patients); (b) mandibular implant overdentures and maxillary complete dentures (seven patients). Five control subjects had natural dentition or single/partial (no more than two teeth) tooth or implant fixed dentures. Surface EMG of the masseter and temporal muscles was performed during unilateral gum chewing and during maximum teeth clenching. To reduce biological and instrumental noise, all values were standardized as percentage of a maximum clenching on cotton rolls. During clenching, temporal muscle symmetry was larger in control subjects and fixed implant-supported prosthesis patients than in overdenture patients (analysis of variance, P=0.005). No differences were found in masseter muscle symmetry or in muscular torque. Muscle activities (integrated areas of the EMG potentials over time) were significantly larger in control subjects than in implant-supported prosthesis patients (P=0.014). In both patient groups, a poor neuromuscular coordination during chewing, with altered muscular patterns, and a smaller left-right symmetry than in control subjects were found (P=0.05). No differences in masticatory frequency were found. Surface EMG analysis of clenching and chewing showed that fixed implant-supported prostheses and implant overdentures were functionally equivalent. Neuromuscular coordination during chewing was inferior to that found in subjects with natural dentition.

  20. Evaluation of normal swallowing functions by using dynamic high-density surface electromyography maps.

    PubMed

    Zhu, Mingxing; Yu, Bin; Yang, Wanzhang; Jiang, Yanbing; Lu, Lin; Huang, Zhen; Chen, Shixiong; Li, Guanglin

    2017-11-21

    Swallowing is a continuous process with substantive interdependencies among different muscles, and it plays a significant role in our daily life. The aim of this study was to propose a novel technique based on high-density surface electromyography (HD sEMG) for the evaluation of normal swallowing functions. A total of 96 electrodes were placed on the front neck to acquire myoelectric signals from 12 healthy subjects while they were performing different swallowing tasks. HD sEMG energy maps were constructed based on the root mean square values to visualize muscular activities during swallowing. The effects of different volumes, viscosities, and head postures on the normal swallowing process were systemically investigated by using the energy maps. The results showed that the HD sEMG energy maps could provide detailed spatial and temporal properties of the muscle electrical activity, and visualize the muscle contractions that closely related to the swallowing function. The energy maps also showed that the swallowing time and effort was also explicitly affected by the volume and viscosity of the bolus. The concentration of the muscular activities shifted to the opposite side when the subjects turned their head to either side. The proposed method could provide an alternative method to physiologically evaluate the dynamic characteristics of normal swallowing and had the advantage of providing a full picture of how different muscle activities cooperate in time and location. The findings from this study suggested that the HD sEMG technique might be a useful tool for fast screening and objective assessment of swallowing disorders or dysphagia.

  1. Activity of periscapular muscles and its correlation with external oblique during push-up: Does scapular dyskinesis change the electromyographic response?

    PubMed

    de Araújo, Rodrigo Cappatode; Pirauá, André Luiz Torres; Beltrão, Natália Barros; Pitangui, Ana Carolina Rodarti

    2018-03-01

    Scapular dyskinesis is the term used to describe changes in the positioning or movement of the scapula. Such dysfunction is associated with changes in the activation of the scapular muscles. However, the influence of the axial muscles on the scapular muscles activity of subjects with scapular dyskinesis is unknown. This study aimed to compare the electromyography (EMG) activity of periscapular muscles and its correlation with the external oblique muscle during the execution of push-up performed in different surfaces, in volunteers with and without scapular dyskinesis. Thirty-six men, divided in two groups (control and dyskinesis), performed push-up on stable and unstable surface. The EMG activity of serratus anterior (SA_5th and SA_7th fibers), upper (UT) and lower (LT) trapezius, external oblique (EO) was recorded during execution of each task condition. Statistical analyzes were performed using two way ANOVA repeated measures and Pearson correlation. It was observed effect of interaction between factors, being evidenced increased activity of UT, SA_7th and OE for the control group and decreased activity of SA_5th, SA_7th and EO for dyskinesis group during execution of push-up on unstable surface. In both groups positive correlations (r > 0.47) were observed between EMG activity of SA and EO. In the exercises tested, there seems to be an anatomical and functional relationship between the SA and EO muscles. The use of the unstable surface promotes increased neuromuscular demand, but the neuromuscular strategies appear to differ between groups.

  2. Association between masseter muscle activity levels recorded during sleep and signs and symptoms of temporomandibular disorders in healthy young adults.

    PubMed

    Baba, Kazuyoshi; Haketa, Tadasu; Sasaki, Yoshiyuki; Ohyama, Takashi; Clark, Glenn T

    2005-01-01

    To examine whether any signs and symptoms of temporomandibular disorders were significantly associated with masseter muscle activity levels during sleep. One hundred three healthy adult subjects (age range, 22 to 32 years) participated in the study. They were asked to fill out questionnaires, undergo a calibrated clinical examination of their jaws and teeth, and perform 6 consecutive nightly masseter electromyographic (EMG) recordings with a portable EMG recording system in their home. The EMG data were considered dependent variables, while the questionnaire and examination data were considered independent variables. Multiple stepwise linear regression analysis was utilized to assess possible associations between these variables. Both gender and joint sound scores were significantly related to the duration of EMG activity. None of the other independent variables were found to be related to any of the muscle activity variables. The results suggest that both gender and clicking are significantly related to duration of masseter EMG activity during sleep.

  3. Acute electromyographic responses of deep thoracic paraspinal muscles to spinal manual therapy interventions. An experimental, randomized cross-over study.

    PubMed

    Fryer, Gary; Bird, Michael; Robbins, Barry; Johnson, Jane C

    2017-07-01

    This single group, randomized, cross-over study explored whether manual therapy alters motor tone of deep thoracic back muscles by examining resting electromyographic activity (EMG) after 2 types of manual therapy and a sham control intervention. Twenty-two participants with thoracic spinal pain (15 females, 7 males, mean age 28.1 ± 6.4 years) had dual fine-wire, intramuscular electrodes inserted into deep transversospinalis muscles at a thoracic level where tissues appeared abnormal to palpation (AbP) and at 2 sites above and below normal and non-tender to palpation (NT). A surface electrode was on the contralateral paraspinal mass at the level of AbP. EMG signals were recorded for resting prone, two 3-s free neck extension efforts, two 3-s resisted maximal voluntary isometric contractions (MVIC), and resting prone before the intervention. Randomized spinal manipulation, counterstrain, or sham manipulation was delivered and EMG re-measured. Participants returned 1 and 2 weeks later for the remaining 2 treatments. Reductions in resting EMG followed counterstrain in AbP (median decrease 3.3%, P = 0.01) and NT sites (median decrease 1.0%, P = 0.05) and for the surface electrode site (median decrease 2.0%, P = 0.009). Reduction in EMG following counterstrain during free neck extension was found for the surface electrode site (median decrease 2.7%, P < 0.01). Spinal manipulation produced no change in EMG, whereas counterstrain technique produced small significant reductions in paraspinal muscle activity during prone resting and free neck extension conditions. The clinical relevance of these changes is unclear. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Long-term decoding of movement force and direction with a wireless myoelectric implant.

    PubMed

    Morel, Pierre; Ferrea, Enrico; Taghizadeh-Sarshouri, Bahareh; Audí, Josep Marcel Cardona; Ruff, Roman; Hoffmann, Klaus-Peter; Lewis, Sören; Russold, Michael; Dietl, Hans; Abu-Saleh, Lait; Schroeder, Dietmar; Krautschneider, Wolfgang; Meiners, Thomas; Gail, Alexander

    2016-02-01

    The ease of use and number of degrees of freedom of current myoelectric hand prostheses is limited by the information content and reliability of the surface electromyography (sEMG) signals used to control them. For example, cross-talk limits the capacity to pick up signals from small or deep muscles, such as the forearm muscles for distal arm amputations, or sites of targeted muscle reinnervation (TMR) for proximal amputations. Here we test if signals recorded from the fully implanted, induction-powered wireless Myoplant system allow long-term decoding of continuous as well as discrete movement parameters with better reliability than equivalent sEMG recordings. The Myoplant system uses a centralized implant to transmit broadband EMG activity from four distributed bipolar epimysial electrodes. Two Rhesus macaques received implants in their backs, while electrodes were placed in their upper arm. One of the monkeys was trained to do a cursor task via a haptic robot, allowing us to control the forces exerted by the animal during arm movements. The second animal was trained to perform a center-out reaching task on a touchscreen. We compared the implanted system with concurrent sEMG recordings by evaluating our ability to decode time-varying force in one animal and discrete reach directions in the other from multiple features extracted from the raw EMG signals. In both cases, data from the implant allowed a decoder trained with data from a single day to maintain an accurate decoding performance during the following months, which was not the case for concurrent surface EMG recordings conducted simultaneously over the same muscles. These results show that a fully implantable, centralized wireless EMG system is particularly suited for long-term stable decoding of dynamic movements in demanding applications such as advanced forelimb prosthetics in a wide range of configurations (distal amputations, TMR).

  5. Long-term decoding of movement force and direction with a wireless myoelectric implant

    NASA Astrophysics Data System (ADS)

    Morel, Pierre; Ferrea, Enrico; Taghizadeh-Sarshouri, Bahareh; Marcel Cardona Audí, Josep; Ruff, Roman; Hoffmann, Klaus-Peter; Lewis, Sören; Russold, Michael; Dietl, Hans; Abu-Saleh, Lait; Schroeder, Dietmar; Krautschneider, Wolfgang; Meiners, Thomas; Gail, Alexander

    2016-02-01

    Objective. The ease of use and number of degrees of freedom of current myoelectric hand prostheses is limited by the information content and reliability of the surface electromyography (sEMG) signals used to control them. For example, cross-talk limits the capacity to pick up signals from small or deep muscles, such as the forearm muscles for distal arm amputations, or sites of targeted muscle reinnervation (TMR) for proximal amputations. Here we test if signals recorded from the fully implanted, induction-powered wireless Myoplant system allow long-term decoding of continuous as well as discrete movement parameters with better reliability than equivalent sEMG recordings. The Myoplant system uses a centralized implant to transmit broadband EMG activity from four distributed bipolar epimysial electrodes. Approach. Two Rhesus macaques received implants in their backs, while electrodes were placed in their upper arm. One of the monkeys was trained to do a cursor task via a haptic robot, allowing us to control the forces exerted by the animal during arm movements. The second animal was trained to perform a center-out reaching task on a touchscreen. We compared the implanted system with concurrent sEMG recordings by evaluating our ability to decode time-varying force in one animal and discrete reach directions in the other from multiple features extracted from the raw EMG signals. Main results. In both cases, data from the implant allowed a decoder trained with data from a single day to maintain an accurate decoding performance during the following months, which was not the case for concurrent surface EMG recordings conducted simultaneously over the same muscles. Significance. These results show that a fully implantable, centralized wireless EMG system is particularly suited for long-term stable decoding of dynamic movements in demanding applications such as advanced forelimb prosthetics in a wide range of configurations (distal amputations, TMR).

  6. Patellar tendon vibration reduces the increased facilitation from quadriceps to soleus in post-stroke hemiparetic individuals.

    PubMed

    Maupas, Eric; Dyer, Joseph-Omer; Melo, Sibele de Andrade; Forget, Robert

    2017-09-01

    Stimulation of the femoral nerve in healthy people can facilitate soleus H-reflex and electromyography (EMG) activity. In stroke patients, such facilitation of transmission in spinal pathways linking the quadriceps and soleus muscles is enhanced and related to co-activation of knee and ankle extensors while sitting and walking. Soleus H-reflex facilitation can be depressed by vibration of the quadriceps in healthy people, but the effects of such vibration have never been studied on the abnormal soleus facilitation observed in people after stroke. To determine whether vibration of the quadriceps can modify the enhanced heteronymous facilitation of the soleus muscle observed in people with spastic stroke after femoral nerve stimulation and compare post-vibration effects on soleus facilitation in control and stroke individuals. Modulation of voluntary soleus EMG activity induced by femoral nerve stimulation (2×motor threshold) was assessed before, during and after vibration of the patellar tendon in 10 healthy controls and 17 stroke participants. Voluntary soleus EMG activity was facilitated by femoral nerve stimulation in 4/10 (40%) controls and 11/17 (65%) stroke participants. The level of facilitation was greater in the stroke than control group. Vibration significantly reduced early heteronymous facilitation in both groups (50% of pre-vibration values). However, the delay in recovery of soleus facilitation after vibration was shorter for the stroke than control group. The control condition with the vibrator turned off had no effect on the modulation. Patellar tendon vibration can reduce the facilitation between knee and ankle extensors, which suggests effective presynaptic inhibition but decreased post-activation depression in the lower limb of people after chronic hemiparetic stroke. Further studies are warranted to determine whether such vibration could be used to reduce the abnormal extension synergy of knee and ankle extensors in people after hemiparetic stroke. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. A comparison of lumbopelvic motion patterns and erector spinae behavior between asymptomatic subjects and patients with recurrent low back pain during pain-free periods.

    PubMed

    Sánchez-Zuriaga, Daniel; López-Pascual, Juan; Garrido-Jaén, David; García-Mas, Maria Amparo

    2015-02-01

    The purpose of this study was to determine the patterns of lumbopelvic motion and erector spinae (ES) activity during trunk flexion-extension movements and to compare these patterns between patients with recurrent low back pain (LBP) in their pain-free periods and matched asymptomatic subjects. Thirty subjects participated (15 patients with disc herniation and recurrent LBP in their pain-free periods and 15 asymptomatic control subjects). A 3-dimensional videophotogrammetric system and surface electromyography (EMG) were used to record the angular displacements of the lumbar spine and hip in the sagittal plane and the EMG activity of the ES during standardized trunk flexion-extension cycles. Variables were maximum ranges of spine and hip flexion; percentages of maximum lumbar and hip flexion at the start and end of ES relaxation; average percentages of EMG activity during flexion, relaxation, and extension; and flexion-extension ratio of myoelectrical activity. Recurrent LBP patients during their pain-free period showed significantly greater ES activation both in flexion and extension, with a higher flexion-extension ratio than controls. Maximum ranges of lumbar and hip flexion showed no differences between controls and patients, although patients spent less time with their lumbar spine maximally flexed. This study showed that reduced maximum ranges of motion and absence of ES flexion-relaxation phenomenon were not useful to identify LBP patients in the absence of acute pain. However, these patients showed subtle alterations of their lumbopelvic motion and ES activity patterns, which may have important clinical implications. Copyright © 2015 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.

  8. Neuronal activity in the globus pallidus internus in patients with tics.

    PubMed

    Zhuang, P; Hallett, M; Zhang, X; Li, J; Zhang, Y; Li, Y

    2009-10-01

    To explore the role of neuronal activity in the globus pallidus internus (GPi) in the generation of tic movements. 8 patients with Tourette's syndrome with medically intractable tics who underwent a unilateral pallidotomy for severe tics were studied. They ranged in age from 17 to 24 years; disease duration was 7-19 years. Microelectrode recording was performed in the GPi. The electromyogram (EMG) was simultaneously recorded in muscle groups appropriate for the patient's tics. The relationship between neuronal firing pattern and the EMG was studied. 232 neurons were recorded during tics from eight trajectories. Of these neurons, in addition to decreased neuronal firing rate and irregular firing pattern, 105 (45%) were tic related showing either a burst of activity or a pause in ongoing tonic activity. They could be synchronous (n = 75), earlier than EMG onset (n = 27) or following EMG onset (n = 3). The GPi neuronal bursts preceded EMG onset with decreased (n = 6) or increased activity (n = 21). The initial change in neural activity occurred about 50 ms to 2 s before the EMG onset. Although the data are descriptive and preliminary, the tic related neuronal activity observed in GPi appears to indicate that the basal ganglia motor circuit is involved in tic movements. The early neuronal activity seen in GPi may reflect premonitory sensations that precede a tic.

  9. Residual Upper Arm Motor Function Primes Innervation of Paretic Forearm Muscles in Chronic Stroke after Brain-Machine Interface (BMI) Training

    PubMed Central

    Curado, Marco Rocha; Cossio, Eliana Garcia; Broetz, Doris; Agostini, Manuel; Cho, Woosang; Brasil, Fabricio Lima; Yilmaz, Oezge; Liberati, Giulia; Lepski, Guilherme

    2015-01-01

    Background Abnormal upper arm-forearm muscle synergies after stroke are poorly understood. We investigated whether upper arm function primes paralyzed forearm muscles in chronic stroke patients after Brain-Machine Interface (BMI)-based rehabilitation. Shaping upper arm-forearm muscle synergies may support individualized motor rehabilitation strategies. Methods Thirty-two chronic stroke patients with no active finger extensions were randomly assigned to experimental or sham groups and underwent daily BMI training followed by physiotherapy during four weeks. BMI sessions included desynchronization of ipsilesional brain activity and a robotic orthosis to move the paretic limb (experimental group, n = 16). In the sham group (n = 16) orthosis movements were random. Motor function was evaluated with electromyography (EMG) of forearm extensors, and upper arm and hand Fugl-Meyer assessment (FMA) scores. Patients performed distinct upper arm (e.g., shoulder flexion) and hand movements (finger extensions). Forearm EMG activity significantly higher during upper arm movements as compared to finger extensions was considered facilitation of forearm EMG activity. Intraclass correlation coefficient (ICC) was used to test inter-session reliability of facilitation of forearm EMG activity. Results Facilitation of forearm EMG activity ICC ranges from 0.52 to 0.83, indicating fair to high reliability before intervention in both limbs. Facilitation of forearm muscles is higher in the paretic as compared to the healthy limb (p<0.001). Upper arm FMA scores predict facilitation of forearm muscles after intervention in both groups (significant correlations ranged from R = 0.752, p = 0.002 to R = 0.779, p = 0.001), but only in the experimental group upper arm FMA scores predict changes in facilitation of forearm muscles after intervention (R = 0.709, p = 0.002; R = 0.827, p<0.001). Conclusions Residual upper arm motor function primes recruitment of paralyzed forearm muscles in chronic stroke patients and predicts changes in their recruitment after BMI training. This study suggests that changes in upper arm-forearm synergies contribute to stroke motor recovery, and provides candidacy guidelines for similar BMI-based clinical practice. PMID:26495971

  10. Residual Upper Arm Motor Function Primes Innervation of Paretic Forearm Muscles in Chronic Stroke after Brain-Machine Interface (BMI) Training.

    PubMed

    Curado, Marco Rocha; Cossio, Eliana Garcia; Broetz, Doris; Agostini, Manuel; Cho, Woosang; Brasil, Fabricio Lima; Yilmaz, Oezge; Liberati, Giulia; Lepski, Guilherme; Birbaumer, Niels; Ramos-Murguialday, Ander

    2015-01-01

    Abnormal upper arm-forearm muscle synergies after stroke are poorly understood. We investigated whether upper arm function primes paralyzed forearm muscles in chronic stroke patients after Brain-Machine Interface (BMI)-based rehabilitation. Shaping upper arm-forearm muscle synergies may support individualized motor rehabilitation strategies. Thirty-two chronic stroke patients with no active finger extensions were randomly assigned to experimental or sham groups and underwent daily BMI training followed by physiotherapy during four weeks. BMI sessions included desynchronization of ipsilesional brain activity and a robotic orthosis to move the paretic limb (experimental group, n = 16). In the sham group (n = 16) orthosis movements were random. Motor function was evaluated with electromyography (EMG) of forearm extensors, and upper arm and hand Fugl-Meyer assessment (FMA) scores. Patients performed distinct upper arm (e.g., shoulder flexion) and hand movements (finger extensions). Forearm EMG activity significantly higher during upper arm movements as compared to finger extensions was considered facilitation of forearm EMG activity. Intraclass correlation coefficient (ICC) was used to test inter-session reliability of facilitation of forearm EMG activity. Facilitation of forearm EMG activity ICC ranges from 0.52 to 0.83, indicating fair to high reliability before intervention in both limbs. Facilitation of forearm muscles is higher in the paretic as compared to the healthy limb (p<0.001). Upper arm FMA scores predict facilitation of forearm muscles after intervention in both groups (significant correlations ranged from R = 0.752, p = 0.002 to R = 0.779, p = 0.001), but only in the experimental group upper arm FMA scores predict changes in facilitation of forearm muscles after intervention (R = 0.709, p = 0.002; R = 0.827, p<0.001). Residual upper arm motor function primes recruitment of paralyzed forearm muscles in chronic stroke patients and predicts changes in their recruitment after BMI training. This study suggests that changes in upper arm-forearm synergies contribute to stroke motor recovery, and provides candidacy guidelines for similar BMI-based clinical practice.

  11. Imaging seizure activity: a combined EEG/EMG-fMRI study in reading epilepsy.

    PubMed

    Salek-Haddadi, Afraim; Mayer, Thomas; Hamandi, Khalid; Symms, Mark; Josephs, Oliver; Fluegel, Dominique; Woermann, Friedrich; Richardson, Mark P; Noppeney, Uta; Wolf, Peter; Koepp, Matthias J

    2009-02-01

    To characterize the spatial relationship between activations related to language-induced seizure activity, language processing, and motor control in patients with reading epilepsy. We recorded and simultaneously monitored several physiological parameters [voice-recording, electromyography (EMG), electrocardiography (ECG), electroencephalography (EEG)] during blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) in nine patients with reading epilepsy. Individually tailored language paradigms were used to induce and record habitual seizures inside the MRI scanner. Voxel-based morphometry (VBM) was used for structural brain analysis. Reading-induced seizures occurred in six out of nine patients. One patient experienced abundant orofacial reflex myocloni during silent reading in association with bilateral frontal or generalized epileptiform discharges. In a further five patients, symptoms were only elicited while reading aloud with self-indicated events. Consistent activation patterns in response to reading-induced myoclonic seizures were observed within left motor and premotor areas in five of these six patients, in the left striatum (n = 4), in mesiotemporal/limbic areas (n = 4), in Brodmann area 47 (n = 3), and thalamus (n = 2). These BOLD activations were overlapping or adjacent to areas physiologically activated during language and facial motor tasks. No subtle structural abnormalities common to all patients were identified using VBM, but one patient had a left temporal ischemic lesion. Based on the findings, we hypothesize that reflex seizures occur in reading epilepsy when a critical mass of neurons are activated through a provoking stimulus within corticoreticular and corticocortical circuitry subserving normal functions.

  12. Electromyographic preactivation pattern of the gluteus medius during weight-bearing functional tasks in women with and without anterior knee pain.

    PubMed

    Nakagawa, Theresa H; Muniz, Thiago B; Baldon, Rodrigo M; Maciel, Carlos D; Amorim, César F; Serrão, Fábio V

    2011-01-01

    Proximal factors have been proposed to influence the biomechanics of the patellofemoral joint. A delayed or diminished gluteus medius (GM) activation, before the foot contact on the ground during functional activities could lead to excessive femur adduction and internal rotation and be associated with anterior knee pain (AKP). There are few studies on this topic and the results were inconclusive, therefore, it is necessary to investigate the GM preactivation pattern during functional activities. To compare the GM electromyographic (EMG) preactivation pattern during walking, descending stairs and in single leg jump task in women with and without AKP. Nine women clinically diagnosed with AKP and ten control subjects with no history of knee injury participated in this study. We evaluated GM EMG linear envelope before the foot contact on the ground during walking and GM onset time and EMG linear envelope during descending stairs as well as in a single leg vertical jump. Mann-Whitney U tests were used to determine the between-group differences in GM EMG preactivation pattern. No between-group differences were observed in GM linear envelope during walking (P=0.41), GM onset time and linear envelope during descending stairs (P=0.17 and P=0.15) and single leg jump (P=0.81 and P=0.33). Women with AKP did not demonstrated altered GM preactivation pattern during functional weight bearing activities. Our results did not support the hypothesis that poor GM preactivation pattern could be associated with AKP.

  13. Lower Extremity Muscle Activity during Cycling in Adolescents with and without Cerebral Palsy

    PubMed Central

    Lauer, Richard T.; Johnston, Therese E.; Smith, Brian T.; Lee, Samuel C.K.

    2008-01-01

    Background In individuals with cerebral palsy (CP), adaptation and plasticity in the neuromuscular system can lead to detrimental changes affecting gait. Cycling may be an effective method to improve mobility. The biomechanics of cycling in adolescents with CP have been studied, but further analysis of the frequency and amplitude characteristics of the electromyographic (EMG) signals can assist with interpretation of the cycling kinematics. Methods Data were analyzed from ten adolescents with typical development (TD) (mean = 14.9 SD = 1.4 years) and ten adolescents with CP (mean = 15.6 SD = 1.8 years) as they cycled at two different cadences. Analyses of the lower extremity EMG signals involved frequency and amplitude analysis across the cycling revolution. Findings Examination of cycling cadence revealed that adolescents with CP had altered EMG characteristics in comparison to adolescents with typical development across the entire crank revolution for all muscles. Analyses of individual muscles indicated both inappropriate muscle activation and weakness. Interpretation A more comprehensive analysis of EMG activity has the potential to provide insight into how a task is accomplished. In this study, the control of the several muscles, especially the rectus femoris, was significantly different in adolescents with cerebral palsy. This, combined with muscle weakness, may have contributed to the observed deviations in joint kinematics. Interventions that increase muscle strength with feedback to the nervous system about appropriate activation timing may be beneficial to allow individuals with CP to cycle more efficiently. PMID:18082920

  14. Fractal based complexity measure and variation in force during sustained isometric muscle contraction: effect of aging.

    PubMed

    Arjunan, Sridhar P; Kumar, Dinesh K; Bastos, Teodiano

    2012-01-01

    This study has investigated the effect of age on the fractal based complexity measure of muscle activity and variance in the force of isometric muscle contraction. Surface electromyogram (sEMG) and force of muscle contraction were recorded from 40 healthy subjects categorized into: Group 1: Young - age range 20-30; 10 Males and 10 Females, Group 2: Old - age range 55-70; 10 Males and 10 Females during isometric exercise at Maximum Voluntary contraction (MVC). The results show that there is a reduction in the complexity of surface electromyogram (sEMG) associated with aging. The results demonstrate that there is an increase in the coefficient of variance (CoV) of the force of muscle contraction and a decrease in complexity of sEMG for the Old age group when compared with the Young age group.

  15. The vastus lateralis neuromuscular activity during all-out cycling exercise.

    PubMed

    Bercier, Stephane; Halin, Renaud; Ravier, Philippe; Kahn, Jean-Francois; Jouanin, Jean-Claude; Lecoq, Anne-Marie; Buttelli, Olivier

    2009-10-01

    The objective of this work was to study modifications in motor control through surface electromyographic (sEMG) activity during a very short all-out cycling exercise. Twelve male cyclists (age 23+/-4 years) participated in this study. After a warm-up period, each subject performed three all-out cycling exercises of 6s separated by 2 min of complete rest. This protocol was repeated three times with a minimum of 2 days between each session. The braking torque imposed on cycling motion was 19 Nm. The sEMG of the vastus lateralis was recorded during the first seven contractions of the sprint. Time-frequency analysis of sEMG was performed using continuous wavelet transform. The mean power frequency (MPF, qualitative modifications in the recruitment of motor units) and signal energy (a quantitative indicator of modifications in the motor units recruitment) were computed for the frequency range 10-500 Hz. sEMG energy increased (P0.05) between contraction number 1 and 2, decreased (P < or =0.05) between contraction number 2 and 3 then stabilized between contraction number 3 and 7 during the all-out test. MPF increased (P < or =0.05) during the all-out test. This increase was more marked during the first two contractions. The decrease in energy and the increase in the sEMG MPF suggest a large spatial recruitment of motor units (MUs) at the beginning of the sprint followed by a preferential recruitment of faster MUs at the end of the sprint, respectively.

  16. Roller-massager application to the quadriceps and knee-joint range of motion and neuromuscular efficiency during a lunge.

    PubMed

    Bradbury-Squires, David J; Noftall, Jennifer C; Sullivan, Kathleen M; Behm, David G; Power, Kevin E; Button, Duane C

    2015-02-01

    Roller massagers are used as a recovery and rehabilitative tool to initiate muscle relaxation and improve range of motion (ROM) and muscular performance. However, research demonstrating such effects is lacking. To determine the effects of applying a roller massager for 20 and 60 seconds on knee-joint ROM and dynamic muscular performance. Randomized controlled clinical trial. University laboratory. Ten recreationally active men (age = 26.6 ± 5.2 years, height = 175.3 ± 4.3 cm, mass = 84.4 ± 8.8 kg). Participants performed 3 randomized experimental conditions separated by 24 to 48 hours. In condition 1 (5 repetitions of 20 seconds) and condition 2 (5 repetitions of 60 seconds), they applied a roller massager to the quadriceps muscles. Condition 3 served as a control condition in which participants sat quietly. Visual analog pain scale, electromyography (EMG) of the vastus lateralis (VL) and biceps femoris during roller massage and lunge, and knee-joint ROM. We found no differences in pain between the 20-second and 60-second roller-massager conditions. During 60 seconds of roller massage, pain was 13.5% (5.7 ± 0.70) and 20.6% (6.2 ± 0.70) greater at 40 seconds and 60 seconds, respectively, than at 20 seconds (P < .05). During roller massage, VL and biceps femoris root mean square (RMS) EMG was 8% and 7%, respectively, of RMS EMG recorded during maximal voluntary isometric contraction. Knee-joint ROM was 10% and 16% greater in the 20-second and 60-second roller-massager conditions, respectively, than the control condition (P < .05). Finally, average lunge VL RMS EMG decreased as roller-massage time increased (P < .05). Roller massage was painful and induced muscle activity, but it increased knee-joint ROM and neuromuscular efficiency during a lunge.

  17. Myoelectric Response of Back Muscles to Vertical Random Whole-Body Vibration with Different Magnitudes at Different Postures

    NASA Astrophysics Data System (ADS)

    BLÜTHNER, R.; SEIDEL, H.; HINZ, B.

    2002-05-01

    Back muscle forces contribute essentially to the whole-body vibration-induced spinal load. The electromyogram (EMG) can help to estimate these forces during whole-body vibration (WBV). Thirty-eight subjects were exposed to identical random low-frequency WBV (0·7, 1·0 and 1·4 m/s-2 r.m.s. weighted acceleration) at a relaxed, erect and bent forward postures. The acceleration of the seat and the force between the seat and the buttocks were measured. Six EMGs were derived from the right side of the m. trapezius pars descendens, m. ileocostalis lumborum pars thoracis, m. ileocostalis lumborum pars lumborum; m. longissimus thoracis pars thoracis, m. longissimus thoracis pars lumborum, and lumbar multifidus muscle. All data were filtered for anti-aliasing and sampled with 1000 Hz. Artefacts caused by the ECG in the EMG were identified and eliminated in the time domain using wavelets. The individually rectified and normalized EMGs were averaged across subjects. The EMGs without WBV exhibited characteristic patterns for the three postures examined. The coherence and transfer functions indicated characteristic myoelectric responses to random WBV with several effects of posture and WBV magnitude. A comprehensive set of transfer functions from the seat acceleration or the mean normalized input force to the mean processed EMG was presented.The results can be used for the development of more sophisticated models with a separate control of various back muscle groups. However, the EMG-force relationship under dynamic conditions needs to be examined in more detail before the results can be implemented. Since different reflex mechanisms depending on the frequency of WBV are linked with different types of active muscle fibres, various time delays between the EMG and muscle force may be necessary.

  18. Effects of spaceflight on rhesus quadrupedal locomotion after return to 1G

    NASA Technical Reports Server (NTRS)

    Recktenwald, M. R.; Hodgson, J. A.; Roy, R. R.; Riazanski, S.; McCall, G. E.; Kozlovskaya, I.; Washburn, D. A.; Fanton, J. W.; Edgerton, V. R.; Rumbaugh, D. M. (Principal Investigator)

    1999-01-01

    Effects of spaceflight on Rhesus quadrupedal locomotion after return to 1G. Locomotor performance, activation patterns of the soleus (Sol), medial gastrocnemius (MG), vastus lateralis (VL), and tibialis anterior (TA) and MG tendon force during quadrupedal stepping were studied in adult Rhesus before and after 14 days of either spaceflight (n = 2) or flight simulation at 1G (n = 3). Flight simulation involved duplication of the spaceflight conditions and experimental protocol in a 1G environment. Postflight, but not postsimulation, electromyographic (EMG) recordings revealed clonus-like activity in all muscles. Compared with preflight, the cycle period and burst durations of the primary extensors (Sol, MG, and VL) tended to decrease postflight. These decreases were associated with shorter steps. The flexor (TA) EMG burst duration postflight was similar to preflight, whereas the burst amplitude was elevated. Consequently, the Sol:TA and MG:TA EMG amplitude ratios were lower following flight, reflecting a "flexor bias." Together, these alterations in mean EMG amplitudes reflect differential adaptations in motor-unit recruitment patterns of flexors and extensors as well as fast and slow motor pools. Shorter cycle period and burst durations persisted throughout the 20-day postflight testing period, whereas mean EMG returned to preflight levels by 17 days postflight. Compared with presimulation, the simulation group showed slight increases in the cycle period and burst durations of all muscles. Mean EMG amplitude decreased in the Sol, increased in the MG and VL, and was unchanged in the TA. Thus adaptations observed postsimulation were different from those observed postflight, indicating that there was a response unique to the microgravity environment, i.e., the modulations in the nervous system controlling locomotion cannot merely be attributed to restriction of movement but appear to be the result of changes in the interpretation of load-related proprioceptive feedback to the nervous system. Peak MG tendon force amplitudes were approximately two times greater post- compared with preflight or presimulation. Adaptations in tendon force and EMG amplitude ratios indicate that the nervous system undergoes a reorganization of the recruitment patterns biased toward an increased recruitment of fast versus slow motor units and flexor versus extensor muscles. Combined, these data indicate that some details of the control of motor pools during locomotion are dependent on the persistence of Earth's gravitational environment.

  19. Electromyogram and force fluctuation during different linearly varying isometric motor tasks.

    PubMed

    Orizio, C; Baruzzi, E; Gaffurini, P; Diemont, B; Gobbo, M

    2010-08-01

    The purpose of this work was to verify if deviation from the mirror-like behaviour of the motor units activation strategy (MUAS) and de-activation strategy (MUDS) and the degree of the error of the motor control system, during consecutive linearly increasing-decreasing isometric tension tasks, depend on the maximum reached tension and/or on the rate of tension changes. In 12 male subjects the surface EMG and force produced by the first dorsal interosseus activity were recorded during two (a and b) trapezoid isometric contractions with different plateau (a: 50% maximal voluntary contraction (MVC) and b: 100% MVC) and rate of tension changes (a: 6.7% MVC/s and b: 13.3% MVC/s) during up-going (UGR) and down-going (DGR) ramps. Ten steps (ST) 6s long at 5, 10, 20, 30, 40, 50, 60, 70, 80 and 90% MVC were also recorded. The root mean square (RMS) and mean frequency (MF) from EMG and the relative error of actual force output with respect to the target (% ERR) were computed. The EMG-RMS/% MVC and EMG-MF/% MVC relationships were not overlapped when the ST and DGR as well as the UGR and DGR data were compared. The % ERR/% MVC relationships during a and b contractions differed from ST data only below 20% MVC. It can be concluded that MUAS and MUDS are not mirroring one each other because MU recruitment or de-recruitment threshold may be influenced by the maximum effort and by the % MVC/s of UGR and DGR. The role of MUs mechanical and/or central nervous system hysteresis on force decrement control is discussed. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  20. Spatial analysis of muscular activations in stroke survivors.

    PubMed

    Rasool, Ghulam; Afsharipour, Babak; Suresh, Nina L; Xiaogang Hu; Rymer, William Zev

    2015-01-01

    We investigated the spatial patterns of electrical activity in stroke-affected muscles using the high density surface electromyogram (sEMG) grids. We acquired 128-channel sEMG signals from the impaired as well as contralateral Biceps Brachii (BB) muscles of stroke survivors and from healthy participants at various force levels from 20 to 60% of maximum voluntary contraction in an isometric non-fatiguing recording protocol. We found the spatial sEMG pattern to be consistent across force levels in healthy and stroke subjects. However, once compared across sides (left vs right in healthy and impaired vs. contralateral in stroke) we found stroke-affected sides to be significantly different in distribution pattern of sEMG from the contralateral side. The sEMG activity areas were significantly shrunk on the affected sides indicating muscle atrophy due to stroke.

  1. Explaining Entropy responses after a noxious stimulus, with or without neuromuscular blocking agents, by means of the raw electroencephalographic and electromyographic characteristics.

    PubMed

    Aho, A J; Lyytikäinen, L-P; Yli-Hankala, A; Kamata, K; Jäntti, V

    2011-01-01

    Entropy™, an anaesthetic EEG monitoring method, yields two parameters: State Entropy (SE) and Response Entropy (RE). SE reflects the hypnotic level of the patient. RE covers also the EMG-dominant part of the frequency spectrum, reflecting the upper facial EMG response to noxious stimulation. We studied the EEG, EMG, and Entropy values before and after skin incision, and the effect of rocuronium on Entropy and EMG at skin incision during sevoflurane-nitrous oxide (N₂O) anaesthesia. Thirty-eight patients were anaesthetized with sevoflurane-N₂O or sevoflurane-N₂O-rocuronium. The biosignal was stored and analysed off-line to detect EEG patterns, EMG, and artifacts. The signal, its power spectrum, SE, RE, and RE-SE values were analysed before and after skin incision. The EEG arousal was classified as β (increase in over 8 Hz activity and decrease in under 4 Hz activity with a typical β pattern) or δ (increase in under 4 Hz activity with the characteristic rhythmic δ pattern and a decrease in over 8 Hz activity). The EEG arousal appeared in 17 of 19 and 15 of 19 patients (NS), and the EMG arousal in 0 of 19 and 13 of 19 patients (P<0.01) with and without rocuronium, respectively. Both β (n=30) and EMG arousals increased SE and RE. The δ arousal (n=2) decreased both SE and RE. A significant increase in RE-SE values was only seen in patients without rocuronium. During sevoflurane-N₂O anaesthesia, both EEG and EMG arousals were seen. β and δ arousals had opposite effects on the Entropy values. The EMG arousal was abolished by rocuronium at the train of four level 0/4.

  2. Organization of the central control of muscles of facial expression in man

    PubMed Central

    Root, A A; Stephens, J A

    2003-01-01

    Surface EMGs were recorded simultaneously from ipsilateral pairs of facial muscles while subjects made three different common facial expressions: the smile, a sad expression and an expression of horror, and three contrived facial expressions. Central peaks were found in the cross-correlograms of EMG activity recorded from the orbicularis oculi and zygomaticus major during smiling, the corrugator and depressor anguli oris during the sad look and the frontalis and mentalis during the horror look. The size of the central peak was significantly greater between the orbicularis oculi and zygomaticus major during smiling. It is concluded that co-contraction of facial muscles during some facial expressions are accompanied by the presence of common synaptic drive to the motoneurones supplying the muscles involved. Central peaks were found in the cross-correlograms of EMG activity recorded from the frontalis and depressor anguli oris during a contrived expression. However, no central peaks were found in the cross-correlograms of EMG activity recorded from the frontalis and orbicularis oculi or from the frontalis and zygomaticus major during the other two contrived expressions. It is concluded that a common synaptic drive is not present between all possible facial muscle pairs and suggests a functional role for the synergy. The origin of the common drive is discussed. It is concluded that activity in branches of common stem last-order presynaptic input fibres to motoneurones innervating the different facial muscles and presynaptic synchronization of input activity to the different motoneurone pools is involved. The former probably contributes more to the drive to the orbicularis oculi and zygomaticus major during smiling, while the latter is probably more prevalent in the corrugator and depressor anguli oris during the sad look, the frontalis and mentalis during the horror look and the frontalis and depressor anguli oris during one of the contrived expressions. The strength of common synaptic drive is inversely related to the degree of separate control that can be exhibited by the facial muscles involved. PMID:12692176

  3. The effect of a concurrent cognitive task on cortical potentials evoked by unpredictable balance perturbations

    PubMed Central

    Quant, Sylvia; Adkin, Allan L; Staines, W Richard; Maki, Brian E; McIlroy, William E

    2004-01-01

    Background Although previous studies suggest that postural control requires attention and other cognitive resources, the central mechanisms responsible for this relationship remain unclear. To address this issue, we examined the effects of altered attention on cortical activity and postural responses following mechanical perturbations to upright stance. We hypothesized that cortical activity would be attenuated but not delayed when mechanical perturbations were applied during a concurrent performance of a cognitive task (i.e. when attention was directed away from the perturbation). We also hypothesized that these cortical changes would be accompanied by alterations in the postural response, as evidenced by increases in the magnitude of anteroposterior (AP) centre of pressure (COP) peak displacements and tibialis anterior (TA) muscle activity. Healthy young adults (n = 7) were instructed to continuously track (cognitive task) or not track (control task) a randomly moving visual target using a hand-held joystick. During each of these conditions, unpredictable translations of a moving floor evoked cortical and postural responses. Scalp-recorded cortical activity, COP, and TA electromyographic (EMG) measures were collected. Results Results revealed a significant decrease in the magnitude of early cortical activity (the N1 response, the first negative peak after perturbation onset) during the tracking task compared to the control condition. More pronounced AP COP peak displacements and EMG magnitudes were also observed for the tracking task and were possibly related to changes in the N1 response. Conclusion Based on previous notions that the N1 response represents sensory processing of the balance disturbance, we suggest that the attenuation of the N1 response is an important central mechanism that may provide insight into the relationship between attention and postural control. PMID:15147586

  4. The effect of a concurrent cognitive task on cortical potentials evoked by unpredictable balance perturbations.

    PubMed

    Quant, Sylvia; Adkin, Allan L; Staines, W Richard; Maki, Brian E; McIlroy, William E

    2004-05-17

    Although previous studies suggest that postural control requires attention and other cognitive resources, the central mechanisms responsible for this relationship remain unclear. To address this issue, we examined the effects of altered attention on cortical activity and postural responses following mechanical perturbations to upright stance. We hypothesized that cortical activity would be attenuated but not delayed when mechanical perturbations were applied during a concurrent performance of a cognitive task (i.e. when attention was directed away from the perturbation). We also hypothesized that these cortical changes would be accompanied by alterations in the postural response, as evidenced by increases in the magnitude of anteroposterior (AP) centre of pressure (COP) peak displacements and tibialis anterior (TA) muscle activity. Healthy young adults (n = 7) were instructed to continuously track (cognitive task) or not track (control task) a randomly moving visual target using a hand-held joystick. During each of these conditions, unpredictable translations of a moving floor evoked cortical and postural responses. Scalp-recorded cortical activity, COP, and TA electromyographic (EMG) measures were collected. Results revealed a significant decrease in the magnitude of early cortical activity (the N1 response, the first negative peak after perturbation onset) during the tracking task compared to the control condition. More pronounced AP COP peak displacements and EMG magnitudes were also observed for the tracking task and were possibly related to changes in the N1 response. Based on previous notions that the N1 response represents sensory processing of the balance disturbance, we suggest that the attenuation of the N1 response is an important central mechanism that may provide insight into the relationship between attention and postural control.

  5. Reorganization of muscle synergies during multidirectional reaching in the horizontal plane with experimental muscle pain

    PubMed Central

    Muceli, Silvia; Falla, Deborah

    2014-01-01

    Muscle pain induces a complex reorganization of the motor strategy which cannot be fully explained by current theories. We tested the hypothesis that the neural control of muscles during reaching in the presence of nociceptive input is determined by a reorganization of muscle synergies with respect to control conditions. Muscle pain was induced by injection of hypertonic saline into the anterior deltoid muscle of eight men. Electromyographic (EMG) signals were recorded from 12 upper limb muscles as subjects performed a reaching task before (baseline) and after the injection of hypertonic (pain) saline, and after the pain sensation vanished. The EMG envelopes were factorized in muscle synergies, and activation signals extracted for each condition. Nociceptive stimulation resulted in a complex muscle reorganization without changes in the kinematic output. The anterior deltoid muscle activity decreased in all subjects while the changes in other muscles were subject specific. Three synergies sufficed to describe the EMG patterns in each condition, suggesting that reaching movements remain modular in the presence of experimental pain. Muscle reorganization in all subjects was accompanied by a change in the activation signals compatible with a change in the central drive to muscles. One, two or three synergies were shared between the baseline and painful conditions, depending on the subject. These results indicate that nociceptive stimulation may induce a reorganization of modular control in reaching. We speculate that such reorganization may be due to the recruitment of synergies specific to the painful condition. PMID:24453279

  6. Enhanced embodied response following ambiguous emotional processing.

    PubMed

    Beffara, Brice; Ouellet, Marc; Vermeulen, Nicolas; Basu, Anamitra; Morisseau, Tiffany; Mermillod, Martial

    2012-08-01

    It has generally been assumed that high-level cognitive and emotional processes are based on amodal conceptual information. In contrast, however, "embodied simulation" theory states that the perception of an emotional signal can trigger a simulation of the related state in the motor, somatosensory, and affective systems. To study the effect of social context on the mimicry effect predicted by the "embodied simulation" theory, we recorded the electromyographic (EMG) activity of participants when looking at emotional facial expressions. We observed an increase in embodied responses when the participants were exposed to a context involving social valence before seeing the emotional facial expressions. An examination of the dynamic EMG activity induced by two socially relevant emotional expressions (namely joy and anger) revealed enhanced EMG responses of the facial muscles associated with the related social prime (either positive or negative). These results are discussed within the general framework of embodiment theory.

  7. Electromyographic Activity of Scapular Muscle Control in Free-Motion Exercise

    PubMed Central

    Nakamura, Yukiko; Tsuruike, Masaaki; Ellenbecker, Todd S.

    2016-01-01

    Context:  The appropriate resistance intensity to prescribe for shoulder rehabilitative exercise is not completely known. Excessive activation of the deltoid and upper trapezius muscles could be counterproductive for scapulohumeral rhythm during humeral elevation. Objective:  To identify the effects of different exercise intensities on the scapular muscles during a free-motion “robbery” exercise performed in different degrees of shoulder abduction in seated and standing positions. Design:  Descriptive laboratory study. Setting:  Kinesiology Adapted Physical Education Laboratory. Patients or Other Participants:  A total of 15 healthy male college students (age = 20.5 ± 2.2 years, height = 174.5 ± 5.3 cm, mass = 63.8 ± 6.0 kg). Intervention(s):  Participants performed 5 repetitions of a randomized exercise sequence of the robbery exercise in 2 body positions (seated, standing), 2 shoulder-abducted positions (W [20°], 90/90 [90°]) at 3 intensities (0%, 3%, and 7% body weight). Main Outcome Measure(s):  Electromyographic (EMG) activity of the upper trapezius, lower trapezius, serratus anterior, anterior deltoid, and infraspinatus muscles of the upper extremity was collected. All EMG activities were normalized by the maximal voluntary isometric contraction of each corresponding muscle (%). Results:  The serratus anterior, anterior deltoid, and infraspinatus EMG activities were greater at 7% body weight in the seated position compared with the standing position (P < .05). The EMG activities in all 5 muscles were greater in the 90/90 position than in the W position (P < .05). Conclusions:  Scapular muscle activity modulated relative to changes in body posture and resistance intensity. These findings will enable clinicians to prescribe the appropriate level of exercise intensity and positioning during shoulder rehabilitation. PMID:26986055

  8. Observations on the responses of muscle to mechanical and electrical stimuli

    PubMed Central

    Meadows, J. C.

    1971-01-01

    Responses to mechanical and electrical stimuli have been studied in vastus medialis in four young adults. Percussion causes an immediate, brief contraction in those muscle fibres passing beneath the site of the blow. This is accompanied by EMG activity which is propagated along the muscle fibres at a normal velocity of around 4 m/sec. The EMG activity lasts much longer than that produced by a single electrical stimulus to muscle fibres because repetitive firing occurs in some of the muscle fibres activated mechanically. This response to percussion is unaffected by nerve blockade with 2% xylocaine. Percussion close to the motor point may cause delayed fasciculation due to activation of intramuscular motor nerve fibres. This, too, is unaffected by nerve blockade. Some observations on EMG insertional activity provoked by needle movement are reported. It is concluded that muscle has a basic tendency to discharge repetitively when stimulated by mechanical means and that EMG insertional activity and the EMG response to percussion reported in this paper are both manifestations of this same tendency, which is increased in the myotonias. Images PMID:4251668

  9. Influence of fatigue on upper limb muscle activity and performance in tennis.

    PubMed

    Rota, Samuel; Morel, Baptiste; Saboul, Damien; Rogowski, Isabelle; Hautier, Christophe

    2014-02-01

    The study examined the fatigue effect on tennis performance and upper limb muscle activity. Ten players were tested before and after a strenuous tennis exercise. Velocity and accuracy of serve and forehand drives, as well as corresponding surface electromyographic (EMG) activity of eight upper limb muscles were measured. EMG and force were also evaluated during isometric maximal voluntary contractions (IMVC). Significant decreases were observed after exercise in serve accuracy (-11.7%) and velocity (-4.5%), forehand accuracy (-25.6%) and consistency (-15.6%), as well as pectoralis major (PM) and flexor carpi radialis (FCR) IMVC strength (-13.0% and -8.2%, respectively). EMG amplitude decreased for PM and FCR in serve, forehand and IMVC, and for extensor carpi radialis in forehand. No modification was observed in EMG activation timing during strokes or in EMG frequency content during IMVC. Several hypotheses can be put forward to explain these results. First, muscle fatigue may induce a reduction in activation level of PM and forearm muscles, which could decrease performance. Second, conscious or subconscious strategies could lead to a redistribution of muscle activity to non-fatigued muscles in order to protect the organism and/or limit performance losses. Otherwise, the modifications of EMG activity could also illustrate the strategies adopted to manage the speed-accuracy trade-off in such a complex task. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. EMG-force relationship during static contraction: Effects on sensor placement locations on biceps brachii muscle.

    PubMed

    Ahamed, Nizam Uddin; Sundaraj, Kenneth; Alqahtani, Mahdi; Altwijri, Omar; Ali, Md Asraf; Islam, Md Anamul

    2014-10-15

    The relationship between surface electromyography (EMG) and force have been the subject of ongoing investigations and remain a subject of controversy. Even under static conditions, the relationships at different sensor placement locations in the biceps brachii (BB) muscle are complex. The aim of this study was to compare the activity and relationship between surface EMG and static force from the BB muscle in terms of three sensor placement locations. Twenty-one right hand dominant male subjects (age 25.3 ± 1.2 years) participated in the study. Surface EMG signals were detected from the subject's right BB muscle. The muscle activation during force was determined as the root mean square (RMS) electromyographic signal normalized to the peak RMS EMG signal of isometric contraction for 10 s. The statistical analysis included linear regression to examine the relationship between EMG amplitude and force of contraction [40-100% of maximal voluntary contraction (MVC)], repeated measures ANOVA to assess differences among the sensor placement locations, and coefficient of variation (CoV) for muscle activity variation. The results demonstrated that when the sensor was placed on the muscle belly, the linear slope coefficient was significantly greater for EMG versus force testing (r^{2} = 0.61, P > 0.05) than when placed on the lower part (r^{2}=0.31, P< 0.05) and upper part of the muscle belly (r^{2}=0.29, P > 0.05). In addition, the EMG signal activity on the muscle belly had less variability than the upper and lower parts (8.55% vs. 15.12% and 12.86%, respectively). These findings indicate the importance of applying the surface EMG sensor at the appropriate locations that follow muscle fiber orientation of the BB muscle during static contraction. As a result, EMG signals of three different placements may help to understand the difference in the amplitude of the signals due to placement.

  11. EMG-force relationship during static contraction: effects on sensor placement locations on biceps brachii muscle.

    PubMed

    Ahamed, Nizam Uddin; Sundaraj, Kenneth; Alqahtani, Mahdi; Altwijri, Omar; Ali, Md Asraf; Islam, Md Anamul

    2014-01-01

    The relationship between surface electromyography (EMG) and force have been the subject of ongoing investigations and remain a subject of controversy. Even under static conditions, the relationships at different sensor placement locations in the biceps brachii (BB) muscle are complex. The aim of this study was to compare the activity and relationship between surface EMG and static force from the BB muscle in terms of three sensor placement locations. Twenty-one right hand dominant male subjects (age 25.3±1.2 years) participated in the study. Surface EMG signals were detected from the subject's right BB muscle. The muscle activation during force was determined as the root mean square (RMS) electromyographic signal normalized to the peak RMS EMG signal of isometric contraction for 10 s. The statistical analysis included linear regression to examine the relationship between EMG amplitude and force of contraction [40-100% of maximal voluntary contraction (MVC)], repeated measures ANOVA to assess differences among the sensor placement locations, and coefficient of variation (CoV) for muscle activity variation. The results demonstrated that when the sensor was placed on the muscle belly, the linear slope coefficient was significantly greater for EMG versus force testing (r2=0.62, P<0.05) than when placed on the lower part (r2=0.31, P>0.05) and upper part of the muscle belly (r2=0.29, P<0.05). In addition, the EMG signal activity on the muscle belly had less variability than the upper and lower parts (8.55% vs. 15.12% and 12.86%, respectively). These findings indicate the importance of applying the surface EMG sensor at the appropriate locations that follow muscle fiber orientation of the BB muscle during static contraction. As a result, EMG signals of three different placements may help to understand the difference in the amplitude of the signals due to placement.

  12. Trunk muscle activation during dynamic weight-training exercises and isometric instability activities.

    PubMed

    Hamlyn, Nicolle; Behm, David G; Young, Warren B

    2007-11-01

    The purpose of this study was to examine the extent of activation in various trunk muscles during dynamic weight-training and isometric instability exercises. Sixteen subjects performed squats and deadlifts with 80% 1 repetition maximum (1RM), as well as with body weight as resistance and 2 unstable calisthenic-type exercises (superman and sidebridge). Electromyographic (EMG) activity was measured from the lower abdominals (LA), external obliques (EO), upper lumbar erector spinae (ULES), and lumbar-sacral erector spinae (LSES) muscle groups. Results indicated that the LSES EMG activity during the 80% 1RM squat significantly exceeded 80% 1RM deadlift LSES EMG activity by 34.5%. The LSES EMG activity of the 80% 1RM squat also exceeded the body weight squat, deadlift, superman, and sidebridge by 56, 56.6, 65.5, and 53.1%, respectively. The 80% 1RM deadlift ULES EMG activity significantly exceeded the 80% 1RM squat exercise by 12.9%. In addition, the 80% 1RM deadlift ULES EMG activity also exceeded the body weight squat, deadlift, superman, and sidebridge exercises by 66.7, 65.5, 69.3, and 68.6%, respectively. There were no significant changes in EO or LA activity. Therefore, the augmented activity of the LSES and ULES during 80% 1RM squat and deadlift resistance exercises exceeded the activation levels achieved with the same exercises performed with body weight and selected instability exercises. Individuals performing upright, resisted, dynamic exercises can achieve high trunk muscle activation and thus may not need to add instability device exercises to augment core stability training.

  13. Vastus lateralis surface and single motor unit EMG following submaximal shortening and lengthening contractions.

    PubMed

    Altenburg, Teatske M; de Ruiter, Cornelis J; Verdijk, Peter W L; van Mechelen, Willem; de Haan, Arnold

    2008-12-01

    A single shortening contraction reduces the force capacity of muscle fibers, whereas force capacity is enhanced following lengthening. However, how motor unit recruitment and discharge rate (muscle activation) are adapted to such changes in force capacity during submaximal contractions remains unknown. Additionally, there is limited evidence for force enhancement in larger muscles. We therefore investigated lengthening- and shortening-induced changes in activation of the knee extensors. We hypothesized that when the same submaximal torque had to be generated following shortening, muscle activation had to be increased, whereas a lower activation would suffice to produce the same torque following lengthening. Muscle activation following shortening and lengthening (20 degrees at 10 degrees /s) was determined using rectified surface electromyography (rsEMG) in a 1st session (at 10% and 50% maximal voluntary contraction (MVC)) and additionally with EMG of 42 vastus lateralis motor units recorded in a 2nd session (at 4%-47%MVC). rsEMG and motor unit discharge rates following shortening and lengthening were normalized to isometric reference contractions. As expected, normalized rsEMG (1.15 +/- 0.19) and discharge rate (1.11 +/- 0.09) were higher following shortening (p < 0.05). Following lengthening, normalized rsEMG (0.91 +/- 0.10) was, as expected, lower than 1.0 (p < 0.05), but normalized discharge rate (0.99 +/- 0.08) was not (p > 0.05). Thus, muscle activation was increased to compensate for a reduced force capacity following shortening by increasing the discharge rate of the active motor units (rate coding). In contrast, following lengthening, rsEMG decreased while the discharge rates of active motor units remained similar, suggesting that derecruitment of units might have occurred.

  14. Use of progesterone and progestin analogs for inhibition of preterm birth and other uterine contractility disorders

    PubMed Central

    Garfield, R.E.; Shi, L.; Shi, S-Q.

    2012-01-01

    In this paper we focus on preterm birth as a uterine contractility disorder caused by hypercontractility of the myometrium. We describe changes in uterine function during term and preterm labor and delivery. We also examine the usefulness of measurement of uterine electromyographic (EMG) activity, noninvasively monitored from the abdominal surface of pregnant patients. The use of progesterone treatment for preterm birth is discussed and we conclude that present therapies with progesterone could be improved by changing the route of administration. Finally we show the results of recent studies that show that progesterone injections completely inhibit uterine EMG activity when given several days to hours before normal delivery. These studies illustrate how progesterone suppresses labor at term or preterm, probably through repression of genes which control excitability and conduction of electrical activity. However, direct profusion of soluble progesterone into the uterine cavity has little immediate inhibitory action and this may demonstrate that progesterone has no direct, nongenomic effects, at least in the rat model used. Further studies are required to determine the effects of progesterone on human uterine EMG activity and whether progesterone treatments will prevent preterm birth. PMID:24753915

  15. EMG normalization method based on grade 3 of manual muscle testing: Within- and between-day reliability of normalization tasks and application to gait analysis.

    PubMed

    Tabard-Fougère, Anne; Rose-Dulcina, Kevin; Pittet, Vincent; Dayer, Romain; Vuillerme, Nicolas; Armand, Stéphane

    2018-02-01

    Electromyography (EMG) is an important parameter in Clinical Gait Analysis (CGA), and is generally interpreted with timing of activation. EMG amplitude comparisons between individuals, muscles or days need normalization. There is no consensus on existing methods. The gold standard, maximum voluntary isometric contraction (MVIC), is not adapted to pathological populations because patients are often unable to perform an MVIC. The normalization method inspired by the isometric grade 3 of manual muscle testing (isoMMT3), which is the ability of a muscle to maintain a position against gravity, could be an interesting alternative. The aim of this study was to evaluate the within- and between-day reliability of the isoMMT3 EMG normalizing method during gait compared with the conventional MVIC method. Lower limb muscles EMG (gluteus medius, rectus femoris, tibialis anterior, semitendinosus) were recorded bilaterally in nine healthy participants (five males, aged 29.7±6.2years, BMI 22.7±3.3kgm -2 ) giving a total of 18 independent legs. Three repeated measurements of the isoMMT3 and MVIC exercises were performed with an EMG recording. EMG amplitude of the muscles during gait was normalized by these two methods. This protocol was repeated one week later. Within- and between-day reliability of normalization tasks were similar for isoMMT3 and MVIC methods. Within- and between-day reliability of gait EMG normalized by isoMMT3 was higher than with MVIC normalization. These results indicate that EMG normalization using isoMMT3 is a reliable method with no special equipment needed and will support CGA interpretation. The next step will be to evaluate this method in pathological populations. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Electromyographical Comparison of Four Common Shoulder Exercises in Unstable and Stable Shoulders

    PubMed Central

    Sciascia, Aaron; Kuschinsky, Nina; Nitz, Arthur J.; Mair, Scott D.; Uhl, Tim L.

    2012-01-01

    This study examines if electromyographic (EMG) amplitude differences exist between patients with shoulder instability and healthy controls performing scaption, prone horizontal abduction, prone external rotation, and push-up plus shoulder rehabilitation exercises. Thirty nine subjects were categorized by a single orthopedic surgeon as having multidirectional instability (n = 10), anterior instability (n = 9), generalized laxity (n = 10), or a healthy shoulder (n = 10). Indwelling and surface electrodes were utilized to measure EMG activity (reported as a % of maximum voluntary isometric contraction (MVIC)) in various shoulder muscles during 4 common shoulder exercises. The exercises studied effectively activated the primary musculature targeted in each exercise equally among all groups. The serratus anterior generated high activity (50–80% MVIC) during a push-up plus, while the infraspinatus and teres major generated moderate-to-high activity (30–80% MVIC) during both the prone horizontal and prone external rotation exercises. Scaption exercise generated moderate activity (20–50% MVIC) in both rotator cuff and scapular musculature. Clinicians should feel confident in prescribing these shoulder-strengthening exercises in patients with shoulder instability as the activation levels are comparable to previous findings regarding EMG amplitudes and should improve the dynamic stabilization capability of both rotator cuff and scapular muscles using exercises designed to address glenohumeral joint instability. PMID:22919499

  17. Use of electromyographic and electrocardiographic signals to detect sleep bruxism episodes in a natural environment.

    PubMed

    Castroflorio, Tommaso; Mesin, Luca; Tartaglia, Gianluca Martino; Sforza, Chiarella; Farina, Dario

    2013-11-01

    Diagnosis of bruxism is difficult since not all contractions of masticatory muscles during sleeping are bruxism episodes. In this paper, we propose the use of both EMG and ECG signals for the detection of sleep bruxism. Data have been acquired from 21 healthy volunteers and 21 sleep bruxers. The masseter surface EMGs were detected with bipolar concentric electrodes and the ECG with monopolar electrodes located on the clavicular regions. Recordings were made at the subjects' homes during sleeping. Bruxism episodes were automatically detected as characterized by masseter EMG amplitude greater than 10% of the maximum and heart rate increasing by more than 25% with respect to baseline within 1 s before the increase in EMG amplitude above the 10% threshold. Furthermore, the subjects were classified as bruxers and nonbruxers by a neural network. The number of bruxism episodes per night was 24.6 ± 8.4 for bruxers and 4.3 ± 4.5 for controls ( P < 0.0001). The classification error between bruxers and nonbruxers was 1% which was substantially lower than when using EMG only for the classification. These results show that the proposed system, based on the joint analysis of EMG and ECG, can provide support for the clinical diagnosis of bruxism.

  18. Specific muscle EMG biofeedback for hand dystonia.

    PubMed

    Deepak, K K; Behari, M

    1999-12-01

    Currently available therapies have only limited success in patients having hand dystonia (writer's cramp). We employed specific muscle EMG biofeedback (audio feedback of the EMG from proximal large muscles of the limb that show abnormally high activity during writing) in 10 of 13 consecutive patients (age, 19-62 years; all males) with a duration of illness from 6 months to 8 years. In three patients, biofeedback was not applicable due to lack of abnormal EMG values. Nine patients showed dystonic posture during writing and had hypertrophy of one or more large muscles of the dominant hand. The remaining four patients showed either involvement of small muscles or muscle wasting. Ten patients were given four or more sessions of EMG audio biofeedback from the proximal large limb muscles, which showed maximum EMG activity. They also practiced writing daily with the relaxed limb for 5 to 10 min. Nine patients showed improvement from 37 to 93% in handwriting, alleviation of discomfort, and pain (assessed on a visual analogue scale). One patient did not show any improvement. Thus EMG biofeedback improved the clinical and electromyographic picture in those patients with hand dystonia who showed EMG overactivity of proximal limb muscles during writing. This specific type of EMG biofeedback appears to be a promising tool for hand dystonia and might also be applied to other types of dystonias.

  19. An electromyographic analysis of selected asana in experienced yogic practitioners.

    PubMed

    Kelley, Kathleen; Slattery, Katherine; Apollo, Kaitlyn

    2018-01-01

    The purpose of this study was to assess electromyographic (EMG) output of the anterior tibialis (TA), medial head of the gastrocnemius (GA), rectus femoris (RF), bicep femoris (BF), and gluteus medius (GM) in experienced yogic practitioners during selected yoga asana. A secondary purpose was to examine the differences in EMG output in unilateral V. bilateral standing yoga asana. The study was a single occasion descriptive design. Thirteen healthy yoga practitioners (1 male, 12 females, average age of 37.5) with more than five years of experience were recruited. EMG activity was recorded during maximum voluntary isometric contractions (MVIC) of the TA, GA, RF, and BF using the Biodex Multijoint System ® , and GM using manual muscle testing position. Subjects then performed the following yoga asana while EMG activity was recorded: downward facing dog, half-moon, tree, chair, and warrior three pose. Each asana was held for fifteen seconds and performed three times. EMG data were band pass filtered and the root mean square was obtained. Asana data were then amplitude normalized with the subjects' MVIC data. Integrated EMG was calculated for TA, GA, RF, BF and GM, in each asana. A multilevel regression analysis was performed, and peak EMG data was compared. Analysis between muscles showed that during CH and DD EMG activity was greatest in the TA muscle compared to the other muscles, while during HM and WR the GA muscle showed the greatest activity. Analysis within muscles showed low GA, BF, and GM activity during chair pose and downward facing dog compared to half moon, tree, and warrior three, and high RF activity during chair compared to the other poses. In conclusion, there were differences in frontal and sagittal plane muscle activation between single limb and double limb poses in experienced yogic practitioners. Copyright © 2017. Published by Elsevier Ltd.

  20. Neuromuscular function of the quadriceps muscle during isometric maximal, submaximal and submaximal fatiguing voluntary contractions in knee osteoarthrosis patients

    PubMed Central

    Jacksteit, Robert; Jackszis, Mario; Feldhege, Frank; Weippert, Matthias; Mittelmeier, Wolfram; Bader, Rainer; Skripitz, Ralf; Behrens, Martin

    2017-01-01

    Introduction Knee osteoarthrosis (KOA) is commonly associated with a dysfunction of the quadriceps muscle which contributes to alterations in motor performance. The underlying neuromuscular mechanisms of muscle dysfunction are not fully understood. The main objective of this study was to analyze how KOA affects neuromuscular function of the quadriceps muscle during different contraction intensities. Materials and methods The following parameters were assessed in 20 patients and 20 healthy controls: (i) joint position sense, i.e. position control (mean absolute error, MAE) at 30° and 50° of knee flexion, (ii) simple reaction time task performance, (iii) isometric maximal voluntary torque (IMVT) and root mean square of the EMG signal (RMS-EMG), (iv) torque control, i.e. accuracy (MAE), absolute fluctuation (standard deviation, SD), relative fluctuation (coefficient of variation, CV) and periodicity (mean frequency, MNF) of the torque signal at 20%, 40% and 60% IMVT, (v) EMG-torque relationship at 20%, 40% and 60% IMVT and (vi) performance fatigability, i.e. time to task failure (TTF) at 40% IMVT. Results Compared to the control group, the KOA group displayed: (i) significantly higher MAE of the angle signal at 30° (99.3%; P = 0.027) and 50° (147.9%; P < 0.001), (ii) no significant differences in reaction time, (iii) significantly lower IMVT (-41.6%; P = 0.001) and tendentially lower RMS-EMG of the rectus femoris (-33.7%; P = 0.054), (iv) tendentially higher MAE of the torque signal at 20% IMVT (65.9%; P = 0.068), significantly lower SD of the torque signal at all three torque levels and greater MNF at 60% IMVT (44.8%; P = 0.018), (v) significantly increased RMS-EMG of the vastus lateralis at 20% (70.8%; P = 0.003) and 40% IMVT (33.3%; P = 0.034), significantly lower RMS-EMG of the biceps femoris at 20% (-63.6%; P = 0.044) and 40% IMVT (-41.3%; P = 0.028) and tendentially lower at 60% IMVT (-24.3%; P = 0.075) and (vi) significantly shorter TTF (-51.1%; P = 0.049). Conclusion KOA is not only associated with a deterioration of IMVT and neuromuscular activation, but also with an impaired position and torque control at submaximal torque levels, an altered EMG-torque relationship and a higher performance fatigability of the quadriceps muscle. It is recommended that the rehabilitation includes strengthening and fatiguing exercises at maximal and submaximal force levels. PMID:28505208

  1. Effect of whole-body vibration on lower-limb EMG activity in subjects with and without spinal cord injury

    PubMed Central

    Alizadeh-Meghrazi, Milad; Masani, Kei; Zariffa, José; Sayenko, Dimitry G.; Popovic, Milos R.; Craven, B. Catharine

    2014-01-01

    Objective Traumatic spinal cord injury (SCI) results in substantial reductions in lower extremity muscle mass and bone mineral density below the level of the lesion. Whole-body vibration (WBV) has been proposed as a means of counteracting or treating musculoskeletal degradation after chronic motor complete SCI. To ascertain how WBV might be used to augment muscle and bone mass, we investigated whether WBV could evoke lower extremity electromyography (EMG) activity in able-bodied individuals and individuals with SCI, and which vibration parameters produced the largest magnitude of effect. Methods Ten male subjects participated in the study, six able-bodied and four with chronic SCI. Two different manufacturers' vibration platforms (WAVE® and Juvent™) were evaluated. The effects of vibration amplitude (0.2, 0.6 or 1.2 mm), vibration frequency (25, 35, or 45 Hz), and subject posture (knee angle of 140°, 160°, or 180°) on lower extremity EMG activation were determined (not all combinations of parameters were possible on both platforms). A novel signal processing technique was proposed to estimate the power of the EMG waveform while minimizing interference and artifacts from the plate vibration. Results WBV can elicit EMG activity among subjects with chronic SCI, if appropriate vibration parameters are employed. The amplitude of vibration had the greatest influence on EMG activation, while the frequency of vibration had lesser but statistically significant impact on the measured lower extremity EMG activity. Conclusion These findings suggest that WBV with appropriate parameters may constitute a promising intervention to treat musculoskeletal degradation after chronic SCI. PMID:24986541

  2. Electromyography-controlled exoskeletal upper-limb-powered orthosis for exercise training after stroke.

    PubMed

    Stein, Joel; Narendran, Kailas; McBean, John; Krebs, Kathryn; Hughes, Richard

    2007-04-01

    Robot-assisted exercise shows promise as a means of providing exercise therapy for weakness that results from stroke or other neurological conditions. Exoskeletal or "wearable" robots can, in principle, provide therapeutic exercise and/or function as powered orthoses to help compensate for chronic weakness. We describe a novel electromyography (EMG)-controlled exoskeletal robotic brace for the elbow (the active joint brace) and the results of a pilot study conducted using this brace for exercise training in individuals with chronic hemiparesis after stroke. Eight stroke survivors with severe chronic hemiparesis were enrolled in this pilot study. One subject withdrew from the study because of scheduling conflicts. A second subject was unable to participate in the training protocol because of insufficient surface EMG activity to control the active joint brace. The six remaining subjects each underwent 18 hrs of exercise training using the device for a period of 6 wks. Outcome measures included the upper-extremity component of the Fugl-Meyer scale and the modified Ashworth scale of muscle hypertonicity. Analysis revealed that the mean upper-extremity component of the Fugl-Meyer scale increased from 15.5 (SD 3.88) to 19 (SD 3.95) (P = 0.04) at the conclusion of training for the six subjects who completed training. Combined (summated) modified Ashworth scale for the elbow flexors and extensors improved from 4.67 (+/-1.2 SD) to 2.33 (+/-0.653 SD) (P = 0.009) and improved for the entire upper limb as well. All subjects tolerated the device, and no complications occurred. EMG-controlled powered elbow orthoses can be successfully controlled by severely impaired hemiparetic stroke survivors. This technique shows promise as a new modality for assisted exercise training after stroke.

  3. Neuromuscular assessment in elderly workers with and without work related shoulder/neck trouble: the NEW-study design and physiological findings.

    PubMed

    Sjøgaard, G; Søgaard, K; Hermens, H J; Sandsjö, L; Läubli, T; Thorn, S; Vollenbroek-Hutten, M M R; Sell, L; Christensen, H; Klipstein, A; Kadefors, R; Merletti, R

    2006-01-01

    Musculoskeletal disorders in the neck and shoulder area are a major occupational concern in the European countries especially among elderly females. The aim was to assess these disorders based on quantitative EMG indicators and functional tests. 252 female computer users (45-68 years) were recruited from four European countries in two contrast groups: (1) 88 neck/shoulder (NS) cases reporting trouble in the neck and/or shoulder region for more than 30 days during the last year, and (2) 164 NS-controls reporting such trouble for no more than 7 days. Questionnaires, functional/clinical tests, and physiological recordings were performed in workplace related field studies. The results showed no differences in anthropometrics but NS-cases reported more strained head positions and more eye problems than controls. The psychosocial working factors were similar, although, NS-controls had slightly better scores on working conditions, general health, and vitality compared to cases. The NS-cases had lower maximal voluntary contraction (MVC) during shoulder elevation (mean (SD) 310 (122) N) compared to the controls (364 (122) N). During 30% MVC electromyography (EMGrms) in the trapezius muscle was lower in NS-cases (194 (105) muV) than in controls (256 (169) muV), while no differences were found regarding endurance time. Estimated conduction velocity was not different between NS-cases and -controls. Four functional computer tests were performed equally well by NS-cases and -controls, and the corresponding EMG variables also did not differ. A major finding in this large-scale epidemiological study is the significantly lower MVC in NS-cases compared with NS-controls together with lower EMGrms value at 30% MVC, while computer tasks were performed at similar relative muscle activation. The study was unable to reveal quantitative EMG indicators and functional tests that could objectively assess disorders in NS-cases.

  4. Improving robustness against electrode shift of high density EMG for myoelectric control through common spatial patterns.

    PubMed

    Pan, Lizhi; Zhang, Dingguo; Jiang, Ning; Sheng, Xinjun; Zhu, Xiangyang

    2015-12-02

    Most prosthetic myoelectric control studies have concentrated on low density (less than 16 electrodes, LD) electromyography (EMG) signals, due to its better clinical applicability and low computation complexity compared with high density (more than 16 electrodes, HD) EMG signals. Since HD EMG electrodes have been developed more conveniently to wear with respect to the previous versions recently, HD EMG signals become an alternative for myoelectric prostheses. The electrode shift, which may occur during repositioning or donning/doffing of the prosthetic socket, is one of the main reasons for degradation in classification accuracy (CA). HD EMG signals acquired from the forearm of the subjects were used for pattern recognition-based myoelectric control in this study. Multiclass common spatial patterns (CSP) with two types of schemes, namely one versus one (CSP-OvO) and one versus rest (CSP-OvR), were used for feature extraction to improve the robustness against electrode shift for myoelectric control. Shift transversal (ST1 and ST2) and longitudinal (SL1 and SL2) to the direction of the muscle fibers were taken into consideration. We tested nine intact-limb subjects for eleven hand and wrist motions. The CSP features (CSP-OvO and CSP-OvR) were compared with three commonly used features, namely time-domain (TD) features, time-domain autoregressive (TDAR) features and variogram (Variog) features. Compared with the TD features, the CSP features significantly improved the CA over 10 % in all shift configurations (ST1, ST2, SL1 and SL2). Compared with the TDAR features, a. the CSP-OvO feature significantly improved the average CA over 5 % in all shift configurations; b. the CSP-OvR feature significantly improved the average CA in shift configurations ST1, SL1 and SL2. Compared with the Variog features, the CSP features significantly improved the average CA in longitudinal shift configurations (SL1 and SL2). The results demonstrated that the CSP features significantly improved the robustness against electrode shift for myoelectric control with respect to the commonly used features.

  5. Functional mapping of the pelvic floor and sphincter muscles from high-density surface EMG recordings.

    PubMed

    Peng, Yun; He, Jinbao; Khavari, Rose; Boone, Timothy B; Zhang, Yingchun

    2016-11-01

    Knowledge of the innervation of pelvic floor and sphincter muscles is of great importance to understanding the pathophysiology of female pelvic floor dysfunctions. This report presents our high-density intravaginal and intrarectal electromyography (EMG) probes and a comprehensive innervation zone (IZ) imaging technique based on high-density EMG readings to characterize the IZ distribution. Both intravaginal and intrarectal probes are covered with a high-density surface electromyography electrode grid (8 × 8). Surface EMG signals were acquired in ten healthy women performing maximum voluntary contractions of their pelvic floor. EMG decomposition was performed to separate motor-unit action potentials (MUAPs) and then localize their IZs. High-density surface EMG signals were successfully acquired over the vaginal and rectal surfaces. The propagation patterns of muscle activity were clearly visualized for multiple muscle groups of the pelvic floor and anal sphincter. During each contraction, up to 218 and 456 repetitions of motor units were detected by the vaginal and rectal probes, respectively. MUAPs were separated with their IZs identified at various orientations and depths. The proposed probes are capable of providing a comprehensive mapping of IZs of the pelvic floor and sphincter muscles. They can be employed as diagnostic and preventative tools in clinical practices.

  6. The Identification and Tracking of Uterine Contractions Using Template Based Cross-Correlation.

    PubMed

    McDonald, Sarah C; Brooker, Graham; Phipps, Hala; Hyett, Jon

    2017-09-01

    The purpose of this paper is to outline a novel method of using template based cross-correlation to identify and track uterine contractions during labour. A purpose built six-channel Electromyography (EMG) device was used to collect data from consenting women during labour and birth. A range of templates were constructed for the purpose of identifying and tracking uterine activity when cross-correlated with the EMG signal. Peak finding techniques were applied on the cross-correlated result to simplify and automate the identification and tracking of contractions. The EMG data showed a unique pattern when a woman was contracting with key features of the contraction signal remaining consistent and identifiable across subjects. Contraction profiles across subjects were automatically identified using template based cross-correlation. Synthetic templates from a rectangular function with a duration of between 5 and 10 s performed best at identifying and tracking uterine activity across subjects. The successful application of this technique provides opportunity for both simple and accurate real-time analysis of contraction data while enabling investigations into the application of techniques such as machine learning which could enable automated learning from contraction data as part of real-time monitoring and post analysis.

  7. One-Channel Surface Electromyography Decomposition for Muscle Force Estimation.

    PubMed

    Sun, Wentao; Zhu, Jinying; Jiang, Yinlai; Yokoi, Hiroshi; Huang, Qiang

    2018-01-01

    Estimating muscle force by surface electromyography (sEMG) is a non-invasive and flexible way to diagnose biomechanical diseases and control assistive devices such as prosthetic hands. To estimate muscle force using sEMG, a supervised method is commonly adopted. This requires simultaneous recording of sEMG signals and muscle force measured by additional devices to tune the variables involved. However, recording the muscle force of the lost limb of an amputee is challenging, and the supervised method has limitations in this regard. Although the unsupervised method does not require muscle force recording, it suffers from low accuracy due to a lack of reference data. To achieve accurate and easy estimation of muscle force by the unsupervised method, we propose a decomposition of one-channel sEMG signals into constituent motor unit action potentials (MUAPs) in two steps: (1) learning an orthogonal basis of sEMG signals through reconstruction independent component analysis; (2) extracting spike-like MUAPs from the basis vectors. Nine healthy subjects were recruited to evaluate the accuracy of the proposed approach in estimating muscle force of the biceps brachii. The results demonstrated that the proposed approach based on decomposed MUAPs explains more than 80% of the muscle force variability recorded at an arbitrary force level, while the conventional amplitude-based approach explains only 62.3% of this variability. With the proposed approach, we were also able to achieve grip force control of a prosthetic hand, which is one of the most important clinical applications of the unsupervised method. Experiments on two trans-radial amputees indicated that the proposed approach improves the performance of the prosthetic hand in grasping everyday objects.

  8. Emg Signal Analysis of Healthy and Neuropathic Individuals

    NASA Astrophysics Data System (ADS)

    Gupta, Ashutosh; Sayed, Tabassum; Garg, Ridhi; Shreyam, Richa

    2017-08-01

    Electromyography is a method to evaluate levels of muscle activity. When a muscle contracts, an action potential is generated and this circulates along the muscular fibers. In electromyography, electrodes are connected to the skin and the electrical activity of muscles is measured and graph is plotted. The surface EMG signals picked up during the muscular activity are interfaced with a system. The EMG signals from individual suffering from Neuropathy and healthy individual, so obtained, are processed and analyzed using signal processing techniques. This project includes the investigation and interpretation of EMG signals of healthy and Neuropathic individuals using MATLAB. The prospective use of this study is in developing the prosthetic device for the people with Neuropathic disability.

  9. A myocontrolled neuroprosthesis integrated with a passive exoskeleton to support upper limb activities.

    PubMed

    Ambrosini, Emilia; Ferrante, Simona; Schauer, Thomas; Klauer, Christian; Gaffuri, Marina; Ferrigno, Giancarlo; Pedrocchi, Alessandra

    2014-04-01

    This work aimed at designing a myocontrolled arm neuroprosthesis for both assistive and rehabilitative purposes. The performance of an adaptive linear prediction filter and a high-pass filter to estimate the volitional EMG was evaluated on healthy subjects (N=10) and neurological patients (N=8) during dynamic hybrid biceps contractions. A significant effect of filter (p=0.017 for healthy; p<0.001 for patients) was obtained. The post hoc analysis revealed that for both groups only the adaptive filter was able to reliably detect the presence of a small volitional contribution. An on/off non-linear controller integrated with an exoskeleton for weight support was developed. The controller allowed the patient to activate/deactivate the stimulation intensity based on the residual EMG estimated by the adaptive filter. Two healthy subjects and 3 people with Spinal Cord Injury were asked to flex the elbow while tracking a trapezoidal target with and without myocontrolled-NMES support. Both healthy subjects and patients easily understood how to use the controller in a single session. Two patients reduced their tracking error by more than 60% with NMES support, while the last patient obtained a tracking error always comparable to the healthy subjects performance (<4°). This study proposes a reliable and feasible solution to combine NMES with voluntary effort. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Wideband EMG telemetry system

    NASA Technical Reports Server (NTRS)

    Rosatino, S. A.; Westbrook, R. M.

    1979-01-01

    Miniature, individual crystal-controlled RF transmitters located in EMG pressure sensors simplifies multichannel EMG telemetry for electronic gait monitoring. Transmitters which are assigned operating frequencies within 174 - 216 MHz band have linear frequency response from 20 - 2000 Hz and operate over range of 15 m.

  11. Cervico-ocular coordination during neck rotation is distorted in people with whiplash-associated disorders.

    PubMed

    Bexander, Catharina S M; Hodges, Paul W

    2012-03-01

    People with whiplash-associated disorders (WAD) not only suffer from neck/head pain, but commonly report deficits in eye movement control. Recent work has highlighted a strong relationship between eye and neck muscle activation in pain-free subjects. It is possible that WAD may disrupt the intricate coordination between eye and neck movement. Electromyographic activity (EMG) of muscles that rotate the cervical spine to the right (left sternocleidomastoid, right obliquus capitis inferior (OI), right splenius capitis (SC) and right multifidus (MF)) was recorded in nine people with chronic WAD. Cervical rotation was performed with five gaze conditions involving different gaze directions relative to cervical rotation. The relationship between eye position/movement and neck muscle activity was contrasted with previous observations from pain-free controls. Three main differences were observed in WAD. First, the superficial muscle SC was active with both directions of cervical rotation in contrast to activity only with right rotation in pain-free controls. Second, activity of OI and MF varied between directions of cervical rotation, unlike the non-direction-specific activity in controls. Third, the effect of horizontal gaze direction on neck muscle EMG was augmented compared to controls. These observations provide evidence of redistribution of activity between neck muscles during cervical rotation and increased interaction between eye and neck muscle activity in people with WAD. These changes in cervico-ocular coordination may underlie clinical symptoms reported by people with WAD that involve visual deficits and changes in function during cervical rotation such as postural control.

  12. Discrete vs. Continuous Mapping of Facial Electromyography for Human-Machine-Interface Control: Performance and Training Effects

    PubMed Central

    Cler, Meredith J.; Stepp, Cara E.

    2015-01-01

    Individuals with high spinal cord injuries are unable to operate a keyboard and mouse with their hands. In this experiment, we compared two systems using surface electromyography (sEMG) recorded from facial muscles to control an onscreen keyboard to type five-letter words. Both systems used five sEMG sensors to capture muscle activity during five distinct facial gestures that were mapped to five cursor commands: move left, move right, move up, move down, and “click”. One system used a discrete movement and feedback algorithm in which the user produced one quick facial gesture, causing a corresponding discrete movement to an adjacent letter. The other system was continuously updated and allowed the user to control the cursor’s velocity by relative activation between different sEMG channels. Participants were trained on one system for four sessions on consecutive days, followed by one crossover session on the untrained system. Information transfer rates (ITRs) were high for both systems compared to other potential input modalities, both initially and with training (Session 1: 62.1 bits/min, Session 4: 105.1 bits/min). Users of the continuous system showed significantly higher ITRs than the discrete users. Future development will focus on improvements to both systems, which may offer differential advantages for users with various motor impairments. PMID:25616053

  13. Core Muscle Activity during TRX Suspension Exercises with and without Kinesiology Taping in Adults with Chronic Low Back Pain: Implications for Rehabilitation.

    PubMed

    Fong, Shirley S M; Tam, Y T; Macfarlane, Duncan J; Ng, Shamay S M; Bae, Young-Hyeon; Chan, Eleanor W Y; Guo, X

    2015-01-01

    This study aimed to examine the effects of kinesiology taping (KT) and different TRX suspension workouts on the amplitude of electromyographic (EMG) activity in the core muscles among people with chronic low back pain (LBP). Each participant (total n = 21) was exposed to two KT conditions: no taping and taping, while performing four TRX suspension exercises: (1) hamstring curl, (2) hip abduction in plank, (3) chest press, and (4) 45-degree row. Right transversus abdominis/internal oblique (TrAIO), rectus abdominis (RA), external oblique (EO), and superficial lumbar multifidus (LMF) activity was recorded with surface EMG and expressed as a percentage of the EMG amplitude recorded during a maximal voluntary isometric contraction of the respective muscles. Hip abduction in plank increased TrAIO, RA, and LMF EMG amplitude compared with other TRX positions (P < 0.008). Only the hamstring curl was effective in inducing a high EMG amplitude of LMF (P < 0.001). No significant difference in EMG magnitude was found between the taping and no taping conditions overall (P > 0.05). Hip abduction in plank most effectively activated abdominal muscles, whereas the hamstring curl most effectively activated the paraspinal muscles. Applying KT conferred no immediate benefits in improving the core muscle activation during TRX training in adults with chronic LBP.

  14. Task-level feedback can explain temporal recruitment of spatially fixed muscle synergies throughout postural perturbations

    PubMed Central

    Safavynia, Seyed A.

    2012-01-01

    Recent evidence suggests that complex spatiotemporal patterns of muscle activity can be explained with a low-dimensional set of muscle synergies or M-modes. While it is clear that both spatial and temporal aspects of muscle coordination may be low dimensional, constraints on spatial versus temporal features of muscle coordination likely involve different neural control mechanisms. We hypothesized that the low-dimensional spatial and temporal features of muscle coordination are independent of each other. We further hypothesized that in reactive feedback tasks, spatially fixed muscle coordination patterns—or muscle synergies—are hierarchically recruited via time-varying neural commands based on delayed task-level feedback. We explicitly compared the ability of spatially fixed (SF) versus temporally fixed (TF) muscle synergies to reconstruct the entire time course of muscle activity during postural responses to anterior-posterior support-surface translations. While both SF and TF muscle synergies could account for EMG variability in a postural task, SF muscle synergies produced more consistent and physiologically interpretable results than TF muscle synergies during postural responses to perturbations. Moreover, a majority of SF muscle synergies were consistent in structure when extracted from epochs throughout postural responses. Temporal patterns of SF muscle synergy recruitment were well-reconstructed by delayed feedback of center of mass (CoM) kinematics and reproduced EMG activity of multiple muscles. Consistent with the idea that independent and hierarchical low-dimensional neural control structures define spatial and temporal patterns of muscle activity, our results suggest that CoM kinematics are a task variable used to recruit SF muscle synergies for feedback control of balance. PMID:21957219

  15. Altered motor unit discharge patterns in paretic muscles of stroke survivors assessed using surface electromyography.

    PubMed

    Hu, Xiaogang; Suresh, Aneesha K; Rymer, William Z; Suresh, Nina L

    2016-08-01

    Hemispheric stroke survivors often show impairments in voluntary muscle activation. One potential source of these impairments could come from altered control of muscle, via disrupted motor unit (MU) firing patterns. In this study, we sought to determine whether MU firing patterns are modified on the affected side of stroke survivors, as compared with the analogous contralateral muscle. Using a novel surface electromyogram (EMG) sensor array, coupled with advanced template recognition software (dEMG) we recorded surface EMG signals over the first dorsal interosseous (FDI) muscle on both paretic and contralateral sides. Recordings were made as stroke survivors produced isometric index finger abductions over a large force range (20%-60% of maximum). Utilizing the dEMG algorithm, MU firing rates, recruitment thresholds, and action potential amplitudes were estimated for concurrently active MUs in each trial. Our results reveal significant changes in the firing rate patterns in paretic FDI muscle, in that the discharge rates, characterized in relation to recruitment force threshold and to MU size, were less clearly correlated with recruitment force than in contralateral FDI muscles. Firing rates in the affected muscle also did not modulate systematically with the level of voluntary muscle contraction, as would be expected in intact muscles. These disturbances in firing properties also correlated closely with the impairment of muscle force generation. Our results provide strong evidence of disruptions in MU firing behavior in paretic muscles after a hemispheric stroke, suggesting that modified control of the spinal motoneuron pool could be a contributing factor to muscular weakness in stroke survivors.

  16. Altered motor unit discharge patterns in paretic muscles of stroke survivors assessed using surface electromyography

    NASA Astrophysics Data System (ADS)

    Hu, Xiaogang; Suresh, Aneesha K.; Rymer, William Z.; Suresh, Nina L.

    2016-08-01

    Objective. Hemispheric stroke survivors often show impairments in voluntary muscle activation. One potential source of these impairments could come from altered control of muscle, via disrupted motor unit (MU) firing patterns. In this study, we sought to determine whether MU firing patterns are modified on the affected side of stroke survivors, as compared with the analogous contralateral muscle. Approach. Using a novel surface electromyogram (EMG) sensor array, coupled with advanced template recognition software (dEMG) we recorded surface EMG signals over the first dorsal interosseous (FDI) muscle on both paretic and contralateral sides. Recordings were made as stroke survivors produced isometric index finger abductions over a large force range (20%-60% of maximum). Utilizing the dEMG algorithm, MU firing rates, recruitment thresholds, and action potential amplitudes were estimated for concurrently active MUs in each trial. Main results. Our results reveal significant changes in the firing rate patterns in paretic FDI muscle, in that the discharge rates, characterized in relation to recruitment force threshold and to MU size, were less clearly correlated with recruitment force than in contralateral FDI muscles. Firing rates in the affected muscle also did not modulate systematically with the level of voluntary muscle contraction, as would be expected in intact muscles. These disturbances in firing properties also correlated closely with the impairment of muscle force generation. Significance. Our results provide strong evidence of disruptions in MU firing behavior in paretic muscles after a hemispheric stroke, suggesting that modified control of the spinal motoneuron pool could be a contributing factor to muscular weakness in stroke survivors.

  17. Muscle activity characterization by laser Doppler Myography

    NASA Astrophysics Data System (ADS)

    Scalise, Lorenzo; Casaccia, Sara; Marchionni, Paolo; Ercoli, Ilaria; Primo Tomasini, Enrico

    2013-09-01

    Electromiography (EMG) is the gold-standard technique used for the evaluation of muscle activity. This technique is used in biomechanics, sport medicine, neurology and rehabilitation therapy and it provides the electrical activity produced by skeletal muscles. Among the parameters measured with EMG, two very important quantities are: signal amplitude and duration of muscle contraction, muscle fatigue and maximum muscle power. Recently, a new measurement procedure, named Laser Doppler Myography (LDMi), for the non contact assessment of muscle activity has been proposed to measure the vibro-mechanical behaviour of the muscle. The aim of this study is to present the LDMi technique and to evaluate its capacity to measure some characteristic features proper of the muscle. In this paper LDMi is compared with standard superficial EMG (sEMG) requiring the application of sensors on the skin of each patient. sEMG and LDMi signals have been simultaneously acquired and processed to test correlations. Three parameters has been analyzed to compare these techniques: Muscle activation timing, signal amplitude and muscle fatigue. LDMi appears to be a reliable and promising measurement technique allowing the measurements without contact with the patient skin.

  18. Electromyography-based analysis of human upper limbs during 45-day head-down bed-rest

    NASA Astrophysics Data System (ADS)

    Fu, Anshuang; Wang, Chunhui; Qi, Hongzhi; Li, Fan; Wang, Zheng; He, Feng; Zhou, Peng; Chen, Shanguang; Ming, Dong

    2016-03-01

    Muscle deconditioning occurs in response to simulated or actual microgravity. In spaceflight, astronauts become monkey-like for mainly using their upper limbs to control the operating system and to complete corresponding tasks. The changes of upper limbs' athletic ability will directly affect astronauts' working performance. This study investigated the variation trend of surface electromyography (sEMG) during prolonged simulated microgravity. Eight healthy males participating in this study performed strict 45-day head-down bed-rest (HDBR). On the 5th day of pre-HDBR, and the 15th, the 30th and the 45th days of HDBR, the subjects performed maximum pushing task and maximum pulling task, and sEMG was collected from upper limbs synchronously. Each subject's maximum volunteer contractions of both the tasks during these days were compared, showing no significant change. However, changes were detected by sEMG-based analysis. It was found that integrated EMG, root mean square, mean frequency, fuzzy entropy of deltoid, and fuzzy entropy of triceps brachii changed significantly when comparing pre-HDBR with HDBR. The variation trend showed a recovery tendency after significant decline, which is inconsistent with the monotonic variation of lower limbs that was proved by previous research. These findings suggest that EMG changes in upper limbs during prolonged simulated microgravity, but has different variation trend from lower limbs.

  19. Muscular activity of different shooting distances, different release techniques, and different performance levels, with and without stabilizers, in target archery.

    PubMed

    Clarys, J P; Cabri, J; Bollens, E; Sleeckx, R; Taeymans, J; Vermeiren, M; Van Reeth, G; Voss, G

    1990-01-01

    The quadruple approach in the title refers to four different studies over a period of 3 years. The common factor in these studies is the methodology of the (Brussels) Electromyographic Signal Processing and Analysis System (ESPAS), a hardware and software EMG data acquisition system that has constantly been improved. Therefore, the ESPAS methodology is described extensively (i.e. the electrodes, amplifier, tape-recorder and processing hardware). Experiment 1 investigated muscular behaviour in target shooting, both indoors (18 and 25 m) and outdoors (50, 70 and 90 m). It was found (via iEMG) that a significant increase in activity only exists between 25 and 50 m, and that there is no linear increase of activity with increased distance. No differences in muscular pattern (IDANCO system: Clarys and Cabri, 1988) or activity between the indoor distances and between the outdoor distances were found. Experiment 2 investigated the muscular economy of four string grips: the three-finger grip, two-finger grip, thumb grip and reversed grip. The largest variations in activity were found for the two most unfamiliar grips, i.e. the thumb and reversed grips; however, low iEMG and the rapid precision improvement (over a limited number of shots) suggest that the thumb grip, if practised long enough, might be the most economical technique. Experiment 3 attempted to differentiate muscular activity and a number of performance variables in three different populations of archers--Olympic athletes, National competitors and beginners--in order to obtain feedback regarding improved performance. Apparently, overall muscle pattern, intensities and arrow speed were not discriminatory. The differences found between the groups (or levels of skill) were affected by the ability to reproduce identical patterns and arrow velocities in consecutive shots and by the constancy of neuromuscular control of the M. trapezius, M. biceps brachii and M. extensor digitorum. Finally, Experiment 4 investigated the muscular activity of elite archers shooting at distances of 70 and 90 m with and without stabilizers. Differences in iEMG were not supported by differences in precision. Over time, the low iEMG in shooting without stabilizers increases precision and delays fatigue.

  20. EMG prediction from Motor Cortical Recordings via a Non-Negative Point Process Filter

    PubMed Central

    Nazarpour, Kianoush; Ethier, Christian; Paninski, Liam; Rebesco, James M.; Miall, R. Chris; Miller, Lee E.

    2012-01-01

    A constrained point process filtering mechanism for prediction of electromyogram (EMG) signals from multi-channel neural spike recordings is proposed here. Filters from the Kalman family are inherently sub-optimal in dealing with non-Gaussian observations, or a state evolution that deviates from the Gaussianity assumption. To address these limitations, we modeled the non-Gaussian neural spike train observations by using a generalized linear model (GLM) that encapsulates covariates of neural activity, including the neurons’ own spiking history, concurrent ensemble activity, and extrinsic covariates (EMG signals). In order to predict the envelopes of EMGs, we reformulated the Kalman filter (KF) in an optimization framework and utilized a non-negativity constraint. This structure characterizes the non-linear correspondence between neural activity and EMG signals reasonably. The EMGs were recorded from twelve forearm and hand muscles of a behaving monkey during a grip-force task. For the case of limited training data, the constrained point process filter improved the prediction accuracy when compared to a conventional Wiener cascade filter (a linear causal filter followed by a static non-linearity) for different bin sizes and delays between input spikes and EMG output. For longer training data sets, results of the proposed filter and that of the Wiener cascade filter were comparable. PMID:21659018

Top